Science.gov

Sample records for q resonances

  1. High Q silica microbubble resonators

    NASA Astrophysics Data System (ADS)

    Farnesi, D.; Barucci, A.; Berneschi, S.; Brenci, M.; Cosi, F.; Nunzi Conti, G.; Pelli, S.; Righini, G. C.; Soria, S.

    2012-01-01

    Microbubble resonators (MBRs) combine the unique properties of whispering gallery mode resonators with the intrinsic capability of integrated microfluidics. Here an improved fabrication method of MBRs is presented, based on the heating of a slightly pressurized capillary by a rotating arc discharge. Rotation of the electrodes ensures an homogeneous distribution of the heat all over the capillary surface. The demonstrated MBRs have Q factors up to 107 at 773 nm. Microbubbles were filled with water and aqueous solutions of ethanol in order to test the refractive index sensing capabilities of such resonators, which also show a good temporal stability.

  2. High Q Miniature Sapphire Acoustic Resonator

    NASA Technical Reports Server (NTRS)

    Wang, Rabi T.; Tjoelker, R. L.

    2010-01-01

    We have demonstrated high Q measurements in a room temperature Miniature Sapphire Acoustic Resonator (MSAR). Initial measurements of bulk acoustic modes in room temperature sapphire at 39 MHz have demonstrated a Q of 8.8 x 10(exp 6). The long term goal of this work is to integrate such a high Q resonator with small, low noise quartz oscillator electronics, providing a fractional frequency stability better than 1 x 10(exp -14) @ 1s.

  3. High Q silicon carbide microdisk resonator

    SciTech Connect

    Lu, Xiyuan; Lee, Jonathan Y.; Feng, Philip X.-L.; Lin, Qiang

    2014-05-05

    We demonstrate a silicon carbide (SiC) microdisk resonator with optical Q up to 5.12 × 10{sup 4}. The high optical quality, together with the diversity of whispering-gallery modes and the tunability of external coupling, renders SiC microdisk a promising platform for integrated quantum photonics applications.

  4. Measurement of the Q value of an acoustic resonator.

    PubMed

    Biwa, Tetsushi; Ueda, Yuki; Nomura, Hiroshi; Mizutani, Uichiro; Yazaki, Taichi

    2005-08-01

    A cylindrical acoustic resonator was externally driven at the first resonance frequency by a compression driver. The acoustic energy stored in the resonator and the power dissipated per unit time were evaluated through the simultaneous measurements of acoustic pressure and velocity, in order to determine the Q value of the resonator. The resulting Q value, being employed as a measure of the damping in a resonator, was obtained as 36. However, the Q value determined from a frequency response curve known as a conventional technique turned out to be 25, which is 30% less than that obtained in the present method. By further applying these two methods in the case of a resonator having an acoustic load inside, we present an accurate measurement of the Q value of the resonator by making full use of its definition.

  5. Monolithic Cylindrical Fused Silica Resonators with High Q Factors

    PubMed Central

    Pan, Yao; Wang, Dongya; Wang, Yanyan; Liu, Jianping; Wu, Suyong; Qu, Tianliang; Yang, Kaiyong; Luo, Hui

    2016-01-01

    The cylindrical resonator gyroscope (CRG) is a typical Coriolis vibratory gyroscope whose performance is determined by the Q factor and frequency mismatch of the cylindrical resonator. Enhancing the Q factor is crucial for improving the rate sensitivity and noise performance of the CRG. In this paper, for the first time, a monolithic cylindrical fused silica resonator with a Q factor approaching 8 × 105 (ring-down time over 1 min) is reported. The resonator is made of fused silica with low internal friction and high isotropy, with a diameter of 25 mm and a center frequency of 3974.35 Hz. The structure of the resonator is first briefly introduced, and then the experimental non-contact characterization method is presented. In addition, the post-fabrication experimental procedure of Q factor improvement, including chemical and thermal treatment, is demonstrated. The Q factor improvement by both treatments is compared and the primary loss mechanism is analyzed. To the best of our knowledge, the work presented in this paper represents the highest reported Q factor for a cylindrical resonator. The proposed monolithic cylindrical fused silica resonator may enable high performance inertial sensing with standard manufacturing process and simple post-fabrication treatment. PMID:27483263

  6. Planar coupling to high-Q lithium niobate disk resonators.

    PubMed

    Nunzi Conti, G; Berneschi, S; Cosi, F; Pelli, S; Soria, S; Righini, G C; Dispenza, M; Secchi, A

    2011-02-14

    We demonstrate optical coupling to high-Q lithium niobate disks from an integrated lithium niobate waveguide. The waveguides are made by proton exchange in X-cut lithium niobate substrate. The disks with diameter of 4.7 mm and thickness of 1 mm are made from commercial Z-cut lithium niobate wafers by polishing the edges into a spheroidal profile. Both resonance linewidth and cavity ringdown measurements were performed to calculate the Q factor of the resonator, which is in excess of 10(8). Planar coupling represents the most promising technique for practical applications of whispering gallery mode resonators.

  7. Ultra-high Q even eigenmode resonance in terahertz metamaterials

    SciTech Connect

    Al-Naib, Ibraheem Dignam, Marc M.; Yang, Yuping; Zhang, Weili; Singh, Ranjan

    2015-01-05

    We report the simultaneous excitation of the odd and the even eigenmode resonances in a periodic array of square split-ring resonators, with four resonators per unit cell. When the electric field is parallel to their gaps, only the two well-studied odd eigenmodes are excited. As the resonators are rotated relative to one another, we observe the emergence and excitation of an extremely sharp even eigenmode. In uncoupled split-ring resonators, this even eigenmode is typically radiative in nature with a broad resonance linewidth and low Q-factor. However, in our coupled system, for specific range of rotation angles, our simulations revealed a remarkably high quality factor (Q ∼ 100) for this eigenmode, which has sub-radiant characteristics. This type of quad-supercell metamaterial offers the advantage of enabling access to all the three distinct resonance features of the split-ring resonator, which consists of two odd eigenmodes in addition to the high-Q even eigenmode, which could be exploited for high performance multiband filters and absorbers. The high Q even eigenmode could find applications in designing label free bio-sensors and for studying the enhanced light matter interaction effects.

  8. Preventing Raman Lasing in High-Q WGM Resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Matsko, Andrey; Strekalov, Dmitry; Maleki, Lute

    2007-01-01

    A generic design has been conceived to suppress the Raman effect in whispering- gallery-mode (WGM) optical resonators that have high values of the resonance quality factor (Q). Although it is possible to exploit the Raman effect (even striving to maximize the Raman gain to obtain Raman lasing), the present innovation is intended to satisfy a need that arises in applications in which the Raman effect inhibits the realization of the full potential of WGM resonators as frequency-selection components. Heretofore, in such applications, it has been necessary to operate high-Q WGM resonators at unattractively low power levels to prevent Raman lasing. (The Raman-lasing thresholds of WGM optical resonators are very low and are approximately proportional to Q(sup -2)). Heretofore, two ways of preventing Raman lasting at high power levels have been known, but both entail significant disadvantages: A resonator can be designed so that the optical field is spread over a relatively large mode volume to bring the power density below the threshold. For any given combination of Q and power level, there is certain mode volume wherein Raman lasing does not start. Unfortunately, a resonator that has a large mode volume also has a high spectral density, which is undesirable in a typical photonic application. A resonator can be cooled to the temperature of liquid helium, where the Raman spectrum is narrower and, therefore, the Raman gain is lower. However, liquid-helium cooling is inconvenient. The present design overcomes these disadvantages, making it possible to operate a low-spectral-density (even a single-mode) WGM resonator at a relatively high power level at room temperature, without risk of Raman lasing.

  9. High Q silica microbubble resonators fabricated by arc discharge

    NASA Astrophysics Data System (ADS)

    Berneschi, S.; Farnesi, D.; Cosi, F.; Nunzi Conti, G.; Pelli, S.; Righini, G. C.; Soria, S.

    2011-09-01

    Microbubble resonators combine the unique properties of whispering gallery mode resonators with the intrinsic capability of integrated microfluidics. Here an improved fabrication method of microbubble resonators is presented, based on the heating of a slightly pressurized capillary by a rotating arc discharge. Rotation of the electrodes, moved out of a fiber splicer, ensures a homogeneous distribution of the heat all over the capillary surface. The demonstrated microbubble resonators have Q factors up to 6×107 at 1550nm. Microbubbles were filled with water and aqueous solutions of ethanol in order to test the refractive index sensing capabilities of such resonators, which also show a good temporal stability. The limit of detection of our microbubble resonator sensor is 10-6RIU.

  10. High Q silica microbubble resonators fabricated by arc discharge.

    PubMed

    Berneschi, S; Farnesi, D; Cosi, F; Conti, G Nunzi; Pelli, S; Righini, G C; Soria, S

    2011-09-01

    Microbubble resonators combine the unique properties of whispering gallery mode resonators with the intrinsic capability of integrated microfluidics. Here an improved fabrication method of microbubble resonators is presented, based on the heating of a slightly pressurized capillary by a rotating arc discharge. Rotation of the electrodes, moved out of a fiber splicer, ensures a homogeneous distribution of the heat all over the capillary surface. The demonstrated microbubble resonators have Q factors up to 6×10(7) at 1550 nm. Microbubbles were filled with water and aqueous solutions of ethanol in order to test the refractive index sensing capabilities of such resonators, which also show a good temporal stability. The limit of detection of our microbubble resonator sensor is 10(-6) RIU.

  11. High Q printed helical resonators for oscillators and filters.

    PubMed

    Everard, Jeremy K A; Broomfield, Carl D

    2007-09-01

    High Q compact printed helical resonators which operate from around 1.8 to 2 GHz are described. These consist of a multilayer printed circuit board (PCB) incorporating a printed helical transmission line. Loss in the via hole is reduced by ensuring that the standing wave current at this point is near zero. This ensures a significant increase in Q. Further increased energy storage per unit volume is achieved due to the 3-D helical nature of the resonator. Unloaded Qs of 235 and 195 have been obtained on low loss PCBs with dielectric constants of 2.2 and 10.5, respectively. Two applications for these resonators are described in this paper. The first is the design of a compact low noise oscillator where the ratio of QL/Q0, and hence insertion loss, is adjusted for low noise. The 2-GHz oscillator demonstrates a phase noise of -120 dBc/Hz at 10 kHz which is predicted exactly by the theory. The second is a three-section filter designed to offer the response required by the front end filter of a modern GSM mobile telephone. In the filter design three helical resonators are coupled together to produce a completely printed triplate bandpass filter.

  12. Engineered Carbon Nanotube Materials for High-Q Nanomechanical Resonators

    NASA Technical Reports Server (NTRS)

    Choi, Daniel S.; Hunt, Brian; Bronikowski, Mike; Epp, Larry; Hoenk, Michael; Hoppe, Dan; Kowalczyk, Bob; Wong, Eric; Xu, Jimmy; Adam, Douglas; Young, Rob

    2003-01-01

    This document represents a presentation offered by the Jet Propulsion Laboratory, with assistance from researchers from Brown University and Northrop Grumman. The presentation took place in Seoul, Korea in July 2003 and attempted to demonstrate the fabrication approach regarding the development of high quality factor (high-Q) mechanical oscillators (in the forms of a tunable nanotube resonator and a nanotube array radio frequency [RF] filter) aimed at signal processing and based on carbon nanotubes. The presentation also addressed parallel efforts to develop both in-plane single nanotube resonators as well as vertical array power devices.

  13. High-Q GaN nanowire resonators and oscillators

    SciTech Connect

    Tanner, S. M.; Gray, J. M.; Rogers, C. T.; Bertness, K. A.; Sanford, N. A.

    2007-11-12

    We report high mechanical quality factors Q for GaN nanowire cantilevers grown by molecular beam epitaxy. Nanowires with 30-500 nm diameters and 5-20 {mu}m lengths having resonance frequencies from 400 kHz to 2.8 MHz were measured. Q near room temperature and 10{sup -4} Pa ranged from 2700 to above 60 000 with most above 10 000. Positive feedback to a piezoelectric stack caused spontaneous nanowire oscillations with Q exceeding 10{sup 6}. Spontaneous oscillations also occurred with direct e-beam excitation of unintentionally doped nanowires. Doped nanowires showed no oscillations, consistent with oscillation arising via direct actuation of piezoelectric GaN.

  14. High-Q resonant cavities for terahertz quantum cascade lasers.

    PubMed

    Campa, A; Consolino, L; Ravaro, M; Mazzotti, D; Vitiello, M S; Bartalini, S; De Natale, P

    2015-02-09

    We report on the realization and characterization of two different designs for resonant THz cavities, based on wire-grid polarizers as input/output couplers, and injected by a continuous-wave quantum cascade laser (QCL) emitting at 2.55 THz. A comparison between the measured resonators parameters and the expected theoretical values is reported. With achieved quality factor Q ≈ 2.5 × 10(5), these cavities show resonant peaks as narrow as few MHz, comparable with the typical Doppler linewidth of THz molecular transitions and slightly broader than the free-running QCL emission spectrum. The effects of the optical feedback from one cavity to the QCL are examined by using the other cavity as a frequency reference.

  15. Electrical tuning of mechanical characteristics in qPlus sensor: Active Q and resonance frequency control

    SciTech Connect

    Lee, Manhee; Hwang, Jong Geun; Jahng, Junghoon; Kim, QHwan; Noh, Hanaul; An, Sangmin; Jhe, Wonho

    2016-08-21

    We present an electrical feedback method for independent and simultaneous tuning of both the resonance frequency and the quality factor of a harmonic oscillator, the so called “qPlus” configuration of quartz tuning forks. We incorporate a feedback circuit with two electronic gain parameters into the original actuation-detection system, and systematically demonstrate the control of the original resonance frequency of 32 592 Hz from 32 572 Hz to 32 610 Hz and the original quality factor 952 from 408 up to 20 000. This tunable module can be used for enhancing and optimizing the oscillator performance in compliance with specifics of applications.

  16. Ultra-High Q Acoustic Resonance in Superfluid ^4He

    NASA Astrophysics Data System (ADS)

    De Lorenzo, L. A.; Schwab, K. C.

    2017-02-01

    We report the measurement of the acoustic quality factor of a gram-scale, kilohertz-frequency superfluid resonator, detected through the parametric coupling to a superconducting niobium microwave cavity. For temperatures between 400 mK and 50 mK, we observe a T^{-4} temperature dependence of the quality factor, consistent with a 3-phonon dissipation mechanism. We observe Q factors up to 1.4× 10^8, consistent with the dissipation due to dilute ^3He impurities, and expect that significant further improvements are possible. These experiments are relevant to exploring quantum behavior and decoherence of massive macroscopic objects, the laboratory detection of continuous gravitational waves from pulsars, and the probing of possible limits to physical length scales.

  17. Meta-metallic coils and resonators: Methods for high Q-value resonant geometries

    SciTech Connect

    Mett, R. R.; Sidabras, J. W.; Hyde, J. S.

    2016-08-15

    A novel method of decreasing ohmic losses and increasing Q-value in metallic resonators at high frequencies is presented. The method overcomes the skin-depth limitation of rf current flow cross section. The method uses layers of conductive foil of thickness less than a skin depth and capacitive gaps between layers. The capacitive gaps can substantially equalize the rf current flowing in each layer, resulting in a total cross-sectional dimension for rf current flow many times larger than a skin depth. Analytic theory and finite-element simulations indicate that, for a variety of structures, the Q-value enhancement over a single thick conductor approaches the ratio of total conductor thickness to skin depth if the total number of layers is greater than one-third the square of the ratio of total conductor thickness to skin depth. The layer number requirement is due to counter-currents in each foil layer caused by the surrounding rf magnetic fields. We call structures that exhibit this type of Q-enhancement “meta-metallic.” In addition, end effects due to rf magnetic fields wrapping around the ends of the foils can substantially reduce the Q-value for some classes of structures. Foil structures with Q-values that are substantially influenced by such end effects are discussed as are five classes of structures that are not. We focus particularly on 400 MHz, which is the resonant frequency of protons at 9.4 T. Simulations at 400 MHz are shown with comparison to measurements on fabricated structures. The methods and geometries described here are general for magnetic resonance and can be used at frequencies much higher than 400 MHz.

  18. Meta-metallic coils and resonators: Methods for high Q-value resonant geometries.

    PubMed

    Mett, R R; Sidabras, J W; Hyde, J S

    2016-08-01

    A novel method of decreasing ohmic losses and increasing Q-value in metallic resonators at high frequencies is presented. The method overcomes the skin-depth limitation of rf current flow cross section. The method uses layers of conductive foil of thickness less than a skin depth and capacitive gaps between layers. The capacitive gaps can substantially equalize the rf current flowing in each layer, resulting in a total cross-sectional dimension for rf current flow many times larger than a skin depth. Analytic theory and finite-element simulations indicate that, for a variety of structures, the Q-value enhancement over a single thick conductor approaches the ratio of total conductor thickness to skin depth if the total number of layers is greater than one-third the square of the ratio of total conductor thickness to skin depth. The layer number requirement is due to counter-currents in each foil layer caused by the surrounding rf magnetic fields. We call structures that exhibit this type of Q-enhancement "meta-metallic." In addition, end effects due to rf magnetic fields wrapping around the ends of the foils can substantially reduce the Q-value for some classes of structures. Foil structures with Q-values that are substantially influenced by such end effects are discussed as are five classes of structures that are not. We focus particularly on 400 MHz, which is the resonant frequency of protons at 9.4 T. Simulations at 400 MHz are shown with comparison to measurements on fabricated structures. The methods and geometries described here are general for magnetic resonance and can be used at frequencies much higher than 400 MHz.

  19. Meta-metallic coils and resonators: Methods for high Q-value resonant geometries

    NASA Astrophysics Data System (ADS)

    Mett, R. R.; Sidabras, J. W.; Hyde, J. S.

    2016-08-01

    A novel method of decreasing ohmic losses and increasing Q-value in metallic resonators at high frequencies is presented. The method overcomes the skin-depth limitation of rf current flow cross section. The method uses layers of conductive foil of thickness less than a skin depth and capacitive gaps between layers. The capacitive gaps can substantially equalize the rf current flowing in each layer, resulting in a total cross-sectional dimension for rf current flow many times larger than a skin depth. Analytic theory and finite-element simulations indicate that, for a variety of structures, the Q-value enhancement over a single thick conductor approaches the ratio of total conductor thickness to skin depth if the total number of layers is greater than one-third the square of the ratio of total conductor thickness to skin depth. The layer number requirement is due to counter-currents in each foil layer caused by the surrounding rf magnetic fields. We call structures that exhibit this type of Q-enhancement "meta-metallic." In addition, end effects due to rf magnetic fields wrapping around the ends of the foils can substantially reduce the Q-value for some classes of structures. Foil structures with Q-values that are substantially influenced by such end effects are discussed as are five classes of structures that are not. We focus particularly on 400 MHz, which is the resonant frequency of protons at 9.4 T. Simulations at 400 MHz are shown with comparison to measurements on fabricated structures. The methods and geometries described here are general for magnetic resonance and can be used at frequencies much higher than 400 MHz.

  20. Meta-metallic coils and resonators: Methods for high Q-value resonant geometries

    PubMed Central

    Mett, R. R.; Hyde, J. S.

    2016-01-01

    A novel method of decreasing ohmic losses and increasing Q-value in metallic resonators at high frequencies is presented. The method overcomes the skin-depth limitation of rf current flow cross section. The method uses layers of conductive foil of thickness less than a skin depth and capacitive gaps between layers. The capacitive gaps can substantially equalize the rf current flowing in each layer, resulting in a total cross-sectional dimension for rf current flow many times larger than a skin depth. Analytic theory and finite-element simulations indicate that, for a variety of structures, the Q-value enhancement over a single thick conductor approaches the ratio of total conductor thickness to skin depth if the total number of layers is greater than one-third the square of the ratio of total conductor thickness to skin depth. The layer number requirement is due to counter-currents in each foil layer caused by the surrounding rf magnetic fields. We call structures that exhibit this type of Q-enhancement “meta-metallic.” In addition, end effects due to rf magnetic fields wrapping around the ends of the foils can substantially reduce the Q-value for some classes of structures. Foil structures with Q-values that are substantially influenced by such end effects are discussed as are five classes of structures that are not. We focus particularly on 400 MHz, which is the resonant frequency of protons at 9.4 T. Simulations at 400 MHz are shown with comparison to measurements on fabricated structures. The methods and geometries described here are general for magnetic resonance and can be used at frequencies much higher than 400 MHz. PMID:27587143

  1. Design Considerations for High-Q Bandpass Microwave Oscillator Sensors Based Upon Resonant Amplification

    SciTech Connect

    Jones, Anthony M.; Kelly, James F.; Tedeschi, Jonathan R.; McCloy, John S.

    2014-06-23

    A series of microwave resonant oscillator sensors were designed and characterized using bandpass planar and volumetric electrical resonators having loaded quality factor (Q) values in the range of 2 to 20. The use of these resonators in positive feedback circuits yielded sensor Q-factors of up to 2 x 107, demonstrating Q-factor amplifications on the order of 106. It is shown that the Q-factor amplification can be increased in a positive feedback system through the selection of feedback loop group delay, allowing use of resonators with lower Qstat values. A low-frequency electromagnetic interference sensing application is demonstrated for two resonant oscillator configurations, showing considerable frequency sensitivity to 45 kHz emitters.

  2. High-Q silicon-on-insulator optical rib waveguide racetrack resonators

    NASA Astrophysics Data System (ADS)

    Kiyat, Isa; Aydinli, Atilla; Dagli, Nadir

    2005-03-01

    In this work, detailed design and realization of high quality factor (Q) racetrack resonators based on silicon-on-insulator rib waveguides are presented. Aiming to achieve critical coupling, suitable waveguide geometry is determined after extensive numerical studies of bending loss. The final design is obtained after coupling factor calculations and estimation of propagation loss. Resonators with quality factors (Q) as high as 119000 has been achieved, the highest Q value for resonators based on silicon-on-insulator rib waveguides to date with extinction ratios as large as 12 dB.

  3. Droplet sensing using small and compact high-Q planar resonator based on impedance matching technique.

    PubMed

    Lee, Hee-Jo; Yook, Jong-Gwan

    2016-09-01

    In this paper, we demonstrate the sensing feasibility of the proposed high-Q resonator using a phosphate-buffered saline droplet at microwave frequencies. In the experimental results, the resonant frequency, signal level, and Q-factor of the S21-parameter with and without a 1-μl droplet were changed to about 230 MHz, 32 dB, and 1500, respectively. The resonator system was found to be suitable for droplet sensing with a small volume due to its small and compact scheme. This resonator system is expected to play an important role in droplet sensing with different dielectric constants.

  4. Droplet sensing using small and compact high-Q planar resonator based on impedance matching technique

    NASA Astrophysics Data System (ADS)

    Lee, Hee-Jo; Yook, Jong-Gwan

    2016-09-01

    In this paper, we demonstrate the sensing feasibility of the proposed high-Q resonator using a phosphate-buffered saline droplet at microwave frequencies. In the experimental results, the resonant frequency, signal level, and Q-factor of the S21-parameter with and without a 1-μl droplet were changed to about 230 MHz, 32 dB, and 1500, respectively. The resonator system was found to be suitable for droplet sensing with a small volume due to its small and compact scheme. This resonator system is expected to play an important role in droplet sensing with different dielectric constants.

  5. Coupling Light from a High-Q Microsphere Resonator Using a UV-induced Surface Grating

    NASA Technical Reports Server (NTRS)

    Ilchenko, V. S.; Starodubov, D. S.; Gorodetsky, M. L.; Maleki, L.; Feinberg, J.

    2000-01-01

    High-Q microspheres with whispering-gallery modes have very narrow resonances that can be used for fiber-optic filters, ultra-compact narrow-linewidth lasers and optical/microwave oscillators. Whispering-gallery modes were previously excited in microspheres using evanescent optical fields. The necessary phase synchronism was obtained by adjusting the incident angle of input light beam (prism coupler) or adjustment of the waveguide propagation constant (fiber taper coupler). For many applications, however, bulky near-field couplers are undesirable. They compromise the symmetry and generate stray fields. Also, the control of coupling is crucial for the performance of microsphere resonators: in analogy with radio frequency circuits, the loading Q-factor should be less than the intrinsic Q-factor, Q(sub L) less than or equal to Q(sub O). Ideally one should combine a stable coupling element and a resonator into a single microsphere component.

  6. High-temperature measurements of Q-factor in rotated X-cut quartz resonators

    NASA Technical Reports Server (NTRS)

    Fritz, I. J.

    1981-01-01

    The Q-factors of piezoelectric resonators fabricated from natural and synthetic quartz with a 34 deg rotated X-cut orientation were measured at temperatures up to 325 C. The synthetic material, which was purified by electrolysis, retains a higher enough Q to be suitable for high temperature pressure-transducer applications, whereas the natural quartz is excessively lossy above 200 C for this application. The results are compared to results obtained previously at AT-cut resonators.

  7. Effects of Aperture Size on Q factor and Shielding Effectiveness of a Cubic Resonator

    NASA Astrophysics Data System (ADS)

    Parr, Stefan; Chromy, Stephan; Dickmann, Stefan; Schaarschmidt, Martin

    2017-09-01

    The EMC properties of a cubic metallic shield are highly affected by its resonances. At the resonant frequencies, the shielding effectiveness (SE) collapses, which results in high field strengths inside the cavity. This can cause failure or even breakdown of electronic devices inside the shield. The resonant behaviour is mainly determined by the quality or Q factor of the shield. In this paper, the effects of the aperture size on the Q factor and the SE of an electrically large, cubic shield are analysed. At first, a method is developed in order to determine the Q factor based on the resonance behaviour of the shield in time domain. Only the first resonance of the shield is considered therefore. The results are evaluated for different aperture diameters and compared with theory for the Q factor. The dominant coupling mechanism of electromagnetic energy into the shield is thus identified. Then the effect of aperture size on the SE is analysed. The excitation of resonances is very probable if the interfering signal is an ultrawideband (UWB) pulse, which constitutes a typical intentional electromagnetic interference (IEMI) scenario. Therefore, the relation between aperture size and SE is analysed using the theory of the transient SE for a broadband signal with a constant spectral density distribution. The results show, that a <q>worst caseq> aperture size exists, where the SE has its minimum.

  8. High Resolution and Large Dynamic Range Resonant Pressure Sensor Based on Q-Factor Measurement

    NASA Technical Reports Server (NTRS)

    Gutierrez, Roman C. (Inventor); Stell, Christopher B. (Inventor); Tang, Tony K. (Inventor); Vorperian, Vatche (Inventor); Wilcox, Jaroslava (Inventor); Shcheglov, Kirill (Inventor); Kaiser, William J. (Inventor)

    2000-01-01

    A pressure sensor has a high degree of accuracy over a wide range of pressures. Using a pressure sensor relying upon resonant oscillations to determine pressure, a driving circuit drives such a pressure sensor at resonance and tracks resonant frequency and amplitude shifts with changes in pressure. Pressure changes affect the Q-factor of the resonating portion of the pressure sensor. Such Q-factor changes are detected by the driving/sensing circuit which in turn tracks the changes in resonant frequency to maintain the pressure sensor at resonance. Changes in the Q-factor are reflected in changes of amplitude of the resonating pressure sensor. In response, upon sensing the changes in the amplitude, the driving circuit changes the force or strength of the electrostatic driving signal to maintain the resonator at constant amplitude. The amplitude of the driving signals become a direct measure of the changes in pressure as the operating characteristics of the resonator give rise to a linear response curve for the amplitude of the driving signal. Pressure change resolution is on the order of 10(exp -6) torr over a range spanning from 7,600 torr to 10(exp -6) torr. No temperature compensation for the pressure sensor of the present invention is foreseen. Power requirements for the pressure sensor are generally minimal due to the low-loss mechanical design of the resonating pressure sensor and the simple control electronics.

  9. All-optical Photonic Oscillator with High-Q Whispering Gallery Mode Resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy A.; Matsko, Andrey B.; Strekalov, Dmitry; Mohageg, Makan; Iltchenko, Vladimir S.; Maleki, Lute

    2004-01-01

    We demonstrated low threshold optical photonic hyper-parametric oscillator in a high-Q 10(exp 10) CaF2 whispering gallery mode resonator which generates stable 8.5 GHz signal. The oscillations result from the resonantly enhanced four wave mixing occurring due to Kerr nonlinearity of the material.

  10. Ultrahigh-Q silicon resonators in a planarized local oxidation of silicon platform.

    PubMed

    Naiman, Alex; Desiatov, Boris; Stern, Liron; Mazurski, Noa; Shappir, Joseph; Levy, Uriel

    2015-05-01

    We describe a platform for the fabrication of smooth waveguides and ultrahigh-quality-factor (Q factor) silicon resonators using a modified local oxidation of silicon (LOCOS) technique. Unlike the conventional LOCOS process, our approach allows the fabrication of nearly planarized structures, supporting a multilayer silicon photonics configuration. Using this approach we demonstrate the fabrication and the characterization of a microdisk resonator with an intrinsic Q factor that is one of the highest Q factors achieved with a compact silicon-on-insulator platform.

  11. Photonic crystals as topological high-Q resonators.

    PubMed

    Merlin, R; Young, S M

    2014-07-28

    It is well known that defects, such as holes, inside an infinite photonic crystal can sustain localized resonant modes whose frequencies fall within a forbidden band. Here we prove that finite, defect-free photonic crystals behave as mirrorless resonant cavities for frequencies within but near the edges of an allowed band, regardless of the shape of their outer boundary. The resonant modes are extended, surface-avoiding (nearly-Dirichlet) states that may lie inside or outside the light cone. Independent of the dimensionality, quality factors and finesses are on the order of, respectively, (L/λ)3 and L/λ, where λ is the vacuum wavelength and L > λ is a typical size of the crystal. Similar topological modes exist in conventional Fabry-Pérot resonators, and in plasmonic media at frequencies just above those at which the refractive index vanishes.

  12. High-Q lattice mode matched structural resonances in terahertz metasurfaces

    SciTech Connect

    Xu, Ningning; Zhang, Weili; Singh, Ranjan

    2016-07-11

    The quality (Q) factor of metamaterial resonances is limited by the radiative and non-radiative losses. At terahertz frequencies, the dominant loss channel is radiative in nature since the non-radiative losses are low due to high conductivity of metals. Radiative losses could be suppressed by engineering the meta-atom structure. However, such suppression usually occurs at the fundamental resonance mode which is typically a closed mode resonance such as an inductive-capacitive resonance or a Fano resonance. Here, we report an order of magnitude enhancement in Q factor of all the structural eigenresonances of a split-ring resonator fueled by the lattice mode matching. We match the fundamental order diffractive mode to each of the odd and even eigenresonances, thus leading to a tremendous line-narrowing of all the resonances. Such precise tailoring and control of the structural resonances in a metasurface lattice could have potential applications in low-loss devices, sensing, and design of high-Q metamaterial cavities.

  13. Platybasia in 22q11.2 Deletion Syndrome Is Not Correlated with Speech Resonance

    PubMed Central

    Kon, Moshe; Mink van der Molen, Aebele B

    2014-01-01

    Background An abnormally obtuse cranial base angle, also known as platybasia, is a common finding in patients with 22q11.2 deletion syndrome (22q11DS). Platybasia increases the depth of the velopharynx and is therefore postulated to contribute to velopharyngeal dysfunction. Our objective was to determine the clinical significance of platybasia in 22q11DS by exploring the relationship between cranial base angles and speech resonance. Methods In this retrospective chart review at a tertiary hospital, 24 children (age, 4.0-13.1 years) with 22q11.2DS underwent speech assessments and lateral cephalograms, which allowed for the measurement of the cranial base angles. Results One patient (4%) had hyponasal resonance, 8 (33%) had normal resonance, 10 (42%) had hypernasal resonance on vowels only, and 5 (21%) had hypernasal resonance on both vowels and consonants. The mean cranial base angle was 136.5° (standard deviation, 5.3°; range, 122.3-144.8°). The Kruskal-Wallis test showed no significant relationship between the resonance ratings and cranial base angles (P=0.242). Cranial base angles and speech ratings were not correlated (Spearman correlation=0.321, P=0.126). The group with hypernasal resonance had a significantly more obtuse mean cranial base angle (138° vs. 134°, P=0.049) but did not have a greater prevalence of platybasia (73% vs. 56%, P=0.412). Conclusions In this retrospective chart review of patients with 22q11DS, cranial base angles were not correlated with speech resonance. The clinical significance of platybasia remains unknown. PMID:25075355

  14. Platybasia in 22q11.2 deletion syndrome is not correlated with speech resonance.

    PubMed

    Spruijt, Nicole E; Kon, Moshe; Mink van der Molen, Aebele B

    2014-07-01

    An abnormally obtuse cranial base angle, also known as platybasia, is a common finding in patients with 22q11.2 deletion syndrome (22q11DS). Platybasia increases the depth of the velopharynx and is therefore postulated to contribute to velopharyngeal dysfunction. Our objective was to determine the clinical significance of platybasia in 22q11DS by exploring the relationship between cranial base angles and speech resonance. In this retrospective chart review at a tertiary hospital, 24 children (age, 4.0-13.1 years) with 22q11.2DS underwent speech assessments and lateral cephalograms, which allowed for the measurement of the cranial base angles. One patient (4%) had hyponasal resonance, 8 (33%) had normal resonance, 10 (42%) had hypernasal resonance on vowels only, and 5 (21%) had hypernasal resonance on both vowels and consonants. The mean cranial base angle was 136.5° (standard deviation, 5.3°; range, 122.3-144.8°). The Kruskal-Wallis test showed no significant relationship between the resonance ratings and cranial base angles (P=0.242). Cranial base angles and speech ratings were not correlated (Spearman correlation=0.321, P=0.126). The group with hypernasal resonance had a significantly more obtuse mean cranial base angle (138° vs. 134°, P=0.049) but did not have a greater prevalence of platybasia (73% vs. 56%, P=0.412). In this retrospective chart review of patients with 22q11DS, cranial base angles were not correlated with speech resonance. The clinical significance of platybasia remains unknown.

  15. High-Q AlN Contour Mode Resonators with Unattached, Voltage-Actuated Electrodes

    NASA Astrophysics Data System (ADS)

    Schneider, Robert Anthony

    High-Q narrowband filters at ultra-high frequencies hold promise for reducing noise and suppressing interferers in wireless transceivers, yet research efforts confront a daunting challenge. So far, no existing resonator technology can provide the simultaneous high-Q, high electromechanical coupling ( k2eff), frequency tunability, low motional resistance (Rx), stopband rejection, self-switchability, frequency accuracy, and power handling desired to select individual channels or small portions of a band over a wide RF range. Indeed, each technology provides only a subset of the desired properties. Recently introduced "capacitive-piezoelectric" resonators, i.e., piezoelectric resonators with non-contacting transduction electrodes, known for achieving very good Q's, have recently emerged (in the early 2010's) as a contender among existing technologies to address the needs of RF narrowband selection. Several reports of such devices, made from aluminum nitride (AlN), have demonstrated improved Q's over attached electrode counterparts at frequencies up to 1.2 GHz, albeit with reduced transduction efficiency due to the added capacitive gaps. Fabrication challenges, while still allowing for a glimpse of the promise of this technology, have, until now, hindered attempts at more complex devices than just simple resonators with improved Q's. This thesis project demonstrates several key improvements to capacitive-piezo technology, which, taken together, further bolster its case for deployment for frequency control applications. (Abstract shortened by ProQuest.).

  16. Extremely high Q-factor mechanical modes in quartz bulk acoustic wave resonators at millikelvin temperature

    SciTech Connect

    Goryachev, M.; Creedon, D. L.; Ivanov, E. N.; Tobar, M. E.; Galliou, S.; Bourquin, R.

    2014-12-04

    We demonstrate that Bulk Acoustic Wave (BAW) quartz resonator cooled down to millikelvin temperatures are excellent building blocks for hybrid quantum systems with extremely long coherence times. Two overtones of the longitudinal mode at frequencies of 15.6 and 65.4 MHz demonstrate a maximum f.Q product of 7.8×10{sup 16} Hz. With this result, the Q-factor in such devices near the quantum ground state can be four orders of magnitude better than previously attained in other mechanical systems. Tested quartz resonators possess the ultra low acoustic losses crucial for electromagnetic cooling to the phonon ground state.

  17. High-Q plasmonic infrared absorber for sensing of molecular resonances in hybrid lead halide perovskites

    NASA Astrophysics Data System (ADS)

    Dayal, Govind; Solanki, Ankur; Yu Chin, Xin; Sum, Tze Chien; Soci, Cesare; Singh, Ranjan

    2017-08-01

    Plasmonic resonances in sub-wavelength metal-dielectric-metal cavities have been shown to exhibit strong optical field enhancement. The large field enhancements that occur in sub-wavelength regions of the cavity can drastically boost the performance of microcavity based detectors, electromagnetic wave absorbers, metasurface hologram, and nonlinear response of the material in a cavity. The performance efficiencies of these plasmonic devices can be further improved by designing tunable narrow-band high-Q cavities. Here, we experimentally and numerically demonstrate high-Q resonances in metal-dielectric-metal cavity consisting of an array of conductively coupled annular and rectangular apertures separated from the bottom continuous metal film by a thin dielectric spacer. Both, the in-plane and out of plane coupling between the resonators and the continuous metal film have been shown to support fundamental and higher order plasmonic resonances which result in high-Q response at mid-infrared frequencies. As a sensor application of the high-Q cavity, we sense the vibrational resonances of an ultrathin layer of solution-processed organic-inorganic hybrid lead halide perovskites.

  18. Guided mode resonance with extremely high Q-factors in terahertz metamaterials

    NASA Astrophysics Data System (ADS)

    Chen, Hang; Liu, Jianjun; Hong, Zhi

    2017-01-01

    We proposed and demonstrated that guided mode resonance (GMR) response with extremely high quality factor can be achieved in a planar terahertz metamaterial (MM) by rotating split ring resonators (SRRs) or moving the gaps of SRRs in a two-SRR composed MM. Furthermore, a novel extremely sharp asymmetric Fano resonance or electromagnetically induced transparency (EIT) like spectral response can be easily realized by manipulating the coherent interaction between this high Q GMR and the dipole resonance of MM. The new method can be extended to other ranges of the electromagnetic spectrum, and open new horizons for the design of ultra-high Q metamaterials for multifunctional applications, such as ultra-sensitive sensors, narrowband filters, or slow light based devices.

  19. High-Q 3D coaxial resonators for cavity QED

    NASA Astrophysics Data System (ADS)

    Yoon, Taekwan; Owens, John C.; Naik, Ravi; Lachapelle, Aman; Ma, Ruichao; Simon, Jonathan; Schuster, David I.

    Three-dimensional microwave resonators provide an alternative approach to transmission-line resonators used in most current circuit QED experiments. Their large mode volume greatly reduces the surface dielectric losses that limits the coherence of superconducting circuits, and the well-isolated and controlled cavity modes further suppress coupling to the environment. In this work, we focus on unibody 3D coaxial cavities which are only evanescently coupled and free from losses due to metal-metal interfaces, allowing us to reach extremely high quality-factors. We achieve quality-factor of up to 170 million using 4N6 Aluminum at superconducting temperatures, corresponding to an energy ringdown time of ~4ms. We extend our methods to other materials including Niobium, NbTi, and copper coated with Tin-Lead solder. These cavities can be further explored to study their properties under magnetic field or upon coupling to superconducting Josephson junction qubits, e.g. 3D transmon qubits. Such 3D cavity QED system can be used for quantum information applications, or quantum simulation in coupled cavity arrays.

  20. Simultaneous electrical and optical readout of graphene-coated high Q silicon nitride resonators

    NASA Astrophysics Data System (ADS)

    Adiga, V. P.; De Alba, R.; Storch, I. R.; Yu, P. A.; Ilic, B.; Barton, R. A.; Lee, S.; Hone, J.; McEuen, P. L.; Parpia, J. M.; Craighead, H. G.

    2013-09-01

    Resonant mechanics of high quality factor (Q) graphene coated silicon nitride devices have been explored using optical and electrical transduction schemes. With the addition of the graphene layer, we retain the desirable mechanical properties of silicon nitride but utilize the electrical and optical properties of graphene to transduce and tune the resonant motion by both optical and electrical means. By positioning the graphene-on-silicon-nitride drums in a tunable optical cavity, we observe position dependent damping and resonant frequency control of the devices due to optical absorption by graphene.

  1. Ultrahigh Q whispering gallery mode electro-optic resonators on a silicon photonic chip.

    PubMed

    Soltani, Mohammad; Ilchenko, Vladimir; Matsko, Andrey; Savchenkov, Anatoliy; Schlafer, John; Ryan, Colm; Maleki, Lute

    2016-09-15

    Crystalline whispering gallery mode (WGM) electro-optic resonators made of LiNbO3 and LiTaO3 are critical for a wide range of applications in nonlinear and quantum optics, as well as RF photonics, due to their remarkably ultrahigh Q(>108) and large electro-optic coefficient. Achieving efficient coupling of these resonators to planar on-chip optical waveguides is essential for any high-yield and robust practical applications. However, it has been very challenging to demonstrate such coupling while preserving the ultrahigh Q properties of the resonators. Here, we show how the silicon photonic platform can overcome this long-standing challenge. Silicon waveguides with appropriate designs enable efficient and strong coupling to these WGM electro-optic resonators. We discuss various integration architectures of these resonators onto a silicon chip and experimentally demonstrate critical coupling of a planar Si waveguide and an ultrahigh QLiTaO3 resonator (Q∼108). Our results show a promising path for widespread and practical applications of these resonators on a silicon photonic platform.

  2. Studies on a Q/A selector for the SECRAL electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Sun, L. T.; Feng, Y. C.; Fang, X.; Lu, W.; Zhang, W. H.; Cao, Y.; Zhang, X. Z.; Zhao, H. W.

    2014-08-01

    Electron cyclotron resonance ion sources are widely used in heavy ion accelerators in the world because they are capable of producing high current beams of highly charged ions. However, the design of the Q/A selector system for these devices is challenging, because it must have a sufficient ion resolution while controlling the beam emittance growth. Moreover, this system has to be matched for a wide range of ion beam species with different intensities. In this paper, research on the Q/A selector system at the SECRAL (Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou) platform both in experiment and simulation is presented. Based on this study, a new Q/A selector system has been designed for SECRAL II. The features of the new design including beam simulations are also presented.

  3. Novel ultrasound detector based on small slot micro-ring resonator with ultrahigh Q factor

    NASA Astrophysics Data System (ADS)

    Zhang, Senlin; Chen, Jian; He, Sailing

    2017-01-01

    An ultrasound detector based on a novel slot micro-ring resonator (SMRR) with ultrahigh Q factor and small size is proposed in this study. The theoretical Q factor of SMRR can be approximately 8.34×108 with bending radius of merely 12 μm. The ultrahigh Q factor leads to an enhanced sensitivity that is approximately two orders of that of state-of-the-art ultrasound detector based on polymer micro-ring resonator. Moreover, the 3 dB bandwidth of the ultrasound detector is approximately 540 MHz, thereby leading to an ultrahigh axial resolution of 1.2 μm. The proposed detector is also CMOS compatible and can be easily and extensively integrated to be maximized in photoacoustic microscopy.

  4. Studies on a Q/A selector for the SECRAL electron cyclotron resonance ion source.

    PubMed

    Yang, Y; Sun, L T; Feng, Y C; Fang, X; Lu, W; Zhang, W H; Cao, Y; Zhang, X Z; Zhao, H W

    2014-08-01

    Electron cyclotron resonance ion sources are widely used in heavy ion accelerators in the world because they are capable of producing high current beams of highly charged ions. However, the design of the Q/A selector system for these devices is challenging, because it must have a sufficient ion resolution while controlling the beam emittance growth. Moreover, this system has to be matched for a wide range of ion beam species with different intensities. In this paper, research on the Q/A selector system at the SECRAL (Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou) platform both in experiment and simulation is presented. Based on this study, a new Q/A selector system has been designed for SECRAL II. The features of the new design including beam simulations are also presented.

  5. Fano resonances in a multimode waveguide coupled to a high-Q silicon nitride ring resonator.

    PubMed

    Ding, Dapeng; de Dood, Michiel J A; Bauters, Jared F; Heck, Martijn J R; Bowers, John E; Bouwmeester, Dirk

    2014-03-24

    Silicon nitride (Si3N4) optical ring resonators provide exceptional opportunities for low-loss integrated optics. Here we study the transmission through a multimode waveguide coupled to a Si3N4 ring resonator. By coupling single-mode fibers to both input and output ports of the waveguide we selectively excite and probe combinations of modes in the waveguide. Strong asymmetric Fano resonances are observed and the degree of asymmetry can be tuned through the positions of the input and output fibers. The Fano resonance results from the interference between modes of the waveguide and light that couples resonantly to the ring resonator. We develop a theoretical model based on the coupled mode theory to describe the experimental results. The large extension of the optical modes out of the Si3N4 core makes this system promising for sensing applications.

  6. Bandwidth-limited control and ringdown suppression in high-Q resonators.

    PubMed

    Borneman, Troy W; Cory, David G

    2012-12-01

    We describe how the transient behavior of a tuned and matched resonator circuit and a ringdown suppression pulse may be integrated into an optimal control theory (OCT) pulse-design algorithm to derive control sequences with limited ringdown that perform a desired quantum operation in the presence of resonator distortions of the ideal waveform. Inclusion of ringdown suppression in numerical pulse optimizations significantly reduces spectrometer deadtime when using high quality factor (high-Q) resonators, leading to increased signal-to-noise ratio (SNR) and sensitivity of inductive measurements. To demonstrate the method, we experimentally measure the free-induction decay of an inhomogeneously broadened solid-state free radical spin system at high Q. The measurement is enabled by using a numerically optimized bandwidth-limited OCT pulse, including ringdown suppression, robust to variations in static and microwave field strengths. We also discuss the applications of pulse design in high-Q resonators to universal control of anisotropic-hyperfine coupled electron-nuclear spin systems via electron-only modulation even when the bandwidth of the resonator is significantly smaller than the hyperfine coupling strength. These results demonstrate how limitations imposed by linear response theory may be vastly exceeded when using a sufficiently accurate system model to optimize pulses of high complexity. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Circular High-Q Resonating Isotropic Strain Sensors with Large Shift of Resonance Frequency under Stress

    PubMed Central

    Melik, Rohat; Unal, Emre; Perkgoz, Nihan Kosku; Puttlitz, Christian; Demir, Hilmi Volkan

    2009-01-01

    We present circular architecture bioimplant strain sensors that facilitate a strong resonance frequency shift with mechanical deformation. The clinical application area of these sensors is for in vivo assessment of bone fractures. Using a rectangular geometry, we obtain a resonance shift of 330 MHz for a single device and 170 MHz for its triplet configuration (with three side-by-side resonators on chip) under an applied load of 3,920 N. Using the same device parameters with a circular isotropic architecture, we achieve a resonance frequency shift of 500 MHz for the single device and 260 MHz for its triplet configuration, demonstrating substantially increased sensitivity. PMID:22303132

  8. Laser-machined ultra-high-Q microrod resonators for nonlinear optics

    NASA Astrophysics Data System (ADS)

    Del'Haye, Pascal; Diddams, Scott A.; Papp, Scott B.

    2013-06-01

    Optical whispering-gallery microresonators are useful tools in microphotonics and non-linear optics at very low threshold powers. Here, we present details about the fabrication of ultra-high-Q whispering-gallery-mode resonators made by CO2-laser lathe machining of fused-quartz rods. The resonators can be fabricated in less than 1 min and the obtained optical quality factors exceed Q = 1 × 109. Demonstrated resonator diameters are in the range between 170 μm and 8 mm (free spectral ranges between 390 GHz and 8 GHz). Using these microresonators, a variety of optical nonlinearities are observed, including Raman scattering, Brillouin scattering, and four-wave mixing.

  9. Ultrahigh-Q metallic nanocavity resonances with externally-amplified intracavity feedback

    PubMed Central

    Yoon, Jae Woong; Song, Seok Ho; Magnusson, Robert

    2014-01-01

    We propose a mechanism of ultrahigh-Q metallic nanocavity resonances that involves an efficient loss-compensation scheme favorable for room-temperature operation. We theoretically show that surface plasmon-polaritons excited on the entrance and exit interfaces of a metallic nanocavity array efficiently transfer external optical gain to the cavity modes by inducing resonantly-amplified intracavity feedback. Surprisingly, the modal gain in the nanocavity with the externally amplified feedback is inversely proportional to the cavity length as opposed to conventional optical cavity amplifiers requiring longer cavities for higher optical gain. Utilizing this effect, we numerically demonstrate room-temperature nanocavity resonance Q-factor exceeding 104 in a 25-nm-wide silver nanoslit array. The proposed mechanism provides a highly efficient plasmonic amplification process particularly for subwavelength plasmonic cavities which are essential components in active nanoplasmonic devices. PMID:25410130

  10. Mode Q factor and lasing spectrum controls for deformed square resonator microlasers with circular sides

    NASA Astrophysics Data System (ADS)

    Weng, Hai-Zhong; Huang, Yong-Zhen; Yang, Yue-De; Ma, Xiu-Wen; Xiao, Jin-Long; Du, Yun

    2017-01-01

    Stable dual-mode lasing semiconductor lasers can be used as a seed source for photonic generation of optical frequency comb and terahertz carrier. Normal square resonator microlasers can support dual-mode lasing with frequency interval up to 100 GHz. Here we demonstrate ultrahigh Q deformed square resonators with the flat sides replaced by circular sides for further increasing transverse mode intervals. The stable condition of dual-mode lasing is verified based on nonlinear gain analysis. Furthermore, the beating signals of 0.43, 0.31, and 0.16 THz are obtained by the autocorrelation measurement, which indicate the deformed microlasers as an architecture for THz radiation generation. The deformed square resonators pave the way for controlling the lasing spectrum and serve as ultrahigh Q microresonators for photonic integrated circuits.

  11. Selective excitation of high-Q resonant modes in a bottle/quasi-cylindrical microresonator

    NASA Astrophysics Data System (ADS)

    Dong, Yongchao; Jin, Xueying; Wang, Keyi

    2016-08-01

    We fabricate a bottle/quasi-cylindrical microresonator by using a fusion splicer. This method does not require a real-time control of the translation stages and can easily fabricate a resonator with expected size and shape. Selective excitation of whispering gallery modes (WGMs) in the resonator is realized with a fiber taper coupled at various positions of the resonator along the bottle axis. Most importantly, we obtain a clean and regular spectrum with very high quality factor (Q) modes up to 3.1×107 in the quasi-cylindrical region of the resonator. Moreover, we package the coupling system into a whole device that can be moved freely. The vibration performance tests of the packaged device show that the coupling system with the taper coupled at the quasi-cylindrical region has a remarkable anti-vibration ability. The portability and robustness of the device make it attractive in practical applications.

  12. Enhancing the resonance stability of a high-Q micro/nanoresonator by an optical means

    NASA Astrophysics Data System (ADS)

    Sun, Xuan; Luo, Rui; Zhang, Xi-Cheng; Lin, Qiang

    2016-02-01

    High-quality optical resonators underlie many important applications ranging from optical frequency metrology, precision measurement, nonlinear/quantum photonics, to diverse sensing such as detecting single biomolecule, electromagnetic field, mechanical acceleration/rotation, among many others. All these applications rely essentially on the stability of optical resonances, which, however, is ultimately limited by the fundamental thermal fluctuations of the devices. The resulting thermo-refractive and thermo-elastic noises have been widely accepted for nearly two decades as the fundamental thermodynamic limit of an optical resonator, limiting its resonance uncertainty to a magnitude 10-12 at room temperature. Here we report a novel approach that is able to significantly improve the resonance stability of an optical resonator. We show that, in contrast to the common belief, the fundamental temperature fluctuations of a high-Q micro/nanoresonator can be suppressed remarkably by pure optical means without cooling the device temperature, which we term as temperature squeezing. An optical wave with only a fairly moderate power launched into the device is able to produce strong photothermal backaction that dramatically suppresses the spectral intensity of temperature fluctuations by five orders of magnitudes and squeezes the overall level (root-mean-square value) of temperature fluctuations by two orders of magnitude. The proposed approach is universally applicable to various micro/nanoresonator platforms and the optimal temperature squeezing can be achieved with an optical Q around 106-107 that is readily available in various current devices. The proposed photothermal temperature squeezing is expected to have profound impact on broad applications of high-Q cavities in sensing, metrology, and integrated nonlinear/quantum photonics.

  13. Ultralow loss, high Q, four port resonant couplers for quantum optics and photonics.

    PubMed

    Rokhsari, H; Vahala, K J

    2004-06-25

    We demonstrate a low-loss, optical four port resonant coupler (add-drop geometry), using ultrahigh Q (>10(8)) toroidal microcavities. Different regimes of operation are investigated by variation of coupling between resonator and fiber taper waveguides. As a result, waveguide-to-waveguide power transfer efficiency of 93% (0.3 dB loss) and nonresonant insertion loss of 0.02% (<0.001 dB) for narrow bandwidth (57 MHz) four port couplers are achieved in this work. The combination of low-loss, fiber compatibility, and wafer-scale design would be suitable for a variety of applications ranging from quantum optics to photonic networks.

  14. Stimulated Brillouin laser and frequency comb generation in high-Q microbubble resonators.

    PubMed

    Lu, Qijing; Liu, Sheng; Wu, Xiang; Liu, Liying; Xu, Lei

    2016-04-15

    We report on the stimulated Brillouin laser (SBL) and over-dense frequency comb generation in high-Q microbubble resonators (MBRs). Both first-order and cascaded SBL are achieved due to the rich high-order axial modes in the MBRs, although the free spectral range (FSR) of azimuthal mode of the MBR is severely mismatched with the Brillouin shift. The SBL is also generated by varying the internal pressure of MBR at fixed initially non-resonant pump light wavelength. In addition, over-dense frequency combs are realized with comb spacings that are one and two FSRs of aixal mode.

  15. Mid-infrared ultra-high-Q resonators based on fluoride crystalline materials

    PubMed Central

    Lecaplain, C.; Javerzac-Galy, C.; Gorodetsky, M. L.; Kippenberg, T. J.

    2016-01-01

    The unavailability of highly transparent materials in the mid-infrared has been the main limitation in the development of ultra-sensitive molecular sensors or cavity-based spectroscopy applications. Whispering gallery mode microresonators have attained ultra-high-quality (Q) factor resonances in the near-infrared and visible. Here we report ultra-high Q factors in the mid-infrared using polished alkaline earth metal fluoride crystals. Using an uncoated chalcogenide tapered fibre as a high-ideality coupler in the mid-infrared, we study via cavity ringdown technique the losses of BaF2, CaF2, MgF2 and SrF2 microresonators. We show that MgF2 is limited by multiphonon absorption by studying the temperature dependence of the Q factor. In contrast, in SrF2 and BaF2 the lower multiphonon absorption leads to ultra-high Q factors at 4.5 μm. These values correspond to an optical finesse of , the highest value achieved for any type of mid-infrared resonator to date. PMID:27869119

  16. Mid-infrared ultra-high-Q resonators based on fluoride crystalline materials

    NASA Astrophysics Data System (ADS)

    Lecaplain, C.; Javerzac-Galy, C.; Gorodetsky, M. L.; Kippenberg, T. J.

    2016-11-01

    The unavailability of highly transparent materials in the mid-infrared has been the main limitation in the development of ultra-sensitive molecular sensors or cavity-based spectroscopy applications. Whispering gallery mode microresonators have attained ultra-high-quality (Q) factor resonances in the near-infrared and visible. Here we report ultra-high Q factors in the mid-infrared using polished alkaline earth metal fluoride crystals. Using an uncoated chalcogenide tapered fibre as a high-ideality coupler in the mid-infrared, we study via cavity ringdown technique the losses of BaF2, CaF2, MgF2 and SrF2 microresonators. We show that MgF2 is limited by multiphonon absorption by studying the temperature dependence of the Q factor. In contrast, in SrF2 and BaF2 the lower multiphonon absorption leads to ultra-high Q factors at 4.5 μm. These values correspond to an optical finesse of , the highest value achieved for any type of mid-infrared resonator to date.

  17. Mid-infrared ultra-high-Q resonators based on fluoride crystalline materials.

    PubMed

    Lecaplain, C; Javerzac-Galy, C; Gorodetsky, M L; Kippenberg, T J

    2016-11-21

    The unavailability of highly transparent materials in the mid-infrared has been the main limitation in the development of ultra-sensitive molecular sensors or cavity-based spectroscopy applications. Whispering gallery mode microresonators have attained ultra-high-quality (Q) factor resonances in the near-infrared and visible. Here we report ultra-high Q factors in the mid-infrared using polished alkaline earth metal fluoride crystals. Using an uncoated chalcogenide tapered fibre as a high-ideality coupler in the mid-infrared, we study via cavity ringdown technique the losses of BaF2, CaF2, MgF2 and SrF2 microresonators. We show that MgF2 is limited by multiphonon absorption by studying the temperature dependence of the Q factor. In contrast, in SrF2 and BaF2 the lower multiphonon absorption leads to ultra-high Q factors at 4.5 μm. These values correspond to an optical finesse of , the highest value achieved for any type of mid-infrared resonator to date.

  18. High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate

    NASA Astrophysics Data System (ADS)

    Witmer, Jeremy D.; Valery, Joseph A.; Arrangoiz-Arriola, Patricio; Sarabalis, Christopher J.; Hill, Jeff T.; Safavi-Naeini, Amir H.

    2017-04-01

    Future quantum networks, in which superconducting quantum processors are connected via optical links, will require microwave-to-optical photon converters that preserve entanglement. A doubly-resonant electro-optic modulator (EOM) is a promising platform to realize this conversion. Here, we present our progress towards building such a modulator by demonstrating the optically-resonant half of the device. We demonstrate high quality (Q) factor ring, disk and photonic crystal resonators using a hybrid silicon-on-lithium-niobate material system. Optical Q factors up to 730,000 are achieved, corresponding to propagation loss of 0.8 dB/cm. We also use the electro-optic effect to modulate the resonance frequency of a photonic crystal cavity, achieving a electro-optic modulation coefficient between 1 and 2 pm/V. In addition to quantum technology, we expect that our results will be useful both in traditional silicon photonics applications and in high-sensitivity acousto-optic devices.

  19. High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate

    PubMed Central

    Witmer, Jeremy D.; Valery, Joseph A.; Arrangoiz-Arriola, Patricio; Sarabalis, Christopher J.; Hill, Jeff T.; Safavi-Naeini, Amir H.

    2017-01-01

    Future quantum networks, in which superconducting quantum processors are connected via optical links, will require microwave-to-optical photon converters that preserve entanglement. A doubly-resonant electro-optic modulator (EOM) is a promising platform to realize this conversion. Here, we present our progress towards building such a modulator by demonstrating the optically-resonant half of the device. We demonstrate high quality (Q) factor ring, disk and photonic crystal resonators using a hybrid silicon-on-lithium-niobate material system. Optical Q factors up to 730,000 are achieved, corresponding to propagation loss of 0.8 dB/cm. We also use the electro-optic effect to modulate the resonance frequency of a photonic crystal cavity, achieving a electro-optic modulation coefficient between 1 and 2 pm/V. In addition to quantum technology, we expect that our results will be useful both in traditional silicon photonics applications and in high-sensitivity acousto-optic devices. PMID:28406177

  20. High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate.

    PubMed

    Witmer, Jeremy D; Valery, Joseph A; Arrangoiz-Arriola, Patricio; Sarabalis, Christopher J; Hill, Jeff T; Safavi-Naeini, Amir H

    2017-04-13

    Future quantum networks, in which superconducting quantum processors are connected via optical links, will require microwave-to-optical photon converters that preserve entanglement. A doubly-resonant electro-optic modulator (EOM) is a promising platform to realize this conversion. Here, we present our progress towards building such a modulator by demonstrating the optically-resonant half of the device. We demonstrate high quality (Q) factor ring, disk and photonic crystal resonators using a hybrid silicon-on-lithium-niobate material system. Optical Q factors up to 730,000 are achieved, corresponding to propagation loss of 0.8 dB/cm. We also use the electro-optic effect to modulate the resonance frequency of a photonic crystal cavity, achieving a electro-optic modulation coefficient between 1 and 2 pm/V. In addition to quantum technology, we expect that our results will be useful both in traditional silicon photonics applications and in high-sensitivity acousto-optic devices.

  1. Wideband, co-polarization anomalous reflection metasurface based on low-Q resonators

    NASA Astrophysics Data System (ADS)

    Li, Yongfeng; Zhang, Jieqiu; Zhang, Yaodong; Chen, Hongya; Fan, Ya

    2016-09-01

    Wideband anomalous reflection using metasurface is usually accompanied by polarization conversion, which changes the polarization state of reflected waves. In this paper, we propose to realize wideband, co-polarization anomalous reflection using reflective phase gradient metasurface (PGM). To this end, a resonator with low quality factor Q is firstly designed as the elementary sub-unit of the PGM. Due to the wideband magnetic resonance of the resonator, nearly constant phase gradient can be achieved in a quite wideband from 14.0 to 21.0 GHz. Both the simulation and experiment verify the wideband, co-polarization anomalous reflection using the PGM. Since the polarization of reflected wave is unchanged after reflection, such PGMs can be used in many applications such as reflect array antennas, beam-steering antennas and radar cross-section reduction.

  2. Radiation-induced conductivity and high temperature Q changes in quartz resonators

    SciTech Connect

    Koehler, D.R.

    1981-06-01

    While high temperature electrolysis has proven beneficial as a technique to remove interstitial impurities from quartz, reliable indices to measure the efficacy of such a processing step are still under development. The present work is directed toward providing such an index. Two techniques were investigated - one involves measurement of the radiation-induced conductivity in quartz along the optic axis, and the second involves measurement of high temperature Q changes. Both effects originate when impurity charge compensators are released from their traps, in the first case resulting in an associated increase in ionic conduction and in the second case resulting in increased acoustic losses. Radiation-induced conductivity measurements were carried out with a 200 kV, 14 mA X-ray machine producing approximately 5 rads/sec at the sample. With electric fields of the order of 10/sup 4/ V/cm, the noise level in the current measuring system is equivalent to an ionic current generated by quartz impurities in the 1 ppB range. The accuracy of the high temperature (300 to 800 K) Q/sup -1/ measurement technique is limited by the uncertainties associated with quantitative correlation of the high temperature acoustic losses with the concentration of impurity centers. A number of resonators constructed of quartz material of different impurity contents have been tested, and both the radiation-induced conductivity and the high temperature Q/sup -1/ results compared with earlier radiation-induced frequency and resonator resistance changes. A postirradiation-induced conductivity index and a high temperature Q index show excellent correlation with the earlier pulsed irradiation-induced dynamic resonator motional resistance changes, and it is therefore concluded that either measurement can be employed to serve as an acceptance criterion for radiation hardness.

  3. Radiation-induced conductivity and high-temperature Q changes in quartz resonators

    SciTech Connect

    Koehler, D R

    1981-01-01

    While high temperature electrolysis has proven beneficial as a technique to remove interstitial impurities from quartz, reliable indices to measure the efficacy of such a processing step are still under development. The present work is directed toward providing such an index. Two techniques have been investigated - one involves measurement of the radiation induced conductivity in quartz along the optic axis, and the second involves measurement of high temperature Q changes. Both effects originate when impurity charge compensators are released from their traps, in the first case resulting in ionic conduction and in the second case resulting in increased acoustic losses. Radiation induced conductivity measurements have been carried out with a 200 kV, 14 mA x-ray machine producing 5 rads/s. With electric fields of the order of 10/sup 4/ V/cm, the noise level in the current measuring system is equivalent to an ionic current generated by quartz impurities in the 1 ppB range. The accuracy of the high temperature ( 300 to 800/sup 0/K) Q/sup -1/ measurement technique will be determined. A number of resonators constructed of quartz material of different impurity contents have been tested and both the radiation induced conductivity and the high temperature Q/sup -1/ results compared with earlier radiation induced frequency and resonator resistance changes. 10 figures.

  4. High Q silica microbubble resonators fabricated by heating a pressurized glass capillary

    NASA Astrophysics Data System (ADS)

    Yu, Zhe; Liu, Tiegen; Jiang, Junfeng; Liu, Kun; Chen, Wenjie; Zhang, Xuezhi; Lin, Xujun; Liu, Wenhui

    2014-11-01

    Microbubble resonators combine the unique properties of whispering gallery mode resonators with the capability of integrated microfluidics. The microbubble resonator is fabricated by heating the tapered tip of a pressurized glass capillary with oxyhydrogen flame. Firstly, a microtube with a diameter of 250um is stretched under heating of oxyhydrogen flame, the heating zone length is set to be 20mm and the length of stretch is set to be 7000um.Then nitrogen will be pumped in to the tapered microtube with the pressure of 0.1Mpa, the tapered tip will be heated by the oxyhydrogen flame continuously until a microbubble forms. An optical fiber taper with a diameter of 2 um, fabricated by stretching a single-mode optical fiber under flame was brought in contact with the microbubble to couple the light from a 1550nm tunable diode laser into the whispering gallery mode. The microbubble resonator has a Q factors up to 1.5 × 107 around 1550nm. Different concentrations of ethanol solution (from 5% to 30%) are filled into it in order to test the refractive index sensing capabilities of such resonator, which shows a sensitivity of 82nm/RIU.

  5. Electroproduction of 0̂ and η in the resonance region at high Q^2 with CLAS

    NASA Astrophysics Data System (ADS)

    Ungaro, Maurizio; Joo, Kyungseon

    2009-10-01

    We report the analysis of exclusive single 0̂ and η electroproduction in the resonance region at Jefferson Lab in the Q^2 range 2 to 6 GeV^2/c^2. A longitudinally polarized 5.75 GeV electron beam was incident on a 5 cm long liquid Hydrogen target. The CLAS spectrometer at Jefferson Lab was used to detect the final state particles. The goal of this analysis is to extract 0̂ and η c.m. differential cross sections over the entire 4π c.m. solid angle, up to W=2 GeV, and their beam spin asymmetries.

  6. Carbon Nanofiber-Based, High-Frequency, High-Q, Miniaturized Mechanical Resonators

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B.; Epp, Larry W.; Bagge, Leif

    2011-01-01

    High Q resonators are a critical component of stable, low-noise communication systems, radar, and precise timing applications such as atomic clocks. In electronic resonators based on Si integrated circuits, resistive losses increase as a result of the continued reduction in device dimensions, which decreases their Q values. On the other hand, due to the mechanical construct of bulk acoustic wave (BAW) and surface acoustic wave (SAW) resonators, such loss mechanisms are absent, enabling higher Q-values for both BAW and SAW resonators compared to their electronic counterparts. The other advantages of mechanical resonators are their inherently higher radiation tolerance, a factor that makes them attractive for NASA s extreme environment planetary missions, for example to the Jovian environments where the radiation doses are at hostile levels. Despite these advantages, both BAW and SAW resonators suffer from low resonant frequencies and they are also physically large, which precludes their integration into miniaturized electronic systems. Because there is a need to move the resonant frequency of oscillators to the order of gigahertz, new technologies and materials are being investigated that will make performance at those frequencies attainable. By moving to nanoscale structures, in this case vertically oriented, cantilevered carbon nanotubes (CNTs), that have larger aspect ratios (length/thickness) and extremely high elastic moduli, it is possible to overcome the two disadvantages of both bulk acoustic wave (BAW) and surface acoustic wave (SAW) resonators. Nano-electro-mechanical systems (NEMS) that utilize high aspect ratio nanomaterials exhibiting high elastic moduli (e.g., carbon-based nanomaterials) benefit from high Qs, operate at high frequency, and have small force constants that translate to high responsivity that results in improved sensitivity, lower power consumption, and im - proved tunablity. NEMS resonators have recently been demonstrated using topdown

  7. Casimir probe based upon metallized high Q SiN nanomembrane resonator.

    PubMed

    Garcia-Sanchez, Daniel; Fong, King Yan; Bhaskaran, Harish; Lamoreaux, Steve; Tang, Hong X

    2013-01-01

    We present the instrumentation and measurement scheme of a new Casimir force probe that bridges Casimir force measurements at microscale and macroscale. A metallized high Q silicon nitride nanomembrane resonator is employed as a sensitive force probe. The high tensile stress present in the nanomembrane not only enhances the quality factor but also maintains high flatness over large area serving as the bottom electrode in a sphere-plane configuration. A fiber interferometer is used to readout the oscillation of the nanomembrane and a phase-locked loop scheme is applied to track the change of the resonance frequency. Because of the high quality factor of the nanomembrane and the high stability of the setup, a frequency resolution down to 2 × 10(-9) and a corresponding force gradient resolution of 3 μN/m is achieved. Besides sensitive measurement of Casimir force, our measurement technique simultaneously offers Kelvin probe measurement capability that allows in situ imaging of the surface potentials.

  8. Resonant photoacoustic detection of NO2 traces with a Q-switched green laser

    NASA Astrophysics Data System (ADS)

    Slezak, Verónica; Codnia, Jorge; Peuriot, Alejandro L.; Santiago, Guillermo

    2003-01-01

    Resonant photoacoustic detection of NO2 traces by means of a high repetition pulsed green laser is presented. The resonator is a cylindrical Pyrex glass cell with a measured Q factor 380 for the first radial mode in air at atmospheric pressure. The system is calibrated with known mixtures in dry air and a minimum detectable volume concentration of 50 parts in 109 is obtained (S/N=1). Its sensitivity allows one to detect and quantify NO2 traces in the exhaust gases of cars. Previously, the analysis of gas adsorption and desorption on the walls and of changes in the sample composition is carried out in order to minimize errors in the determination of NO2 content upon application of the extractive method. The efficiency of catalytic converters of several models of automobiles is studied and the NO2 concentration in samples from exhausts of different types of engine (gasoline, diesel, and methane gas) at idling operation are measured.

  9. Frequency Locking and Stabilization Regimes in High-Power Gyrotrons with Low-Q Resonators

    NASA Astrophysics Data System (ADS)

    Zotova, I. V.; Ginzburg, N. S.; Denisov, G. G.; Rozental', R. M.; Sergeev, A. S.

    2016-02-01

    Using a nonstationary self-consistent model, we analyze the frequency locking and stabilization regimes arising in gyrotrons with low-Q resonators under the action of an external signal or when reflections from a remote nonresonant load are introduced. In the simulations, we used the parameters of high-power gyrotrons designed for controlled thermonuclear fusion with optimized resonator profile. This approach makes it possible to determine output characteristics of the gyrotrons operated in considered regimes taking into account the effect of the incident wave (external or reflected) on the longitudinal field structure with greater precision compared with the earlier results based on the fixed RF-field structure approximation, while qualitative results of the two approaches coincide. Analysis of the effect of reflections from a remote load has demonstrated a substantial dependence of the efficiency of the gyrotron frequency stabilization on the ratio between the characteristic time scale of the synchronism detuning fluctuations and the signal delay time.

  10. Neutral Pion Electroproduction in the Resonance Region at High $Q^2$

    SciTech Connect

    Villano, A N; Bosted, P E; Connell, S H; Dalton, M M; Jones, M K; Adams, G S; Afanasev, A; Ahmidouch, A; Angelescu, T; Arrington, J; Asaturyan, R; Baker, O K; Benmouna, N; Berman, B L; Breuer, H; Christy, M E; Cui, Y; Danagoulian, S; Day, D; Dodario, T; Dunne, J A; Dutta, D; El Khayari, N; Elliot, B; Ent, R; Fenker, H C; Frolov, V V; Gan, L; Gaskell, D; Gasparian, A; Grullon, S; Hafidi, K; Hinton, W; Holt, R J; Huber, G M; Hungerford, E; Joo, K; Kalantarians, N; Keppel, C E; Kinney, E R; Kubarovsky, V; Li, Y; Liang, Y; Lu, M; Lung, A; Mack, D; Malace, S; Markowitz, P; McKee, P; Meekins, D G; Mkrtchhyan, H; Napolitano, J; Niculescu, G; Niculescu, I; Opper, A K; Pamela, P; Potterveld, D H; Reimer, Paul E; Reinhold, J; Roche, J; Rock, S E; Schulte, E; Segbefia, E; Smith, C; Smith, G R

    2009-09-01

    The process $ep \\to e^{\\prime}p^{\\prime}\\pi^0$ has been measured at $Q^2$ = 6.4 and 7.7 \\ufourmomts in Jefferson Lab's Hall C. Unpolarized differential cross sections are reported in the virtual photon-proton center of mass frame considering the process $\\gamma^{\\ast}p \\to p^{\\prime}\\pi^0$. Various details relating to the background subtractions, radiative corrections and systematic errors are discussed. The usefulness of the data with regard to the measurement of the electromagnetic properties of the well known $\\Delta(1232)$ resonance is covered in detail. Specifically considered are the electromagnetic and scalar-magnetic ratios $R_{EM}$ and $R_{SM}$ along with the magnetic transition form factor $G_M^{\\ast}$. It is found that the rapid fall off of the $\\Delta(1232)$ contribution continues into this region of momentum transfer and that other resonances

  11. Development of high-Q superconducting resonators for use as Kinetic Inductance detectors

    NASA Astrophysics Data System (ADS)

    Baselmans, J.; Barends, R.; Hovenier, N.; Gao, J.; Hoevers, H.; de Korte, P.; Klapwijk, T.

    One of the largest challenges in the development of future radiation detectors for space applications is the fabrication of large detector arrays This because future missions require camera s with many pixels in combination with background limited sensitivity Within this context we have started the development of Microwave Kinetic Inductance Detectors MKID s The MKID is a relatively new detector concept pioneered by J Zmuidzinas and P Day et al 1 which belongs to the class of pair breaking detectors where radiation is absorbed in a superconducting film by breaking Cooper pairs into quasiparticles The operating temperature of the device is 1 10 of the transition temperature of the superconducting film Hence an Aluminum KID should be operated at 100 mK The MKID measures the change in quasiparticle and Cooper pair density by probing the complex surface impedance of the superconductor This is done by making use of an extremely high Q superconducting quarter wavelength microwave thin film resonator Every resonator each with slightly different resonance frequency can be observed simultaneously With only one wideband cryogenic amplifier 2 coaxial cables from room temperature to the cold stage and commercially available readout electronics a camera with in excess of 100 000 pixels could become a reality KIDs can address the spectrum from far infrared to X-ray depending on the antenna or absorber coupled to the microwave resonator 1 P K Day H G LeDuc B A Mazin A Vayonakis and J Zmuidzinas Nature 425 p 817-821 2003

  12. Note: Vector network analyzer-ferromagnetic resonance spectrometer using high Q-factor cavity.

    PubMed

    Lo, C K; Lai, W C; Cheng, J C

    2011-08-01

    A ferromagnetic resonance (FMR) spectrometer whose main components consist of an X-band resonator and a vector network analyzer (VNA) was developed. This spectrometer takes advantage of a high Q-factor (9600) cavity and state-of-the-art VNA. Accordingly, field modulation lock-in technique for signal to noise ratio (SNR) enhancement is no longer necessary, and FMR absorption can therefore be extracted directly. Its derivative for the ascertainment of full width at half maximum height of FMR peak can be found by taking the differentiation of original data. This system was characterized with different thicknesses of permalloy (Py) films and its multilayer, and found that the SNR of 5 nm Py on glass was better than 50, and did not have significant reduction even at low microwave excitation power (-20 dBm), and at low Q-factor (3000). The FMR other than X-band can also be examined in the same manner by using a suitable band cavity within the frequency range of VNA.

  13. Note: Vector network analyzer-ferromagnetic resonance spectrometer using high Q-factor cavity

    NASA Astrophysics Data System (ADS)

    Lo, C. K.; Lai, W. C.; Cheng, J. C.

    2011-08-01

    A ferromagnetic resonance (FMR) spectrometer whose main components consist of an X-band resonator and a vector network analyzer (VNA) was developed. This spectrometer takes advantage of a high Q-factor (9600) cavity and state-of-the-art VNA. Accordingly, field modulation lock-in technique for signal to noise ratio (SNR) enhancement is no longer necessary, and FMR absorption can therefore be extracted directly. Its derivative for the ascertainment of full width at half maximum height of FMR peak can be found by taking the differentiation of original data. This system was characterized with different thicknesses of permalloy (Py) films and its multilayer, and found that the SNR of 5 nm Py on glass was better than 50, and did not have significant reduction even at low microwave excitation power (-20 dBm), and at low Q-factor (3000). The FMR other than X-band can also be examined in the same manner by using a suitable band cavity within the frequency range of VNA.

  14. High-Q microsphere resonators for angular velocity sensing in gyroscopes

    SciTech Connect

    An, Panlong; Zheng, Yongqiu; Yan, Shubin Xue, Chenyang Liu, Jun; Wang, Wanjun

    2015-02-09

    A resonator gyroscope based on the Sagnac effect is proposed using a core unit that is generated by water-hydrogen flame melting. The relationship between the quality factor Q and diameter D is revealed. The Q factor of the spectral lines of the microsphere cavity coupling system, which uses tapered fibers, is found to be 10{sup 6} or more before packaging with a low refractive curable ultraviolet polymer, although it drops to approximately 10{sup 5} after packaging. In addition, a rotating test platform is built, and the transmission spectrum and discriminator curves of a microsphere cavity with Q of 3.22×10{sup 6} are measured using a semiconductor laser (linewidth less than 1 kHz) and a real-time proportional-integral circuit tracking and feedback technique. Equations fitting the relation between the voltage and angular rotation rate are obtained. According to the experimentally measured parameters, the sensitivity of the microsphere-coupled system can reach 0.095{sup ∘}/s.

  15. Differentially piezoresistive transduction of high-Q encapsulated SOI-MEMS resonators with sub-100 nm gaps.

    PubMed

    Li, Cheng-Syun; Li, Ming-Huang; Li, Sheng-Shian

    2015-01-01

    A differentially piezoresistive (piezo-R) readout proposed for single-crystal-silicon (SCS) microelectromechanical systems (MEMS) resonators is implemented in a foundrybased resonator platform, demonstrating effective feedthrough cancellation using just simple piezoresistors from the resonator supports while maximizing their capacitively transduced driving areas. The SCS resonators are fabricated by a CMOS foundry using an SOI-MEMS technology together with a polysilicon refill process. A high electromechanical coupling coefficient is attained by the use of 50-nm transducer gap spacing. Moreover, a vacuum package of the fabricated resonators is carried out through wafer-level bonding process. In this work, the corner supporting beams of the resonator serve not only mechanical supports but also piezoresistors for detecting the motional signal, hence substantially simplifying the overall resonator design to realize the piezo-R sensing. In addition, the fabricated resonators are capable of either capacitive sensing or piezo-R detection under the same capacitive drive. To mitigate feedthrough signals from parasitics, a differential measurement configuration of the piezo-R transduction is implemented in this work, featuring more than 30-dB improvement on the feedthrough level as compared with the single-ended piezo-R counterpart and purely capacitive sensing readout. Furthermore, the high-Q design of the mechanical supports is also investigated, offering Q more than 10 000 with efficient piezo-R transduction for MEMS resonators.

  16. Frequency-Temperature Compensation Techniques for High-Q Microwave Resonators

    NASA Astrophysics Data System (ADS)

    Hartnett, John G.; Tobar, Michael E.

    Low-noise high-stability resonator oscillators based on high-Q monolithic sapphire ``Whispering Gallery'' (WG)-mode resonators have become important devices for telecommunication, radar and metrological applications. The extremely high quality factor of sapphire, of 2 x10^5 at room temperature, 5 x10^7 at liquid nitrogen temperature and 5 x10^9 at liquid helium temperature has enabled the lowest phase noise and highly frequency-stable oscillators in the microwave regime to be constructed. To create an oscillator with exceptional frequency stability, the resonator must have its frequency-temperature dependence annulled at some temperature, as well as a high quality factor. The Temperature Coefficient of Permittivity (TCP) for sapphire is quite large, at 10-100parts per million/K above 77K. This mechanism allows temperature fluctuations to transform to resonator frequency fluctuations.A number of research groups worldwide have investigated various methods of compensating the TCP of a sapphire dielectric resonator at different temperatures. The usual electromagnetic technique of annulment involves the use of paramagnetic impurities contributing an opposite temperature coefficient of the magnetic susceptibility to the TCP. This technique has only been realized successfully in liquid helium environments. Near 4K the thermal expansion and permittivity effects are small and only small quantities of the paramagnetic ions are necessary to compensate the mode frequency. Compensation is due to impurity ions that were incidentally left over from the manufacturing process.Recently, there has been an effort to dispense with the need for liquid helium and make a compact flywheel oscillator for the new generation of primary frequency standards such as the cesium fountain at the Laboratoire Primaire du Temps et des Fréquences (LPTF), France. To achieve the stability limit imposed

  17. Reduction of Simulation Times for High-Q Structures using the Resonance Equation

    DOE PAGES

    Hall, Thomas Wesley; Bandaru, Prabhakar R.; Rees, Daniel Earl

    2015-11-17

    Simulating steady state performance of high quality factor (Q) resonant RF structures is computationally difficult for structures with sizes on the order of more than a few wavelengths because of the long times (on the order of ~ 0.1 ms) required to achieve steady state in comparison with maximum time step that can be used in the simulation (typically, on the order of ~ 1 ps). This paper presents analytical and computational approaches that can be used to accelerate the simulation of the steady state performance of such structures. The basis of the proposed approach is the utilization of amore » larger amplitude signal at the beginning to achieve steady state earlier relative to the nominal input signal. Finally, the methodology for finding the necessary input signal is then discussed in detail, and the validity of the approach is evaluated.« less

  18. Reduction of Simulation Times for High-Q Structures using the Resonance Equation

    SciTech Connect

    Hall, Thomas Wesley; Bandaru, Prabhakar R.; Rees, Daniel Earl

    2015-11-17

    Simulating steady state performance of high quality factor (Q) resonant RF structures is computationally difficult for structures with sizes on the order of more than a few wavelengths because of the long times (on the order of ~ 0.1 ms) required to achieve steady state in comparison with maximum time step that can be used in the simulation (typically, on the order of ~ 1 ps). This paper presents analytical and computational approaches that can be used to accelerate the simulation of the steady state performance of such structures. The basis of the proposed approach is the utilization of a larger amplitude signal at the beginning to achieve steady state earlier relative to the nominal input signal. Finally, the methodology for finding the necessary input signal is then discussed in detail, and the validity of the approach is evaluated.

  19. Electroproduction of 0̂ and η in the resonance region at high Q^2 with CLAS

    NASA Astrophysics Data System (ADS)

    Ungaro, Maurizio; Joo, Kyungseon

    2010-02-01

    An extensive program is underway at Jefferson Lab to study the eletromagnetic excitations of baryon states. We report the analysis of exclusive single 0̂ and η electroproduction in the resonance region at Jefferson Lab in the Q^2 range of 2 to 6 GeV^2/c^2. A longitudinally polarized 5.75 GeV electron beam was incident on a 5 cm long liquid Hydrogen target. The CLAS spectrometer at Jefferson Lab was used to detect the final state particles. The average beam polarization was 70%. The data was taken between October 2001 and January 2002. Preliminary differential cross sections over the entire 4π c.m. solid angle will be presented, along with beam spin asymmetries. Preliminary structure functions will be shown. This high precision measurement will allow us to access the structure and dynamics of nucleon excitations with masses up to 2 GeV. )

  20. Electroproduction of π0 in the resonance region at high Q2 with CLAS

    NASA Astrophysics Data System (ADS)

    Ungaro, Maurizio; Joo, Kyungseon; CLAS Collaboration

    2014-09-01

    An extensive program is underway at Jefferson Lab to study the eletromagnetic excitations of baryon states. We report the analysis of exclusive single π0 electroproduction in the resonance region at Jefferson Lab in the Q2 range of 2 to 6 GeV2 /c2 . A longitudinally polarized 5 . 75 GeV electron beam was incident on a 5 cm long liquid Hydrogen target. The CLAS spectrometer at Jefferson Lab was used to detect the final state particles. The data was taken between October 2001 and January 2002. Preliminary results for differential cross sections over the entire 4 π c .m . solid angle will be presented. This high precision measurement will allow us to access the structure and dynamics of nucleon excitations with masses up to 2 GeV .

  1. Electroproduction of π0 in the resonance region at high Q2 with CLAS

    NASA Astrophysics Data System (ADS)

    Ungaro, Maurizio; Joo, Kyungseon; CLAS Collaboration

    2011-04-01

    An extensive program is underway at Jefferson Lab to study the eletromagnetic excitations of baryon states. We report the analysis of exclusive single π0 and η electroproduction in the resonance region at Jefferson Lab in the Q2 range of 2 to 6 GeV2 /c2 . A longitudinally polarized 5 . 75 GeV electron beam was incident on a 5 cm long liquid Hydrogen target. The CLAS spectrometer at Jefferson Lab was used to detect the final state particles. The average beam polarization was 70 % . The data was taken between October 2001 and January 2002. Preliminary results for differential cross sections and beam spin asymmetries over the entire 4 π c . m . solid angle will be presented. This high precision measurement will allow us to access the structure and dynamics of nucleon excitations with masses up to 2 GeV .

  2. High-Q enhancement of attractive and repulsive optical forces between coupled whispering-gallery- mode resonators.

    PubMed

    Povinelli, Michelle; Johnson, Steven; Lonèar, Marko; Ibanescu, Mihai; Smythe, Elizabeth; Capasso, Federico; Joannopoulos, J

    2005-10-03

    We have calculated the optically-induced force between coupled high-Q whispering gallery modes of microsphere resonators. Attractive and repulsive forces are found, depending whether the bi-sphere mode is symmetric or antisymmetric. The magnitude of the force is linearly proportional to the total power in the spheres and consequently linearly enhanced by Q. Forces on the order of 100 nN are found for Q=108, large enough to cause displacements in the range of 1mum when the sphere is attached to a fiber stem with spring constant 0.004 N/m.

  3. The Dependence of Q with Seismic-induced Strains and Frequencies for Surface Layers from Resonant Columns

    NASA Astrophysics Data System (ADS)

    Marmureanu, Gh.; Bratosin, D.; Cioflan, C. O.

    The gross effect of internal friction is summarized by the dimensionless quantity Q, defined in various ways. If a volume of soil is cycled in stress at a frequency ω, physically, the Q factor is equal to the ratio of energy dissipated per cycle to the total energy Q-1 = δE/(2πE). The authors used Hardin and Drnevich resonant columns to determine the damping capacity of cylindrical specimens from surface soil layers during torsional and longitudinal vibrations. The energy dissipated by the system is a measure of the damping capacity of the soil. The damping will be defined by the shear damping ratio for the soil D, analogous to the critical viscous damping ratio for a single degree of freedom c/c0. Values of damping determined in these resonant columns will correspond to the area of the hysteresis loop stress strain relation divided by 4π times the elastic strain energy stored in the specimen at maximum strain. Consequently, we can express D in the form of quality factor Q, that is Q=1/(2D), where Q is defined in terms of the fractional loss of energy per cycle of oscillation and D is a nonlinear function ω and γ. The nonlinear dependence of Q with seismic induced strains and frequencies for large deformations has an important influence on the propagation of the seismic waves in the hazard and microzonation studies.

  4. Neutral pion electroproduction in the resonance region at high Q{sup 2}.

    SciTech Connect

    Villano, A. N.; Stoler, P.; Bosted, P. E.; Connell, S. H.; Dalton, M. M.; Arrington, J.; Hafidi, K.; Holt, R. J.; Schulte, E.; Reimer, P. E.; Zheng, X.; Physics; Rensselaer Polytechnic Inst.; Thomas Jefferson National Accelerator Facility; Univ. of the Johannesburg; Univ. of the Witwatersrand

    2009-09-01

    The process ep {yields} ep{pi}{sup 0} has been measured at Q{sup 2} = 6.4 and 7.7 (GeV/c{sup 2}){sup 2} in Jefferson Lab's Hall C. Unpolarized differential cross sections are reported in the virtual photon-proton center-of-mass frame considering the process {gamma}*p {yields} p{pi}{sup 0}. Various details relating to the background subtractions, radiative corrections, and systematic errors are discussed. The usefulness of the data with regard to the measurement of the electromagnetic properties of the well-known {Delta}(1232) resonance is covered in detail. Specifically considered are the electromagnetic and scalar-magnetic ratios R{sub EM} and R{sub SM} along with the magnetic transition form factor G*{sub M}. It is found that the rapid falloff of the {Delta}(1232) contribution continues into this region of momentum transfer and that other resonances may be making important contributions in this region.

  5. Neutral pion electroproduction in the resonance region at high Q{sup 2}

    SciTech Connect

    Villano, A. N.; Stoler, P.; Kubarovsky, V.; Adams, G. S.; Napolitano, J.; Bosted, P. E.; Jones, M. K.; Ent, R.; Fenker, H. C.; Gaskell, D.; Lung, A.; Mack, D.; Meekins, D. G.; Roche, J.; Smith, G. R.; Wojtsekhowski, B.; Wood, S. A.; Connell, S. H.; Dalton, M. M.; Ahmidouch, A.

    2009-09-15

    The process ep{yields}ep{pi}{sup 0} has been measured at Q{sup 2}=6.4 and 7.7 (GeV/c{sup 2}){sup 2} in Jefferson Lab's Hall C. Unpolarized differential cross sections are reported in the virtual photon-proton center-of-mass frame considering the process {gamma}*p{yields}p{pi}{sup 0}. Various details relating to the background subtractions, radiative corrections, and systematic errors are discussed. The usefulness of the data with regard to the measurement of the electromagnetic properties of the well-known {delta}(1232) resonance is covered in detail. Specifically considered are the electromagnetic and scalar-magnetic ratios R{sub EM} and R{sub SM} along with the magnetic transition form factor G{sub M}*. It is found that the rapid falloff of the {delta}(1232) contribution continues into this region of momentum transfer and that other resonances may be making important contributions in this region.

  6. Aliasing Effects of Q-bursts on Background Spectra of Schumann Resonances

    NASA Astrophysics Data System (ADS)

    Guha, A.; Mushtak, V. C.; Williams, E.; Neska, M.; Nagy, T. G.; Satori, G.

    2013-12-01

    The Earth's Schumann resonances (SR) manifest as a 'background' signal and as an occasional transient excitation (Q-burst) of substantially larger amplitude. The background signal is generally attributed to the superposition of radiated ELF signal from average lightning flashes originating in convective scale thunderstorms predominant in the late afternoon, and whose waveforms are all overlapping. The larger transient excitations are attributed to exceptionally energetic lightning flashes in larger mesoscale convective systems. These flashes stand out strongly against the background signal, and often produce sprites in the mesosphere. These exceptional events are often delayed in the diurnal cycle by many hours into the evening and even the early morning over land areas. This study is concerned with the idea that the spectral energy of a single transient event can compete with the background energy over 5-15 minute time scales, and so serve to alias the background spectrum and destroy that 'fingerprint' for the geographical origin of the background lightning. In the present work, an attempt is made to detect these large by simultaneous observation of SR electric field spectra from two stations in Europe, Belsk, Poland (BLK: 49.190 N, 22.550 E) and Nagycenk, Hungary (NCK: 47.60 N, 16.70 E), separated by 0.47 Mm, along with the same strokes identified by the World Wide Lighting Location Network (WWLLN). First, the energy contents (EC) for each five second spectra with up to four SR modes for the two stations are computed. Q-burst events are selected if: (1) the Core Standard Deviation (CSD) in any 5 second segment is above 16 CSD (2) the ratio of CSDs at both stations is within 0.5 to 2, and (3) the event occurs within 1-3 time samples at each station. Simultaneous observations at these nearby stations enable us to distinguish the cultural noise and lightning strokes originating close to each station. At the same time, the propagation path form the originating Q

  7. Q-switched resonantly pumped Er:YAG laser with a fiber-like geometry

    NASA Astrophysics Data System (ADS)

    Bigotta, Stefano; Eichhorn, Marc

    2010-10-01

    Er3+:YAG eye-safe laser emitting at 1.6 μm is an interesting source for various applications such as remote sensing, ranging, designation and free-space communications for two main reasons: its emitting wavelength lies in a region of high atmospheric transmission and high sensor sensitivity and the resonant pumping into the 4I13/2 upper laser manifold ensures highly efficient operation. The recent availability of internal grating stabilized narrow linewidth, high-power laser diodes in the 1.53 μm range, makes this laser even more appealing. The only shortcoming to be solved for a really efficient resonantly diode pumped Er3+:YAG laser is how to have a good overlap between the pump radiation and the laser cavity mode. Indeed, due to up-conversion processes among the Er3+ ions, to achieve efficient lasers it is necessary to use low doped samples. This requires the use of rods with lengths of several cm that are not compatible with the low beam quality of the diode lasers. In this work, we report on a resonantly diode pumped Q-switched Er3+:YAG laser with a crystalline fibre-like geometry emitting at 1.64 μm. In this scheme, the pump radiation is confined into a 60 mm long crystal with a diameter of 1.2 mm thanks to the multiple total internal reflections (TIR) that occur on the barrel surface, allowing efficiently pumping of such a long crystal. A maximum output power of more than 14 W in continuous wave mode and pulse energies of 8 mJ in Q-switching mode have been observed, when pumped with - 40 W of absorbed power. Even if these values are still far from the performances reported using hybrid fibre-bulk laser scheme, these results clearly show that TIR-based Er3+:YAG fibre-shaped crystalline rod laser is a promising technology for the development of efficient high-power and high-energy eye-safe laser. Finally, the effect of thermal lensing on such crystalline fibre geometry is discussed.

  8. The two-loop QCD correction to massive spin-2 resonanceq bar{q} g

    NASA Astrophysics Data System (ADS)

    Ahmed, Taushif; Das, Goutam; Mathews, Prakash; Rana, Narayan; Ravindran, V.

    2016-12-01

    The two-loop QCD correction to massive spin-2 graviton decaying to q + bar{q} + g is presented considering a generic universal spin-2 coupling to the SM through the conserved energy-momentum tensor. Such a massive spin-2 particle can arise in extra-dimensional models. The ultraviolet and infrared structure of the QCD amplitudes are studied. In dimensional regularization, the infrared pole structure is in agreement with Catani's proposal, confirming the universal factorization property of QCD amplitudes, even with the spin-2 tensorial coupling.

  9. Optically-controlled extinction ratio and Q-factor tunable silicon microring resonators based on optical forces.

    PubMed

    Long, Yun; Wang, Jian

    2014-06-24

    Tunability is a desirable property of microring resonators to facilitate superior performance. Using light to control light, we present an alternative simple approach to tuning the extinction ratio (ER) and Q-factor of silicon microring resonators based on optical forces. We design an opto-mechanical tunable silicon microring resonator consisting of an add-drop microring resonator and a control-light-carrying waveguide ("controlling" waveguide). One of the two bus waveguides of the microring resonator is a deformable nanostring put in parallel with the "controlling" waveguide. The tuning mechanism relies on the optical force induced deflection of suspended nanostring, leading to the change of coupling coefficient of microring and resultant tuning of ER and Q-factor. Two possible geometries, i.e. double-clamped nanostring and cantilever nanostring, are studied in detail for comparison. The obtained results imply a favorable structure with the microring positioned at the end of the cantilever nanostring. It features a wide tuning range of ER from 5.6 to 39.9 dB and Q-factor from 309 to 639 as changing the control power from 0 to 1.4 mW.

  10. Optically-controlled extinction ratio and Q-factor tunable silicon microring resonators based on optical forces

    NASA Astrophysics Data System (ADS)

    Long, Yun; Wang, Jian

    2014-06-01

    Tunability is a desirable property of microring resonators to facilitate superior performance. Using light to control light, we present an alternative simple approach to tuning the extinction ratio (ER) and Q-factor of silicon microring resonators based on optical forces. We design an opto-mechanical tunable silicon microring resonator consisting of an add-drop microring resonator and a control-light-carrying waveguide (``controlling'' waveguide). One of the two bus waveguides of the microring resonator is a deformable nanostring put in parallel with the ``controlling'' waveguide. The tuning mechanism relies on the optical force induced deflection of suspended nanostring, leading to the change of coupling coefficient of microring and resultant tuning of ER and Q-factor. Two possible geometries, i.e. double-clamped nanostring and cantilever nanostring, are studied in detail for comparison. The obtained results imply a favorable structure with the microring positioned at the end of the cantilever nanostring. It features a wide tuning range of ER from 5.6 to 39.9 dB and Q-factor from 309 to 639 as changing the control power from 0 to 1.4 mW.

  11. Modulating resonance modes and Q value of a CdS nanowire cavity by single Ag nanoparticles.

    PubMed

    Zhang, Qing; Shan, Xin-Yan; Feng, Xiao; Wang, Chun-Xiao; Wang, Qu-Quan; Jia, Jin-Feng; Xue, Qi-Kun

    2011-10-12

    Semiconductor nanowire (NW) cavities with tailorable optical modes have been used to develop nanoscale oscillators and amplifiers in microlasers, sensors, and single photon emitters. The resonance modes of NW could be tuned by different boundary conditions. However, continuously and reversibly adjusting resonance modes and improving Q-factor of the cavity remain a great challenge. We report a method to modulate resonance modes continuously and reversibly and improve Q-factor based on surface plasmon-exciton interaction. By placing single Ag nanoparticle (NP) nearby a CdS NW, we show that the wavelength and relative intensity of the resonance modes in the NW cavity can systematically be tuned by adjusting the relative position of the Ag NP. We further demonstrate that a 56% enhancement of Q-factor and an equivalent π-phase shift of the resonance modes can be achieved when the Ag NP is located near the NW end. This hybrid cavity has potential applications in active plasmonic and photonic nanodevices.

  12. High-Q cross-plate phononic crystal resonator for enhanced acoustic wave localization and energy harvesting

    NASA Astrophysics Data System (ADS)

    Yang, Aichao; Li, Ping; Wen, Yumei; Yang, Chao; Wang, Decai; Zhang, Feng; Zhang, Jiajia

    2015-05-01

    A high-Q cross-plate phononic crystal resonator (Cr-PCR) coupled with an electromechanical Helmholtz resonator (EMHR) is proposed to improve acoustic wave localization and energy harvesting. Owing to the strongly directional wave-scattering effect of the cross-plate corners, strong confinement of acoustic waves emerges. Consequently, the proposed Cr-PCR structure exhibits ∼353.5 times higher Q value and ∼6.1 times greater maximum pressure amplification than the phononic crystal resonator (Cy-PCR) (consisting of cylindrical scatterers) of the same size. Furthermore, the harvester using the proposed Cr-PCR and the EMHR has ∼22 times greater maximum output-power volume density than the previous harvester using Cy-PCR and EMHR structures.

  13. High-Q AlN/SiO2 symmetric composite thin film bulk acoustic wave resonators.

    PubMed

    Artieda, Alvaro; Muralt, Paul

    2008-11-01

    High-Q, bulk acoustic wave composite resonators based on a symmetric layer sequence of SiO(2)-AlN-SiO(2) sandwiched between electrodes have been developed. Acoustic isolation was achieved by means of deep silicon etching to obtain membrane type thin film bulk acoustic wave resonators (TFBARs). Three different device versions were investigated. The SiO(2) film thicknesses were varied (0 nm, 70 nm, 310 nm, and 770 nm) while the piezoelectric AlN film had a constant thickness of 1.2 microm. The sputter-deposited AlN film grown on the amorphous, sputter-deposited SiO(2) layer exhibited a d(33,f) of 4.0 pm/V. Experimental results of quality factors (Q) and coupling coefficients (k(t)(2)) are in agreement with finite element calculations. A Q of 2000 is observed for the first harmonic of the 310 nm oxide devices. The most intense resonance of the 770 nm oxide device is the third harmonic reaching Q factors of 1450. The temperature drift reveals the impact of the SiO(2) layers, which is more pronounced on the first harmonic, reducing the TCF to 4 ppm/K for the 3rd harmonic of the 310 nm oxide devices.

  14. A time domain based method for the accurate measurement of Q-factor and resonance frequency of microwave resonators

    SciTech Connect

    Gyüre, B.; Márkus, B. G.; Bernáth, B.; Simon, F.; Murányi, F.

    2015-09-15

    We present a novel method to determine the resonant frequency and quality factor of microwave resonators which is faster, more stable, and conceptually simpler than the yet existing techniques. The microwave resonator is pumped with the microwave radiation at a frequency away from its resonance. It then emits an exponentially decaying radiation at its eigen-frequency when the excitation is rapidly switched off. The emitted microwave signal is down-converted with a microwave mixer, digitized, and its Fourier transformation (FT) directly yields the resonance curve in a single shot. Being a FT based method, this technique possesses the Fellgett (multiplex) and Connes (accuracy) advantages and it conceptually mimics that of pulsed nuclear magnetic resonance. We also establish a novel benchmark to compare accuracy of the different approaches of microwave resonator measurements. This shows that the present method has similar accuracy to the existing ones, which are based on sweeping or modulating the frequency of the microwave radiation.

  15. A time domain based method for the accurate measurement of Q-factor and resonance frequency of microwave resonators

    NASA Astrophysics Data System (ADS)

    Gyüre, B.; Márkus, B. G.; Bernáth, B.; Murányi, F.; Simon, F.

    2015-09-01

    We present a novel method to determine the resonant frequency and quality factor of microwave resonators which is faster, more stable, and conceptually simpler than the yet existing techniques. The microwave resonator is pumped with the microwave radiation at a frequency away from its resonance. It then emits an exponentially decaying radiation at its eigen-frequency when the excitation is rapidly switched off. The emitted microwave signal is down-converted with a microwave mixer, digitized, and its Fourier transformation (FT) directly yields the resonance curve in a single shot. Being a FT based method, this technique possesses the Fellgett (multiplex) and Connes (accuracy) advantages and it conceptually mimics that of pulsed nuclear magnetic resonance. We also establish a novel benchmark to compare accuracy of the different approaches of microwave resonator measurements. This shows that the present method has similar accuracy to the existing ones, which are based on sweeping or modulating the frequency of the microwave radiation.

  16. Hybrid III-V on Si grating as a broadband reflector and a high-Q resonator

    NASA Astrophysics Data System (ADS)

    Chung, Il-Sug; Taghizadeh, Alireza; Park, Gyeong Cheol

    2016-03-01

    Hybrid grating (HG) with a high-refractive-index cap layer added onto a high contrast grating (HCG), can provide a high reflectance close 100 % over a broader wavelength range than HCGs, or work as a ultrahigh quality (Q) factor resonator. The reflection and resonance properties of HGs have been investigated and the mechanisms leading to these properties are discussed. A HG reflector sample integrating a III-V cap layer with InGaAlAs quantum wells onto a Si grating has been fabricated and its reflection property has been characterized. The HG-based lasers have a promising prospect for silicon photonics light source or high-speed laser applications.

  17. Improved transmission performance resulting from the reduced chirp of a semiconductor laser coupled to an external high-Q resonator

    SciTech Connect

    Cartledge, J.C. )

    1990-05-01

    The coupling of a Fabry--Perot laser to an external high-{ital Q} resonator, whose resonance frequencies are not altered by changes in the carrier density, yields a dynamic single-longitudinal-mode laser with a significantly reduced transient frequency chirp. The improvement in the receiver sensitivity due to the reduced chirp is examined for NRZ and RZ intensity modulation, direct detection systems operating in the 1.55-{mu}m wavelength region with conventional single-mode optical fiber. The methodology involves a solving modified rate equations numerically for the optical power and phase of the external resonator laser in response to an injected current waveform, modeling the signal transmission properties of single-mode optical fibers by convolution and modulus squared operations, and using a truncated pulse train approximation to evaluate the probability of error in the presence of intersymbol interference, shot noise, APD multiplication noise, and preamplifier circuit noise.

  18. HIgh-Q Optical Micro-cavity Resonators as High Sensitive Bio-chemical and Ultrasonic Sensors

    NASA Astrophysics Data System (ADS)

    Ling, Tao

    Optical micro-cavity resonators have quickly emerged in the past few years as a new sensing platform in a wide range of applications, such as bio-chemical molecular detection, environmental monitoring, acoustic and electromagnetic waves detection. In this thesis, we will mainly focus on developing high sensitivity silica micro-tube resonator bio-chemical sensors and high sensitivity polymer micro-ring resonator acoustic sensors. In high sensitivity silica micro-tube resonator bio-chemical sensors part: We first demonstrated a prism coupled silica micro-tube bio-chemical sensing platform to overcome the reliability problem in a fiber coupled thin wall silica micro-tube sensing platform. In refractive index sensing experiment, a unique resonance mode with sensitivity around 600nm/refractive index unit (RIU) has been observed. Surface sensing experiments also have been performed in this platform to detect lipid monolayer, lipid bilayer, electrostatic self assemble layer-by-layer as well as the interaction between the lipid bilayer and proteins. Then a theoretical study on various sensing properties on the silica micro-tube based sensing platform has been realized. Furthermore, we have proposed a coupled cavity system to further enhance the device's sensitivity above 1000nm/RIU. In high sensitivity polymer micro-ring resonator acoustic sensors part: We first presented a simplified fabrication process and realized a polymer microring with a Q factor around 6000. The fabricated device has been used to detect acoustic wave with noise equivalent pressure (NEP) around 230Pa over 1-75MHz frequency rang, which is comparable to state-of-art piezoelectric transducer and the device's frequency response also have been characterized to be up to 90MHz. A new fabrication process combined with resist reflow and thermal oxidation process has been used to improve the Q factor up to 10 5 and the device's NEP has been tested to be around 88Pa over 1-75MHz range. Further improving the

  19. High-Q Superconducting Coplanar Waveguide Resonators for Integration into Molecule Ion Traps

    DTIC Science & Technology

    2010-05-01

    quality factor. We fabricated the resonators as two dimensional coplanar waveguides in niobium on R-plane sapphire using optical lithography. Resist was...patterned on the niobium using optical lithography, developed then reactive-ion etched to transfer the pattern into the niobium . The resonators were...resonators as two dimensional coplanar waveguides in niobium on R-plane sapphire using optical lithography. Resist was patterned on the niobium using

  20. Scaling output energy in a diode-end-pumped passively Q-switched laser with a flat-flat resonator

    NASA Astrophysics Data System (ADS)

    Tang, C. Y.; Huang, Y. J.; Liang, H. C.; Chen, Y. F.; Su, K. W.

    2017-01-01

    The spatial and temporal behaviors in a diode-end-pumped passively Q-switched laser with a flat-flat resonator are systematically explored as a function of the cavity length. A Nd:YAG/Cr4+:YAG miniature laser is experimentally used to show that the scale-up of the pulse energy without the higher-order transverse modes can be practically realized by optimizing the cavity length as a function of the pump size. A theoretical analysis is performed to confirm the experimental results. The extracavity second harmonic generation is experimentally conducted to demonstrate the usefulness of the laser design. PACS number(s): 42.60.Gd Q-switching; 42.55.Xi Diode-pumped lasers; 42.55.-f Lasers; 42.65.Sf Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatiotemporal dynamics.

  1. Continuous-wave and Q-switched operation of a resonantly pumped Ho:YAlO3 laser.

    PubMed

    Yao, Bao-Quan; Duan, Xiao-Ming; Zheng, Liang-Liang; Ju, You-Lun; Wang, Yue-Zhu; Zhao, Guang-Jun; Dong, Qin

    2008-09-15

    We demonstrated continuous-wave (CW) and Q-switched operation of a room-temperature Ho:YAlO(3) laser that is resonantly end-pumped by a diode-pumped Tm:YLF laser at 1.91 microm. The CW Ho:YAlO(3) laser generated 5.5 W of linearly polarized (EII c ) output at 2118 nm with beam quality factor of M(2) approximately 1.1 for an incident pump power of 13.8 W, corresponding to optical-to-optical conversion efficiency of 40%. Up to 1- mJ energy per pulse at pulse repetition frequency (PRF) of 5 kHz, and the maximum average power of 5.3-W with FWHM pulse duration of 30.5 ns at 20 kHz were achieved in Q-switched mode.

  2. Deterministic transfer of an unknown qutrit state assisted by the low-Q microwave resonators

    NASA Astrophysics Data System (ADS)

    Liu, Tong; Zhang, Yang; Yu, Chang-Shui; Zhang, Wei-Ning

    2017-05-01

    Qutrits (i.e., three-level quantum systems) can be used to achieve many quantum information and communication tasks due to their large Hilbert spaces. In this work, we propose a scheme to transfer an unknown quantum state between two flux qutrits coupled to two superconducting coplanar waveguide resonators. The quantum state transfer can be deterministically achieved without measurements. Because resonator photons are virtually excited during the operation time, the decoherences caused by the resonator decay and the unwanted inter-resonator crosstalk are greatly suppressed. Moreover, our approach can be adapted to other solid-state qutrits coupled to circuit resonators. Numerical simulations show that the high-fidelity transfer of quantum state between the two qutrits is feasible with current circuit QED technology.

  3. High Q micro-ring resonators fabricated from polycrystalline aluminum nitride films for near infrared and visible photonics.

    PubMed

    Pernice, Wolfram H P; Xiong, Chi; Tang, Hong X

    2012-05-21

    We demonstrate wideband integrated photonic circuits in sputter-deposited aluminum nitride (AlN) thin films. At both near-infrared and visible wavelengths, we achieve low propagation loss in integrated waveguides and realize high-quality optical resonators. In the telecoms C-band (1520-1580 nm), we obtain the highest optical Q factor of 440,000. Critical coupled devices show extinction ratio above 30 dB. For visible wavelengths (around 770 nm), intrinsic quality factors in excess of 30,000 is demonstrated. Our work illustrates the potential of AlN as a low loss material for wideband optical applications.

  4. Design and optical characterization of high-Q guided-resonance modes in the slot-graphite photonic crystal lattice.

    PubMed

    Martínez, Luis Javier; Huang, Ningfeng; Ma, Jing; Lin, Chenxi; Jaquay, Eric; Povinelli, Michelle L

    2013-12-16

    A new photonic crystal structure is generated by using a regular graphite lattice as the base and adding a slot in the center of each unit cell to enhance field confinement. The theoretical Q factor in an ideal structure is over 4 × 10(5). The structure was fabricated on a silicon-on-insulator wafer and optically characterized by transmission spectroscopy. The resonance wavelength and quality factor were measured as a function of slot height. The measured trends show good agreement with simulation.

  5. High-Q nested resonator in an actively stabilized optomechanical cavity

    NASA Astrophysics Data System (ADS)

    Buters, F. M.; Heeck, K.; Eerkens, H. J.; Weaver, M. J.; Luna, F.; de Man, S.; Bouwmeester, D.

    2017-03-01

    Experiments involving micro- and nanomechanical resonators need to be carefully designed to reduce mechanical environmental noise. A small scale on-chip approach is to add a resonator to the system as a mechanical low-pass filter. However, the inherent low frequency of the low-pass filter causes the system to be easily excited mechanically. We solve this problem by applying active feedback to the resonator, thereby minimizing the motion with respect to the front mirror of an optomechanical cavity. Not only does this method actively stabilize the cavity length but it also retains the on-chip vibration isolation.

  6. Q spoiling in deformed optical microdisks due to resonance-assisted tunneling

    NASA Astrophysics Data System (ADS)

    Kullig, Julius; Wiersig, Jan

    2016-08-01

    A recent experiment by Kwak et al. [Sci. Rep. 5, 9010 (2015), 10.1038/srep09010] demonstrated the relevance of resonance-assisted tunneling for optical microcavities where resonance chains emerge in phase space due to boundary deformations. In this paper we adapt the perturbative description of resonance-assisted tunneling to calculate optical modes and the imaginary part of their complex wavenumber which determines the lifetime of the mode. We demonstrate our method at three example cavity shapes and compare our results to numerical data and perturbation theory for weakly deformed microdisk cavities.

  7. Radio frequency spectral characterization and model parameters extraction of high Q optical resonators

    PubMed Central

    Abdallah, Zeina; Boucher, Yann G.; Fernandez, Arnaud; Balac, Stéphane; Llopis, Olivier

    2016-01-01

    A microwave domain characterization approach is proposed to determine the properties of high quality factor optical resonators. This approach features a very high precision in frequency and aims to acquire a full knowledge of the complex transfer function (amplitude and phase) characterizing an optical resonator using a microwave vector network analyzer. It is able to discriminate between the different coupling regimes, from the under-coupling to the selective amplification, and it is used together with a model from which the main resonator parameters are extracted, i.e. coupling factor, intrinsic losses, phase slope, intrinsic and external quality factor. PMID:27251460

  8. Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators.

    PubMed

    Lin, Hongtao; Li, Lan; Zou, Yi; Danto, Sylvain; Musgraves, J David; Richardson, Kathleen; Kozacik, Stephen; Murakowski, Maciej; Prather, Dennis; Lin, Pao T; Singh, Vivek; Agarwal, Anu; Kimerling, Lionel C; Hu, Juejun

    2013-05-01

    We demonstrated high-index-contrast, waveguide-coupled As2Se3 chalcogenide glass resonators monolithically integrated on silicon fabricated using optical lithography and a lift-off process. The resonators exhibited a high intrinsic quality factor of 2×10(5) at 5.2 μm wavelength, which is among the highest values reported in on-chip mid-infrared (mid-IR) photonic devices. The resonator can serve as a key building block for mid-IR planar photonic circuits.

  9. Q spoiling in deformed optical microdisks due to resonance-assisted tunneling.

    PubMed

    Kullig, Julius; Wiersig, Jan

    2016-08-01

    A recent experiment by Kwak et al. [Sci. Rep. 5, 9010 (2015)10.1038/srep09010] demonstrated the relevance of resonance-assisted tunneling for optical microcavities where resonance chains emerge in phase space due to boundary deformations. In this paper we adapt the perturbative description of resonance-assisted tunneling to calculate optical modes and the imaginary part of their complex wavenumber which determines the lifetime of the mode. We demonstrate our method at three example cavity shapes and compare our results to numerical data and perturbation theory for weakly deformed microdisk cavities.

  10. Monolithic integration of high-Q wedge resonators with vertically coupled waveguides

    NASA Astrophysics Data System (ADS)

    Ramiro-Manzano, Fernando; Prtljaga, Nikola; Pavesi, Lorenzo; Pucker, Georg; Ghulinyan, Mher

    2013-05-01

    Typical UHQ resonators, microspheres and microtoroids, lack the possibility of integration into lightwave circuits due to their planarity constrains. In this context, CMOS-compatible alternatives in the form of wedge resonators have been proposed. However, the mode retraction from the wedge cavity inhibits the possibility to side couple with integrated waveguides and therefore, halts the full integration within a planar lightwave circuit. In this work, we propose and demonstrate experimentally the complete integration of wedge resonators with vertically coupled dielectric bus waveguides. This coupling scheme permits to use arbitrary gaps, geometries and materials, enables simplified and precise control of the light injection into the cavity and opens the door to an industrial mass-fabrication of UHQ resonators.

  11. High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms.

    PubMed

    Santis, Christos Theodoros; Steger, Scott T; Vilenchik, Yaakov; Vasilyev, Arseny; Yariv, Amnon

    2014-02-25

    The semiconductor laser (SCL) is the principal light source powering the worldwide optical fiber network. The ever-increasing demand for data is causing the network to migrate to phase-coherent modulation formats, which place strict requirements on the temporal coherence of the light source that no longer can be met by current SCLs. This failure can be traced directly to the canonical laser design, in which photons are both generated and stored in the same, optically lossy, III-V material. This leads to an excessive and large amount of noisy spontaneous emission commingling with the laser mode, thereby degrading its coherence. High losses also decrease the amount of stored optical energy in the laser cavity, magnifying the effect of each individual spontaneous emission event on the phase of the laser field. Here, we propose a new design paradigm for the SCL. The keys to this paradigm are the deliberate removal of stored optical energy from the lossy III-V material by concentrating it in a passive, low-loss material and the incorporation of a very high-Q resonator as an integral (i.e., not externally coupled) part of the laser cavity. We demonstrate an SCL with a spectral linewidth of 18 kHz in the telecom band around 1.55 μm, achieved using a single-mode silicon resonator with Q of 10(6).

  12. High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms

    PubMed Central

    Santis, Christos Theodoros; Steger, Scott T.; Vilenchik, Yaakov; Vasilyev, Arseny; Yariv, Amnon

    2014-01-01

    The semiconductor laser (SCL) is the principal light source powering the worldwide optical fiber network. The ever-increasing demand for data is causing the network to migrate to phase-coherent modulation formats, which place strict requirements on the temporal coherence of the light source that no longer can be met by current SCLs. This failure can be traced directly to the canonical laser design, in which photons are both generated and stored in the same, optically lossy, III-V material. This leads to an excessive and large amount of noisy spontaneous emission commingling with the laser mode, thereby degrading its coherence. High losses also decrease the amount of stored optical energy in the laser cavity, magnifying the effect of each individual spontaneous emission event on the phase of the laser field. Here, we propose a new design paradigm for the SCL. The keys to this paradigm are the deliberate removal of stored optical energy from the lossy III-V material by concentrating it in a passive, low-loss material and the incorporation of a very high-Q resonator as an integral (i.e., not externally coupled) part of the laser cavity. We demonstrate an SCL with a spectral linewidth of 18 kHz in the telecom band around 1.55 μm, achieved using a single-mode silicon resonator with Q of 106. PMID:24516134

  13. Thermal nonlinear effect in high Q factor silicon-on-insulator microring resonator

    NASA Astrophysics Data System (ADS)

    Xiaogang, Tong; Jun, Liu; Chenyang, Xue

    2017-07-01

    In this paper, all-optical switching in silicon-on-insulator (SOI) serially coupled ring resonator based on thermal nonlinear effect is proposed. The radii of the silicon microring resonator are 10 μm. In experiment, firstly measured by single pump injection technology with vertical coupling surface grating coupler method, the highest notch of serially coupled ring resonator is 17 dB. The strong transverse light-confinement nature of the resonator induces nonlinear optical response with low pump power. Thermal nonlinear effect is achieved by controlling the power of the continuous-wave (CW) pump with very low tuning threshold (0.33 nm). And the slop of resonant wavelength as a function of injected pump is 220 pm/mw. Secondly, switching time measured by two pump injection technology is 3.01 μs and 1.03 μs, respectively. Which could be used in integrated photonic communication circuits based optical logic and slow-light structure.

  14. Nonlinear analysis of q ≳ 1 non-resonant fishbone modes in tokamak plasmas with weakly reversed magnetic shear

    NASA Astrophysics Data System (ADS)

    Wang, Xian-Qu; Wang, Xiao-Gang

    2015-10-01

    The nonlinear properties of q ≳ 1 non-resonant fishbone (NRF) instabilities excited by energetic ions are analyzed theoretically for weakly reversed shear in this work. Nonlinear radial displacement of the NRF mode ξ0 is derived by the method of matched asymptotic expansions. It is found that ξ0 depends on the energetic ion beta in a power law of ˜βhα with α=1 /3 , α=1 /7 , and α≪1 , corresponding to a finite qs″ , qs″=0 , and an extremely flattened q-profile, respectively. The scaling dependence of ξ0 on the linear growth rate ˜γ1/4 is also different from that of ˜γ in a conventional positive shear configuration. The scaling suggests that ξ0 weakly depends on βh and γ when the q-profile is flattened. Nonlinear saturation amplitude of the mode for an ITER-like plasma is also estimated by numerical analysis.

  15. Resonantly pumped Er:YAG laser Q-switched by topological insulator nanosheets at 1617 nm

    NASA Astrophysics Data System (ADS)

    Huang, Bin; Tang, Pinghua; Yi, Jun; Jiang, Guobao; Liu, Jun; Zou, Yanhong; Zhao, Chujun; Wen, Shuangchun

    2017-09-01

    We demonstrated an in-band pumped 1617 nm Er:YAG solid-state laser passively Q-switched by self-assembled topological insulator Bi2Te3 nanosheets sandwiched by polymethyl methacrylate (PMMA) polymer. With the self-assembled Bi2Te3 saturable absorber, the laser can deliver Q-switched pulse centered at 1617 nm with a maximum single pulse energy 18.3 μJ for output power of 114 mW at repetition rate of 6.22 kHz and the maximum output power of 134 mW at a repetition rate of 11.6 kHz. The results suggest that the potential of topological insulator nonlinear modulator for broadband solid-state lasers applications.

  16. Raman lasing in As₂S₃ high-Q whispering gallery mode resonators.

    PubMed

    Vanier, Francis; Rochette, Martin; Godbout, Nicolas; Peter, Yves-Alain

    2013-12-01

    We report the first observation of a nonlinear process in a chalcogenide microresonator. Raman scattering and stimulated Raman scattering leading to laser oscillation is observed in microspheres made of As₂S₃. The coupled pump power threshold is as low as 13 μW using a pump wavelength of 1550 nm. The quality factor of the chalcogenide microresonator is also the highest ever reported with Q>7×10(7).

  17. Assessing the multiscale architecture of muscular tissue with Q-space magnetic resonance imaging: Review.

    PubMed

    Hoffman, Matthew P; Taylor, Erik N; Aninwene, George E; Sadayappan, Sakthivel; Gilbert, Richard J

    2016-10-02

    Contraction of muscular tissue requires the synchronized shortening of myofibers arrayed in complex geometrical patterns. Imaging such myofiber patterns with diffusion-weighted MRI reveals architectural ensembles that underlie force generation at the organ scale. Restricted proton diffusion is a stochastic process resulting from random translational motion that may be used to probe the directionality of myofibers in whole tissue. During diffusion-weighted MRI, magnetic field gradients are applied to determine the directional dependence of proton diffusion through the analysis of a diffusional probability distribution function (PDF). The directions of principal (maximal) diffusion within the PDF are associated with similarly aligned diffusion maxima in adjacent voxels to derive multivoxel tracts. Diffusion-weighted MRI with tractography thus constitutes a multiscale method for depicting patterns of cellular organization within biological tissues. We provide in this review, details of the method by which generalized Q-space imaging is used to interrogate multidimensional diffusion space, and thereby to infer the organization of muscular tissue. Q-space imaging derives the lowest possible angular separation of diffusion maxima by optimizing the conditions by which magnetic field gradients are applied to a given tissue. To illustrate, we present the methods and applications associated with Q-space imaging of the multiscale myoarchitecture associated with the human and rodent tongues. These representations emphasize the intricate and continuous nature of muscle fiber organization and suggest a method to depict structural "blueprints" for skeletal and cardiac muscle tissue.

  18. Magnetic Resonance Q Mapping Reveals a Decrease in Microvessel Density in the arcAβ Mouse Model of Cerebral Amyloidosis.

    PubMed

    Ielacqua, Giovanna D; Schlegel, Felix; Füchtemeier, Martina; Xandry, Jael; Rudin, Markus; Klohs, Jan

    2015-01-01

    Alterations in density and morphology of the cerebral microvasculature have been reported to occur in Alzheimer's disease patients and animal models of the disease. In this study we compared magnetic resonance imaging (MRI) techniques for their utility to detect age-dependent changes of the cerebral vasculature in the arcAβ mouse model of cerebral amyloidosis. Dynamic susceptibility contrast (DSC)-MRI was performed by tracking the passage of a superparamagnetic iron oxide nanoparticle in the brain with dynamic gradient echo planar imaging (EPI). From this measurements relative cerebral blood volume [rCBV(DSC)] and relative cerebral blood flow (rCBF) were estimated. For the same animal maps of the relaxation shift index Q were computed from high resolution gradient echo and spin echo data that were acquired before and after superparamagnetic iron oxide (SPIO) nanoparticle injection. Q-values were used to derive estimates of microvessel density. The change in the relaxation rates [Formula: see text] obtained from pre- and post-contrast gradient echo data was used for the alternative determination of rCBV [rCBV([Formula: see text])]. Linear mixed effects modeling found no significant association between rCBV(DSC), rCBV([Formula: see text]), rCBF, and Q with genotype in 13-month old mice [compared to age-matched non-transgenic littermates (NTLs)] for any of the evaluated brain regions. In 24-month old mice there was a significant association for rCBV(DSC) with genotype in the cerebral cortex, and for rCBV([Formula: see text]) in the cerebral cortex and cerebellum. For rCBF there was a significant association in the cerebellum but not in other brain regions. Q-values in the olfactory bulb, cerebral cortex, striatum, hippocampus, and cerebellum in 24-month old mice were significantly associated with genotype. In those regions Q-values were reduced between 11 and 26% in arcAβ mice compared to age-matched NTLs. Vessel staining with CD31 immunohistochemistry confirmed a

  19. Magnetic Resonance Q Mapping Reveals a Decrease in Microvessel Density in the arcAβ Mouse Model of Cerebral Amyloidosis

    PubMed Central

    Ielacqua, Giovanna D.; Schlegel, Felix; Füchtemeier, Martina; Xandry, Jael; Rudin, Markus; Klohs, Jan

    2016-01-01

    Alterations in density and morphology of the cerebral microvasculature have been reported to occur in Alzheimer's disease patients and animal models of the disease. In this study we compared magnetic resonance imaging (MRI) techniques for their utility to detect age-dependent changes of the cerebral vasculature in the arcAβ mouse model of cerebral amyloidosis. Dynamic susceptibility contrast (DSC)-MRI was performed by tracking the passage of a superparamagnetic iron oxide nanoparticle in the brain with dynamic gradient echo planar imaging (EPI). From this measurements relative cerebral blood volume [rCBV(DSC)] and relative cerebral blood flow (rCBF) were estimated. For the same animal maps of the relaxation shift index Q were computed from high resolution gradient echo and spin echo data that were acquired before and after superparamagnetic iron oxide (SPIO) nanoparticle injection. Q-values were used to derive estimates of microvessel density. The change in the relaxation rates ΔR2* obtained from pre- and post-contrast gradient echo data was used for the alternative determination of rCBV [rCBV(ΔR2*)]. Linear mixed effects modeling found no significant association between rCBV(DSC), rCBV(ΔR2*), rCBF, and Q with genotype in 13-month old mice [compared to age-matched non-transgenic littermates (NTLs)] for any of the evaluated brain regions. In 24-month old mice there was a significant association for rCBV(DSC) with genotype in the cerebral cortex, and for rCBV(ΔR2*) in the cerebral cortex and cerebellum. For rCBF there was a significant association in the cerebellum but not in other brain regions. Q-values in the olfactory bulb, cerebral cortex, striatum, hippocampus, and cerebellum in 24-month old mice were significantly associated with genotype. In those regions Q-values were reduced between 11 and 26% in arcAβ mice compared to age-matched NTLs. Vessel staining with CD31 immunohistochemistry confirmed a reduction of microvessel density in the old arcAβ mice

  20. Molybdenum-rhenium alloy based high-Q superconducting microwave resonators

    SciTech Connect

    Singh, Vibhor Schneider, Ben H.; Bosman, Sal J.; Merkx, Evert P. J.; Steele, Gary A.

    2014-12-01

    Superconducting microwave resonators (SMRs) with high quality factors have become an important technology in a wide range of applications. Molybdenum-Rhenium (MoRe) is a disordered superconducting alloy with a noble surface chemistry and a relatively high transition temperature. These properties make it attractive for SMR applications, but characterization of MoRe SMR has not yet been reported. Here, we present the fabrication and characterization of SMR fabricated with a MoRe 60–40 alloy. At low drive powers, we observe internal quality-factors as high as 700 000. Temperature and power dependence of the internal quality-factors suggest the presence of the two level systems from the dielectric substrate dominating the internal loss at low temperatures. We further test the compatibility of these resonators with high temperature processes, such as for carbon nanotube chemical vapor deposition growth, and their performance in the magnetic field, an important characterization for hybrid systems.

  1. Dispersion engineering of thick high-Q silicon nitride ring-resonators via atomic layer deposition.

    PubMed

    Riemensberger, Johann; Hartinger, Klaus; Herr, Tobias; Brasch, Victor; Holzwarth, Ronald; Kippenberg, Tobias J

    2012-12-03

    We demonstrate dispersion engineering of integrated silicon nitride based ring resonators through conformal coating with hafnium dioxide deposited on top of the structures via atomic layer deposition. Both, magnitude and bandwidth of anomalous dispersion can be significantly increased. The results are confirmed by high resolution frequency-comb-assisted-diode-laser spectroscopy and are in very good agreement with the simulated modification of the mode spectrum.

  2. Tapered Glass-Fiber Microspike: High-Q Flexural Wave Resonator and Optically Driven Knudsen Pump

    NASA Astrophysics Data System (ADS)

    Pennetta, Riccardo; Xie, Shangran; Russell, Philip St. J.

    2016-12-01

    Appropriately designed optomechanical devices are ideal for making ultra-sensitive measurements. Here we report a fused-silica microspike that supports a flexural resonance with a quality factor greater than 100 000 at room temperature in vacuum. Fashioned by tapering single-mode fiber (SMF), it is designed so that the core-guided optical mode in the SMF evolves adiabatically into the fundamental mode of the air-glass waveguide at the tip. The very narrow mechanical linewidth (20 mHz) makes it possible to measure extremely small changes in resonant frequency. In a vacuum chamber at low pressure, the weak optical absorption of the glass is sufficient to create a temperature gradient along the microspike, which causes it to act as a microscopic Knudsen pump, driving a flow of gas molecules towards the tip where the temperature is highest. The result is a circulating molecular flow within the chamber. Momentum exchange between the vibrating microspike and the flowing molecules causes an additional restoring force that can be measured as a tiny shift in the resonant frequency. The effect is strongest when the mean free path of the gas molecules is comparable with the dimensions of the vacuum chamber. The system offers a novel means of monitoring the behavior of weakly absorbing optomechanical sensors operating in vacuum.

  3. High speed on-chip current measurement using a low-Q tunable LC resonator

    NASA Astrophysics Data System (ADS)

    Campbell, Brooks; Chen, Z.; Chiaro, B.; Dunsworth, A.; Neill, C.; O'Malley, P. J. J.; Quintana, C.; Vainsencher, A.; Wenner, J.; Barends, R.; Chen, Y.; Fowler, A.; Jeffrey, E.; Kelly, J.; Lucero, E.; Megrant, A.; Mutus, J.; Neeley, M.; Roushan, P.; Sank, D.; White, T. C.; Martinis, John M.

    Superconducting quantum computing technology requires precise high frequency analog waveforms to perform single and multi-qubit gates. Due to signal path irregularities, gates are tuned-up by perturbing the drive signal until qubit state populations indicate the desired gate function. A more direct approach is to measure the effect of circuit imperfections by sampling control waveforms directly, as seen by the qubits. We proceed by measuring the resonant frequency shift of a capacitively shunted SQUID and converting the control waveform to DC flux applied to the SQUID. By measuring the reflected phase of a CW tone applied to this resonant circuit while applying the resonance-shifting flux pulse, we are able to reconstruct the current waveform of the input pulse at the SQUID loop. This device's geometry is the same as the z-control lines used in qubit experiments to control the qubit frequency. I will present this method of on-chip waveform sampling for superconducting circuits in addition to proof of concept data. This technique opens the door for improved gate bring up and a deeper understanding of qubit control as well as the circuit parasitics that deform these waveforms.

  4. Q^2 Dependence of the S_{11}(1535) Photocoupling and Evidence for a P-wave resonance in eta electroproduction

    SciTech Connect

    Haluk Denizli; James Mueller; Steven Dytman; M.L. Leber; R.D. Levine; J. Miles; Kui Kim; Gary Adams; Moscov Amaryan; Pawel Ambrozewicz; Marco Anghinolfi; Burin Asavapibhop; G. Asryan; Harutyun Avakian; Hovhannes Baghdasaryan; Nathan Baillie; Jacques Ball; Nathan Baltzell; Steve Barrow; V. Batourine; Marco Battaglieri; Kevin Beard; Ivan Bedlinski; Ivan Bedlinskiy; Mehmet Bektasoglu; Matthew Bellis; Nawal Benmouna; Nicola Bianchi; Angela Biselli; Billy Bonner; Sylvain Bouchigny; Sergey Boyarinov; Robert Bradford; Derek Branford; William Briscoe; William Brooks; Stephen Bueltmann; Volker Burkert; Cornel Butuceanu; John Calarco; Sharon Careccia; Daniel Carman; Catalina Cetina; Shifeng Chen; Philip Cole; Alan Coleman; Patrick Collins; Philip Coltharp; Dieter Cords; Pietro Corvisiero; Donald Crabb; Volker Crede; John Cummings; Natalya Dashyan; Raffaella De Vita; Enzo De Sanctis; Pavel Degtiarenko; Lawrence Dennis; Alexandre Deur; Kalvir Dhuga; Richard Dickson; Chaden Djalali; Gail Dodge; Joseph Donnelly; David Doughty; P. Dragovitsch; Michael Dugger; Oleksandr Dzyubak; Hovanes Egiyan; Kim Egiyan; Lamiaa Elfassi; Latifa Elouadrhiri; A. Empl; Paul Eugenio; Laurent Farhi; Renee Fatemi; Gleb Fedotov; Gerald Feldman; Robert Feuerbach; Tony Forest; Valera Frolov; Herbert Funsten; Sally Gaff; Michel Garcon; Gagik Gavalian; Gerard Gilfoyle; Kevin Giovanetti; Pascal Girard; Francois-Xavier Girod; John Goetz; Atilla Gonenc; Ralf Gothe; Keith Griffioen; Michel Guidal; Matthieu Guillo; Nevzat Guler; Lei Guo; Vardan Gyurjyan; Kawtar Hafidi; Hayk Hakobyan; Rafael Hakobyan; John Hardie; David Heddle; F. Hersman; Kenneth Hicks; Ishaq Hleiqawi; Maurik Holtrop; Jingliang Hu; Charles Hyde; Charles Hyde-Wright; Yordanka Ilieva; David Ireland; Boris Ishkhanov; Eugeny Isupov; Mark Ito; David Jenkins; Hyon-Suk Jo; Kyungseon Joo; Henry Juengst; Narbe Kalantarians; J.H. Kelley; James Kellie; Mahbubul Khandaker; K. Kim; Wooyoung Kim; Andreas Klein; Franz Klein; Mike Klusman; Mikhail Kossov; Laird Kramer; V. Kubarovsky; Joachim Kuhn; Sebastian Kuhn; Sergey Kuleshov; Jeff Lachniet; Jean Laget; Jorn Langheinrich; David Lawrence; Kenneth Livingston; Haiyun Lu; K. Lukashin; Marion MacCormick; Joseph Manak; Nikolai Markov; Simeon McAleer; Bryan McKinnon; John McNabb; Bernhard Mecking; Mac Mestayer; Curtis Meyer; Tsutomu Mibe; Konstantin Mikhaylov; Ralph Minehart; Marco Mirazita; Rory Miskimen; Viktor Mokeev; Kei Moriya; Steven Morrow; M. Moteabbed; Valeria Muccifora; Gordon Mutchler; Pawel Nadel-Turonski; James Napolitano; Rakhsha Nasseripour; Steve Nelson; Silvia Niccolai; Gabriel Niculescu; Maria-Ioana Niculescu; Bogdan Niczyporuk; Megh Niroula; Rustam Niyazov; Mina Nozar; Grant O'Rielly; Mikhail Osipenko; Alexander Ostrovidov; Kijun Park; Evgueni Pasyuk; Craig Paterson; Gerald Peterson; Sasha Philips; Joshua Pierce; Nikolay Pivnyuk; Dinko Pocanic; Oleg Pogorelko; Ermanno Polli; S. Pozdniakov; Barry Preedom; John Price; Yelena Prok; Dan Protopopescu; Liming Qin; Brian Raue; Gregory Riccardi; Giovanni Ricco; Marco Ripani; Barry Ritchie; Federico Ronchetti; Guenther Rosner; Patrizia Rossi; David Rowntree; Philip Rubin; Franck Sabatie; Konstantin Sabourov; Julian Salamanca; Carlos Salgado; Joseph Santoro; Vladimir Sapunenko; Reinhard Schumacher; Vladimir Serov; Aziz Shafi; Youri Sharabian; Jeremiah Shaw; Nikolay Shvedunov; Sebastio Simionatto; Alexander Skabelin; Elton Smith; Lee Smith; Daniel Sober; Daria Sokhan; M. Spraker; Aleksey Stavinskiy; Samuel Stepanyan; Stepan Stepanyan; Burnham Stokes; Paul Stoler; I.I. Strakovsky; Steffen Strauch; Mauro Taiuti; Simon Taylor; David Tedeschi; Ulrike Thoma; R. Thompson; Avtandil Tkabladze; Svyatoslav Tkachenko; Clarisse Tur; Maurizio Ungaro; Michael Vineyard; Alexander Vlassov; Kebin Wang; Daniel Watts; Lawrence Weinstein; Henry Weller; Dennis Weygand; M. Williams; Elliott Wolin; Michael Wood; Amrit Yegneswaran; Junho Yun; Lorenzo Zana; Jixie Zhang; Bo Zhao; Zhiwen Zhao

    2007-07-01

    New cross sections for the reaction $ep \\to e'\\eta p$ are reported for total center of mass energy $W$=1.5--2.3 GeV and invariant squared momentum transfer $Q^2$=0.13--3.3 GeV$^2$. This large kinematic range allows extraction of new information about response functions, photocouplings, and $\\eta N$ coupling strengths of baryon resonances. A sharp structure is seen at $W\\sim$ 1.7 GeV. The shape of the differential cross section is indicative of the presence of a $P$-wave resonance that persists to high $Q^2$. Improved values are derived for the photon coupling amplitude for the $S_{11}$(1535) resonance. The new data greatly expands the $Q^2$ range covered and an interpretation of all data with a consistent parameterization is provided.

  5. Q2 dependence of the S11(1535) photocoupling and evidence for a P-wave resonance in η electroproduction

    NASA Astrophysics Data System (ADS)

    Denizli, H.; Mueller, J.; Dytman, S.; Leber, M. L.; Levine, R. D.; Miles, J.; Kim, K. Y.; Adams, G.; Amaryan, M. J.; Ambrozewicz, P.; Anghinolfi, M.; Asavapibhop, B.; Asryan, G.; Avakian, H.; Bagdasaryan, H.; Baillie, N.; Ball, J. P.; Baltzell, N. A.; Barrow, S.; Batourine, V.; Battaglieri, M.; Beard, K.; Bedlinskiy, I.; Bektasoglu, M.; Bellis, M.; Benmouna, N.; Bianchi, N.; Biselli, A. S.; Bonner, B. E.; Bouchigny, S.; Boiarinov, S.; Bradford, R.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Butuceanu, C.; Calarco, J. R.; Careccia, S. L.; Carman, D. S.; Cetina, C.; Chen, S.; Cole, P. L.; Coleman, A.; Collins, P.; Coltharp, P.; Cords, D.; Corvisiero, P.; Crabb, D.; Crede, V.; Cummings, J. P.; Dashyan, N.; Vita, R. De; Sanctis, E. De; Degtyarenko, P. V.; Dennis, L.; Deur, A.; Dhuga, K. S.; Dickson, R.; Djalali, C.; Dodge, G. E.; Donnelly, J.; Doughty, D.; Dragovitsch, P.; Dugger, M.; Dzyubak, O. P.; Egiyan, H.; Egiyan, K. S.; Fassi, L. El; Elouadrhiri, L.; Empl, A.; Eugenio, P.; Farhi, L.; Fatemi, R.; Fedotov, G.; Feldman, G.; Feuerbach, R. J.; Forest, T. A.; Frolov, V.; Funsten, H.; Gaff, S. J.; Garçon, M.; Gavalian, G.; Gilfoyle, G. P.; Giovanetti, K. L.; Girard, P.; Girod, F. X.; Goetz, J. T.; Gonenc, A.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guillo, M.; Guler, N.; Guo, L.; Gyurjyan, V.; Hafidi, K.; Hakobyan, H.; Hakobyan, R. S.; Hardie, J.; Heddle, D.; Hersman, F. W.; Hicks, K.; Hleiqawi, I.; Holtrop, M.; Hu, J.; Hyde-Wright, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Ito, M. M.; Jenkins, D.; Jo, H. S.; Joo, K.; Juengst, H. G.; Kalantarians, N.; Kelley, J. H.; Kellie, J. D.; Khandaker, M.; Kim, K.; Kim, W.; Klein, A.; Klein, F. J.; Klusman, M.; Kossov, M.; Kramer, L. H.; Kubarovsky, V.; Kuhn, J.; Kuhn, S. E.; Kuleshov, S. V.; Lachniet, J.; Laget, J. M.; Langheinrich, J.; Lawrence, D.; Livingston, K.; Lu, H. Y.; Lukashin, K.; MacCormick, M.; Manak, J. J.; Markov, N.; McAleer, S.; McKinnon, B.; McNabb, J. W. C.; Mecking, B. A.; Mestayer, M. D.; Meyer, C. A.; Mibe, T.; Mikhailov, K.; Minehart, R.; Mirazita, M.; Miskimen, R.; Mokeev, V.; Moriya, K.; Morrow, S. A.; Moteabbed, M.; Muccifora, V.; Mutchler, G. S.; Nadel-Turonski, P.; Napolitano, J.; Nasseripour, R.; Nelson, S. O.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niroula, M. R.; Niyazov, R. A.; Nozar, M.; O'Rielly, G. V.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Paterson, C.; Peterson, G.; Philips, S. A.; Pierce, J.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Polli, E.; Pozdniakov, S.; Preedom, B. M.; Price, J. W.; Prok, Y.; Protopopescu, D.; Qin, L. M.; Raue, B. A.; Riccardi, G.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Ronchetti, F.; Rosner, G.; Rossi, P.; Rowntree, D.; Rubin, P. D.; Sabatié, F.; Sabourov, K.; Salamanca, J.; Salgado, C.; Santoro, J. P.; Sapunenko, V.; Schumacher, R. A.; Serov, V. S.; Shafi, A.; Sharabian, Y. G.; Shaw, J.; Shvedunov, N. V.; Simionatto, S.; Skabelin, A. V.; Smith, E. S.; Smith, L. C.; Sober, D. I.; Sokhan, D.; Spraker, M.; Stavinsky, A.; Stepanyan, S. S.; Stepanyan, S.; Stokes, B. E.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Taylor, S.; Tedeschi, D. J.; Thoma, U.; Thompson, R.; Tkabladze, A.; Tkachenko, S.; Tur, C.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Wang, K.; Watts, D. P.; Weinstein, L. B.; Weller, H.; Weygand, D. P.; Williams, M.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Yun, J.; Zana, L.; Zhang, J.; Zhao, B.; Zhao, Z. W.

    2007-07-01

    New cross sections for the reaction ep→e'ηp are reported for total center-of-mass energy W=1.5-2.3 GeV and invariant squared momentum transfer Q2=0.13-3.3 GeV2. This large kinematic range allows the extraction of new information about response functions, photocouplings, and ηN coupling strengths of baryon resonances. A sharp structure is seen at W~1.7 GeV. The shape of the differential cross section is indicative of the presence of a P-wave resonance that persists to high Q2. Improved values are derived for the photocoupling amplitude for the S11(1535) resonance. The new data greatly expand the Q2 range covered, and an interpretation of all data with a consistent parametrization is provided.

  6. Single-crystal sapphire resonator at millikelvin temperatures: Observation of thermal bistability in high- Q factor whispering gallery modes

    NASA Astrophysics Data System (ADS)

    Creedon, Daniel L.; Tobar, Michael E.; Le Floch, Jean-Michel; Reshitnyk, Yarema; Duty, Timothy

    2010-09-01

    Resonance modes in single crystal sapphire (α-Al2O3) exhibit extremely high electrical and mechanical Q factors ( ≈109 at 4 K), which are important characteristics for electromechanical experiments at the quantum limit. We report the cool down of a bulk sapphire sample below superfluid liquid-helium temperature (1.6 K) to as low as 25 mK. The electromagnetic properties were characterized at microwave frequencies, and we report the observation of electromagnetically induced thermal bistability in whispering gallery modes due to the material T3 dependence on thermal conductivity and the ultralow dielectric loss tangent. We identify “magic temperatures” between 80 and 2100 mK, the lowest ever measured, at which the onset of bistability is suppressed and the frequency-temperature dependence is annulled. These phenomena at low temperatures make sapphire suitable for quantum metrology and ultrastable clock applications, including the possible realization of the quantum-limited sapphire clock.

  7. [Quantitative cartilage analysis with magnetic resonance tomography (qMRI)--a new era in arthrosis diagnosis?].

    PubMed

    Eckstein, F; Englmeier, K H; Reiser, M

    2002-06-01

    Magnetic resonance imaging (MRI) is a new and very powerful method for the diagnostics and monitoring of osteoarthritis. Its advantage is that all articular tissues can be visualized directly and are accessible for three-dimensional analysis. This article reviews qualitative, semi-quantitative, and quantitative studies on articular cartilage with MRI. In particular we discuss pulse sequences and three-dimensional postprocessing methods for quantitative analysis of cartilage volume and thickness, along with their accuracy and precision in healthy volunteers and patients with osteoarthritis. It addition, we present approaches for quantitative analyses of structural/biochemical parameters and for the deformational behavior of cartilage in vivo.

  8. First Measurement of the Beam Normal Single Spin Asymmetry in $Δ$ Resonance Production by $Q_{\\rm weak}$

    SciTech Connect

    Nuruzzaman, nfn

    2016-08-01

    The beam normal single spin asymmetry ($B_{\\rm n}$) is generated in the scattering of transversely polarized electrons from unpolarized nuclei. The asymmetry arises from the interference of the imaginary part of the two-photon exchange with the one-photon exchange amplitude. The $Q_{\\rm weak}$ experiment has made the first measurement of $B_{\\rm n}$ in the production of the $\\Delta$(1232) resonance, using the $Q_{\\rm weak}$ apparatus in Hall-C at the Thomas Jefferson National Accelerator Facility. The final transverse asymmetry, corrected for backgrounds and beam polarization, is $B_{\\rm n}$ = 43 $\\pm$ 16 ppm at beam energy 1.16 GeV at an average scattering angle of about 8.3 degrees, and invariant mass of 1.2 GeV. The measured preliminary $B_{\\rm n}$ agrees with a preliminary theoretical calculation. $B_{\\rm n}$ for the $\\Delta$ is the only known observable that is sensitive to the $\\Delta$ elastic form-factors ($\\gamma$*$\\Delta\\Delta$) in addition to the generally studied transition form-factors ($\\gamma$*N$\\Delta$), but extracting this information will require significant theoretical input.

  9. Diffusion Maps Clustering for Magnetic Resonance Q-Ball Imaging Segmentation

    PubMed Central

    Wassermann, Demian; Descoteaux, Maxime; Deriche, Rachid

    2008-01-01

    White matter fiber clustering aims to get insight about anatomical structures in order to generate atlases, perform clear visualizations, and compute statistics across subjects, all important and current neuroimaging problems. In this work, we present a diffusion maps clustering method applied to diffusion MRI in order to segment complex white matter fiber bundles. It is well known that diffusion tensor imaging (DTI) is restricted in complex fiber regions with crossings and this is why recent high-angular resolution diffusion imaging (HARDI) such as Q-Ball imaging (QBI) has been introduced to overcome these limitations. QBI reconstructs the diffusion orientation distribution function (ODF), a spherical function that has its maxima agreeing with the underlying fiber populations. In this paper, we use a spherical harmonic ODF representation as input to the diffusion maps clustering method. We first show the advantage of using diffusion maps clustering over classical methods such as N-Cuts and Laplacian eigenmaps. In particular, our ODF diffusion maps requires a smaller number of hypothesis from the input data, reduces the number of artifacts in the segmentation, and automatically exhibits the number of clusters segmenting the Q-Ball image by using an adaptive scale-space parameter. We also show that our ODF diffusion maps clustering can reproduce published results using the diffusion tensor (DT) clustering with N-Cuts on simple synthetic images without crossings. On more complex data with crossings, we show that our ODF-based method succeeds to separate fiber bundles and crossing regions whereas the DT-based methods generate artifacts and exhibit wrong number of clusters. Finally, we show results on a real-brain dataset where we segment well-known fiber bundles. PMID:18317506

  10. Ultra-high-Q thin-silicon nitride strip-loaded ring resonators.

    PubMed

    Stefan, L; Bernard, M; Guider, R; Pucker, G; Pavesi, L; Ghulinyan, M

    2015-07-15

    We report on the design, fabrication, and characterization of thin Si3N4 ultra-high-quality (UHQ) factor ring resonators monolithically integrated on a silicon chip. The devices are based on a strip-loaded configuration and operate at both near-infrared (NIR) and third-telecom wavelengths. This approach allows us to use a guiding Si3N4 core that is one order of magnitude thinner than what has been reported in the past for obtaining similar device performances. Our strip-loaded devices benefit from the absence of physically etched lateral boundaries to show minute light scattering and, therefore, reducing significantly scattering-related losses. Consequently, UHQs of 3.7×10(6) in the NIR and high-quality factors of up to 9×10(5) in the C-band were measured for the guiding material thickness of 80 nm and 115 nm, respectively. These first results are subject to further improvements that may allow employing strip-loaded resonators in nonlinear frequency conversion or quantum computing schemes within the desired spectral range provided by the material transparency.

  11. High-Q Wafer Level Package Based on Modified Tri-Layer Anodic Bonding and High Performance Getter and Its Evaluation for Micro Resonant Pressure Sensor

    PubMed Central

    Wang, Liying; Du, Xiaohui; Wang, Lingyun; Xu, Zhanhao; Zhang, Chenying; Gu, Dandan

    2017-01-01

    In order to achieve and maintain a high quality factor (high-Q) for the micro resonant pressure sensor, this paper presents a new wafer level package by adopting cross-layer anodic bonding technique of the glass/silicon/silica (GSS) stackable structure and integrated Ti getter. A double-layer structure similar to a silicon-on-insulator (SOI) wafer is formed after the resonant layer and the pressure-sensitive layer are bonded by silicon direct bonding (SDB). In order to form good bonding quality between the pressure-sensitive layer and the glass cap layer, the cross-layer anodic bonding technique is proposed for vacuum package by sputtering Aluminum (Al) on the combination wafer of the pressure-sensitive layer and the resonant layer to achieve electrical interconnection. The model and the bonding effect of this technique are discussed. In addition, in order to enhance the performance of titanium (Ti) getter, the prepared and activation parameters of Ti getter under different sputtering conditions are optimized and discussed. Based on the optimized results, the Ti getter (thickness of 300 nm to 500 nm) is also deposited on the inside of the glass groove by magnetron sputtering to maintain stable quality factor (Q). The Q test of the built testing system shows that the number of resonators with a Q value of more than 10,000 accounts for more than 73% of the total. With an interval of 1.5 years, the Q value of the samples remains almost constant. It proves the proposed cross-layer anodic bonding and getter technique can realize high-Q resonant structure for long-term stable operation. PMID:28300752

  12. High-Q Wafer Level Package Based on Modified Tri-Layer Anodic Bonding and High Performance Getter and Its Evaluation for Micro Resonant Pressure Sensor.

    PubMed

    Wang, Liying; Du, Xiaohui; Wang, Lingyun; Xu, Zhanhao; Zhang, Chenying; Gu, Dandan

    2017-03-16

    In order to achieve and maintain a high quality factor (high-Q) for the micro resonant pressure sensor, this paper presents a new wafer level package by adopting cross-layer anodic bonding technique of the glass/silicon/silica (GSS) stackable structure and integrated Ti getter. A double-layer structure similar to a silicon-on-insulator (SOI) wafer is formed after the resonant layer and the pressure-sensitive layer are bonded by silicon direct bonding (SDB). In order to form good bonding quality between the pressure-sensitive layer and the glass cap layer, the cross-layer anodic bonding technique is proposed for vacuum package by sputtering Aluminum (Al) on the combination wafer of the pressure-sensitive layer and the resonant layer to achieve electrical interconnection. The model and the bonding effect of this technique are discussed. In addition, in order to enhance the performance of titanium (Ti) getter, the prepared and activation parameters of Ti getter under different sputtering conditions are optimized and discussed. Based on the optimized results, the Ti getter (thickness of 300 nm to 500 nm) is also deposited on the inside of the glass groove by magnetron sputtering to maintain stable quality factor (Q). The Q test of the built testing system shows that the number of resonators with a Q value of more than 10,000 accounts for more than 73% of the total. With an interval of 1.5 years, the Q value of the samples remains almost constant. It proves the proposed cross-layer anodic bonding and getter technique can realize high-Q resonant structure for long-term stable operation.

  13. Single electron tunnelling through high-Q single-wall carbon nanotube NEMS resonators

    NASA Astrophysics Data System (ADS)

    Hüttel, A. K.; Meerwaldt, H. B.; Steele, G. A.; Poot, M.; Witkamp, B.; Kouwenhoven, L. P.; van der Zant, H. S. J.

    2010-12-01

    By first lithographically fabricating contact electrodes and then as last step growing carbon nanotubes with chemical vapour deposition across the ready-made chip, many potential contamination mechanisms for nanotube devices can be avoided. Combining this with pre-defined trenches on the chip, such that the nanotubes are freely suspended above the substrate, enables the formation of highly regular electronic systems. We show that, in addition, such suspended ultra-clean nanotubes provide excellent high-frequency and low-dissipation mechanical resonators. The motion detection mechanism of our experiment is discussed, and we measure the effect of Coulomb blockade and the back-action of single electron tunneling on the mechanical motion. In addition data on the mechanical higher modes is presented.

  14. Tailoring Surface Impurity Content to Maximize Q-factors of Superconducting Resonators

    SciTech Connect

    Martinello, Martina; Checchin, Mattia; Grassellino, Anna; Melnychuk, Oleksandr; Posen, Sam; Romanenko, Alexander; Sergatskov, Dmitri; Zasadzinski, John

    2016-06-01

    Quality factor of superconducting radio-frequency (SRF) cavities is degraded whenever magnetic flux is trapped in the cavity walls during the cooldown. In this contribution we study how the trapped flux sensitivity, defined as the trapped flux surface resistance normalized for the amount of flux trapped, depends on the mean free path. A variety of 1.3 GHz cavities with different surface treatments (EP, 120 C bake and different N-doping) were studied in order to cover the largest range of mean free path nowadays achievable, from few to thousands of nanometers. A bell shaped trend appears for the range of mean free path studied. Over doped cavities falls at the maximum of this curve defining the largest values of sensitivity. In addition, we have also studied the trend of the BCS surface resistance contribution as a function of mean free path, revealing that N-doped cavities follow close to the theoretical minimum of the BCS surface resistance as a function of the mean free path. Adding these results together we unveil that optimal N-doping treatment allows to maximize Q-factor at 2 K and 16 MV/m until the magnetic field fully trapped during the cavity cooldown stays below 10 mG.

  15. A tunable general purpose Q-band resonator for CW and pulse EPR/ENDOR experiments with large sample access and optical excitation

    NASA Astrophysics Data System (ADS)

    Reijerse, Edward; Lendzian, Friedhelm; Isaacson, Roger; Lubitz, Wolfgang

    2012-01-01

    We describe a frequency tunable Q-band cavity (34 GHz) designed for CW and pulse Electron Paramagnetic Resonance (EPR) as well as Electron Nuclear Double Resonance (ENDOR) and Electron Electron Double Resonance (ELDOR) experiments. The TE 011 cylindrical resonator is machined either from brass or from graphite (which is subsequently gold plated), to improve the penetration of the 100 kHz field modulation signal. The (self-supporting) ENDOR coil consists of four 0.8 mm silver posts at 2.67 mm distance from the cavity center axis, penetrating through the plunger heads. It is very robust and immune to mechanical vibrations. The coil is electrically shielded to enable CW ENDOR experiments with high RF power (500 W). The top plunger of the cavity is movable and allows a frequency tuning of ±2 GHz. In our setup the standard operation frequency is 34.0 GHz. The microwaves are coupled into the resonator through an iris in the cylinder wall and matching is accomplished by a sliding short in the coupling waveguide. Optical excitation of the sample is enabled through slits in the cavity wall (transmission ˜60%). The resonator accepts 3 mm o.d. sample tubes. This leads to a favorable sensitivity especially for pulse EPR experiments of low concentration biological samples. The probehead dimensions are compatible with that of Bruker flexline Q-band resonators and it fits perfectly into an Oxford CF935 Helium flow cryostat (4-300 K). It is demonstrated that, due to the relatively large active sample volume (20-30 μl), the described resonator has superior concentration sensitivity as compared to commercial pulse Q-band resonators. The quality factor ( Q L) of the resonator can be varied between 2600 (critical coupling) and 1300 (over-coupling). The shortest achieved π/2-pulse durations are 20 ns using a 3 W microwave amplifier. ENDOR (RF) π-pulses of 20 μs ( 1H @ 51 MHz) were obtained for a 300 W amplifier and 7 μs using a 2500 W amplifier. Selected applications of the

  16. A tunable general purpose Q-band resonator for CW and pulse EPR/ENDOR experiments with large sample access and optical excitation.

    PubMed

    Reijerse, Edward; Lendzian, Friedhelm; Isaacson, Roger; Lubitz, Wolfgang

    2012-01-01

    We describe a frequency tunable Q-band cavity (34 GHz) designed for CW and pulse Electron Paramagnetic Resonance (EPR) as well as Electron Nuclear Double Resonance (ENDOR) and Electron Electron Double Resonance (ELDOR) experiments. The TE(011) cylindrical resonator is machined either from brass or from graphite (which is subsequently gold plated), to improve the penetration of the 100 kHz field modulation signal. The (self-supporting) ENDOR coil consists of four 0.8mm silver posts at 2.67 mm distance from the cavity center axis, penetrating through the plunger heads. It is very robust and immune to mechanical vibrations. The coil is electrically shielded to enable CW ENDOR experiments with high RF power (500 W). The top plunger of the cavity is movable and allows a frequency tuning of ±2 GHz. In our setup the standard operation frequency is 34.0 GHz. The microwaves are coupled into the resonator through an iris in the cylinder wall and matching is accomplished by a sliding short in the coupling waveguide. Optical excitation of the sample is enabled through slits in the cavity wall (transmission ∼60%). The resonator accepts 3mm o.d. sample tubes. This leads to a favorable sensitivity especially for pulse EPR experiments of low concentration biological samples. The probehead dimensions are compatible with that of Bruker flexline Q-band resonators and it fits perfectly into an Oxford CF935 Helium flow cryostat (4-300 K). It is demonstrated that, due to the relatively large active sample volume (20-30 μl), the described resonator has superior concentration sensitivity as compared to commercial pulse Q-band resonators. The quality factor (Q(L)) of the resonator can be varied between 2600 (critical coupling) and 1300 (over-coupling). The shortest achieved π/2-pulse durations are 20 ns using a 3 W microwave amplifier. ENDOR (RF) π-pulses of 20 μs ((1)H @ 51 MHz) were obtained for a 300 W amplifier and 7 μs using a 2500 W amplifier. Selected applications of the

  17. Electroexcitation of the Roper resonance for 1.7<Q2<4.5GeV2 in e→p→enπ+

    NASA Astrophysics Data System (ADS)

    Aznauryan, I. G.; Burkert, V. D.; Kim, W.; Park, K.; Adams, G.; Amaryan, M. J.; Ambrozewicz, P.; Anghinolfi, M.; Asryan, G.; Avakian, H.; Bagdasaryan, H.; Baillie, N.; Ball, J. P.; Baltzell, N. A.; Barrow, S.; Batourine, V.; Battaglieri, M.; Bedlinskiy, I.; Bektasoglu, M.; Bellis, M.; Benmouna, N.; Berman, B. L.; Biselli, A. S.; Blaszczyk, L.; Bonner, B. E.; Bookwalter, C.; Bouchigny, S.; Boiarinov, S.; Bradford, R.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Bültmann, S.; Butuceanu, C.; Calarco, J. R.; Careccia, S. L.; Carman, D. S.; Casey, L.; Cazes, A.; Chen, S.; Cheng, L.; Cole, P. L.; Collins, P.; Coltharp, P.; Cords, D.; Corvisiero, P.; Crabb, D.; Crede, V.; Cummings, J. P.; Dale, D.; Dashyan, N.; de Masi, R.; de Vita, R.; de Sanctis, E.; Degtyarenko, P. V.; Denizli, H.; Dennis, L.; Deur, A.; Dhamija, S.; Dharmawardane, K. V.; Dhuga, K. S.; Dickson, R.; Djalali, C.; Dodge, G. E.; Donnelly, J.; Doughty, D.; Dugger, M.; Dytman, S.; Dzyubak, O. P.; Egiyan, H.; Egiyan, K. S.; Fassi, L. El; Elouadrhiri, L.; Eugenio, P.; Fatemi, R.; Fedotov, G.; Feldman, G.; Feuerbach, R. J.; Forest, T. A.; Fradi, A.; Funsten, H.; Gabrielyan, M. Y.; Garçon, M.; Gavalian, G.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gonenc, A.; Gordon, C. I. O.; Gothe, R. W.; Graham, L.; Griffioen, K. A.; Guidal, M.; Guillo, M.; Guler, N.; Guo, L.; Gyurjyan, V.; Hadjidakis, C.; Hafidi, K.; Hafnaoui, K.; Hakobyan, H.; Hakobyan, R. S.; Hanretty, C.; Hardie, J.; Hassall, N.; Heddle, D.; Hersman, F. W.; Hicks, K.; Hleiqawi, I.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Ito, M. M.; Jenkins, D.; Jo, H. S.; Johnstone, J. R.; Joo, K.; Juengst, H. G.; Kalantarians, N.; Keller, D.; Kellie, J. D.; Khandaker, M.; Kim, K. Y.; Klein, A.; Klein, F. J.; Klimenko, A. V.; Kossov, M.; Krahn, Z.; Kramer, L. H.; Kubarovsky, V.; Kuhn, J.; Kuhn, S. E.; Kuleshov, S. V.; Kuznetsov, V.; Lachniet, J.; Laget, J. M.; Langheinrich, J.; Lawrence, D.; Lee, T.; Li, Ji; Lima, A. C. S.; Livingston, K.; Lu, H. Y.; Lukashin, K.; MacCormick, M.; Markov, N.; Mattione, P.; McAleer, S.; McKinnon, B.; McNabb, J. W. C.; Mecking, B. A.; Mehrabyan, S.; Melone, J. J.; Mestayer, M. D.; Meyer, C. A.; Mibe, T.; Mikhailov, K.; Minehart, R.; Mirazita, M.; Miskimen, R.; Mokeev, V.; Morand, L.; Moreno, B.; Moriya, K.; Morrow, S. A.; Moteabbed, M.; Mueller, J.; Munevar, E.; Mutchler, G. S.; Nadel-Turonski, P.; Nasseripour, R.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niroula, M. R.; Niyazov, R. A.; Nozar, M.; O'Rielly, G. V.; Osipenko, M.; Ostrovidov, A. I.; Park, S.; Pasyuk, E.; Paterson, C.; Pereira, S. Anefalos; Philips, S. A.; Pierce, J.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Polli, E.; Popa, I.; Pozdniakov, S.; Preedom, B. M.; Price, J. W.; Prok, Y.; Protopopescu, D.; Qin, L. M.; Raue, B. A.; Riccardi, G.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Rosner, G.; Rossi, P.; Rowntree, D.; Rubin, P. D.; Sabatié, F.; Saini, M. S.; Salamanca, J.; Salgado, C.; Santoro, J. P.; Sapunenko, V.; Schott, D.; Schumacher, R. A.; Serov, V. S.; Sharabian, Y. G.; Sharov, D.; Shaw, J.; Shvedunov, N. V.; Skabelin, A. V.; Smith, E. S.; Smith, L. C.; Sober, D. I.; Sokhan, D.; Stavinsky, A.; Stepanyan, S. S.; Stepanyan, S.; Stokes, B. E.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Suleiman, R.; Taiuti, M.; Takeuchi, T.; Tedeschi, D. J.; Tkabladze, A.; Tkachenko, S.; Todor, L.; Tur, C.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Watts, D. P.; Weinstein, L. B.; Weygand, D. P.; Williams, M.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Yun, J.; Yurov, M.; Zana, L.; Zhang, B.; Zhang, J.; Zhao, B.; Zhao, Z. W.

    2008-10-01

    The helicity amplitudes of the electroexcitation of the Roper resonance are extracted for 1.7<Q2<4.5GeV2 from recent high precision JLab-CLAS cross section and longitudinally polarized beam asymmetry data for π+ electroproduction on protons at W=1.15-1.69 GeV. The analysis is made using two approaches, dispersion relations and a unitary isobar model, which give consistent Q2 behavior of the helicity amplitudes for the γ*p→N(1440)P11 transition. It is found that the transverse helicity amplitude A1/2, which is large and negative at Q2=0, becomes large and positive at Q2≃2GeV2, and then drops slowly with Q2. The longitudinal helicity amplitude S1/2, which was previously found from CLAS e→p→epπ0,enπ+ data to be large and positive at Q2=0.4,0.65GeV2, drops with Q2. Available model predictions for γ*p→N(1440)P11 allow us to conclude that these results provide strong evidence in favor of N(1440)P11 as a first radial excitation of the 3q ground state. The results of the present paper also confirm the conclusion of our previous analysis for Q2<1 GeV2 that the presentation of N(1440)P11 as a qG3 hybrid state is ruled out.

  18. Microlasers based on high-Q rare-earth-doped aluminum oxide resonators on silicon (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Bradley, Jonathan D. B.; Su, Zhan; Frankis, Henry C.; Magden, Emir Salih; Li, Nanxi; Byrd, Matthew; Purnawirman, Purnawirman; Shah Hosseini, Ehsan; Adam, Thomas N.; Leake, Gerald; Coolbaugh, Douglas; Watts, Michael R.

    2017-02-01

    One of the key challenges in the field of silicon photonics remains the development of compact integrated light sources. In one approach, rare-earth-doped glass microtoroid and microdisk lasers have been integrated on silicon and exhibit ultra-low thresholds. However, such resonator structures are isolated on the chip surface and require an external fiber to couple light to and from the cavity. Here, we review our recent work on monolithically integrated rare-earth-doped aluminum oxide microcavity lasers on silicon. The microlasers are enabled by a novel high-Q cavity design, which includes a co-integrated silicon nitride bus waveguide and a silicon dioxide trench filled with rare-earth-doped aluminum oxide. In passive (undoped) microresonators we measure internal quality factors as high as 3.8 × 105 at 0.98 µm and 5.7 × 105 at 1.5 µm. In ytterbium, erbium, and thulium-doped microcavities with diameters ranging from 80 to 200 µm we show lasing at 1.0, 1.5 and 1.9 µm, respectively. We observe sub-milliwatt lasing thresholds, approximately 10 times lower than previously demonstrated in monolithic rare-earth-doped lasers on silicon. The entire fabrication process, which includes post-processing deposition of the gain medium, is silicon-compatible and allows for integration with other silicon-based photonic devices. Applications of such rare earth microlasers in communications and sensing and recent design enhancements will be discussed.

  19. Continuous-wave and actively Q-switched resonantly dual-end-pumped Er : YAG ceramic laser emitting at 1.6 μm

    SciTech Connect

    Dai, T Y; Deng, Yu; Ju, Y-L; Yao, B Q; Duan, X M; Wang, Y Z

    2015-12-31

    We demonstrate a continuous-wave (cw) and actively Q-switched Er : YAG ceramic laser resonantly dual-end-pumped by a 1532 nm fibre-coupled laser diode. A maximum cw output power of 1.48 W at 1645.3 nm is obtained at an absorbed pump power of 12.72 W, corresponding to a slope efficiency of 19.2%. In the Q-switched regime the maximum pulse energy of 0.84 mJ is reached at a pulse repetition rate of 100 Hz, pulse duration of 48.03 ns and absorbed pump power of 10.51 W. (lasers)

  20. Continuous-wave and actively Q-switched resonantly dual-end-pumped Er : YAG ceramic laser emitting at 1.6 μm

    NASA Astrophysics Data System (ADS)

    Dai, T. Y.; Deng, Yu; Ju, Y.-L.; Yao, B. Q.; Duan, X. M.; Wang, Y. Z.

    2015-12-01

    We demonstrate a continuous-wave (cw) and actively Q-switched Er : YAG ceramic laser resonantly dual-end-pumped by a 1532 nm fibre-coupled laser diode. A maximum cw output power of 1.48 W at 1645.3 nm is obtained at an absorbed pump power of 12.72 W, corresponding to a slope efficiency of 19.2%. In the Q-switched regime the maximum pulse energy of 0.84 mJ is reached at a pulse repetition rate of 100 Hz, pulse duration of 48.03 ns and absorbed pump power of 10.51 W.

  1. Nucleon Resonance Electrocouplings from Light-Front Quark Models at {\\varvec{Q}}^2 up to 12 GeV^2

    NASA Astrophysics Data System (ADS)

    Obukhovsky, Igor T.; Faessler, Amand; Gutsche, Thomas; Lyubovitskij, Valery E.

    2016-11-01

    A relativistic light-front quark model is used to describe both the elastic nucleon and nucleon-Roper transition form factors in a large Q^2 range, up to 35 GeV^2 for the elastic and up to 12 GeV^2 for the resonance case. Relativistic three-quark configurations satisfying the Pauli exclusion principle on the light-front are used for the derivation of the current matrix elements. The Roper resonance is considered as a mixed state of a three-quark core configuration and a molecular N+σ hadron component. Based on this ansatz we obtain a realistic description of both processes, elastic and inelastic, in the sector of positive parity and show that existing experimental data are indicative of a composite structure of the Roper resonance. A useful generalization of this technique is suggested for description of negative parity nucleon resonances 1/2^-, 3/2^-, 5/2^-.

  2. Effects of Coenzyme Q10 on Skeletal Muscle Oxidative Metabolism in Statin Users Assessed Using 31P Magnetic Resonance Spectroscopy: a Randomized Controlled Study

    PubMed Central

    Buettner, Catherine; Greenman, Robert L.; Ngo, Long H.; Wu, Jim S.

    2016-01-01

    Objectives Statins partially block the production of coenzyme Q10 (CoQ10), an essential component for mitochondrial function. Reduced skeletal muscle mitochondrial oxidative capacity has been proposed to be a cause of statin myalgia and can be measured using 31phosphorus magnetic resonance spectroscopy (31P-MRS). The purpose of this study is to assess the effect of CoQ10 oral supplementation on mitochondrial function in statin users using 31P-MRS. Design/Setting In this randomized, double-blind, placebo-controlled pilot study, 21 adults aged 47–73 were randomized to statin+placebo (n=9) or statin+CoQ10 (n=12). Phosphocreatine (PCr) recovery kinetics of calf muscles were assessed at baseline (off statin and CoQ10) and 4 weeks after randomization to either statin+CoQ10 or statin+placebo. Results Baseline and post-treatment PCr recovery kinetics were assessed for 19 participants. After 4 weeks of statin+ CoQ10 or statin+placebo, the overall relative percentage change (100*(baseline−follow up)/baseline) in PCr recovery time was −15.1% compared with baseline among all participants, (p-value=0.258). Participants randomized to statin+placebo (n=9) had a relative percentage change in PCr recovery time of −18.9%, compared to −7.7% among participants (n=10) receiving statin+CoQ10 (p-value=0.448). Conclusions In this pilot study, there was no significant change in mitochondrial function in patients receiving 4 weeks of statin+CoQ10 oral therapy when compared to patients on statin+placebo. PMID:27610419

  3. Electroexcitation of the Roper resonance for 1.7 < Q**2 < 4.5 -GeV2 in vec-ep ---> en pi+

    SciTech Connect

    Aznauryan, Inna; Burkert, Volker; Kim, Wooyoung; Park, Kil; Adams, Gary; Amaryan, Moscov; Amaryan, Moskov; Ambrozewicz, Pawel; Anghinolfi, Marco; Asryan, Gegham; Avagyan, Harutyun; Bagdasaryan, H.; Baillie, Nathan; Ball, J.P.; Ball, Jacques; Baltzell, Nathan; Barrow, Steve; Batourine, V.; Battaglieri, Marco; Bedlinskiy, Ivan; Bektasoglu, Mehmet; Bellis, Matthew; Benmouna, Nawal; Berman, Barry; Biselli, Angela; Blaszczyk, Lukasz; Bonner, Billy; Bookwalter, Craig; Bouchigny, Sylvain; Boyarinov, Sergey; Bradford, Robert; Branford, Derek; Briscoe, Wilbert; Brooks, William; Bultmann, S.; Bueltmann, Stephen; Butuceanu, Cornel; Calarco, John; Careccia, Sharon; Carman, Daniel; Casey, Liam; Cazes, Antoine; Chen, Shifeng; Cheng, Lu; Cole, Philip; Collins, Patrick; Coltharp, Philip; Cords, Dieter; Corvisiero, Pietro; Crabb, Donald; Crede, Volker; Cummings, John; Dale, Daniel; Dashyan, Natalya; De Masi, Rita; De Vita, Raffaella; De Sanctis, Enzo; Degtiarenko, Pavel; Denizli, Haluk; Dennis, Lawrence; Deur, Alexandre; Dhamija, Seema; Dharmawardane, Kahanawita; Dhuga, Kalvir; Dickson, Richard; Djalali, Chaden; Dodge, Gail; Donnelly, J.; Doughty, David; Dugger, Michael; Dytman, Steven; Dzyubak, Oleksandr; Egiyan, Hovanes; Egiyan, Kim; Elfassi, Lamiaa; Elouadrhiri, Latifa; Eugenio, Paul; Fatemi, Renee; Fedotov, Gleb; Feldman, Gerald; Feuerbach, Robert; Forest, Tony; Fradi, Ahmed; Funsten, Herbert; Gabrielyan, Marianna; Garcon, Michel; Gavalian, Gagik; Gevorgyan, Nerses; Gilfoyle, Gerard; Giovanetti, Kevin; Girod, Francois-Xavier; Goetz, John; Gohn, Wesley; Golovach, Evgeny; Gonenc, Atilla; Gordon, Christopher; Gothe, Ralf; Graham, L.; Griffioen, Keith; Guidal, Michel; Guillo, Matthieu; Guler, Nevzat; Guo, Lei; Gyurjyan, Vardan; Hadjidakis, Cynthia; Hafidi, Kawtar; Hafnaoui, Khadija; Hakobyan, Hayk; Hakobyan, Rafael; Hanretty, Charles; Hardie, John; Hassall, Neil; Heddle, David; Hersman, F.; Hicks, Kenneth; Hleiqawi, Ishaq; Holtrop, Maurik; Hyde, Charles; Ilieva, Yordanka; Ireland, David; Ishkhanov, Boris; Isupov, Evgeny; Ito, Mark; Jenkins, David; Jo, Hyon-Suk; Johnstone, John; Joo, Kyungseon; Juengst, Henry; Kalantarians, Narbe; Keller, Dustin; Kellie, James; Khandaker, Mahbubul; Kim, Kui; Klein, Andreas; Klein, Andreas; Klimenko, Alexei; Kossov, Mikhail; Krahn, Zebulun; Kramer, Laird; Kubarovsky, Valery; Kuhn, Joachim; Kuhn, Sebastian; Kuleshov, Sergey; Kuznetsov, Viacheslav; Lachniet, Jeff; Laget, Jean; Langheinrich, Jorn; Lawrence, Dave; Lee, T.; Lima, Ana; Livingston, Kenneth; Lu, Haiyun; Lukashin, Konstantin; MacCormick, Marion; Markov, Nikolai; Mattione, Paul; McAleer, Simeon; McKinnon, Bryan; McNabb, John; Mecking, Bernhard; Mehrabyan, Surik; Melone, Joseph; Mestayer, Mac; Meyer, Curtis; Mibe, Tsutomu; Mikhaylov, Konstantin; Minehart, Ralph; Mirazita, Marco; Miskimen, Rory; Mokeev, Viktor; Morand, Ludyvine; Moreno, Brahim; Moriya, Kei; Morrow, Steven; Moteabbed, Maryam; Mueller, James; Munevar Espitia, Edwin; Mutchler, Gordon; Nadel-Turonski, Pawel; Nasseripour, Rakhsha; Niccolai, Silvia; Niculescu, Gabriel; Niculescu, Maria-Ioana; Niczyporuk, Bogdan; Niroula, Megh; Niyazov, Rustam; Nozar, Mina; O'Rielly, Grant; Osipenko, Mikhail; Ostrovidov, Alexander; Park, S.; Pasyuk, Evgueni; Paterson, Craig; Anefalos Pereira, S.; Philips, Sasha; Pierce, Jerome; Pivnyuk, Nikolay; Pocanic, Dinko; Pogorelko, Oleg; Polli, Ermanno; Popa, Iulian; Pozdnyakov, Sergey; Preedom, Barry; Price, John; Prok, Yelena; Protopopescu, Dan; Qin, Liming; Raue, Brian; Riccardi, Gregory; Ricco, Giovanni; Ripani, Marco; Ritchie, Barry; Rosner, Guenther; Rossi, Patrizia; Rowntree, David; Rubin, Philip; Sabatie, Franck; Saini, Mukesh; Salamanca, Julian; Salgado, Carlos; Santoro, Joseph; Sapunenko, Vladimir; Schott, Diane; Schumacher, Reinhard; Serov, Vladimir; Sharabian, Youri; Sharov, Dmitri; Shaw, J.; Shvedunov, Nikolay; Skabelin, Alexander; Smith, Elton; Smith, Lee; Sober, Daniel; Sokhan, Daria; Stavinskiy, Aleksey; Stepanyan, Samuel; Stepanyan, Stepan; Stokes, Burnham

    2008-10-01

    DOI: http://dx.doi.org/10.1103/PhysRevC.78.045209
    The helicity amplitudes of the electroexcitation of the Roper resonance are extracted for 1.7 < Q2 < 4.5 GeV2 from recent high precision JLab-CLAS cross section and longitudinally polarized beam asymmetry data for pi+ electroproduction on protons at W=1.15-1.69 GeV. The analysis is made using two approaches, dispersion relations and a unitary isobar model, which give consistent results. It is found that the transverse helicity amplitude A_{1/2} for the gamma* p -> N(1440)P11 transition, which is large and negative at Q2=0, becomes large and positive at Q2 ~ 2 GeV2, and then drops slowly with Q2. The longitudinal helicity amplitude S_{1/2}, which was previously found from CLAS ep -> eppi0,enpi+ data to be large and positive at Q2=0.4,0.65 GeV2, drops with Q2. Available model predictions for gamma* p -> N(1440)P11 allow us to conclude that these results provide strong evidence in favor of N(1440)P11 as a first radial excitation of

  4. Nuclear Magnetic Resonance Solution Structures of Lacticin Q and Aureocin A53 Reveal a Structural Motif Conserved among Leaderless Bacteriocins with Broad-Spectrum Activity.

    PubMed

    Acedo, Jeella Z; van Belkum, Marco J; Lohans, Christopher T; Towle, Kaitlyn M; Miskolzie, Mark; Vederas, John C

    2016-02-02

    Lacticin Q (LnqQ) and aureocin A53 (AucA) are leaderless bacteriocins from Lactococcus lactis QU5 and Staphylococcus aureus A53, respectively. These bacteriocins are characterized by the absence of an N-terminal leader sequence and are active against a broad range of Gram-positive bacteria. LnqQ and AucA consist of 53 and 51 amino acids, respectively, and have 47% identical sequences. In this study, their three-dimensional structures were elucidated using solution nuclear magnetic resonance and were shown to consist of four α-helices that assume a very similar compact, globular overall fold (root-mean-square deviation of 1.7 Å) with a highly cationic surface and a hydrophobic core. The structures of LnqQ and AucA resemble the shorter two-component leaderless bacteriocins, enterocins 7A and 7B, despite having low levels of sequence identity. Homology modeling revealed that the observed structural motif may be shared among leaderless bacteriocins with broad-spectrum activity against Gram-positive organisms. The elucidated structures of LnqQ and AucA also exhibit some resemblance to circular bacteriocins. Despite their similar overall fold, inhibition studies showed that LnqQ and AucA have different antimicrobial potency against the Gram-positive strains tested, suggesting that sequence disparities play a crucial role in their mechanisms of action.

  5. Improved L-C resonant decay technique for Q measurement of quasilinear power inductors: New results for MPP and ferrite powdered cores

    NASA Technical Reports Server (NTRS)

    Niedra, Janis M.; Gerber, Scott S.

    1995-01-01

    The L-C resonant decay technique for measuring circuit Q or losses is improved by eliminating the switch from the inductor-capacitor loop. A MOSFET switch is used instead to momentarily connect the resonant circuit to an existing voltage source, which itself is gated off during the decay transient. Very reproducible, low duty cycle data could be taken this way over a dynamic voltage range of at least 10:1. Circuit Q is computed from a polynomial fit to the sequence of the decaying voltage maxima. This method was applied to measure the losses at 60 kHz in inductors having loose powder cores of moly permalloy and an Mn-Zn power ferrite. After the copper and capacitor losses are separated out, the resulting specific core loss is shown to be roughly as expected for the MPP powder, but anomalously high for the ferrite powder. Possible causes are mentioned.

  6. Test of the FDTD accuracy in the analysis of the scattering resonances associated with high-Q whispering-gallery modes of a circular cylinder.

    PubMed

    Boriskin, Artem V; Boriskina, Svetlana V; Rolland, Anthony; Sauleau, Ronan; Nosich, Alexander I

    2008-05-01

    Our objective is the assessment of the accuracy of a conventional finite-difference time-domain (FDTD) code in the computation of the near- and far-field scattering characteristics of a circular dielectric cylinder. We excite the cylinder with an electric or magnetic line current and demonstrate the failure of the two-dimensional FDTD algorithm to accurately characterize the emission rate and the field patterns near high-Q whispering-gallery-mode resonances. This is proven by comparison with the exact series solutions. The computational errors in the emission rate are then studied at the resonances still detectable with FDTD, i.e., having Q-factors up to 10(3).

  7. Pulsed-laser excitation of acoustic modes in open high-Q photoacoustic resonators for trace gas monitoring: results for C2H4

    NASA Astrophysics Data System (ADS)

    Brand, Christian; Winkler, Andreas; Hess, Peter; Miklós, András; Bozóki, Zoltán; Sneider, János

    1995-06-01

    The pulsed excitation of acoustic resonances was studied with a continuously monitoring photoacoustic detector system. Acoustic waves were generated in C2H4/N 2 gas mixtures by light absorption of the pulses from a transversely excited atmospheric CO2 laser. The photoacoustic part consisted of high-Q cylindrical resonators (Q factor 820 for the first radial mode in N2) and two adjoining variable acoustic filter systems. The time-resolved signal was Fourier transformed to a frequency spectrum of high resolution. For the first radial mode a Lorentzian profile was fitted to the measured data. The outside noise suppression and the signal-to-noise ratio were investigated in a normal laboratory environment in the flow-through mode. The acoustic and electric filter system combined with the

  8. The position of cytochrome b(559) relative to Q(A) in photosystem II studied by electron-electron double resonance (ELDOR).

    PubMed

    Kuroiwa, S; Tonaka, M; Kawamori, A; Akabori, K

    2000-11-20

    The electron-electron double resonance (ELDOR) method was applied to measure the dipole interaction between cytochrome (Cyt) b(+)(559) and the primary acceptor quinone (Q(-)(A)), observed at g=2.0045 with the peak to peak width of about 9 G, in Photosystem II (PS II) in which the non-heme Fe(2+) was substituted by Zn(2+). The paramagnetic centers of Cyt b(+)(559)Y(D)Q(-)(A) were trapped by illumination at 273 K for 8 min, followed by dark adaptation for 3 min and freezing into 77 K. The distance between the pair Cyt b(+)(559)-Q(-)(A) was estimated from the dipole interaction constant fitted to the observed ELDOR time profile to be 40+/-1 A. In the membrane oriented PS II particles the angle between the vector from Q(A) to Cyt b(559) and the membrane normal was determined to be 80+/-5 degrees. The position of Cyt b(559) relative to Q(A) suggests that the heme plane is located on the stromal side of the thylakoid membrane. ELDOR was not observed for Cyt b(+)(559) Y(D) spin pair, suggesting the distance between them is more than 50 A.

  9. Creation of a magnetic barrier at a noble q close to physical midpoint between two resonant surfaces in the ASDEX UG tokamak

    NASA Astrophysics Data System (ADS)

    Vazquez, Justin; Ali, Halima; Punjabi, Alkesh

    2009-11-01

    Ciraolo, Vittot and Chandre method of building invariant manifolds inside chaos in Hamiltonian systems [Ali H. and Punjabi A, Plasma Phys. Control. Fusion, 49, 1565--1582 (2007)] is used in the ASDEX UG tokamak. In this method, a second order perturbation is added to the perturbed Hamiltonian [op cit]. It creates an invariant torus inside the chaos, and reduces the plasma transport. The perturbation that is added to the equilibrium Hamiltonian is at least an order of magnitude smaller than the perturbation that causes chaos. This additional term has a finite, limited number of Fourier modes. Resonant magnetic perturbations (m,n) = (3,2)+(4,3) are added to the field line Hamiltonian for the ASDEX UG. An area-preserving map for the field line trajectories in the ASDEX UG is used. The common amplitude δ of these modes that gives complete chaos between the resonant surfaces ψ43 and ψ32 is determined. A magnetic barrier is built at a surface with noble q that is very nearly equals to the q at the physical midpoint between the two resonant surfaces. The maximum amplitude of magnetic perturbation for which this barrier can be sustained is determined. This work is supported by US Department of Energy grants DE-FG02-07ER54937, DE-FG02-01ER54624 and DE-FG02-04ER54793.

  10. A 20 years of progress and future of quantitative magnetic resonance imaging (qMRI) of cartilage and articular tissues-personal perspective.

    PubMed

    Eckstein, Felix; Peterfy, Charles

    2016-06-01

    In 1994, the first article on quantitative magnetic resonance imaging (qMRI) of articular cartilage was published, and tremendous progress in image acquisition, image analysis, and applications has since been made. The objective of this personal perspective is to highlight milestones in the field of qMRI of cartilage and other articular tissues over these past 20 years. Based on a Pubmed search of original articles, the authors selected 30 articles which they deemed to be among the first to provide an important technological step forward in qMRI of cartilage, provided a first application in a particular context, or provided mechanistic insight into articular cartilage physiology, pathology, or treatment. This personal perspective summarizes results from these 30 articles. Further, the authors provide examples of how qMRI of cartilage has translated to quantitative analysis approaches of other articular tissues, including bone, meniscus, and synovium/edema. Eventually, the report provides a summary of how the lessons learned might be applied to future clinical trials and clinical practice. Over the past 20 years, quantitative imaging of articular tissues has emerged from a method to a dynamic field of research by its own. Continuing the qMRI biomarker qualification process will be crucial in convincing regulatory agencies to accept these as primary outcomes in phase 3 intervention trials. Once successful structural intervention will actually become available in OA, qMRI biomarkers may play an essential role in monitoring response to therapy in the clinic, and in stratifying disease phenotypes that respond differently to treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Exclusive single pion electroproduction off the proton in the high-lying resonances at Q2 < 5 GeV2 from CLAS

    SciTech Connect

    Park, Kijun

    2014-09-01

    The differential cross sections and structure functions for the exclusive electroproduction process ep --> e'n pi+ were measured in the range of the invariantmass for the np+ system 1.6 GeV lte W lte 2.0 GeV, and the photon virtuality 1.8 GeV2 lte Q2 lte 4.0 GeV2 using CLAS at Jefferson Lab. For the first time, these kinematics are probed in the exclusive p+ production from the protons with nearly full coverage in the azimuthal and polar angles of the np+ center-of-mass system. In this analysis, approximately 39,000 differential cross-section data points in terms of W, Q2, cosq theta* _ pi, and phi*_p-, were obtained. The preliminary differential cross section and structure function analyses are carried out, which allow us to extract the helicity amplitudes in high-lying resonances.

  12. Induced Proton Polarization for pi0 Electroproduction at Q2 = 0.126 GeV2/c2 Around the Delta(1232) Resonance

    SciTech Connect

    Glen Warren; Ricardo Alarcon; Christopher Armstrong; Burin Asavapibhop; David Barkhuff; William Bertozzi; Volker Burkert; J. Chen; Jian-Ping Chen; Joseph Comfort; Daniel Dale; George Dodson; S. Dolfini; K. Dow; Martin Epstein; Manouchehr Farkhondeh; John Finn; Shalev Gilad; Ralf Gothe; Xiaodong Jiang; Mark Jones; Kyungseon Joo; A. Karabarbounis; James Kelly; Stanley Kowalski; C. Kunz; D. Liu; R.W. Lourie; Richard Madey; Demetrius Margaziotis; Pete Markowitz; Justin McIntyre; C. Mertz; Brian Milbrath; Rory Miskimen; Joseph Mitchell; S. Mukhopadhyay; Costas Papanicolas; Charles Perdrisat; Vina Punjabi; Liming Qin; Paul Rutt; Adam Sarty; Jeffrey Shaw; S.B. Soong; D. Tieger; Christoph Tschalaer; William Turchinetz; Paul Ulmer; Scott Van Verst; C. Vellidis; Lawrence Weinstein; Steven Williamson; Rhett Woo; Alaen Young

    1998-12-01

    We present a measurement of the induced proton polarization P{sub n} in {pi}{sup 0} electroproduction on the proton around the {Delta} resonance. The measurement was made at a central invariant mass and a squared four-momentum transfer of W = 1231 MeV and Q{sup 2} = 0.126 GeV{sup 2}/c{sup 2}, respectively. We measured a large induced polarization, P{sub n} = -0.397 {+-} 0.055 {+-} 0.009. The data suggest that the scalar background is larger than expected from a recent effective Hamiltonian model.

  13. Beam-helicity asymmetry in photon and pion electroproduction in the Δ(1232)-resonance region at Q2 = 0.35(GeV/c)2

    NASA Astrophysics Data System (ADS)

    Bensafa, I. K.; Achenbach, P.; Ases Antelo, M.; Ayerbe, C.; Baumann, D.; Böhm, R.; Bosnar, D.; Burtin, E.; Defaÿ, X.; D'Hose, N.; Ding, M.; Distler, M. O.; Doria, L.; Fonvieille, H.; Friedrich, J. M.; Friedrich, J.; García Llongo, J.; Janssens, P.; Jover Mañas, G.; Kohl, M.; Laveissière, G.; Lloyd, M.; Makek, M.; Marroncle, J.; Merkel, H.; Merle, P.; Müller, U.; Nungesser, L.; Pasquini, B.; Pérez Benito, R.; Pochodzalla, J.; Potokar, M.; Rosner, G.; Sánchez Majos, S.; Seimetz, M.; Širca, S.; Spitzenberg, T.; Tamas, G.; van de Vyver, R.; van Hoorebeke, L.; Walcher, Th.; Weis, M.

    2007-04-01

    The beam-helicity asymmetry has been measured simultaneously for the reactions stackrel{{rightarrow}}{{e}} p→ epγ and stackrel{{rightarrow}}{{e}} p→ epπ 0 in the Δ(1232)-resonance region at Q 2 = 0.35( GeV/ c)2. The experiment was performed at MAMI with a longitudinally polarized beam and an out-of-plane detection of the proton. The results are compared with calculations based on dispersion relations for virtual Compton scattering and with the MAID model for pion electroproduction. There is an overall good agreement between experiment and theoretical calculations. The remaining discrepancies may be ascribed to an imperfect parametrization of some γ (*) N→ πN multipoles, mainly contributing to the non-resonant background. The beam-helicity asymmetry in both channels ( γ and π 0) shows a good sensitivity to these multipoles and should allow future improvement in their parametrization.

  14. An ac method for the precise measurement of Q-factor and resonance frequency of a microwave cavity

    NASA Astrophysics Data System (ADS)

    Nebendahl, B.; Peligrad, D.-N.; Požek, M.; Dulčić, A.; Mehring, M.

    2001-03-01

    We have developed a new and fast method for the determination of the complex frequency shift of a microwave resonant cavity. The method is based on frequency modulation of the microwave source around the cavity resonance and detection of the 2nd and 4th harmonic of the modulation frequency. With this procedure the static measurement of the response amplitude is not necessary and all the data are obtained through a single ac channel. The optimal frequency deviation is shown to be comparable to the cavity resonance width.

  15. A high-Q resonant pressure microsensor with through-glass electrical interconnections based on wafer-level MEMS vacuum packaging.

    PubMed

    Luo, Zhenyu; Chen, Deyong; Wang, Junbo; Li, Yinan; Chen, Jian

    2014-12-16

    This paper presents a high-Q resonant pressure microsensor with through-glass electrical interconnections based on wafer-level MEMS vacuum packaging. An approach to maintaining high-vacuum conditions by integrating the MEMS fabrication process with getter material preparation is presented in this paper. In this device, the pressure under measurement causes a deflection of a pressure-sensitive silicon square diaphragm, which is further translated to stress build up in "H" type doubly-clamped micro resonant beams, leading to a resonance frequency shift. The device geometries were optimized using FEM simulation and a 4-inch SOI wafer was used for device fabrication, which required only three photolithographic steps. In the device fabrication, a non-evaporable metal thin film as the getter material was sputtered on a Pyrex 7740 glass wafer, which was then anodically bonded to the patterned SOI wafer for vacuum packaging. Through-glass via holes predefined in the glass wafer functioned as the electrical interconnections between the patterned SOI wafer and the surrounding electrical components. Experimental results recorded that the Q-factor of the resonant beam was beyond 22,000, with a differential sensitivity of 89.86 Hz/kPa, a device resolution of 10 Pa and a nonlinearity of 0.02% F.S with the pressure varying from 50 kPa to 100 kPa. In addition, the temperature drift coefficient was less than -0.01% F.S/°C in the range of -40 °C to 70 °C, the long-term stability error was quantified as 0.01% F.S over a 5-month period and the accuracy of the microsensor was better than 0.01% F.S.

  16. A High-Q Resonant Pressure Microsensor with Through-Glass Electrical Interconnections Based on Wafer-Level MEMS Vacuum Packaging

    PubMed Central

    Luo, Zhenyu; Chen, Deyong; Wang, Junbo; Li, Yinan; Chen, Jian

    2014-01-01

    This paper presents a high-Q resonant pressure microsensor with through-glass electrical interconnections based on wafer-level MEMS vacuum packaging. An approach to maintaining high-vacuum conditions by integrating the MEMS fabrication process with getter material preparation is presented in this paper. In this device, the pressure under measurement causes a deflection of a pressure-sensitive silicon square diaphragm, which is further translated to stress build up in “H” type doubly-clamped micro resonant beams, leading to a resonance frequency shift. The device geometries were optimized using FEM simulation and a 4-inch SOI wafer was used for device fabrication, which required only three photolithographic steps. In the device fabrication, a non-evaporable metal thin film as the getter material was sputtered on a Pyrex 7740 glass wafer, which was then anodically bonded to the patterned SOI wafer for vacuum packaging. Through-glass via holes predefined in the glass wafer functioned as the electrical interconnections between the patterned SOI wafer and the surrounding electrical components. Experimental results recorded that the Q-factor of the resonant beam was beyond 22,000, with a differential sensitivity of 89.86 Hz/kPa, a device resolution of 10 Pa and a nonlinearity of 0.02% F.S with the pressure varying from 50 kPa to 100 kPa. In addition, the temperature drift coefficient was less than −0.01% F.S/°C in the range of −40 °C to 70 °C, the long-term stability error was quantified as 0.01% F.S over a 5-month period and the accuracy of the microsensor was better than 0.01% F.S. PMID:25521385

  17. Ultra-high frequency, high Q/volume micromechanical resonators in a planar AlN phononic crystal

    NASA Astrophysics Data System (ADS)

    Ghasemi Baboly, M.; Alaie, S.; Reinke, C. M.; El-Kady, I.; Leseman, Z. C.

    2016-07-01

    This paper presents the first design and experimental demonstration of an ultrahigh frequency complete phononic crystal (PnC) bandgap aluminum nitride (AlN)/air structure operating in the GHz range. A complete phononic bandgap of this design is used to efficiently and simultaneously confine elastic vibrations in a resonator. The PnC structure is fabricated by etching a square array of air holes in an AlN slab. The fabricated PnC resonator resonates at 1.117 GHz, which corresponds to an out-of-plane mode. The measured bandgap and resonance frequencies are in very good agreement with the eigen-frequency and frequency-domain finite element analyses. As a result, a quality factor/volume of 7.6 × 1017/m3 for the confined resonance mode was obtained that is the largest value reported for this type of PnC resonator to date. These results are an important step forward in achieving possible applications of PnCs for RF communication and signal processing with smaller dimensions.

  18. Electro-optic modulation of high-Q lithium niobate whispering gallery resonator with integrated ground plane (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Douglas, Kenneth; Moore, Jeremy; Friedman, Thomas; Eichenfield, Matthew

    2017-02-01

    We experimentally demonstrate electro-optic modulation in thin film lithium niobate microdisk resonators with an integrated bottom electrode fabricated from a z-cut Lithium Niobate on Insulator wafer. The structure consisted of a 400nm thick crystalline z-cut lithium niobate/2um SiO2/20nm Cr/100nm Au/10nm Cr film stack on top of a z-cut lithium niobate handle wafer. The integrated bottom electrode is located 2um beneath the resonator. This proximity, coupled with positioning an electrical probe close to the top of the resonator, allows large optical frequency shifts with low voltages. We observed a 0.111pm/V resonance shift of vertically polarized (TM) optical whispering gallery modes, with the voltage applied perpendicular to the wafer surface. This corresponds to a shift of one optical linewidth at an applied voltage of 180V, using the r33 component of the eletro-optic tensor. We observed a smaller shift of 0.066pm/V for the radially polarized (TE) modes, using the r13 component of the electro-optic tensor. The experiment was performed using a 1550nm tunable laser that was coupled to the optical resonator modes using a tapered optical fiber. To measure the electro-optic shift of the resonance, a voltage was applied across the device via DC probe tips and the peak shift was calibrated with a Toptica WS6 IR wavemeter with 200 MHz absolute accuracy. We also present a finite element model that accurately predicts the resonance shift as a function of applied voltage for both polarizations.

  19. Minimum joint space width (mJSW) of patellofemoral joint on standing "skyline" radiographs: test-retest reproducibility and comparison with quantitative magnetic resonance imaging (qMRI).

    PubMed

    Simoni, Paolo; Jamali, Sanaa; Albert, Adelin; Totterman, Saara; Schreyer, Edward; Tamez-Peña, Jose G; Zobel, Bruno Beomonte; Miezentseva, Victoria Alvarez; Gillet, Philippe

    2013-11-01

    To assess the intraobserver, interobserver, and test-retest reproducibility of minimum joint space width (mJSW) measurement of medial and lateral patellofemoral joints on standing "skyline" radiographs and to compare the mJSW of the patellofemoral joint to the mean cartilage thickness calculated by quantitative magnetic resonance imaging (qMRI). A couple of standing "skyline" radiographs of the patellofemoral joints and MRI of 55 knees of 28 volunteers (18 females, ten males, mean age, 48.5 ± 16.2 years) were obtained on the same day. The mJSW of the patellofemoral joint was manually measured and Kellgren and Lawrence grade (KLG) was independently assessed by two observers. The mJSW was compared to the mean cartilage thickness of patellofemoral joint calculated by qMRI. mJSW of the medial and lateral patellofemoral joint showed an excellent intraobserver agreement (interclass correlation (ICC) = 0.94 and 0.96), interobserver agreement (ICC = 0.90 and 0.95) and test-retest agreement (ICC = 0.92 and 0.96). The mJSW measured on radiographs was correlated to mean cartilage thickness calculated by qMRI (r = 0.71, p < 0.0001 for the medial PFJ and r = 0.81, p < 0.0001 for the lateral PFJ). However, there was a lack of concordance between radiographs and qMRI for extreme values of joint width and KLG. Radiographs yielded higher joint space measures than qMRI in knees with a normal joint space, while qMRI yielded higher joint space measures than radiographs in knees with joint space narrowing and higher KLG. Standing "skyline" radiographs are a reproducible tool for measuring the mJSW of the patellofemoral joint. The mJSW of the patellofemoral joint on radiographs are correlated with, but not concordant with, qMRI measurements.

  20. Measurement of differential cross sections via p(e,e^'&+circ;)n for studying high-lying resonances at high Q^2

    NASA Astrophysics Data System (ADS)

    Park, Kijun; Burkert, Volker

    2012-10-01

    An extensive experimental programs has been carried out at Jefferson Laboratory to study the excitation resonances using the CEBAF Large Acceptance Spectrometer (CLAS). Pion electroproduction on protons is sensitive to the resonance excitation and allows us to explore its internal structure. The CLAS is well suited for the study of a broad range of kinematics in the invariant mass W and photon virtuality Q^2 with nearly complete angular coverage for the hadronic decays. Electron scattering allows us to probe the effective degrees of freedom in excited nucleon states from meson-baryon cloud to dressed quarks in terms of varying distance scale. In this talk, we report the differential cross-sections for exclusive single charged pion electroproduction from proton targets. The kinematic range covers Q^2 from 1.7;GeV^2 to 4.5;GeV^2 and W from 1.6;GeV to 2.0;GeV. Separated structure functions are also presented and compared with the present calculations and previous measurements. This work, along with an upcoming analysis of same kinematics from exclusive p0̂ and p&+circ;&-circ; electroproduction will allow the determination of electro-couplings of several high-lying excited proton states, for the first time, at photon virtualities that correspond to transition toward dominance of quark degrees of freedom.

  1. Measurement of cross sections of p(e,e'π+)n for near pion threshold and high-lying resonances at high Q2

    NASA Astrophysics Data System (ADS)

    Park, Kijun

    2012-04-01

    During the last decade, remarkable experimental data have been collacted in an extensive programs to study the excitation of nucleon resonance (N*) at Jefferson Laboratory through pionelectroproduction using polarized electron beam and unpolarized proton target. The CEBAF Large Acceptance Spectrometer (CLAS) is well suited for the study of a broad range of kinematics in the invariant mass W and photon virtuality Q2 with nearly complete angular coverage for the hadronic decays. Electron scattering allows us to probe the effective degrees of freedom in excited nucleon states from meson-baryon to dressed quarks in terms of varying the distance scale. The study of nucleon structure allows us to understand these effective degrees of freedom. In this proceeding, I present preliminary cross sections for single pion production in mass range of high-lying resonances as well as near the pion threshold. Analysis of Nπ+ cross sections together with Nπ0 and Nππ exclusive electroproduction data, will allow us for the first time to determine electrocouplings of several high-lying excited proton states (W ≥ 1.6 GeV) at photon virtualities that correspond to the transition toward the dominance of quark degrees of freedom. I also present preliminary result on the E0+ multipole near pion threshold at 2.0 GeV2 ≤ Q2 ≤ 4.5 GeV2 using exclusive Nπ+ electroproduction data.

  2. Q-factor enhancement of integrated lithium-niobate-on-insulator ridge waveguide whispering-gallery-mode resonators by surface polishing

    NASA Astrophysics Data System (ADS)

    Wolf, Richard; Breunig, Ingo; Zappe, Hans; Buse, Karsten

    2017-02-01

    Whispering-gallery resonators (WGRs) are most promising for nonlinear-optical frequency-conversion due to their intensity enhancement by small mode volumes and high Q-factors. This has been shown frequently by millimeter-sized diamond-blade cut and polished bulk WGRs. For reproducible batch fabrication, however, the integration of WGRs into lithium-niobate-on-insulator (LNOI) substrates became of great interest. Here we report on integrated WGRs made by batch processes like lithography and reactive-ion etching. Since the Q-factor of integrated WGRs is limited by scattering losses, we focused on developing a polishing process for the waveguide sidewalls that allowed us to enhance the unloaded Q-factors already to more than 106 with room for further improvements. Furthermore we employ a coupling scheme with two waveguide chips, one comprising a linear coupling waveguide and one with the integrated WGR. By adjusting the distance between the coupling waveguide and the WGR, we can reproducibly and stably tune the coupling-efficiency between 0 and 95 %.

  3. Idler-resonant intracavity KTA-based OPO pumped by a dual-loss modulated-Q-switched-laser with AOM and Cr4+:YAG

    NASA Astrophysics Data System (ADS)

    Qiao, Junpeng; Zhao, Shengzhi; Yang, Kejian; Zhao, Jia; Li, Guiqiu; Li, Dechun; Li, Tao; Qiao, Wenchao

    2017-06-01

    An idler-resonant KTiOAsO4 (KTA)-based intracavity optical parametric oscillator (IOPO) pumped by a dual-loss-modulated Q-switched laser with an acousto-optic modulator (AOM) and a Cr4+:YAG saturable absorber (Cr4+:YAG-SA) has been presented. By utilizing a type-II non-critically phase-matched KTA crystal, signal wave at 1535 nm and idler wave at 3467 nm have been generated. Under an incident pump power of 18.3 W, maximum output powers of 615 mW for signal wave and 228 mW for idler wave were obtained at an AOM modulation rate of 10 kHz, corresponding to a whole optical-to-optical conversion efficiency of 4.6%. The shortest pulse widths of signal and idler wave were measured to be 898 ps and 2.9 ns, corresponding to the highest peak powers of 68.4 and 7.9 kW, respectively. In comparison with IOPO pumped by a singly Q-switched laser with an AOM, the IOPO pumped by a doubly Q-switched laser (DIOPO) with an AOM and a Cr4+:YAG-SA can generate signal wave and idler wave with shorter pulse width and higher peak power. By considering the spatial Gaussian distribution of intracavity photon density, a set of coupled rate equations for the idler-resonant DIOPO were built for the first time to the best of our knowledge. The simulation results agreed well with the experimental results.

  4. Simulation of coupled bunch mode growth driven by a high-Q resonator: A transient response approach

    SciTech Connect

    Stahl, S.; Bogacz, S.A.

    1989-03-01

    In this article the use of a longitudinal phase-space tracking code, ESME, to simulate the growth of a coupled-bunch instability in the Fermilab Booster is examined. A description of the calculation of the resonant response is given, and results are presented for the growth of the coupled bunch instability in a ring in which all of the rf buckets are equally populated and in one in which several consecutive buckets are empty. 4 refs., 6 figs.

  5. Azimuthal-order variations of surface-roughness-induced mode splitting and scattering loss in high-Q microdisk resonators.

    PubMed

    Li, Qing; Eftekhar, Ali A; Xia, Zhixuan; Adibi, Ali

    2012-05-01

    We report an experimental observation of strong variations of quality factor and mode splitting among whispering-gallery modes with the same radial order and different azimuthal orders in a scattering-limited microdisk resonator. A theoretical analysis based on the statistical properties of the surface roughness reveals that mode splittings for different azimuthal orders are uncorrelated, and variations of mode splitting and quality factor among the same radial mode family are possible. Simulation results agree well with the experimental observations.

  6. Compact high-pulse-energy passively Q-switched Nd:YLF laser with an ultra-low-magnification unstable resonator: application for efficient optical parametric oscillator.

    PubMed

    Cho, C Y; Huang, Y P; Huang, Y J; Chen, Y C; Su, K W; Chen, Y F

    2013-01-28

    We exploit an ultra-low-magnification unstable resonator to develop a high-pulse-energy side-pumped passively Q-switched Nd:YLF/Cr⁴⁺:YAG laser with improving beam quality. A wedged laser crystal is employed in the cavity to control the emissions at 1047 nm and 1053 nm independently through the cavity alignment. The pulse energies at 1047 nm and 1053 nm are found to be 19 mJ and 23 mJ, respectively. The peak powers for both wavelengths are higher than 2 MW. Furthermore, the developed Nd:YLF lasers are employed to pump a monolithic optical parametric oscillator for confirming the applicability in nonlinear wavelength conversions.

  7. Continuous-wave and Q-switched operation of a resonantly pumped Ho³⁺:KY₃F₁₀ laser.

    PubMed

    Schellhorn, Martin; Parisi, Daniela; Eichhorn, Marc; Tonelli, Mauro

    2014-03-01

    We report continuous-wave and repetitively Q-switched operation of a resonantly pumped Ho3+:KY3F10 laser at room temperature. End pumped by a Tm3+-doped silica fiber laser operating at 1938 nm, a maximum laser power of 7.8 W was obtained at a wavelength of ∼2041  nm for 21 W of absorbed pump power, corresponding to a slope efficiency of 60.7% with respect to absorbed power. At a repetition rate of 10 kHz up to 0.78 mJ, energy per pulse was demonstrated with pulse widths of 100 ns. The beam propagation factor (M2) was measured to be <1.26 at the maximum output power.

  8. Recoil Polarization Measurements for Neutral Pion Electroproduction at Q^2=1 (GeV/c)^2 Near the Delta Resonance

    SciTech Connect

    James Kelly; et. Al.

    2005-09-01

    We measured angular distributions of differential cross section, beam analyzing power, and recoil polarization for neutral pion electroproduction at Q{sup 2} = 1.0 (GeV/c){sup 2} in 10 bins of W across the Delta resonance. A total of 16 independent response functions were extracted, of which 12 were observed for the first time. Comparisons with recent model calculations show that response functions governed by real parts of interference products are determined relatively well near 1.232 GeV, but variations among models is large for response functions governed by imaginary parts and for both increases rapidly with W. We performed a nearly model-independent multipole analysis that adjusts complex multipoles with high partial waves constrained by baseline models. Parabolic fits to the W dependence of the multipole analysis around the Delta mass gives values for SMR = (-6.61 +/- 0.18)% and EMR = (-2.87 +/- 0.19)% that are distinctly larger than those from Legendre analysis of the same data. Similarly, the multipole analysis gives Re(S0+/M1+) = (+7.1 +/- 0.8)% at W=1.232 GeV, consistent with recent models, while the traditional Legendre analysis gives the opposite sign because its truncation errors are quite severe. Finally, using a unitary isobar model (UIM), we find that excitation of the Roper resonance is dominantly longitudinal with S1/2 = (0.05 +/- 0.01) GeV{sup (-1/2)} at Q{sup 2}=1. The ReS0+ and ReE0+ multipoles favor pseudovector coupling over pseudoscalar coupling or a recently proposed mixed-coupling scheme, but the UIM does not reproduce the imaginary parts of 0+ multipoles well.

  9. A platform for multiplexed sensing of biomolecules using high-Q microring resonator arrays with differential readout and integrated microfluidics

    NASA Astrophysics Data System (ADS)

    Wright, J. B.; Brener, I.; Westlake, K. R.; Branch, D. W.; Shaw, M. J.; Vawter, G. A.

    2010-02-01

    We demonstrate chemical/biological sensor arrays based on high quality factor evanescent microring waveguide resonators in a process that is compatible with CMOS fabrication, glass microfluidic integration, and robust surface chemistry ligand attachment. We cancel out any fluctuations due to liquid temperature variations through a differential dual sensor design. Using laser locking servo techniques we attain detection sensitivities in the ng/ml range. This combination of silicon photonic sensors, robust packaging, high sensitivity and arrayed design is capable of providing a platform for multiplexed chem-bio sensing of molecules suspended in solution.

  10. Evaluation and optimization of quartz resonant-frequency retuned fork force sensors with high Q factors, and the associated electric circuits, for non-contact atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Ooe, Hiroaki; Fujii, Mikihiro; Tomitori, Masahiko; Arai, Toyoko

    2016-02-01

    High-Q factor retuned fork (RTF) force sensors made from quartz tuning forks, and the electric circuits for the sensors, were evaluated and optimized to improve the performance of non-contact atomic force microscopy (nc-AFM) performed under ultrahigh vacuum (UHV) conditions. To exploit the high Q factor of the RTF sensor, the oscillation of the RTF sensor was excited at its resonant frequency, using a stray capacitance compensation circuit to cancel the excitation signal leaked through the stray capacitor of the sensor. To improve the signal-to-noise (S/N) ratio in the detected signal, a small capacitor was inserted before the input of an operational (OP) amplifier placed in an UHV chamber, which reduced the output noise from the amplifier. A low-noise, wideband OP amplifier produced a superior S/N ratio, compared with a precision OP amplifier. The thermal vibrational density spectra of the RTF sensors were evaluated using the circuit. The RTF sensor with an effective spring constant value as low as 1000 N/m provided a lower minimum detection limit for force differentiation. A nc-AFM image of a Si(111)-7 × 7 surface was produced with atomic resolution using the RTF sensor in a constant frequency shift mode; tunneling current and energy dissipation images with atomic resolution were also simultaneously produced. The high-Q factor RTF sensor showed potential for the high sensitivity of energy dissipation as small as 1 meV/cycle and the high-resolution analysis of non-conservative force interactions.

  11. Evaluation and optimization of quartz resonant-frequency retuned fork force sensors with high Q factors, and the associated electric circuits, for non-contact atomic force microscopy.

    PubMed

    Ooe, Hiroaki; Fujii, Mikihiro; Tomitori, Masahiko; Arai, Toyoko

    2016-02-01

    High-Q factor retuned fork (RTF) force sensors made from quartz tuning forks, and the electric circuits for the sensors, were evaluated and optimized to improve the performance of non-contact atomic force microscopy (nc-AFM) performed under ultrahigh vacuum (UHV) conditions. To exploit the high Q factor of the RTF sensor, the oscillation of the RTF sensor was excited at its resonant frequency, using a stray capacitance compensation circuit to cancel the excitation signal leaked through the stray capacitor of the sensor. To improve the signal-to-noise (S/N) ratio in the detected signal, a small capacitor was inserted before the input of an operational (OP) amplifier placed in an UHV chamber, which reduced the output noise from the amplifier. A low-noise, wideband OP amplifier produced a superior S/N ratio, compared with a precision OP amplifier. The thermal vibrational density spectra of the RTF sensors were evaluated using the circuit. The RTF sensor with an effective spring constant value as low as 1000 N/m provided a lower minimum detection limit for force differentiation. A nc-AFM image of a Si(111)-7 × 7 surface was produced with atomic resolution using the RTF sensor in a constant frequency shift mode; tunneling current and energy dissipation images with atomic resolution were also simultaneously produced. The high-Q factor RTF sensor showed potential for the high sensitivity of energy dissipation as small as 1 meV/cycle and the high-resolution analysis of non-conservative force interactions.

  12. Evidence for an exotic S= -2, Q= -2 baryon resonance in proton-proton collisions at the CERN SPS.

    PubMed

    Alt, C; Anticic, T; Baatar, B; Barna, D; Bartke, J; Betev, L; Białkowska, H; Billmeier, A; Blume, C; Boimska, B; Botje, M; Bracinik, J; Bramm, R; Brun, R; Buncić, P; Cerny, V; Christakoglou, P; Chvala, O; Cramer, J G; Csató, P; Darmenov, N; Dimitrov, A; Dinkelaker, P; Eckardt, V; Farantatos, G; Filip, P; Flierl, D; Fodor, Z; Foka, P; Freund, P; Friese, V; Gál, J; Gaździcki, M; Georgopoulos, G; Gładysz, E; Hegyi, S; Höhne, C; Kadija, K; Karev, A; Kniege, S; Kolesnikov, V I; Kollegger, T; Korus, R; Kowalski, M; Kraus, I; Kreps, M; van Leeuwen, M; Lévai, P; Litov, L; Makariev, M; Malakhov, A I; Markert, C; Mateev, M; Mayes, B W; Melkumov, G L; Meurer, C; Mischke, A; Mitrovski, M; Molnár, J; Mrówczyński, St; Pálla, G; Panagiotou, A D; Panayotov, D; Perl, K; Petridis, A; Pikna, M; Pinsky, L; Pühlhofer, F; Reid, J G; Renfordt, R; Retyk, W; Roland, C; Roland, G; Rybczyński, M; Rybicki, A; Sandoval, A; Sann, H; Schmitz, N; Seyboth, P; Siklér, F; Sitar, B; Skrzypczak, E; Stefanek, G; Stock, R; Ströbele, H; Susa, T; Szentpétery, I; Sziklai, J; Trainor, T A; Varga, D; Vassiliou, M; Veres, G I; Vesztergombi, G; Vranić, D; Wetzler, A; Włodarczyk, Z; Yoo, I K; Zaranek, J; Zimányi, J

    2004-01-30

    Results of resonance searches in the Xi(-)pi(-), Xi(-)pi(+), Xi;(+)pi(-), and Xi;(+)pi(+) invariant mass spectra in proton-proton collisions at sqrt[s]=17.2 GeV are presented. Evidence is shown for the existence of a narrow Xi(-)pi(-) baryon resonance with mass of 1.862+/-0.002 GeV/c(2) and width below the detector resolution of about 0.018 GeV/c(2). The significance is estimated to be above 4.2sigma. This state is a candidate for the hypothetical exotic Xi(--)(3/2) baryon with S=-2, I=3 / 2, and a quark content of (dsdsū). At the same mass, a peak is observed in the Xi(-)pi(+) spectrum which is a candidate for the Xi(0)(3/2) member of this isospin quartet with a quark content of (dsus[-]d). The corresponding antibaryon spectra also show enhancements at the same invariant mass.

  13. Standardless multicomponent qNMR analysis of compounds with overlapped resonances based on the combination of ICA and PULCON.

    PubMed

    Monakhova, Yulia B; Lachenmeier, Dirk W; Kuballa, Thomas; Mushtakova, Svetlana P

    2015-10-01

    A fast and reliable nuclear magnetic resonance (NMR) method for quantitative analysis of targeted compounds with overlapped signals in complex mixtures has been established. The method is based on the combination of chemometric treatment for spectra deconvolution and the PULCON principle (pulse length based concentration determination) for quantification. Independent component analysis (ICA) (mutual information least dependent component analysis (MILCA) algorithm) was applied for spectra deconvolution in up to six component mixtures with known composition. The resolved matrices (independent components, ICs and ICA scores) were used for identification of analytes, calculating their relative concentrations and absolute integral intensity of selected resonances. The absolute analyte concentrations in multicomponent mixtures and authentic samples were then calculated using the PULCON principle. Instead of conventional application of absolute integral intensity in case of undisturbed signals, the multiplication of resolved IC absolute integral and its relative concentration in the mixture for each component was used. Correction factors that are required for quantification and are unique for each analyte were also estimated. The proposed method was applied for analysis of up to five components in lemon and orange juice samples with recoveries between 90% and 111%. The total duration of analysis is approximately 45 min including measurements, spectra decomposition and quantification. The results demonstrated that the proposed method is a promising tool for rapid simultaneous quantification of up to six components in case of spectral overlap and the absence of reference materials.

  14. Earthquke-related variation in Schumann Resonance (SR) spectra and Q-bursts as simulated with a global TDTE Network

    NASA Astrophysics Data System (ADS)

    Yu, H.; Williams, E. R.

    2014-12-01

    The monitoring of earthquakes with SR has been reported by Nickolaenko and Hayakawa (Nickolaenko and Hayakawa 2014, 2006, Hayakawa 2005). Despite the presence of many SR observatories globally, the observation of SR anomalies caused by earthquakes is rare. And the physical mechanism for the SR anomaly is not clear. Further attention to methods for observing SR anomalies caused by earthquakes is needed. A simulation approach based on Nelson's 2DTelegraph Equation (TDTE) Network (Nelson, MIT doctoral thesis, 1967) is developed. The Earth-ionosphere cavity is discretized into 24×24 tesserae. This network approach is more flexible than an analytical model, especially for a model with day-night asymmetry. The relation of the magnitude of the anomaly and the geometrical arrangement among source, receiver and disturbed zone is discussed for the uniform model. The perturbed zone size is computed according to the estimated size of the earthquake preparation zone. For example, the radius of the perturbed zone is about 1000km when the earthquake magnitude is about Ms=7.0. The intensity variations for the first four SR modes are compared between perturbed and unperturbed models. In addition, the spectral characteristics at different distances between source and disturbed zone are analysed. Interestingly, the electric field shows different variation than the magnetic field in response to the localized perturbation. For the uniform model with single Q-burst source, when the height of the local ionosphere is decreased, the electric field is increased and reaches nearly 50% in intensity in the perturbed zone in the uniform model. However, in contrast, the magnetic response is far less pronounced. It shows almost no variation. But for multisource excitation, the electric field and magnetic field both show dramatic response which reaches nearly 100% variation for some special modes. And the big variation is not restricted to the perturbed zone. The variations show complicated

  15. Q-Band Electron-Nuclear Double Resonance Reveals Out-of-Plane Hydrogen Bonds Stabilize an Anionic Ubisemiquinone in Cytochrome bo3 from Escherichia coli.

    PubMed

    Sun, Chang; Taguchi, Alexander T; Vermaas, Josh V; Beal, Nathan J; O'Malley, Patrick J; Tajkhorshid, Emad; Gennis, Robert B; Dikanov, Sergei A

    2016-10-11

    The respiratory cytochrome bo3 ubiquinol oxidase from Escherichia coli has a high-affinity ubiquinone binding site that stabilizes the one-electron reduced ubisemiquinone (SQH), which is a transient intermediate during the electron-mediated reduction of O2 to water. It is known that SQH is stabilized by two strong hydrogen bonds from R71 and D75 to ubiquinone carbonyl oxygen O1 and weak hydrogen bonds from H98 and Q101 to O4. In this work, SQH was investigated with orientation-selective Q-band (∼34 GHz) pulsed (1)H electron-nuclear double resonance (ENDOR) spectroscopy on fully deuterated cytochrome (cyt) bo3 in a H2O solvent so that only exchangeable protons contribute to the observed ENDOR spectra. Simulations of the experimental ENDOR spectra provided the principal values and directions of the hyperfine (hfi) tensors for the two strongly coupled H-bond protons (H1 and H2). For H1, the largest principal component of the proton anisotropic hfi tensor Tz' = 11.8 MHz, whereas for H2, Tz' = 8.6 MHz. Remarkably, the data show that the direction of the H1 H-bond is nearly perpendicular to the quinone plane (∼70° out of plane). The orientation of the second strong hydrogen bond, H2, is out of plane by ∼25°. Equilibrium molecular dynamics simulations on a membrane-embedded model of the cyt bo3 QH site show that these H-bond orientations are plausible but do not distinguish which H-bond, from R71 or D75, is nearly perpendicular to the quinone ring. Density functional theory calculations support the idea that the distances and geometries of the H-bonds to the ubiquinone carbonyl oxygens, along with the measured proton anisotropic hfi couplings, are most compatible with an anionic (deprotonated) ubisemiquinone.

  16. Evaluation of Water Exchange Kinetics on [Ln(AAZTAPh-NO2)(H2O)q](x) Complexes Using Proton Nuclear Magnetic Resonance.

    PubMed

    Karimi, Shima; Tei, Lorenzo; Botta, Mauro; Helm, Lothar

    2016-06-20

    Water exchange kinetics on [Ln(AAZTAPh-NO2)(H2O)q](-) (Ln = Gd(3+), Dy(3+), or Tm(3+)) were determined by (1)H nuclear magnetic resonance (NMR) measurements. The number of inner-sphere water molecules was found to change from two to one when going from Dy(3+) to Tm(3+). The calculated water exchange rate constants obtained by variable-temperature proton transverse relaxation rates are 3.9 × 10(6), 0.46 × 10(6), and 0.014 × 10(6) s(-1) at 298 K for Gd(3+), Dy(3+), and Tm(3+), respectively. Variable-pressure measurements were used to assess the water exchange mechanism. The results indicate an associative and dissociative interchange mechanism for Gd(3+) and Dy(3+) complexes with ΔV(⧧) values of -1.4 and 1.9 cm(3) mol(-1), respectively. An associative activation mode (Ia or A mechanism) was obtained for the Tm(3+) complex (ΔV(⧧) = -5.6 cm(3) mol(-1)). Moreover, [Dy(AAZTAPh-NO2)(H2O)2](-) with a very high transverse relaxivity value was found as a potential candidate for negative contrast agents for high-field imaging applications.

  17. Q-factor enhancement for self-actuated self-sensing piezoelectric MEMS resonators applying a lock-in driven feedback loop

    NASA Astrophysics Data System (ADS)

    Kucera, M.; Manzaneque, T.; Sánchez-Rojas, J. L.; Bittner, A.; Schmid, U.

    2013-08-01

    This paper presents a robust Q-control approach based on an all-electrical feedback loop enhancing the quality factor of a resonant microstructure by using the self-sensing capability of a piezoelectric thin film actuator made of aluminium nitride. A lock-in amplifier is used to extract the feedback signal which is proportional to the piezoelectric current. The measured real part is used to replace the originally low-quality and noisy feedback signal to modulate the driving voltage of the piezoelectric thin-film actuator. Since the lock-in amplifier reduces the noise in the feedback signal substantially, the proposed enhancement loop avoids the disadvantage of a constant signal-to-noise ratio, which an analogue feedback circuit usually suffers from. The quality factor was increased from the intrinsic value of 1766 to a maximum of 34 840 in air. These promising results facilitate precise measurements for self-actuated and self-sensing MEMS cantilevers even when operated in static viscous media.

  18. Analytical calculation of the Smith lifetime Q matrix using a Magnus propagator: Applications to the study of resonances occurring in ultracold inelastic collisions with and without an applied magnetic field

    NASA Astrophysics Data System (ADS)

    Guillon, G.; Stoecklin, T.

    2009-04-01

    We take advantage of the simple expression of the sector adiabatic wave functions of the Magnus propagator to obtain accurate values of the energy derivative of the S matrix which, in turn, is used to get the Smith lifetime Q matrix. The procedure involves the simultaneous generation of both the R matrix and its energy derivative dR /dE which are propagated along the scattering coordinate. We present a few examples of application to the field free He-N2+ inelastic collisions which we previously studied. This method is then applied to the calculation of the lifetime of tuned zero energy Feshbach resonances using a magnetic field. We give and discuss the law of variation as a function of the magnetic field of the Q matrix eigenvalues across such resonance. Some examples of application are given for the He-N2+ collisions in a magnetic field.

  19. Analytical calculation of the Smith lifetime Q matrix using a Magnus propagator: applications to the study of resonances occurring in ultracold inelastic collisions with and without an applied magnetic field.

    PubMed

    Guillon, G; Stoecklin, T

    2009-04-14

    We take advantage of the simple expression of the sector adiabatic wave functions of the Magnus propagator to obtain accurate values of the energy derivative of the S matrix which, in turn, is used to get the Smith lifetime Q matrix. The procedure involves the simultaneous generation of both the R matrix and its energy derivative dR/dE which are propagated along the scattering coordinate. We present a few examples of application to the field free He-N(2)(+) inelastic collisions which we previously studied. This method is then applied to the calculation of the lifetime of tuned zero energy Feshbach resonances using a magnetic field. We give and discuss the law of variation as a function of the magnetic field of the Q matrix eigenvalues across such resonance. Some examples of application are given for the He-N(2)(+) collisions in a magnetic field.

  20. Q-Boosted Optomechanical Resonators

    DTIC Science & Technology

    2015-11-18

    endeavor, the grant has been quite successful, as it has yielded HF to VHF optomechanical oscillators with the lowest in-class room temperature phase...Administrative POC : Ms. Patricia Gates Sponsored Projects Office University of California at Berkeley 2150 Shattuck Avenue, Room 313, Berkeley, CA...already low power consumption versus con- ventional counterparts, there is still much room for improve- ment. In a typical CSAC, the mi- cro-oven

  1. Double Resonance Sub-Doppler Study of the Allowed and DeltaK = -3 Forbidden Q(3, 3) Transitions to the nu2 Vibrational State of 14NH3.

    PubMed

    Fichoux; Khelkhal; Rusinek; Legrand; Herlemont; Urban

    1998-11-01

    The IR-IR sub-Doppler double resonance and standard saturation sideband spectroscopy have been used to measure the allowed and Deltak = -3 forbidden transitions to the nu2 vibrational level of 14NH3. The IR-IR double resonance technique has made it possible to observe quadrupole hyperfine structures which correspond to the sums as well as differences of the -3Q(3, 3) and Q(3, 3) hyperfine components. The "sum" and "difference" double resonance frequencies have been measured with accuracy better than 30 and 5 kHz, respectively. In addition to this, the hyperfine structure of the allowed Q(3, 3) transition has been independently measured using the "standard" saturation sideband spectroscopy with accuracy better than 15 kHz. A simultaneous analysis of all measured data provides an improved set of effective nuclear quadrupole and spin-rotation parameters for the excited nu2 vibrational state and frequencies of the "pure" rotation-vibration transitions deperturbed from the hyperfine effects at the experimental sample pressure of about 3 mTorr, including a very precise zero pressure value of the "forbidden" spacing between energies of the nu2 ||s, J = 3, K = 3> and ||s, J = 3, K = 0> pure rotational levels of 2883.6795(19) MHz [0.096189194(63) cm-1]. Copyright 1998 Academic Press.

  2. Fano resonances in prism-coupled multimode square micropillar resonators

    NASA Astrophysics Data System (ADS)

    Lee, Ho-Tong; Zhou, Linjie; Poon, Andrew W.

    2005-06-01

    We report Fano resonances in a multimode square glass micropillar resonator; the resonances were obtained by using angle-resolved prism coupling. Our experiments reveal characteristically asymmetric line shapes of high-Q resonances and of detuned low-Q resonances in multimode reflection spectra. The asymmetric resonance line shapes evolve for an approximately pi phase within a 0.5° range of reflection angles. We model our observed asymmetric multimode resonances by the far-field interference between a light wave that is evanescently coupled with a high-Q mode orbit and a coherent light wave that is refractively coupled with a detuned low-Q mode orbit.

  3. [Q fever].

    PubMed

    Frangoulidis, Dimitrios; Fischer, Silke F

    2015-08-01

    The article summarizes some important recently identified findings about the Coxiella burnetii disease, Q fever. Beside new diagnostic parameters for follow-up issues, the importance of a timely identification of chronic Q fever and the peculiarities of the post Q fever fatigue syndrome are depicted. © Georg Thieme Verlag KG Stuttgart · New York.

  4. The smallest resonator arrays in atmosphere by chip-size-grown nanowires with tunable Q-factor and frequency for subnanometer thickness detection.

    PubMed

    Jiang, Chengming; Tang, Chaolong; Song, Jinhui

    2015-02-11

    A chip-size vertically aligned nanowire (NW) resonator arrays (VNRs) device has been fabricated with simple one-step lithography process by using grown self-assembled zinc oxide (ZnO) NW arrays. VNR has cantilever diameter of 50 nm, which breakthroughs smallest resonator record (>100 nm) functioning in atmosphere. A new atomic displacement sensing method by using atomic force microscopy is developed to effectively identify the resonance of NW resonator with diameter 50 nm in atmosphere. Size-effect and half-dimensional properties of the NW resonator have been systematically studied. Additionally, VNR has been demonstrated with the ability of detecting nanofilm thickness with subnanometer (<10(-9)m) resolution.

  5. Measurement of cross section and electron asymmetry of the p (e(pol), e-prime pi+) n reaction in the Delta(1232) and higher resonances for Q**2 <= 4.9-(GeV/c)**2

    SciTech Connect

    Kijun Park; Inna Aznauryan; Volker Burkert; Wooyoung Kim

    2006-06-01

    The cross section and beam asymmetry were measured in channel of (pol)ep --> e'pi^+n using 5.754 GeV electron beam with CEBAF Large Acceptance Spectrometer(CLAS). This measurement covers 4 pi angular coverage and high Q^2 up to 4.9 GeV^2 under various resonance mass regions. The structure functions sigmaT + epsilonLsigmaL, sigmaTT, sigmaLT and sigmaLT/ were extracted from fit angular distribution of cross section and asymmetry.

  6. Measurement of Cross Section and Electron Asymmetry of the p(ěc {e}, e' π +)n Reaction in the Δ(1232) and Higher Resonances for Q2 ≤ 4.9 (GeV/c)2

    NASA Astrophysics Data System (ADS)

    Park, K.; Aznauryan, I.; Burkert, V.; Kim, W.

    2006-06-01

    The cross section and beam asymmetry were measured in channel of ěc {e} p -> e'π +n using 5.754 GeV electron beam with CEBAF Large Acceptance Spectrometer(CLAS). This measurement covers 4 π angular coverage and high Q2 upto 4.9 GeV2 under various resonance mass regions. The structure functions σT + ɛLσL, σTT, σLT and σLT/ were extracted from fit angular distribution of cross section and asymmetry.

  7. A universal quantitative ¹H nuclear magnetic resonance (qNMR) method for assessing the purity of dammarane-type ginsenosides.

    PubMed

    Li, Ze Yun; Welbeck, Edward; Wang, Ru Feng; Liu, Qing; Yang, Ying Bo; Chou, Gui Xin; Bi, Kai Shun; Wang, Zheng Tao

    2015-01-01

    Quantitative (1)H-NMR (qNMR) is a well-established method for quantitative analysis and purity tests. Applications have been reported in many areas, such as natural products, foods and beverages, metabolites, pharmaceuticals and agriculture. The characteristics of quantitative estimation without relying on special target reference substances make qNMR especially suitable for purity tests of chemical compounds and natural products. Ginsenosides are a special group of natural products drawing broad attention, and are considered to be the main bioactive principles behind the claims of ginsengs efficacy. The purity of ginsenosides is usually determined by conventional chromatographic methods, although these may not be ideal due to the response of detectors to discriminate between analytes and impurities and the long run times involved. To establish a qNMR method for purity tests of six dammarane-type ginsenoside standards. Several experimental parameters were optimised for the quantification, including relaxation delay (D1), the transmitter frequency offset (O1P) and power level for pre-saturation (PL9). The method was validated and the purity of the six ginsenoside standards was tested. Also, the results of the qNMR method were further validated by comparison with those of high performance liquid chromatography. The qNMR method was rapid, specific and accurate, thus providing a practical and reliable protocol for the purity analysis of ginsenoside standards. Copyright © 2014 John Wiley & Sons, Ltd.

  8. Resonance production in. gamma gamma. collisions

    SciTech Connect

    Renard, F.M.

    1983-04-01

    The processes ..gamma gamma.. ..-->.. hadrons can be depicted as follows. One photon creates a q anti q pair which starts to evolve; the other photon can either (A) make its own q anti q pair and the (q anti q q anti q) system continue to evolve or (B) interact with the quarks of the first pair and lead to a modified (q anti q) system in interaction with C = +1 quantum numbers. A review of the recent theoretical activity concerning resonance production and related problems is given under the following headings: hadronic C = +1 spectroscopy (q anti q, qq anti q anti q, q anti q g, gg, ggg bound states and mixing effects); exclusive ..gamma gamma.. processes (generalities, unitarized Born method, VDM and QCD); total cross section (soft and hard contributions); q/sup 2/ dependence of soft processes (soft/hard separation, 1/sup +- +/ resonances); and polarization effects. (WHK)

  9. Q-enhanced racetrack microresonators

    NASA Astrophysics Data System (ADS)

    Chamorro-Posada, P.

    2017-03-01

    A Q-enhancement strategy for racetrack microresonators is put forward. The design is based on the modification of the resonator geometry in order to mitigate the two main sources of radiation loss in the presence of curved waveguides: the discontinuities at the junctions between straight waveguides and the bent sections, and the continuous loss at the curved waveguide sectors. At the same time, the modifications of the geometry do not affect the versatility of coupling of racetrack resonators in integrated optical circuits, which is their main advantage over ring microresonators. The proposal is applied to the design of high-Q racetrack resonators for the silicon nitride CMOS-compatible platform having bent radii amenable for large-scale photonic integration. Numerical calculations show over 100% improvement of the Q factor in Si3N4/SiO2 resonators.

  10. BRIEF COMMUNICATIONS: Parametric generation of picosecond radiation with high spectral Q factor and diffraction-limit divergence in a resonator by mode-locked pumping

    NASA Astrophysics Data System (ADS)

    Bareĭka, B.; Dikchyus, G. A.; Piskarskas, A.; Sirutkaitis, V. A.

    1980-10-01

    A study was made of the resonator configuration of a picosecond optical parametric oscillator in which α-HIO3 crystals were excited by phase-matched pumping. The configuration ensured a high energy efficiency of the process (ηEapprox10%) even at low pump intensities. The product of the pulse duration and the band width reached τΔν = 0.7 and the divergence of the radiation was 10-3 rad, demonstrating the advantage of such resonator oscillators compared with the traveling-wave systems. The oscillator was pumped by a train of pulses of the second harmonic of a highly stable phosphate glass laser at a repetition frequency up to 2 Hz.

  11. Q Fever

    MedlinePlus

    ... infects some animals, such as goats, sheep and cattle. C. burnetii bacteria are found in the birth ... your physician... Diagnosis and Testing Recommended tests… Treatment Antibiotics to treat Q fever... Prevention Avoid getting infected... ...

  12. Q Fever

    PubMed Central

    Maurin, M.; Raoult, D.

    1999-01-01

    Q fever is a zoonosis with a worldwide distribution with the exception of New Zealand. The disease is caused by Coxiella burnetii, a strictly intracellular, gram-negative bacterium. Many species of mammals, birds, and ticks are reservoirs of C. burnetii in nature. C. burnetii infection is most often latent in animals, with persistent shedding of bacteria into the environment. However, in females intermittent high-level shedding occurs at the time of parturition, with millions of bacteria being released per gram of placenta. Humans are usually infected by contaminated aerosols from domestic animals, particularly after contact with parturient females and their birth products. Although often asymptomatic, Q fever may manifest in humans as an acute disease (mainly as a self-limited febrile illness, pneumonia, or hepatitis) or as a chronic disease (mainly endocarditis), especially in patients with previous valvulopathy and to a lesser extent in immunocompromised hosts and in pregnant women. Specific diagnosis of Q fever remains based upon serology. Immunoglobulin M (IgM) and IgG antiphase II antibodies are detected 2 to 3 weeks after infection with C. burnetii, whereas the presence of IgG antiphase I C. burnetii antibodies at titers of ≥1:800 by microimmunofluorescence is indicative of chronic Q fever. The tetracyclines are still considered the mainstay of antibiotic therapy of acute Q fever, whereas antibiotic combinations administered over prolonged periods are necessary to prevent relapses in Q fever endocarditis patients. Although the protective role of Q fever vaccination with whole-cell extracts has been established, the population which should be primarily vaccinated remains to be clearly identified. Vaccination should probably be considered in the population at high risk for Q fever endocarditis. PMID:10515901

  13. Q Q Q ¯Q ¯ states: Masses, production, and decays

    NASA Astrophysics Data System (ADS)

    Karliner, Marek; Nussinov, Shmuel; Rosner, Jonathan L.

    2017-02-01

    The question of whether there exist bound states of two heavy quarks Q =(c ,b ) and antiquarks Q ¯=(c ¯,b ¯), distinct from a pair of quark-antiquark mesons, has been debated for more than forty years. We estimate masses of Q1Q2Q¯3Q¯4 resonant states XQ1Q2Q¯3Q¯4 and suggest a means of producing and observing them. We concentrate on the c c c ¯c ¯ channel which is most easily produced and the b b b ¯b ¯ channel which has a better chance of being relatively narrow. We obtain M (Xc c c ¯ c ¯)=6,192 ±25 MeV and M (Xb b b ¯b ¯)=18,826 ±25 MeV , for the JP C=0++ states involving charmed and bottom tetraquarks, respectively. An experimental search for these states in the predicted mass range is highly desirable.

  14. Josephson junction Q-spoiler

    DOEpatents

    Clarke, J.; Hilbert, C.; Hahn, E.L.; Sleator, T.

    1986-03-25

    An automatic Q-spoiler comprising at least one Josephson tunnel junction connected in an LC circuit for flow of resonant current therethrough. When in use in a system for detecting the magnetic resonance of a gyromagnetic particle system, a high energy pulse of high frequency energy irradiating the particle system will cause the critical current through the Josephson tunnel junctions to be exceeded, causing the tunnel junctions to act as resistors and thereby damp the ringing of the high-Q detection circuit after the pulse. When the current has damped to below the critical current, the Josephson tunnel junctions revert to their zero-resistance state, restoring the Q of the detection circuit and enabling the low energy magnetic resonance signals to be detected.

  15. Josephson junction Q-spoiler

    DOEpatents

    Clarke, John; Hilbert, Claude; Hahn, Erwin L.; Sleator, Tycho

    1988-01-01

    An automatic Q-spoiler comprising at least one Josephson tunnel junction connected in an LC circuit for flow of resonant current therethrough. When in use in a system for detecting the magnetic resonance of a gyromagnetic particle system, a high energy pulse of high frequency energy irradiating the particle system will cause the critical current through the Josephson tunnel junctions to be exceeded, causing the tunnel junctions to act as resistors and thereby damp the ringing of the high-Q detection circuit after the pulse. When the current has damped to below the critical current, the Josephson tunnel junctions revert to their zero-resistance state, restoring the Q of the detection circuit and enabling the low energy magnetic resonance signals to be detected.

  16. Single π+ electroproduction on the proton in the first and second resonance regions at 0.25GeV2<Q2<0.65GeV2

    NASA Astrophysics Data System (ADS)

    Egiyan, H.; Aznauryan, I. G.; Burkert, V. D.; Griffioen, K. A.; Joo, K.; Minehart, R.; Smith, L. C.; Adams, G.; Ambrozewicz, P.; Anciant, E.; Anghinolfi, M.; Asavapibhop, B.; Audit, G.; Auger, T.; Avakian, H.; Bagdasaryan, H.; Ball, J. P.; Baltzel, N.; Barrow, S.; Battaglieri, M.; Beard, K.; Bektasoglu, M.; Bellis, M.; Benmouna, N.; Bianchi, N.; Biselli, A. S.; Boiarinov, S.; Bonner, B. E.; Bouchigny, S.; Bradford, R.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Butuceanu, C.; Calarco, J. R.; Careccia, S. L.; Carman, D. S.; Carnahan, B.; Cetina, C.; Chen, S.; Cole, P. L.; Coleman, A.; Cords, D.; Corvisiero, P.; Crabb, D.; Crannell, H.; Cummings, J. P.; Desanctis, E.; Devita, R.; Degtyarenko, P. V.; Denizli, H.; Dennis, L.; Dharmawardane, K. V.; Djalali, C.; Dodge, G. E.; Donnely, J.; Doughty, D.; Dragovitsch, P.; Dugger, M.; Dytman, S.; Dzyubak, O. P.; Eckhause, M.; Egiyan, K. S.; Elouadrhiri, L.; Empl, A.; Eugenio, P.; Fatemi, R.; Fedotov, G.; Feldman, G.; Feuerbach, R. J.; Forest, T. A.; Funsten, H.; Gaff, S. J.; Gai, M.; Gavalian, G.; Gilad, S.; Gilfoyle, G. P.; Giovanetti, K. L.; Girard, P.; Goetz, G. T.; Gordon, C. I.; Gothe, R.; Guidal, M.; Guillo, M.; Guler, N.; Guo, L.; Gyurjyan, V.; Hadjidakis, C.; Hakobyan, R. S.; Hardie, J.; Heddle, D.; Hersman, F. W.; Hicks, K.; Hicks, R. S.; Hleiqawi, I.; Holtrop, M.; Hu, J.; Hyde-Wright, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B.; Ito, M. M.; Jenkins, D.; Juengst, H. G.; Kelley, J. H.; Kellie, J. D.; Khandaker, M.; Kim, D. H.; Kim, K. Y.; Kim, K.; Kim, M. S.; Kim, W.; Klein, A.; Klein, F. J.; Klimenko, A. V.; Klusman, M.; Kossov, M.; Kramer, L. H.; Kuang, Y.; Kubarovsky, V.; Kuhn, S. E.; Kuhn, J.; Lachniet, J.; Laget, J. M.; Langheinrich, J.; Lawrence, D.; Li, Ji; Livingston, K.; Longhi, A.; Lukashin, K.; Manak, J. J.; Marchand, C.; McAleer, S.; McKinnon, B.; McNabb, J. W.; Mecking, B. A.; Mehrabyan, S.; Melone, J. J.; Mestayer, M. D.; Meyer, C. A.; Mikhailov, K.; Mirazita, M.; Miskimen, R.; Mokeev, V.; Morand, L.; Morrow, S. A.; Muccifora, V.; Mueller, J.; Murphy, L. Y.; Mutchler, G. S.; Napolitano, J.; Nasseripour, R.; Nelson, S. O.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niyazov, R. A.; Nozar, M.; O'Rielly, G. V.; Osipenko, M.; Park, K.; Pasyuk, E.; Peterson, G.; Philips, S. A.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Polli, E.; Pozdniakov, S.; Preedom, B. M.; Price, J. W.; Prok, Y.; Protopopescu, D.; Qin, L. M.; Raue, B. A.; Riccardi, G.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Ronchetti, F.; Rosner, G.; Rossi, P.; Rowntree, D.; Rubin, P. D.; Sabatié, F.; Sabourov, K.; Salgado, C.; Santoro, J. P.; Sapunenko, V.; Sargsyan, M.; Schumacher, R. A.; Serov, V. S.; Shafi, A.; Sharabian, Y. G.; Shaw, J.; Simionatto, S.; Skabelin, A. V.; Smith, E. S.; Sober, D. I.; Spraker, M.; Stavinsky, A.; Stepanyan, S.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Taylor, S.; Tedeschi, D. J.; Thoma, U.; Thompson, R.; Tkabladze, A.; Todor, L.; Tur, C.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Wang, K.; Weinstein, L. B.; Weller, H.; Weygand, D. P.; Whisnant, C. S.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Yun, J.; Zhang, J.; Zhao, J.; Zhou, Z.

    2006-02-01

    The ep→e'π+n reaction was studied in the first and second nucleon resonance regions in the 0.25 GeV2<Q2<0.65 GeV2 range by use of the CLAS detector at Thomas Jefferson National Accelerator Facility. For the first time, to our knowledge, the absolute cross sections were measured, covering nearly the full angular range in the hadronic center-of-mass frame. We extracted the structure functions σTL,σTT, and the linear combination σT+ɛσL by fitting the ϕ dependence of the measured cross sections and compared them with the MAID and Sato-Lee models.

  17. Investigations of the radial propagation of blob-like structure in a non-confined electron cyclotron resonance heated plasma on Q-shu University Experiment with a Steady-State Spherical Tokamak

    SciTech Connect

    Ogata, R.; Liu, H. Q.; Ishiguro, M.; Ikeda, T.; Hanada, K.; Zushi, H.; Nakamura, K.; Fujisawa, A.; Idei, H.; Hasegawa, M.; Kawasaki, S.; Nakashima, H.; Higashijima, A.; Nishino, N.; Collaboration: QUEST Group

    2011-09-15

    A study of radial propagation and electric fields induced by charge separation in blob-like structures has been performed in a non-confined cylindrical electron cyclotron resonance heating plasma on Q-shu University Experiment with a Steady-State Spherical Tokamak using a fast-speed camera and a Langmuir probe. The radial propagation of the blob-like structures is found to be driven by E x B drift. Moreover, these blob-like structures were found to have been accelerated, and the property of the measured radial velocities agrees with the previously proposed model [C. Theiler et al., Phys. Rev. Lett. 103, 065001 (2009)]. Although the dependence of the radial velocity on the connection length of the magnetic field appeared to be different, a plausible explanation based on enhanced short-circuiting of the current path can be proposed.

  18. Measurement of target and double-spin asymmetries for the $\\vec e\\vec p\\to e\\pi^+ (n)$ reaction in the nucleon resonance region at low $Q^2$

    SciTech Connect

    Zheng, X.; Adhikari, K. P.; Bosted, P.; Deur, A.; Drozdov, V.; El Fassi, L.; Kang, Hyekoo; Kovacs, K.; Kuhn, S.; Long, E.; Phillips, S. K.; Ripani, M.; Slifer, K.; Smith, L. C.; Adikaram, D.; Akbar, Z.; Amaryan, M. J.; Anefalos Pereira, S.; Asryan, G.; Avakian, H.; Badui, R. A.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Briscoe, W. J.; Bültmann, S.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Chen, J. -P.; Chetry, T.; Choi, Seonho; Ciullo, G.; Clark, L.; Colaneri, L.; Cole, P. L.; Compton, N.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Djalali, C.; Dodge, G. E.; Dupre, R.; Egiyan, H.; El Alaoui, A.; Elouadrhiri, L.; Eugenio, P.; Fanchini, E.; Fedotov, G.; Fersch, R.; Filippi, A.; Fleming, J. A.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gleason, C.; Golovach, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guler, N.; Guo, L.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hughes, S. M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jenkins, D.; Jiang, H.; Jo, H. S.; Joosten, S.; Keller, D.; Khachatryan, G.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Kubarovsky, V.; Lanza, L.; Lenisa, P.; Livingston, K.; MacGregor, I. J. D.; Markov, N.; McKinnon, B.; Mirazita, M.; Mokeev, V.; Movsisyan, A.; Munevar, E.; Munoz Camacho, C.; Murdoch, G.; Nadel-Turonski, P.; Net, L. A.; Ni, A.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Peng, P.; Pisano, S.; Pogorelko, O.; Price, J. W.; Puckett, A. J. R.; Raue, B. A.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Salgado, C.; Schumacher, R. A.; Sharabian, Y. G.; Skorodumina, Iu.; Smith, G. D.; Sokhan, D.; Sparveris, N.; Stankovic, I.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Tian, Ye; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zhang, J.; Zonta, I.

    2016-10-19

    We report measurements of target- and double-spin asymmetries for the exclusive channel $\\vec e\\vec p\\to e\\pi^+ (n)$ in the nucleon resonance region at Jefferson Lab using the CEBAF Large Acceptance Spectrometer (CLAS). These asymmetries were extracted from data obtained using a longitudinally polarized NH$_3$ target and a longitudinally polarized electron beam with energies 1.1, 1.3, 2.0, 2.3 and 3.0 GeV. The new results are consistent with previous CLAS publications but are extended to a low $Q^2$ range from $0.0065$ to $0.35$ (GeV$/c$)$^2$. The $Q^2$ access was made possible by a custom-built Cherenkov detector that allowed the detection of electrons for scattering angles as low as $6^\\circ$. These results are compared with the unitary isobar models JANR and MAID, the partial-wave analysis prediction from SAID and the dynamic model DMT. In many kinematic regions our results, in particular results on the target asymmetry, help to constrain the polarization-dependent components of these models.

  19. Measurement of target and double-spin asymmetries for the $$\\vec e\\vec p\\to e\\pi^+ (n)$$ reaction in the nucleon resonance region at low $Q^2$

    DOE PAGES

    Zheng, X.; Adhikari, K. P.; Bosted, P.; ...

    2016-10-19

    We report measurements of target- and double-spin asymmetries for the exclusive channelmore » $$\\vec e\\vec p\\to e\\pi^+ (n)$$ in the nucleon resonance region at Jefferson Lab using the CEBAF Large Acceptance Spectrometer (CLAS). These asymmetries were extracted from data obtained using a longitudinally polarized NH$$_3$$ target and a longitudinally polarized electron beam with energies 1.1, 1.3, 2.0, 2.3 and 3.0 GeV. The new results are consistent with previous CLAS publications but are extended to a low $Q^2$ range from $0.0065$ to $0.35$ (GeV$/c$)$^2$. The $Q^2$ access was made possible by a custom-built Cherenkov detector that allowed the detection of electrons for scattering angles as low as $$6^\\circ$$. These results are compared with the unitary isobar models JANR and MAID, the partial-wave analysis prediction from SAID and the dynamic model DMT. In many kinematic regions our results, in particular results on the target asymmetry, help to constrain the polarization-dependent components of these models.« less

  20. Measurement of target and double-spin asymmetries for the e ⃗p ⃗→e π+(n ) reaction in the nucleon resonance region at low Q2

    NASA Astrophysics Data System (ADS)

    Zheng, X.; Adhikari, K. P.; Bosted, P.; Deur, A.; Drozdov, V.; El Fassi, L.; Kang, Hyekoo; Kovacs, K.; Kuhn, S.; Long, E.; Phillips, S. K.; Ripani, M.; Slifer, K.; Smith, L. C.; Adikaram, D.; Akbar, Z.; Amaryan, M. J.; Anefalos Pereira, S.; Asryan, G.; Avakian, H.; Badui, R. A.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Briscoe, W. J.; Bültmann, S.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Chen, J.-P.; Chetry, T.; Choi, Seonho; Ciullo, G.; Clark, L.; Colaneri, L.; Cole, P. L.; Compton, N.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Djalali, C.; Dodge, G. E.; Dupre, R.; Egiyan, H.; El Alaoui, A.; Elouadrhiri, L.; Eugenio, P.; Fanchini, E.; Fedotov, G.; Fersch, R.; Filippi, A.; Fleming, J. A.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gleason, C.; Golovach, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guler, N.; Guo, L.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hughes, S. M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jenkins, D.; Jiang, H.; Jo, H. S.; Joosten, S.; Keller, D.; Khachatryan, G.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Kubarovsky, V.; Lanza, L.; Lenisa, P.; Livingston, K.; MacGregor, I. J. D.; Markov, N.; McKinnon, B.; Mirazita, M.; Mokeev, V.; Movsisyan, A.; Munevar, E.; Munoz Camacho, C.; Murdoch, G.; Nadel-Turonski, P.; Net, L. A.; Ni, A.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Peng, P.; Pisano, S.; Pogorelko, O.; Price, J. W.; Puckett, A. J. R.; Raue, B. A.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Salgado, C.; Schumacher, R. A.; Sharabian, Y. G.; Skorodumina, Iu.; Smith, G. D.; Sokhan, D.; Sparveris, N.; Stankovic, I.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Tian, Ye; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zhang, J.; Zonta, I.; CLAS Collaboration

    2016-10-01

    We report measurements of target- and double-spin asymmetries for the exclusive channel e ⃗p ⃗→e π+(n ) in the nucleon resonance region at Jefferson Lab using the CEBAF Large Acceptance Spectrometer (CLAS). These asymmetries were extracted from data obtained using a longitudinally polarized NH3 target and a longitudinally polarized electron beam with energies 1.1, 1.3, 2.0, 2.3, and 3.0 GeV. The new results are consistent with previous CLAS publications but are extended to a low Q2 range from 0.0065 to 0.35 (GeV/c ) 2 . The Q2 access was made possible by a custom-built Cherenkov detector that allowed the detection of electrons for scattering angles as low as 6∘. These results are compared with the unitary isobar models JANR and MAID, the partial-wave analysis prediction from SAID, and the dynamic model DMT. In many kinematic regions our results, in particular results on the target asymmetry, help to constrain the polarization-dependent components of these models.

  1. Measurement of Differential Cross Sections of p(e, e‧π+)n for High-Lying Resonances at Q2 < 5 GeV2

    NASA Astrophysics Data System (ADS)

    Park, Kijun

    2014-01-01

    The exclusive electroproduction process ep → e‧nπ+ was measured in the range of the invariant mass for nπ+ system 1.6 GeV ≤ W ≤ 2.0 GeV, and the photon virtuality 1.8 GeV2 ≤ Q2 ≤ 4.0 GeV2 using CLAS. For the first time, these kinematics are probed in exclusive π+ production from the protons with nearly full coverage in the azimuthal and polar angles of the nπ+ center-of-mass system. In this experiment, approximately 39,000 differential cross-section data points were measured. In this conference proceeding, preliminary results of our latest analysis work are presented on differential cross sections and structure functions as well as Legendre Moments.

  2. Q fever.

    PubMed Central

    Reimer, L G

    1993-01-01

    Q fever is an acute febrile illness first described in 1935 and now seen in many parts of the world. Human infection follows exposure to animals, especially domestic livestock. Recent outbreaks in metropolitan areas have implicated cats as the carrier of disease to humans. The etiologic agent, Coxiella burnetti, belongs to the family Rickettsiaceae, although it has distinct genetic characteristics and modes of transmission. Most recent attention has been focused on a number of large outbreaks of Q fever associated with medical research involving pregnant sheep. Although most infections are self-limited, some patients require prolonged treatment. Recent vaccines have had encouraging success in the prevention of disease in individuals at high risk of exposure. PMID:8358703

  3. Cross sections and beam asymmetries for $\\vev{e}p \\to en\\pi^+$ in the nucleon resonance region for $1.7 \\le Q^2 \\le 4.5 (GeV)^2$

    SciTech Connect

    K. Park; V.D. Burkert; W. Kim; CLAS Collaboration

    2008-01-01

    The exclusive electroproduction process $\\vec{e}p \\to e^\\prime n \\pi^+$ was measured in the range of the photon virtuality $Q^2 = 1.7 - 4.5 \\rm{GeV^2}$, and the invariant mass range for the $n\\pi^+$ system of $W = 1.15 - 1.7 \\rm{GeV}$ using the CEBAF Large Acceptance Spectrometer. For the first time, these kinematics are probed in exclusive $\\pi^+$ production from protons with nearly full coverage in the azimuthal and polar angles of the $n\\pi^+$ center-of-mass system. The $n\\pi^+$ channel has particular sensitivity to the isospin 1/2 excited nucleon states, and together with the $p\\pi^0$ final state will serve to determine the transition form factors of a large number of resonances. The largest discrepancy between these results and present modes was seen in the $\\sigma_{LT'}$ structure function. In this experiment, 31,295 cross section and 4,184 asymmetry data points were measured. Because of the large volume of data, only a reduced set of structure functions and Legendre polynomial moments can be presented that are obtained in model-independent fits to the differential cross sections.

  4. Cross sections and beam asymmetries for e→p→enπ+ in the nucleon resonance region for 1.7⩽Q2⩽4.5 GeV2

    NASA Astrophysics Data System (ADS)

    Park, K.; Burkert, V. D.; Kim, W.; Aznauryan, I. G.; Minehart, R.; Smith, L. C.; Joo, K.; Elouadrhiri, L.; Adams, G.; Amaryan, M. J.; Ambrozewicz, P.; Anghinolfi, M.; Asryan, G.; Avakian, H.; Bagdasaryan, H.; Baillie, N.; Ball, J. P.; Baltzell, N. A.; Barrow, S.; Batourine, V.; Battaglieri, M.; Bedlinskiy, I.; Bektasoglu, M.; Bellis, M.; Benmouna, N.; Berman, B. L.; Biselli, A. S.; Blaszczyk, L.; Bonner, B. E.; Bookwalter, C.; Bouchigny, S.; Boiarinov, S.; Bradford, R.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Bültmann, S.; Butuceanu, C.; Calarco, J. R.; Careccia, S. L.; Carman, D. S.; Casey, L.; Cazes, A.; Chen, S.; Cheng, L.; Cole, P. L.; Collins, P.; Coltharp, P.; Cords, D.; Corvisiero, P.; Crabb, D.; Crede, V.; Cummings, J. P.; Dale, D.; Dashyan, N.; Masi, R. De; Vita, R. De; Sanctis, E. De; Degtyarenko, P. V.; Denizli, H.; Dennis, L.; Deur, A.; Dhamija, S.; Dharmawardane, K. V.; Dhuga, K. S.; Dickson, R.; Djalali, C.; Dodge, G. E.; Donnelly, J.; Doughty, D.; Dugger, M.; Dytman, S.; Dzyubak, O. P.; Egiyan, H.; Egiyan, K. S.; Fassi, L. El; Eugenio, P.; Fatemi, R.; Fedotov, G.; Feldman, G.; Feuerbach, R. J.; Forest, T. A.; Fradi, A.; Funsten, H.; Gabrielyan, M. Y.; Garçon, M.; Gavalian, G.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gonenc, A.; Gordon, C. I. O.; Gothe, R. W.; Graham, L.; Griffioen, K. A.; Guidal, M.; Guillo, M.; Guler, N.; Guo, L.; Gyurjyan, V.; Hadjidakis, C.; Hafidi, K.; Hafnaoui, K.; Hakobyan, H.; Hakobyan, R. S.; Hanretty, C.; Hardie, J.; Hassall, N.; Heddle, D.; Hersman, F. W.; Hicks, K.; Hleiqawi, I.; Holtrop, M.; Hyde-Wright, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Ito, M. M.; Jenkins, D.; Jo, H. S.; Johnstone, J. R.; Juengst, H. G.; Kalantarians, N.; Keller, D.; Kellie, J. D.; Khandaker, M.; Kim, K. Y.; Klein, A.; Klein, F. J.; Klimenko, A. V.; Klusman, M.; Kossov, M.; Krahn, Z.; Kramer, L. H.; Kubarovsky, V.; Kuhn, J.; Kuhn, S. E.; Kuleshov, S. V.; Kuznetsov, V.; Lachniet, J.; Laget, J. M.; Langheinrich, J.; Lawrence, D.; Lee, T.; Li, Ji; Lima, A. C. S.; Livingston, K.; Lu, H. Y.; Lukashin, K.; MacCormick, M.; Markov, N.; Mattione, P.; McAleer, S.; McKinnon, B.; McNabb, J. W. C.; Mecking, B. A.; Mehrabyan, S.; Melone, J. J.; Mestayer, M. D.; Meyer, C. A.; Mibe, T.; Mikhailov, K.; Mirazita, M.; Miskimen, R.; Mokeev, V.; Morand, L.; Moreno, B.; Moriya, K.; Morrow, S. A.; Moteabbed, M.; Mueller, J.; Munevar, E.; Mutchler, G. S.; Nadel-Turonski, P.; Nasseripour, R.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niroula, M. R.; Niyazov, R. A.; Nozar, M.; O'Rielly, G. V.; Osipenko, M.; Ostrovidov, A. I.; Park, S.; Pasyuk, E.; Paterson, C.; Pereira, S. Anefalos; Philips, S. A.; Pierce, J.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Polli, E.; Popa, I.; Pozdniakov, S.; Preedom, B. M.; Price, J. W.; Prok, Y.; Protopopescu, D.; Qin, L. M.; Raue, B. A.; Riccardi, G.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Ronchetti, F.; Rosner, G.; Rossi, P.; Rowntree, D.; Rubin, P. D.; Sabatié, F.; Saini, M. S.; Salamanca, J.; Salgado, C.; Santoro, J. P.; Sapunenko, V.; Schott, D.; Schumacher, R. A.; Serov, V. S.; Sharabian, Y. G.; Sharov, D.; Shaw, J.; Shvedunov, N. V.; Skabelin, A. V.; Smith, E. S.; Sober, D. I.; Sokhan, D.; Stavinsky, A.; Stepanyan, S. S.; Stepanyan, S.; Stokes, B. E.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Suleiman, R.; Taiuti, M.; Takeuchi, T.; Tedeschi, D. J.; Tkabladze, A.; Tkachenko, S.; Todor, L.; Tur, C.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Watts, D. P.; Weinstein, L. B.; Weygand, D. P.; Williams, M.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Yun, J.; Yurov, M.; Zana, L.; Zhang, B.; Zhang, J.; Zhao, B.; Zhao, Z. W.

    2008-01-01

    The exclusive electroproduction process e→p→e'nπ+ was measured in the range of the photon virtuality Q2=1.7-4.5GeV2, and the invariant mass range for the nπ+ system of W=1.15-1.7GeV using the CEBAF Large Acceptance Spectrometer. For the first time, these kinematics are probed in exclusive π+ production from protons with nearly full coverage in the azimuthal and polar angles of the nπ+ center-of-mass system. The nπ+ channel has particular sensitivity to the isospin ½ excited nucleon states, and together with the pπ0 final state will serve to determine the transition form factors of a large number of resonances. The largest discrepancy between these results and present modes was seen in the σLT' structure function. In this experiment, 31,295 cross section and 4,184 asymmetry data points were measured. Because of the large volume of data, only a reduced set of structure functions and Legendre polynomial moments can be presented that are obtained in model-independent fits to the differential cross sections.

  5. Association Between Early Q Waves and Reperfusion Success in Patients With ST-Segment-Elevation Myocardial Infarction Treated With Primary Percutaneous Coronary Intervention: A Cardiac Magnetic Resonance Imaging Study.

    PubMed

    Topal, Divan Gabriel; Lønborg, Jacob; Ahtarovski, Kiril Aleksov; Nepper-Christensen, Lars; Helqvist, Steffen; Holmvang, Lene; Pedersen, Frants; Clemmensen, Peter; Saünamaki, Kari; Jørgensen, Erik; Kyhl, Kasper; Ghotbi, Ali; Schoos, Mikkel Malby; Göransson, Christoffer; Bertelsen, Litten; Høfsten, Dan; Køber, Lars; Kelbæk, Henning; Vejlstrup, Niels; Engstrøm, Thomas

    2017-03-01

    Pathological early Q waves (QW) are associated with adverse outcomes in patients with ST-segment-elevation myocardial infarction (STEMI). Primary percutaneous coronary intervention (PCI) may therefore be less beneficial in patients with QW than in patients without QW. Myocardial salvage index and microvascular obstruction (MVO) are markers for reperfusion success. Thus, to clarify the benefit from primary PCI in STEMI patients with QW, we examined the association between baseline QW and myocardial salvage index and MVO in STEMI patients treated with primary PCI. The ECG was assessed before primary PCI for the presence of QW (early) in 515 STEMI patients. The patients underwent a cardiac magnetic resonance imaging scan at day 1 (interquartile range [IQR], 1-1) and again at day 92 (IQR, 89-96). Early QW was observed in 108 (21%) patients and was related to smaller final myocardial salvage index (0.59 [IQR, 0.39-0.69] versus 0.65 [IQR, 0.46-0.84]; P<0.001) and larger MVO (1.4 [IQR, 0.0-5.4] versus 0.0 [IQR, 0.0-2.4]; P<0.001) compared with non-QW. QW remained associated with both final myocardial salvage index (β=-0.12; P=0.03) and MVO (β=0.18; P=0.001) after adjusting for potential confounders. Patients presenting with their first STEMI and early QW in the ECG had smaller myocardial salvage index and more extensive MVO than non-QW despite treatment within 12 hours after symptom onset. However, final myocardial salvage index in patients with QW was substantial, and patients with QW still benefit from primary PCI. URL: http://www.clinicaltrials.gov. Unique identifier: NCT01435408. © 2017 American Heart Association, Inc.

  6. Interstitial deletion (6)q13q15

    SciTech Connect

    Gershoni-Baruch, R.; Mandel, H.; Bar El, H.; Bar-Nizan, N.; Borochowitz, Z.; Dar, Hanna

    1996-04-24

    We report on a 2-year-old child with psychomotor retardation, facial and urogenital anomalies. His chromosome constitution was 46,XY,del(6)(q13q15). This case further contributes to the karyotype-phenotype correlation of proximal deletion 6q syndromes. 18 refs., 3 figs., 1 tab.

  7. Open-flavor charm and bottom s q q ¯ Q ¯ and q q q ¯ Q ¯ tetraquark states

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Chen, Hua-Xing; Liu, Xiang; Steele, T. G.; Zhu, Shi-Lin

    2017-06-01

    We provide comprehensive investigations for the mass spectrum of exotic open-flavor charmed/bottom s q q ¯ c ¯ , q q q ¯ c ¯ , s q q ¯ b ¯ , q q q ¯ b ¯ tetraquark states with various spin-parity assignments JP=0+,1+,2+ and 0- , 1- in the framework of QCD sum rules. In the diquark configuration, we construct the diquark-antidiquark interpolating tetraquark currents using the color-antisymmetric scalar and axial-vector diquark fields. The stable mass sum rules are established in reasonable parameter working ranges, which are used to give reliable mass predictions for these tetraquark states. We obtain the mass spectra for the open-flavor charmed/bottom s q q ¯c ¯, q q q ¯c ¯, s q q ¯b ¯, q q q ¯b ¯ tetraquark states with various spin-parity quantum numbers. In addition, we suggest searching for exotic doubly-charged tetraquarks, such as [s d ][u ¯ c ¯ ]→Ds(*)-π- in future experiments at facilities such as BESIII, BelleII, PANDA, LHCb, and CMS, etc.

  8. Optical Resonators and Filters

    NASA Astrophysics Data System (ADS)

    Haus, Hermann A.; Popović, Miloš A.; Watts, Michael R.; Manolatou, Christina; Little, Brent E.; Chu, Sai T.

    Dielectric optical resonators of small size are considered for densely-integrated optical components. High-index-contrast microresonators of low Q are shown, using microwave design principles, to permit wavelength-sized, low-loss, reflectionless waveguide bends and low-crosstalk waveguide crossings. The analysis and synthesis of high Q high-order microring- and racetrack-resonator channel add/drop filters are reviewed, supplemented by simulation examples. Standing-wave, distributed Bragg resonator filters are also described. The study is unified by a coupled-mode theory approach. Rigorous numerical simulations are justified for the design of high-index-contrast optical "circuits". Integrated-optical components are described within a polarization-diversity scheme that circumvents the inherent polarization dependence of high-index-contrast devices. Filters fabricated in academic and commercial research, and a review of microring resonator technology, advances and applications are presented.

  9. SNAKE DEPLORIZING RESONANCE STUDY IN RHIC

    SciTech Connect

    BAI,M.; CAMERON, P.; LUCCIO, A.; HUANG, H.; PITISYN, V.; ET AL.

    2007-06-25

    Snake depolarizing resonances due to the imperfect cancellation of the accumulated perturbations on the spin precession between snakes were observed at the Relativistic Heavy Ion Collider (RHIC). During the RHIC 2005 and 2006 polarized proton runs, we mapped out the spectrum of odd order snake resonance at Q{sub y} = 7/10. Here, Q, is the beam vertical betatron tune. We also studied the beam polarization after crossing the 7/10th resonance as a function of resonance crossing rate. This paper reports the measured resonance spectrum as well as the results of resonance crossing.

  10. Dynamically tuned high-Q AC-dipole implementation

    SciTech Connect

    Oddo, P.; Bai, M.; Dawson, W.C.; Meng, W.; Mernick, K.; Pai, C.; Roser, T.; Russo, T.

    2010-05-02

    AC-dipole magnets are typically implemented as a parallel LC resonant circuit. To maximize efficiency, it's beneficial to operate at a high Q. This, however, limits the magnet to a narrow frequency range. Current designs therefore operate at a low Q to provide a wider bandwidth at the cost of efficiency. Dynamically tuning a high Q resonant circuit tries to maintain a high efficiency while providing a wide frequency range. The results of ongoing efforts at BNL to implement dynamically tuned high-Q AC dipoles will be presented.

  11. Lateral acoustic wave resonator comprising a suspended membrane of low damping resonator material

    DOEpatents

    Olsson, Roy H.; El-Kady; , Ihab F.; Ziaei-Moayyed, Maryam; Branch; , Darren W.; Su; Mehmet F.,; Reinke; Charles M.,

    2013-09-03

    A very high-Q, low insertion loss resonator can be achieved by storing many overtone cycles of a lateral acoustic wave (i.e., Lamb wave) in a lithographically defined suspended membrane comprising a low damping resonator material, such as silicon carbide. The high-Q resonator can sets up a Fabry-Perot cavity in a low-damping resonator material using high-reflectivity acoustic end mirrors, which can comprise phononic crystals. The lateral overtone acoustic wave resonator can be electrically transduced by piezoelectric couplers. The resonator Q can be increased without increasing the impedance or insertion loss by storing many cycles or wavelengths in the high-Q resonator material, with much lower damping than the piezoelectric transducer material.

  12. Modal analysis of Bragg onion resonators

    NASA Astrophysics Data System (ADS)

    Xu, Yong; Liang, Wei; Yariv, Amnon; Fleming, James G.; Lin, Shawn-Yu

    2004-03-01

    From analysis of the high Q modes in a Bragg onion resonator with an omnidirectional reflector cladding, we establish a close analogy between such a resonator and a spherical hollow cavity in perfect metal. We demonstrate that onion resonators are ideal for applications that require a large spontaneous-emission factor ß, such as thresholdless lasers and single-photon devices.

  13. Coenzyme Q10 Therapy

    PubMed Central

    Garrido-Maraver, Juan; Cordero, Mario D.; Oropesa-Ávila, Manuel; Fernández Vega, Alejandro; de la Mata, Mario; Delgado Pavón, Ana; de Miguel, Manuel; Pérez Calero, Carmen; Villanueva Paz, Marina; Cotán, David; Sánchez-Alcázar, José A.

    2014-01-01

    For a number of years, coenzyme Q10 (CoQ10) was known for its key role in mitochondrial bioenergetics; later studies demonstrated its presence in other subcellular fractions and in blood plasma, and extensively investigated its antioxidant role. These 2 functions constitute the basis for supporting the clinical use of CoQ10. Also, at the inner mitochondrial membrane level, CoQ10 is recognized as an obligatory cofactor for the function of uncoupling proteins and a modulator of the mitochondrial transition pore. Furthermore, recent data indicate that CoQ10 affects the expression of genes involved in human cell signaling, metabolism and transport, and some of the effects of CoQ10 supplementation may be due to this property. CoQ10 deficiencies are due to autosomal recessive mutations, mitochondrial diseases, aging-related oxidative stress and carcinogenesis processes, and also statin treatment. Many neurodegenerative disorders, diabetes, cancer, and muscular and cardiovascular diseases have been associated with low CoQ10 levels as well as different ataxias and encephalomyopathies. CoQ10 treatment does not cause serious adverse effects in humans and new formulations have been developed that increase CoQ10 absorption and tissue distribution. Oral administration of CoQ10 is a frequent antioxidant strategy in many diseases that may provide a significant symptomatic benefit. PMID:25126052

  14. Electroexcitation of nucleon resonances

    SciTech Connect

    Inna Aznauryan, Volker D. Burkert

    2012-01-01

    We review recent progress in the investigation of the electroexcitation of nucleon resonances, both in experiment and in theory. The most accurate results have been obtained for the electroexcitation amplitudes of the four lowest excited states, which have been measured in a range of Q2 up to 8 and 4.5 GeV2 for the Delta(1232)P33, N(1535)S11 and N(1440)P11, N(1520)D13, respectively. These results have been confronted with calculations based on lattice QCD, large-Nc relations, perturbative QCD (pQCD), and QCD-inspired models. The amplitudes for the Delta(1232) indicate large pion-cloud contributions at low Q2 and don't show any sign of approaching the pQCD regime for Q2<7 GeV2. Measured for the first time, the electroexcitation amplitudes of the Roper resonance, N(1440)P11, provide strong evidence for this state as a predominantly radial excitation of a three-quark (3q) ground state, with additional non-3-quark contributions needed to describe the low Q2 behavior of the amplitudes. The longitudinal transition amplitude for the N(1535)S11 was determined and has become a challenge for quark models. Explanations may require large meson-cloud contributions or alternative representations of this state. The N(1520)D13 clearly shows the rapid changeover from helicity-3/2 dominance at the real photon point to helicity-1/2 dominance at Q2 > 0.5 GeV2, confirming a long-standing prediction of the constituent quark model. The interpretation of the moments of resonance transition form factors in terms of transition transverse charge distributions in infinite momentum frame is presented.

  15. Microstrip resonators for electron paramagnetic resonance experiments.

    PubMed

    Torrezan, A C; Mayer Alegre, T P; Medeiros-Ribeiro, G

    2009-07-01

    In this article we evaluate the performance of an electron paramagnetic resonance (EPR) setup using a microstrip resonator (MR). The design and characterization of the resonator are described and parameters of importance to EPR and spin manipulation are examined, including cavity quality factor, filling factor, and microwave magnetic field in the sample region. Simulated microwave electric and magnetic field distributions in the resonator are also presented and compared with qualitative measurements of the field distribution obtained by a perturbation technique. Based on EPR experiments carried out with a standard marker at room temperature and a MR resonating at 8.17 GHz, the minimum detectable number of spins was found to be 5 x 10(10) spins/GHz(1/2) despite the low MR unloaded quality factor Q0=60. The functionality of the EPR setup was further evaluated at low temperature, where the spin resonance of Cr dopants present in a GaAs wafer was detected at 2.3 K. The design and characterization of a more versatile MR targeting an improved EPR sensitivity and featuring an integrated biasing circuit for the study of samples that require an electrical contact are also discussed.

  16. k and q Dedicated to Paul Callaghan

    NASA Astrophysics Data System (ADS)

    Blümich, Bernhard

    2016-06-01

    The symbols k and q denote wave numbers in scattering experiments as well as in NMR imaging. Their exploration in NMR is intimately linked to the legacy of Paul Callaghan with his books Magnetic Resonance Microscopy and Translational Dynamics & Magnetic Resonance (Oxford University Press, Oxford 1991 and 2011) placing their focus with their titles on k and q, respectively. Some aspects of k and q have been revisited in the Paul Callaghan lecture of the author at the ISMAR Conference in Shanghai in 2015, which are reviewed here. In particular, there are two definitions of q, one relating to diffusive displacement (q) and the other to coherent flow (qv). Concerning the latter, it turns out, that in the short gradient pulse limit, the common anti-phase pulsed field-gradient scheme can be replaced with schemes employing three and more gradient pulses, which derive from differentiation rules in numerical analysis. Practical gradient modulation schemes with finite gradient pulse widths follow from these to measure velocity with improved accuracy. This approach can be expanded to acceleration and higher order transport coefficients with applications to measurements of flow and potentially also restricted diffusion.

  17. k and q Dedicated to Paul Callaghan.

    PubMed

    Blümich, Bernhard

    2016-06-01

    The symbols k and q denote wave numbers in scattering experiments as well as in NMR imaging. Their exploration in NMR is intimately linked to the legacy of Paul Callaghan with his books Magnetic Resonance Microscopy and Translational Dynamics & Magnetic Resonance (Oxford University Press, Oxford 1991 and 2011) placing their focus with their titles on k and q, respectively. Some aspects of k and q have been revisited in the Paul Callaghan lecture of the author at the ISMAR Conference in Shanghai in 2015, which are reviewed here. In particular, there are two definitions of q, one relating to diffusive displacement (q) and the other to coherent flow (qv). Concerning the latter, it turns out, that in the short gradient pulse limit, the common anti-phase pulsed field-gradient scheme can be replaced with schemes employing three and more gradient pulses, which derive from differentiation rules in numerical analysis. Practical gradient modulation schemes with finite gradient pulse widths follow from these to measure velocity with improved accuracy. This approach can be expanded to acceleration and higher order transport coefficients with applications to measurements of flow and potentially also restricted diffusion. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. High-Q plasmonic bottle microresonator

    NASA Astrophysics Data System (ADS)

    Mohd Nasir, M. Narizee; Ding, Ming; Murugan, G. Senthil; Zervas, Michalis N.

    2014-03-01

    In this paper, we demonstrate a hybrid plasmonic bottle microresonator (PBMR) which supports whispering gallery modes (WGMs) along with surface plasmon waves (SPWs) for high performance optical sensor applications. The BMR was fabricated through "soften-and-compress" technique with a thin gold layer deposited on top of the resonator. A polarization-resolved measurement was set-up in order to fully characterize the fabricated PBMR. Initially, the uncoated BMR with waist diameter of 181 μm, stem diameter of 125 μm and length of 400 μm was fabricated and then gold film was deposited on the surface. Due to surface curvature, the gold film covering half of the BMR had a characteristic meniscus shape and maximum thickness of 30 nm. The meniscus provides appropriately tapered edges which facilitate the adiabatic transformation of BMR WGMs to SPWs and vice versa. This results in low transition losses, which combined with partially-metal-coated resonator, can result in high hybrid-PBMR Q's. The transmission spectra of the hybrid PBMR are dramatically different to the original uncoated BMR. Under TE(TM) excitation, the PBMR showed composite resonances with Q of ~2100(850) and almost identical ~ 3 nm FSR. We have accurately fitted the observed transmission resonances with Lorentzian-shaped curves and showed that the TE and TM excitations are actually composite resonances comprise of two and three partially overlapping resonances with Q's in excess of 2900 and 2500, respectively. To the best of our knowledge these are the highest Qs observed in plasmonic microcavities.

  19. Nucleon Resonance Transition Form factors

    SciTech Connect

    Burkert, Volker D.; Mokeev, Viktor I.; Aznauryan, Inna G.

    2016-08-01

    We discuss recent results from CLAS on electromagnetic resonance transition amplitudes and their dependence on the distance scale (Q2). From the comparison of these results with most advanced theoretical calculations within QCD-based approaches there is clear evidence that meson-baryon contributions are present and important at large distances, i.e. small Q2, and that quark core contributions dominate the short distance behavior.

  20. Radial q-space sampling for DSI.

    PubMed

    Baete, Steven H; Yutzy, Stephen; Boada, Fernando E

    2016-09-01

    Diffusion spectrum imaging (DSI) has been shown to be an effective tool for noninvasively depicting the anatomical details of brain microstructure. Existing implementations of DSI sample the diffusion encoding space using a rectangular grid. Here we present a different implementation of DSI whereby a radially symmetric q-space sampling scheme for DSI is used to improve the angular resolution and accuracy of the reconstructed orientation distribution functions. Q-space is sampled by acquiring several q-space samples along a number of radial lines. Each of these radial lines in q-space is analytically connected to a value of the orientation distribution functions at the same angular location by the Fourier slice theorem. Computer simulations and in vivo brain results demonstrate that radial diffusion spectrum imaging correctly estimates the orientation distribution functions when moderately high b-values (4000 s/mm2) and number of q-space samples (236) are used. The nominal angular resolution of radial diffusion spectrum imaging depends on the number of radial lines used in the sampling scheme, and only weakly on the maximum b-value. In addition, the radial analytical reconstruction reduces truncation artifacts which affect Cartesian reconstructions. Hence, a radial acquisition of q-space can be favorable for DSI. Magn Reson Med 76:769-780, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  1. Coenzyme Q10 (PDQ)

    MedlinePlus

    ... healthy. The body also uses CoQ10 as an antioxidant . An antioxidant is a substance that protects cells from chemicals ... of cancer. By protecting cells against free radicals, antioxidants help protect the body against cancer. CoQ10 is ...

  2. Q Fever in Greenland

    PubMed Central

    Svendsen, Claus Bo; Christensen, Jens Jørgen; Bundgaard, Henning; Vindfeld, Lars; Christiansen, Claus Bohn; Kemp, Michael; Villumsen, Steen

    2010-01-01

    We report a patient with Q fever endocarditis in a settlement in eastern Greenland (Isortoq, Ammassalik area). Likely animal sources include sled dogs and seals. Q fever may be underdiagnosed in Arctic areas but may also represent an emerging infection. PMID:20202433

  3. Wavelength-tunable optical ring resonators

    DOEpatents

    Watts, Michael R.; Trotter, Douglas C.; Young, Ralph W.; Nielson, Gregory N.

    2009-11-10

    Optical ring resonator devices are disclosed that can be used for optical filtering, modulation or switching, or for use as photodetectors or sensors. These devices can be formed as microdisk ring resonators, or as open-ring resonators with an optical waveguide having a width that varies adiabatically. Electrical and mechanical connections to the open-ring resonators are made near a maximum width of the optical waveguide to minimize losses and thereby provide a high resonator Q. The ring resonators can be tuned using an integral electrical heater, or an integral semiconductor junction.

  4. Wavelength-tunable optical ring resonators

    DOEpatents

    Watts, Michael R.; Trotter, Douglas C.; Young, Ralph W.; Nielson, Gregory N.

    2011-07-19

    Optical ring resonator devices are disclosed that can be used for optical filtering, modulation or switching, or for use as photodetectors or sensors. These devices can be formed as microdisk ring resonators, or as open-ring resonators with an optical waveguide having a width that varies adiabatically. Electrical and mechanical connections to the open-ring resonators are made near a maximum width of the optical waveguide to minimize losses and thereby provide a high resonator Q. The ring resonators can be tuned using an integral electrical heater, or an integral semiconductor junction.

  5. Q-Bursts: Natural ELF Radio Transients

    NASA Astrophysics Data System (ADS)

    Nickolaenko, A. P.; Hayakawa, M.; Hobara, Y.

    2010-07-01

    We overview resonance spectra and present analytical expressions for the waveforms of natural extremely low frequency transient events (Q-bursts). It is shown that model and observed waveforms are similar when a wideband receiver is used at a place with low level of industrial interference. We also describe how to detect a natural ELF transient signal embedded in the man-made noise by using the singular spectral analysis.

  6. Hyper-Parametric Oscillations in a Whispering Gallery Mode Fluorite Resonator

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Strekalov, Dmitry; Mohageg, Makan; Ilchenko, Vladimir; Matsko, Andrey; Maleki, Lute

    2004-01-01

    This viewgraph presentation summarizes the hyper-parametric oscillations observations of the fluorite resonator. The reporters have observed various nonlinear effects in ultra-high Q crystalline whispering gallery mode (WGM) resonators. In particular, it was demonstrated a low threshold optical hyper-parametric oscillations in a high-Q (Q=1010) CaF2 WGM resonator. The oscillations result from the resonantly enhanced four-wave-mixing occurring due to Kerr nonlinearity of the material.

  7. Measurement Of Differential Cross Sections Of p(e,e'{pi}{sup +})n For High-Lying Resonances At Q{sup 2} < 5 GeV{sup 2}

    SciTech Connect

    Park, Kijun

    2014-01-01

    The exclusive electro-production process ep -> e'n{pi}{sup +} was measured in the range of the invariant mass for n{pi}{sup +} system 1.6 GeV <= W <= 2.0 GeV, and the photon virtuality 1.8 GeV{sup 2} <= Q{sup 2} <= 4.0 GeV{sup 2} using CLAS. For the first time, these kinematics are probed in exclusive {pi}{sup +} production from the protons with nearly full coverage in the azimuthal and polar angles of the n{pi}{sup +} center-of-mass system. In this experiment, approximately 39,000 differential cross-section data points were measured. In this proceeding, preliminary results of our latest analysis work are presented on differential cross sections and structure functions as well as Legendre Moments.

  8. Generalized q-sampling imaging.

    PubMed

    Yeh, Fang-Cheng; Wedeen, Van Jay; Tseng, Wen-Yih Isaac

    2010-09-01

    Based on the Fourier transform relation between diffusion magnetic resonance (MR) signals and the underlying diffusion displacement, a new relation is derived to estimate the spin distribution function (SDF) directly from diffusion MR signals. This relation leads to an imaging method called generalized q-sampling imaging (GQI), which can obtain the SDF from the shell sampling scheme used in q-ball imaging (QBI) or the grid sampling scheme used in diffusion spectrum imaging (DSI). The accuracy of GQI was evaluated by a simulation study and an in vivo experiment in comparison with QBI and DSI. The simulation results showed that the accuracy of GQI was comparable to that of QBI and DSI. The simulation study of GQI also showed that an anisotropy index, named quantitative anisotropy, was correlated with the volume fraction of the resolved fiber component. The in vivo images of GQI demonstrated that SDF patterns were similar to the ODFs reconstructed by QBI or DSI. The tractography generated from GQI was also similar to those generated from QBI and DSI. In conclusion, the proposed GQI method can be applied to grid or shell sampling schemes and can provide directional and quantitative information about the crossing fibers.

  9. Calcium binding and transport by coenzyme Q.

    PubMed

    Bogeski, Ivan; Gulaboski, Rubin; Kappl, Reinhard; Mirceski, Valentin; Stefova, Marina; Petreska, Jasmina; Hoth, Markus

    2011-06-22

    Coenzyme Q10 (CoQ10) is one of the essential components of the mitochondrial electron-transport chain (ETC) with the primary function to transfer electrons along and protons across the inner mitochondrial membrane (IMM). The concomitant proton gradient across the IMM is essential for the process of oxidative phosphorylation and consequently ATP production. Cytochrome P450 (CYP450) monoxygenase enzymes are known to induce structural changes in a variety of compounds and are expressed in the IMM. However, it is unknown if CYP450 interacts with CoQ10 and how such an interaction would affect mitochondrial function. Using voltammetry, UV-vis spectrometry, electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), fluorescence microscopy and high performance liquid chromatography-mass spectrometry (HPLC-MS), we show that both CoQ10 and its analogue CoQ1, when exposed to CYP450 or alkaline media, undergo structural changes through a complex reaction pathway and form quinone structures with distinct properties. Hereby, one or both methoxy groups at positions 2 and 3 on the quinone ring are replaced by hydroxyl groups in a time-dependent manner. In comparison with the native forms, the electrochemically reduced forms of the new hydroxylated CoQs have higher antioxidative potential and are also now able to bind and transport Ca(2+) across artificial biomimetic membranes. Our results open new perspectives on the physiological importance of CoQ10 and its analogues, not only as electron and proton transporters, but also as potential regulators of mitochondrial Ca(2+) and redox homeostasis.

  10. Miniature Sapphire Acoustic Resonator - MSAR

    NASA Technical Reports Server (NTRS)

    Wang, Rabi T.; Tjoelker, Robert L.

    2011-01-01

    A room temperature sapphire acoustics resonator incorporated into an oscillator represents a possible opportunity to improve on quartz ultrastable oscillator (USO) performance, which has been a staple for NASA missions since the inception of spaceflight. Where quartz technology is very mature and shows a performance improvement of perhaps 1 dB/decade, these sapphire acoustic resonators when integrated with matured quartz electronics could achieve a frequency stability improvement of 10 dB or more. As quartz oscillators are an essential element of nearly all types of frequency standards and reference systems, the success of MSAR would advance the development of frequency standards and systems for both groundbased and flight-based projects. Current quartz oscillator technology is limited by quartz mechanical Q. With a possible improvement of more than x 10 Q with sapphire acoustic modes, the stability limit of current quartz oscillators may be improved tenfold, to 10(exp -14) at 1 second. The electromagnetic modes of sapphire that were previously developed at JPL require cryogenic temperatures to achieve the high Q levels needed to achieve this stability level. However sapphire fs acoustic modes, which have not been used before in a high-stability oscillator, indicate the required Q values (as high as Q = 10(exp 8)) may be achieved at room temperature in the kHz range. Even though sapphire is not piezoelectric, such a high Q should allow electrostatic excitation of the acoustic modes with a combination of DC and AC voltages across a small sapphire disk (approximately equal to l mm thick). The first evaluations under this task will test predictions of an estimated input impedance of 10 kilohms at Q = 10(exp 8), and explore the Q values that can be realized in a smaller resonator, which has not been previously tested for acoustic modes. This initial Q measurement and excitation demonstration can be viewed similar to a transducer converting electrical energy to

  11. Resonating feathers produce courtship song.

    PubMed

    Bostwick, Kimberly S; Elias, Damian O; Mason, Andrew; Montealegre-Z, Fernando

    2010-03-22

    Male Club-winged Manakins, Machaeropterus deliciosus (Aves: Pipridae), produce a sustained tonal sound with specialized wing feathers. The fundamental frequency of the sound produced in nature is approximately 1500 Hz and is hypothesized to result from excitation of resonance in the feathers' hypertrophied shafts. We used laser Doppler vibrometry to determine the resonant properties of male Club-winged Manakin's wing feathers, as well as those of two unspecialized manakin species. The modified wing feathers exhibit a response peak near 1500 Hz, and unusually high Q-values (a measure of resonant tuning) for biological objects (Q up to 27). The unmodified wing feathers of the Club-winged Manakin do not exhibit strong resonant properties when measured in isolation. However, when measured still attached to the modified feathers (nine feathers held adjacent by an intact ligament), they resonate together as a unit near 1500 Hz, and the wing produces a second harmonic of similar or greater amplitude than the fundamental. The feathers of the control species also exhibit resonant peaks around 1500 Hz, but these are significantly weaker, the wing does not resonate as a unit and no harmonics are produced. These results lend critical support to the resonant stridulation hypothesis of sound production in M. deliciosus.

  12. Wave Phenomena in an Acoustic Resonant Chamber

    ERIC Educational Resources Information Center

    Smith, Mary E.; And Others

    1974-01-01

    Discusses the design and operation of a high Q acoustical resonant chamber which can be used to demonstrate wave phenomena such as three-dimensional normal modes, Q values, densities of states, changes in the speed of sound, Fourier decomposition, damped harmonic oscillations, sound-absorbing properties, and perturbation and scattering problems.…

  13. Wave Phenomena in an Acoustic Resonant Chamber

    ERIC Educational Resources Information Center

    Smith, Mary E.; And Others

    1974-01-01

    Discusses the design and operation of a high Q acoustical resonant chamber which can be used to demonstrate wave phenomena such as three-dimensional normal modes, Q values, densities of states, changes in the speed of sound, Fourier decomposition, damped harmonic oscillations, sound-absorbing properties, and perturbation and scattering problems.…

  14. Resistive cooling circuits for charged particle traps using crystal resonators.

    PubMed

    Kaltenbacher, T; Caspers, F; Doser, M; Kellerbauer, A; Pribyl, W

    2011-11-01

    The paper addresses a novel method to couple a signal from charged particles in a Penning trap to a high Q resonant circuit using a crystal resonator. Traditionally, the trap capacity is converted into a resonator by means of an inductance. The tuned circuit's Q factor is directly linked to the input impedance "seen" by the trapped particles at resonance frequency. This parallel resonance impedance is a measure of the efficiency of resistive cooling and thus it should be optimized. We propose here a commercially available crystal resonator since it exhibits a very high Q value and a parallel resonance impedance of several MΩ. The possibility to tune the parallel resonance frequency of the quartz results in filter behavior that allows covering a range of some tens of its 3dB bandwidth by means of tuning.

  15. Simulation and fabrication of thin film bulk acoustic wave resonator

    NASA Astrophysics Data System (ADS)

    Xixi, Han; Yi, Ou; Zhigang, Li; Wen, Ou; Dapeng, Chen; Tianchun, Ye

    2016-07-01

    In this paper, we present the simulation and fabrication of a thin film bulk acoustic resonator (FBAR). In order to improve the accuracy of simulation, an improved Mason model was introduced to design the resonator by taking the coupling effect between electrode and substrate into consideration. The resonators were fabricated by the eight inch CMOS process, and the measurements show that the improved Mason model is more accurate than a simple Mason model. The Q s (Q at series resonance), Q p (Q at parallel resonance), Q max and k t 2 of the FBAR were measured to be 695, 814, 1049, and 7.01% respectively, showing better performance than previous reports. Project supported by the National Natural Science Foundation of China (Nos. 61274119, 61306141, 61335008) and the Natural Science Foundation of Jiangsu Province (No. BK20131099).

  16. DIGITAL Q METER

    DOEpatents

    Briscoe, W.L.

    1962-02-13

    A digital Q meter is described for measuring the Q of mechanical or electrical devices. The meter comprises in combination a transducer coupled to an input amplifier, and an upper and lower level discriminator coupled to the amplifier and having their outputs coupled to an anticoincidence gate. The output of the gate is connected to a scaler. The lower level discriminator is adjusted to a threshold level of 36.8 percent of the operating threshold level of the upper level discriminator. (AEC)

  17. Deletion (2)(q37)

    SciTech Connect

    Stratton, R.F.; Tolworthy, J.A.; Young, R.S.

    1994-06-01

    We report on a 5-month-old girl with widely spaced nipples, redundant nuchal skin, coarctation of the aorta, anal atresia with distal fistula, postnatal growth retardation, hypotonia, and sparse scalp hair. Initial clinical assessment suggested the diagnosis of Ullrich-Turner syndrome. Chromosome analysis showed a 46,XX,del(2)(q37) karyotype in peripheral lymphocytes. We compare her findings to those of other reported patients with terminal deletions of 2q. 8 refs., 2 figs., 1 tab.

  18. Emergence of Q fever

    PubMed Central

    Angelakis, E; Raoult, D

    2011-01-01

    Q fever is a worldwide zoonosis with many acute and chronic manifestations caused by the pathogen Coxiella burnetii. Farm animals and pets are the main reservoirs of infection, and transmission to human beings is mainly accomplished through inhalation of contaminated aerosols. Persons at greatest risk are those in contact with farm animals and include farmers, abattoir workers, and veterinarians. The organs most commonly affected during Q fever are the heart, the arteries, the bones and the liver. The most common clinical presentation is an influenza-like illness with varying degrees of pneumonia and hepatitis. Although acute disease is usually self-limiting, people do occasionally die from this condition. Endocarditis is the most serious and most frequent clinical presentation of chronic Q fever. Vascular infection is the second most frequent presentation of Q fever. The diagnosis of Q fever is based on a significant increase in serum antibody titers. The treatment is effective and well tolerated, but must be adapted to the acute or chronic pattern with the tetracyclines to be considered the mainstay of antibiotic therapy. For the treatment of Q fever during pregnancy the use of long-term cotrimoxazole therapy is proposed. PMID:23113081

  19. Mechanism of laser Q switching by intracavity stimulated scattering

    SciTech Connect

    Bezrodnyi, V.I.; Ibragimov, F.I.; Kislenko, V.I.; Petrenko, R.A.; Strizhevskii, V.L.; Tikhonov, E.A.

    1980-03-01

    An experimental investigation was made of Q switching of a laser resonator by intracavity stimulated Brillouin scattering. It was found that reduction in the high initial Q factor of the resonator by distortion of the transverse structure of the radiation (for example, by the use of an active element of low optical quality) resulted in effective modulation of the Q factor because of wavefront reversal in the scattering. When the active medium was YAG:Nd/sup 3 +/, single giant pulses of 25--30 nsec duration, peak power 0.3--0.5 MW, and repetition frequency up to 100 Hz were obtained without circulation of the scattering substance in the Q switch.

  20. Loaded Q's and field profiles of tapered axisymmetric gyrotron cavities

    SciTech Connect

    Derfler, H.; Grant, T.J.; Stone, D.S.

    1982-12-01

    A theoretical investigation of the vacuum electromagnetic properties of a class of tapered cylindrical resonant cavities employed in gyrotron design is reported. The cavity properties which determine gyrotron interaction efficiency-field profiles and loaded Q's-are predicted as a function of the geometric parameters. The authors show that this resonator geometry is superior to other designs for several reasons: 1) its properties are less sensitive to machining tolerances; 2) it produces negligible mode conversion at the output; and 3) in contrast with the imitations of iris-coupled designs, is capable of providing loaded Q's as low as about 0.3 Q diff where Q diff=4..pi..(L/lambda)/sup 2/ is the ''diffraction limit.'' Cold tests in the millimeter bands are reported which verify these conclusions.

  1. Three-region specific microdissection libraries for the long arm of human chromosome 2, regions q33-q35, q31-q32, and q23-q24

    SciTech Connect

    Yu, J.; Tong, S.; Whittier, A.

    1995-09-01

    Three region-specific libraries have been constructed from the long arm of human chromosome 2, including regions 2q33-35 (2Q2 library), 2q31-32 (2Q3) and 2q23-24 (2Q4). Chromosome microdissection and the MboI linker-adaptor microcloning techniques were used in constructing these libraries. The libraries comprised hundreds of thousands of microclones in each library. Approximately half of the microclones in the library contained unique or low-copy number sequence inserts. The insert sizes ranged between 50 and 800 bp, with a mean of 130-190 bp. Southern blot analysis of individual unique sequence microclones showed that 70-94% of the microclones were derived from the dissected region. 31 unique sequence microclones from the 2Q2 library, 31 from 2Q3, and 30 from 2Q4, were analyzed for insert sizes, the hybridizing genomic HindIII fragment sizes, and cross-hybridization to rodent species. These libraries and the short insert microclones derived from the libraries should be useful for high resolution physical mapping, sequence-ready reagents for large scale genomic sequencing, and positional cloning of disease-related genes assigned to these regions, e.g. the recessive familial amyotrophic lateral sclerosis assigned to 2q33-q35, and a type I diabetes susceptibility gene to 2q31-q33. 17 refs., 5 figs., 2 tabs.

  2. Polymer microring resonators and their sensor applications

    NASA Astrophysics Data System (ADS)

    Guo, L. Jay; Maxwell, Adam; Chao, Chung-Yen; Ling, Tao; Kim, Jin-Sung; Huang, Sheng-Wen; Ashkenazi, Shai

    2008-02-01

    Photonic microring resonators have great potential in the application of highly sensitive label-free biosensors and detection of high-frequency ultrasound due to high Q-factor resonances. Design consideration, device fabrication techniques, experimental results are report in this paper.

  3. Plasmon Resonators for Quantum Computing

    DTIC Science & Technology

    2007-06-01

    quantum dot. For free atoms this strong coupling is achieved using high Q optical resonators, such as ultra-low-loss bulk Fabry - Perot cavities or...TR-07-0487 11. SUPPLEMENTARY NOTES 12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE Unlimited UL 13. ABSTRACT (Maximum 200 words) The

  4. Direct Comparison of 19F qNMR and 1H qNMR by Characterizing Atorvastatin Calcium Content

    PubMed Central

    Liu, Yang; Liu, Zhaoxia; Yang, Huaxin

    2016-01-01

    Quantitative nuclear magnetic resonance (qNMR) is a powerful tool in measuring drug content because of its high speed, sensitivity, and precision. Most of the reports were based on proton qNMR (1H qNMR) and only a few fluorine qNMR (19F qNMR) were reported. No research has been conducted to directly compare the advantage and disadvantage between these two methods. In the present study, both 19F and 1H qNMR were performed to characterize the content of atorvastatin calcium with the same internal standard. Linearity, precision, and results from two methods were compared. Results showed that 19F qNMR has similar precision and sensitivity to 1H qNMR. Both methods generate similar results compared to mass balance method. Major advantage from 19F qNMR is that the analyte signal is with less or no interference from impurities. 19F qNMR is an excellent approach to quantify fluorine-containing analytes. PMID:27688925

  5. Nonlinear effects in varactor-tuned resonators.

    PubMed

    Everard, Jeremy; Zhou, Liang

    2006-05-01

    This paper describes the effects of RF power level on the performance of varactor-tuned resonator circuits. A variety of topologies are considered, including series and parallel resonators operating in both unbalanced and balanced modes. As these resonators were designed to produce oscillators with minimum phase noise, the initial small signal insertion loss was set to 6 dB and, hence, QL/Q0 = 1/2. To enable accurate analysis and simulation, S parameter and PSPICE models for the varactors were optimized and developed. It is shown that these resonators start to demonstrate nonlinear operation at very low power levels demonstrating saturation and lowering of the resonant frequency. On occasion squegging is observed for modified bias conditions. The nonlinear effects are dependent on the unloaded Q (Q0), the ratio of loaded to unloaded Q (QL/Q0), the bias voltage, and circuit configurations with typical nonlinear effects occurring at -8 dBm in a circuit with a loaded Q of 63 and a varactor bias voltage of 3 V. Analysis, simulation, and measurements that show close correlation are presented.

  6. Coenzyme Q and Mitochondrial Disease

    ERIC Educational Resources Information Center

    Quinzii, Catarina M.; Hirano, Michio

    2010-01-01

    Coenzyme Q[subscript 10] (CoQ[subscript 10]) is an essential electron carrier in the mitochondrial respiratory chain and an important antioxidant. Deficiency of CoQ[subscript 10] is a clinically and molecularly heterogeneous syndrome, which, to date, has been found to be autosomal recessive in inheritance and generally responsive to CoQ[subscript…

  7. Coenzyme Q and Mitochondrial Disease

    ERIC Educational Resources Information Center

    Quinzii, Catarina M.; Hirano, Michio

    2010-01-01

    Coenzyme Q[subscript 10] (CoQ[subscript 10]) is an essential electron carrier in the mitochondrial respiratory chain and an important antioxidant. Deficiency of CoQ[subscript 10] is a clinically and molecularly heterogeneous syndrome, which, to date, has been found to be autosomal recessive in inheritance and generally responsive to CoQ[subscript…

  8. Split Q-balls

    NASA Astrophysics Data System (ADS)

    Bazeia, D.; Losano, L.; Marques, M. A.; Menezes, R.

    2017-02-01

    We investigate the presence of non-topological solutions of the Q-ball type in (1 , 1) spacetime dimensions. The model engenders the global U (1) symmetry and is of the k-field type, since it contains a new term, of the fourth-order power in the derivative of the complex scalar field. It supports analytical solution of the Q-ball type which is stable quantum mechanically. The new solution engenders an interesting behavior, with the charge and energy densities unveiling a splitting profile.

  9. Coherently Opening a High-Q Cavity

    NASA Astrophysics Data System (ADS)

    Tufarelli, Tommaso; Ferraro, Alessandro; Serafini, Alessio; Bose, Sougato; Kim, M. S.

    2014-04-01

    We propose a general framework to effectively "open" a high-Q resonator, that is, to release the quantum state initially prepared in it in the form of a traveling electromagnetic wave. This is achieved by employing a mediating mode that scatters coherently the radiation from the resonator into a one-dimensional continuum of modes such as a waveguide. The same mechanism may be used to "feed" a desired quantum field to an initially empty cavity. Switching between an open and "closed" resonator may then be obtained by controlling either the detuning of the scatterer or the amount of time it spends in the resonator. First, we introduce the model in its general form, identifying (i) the traveling mode that optimally retains the full quantum information of the resonator field and (ii) a suitable figure of merit that we study analytically in terms of the system parameters. Then, we discuss two feasible implementations based on ensembles of two-level atoms interacting with cavity fields. In addition, we discuss how to integrate traditional cavity QED in our proposal using three-level atoms.

  10. Observed Ωc0 resonances as pentaquark states

    NASA Astrophysics Data System (ADS)

    An, C. S.; Chen, H.

    2017-08-01

    In the present work, we investigate the spectrum of several low-lying s s c q q ¯ pentaquark configurations employing the constituent quark model, within which the hyperfine interaction between quarks is taken to be mediated by Goldstone boson exchange. Our numerical results show that four s s c q q ¯ configurations with JP=1 /2- or JP=3 /2- lie at energies very close to the recently observed five Ωc0 states by the LHCb Collaboration; this indicates that the s s c q q ¯ pentaquark configurations may form sizable components of the observed Ωc0 resonances.

  11. Exact Tuning of High-Q Optical Microresonators by Use of UV

    NASA Technical Reports Server (NTRS)

    Savchankov, Anaotliy; Maleki, Lute; Iltchenko, Vladimir; Handley, Timothy

    2006-01-01

    In one of several alternative approaches to the design and fabrication of a "whispering-gallery" optical microresonator of high resonance quality (high Q), the index of refraction of the resonator material and, hence, the resonance frequencies. In this approach, a microresonator structure is prepared by forming it from an ultraviolet-sensitive material. Then the structure is subjected to controlled exposure to UV light while its resonance frequencies are monitored.

  12. The q-harmonic oscillators, q-coherent states and the q-symplecton

    NASA Technical Reports Server (NTRS)

    Biedenharn, L. C.; Lohe, M. A.; Nomura, Masao

    1993-01-01

    The recently introduced notion of a quantum group is discussed conceptually and then related to deformed harmonic oscillators ('q-harmonic oscillators'). Two developments in applying q-harmonic oscillators are reviewed: q-coherent states and the q-symplecton.

  13. Asymmetric liberations in exterior resonances

    NASA Astrophysics Data System (ADS)

    Beauge, C.

    1994-10-01

    The purpose of this paper is to present a general analysis of the planar circular restricted problem of three bodies in the case of exterior mean-motion resonances. Particularly, our aim is to map the phase space of various commensurabilities and determine the singular solutions of the averaged system, comparing them to the well-known case of interior resonances. In some commensurabilities (e.g. 1/2, 1/3) we show the existence of asymmetric librations; that is, librations in which the stationary value of the critical angle theta = (p+q) lambda1-p lambda-q pi is not equal to either zero or pi. The origin, stability and morphogenesis of these solutions are discussed and compared to symmetric librations. However, in some other resonances (e.g. 2/3, 3/4), these fixed points of the mean system seem to be absent. Librations in such cases are restricted to theta = O mod(pi). Asymmetric singular solutions of the plane circular problem are unknown in the case of interior resonances and cannot be reproduced by the reduced Andoyer Hamiltonian known as the Second Fundamental Model for Resonance. However, we show that the extended version of this Hamiltonian function, in which harmonics up to order two are considered, can reproduce fairly well the principal topological characteristics of the phase space and thereby constitutes a simple and useful analytical approximation for these resonances.

  14. Q-factors of CVD monolayer graphene and graphite inductors

    NASA Astrophysics Data System (ADS)

    Wang, Zidong; Zhang, Qingping; Peng, Pei; Tian, Zhongzheng; Ren, Liming; Zhang, Xing; Huang, Ru; Wen, Jincai; Fu, Yunyi

    2017-08-01

    A carbon-based inductor may serve as an important passive component in a carbon-based radio-frequency (RF) integrated circuit (IC). In this work, chemical vapor deposition (CVD) synthesized monolayer graphene and graphite inductors are fabricated and their Q-factors are investigated. We find that the large series resistance of signal path (including coil resistance and contact resistance) in monolayer graphene inductors causes negative Q-factors at the whole frequency range in measurement. Comparatively, some of the graphite inductors have all of their Q-factors above zero, due to their small signal path resistance. We also note that some other graphite inductors have negative Q-factor values at low frequency regions, but positive Q-factor values at high frequency regions. With an equivalent circuit model, we confirm that the negative Q-factors of some graphite inductors at low frequency regions are related to their relatively large contact resistances, and we are able to eliminate these negative Q-factors by improving the graphite-metal contact. Furthermore, the peak Q-factor (Q p) can be enhanced by lowering down the resistance of graphite coil. For an optimized 3/4-turn graphite inductor, the measured maximum Q-factor (Q m) can reach 2.36 and the peak Q-factor is theoretically predicted by the equivalent circuit to be as high as 6.46 at a high resonant frequency, which is beyond the testing frequency range. This research indicates that CVD synthesized graphite thin film is more suitable than graphene for fabricating inductors in carbon-based RF IC in the future.

  15. Orbital resonances in the inner neptunian system. II. Resonant history of Proteus, Larissa, Galatea, and Despina

    NASA Astrophysics Data System (ADS)

    Zhang, Ke; Hamilton, Douglas P.

    2008-01-01

    We investigate the orbital history of the small neptunian satellites discovered by Voyager 2. Over the age of the Solar System, tidal forces have caused the satellites to migrate radially, bringing them through mean-motion resonances with one another. In this paper, we extend our study of the largest satellites Proteus and Larissa [Zhang, K., Hamilton, D.P., 2007. Icarus 188, 386-399] by adding in mid-sized Galatea and Despina. We test the hypothesis that these moons all formed with zero inclinations, and that orbital resonances excited their tilts during tidal migration. We find that the current orbital inclinations of Proteus, Galatea, and Despina are consistent with resonant excitation if they have a common density 0.4<ρ¯<0.8 g/cm. Larissa's inclination, however, is too large to have been caused by resonant kicks between these four satellites; we suggest that a prior resonant capture event involving either Naiad or Thalassa is responsible. Our solution requires at least three past resonances with Proteus, which helps constrain the tidal migration timescale and thus Neptune's tidal quality factor: 9000<Q<36,000. We also improve our determination of Q for Proteus and Larissa, finding 36<Q<700 and 18<Q<200. Finally, we derive a more general resonant capture condition, and work out a resonant overlap criterion relevant to satellite orbital evolution around an oblate primary.

  16. q-bosons and the q-analogue quantized field

    NASA Technical Reports Server (NTRS)

    Nelson, Charles A.

    1995-01-01

    The q-analogue coherent states are used to identify physical signatures for the presence of a 1-analogue quantized radiation field in the q-CS classical limits where the absolute value of z is large. In this quantum-optics-like limit, the fractional uncertainties of most physical quantities (momentum, position, amplitude, phase) which characterize the quantum field are O(1). They only vanish as O(1/absolute value of z) when q = 1. However, for the number operator, N, and the N-Hamiltonian for a free q-boson gas, H(sub N) = h(omega)(N + 1/2), the fractional uncertainties do still approach zero. A signature for q-boson counting statistics is that (Delta N)(exp 2)/ (N) approaches 0 as the absolute value of z approaches infinity. Except for its O(1) fractional uncertainty, the q-generalization of the Hermitian phase operator of Pegg and Barnett, phi(sub q), still exhibits normal classical behavior. The standard number-phase uncertainty-relation, Delta(N) Delta phi(sub q) = 1/2, and the approximate commutation relation, (N, phi(sub q)) = i, still hold for the single-mode q-analogue quantized field. So, N and phi(sub q) are almost canonically conjugate operators in the q-CS classical limit. The q-analogue CS's minimize this uncertainty relation for moderate (absolute value of z)(exp 2).

  17. Propagating q-field and q-ball solution

    NASA Astrophysics Data System (ADS)

    Klinkhamer, F. R.; Volovik, G. E.

    2017-06-01

    One possible solution of the cosmological constant problem involves a so-called q-field, which self-adjusts so as to give a vanishing gravitating vacuum energy density (cosmological constant) in equilibrium. We show that this q-field can manifest itself in other ways. Specifically, we establish a propagating mode (q-wave) in the nontrivial vacuum and find a particular soliton-type solution in flat spacetime, which we call a q-ball by analogy with the well-known Q-ball solution. Both q-waves and q-balls are expected to play a role for the equilibration of the q-field in the very early universe.

  18. Optical resonator

    NASA Technical Reports Server (NTRS)

    Taghavi-Larigani, Shervin (Inventor); Vanzyl, Jakob J. (Inventor); Yariv, Amnon (Inventor)

    2006-01-01

    The invention discloses a semi-ring Fabry-Perot (SRFP) optical resonator structure comprising a medium including an edge forming a reflective facet and a waveguide within the medium, the waveguide having opposing ends formed by the reflective facet. The performance of the SRFP resonator can be further enhanced by including a Mach-Zehnder interferometer in the waveguide on one side of the gain medium. The optical resonator can be employed in a variety of optical devices. Laser structures using at least one SRFP resonator are disclosed where the resonators are disposed on opposite sides of a gain medium. Other laser structures employing one or more resonators on one side of a gain region are also disclosed.

  19. Whispering Gallery Mode Optomechanical Resonator

    NASA Technical Reports Server (NTRS)

    Aveline, David C.; Strekalov, Dmitry V.; Yu, Nan; Yee, Karl Y.

    2012-01-01

    Great progress has been made in both micromechanical resonators and micro-optical resonators over the past decade, and a new field has recently emerged combining these mechanical and optical systems. In such optomechanical systems, the two resonators are strongly coupled with one influencing the other, and their interaction can yield detectable optical signals that are highly sensitive to the mechanical motion. A particularly high-Q optical system is the whispering gallery mode (WGM) resonator, which has many applications ranging from stable oscillators to inertial sensor devices. There is, however, limited coupling between the optical mode and the resonator s external environment. In order to overcome this limitation, a novel type of optomechanical sensor has been developed, offering great potential for measurements of displacement, acceleration, and mass sensitivity. The proposed hybrid device combines the advantages of all-solid optical WGM resonators with high-quality micro-machined cantilevers. For direct access to the WGM inside the resonator, the idea is to radially cut precise gaps into the perimeter, fabricating a mechanical resonator within the WGM. Also, a strategy to reduce losses has been developed with optimized design of the cantilever geometry and positions of gap surfaces.

  20. Tailored Asymmetry for Enhanced Coupling to WGM Resonators

    NASA Technical Reports Server (NTRS)

    Mohageg, Makan; Maleki, Lute

    2008-01-01

    Coupling of light into and out of whispering- gallery-mode (WGM) optical resonators can be enhanced by designing and fabricating the resonators to have certain non-axisymmetric shapes (see figure). Such WGM resonators also exhibit the same ultrahigh values of the resonance quality factor (Q) as do prior WGM resonators. These WGM resonators are potentially useful as tunable narrow-band optical filters having throughput levels near unity, high-speed optical switches, and low-threshold laser resonators. These WGM resonators could also be used in experiments to investigate coupling between high-Q and chaotic modes within the resonators. For a WGM resonator made of an optically nonlinear material (e.g., lithium niobate) or another material having a high index of refraction, a prism made of a material having a higher index of refraction (e.g., diamond) must be used as part of the coupling optics. For coupling of a beam of light into (or out of) the high-Q resonator modes, the beam must be made to approach (or recede from) the resonator at a critical angle determined by the indices of refraction of the resonator and prism materials. In the case of a lithium niobate/diamond interface, this angle is approximately 22 .

  1. Ultrasonic attenuation - Q measurements on 70215,29. [lunar rock

    NASA Technical Reports Server (NTRS)

    Warren, N.; Trice, R.; Stephens, J.

    1974-01-01

    Ultrasonic attenuation measurements have been made on an aluminum alloy, obsidian, and rock samples including lunar sample 70215,29. The measurement technique is based on a combination of the pulse transmission method and the forced resonance method. The technique is designed to explore the problem of defining experimentally, the Q of a medium or sample in which mode conversion may occur. If modes are coupled, the measured attenuation is strongly dependent on individual modes of vibration, and a range of Q-factors may be measured over various resonances or from various portions of a transient signal. On 70215,29, measurements were made over a period of a month while the sample outgassed in hard varuum. During this period, the highest measured Q of this sample increased from a few hundred into the range of 1000-1300.

  2. Ultrasonic attenuation - Q measurements on 70215,29. [lunar rock

    NASA Technical Reports Server (NTRS)

    Warren, N.; Trice, R.; Stephens, J.

    1974-01-01

    Ultrasonic attenuation measurements have been made on an aluminum alloy, obsidian, and rock samples including lunar sample 70215,29. The measurement technique is based on a combination of the pulse transmission method and the forced resonance method. The technique is designed to explore the problem of defining experimentally, the Q of a medium or sample in which mode conversion may occur. If modes are coupled, the measured attenuation is strongly dependent on individual modes of vibration, and a range of Q-factors may be measured over various resonances or from various portions of a transient signal. On 70215,29, measurements were made over a period of a month while the sample outgassed in hard varuum. During this period, the highest measured Q of this sample increased from a few hundred into the range of 1000-1300.

  3. Snake resonances

    SciTech Connect

    Tepikian, S.

    1988-01-01

    Siberian Snakes provide a practical means of obtaining polarized proton beams in large accelerators. The effect of snakes can be understood by studying the dynamics of spin precession in an accelerator with snakes and a single spin resonance. This leads to a new class of energy independent spin depolarizing resonances, called snake resonances. In designing a large accelerator with snakes to preserve the spin polarization, there is an added constraint on the choice of the vertical betatron tune due to the snake resonances. 11 refs., 4 figs.

  4. The q-Fourier transformation of q-generalized functions

    SciTech Connect

    Ol'shanetskii, M A; Rogov, V-B K

    1999-06-30

    A study is made of functions on the lattice generated by the integer powers of q{sup 2}, 0<q<1. A q-analogue of the Fourier transformation is constructed based on the Jackson integral in the space of generalized functions on the lattice.

  5. Probing a new strongly interacting sector via composite diboson resonances

    NASA Astrophysics Data System (ADS)

    Ko, P.; Yu, Chaehyun; Yuan, Tzu-Chiang

    2017-06-01

    Diphoton resonance was a crucial discovery mode for the 125 GeV Standard Model Higgs boson at the Large Hadron Collider (LHC). This mode or the more general diboson modes may also play an important role in probing for new physics beyond the Standard Model. In this paper, we consider the possibility that a diphoton resonance is due to a composite scalar or pseudoscalar boson, whose constituents are either new hyperquarks Q or scalar hyperquarks Q ˜ confined by a new hypercolor force at a confinement scale Λh. Assuming the mass mQ (or mQ ˜) ≫Λh, a diphoton resonance could be interpreted as either a Q Q ¯ (1S0) state ηQ with JP C=0-+ or a Q ˜ Q˜ †(1S0) state ηQ ˜ with JP C=0++. For the Q Q ¯ scenario, there will be a spin-triplet partner ψQ which is slightly heavier than ηQ due to the hyperfine interactions mediated by hypercolor gluon exchange; while for the Q ˜Q˜† scenario, the spin-triplet partner χQ ˜ arises from higher radial excitation with nonzero orbital angular momentum. We consider productions and decays of ηQ, ηQ ˜, ψQ, and χQ ˜ at the LHC using the nonrelativistic QCD factorization approach. We discuss how to test these scenarios by using the Drell-Yan process and the forward dijet azimuthal angular distributions to determine the JP C quantum number of the diphoton resonance. Constraints on the parameter space can be obtained by interpreting some of the small diphoton "excesses" reported by the LHC as the composite scalar or pseudoscalar of the model. Another important test of the model is the presence of a nearby hypercolor-singlet but color-octet state like the 1S0 state ηQ8 or ηQ˜8, which can also be constrained by dijet or monojet plus monophoton data. Both possibilities of a large or small width of the resonance can be accommodated, depending on whether the hyper-glueball states are kinematically allowed in the final state or not.

  6. Optical microspherical resonators for biomedical sensing.

    PubMed

    Soria, Silvia; Berneschi, Simone; Brenci, Massimo; Cosi, Franco; Conti, Gualtiero Nunzi; Pelli, Stefano; Righini, Giancarlo C

    2011-01-01

    Optical resonators play an ubiquitous role in modern optics. A particular class of optical resonators is constituted by spherical dielectric structures, where optical rays are total internal reflected. Due to minimal reflection losses and to potentially very low material absorption, these guided modes, known as whispering gallery modes, can confer the resonator an exceptionally high quality factor Q, leading to high energy density, narrow resonant-wavelength lines and a lengthy cavity ringdown. These attractive characteristics make these miniaturized optical resonators especially suited as laser cavities and resonant filters, but also as very sensitive sensors. First, a brief analysis is presented of the characteristics of microspherical resonators, of their fabrication methods, and of the light coupling techniques. Then, we attempt to overview some of the recent advances in the development of microspherical biosensors, underlining a number of important applications in the biomedical field.

  7. Optical Microspherical Resonators for Biomedical Sensing

    PubMed Central

    Soria, Silvia; Berneschi, Simone; Brenci, Massimo; Cosi, Franco; Conti, Gualtiero Nunzi; Pelli, Stefano; Righini, Giancarlo C.

    2011-01-01

    Optical resonators play an ubiquitous role in modern optics. A particular class of optical resonators is constituted by spherical dielectric structures, where optical rays are total internal reflected. Due to minimal reflection losses and to potentially very low material absorption, these guided modes, known as whispering gallery modes, can confer the resonator an exceptionally high quality factor Q, leading to high energy density, narrow resonant-wavelength lines and a lengthy cavity ringdown. These attractive characteristics make these miniaturized optical resonators especially suited as laser cavities and resonant filters, but also as very sensitive sensors. First, a brief analysis is presented of the characteristics of microspherical resonators, of their fabrication methods, and of the light coupling techniques. Then, we attempt to overview some of the recent advances in the development of microspherical biosensors, underlining a number of important applications in the biomedical field. PMID:22346603

  8. Polycrystalline diamond MEMS resonator technology for sensor applications.

    SciTech Connect

    Sullivan, John P.; Aslam, Dean; Sepulveda-Alancastro, Nelson

    2005-07-01

    Due to material limitations of poly-Si resonators, polycrystalline diamond (poly-C) has been explored as a new MEMS resonator material. The poly-C resonators are designed, fabricated and tested using electrostatic (Michigan State University) and piezoelectric (Sandia National Laboratories) actuation methods, and the results are compared. For comparable resonator structures, although the resonance frequencies are similar, the measured Q values in the ranges of 1000-2000 and 10,000-15,000 are obtained for electrostatic and piezoelectric actuation methods, respectively. The difference in Q for the two methods is related to different pressures used during the measurement and not to the method of measurement. For the poly-C cantilever beam resonators, the highest value of their quality factor (Q) is reported for the first time (15,263).

  9. [Acute myeloid leukemia with monosomy 7 and inv(3)(q21q26.2) complicated with central diabetes insipidus].

    PubMed

    Nanno, Satoru; Hagihara, Kiyoyuki; Sakabe, Manami; Okamura, Hiroshi; Inaba, Akiko; Nagata, Yuki; Nishimoto, Mitsutaka; Koh, Hideo; Nakao, Yoshitaka; Nakane, Takahiko; Nakamae, Hirohisa; Shimono, Taro; Hino, Masayuki

    2013-04-01

    A 20-year-old female presented with thirst, polyposia, and polyuria and was referred to our hospital because of leukocytosis and anemia. Bone marrow aspiration revealed 66.8% myeloperoxidase-positive blasts and trilineage myelodysplasia. The karyotype was 45, XX, inv(3)(q21q26.2), -7[19]. Therefore, a diagnosis of AML with inv(3)(q21q26.2) complicated by -7 was made. Moreover, hyposthenuria and a low anti-diuretic hormone (ADH) level were observed. Although cerebrospinal fluid analysis was normal, magnetic resonance imaging (MRI) revealed the absence of hyperintensity in the neurohypophysis in T1-weighted images. Therefore, she was also diagnosed with diabetes insipidus. After she was administered a desmopressin nasal spray, the volume of urine produced decreased. Following treatment with second induction therapy containing high-dose cytarabine for AML, she achieved complete remission in the bone marrow. Moreover, when the abnormality on MRI and the volume of urine were normalized, she discontinued desmopressin. Although diabetes insipidus is a rare complication of AML, the majority of AML patients who have diabetes insipidus have the abnormal karyotypes with inv(3)(q21q26.2)/t(3;3)(q21;q26.2) and monosomy 7. Further study is required to clarify the pathogenesis and develop a strategy for the treatment of this category of AML.

  10. q-bosons and the q-analogue quantized field

    SciTech Connect

    Nelson, C.A.

    1994-12-31

    The q-analogue coherent states {vert_bar}z >{sub q} are used to identify physical signatures for the presence of a q-analogue quantized radiation field in the {vert_bar} >{sub q} classical limit where {vert_bar}z{vert_bar} is large. In this quantum-optics-like limit, the fractional uncertainties of most physical quantities (momentum, position, amplitude, phase) which characterize the quantum field are O(1). They only vanish as O(1/{vert_bar}z{vert_bar}) when q = 1. However, for the number operator, N, and the N-Hamiltonian for a free q-boson gas, H{sub N} = {Dirac_h}{omega}(N + 1/2), the fractional uncertainties do still approach zero. A signature for q-boson counting statistics is that ({Delta}N){sup 2}/ {yields} 0 as {vert_bar}z{vert_bar} {yields} {infinity}. Except for its O(1) fractional uncertainty, the q-generalization of the Hermitian phase operator of Pegg and Barnett, {phi}{sub q}, still exhibits normal classical behavior. The standard number-phase uncertainty-relation, {Delta}N {Delta}{phi}{sub q} = 1/2, and the approximate commutation relation, [N,{phi}{sub q}] = i, still hold for the single-mode q-analogue quantized field. So, N and {phi}{sub q} are almost canonically conjugate operators in the {vert_bar}z >{sub q} classical limit. The {vert_bar}z >{sub q} CS`s minimize this uncertainty relation for moderate {vert_bar}z{vert_bar}{sup 2}.

  11. Q -factor enhancement in all-dielectric anisotropic nanoresonators

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Miroshnichenko, Andrey E.; Kivshar, Yuri S.

    2016-11-01

    It is proposed and demonstrated that the Q factor of optical resonators can be significantly enhanced by introducing an extra anisotropic cladding. We study the optical resonances of all-dielectric core-shell nanoresonators and show that radially anisotropic claddings can be employed to squeeze more energy into the core area, leading to stronger light confinement and thus significant Q -factor enhancement. We further demonstrate that the required homogenous claddings of unusual anisotropy parameters can be realized through all-dielectric multilayered isotropic structures. It is expected that the mechanism we have revealed not only offers extra flexibilities of resonance manipulations for conventional dielectric structures, but also may shed new light onto investigations into unconventional nanostructures consisting of two-dimensional materials that are intrinsically highly anisotropic.

  12. Nonlinear optics and crystalline whispering gallery mode resonators

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey B.; Savchenkov, Anatoliy A.; Ilchenko, Vladimir S.; Maleki, Lute

    2004-01-01

    We report on our recent results concerning fabrication of high-Q whispering gallery mode (WGM) crystalline resonators, and discuss some possible applications of lithium niobate WGM resonators in nonlinear optics and photonics. In particular, we demonstrate experimentally a tunable third-order optical filter fabricated from the three metalized resonators; and report observation of parametric frequency dobuling in a WGM resonator made of periodically poled lithium niobate (PPLN).

  13. Under-Coupling Whispering Gallery Mode Resonator Applied to Resonant Micro-Optic Gyroscope.

    PubMed

    Qian, Kun; Tang, Jun; Guo, Hao; Liu, Wenyao; Liu, Jun; Xue, Chenyang; Zheng, Yongqiu; Zhang, Chengfei

    2017-01-06

    As an important sensing element, the whispering gallery mode resonator (WGMR) parameters seriously affect the resonant micro-optic gyroscope (RMOG) performance. This work proposes an under-coupling resonator to improve the resonator's Q value and to optimize the coupling coefficient to maximize the RMOG's sensitivity. GeO₂-doped silica waveguide-type resonators with different coupling coefficients were simulated, designed, fabricated and tested. An under-coupling ring resonator with a quality factor of 10 million is reported. The RMOG system was built based on this resonator and the scale factor was tested on a uniaxial high-precision rotating platform. Experimental results show that this resonator could improve the RMOG sensitivity by five times.

  14. Nonlinear resonance

    NASA Astrophysics Data System (ADS)

    Kevorkian, J.

    This report discusses research in the area of slowly varying nonlinear oscillatory systems. Some of the topics discussed are as follows: adiabatic invariants and transient resonance in very slowly varying Hamiltonian systems; sustained resonance in very slowly varying Hamiltonian systems; free-electron lasers with very slow wiggler taper; and bursting oscillators.

  15. Nonlinear resonance

    NASA Astrophysics Data System (ADS)

    Kevorkian, J.; Pernarowski, Mark; Bosley, David L.

    1990-04-01

    The subjects discussed are: transient and sustained resonance for systems with very slowly varying parameters; free electron lasers with very slow wiggler taper; and bursting oscillations in biological systems. Plans are discussed for: FEL applications; transient and sustained resonance; and bursting oscillations.

  16. Gap-plasmon nanoantennas and bowtie resonators

    NASA Astrophysics Data System (ADS)

    Gramotnev, Dmitri K.; Pors, Anders; Willatzen, Morten; Bozhevolnyi, Sergey I.

    2012-01-01

    Plasmonic bowtie resonators involving gap surface plasmons (GSPs) in metal-insulator-metal (MIM) structures, in which only the top metal layer is structured, are investigated using numerical simulations. We demonstrate that the considered configuration features two efficiently excitable GSP resonances associated with distinct charge distributions with the domination of the dipole and quadrupole moments resulting in low- and high-Q resonances, respectively. The typical Q factors for the high-Q resonances are shown to achieve ˜25 in the near-infrared, thus potentially exceeding the quasistatic limit. Detailed physical interpretations of the obtained results and consistent dependencies of the resonance characteristics on the geometrical structural parameters are presented. Excellent resonant characteristics, the simplicity of fabrication, and tuning of the resonance wavelength by adjusting the size of the bowtie arms, separation between them, and/or thickness of the insulator (SiO2) layer in the MIM structure appear attractive for a wide variety of applications, ranging from surface sensing to photovoltaics.

  17. YBCO superconducting ring resonators at millimeter-wave frequencies

    NASA Technical Reports Server (NTRS)

    Chorey, Christopher M.; Kong, Keon-Shik; Bhasin, Kul B.; Warner, J. D.; Itoh, Tatsuo

    1991-01-01

    Microstrip ring resonators operating at 35 GHz were fabricated from laser ablated YBCO films deposited on lanthanum aluminate substrates. They were measured over a range of temperatures and their performances compared to identical resonators made of evaporated gold. Below 60 Kelvin the superconducting strip performed better than the gold, reaching an unloaded Q approximately 1.5 times that of gold at 25 K. A shift in the resonant frequency follows the form predicted by the London equations. The Phenomenological Loss Equivalence Method is applied to the ring resonator and the theoretically calculated Q values are compared to the experimental results.

  18. Resonance patterns in a stadium-shaped microcavity

    SciTech Connect

    Lee, Soo-Young; Kurdoglyan, M.S.; Rim, Sunghwan; Kim, Chil-Min

    2004-08-01

    We investigate resonance patterns in a stadium-shaped microcavity around n{sub c}kR{approx_equal}10, where n{sub c} is the refractive index, k the vacuum wave number, and R the radius of the circular part of the cavity. We find that the patterns of high-Q resonances can be classified, even though the classical dynamics of the stadium system is chaotic. The patterns of the high-Q resonances are consistent with ray dynamical considerations and appear as stationary lasing modes with low pumping rate in a nonlinear dynamical model. All resonance patterns are presented in a finite range of kR.

  19. Radiative losses of a birdcage resonator.

    PubMed

    Harpen, M D

    1993-05-01

    We present a derivation of the losses in a birdcage resonator due to radiation. We also present an expression for the radiation limited Q. It is shown that in head coil imaging at 63 MHz radiative losses may account for 20% of the total loss with a radiation limited Q on the order of 150. The results are shown to be consistent with those reported in the recent literature.

  20. Tailoring thermal emission via Q matching of photonic crystal resonances

    SciTech Connect

    Ghebrebrhan, M.; Bermel, P.; Yeng, Y. X.; Celanovic, I.; Soljacic, M.; Joannopoulos, J. D.

    2011-03-15

    We develop a model for predicting the thermal emission spectrum of a two-dimensional metallic photonic crystal for arbitrary angles based on coupled-mode theory. Calculating the appropriate coupled-mode parameters over a range of geometrical parameters allows one to tailor the emissivity spectrum to a specific application. As an example, we design an emitter with a step-function cutoff suppressing long-wavelength emission, which is necessary for high-efficiency thermophotovoltaic systems. We also confirm the accuracy of the results of our model with finite-difference time-domain simulations.

  1. Measurement of the Proton Spin Function g1(x,Q2) for Q2 from 0.15 to 1.6 GeV with CLAS

    SciTech Connect

    Renee Fatemi; Alexander Skabelin; Volker Burkert; Donald Crabb; Raffaella De Vita; Sebastian Kuhn; Ralph Minehart

    2003-11-01

    Double-polarization asymmetries for inclusive ep scattering were measured at Jefferson Lab using 2.6 and 4.3 GeV longitudinally polarized electrons incident on a longitudinally polarized NH{sub 3} target in the CLAS detector. The polarized structure function g{sub 1}(x,Q{sup 2}) was extracted throughout the nucleon resonance region and into the deep inelastic regime, for Q{sup 2} = 0.15-1.64 GeV{sup 2}. The contributions to the first moment {Gamma}{sub 1}(Q{sup 2}) = g{sub 1}(x,Q{sup 2})dx were determined up to Q{sup 2}=1.2 GeV{sup 2}. Using a parameterization for g{sub 1} in the unmeasured low x regions, the complete first moment was estimated over this Q{sup 2} region. A rapid change in {Gamma}{sub 1} is observed for Q{sup 2} < 1 GeV{sup 2}, with a sign change near Q{sup 2} = 0.3 GeV{sup 2}, indicating dominant contributions from the resonance region. At Q{sup 2}=1.2 GeV{sup 2} our data are below the pQCD evolved scaling value.

  2. Torsional Resonators Based on Inorganic Nanotubes.

    PubMed

    Divon, Yiftach; Levi, Roi; Garel, Jonathan; Golberg, Dmitri; Tenne, Reshef; Ya'akobovitz, Assaf; Joselevich, Ernesto

    2017-01-11

    We study for the first time the resonant torsional behaviors of inorganic nanotubes, specifically tungsten disulfide (WS2) and boron nitride (BN) nanotubes, and compare them to that of carbon nanotubes. We have found WS2 nanotubes to have the highest quality factor (Q) and torsional resonance frequency, followed by BN nanotubes and carbon nanotubes. Dynamic and static torsional spring constants of the various nanotubes were found to be different, especially in the case of WS2, possibly due to a velocity-dependent intershell friction. These results indicate that inorganic nanotubes are promising building blocks for high-Q nanoelectromechanical systems (NEMS).

  3. Acoustic Resonators

    NASA Astrophysics Data System (ADS)

    Greenslade, Thomas B.

    2012-11-01

    Recently my collection of historical physics teaching apparatus was given a group of 19th-century tuning forks on resonant boxes. Figure 1 shows the smallest fork sitting on the largest one. The large tuning fork oscillates at 128 Hz and has a resonator that is 57.9 cm long. The small fork has a frequency 10 times higher, but its resonator has a length of 11.0 cm instead of the 5.8 cm that simple scaling would suggest. How is this possible?

  4. Nonlinear optics and crystalline whispering gallery mode resonators

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey; Savchenkov, Anatoliy; Ilchenko, Vladimir S.; Maleki, Lute

    2004-01-01

    We report on our recent results concerning fabrication of high-Q whispering gallery mode crystalline resonaors, and discuss some possible applications of lithium niobate WGM resonators in nonlinear optics and photonics.

  5. High-Q filters with complete transports using quasiperiodic rings with spin-orbit interaction

    SciTech Connect

    Qiu, R. Z.; Chen, C. H.; Tsao, C. W.; Hsueh, W. J.

    2014-09-15

    A high Q filter with complete transports is achieved using a quasiperiodic Thue-Morse array of mesoscopic rings with spin-orbit interaction. As the generation order of the Thue-Morse array increases, not only does the Q factor of the resonance peak increase exponentially, but the number of sharp resonance peaks also increases. The maximum Q factor for the electronic filter of a Thue-Morse array is much greater than that in a periodic array, for the same number of the rings.

  6. Microelectromechanical resonators and filters for communications applications

    NASA Astrophysics Data System (ADS)

    Wang, Kun

    This dissertation explores the performance capabilities and limitations of micromechanical resonators and filters for wireless communications applications. The design, simulation, fabrication, characterization, and verification of polysilicon versions of such devices are discussed, with a particular focus on achieving high performance high order filters and high quality factor ( Q) high frequency resonators. Technological developments are presented for fabrication and for frequency tuning of micromechanical. resonators. A brief review is given for macroscopic mechanical components used in current transceiver design. The first high-order, acoustically-coupled micromechanical filter is developed with percent bandwidths less than 0.09%, stopband rejection larger than 64dB, and insertion loss less than 0.2dB in the medium frequency (MF - 300kHz to 3MHz) range. Design strategies that prove instrumental in achieving these filters include (1)quarter-wavelength coupling beams to eliminate passband distortion caused by non- ideal coupling elements, (2)low-velocity coupling to extend the range of achievable filter bandwidths, (3)ratioed, folded-beam micromechanical resonators to achieve a wide range (six orders of magnitude) of stiffnesses at resonator coupling locations, (4)parallel-plate capacitive transducers for individual frequency tuning of constituent resonators, and (5)differential operation to reduce the effect of parasitic feedthrough capacitors. In addition, free-free beam, flexural-mode, micromechanical resonators are demonstrated for the first time, utilizing non-intrusive supports to achieve measured Q's as high as 14,000 at VHF frequencies from 30-90MHz. These microresonators feature torsional-mode support springs that effectively isolate the resonator beam from its anchors via quarter- wavelength impedance transformations, thus minimizing anchor dissipation and allowing these resonators to achieve high Q with high stiffness in the VHF frequency range. Finally

  7. Metallic coplanar resonators optimized for low-temperature measurements

    NASA Astrophysics Data System (ADS)

    Javaheri Rahim, Mojtaba; Lehleiter, Thomas; Bothner, Daniel; Krellner, Cornelius; Koelle, Dieter; Kleiner, Reinhold; Dressel, Martin; Scheffler, Marc

    2016-10-01

    Metallic coplanar microwave resonators are widely employed at room temperature, but their low-temperature performance has received little attention so far. We characterize compact copper coplanar resonators with multiple modes from 2.5 to 20 GHz at temperatures as low as 5 K. We investigate the influence of center conductor width (20-100 µm) and coupling gap size (10-50 µm), and we observe a strong increase of quality factor (Q) for wider center conductors, reaching values up to 470. The magnetic-field dependence of the resonators is weak, with a maximum change in Q of 3.5% for an applied field of 7 T. This makes these metallic resonators well suitable for magnetic resonance studies, as we document with electron spin resonance (ESR) measurements at multiple resonance frequencies.

  8. Low-loss coupling to dielectric resonators

    NASA Technical Reports Server (NTRS)

    Hearn, C. P.; Bradshaw, E. S.; Trew, R. J.; Hefner, B. B., Jr.

    1991-01-01

    A compilation is presented of experimental observations and arguments concerning the use of dielectric resonators in applications requiring both tight coupling (beta greater than 10) and high unloaded Q, such as low loss bandpass filters. The microstrip coupled dielectric resonator is the primary focus, but an alternative coupling technique is discussed and comparatively evaluated. It is concluded that coupling factors as large as 65 are achievable.

  9. Preliminary Planet Population Statistics With Kepler Q1-Q16

    NASA Astrophysics Data System (ADS)

    Burke, Christopher J.; Mullally, Fergal; Christiansen, Jessie; Huber, Daniel; Coughlin, Jeffrey; Thompson, Susan E.; Jenkins, Jon Michael; Batalha, Natalie M.

    2014-06-01

    We present preliminary extrasolar planet population statistics from analysis of the Kepler Q1-Q16 planet candidate sample. The analysis takes advantage of the recent work on the Q1-Q16 Kepler planet candidate sample, extensive Monte-Carlo transit signal injection and recovery tests of the Kepler Pipeline, and updates to the stellar parameters provided by the Kepler Stellar Working Group. We also explore the sensitivity of the results to alternative inputs by considering a machine learning generated planet sample, systematics in the stellar sample properties, orbital eccentricity, and false positive rates.

  10. Cyclic Sommerfeld resonances in nanorods at grazing incidences.

    PubMed

    Feng, Simin; Halterman, Klaus; Overfelt, Pamela L; Bowling, Donald

    2009-10-26

    We investigate electromagnetic scattering from nanoscale wires and reveal the emergence of a family of exotic resonances for source waves close to grazing incidence. These grazing resonances have a much higher Q-bandwidth product and thus, a much higher Q factor and broader bandwidth than the pure plasmonic resonances found in metal nanowires. Furthermore, these grazing resonances are much less susceptible to material losses than surface plasmon resonances. Contrary to the process of exciting surface plasmon resonances, these grazing resonances can arise in both dielectric and metallic nanowires and appear near to the cutoff wavelength of the circular waveguide. This peculiar resonance effect originates from the excitation of long range guided surface waves through the interplay of coherently scattered continuum modes coupled with first-order azimuthal propagating modes of the cylindrical nanowire. These first-order cyclic Sommerfeld waves and associated cyclic Sommerfeld resonances revealed here opens up the possibility of an alternative scheme of enhanced fields with a better merit (higher Q-bandwidth product and lower loss) than conventional surface plasmon resonances in the nano-regime. This nanowire resonance phenomenon can be utilized in broad scientific areas, including: metamaterial designs, nanophotonic integration, nanoantennas, and nanosensors.

  11. Gauged Q-balls

    NASA Technical Reports Server (NTRS)

    Lee, Kimyeong; Stein-Schabes, Jaime A.; Watkins, Richard; Widrow, Lawrence M.

    1988-01-01

    Classical non-topological soliton configurations are considered within the theory of a complex scalar field with a gauged U symmetry. Their existence and stability against dispersion are demonstrated and some of their properties are investigated analytically and numerically. The soliton configuration is such that inside the soliton the local U symmetry is broken, the gauge field becomes massive and for a range of values of the coupling constants the soliton becomes a superconductor pushing the charge to the surface. Furthermore, because of the repulsive Coulomb force, there is a maximum size for these objects, making impossible the existence of Q-matter in bulk form. Also briefly discussed are solitons with fermions in a U gauge theory.

  12. The 5q-anomaly.

    PubMed

    Van den Berghe, H; Vermaelen, K; Mecucci, C; Barbieri, D; Tricot, G

    1985-07-01

    A deletion of the long arm of chromosome #5 (5q-) occurs nonrandomly in human malignancies. As a rule, the deletion is interstitial; the distal breakpoint by conventional techniques is usually in band q32, the proximal breakpoints in q12 or q14. Variant breakpoints occur in less than 10% of all cases. As the sole anomaly, 5q- is characteristically found in refractory anemia with or without excess of blasts. It can occur as the sole anomaly in de novo or secondary acute nonlymphocytic leukemia, but is usually accompanied in those disorders by other chromosome changes that are also nonrandomly distributed. In addition, it can be found in lymphoproliferative disorders, and occasionally, also in solid tumors. The 5q- myelodysplastic syndrome typically occurs in older age groups, particularly in females. Characteristic features are macrocytic anemia, normal or elevated platelets in the presence of megakaryocytic anomalies, and a mild clinical course. In cases with 5q- only, transformation into ANLL occurs rarely. Additional chromosome anomalies and male sex are prognostically unfavorable signs. Sex ratio is also at the disadvantage of females in de novo 5q- ANLL, and the latter disorder can occur without being preceded by a myelodysplastic phase. A myelodysplastic phase usually precedes 5q- secondary leukemia, in males as well as in females, and additional chromosome anomalies, especially of chromosome #7, are almost invariably present in those cases. We conclude that 5q- is the most frequently occurring single chromosome anomaly in secondary leukemia. Furthermore, the resemblance between de novo and secondary 5q- MDS and ANLL is striking; clinically, as well as cytogenetically, they are indistinguishable, suggesting that all de novo cases may be due to environmental (chemical) carcinogens. Response to treatment and prognosis are very poor with current therapeutic regimens in de novo as well as in secondary 5q- ANLL. Morphologically, these ANLLs fall into all FAB

  13. High-Q gold and silicon nitride bilayer nanostrings

    NASA Astrophysics Data System (ADS)

    Biswas, T. S.; Suhel, A.; Hauer, B. D.; Palomino, A.; Beach, K. S. D.; Davis, J. P.

    2012-08-01

    Low-mass, high-Q, silicon nitride nanostrings are at the cutting edge of nanomechanical devices for sensing applications. Here we show that the addition of a chemically functionalizable gold overlayer does not adversely affect the Q of the fundamental out-of-plane mode. Instead the device retains its mechanical responsiveness while gaining sensitivity to molecular bonding. Furthermore, differences in thermal expansion within the bilayer give rise to internal stresses that can be electrically controlled. In particular, an alternating current (AC) excites resonant motion of the nanostring. This AC thermoelastic actuation is simple, robust, and provides an integrated approach to sensor actuation.

  14. High-Q terahertz reconfigurable metamaterials using graphene

    NASA Astrophysics Data System (ADS)

    Arezoomandan, Sara; Sensale Rodriguez, Berardi

    2016-09-01

    We propose and discuss high-Q reconfigurable metamaterials based on graphene. The key components of the device are periodic concentric metallic ring resonators with interdigitated fingers, which are placed in-between the rings and provide for the large Q in the metamaterial, as well as several strategically located gaps where active graphene sheets are placed. We can easily adjust the frequency response of the metamaterial by means of varying a couple of parameters, such as the ring dimensions, number of fingers, etc., but also dynamically by means of varying conductivity in graphene.

  15. Under-Coupling Whispering Gallery Mode Resonator Applied to Resonant Micro-Optic Gyroscope

    PubMed Central

    Qian, Kun; Tang, Jun; Guo, Hao; Liu, Wenyao; Liu, Jun; Xue, Chenyang; Zheng, Yongqiu; Zhang, Chengfei

    2017-01-01

    As an important sensing element, the whispering gallery mode resonator (WGMR) parameters seriously affect the resonant micro-optic gyroscope (RMOG) performance. This work proposes an under-coupling resonator to improve the resonator’s Q value and to optimize the coupling coefficient to maximize the RMOG’s sensitivity. GeO2-doped silica waveguide-type resonators with different coupling coefficients were simulated, designed, fabricated and tested. An under-coupling ring resonator with a quality factor of 10 million is reported. The RMOG system was built based on this resonator and the scale factor was tested on a uniaxial high-precision rotating platform. Experimental results show that this resonator could improve the RMOG sensitivity by five times. PMID:28067824

  16. Linear and nonlinear behavior of crystalline optical whispering gallery mode resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy A.; Matsko, Andrey B.; Ilchenko, Vladimir S.; Maleki, Lute

    2004-01-01

    We demonstrate strong nonlinear behavior of high-Q whispering gallery mode (WGM) resonators made out of various crystals adn devices based on the resonators. The maximum WGM optical Q-fact or achieved at room temperature exceeds 2X10 to the tenth power.

  17. Q fever — a review

    PubMed Central

    Marrie, Thomas J.

    1990-01-01

    Q or “query” fever is a zoonosis caused by the organism Coxiella burnetii. Cattle, sheep and goats are the most common reservoirs of this organism. The placenta of infected animals contains high numbers (up to 109/g) of C. burnetii. Aerosols occur at the time of parturition and man becomes infected following inhalation of the microorganism. The spectrum of illness in man is wide and consists of acute and chronic forms. Acute Q fever is most often a self-limited flu-like illness but may include pneumonia, hepatitis, or meningoencephalitis. Chronic Q fever almost always means endocarditis and rarely osteomyelitis. Chronic Q fever is not known to occur in animals other than man. An increased abortion and stillbirth rate are seen in infected domestic ungulates. Four provinces (Nova Scotia, New Brunswick, Ontario and Alberta) reported cases of Q fever in 1989. A vaccine for Q fever has recently been licensed in Australia. ImagesFigure 1. PMID:17423643

  18. Composite Resonator Surface Emitting Lasers

    SciTech Connect

    FISCHER,ARTHUR J.; CHOQUETTE,KENT D.; CHOW,WENG W.; ALLERMAN,ANDREW A.; GEIB,KENT M.

    2000-05-01

    The authors have developed electrically-injected coupled-resonator vertical-cavity lasers and have studied their novel properties. These monolithically grown coupled-cavity structures have been fabricated with either one active and one passive cavity or with two active cavities. All devices use a selectively oxidized current aperture in the lower cavity, while a proton implant was used in the active-active structures to confine current in the top active cavity. They have demonstrated optical modulation from active-passive devices where the modulation arises from dynamic changes in the coupling between the active and passive cavities. The laser intensity can be modulated by either forward or reverse biasing the passive cavity. They have also observed Q-switched pulses from active-passive devices with pulses as short as 150 ps. A rate equation approach is used to model the Q-switched operation yielding good agreement between the experimental and theoretical pulseshape. They have designed and demonstrated the operation of active-active devices which la.se simultaneously at both longitudinal cavity resonances. Extremely large bistable regions have also been observed in the light-current curves for active-active coupled resonator devices. This bistability can be used for high contrast switching with contrast ratios as high as 100:1. Coupled-resonator vertical-cavity lasers have shown enhanced mode selectivity which has allowed devices to lase with fundamental-mode output powers as high as 5.2 mW.

  19. The ‘PREXCEL-Q Method’ for qPCR

    PubMed Central

    Gallup, Jack M.; Ackermann, Mark R.

    2008-01-01

    The purpose of this manuscript is to describe a reliable approach to quantitative real-time polymerase chain reaction (qPCR) assay development and project management, which is currently embodied in the Excel 2003-based software program named “PREXCEL-Q” (P-Q) (formerly known as “FocusField2-6Gallup-qPCRSet-upTool-001,” “FF2-6-001 qPCR set-up tool” or “Iowa State University Research Foundation [ISURF] project #03407”). Since its inception from 1997-2007, the program has been well-received and requested around the world and was recently unveiled by its inventor at the 2008 Cambridge Healthtech Institute’s Fourth Annual qPCR Conference in San Diego, CA. P-Q was subsequently mentioned in a review article by Stephen A. Bustin, an acknowledged leader in the qPCR field. Due to its success and growing popularity, and the fact that P-Q introduces a unique/defined approach to qPCR, a concise description of what the program is and what it does has become important. Sample-related inhibitory problems of the qPCR assay, sample concentration limitations, nuclease-treatment, reverse transcription (RT) and master mix formulations are all addressed by the program, enabling investigators to quickly, consistently and confidently design uninhibited, dynamically-sound, LOG-linear-amplification-capable, high-efficiency-of-amplification reactions for any type of qPCR. The current version of the program can handle an infinite number of samples. PMID:19759920

  20. Regulation of a pulsed random fiber laser in the Q-switched regime

    NASA Astrophysics Data System (ADS)

    Zeng, X. P.; Zhang, W. L.; Ma, R.; Yang, Z. J.; Zeng, X.; Dong, X.; Rao, Y. J.

    2016-11-01

    A random fiber laser with regulated Q-switched pulses has been proposed and realized through a half-open cavity, which is formed between a compound fiber-based optic ring resonator (ORR) and a segment of 500 m dispersion compensation fiber (DCF). The compound fiber-based ORR provides frequency filtered feedback, which together with Brillouin scattering of the DCF forms a Q-switched mechanism. As a result, Q-switched pulses are generated randomly. Nevertheless, each Q-switched event typically consists of several ordered sub-pulses with the same pulse interval thanks to resonant interferences of the compound fiber-based ORR. Compared with former reports, the shape and the interval of pulses in each Q-switch event are regulated greatly.

  1. Ultra-high Q sphere-like cavities for cascaded stimulated Brillouin lasing

    NASA Astrophysics Data System (ADS)

    Che, Kaijun; Zhang, Pan; Guo, Changlei; Tang, Deyu; Ren, Changyan; Xu, Huiying; Luo, Zhengqian; Cai, Zhiping

    2017-03-01

    High Q microsphere optical cavity is usually fabricated from a single mode fiber. Here, we propose a new method to fabricate sphere-like cavity by melting the tip of rotating quartz-rod with a CO2 laser. The cavities with diameter from 200 μm to 700 μm and resonant Q factors above 108 are obtained. Due to the rich resonances of the sphere-like cavity, up to 15-order cascaded stimulated Brillouin lasings(SBL) near 1.55 μm are observed in a cavity with a diameter of 760 μm by simply tuning the pump wavelength to a finely-selected resonance. We wish the ultra-high Q cavities with rich resonances and bulk rod mount can have practical applications in nonlinear optics and microwave photonics as an optical component.

  2. Q2/Q3 2016 Solar Industry Update

    SciTech Connect

    Feldman, David; Boff, Daniel; Margolis, Robert

    2016-10-11

    This technical presentation provides an update on the major trends that occurred in the solar industry in the Q2 and Q3 of 2016. Major topics of focus include global and U.S. supply and demand, module and system price, investment trends and business models, and updates on U.S. government programs supporting the solar industry.

  3. Q3/Q4 2016 Solar Industry Update

    SciTech Connect

    Feldman, David; Boff, Daniel; Margolis, Robert

    2016-12-21

    This technical presentation provides an update on the major trends that occurred in the solar industry in the Q3 and Q4 of 2016. Major topics of focus include global and U.S. supply and demand, module and system price, investment trends and business models, and updates on U.S. government programs supporting the solar industry.

  4. Measurement of target and double-spin asymmetries for the epeπ+(n) reaction in the nucleon resonance region at low Q2

    SciTech Connect

    Zheng, X.; Adhikari, K. P.; Bosted, P.; Deur, A.; Drozdov, V.; El Fassi, L.; Kang, Hyekoo; Kovacs, K.; Kuhn, S.; Long, E.; Phillips, S. K.; Ripani, M.; Slifer, K.; Smith, L. C.; Adikaram, D.; Akbar, Z.; Amaryan, M. J.; Anefalos Pereira, S.; Asryan, G.; Avakian, H.; Badui, R. A.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Briscoe, W. J.; Bültmann, S.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Chen, J. -P.; Chetry, T.; Choi, Seonho; Ciullo, G.; Clark, L.; Colaneri, L.; Cole, P. L.; Compton, N.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Djalali, C.; Dodge, G. E.; Dupre, R.; Egiyan, H.; El Alaoui, A.; Elouadrhiri, L.; Eugenio, P.; Fanchini, E.; Fedotov, G.; Fersch, R.; Filippi, A.; Fleming, J. A.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gleason, C.; Golovach, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guler, N.; Guo, L.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hughes, S. M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jenkins, D.; Jiang, H.; Jo, H. S.; Joosten, S.; Keller, D.; Khachatryan, G.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Kubarovsky, V.; Lanza, L.; Lenisa, P.; Livingston, K.; MacGregor, I. J. D.; Markov, N.; McKinnon, B.; Mirazita, M.; Mokeev, V.; Movsisyan, A.; Munevar, E.; Munoz Camacho, C.; Murdoch, G.; Nadel-Turonski, P.; Net, L. A.; Ni, A.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Peng, P.; Pisano, S.; Pogorelko, O.; Price, J. W.; Puckett, A. J. R.; Raue, B. A.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Salgado, C.; Schumacher, R. A.; Sharabian, Y. G.; Skorodumina, Iu.; Smith, G. D.; Sokhan, D.; Sparveris, N.; Stankovic, I.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Tian, Ye; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zhang, J.; Zonta, I.

    2016-10-01

    We report measurements of target- and double-spin asymmetries for the exclusive channel epeπ+(n) in the nucleon resonance region at Jefferson Lab using the CEBAF Large Acceptance Spectrometer (CLAS). These asymmetries were extracted from data obtained using a longitudinally polarized NH3 target and a longitudinally polarized electron beam with energies 1.1, 1.3, 2.0, 2.3, and 3.0 GeV. The new results are consistent with previous CLAS publications but are extended to a low Q2 range from 0.0065 to 0.35 (GeV/c)2. The Q2 access was made possible by a custom-built Cherenkov detector that allowed the detection of electrons for scattering angles as low as 6 degrees. These results are compared with the unitary isobar models JANR and MAID, the partial-wave analysis prediction from SAID, and the dynamic model DMT. In many kinematic regions our results, in particular results on the target asymmetry, help to constrain the polarization-dependent components of these models.

  5. Multiquark resonances

    DOE PAGES

    Esposito, A.; Pilloni, A.; Polosa, Antonio D.

    2016-12-02

    Multiquark resonances are undoubtedly experimentally observed. The number of states and the amount of details on their properties have been growing over the years. It is very recent the discovery of two pentaquarks and the confirmation of four tetraquarks, two of which had not been observed before. We mainly review the theoretical understanding of this sector of particle physics phenomenology and present some considerations attempting a coherent description of the so called X and Z resonances. The prominent problems plaguing theoretical models, like the absence of selection rules limiting the number of states predicted, motivate new directions in model building.more » Lastly, data are reviewed going through all of the observed resonances with particular attention to their common features and the purpose of providing a starting point to further research.« less

  6. Multiquark resonances

    NASA Astrophysics Data System (ADS)

    Esposito, A.; Pilloni, A.; Polosa, A. D.

    2017-01-01

    Multiquark resonances are undoubtedly experimentally observed. The number of states and the amount of details on their properties have been growing over the years. It is very recent the discovery of two pentaquarks and the confirmation of four tetraquarks, two of which had not been observed before. We mainly review the theoretical understanding of this sector of particle physics phenomenology and present some considerations attempting a coherent description of the so called X and Z resonances. The prominent problems plaguing theoretical models, like the absence of selection rules limiting the number of states predicted, motivate new directions in model building. Data are reviewed going through all of the observed resonances with particular attention to their common features and the purpose of providing a starting point to further research.

  7. Multiquark resonances

    SciTech Connect

    Esposito, A.; Pilloni, A.; Polosa, Antonio D.

    2016-12-02

    Multiquark resonances are undoubtedly experimentally observed. The number of states and the amount of details on their properties have been growing over the years. It is very recent the discovery of two pentaquarks and the confirmation of four tetraquarks, two of which had not been observed before. We mainly review the theoretical understanding of this sector of particle physics phenomenology and present some considerations attempting a coherent description of the so called X and Z resonances. The prominent problems plaguing theoretical models, like the absence of selection rules limiting the number of states predicted, motivate new directions in model building. Lastly, data are reviewed going through all of the observed resonances with particular attention to their common features and the purpose of providing a starting point to further research.

  8. E{sub 1+}/M{sub 1+} and S{sub 1+}/M{sub 1+} from an analysis of p(e,e{prime}p){pi}{sup 0} in the region of the {Delta}(1232) resonance at Q{sup 2} = 3.2 (GeV/c){sup 2}

    SciTech Connect

    V. Burkert; L. Elouadrhiri

    1995-10-01

    In this paper the authors present an analysis of exclusive p(e,e{prime}p){pi}{sup 0} data to determine the electromagnetic and scalar transition multipoles in the mass region of the {Delta}(1232) at the highest Q{sup 2} value where data exist, Q{sup 2} = 3.2(GeV/c){sup 2}.

  9. Laser Resonator

    NASA Technical Reports Server (NTRS)

    Harper, L. L. (Inventor)

    1983-01-01

    An optical resonator cavity configuration has a unitary mirror with oppositely directed convex and concave reflective surfaces disposed into one fold and concertedly reversing both ends of a beam propagating from a laser rod disposed between two total internal reflection prisms. The optical components are rigidly positioned with perpendicularly crossed virtual rooflines by a compact optical bed. The rooflines of the internal reflection prisms, are arranged perpendicularly to the axis of the laser beam and to the optical axes of the optical resonator components.

  10. Optical manipulation in optofluidic microbubble resonators

    NASA Astrophysics Data System (ADS)

    Wang, HaoTian; Wu, Xiang

    2015-11-01

    An optical manipulation system based on optofluidic microbubble resonators (MBR) is proposed. As the high- Q whispering gallery modes (WGMs) are excited in an MBR, the buildup of the field intensity inside the resonator is large enough to trap nanoscale particles. The optical gradient forces generated by the WGMs with different radial orders are investigated numerically. The negative effect of the resonance detuning induced by the particles is taken into account to investigate the optical gradient forces exerting on the particles. By the stability analysis, the WGMs with high radial orders show a better trapping stability under Brownian motion since most of the optical fields reside within the water core.

  11. Impact of 22q deletion syndrome on speech outcomes following primary surgery for submucous cleft palate.

    PubMed

    Bezuhly, Michael; Fischbach, Simone; Klaiman, Paula; Fisher, David M

    2012-03-01

    Patients with 22q deletion syndrome are at increased risk of submucous cleft palate and velopharyngeal insufficiency. The authors' aim is to evaluate speech outcomes following primary Furlow palatoplasty or pharyngeal flap for correction of velopharyngeal insufficiency in submucous cleft palate patients with and without 22q deletion syndrome. Records of submucous cleft palate patients who underwent primary surgery between 2001 and 2010 were reviewed. Data included 22q deletion syndrome diagnosis, age at surgery, procedure, preoperative nasopharyngoscopy and nasometry, speech outcomes, complications, and secondary surgery rates. Seventy-eight submucous cleft palate patients were identified. Twenty-three patients had 22q deletion syndrome. Fewer 22q deletion syndrome patients obtained normal resonance on perceptual assessment compared with nonsyndromic patients (74 percent versus 88 percent). A similar difference existed based on postoperative nasometric scores. Among 22q deletion syndrome patients, similar success rates were achieved with Furlow palatoplasty and pharyngeal flap. No difference in the proportion improved postoperatively was noted between 22q deletion syndrome and nonsyndromic groups. One complication was experienced per group. More revision operations were indicated in the 22q deletion syndrome group (17 percent) compared with the nonsyndromic group (4 percent). Median times to normal resonance for 22q deletion syndrome and nonsyndromic patients were 150 weeks and 34 weeks, respectively. Adjusting for multiple variables, 22q deletion syndrome patients were 3.6 times less likely to develop normal resonance. Careful selection of Furlow palatoplasty or pharyngeal flap for primary repair of submucous cleft palate is highly effective in 22q deletion syndrome patients and yields results approaching those of nonsyndromic patients. Therapeutic, III.

  12. Autostereogram resonators

    NASA Astrophysics Data System (ADS)

    Leavey, Sean; Rae, Katherine; Murray, Adam; Courtial, Johannes

    2012-09-01

    Autostereograms, or "Magic Eye" pictures, are repeating patterns designed to give the illusion of depth. Here we discuss optical resonators that create light patterns which, when viewed from a suitable position by a monocular observer, are autostereograms of the three-dimensional shape of one of the mirror surfaces.

  13. Plenary Talk: Baryon resonance analysis from MAID

    NASA Astrophysics Data System (ADS)

    Tiator, L.; Drechsel, D.; Kamalov, S. S.; Vanderhaeghen, M.

    2009-12-01

    The unitary isobar model MAID2007 has been used to analyze the recent data of pion electroproduction. The model contains all four-star resonances in the region below W = 2 GeV and both single-Q2 and Q2 dependent transition form factors could be obtained for the Delta, Roper, D13(1520), S11(1535), S31(1620), S11(1650), D15(1675), F15(1680) and P13(1720). From the complete world data base, including also π- data on the neutron, also Q2 dependent neutron form factors are obtained. For all transition form factors we also give convenient numerical parameterizations that can be used in other reactions. Furthermore, we show how the transition form factors can be used to obtain empirical transverse charge densities and our first results are given for the Roper, the S11 and D13 resonances.

  14. Theory of Q-ball imaging redux: Implications for fiber tracking.

    PubMed

    Barnett, Alan

    2009-10-01

    Q-ball imaging is widely used to determine fiber directions for fiber tracking. In q-ball imaging the directional dependence of water diffusion in tissue is described by Tuch's orientation distribution function (ODF); a different function, the q-ball orientation distribution function, is measured using high angular resolution magnetic resonance diffusion imaging (HARDI). Tuch's ODF is assumed to be well approximated by the q-ball ODF. In this study it is shown that: 1) the q-ball ODF is not a good approximation to Tuch's ODF; 2) the properties of the q-ball ODF depend strongly on q, the area of the diffusion sensitization gradients; and 3) the q-ball ODF for a composite system is the weighted average of the q-ball ODFs for each subsystem, but the weighting factor is the product of the percent composition and a renormalization factor. In addition, a derivation is presented of the q-ball ODF for a system described by a Gaussian distribution and expressions are derived for both the dependence of the angular resolution on q and for the relation between the angular resolution and the signal loss. These findings might be useful in the design and interpretation of fiber-tracking experiments. (c) 2009 Wiley-Liss, Inc.

  15. A cooperative interaction between LPHN3 and 11q doubles the risk for ADHD.

    PubMed

    Jain, M; Vélez, J I; Acosta, M T; Palacio, L G; Balog, J; Roessler, E; Pineda, D; Londoño, A C; Palacio, J D; Arbelaez, A; Lopera, F; Elia, J; Hakonarson, H; Seitz, C; Freitag, C M; Palmason, H; Meyer, J; Romanos, M; Walitza, S; Hemminger, U; Warnke, A; Romanos, J; Renner, T; Jacob, C; Lesch, K-P; Swanson, J; Castellanos, F X; Bailey-Wilson, J E; Arcos-Burgos, M; Muenke, M

    2012-07-01

    In previous studies of a genetic isolate, we identified significant linkage of attention deficit hyperactivity disorder (ADHD) to 4q, 5q, 8q, 11q and 17p. The existence of unique large size families linked to multiple regions, and the fact that these families came from an isolated population, we hypothesized that two-locus interaction contributions to ADHD were plausible. Several analytical models converged to show significant interaction between 4q and 11q (P<1 × 10(-8)) and 11q and 17p (P<1 × 10(-6)). As we have identified that common variants of the LPHN3 gene were responsible for the 4q linkage signal, we focused on 4q-11q interaction to determine that single-nucleotide polymorphisms (SNPs) harbored in the LPHN3 gene interact with SNPs spanning the 11q region that contains DRD2 and NCAM1 genes, to double the risk of developing ADHD. This interaction not only explains genetic effects much better than taking each of these loci effects by separated but also differences in brain metabolism as depicted by proton magnetic resonance spectroscopy data and pharmacogenetic response to stimulant medication. These findings not only add information about how high order genetic interactions might be implicated in conferring susceptibility to develop ADHD but also show that future studies of the effects of genetic interactions on ADHD clinical information will help to shape predictive models of individual outcome.

  16. New insights into the chemistry of Coenzyme Q-0: A voltammetric and spectroscopic study.

    PubMed

    Gulaboski, Rubin; Bogeski, Ivan; Kokoskarova, Pavlinka; Haeri, Haleh H; Mitrev, Sasa; Stefova, Marina; Stanoeva, Jasmina Petreska; Markovski, Velo; Mirčeski, Valentin; Hoth, Markus; Kappl, Reinhard

    2016-10-01

    Coenzyme Q-0 (CoQ-0) is the only Coenzyme Q lacking an isoprenoid group on the quinoid ring, a feature important for its physico-chemical properties. Here, the redox behavior of CoQ-0 in buffered and non-buffered aqueous media was examined. In buffered aqueous media CoQ-0 redox chemistry can be described by a 2-electron-2-proton redox scheme, characteristic for all benzoquinones. In non-buffered media the number of electrons involved in the electrode reaction of CoQ-0 is still 2; however, the number of protons involved varies between 0 and 2. This results in two additional voltammetric signals, attributed to 2-electrons-1H(+) and 2-electrons-0H(+) redox processes, in which mono- and di-anionic compounds of CoQ-0 are formed. In addition, CoQ-0 exhibits a complex chemistry in strong alkaline environment. The reaction of CoQ-0 and OH(-) anions generates several hydroxyl derivatives as products. Their structures were identified with HPLC/MS. The prevailing radical reaction mechanism was analyzed by electron paramagnetic resonance spectroscopy. The hydroxyl derivatives of CoQ-0 have a strong antioxidative potential and form stable complexes with Ca(2+) ions. In summary, our results allow mechanistic insights into the redox properties of CoQ-0 and its hydroxylated derivatives and provide hints on possible applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Q2 evolution of the neutron spin structure moments using a 3He target.

    PubMed

    Amarian, M; Auerbach, L; Averett, T; Berthot, J; Bertin, P; Bertozzi, B; Black, T; Brash, E; Brown, D; Burtin, E; Calarco, J; Cates, G; Chai, Z; Chen, J-P; Choi, Seonho; Chudakov, E; Cisbani, E; De Jager, C W; Deur, A; DiSalvo, R; Dieterich, S; Djawotho, P; Finn, M; Fissum, K; Fonvieille, H; Frullani, S; Gao, H; Gao, J; Garibaldi, F; Gasparian, A; Gilad, S; Gilman, R; Glamazdin, A; Glashausser, C; Goldberg, E; Gomez, J; Gorbenko, V; Hansen, J-O; Hersman, B; Holmes, R; Huber, G M; Hughes, E; Humensky, B; Incerti, S; Iodice, M; Jensen, S; Jiang, X; Jones, C; Jones, G; Jones, M; Jutier, C; Ketikyan, A; Kominis, I; Korsch, W; Kramer, K; Kumar, K; Kumbartzki, G; Kuss, M; Lakuriqi, E; Laveissiere, G; Lerose, J; Liang, M; Liyanage, N; Lolos, G; Malov, S; Marroncle, J; McCormick, K; McKeown, R; Meziani, Z-E; Michaels, R; Mitchell, J; Papandreou, Z; Pavlin, T; Petratos, G G; Pripstein, D; Prout, D; Ransome, R; Roblin, Y; Rowntree, D; Rvachev, M; Sabatie, F; Saha, A; Slifer, K; Souder, P; Saito, T; Strauch, S; Suleiman, R; Takahashi, K; Teijiro, S; Todor, L; Tsubota, H; Ueno, H; Urciuoli, G; Van Der Meer, R; Vernin, P; Voskanian, H; Wojtsekhowski, B; Xiong, F; Xu, W; Yang, J-C; Zhang, B; Zolnierczuk, P

    2004-01-16

    We have measured the spin structure functions g(1) and g(2) of 3He in a double-spin experiment by inclusively scattering polarized electrons at energies ranging from 0.862 to 5.058 GeV off a polarized 3He target at a 15.5 degrees scattering angle. Excitation energies covered the resonance and the onset of the deep inelastic regions. We have determined for the first time the Q2 evolution of Gamma(1)(Q2)= integral (1)(0)g(1)(x,Q2)dx, Gamma(2)(Q2)= integral (1)(0)g(2)(x,Q2)dx, and d(2)(Q2)= integral (1)(0)x(2)[2g(1)(x,Q2)+3g(2)(x,Q2)]dx for the neutron in the range 0.1< or =Q2< or =0.9 GeV2 with good precision. Gamma(1)(Q2) displays a smooth variation from high to low Q2. The Burkhardt-Cottingham sum rule holds within uncertainties and d(2) is nonzero over the measured range.

  18. Magnetic resonance force detection using a membrane resonator

    NASA Astrophysics Data System (ADS)

    Scozzaro, N.; Ruchotzke, W.; Belding, A.; Cardellino, J.; Blomberg, E. C.; McCullian, B. A.; Bhallamudi, V. P.; Pelekhov, D. V.; Hammel, P. C.

    2016-10-01

    The availability of compact, low-cost magnetic resonance imaging instruments would further broaden the substantial impact of this technology. We report highly sensitive detection of magnetic resonance using low-stress silicon nitride (SiNx) membranes. We use these membranes as low-loss, high-frequency mechanical oscillators and find they are able to mechanically detect spin-dependent forces with high sensitivity enabling ultrasensitive magnetic resonance detection. The high force detection sensitivity stems from their high mechanical quality factor Q ∼106 [1,2] combined with the low mass of the resonator. We use this excellent mechanical force sensitivity to detect the electron spin magnetic resonance using a SiNx membrane as a force detector. The demonstrated force sensitivity at 300 K is 4 fN/√{Hz } , indicating a potential low temperature (4 K) sensitivity of 25 aN/√{Hz } . Given their sensitivity, robust construction, large surface area and low cost, SiNx membranes can potentially serve as the central component of a compact room-temperature ESR and NMR instrument having spatial resolution superior to conventional approaches.

  19. Q-switched Nd:YAG optical vortex lasers.

    PubMed

    Kim, D J; Kim, J W; Clarkson, W A

    2013-12-02

    Q-switched operation of a high-quality Nd:YAG optical vortex laser with the first order Laguerre-Gaussian mode and well-determined helical wavefronts using a fiber-based pump beam conditioning scheme is reported. A simple two-mirror resonator incorporating an acousto-optic Q-switch was employed, along with an etalon and a Brewster plate to enforce the particular helicity of the output. The laser yielded Q-switched pulses with ~250 μJ pulse energy and ~33 ns pulse duration (FWHM) at a 0.1 kHz repetition rate for 5.1 W of absorbed pump power. The handedness of the helical wavefronts was preserved regardless of the repetition rates. The prospects of further power scaling and improved laser performance are discussed.

  20. Extremely high Q -factor metamaterials due to anapole excitation

    NASA Astrophysics Data System (ADS)

    Basharin, Alexey A.; Chuguevsky, Vitaly; Volsky, Nikita; Kafesaki, Maria; Economou, Eleftherios N.

    2017-01-01

    We have designed and fabricated a metamaterial consisting of planar metamolecules which exhibit unusual, almost perfect anapole behavior in the sense that the electric dipole radiation is almost canceled by the toroidal dipole one, producing thus an extremely high Q -factor at the resonance frequency. Thus we have demonstrated theoretically and experimentally that metamaterials approaching ideal anapole behavior have very high Q -factor. The size of the system, at the millimeter range, and the parasitic magnetic quadrupole radiation are the factors limiting the size of the Q -factor. In spite of the very low radiation losses the estimated local fields at the metamolecules are extremely high, of the order of 104 higher than the external incoming field.

  1. Electron-electron double resonance (ELDOR) with a loop-gap resonator

    NASA Astrophysics Data System (ADS)

    Hyde, James S.; Yin, Jun-Jie; Froncisz, W.; Feix, Jimmy B.

    Electron-electron double-resonance (ELDOR) experiments on nitroxide-radical-spin-labeled liposomes have been performed using a loop-gap resonator. The signal-to-noise ratio expressed on a molarity basis is 20-fold over the best that has been achieved using a bimodal cavity. This improvement permits ELDOR experiments on spin-labeled plasma membranes of intact cells, as illustrated by a prototype experiment on red blood cells labeled with stearic acid spin label. Moreover, 20 times greater pumping energy density at the sample is achievable for a given incident pump power, permitting ELDOR experiments on less readily saturated systems. Pump and observing frequencies are introduced directly into the loop-gap resonator, which has a relatively low Q, and the pump electron paramagnetic resonance signal is isolated from the receiver using a high Q trap microwave filter.

  2. Apex-angle-dependent resonances in triangular split-ring resonators

    NASA Astrophysics Data System (ADS)

    Burnett, Max A.; Fiddy, Michael A.

    2016-02-01

    Along with other frequency selective structures (Pendry et al. in IEEE Trans Microw Theory Tech 47(11):2075-2084, 1999) (circles and squares), triangular split-ring resonators (TSRRs) only allow frequencies near the center resonant frequency to propagate. Further, TSRRs are attractive due to their small surface area (Vidhyalakshmi et al. in Stopband characteristics of complementary triangular split ring resonator loaded microstrip line, 2011), comparatively, and large quality factors ( Q) as previously investigated by Gay-Balmaz et al. (J Appl Phys 92(5):2929-2936, 2002). In this work, we examine the effects of varying the apex angle on the resonant frequency, the Q factor, and the phase shift imparted by the TSRR element within the GHz frequency regime.

  3. Applications and Methods of Operating a Three-dimensional Nano-electro-mechanical Resonator and Related Devices

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B. (Inventor); Epp, Larry W. (Inventor); Bagge, Leif (Inventor)

    2013-01-01

    Carbon nanofiber resonator devices, methods for use, and applications of said devices are disclosed. Carbon nanofiber resonator devices can be utilized in or as high Q resonators. Resonant frequency of these devices is a function of configuration of various conducting components within these devices. Such devices can find use, for example, in filtering and chemical detection.

  4. R248Q mutation--Beyond p53-DNA binding.

    PubMed

    Ng, Jeremy W K; Lama, Dilraj; Lukman, Suryani; Lane, David P; Verma, Chandra S; Sim, Adelene Y L

    2015-12-01

    R248 in the DNA binding domain (DBD) of p53 interacts directly with the minor groove of DNA. Earlier nuclear magnetic resonance (NMR) studies indicated that the R248Q mutation resulted in conformation changes in parts of DBD far from the mutation site. However, how information propagates from the mutation site to the rest of the DBD is still not well understood. We performed a series of all-atom molecular dynamics (MD) simulations to dissect sterics and charge effects of R248 on p53-DBD conformation: (i) wild-type p53 DBD; (ii) p53 DBD with an electrically neutral arginine side-chain; (iii) p53 DBD with R248A; (iv) p53 DBD with R248W; and (v) p53 DBD with R248Q. Our results agree well with experimental observations of global conformational changes induced by the R248Q mutation. Our simulations suggest that both charge- and sterics are important in the dynamics of the loop (L3) where the mutation resides. We show that helix 2 (H2) dynamics is altered as a result of a change in the hydrogen bonding partner of D281. In turn, neighboring L1 dynamics is altered: in mutants, L1 predominantly adopts the recessed conformation and is unable to interact with the major groove of DNA. We focused our attention the R248Q mutant that is commonly found in a wide range of cancer and observed changes at the zinc-binding pocket that might account for the dominant negative effects of R248Q. Furthermore, in our simulations, the S6/S7 turn was more frequently solvent exposed in R248Q, suggesting that there is a greater tendency of R248Q to partially unfold and possibly lead to an increased aggregation propensity. Finally, based on the observations made in our simulations, we propose strategies for the rescue of R248Q mutants.

  5. Whispering-gallery mode micro-kylix resonators.

    PubMed

    Ghulinyan, Mher; Pitanti, Alessandro; Pucker, Georg; Pavesi, Lorenzo

    2009-05-25

    Owing to their ability to confine electromagnetic energy in ultrasmall dielectric volumes, micro-disk, ring and toroid resonators hold interest for both specific applications and fundamental investigations. Generally, contributions from various loss channels within these devices lead to limited spectral windows (Q-bands) where highest mode Q-factors manifest. Here we describe a strategy for tuning Q-bands using a new class of micro-resonators, named micro-kylix resonators, in which engineered stress within an initially flat disk results in either concave or convex devices. To shift the Q-band by 60 nm towards short wavelengths in flat micro-disks a 50% diameter reduction is required, which causes severe radiative losses suppressing Q's. With a micro-kylix, we achieve similar tuning and even higher Q's by two orders of magnitude smaller diameter modification (0.4%). The phenomenon relies on geometry-induced smart interplay between modified dispersions of material absorption and radiative loss-related Q-factors. Micro-kylix devices can provide new functionalities and novel technological solutions for photonics and micro-resonator physics.

  6. Composite arrays of superconducting microstrip line resonators

    SciTech Connect

    Mohebbi, H. R. Miao, G. X.; Benningshof, O. W. B.; Taminiau, I. A. J.; Cory, D. G.

    2014-03-07

    A novel design of an array of half-wave superconductive microstrip resonators is described. The resonator is intended to be useful for electron spin resonance studies of thin film samples at cryogenic temperatures. It achieves a high quality factor, has a small mode-volume, and creates a uniform magnetic field in a plane above the resonator. The device is made of thin film Niobium on sapphire wafer and is tested with a static magnetic field. Variation of Q-factor versus the magnetic field's strength at different temperatures is reported and is in a good agreement with simulation when the loss due to the vortices is included. Also, the power-dependence response of the resonator is shown in experiments and is verified by capturing the nonlinearity associated with the surface impedance of the superconducting film into the circuit model of the device.

  7. Microspherical photonics: Sorting resonant photonic atoms by using light

    SciTech Connect

    Maslov, Alexey V.; Astratov, Vasily N.

    2014-09-22

    A method of sorting microspheres by resonant light forces in vacuum, air, or liquid is proposed. Based on a two-dimensional model, it is shown that the sorting can be realized by allowing spherical particles to traverse a focused beam. Under resonance with the whispering gallery modes, the particles acquire significant velocity along the beam direction. This opens a unique way of large-volume sorting of nearly identical photonic atoms with 1/Q accuracy, where Q is the resonance quality factor. This is an enabling technology for developing super-low-loss coupled-cavity structures and devices.

  8. Complex multireference configuration interaction calculations for the K-vacancy Auger states of N{sup q+} (q = 2-5) ions

    SciTech Connect

    Peng, Yi-Geng; Wu, Yong Wang, Jian-Guo; Zhu, Lin-Fan; Zhang, Song Bin; Liebermann, H.-P.; Buenker, R. J.

    2016-02-07

    K-vacancy Auger states of N{sup q+} (q = 2-5) ions are studied by using the complex multireference single- and double-excitation configuration interaction (CMRD-CI) method. The calculated resonance parameters are in good agreement with the available experimental and theoretical data. It shows that the resonance positions and widths converge quickly with the increase of the atomic basis sets in the CMRD-CI calculations; the standard atomic basis set can be employed to describe the atomic K-vacancy Auger states well. The strong correlations between the valence and core electrons play important roles in accurately determining those resonance parameters, Rydberg electrons contribute negligibly in the calculations. Note that it is the first time that the complex scaling method has been successfully applied for the B-like nitrogen. CMRD-CI is readily extended to treat the resonance states of molecules in the near future.

  9. Non-Markovian near-infrared Q branch of HCl diluted in liquid Ar

    NASA Astrophysics Data System (ADS)

    Padilla, Antonio; Pérez, Justo

    2013-08-01

    By using a non-Markovian spectral theory based in the Kubo cumulant expansion technique, we have qualitatively studied the infrared Q branch observed in the fundamental absorption band of HCl diluted in liquid Ar. The statistical parameters of the anisotropic interaction present in this spectral theory were calculated by means of molecular dynamics techniques, and found that the values of the anisotropic correlation times are significantly greater (by a factor of two) than those previously obtained by fitting procedures or microscopic cell models. This fact is decisive for the observation in the theoretical spectral band of a central Q resonance which is absent in the abundant previous researches carried out with the usual theories based in Kubo cumulant expansion techniques. Although the theory used in this work only allows a qualitative study of the Q branch, we can employ it to study the unknown characteristics of the Q resonance which are difficult to obtain with the quantum simulation techniques recently developed. For example, in this study we have found that the Q branch is basically a non-Markovian (or memory) effect produced by the spectral line interferences, where the PR interferential profile basically determines the Q branch spectral shape. Furthermore, we have found that the Q resonance is principally generated by the first rotational states of the first two vibrational levels, those more affected by the action of the dissolvent.

  10. Non-Markovian near-infrared Q branch of HCl diluted in liquid Ar.

    PubMed

    Padilla, Antonio; Pérez, Justo

    2013-08-28

    By using a non-Markovian spectral theory based in the Kubo cumulant expansion technique, we have qualitatively studied the infrared Q branch observed in the fundamental absorption band of HCl diluted in liquid Ar. The statistical parameters of the anisotropic interaction present in this spectral theory were calculated by means of molecular dynamics techniques, and found that the values of the anisotropic correlation times are significantly greater (by a factor of two) than those previously obtained by fitting procedures or microscopic cell models. This fact is decisive for the observation in the theoretical spectral band of a central Q resonance which is absent in the abundant previous researches carried out with the usual theories based in Kubo cumulant expansion techniques. Although the theory used in this work only allows a qualitative study of the Q branch, we can employ it to study the unknown characteristics of the Q resonance which are difficult to obtain with the quantum simulation techniques recently developed. For example, in this study we have found that the Q branch is basically a non-Markovian (or memory) effect produced by the spectral line interferences, where the PR interferential profile basically determines the Q branch spectral shape. Furthermore, we have found that the Q resonance is principally generated by the first rotational states of the first two vibrational levels, those more affected by the action of the dissolvent.

  11. White-Light Whispering-Gallery-Mode Optical Resonators

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey; Savchenkov, Anatoliy; Maleki, Lute

    2006-01-01

    Whispering-gallery-mode (WGM) optical resonators can be designed to exhibit continuous spectra over wide wavelength bands (in effect, white-light spectra), with ultrahigh values of the resonance quality factor (Q) that are nearly independent of frequency. White-light WGM resonators have potential as superior alternatives to (1) larger, conventional optical resonators in ring-down spectroscopy, and (2) optical-resonator/electro-optical-modulator structures used in coupling of microwave and optical signals in atomic clocks. In these and other potential applications, the use of white-light WGM resonators makes it possible to relax the requirement of high-frequency stability of lasers, thereby enabling the use of cheaper lasers. In designing a white-light WGM resonator, one exploits the fact that the density of the mode spectrum increases predictably with the thickness of the resonator disk. By making the resonator disk sufficiently thick, one can make the frequency differences between adjacent modes significantly less than the spectral width of a single mode, so that the spectral peaks of adjacent modes overlap, making the resonator spectrum essentially continuous. Moreover, inasmuch as the Q values of the various modes are determined primarily by surface Rayleigh scattering that does not depend on mode numbers, all the modes have nearly equal Q. By use of a proper coupling technique, one can ensure excitation of a majority of the modes. For an experimental demonstration of a white-light WGM resonator, a resonator disk 0.5-mm thick and 5 mm in diameter was made from CaF2. The shape of the resonator and the fiberoptic coupling arrangement were as shown in Figure 1. The resonator was excited with laser light having a wavelength of 1,320 nm and a spectral width of 4 kHz. The coupling efficiency exceeded 80 percent at any frequency to which the laser could be set in its tuning range, which was >100-GHz wide. The resonator response was characterized by means of ring

  12. Deletion (11)(q14.1q21)

    SciTech Connect

    Stratton, R.F.; Lazarus, K.H.; Ritchie, E.J.L.; Bell, A.M.

    1994-02-01

    The authors report on a 4-year-old girl with moderate development delay, horseshoe kidney, bilateral duplication of the ureters with right upper pole obstruction, hydronephrosis and nonfunction, and subsequent Wilms tumor of the right lower pole. She had an interstitial deletion of the long arm of chromosome 11 involving the region 11(q14.1q21). 22 refs., 2 figs., 1 tab.

  13. Analysis of autism susceptibility gene loci on chromosomes 1p, 4p, 6q, 7q, 13q, 15q, 16p, 17q, 19q and 22q in Finnish multiplex families.

    PubMed

    Auranen, M; Nieminen, T; Majuri, S; Vanhala, R; Peltonen, L; Järvelä, I

    2000-05-01

    The role of genetic factors in the etiology of the autistic spectrum of disorders has clearly been demonstrated. Ten chromosomal regions, on chromosomes 1p, 4p, 6q, 7q, 13q, 15q, 16p, 17q, 19q and 22q have potentially been linked to autism.1-8 We have analyzed these chromosomal regions in a total of 17 multiplex families with autism originating from the isolated Finnish population by pairwise linkage analysis and sib-pair analysis. Mild evidence for putative contribution was found only with the 1p chromosomal region in the susceptibility to autism. Our data suggest that additional gene loci exist for autism which will be detectable in and even restricted to the isolated Finnish population.

  14. Chip scale mechanical spectrum analyzers based on high quality factor overmoded bulk acouslic wave resonators

    SciTech Connect

    Olsson, R. H., III

    2012-03-01

    The goal of this project was to develop high frequency quality factor (fQ) product acoustic resonators matched to a standard RF impedance of 50 {Omega} using overmoded bulk acoustic wave (BAW) resonators. These resonators are intended to serve as filters in a chip scale mechanical RF spectrum analyzer. Under this program different BAW resonator designs and materials were studied theoretically and experimentally. The effort resulted in a 3 GHz, 50 {Omega}, sapphire overmoded BAW with a fQ product of 8 x 10{sup 13}, among the highest values ever reported for an acoustic resonator.

  15. Electromagnetic Transmission Through Resonant Structures

    NASA Astrophysics Data System (ADS)

    Young, Steven M.

    Electromagnetic resonators store energy in the form of oscillatory electric and magnetic fields and gradually exchange that energy by coupling with their environment. This coupling process can have profound effects on the transmission and reflection properties of nearby interfaces, with rapid transitions from high transmittance to high reflectance over narrow frequency ranges, and has been exploited to design useful optical components such as spectral filters and dielectric mirrors. This dissertation includes analytic, numeric, and experimental investigations of three different electromagnetic resonators, each based on a different method of confining electromagnetic fields near the region of interest. First, we show that a structure with two parallel conducting plates, each containing a subwavelength slit, supports a localized resonant mode bound to the slits and therefore exhibits (in the absence of nonradiative losses), perfect resonant transmission over a narrow frequency range. In practice, the transmission is limited by conduction losses in the sidewalls; nevertheless, experimental results at 10 GHz show a narrowband transmission enhancement by a factor of 104 compared to the non-resonant transmission, with quality factor (ratio of frequency to peak width) Q ~ 3000. Second, we describe a narrowband transmission filter based on a single-layer dielectric grating. We use a group theory analysis to show that, due to their symmetry, several of the grating modes cannot couple to light at normal incidence, while several others have extremely large coupling. We then show how selectively breaking the system symmetry using off-normal light incidence can produce transmission peaks by enabling weak coupling to some of the previously protected modes. The narrowband filtering capabilities are validated by an experimental demonstration in the long wavelength infrared, showing transmission peaks of quality factor Q ~ 100 within a free-spectral range of 8-15 mum. Third, we

  16. A Technique for Adjusting Eigenfrequencies of WGM Resonators

    NASA Technical Reports Server (NTRS)

    Strekalov, Dmitry; Savchenkov, Anatoliy; Maleki, Lute; Matsko, Andrey; Iltchenko, Vladimir; Martin, Jan

    2009-01-01

    A simple technique has been devised for making small, permanent changes in the eigenfrequencies (resonance frequencies) of whispering-gallery-mode (WGM) dielectric optical resonators that have high values of the resonance quality factor (Q). The essence of the technique is to coat the resonator with a thin layer of a transparent polymer having an index of refraction close to that of the resonator material. Successive small frequency adjustments can be made by applying successive coats. The technique was demonstrated on a calcium fluoride resonator to which successive coats of a polymer were applied by use of a hand-made wooden brush. To prevent temperature- related frequency shifts that could interfere with the verification of the effectiveness of this technique, the temperature of the resonator was stabilized by means of a three-stage thermoelectric cooler. Measurements of the resonator spectrum showed the frequency shifts caused by the successive coating layers.

  17. Sensing Based on Fano-Type Resonance Response of All-Dielectric Metamaterials

    PubMed Central

    Semouchkina, Elena; Duan, Ran; Semouchkin, George; Pandey, Ravindra

    2015-01-01

    A new sensing approach utilizing Mie resonances in metamaterial arrays composed of dielectric resonators is proposed. These arrays were found to exhibit specific, extremely high-Q factor (up to 15,000) resonances at frequencies corresponding to the lower edge of the array second transmission band. The observed resonances possessed with features typical for Fano resonances (FRs), which were initially revealed in atomic processes and recently detected in macro-structures, where they resulted from interference between local resonances and a continuum of background waves. Our studies demonstrate that frequencies and strength of Fano-type resonances in all-dielectric arrays are defined by interaction between local Mie resonances and Fabry-Perot oscillations of Bloch eigenmodes that makes possible controlling the resonance responses by changing array arrangements. The opportunity for obtaining high-Q responses in compact arrays is investigated and promising designs for sensing the dielectric properties of analytes in the ambient are proposed. PMID:25905701

  18. Multidimensionally encoded magnetic resonance imaging.

    PubMed

    Lin, Fa-Hsuan

    2013-07-01

    Magnetic resonance imaging (MRI) typically achieves spatial encoding by measuring the projection of a q-dimensional object over q-dimensional spatial bases created by linear spatial encoding magnetic fields (SEMs). Recently, imaging strategies using nonlinear SEMs have demonstrated potential advantages for reconstructing images with higher spatiotemporal resolution and reducing peripheral nerve stimulation. In practice, nonlinear SEMs and linear SEMs can be used jointly to further improve the image reconstruction performance. Here, we propose the multidimensionally encoded (MDE) MRI to map a q-dimensional object onto a p-dimensional encoding space where p > q. MDE MRI is a theoretical framework linking imaging strategies using linear and nonlinear SEMs. Using a system of eight surface SEM coils with an eight-channel radiofrequency coil array, we demonstrate the five-dimensional MDE MRI for a two-dimensional object as a further generalization of PatLoc imaging and O-space imaging. We also present a method of optimizing spatial bases in MDE MRI. Results show that MDE MRI with a higher dimensional encoding space can reconstruct images more efficiently and with a smaller reconstruction error when the k-space sampling distribution and the number of samples are controlled. Copyright © 2012 Wiley Periodicals, Inc.

  19. Frequency-temperature sensitivity reduction with optimized microwave Bragg resonators

    NASA Astrophysics Data System (ADS)

    Le Floch, J.-M.; Murphy, C.; Hartnett, J. G.; Madrangeas, V.; Krupka, J.; Cros, D.; Tobar, M. E.

    2017-01-01

    Dielectric resonators are employed to build state-of-the-art low-noise and high-stability oscillators operating at room and cryogenic temperatures. A resonator temperature coefficient of frequency is one criterion of performance. This paper reports on predictions and measurements of this temperature coefficient of frequency for three types of cylindrically symmetric Bragg resonators operated at microwave frequencies. At room temperature, microwave Bragg resonators have the best potential to reach extremely high Q-factors. Research has been conducted over the last decade on modeling, optimizing, and realizing such high Q-factor devices for applications such as filtering, sensing, and frequency metrology. We present an optimized design, which has a temperature sensitivity 2 to 4 times less than current whispering gallery mode resonators without using temperature compensating techniques and about 30% less than other existing Bragg resonators. Also, the performance of a new generation single-layered Bragg resonator, based on a hybrid-Bragg-mode, is reported with a sensitivity of about -12 ppm/K at 295 K. For a single reflector resonator, it achieves a similar level of performance as a double-Bragg-reflector resonator but with a more compact structure and performs six times better than whispering-gallery-mode resonators. The hybrid resonator promises to deliver a new generation of high-sensitivity sensors and high-stability room-temperature oscillators.

  20. Diode-pumped actively Q-switched thulium laser

    NASA Astrophysics Data System (ADS)

    Jabczynski, J. K.; Zendzian, W.; Kwiatkowski, J.; Jelinkova, H.; Sulc, J.; Nemec, M.

    2007-06-01

    The properties of several Tm doped crystals regarding application in Q-switched tunable laser were analyzed theoretically. The acousto-optically Q-switched Tm:YLF laser is described in experimental part. The fiber coupled (0.4-mm core diameter) laser diode bar at 792-nm wavelength was deployed for pumping. The uncoated, with 3.5% dopant of thulium YLF rod of ø3x8mm size wrapped with indium foil was mounted in copper heat-sink maintaining 293 K temperature of coolant water. Above 6 W of output power and near 50% slope efficiency with respect to absorbed pump power was demonstrated in free-running mode for a short, 40-mm long resonator. The quartz acousto-optic modulator with above 80% diffraction efficiency for 25-W power of RF was taken as the Q-switch for such a laser. In the best case of Q-switching mode up to 2-mJ output energy with 15-ns pulse duration corresponding to 100-kW peak power was demonstrated for rep. rate of a few Hz. Emission wavelength was around 1904 nm for both free-running and Q-switching regimes

  1. Escherichia coli RecQ is a rapid, efficient, and monomeric helicase.

    PubMed

    Zhang, Xing-Dong; Dou, Shuo-Xing; Xie, Ping; Hu, Jin-Shan; Wang, Peng-Ye; Xi, Xu Guang

    2006-05-05

    RecQ family helicases play a key role in chromosome maintenance. Despite extensive biochemical, biophysical, and structural studies, the mechanism by which helicase unwinds double-stranded DNA remains to be elucidated. Using a wide array of biochemical and biophysical approaches, we have previously shown that the Escherichia coli RecQ helicase functions as a monomer. In this study, we have further characterized the kinetic mechanism of the RecQ-catalyzed unwinding of duplex DNA using the fluorometric stopped-flow method based on fluorescence resonance energy transfer. Our results show that RecQ helicase binds preferentially to 3'-flanking duplex DNA. Under the pre-steady-state conditions, the burst amplitude reveals a 1:1 ratio between RecQ and DNA substrate, suggesting that an active monomeric form of RecQ helicase is involved in the catalysis. Under the single-turnover conditions, the RecQ-catalyzed unwinding is independent of the 3'-tail length, indicating that functional interactions between RecQ molecules are not implicated in the DNA unwinding. It was further determined that RecQ unwinds DNA rapidly with a step size of 4 bp and a rate of approximately 21 steps/s. These kinetic results not only further support our previous conclusion that E. coli RecQ functions as a monomer but also suggest that some of the Superfamily 2 helicases may function through an "inchworm" mechanism.

  2. Experimental study of electro-optical Q-switched pulsed Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    A, Maleki; M Kavosh, Tehrani; H, Saghafifar; M, H. Moghtader Dindarlu

    2016-03-01

    We report the specification of a compact and stable side diode-pumped Q-switched pulsed Nd:YAG laser. We experimentally study and compare the performance of the pulsed Nd:YAG laser in the free-running and Q-switched modes at different pulse repetition rates from 1 Hz to 100 Hz. The laser output energy is stabilized by using a special configuration of the optical resonator. In this laser, an unsymmetrical concave-concave resonator is used and this structure helps the mode volume to be nearly fixed when the pulse repetition rate is increased. According to the experimental results in the Q-switched operation, the laser output energy is nearly constant around 70 mJ with an FWHM pulse width of 7 ns at 100 Hz. The optical-to-optical conversion efficiency in the Q-switched regime is 17.5%.

  3. Slow Light in Coupled Resonator Optical Waveguides

    NASA Technical Reports Server (NTRS)

    Chang, Hongrok; Gates, Amanda L.; Fuller, Kirk A.; Gregory, Don A.; Witherow, William K.; Paley, Mark S.; Frazier, Donald O.; Smith, David D.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Recently, we discovered that a splitting of the whispering gallery modes (WGMs) occurs in coupled resonator optical waveguides (CROWs), and that these split modes are of a higher Q than the single-resonator modes, leading to enormous circulating intensity magnification factors that dramatically reduce thresholds for nonlinear optical (NLO) processes. As a result of the enhancements in Q, pulses propagating at a split resonance can propagate much slower (faster) for over (under)-coupled structures, due to the modified dispersion near the split resonance. Moreover, when loss is considered, the mode-splitting may be thought of as analogous to the Autler-Townes splitting that occurs in atomic three-level lambda systems, i.e., it gives rise to induced transparency as a result of destructive interference. In under- or over-coupled CROWs, this coupled resonator induced transparency (CRIT) allows slow light to be achieved at the single-ring resonance with no absorption, while maintaining intensities such that NLO effects are maximized. The intensity magnification of the circulating fields and phase transfer characteristics are examined in detail.

  4. Slow Light in Coupled Resonator Optical Waveguides

    NASA Technical Reports Server (NTRS)

    Chang, Hongrok; Gates, Amanda L.; Fuller, Kirk A.; Gregory, Don A.; Witherow, William K.; Paley, Mark S.; Frazier, Donald O.; Smith, David D.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Recently, we discovered that a splitting of the whispering gallery modes (WGMs) occurs in coupled resonator optical waveguides (CROWs), and that these split modes are of a higher Q than the single-resonator modes, leading to enormous circulating intensity magnification factors that dramatically reduce thresholds for nonlinear optical (NLO) processes. As a result of the enhancements in Q, pulses propagating at a split resonance can propagate much slower (faster) for over (under)-coupled structures, due to the modified dispersion near the split resonance. Moreover, when loss is considered, the mode-splitting may be thought of as analogous to the Autler-Townes splitting that occurs in atomic three-level lambda systems, i.e., it gives rise to induced transparency as a result of destructive interference. In under- or over-coupled CROWs, this coupled resonator induced transparency (CRIT) allows slow light to be achieved at the single-ring resonance with no absorption, while maintaining intensities such that NLO effects are maximized. The intensity magnification of the circulating fields and phase transfer characteristics are examined in detail.

  5. A constitutional 5q23 deletion.

    PubMed Central

    Rivera, H; Simi, P; Rossi, S; Pardelli, L; Di Paolo, M C

    1990-01-01

    A 14 month old girl was found to have a deletion of the whole of band 5q23. By comparing 19 other cases monosomic for a part of the 5q13-q31 segment, the constitutional 5q interstitial deletions fall into two groups: adult patients with Gardner-like symptoms and mental retardation associated with deletion 5q21-q22, and patients (mostly children) with unspecific signs and symptoms and different deletions. Images PMID:2325108

  6. Improving the Optical Quality Factor of the WGM Resonator

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Matsko, Andrey; Iltchenko, Vladimir

    2008-01-01

    Resonators usually are characterized with two partially dependent values: finesse (F) and quality factor (Q). The finesse of an empty Fabry-Perot (FP) resonator is defined solely by the quality of its mirrors and is calculated as F=piR(exp 1/2)/(1-R). The maximum up-to-date value of reflectivity R approximately equal to 1 - 1.6 x 10(exp -6) is achieved with dielectric mirrors. An FP resonator made with the mirrors has finesse F=1.9 x 10(exp 6). Further practical increase of the finesse of FP resonators is problematic because of the absorption and the scattering of light in the mirror material through fundamental limit on the reflection losses given by the internal material losses and by thermodynamic density fluctuations on the order of parts in 109. The quality factor of a resonator depends on both its finesse and its geometrical size. A one-dimensional FP resonator has Q=2 F L/lambda, where L is the distance between the mirrors and lambda is the wavelength. It is easy to see that the quality factor of the resonator is unlimited because L is unlimited. F and Q are equally important. In some cases, finesse is technically more valuable than the quality factor. For instance, buildup of the optical power inside the resonator, as well as the Purcell factor, is proportional to finesse. Sometimes, however, the quality factor is more valuable. For example, inverse threshold power of intracavity hyperparametric oscillation is proportional to Q(exp 2) and efficiency of parametric frequency mixing is proportional to Q(exp 3). Therefore, it is important to know both the maximally achievable finesse and quality factor values of a resonator. Whispering gallery mode (WGM) resonators are capable of achieving larger finesse compared to FP resonators. For instance, fused silica resonators with finesse 2.3 x 10(exp 6) and 2.8 x 10(exp 6) have been demonstrated. Crystalline WGM resonators reveal even larger finesse values, F=6.3 x 10(exp 6), because of low attenuation of light in the

  7. Modeling and analysis of mechanical Quality factor of the resonator for cylinder vibratory gyroscope

    NASA Astrophysics Data System (ADS)

    Xi, Xiang; Wu, Xuezhong; Wu, Yulie; Zhang, Yongmeng

    2017-01-01

    Mechanical Quality factor( Q factor) of the resonator is an important parameter for the cylinder vibratory gyroscope(CVG). Traditional analytical methods mainly focus on a partial energy loss during the vibration process of the CVG resonator, thus are not accurate for the mechanical Q factor prediction. Therefore an integrated model including air damping loss, surface defect loss, support loss, thermoelastic damping loss and internal friction loss is proposed to obtain the mechanical Q factor of the CVG resonator. Based on structural dynamics and energy dissipation analysis, the contribution of each energy loss to the total mechanical Q factor is quantificationally analyzed. For the resonator with radius ranging from 10 mm to 20 mm, its mechanical Q factor is mainly related to the support loss, thermoelastic damping loss and internal friction loss, which are fundamentally determined by the geometric sizes and material properties of the resonator. In addition, resonators made of alloy 3J53 (Ni42CrTiAl), with different sizes, were experimentally fabricated to test the mechanical Q factor. The theoretical model is well verified by the experimental data, thus provides an effective theoretical method to design and predict the mechanical Q factor of the CVG resonator.

  8. Interstitial deletions 4q21.1q25 and 4q25q27: Phenotypic variability and relation to Rieger anomaly

    SciTech Connect

    Kulharya, A.S.; Schneider, N.R.; Tonk, V.

    1995-01-16

    We describe clinical and chromosomal findings in two patients with del(4q). Patient 1, with interstitial deletion (4)(q21.1q25), had craniofacial and skeletal anomalies and died at 8 months hydrocephalus. Patient 2, with interstitial deletion (4)(q25q27), had craniofacial and skeletal anomalies with congenital hypotonia and developmental delay. These patients shared certain manifestations with other del(4q) patients but did not have Rieger anomaly. Clinical variability among patients with interstitial deletions of 4q may be related to variable expression, variable deletion, or imprinting of genes within the 4q region. 15 refs., 4 figs., 1 tab.

  9. Narrow resonances and short-range interactions

    SciTech Connect

    Gelman, Boris A.

    2009-09-15

    Narrow resonances in systems with short-range interactions are discussed in an effective field theory (EFT) framework. An effective Lagrangian is formulated in the form of a combined expansion in powers of a momentum Q<<{lambda}--a short-distance scale--and an energy difference {delta}{epsilon}=|E-{epsilon}{sub 0}|<<{epsilon}{sub 0}--a resonance peak energy. At leading order in the combined expansion, a two-body scattering amplitude is the sum of a smooth background term of order Q{sup 0} and a Breit-Wigner term of order Q{sup 2}({delta}{epsilon}){sup -1} which becomes dominant for {delta}{epsilon} < or approx. Q{sup 3}. Such an EFT is applicable to systems in which short-distance dynamics generates a low-lying quasistationary state. The EFT is generalized to describe a narrow low-lying resonance in a system of charged particles. It is shown that in the case of Coulomb repulsion, a two-body scattering amplitude at leading order in a combined expansion is the sum of a Coulomb-modified background term and a Breit-Wigner amplitude with parameters renormalized by Coulomb interactions.

  10. Structure functions at low Q^2: higher twists and target mass effects

    SciTech Connect

    Wally Melnitchouk

    2006-05-22

    We review the physics of structure functions at low Q{sup 2}, focusing on the phenomenon of quark-hadron duality and the resonance-scaling transition, both phenomenologically and in the context of quark models. We also present a new implementation of target mass corrections to nucleon structure functions which, unlike existing treatments, has the correct kinematic threshold behavior at finite Q{sup 2} in the x -> 1 limit.

  11. A MEMS diamond hemispherical resonator

    NASA Astrophysics Data System (ADS)

    Bernstein, J. J.; Bancu, M. G.; Cook, E. H.; Chaparala, M. V.; Teynor, W. A.; Weinberg, M. S.

    2013-12-01

    In this paper we report the fabrication of hemispherical polycrystalline diamond resonators fabricated on a novel high-temperature glass substrate. The hemispherical resonator gyroscope is one of the most accurate and rugged of the mechanical gyroscopes, and can be operated in either rate or whole-angle mode due to its high degree of symmetry. A fabrication sequence for creating extremely symmetric 3D MEMS hemispheres is presented. Mode shapes and frequencies obtained with a laser vibrometer are shown, as well as curves of Q versus pressure, and the dependence of frequency on anchor size. Fundamental mode frequency matching to <0.1% in as-fabricated devices has been achieved, which is essential to gyroscope operation in whole-angle mode.

  12. If It's Resonance, What is Resonating?

    ERIC Educational Resources Information Center

    Kerber, Robert C.

    2006-01-01

    The phenomenon under the name "resonance," which, is based on the mathematical analogy between mechanical resonance and the behavior of wave functions in quantum mechanical exchange phenomena was described. The resonating system does not have a structure intermediate between those involved in the resonance, but instead a structure which is further…

  13. Carbon nanotubes as ultrahigh quality factor mechanical resonators.

    PubMed

    Hüttel, Andreas K; Steele, Gary A; Witkamp, Benoit; Poot, Menno; Kouwenhoven, Leo P; van der Zant, Herre S J

    2009-07-01

    We have observed the transversal vibration mode of suspended carbon nanotubes at millikelvin temperatures by measuring the single-electron tunneling current. The suspended nanotubes are actuated contact-free by the radio frequency electric field of a nearby antenna; the mechanical resonance is detected in the time-averaged current through the nanotube. Sharp, gate-tunable resonances due to the bending mode of the nanotube are observed, combining resonance frequencies of up to nu(0) = 350 MHz with quality factors above Q = 10(5), much higher than previously reported results on suspended carbon nanotube resonators. The measured magnitude and temperature dependence of the Q factor shows a remarkable agreement with the intrinsic damping predicted for a suspended carbon nanotube. By adjusting the radio frequency power on the antenna, we find that the nanotube resonator can easily be driven into the nonlinear regime.

  14. Squeezing the fundamental temperature fluctuations of a high-Q microresonator

    NASA Astrophysics Data System (ADS)

    Sun, Xuan; Luo, Rui; Zhang, Xi-Cheng; Lin, Qiang

    2017-02-01

    Temperature fluctuations of an optical resonator underlie a fundamental limit of its cavity stability. Here we show that the fundamental temperature fluctuations of a high-Q microresonator can be suppressed remarkably by pure optical means without cooling the device temperature. An optical wave launched into the cavity is able to produce strong photothermal backaction which dramatically suppresses the spectral intensity of temperature fluctuations and squeezes its overall level by orders of magnitude. The proposed photothermal temperature squeezing is expected to significantly improve the stability of optical resonances, with potentially profound impact on broad applications of high-Q cavities in sensing, metrology, and nonlinear and quantum optics.

  15. Pure partial trisomy 4q syndrome in a child with der(9)ins(9;4)(q34.3;q26q35.2)mat.

    PubMed

    Topcu, V; Ilgin-Ruhi, H; Yurur-Kutlay, N; Ekici, C; Vicdan, A; Tukun, F A

    2014-01-01

    Pure partial trisomy 4q syndrome in a child with der(9)ins(9;4)(q34.3;q26q35.2)mat: Partial trisomy 4q is a rare chromosomal abnormality and mostly results from unbalanced inheritance of balanced parental chromosomal translocations. Here, we present a 5-year-old boy with partial trisomy 4q who exhibited distinctive features of 'pure' partial trisomy 4q syndrome including moderate mental and growth retardation, microcephaly, peculiar face appearance, tooth anomaly, cleft palate, language handicap, preaxial polydactyly, and urogenital anomaly. Karyotype analysis of the child revealed der(9)ins(9;4)(q34.3;q26q35.2) inherited from mother carrying ins(9;4)(q34.3;q26q35.2) resulting in trisomy of the 4q26qter segment. Whole chromosome painting, locus specific, and subtelomeric FISH analysis in mother proved that q26qter of the chromosome 4 segment was directly inserted into the telomeric sequence in chromosome 9, and depending on nature of the rearrangement in mother, karyotype of the child was determined to be pure partial 4q trisomy. This is the first report of this kind of rearrangement causing pure partial trisomy 4q with accompanying white matter change demonstrated by MRI and bilateral preaxial polydactyly of both hands.

  16. Biosensing by WGM Microspherical Resonators

    PubMed Central

    Righini, Giancarlo C.; Soria, Silvia

    2016-01-01

    Whispering gallery mode (WGM) microresonators, thanks to their unique properties, have allowed researchers to achieve important results in both fundamental research and engineering applications. Among the various geometries, microspheres are the simplest 3D WGM resonators; the total optical loss in such resonators can be extremely low, and the resulting extraordinarily high Q values of 108–109 lead to high energy density, narrow resonant-wavelength lines and a lengthy cavity ringdown. They can also be coated in order to better control their properties or to increase their functionality. Their very high sensitivity to changes in the surrounding medium has been exploited for several sensing applications: protein adsorption, trace gas detection, impurity detection in liquids, structural health monitoring of composite materials, detection of electric fields, pressure sensing, and so on. In the present paper, after a general introduction to WGM resonators, attention is focused on spherical microresonators, either in bulk or in bubble format, to their fabrication, characterization and functionalization. The state of the art in the area of biosensing is presented, and the perspectives of further developments are discussed. PMID:27322282

  17. Biosensing by WGM Microspherical Resonators.

    PubMed

    Righini, Giancarlo C; Soria, Silvia

    2016-06-17

    Whispering gallery mode (WGM) microresonators, thanks to their unique properties, have allowed researchers to achieve important results in both fundamental research and engineering applications. Among the various geometries, microspheres are the simplest 3D WGM resonators; the total optical loss in such resonators can be extremely low, and the resulting extraordinarily high Q values of 10⁸-10⁸ lead to high energy density, narrow resonant-wavelength lines and a lengthy cavity ringdown. They can also be coated in order to better control their properties or to increase their functionality. Their very high sensitivity to changes in the surrounding medium has been exploited for several sensing applications: protein adsorption, trace gas detection, impurity detection in liquids, structural health monitoring of composite materials, detection of electric fields, pressure sensing, and so on. In the present paper, after a general introduction to WGM resonators, attention is focused on spherical microresonators, either in bulk or in bubble format, to their fabrication, characterization and functionalization. The state of the art in the area of biosensing is presented, and the perspectives of further developments are discussed.

  18. A new mosaic der(18)t(1;18)(q32.1;q21.3) with developmental delay and facial dysmorphism

    PubMed Central

    Choi, Young-Jin; Shin, Eunsim; Jo, Tae Sik; Lee, Se-Min; Kim, Joo-Hwa; Oh, Jae-Won; Kim, Chang-Ryul; Seol, In Joon

    2016-01-01

    We report the case of a 22-month-old boy with a new mosaic partial unbalanced translocation of 1q and 18q. The patient was referred to our Pediatric Department for developmental delay. He showed mild facial dysmorphism, physical growth retardation, a hearing disability, and had a history of patent ductus arteriosus. White matter abnormality on brain magnetic resonance images was also noted. His initial routine chromosomal analysis revealed a normal 46,XY karyotype. In a microarray-based comparative genomic hybridization (aCGH) analysis, subtle copy number changes in 1q32.1–q44 (copy gain) and 18q21.33–18q23 (copy loss) suggested an unbalanced translocation of t(1;18). Repeated chromosomal analysis revealed a low-level mosaic translocation karyotype of 46,XY,der(18)t(1;18)(q32.1;q21.3)[12]/46,XY[152]. Because his parents had normal karyotypes, his translocation was considered to be de novo. The abnormalities observed in aCGH were confirmed by metaphase fluorescent in situ hybridization. We report this patient as a new karyotype presenting developmental delay, facial dysmorphism, cerebral dysmyelination, and other abnormalities. PMID:26958068

  19. Fano resonance in a subwavelength Mie-based metamolecule with split ring resonator

    NASA Astrophysics Data System (ADS)

    Wang, Xiaobo; Zhou, Ji

    2017-06-01

    In this letter, we report a method of symmetry-breaking in an artificial Mie-based metamolecule. A Fano resonance with a Q factor of 96 is observed at microwave frequencies in a structure combining a split ring resonator and a high-permittivity dielectric cube. Calculations indicate that resonant frequency tunability will result from the alteration of the cube's permittivity. The asymmetric spectrum is attributed to both constructive and destructive near-field interactions between the two distinct resonators. Experimental data and simulation results are in good agreement. The underlying physics is seen in field distribution and dipole analysis. This work substantiates an approach for the manipulation of Mie resonances which can potentially be utilized in light modulating and sensing.

  20. Resonating Behaviour of Nanomachined Holed Microcantilevers

    PubMed Central

    Canavese, Giancarlo; Ricci, Alessandro; Gazzadi, Gian Carlo; Ferrante, Ivan; Mura, Andrea; Marasso, Simone Luigi; Ricciardi, Carlo

    2015-01-01

    The nanofabrication of a nanomachined holed structure localized on the free end of a microcantilever is here presented, as a new tool to design micro-resonators with enhanced mass sensitivity. The proposed method allows both for the reduction of the sensor oscillating mass and the increment of the resonance frequency, without decreasing the active surface of the device. A theoretical analysis based on the Rayleigh method was developed to predict resonance frequency, effective mass, and effective stiffness of nanomachined holed microresonators. Analytical results were checked by Finite Element simulations, confirming an increase of the theoretical mass sensitivity up to 250%, without altering other figures of merit. The nanomachined holed resonators were vibrationally characterized, and their Q-factor resulted comparable with solid microcantilevers with same planar dimensions. PMID:26643936

  1. Fiber-laser pumped actively Q-switched Er:LuYAG laser at 1648 nm

    NASA Astrophysics Data System (ADS)

    Yang, X. F.; Wang, Y.; Zhao, T.; Zhu, H. Y.; Shen, D. Y.

    2016-02-01

    We demonstrated an acousto-optic Q-switched 1648 nm Er:LuYAG laser resonantly pumped by a cladding-pumped Er,Yb fiber laser at 1532 nm. Stable Q-switching operation was obtained with the pulse repetition rate (PRR) varying from 200 Hz to 10 kHz. At PRR of 200 Hz, the laser yielded Q-switched pulses with 3.3 mJ pulse energy and 65 ns pulse duration, corresponding to a peak power of 50.7 kW for 10.4 W of incident pump power.

  2. Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining

    PubMed Central

    Lin, Jintian; Xu, Yingxin; Fang, Zhiwei; Wang, Min; Song, Jiangxin; Wang, Nengwen; Qiao, Lingling; Fang, Wei; Cheng, Ya

    2015-01-01

    We report on fabrication of high-Q lithium niobate (LN) whispering-gallery-mode (WGM) microresonators suspended on silica pedestals by femtosecond laser direct writing followed by focused ion beam (FIB) milling. The micrometer-scale (diameter ~82 μm) LN resonator possesses a Q factor of ~2.5 × 105 around 1550 nm wavelength. The combination of femtosecond laser direct writing with FIB enables high-efficiency, high-precision nanofabrication of high-Q crystalline microresonators. PMID:25627294

  3. Partial monosomy of 7q32 in a case of de novo rcp(7;15)(q32;q15).

    PubMed Central

    D'Alessandro, E; Ligas, C; Lo Re, M L; Marcanio, M P; Gentile, T; Del Porto, G

    1994-01-01

    A de novo apparently balanced translocation between chromosomes 7 and 15 with breakpoints in q32 and q15 respectively is reported in a female child. Clinical features included general growth and psychomotor retardation, feeding problems, microcephaly, low set ears, a short neck, and brachydactyly. These findings suggested possible physical or functional partial monosomy of the 7q32 or 15q15 segments. The phenotype of this case is similar to other cases of 7q deletion. Images PMID:8064823

  4. Experimental demonstration of sharp Fano resonance in optical metamaterials composed of asymmetric double bars.

    PubMed

    Moritake, Yuto; Kanamori, Yoshiaki; Hane, Kazuhiro

    2014-07-01

    We experimentally demonstrated Fano resonance in metamaterials composed of asymmetric double bars (ADBs) in the optical region. ADB metamaterials were fabricated by a lift-off method, and the optical spectra were measured. Around a wavelength of 1100 nm, measured optical spectra clearly showed sharp Fano resonance due to weak asymmetry of the ADB structures. The highest-quality factor (Q-factor) of the Fano resonance was 7.34. Calculated spectra showed the same tendency as the experimental spectra. Moreover, in a Fano resonant condition, out of phase of induced current flowing along each bar was revealed by electromagnetic field calculations. These antiphase currents decreased radiative loss of the Fano mode, resulting in a high Q-factor of the Fano resonance in ADB metamaterials. As the degree of asymmetry became small, the Q-factor decreased, and the Fano resonance disappeared because the effect of Joule loss became significant.

  5. Tunability and synthetic lineshapes in high-Q optical whispering gallery modes

    NASA Technical Reports Server (NTRS)

    Ilchenko, Vladimir S.; Savchenkov, Anatoliy A.; Matsko, Andrey B.; Maleki, Lute

    2003-01-01

    We demonstrate novel techniques to manipulate spectral properties of high quality factor (Q>107) whispering-gallery modes (WGM) in optical dielectric microresonators. These include permanent frequency trimming of WGM frequencies by means of UV photosensitivity of germanium doped silica resonators electro-optical tuning of WGM in lithium niobate resonators, and cascading of microresonators for obtaining second-order filtering function. We present theoretical interpretation of experimental results, and application example of techniques for photonic microwave filtering.

  6. Analysis of the vertices {Omega}{sub Q}*{Omega}{sub Q{phi}} and radiative decays {Omega}{sub Q}*{yields}{Omega}{sub Q{gamma}}

    SciTech Connect

    Wang Zhigang

    2010-02-01

    In this article, we study the vertices {Omega}{sub Q}*{Omega}{sub Q{phi}} with the light-cone QCD sum rules, then assume the vector meson dominance of the intermediate {phi}(1020), and calculate the radiative decays {Omega}{sub Q}*{yields}{Omega}{sub Q{gamma}}.

  7. Narrow-linewidth broadly tunable Yb-doped Q-switched fiber laser using multimode interference filter.

    PubMed

    Chakravarty, Usha; Mukhopadhyay, P K; Kuruvilla, A; Upadhyaya, B N; Bindra, K S

    2017-05-01

    A narrow-linewidth broadly tunable Yb-doped Q-switched fiber laser using an acousto-optic modulator and multimode interference filter (MMIF) in the linear bulk cavity resonator and an all-fiber ring cavity resonator has been demonstrated. Insertion of an MMIF in the linear cavity resonator using bulk components decreased the spectral bandwidth of the Q-switched signal by two orders of magnitude from 11 to less than 0.1 nm. Spectral tunability of more than 16 nm in the range from 1057 to 1073 nm has also been achieved by the combination of MMIF and a standard polarization controller (SPC). A decrease in the pulse duration with a decrease in the spectral bandwidth of the output signal has also been recorded. The pulse duration of the Q-switched signal was reduced from ∼305 to ∼240  ns by the introduction of the MMIF in the resonator at the same value of the input pump power. In the case of the all-fiber Q-switched ring cavity resonator, the spectral bandwidth of the Q-switched signal was reduced by two orders of magnitude from ∼17 to less than 0.1 nm due to the introduction of the MMIF in the resonator. The spectral tunability of more than 12 nm in the range from 1038 to 1050 nm was achieved by an MMIF and an SPC.

  8. Ultrahigh-Q photonic crystal nanocavities in wide optical telecommunication bands.

    PubMed

    Terawaki, Ryo; Takahashi, Yasushi; Chihara, Masahiro; Inui, Yoshitaka; Noda, Susumu

    2012-09-24

    We have studied the feasibility of extending the operating wavelength range of high-Q silicon nanocavities above and below the 1.55 μm wavelength band, while maintaining Q factors of more than one million. We have succeeded in developing such nanocavities in the optical telecommunication bands from 1.27 μm to 1.50 μm. Very high Q values of more than two million were obtained even for the 1.30 μm band. The Q values increase proportionally to the resonant wavelength because the scattering loss decreases. We have also analyzed the influence of absorption due to surface water. We conclude that high-Q nanocavities are feasible for an even wider wavelength region including parts of the mid-infrared.

  9. Characterization of magnetically actuated resonant cantilevers in viscous fluids

    NASA Astrophysics Data System (ADS)

    Vančura, Cyril; Lichtenberg, Jan; Hierlemann, Andreas; Josse, Fabien

    2005-10-01

    The vibration behavior of magnetically actuated resonant microcantilevers immersed in viscous fluids has been studied. A dependence of the resonance frequency and the quality factor (Q factor) on the fluid properties, such as density and viscosity and on the cantilever geometry is described. Various cantilever geometries are analyzed in pure water and glycerol solutions, and the results are explained in terms of the added displaced fluid mass and the fluid damping force for both the resonance frequency and the quality factor. An in-depth knowledge and understanding of such systems is necessary when analyzing resonant cantilevers as biochemical sensors in liquid environments.

  10. Coenzyme q 10 : a review.

    PubMed

    Singh, Deependra; Jain, Vandana; Saraf, Swarnlata; Saraf, S

    2002-10-01

    Ubiquinone or Co Q(10) is essentially a vitamin like substance and is a cofactor of an enzyme. It is an integral part of the memberanes of mitocondria where it is involved in the energy production. It is a nutrient necessary for the function of every cell of the body especially vital organs of the body like heart, liver, brain etc. Studies have shown that coenzyme Q(10) alters the natural history of cardiovascular illness and has the potential of prevention of cardiovascular diseases through the inhibition of LDL cholesterol oxidation by maintenance of optimal cellular and mitochondrial function throughout the ravages of time internal and external stress.

  11. COENZYME Q 10 : A REVIEW

    PubMed Central

    Singh, Deependra; Jain, Vandana; Saraf, Swarnlata; Saraf, S

    2002-01-01

    Ubiquinone or Co Q10 is essentially a vitamin like substance and is a cofactor of an enzyme. It is an integral part of the memberanes of mitocondria where it is involved in the energy production. It is a nutrient necessary for the function of every cell of the body especially vital organs of the body like heart, liver, brain etc. Studies have shown that coenzyme Q10 alters the natural history of cardiovascular illness and has the potential of prevention of cardiovascular diseases through the inhibition of LDL cholesterol oxidation by maintenance of optimal cellular and mitochondrial function throughout the ravages of time internal and external stress. PMID:22557086

  12. Highest Weight Modules Over Quantum Queer Superalgebra {U_q(mathfrak {q}(n))}

    NASA Astrophysics Data System (ADS)

    Grantcharov, Dimitar; Jung, Ji Hye; Kang, Seok-Jin; Kim, Myungho

    2010-06-01

    In this paper, we investigate the structure of highest weight modules over the quantum queer superalgebra {U_q(mathfrak {q}(n))}. The key ingredients are the triangular decomposition of {U_q(mathfrak {q}(n))} and the classification of finite dimensional irreducible modules over quantum Clifford superalgebras. The main results we prove are the classical limit theorem and the complete reducibility theorem for {U_q(mathfrak {q}(n))}-modules in the category {mathcal {O}q^{≥ 0}}.

  13. Resonance-Enhanced Nonlinear Optical Effects

    NASA Astrophysics Data System (ADS)

    Sun, Xuan

    Nonlinear optical processes, which manifest as many interesting phenomena such as nonlinear wave mixing, optical rectification, intensity-dependent refractive index change, harmonic generation, etc., have found very broad applications. Unfortunately, most optical media exhibit rather weak optical nonlinearities and a majority of nonlinear optical processes have to rely on substantial optical powers to support nonlinear wave interactions, which becomes a major challenge for nonlinear photonic application. This thesis is devoted to exploring enhanced nonlinear optical phenomena, by taking advantage of a certain type of resonance to enhance the nonlinear wave interactions. For this purpose, we employed both natural atomic resonances via electron transition and engineered optical resonances in micro/nanophotonic device structures, for different applications. These two types of resonances, although distinctive in their physical natures, both are able to significantly increase the strength and elongate the time of optical wave interactions, thus leading to dramatic enhancement of nonlinear optical effects. On one hand, we utilized unique energy-level structures in alkali vapor plasmas to dramatically enhance the electron tunneling ionization process and to produce significant resonance-enhanced four-wave mixing for efficient terahertz (THz) wave generation that is crucial for long-wave application. On the other hand, we utilized the enhancement offered by high-Q optical resonances inside microresonators to produce significant photothermal backaction to dramatically suppress the fundamental temperature fluctuations of microresonators, which is essential for sensing and metrology applications. With such cavity-resonance enhancement, we revealed a new regime of nonlinear optical oscillation dynamics in lithium niobate microresonators that results from unique competition between the thermo-optic nonlinear effect and the photorefractive effect, which is inaccessible to

  14. Coexistent t(8;21)(q22;q22) Translocation and 5q Deletion in Acute Myeloid Leukemia.

    PubMed

    Yamamoto, Katsuya; Yakushijin, Kimikazu; Sanada, Yukinari; Kawamoto, Shinichiro; Matsuoka, Hiroshi; Minami, Hironobu

    2015-01-01

    The t(8;21)(q22;q22) translocation is specifically observed in acute myeloid leukemia (AML) M2 subtype, whereas del(5q) is one of the most common cytogenetic aberrations in myelodysplastic syndromes (MDS). Thus, t(8;21)(q22;q22) and del(5q) appear to be mutually exclusive, and the association between them has not been characterized yet. Here, we report an 81-year-old woman with coexistent t(8;21)(q22;q22) and del(5q) at initial diagnosis. The bone marrow was infiltrated with 18.4% myeloblasts, and showed marked myeloid and erythroid dysplasia. Myeloblasts were positive for CD19 and CD56 as well as CD13, CD33, CD34 and HLA-DR. G-banding and spectral karyotyping showed 46,XX,del(5)(q?),t(8;21)(q22;q22)[18]/46,XX[2]. Both del(5)(q?) and t(8;21)(q22;q22) were present in a single clone. Fluorescence in situ hybridization (FISH) on metaphase spreads detected a RUNX1/RUNX1T1 fusion signal on the der(8)t(8;21)(q22;q22), and confirmed deletion of CSF1R signaling at 5q33-q34 on the del(5)(q?). Furthermore, FISH on interphase nuclei revealed that the RUNX1/RUNX1T1 fusion signal and deletion of CSF1R signaling were found in 66.0% and 58.0% of interphase cells, respectively, suggesting that del(5)(q?) occurred in cells with RUNX1/RUNX1T1. These results indicated a diagnosis of AML with t(8;21)(q22;q22)/RUNX1/RUNX1T1 rather than MDS, even though the percentage of bone marrow myeloblasts was less than 20%. Based on these findings, together with those of other reported cases, del(5q) seems to be an extremely rare but recurrent secondary aberration in AML with t(8;21)(q22;q22).

  15. Monosomy 6q1: Syndrome delineation

    SciTech Connect

    Romie, S.S.; Hartsfield, J.K. Jr.; Sutcliffe, M.J.

    1996-03-15

    We report on a girl with a de novo 6q1 interstitial deletion. To our knowledge, this is the second reported case with a deletion of 6q11-q15. We review the phenotype of monosomy 6q1. Our patient has manifestations similar to others with monosomy 6q1 including mental deficiency, growth retardation, short neck, and minor facila anomalies. 18 refs., 5 figs., 3 tabs.

  16. Evolution of satellite resonances by tidal dissipation.

    NASA Technical Reports Server (NTRS)

    Greenberg, R.

    1973-01-01

    Analysis of a realistic model shows how satellites' gravitational interaction can halt their differential tidal evolution when resonant commensurabilities of their orbital periods are reached. The success of this study lends support to the hypothesis that orbit-orbit resonances among satellites in the solar system, including the Titan-Hyperion case, did evolve as a result of tidal energy dissipation. Consideration of the time scale for this evolution process, possible now that the capture mechanism has been revealed, can offer more sophisticated constraints on the tidal dissipation function, Q, and on past orbital conditions.

  17. Investigations on perturbations of microwave dielectric resonator thermometer

    NASA Astrophysics Data System (ADS)

    Yu, Lili; Zhang, Guangming; Fernicola, V.; Lu, Jinchuan

    2017-04-01

    Investigations of antenna probe length, antenna-dielectric distance, cavity filling and humidity on microwave resonator thermometer with respect to Q, spurious mode depression, coupling strength, accuracy, shock resistance or sensitivity were carried out in order to improve the dielectric resonator thermometer performance. Significant improvement of Q and depression of spurious mode coupling were obtained when the antenna length was reduced. It also turns out that the Q and spurious mode coupling strength vary with the distance between dielectric and antenna pin, as well under appropriate antenna length. Filling the cavity with nitrogen increases coupling strength but decrease frequency-temperature sensitivity compared to a vacuum-pumped cavity. Besides, preliminary results on the microwave resonator sensitivity to air humidity were obtained.

  18. Exciton-Polariton Fano Resonance Driven by Second Harmonic Generation

    NASA Astrophysics Data System (ADS)

    Wang, Yafeng; Liao, Liming; Hu, Tao; Luo, Song; Wu, Lin; Wang, Jun; Zhang, Zhe; Xie, Wei; Sun, Liaoxin; Kavokin, A. V.; Shen, Xuechu; Chen, Zhanghai

    2017-02-01

    Angle-resolved second harmonic generation (SHG) spectra of ZnO microwires show characteristic Fano resonances in the spectral vicinity of exciton-polariton modes. We observe a resonant peak followed by a strong dip in SHG originating from the constructive and destructive interference of the nonresonant SHG and the resonant contribution of the polariton mode. It is demonstrated that the Fano line shape, and thus the Fano asymmetry parameter q , can be tuned by the phase shift of the two channels. We develop a model to calculate the phase-dependent q as a function of the radial angle in the microwire and achieve a good agreement with the experimental results. The deduced phase-to-q relation unveils the crucial information about the dynamics of the system and offers a tool for control on the line shape of the SHG spectra in the vicinity of exciton-polariton modes.

  19. Exciton-Polariton Fano Resonance Driven by Second Harmonic Generation.

    PubMed

    Wang, Yafeng; Liao, Liming; Hu, Tao; Luo, Song; Wu, Lin; Wang, Jun; Zhang, Zhe; Xie, Wei; Sun, Liaoxin; Kavokin, A V; Shen, Xuechu; Chen, Zhanghai

    2017-02-10

    Angle-resolved second harmonic generation (SHG) spectra of ZnO microwires show characteristic Fano resonances in the spectral vicinity of exciton-polariton modes. We observe a resonant peak followed by a strong dip in SHG originating from the constructive and destructive interference of the nonresonant SHG and the resonant contribution of the polariton mode. It is demonstrated that the Fano line shape, and thus the Fano asymmetry parameter q, can be tuned by the phase shift of the two channels. We develop a model to calculate the phase-dependent q as a function of the radial angle in the microwire and achieve a good agreement with the experimental results. The deduced phase-to-q relation unveils the crucial information about the dynamics of the system and offers a tool for control on the line shape of the SHG spectra in the vicinity of exciton-polariton modes.

  20. 4q32-q35 and 6q16-q22 are valuable candidate regions for split hand/foot malformation.

    PubMed

    Niedrist, Dunja; Lurie, Iosif W; Schinzel, Albert

    2009-08-01

    On the basis of the Human Cytogenetic Database, a computerized catalog of the clinical phenotypes associated with cytogenetically detectable human chromosome aberrations, we collected from the literature 102 cases with chromosomal aberrations and split hand/foot malformation or absent fingers/toes. Statistical analysis revealed a highly significant association (P<0.001) between the malformation and the chromosomal bands 4q32-q35, 5q15, 6q16-q22 and 7q11.2-q22 (SHFM1). Considering these findings, we suggest additional SHFM loci on chromosome 4q, 6q and probably 5q. The regions 4q and 6q have already been discussed in the literature as additional SHFM loci. We now show further evidence. In the proposed regions, there are interesting candidate genes such as, on 4q: HAND2, FGF2, LEF1 and BMPR1B; on 5q: MSX2, FLT4, PTX1 and PDLIM7; and on 6q: SNX3, GJA1, HEY2 and Tbx18.

  1. New multilevel codes over GF(q)

    NASA Technical Reports Server (NTRS)

    Wu, Jiantian; Costello, Daniel J., Jr.

    1992-01-01

    Set partitioning to multi-dimensional signal spaces over GF(q), particularly GF sup q-1(q) and GF sup q (q), and show how to construct both multi-level block codes and multi-level trellis codes over GF(q). Two classes of multi-level (n, k, d) block codes over GF(q) with block length n, number of information symbols k, and minimum distance d sub min greater than or = d, are presented. These two classes of codes use Reed-Solomon codes as component codes. They can be easily decoded as block length q-1 Reed-Solomon codes or block length q or q + 1 extended Reed-Solomon codes using multi-stage decoding. Many of these codes have larger distances than comparable q-ary block codes, as component codes. Low rate q-ary convolutional codes, work error correcting convolutional codes, and binary-to-q-ary convolutional codes can also be used to construct multi-level trellis codes over GF(q) or binary-to-q-ary trellis codes, some of which have better performance than the above block codes. All of the new codes have simple decoding algorithms based on hard decision multi-stage decoding.

  2. Q methodology in health economics.

    PubMed

    Baker, Rachel; Thompson, Carl; Mannion, Russell

    2006-01-01

    The recognition that health economists need to understand the meaning of data if they are to adequately understand research findings which challenge conventional economic theory has led to the growth of qualitative modes of enquiry in health economics. The use of qualitative methods of exploration and description alongside quantitative techniques gives rise to a number of epistemological, ontological and methodological challenges: difficulties in accounting for subjectivity in choices, the need for rigour and transparency in method, and problems of disciplinary acceptability to health economists. Q methodology is introduced as a means of overcoming some of these challenges. We argue that Q offers a means of exploring subjectivity, beliefs and values while retaining the transparency, rigour and mathematical underpinnings of quantitative techniques. The various stages of Q methodological enquiry are outlined alongside potential areas of application in health economics, before discussing the strengths and limitations of the approach. We conclude that Q methodology is a useful addition to economists' methodological armoury and one that merits further consideration and evaluation in the study of health services.

  3. Q fever in maritime Canada.

    PubMed Central

    Marrie, T. J.; Haldane, E. V.; Noble, M. A.; Faulkner, R. S.; Lee, S. H.; Gough, D.; Meyers, S.; Stewart, J.

    1982-01-01

    Only nine cases of Q fever were recorded in Canada in the 20 years prior to 1978. In the 18 months from August 1979 to January 1981 the disease was diagnosed serologically in six patients from the Maritime provinces. All were epidemiologically unrelated and none had been exposed to animals. Five had pneumonia and one had chronic Q fever with probable prosthetic valve endocarditis. Three of the five pneumonia patients presented with signs and symptoms of an acute lower respiratory tract infection and were indistinguishable clinically from other patients with atypical pneumonias. The other two with pneumonia presented with nonresolving pulmonary infiltrates and complained of decreased energy. Four of the five pneumonia patients responded well to treatment with erythromycin; the fifth required two courses of tetracycline. The patient with chronic Q fever had a large amount of cryoglobulins in his serum and evidence of immune complex disease. These cases indicate that Q fever should be considered as a possible cause of atypical pneumonia in Canada. Images FIG. 1 FIG. 2 FIG. 3 PMID:7074457

  4. Tunable Cr:YSO Q-Switched Cr:BeAl2O4 Laser: Numerical Study on Laser Performance along Three Principal Axes of the Q Switch

    NASA Astrophysics Data System (ADS)

    Kuo, Yen-Kuang; Chang, Jih-Yuan; Lin, Chia-Ching; Chen, Horng-Min

    2000-07-01

    Numerical simulation of the Cr:YSO Q-switched Cr:BeAl2O4 tunable laser is studied along the three principal axes of the Cr:YSO saturable absorber. The n1 axis has the best Q-switching performance when compared to the n2 and n3 axes. Theoretical expressions of important parameters such as the laser population inversion at various stages, the peak photon number inside the laser resonator, and the output energy and the pulsewidth of the Q-switched laser pulses are derived and used to evaluate the characteristics of the Cr:YSO Q-switched Cr:BeAl2O4 laser system.

  5. Mosaic marker chromosome 16 resulting in 16q11.2-q12.1 gain in a child with intellectual disability, microcephaly, and cerebellar cortical dysplasia.

    PubMed

    Zerem, Ayelet; Vinkler, Chana; Michelson, Marina; Leshinsky-Silver, Esther; Lerman-Sagie, Tally; Lev, Dorit

    2011-12-01

    Proximal duplications of the long arm of chromosome 16 are rare and only a few patients have been reported. Clinically, the patients do not have a distinctive syndromic appearance; however they all show some degree of intellectual disability and most have severely delayed speech development. We report on a child presenting with mild-to-moderate intellectual disability, microcephaly, language dyspraxia, and mild dysmorphisms who was found to have a mosaic gain of chromosome 16q (16q11.2-16q12.1). Magnetic resonance imaging done at the age of 4 years demonstrated cerebellar cortical dysplasia involving the vermis and hemispheres. This is the first report of cerebellar anomalies in a patient with partial trisomy 16q. The genes ZNF423 and CBLN1 found in the duplicated region play a role in the development of the cerebellum and may be responsible for the cerebellar cortical dysplasia.

  6. Performance and modeling of superconducting ring resonators at millimeter-wave frequencies

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Chorey, C. M.; Warner, J. D.; Romanofsky, R. R.; Heinen, V. O.; Kong, K. S.; Lee, H. Y.; Itoh, T.

    1990-01-01

    Microstrip ring resonators operating at 35 GHz were fabricated from laser ablated YBCO thin films deposited on lanthanum aluminate substrates. They were measured over a range of temperatures and their performance compared to identical resonators made of evaporated gold. Below 60 Kelvin the superconducting strip performed better than the gold, reaching an unloaded Q approximately 1.5 times that of gold at 25 K. A shift in the resonant frequency follows the form predicted by the London equations. The Phenomenological Loss Equivalence Method is applied to the ring resonator and the theoretically calculated Q values are compared to the experimental results.

  7. Measurement of the proton spin structure function g1(x,Q2) for Q2 from 0.15 to 1.6 GeV2 with CLAS.

    PubMed

    Fatemi, R; Skabelin, A V; Burkert, V D; Crabb, D; De Vita, R; Kuhn, S E; Minehart, R; Adams, G; Anciant, E; Anghinolfi, M; Asavapibhop, B; Audit, G; Auger, T; Avakian, H; Bagdasaryan, H; Ball, J P; Barrow, S; Battaglieri, M; Beard, K; Bektasoglu, M; Bellis, M; Bertozzi, W; Bianchi, N; Biselli, A S; Boiarinov, S; Bonner, B E; Bosted, P E; Bouchigny, S; Bradford, R; Branford, D; Brooks, W K; Butuceanu, C; Calarco, J R; Carman, D S; Carnahan, B; Cetina, C; Ciciani, L; Clark, R; Cole, P L; Coleman, A; Connelly, J; Cords, D; Corvisiero, P; Crannell, H; Cummings, J P; De Sanctis, E; Degtyarenko, P V; Denizli, H; Dennis, L; Dharmawardane, K V; Dhuga, K S; Djalali, C; Dodge, G E; Doughty, D; Dragovitsch, P; Dugger, M; Dytman, S; Eckhause, M; Egiyan, H; Egiyan, K S; Elouadrhiri, L; Empl, A; Eugenio, P; Farhi, L; Feuerbach, R J; Freyberger, A; Ficenec, J; Forest, T A; Frolov, V; Funsten, H; Gaff, S J; Garçon, M; Gavalian, G; Gilad, S; Gilfoyle, G P; Giovanetti, K L; Girard, P; Gordon, C I O; Griffioen, K A; Guidal, M; Guillo, M; Guo, L; Gyurjyan, V; Hadjidakis, C; Hancock, D; Hardie, J; Heddle, D; Heimberg, P; Hersman, F W; Hicks, K; Hicks, R S; Holtrop, M; Hu, J; Hyde-Wright, C E; Ilieva, Y; Ito, M M; Jenkins, D; Joo, K; Keith, C; Kelley, J H; Kellie, J D; Khandaker, M; Kim, K Y; Kim, K; Kim, W; Klein, A; Klein, F J; Klimenko, A V; Klusman, M; Kossov, M; Koubarovski, V; Kramer, L H; Kuang, Y; Kuhn, J; Lachniet, J; Laget, J M; Lawrence, D; Li, Ji; Livingston, K; Longhi, A; Lukashin, K; Major, W; Manak, J J; Marchand, C; McAleer, S; McNabb, J W C; Mecking, B A; Mehrabyan, S; Mestayer, M D; Meyer, C A; Mikhailov, K; Mirazita, M; Miskimen, R; Morand, L; Morrow, S A; Muccifora, V; Mueller, J; Mutchler, G S; Napolitano, J; Nasseripour, R; Nelson, S O; Niccolai, S; Niculescu, G; Niculescu, I; Niczyporuk, B B; Niyazov, R A; Nozar, M; O'Brien, J T; O'Rielly, G V; Osipenko, M; Park, K; Pasyuk, E; Peterson, G; Pivnyuk, N; Pocanic, D; Pogorelko, O; Polli, E; Pozdniakov, S; Preedom, B M; Price, J W; Prok, Y; Protopopescu, D; Qin, L M; Raue, B A; Riccardi, G; Ricco, G; Ripani, M; Ritchie, B G; Rock, S E; Ronchetti, F; Rossi, P; Rowntree, D; Rubin, P D; Sabatié, F; Sabourov, K; Salgado, C; Santoro, J P; Sapunenko, V; Sargsyan, M; Schumacher, R A; Seely, M; Serov, V S; Sharabian, Y G; Shaw, J; Simionatto, S; Smith, E S; Smith, T; Smith, L C; Sober, D I; Sorrel, L; Spraker, M; Stavinsky, A; Stepanyan, S; Stoler, P; Strauch, S; Taiuti, M; Taylor, S; Tedeschi, D J; Thoma, U; Thompson, R; Todor, L; Tur, C; Ungaro, M; Vineyard, M F; Vlassov, A V; Wang, K; Weinstein, L B; Weller, H; Weygand, D P; Whisnant, C S; Wolin, E; Wood, M H; Yegneswaran, A; Yun, J; Zhang, B; Zhao, J; Zhou, Z

    2003-11-28

    Double-polarization asymmetries for inclusive ep scattering were measured at Jefferson Lab using 2.6 and 4.3 GeV longitudinally polarized electrons incident on a longitudinally polarized NH3 target in the CLAS detector. The polarized structure function g(1)(x,Q2) was extracted throughout the nucleon resonance region and into the deep inelastic regime, for Q(2)=0.15-1.64 GeV2. The contributions to the first moment Gamma(1)(Q2)= integral g(1)(x,Q2) dx were determined up to Q(2)=1.2 GeV2. Using a parametrization for g(1) in the unmeasured low x regions, the complete first moment was estimated over this Q2 region. A rapid change in Gamma(1) is observed for Q2<1 GeV2, with a sign change near Q(2)=0.3 GeV2, indicating dominant contributions from the resonance region. At Q(2)=1.2 GeV2 our data are below the perturbative QCD evolved scaling value.

  8. Measurement of the Proton Spin Structure Function g1(x,Q2) for Q2 from 0.15 to 1.6 GeV2 with CLAS

    NASA Astrophysics Data System (ADS)

    Fatemi, R.; Skabelin, A. V.; Burkert, V. D.; Crabb, D.; Vita, R. De; Kuhn, S. E.; Minehart, R.; Adams, G.; Anciant, E.; Anghinolfi, M.; Asavapibhop, B.; Audit, G.; Auger, T.; Avakian, H.; Bagdasaryan, H.; Ball, J. P.; Barrow, S.; Battaglieri, M.; Beard, K.; Bektasoglu, M.; Bellis, M.; Bertozzi, W.; Bianchi, N.; Biselli, A. S.; Boiarinov, S.; Bonner, B. E.; Bosted, P. E.; Bouchigny, S.; Bradford, R.; Branford, D.; Brooks, W. K.; Butuceanu, C.; Calarco, J. R.; Carman, D. S.; Carnahan, B.; Cetina, C.; Ciciani, L.; Clark, R.; Cole, P. L.; Coleman, A.; Connelly, J.; Cords, D.; Corvisiero, P.; Crannell, H.; Cummings, J. P.; de Sanctis, E.; Degtyarenko, P. V.; Denizli, H.; Dennis, L.; Dharmawardane, K. V.; Dhuga, K. S.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dragovitsch, P.; Dugger, M.; Dytman, S.; Eckhause, M.; Egiyan, H.; Egiyan, K. S.; Elouadrhiri, L.; Empl, A.; Eugenio, P.; Farhi, L.; Feuerbach, R. J.; Freyberger, A.; Ficenec, J.; Forest, T. A.; Frolov, V.; Funsten, H.; Gaff, S. J.; Garçon, M.; Gavalian, G.; Gilad, S.; Gilfoyle, G. P.; Giovanetti, K. L.; Girard, P.; Gordon, C. I.; Griffioen, K. A.; Guidal, M.; Guillo, M.; Guo, L.; Gyurjyan, V.; Hadjidakis, C.; Hancock, D.; Hardie, J.; Heddle, D.; Heimberg, P.; Hersman, F. W.; Hicks, K.; Hicks, R. S.; Holtrop, M.; Hu, J.; Hyde-Wright, C. E.; Ilieva, Y.; Ito, M. M.; Jenkins, D.; Joo, K.; Keith, C.; Kelley, J. H.; Kellie, J. D.; Khandaker, M.; Kim, K. Y.; Kim, K.; Kim, W.; Klein, A.; Klein, F. J.; Klimenko, A. V.; Klusman, M.; Kossov, M.; Koubarovski, V.; Kramer, L. H.; Kuang, Y.; Kuhn, J.; Lachniet, J.; Laget, J. M.; Lawrence, D.; Li, Ji; Livingston, K.; Longhi, A.; Lukashin, K.; Major, W.; Manak, J. J.; Marchand, C.; McAleer, S.; McNabb, J. W.; Mecking, B. A.; Mehrabyan, S.; Mestayer, M. D.; Meyer, C. A.; Mikhailov, K.; Mirazita, M.; Miskimen, R.; Morand, L.; Morrow, S. A.; Muccifora, V.; Mueller, J.; Mutchler, G. S.; Napolitano, J.; Nasseripour, R.; Nelson, S. O.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niyazov, R. A.; Nozar, M.; O'Brien, J. T.; O'Rielly, G. V.; Osipenko, M.; Park, K.; Pasyuk, E.; Peterson, G.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Polli, E.; Pozdniakov, S.; Preedom, B. M.; Price, J. W.; Prok, Y.; Protopopescu, D.; Qin, L. M.; Raue, B. A.; Riccardi, G.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Rock, S. E.; Ronchetti, F.; Rossi, P.; Rowntree, D.; Rubin, P. D.; Sabatié, F.; Sabourov, K.; Salgado, C.; Santoro, J. P.; Sapunenko, V.; Sargsyan, M.; Schumacher, R. A.; Seely, M.; Serov, V. S.; Sharabian, Y. G.; Shaw, J.; Simionatto, S.; Smith, E. S.; Smith, T.; Smith, L. C.; Sober, D. I.; Sorrel, L.; Spraker, M.; Stavinsky, A.; Stepanyan, S.; Stoler, P.; Strauch, S.; Taiuti, M.; Taylor, S.; Tedeschi, D. J.; Thoma, U.; Thompson, R.; Todor, L.; Tur, C.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Wang, K.; Weinstein, L. B.; Weller, H.; Weygand, D. P.; Whisnant, C. S.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Yun, J.; Zhang, B.; Zhao, J.; Zhou, Z.

    2003-11-01

    Double-polarization asymmetries for inclusive ep scattering were measured at Jefferson Lab using 2.6 and 4.3GeV longitudinally polarized electrons incident on a longitudinally polarized NH3 target in the CLAS detector. The polarized structure function g1(x,Q2) was extracted throughout the nucleon resonance region and into the deep inelastic regime, for Q2=0.15 1.64 GeV2. The contributions to the first moment Γ1(Q2)=∫g1(x,Q2) dx were determined up to Q2=1.2 GeV2. Using a parametrization for g1 in the unmeasured low x regions, the complete first moment was estimated over this Q2 region. A rapid change in Γ1 is observed for Q2<1 GeV2, with a sign change near Q2=0.3 GeV2, indicating dominant contributions from the resonance region. At Q2=1.2 GeV2 our data are below the perturbative QCD evolved scaling value.

  9. Excited baryon form factors at high Q{sup 2}

    SciTech Connect

    Paul Stoler; Gary Adams; Abdellah Ahmidouch; Chris Armstrong; K. Assamagan; Steven Avery; K. Baker; Peter Bosted; Volker Burkert; Jim Dunne; Tom Eden; Rolf Ent; V. Frolov; David Gaskell; P. Gueye; Wendy Hinton; Cynthia Keppel; Wooyoung Kim; Michael Klusman; Doug Koltenuk; David Mack; Richard Madey; David Meekins; Ralph Minehart; Joseph Mitchell; Hamlet Mkrtchyan; James Napolitano; Gabriel Niculescu; Ioana Niculescu; Mina Nozar; John Price; Vardan Tadevosyan; Liguang Tang; Michael Witkowski; Stephen Wood

    1998-05-01

    The role of resonance electroproduction at high Q{sup 2} is discussed in the context of exclusive reactions, as well as the alternative theoretical models which are proposed to treat exclusive reactions in the few GeV{sup 2}/c{sup 2} region of momentum transfer. Jefferson Lab experiment 94-014, which measured the excitation of the Delta (1232) and S{sub 11}(1535) via the reactions p(e,e{sup '}p)pi{sup 0} and p(e,e{sup '}p)eta respectively at Q{sup 2} {approx} 2.8 and 4 GeV{sup 2}/c{sup 2} is described, and the state of analysis reported.

  10. Excited baryon form factors at high Q{sup 2}

    SciTech Connect

    Stoler, Paul; Adams, G.; Frolov, V.; Klusman, M.; Napolitano, J.; Nozar, M.; Price, J.; Stoler, P.; Witkowski, M.; Ahmidouch, A.; Assamagan, K.; Avery, S.; Baker, K.; Eden, T.; Gueye, P.; Hinton, W.; Keppel, C.; Madey, R.; Niculescu, G.; Niculescu, I.

    1997-05-20

    The role of resonance electroproduction at high Q{sup 2} is discussed in the context of exclusive reactions, as well as the alternative theoretical models which are proposed to treat exclusive reactions in the few GeV{sup 2}/c{sup 2} region of momentum transfer. Jefferson Lab experiment 94-014, which measured the excitation of the {delta}(1232) and S{sub 11}(1535) via the reactions p(e,e{sup '}p){pi}{sup 0} and p(e,e{sup '}p){eta} respectively at Q{sup 2}{approx}2.8 and 4 GeV{sup 2}/c{sup 2} is described, and the state of analysis reported.

  11. Diode-Pumped, Q-Switched, Frequency-Doubling Laser

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid; Lesh, James R.

    1993-01-01

    Experimental Q-switched, diode-pumped, intracavity-frequency-doubling laser generates pulses of radiation at wavelength of 532 nm from excitation at 810 nm. Principal innovative feature distinguishing laser from others of its type: pulsed operation of laser at pulse-repetition frequencies higher than reported previously. Folded resonator keeps most of second-harmonic radiation away from Q-switcher, laser crystal, and laser diodes. Folding mirror highly reflective at fundamental laser wavelength and highly transmissive at second-harmonic laser wavelength. By virtue of difference of about 0.6 percent between reflectivities in two polarizations at fundamental wavelength, folding mirror favors polarized oscillation at fundamental wavelength. This characteristic desirable for doubling of frequency in some intracavity crystals.

  12. Nucleon Resonance Physics

    SciTech Connect

    Burkert, Volker D.

    2016-07-25

    Recent results of meson photo-production at the existing electron machines with polarized real photon beams and the measurement of polarization observables of the final state baryons have provided high precision data that led to the discovery of new excited nucleon and $\\Delta$ states using multi-channel partial wave analyses procedures. The internal structure of several prominent excited states has been revealed employing meson electroproduction processes. On the theoretical front, lattice QCD is now predicting the baryon spectrum with very similar characteristics as the constituent quark model, and continuum QCD, such as is represented in the Dyson-Schwinger Equations approach and in light front relativistic quark models, describes the non-perturbative behavior of resonance excitations at photon virtuality of $Q^2 > 1.5GeV^2$. In this talk I discuss the need to continue a vigorous program of nucleon spectroscopy and the study of the internal structure of excited states as a way to reveal the effective degrees of freedom underlying the excited states and their dependence on the distance scale probed.

  13. Nucleon Resonance Physics

    NASA Astrophysics Data System (ADS)

    Burkert, Volker D.

    2016-10-01

    Recent results of meson photo-production at the existing electron machines with polarized real photon beams and the measurement of polarization observables of the final state baryons have provided high precision data that led to the discovery of new excited nucleon and Δ states using multi-channel partial wave analyses procedures. The internal structure of several prominent excited states has been revealed employing meson electroproduction processes. On the theoretical front, lattice QCD is now predicting the baryon spectrum with very similar characteristics as the constituent quark model, and continuum QCD, such as is represented in the Dyson-Schwinger equations approach and in light front relativistic quark models, describes the non-perturbative behavior of resonance excitations at photon virtuality of Q^2 > 1.5 GeV^2. In this talk I discuss the need to continue a vigorous program of nucleon spectroscopy and the study of the internal structure of excited states as a way to reveal the effective degrees of freedom underlying the excited states and their dependence on the distance scale probed.

  14. Significant improvement in the thermal annealing process of optical resonators

    NASA Astrophysics Data System (ADS)

    Salzenstein, Patrice; Zarubin, Mikhail

    2017-05-01

    Thermal annealing performed during process improves the quality of the roughness of optical resonators reducing stresses at the periphery of their surface thus allowing higher Q-factors. After a preliminary realization, the design of the oven and the electronic method were significantly improved thanks to nichrome resistant alloy wires and chopped basalt fibers for thermal isolation during the annealing process. Q-factors can then be improved.

  15. Experiments with Helmholtz Resonators.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1996-01-01

    Presents experiments that use Helmholtz resonators and have been designed for a sophomore-level course in oscillations and waves. Discusses the theory of the Helmholtz resonator and resonance curves. (JRH)

  16. MRI (Magnetic Resonance Imaging)

    MedlinePlus

    ... Procedures Medical Imaging MRI (Magnetic Resonance Imaging) MRI (Magnetic Resonance Imaging) Share Tweet Linkedin Pin it More sharing options Linkedin Pin it Email Print Magnetic Resonance Imaging (MRI) is a medical imaging procedure for making ...

  17. Transcriptional map of chromosome region 6q16-->q21.

    PubMed

    Karayianni, E; Magnanini, C; Orphanos, V; Negrini, M; Maniatis, G M; Spathas, D H; Barbanti-Brodano, G; Morelli, C

    1999-01-01

    We present the transcription map of chromosome region 6q16-->q21 by mapping fifteen known genes within this region. Five genes lay in the subregion containing a tumor suppressor gene, eight genes are located in the subregion harboring a senescence gene, and two genes are distal to the latter region. The precise location of the genes was obtained using a previously described translocation and deletion mouse/human hybrid panel. An even more accurate definition was possible for the genes spanning the senescence gene region, since a previously described YAC contig with its restriction map was available. From this transcription map it is possible to derive a large region of synteny with mouse chromosome 10.

  18. Kepler Data Release 25 Notes (Q0-Q17)

    NASA Technical Reports Server (NTRS)

    Mullally, Susan E.; Caldwell, Douglas A.; Barclay, Thomas Stewart; Barentsen, Geert; Clarke, Bruce Donald; Bryson, Stephen T.; Burke, Christopher James; Campbell, Jennifer Roseanna; Catanzarite, Joseph H.; Christiansen, Jessie; hide

    2016-01-01

    These Data Release Notes provide information specific to the current reprocessing and re-export of the Q0-Q17 data. The data products included in this data release include target pixel files, light curve files, FFIs,CBVs, ARP, Background, and Collateral files. This release marks the final processing of the Kepler Mission Data. See Tables 1 and 2 for a list of the reprocessed Kepler cadence data. See Table 3 for a list of the available FFIs. The Long Cadence Data, Short Cadence Data, and FFI data are documented in these data release notes. The ancillary files (i.e., cotrending basis vectors, artifact removal pixels, background, and collateral data) are described in the Archive Manual (Thompson et al., 2016).

  19. Resonant and non-resonant internal kink modes excited by the energetic electrons on HL-2A tokamak

    NASA Astrophysics Data System (ADS)

    Yu, L. M.; Chen, W.; Jiang, M.; Shi, Z. B.; Ji, X. Q.; Ding, X. T.; Li, Y. G.; Ma, R. R.; Shi, P. W.; Song, S. D.; Yuan, B. S.; Zhou, Y.; Ma, R.; Song, X. M.; Dong, J. Q.; Xu, M.; Liu, Y.; Yan, L. W.; Yang, Q. W.; Xu, Y. H.; Duan, X. R.; HL-2A Team

    2017-03-01

    Strong resonant and non-resonant internal kink modes (abbreviated as RKs and NRKs, respectively), which are also called resonant and non-resonant fishbones, are observed on HL-2A tokamak with high-power ECRH  +  ECCD‑ (or ECRH) and ECRH  +  ECCD+, respectively. (‘Resonant’ derives from the existence of q  =  1 surface (the resonant surface), and ‘non-resonant’ originates from the absence of q  =  1 surface ({{q}\\text{min}}>1 ). ECCD+ and ECCD‑ mean the driving direction of energetic electrons is the same and opposite to plasma current, respectively.) RK has features of periodic strong bursting amplitude and rapid chirping-down frequency, but NRK usually has the saturated amplitude, slow changed or constant frequency and long-lasting time. The NRK excited by energetic electrons is found for the first time. The reversed q-profiles are formed, and q min decreases during plasma current ramp-up. The value of q min is slightly smaller and a bit bigger than unity for RK and NRK conditions, respectively. The internal kink mode (IKM) structures of RKs and NRKs are confirmed by the ECEI system. Although there are different current drive directions of ECCD for excitation of RK and NRK, they all propagate in electron diamagnetic directions in poloidal. The radial mode structures, frequency and growth rate for IKMs are obtained by solving the dispersion relationship. The NRK is stable when q min is larger than a certain value, and with the decreasing q min the frequency drops, but the growth rate almost keeps constant when {{q}\\text{min}}>1 . This result is in agreement with experimental observation. Studying IKMs excited by energetic electrons can provide important experimental experiences for ITER, because the NRKs may be excited by high-power non-inductive drive of ECCD or ECRH in the operation of hybrid scenarios.

  20. Dwarf spheroidal galaxies and resonant orbital coupling

    NASA Technical Reports Server (NTRS)

    Kuhn, J. R.; Miller, R. H.

    1989-01-01

    The structural properties of the dwarf spheroidal satellite galaxies of the Milky Way may be strongly affected by their time-dependent interactions with the 'tidal' field of the Milky Way. A low Q resonance of the tidal driving force with collective oscillation modes of the dwarf system can produce many of the observed properties of the Local Group dwarf spheroidal galaxies, including large velocity dispersions that would normally be interpreted as indicating large dynamical masses.

  1. Dwarf spheroidal galaxies and resonant orbital coupling

    NASA Technical Reports Server (NTRS)

    Kuhn, J. R.; Miller, R. H.

    1989-01-01

    The structural properties of the dwarf spheroidal satellite galaxies of the Milky Way may be strongly affected by their time-dependent interactions with the 'tidal' field of the Milky Way. A low Q resonance of the tidal driving force with collective oscillation modes of the dwarf system can produce many of the observed properties of the Local Group dwarf spheroidal galaxies, including large velocity dispersions that would normally be interpreted as indicating large dynamical masses.

  2. Regenerative feedback resonant circuit

    DOEpatents

    Jones, A. Mark; Kelly, James F.; McCloy, John S.; McMakin, Douglas L.

    2014-09-02

    A regenerative feedback resonant circuit for measuring a transient response in a loop is disclosed. The circuit includes an amplifier for generating a signal in the loop. The circuit further includes a resonator having a resonant cavity and a material located within the cavity. The signal sent into the resonator produces a resonant frequency. A variation of the resonant frequency due to perturbations in electromagnetic properties of the material is measured.

  3. Molecular diagnosis of coenzyme Q10 deficiency.

    PubMed

    Yubero, Delia; Montero, Raquel; Armstrong, Judith; Espinós, Carmen; Palau, Francesc; Santos-Ocaña, Carlos; Salviati, Leonardo; Navas, Placido; Artuch, Rafael

    2015-01-01

    Coenzyme Q10 (CoQ) deficiency syndromes comprise a growing number of neurological and extraneurological disorders. Primary-genetic but also secondary CoQ deficiencies have been reported. The biochemical determination of CoQ is a good tool for the rapid identification of CoQ deficiencies but does not allow the selection of candidate genes for molecular diagnosis. Moreover, the metabolic pathway for CoQ synthesis is an intricate and not well-understood process, where a large number of genes are implicated. Thus, only next-generation sequencing techniques (either genetic panels of whole-exome and -genome sequencing) are at present appropriate for a rapid and realistic molecular diagnosis of these syndromes. The potential treatability of CoQ deficiency strongly supports the necessity of a rapid molecular characterization of patients, since primary CoQ deficiencies may respond well to CoQ treatment.

  4. Particle creation from Q-balls

    NASA Astrophysics Data System (ADS)

    Clark, Stephen S.

    2006-11-01

    Non-topological solitons, Q-balls can arise in many particle theories with U(1) global symmetries. As was shown by Cohen et al. [A.G. Cohen, S.R. Coleman, H. Georgi, A. Manohar, The evaporation of Q-balls, Nucl. Phys. B 272 (1986) 301], if the corresponding scalar field couples to massless fermions, large Q-balls are unstable and evaporate, producing a fermion flux proportional to the Q-ball's surface. In this paper we analyse Q-ball instabilities as a function of Q-ball size ans fermion mass. In particular, we construct an exact quantum-mechanical description of the evaporating Q-ball. This new construction provides an alternative method to compute Q-ball's evaporation rates. We shall also find the new expression for the upper bound on evaporation as a function of the produced fermion mass and study the effects of Q ball's size on particle production.

  5. q-integral representations of modified q-Bessel functions and q-Macdonald functions

    NASA Astrophysics Data System (ADS)

    Ol'shanetskii, M. A.; Rogov, V.-B. K.

    1997-08-01

    The q-analogues of modified Bessel functions and Macdonald functions were defined in the previous paper of the authors as general solutions of certain second-order difference equations. Several representations of these functions based on the Jackson integral are presented.

  6. Crossed ring anchored disk resonator for self-alignment of the anchor

    PubMed Central

    Baghelani, Masoud; Ghavifekr, Habib Badri; Ebrahimi, Afshin

    2013-01-01

    Misalignment is a problematic challenge in RF MEMS resonators. It causes asymmetry in the ultra symmetric radial contour mode disk resonators and degrades their performance by increasing the insertion loss and decreasing their quality factors (Q). Self-alignment method seems to be a good solution for misalignment problem, but it cannot be directly applied on high performance ring shape anchored resonators. This paper discusses misalignment effects for the ring shape anchored resonators and proposes a method for reconfiguring its anchor to be compatible with self-alignment process. Simulation results validate that the crossed ring anchor structure has the same resonance characteristics with the complete ring shape anchored resonator. PMID:25685477

  7. Nucleon Resonance Excitation with Virtual Photons

    NASA Astrophysics Data System (ADS)

    Tiator, L.; Kamalov, S.

    2007-04-01

    The unitary isobar model MAID is used for a partial wave analysis of pion photoproduction and electroproduction data on the nucleon. In particular we have taken emphasis on the region of the Δ(1232) resonance and have separated the resonance and background amplitudes with the K-matrix approach. This leads to electromagnetic properties of the dressed Δ resonance, where all multipole amplitudes become purely imaginary and all form factors and helicity amplitudes become purely real at the K-matrix pole of W = MΔ = 1232 MeV. The REM = E2/M1 and RSM = C2/M1 ratios of the quadrupole excitation are compared to recent data analysis of different groups. The REM ratio of MAID2005 agrees very well with the data and has a linear behavior over the whole experimentally explored Q2 region with a small positive slope that predicts a zero crossing around 3.5 GeV2. The recent RSM data for Q2 < 0.2 GeV2 indicate a qualitative change in the shape of the ratio which can be explained by the impact of the Siegert theorem at pseudothreshold (Q2 = -0.086GeV2) in the unphysical region.

  8. Electromagnetic Transition Form Factors of Nucleon Resonances

    SciTech Connect

    Burkert, Volker D.

    2008-10-13

    Recent measurements of nucleon resonance transition form factors with CLAS at Jefferson Lab are discussed. The new data resolve a long-standing puzzle of the nature of the Roper resonance, and confirm the assertion of the symmetric constituent quark model of the Roper as the first radial excitation of the nucleon. The data on high Q{sup 2} n{pi}{sup +} production confirm the slow fall off of the S{sub 11}(1535) transition form factor with Q{sup 2}, and better constrain the branching ratios {beta}{sub N{pi}} = 0.50 and {beta}{sub N{eta}} = 0.45. For the first time, the longitudinal transition amplitude to the S{sub 11}(1535) was extracted from the n{pi}{sup +} data. Also, new results on the transition amplitudes for the D{sub 13}(1520) resonance are presented showing a rapid transition from helicity 3/2 dominance seen at the real photon point to helicty 1/2 dominance at higher Q{sup 2}.

  9. Narrow resonances and short-range interactions

    NASA Astrophysics Data System (ADS)

    Gelman, Boris A.

    2009-09-01

    Narrow resonances in systems with short-range interactions are discussed in an effective field theory (EFT) framework. An effective Lagrangian is formulated in the form of a combined expansion in powers of a momentum Q≪Λ—a short-distance scale—and an energy difference δɛ=|E-ɛ0|≪ɛ0—a resonance peak energy. At leading order in the combined expansion, a two-body scattering amplitude is the sum of a smooth background term of order Q0 and a Breit-Wigner term of order Q2(δɛ)-1 which becomes dominant for δɛ≲Q3. Such an EFT is applicable to systems in which short-distance dynamics generates a low-lying quasistationary state. The EFT is generalized to describe a narrow low-lying resonance in a system of charged particles. It is shown that in the case of Coulomb repulsion, a two-body scattering amplitude at leading order in a combined expansion is the sum of a Coulomb-modified background term and a Breit-Wigner amplitude with parameters renormalized by Coulomb interactions.

  10. A General Purpose Q-Measuring Circuit Using Pulse Ring-Down.

    PubMed

    Quine, Richard W; Mitchell, Deborah G; Eaton, Gareth R

    2011-02-01

    A general purpose pulsed microwave circuit was developed for the purpose of measuring resonator Q by the pulse ring-down method in EPR spectrometers without pulse capability. The circuit was installed and tested in a Bruker X-band EPR bridge. This method and circuit could be adapted for use in a variety of spectrometers operating at various microwave frequencies.

  11. Imaging by electromagnetic induction with resonant circuits

    NASA Astrophysics Data System (ADS)

    Guilizzoni, Roberta; Watson, Joseph C.; Bartlett, Paul; Renzoni, Ferruccio

    2015-05-01

    A new electromagnetic induction imaging system is presented which is capable of imaging metallic samples of different conductivities. The system is based on a parallel LCR circuit made up of a cylindrical ferrite-cored coil and a capacitor bank. An AC current is applied to the coil, thus generating an AC magnetic field. This field is modified when a conductive sample is placed within the magnetic field, as a consequence of eddy current induction inside the sample. The electrical properties of the LCR circuit, including the coil inductance, are modified due to the presence of this metallic sample. Position-resolved measurements of these modifications should then allow imaging of conductive objects as well as enable their characterization. A proof-of-principle system is presented in this paper. Two imaging techniques based on Q-factor and resonant frequency measurements are presented. Both techniques produced conductivity maps of 14 metallic objects with different geometries and values of conductivity ranging from 0.54х106 to 59.77х106 S/m. Experimental results highlighted a higher sensitivity for the Q-factor technique compared to the resonant frequency one; the respective measurements were found to vary within the following ranges: ΔQ=[-11,-2]%, Δf=[-0.3,0.7]%. The analysis of the images, conducted using a Canny edge detection algorithm, demonstrated the suitability of the Q-factor technique for accurate edge detection of both magnetic and non-magnetic metallic samples.

  12. DC-SIGN, C1q, and gC1qR form a trimolecular receptor complex on the surface of monocyte-derived immature dendritic cells

    PubMed Central

    Hosszu, Kinga K.; Valentino, Alisa; Vinayagasundaram, Uma; Vinayagasundaram, Rama; Joyce, M. Gordon; Ji, Yan; Peerschke, Ellinor I. B.

    2012-01-01

    C1q modulates the differentiation and function of cells committed to the monocyte-derived dendritic cell (DC) lineage. Because the 2 C1q receptors found on the DC surface—gC1qR and cC1qR—lack a direct conduit into intracellular elements, we postulated that the receptors must form complexes with transmembrane partners. In the present study, we show that DC-SIGN, a C-type lectin expressed on DCs, binds directly to C1q, as assessed by ELISA, flow cytometry, and immunoprecipitation experiments. Surface plasmon resonance analysis revealed that the interaction was specific, and both intact C1q and the globular portion of C1q bound to DC-SIGN. Whereas IgG reduced this binding significantly, the Arg residues (162-163) of the C1q-A chain, which are thought to contribute to the C1q-IgG interaction, were not required for C1q binding to DC-SIGN. Binding was reduced significantly in the absence of Ca2+ and by preincubation of DC-SIGN with mannan, suggesting that C1q binds to DC-SIGN at its principal Ca2+-binding pocket, which has increased affinity for mannose residues. Antigen-capture ELISA and immunofluorescence microscopy revealed that C1q and gC1qR associate with DC-SIGN on blood DC precursors and immature DCs. The results of the present study suggest that C1q/gC1qR may regulate DC differentiation and function through the DC-SIGN–mediated induction of cell-signaling pathways. PMID:22700724

  13. Helmholtz-like resonators for thermoacoustic prime movers.

    PubMed

    Andersen, Bonnie J; Symko, Orest G

    2009-02-01

    In a thermoacoustic prime mover, high acoustic output power can be achieved with a large-diameter stack and with a cavity with a large volume attached at the open end of the resonator containing the stack. The combination of resonator and cavity makes the device Helmholtz-like, with special characteristics of the resonant frequencies and quality factor, Q. Analysis of its acoustic behavior based on a model of a closed bottle presents features that are useful for the development of such prime movers for energy conversion from heat to sound. In particular, the arrangement produces in the cavity a high sound level, which is determined by the Q of the system. Comparison with a half-wave resonator type of prime mover, closed at both ends, shows the advantages of the Helmholtz-like device.

  14. Electroproduction of the {Delta}(1232) Resonance at High Momentum Transfer

    SciTech Connect

    Frolov, V.V.; Adams, G.S.; Davidson, R.M.; Klusman, M.; Mukhopadhyay, N.C.; Napolitano, J.; Nozar, M.; Price, J.W.; Stoler, P.; Witkowski, M.; Bosted, P.; Armstrong, C.S.; Meekins, D.; Assamagan, K.; Avery, S.; Baker, O.K.; Eden, T.; Gaskell, D.; Gueye, P.; Hinton, W.; Keppel, C.; Madey, R.; Niculescu, G.; Niculescu, I.; Tang, L.; Ahmidouch, A.; Madey, R.; Kim, W.; Baker, O.K.; Burkert, V.; Carlini, R.; Dunne, J.; Ent, R.; Keppel, C.; Mack, D.; Mitchell, J.; Tang, L.; Wood, S.; Koltenuk, D.; Minehart, R.; Mkrtchyan, H.; Tadevosian, V.

    1999-01-01

    We studied the electroproduction of the {Delta}(1232) resonance via the reaction p(e,thinspe{sup {prime}}p){pi}{sup 0} at four-momentum transfers Q{sup 2}=2.8 and 4.0 GeV{sup 2} . This is the highest Q{sup 2} for which exclusive resonance electroproduction has ever been observed. Decay angular distributions for {Delta}{r_arrow}p{pi}{sup 0} were measured over a wide range of barycentric energies covering the resonance. The N{endash}{Delta} transition form factor G{sup {asterisk}}{sub M} and ratios of resonant multipoles E{sub 1+}/M{sub 1+} and S{sub 1+}/M{sub 1+} were extracted from the decay angular distributions. These ratios remain small, indicating that perturbative QCD is not applicable for this reaction at these momentum transfers. {copyright} {ital 1998} {ital The American Physical Society }

  15. Femtogram scale high frequency nano-optomechanical resonators in water.

    PubMed

    Zhang, He; Zhao, Xiangjie; Wang, Yi; Huang, Qingzhong; Xia, Jinsong

    2017-01-23

    A femtogram scale nanobeam optomechanical crystal (OMC) resonator operating in water is designed and demonstrated. After immersing the device in water, the mechanical Q-factor reduces to 6.6 from 2285 in air. The thermomechanical motion of the highly damped mechanical resonance in water can be resolved using the sensitive cavity optomechanical readout. The mechanical frequency is shifted to 5.251 GHz from 5.3 GHz in air due to the added motional inertia. From the thermomechanical noise spectrum of the mechanical resonance, a noise floor of 9.33am/Hz is achieved in water. Through 2D finite element method (FEM) simulations, the acoustic dissipation dominates the low mechanical Q-factor of the device during the interaction between the mechanical resonance and surrounding water. The mass sensitivity of the present device is estimated to be 1.33ag/Hz in water.

  16. Monolithic optofluidic ring resonator lasers created by femtosecond laser nanofabrication.

    PubMed

    Chandrahalim, Hengky; Chen, Qiushu; Said, Ali A; Dugan, Mark; Fan, Xudong

    2015-05-21

    We designed, fabricated, and characterized a monolithically integrated optofluidic ring resonator laser that is mechanically, thermally, and chemically robust. The entire device, including the ring resonator channel and sample delivery microfluidics, was created in a block of fused-silica glass using a 3-dimensional femtosecond laser writing process. The gain medium, composed of Rhodamine 6G (R6G) dissolved in quinoline, was flowed through the ring resonator. Lasing was achieved at a pump threshold of approximately 15 μJ mm(-2). Detailed analysis shows that the Q-factor of the optofluidic ring resonator is 3.3 × 10(4), which is limited by both solvent absorption and scattering loss. In particular, a Q-factor resulting from the scattering loss can be as high as 4.2 × 10(4), suggesting the feasibility of using a femtosecond laser to create high quality optical cavities.

  17. 40 CFR Table 1 to Subpart Q of... - General Provisions Applicability to Subpart Q

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Subpart Q 1 Table 1 to Subpart Q of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY.... 63, Subpt. Q, Table 1 Table 1 to Subpart Q of Part 63—General Provisions Applicability to Subpart Q Reference Applies to Subpart Q Comment 63.1 Yes 63.2 Yes 63.3 No 63.4 Yes 63.5 No 63.6 (a), (b), (c), and (j...

  18. Electrochemistry of Q-Graphene

    NASA Astrophysics Data System (ADS)

    Randviir, Edward P.; Brownson, Dale A. C.; Gómez-Mingot, Maria; Kampouris, Dimitrios K.; Iniesta, Jesús; Banks, Craig E.

    2012-09-01

    A newly synthesised type of graphene, Q-Graphene, has been physically and electrochemically characterised with Scanning and Transmission Electron Microscopy (SEM, TEM), X-ray Photoelectron Spectroscopy (XPS) and Cyclic Voltammetry (CV). Interpretation of SEM, TEM and XPS data reveal the material to consist of hollow carbon nanospheres of multi-layer graphene (viz. graphite), which exhibit a total oxygen content of ca. 36.0% (atomic weight via XPS). In addition to the carbon structures present, spherical magnesium oxide particles of <=50 nm in diameter are abundantly present in the sample (ca. 16.2%). Interestingly, although the TEM/SEM images show macroporous carbon structures, Raman spectroscopy shows peaks typically characteristic of graphene, which suggests the material is highly heterogeneous and consists of many types of carbon allotropes. Q-Graphene is electrochemically characterised using both inner-sphere and outer-sphere electrochemical redox probes, namely potassium ferrocyanide(ii), hexaammine-ruthenium(iii) chloride and hexachloroiridate(iii), in addition to the biologically relevant and electroactive analytes, norepinephrine, β-nicotinamide adenine dinucleotide (NADH) and l-ascorbic acid. The electrochemical response of Q-Graphene is benchmarked against edge plane- and basal plane-pyrolytic graphite (EPPG and BPPG respectively), pristine graphene and graphite alternatives. Q-Graphene is found to exhibit fast electron transfer kinetics, likely due to its high proportion of folded edges and surface defects, exhibiting a response similar to that of EPPG - which exhibits fast electron transfer rates due to the high proportion of edge plane sites it possesses. Furthermore, we demonstrate that the specific oxygen content plays a pivotal role in dictating the observed electrochemical response, which is analyte dependant. Consequently there is potential for this new member of the graphene family to be beneficially utilised in various electrochemical

  19. Behavioral and neuroanatomical analyses in a genetic mouse model of 2q13 duplication.

    PubMed

    Kishimoto, Keiko; Nomura, Jun; Ellegood, Jacob; Fukumoto, Keita; Lerch, Jason P; Moreno-De-Luca, Daniel; Bourgeron, Thomas; Tamada, Kota; Takumi, Toru

    2017-03-29

    Duplications of human chromosome 2q13 have been reported in patients with neurodevelopmental disorder including autism spectrum disorder. Nephronophthisis-1 (NPHP1) was identified as a causative gene in the minimal deletion on chromosome 2q13 for familial juvenile type 1 nephronophthisis and Joubert syndrome, an autosomal recessive neurodevelopmental disorder characterized by a cerebellar and brain stem malformation, hypotonia, developmental delay, ataxia, and sometimes associated with cognitive impairment. NPHP1 encodes a ciliary protein, nephrocystin-1, which is expressed in the brain, yet its function in the brain remains largely unknown. In this study, we generated bacterial artificial chromosome-based transgenic mice, called 2q13 dup, that recapitulate human chromosome 2q13 duplication and contain one extra copy of the Nphp1 transgene. To analyze any behavioral alterations in 2q13 dup mice, we conducted a battery of behavioral tests. Although 2q13 dup mice show no significant differences in social behavior, they show deficits in spontaneous alternation behavior and fear memory. We also carried out magnetic resonance imaging to confirm whether copy number gain in this locus affects the neuroanatomy. There was a trend toward a decrease in the cerebellar paraflocculus of 2q13 dup mice. This is the first report of a genetic mouse model for human 2q13 duplication.

  20. Neural Substrates of Inhibitory Control Deficits in 22q11.2 Deletion Syndrome†

    PubMed Central

    Montojo, C.A.; Jalbrzikowski, M.; Congdon, E.; Domicoli, S.; Chow, C.; Dawson, C.; Karlsgodt, K.H.; Bilder, R.M.; Bearden, C.E.

    2015-01-01

    22q11.2 deletion syndrome (22q11DS) is associated with elevated levels of impulsivity, inattention, and distractibility, which may be related to underlying neurobiological dysfunction due to haploinsufficiency for genes involved in dopaminergic neurotransmission (i.e. catechol-O-methyltransferase). The Stop-signal task has been employed to probe the neural circuitry involved in response inhibition (RI); findings in healthy individuals indicate that a fronto-basal ganglia network underlies successful inhibition of a prepotent motor response. However, little is known about the neurobiological substrates of RI difficulties in 22q11DS. Here, we investigated this using functional magnetic resonance imaging while 45 adult participants (15 22q11DS patients, 30 matched controls) performed the Stop-signal task. Healthy controls showed significantly greater activation than 22q11DS patients within frontal cortical and basal ganglia regions during successful RI, whereas 22q11DS patients did not show increased neural activity relative to controls in any regions. Using the Barratt Impulsivity Scale, we also investigated whether neural dysfunction during RI was associated with cognitive impulsivity in 22q11DS patients. RI-related activity within left middle frontal gyrus and basal ganglia was associated with severity of self-reported cognitive impulsivity. These results suggest reduced engagement of RI-related brain regions in 22q11DS patients, which may be relevant to characteristic behavioral manifestations of the disorder. PMID:24177988

  1. Doxorubicin inactivates myocardial cytochrome c oxidase in rats: cardioprotection by Mito-Q.

    PubMed

    Chandran, Karunakaran; Aggarwal, Deepika; Migrino, Raymond Q; Joseph, Joy; McAllister, Donna; Konorev, Eugene A; Antholine, William E; Zielonka, Jacek; Srinivasan, Satish; Avadhani, Narayan G; Kalyanaraman, B

    2009-02-18

    Doxorubicin (DOX) is used for treating various cancers. Its clinical use is, however, limited by its dose-limiting cardiomyopathy. The exact mechanism of DOX-induced cardiomyopathy still remains unknown. The goals were to investigate the molecular mechanism of DOX-induced cardiomyopathy and cardioprotection by mitoquinone (Mito-Q), a triphenylphosphonium-conjugated analog of coenzyme Q, using a rat model. Rats were treated with DOX, Mito-Q, and DOX plus Mito-Q for 12 weeks. The left ventricular function as measured by two-dimensional echocardiography decreased in DOX-treated rats but was preserved during Mito-Q plus DOX treatment. Using low-temperature ex vivo electron paramagnetic resonance (EPR), a time-dependent decrease in heme signal was detected in heart tissues isolated from rats administered with a cumulative dose of DOX. DOX attenuated the EPR signals characteristic of the exchange interaction between cytochrome c oxidase (CcO)-Fe(III) heme a3 and CuB. DOX and Mito-Q together restored these EPR signals and the CcO activity in heart tissues. DOX strongly downregulated the stable expression of the CcO subunits II and Va and had a slight inhibitory effect on CcO subunit I gene expression. Mito-Q restored CcO subunit II and Va expressions in DOX-treated rats. These results suggest a novel cardioprotection mechanism by Mito-Q during DOX-induced cardiomyopathy involving CcO.

  2. Selective engineering of cavity resonance for frequency matching in optical parametric processes

    SciTech Connect

    Lu, Xiyuan; Rogers, Steven; Jiang, Wei C.; Lin, Qiang

    2014-10-13

    We propose to selectively engineer a single cavity resonance to achieve frequency matching for optical parametric processes in high-Q microresonators. For this purpose, we demonstrate an approach, selective mode splitting (SMS), to precisely shift a targeted cavity resonance, while leaving other cavity modes intact. We apply SMS to achieve efficient parametric generation via four-wave mixing in high-Q silicon microresonators. The proposed approach is of great potential for broad applications in integrated nonlinear photonics.

  3. Low-magnification unstable resonators used with ruby and alexandrite lasers

    SciTech Connect

    Harter, D.J.; Walling, J.C.

    1986-11-01

    Low-magnification unstable resonators that utilize radially birefringent elements and that have been shown to be suitable for use with ruby and alexandrite lasers are described. From these resonators, 400 mJ of energy in a Q-switched pulse with --2.5 x diffraction-limited output has been obtained from alexandrite, and 250-mJ Q-switched output that is near diffraction limited has been obtained from ruby.

  4. A stationary q-metric

    NASA Astrophysics Data System (ADS)

    Toktarbay, S.; Quevedo, H.

    2014-10-01

    We present a stationary generalization of the static $q-$metric, the simplest generalization of the Schwarzschild solution that contains a quadrupole parameter. It possesses three independent parameters that are related to the mass, quadrupole moment and angular momentum. We investigate the geometric and physical properties of this exact solution of Einstein's vacuum equations, and show that it can be used to describe the exterior gravitational field of rotating, axially symmetric, compact objects.

  5. Electrochemistry of Q-graphene.

    PubMed

    Randviir, Edward P; Brownson, Dale A C; Gómez-Mingot, Maria; Kampouris, Dimitrios K; Iniesta, Jesús; Banks, Craig E

    2012-10-21

    A newly synthesised type of graphene, Q-Graphene, has been physically and electrochemically characterised with Scanning and Transmission Electron Microscopy (SEM, TEM), X-ray Photoelectron Spectroscopy (XPS) and Cyclic Voltammetry (CV). Interpretation of SEM, TEM and XPS data reveal the material to consist of hollow carbon nanospheres of multi-layer graphene (viz. graphite), which exhibit a total oxygen content of ca. 36.0% (atomic weight via XPS). In addition to the carbon structures present, spherical magnesium oxide particles of ≤50 nm in diameter are abundantly present in the sample (ca. 16.2%). Interestingly, although the TEM/SEM images show macroporous carbon structures, Raman spectroscopy shows peaks typically characteristic of graphene, which suggests the material is highly heterogeneous and consists of many types of carbon allotropes. Q-Graphene is electrochemically characterised using both inner-sphere and outer-sphere electrochemical redox probes, namely potassium ferrocyanide(II), hexaammine-ruthenium(III) chloride and hexachloroiridate(III), in addition to the biologically relevant and electroactive analytes, norepinephrine, β-nicotinamide adenine dinucleotide (NADH) and l-ascorbic acid. The electrochemical response of Q-Graphene is benchmarked against edge plane- and basal plane-pyrolytic graphite (EPPG and BPPG respectively), pristine graphene and graphite alternatives. Q-Graphene is found to exhibit fast electron transfer kinetics, likely due to its high proportion of folded edges and surface defects, exhibiting a response similar to that of EPPG - which exhibits fast electron transfer rates due to the high proportion of edge plane sites it possesses. Furthermore, we demonstrate that the specific oxygen content plays a pivotal role in dictating the observed electrochemical response, which is analyte dependant. Consequently there is potential for this new member of the graphene family to be beneficially utilised in various electrochemical

  6. Resonance beyond frequency-matching: multidimensional resonance

    NASA Astrophysics Data System (ADS)

    Wang, Zhenyu; Li, Mingzhe; Wang, Ruifang

    2017-03-01

    Resonance, conventionally defined as the oscillation of a system when the temporal frequency of an external stimulus matches a natural frequency of the system, is important in both fundamental physics and applied disciplines. However, the spatial character of oscillation is not considered in this definition. We reveal the creation of spatial resonance when the stimulus matches the space pattern of a normal mode in an oscillating system. The complete resonance, which we call multidimensional resonance, should be a combination of both the temporal and the spatial resonance. We further elucidate that the spin wave produced by multidimensional resonance drives considerably faster reversal of the vortex core in a magnetic nanodisc. Multidimensional resonance provides insight into the nature of wave dynamics and opens the door to novel applications.

  7. Analysis and modeling of Fano resonances using equivalent circuit elements

    NASA Astrophysics Data System (ADS)

    Lv, Bo; Li, Rujiang; Fu, Jiahui; Wu, Qun; Zhang, Kuang; Chen, Wan; Wang, Zhefei; Ma, Ruyu

    2016-08-01

    Fano resonance presents an asymmetric line shape formed by an interference of a continuum coupled with a discrete autoionized state. In this paper, we show several simple circuits for Fano resonances from the stable-input impedance mechanism, where the elements consisting of inductors and capacitors are formulated for various resonant modes, and the resistor represents the damping of the oscillators. By tuning the pole-zero of the input impedance, a simple circuit with only three passive components e.g. two inductors and one capacitor, can exhibit asymmetric resonance with arbitrary Q-factors flexiblely. Meanwhile, four passive components can exhibit various resonances including the Lorentz-like and reversely electromagnetically induced transparency (EIT) formations. Our work not only provides an intuitive understanding of Fano resonances, but also pave the way to realize Fano resonaces using simple circuit elements.

  8. Analysis and modeling of Fano resonances using equivalent circuit elements.

    PubMed

    Lv, Bo; Li, Rujiang; Fu, Jiahui; Wu, Qun; Zhang, Kuang; Chen, Wan; Wang, Zhefei; Ma, Ruyu

    2016-08-22

    Fano resonance presents an asymmetric line shape formed by an interference of a continuum coupled with a discrete autoionized state. In this paper, we show several simple circuits for Fano resonances from the stable-input impedance mechanism, where the elements consisting of inductors and capacitors are formulated for various resonant modes, and the resistor represents the damping of the oscillators. By tuning the pole-zero of the input impedance, a simple circuit with only three passive components e.g. two inductors and one capacitor, can exhibit asymmetric resonance with arbitrary Q-factors flexiblely. Meanwhile, four passive components can exhibit various resonances including the Lorentz-like and reversely electromagnetically induced transparency (EIT) formations. Our work not only provides an intuitive understanding of Fano resonances, but also pave the way to realize Fano resonaces using simple circuit elements.

  9. Analysis and modeling of Fano resonances using equivalent circuit elements

    PubMed Central

    Lv, Bo; Li, Rujiang; Fu, Jiahui; Wu, Qun; Zhang, Kuang; Chen, Wan; Wang, Zhefei; Ma, Ruyu

    2016-01-01

    Fano resonance presents an asymmetric line shape formed by an interference of a continuum coupled with a discrete autoionized state. In this paper, we show several simple circuits for Fano resonances from the stable-input impedance mechanism, where the elements consisting of inductors and capacitors are formulated for various resonant modes, and the resistor represents the damping of the oscillators. By tuning the pole-zero of the input impedance, a simple circuit with only three passive components e.g. two inductors and one capacitor, can exhibit asymmetric resonance with arbitrary Q-factors flexiblely. Meanwhile, four passive components can exhibit various resonances including the Lorentz-like and reversely electromagnetically induced transparency (EIT) formations. Our work not only provides an intuitive understanding of Fano resonances, but also pave the way to realize Fano resonaces using simple circuit elements. PMID:27545610

  10. Absorption band Q model for the Earth

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.; Given, J. W.

    1981-01-01

    Attenuation in solids and liquids, as measured by the quality factor Q, is typically frequency dependent. In seismology, however, Q is usually assumed to be independent of frequency. Body wave, surface wave, and normal mode data are used to place constraints on the frequency dependence of Q in the mantle. Specific features of the absorption band model are: low-Q in the seismic band at both the top and the base of the mantle, low-Q for long-period body waves in the outer core, an inner core Q sub s that increases with period, and low Q sub p/Q sub s at short periods in the middle mantle.

  11. Supersymmetric q-deformed quantum mechanics

    SciTech Connect

    Traikia, M. H.; Mebarki, N.

    2012-06-27

    A supersymmetric q-deformed quantum mechanics is studied in the weak deformation approximation of the Weyl-Heisenberg algebra. The corresponding supersymmetric q-deformed hamiltonians and charges are constructed explicitly.

  12. A SAW resonator with two-dimensional reflectors.

    PubMed

    Solal, Marc; Gratier, Julien; Kook, Taeho

    2010-01-01

    It is known that a part of the loss of leaky SAW resonators is due to radiation of acoustic energy in the bus-bars. Many researchers are working on so-called phononic crystals. A 2-D grating of very strong reflectors allows these devices to fully reflect, for a given frequency band, any incoming wave. A new device based on the superposition of a regular SAW resonator and a 2-D periodic grating of reflectors is proposed. Several arrangements and geometries of the reflectors were studied and compared experimentally on 48 degrees rotated Y-cut lithium tantalate. In particular, a very narrow aperture (7.5 lambda) resonator was manufactured in the 900 MHz range. Because of its small size, this resonator has a resonance Q of only 575 when using the standard technology, whereas a resonance Q of 1100 was obtained for the new device without degradation of the other characteristics. Because of the narrow aperture, the admittance of the standard resonator showed a very strong parasitic above the resonance frequency, whereas this effect is drastically reduced for the new device. These results demonstrate the feasibility of the new approach.

  13. Microwave-to-Optical Conversion in WGM Resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Strekalov, Dmitry; Yu, Nan; Matsko, Andrey; Maleki, Lute

    2008-01-01

    Microwave-to-optical frequency converters based on whispering-gallery-mode (WGM) resonators have been proposed as mixers for the input ends of microwave receivers in which, downstream of the input ends, signals would be processed photonically. A frequency converter as proposed (see figure) would exploit the nonlinearity of the electromagnetic response of a WGM resonator made of LiNbO3 or another suitable ferroelectric material. Up-conversion would take place by three-wave mixing in the resonator. The WGM resonator would be de - signed and fabricated to obtain (1) resonance at both the microwave and the optical operating frequencies and (2) phase matching among the input and output microwave and optical signals as described in the immediately preceding article. Because the resonator would be all dielectric there would be no metal electrodes signal losses would be very low and, consequently, the resonance quality factors (Q values) of the microwave and optical fields would be very large. The long lifetimes associated with the large Q values would enable attainment of high efficiency of nonlinear interaction with low saturation power. It is anticipated that efficiency would be especially well enhanced by the combination of optical and microwave resonances in operation at input signal frequencies between 90 and 300 GHz.

  14. Lead-silicate glass optical microbubble resonator

    SciTech Connect

    Wang, Pengfei; Ward, Jonathan; Yang, Yong; Chormaic, Síle Nic; Feng, Xian; Brambilla, Gilberto; Farrell, Gerald

    2015-02-09

    Microbubble whispering gallery resonators have the potential to become key components in a variety of active and passive photonic circuit devices by offering a range of significant functionalities. Here, we report on the fabrication, optical characterization, and theoretical analysis of lead-silicate glass and optical microbubble resonators. Evanescent field coupling to the microbubbles was achieved using a 1 μm diameter, silica microfiber at a wavelength of circa 775 nm. High Q-factor modes were efficiently excited in both single-stem and two-stem, lead-silicate glass, and microbubble resonators, with bubble diameters of 38 μm (single-stem) and 48 μm (two-stem). Whispering gallery mode resonances with Q-factors as high as 2.3 × 10{sup 5} (single-stem) and 7 × 10{sup 6} (two-stem) were observed. By exploiting the high-nonlinearity of the lead-silicate glass, this work will act as a catalyst for studying a range of nonlinear optical effects in microbubbles, such as Raman scattering and four-wave mixing, at low optical powers.

  15. The output beam quality of a Q-switched Nd:glass slab laser

    NASA Technical Reports Server (NTRS)

    Reed, Murray K.; Byer, Robert L.

    1990-01-01

    The authors have constructed and tested a flashlamp pumped, Q-switched, Nd:glass zigzag slab laser. The thermally induced optical distortion through the slab is minimized by uniform pumping and cooling and the use of corrective pump shields at the slab ends. The laser spatial output for Q-switched resonators has been measured and modeled. It is shown that a larger aperture planar oscillator has an output divergence many times above the diffraction limit. Operation as a one-dimensional unstable resonator in the wide direction of the slab allows the efficient extraction of energy in a high-quality beam. Near-diffraction-limited laser output of 5 J at 4 Hz is achieved with a resonator that includes an intracavity telescope to correct for residual defocusing in the thin direction of the slab.

  16. The output beam quality of a Q-switched Nd:glass slab laser

    NASA Technical Reports Server (NTRS)

    Reed, Murray K.; Byer, Robert L.

    1990-01-01

    The authors have constructed and tested a flashlamp pumped, Q-switched, Nd:glass zigzag slab laser. The thermally induced optical distortion through the slab is minimized by uniform pumping and cooling and the use of corrective pump shields at the slab ends. The laser spatial output for Q-switched resonators has been measured and modeled. It is shown that a larger aperture planar oscillator has an output divergence many times above the diffraction limit. Operation as a one-dimensional unstable resonator in the wide direction of the slab allows the efficient extraction of energy in a high-quality beam. Near-diffraction-limited laser output of 5 J at 4 Hz is achieved with a resonator that includes an intracavity telescope to correct for residual defocusing in the thin direction of the slab.

  17. q-deformed harmonic and Clifford analysis and the q-Hermite and Laguerre polynomials

    NASA Astrophysics Data System (ADS)

    Coulembier, K.; Sommen, F.

    2010-03-01

    We define a q-deformation of the Dirac operator, inspired by the one-dimensional q-derivative. This implies a q-deformation of the partial derivatives. By taking the square of this Dirac operator we find a q-deformation of the Laplace operator. This allows us to construct q-deformed Schrödinger equations in higher dimensions. The equivalence of these Schrödinger equations with those defined on q-Euclidean space in quantum variables is shown. We also define the m-dimensional q-Clifford-Hermite polynomials and show their connection with the q-Laguerre polynomials. These polynomials are orthogonal with respect to an m-dimensional q-integration, which is related to integration on q-Euclidean space. The q-Laguerre polynomials are the eigenvectors of an suq(1|1)-representation.

  18. Localizing chronic Q fever: a challenging query

    PubMed Central

    2013-01-01

    Background Chronic Q fever usually presents as endocarditis or endovascular infection. We investigated whether 18F-FDG PET/CT and echocardiography were able to detect the localization of infection. Also, the utility of the modified Duke criteria was assessed. Methods Fifty-two patients, who had an IgG titre of ≥ 1024 against C. burnetii phase I ≥ 3 months after primary infection or a positive PCR ≥ 1 month after primary infection, were retrospectively included. Data on serology, the results of all imaging studies, possible risk factors for developing proven chronic Q fever and clinical outcome were recorded. Results According to the Dutch consensus on Q fever diagnostics, 18 patients had proven chronic Q fever, 14 probable chronic Q fever, and 20 possible chronic Q fever. Of the patients with proven chronic Q fever, 22% were diagnosed with endocarditis, 17% with an infected vascular prosthesis, and 39% with a mycotic aneurysm. 56% of patients with proven chronic Q fever did not recall an episode of acute Q fever. Ten out of 13 18F-FDG PET/CT-scans in patients with proven chronic Q fever localized the infection. TTE and TEE were helpful in only 6% and 50% of patients, respectively. Conclusions If chronic Q fever is diagnosed, 18F-FDG PET/CT is a helpful imaging technique for localization of vascular infections due to chronic Q fever. Patients with proven chronic Q fever were diagnosed significantly more often with mycotic aneurysms than in previous case series. Definite endocarditis due to chronic Q fever was less frequently diagnosed in the current study. Chronic Q fever often occurs in patients without a known episode of acute Q fever, so clinical suspicion should remain high, especially in endemic regions. PMID:24004470

  19. Two-loop amplitudes for q g →H q and q q ¯ →H g mediated by a nearly massless quark

    NASA Astrophysics Data System (ADS)

    Melnikov, Kirill; Tancredi, Lorenzo; Wever, Christopher

    2017-03-01

    We compute the two-loop QCD corrections to q g →H q and q q ¯ →H g amplitudes mediated by loops of nearly massless quarks. These amplitudes provide the last missing ingredient required to compute the next-to-leading-order QCD corrections to the top-bottom interference contribution to the Higgs boson transverse momentum distribution at hadron colliders.

  20. Clinical and molecular cytogenetic studies in ten patients with hematological malignancies characterized by t(20;21)(q11;q11) resulted from del(20q).

    PubMed

    Wu, Chunxiao; Zhang, Jun; Bai, Shuxiao; Yao, Jianxin; Qiu, Huiying; Xue, Yongquan; Chen, Suning; Wu, Yafang; Shen, Juan; Pan, Jinlan

    2016-10-01

    This study reports 10 patients with hematological malignances with t(20;21)(q11;q11) resulting from del(20q) (for example, der(20)del(20)(q11q13)t(20;21)(q11;q11) and der(21)t(20;21)(q11;q11)) and described their clinical features and the possible prognostic significance of this abnormality. The t(20;21)(q11;q11) was a rare but recurrent abnormality secondary to del(20q) besides i(20q-). The frequency of der(20)del(20)(q11q13)t(20;21)(q11;q11) among our patients with del(20q) was 2.4%. It was considered that the 20q deletion preceded translocation with chromosome 21. This abnormality is often cryptic, occurs predominantly in older men and is observed most often in myelodysplastic syndromes. Patients with this abnormality have an unfavorable prognosis, similar to patients with i(20q-). The molecular consequences of der(20)del(20)(q11q13)t(20;21)(q11;q11) may be different from patients with i(20q-). To the best of our knowledge this is the largest dataset published to date.

  1. Q Methodology, Communication, and the Behavioral Text.

    ERIC Educational Resources Information Center

    McKeown, Bruce

    1990-01-01

    Discusses Q methodology in light of modern philosophy of science and hermeneutics. Outlines and discusses the basic steps of conducting Q-method research. Suggests that Q methodology allows researchers to understand and interpret the subjective text of respondents without confounding them with external categories of theoretical reflection. (RS)

  2. Q-derivatives, coherent states and squeezing

    NASA Technical Reports Server (NTRS)

    Celeghini, E.; Demartino, S.; Desiena, S.; Rasetti, M.; Vitiello, G.

    1994-01-01

    We show that the q-deformation of the Weyl-Heisenberg (q-WH) algebra naturally arises in discretized systems, coherent states, squeezed states and systems with periodic potential on the lattice. We incorporate the q-WH algebra into the theory of (entire) analytical functions, with applications to theta and Bloch functions.

  3. Q Methodology, Communication, and the Behavioral Text.

    ERIC Educational Resources Information Center

    McKeown, Bruce

    1990-01-01

    Discusses Q methodology in light of modern philosophy of science and hermeneutics. Outlines and discusses the basic steps of conducting Q-method research. Suggests that Q methodology allows researchers to understand and interpret the subjective text of respondents without confounding them with external categories of theoretical reflection. (RS)

  4. Composite lateral electric field excited piezoelectric resonator.

    PubMed

    Zaitsev, B D; Shikhabudinov, A M; Borodina, I A; Teplykh, A A; Kuznetsova, I E

    2017-01-01

    The novel method of suppression of parasitic oscillations in lateral electric field excited piezoelectric resonator is suggested. Traditionally such resonator represents the piezoelectric plate with two electrodes on one side of the plate. The crystallographic orientation of the plate is selected so that the tangential components of electric field excite bulk acoustic wave with given polarization travelling along the normal to the plate sides. However at that the normal components of field excite the parasitic Lamb waves and bulk waves of other polarization which deteriorate the resonant properties of the resonator. In this work we suggest to separate the source of the HF electric field and resounded piezoelectric plate by air gap. In this case the tangential components of the field in piezoelectric plate do not practically weaken but normal components significantly decrease. This method is realized on the composite resonator having the structure "glass plate with rectangular electrodes - air gap - plate of 128 Y-X lithium niobate." It has been shown that there exist the optimal value of the width gap which ensure the good quality of series and parallel resonances in frequency range 3-4MHz with record values of Q-factor of ∼15,000 in both cases.

  5. Dielectric microwave resonators in TE011 cavities for electron paramagnetic resonance spectroscopy

    PubMed Central

    Mett, Richard R.; Sidabras, Jason W.; Golovina, Iryna S.; Hyde, James S.

    2008-01-01

    The coupled system of the microwave cylindrical TE011 cavity and the TE01δ dielectric modes has been analyzed in order to determine the maximum achievable resonator efficiency parameter of a dielectric inserted into a cavity, and whether this value can exceed that of a dedicated TE01δ mode dielectric resonator. The frequency, Q value, and resonator efficiency parameter Λ for each mode of the coupled system were calculated as the size of the dielectric was varied. Other output parameters include the relative field magnitudes and phases. Two modes are found: one with fields in the dielectric parallel to the fields in the cavity center and the other with antiparallel fields. Results closely match those from a computer program that solves Maxwell’s equations by finite element methods. Depending on the relative natural resonance frequencies of the cavity and dielectric, one mode has a higher Q value and correspondingly lower Λ than the other. The mode with the higher Q value is preferentially excited by a coupling iris or loop in or near the cavity wall. However, depending on the frequency separation between modes, either can be excited in this way. A relatively narrow optimum is found for the size of the insert that produces maximum signal for both modes simultaneously. It occurs when the self-resonance frequencies of the two resonators are nearly equal. The maximum signal is almost the same as that of the dedicated TE01δ mode dielectric resonator alone, Λ≅40 G∕W1∕2 at X-band for a KTaO3 crystal. The cavity is analogous to the second stage of a two-stage coupler. In general, there is no electron paramagnetic resonance (EPR) signal benefit by use of a second stage. However, there is a benefit of convenience. A properly designed sample-mounted resonator inserted into a cavity can give EPR signals as large as what one would expect from the dielectric resonator alone. PMID:19044441

  6. Cavity- and waveguide-resonators in electron paramagnetic resonance, nuclear magnetic resonance, and magnetic resonance imaging.

    PubMed

    Webb, Andrew

    2014-11-01

    Cavity resonators are widely used in electron paramagnetic resonance, very high field magnetic resonance microimaging and also in high field human imaging. The basic principles and designs of different forms of cavity resonators including rectangular, cylindrical, re-entrant, cavity magnetrons, toroidal cavities and dielectric resonators are reviewed. Applications in EPR and MRI are summarized, and finally the topic of traveling wave MRI using the magnet bore as a waveguide is discussed.

  7. Physical findings in 21q22 deletion suggest critical region for 21q - phenotype in q22

    SciTech Connect

    Thedoropoulos, D.S.; Cowan, J.M.; Elias, E.R.; Cole, C.

    1995-11-06

    Multiple abnormalities were observed in a newborn infant with a deletion in the long arm of chromosome 21, from band 22q22.1{yields}qter. The phenotype of this infant was similar to that previously described in infants with deletions spanning the long arm of chromosome 21, from the centromere to 21q22. However, as a phenotypically normal child with normal intelligence and with deletion of 21q11.1-21q21.3 has also been identified, this case suggests that the critical region of deletion for the 21q - phenotype lies distal to 21q21, within 21q22.1-22.2. 10 refs., 2 figs.

  8. A girl with 15q overgrowth syndrome and dup(15)(q24q26.3) that included telomeric sequences.

    PubMed

    Gutiérrez-Franco, María de Los Angeles; Madariaga-Campos, María de la Luz; Vásquez-Velásquez, Ana I; Matute, Esmeralda; Guevara-Yáñez, Roberto; Rivera, Horacio

    2010-06-01

    Distal 15q trisomy or tetrasomy is associated with a characteristic phenotype that includes mild to moderate intellectual disability, abnormal behavior, speech impairment, overgrowth, hyperlaxity, long face, prominent nose, puffy cheeks, pointed chin, small ears, and hand anomalies (mainly arachno- and camptodactyly). We present the case of a 13-yr-old girl with the main clinical features of 15q overgrowth syndrome and a 46,XX,dup(15)(q24q26.3)[117]/46,XX[3].ish dup(15)(q24q26.3) (SNPRN+,PML+,subtel++,tel++) de novo karyotype. The findings in this case are consistent with those in the previous distal 15q trisomy cases that presented with overgrowth and mental retardation. Further, the rearranged chromosome had a double set of directly oriented telomeric and subtelomeric sequences.

  9. Microfiber coil resonator and waveguide

    NASA Astrophysics Data System (ADS)

    Sumetsky, Mikhail

    2005-04-01

    The recently suggested self-coupling microfiber coil optical resonator (COR) is a simplest functional element for the future microfiber-based photonics. It could be created by wrapping a microfiber on a dielectric rod with smaller refractive index. It is feasible that COR, which is produced from a drawn optical microfiber, will not suffer from surface roughness as e.g. the lithographically fabricated 2D microrings. Therefore, COR may have extremely small losses and generate high-Q resonances. In this paper, the theoretical study of the basic electromagnetic properties of the uniform self-coupling COR with N turns is presented. The eigenmodes of COR, which are qualitatively different from the modes of the known types of resonators, exist for the discrete values of the dimensionless coupling parameter K=κS > ½, where κ is the coupling coefficient between adjacent turns and S is the length of a turn. The spatial variation of the mode amplitudes does not have the wavelength scale oscillations and has no correlation with the period of COR, S. For certain series of K, the free spectrum range of COR is independent of the number of turns N and COR behaves similar to a single ring resonator. For N-->∞, the microfiber coil optical waveguide (COW) has a simple dispersion relation implying the absence of stop bands. The value K = ½ corresponds to the crossover between two regimes of propagation: with and without zeroing of the group velocity. At the crossover, the dispersion relation of COW has inflexion points wherein the group velocity and the inversed group velocity dispersion simultaneously become zero.

  10. Magnetic resonance force detection using a membrane resonator

    NASA Astrophysics Data System (ADS)

    Scozzaro, Nicolas; Ruchotzke, William; Belding, Amanda; Cardellino, Jeremy; Blomberg, Erick; McCullian, Brendan; Bhallamudi, Vidya; Pelekhov, Denis; Hammel, P. Chris

    Silicon nitride (Si3N4) membranes are commercially-available, versatile structures that have a variety of applications. Although most commonly used as the support structure for transmission electron microscopy (TEM) studies, membranes are also ultrasensitive high-frequency mechanical oscillators. The sensitivity stems from the high quality factor Q 106 , which has led to applications in sensitive quantum optomechanical experiments. The high sensitivity also opens the door to ultrasensitive force detection applications. We report force detection of electron spin magnetic resonance at 300 K using a Si3N4 membrane with a force sensitivity of 4 fN/√{ Hz}, and a potential low temperature sensitivity of 25 aN/√{ Hz}. Given membranes' sensitivity, robust construction, large surface area and low cost, SiN membranes can potentially serve as the central component of a compact room-temperature ESR and NMR instrument that has superior spatial resolution to conventional NMR.

  11. Preserving the Q-factors of ZnO nanoresonators via polar surface reconstruction.

    PubMed

    Jiang, Jin-Wu; Park, Harold S; Rabczuk, Timon

    2013-10-11

    We perform molecular dynamics simulations to investigate the effect of polar surfaces on the quality (Q)-factors of zinc oxide (ZnO) nanowire-based nanoresonators. We find that the Q-factors in ZnO nanoresonators with free polar (0001) surfaces are about one order of magnitude higher than in nanoresonators that have been stabilized with reduced charges on the polar (0001) surfaces. From normal mode analysis, we show that the higher Q-factor is due to a shell-like reconstruction that occurs for the free polar surfaces. This shell-like reconstruction suppresses twisting motion in the nanowires such that the mixing of other modes with the resonant mode of oscillation is minimized, and leads to substantially higher Q-factors in ZnO nanoresonators with free polar surfaces.

  12. Diode pumped Q-switched and mode locked lasers

    NASA Astrophysics Data System (ADS)

    Jabczyński, Jan K.; Żendzian, Waldemar; Kwiatkowski, Jacek

    2005-09-01

    The simultaneous Q-Switching and Mode Locking (QML) regime provides the generation of relatively high peak power picosecond pulses train with energies of a few μJ each in a simple resonator. The critical review of QML methods and results including our investigations is given in the first part of presentation. The application of several types of saturable crystalline absorbers (Cr4+:YAG, V3+:YAG, LiF, GaAs) leads to chaotic, partial QML effect, with less than 100% modulation depth in principle. The fully modulated efficient QML laser was demonstrated in the next part. The acousto-optic cell playing a double role of Q-switch and Mode Locker was located near flat output coupler. The two folding mirrors were mounted on the translation stages for matching the resonance frequency of the cavity to the radio frequency of acousto-optic modulator. The QML pulses with envelope durations of 100-150 ns and 100% modulation depth were observed for wide range of pump powers and repetition rates. In the preliminary experiments up to 3 W of output average power, 100μJ of the envelope energy, having approximately 5-8 mode locked pulses were achieved.

  13. Search for massive resonances decaying into WW, WZ or ZZ bosons in proton-proton collisions at √{s}=13 TeV

    NASA Astrophysics Data System (ADS)

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; König, A.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rad, N.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Strauss, J.; Waltenberger, W.; Wulz, C.-E.; Chekhovsky, V.; Dvornikov, O.; Dydyshka, Y.; Emeliantchik, I.; Litomin, A.; Makarenko, V.; Mossolov, V.; Stefanovitch, R.; Suarez Gonzalez, J.; Zykunov, V.; Shumeiko, N.; Alderweireldt, S.; De Wolf, E. A.; Janssen, X.; Lauwers, J.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Lowette, S.; Moortgat, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Skovpen, K.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Luetic, J.; Maerschalk, T.; Marinov, A.; Randle-conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Vannerom, D.; Wang, Q.; Yonamine, R.; Zenoni, F.; Zhang, F.; Cimmino, A.; Cornelis, T.; Dobur, D.; Fagot, A.; Gul, M.; Khvastunov, I.; Poyraz, D.; Salva, S.; Schöfbeck, R.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.; Bakhshiansohi, H.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; De Visscher, S.; Delaere, C.; Delcourt, M.; Francois, B.; Giammanco, A.; Jafari, A.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Nuttens, C.; Piotrzkowski, K.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Wertz, S.; Beliy, N.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Cheng, T.; Jiang, C. H.; Leggat, D.; Liu, Z.; Romeo, F.; Ruan, M.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Zhao, J.; Ban, Y.; Chen, G.; Huang, H.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; González Hernández, C. F.; Ruiz Alvarez, J. D.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Sculac, T.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Mesic, B.; Susa, T.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Tsiakkouri, D.; Finger, M.; Finger, M.; Carrera Jarrin, E.; Ellithi Kamel, A.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Kucher, I.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Abdulsalam, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Davignon, O.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Miné, P.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Le Bihan, A.-C.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sabes, D.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Toriashvili, T.; Lomidze, D.; Autermann, C.; Beranek, S.; Feld, L.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Preuten, M.; Schomakers, C.; Schulz, J.; Verlage, T.; Albert, A.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hamer, M.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Olschewski, M.; Padeken, K.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Flügge, G.; Kargoll, B.; Kress, T.; Künsken, A.; Lingemann, J.; Müller, T.; Nehrkorn, A.; Nowack, A.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Arndt, T.; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Bin Anuar, A. A.; Borras, K.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Eren, E.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Grados Luyando, J. M.; Grohsjean, A.; Gunnellini, P.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Keaveney, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Lelek, A.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Ntomari, E.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Seitz, C.; Spannagel, S.; Stefaniuk, N.; Van Onsem, G. P.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Dreyer, T.; Garutti, E.; Gonzalez, D.; Haller, J.; Hoffmann, M.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Poehlsen, J.; Sander, C.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baur, S.; Baus, C.; Berger, J.; Butz, E.; Caspart, R.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Fink, S.; Freund, B.; Friese, R.; Giffels, M.; Gilbert, A.; Goldenzweig, P.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Kudella, S.; Mildner, H.; Mozer, M. U.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Schäfer, D.; Schröder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Filipovic, N.; Bencze, G.; Hajdu, C.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Bahinipati, S.; Choudhury, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Kumari, P.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhattacharya, R.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Kole, G.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sur, N.; Sutar, B.; Banerjee, S.; Bhowmik, S.; Dewanjee, R. K.; Ganguly, S.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Pandey, S.; Rane, A.; Sharma, S.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Sguazzoni, G.; Strom, D.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Brivio, F.; Ciriolo, V.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; De Nardo, G.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Fienga, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; De Castro Manzano, P.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Margoni, M.; Meneguzzo, A. T.; Michelotto, M.; Pazzini, J.; Pegoraro, M.; Pozzobon, N.; Ronchese, P.; Torassa, E.; Zanetti, M.; Zotto, P.; Zumerle, G.; Braghieri, A.; Fallavollita, F.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; Del Re, D.; Diemoz, M.; Gelli, S.; Longo, E.; Margaroli, F.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Monteno, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, S.; Lee, S. W.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Lee, A.; Kim, H.; Brochero Cifuentes, J. A.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Lee, H.; Oh, S. B.; Radburn-Smith, B. C.; Seo, S. h.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Goh, J.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Magaña Villalba, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Carpinteyro, S.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Saddique, A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Calpas, B.; Di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Palichik, V.; Perelygin, V.; Savina, M.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Voytishin, N.; Zarubin, A.; Chtchipounov, L.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Murzin, V.; Oreshkin, V.; Sulimov, V.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Bylinkin, A.; Chistov, R.; Polikarpov, S.; Tarkovskii, E.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Blinov, V.; Skovpen, Y.; Shtol, D.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Barrio Luna, M.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Fernandez Menendez, J.; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Suárez Andrés, I.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Curras, E.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Bloch, P.; Bocci, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; Chen, Y.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Roeck, A.; Di Marco, E.; Dobson, M.; Dorney, B.; du Pree, T.; Duggan, D.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Everaerts, P.; Fartoukh, S.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Girone, M.; Glege, F.; Gulhan, D.; Gundacker, S.; Guthoff, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kieseler, J.; Kirschenmann, H.; Knünz, V.; Kornmayer, A.; Kortelainen, M. J.; Kousouris, K.; Krammer, M.; Lange, C.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Merlin, J. A.; Mersi, S.; Meschi, E.; Milenovic, P.; Moortgat, F.; Morovic, S.; Mulders, M.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Sakulin, H.; Sauvan, J. B.; Schäfer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Sphicas, P.; Steggemann, J.; Stoye, M.; Takahashi, Y.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Veres, G. I.; Verweij, M.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Schönenberger, M.; Starodumov, A.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; De Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Yang, Y.; Zucchetta, A.; Candelise, V.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chang, Y. H.; Chao, Y.; Chen, K. F.; Chen, P. H.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Paganis, E.; Psallidas, A.; Tsai, J. f.; Asavapibhop, B.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Eskut, E.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Kayis Topaksu, A.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Tali, B.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cakir, A.; Cankocak, K.; Sen, S.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Dunne, P.; Elwood, A.; Futyan, D.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Nash, J.; Nikitenko, A.; Pela, J.; Penning, B.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Summers, S.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Wright, J.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Cutts, D.; Garabedian, A.; Hakala, J.; Heintz, U.; Hogan, J. M.; Jesus, O.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Spencer, E.; Syarif, R.; Breedon, R.; Burns, D.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Bravo, C.; Cousins, R.; Dasgupta, A.; Florent, A.; Hauser, J.; Ignatenko, M.; Mccoll, N.; Saltzberg, D.; Schnaible, C.; Valuev, V.; Weber, M.; Bouvier, E.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Ghiasi Shirazi, S. M. A.; Hanson, G.; Heilman, J.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Olmedo Negrete, M.; Paneva, M. I.; Shrinivas, A.; Si, W.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Holzner, A.; Klein, D.; Krutelyov, V.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Amin, N.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Franco Sevilla, M.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Heller, R.; Incandela, J.; Mullin, S. D.; Ovcharova, A.; Qu, H.; Richman, J.; Stuart, D.; Suarez, I.; Yoo, J.; Anderson, D.; Bendavid, J.; Bornheim, A.; Bunn, J.; Duarte, J.; Lawhorn, J. M.; Mott, A.; Newman, H. B.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Weinberg, M.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Winn, D.; Abdullin, S.; Albrow, M.; Apollinari, G.; Apresyan, A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Cremonesi, M.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; SextonKennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Wu, Y.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Low, J. F.; Ma, P.; Matchev, K.; Mei, H.; Mitselmakher, G.; Rank, D.; Shchutska, L.; Sperka, D.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, T.; Askew, A.; Bein, S.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Santra, A.; Yohay, R.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Jung, K.; Sandoval Gonzalez, I. D.; Varelas, N.; Wang, H.; Wu, Z.; Zakaria, M.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Osherson, M.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Boren, S.; Bowen, J.; Castle, J.; Forthomme, L.; Kenny, R. P.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Sanders, S.; Stringer, R.; Tapia Takaki, J. D.; Wang, Q.; Ivanov, A.; Kaadze, K.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Apyan, A.; Azzolini, V.; Barbieri, R.; Baty, A.; Bi, R.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; D'Alfonso, M.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Krajczar, K.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Maier, B.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Tatar, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bartek, R.; Bloom, K.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Kravchenko, I.; Malta Rodrigues, A.; Meier, F.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Alyari, M.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Bhattacharya, S.; Charaf, O.; Hahn, K. A.; Kumar, A.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Wayne, M.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Liu, B.; Luo, W.; Puigh, D.; Winer, B. L.; Wulsin, H. W.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Lange, D.; Luo, J.; Marlow, D.; Medvedeva, T.; Mei, K.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Svyatkovskiy, A.; Tully, C.; Malik, S.; Barker, A.; Barnes, V. E.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Khatiwada, A.; Miller, D. H.; Neumeister, N.; Schulte, J. F.; Shi, X.; Sun, J.; Wang, F.; Xie, W.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Agapitos, A.; Chou, J. P.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Nash, K.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Delannoy, A. G.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Juska, E.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; De Guio, F.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Peltola, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Sturdy, J.; Belknap, D. A.; Buchanan, J.; Caillol, C.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.

    2017-03-01

    A search is presented for new massive resonances decaying to WW, WZ or ZZ bosons in ℓ ν q\\overline{q} and q\\overline{q}q\\overline{q} final states. Results are based on data corresponding to an integrated luminosity of 2.3-2.7 fb-1 recorded in proton-proton collisions at √{s}=13 TeV with the CMS detector at the LHC. Decays of spin-1 and spin-2 resonances into two vector bosons are sought in the mass range 0.6-4.0 TeV. No significant excess over the standard model background is observed. Combining the results of the ℓ ν q\\overline{q} and q\\overline{q}q\\overline{q} final states, cross section and mass exclusion limits are set for models that predict heavy spin-1 and spin-2 resonances. This is the first search for a narrow-width spin-2 resonance at √{s}=13 TeV. [Figure not available: see fulltext.

  14. Various endocrine disorders in children with t(13;14)(q10;q10) Robertsonian translocation.

    PubMed

    Choi, Byung Ho; Kim, Uk Hyun; Lee, Kun Soo; Ko, Cheol Woo

    2013-09-01

    45,XY,t(13;14)(q10;q10) karyotype can suggest infertility associated with more or less severe oligospermia in male adults. In addition, 45,XX,t(13;14)(q10;q10) karyotype carries reproductive risks such as miscarriage or infertility in female adults. However, reports on the phenotype of this karyotype in children are very rare. This study was done to observe various phenotypes of this karyotype in children. Between January 2007 and December 2012, children diagnosed with 45,XY,t(13;14)(q10;q10) or 45,XX,t(13;14)(q10;q10) karyotype by chromosome analysis were analyzed retrospectively. Eight children (5 boys and 3 girls) were diagnosed with 45,XY,t(13;14)(q10;q10) or 45,XX,t(13;14)(q10;q10) karyotype. They ranged in age from 5 years and 6 months to 12 years and 4 months. The phenotypes of the study patients consisted of 1 hypogonadotrophic hypogonadism, 1 precocious puberty, 3 early puberty, 2 growth hormone deficiency (GHD) (partial) and 1 idiopathic short stature. As shown here t(13;14)(q10;q10) Robertsonian translocation shows a wide range of phenotypes. It can be said that t(13;14)(q10;q10) Robertsonian translocation shows various phenotypes from GHD to precocious puberty in children. Further large-scale studies are necessary.

  15. High-Q contacted ring microcavities with scatterer-avoiding “wiggler” Bloch wave supermode fields

    SciTech Connect

    Liu, Yangyang Popović, Miloš A.

    2014-05-19

    High-Q ring resonators with contacts to the waveguide core provide a versatile platform for various applications in chip-scale optomechanics, thermo-, and electro-optics. We propose and demonstrate azimuthally periodic contacted ring resonators based on multi-mode Bloch matching that support contacts on both the inner and outer radius edges with small degradation to the optical quality factor (Q). Radiative coupling between degenerate modes of adjacent radial spatial order leads to imaginary frequency (Q) splitting and a scatterer avoiding high-Q “wiggler” supermode field. We experimentally measure Qs up to 258 000 in devices fabricated in a silicon device layer on buried oxide undercladding and up to 139 000 in devices fully suspended in air using an undercut step. Wiggler supermodes are true modes of the microphotonic system that offer additional degrees of freedom in electrical, thermal, and mechanical design.

  16. Fate of thermal log type Q balls

    SciTech Connect

    Chiba, Takeshi; Kamada, Kohei; Kasuya, Shinta; Yamaguchi, Masahide

    2010-11-15

    We study time evolution of the Q ball in thermal logarithmic potential using lattice simulations. As the temperature decreases due to the cosmic expansion, the thermal logarithmic term in the potential is eventually overcome by a mass term, and we confirm that the Q ball transforms from the thick-wall type to the thin-wall type for a positive coefficient of radiative corrections to the mass term, as recently suggested. Moreover, we find that the Q ball finally ''melts down'' when the Q-ball solution disappears. We also discuss the effects of this phenomenon on the detectability of gravitational waves from the Q-ball formation.

  17. q-entropy for symbolic dynamical systems

    NASA Astrophysics Data System (ADS)

    Zhao, Yun; Pesin, Yakov

    2015-12-01

    For symbolic dynamical systems we use the Carathéodory construction as described in (Pesin 1997 Dimension Theory in Dynamical Systems, ConTemporary Views and Applications (Chicago: University of Chicago Press)) to introduce the notions of q-topological and q-metric entropies. We describe some basic properties of these entropies and in particular, discuss relations between q-metric entropy and local metric entropy. Both q-topological and q-metric entropies are new invariants respectively under homeomorphisms and metric isomorphisms of dynamical systems.

  18. Dandy-Walker malformation and Wisconsin syndrome: novel cases add further insight into the genotype-phenotype correlations of 3q23q25 deletions

    PubMed Central

    2013-01-01

    Background The Dandy-Walker malformation (DWM) is one of the commonest congenital cerebellar defects, and can be associated with multiple congenital anomalies and chromosomal syndromes. The occurrence of overlapping 3q deletions including the ZIC1 and ZIC4 genes in few patients, along with data from mouse models, have implicated both genes in the pathogenesis of DWM. Methods and results Using a SNP-array approach, we recently identified three novel patients carrying heterozygous 3q deletions encompassing ZIC1 and ZIC4. Magnetic resonance imaging showed that only two had a typical DWM, while the third did not present any defect of the DWM spectrum. SNP-array analysis in further eleven children diagnosed with DWM failed to identify deletions of ZIC1-ZIC4. The clinical phenotype of the three 3q deleted patients included multiple congenital anomalies and peculiar facial appearance, related to the localization and extension of each deletion. In particular, phenotypes resulted from the variable combination of three recognizable patterns: DWM (with incomplete penetrance); blepharophimosis, ptosis, and epicanthus inversus syndrome; and Wisconsin syndrome (WS), recently mapped to 3q. Conclusions Our data indicate that the 3q deletion is a rare defect associated with DWM, and suggest that the hemizygosity of ZIC1-ZIC4 genes is neither necessary nor sufficient per se to cause this condition. Furthermore, based on a detailed comparison of clinical features and molecular data from 3q deleted patients, we propose clinical diagnostic criteria and refine the critical region for WS. PMID:23679990

  19. Dandy-Walker malformation and Wisconsin syndrome: novel cases add further insight into the genotype-phenotype correlations of 3q23q25 deletions.

    PubMed

    Ferraris, Alessandro; Bernardini, Laura; Sabolic Avramovska, Vesna; Zanni, Ginevra; Loddo, Sara; Sukarova-Angelovska, Elena; Parisi, Valentina; Capalbo, Anna; Tumini, Stefano; Travaglini, Lorena; Mancini, Francesca; Duma, Filip; Barresi, Sabina; Novelli, Antonio; Mercuri, Eugenio; Tarani, Luigi; Bertini, Enrico; Dallapiccola, Bruno; Valente, Enza Maria

    2013-05-16

    The Dandy-Walker malformation (DWM) is one of the commonest congenital cerebellar defects, and can be associated with multiple congenital anomalies and chromosomal syndromes. The occurrence of overlapping 3q deletions including the ZIC1 and ZIC4 genes in few patients, along with data from mouse models, have implicated both genes in the pathogenesis of DWM. Using a SNP-array approach, we recently identified three novel patients carrying heterozygous 3q deletions encompassing ZIC1 and ZIC4. Magnetic resonance imaging showed that only two had a typical DWM, while the third did not present any defect of the DWM spectrum. SNP-array analysis in further eleven children diagnosed with DWM failed to identify deletions of ZIC1-ZIC4. The clinical phenotype of the three 3q deleted patients included multiple congenital anomalies and peculiar facial appearance, related to the localization and extension of each deletion. In particular, phenotypes resulted from the variable combination of three recognizable patterns: DWM (with incomplete penetrance); blepharophimosis, ptosis, and epicanthus inversus syndrome; and Wisconsin syndrome (WS), recently mapped to 3q. Our data indicate that the 3q deletion is a rare defect associated with DWM, and suggest that the hemizygosity of ZIC1-ZIC4 genes is neither necessary nor sufficient per se to cause this condition. Furthermore, based on a detailed comparison of clinical features and molecular data from 3q deleted patients, we propose clinical diagnostic criteria and refine the critical region for WS.

  20. High-Q superconducting niobium cavities for gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    de Paula, L. A. N.; Furtado, S. R.; Aguiar, O. D.; Oliveira, N. F., Jr.; Castro, P. J.; Barroso, J. J.

    2014-10-01

    The main purpose of this work is to optimize the electric Q-factor of superconducting niobium klystron cavities to be used in parametric transducers of the Mario Schenberg gravitational wave detector. Many cavities were manufactured from niobium with relatively high tantalum impurities (1420 ppm) and they were cryogenically tested to determine their resonance frequencies, unloaded electrical quality factors (Q0) and electromagnetic couplings. These cavities were closed with a flat niobium plate with tantalum impurities below 1000 ppm and an unloaded electrical quality factors of the order of 105 have been obtained. AC conductivity of the order of 1012 S/m has been found for niobium cavities when matching experimental results with computational simulations. These values for the Q-factor would allow the detector to reach the quantum limit of sensitivity of ~ 10-22 Hz-1/2 in the near future, making it possible to search for gravitational waves around 3.2 kHz. The experimental tests were performed at the laboratories of the National Institute for Space Research (INPE) and at the Institute for Advanced Studies (IEAv - CTA).

  1. Automatic Pole and Q-Value Extraction for RF Structures

    SciTech Connect

    C. Potratz, H.-W. Glock, U. van Rienen, F. Marhauser

    2011-09-01

    The experimental characterization of RF structures like accelerating cavities often demands for measuring resonant frequencies of Eigenmodes and corresponding (loaded) Q-values over a wide spectral range. A common procedure to determine the Q-values is the -3dB method, which works well for isolated poles, but may not be applicable directly in case of multiple poles residing in close proximity (e.g. for adjacent transverse modes differing by polarization). Although alternative methods may be used in such cases, this often comes at the expense of inherent systematic errors. We have developed an automation algorithm, which not only speeds up the measurement time significantly, but is also able to extract Eigenfrequencies and Q-values both for well isolated and overlapping poles. At the same time the measurement accuracy may be improved as a major benefit. To utilize this procedure merely complex scattering parameters have to be recorded for the spectral range of interest. In this paper we present the proposed algorithm applied to experimental data recorded for superconducting higher-order-mode damped multi-cell cavities as an application of high importance.

  2. Migration of planets into and out of mean motion resonances in protoplanetary discs: analytical theory of second-order resonances

    NASA Astrophysics Data System (ADS)

    Xu, Wenrui; Lai, Dong

    2017-07-01

    Recent observations of Kepler multiplanet systems have revealed a number of systems with planets very close to second-order mean motion resonances (MMRs, with period ratio 1 : 3, 3 : 5, etc.). We present an analytic study of resonance capture and its stability for planets migrating in gaseous discs. Resonance capture requires slow convergent migration of the planets, with sufficiently large eccentricity damping time-scale Te and small pre-resonance eccentricities. We quantify these requirements and find that they can be satisfied for super-Earths under protoplanetary disc conditions. For planets captured into resonance, an equilibrium state can be reached, in which eccentricity excitation due to resonant planet-planet interaction balances eccentricity damping due to planet-disc interaction. This 'captured' equilibrium can be overstable, leading to partial or permanent escape of the planets from the resonance. In general, the stability of the captured state depends on the inner to outer planet mass ratio q = m1/m2 and the ratio of the eccentricity damping times. The overstability growth time is of the order of Te, but can be much larger for systems close to the stability threshold. For low-mass planets undergoing type I (non-gap opening) migration, convergent migration requires q ≲ 1, while the stability of the capture requires q ≳ 1. These results suggest that planet pairs stably captured into second-order MMRs have comparable masses. This is in contrast to first-order MMRs, where a larger parameter space exists for stable resonance capture. We confirm and extend our analytical results with N-body simulations, and show that for overstable capture, the escape time from the MMR can be comparable to the time the planets spend migrating between resonances.

  3. The lagrangian of q- Poincar é gravity

    NASA Astrophysics Data System (ADS)

    Castellani, Leonardo

    1994-05-01

    The gauging of the q- Poincar é algebra of L. Castellani [Differential calculus on ISOq( N), quantum Poincaré algebra and q-gravity, Torino preprint DFTT-70/93, hep-th 9312179] yields a non-commutative generalization of the Einstein-Cartan lagrangian. We prove its invariance under local q-Lorentz rotations and, up to a total derivative, under q-diffeomorphisms. The variations of the fields are given by their q-Lie derivative, in analogy with the q = 1 case. The algebra of q-Lie derivatives is shown to close with field dependent structure functions. The equations of motion are found, generalizing the Einstein equations and the zero-torsion condition.

  4. High Q BPS Monopole Bags are Urchins

    NASA Astrophysics Data System (ADS)

    Evslin, Jarah; Gudnason, Sven Bjarke

    2014-01-01

    It has been known for 30 years that 't Hooft-Polyakov monopoles of charge Q greater than one cannot be spherically symmetric. Five years ago, Bolognesi conjectured that, at some point in their moduli space, BPS monopoles can become approximately spherically symmetric in the high Q limit. In this paper, we determine the sense in which this conjecture is correct. We consider an SU(2) gauge theory with an adjoint scalar field, and numerically find configurations with Q units of magnetic charge and a mass which is roughly linear in Q, for example, in the case Q = 81 we present a configuration whose energy exceeds the BPS bound by about 54%. These approximate solutions are constructed by gluing together Q cones, each of which contains a single unit of magnetic charge. In each cone, the energy is largest in the core, and so a constant energy density surface contains Q peaks and thus resembles a sea urchin.

  5. Controlling normal incident optical waves with an integrated resonator.

    PubMed

    Qiu, Ciyuan; Xu, Qianfan

    2011-12-19

    We show a diffraction-based coupling scheme that allows a micro-resonator to directly manipulate a free-space optical beam at normal incidence. We demonstrate a high-Q micro-gear resonator with a 1.57-um radius whose vertical transmission and reflection change 40% over a wavelength range of only 0.3 nm. Without the need to be attached to a waveguide, a dense 2D array of such resonators can be integrated on a chip for spatial light modulation and parallel bio-sensing.

  6. Localized spoof surface plasmon resonances at terahertz range

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Xu, Mengjian; Zang, Xiaofei; Peng, Yan; Zhu, Yiming

    2016-11-01

    The influence of the inner disk radius r, the filling ratio α, numbers of sectors N, and the gap g on transmission response for corrugated metallic disk (CMD) with single C-shaped resonator(CSR) has been fully studied. The results indicate that varying parameters r can efficiently excite the higher order spoof localized surface plasmon modes in corrugated metallic disk. The relationship between the bright dipole and dark multipolar resonances presents the possibility of high Q dark resonances excitation. All results may be of great interest for diverse applications.

  7. Higher-order vibrational mode frequency tuning utilizing fishbone-shaped microelectromechanical systems resonator

    NASA Astrophysics Data System (ADS)

    Suzuki, Naoya; Tanigawa, Hiroshi; Suzuki, Kenichiro

    2013-04-01

    Resonators based on microelectromechanical systems (MEMS) have received considerable attention for their applications for wireless equipment. The requirements for this application include small size, high frequency, wide bandwidth and high portability. However, few MEMS resonators with wide-frequency tuning have been reported. A fishbone-shaped resonator has a resonant frequency with a maximum response that can be changed according to the location and number of several exciting electrodes. Therefore, it can be expected to provide wide-frequency tuning. The resonator has three types of electrostatic forces that can be generated to deform a main beam. We evaluate the vibrational modes caused by each exciting electrodes by comparing simulated results with measured ones. We then successfully demonstrate the frequency tuning of the first to fifth resonant modes by using the algorithm we propose here. The resulting frequency tuning covers 178 to 1746 kHz. In addition, we investigate the suppression of the anchor loss to enhance the Q-factor. An experiment shows that tapered-shaped anchors provide a higher Q-factor than rectangular-shaped anchors. The Q-factor of the resonators supported by suspension beams is also discussed. Because the suspension beams cause complicated vibrational modes for higher frequencies, the enhancement of the Q-factor for high vibrational modes cannot be obtained here. At present, the tapered-anchor resonators are thought to be most suitable for frequency tuning applications.

  8. Frequency-constant Q, unity and disorder

    SciTech Connect

    Hargreaves, N.D.

    1995-12-31

    In exploration geophysics we obtain information about the earth by observing its response to different types of applied force. The response can cover the full range of possible Q values (where Q, the quality factor, is a measure of energy dissipation), from close to infinity in the case of deep crustal seismic to close to 0 in the case of many electromagnetic methods. When Q is frequency-constant, however, the various types of response have a common scaling behavior and can be described as being self-affine. The wave-equation then takes on a generalised form, changing from the standard wave-equation at Q = {infinity} to the diffusion equation at Q = 0, via lossy, diffusive, propagation at intermediate Q values. Solutions of this wave-diffusion equation at any particular Q value can be converted to an equivalent set of results for any other Q value. In particular it is possible to convert from diffusive to wave propagation by a mapping from Q < {infinity} to Q = {infinity}. In the context of seismic sounding this is equivalent to applying inverse Q-filtering; in a more general context the mapping integrates different geophysical observations by referencing them to the common result at Q = {infinity}. The self-affinity of the observations for frequency-constant Q is an expression of scale invariance in the fundamental physical properties of the medium of propagation, this being the case whether the mechanism of diffusive propagation is scattering of intrinsic attenuation. Scale invariance, or fractal scaling, is a general property of disordered systems; the assumption of frequency-constant Q not only implies a unity between different geophysical observations, but also suggests that it is the disordered nature of the earth`s sub-surface that is the unifying factor.

  9. Maternal uniparental disomy of chromosome 14 in a boy with t(14q14q) associated with a paternal t(13q14q)

    SciTech Connect

    Tomkins, D.J.; Waye, J.S.; Whelan, D.T.

    1994-09-01

    An 11-year-old boy was referred for chromosomal analysis because of precocious development and behavioral problems suggestive of the fragile X syndrome. The cytogenetic fragile X studies were normal, but a routine GTG-banded karyotype revealed an abnormal male karyotype with a Robertsonian translocation between the two chromosome 14`s: 46,XY,t(14q14q). Paternal karyotyping revealed another abnormal karyotype: 46,XY,t(13q14q). A brother had the same karyotype as the father; the mother was deceased. In order to determine if the apparently balanced t(14q14q) in the proband might be the cause of the clinical findings, molecular analysis of the origin of the chromosome 14`s was initiated. Southern blotting and hybridization with D4S13 showed that the proband had two copies of one maternal allele which was shared by his brother. The brother`s second allele corresponded to one of the paternal alleles; the proband had no alleles from the father. Analysis of four other VNTRs demonstrated the probability of paternity to be greater than 99%. Thus, the t(14q14q) was most likely composed of two maternal chromosome 14`s. Further characterization of the t(14q14q) by dinucleotide repeat polymorphic markers is in progress to determine whether it has arisen from maternal isodisomy or heterodisomy. Several cases of uniparental disomy for chromosome 14 have been reported recently. Paternal disomy appears to be associated with more severe congenital anomalies and mental retardation, whereas maternal disomy may be associated with premature puberty and minimal intellectual impairment. The origin of the t(14q14q) in the present case may be related to the paternal translocation, as the segregation of the t(13q14q) in meiosis could lead to sperm that are nullisomic for chromosome 14.

  10. Neuroblastoma in a boy with MCA/MR syndrome, deletion 11q, and duplication 12q

    SciTech Connect

    Koiffmann, C.P.; Vianna-Morgante, A.M.; Wajntal, A.

    1995-07-31

    Deletion 11q23{r_arrow}qter and duplication 12q23{r_arrow}qter are described in a boy with neuroblastoma, multiple congenital anomalies, and mental retardation. The patient has clinical manifestations of 11q deletion and 12q duplication syndromes. The possible involvement of the segment 11q23{r_arrow}24 in the cause of the neuroblastoma is discussed. 18 refs., 2 figs., 1 tab.

  11. Prader-Willi, Angelman, and 15q11-q13 duplication syndromes

    PubMed Central

    2015-01-01

    Three distinct neurodevelopmental disorders arise primarily from deletions or duplications that occur at the 15q11-q13 locus: Prader-Willi syndrome (PWS), Angelman syndrome (AS), and 15q11-q13 duplication syndrome (Dup15q syndrome). Each of these disorders results from the loss of function or over-expression of at least one imprinted gene. Here we discuss the clinical background, genetic etiology, diagnostic strategy, and management for each of these three disorders. PMID:26022164

  12. Pulmonary arterial endothelial cells affect the redox status of coenzyme Q0.

    PubMed

    Audi, Said H; Zhao, Hongtao; Bongard, Robert D; Hogg, Neil; Kettenhofen, Nicholas J; Kalyanaraman, Balaraman; Dawson, Christopher A; Merker, Marilyn P

    2003-04-01

    The pulmonary endothelium is capable of reducing certain redox-active compounds as they pass from the systemic venous to the arterial circulation. This may have important consequences with regard to the pulmonary and systemic disposition and biochemistry of these compounds. Because quinones comprise an important class of redox-active compounds with a range of physiological, toxicological, and pharmacological activities, the objective of the present study was to determine the fate of a model quinone, coenzyme Q0 (Q), added to the extracellular medium surrounding pulmonary arterial endothelial cells in culture, with particular attention to the effect of the cells on the redox status of Q in the medium. Spectrophotometry, electron paramagnetic resonance (EPR), and high-performance liquid chromatography (HPLC) demonstrated that, when the oxidized form Q is added to the medium surrounding the cells, it is rapidly converted to its quinol form (QH2) with a small concentration of semiquinone (Q*-) also detectable. The isolation of cell plasma membrane proteins revealed an NADH-Q oxidoreductase located on the outer plasma membrane surface, which apparently participates in the reduction process. In addition, once formed the QH2 undergoes a cyanide-sensitive oxidation by the cells. Thus, the actual rate of Q reduction by the cells is greater than the net QH2 output from the cells.

  13. Integral resonator gyroscope

    NASA Technical Reports Server (NTRS)

    Shcheglov, Kirill V. (Inventor); Challoner, A. Dorian (Inventor); Hayworth, Ken J. (Inventor); Wiberg, Dean V. (Inventor); Yee, Karl Y. (Inventor)

    2008-01-01

    The present invention discloses an inertial sensor having an integral resonator. A typical sensor comprises a planar mechanical resonator for sensing motion of the inertial sensor and a case for housing the resonator. The resonator and a wall of the case are defined through an etching process. A typical method of producing the resonator includes etching a baseplate, bonding a wafer to the etched baseplate, through etching the wafer to form a planar mechanical resonator and the wall of the case and bonding an end cap wafer to the wall to complete the case.

  14. Quantum limit of quality factor in silicon micro and nano mechanical resonators.

    PubMed

    Ghaffari, Shirin; Chandorkar, Saurabh A; Wang, Shasha; Ng, Eldwin J; Ahn, Chae H; Hong, Vu; Yang, Yushi; Kenny, Thomas W

    2013-11-19

    Micromechanical resonators are promising replacements for quartz crystals for timing and frequency references owing to potential for compactness, integrability with CMOS fabrication processes, low cost, and low power consumption. To be used in high performance reference application, resonators should obtain a high quality factor. The limit of the quality factor achieved by a resonator is set by the material properties, geometry and operating condition. Some recent resonators properly designed for exploiting bulk-acoustic resonance have been demonstrated to operate close to the quantum mechanical limit for the quality factor and frequency product (Q-f). Here, we describe the physics that gives rise to the quantum limit to the Q-f product, explain design strategies for minimizing other dissipation sources, and present new results from several different resonators that approach the limit.

  15. Biosensing Using Microring Resonator Interferograms

    PubMed Central

    Hsu, Shih-Hsiang; Yang, Yung-Chia; Su, Yu-Hou; Wang, Sheng-Min; Huang, Shih-An; Lin, Ching-Yu

    2014-01-01

    Optical low-coherence interferometry (OLCI) takes advantage of the variation in refractive index in silicon-wire microring resonator (MRR) effective lengths to perform glucose biosensing using MRR interferograms. The MRR quality factor (Q), proportional to the effective length, could be improved using the silicon-wire propagation loss and coupling ratio from the MRR coupler. Our study showed that multimode interference (MMI) performed well in broad band response, but the splitting ratio drifted to 75/25 due to the stress issue. The glucose sensing sensitivity demonstrated 0.00279 meter per refractive-index-unit (RIU) with a Q factor of ∼30,000 under transverse electric polarization. The 1,310 nm DFB laser was built in the OLCI system as the optical ruler achieving 655 nm characterization accuracy. The lowest sensing limitation was therefore 2 × 10−4 RIU. Moreover, the MRR effective length from the glucose sensitivity could be utilized to experimentally demonstrate the silicon wire effective refractive index with a width of 0.45 μm and height of 0.26 μm. PMID:24434876

  16. Biosensing using microring resonator interferograms.

    PubMed

    Hsu, Shih-Hsiang; Yang, Yung-Chia; Su, Yu-Hou; Wang, Sheng-Min; Huang, Shih-An; Lin, Ching-Yu

    2014-01-10

    Optical low-coherence interferometry (OLCI) takes advantage of the variation in refractive index in silicon-wire microring resonator (MRR) effective lengths to perform glucose biosensing using MRR interferograms. The MRR quality factor (Q), proportional to the effective length, could be improved using the silicon-wire propagation loss and coupling ratio from the MRR coupler. Our study showed that multimode interference (MMI) performed well in broad band response, but the splitting ratio drifted to 75/25 due to the stress issue. The glucose sensing sensitivity demonstrated 0.00279 meter per refractive-index-unit (RIU) with a Q factor of ~30,000 under transverse electric polarization. The 1,310 nm DFB laser was built in the OLCI system as the optical ruler achieving 655 nm characterization accuracy. The lowest sensing limitation was therefore 2 × 10-4 RIU. Moreover, the MRR effective length from the glucose sensitivity could be utilized to experimentally demonstrate the silicon wire effective refractive index with a width of 0.45 mm and height of 0.26 mm.

  17. Q-switching with single crystal photo-elastic modulators

    NASA Astrophysics Data System (ADS)

    Bammer, F.; Petkovsek, R.

    2010-09-01

    An overview is given about experiments with a new method for Q-switching lasers at a constant pulse repetition frequency. It uses inside the laser resonator a Single Crystal Photo-Elastic Modulator (SCPEM). This consists of one piezo-electric crystal electrically excited on a mechanical resonance frequency. In resonance mechanical stresses are induced that lead via the photo-elastic effect to a strongly modulated birefringence. Polarized light going through such an oscillating crystal will experience a significant modulation of its polarization and of transmission through a polarizer. Suitable materials should not be optically active, as it is for example the case for SiO2, and should allow the excitation of a longitudinal oscillation with an electric field perpendicular to the travelling direction of the light. Crystals of the group 3m, like LiTaO3 and LiNbO3, proved to be ideally suited for SCPEMS for the NIR- and VIS-region. For the infrared GaAs can be used. We demonstrated SCPEM-Q-switching for a Nd:YAG-fiber, a Nd:YVO4-slab- and a Nd:YAG-rod-laser with typical pulse repetition rates of 100-200kHz, pulse enhancement factors of ~100 and pulse durations ~1/100 of the period time. Typically the average power during pulsed operation is nearly the same as the cw-power, when the modulator is switched off. The most stable results were achieved up to now with the Nd:YVO4-slab-laser at 10W average power, 1.1 kW peak power, 127 kHz pulse repetition rate, and 70ns pulse durations.

  18. Q-switching with single crystal photo-elastic modulators

    NASA Astrophysics Data System (ADS)

    Bammer, F.; Petkovsek, R.

    2011-02-01

    An overview is given about experiments with a new method for Q-switching lasers at a constant pulse repetition frequency. It uses inside the laser resonator a Single Crystal Photo-Elastic Modulator (SCPEM). This consists of one piezo-electric crystal electrically excited on a mechanical resonance frequency. In resonance mechanical stresses are induced that lead via the photo-elastic effect to a strongly modulated birefringence. Polarized light going through such an oscillating crystal will experience a significant modulation of its polarization and of transmission through a polarizer. Suitable materials should not be optically active, as it is for example the case for SiO2, and should allow the excitation of a longitudinal oscillation with an electric field perpendicular to the travelling direction of the light. Crystals of the group 3m, like LiTaO3 and LiNbO3, proved to be ideally suited for SCPEMS for the NIR- and VIS-region. For the infrared GaAs can be used. We demonstrated SCPEM-Q-switching for a Nd:YAG-fiber, a Nd:YVO4-slab- and a Nd:YAG-rod-laser with typical pulse repetition rates of 100-200kHz, pulse enhancement factors of 100 and pulse durations {1/100 of the period time. Typically the average power during pulsed operation is nearly the same as the cw-power, when the modulator is switched off. The most stable results were achieved up to now with the Nd:YVO4-slab-laser at 10W average power, 1.1 kW peak power, 127 kHz pulse repetition rate, and 70ns pulse durations.

  19. Integration of RF-MEMS resonators on submicrometric commercial CMOS technologies

    NASA Astrophysics Data System (ADS)

    Lopez, J. L.; Verd, J.; Teva, J.; Murillo, G.; Giner, J.; Torres, F.; Uranga, A.; Abadal, G.; Barniol, N.

    2009-01-01

    Integration of electrostatically driven and capacitively transduced MEMS resonators in commercial CMOS technologies is discussed. A figure of merit to study the performance of different structural layers and different technologies is defined. High frequency (HF) and very high frequency (VHF) resonance MEMS metal resonators are fabricated on a deep submicron 0.18 µm commercial CMOS technology and are characterized using electrical tests without amplification, demonstrating the applicability of the MEMS fabrication process for future technologies. Moreover, the fabricated devices show comparable performance in terms of Q × fres with previously presented MEMS resonators, whereas the small gap allows obtaining a low motional resistance with a single resonator approach.

  20. High quality-factor fano metasurface comprising a single resonator unit cell

    DOEpatents

    Sinclair, Michael B.; Warne, Larry K.; Basilio, Lorena I.; Langston, William L.; Campione, Salvatore; Brener, Igal; Liu, Sheng

    2017-06-20

    A new monolithic resonator metasurface design achieves ultra-high Q-factors while using only one resonator per unit cell. The metasurface relies on breaking the symmetry of otherwise highly symmetric resonators to induce intra-resonator mixing of bright and dark modes (rather than inter-resonator couplings), and is scalable from the near-infrared to radio frequencies and can be easily implemented in dielectric materials. The resulting high-quality-factor Fano metasurface can be used in many sensing, spectral filtering, and modulation applications.

  1. Electromechanical resonator based on electrostatically actuated graphene-doped PVP nanofibers.

    PubMed

    Fardindoost, S; Mohammadi, S; Iraji zad, A; Sarvari, R; Shariat Panahi, S P; Jokar, E

    2013-04-05

    In this paper we present experimental results describing electrical readout of the mechanical vibratory response of graphene-doped fibers by employing electrical actuation. For a fiber resonator with an approximate radius of 850 nm and length of 100 μm, we observed a resonance frequency around 580 kHz with a quality factor (Q) of about 2511 in air at ambient conditions. Through the use of finite element simulations, we show that the reported frequency of resonance is relevant. We also show that the resonance frequency of the fiber resonators decreases as the bias potential is increased due to the electrostatic spring-softening effect.

  2. Dynamics of morphology-dependent resonances by openness in dielectric disks for TE polarization

    SciTech Connect

    Cho, Jinhang; Rim, Sunghwan; Kim, Chil-Min

    2011-04-15

    We have studied the parametric evolution of morphology-dependent resonances according to the change of openness in a two-dimensional dielectric microdisk for transverse-electric polarization. We found that the dynamics exhibit avoided resonance crossings between the inner and outer resonances even though the corresponding billiard is integrable. Due to these recondite avoidances, inner and outer resonances can be exchanged and the quality (Q) factor of inner resonances is strongly affected. We analyze the diverse phenomena arising from these dynamics including the avoided crossings.

  3. Velopharyngeal Anatomy in 22q11.2 Deletion Syndrome: A Three-Dimensional Cephalometric Analysis

    PubMed Central

    Ruotolo, Rachel A.; Veitia, Nestor A.; Corbin, Aaron; McDonough, Joseph; Solot, Cynthia B.; McDonald-McGinn, Donna; Zackai, Elaine H.; Emanuel, Beverly S.; Cnaan, Avital; LaRossa, Don; Arens, Raanan; Kirschner, Richard E.

    2010-01-01

    Objective 22q11.2 deletion syndrome is the most common genetic cause of velopharyngeal dysfunction (VPD). Magnetic resonance imaging (MRI) is a promising method for noninvasive, three-dimensional (3D) assessment of velopharyngeal (VP) anatomy. The purpose of this study was to assess VP structure in patients with 22q11.2 deletion syndrome by using 3D MRI analysis. Design This was a retrospective analysis of magnetic resonance images obtained in patients with VPD associated with a 22q11.2 deletion compared with a normal control group. Setting This study was conducted at The Children’s Hospital of Philadelphia, a pediatric tertiary care center. Patients, Participants The study group consisted of 5 children between the ages of 2.9 and 7.9 years, with 22q11.2 deletion syndrome confirmed by fluorescence in situ hybridization analysis. All had VPD confirmed by nasendoscopy or videofluoroscopy. The control population consisted of 123 unaffected patients who underwent MRI for reasons other than VP assessment. Interventions Axial and sagittal T1- and T2-weighted magnetic resonance images with 3-mm slice thickness were obtained from the orbit to the larynx in all patients by using a 1.5T Siemens Visions system. Outcome Measures Linear, angular, and volumetric measurements of VP structures were obtained from the magnetic resonance images with VIDA image- processing software. Results The study group demonstrated greater anterior and posterior cranial base and atlanto-dental angles. They also demonstrated greater pharyngeal cavity volume and width and lesser tonsillar and adenoid volumes. Conclusion Patients with a 22q11.2 deletion demonstrate significant alterations in VP anatomy that may contribute to VPD. PMID:16854203

  4. Partially orthogonal resonators for magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Chacon-Caldera, Jorge; Malzacher, Matthias; Schad, Lothar R.

    2017-02-01

    Resonators for signal reception in magnetic resonance are traditionally planar to restrict coil material and avoid coil losses. Here, we present a novel concept to model resonators partially in a plane with maximum sensitivity to the magnetic resonance signal and partially in an orthogonal plane with reduced signal sensitivity. Thus, properties of individual elements in coil arrays can be modified to optimize physical planar space and increase the sensitivity of the overall array. A particular case of the concept is implemented to decrease H-field destructive interferences in planar concentric in-phase arrays. An increase in signal to noise ratio of approximately 20% was achieved with two resonators placed over approximately the same planar area compared to common approaches at a target depth of 10 cm at 3 Tesla. Improved parallel imaging performance of this configuration is also demonstrated. The concept can be further used to increase coil density.

  5. Partially orthogonal resonators for magnetic resonance imaging

    PubMed Central

    Chacon-Caldera, Jorge; Malzacher, Matthias; Schad, Lothar R.

    2017-01-01

    Resonators for signal reception in magnetic resonance are traditionally planar to restrict coil material and avoid coil losses. Here, we present a novel concept to model resonators partially in a plane with maximum sensitivity to the magnetic resonance signal and partially in an orthogonal plane with reduced signal sensitivity. Thus, properties of individual elements in coil arrays can be modified to optimize physical planar space and increase the sensitivity of the overall array. A particular case of the concept is implemented to decrease H-field destructive interferences in planar concentric in-phase arrays. An increase in signal to noise ratio of approximately 20% was achieved with two resonators placed over approximately the same planar area compared to common approaches at a target depth of 10 cm at 3 Tesla. Improved parallel imaging performance of this configuration is also demonstrated. The concept can be further used to increase coil density. PMID:28186135

  6. Partially orthogonal resonators for magnetic resonance imaging.

    PubMed

    Chacon-Caldera, Jorge; Malzacher, Matthias; Schad, Lothar R

    2017-02-10

    Resonators for signal reception in magnetic resonance are traditionally planar to restrict coil material and avoid coil losses. Here, we present a novel concept to model resonators partially in a plane with maximum sensitivity to the magnetic resonance signal and partially in an orthogonal plane with reduced signal sensitivity. Thus, properties of individual elements in coil arrays can be modified to optimize physical planar space and increase the sensitivity of the overall array. A particular case of the concept is implemented to decrease H-field destructive interferences in planar concentric in-phase arrays. An increase in signal to noise ratio of approximately 20% was achieved with two resonators placed over approximately the same planar area compared to common approaches at a target depth of 10 cm at 3 Tesla. Improved parallel imaging performance of this configuration is also demonstrated. The concept can be further used to increase coil density.

  7. 22q11 deletion syndrome: current perspective

    PubMed Central

    Hacıhamdioğlu, Bülent; Hacıhamdioğlu, Duygu; Delil, Kenan

    2015-01-01

    Chromosome 22q11 is characterized by the presence of chromosome-specific low-copy repeats or segmental duplications. This region of the chromosome is very unstable and susceptible to mutations. The misalignment of low-copy repeats during nonallelic homologous recombination leads to the deletion of the 22q11.2 region, which results in 22q11 deletion syndrome (22q11DS). The 22q11.2 deletion is associated with a wide variety of phenotypes. The term 22q11DS is an umbrella term that is used to encompass all 22q11.2 deletion-associated phenotypes. The haploinsufficiency of genes located at 22q11.2 affects the early morphogenesis of the pharyngeal arches, heart, skeleton, and brain. TBX1 is the most important gene for 22q11DS. This syndrome can ultimately affect many organs or systems; therefore, it has a very wide phenotypic spectrum. An increasing amount of information is available related to the pathogenesis, clinical phenotypes, and management of this syndrome in recent years. This review summarizes the current clinical and genetic status related to 22q11DS. PMID:26056486

  8. Q structure of the oceanic crust

    NASA Astrophysics Data System (ADS)

    Wepfer, W. W.; Christensen, N. I.

    1991-08-01

    Compressional wave attenuations and velocities have been measured as a function of confining pressure in ophiolite samples representing a cross-section of the oceanic crust and uppermost mantle. Data are presented for basalts, diabase dikes, gabbros and a suite of serpentinites and peridotites showing a range of serpentization. An ultrasonic pulse-echo spectral ratio technique was used to determine the attenuations to confining pressures of 500 MPa. From this data a Q profile for the oceanic crust and upper mantle is presented. Q is found to moderately increase with depth through the pillow basalts of the upper oceanic crust. The sheeted dike rocks of Layer 2C show an increase in Q with depth due to progressive metamorphism (from greenschist to amphibolite facies). Q drops abruptly from Layer 2C to Layer 3, though it is not clear why the gabbros have such low Q's. The crust-mantle boundary is a Q discontinuity; however, the Q contrast between Layer 3 and the upper mantle could be altered by upper mantle serpentinization, interlayered gabbros and peridotites at the boundary, or serpentinized peridotite diapirs intruding the gabbroic section. Q varies significantly with the percentage of serpentinization in the ultramafic samples, with the largest changes in Q being at the extremes of zero and full serpentinization. Q is sensitive to the overburden pressure for all of the samples.

  9. Clinical applications of coenzyme Q10.

    PubMed

    Garrido-Maraver, Juan; Cordero, Mario D; Oropesa-Avila, Manuel; Vega, Alejandro Fernandez; de la Mata, Mario; Pavon, Ana Delgado; Alcocer-Gomez, Elisabet; Calero, Carmen Perez; Paz, Marina Villanueva; Alanis, Macarena; de Lavera, Isabel; Cotan, David; Sanchez-Alcazar, Jose A

    2014-01-01

    Coenzyme Q10 (CoQ10) or ubiquinone was known for its key role in mitochondrial bioenergetics as electron and proton carrier; later studies demonstrated its presence in other cellular membranes and in blood plasma, and extensively investigated its antioxidant role. These two functions constitute the basis for supporting the clinical indication of CoQ10. Furthermore, recent data indicate that CoQ10 affects expression of genes involved in human cell signalling, metabolism and transport and some of the effects of CoQ10 supplementation may be due to this property. CoQ10 deficiencies are due to autosomal recessive mutations, mitochondrial diseases, ageing-related oxidative stress and carcinogenesis processes, and also a secondary effect of statin treatment. Many neurodegenerative disorders, diabetes, cancer, fibromyalgia, muscular and cardiovascular diseases have been associated with low CoQ10 levels. CoQ10 treatment does not cause serious adverse effects in humans and new formulations have been developed that increase CoQ10 absorption and tissue distribution. Oral CoQ10 treatment is a frequent mitochondrial energizer and antioxidant strategy in many diseases that may provide a significant symptomatic benefit.

  10. A Multi-Cycle Q-Modulation for Dynamic Optimization of Inductive Links.

    PubMed

    Lee, Byunghun; Yeon, Pyungwoo; Ghovanloo, Maysam

    2016-08-01

    This paper presents a new method, called multi-cycle Q-modulation, which can be used in wireless power transmission (WPT) to modulate the quality factor (Q) of the receiver (Rx) coil and dynamically optimize the load impedance to maximize the power transfer efficiency (PTE) in two-coil links. A key advantage of the proposed method is that it can be easily implemented using off-the-shelf components without requiring fast switching at or above the carrier frequency, which is more suitable for integrated circuit design. Moreover, the proposed technique does not need any sophisticated synchronization between the power carrier and Q-modulation switching pulses. The multi-cycle Q-modulation is analyzed theoretically by a lumped circuit model, and verified in simulation and measurement using an off-the-shelf prototype. Automatic resonance tuning (ART) in the Rx, combined with multi-cycle Q-modulation helped maximizing PTE of the inductive link dynamically in the presence of environmental and loading variations, which can otherwise significantly degrade the PTE in multi-coil settings. In the prototype conventional 2-coil link, the proposed method increased the power amplifier (PA) plus inductive link efficiency from 4.8% to 16.5% at (RL = 1 kΩ, d23 = 3 cm), and from 23% to 28.2% at (RL = 100 Ω, d23 = 3 cm) after 11% change in the resonance capacitance, while delivering 168.1 mW to the load (PDL).

  11. Resonant Acoustic Determination of Complex Elastic Moduli

    NASA Technical Reports Server (NTRS)

    Brown, David A.; Garrett, Steven L.

    1991-01-01

    A simple, inexpensive, yet accurate method for measuring the dynamic complex modulus of elasticity is described. Using a 'free-free' bar selectively excited in three independent vibrational modes, the shear modulus is obtained by measuring the frequency of the torsional resonant mode and the Young's modulus is determined from measurement of either the longitudinal or flexural mode. The damping properties are obtained by measuring the quality factor (Q) for each mode. The Q is inversely proportional to the loss tangent. The viscoelastic behavior of the sample can be obtained by tracking a particular resonant mode (and thus a particular modulus) using a phase locked loop (PLL) and by changing the temperature of the sample. The change in the damping properties is obtained by measuring the in-phase amplitude of the PLL which is proportional to the Q of the material. The real and imaginary parts or the complex modulus can be obtained continuously as a function of parameters such as temperature, pressure, or humidity. For homogeneous and isotropic samples only two independent moduli are needed in order to characterize the complete set of elastic constants, thus, values can be obtained for the dynamic Poisson's ratio, bulk modulus, Lame constants, etc.

  12. The {Delta}(1232) resonance transition form factor

    SciTech Connect

    Staurt, L.M. |; Bosted, P.E.; Lung, A.

    1993-08-01

    Old and new measurements of inclusive e--p cross sections in the {Delta}(1232) resonance region have been combined, and a global data fit has been made. Using this fit to parameterize the nonresonant background, the transition form factors have been extracted out to a four-momentum transfer, Q{sup 2}, of 9.8 (GeV/c){sup 2}. The results are systematically higher than those from a previous analysis, but agree within errors. A similar analysis has been done with e--d cross sections, and {sigma}{sub n}/{sigma}{sub p} in the {Delta}(1232) resonance region has been extracted out to a Q{sup 2} of 7.9 (GeV/c){sup 2}. {sigma}{sub n}/{sigma}{sub p} for {Delta}(1232) production is consistent with unity, while {sigma}{sub n}/{sigma}{sub p} for the nonresonant background is constant with Q{sup 2} at approximately 0.4.

  13. Short-range interactions and narrow resonances in effective field theory

    NASA Astrophysics Data System (ADS)

    Alhakami, Mohammad H.

    2017-09-01

    We consider the effective field theory (EFT) treatment of two-body systems with narrow resonances. Within this approach, an s -wave scattering amplitude can be expanded in powers of a typical momentum scale of a system Q ≪Λ , where Λ represents a hard scale of a scattering system, and an energy difference δ ɛ =|E -ɛ0|≪ɛ0, where ɛ0 is a resonance peak energy. It is shown that at leading order in the double expansion a universal form of a two-body scattering amplitude is a sum of a Breit-Wigner term of order Q-1, a smooth background term of order Q0, and an interference term of order Q0. The techniques developed in this paper can be used to investigate the properties of narrow resonances that are produced by short-distance dynamics.

  14. A study of the high frequency limitations of series resonant converters

    NASA Technical Reports Server (NTRS)

    Stuart, T. A.; King, R. J.

    1982-01-01

    A transformer induced oscillation in series resonant (SR) converters is studied. It may occur in the discontinuous current mode. The source of the oscillation is an unexpected resonant circuit formed by normal resonance components in series with the magnetizing inductance of the output transformers. The methods for achieving cyclic stability are: to use a half bridge SR converter where q0.5. Q should be as close to 1.0 as possible. If 0.5q1.0, the instability will be avoided if psi2/3q-1/3. The second objective was to investigate a power field effect transistor (FET) version of the SR converter capable of operating at frequencies above 100 KHz, to study component stress and losses at various frequencies.

  15. Fano resonance based ultra high-contrast electromagnetic switch

    NASA Astrophysics Data System (ADS)

    Amin, Muhammad; Ramzan, Rashad; Siddiqui, Omar

    2017-05-01

    We experimentally achieve highly asymmetrical enhanced-Q Fano resonances in metallic electromagnetic structures fabricated on conductive planes. We show that the complete destructive interference mechanism of the dark and bright resonant modes generated by a pair of electromagnetically coupled open-ended conductive arms can lead to the asymmetric resonance characterized by a near-unity transparency window followed by a deep scattering band. With the incorporation of a variable capacitor between the coupled metallic strips, the dynamic tunability of the resonant modes is achieved, which can be exploited in high isolation switches and modulators in the GHz spectrum. The switching contrast of over 50 dB achieved through Fano resonance is much higher considering its compact size (i.e., the transmission path is much smaller than the wavelength λ / 30 ). The dispersion based tunable Fano switch offers several advantages over conventional microelectromechanical system and CMOS based switches.

  16. Resonance and continuum Gamow shell model with realistic nuclear forces

    NASA Astrophysics Data System (ADS)

    Sun, Z. H.; Wu, Q.; Zhao, Z. H.; Hu, B. S.; Dai, S. J.; Xu, F. R.

    2017-06-01

    Starting from realistic nuclear forces, we have developed a core Gamow shell model which can describe resonance and continuum properties of loosely-bound or unbound nuclear systems. To describe properly resonance and continuum, the Berggren representation has been employed, which treats bound, resonant and continuum states on equal footing in a complex-momentum (complex-k) plane. To derive the model-space effective interaction based on realistic forces, the full Q ˆ -box folded-diagram renormalization has been, for the first time, extended to the nondegenerate complex-k space. The CD-Bonn potential is softened by using the Vlow-k method. Choosing 16O as the inert core, we have calculated sd-shell neutron-rich oxygen isotopes, giving good descriptions of both bound and resonant states. The isotopes 25,26O are calculated to be resonant even in their ground states.

  17. Mutual inhibition of RecQ molecules in DNA unwinding.

    PubMed

    Pan, Bing-Yi; Dou, Shuo-Xing; Yang, Ye; Xu, Ya-Nan; Bugnard, Elisabeth; Ding, Xiu-Yan; Zhang, Lingyun; Wang, Peng-Ye; Li, Ming; Xi, Xu Guang

    2010-05-21

    Helicases make conformational changes and mechanical movements through hydrolysis of NTP to unwind duplex DNA (or RNA). Most helicases require a single-stranded overhang for loading onto the duplex DNA substrates. Some helicases have been observed to exhibit an enhanced unwinding efficiency with increasing length of the single-stranded DNA tail both by preventing reannealing of the unwound DNA and by compensating for premature dissociation of the leading monomers. Here we report a previously unknown mutual inhibition of neighboring monomers in DNA unwinding by the monomeric Escherichia coli RecQ helicase. With single molecule fluorescence resonance energy transfer microscopy, we observed that the unwinding initiation of RecQ at saturating concentrations was more delayed for a long rather than a short tailed DNA. In stopped-flow kinetic studies under both single and multiple turnover conditions, the unwinding efficiency decreased with increasing enzyme concentration for long tailed substrates. In addition, preincubation of RecQ and DNA in the presence of 5'-adenylyl-beta,gamma-imidodiphosphate was observed to alleviate the inhibition. We propose that the mutual inhibition effect results from a forced closure of cleft between the two RecA-like domains of a leading monomer by a trailing one, hence the forward movements of both monomers are stalled by prohibition of ATP binding to the leading one. This effect represents direct evidence for the relative movements of the two RecA-like domains of RecQ in DNA unwinding. It may occur for all superfamily I and II helicases possessing two RecA-like domains.

  18. Antimicrobial therapies for Q fever

    PubMed Central

    Kersh, Gilbert J.

    2015-01-01

    Summary Q fever is caused by the bacterium Coxiella burnetii and has both acute and chronic forms. The acute disease is a febrile illness often with headache and myalgia that can be self-limiting whereas the chronic disease typically presents as endocarditis and can be life threatening. The normal therapy for the acute disease is a two week course of doxycycline, whereas chronic disease requires 18-24 months of doxycycline in combination with hydroxychloroquine. Alternative treatments are used for pregnant women, young children, and those who cannot tolerate doxycycline. Doxycycline resistance is rare but has been reported. Co-trimoxazole is a currently recommended alternative treatment, but quinolones, rifampin, and newer macrolides may also provide some benefit. PMID:24073941

  19. Crossing simple resonances

    SciTech Connect

    Collins, T.

    1985-08-01

    A simple criterion governs the beam distortion and/or loss of protons on a fast resonance crossing. Results from numerical integrations are illustrated for simple sextupole, octupole, and 10-pole resonances.

  20. Nanomechanical resonance detector

    DOEpatents

    Grossman, Jeffrey C; Zettl, Alexander K

    2013-10-29

    An embodiment of a nanomechanical frequency detector includes a support structure and a plurality of elongated nanostructures coupled to the support structure. Each of the elongated nanostructures has a particular resonant frequency. The plurality of elongated nanostructures has a range of resonant frequencies. An embodiment of a method of identifying an object includes introducing the object to the nanomechanical resonance detector. A resonant response by at least one of the elongated nanostructures of the nanomechanical resonance detector indicates a vibrational mode of the object. An embodiment of a method of identifying a molecular species of the present invention includes introducing the molecular species to the nanomechanical resonance detector. A resonant response by at least one of the elongated nanostructures of the nanomechanical resonance detector indicates a vibrational mode of the molecular species.