Sample records for q-deformed interaction terms

  1. Time-varying q-deformed dark energy interacts with dark matter

    NASA Astrophysics Data System (ADS)

    Dil, Emre; Kolay, Erdinç

    We propose a new model for studying the dark constituents of the universe by regarding the dark energy as a q-deformed scalar field interacting with the dark matter, in the framework of standard general relativity. Here we assume that the number of particles in each mode of the q-deformed scalar field varies in time by the particle creation and annihilation. We first describe the q-deformed scalar field dark energy quantum-field theoretically, then construct the action and the dynamical structure of these interacting dark sectors, in order to study the dynamics of the model. We perform the phase space analysis of the model to confirm and interpret our proposal by searching the stable attractor solutions implying the late-time accelerating phase of the universe. We then obtain the result that when interaction and equation-of-state parameter of the dark matter evolve from the present day values into a particular value, the dark energy turns out to be a q-deformed scalar field.

  2. The properties of Q-deformed hyperbolic and trigonometric functions in quantum deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deta, U. A., E-mail: utamaalan@yahoo.co.id, E-mail: utamadeta@unesa.ac.id; Suparmi

    2015-09-30

    Quantum deformation has been studied due to its relation with applications in nuclear physics, conformal field theory, and statistical-quantum theory. The q-deformation of hyperbolic function was introduced by Arai. The application of q-deformed functions has been widely used in quantum mechanics. The properties of this two kinds of system explained in this paper including their derivative. The graph of q-deformed functions presented using Matlab. The special case is given for modified Poschl-Teller plus q-deformed Scarf II trigonometry potentials.

  3. Fluctuations of a q-deformed fermion gas

    NASA Astrophysics Data System (ADS)

    Zeng, Qijun; Ge, Jing; Luo, Yongsong

    2018-05-01

    The theory of q-deformed fermions is one of the theories of q-deformed oscillators. Within the framework of this theory and the traditional fluctuation theory, we investigate fluctuations of q-deformed fermion gas and obtain the expressions of fluctuations of the internal energy U, the particle number N and the correlation of fluctuations of the two physical quantities above. Further numerical calculation reveals that fluctuations of such a system have some interesting and particular features. We consider that this work may provide much insight into the theory of q fermions, and may also be helpful for the theory of q-deformed oscillators.

  4. A q-deformation of the Bogoliubov transformations

    NASA Astrophysics Data System (ADS)

    Arraut, Ivan; Segovia, Carlos

    2018-02-01

    An approach for q-deformed Bogoliubov transformations is presented. Assuming a left-right module action together with an *-operation and deformed commutation relations, we construct a q-deformation of the nonlinear Bogoliubov transformation. Finally, we introduce a Hopf structure when q is a root of unity.

  5. Nonclassical Properties of Q-Deformed Superposition Light Field State

    NASA Technical Reports Server (NTRS)

    Ren, Min; Shenggui, Wang; Ma, Aiqun; Jiang, Zhuohong

    1996-01-01

    In this paper, the squeezing effect, the bunching effect and the anti-bunching effect of the superposition light field state which involving q-deformation vacuum state and q-Glauber coherent state are studied, the controllable q-parameter of the squeezing effect, the bunching effect and the anti-bunching effect of q-deformed superposition light field state are obtained.

  6. Diffusion mechanism of non-interacting Brownian particles through a deformed substrate

    NASA Astrophysics Data System (ADS)

    Arfa, Lahcen; Ouahmane, Mehdi; El Arroum, Lahcen

    2018-02-01

    We study the diffusion mechanism of non-interacting Brownian particles through a deformed substrate. The study is done at low temperature for different values of the friction. The deformed substrate is represented by a periodic Remoissenet-Peyrard potential with deformability parameter s. In this potential, the particles (impurity, adatoms…) can diffuse. We ignore the interactions between these mobile particles consider them merely as non-interacting Brownian particles and this system is described by a Fokker-Planck equation. We solve this equation numerically using the matrix continued fraction method to calculate the dynamic structure factor S(q , ω) . From S(q , ω) some relevant correlation functions are also calculated. In particular, we determine the half-width line λ(q) of the peak of the quasi-elastic dynamic structure factor S(q , ω) and the diffusion coefficient D. Our numerical results show that the diffusion mechanism is described, depending on the structure of the potential, either by a simple jump diffusion process with jump length close to the lattice constant a or by a combination of a jump diffusion model with jump length close to lattice constant a and a liquid-like motion inside the unit cell. It shows also that, for different friction regimes and various potential shapes, the friction attenuates the diffusion mechanism. It is found that, in the high friction regime, the diffusion process is more important through a deformed substrate than through a non-deformed one.

  7. Investigation of spin-zero bosons in q-deformed relativistic quantum mechanics

    NASA Astrophysics Data System (ADS)

    Sobhani, H.; Chung, W. S.; Hassanabadi, H.

    2018-04-01

    In this article, Scattering states of Klein-Gordon equation for three scatter potentials of single and double Dirac delta and a potential well in the q-deformed formalism of relativistic quantum mechanics have been derived. At first, we discussed how q-deformed formalism can be constructed and used. Postulates of this q-deformed quantum mechanics are noted. Then scattering problems for spin-zero bosons are studied.

  8. Wave functions of the Q .Q interaction in terms of unitary 9-j coefficients

    NASA Astrophysics Data System (ADS)

    Zamick, Larry; Harper, Matthew

    2015-03-01

    We obtain wave functions for two protons and two neutrons in the g9 /2 shell expressed as column vectors with amplitudes D (Jp,Jn) . When we use a quadrupole-quadrupole interaction (Q .Q ) we get, in many cases, a very strong overlap with wave functions given by a single set of unitary 9-j coefficients—U 9 j =<(jj ) 2 j(jjJB|(jj ) Jp(jj ) Jn) I> . Here JB=9 for even I T =0 states. For both even and odd T =1 states we take JB equal to 8 whilst for odd I ,T =0 we take JB to be 7. We compare the Q .Q results with those of a more realistic interaction.

  9. Study of phase transition of even and odd nuclei based on q-deforme SU(1,1) algebraic model

    NASA Astrophysics Data System (ADS)

    Jafarizadeh, M. A.; Amiri, N.; Fouladi, N.; Ghapanvari, M.; Ranjbar, Z.

    2018-04-01

    The q-deformed Hamiltonian for the SO (6) ↔ U (5) transitional case in s, d interaction boson model (IBM) can be constructed by using affine SUq (1 , 1) Lie algebra in the both IBM-1 and 2 versions and IBFM. In this research paper, we have studied the energy spectra of 120-128Xe isotopes and 123-131Xe isotopes and B(E2) transition probabilities of 120-128Xe isotopes in the shape phase transition region between the spherical and gamma unstable deformed shapes of the theory of quantum deformation. The theoretical results agree with the experimental data fairly well. It is shown that the q-deformed SO (6) ↔ U (5) transitional dynamical symmetry remains after deformation.

  10. BFV-BRST analysis of the classical and quantum q-deformations of the sl(2) algebra

    NASA Astrophysics Data System (ADS)

    Dayi, O. F.

    1994-01-01

    BFV--BRST charge for q-deformed algebras is not unique. Different constructions of it in the classical as well as in the quantum phase space for the $q$-deformed algebra sl_q(2) are discussed. Moreover, deformation of the phase space without deforming the generators of sl(2) is considered. $\\hbar$-q-deformation of the phase space is shown to yield the Witten's second deformation. To study the BFV--BRST cohomology problem when both the quantum phase space and the group are deformed, a two parameter deformation of sl(2) is proposed, and its BFV-BRST charge is given.

  11. The gauge transformations of the constrained q-deformed KP hierarchy

    NASA Astrophysics Data System (ADS)

    Geng, Lumin; Chen, Huizhan; Li, Na; Cheng, Jipeng

    2018-06-01

    In this paper, we mainly study the gauge transformations of the constrained q-deformed Kadomtsev-Petviashvili (q-KP) hierarchy. Different from the usual case, we have to consider the additional constraints on the Lax operator of the constrained q-deformed KP hierarchy, since the form of the Lax operator must be kept when constructing the gauge transformations. For this reason, the selections of generating functions in elementary gauge transformation operators TD and TI must be very special, which are from the constraints in the Lax operator. At last, we consider the successive applications of n-step of TD and k-step of TI gauge transformations.

  12. (p,q) deformations and (p,q)-vector coherent states of the Jaynes-Cummings model in the rotating wave approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ben Geloun, Joseph; Govaerts, Jan; Hounkonnou, M. Norbert

    2007-03-15

    Classes of (p,q) deformations of the Jaynes-Cummings model in the rotating wave approximation are considered. Diagonalization of the Hamiltonian is performed exactly, leading to useful spectral decompositions of a series of relevant operators. The latter include ladder operators acting between adjacent energy eigenstates within two separate infinite discrete towers, except for a singleton state. These ladder operators allow for the construction of (p,q)-deformed vector coherent states. Using (p,q) arithmetics, explicit and exact solutions to the associated moment problem are displayed, providing new classes of coherent states for such models. Finally, in the limit of decoupled spin sectors, our analysis translatesmore » into (p,q) deformations of the supersymmetric harmonic oscillator, such that the two supersymmetric sectors get intertwined through the action of the ladder operators as well as in the associated coherent states.« less

  13. Investigation of Bose-Einstein Condensates in q-Deformed Potentials with First Order Perturbation Theory

    NASA Astrophysics Data System (ADS)

    Nutku, Ferhat; Aydıner, Ekrem

    2018-02-01

    The Gross-Pitaevskii equation, which is the governor equation of Bose-Einstein condensates, is solved by first order perturbation expansion under various q-deformed potentials. Stationary probability distributions reveal one and two soliton behavior depending on the type of the q-deformed potential. Additionally a spatial shift of the probability distribution is found for the dark soliton solution, when the q parameter is changed.

  14. On the arbitrary l-wave solutions of the deformed hyperbolic manning-rosen potential including an improved approximation to the orbital centrifugal term

    NASA Astrophysics Data System (ADS)

    Xu, Chun-Long; Zhang, Min-Cang

    2017-01-01

    The arbitrary l-wave solutions to the Schrödinger equation for the deformed hyperbolic Manning-Rosen potential is investigated analytically by using the Nikiforov-Uvarov method, the centrifugal term is treated with an improved Greene and Aldrich's approximation scheme. The wavefunctions depend on the deformation parameter q, which is expressed in terms of the Jocobi polynomial or the hypergeometric function. The bound state energy is obtained, and the discrete spectrum is shown to be independent of the deformation parameter q.

  15. (q,{mu}) and (p,q,{zeta})-exponential functions: Rogers-Szego'' polynomials and Fourier-Gauss transform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hounkonnou, Mahouton Norbert; Nkouankam, Elvis Benzo Ngompe

    2010-10-15

    From the realization of q-oscillator algebra in terms of generalized derivative, we compute the matrix elements from deformed exponential functions and deduce generating functions associated with Rogers-Szego polynomials as well as their relevant properties. We also compute the matrix elements associated with the (p,q)-oscillator algebra (a generalization of the q-one) and perform the Fourier-Gauss transform of a generalization of the deformed exponential functions.

  16. q-Deformed Minkowski Algebra and Its Space-Time Lattice

    NASA Astrophysics Data System (ADS)

    Wess, J.

    2Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Föhringer Ring 6, D-80805 MünchenAbstract. We have asked how the Heisenberg relations of space and time change if we replace the Lorentz group by a q-deformed Lorentz group (Lorek et al. 1997).

  17. Pneumatic tyres interacting with deformable terrains

    NASA Astrophysics Data System (ADS)

    Bekakos, C. A.; Papazafeiropoulos, G.; O'Boy, D. J.; Prins, J.

    2016-09-01

    In this study, a numerical model of a deformable tyre interacting with a deformable road has been developed with the use of the finite element code ABAQUS (v. 6.13). Two tyre models with different widths, not necessarily identical to any real industry tyres, have been created purely for research use. The behaviour of these tyres under various vertical loads and different inflation pressures is studied, initially in contact with a rigid surface and then with a deformable terrain. After ensuring that the tyre model gives realistic results in terms of the interaction with a rigid surface, the rolling process of the tyre on a deformable road was studied. The effects of friction coefficient, inflation pressure, rebar orientation and vertical load on the overall performance are reported. Regarding the modelling procedure, a sequence of models were analysed, using the coupling implicit - explicit method. The numerical results reveal that not only there is significant dependence of the final tyre response on the various initial driving parameters, but also special conditions emerge, where the desired response of the tyre results from specific optimum combination of these parameters.

  18. Energy spectrum inverse problem of q-deformed harmonic oscillator and entanglement of composite bosons

    NASA Astrophysics Data System (ADS)

    Sang, Nguyen Anh; Thu Thuy, Do Thi; Loan, Nguyen Thi Ha; Lan, Nguyen Tri; Viet, Nguyen Ai

    2017-06-01

    Using the simple deformed three-level model (D3L model) proposed in our early work, we study the entanglement problem of composite bosons. Consider three first energy levels are known, we can get two energy separations, and can define the level deformation parameter δ. Using connection between q-deformed harmonic oscillator and Morse-like anharmonic potential, the deform parameter q also can be derived explicitly. Like the Einstein’s theory of special relativity, we introduce the observer e˙ects: out side observer (looking from outside the studying system) and inside observer (looking inside the studying system). Corresponding to those observers, the outside entanglement entropy and inside entanglement entropy will be defined.. Like the case of Foucault pendulum in the problem of Earth rotation, our deformation energy level investigation might be useful in prediction the environment e˙ect outside a confined box.

  19. Tsallis p, q-deformed Touchard polynomials and Stirling numbers

    NASA Astrophysics Data System (ADS)

    Herscovici, O.; Mansour, T.

    2017-01-01

    In this paper, we develop and investigate a new two-parametrized deformation of the Touchard polynomials, based on the definition of the NEXT q-exponential function of Tsallis. We obtain new generalizations of the Stirling numbers of the second kind and of the binomial coefficients and represent two new statistics for the set partitions.

  20. Affine q-deformed symmetry and the classical Yang-Baxter σ-model

    NASA Astrophysics Data System (ADS)

    Delduc, F.; Kameyama, T.; Magro, M.; Vicedo, B.

    2017-03-01

    The Yang-Baxter σ-model is an integrable deformation of the principal chiral model on a Lie group G. The deformation breaks the G × G symmetry to U(1)rank( G) × G. It is known that there exist non-local conserved charges which, together with the unbroken U(1)rank( G) local charges, form a Poisson algebra [InlineMediaObject not available: see fulltext.], which is the semiclassical limit of the quantum group {U}_q(g) , with g the Lie algebra of G. For a general Lie group G with rank( G) > 1, we extend the previous result by constructing local and non-local conserved charges satisfying all the defining relations of the infinite-dimensional Poisson algebra [InlineMediaObject not available: see fulltext.], the classical analogue of the quantum loop algebra {U}_q(Lg) , where Lg is the loop algebra of g. Quite unexpectedly, these defining relations are proved without encountering any ambiguity related to the non-ultralocality of this integrable σ-model.

  1. A position-dependent mass harmonic oscillator and deformed space

    NASA Astrophysics Data System (ADS)

    da Costa, Bruno G.; Borges, Ernesto P.

    2018-04-01

    We consider canonically conjugated generalized space and linear momentum operators x^ q and p^ q in quantum mechanics, associated with a generalized translation operator which produces infinitesimal deformed displacements controlled by a deformation parameter q. A canonical transformation (x ^ ,p ^ ) →(x^ q,p^ q ) leads the Hamiltonian of a position-dependent mass particle in usual space to another Hamiltonian of a particle with constant mass in a conservative force field of the deformed space. The equation of motion for the classical phase space (x, p) may be expressed in terms of the deformed (dual) q-derivative. We revisit the problem of a q-deformed oscillator in both classical and quantum formalisms. Particularly, this canonical transformation leads a particle with position-dependent mass in a harmonic potential to a particle with constant mass in a Morse potential. The trajectories in phase spaces (x, p) and (xq, pq) are analyzed for different values of the deformation parameter. Finally, we compare the results of the problem in classical and quantum formalisms through the principle of correspondence and the WKB approximation.

  2. Covariant deformed oscillator algebras

    NASA Technical Reports Server (NTRS)

    Quesne, Christiane

    1995-01-01

    The general form and associativity conditions of deformed oscillator algebras are reviewed. It is shown how the latter can be fulfilled in terms of a solution of the Yang-Baxter equation when this solution has three distinct eigenvalues and satisfies a Birman-Wenzl-Murakami condition. As an example, an SU(sub q)(n) x SU(sub q)(m)-covariant q-bosonic algebra is discussed in some detail.

  3. The q-harmonic oscillators, q-coherent states and the q-symplecton

    NASA Technical Reports Server (NTRS)

    Biedenharn, L. C.; Lohe, M. A.; Nomura, Masao

    1993-01-01

    The recently introduced notion of a quantum group is discussed conceptually and then related to deformed harmonic oscillators ('q-harmonic oscillators'). Two developments in applying q-harmonic oscillators are reviewed: q-coherent states and the q-symplecton.

  4. q-deformed Einstein's model to describe specific heat of solid

    NASA Astrophysics Data System (ADS)

    Guha, Atanu; Das, Prasanta Kumar

    2018-04-01

    Realistic phenomena can be described more appropriately using generalized canonical ensemble, with proper parameter sets involved. We have generalized the Einstein's theory for specific heat of solid in Tsallis statistics, where the temperature fluctuation is introduced into the theory via the fluctuation parameter q. At low temperature the Einstein's curve of the specific heat in the nonextensive Tsallis scenario exactly lies on the experimental data points. Consequently this q-modified Einstein's curve is found to be overlapping with the one predicted by Debye. Considering only the temperature fluctuation effect(even without considering more than one mode of vibration is being triggered) we found that the CV vs T curve is as good as obtained by considering the different modes of vibration as suggested by Debye. Generalizing the Einstein's theory in Tsallis statistics we found that a unique value of the Einstein temperature θE along with a temperature dependent deformation parameter q(T) , can well describe the phenomena of specific heat of solid i.e. the theory is equivalent to Debye's theory with a temperature dependent θD.

  5. q-Derivatives, quantization methods and q-algebras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Twarock, Reidun

    1998-12-15

    Using the example of Borel quantization on S{sup 1}, we discuss the relation between quantization methods and q-algebras. In particular, it is shown that a q-deformation of the Witt algebra with generators labeled by Z is realized by q-difference operators. This leads to a discrete quantum mechanics. Because of Z, the discretization is equidistant. As an approach to a non-equidistant discretization of quantum mechanics one can change the Witt algebra using not the number field Z as labels but a quadratic extension of Z characterized by an irrational number {tau}. This extension is denoted as quasi-crystal Lie algebra, because thismore » is a relation to one-dimensional quasicrystals. The q-deformation of this quasicrystal Lie algebra is discussed. It is pointed out that quasicrystal Lie algebras can be considered also as a 'deformed' Witt algebra with a 'deformation' of the labeling number field. Their application to the theory is discussed.« less

  6. q-deformed superstatistics of the Schrödinger equation in commutative and noncommutative spaces with magnetic field

    NASA Astrophysics Data System (ADS)

    Sargolzaeipor, S.; Hassanabadi, H.; Chung, W. S.

    2018-01-01

    We discuss the q-deformed algebra and study the Schrödinger equation in commutative and noncommutative spaces, under an external magnetic field. In this work, we obtain the energy spectrum by an analytical method and the thermodynamic properties of the system by using the q-deformed superstatistics are calculated. Actually, we derive a generalized version of the ordinary superstatistic for the non-equilibrium systems. Also, different effective Boltzmann factor descriptions are derived. In addition, we discuss about the results for various values of θ in commutative and noncommutative spaces and, to illustrate the results, some figures are plotted.

  7. High-temperature behavior of a deformed Fermi gas obeying interpolating statistics.

    PubMed

    Algin, Abdullah; Senay, Mustafa

    2012-04-01

    An outstanding idea originally introduced by Greenberg is to investigate whether there is equivalence between intermediate statistics, which may be different from anyonic statistics, and q-deformed particle algebra. Also, a model to be studied for addressing such an idea could possibly provide us some new consequences about the interactions of particles as well as their internal structures. Motivated mainly by this idea, in this work, we consider a q-deformed Fermi gas model whose statistical properties enable us to effectively study interpolating statistics. Starting with a generalized Fermi-Dirac distribution function, we derive several thermostatistical functions of a gas of these deformed fermions in the thermodynamical limit. We study the high-temperature behavior of the system by analyzing the effects of q deformation on the most important thermostatistical characteristics of the system such as the entropy, specific heat, and equation of state. It is shown that such a deformed fermion model in two and three spatial dimensions exhibits the interpolating statistics in a specific interval of the model deformation parameter 0 < q < 1. In particular, for two and three spatial dimensions, it is found from the behavior of the third virial coefficient of the model that the deformation parameter q interpolates completely between attractive and repulsive systems, including the free boson and fermion cases. From the results obtained in this work, we conclude that such a model could provide much physical insight into some interacting theories of fermions, and could be useful to further study the particle systems with intermediate statistics.

  8. Tidal deformability and I-Love-Q relations for gravastars with polytropic thin shells

    NASA Astrophysics Data System (ADS)

    Uchikata, Nami; Yoshida, Shijun; Pani, Paolo

    2016-09-01

    The moment of inertia, the spin-induced quadrupole moment, and the tidal Love number of neutron-star and quark-star models are related through some relations which depend only mildly on the stellar equation of state. These "I-Love-Q" relations have important implications for astrophysics and gravitational-wave astronomy. An interesting problem is whether similar relations hold for other compact objects and how they approach the black hole limit. To answer these questions, here we investigate the deformation properties of a large class of thin-shell gravastars, which are exotic compact objects that do not possess an event horizon nor a spacetime singularity. Working in a small-spin and small-tidal field expansion, we calculate the moment of inertia, the quadrupole moment, and the (quadrupolar electric) tidal Love number of gravastars with a polytropic thin shell. The I-Love-Q relations of a thin-shell gravastar are drastically different from those of an ordinary neutron star. The Love number and quadrupole moment for less compact models have the opposite sign relative to those of ordinary neutron stars, and the I-Love-Q relations continuously approach the black hole limit. We consider a variety of polytropic equations of state for the matter shell and find no universality in the I-Love-Q relations. However, we cannot deny the possibility that, similarly to the neutron-star case, an approximate universality might emerge for a limited class of equations of state. Finally, we discuss how a measurement of the tidal deformability from the gravitational-wave detection of a compact-binary inspiral can be used to constrain exotic compact objects like gravastars.

  9. Mechanics of deformations in terms of scalar variables

    NASA Astrophysics Data System (ADS)

    Ryabov, Valeriy A.

    2017-05-01

    Theory of particle and continuous mechanics is developed which allows a treatment of pure deformation in terms of the set of variables "coordinate-momentum-force" instead of the standard treatment in terms of tensor-valued variables "strain-stress." This approach is quite natural for a microscopic description of atomic system, according to which only pointwise forces caused by the stress act to atoms making a body deform. The new concept starts from affine transformation of spatial to material coordinates in terms of the stretch tensor or its analogs. Thus, three principal stretches and three angles related to their orientation form a set of six scalar variables to describe deformation. Instead of volume-dependent potential used in the standard theory, which requires conditions of equilibrium for surface and body forces acting to a volume element, a potential dependent on scalar variables is introduced. A consistent introduction of generalized force associated with this potential becomes possible if a deformed body is considered to be confined on the surface of torus having six genuine dimensions. Strain, constitutive equations and other fundamental laws of the continuum and particle mechanics may be neatly rewritten in terms of scalar variables. Giving a new presentation for finite deformation new approach provides a full treatment of hyperelasticity including anisotropic case. Derived equations of motion generate a new kind of thermodynamical ensemble in terms of constant tension forces. In this ensemble, six internal deformation forces proportional to the components of Irving-Kirkwood stress are controlled by applied external forces. In thermodynamical limit, instead of the pressure and volume as state variables, this ensemble employs deformation force measured in kelvin unit and stretch ratio.

  10. A calculus based on a q-deformed Heisenberg algebra

    DOE PAGES

    Cerchiai, B. L.; Hinterding, R.; Madore, J.; ...

    1999-04-27

    We show how one can construct a differential calculus over an algebra where position variables $x$ and momentum variables p have be defined. As the simplest example we consider the one-dimensional q-deformed Heisenberg algebra. This algebra has a subalgebra generated by cursive Greek chi and its inverse which we call the coordinate algebra. A physical field is considered to be an element of the completion of this algebra. We can construct a derivative which leaves invariant the coordinate algebra and so takes physical fields into physical fields. A generalized Leibniz rule for this algebra can be found. Based on thismore » derivative differential forms and an exterior differential calculus can be constructed.« less

  11. Approximation solution of Schrodinger equation for Q-deformed Rosen-Morse using supersymmetry quantum mechanics (SUSY QM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alemgadmi, Khaled I. K., E-mail: azozkied@yahoo.com; Suparmi; Cari

    2015-09-30

    The approximate analytical solution of Schrodinger equation for Q-Deformed Rosen-Morse potential was investigated using Supersymmetry Quantum Mechanics (SUSY QM) method. The approximate bound state energy is given in the closed form and the corresponding approximate wave function for arbitrary l-state given for ground state wave function. The first excited state obtained using upper operator and ground state wave function. The special case is given for the ground state in various number of q. The existence of Rosen-Morse potential reduce energy spectra of system. The larger value of q, the smaller energy spectra of system.

  12. On the robustness of the q-Gaussian family

    NASA Astrophysics Data System (ADS)

    Sicuro, Gabriele; Tempesta, Piergiulio; Rodríguez, Antonio; Tsallis, Constantino

    2015-12-01

    We introduce three deformations, called α-, β- and γ-deformation respectively, of a N-body probabilistic model, first proposed by Rodríguez et al. (2008), having q-Gaussians as N → ∞ limiting probability distributions. The proposed α- and β-deformations are asymptotically scale-invariant, whereas the γ-deformation is not. We prove that, for both α- and β-deformations, the resulting deformed triangles still have q-Gaussians as limiting distributions, with a value of q independent (dependent) on the deformation parameter in the α-case (β-case). In contrast, the γ-case, where we have used the celebrated Q-numbers and the Gauss binomial coefficients, yields other limiting probability distribution functions, outside the q-Gaussian family. These results suggest that scale-invariance might play an important role regarding the robustness of the q-Gaussian family.

  13. Jordanian deformation of SL(2) as a contraction of its Drinfeld-Jimbo deformation

    NASA Astrophysics Data System (ADS)

    Aghamohammadi, A.; Khorrami, M.; Shariati, A.

    1995-04-01

    We show that $h$-deformation can be obtained, by a singular limit of a similarity transformation, from $q$-deformation; to be specefic, we obtain $\\GL_h(2)$, its differential structure, its inhomogenous extension, and $\\Uh{\\sl(2)}$ from their $q$-deformed counterparts.

  14. A Comparative Study of Hot Deformation Behaviors for Sand Casting and Centrifugal Casting Q235B Flange Blanks

    NASA Astrophysics Data System (ADS)

    Qin, Fangcheng; Li, Yongtang; Ju, Li

    2017-03-01

    Hot compression tests of sand casting and centrifugal casting Q235B flange blanks were performed at strain rate range of 0.01-5 s-1 and temperature range of 850-1,150 °C. The evolutions of microstructure and texture were revealed. The constitutive models based on Arrhenius constitutive modeling were proposed by considering the effects of strain on material constants. The results show that recrystallization in centrifugal casting Q235B is more apparent than that in sand casting, resulting in the finer grains and lower flow stress for centrifugal casting Q235B. The intensities of textures slightly weaken with the increase of temperature. At 1,050 °C and 5 s-1, the textures of sand casting are characterized by strong {001}<100> and {001}<110>, which are related with severe deformation, while the textures of centrifugal casting are composed of {110}<110> and {111}<112>, which are related with dynamic recovery and shear deformation. A good agreement between the predicted and experimental flow stress is achieved and demonstrates that the proposed constitutive models are reliable.

  15. Ghost Dark Energy with Non-Linear Interaction Term

    NASA Astrophysics Data System (ADS)

    Ebrahimi, E.

    2016-06-01

    Here we investigate ghost dark energy (GDE) in the presence of a non-linear interaction term between dark matter and dark energy. To this end we take into account a general form for the interaction term. Then we discuss about different features of three choices of the non-linear interacting GDE. In all cases we obtain equation of state parameter, w D = p/ ρ, the deceleration parameter and evolution equation of the dark energy density parameter (Ω D ). We find that in one case, w D cross the phantom line ( w D < -1). However in two other classes w D can not cross the phantom divide. The coincidence problem can be solved in these models completely and there exist good agreement between the models and observational values of w D , q. We study squared sound speed {vs2}, and find that for one case of non-linear interaction term {vs2} can achieves positive values at late time of evolution.

  16. Phase diagram of q-deformed Yang-Mills theory on S 2 at non-zero θ-angle

    NASA Astrophysics Data System (ADS)

    Okuyama, Kazumi

    2018-04-01

    We study the phase diagram of q-deformed Yang-Mills theory on S 2 at non-zero θ-angle using the exact partition function at finite N . By evaluating the exact partition function numerically, we find evidence for the existence of a series of phase transitions at non-zero θ-angle as conjectured in [hep-th/0509004

  17. Fisher information, Borges operators, and q-calculus

    NASA Astrophysics Data System (ADS)

    Pennini, F.; Plastino, A.; Ferri, G. L.

    2008-10-01

    We discuss applying the increasingly popular q-calculus, or deformed calculus, so as to suitably generalize Fisher’s information measure and the Cramer-Rao inequality. A q-deformation can be attained in multiple ways, and we show that most of them do not constitute legitimate procedures. Within such a context, the only completely acceptable q-deformation is that ensuing from using the so-called Borges derivative [E.P. Borges, Physica A 340 (2004) 95].

  18. The Role of Deformation Energetics in Long-Term Tectonic Modeling

    NASA Astrophysics Data System (ADS)

    Ahamed, S.; Choi, E.

    2017-12-01

    The deformation-related energy budget is usually considered in the simplest form or even entirely omitted from the energy balance equation. We derive a full energy balance equation that accounts not only for heat energy but also for mechanical (elastic, plastic and viscous) work. The derived equation is implemented in DES3D, an unstructured finite element solver for long-term tectonic deformation. We verify the implementation by comparing numerical solutions to the corresponding semi-analytic solutions in three benchmarks extended from the classical oedometer test. We also investigate the long-term effects of deformation energetics on the evolution of large offset normal faults. We find that the models considering the full energy balance equation tend to produce more secondary faults and an elongated core complex. Our results for the normal fault system confirm that persistent inelastic deformation has a significant impact on the long-term evolution of faults, motivating further exploration of the role of the full energy balance equation in other geodynamic systems.

  19. Q-controlled amplitude modulation atomic force microscopy in liquids: An analysis

    NASA Astrophysics Data System (ADS)

    Hölscher, H.; Schwarz, U. D.

    2006-08-01

    An analysis of amplitude modulation atomic force microscopy in liquids is presented with respect to the application of the Q-Control technique. The equation of motion is solved by numerical and analytic methods with and without Q-Control in the presence of a simple model interaction force adequate for many liquid environments. In addition, the authors give an explicit analytical formula for the tip-sample indentation showing that higher Q factors reduce the tip-sample force. It is found that Q-Control suppresses unwanted deformations of the sample surface, leading to the enhanced image quality reported in several experimental studies.

  20. Plate convergence and long-term crustal deformation in central Japan

    NASA Astrophysics Data System (ADS)

    Heki, Kosuke; Miyazaki, Shin'ichi

    Surveys by continuous Global Positioning System in and around Japan revealed that the Amurian Plate collides with the North American Plate in central Japan by ∼2 cm/yr. Long-term crustal deformation seems to be influenced mainly by this collision although subduction of oceanic plates governs short-term elastic deformation over the arc. Here we study the long-term deformation field by carefully removing the short-term signals inferred from a-priori plate convergence vectors and coupling strengths predicted by a thermal model. The obtained field shows that the change in velocities occurs along the longitude 135° ∼ 137°, and there exist a relatively rigid block and zones accommodating strains. Characteristic compressional deformation is found northwest of Izu due possibly to the collision of the Izu-Bonin arc with Honshu. Plate convergence rate along the Nankai-Suruga Trough is considerably smaller in eastern parts, due partly to the transition from the Amurian to the North American Plate of the landward side, and partly to the motion of the Izu Microplate relative to the Philippine Sea Plate. This accounts for longer recurrence intervals of interplate earthquakes in the Suruga Trough where the Tokai earthquake is anticipated to occur.

  1. On representations of U{sub q}osp(1{vert_bar}2) when q is a root of unity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, W.; Suzuki, T.

    1997-06-01

    The infinite dimensional highest weight representations of U{sub q}osp(1{vert_bar}2) for the deformation parameter q being a root of unity are investigated. As in the cases of q-deformed nongraded Lie algebras, we find that every irreducible representation is isomorphic to the tensor product of a highest weight representation of sl{sub 2}(R) and a finite dimensional one of U{sub q}osp(1{vert_bar}2). The structure is investigated in detail. {copyright} {ital 1997 American Institute of Physics.}

  2. q -deformed statistics and the role of light fermionic dark matter in SN1987A cooling

    NASA Astrophysics Data System (ADS)

    Guha, Atanu; J, Selvaganapathy; Das, Prasanta Kumar

    2017-01-01

    The light dark matter (≃1 - 30 MeV ) particles pair produced in electron-positron annihilation e-e+→ γ χ χ ¯ inside the supernova core can take away the energy released in the supernova SN1987A explosion. Working within the formalism of q -deformed statistics [with the average value of the supernovae core temperature (fluctuating) being TS N=30 MeV ] and using the Raffelt's criterion on the emissivity for any new channel ɛ ˙ (e+e-→χ χ ¯ )≤1 019 erg g-1 s-1 , we find that as the deformation parameter q changes from 1.0 (undeformed scenario) to 1.1 (deformed scenario), the lower bound on the scale Λ of the dark matter effective theory varies from 3.3 ×1 06 TeV to 3.2 ×1 07 TeV for a dark matter fermion of mass mχ=30 MeV . Using the optical depth criteria on the free streaming of the dark matter fermion, we find the lower bound on Λ ˜1 08 TeV for mχ=30 MeV . In a scenario, where the dark matter fermions are pair produced in the outermost sector of the supernova core [with radius 0.9 Rc≤r ≤Rc , Rc(=10 km ) being the supernova core radius or the radius of protoneutron star], we find that the bound on Λ (˜3 ×1 07 TeV ) obtained from SN cooling criteria (Raffelt's criteria) is comparable with the bound obtained from free streaming (optical depth criterion) for light fermion dark matter of mass mχ=10 - 30 MeV .

  3. Interactive Streamline Exploration and Manipulation Using Deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tong, Xin; Chen, Chun-Ming; Shen, Han-Wei

    2015-01-12

    Occlusion presents a major challenge in visualizing three-dimensional flow fields with streamlines. Displaying too many streamlines at once makes it difficult to locate interesting regions, but displaying too few streamlines risks missing important features. A more ideal streamline exploration model is to allow the viewer to freely move across the field that has been populated with interesting streamlines and pull away the streamlines that cause occlusion so that the viewer can inspect the hidden ones in detail. In this paper, we present a streamline deformation algorithm that supports such user-driven interaction with three-dimensional flow fields. We define a view-dependent focus+contextmore » technique that moves the streamlines occluding the focus area using a novel displacement model. To preserve the context surrounding the user-chosen focus area, we propose two shape models to define the transition zone for the surrounding streamlines, and the displacement of the contextual streamlines is solved interactively with a goal of preserving their shapes as much as possible. Based on our deformation model, we design an interactive streamline exploration tool using a lens metaphor. Our system runs interactively so that users can move their focus and examine the flow field freely.« less

  4. Arik-Coon q-oscillator cat states on the noncommutative complex plane ℂq-1 and their nonclassical properties

    NASA Astrophysics Data System (ADS)

    Fakhri, H.; Sayyah-Fard, M.

    The normalized even and odd q-cat states corresponding to Arik-Coon q-oscillator on the noncommutative complex plane ℂq-1 are constructed as the eigenstates of the lowering operator of a q-deformed su(1, 1) algebra with the left eigenvalues. We present the appropriate noncommutative measures in order to realize the resolution of the identity condition by the even and odd q-cat states. Then, we obtain the q-Bargmann-Fock realizations of the Fock representation of the q-deformed su(1, 1) algebra as well as the inner products of standard states in the q-Bargmann representations of the even and odd subspaces. Also, the Euler’s formula of the q-factorial and the Gaussian integrals based on the noncommutative q-integration are obtained. Violation of the uncertainty relation, photon antibunching effect and sub-Poissonian photon statistics by the even and odd q-cat states are considered in the cases 0 < q < 1 and q > 1.

  5. Modelling of deformation of underground tunnel lining, interacting with water-saturated soil

    NASA Astrophysics Data System (ADS)

    Berezhnoi, D. V.; Balafendieva, I. S.; Sachenkov, A. A.; Sekaeva, L. R.

    2016-11-01

    Built finite element method of calculating the deformation of underground tunnel lining, interacting with dry and water-saturated soils. To simulate the interaction between the lining and soils environments, including physical and non-linear, a special "contact" finite element, which allows to consider all cases of interaction between the contacting surfaces. It solved a number of problems of deformation with the ground subway tunnel lining rings.

  6. Coenzyme Q10 as a potent compound that inhibits Cdt1-geminin interaction.

    PubMed

    Mizushina, Yoshiyuki; Takeuchi, Toshifumi; Takakusagi, Yoichi; Yonezawa, Yuko; Mizuno, Takeshi; Yanagi, Ken-Ichiro; Imamoto, Naoko; Sugawara, Fumio; Sakaguchi, Kengo; Yoshida, Hiromi; Fujita, Masatoshi

    2008-02-01

    A human replication initiation protein Cdt1 is a very central player in the cell cycle regulation of DNA replication, and geminin down-regulates Cdt1 function by directly binding to it. It has been demonstrated that Cdt1 hyperfunction resulting from Cdt1-geminin imbalance, for example by geminin silencing with siRNA, induces DNA re-replication and eventual cell death in some cancer-derived cell lines. In the present study, we first established a high throughput screening system based on modified ELISA (enzyme linked immunosorbent assay) to identify compounds that interfere with human Cdt1-geminin binding. Using this system, we found that coenzyme Q(10) (CoQ(10)) can inhibit Cdt1-geminin interaction in vitro. CoQ compound is an isoprenoid quinine that functions as an electron carrier in the mitochondrial respiratory chain in eukaryotes. CoQ(10), having a longer isoprenoid chain, was the strongest inhibitor of Cdt1-geminin binding in the tested CoQs, with 50% inhibition observed at concentrations of 16.2 muM. Surface plasmon resonance analysis demonstrated that CoQ(10) bound selectively to Cdt1, but did not interact with geminin. Moreover, CoQ(10) had no influence on the interaction between Cdt1 and mini-chromosome maintenance (MCM)4/6/7 complexes. These results suggested that CoQ(10) inhibits Cdt1-geminin complex formation by binding to Cdt1 and thereby could liberate Cdt1 from inhibition by geminin. Using three-dimensional computer modeling analysis, CoQ(10) was considered to interact with the geminin interaction interface on Cdt1, and was assumed to make hydrogen bonds with the residue of Arg243 of Cdt1. CoQ(10) could prevent the growth of human cancer cells, although only at high concentrations, and it remains unclear whether such an inhibitory effect is associated with the interference with Cdt1-geminin binding. The application of inhibitors for the formation of Cdt1-geminin complex is discussed.

  7. High-Temperature Creep Behaviour and Positive Effect on Straightening Deformation of Q345c Continuous Casting Slab

    NASA Astrophysics Data System (ADS)

    Guo, Long; Zhang, Xingzhong

    2018-03-01

    Mechanical and creep properties of Q345c continuous casting slab subjected to uniaxial tensile tests at high temperature were considered in this paper. The minimum creep strain rate and creep rupture life equations whose parameters are calculated by inverse-estimation using the regression analysis were derived based on experimental data. The minimum creep strain rate under constant stress increases with the increase of the temperature from 1000 °C to 1200 °C. A new casting machine curve with the aim of fully using high-temperature creep behaviour is proposed in this paper. The basic arc segment is cancelled in the new curve so that length of the straightening area can be extended and time of creep behaviour can be increased significantly. For the new casting machine curve, the maximum straightening strain rate at the slab surface is less than the minimum creep strain rate. So slab straightening deformation based on the steel creep behaviour at high temperature can be carried out in the process of Q345c steel continuous casting. The effect of creep property at high temperature on slab straightening deformation is positive. It is helpful for the design of new casting machine and improvement of old casting machine.

  8. Electrohydrodynamic deformation and interaction of a pair of emulsion drops

    NASA Technical Reports Server (NTRS)

    Baygents, James C.

    1994-01-01

    The response of a pair of emulsion drops to the imposition of a uniform electric field is examined. The case studied is that of equal-sized drops whose line of centers is parallel to the axis of the applied field. A new boundary integral solution to the governing equations of the leaky dielectric model is developed; the formulation accounts for the electrostatic and hydrodynamic interactions between the drops, as well as their deformations. Numerical calculations show that, after an initial transient during which the drops primarily deform, the pair drift slowly together due to their electrostatic interactions.

  9. Symmetry breaking in (gravitating) scalar field models describing interacting boson stars and Q-balls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brihaye, Yves; Caebergs, Thierry; Hartmann, Betti

    2009-09-15

    We investigate the properties of interacting Q-balls and boson stars that sit on top of each other in great detail. The model that describes these solutions is essentially a (gravitating) two-scalar field model where both scalar fields are complex. We construct interacting Q-balls or boson stars with arbitrarily small charges but finite mass. We observe that in the interacting case--where the interaction can be either due to the potential or due to gravity--two types of solutions exist for equal frequencies: one for which the two-scalar fields are equal, but also one for which the two-scalar fields differ. This constitutes amore » symmetry breaking in the model. While for Q-balls asymmetric solutions have always corresponding symmetric solutions and are thus likely unstable to decay to symmetric solutions with lower energy, there exists a parameter regime for interacting boson stars, where only asymmetric solutions exist. We present the domain of existence for two interacting nonrotating solutions as well as for solutions describing the interaction between rotating and nonrotating Q-balls and boson stars, respectively.« less

  10. Interaction of HmC1q with leech microglial cells: involvement of C1qBP-related molecule in the induction of cell chemotaxis

    PubMed Central

    2012-01-01

    Background In invertebrates, the medicinal leech is considered to be an interesting and appropriate model to study neuroimmune mechanisms. Indeed, this non-vertebrate animal can restore normal function of its central nervous system (CNS) after injury. Microglia accumulation at the damage site has been shown to be required for axon sprouting and for efficient regeneration. We characterized HmC1q as a novel chemotactic factor for leech microglial cell recruitment. In mammals, a C1q-binding protein (C1qBP alias gC1qR), which interacts with the globular head of C1q, has been reported to participate in C1q-mediated chemotaxis of blood immune cells. In this study, we evaluated the chemotactic activities of a recombinant form of HmC1q and its interaction with a newly characterized leech C1qBP that acts as its potential ligand. Methods Recombinant HmC1q (rHmC1q) was produced in the yeast Pichia pastoris. Chemotaxis assays were performed to investigate rHmC1q-dependent microglia migration. The involvement of a C1qBP-related molecule in this chemotaxis mechanism was assessed by flow cytometry and with affinity purification experiments. The cellular localization of C1qBP mRNA and protein in leech was investigated using immunohistochemistry and in situ hybridization techniques. Results rHmC1q-stimulated microglia migrate in a dose-dependent manner. This rHmC1q-induced chemotaxis was reduced when cells were preincubated with either anti-HmC1q or anti-human C1qBP antibodies. A C1qBP-related molecule was characterized in leech microglia. Conclusions A previous study showed that recruitment of microglia is observed after HmC1q release at the cut end of axons. Here, we demonstrate that rHmC1q-dependent chemotaxis might be driven via a HmC1q-binding protein located on the microglial cell surface. Taken together, these results highlight the importance of the interaction between C1q and C1qBP in microglial activation leading to nerve repair in the medicinal leech. PMID:22356764

  11. Interaction of HmC1q with leech microglial cells: involvement of C1qBP-related molecule in the induction of cell chemotaxis.

    PubMed

    Tahtouh, Muriel; Garçon-Bocquet, Annelise; Croq, Françoise; Vizioli, Jacopo; Sautière, Pierre-Eric; Van Camp, Christelle; Salzet, Michel; Nagnan-le Meillour, Patricia; Pestel, Joël; Lefebvre, Christophe

    2012-02-22

    In invertebrates, the medicinal leech is considered to be an interesting and appropriate model to study neuroimmune mechanisms. Indeed, this non-vertebrate animal can restore normal function of its central nervous system (CNS) after injury. Microglia accumulation at the damage site has been shown to be required for axon sprouting and for efficient regeneration. We characterized HmC1q as a novel chemotactic factor for leech microglial cell recruitment. In mammals, a C1q-binding protein (C1qBP alias gC1qR), which interacts with the globular head of C1q, has been reported to participate in C1q-mediated chemotaxis of blood immune cells. In this study, we evaluated the chemotactic activities of a recombinant form of HmC1q and its interaction with a newly characterized leech C1qBP that acts as its potential ligand. Recombinant HmC1q (rHmC1q) was produced in the yeast Pichia pastoris. Chemotaxis assays were performed to investigate rHmC1q-dependent microglia migration. The involvement of a C1qBP-related molecule in this chemotaxis mechanism was assessed by flow cytometry and with affinity purification experiments. The cellular localization of C1qBP mRNA and protein in leech was investigated using immunohistochemistry and in situ hybridization techniques. rHmC1q-stimulated microglia migrate in a dose-dependent manner. This rHmC1q-induced chemotaxis was reduced when cells were preincubated with either anti-HmC1q or anti-human C1qBP antibodies. A C1qBP-related molecule was characterized in leech microglia. A previous study showed that recruitment of microglia is observed after HmC1q release at the cut end of axons. Here, we demonstrate that rHmC1q-dependent chemotaxis might be driven via a HmC1q-binding protein located on the microglial cell surface. Taken together, these results highlight the importance of the interaction between C1q and C1qBP in microglial activation leading to nerve repair in the medicinal leech.

  12. Experimental determination of J-Q in the two-parameter characterization of fracture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, S.; Chiang, F.P.

    1995-11-01

    It is well recognized that using a single parameter to characterize crack tip deformation is no long adequate if constraint is present. Several approaches of two-parameter characterization scheme have been proposed. There are the J-T approach, the J-Q approach of Shih et al and the J-Q approach of Sharma and Aravas. The authors propose a scheme to measure the J and Q of the J-Q theory of Sharma and Aravas. They find that with the addition of Q term the experimentally measured U-field displacement component agrees well with the theoretical prediction. The agreement increases as the crack tip constraint increases.more » The results of a SEN and a CN specimen are presented.« less

  13. Internal friction Q factor measurements in lunar rocks

    NASA Technical Reports Server (NTRS)

    Tittmann, B. R.

    1978-01-01

    In order to better interpret recently reported values for the variation of seismic Q as a function of depth below the lunar surface, we have developed apparatus and made laboratory measurements of Q as a function of hydrostatic pressure, temperature and frequency. Our measurements of the Q associated with shear deformations have demonstrated that the large difference in Q between well outgassed and volatile rich rocks persists to pressures corresponding to a depth of at least 50 km. Here we report new measurements of Q as a function of temperature, on the development of techniques to measure the Q associated with extensional deformations under hydrostatic pressure, on the derivation of theoretical relations between our laboratory Q values and the attenuation coefficient of seismic waves, and on the development of a model for mechanism of adsorption.

  14. Seismic Attenuation Structure and Intraplate Deformation

    NASA Astrophysics Data System (ADS)

    Bezada, M.; Kowalke, S.; Smale, J.

    2017-12-01

    It has been suggested that intraplate deformation and seismicity is localized at weak zones in the lithosphere and at rheological boundaries. Comparisons of intraplate deformation regions with mantle seismic velocity structure suggest a correlation, but are not universally accepted as compelling evidence. We present P-wave attenuation models built from records of teleseismic deep-focus earthquakes in three different regions that show significant correlation between attenuation structure and intraplate seismicity and deformation. In the eastern United States, the New Madrid, Wabash Valley, Eastern Tennessee, Central Virginia, and Carolina seismic zones all occur at or near the edges of high-Q (low attenuation) regions. In Spain, intraplate seismicity is absent from high-Q regions but relatively abundant in surrounding low-Q regions where intraplate orogeny is also observed. In Australia, where our model resolution is relatively poor owing to sparse and uneven station coverage, the Petermann and Alice Springs intraplate orogens occur near the edge of a high-Q feature roughly coinciding with the undeformed Amadeus basin. Our results suggest that lithospheric structure exerts important controls on the localization of intraplate deformation and seismicity and that seismic attenuation is a useful proxy for lithospheric strength.

  15. Description of the Hexadecapole Deformation Parameter in the sdg Interacting Boson Model

    NASA Astrophysics Data System (ADS)

    Liu, Yu-xin; Sun, Di; Wang, Jia-jun; Han, Qi-zhi

    1998-04-01

    The hexadecapole deformation parameter β4 of the rare-earth and actinide nuclei is investigated in the framework of the sdg interacing boson model. An explicit relation between the geometric hexadecapole deformation parameter β4 and the intrinsic deformation parameters epsilon4, epsilon2 are obtained. The deformation parameters β4 of the rare-earths and actinides are determined without any free parameter. The calculated results agree with experimental data well. It also shows that the SU(5) limit of the sdg interacting boson model can describe the β4 systematics as well as the SU(3) limit.

  16. Deformation of supersymmetric and conformal quantum mechanics through affine transformations

    NASA Technical Reports Server (NTRS)

    Spiridonov, Vyacheslav

    1993-01-01

    Affine transformations (dilatations and translations) are used to define a deformation of one-dimensional N = 2 supersymmetric quantum mechanics. Resulting physical systems do not have conserved charges and degeneracies in the spectra. Instead, superpartner Hamiltonians are q-isospectral, i.e. the spectrum of one can be obtained from another (with possible exception of the lowest level) by q(sup 2)-factor scaling. This construction allows easily to rederive a special self-similar potential found by Shabat and to show that for the latter a q-deformed harmonic oscillator algebra of Biedenharn and Macfarlane serves as the spectrum generating algebra. A general class of potentials related to the quantum conformal algebra su(sub q)(1,1) is described. Further possibilities for q-deformation of known solvable potentials are outlined.

  17. Simultaneous two component squeezing in generalized q-coherent states

    NASA Technical Reports Server (NTRS)

    Mcdermott, Roger J.; Solomon, Allan I.

    1994-01-01

    Using a generalization of the q-commutation relations, we develop a formalism in which it is possible to define generalized q-bosonic operators. This formalism includes both types of the usual q-deformed bosons as special cases. The coherent states of these operators show interesting and novel noise reduction properties including simultaneous squeezing in both field components, unlike the conventional case in which squeezing is permitted in only one component. This also contrasts with the usual quantum group deformation which also only permits one component squeezing.

  18. Heavy-flavored tetraquark states with the Q Q Q ¯ Q ¯ configuration

    NASA Astrophysics Data System (ADS)

    Wu, Jing; Liu, Yan-Rui; Chen, Kan; Liu, Xiang; Zhu, Shi-Lin

    2018-05-01

    In the framework of the color-magnetic interaction, we systematically investigate the mass spectrum of the tetraquark states composed of four heavy quarks with the Q Q Q ¯Q ¯ configuration in this work. We also show their strong decay patterns. Stable or narrow states in the b b b ¯c ¯ and b c b ¯c ¯ systems are found to be possible. We hope the studies shall be helpful to the experimental search for heavy-full exotic tetraquark states.

  19. Interactive collision detection for deformable models using streaming AABBs.

    PubMed

    Zhang, Xinyu; Kim, Young J

    2007-01-01

    We present an interactive and accurate collision detection algorithm for deformable, polygonal objects based on the streaming computational model. Our algorithm can detect all possible pairwise primitive-level intersections between two severely deforming models at highly interactive rates. In our streaming computational model, we consider a set of axis aligned bounding boxes (AABBs) that bound each of the given deformable objects as an input stream and perform massively-parallel pairwise, overlapping tests onto the incoming streams. As a result, we are able to prevent performance stalls in the streaming pipeline that can be caused by expensive indexing mechanism required by bounding volume hierarchy-based streaming algorithms. At runtime, as the underlying models deform over time, we employ a novel, streaming algorithm to update the geometric changes in the AABB streams. Moreover, in order to get only the computed result (i.e., collision results between AABBs) without reading back the entire output streams, we propose a streaming en/decoding strategy that can be performed in a hierarchical fashion. After determining overlapped AABBs, we perform a primitive-level (e.g., triangle) intersection checking on a serial computational model such as CPUs. We implemented the entire pipeline of our algorithm using off-the-shelf graphics processors (GPUs), such as nVIDIA GeForce 7800 GTX, for streaming computations, and Intel Dual Core 3.4G processors for serial computations. We benchmarked our algorithm with different models of varying complexities, ranging from 15K up to 50K triangles, under various deformation motions, and the timings were obtained as 30 approximately 100 FPS depending on the complexity of models and their relative configurations. Finally, we made comparisons with a well-known GPU-based collision detection algorithm, CULLIDE [4] and observed about three times performance improvement over the earlier approach. We also made comparisons with a SW-based AABB

  20. Multiscale deformation of a liquid surface in interaction with a nanoprobe

    NASA Astrophysics Data System (ADS)

    Ledesma-Alonso, R.; Tordjeman, P.; Legendre, D.

    2012-06-01

    The interaction between a nanoprobe and a liquid surface is studied. The surface deformation depends on physical and geometric parameters, which are depicted by employing three dimensionless parameters: Bond number Bo, modified Hamaker number Ha, and dimensionless separation distance D*. The evolution of the deformation is described by a strongly nonlinear partial differential equation, which is solved by means of numerical methods. The dynamic analysis of the liquid profile points out the existence of a critical distance Dmin*, below which the irreversible wetting process of the nanoprobe happens. For D*≥Dmin*, the numerical results show the existence of two deformation profiles, one stable and another unstable from the energetic point of view. Different deformation length-scales, characterizing the stable liquid equilibrium interface, define the near- and the far-field deformation zones, where self-similar profiles are found. Finally, our results allow us to provide simple relationships between the parameters, which leads to determine the optimal conditions when performing atomic force microscope measurements over liquids.

  1. Numerical simulation of the pairwise interaction of deformable cells during migration in a microchannel

    NASA Astrophysics Data System (ADS)

    Lan, Hongzhi; Khismatullin, Damir B.

    2014-07-01

    Leukocytes and other circulating cells deform and move relatively to the channel flow in the lateral and translational directions. Their migratory property is important in immune response, hemostasis, cancer progression, delivery of nutrients, and microfluidic technologies such as cell separation and enrichment, and flow cytometry. Using our three-dimensional computational algorithm for multiphase viscoelastic flow, we have investigated the effect of pairwise interaction on the lateral and translational migration of circulating cells in a microchannel. The numerical simulation data show that when two cells with the same size and small separation distance interact, repulsive interaction take place until they reach the same lateral equilibrium position. During this process, they undergo swapping or passing, depending on the initial separation distance between each other. The threshold value of this distance increases with cell deformation, indicating that the cells experiencing larger deformation are more likely to swap. When a series of closely spaced cells with the same size are considered, they generally undergo damped oscillation in both lateral and translational directions until they reach equilibrium positions where they become evenly distributed in the flow direction (self-assembly phenomenon). A series of cells with a large lateral separation distance could collide repeatedly with each other, eventually crossing the centerline and entering the other side of the channel. For a series of cells with different deformability, more deformable cells, upon impact with less deformable cells, move to an equilibrium position closer to the centerline. The results of our study show that the bulk deformation of circulating cells plays a key role in their migration in a microchannel.

  2. ProQ3: Improved model quality assessments using Rosetta energy terms

    PubMed Central

    Uziela, Karolis; Shu, Nanjiang; Wallner, Björn; Elofsson, Arne

    2016-01-01

    Quality assessment of protein models using no other information than the structure of the model itself has been shown to be useful for structure prediction. Here, we introduce two novel methods, ProQRosFA and ProQRosCen, inspired by the state-of-art method ProQ2, but using a completely different description of a protein model. ProQ2 uses contacts and other features calculated from a model, while the new predictors are based on Rosetta energies: ProQRosFA uses the full-atom energy function that takes into account all atoms, while ProQRosCen uses the coarse-grained centroid energy function. The two new predictors also include residue conservation and terms corresponding to the agreement of a model with predicted secondary structure and surface area, as in ProQ2. We show that the performance of these predictors is on par with ProQ2 and significantly better than all other model quality assessment programs. Furthermore, we show that combining the input features from all three predictors, the resulting predictor ProQ3 performs better than any of the individual methods. ProQ3, ProQRosFA and ProQRosCen are freely available both as a webserver and stand-alone programs at http://proq3.bioinfo.se/. PMID:27698390

  3. Investigation of twin-twin interaction in deformed magnesium alloy

    NASA Astrophysics Data System (ADS)

    Sun, Qi; Ostapovets, Andriy; Zhang, Xiyan; Tan, Li; Liu, Qing

    2018-03-01

    Using transmission electron microscopy, we characterised the structures of the boundary caused by the interactions between different ? twin variants that share the same ? zone axis in a deformed magnesium alloy. We found that the twin-twin boundaries can adopt the habit planes that are parallel to the (0 0 0 2) basal plane or the ? prismatic plane or the ? twinning plane of the interacting twins. To investigate the formation mechanism of various twin-twin boundaries, we also performed atomic simulations. The results indicate that the formation of a twin-twin boundary may be related to the reaction of twinning disconnections that glide on the basal-prismatic planes of the interacting twins.

  4. Deformation of biological cells in the acoustic field of an oscillating bubble.

    PubMed

    Zinin, Pavel V; Allen, John S

    2009-02-01

    In this work we develop a theoretical framework of the interaction of microbubbles with bacteria in the ultrasound field using a shell model of the bacteria, following an approach developed previously [P. V. Zinin, Phys. Rev. E 72, 61907 (2005)]. Within the shell model, the motion of the cell in an ultrasonic field is determined by the motion of three components: the internal viscous fluid, a thin elastic shell, and the surrounding viscous fluid. Several conclusions can be drawn from the modeling of sound interaction with a biological cell: (a) the characteristics of a cell's oscillations in an ultrasonic field are determined both by the elastic properties of the shell the viscosities of all components of the system, (b) for dipole quadrupole oscillations the cell's shell deforms due to a change in the shell area this oscillation depends on the surface area modulus K{A} , (c) the relative change in the area has a maximum at frequency f{K} approximately 1/2pi square root[K{A}(rhoa;{3})] , where a is the cell's radius and rho is its density. It was predicted that deformation of the cell wall at the frequency f{K} is high enough to rupture small bacteria such as E . coli in which the quality factor of natural vibrations is less than 1 (Q<1). For bacteria with high value quality factors (Q>1) , the area deformation has a strong peak near a resonance frequency f{K} however, the value of the deformation near the resonance frequency is not high enough to produce sufficient mechanical effect. The theoretical framework developed in this work can be extended for describing the deformation of a biological cell under any arbitrary, external periodic force including radiation forces unduced by acoustical (acoustical levitation) or optical waves (optical tweezers).

  5. Deformation of biological cells in the acoustic field of an oscillating bubble

    PubMed Central

    Zinin, Pavel V.; Allen, John S.

    2009-01-01

    In this work we develop a theoretical framework of the interaction of microbubbles with bacteria in the ultrasound field using a shell model of the bacteria, following an approach developed previously [P. V. Zinin et al., Phys. Rev. E 72, 61907 (2005)]. Within the shell model, the motion of the cell in an ultrasonic field is determined by the motion of three components: the internal viscous fluid, a thin elastic shell, and the surrounding viscous fluid. Several conclusions can be drawn from the modeling of sound interaction with a biological cell: (a) the characteristics of a cell’s oscillations in an ultrasonic field are determined both by the elastic properties of the shell the viscosities of all components of the system, (b) for dipole quadrupole oscillations the cell’s shell deforms due to a change in the shell area this oscillation depends on the surface area modulus KA, (c) the relative change in the area has a maximum at frequency fK∼12πKA/(ρa3), where a is the cell’s radius and ρ is its density. It was predicted that deformation of the cell wall at the frequency fK is high enough to rupture small bacteria such as E. coli in which the quality factor of natural vibrations is less than 1 (Q < 1). For bacteria with high value quality factors (Q > 1), the area deformation has a strong peak near a resonance frequency fK; however, the value of the deformation near the resonance frequency is not high enough to produce sufficient mechanical effect. The theoretical framework developed in this work can be extended for describing the deformation of a biological cell under any arbitrary, external periodic force including radiation forces unduced by acoustical (acoustical levitation) or optical waves (optical tweezers). PMID:19391781

  6. Deformation of biological cells in the acoustic field of an oscillating bubble

    NASA Astrophysics Data System (ADS)

    Zinin, Pavel V.; Allen, John S., III

    2009-02-01

    In this work we develop a theoretical framework of the interaction of microbubbles with bacteria in the ultrasound field using a shell model of the bacteria, following an approach developed previously [P. V. Zinin , Phys. Rev. E 72, 61907 (2005)]. Within the shell model, the motion of the cell in an ultrasonic field is determined by the motion of three components: the internal viscous fluid, a thin elastic shell, and the surrounding viscous fluid. Several conclusions can be drawn from the modeling of sound interaction with a biological cell: (a) the characteristics of a cell’s oscillations in an ultrasonic field are determined both by the elastic properties of the shell the viscosities of all components of the system, (b) for dipole quadrupole oscillations the cell’s shell deforms due to a change in the shell area this oscillation depends on the surface area modulus KA , (c) the relative change in the area has a maximum at frequency fK˜(1)/(2π)KA/(ρa3) , where a is the cell’s radius and ρ is its density. It was predicted that deformation of the cell wall at the frequency fK is high enough to rupture small bacteria such as E . coli in which the quality factor of natural vibrations is less than 1 (Q<1) . For bacteria with high value quality factors (Q>1) , the area deformation has a strong peak near a resonance frequency fK ; however, the value of the deformation near the resonance frequency is not high enough to produce sufficient mechanical effect. The theoretical framework developed in this work can be extended for describing the deformation of a biological cell under any arbitrary, external periodic force including radiation forces unduced by acoustical (acoustical levitation) or optical waves (optical tweezers).

  7. Fluid-structure interaction analysis of deformation of sail of 30-foot yacht

    NASA Astrophysics Data System (ADS)

    Bak, Sera; Yoo, Jaehoon; Song, Chang Yong

    2013-06-01

    Most yacht sails are made of thin fabric, and they have a cambered shape to generate lift force; however, their shape can be easily deformed by wind pressure. Deformation of the sail shape changes the flow characteristics over the sail, which in turn further deforms the sail shape. Therefore, fluid-structure interaction (FSI) analysis is applied for the precise evaluation or optimization of the sail design. In this study, fluid flow analyses are performed for the main sail of a 30-foot yacht, and the results are applied to loading conditions for structural analyses. By applying the supporting forces from the rig, such as the mast and boom-end outhaul, as boundary conditions for structural analysis, the deformed sail shape is identified. Both the flow analyses and the structural analyses are iteratively carried out for the deformed sail shape. A comparison of the flow characteristics and surface pressures over the deformed sail shape with those over the initial shape shows that a considerable difference exists between the two and that FSI analysis is suitable for application to sail design.

  8. Imaging contrast and tip-sample interaction of non-contact amplitude modulation atomic force microscopy with Q-control

    NASA Astrophysics Data System (ADS)

    Shi, Shuai; Guo, Dan; Luo, Jianbin

    2017-10-01

    Active quality factor (Q) exhibits many promising properties in dynamic atomic force microscopy. Energy dissipation and image contrasts are investigated in the non-contact amplitude modulation atomic force microscopy (AM-AFM) with an active Q-control circuit in the ambient air environment. Dissipated power and virial were calculated to compare the highly nonlinear interaction of tip-sample and image contrasts with different Q gain values. Greater free amplitudes and lower effective Q values show better contrasts for the same setpoint ratio. Active quality factor also can be employed to change tip-sample interaction force in non-contact regime. It is meaningful that non-destructive and better contrast images can be realized in non-contact AM-AFM by applying an active Q-control to the dynamic system.

  9. Creep model of unsaturated sliding zone soils and long-term deformation analysis of landslides

    NASA Astrophysics Data System (ADS)

    Zou, Liangchao; Wang, Shimei; Zhang, Yeming

    2015-04-01

    Sliding zone soil is a special soil layer formed in the development of a landslide. Its creep behavior plays a significant role in long-term deformation of landslides. Due to rainfall infiltration and reservoir water level fluctuation, the soils in the slide zone are often in unsaturated state. Therefore, the investigation of creep behaviors of the unsaturated sliding zone soils is of great importance for understanding the mechanism of the long-term deformation of a landslide in reservoir areas. In this study, the full-process creep curves of the unsaturated soils in the sliding zone in different net confining pressure, matric suctions and stress levels were obtained from a large number of laboratory triaxial creep tests. A nonlinear creep model for unsaturated soils and its three-dimensional form was then deduced based on the component model theory and unsaturated soil mechanics. This creep model was validated with laboratory creep data. The results show that this creep model can effectively and accurately describe the nonlinear creep behaviors of the unsaturated sliding zone soils. In order to apply this creep model to predict the long-term deformation process of landslides, a numerical model for simulating the coupled seepage and creep deformation of unsaturated sliding zone soils was developed based on this creep model through the finite element method (FEM). By using this numerical model, we simulated the deformation process of the Shuping landslide located in the Three Gorges reservoir area, under the cycling reservoir water level fluctuation during one year. The simulation results of creep displacement were then compared with the field deformation monitoring data, showing a good agreement in trend. The results show that the creeping deformations of landslides have strong connections with the changes of reservoir water level. The creep model of unsaturated sliding zone soils and the findings obtained by numerical simulations in this study are conducive to

  10. Deformable cells in confined geometries: From hemolysis to hydrodynamic interactions

    NASA Astrophysics Data System (ADS)

    Abkarian, Manouk; Faivre, Magalie; Stone, Howard A.

    2004-11-01

    Recent developments in microfluidics allow a wide range of possibilities for studying cellular-scale hydrodynamics. Here we use microfluidic technology to address several open questions in the blood flow literature where cell deformation and hydrodynamic interactions are significant. In particular, we investigate the pressure-driven flow of a dilute suspension in a channel and characterize the transition from steady axisymmetric cell shapes (for which numerical calculations exist) to asymmetric, highly extended shapes, which are precursors to hemolysis (i.e. destruction of the cell). In addition, we examine the influence of geometry on hydrodynamic interactions of deformable cells by contrasting one-dimensional motion of a train of particles in a channel with two-dimensional motions in a Hele-Shaw cell. This study can help to understand flow of cells in microcirculation from the unidirectional flow in capillaries to the two-dimensional flow in the lung alveoli and provides the basic steps to understand certain aspects of microcirculatory deseases like sickle cell anemia for example.

  11. Deforming baryons into confining strings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartnoll, Sean A.; Portugues, Ruben

    2004-09-15

    We find explicit probe D3-brane solutions in the infrared of the Maldacena-Nunez background. The solutions describe deformed baryon vertices: q external quarks are separated in spacetime from the remaining N-q. As the separation is taken to infinity we recover known solutions describing infinite confining strings in N=1 gauge theory. We present results for the mass of finite confining strings as a function of length. We also find probe D2-brane solutions in a confining type IIA geometry, the reduction of a G{sub 2} holonomy M theory background. The relation between these deformed baryons and confining strings is not as straightforward.

  12. Laser-Tissue Interaction in Tattoo Removal by Q-Switched Lasers

    PubMed Central

    Barua, Shyamanta

    2015-01-01

    Q-switched (QS) lasers are widely considered the gold standard for tattoo removal, with excellent clinical results, impressive predictability, and a good safety profile. The generation of giant pulses by the method of Q-switching is responsible for the unique laser-tissue interaction that is seen in tattoo removal by QS lasers. The QS lasers work by impaction and dissolution of the tattoo pigments. Mechanical fragmentation of the tattoo pigments encased in intracellular lamellated organelles followed by their phagocytosis by macrophages is thought to be the major event in the clearance of pigments by QS lasers. A few novel techniques have been tried in recent times to hasten the clearance of tattoo pigments. PMID:25949016

  13. Laser-tissue interaction in tattoo removal by q-switched lasers.

    PubMed

    Barua, Shyamanta

    2015-01-01

    Q-switched (QS) lasers are widely considered the gold standard for tattoo removal, with excellent clinical results, impressive predictability, and a good safety profile. The generation of giant pulses by the method of Q-switching is responsible for the unique laser-tissue interaction that is seen in tattoo removal by QS lasers. The QS lasers work by impaction and dissolution of the tattoo pigments. Mechanical fragmentation of the tattoo pigments encased in intracellular lamellated organelles followed by their phagocytosis by macrophages is thought to be the major event in the clearance of pigments by QS lasers. A few novel techniques have been tried in recent times to hasten the clearance of tattoo pigments.

  14. On q-non-extensive statistics with non-Tsallisian entropy

    NASA Astrophysics Data System (ADS)

    Jizba, Petr; Korbel, Jan

    2016-02-01

    We combine an axiomatics of Rényi with the q-deformed version of Khinchin axioms to obtain a measure of information (i.e., entropy) which accounts both for systems with embedded self-similarity and non-extensivity. We show that the entropy thus obtained is uniquely solved in terms of a one-parameter family of information measures. The ensuing maximal-entropy distribution is phrased in terms of a special function known as the Lambert W-function. We analyze the corresponding "high" and "low-temperature" asymptotics and reveal a non-trivial structure of the parameter space. Salient issues such as concavity and Schur concavity of the new entropy are also discussed.

  15. Ghost Dark Energy with Sign-changeable Interaction Term

    NASA Astrophysics Data System (ADS)

    Zadeh, M. Abdollahi; Sheykhi, A.; Moradpour, H.

    2017-11-01

    Regarding the Veneziano ghost of QCD and its generalized form, we consider a Friedmann-Robertson-Walker (FRW) universe filled by a pressureless matter and a dark energy component interacting with each other through a mutual sign-changeable interaction of positive coupling constant. Our study shows that, at the late time, for the deceleration parameter we have q → -1, while the equation of state parameter of the interacting ghost dark energy (GDE) does not cross the phantom line, namely ω D ≥ -1. We also extend our study to the generalized ghost dark energy (GGDE) model and show that, at late time, the equation of state parameter of the interacting GGDE also respects the phantom line in both flat and non-flat universes. Moreover, we find out that, unlike the non-flat universe, we have q → -1 at late time for flat FRW universe. In order to make the behavior of the underlying models more clear, the deceleration parameter q as well as the equation of state parameter w D for flat and closed universes have been plotted against the redshift parameter, z. All of the studied cases admit a transition in the expansion history of universe from a deceleration phase to an accelerated one around z ≈ 0.6.

  16. Using Remote Sensing Data to Constrain Models of Fault Interactions and Plate Boundary Deformation

    NASA Astrophysics Data System (ADS)

    Glasscoe, M. T.; Donnellan, A.; Lyzenga, G. A.; Parker, J. W.; Milliner, C. W. D.

    2016-12-01

    Determining the distribution of slip and behavior of fault interactions at plate boundaries is a complex problem. Field and remotely sensed data often lack the necessary coverage to fully resolve fault behavior. However, realistic physical models may be used to more accurately characterize the complex behavior of faults constrained with observed data, such as GPS, InSAR, and SfM. These results will improve the utility of using combined models and data to estimate earthquake potential and characterize plate boundary behavior. Plate boundary faults exhibit complex behavior, with partitioned slip and distributed deformation. To investigate what fraction of slip becomes distributed deformation off major faults, we examine a model fault embedded within a damage zone of reduced elastic rigidity that narrows with depth and forward model the slip and resulting surface deformation. The fault segments and slip distributions are modeled using the JPL GeoFEST software. GeoFEST (Geophysical Finite Element Simulation Tool) is a two- and three-dimensional finite element software package for modeling solid stress and strain in geophysical and other continuum domain applications [Lyzenga, et al., 2000; Glasscoe, et al., 2004; Parker, et al., 2008, 2010]. New methods to advance geohazards research using computer simulations and remotely sensed observations for model validation are required to understand fault slip, the complex nature of fault interaction and plate boundary deformation. These models help enhance our understanding of the underlying processes, such as transient deformation and fault creep, and can aid in developing observation strategies for sUAV, airborne, and upcoming satellite missions seeking to determine how faults behave and interact and assess their associated hazard. Models will also help to characterize this behavior, which will enable improvements in hazard estimation. Validating the model results against remotely sensed observations will allow us to better

  17. Photo nuclear energy loss term for muon-nucleus interactions based on xi scaling model of QCD

    NASA Technical Reports Server (NTRS)

    Roychoudhury, R.

    1985-01-01

    Extensive air showers (EMC) experiments discovered a significant deviation of the ratio of structure functions of iron and deuteron from unity. It was established that the quark parton distribution in nuclei are different from the corresponding distribution in the nucleus. It was examined whether these results have an effect on the calculation of photo nucleus energy loss term for muon-nucleus nuclear interaction. Though the EMC and SLAC data were restricted to rather large q sq region it is expected that the derivation would persist even in the low q sq domain. For the ratio of iron and deuteron structure function a rather naive least square fit of the form R(x) = a + bx was taken and it is assumed that the formula is valid for the whole q sq region the absence of any knowledge of R(x) for small q sq.

  18. Insights on fluid-rock interaction evolution during deformation from fracture network geochemistry at reservoir-scale

    NASA Astrophysics Data System (ADS)

    Beaudoin, Nicolas; Koehn, Daniel; Lacombe, Olivier; Bellahsen, Nicolas; Emmanuel, Laurent

    2015-04-01

    Fluid migration and fluid-rock interactions during deformation is a challenging problematic to picture. Numerous interplays, as between porosity-permeability creation and clogging, or evolution of the mechanical properties of rock, are key features when it comes to monitor reservoir evolution, or to better understand seismic cycle n the shallow crust. These phenomenoms are especially important in foreland basins, where various fluids can invade strata and efficiently react with limestones, altering their physical properties. Stable isotopes (O, C, Sr) measurements and fluid inclusion microthermometry of faults cement and veins cement lead to efficient reconstruction of the origin, temperature and migration pathways for fluids (i.e. fluid system) that precipitated during joints opening or faults activation. Such a toolbox can be used on a diffuse fracture network that testifies the local and/or regional deformation history experienced by the rock at reservoir-scale. This contribution underlines the advantages and limits of geochemical studies of diffuse fracture network at reservoir-scale by presenting results of fluid system reconstruction during deformation in folded structures from various thrust-belts, tectonic context and deformation history. We compare reconstructions of fluid-rock interaction evolution during post-deposition, post-burial growth of basement-involved folds in the Sevier-Laramide American Rocky Mountains foreland, a reconstruction of fluid-rock interaction evolution during syn-depostion shallow detachment folding in the Southern Pyrenean foreland, and a preliminary reconstruction of fluid-rock interactions in a post-deposition, post-burial development of a detachment fold in the Appenines. Beyond regional specification for the nature of fluids, a common behavior appears during deformation as in every fold, curvature-related joints (related either to folding or to foreland flexure) connected vertically the pre-existing stratified fluid system

  19. Comparative evaluation of the drug interaction screening programs MediQ and ID PHARMA CHECK in neurological inpatients.

    PubMed

    Zorina, Olesya I; Haueis, Patrick; Semmler, Alexander; Marti, Isabelle; Gonzenbach, Roman R; Guzek, Markus; Kullak-Ublick, Gerd A; Weller, Michael; Russmann, Stefan

    2012-08-01

    The comparative evaluation of clinical decision support software (CDSS) programs regarding their sensitivity and positive predictive value for the identification of clinically relevant drug interactions. In this research, we used a cross-sectional study that identified potential drug interactions using the CDSS MediQ and the ID PHARMA CHECK in 484 neurological inpatients. Interactions were reclassified according to the Zurich Interaction System, a multidimensional classification that incorporates the Operational Classification of Drug Interactions. In 484 patients with 2812 prescriptions, MediQ and ID PHARMA CHECK generated a total of 1759 and 1082 alerts, respectively. MediQ identified 658 unique potentially interacting combinations, 8 classified as "high danger," 164 as "average danger," and 486 as "low danger." ID PHARMA CHECK detected 336 combinations assigned to one or several of 12 risk and management categories. Altogether, both CDSS issued alerts relating to 808 unique potentially interacting combinations. According to the Zurich Interaction System, 6 of these were contraindicated, 25 were provisionally contraindicated, 190 carried a conditional risk, and 587 had a minimal risk of adverse events. The positive predictive value for alerts having at least a conditional risk was 0.24 for MediQ and 0.48 for ID PHARMA CHECK. CDSS showed major differences in the identification and grading of interactions, and many interactions were only identified by one of the two CDSS. For both programs, only a small proportion of all identified interactions appeared clinically relevant, and the selected display of alerts that imply management changes is a key issue in the further development and local setup of such programs. Copyright © 2012 John Wiley & Sons, Ltd.

  20. Effects of Fault Segmentation, Mechanical Interaction, and Structural Complexity on Earthquake-Generated Deformation

    ERIC Educational Resources Information Center

    Haddad, David Elias

    2014-01-01

    Earth's topographic surface forms an interface across which the geodynamic and geomorphic engines interact. This interaction is best observed along crustal margins where topography is created by active faulting and sculpted by geomorphic processes. Crustal deformation manifests as earthquakes at centennial to millennial timescales. Given that…

  1. qPIPSA: Relating enzymatic kinetic parameters and interaction fields

    PubMed Central

    Gabdoulline, Razif R; Stein, Matthias; Wade, Rebecca C

    2007-01-01

    Background The simulation of metabolic networks in quantitative systems biology requires the assignment of enzymatic kinetic parameters. Experimentally determined values are often not available and therefore computational methods to estimate these parameters are needed. It is possible to use the three-dimensional structure of an enzyme to perform simulations of a reaction and derive kinetic parameters. However, this is computationally demanding and requires detailed knowledge of the enzyme mechanism. We have therefore sought to develop a general, simple and computationally efficient procedure to relate protein structural information to enzymatic kinetic parameters that allows consistency between the kinetic and structural information to be checked and estimation of kinetic constants for structurally and mechanistically similar enzymes. Results We describe qPIPSA: quantitative Protein Interaction Property Similarity Analysis. In this analysis, molecular interaction fields, for example, electrostatic potentials, are computed from the enzyme structures. Differences in molecular interaction fields between enzymes are then related to the ratios of their kinetic parameters. This procedure can be used to estimate unknown kinetic parameters when enzyme structural information is available and kinetic parameters have been measured for related enzymes or were obtained under different conditions. The detailed interaction of the enzyme with substrate or cofactors is not modeled and is assumed to be similar for all the proteins compared. The protein structure modeling protocol employed ensures that differences between models reflect genuine differences between the protein sequences, rather than random fluctuations in protein structure. Conclusion Provided that the experimental conditions and the protein structural models refer to the same protein state or conformation, correlations between interaction fields and kinetic parameters can be established for sets of related enzymes

  2. Flocculation of deformable emulsion droplets. 2: Interaction energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petsev, D.N.; Denkov, N.D.; Kralchevsky, P.A.

    1995-12-01

    The effect of different factors (drop radius, interfacial tension, Hamaker constant, electrolyte, micellar concentrations, etc.) on the interaction energy of emulsion droplets is studied theoretically. It is demonstrated that the deformation of the colliding droplets considerably affects the interaction energy. The contributions of the electrostatic, van der Waals, depletion, steric, and oscillatory surface forces, as well as for the surface stretching and bending energies, are estimated and discussed. The calculations show that the droplets interact as nondeformed spheres when the attractive interactions are weak. At stronger attractions an equilibrium plane parallel film is formed between the droplets, corresponding to minimummore » interaction energy of the system. For droplets in concentrated micellar surfactant solutions the oscillatory surface forces become operative and one can observe several minima of the energy surface,each corresponding to a metastable state with a different number of micellar layers inside the film formed between the droplets. The present theoretical analysis can find applications in predicting the behavior and stability of miniemulsions (containing micrometer and submicrometer droplets), as well as in interpretation of data obtained by light scattering, phase behavior, rheological and osmotic pressure measurements, etc.« less

  3. Modelling of the plastic deformation and primary creep of metals coupled with DC in terms of the synthetic theory of irrecoverable deformation

    NASA Astrophysics Data System (ADS)

    Rusinko, Andrew; Varga, Peter

    2018-04-01

    The paper deals with modelling of the plastic and creep deformation of metals coupled with current. The passage of DC manifests itself in the increase in creep deformation and leads to primary creep time shortening. With plastic deformation, a short electric impulse results in the step-wise decrease of stress (stress-drop) on the stress-strain diagram. To catch these phenomena, we utilize the synthetic theory of recoverable deformation. The constitutive equation of this theory is supplemented by a term taking into account the intensity of DC. Further, we introduce DC intensity into the function governing transient creep. As a result, we predict the parameters of transient creep and calculate the stress-drop as a function of current intensity. The model results show good agreement with experimental data.

  4. Deformable three-dimensional model architecture for interactive augmented reality in minimally invasive surgery.

    PubMed

    Vemuri, Anant S; Wu, Jungle Chi-Hsiang; Liu, Kai-Che; Wu, Hurng-Sheng

    2012-12-01

    Surgical procedures have undergone considerable advancement during the last few decades. More recently, the availability of some imaging methods intraoperatively has added a new dimension to minimally invasive techniques. Augmented reality in surgery has been a topic of intense interest and research. Augmented reality involves usage of computer vision algorithms on video from endoscopic cameras or cameras mounted in the operating room to provide the surgeon additional information that he or she otherwise would have to recognize intuitively. One of the techniques combines a virtual preoperative model of the patient with the endoscope camera using natural or artificial landmarks to provide an augmented reality view in the operating room. The authors' approach is to provide this with the least number of changes to the operating room. Software architecture is presented to provide interactive adjustment in the registration of a three-dimensional (3D) model and endoscope video. Augmented reality including adrenalectomy, ureteropelvic junction obstruction, and retrocaval ureter and pancreas was used to perform 12 surgeries. The general feedback from the surgeons has been very positive not only in terms of deciding the positions for inserting points but also in knowing the least change in anatomy. The approach involves providing a deformable 3D model architecture and its application to the operating room. A 3D model with a deformable structure is needed to show the shape change of soft tissue during the surgery. The software architecture to provide interactive adjustment in registration of the 3D model and endoscope video with adjustability of every 3D model is presented.

  5. Long-term and Short-term Vertical Deformation Rates across the Forearc in the Central Mexican Subduction Zone

    NASA Astrophysics Data System (ADS)

    Ramirez-Herrera, M. T.; Gaidzik, K.; Forman, S. L.; Kostoglodov, V.; Burgmann, R.

    2015-12-01

    Spatial scales of the earthquake cycle, from rapid deformation associated with earthquake rupture to slow deformation associated with interseismic and transient slow-slip behavior, span from fractions of a meter to thousands of kilometers (plate boundaries). Similarly, temporal scales range from seconds during an earthquake rupture to thousands of years of strain accumulation between earthquakes. The complexity of the multiple physical processes operating over this vast range of scales and the limited coverage of observations leads most scientists to focus on a narrow space-time window to isolate just one or a few process. We discuss here preliminary results on the vertical crustal deformation associated with both slow and rapid crustal deformation along a profile across the forearc region of the central Mexican subduction zone on the Guerrero sector, where the Cocos plate underthrusts the North American plate. This sector of the subduction zone is characterized by a particular slab geometry (with zones of rapid bending-unbending of the slab), irregular distributed seismicity, exceptionally large slow slip events (SSE) and non-volcanic tremors (NVT). We used the river network and geomorphic features of the Papagayo River to assess Quaternary crustal deformation. The Papagayo drainage network is strongly controlled by Late Cenozoic tectonic, Holocene and recent earthquake cycle processes. This is particularly true for the southern section of the drainage basin; from the dam in La Venta to the river mouth, where W-E structures commonly offset the course of the main river. River terraces occur along the course of the river at different elevations. We measured the height of a series of terraces and obtained OSL ages on quartz extracts to determine long-term rates of deformation. Finally, we discuss associations of the topography and river characteristics with the Cocos slab geometry, slow earthquakes, crustal deformation, and interseismic deformation.

  6. Microsurgery Simulator of Cerebral Aneurysm Clipping with Interactive Cerebral Deformation Featuring a Virtual Arachnoid.

    PubMed

    Shono, Naoyuki; Kin, Taichi; Nomura, Seiji; Miyawaki, Satoru; Saito, Toki; Imai, Hideaki; Nakatomi, Hirofumi; Oyama, Hiroshi; Saito, Nobuhito

    2018-05-01

    A virtual reality simulator for aneurysmal clipping surgery is an attractive research target for neurosurgeons. Brain deformation is one of the most important functionalities necessary for an accurate clipping simulator and is vastly affected by the status of the supporting tissue, such as the arachnoid membrane. However, no virtual reality simulator implementing the supporting tissue of the brain has yet been developed. To develop a virtual reality clipping simulator possessing interactive brain deforming capability closely dependent on arachnoid dissection and apply it to clinical cases. Three-dimensional computer graphics models of cerebral tissue and surrounding structures were extracted from medical images. We developed a new method for modifiable cerebral tissue complex deformation by incorporating a nonmedical image-derived virtual arachnoid/trabecula in a process called multitissue integrated interactive deformation (MTIID). MTIID made it possible for cerebral tissue complexes to selectively deform at the site of dissection. Simulations for 8 cases of actual clipping surgery were performed before surgery and evaluated for their usefulness in surgical approach planning. Preoperatively, each operative field was precisely reproduced and visualized with the virtual brain retraction defined by users. The clear visualization of the optimal approach to treating the aneurysm via an appropriate arachnoid incision was possible with MTIID. A virtual clipping simulator mainly focusing on supporting tissues and less on physical properties seemed to be useful in the surgical simulation of cerebral aneurysm clipping. To our knowledge, this article is the first to report brain deformation based on supporting tissues.

  7. Modulation of Ca2+ Activity in Cardiomyocytes through Caveolae-Gαq Interactions

    PubMed Central

    Guo, Yuanjian; Golebiewska, Urszula; Scarlata, Suzanne

    2011-01-01

    Cardiomyocytes have a complex Ca2+ behavior and changes in this behavior may underlie certain disease states. Intracellular Ca2+ activity can be regulated by the phospholipase Cβ–Gαq pathway localized on the plasma membrane. The plasma membranes of cardiomycoytes are rich in caveolae domains organized by caveolin proteins. Caveolae may indirectly affect cell signals by entrapping and localizing specific proteins. Recently, we found that caveolin may specifically interact with activated Gαq, which could affect Ca2+ signals. Here, using fluorescence imaging and correlation techniques we show that Gαq-Gβγ subunits localize to caveolae in adult ventricular canine cardiomyoctyes. Carbachol stimulation releases Gβγ subunits from caveolae with a concurrent stabilization of activated Gαq by caveolin-3 (Cav3). These cells show oscillating Ca2+ waves that are not seen in neonatal cells that do not contain Cav3. Microinjection of a peptide that disrupts Cav3-Gαq association, but not a control peptide, extinguishes the waves. Furthermore, these waves are unchanged with rynaodine treatment, but not seen with treatment of a phospholipase C inhibitor, implying that Cav3-Gαq is responsible for this Ca2+ activity. Taken together, these studies show that caveolae play a direct and active role in regulating basal Ca2+ activity in cardiomyocytes. PMID:21463572

  8. Compact Q-balls and Q-shells in a scalar electrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arodz, H.; Lis, J.

    2009-02-15

    We investigate spherically symmetric nontopological solitons in electrodynamics with a scalar field self-interaction U{approx}|{psi}| taken from the complex signum-Gordon model. We find Q-balls for small absolute values of the total electric charge Q, and Q-shells when |Q| is large enough. In both cases the charge density exactly vanishes outside certain compact regions in the three-dimensional space. The dependence of the total energy E of small Q-balls on the total electric charge has the form E{approx}|Q|{sup 5/6}, while in the case of very large Q-shells, E{approx}|Q|{sup 7/6}.

  9. Sigma model Q-balls and Q-stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verbin, Y.

    2007-10-15

    A new kind of Q-balls is found: Q-balls in a nonlinear sigma model. Their main properties are presented together with those of their self-gravitating generalization, sigma model Q-stars. A simple special limit of solutions which are bound by gravity alone ('sigma stars') is also discussed briefly. The analysis is based on calculating the mass, global U(1) charge and binding energy for families of solutions parametrized by the central value of the scalar field. Two kinds (differing by the potential term) of the new sigma model Q-balls and Q-stars are analyzed. They are found to share some characteristics while differing inmore » other respects like their properties for weak central scalar fields which depend strongly on the form of the potential term. They are also compared with their ordinary counterparts and although similar in some respects, significant differences are found like the existence of an upper bound on the central scalar field. A special subset of the sigma model Q-stars contains those which do not possess a flat space limit. Their relation with sigma star solutions is discussed.« less

  10. Computational material design for Q&P steels with plastic instability theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, G.; Choi, K. S.; Hu, X. H.

    In this paper, the deformation limits of Quenching and Partitioning (Q&P) steels are examined with the plastic instability theory. For this purpose, the constituent phase properties of various Q&P steels were first experimentally obtained, and used to estimate the overall tensile stress-strain curves based on the simple rule of mixture (ROM) with the iso-strain and iso-stress assumptions. Plastic instability theory was then applied to the obtained overall stress-strain curves in order to estimate the deformation limits of the Q&P steels. A parametric study was also performed to examine the effects of various material parameters on the deformation limits of Q&Pmore » steels. Computational material design was subsequently carried out based on the information obtained from the parametric study. The results show that the plastic instability theory with iso-stress-based stress-strain curve may be used to provide the lower bound estimate of the uniform elongation (UE) for the various Q&P steels considered. The results also indicate that higher austenite stability/volume fractions, less strength difference between the primary phases, higher hardening exponents of the constituent phases are generally beneficial for the performance improvement of Q&P steels, and that various material parameters may be concurrently adjusted in a cohesive way in order to improve the performance of Q&P steel. The information from this study may be used to devise new heat treatment parameters and alloying elements to produce Q&P steels with the improved performance.« less

  11. Tracking Cloud Motion and Deformation for Short-Term Photovoltaic Power Forecasting

    NASA Astrophysics Data System (ADS)

    Good, Garrett; Siefert, Malte; Fritz, Rafael; Saint-Drenan, Yves-Marie; Dobschinski, Jan

    2016-04-01

    With the increasing role of photovoltaic power production, the need to accurately forecast and anticipate weather-driven elements like cloud cover has become ever more important. Of particular concern is forecasting on the short-term (up to several hours), for which the most recent full weather simulation may no longer provide the most accurate information in light of real-time satellite measurements. We discuss the application of the image correlation velocimetry technique described by Tokumaru & Dimotakis (1995) (for calculating flow fields from images) to measure deformations of various orders based on recent satellite imagery, with the goal of not only more accurately forecasting the advection of cloud structures, but their continued deformation as well.

  12. Differential Calculus on h-Deformed Spaces

    NASA Astrophysics Data System (ADS)

    Herlemont, Basile; Ogievetsky, Oleg

    2017-10-01

    We construct the rings of generalized differential operators on the h-deformed vector space of gl-type. In contrast to the q-deformed vector space, where the ring of differential operators is unique up to an isomorphism, the general ring of h-deformed differential operators {Diff}_{h},σ(n) is labeled by a rational function σ in n variables, satisfying an over-determined system of finite-difference equations. We obtain the general solution of the system and describe some properties of the rings {Diff}_{h},σ(n).

  13. Optimization of myocardial deformation imaging in term and preterm infants.

    PubMed

    Poon, Chuen Y; Edwards, Julie M; Joshi, Suchita; Kotecha, Sailesh; Fraser, Alan G

    2011-03-01

    Myocardial deformation imaging is now used to assess regional ventricular function in infants but their small size presents particular technical challenges. We therefore investigated the determinants of reproducibility of myocardial longitudinal strain (ε) in term and preterm infants, in order to determine optimal technical settings. Repeated longitudinal ε measurements of the mid-segments of the septum, and the left and right ventricular free walls, were performed using five different computation distances (CDs; also called strain length) in 20 infants. The coefficients of variation (CV) were calculated for each CD. Overall, ε measurements were most reproducible with a CD of 6 mm (CV 11.7%). In preterm infants (<34 weeks gestation; mean ± SD diastolic LV length, 20.3 ± 3.5 mm), ε measurements were most reproducible with CD of 6 mm (CV 7.2%); in term infants (>37 weeks gestation; mean ± SD diastolic LV length, 29.6 ± 3.0 mm), ε measurements were most reproducible with CD of 10 mm (CV 13.2%). The reproducibility of measuring ε increased with higher frame rates, from CV of 17.3% at frame rates <180 per s to 11.7% for frame rates >180 per s and 9.6% for rates >248 per s. In newborn infants, tissue Doppler loops should be acquired at frame rates above 180 per s. Myocardial deformation analysis of preterm infants should be performed using a CD of 6 mm, whereas a CD of 10 mm is more reproducible in term infants.

  14. Finite Element modelling of deformation induced by interacting volcanic sources

    NASA Astrophysics Data System (ADS)

    Pascal, Karen; Neuberg, Jürgen; Rivalta, Eleonora

    2010-05-01

    The displacement field due to magma movements in the subsurface is commonly modelled using the solutions for a point source (Mogi, 1958), a finite spherical source (McTigue, 1987), or a dislocation source (Okada, 1992) embedded in a homogeneous elastic half-space. When the magmatic system comprises more than one source, the assumption of homogeneity in the half-space is violated and several sources are combined, their respective deformation field being summed. We have investigated the effects of neglecting the interaction between sources on the surface deformation field. To do so, we calculated the vertical and horizontal displacements for models with adjacent sources and we tested them against the solutions of corresponding numerical 3D finite element models. We implemented several models combining spherical pressure sources and dislocation sources, varying their relative position. Furthermore we considered the impact of topography, loading, and magma compressibility. To quantify the discrepancies and compare the various models, we calculated the difference between analytical and numerical maximum horizontal or vertical surface displacements.We will demonstrate that for certain conditions combining analytical sources can cause an error of up to 20%. References: McTigue, D. F. (1987), Elastic Stress and Deformation Near a Finite Spherical Magma Body: Resolution of the Point Source Paradox, J. Geophys. Res. 92, 12931-12940. Mogi, K. (1958), Relations between the eruptions of various volcanoes and the deformations of the ground surfaces around them, Bull Earthquake Res Inst, Univ Tokyo 36, 99-134. Okada, Y. (1992), Internal Deformation Due to Shear and Tensile Faults in a Half-Space, Bulletin of the Seismological Society of America 82(2), 1018-1040.

  15. Atomic resolution model of the antibody Fc interaction with the complement C1q component.

    PubMed

    Schneider, Sebastian; Zacharias, Martin

    2012-05-01

    The globular C1q heterotrimer is a subunit of the C1 complement factor. Binding of the C1q subunit to the constant (Fc) part of antibody molecules is a first step and key event of complement activation. Although three-dimensional structures of C1q and antibody Fc subunits have been determined experimentally no atomic resolution structure of the C1q-Fc complex is known so far. Based on systematic protein-protein docking searches and Molecular Dynamics simulations a structural model of the C1q-IgG1-Fc-binding geometry has been obtained. The structural model is compatible with available experimental data on the interaction between the two partner proteins. It predicts a binding geometry that involves mainly the B-subunit of the C1q-trimer and both subunits of the IgG1-Fc-dimer with small conformational adjustments with respect to the unbound partners to achieve high surface complementarity. In addition to several charge-charge and polar contacts in the rim region of the interface it also involves nonpolar contacts between the two proteins and is compatible with the carbohydrate moiety of the Fc subunit. The model for the complex structure provides a working model for rationalizing available biochemical data on this important interaction and can form the basis for the design of Fc variants with a greater capacity to activate the complement system for example on binding to cancer cells or other target structures. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Adhesive interaction of elastically deformable spherical particles

    NASA Astrophysics Data System (ADS)

    D'yachenko, E. N.; Dueck, J. G.

    2012-01-01

    Two spherical particles that attract each other by van der Waals volume forces and can undergo deformation as a result of the attraction are considered. Small deformations of such particles can be described by the solution of the Hertz problem. The deformation of particles, in turn, alters the force of attraction between them. It has been established that the relationship between the adhesion and elasticity of the indicated particles is determined by the degree to which these particles deform and that the adhesion force acting between the particles depends on their elasticity, size, and the Hamaker constants.

  17. Consequences of long-term oral administration of the mitochondria-targeted antioxidant MitoQ to wild-type mice.

    PubMed

    Rodriguez-Cuenca, Sergio; Cochemé, Helena M; Logan, Angela; Abakumova, Irina; Prime, Tracy A; Rose, Claudia; Vidal-Puig, Antonio; Smith, Anthony C; Rubinsztein, David C; Fearnley, Ian M; Jones, Bruce A; Pope, Simon; Heales, Simon J R; Lam, Brian Y H; Neogi, Sudeshna Guha; McFarlane, Ian; James, Andrew M; Smith, Robin A J; Murphy, Michael P

    2010-01-01

    The mitochondria-targeted quinone MitoQ protects mitochondria in animal studies of pathologies in vivo and is being developed as a therapy for humans. However, it is unclear whether the protective action of MitoQ is entirely due to its antioxidant properties, because long-term MitoQ administration may alter whole-body metabolism and gene expression. To address this point, we administered high levels of MitoQ orally to wild-type C57BL/6 mice for up to 28 weeks and investigated the effects on whole-body physiology, metabolism, and gene expression, finding no measurable deleterious effects. In addition, because antioxidants can act as pro-oxidants under certain conditions in vitro, we examined the effects of MitoQ administration on markers of oxidative damage. There were no changes in the expression of mitochondrial or antioxidant genes as assessed by DNA microarray analysis. There were also no increases in oxidative damage to mitochondrial protein, DNA, or cardiolipin, and the activities of mitochondrial enzymes were unchanged. Therefore, MitoQ does not act as a pro-oxidant in vivo. These findings indicate that mitochondria-targeted antioxidants can be safely administered long-term to wild-type mice. Copyright 2009 Elsevier Inc. All rights reserved.

  18. On precisely modelling surface deformation due to interacting magma chambers and dykes

    NASA Astrophysics Data System (ADS)

    Pascal, Karen; Neuberg, Jurgen; Rivalta, Eleonora

    2014-01-01

    Combined data sets of InSAR and GPS allow us to observe surface deformation in volcanic settings. However, at the vast majority of volcanoes, a detailed 3-D structure that could guide the modelling of deformation sources is not available, due to the lack of tomography studies, for example. Therefore, volcano ground deformation due to magma movement in the subsurface is commonly modelled using simple point (Mogi) or dislocation (Okada) sources, embedded in a homogeneous, isotropic and elastic half-space. When data sets are too complex to be explained by a single deformation source, the magmatic system is often represented by a combination of these sources and their displacements fields are simply summed. By doing so, the assumption of homogeneity in the half-space is violated and the resulting interaction between sources is neglected. We have quantified the errors of such a simplification and investigated the limits in which the combination of analytical sources is justified. We have calculated the vertical and horizontal displacements for analytical models with adjacent deformation sources and have tested them against the solutions of corresponding 3-D finite element models, which account for the interaction between sources. We have tested various double-source configurations with either two spherical sources representing magma chambers, or a magma chamber and an adjacent dyke, modelled by a rectangular tensile dislocation or pressurized crack. For a tensile Okada source (representing an opening dyke) aligned or superposed to a Mogi source (magma chamber), we find the discrepancies with the numerical models to be insignificant (<5 per cent) independently of the source separation. However, if a Mogi source is placed side by side to an Okada source (in the strike-perpendicular direction), we find the discrepancies to become significant for a source separation less than four times the radius of the magma chamber. For horizontally or vertically aligned pressurized

  19. Unveiling the Universality of I-Love-Q Relations

    NASA Astrophysics Data System (ADS)

    Sham, Y.-H.; Chan, T. K.; Lin, L.-M.; Leung, P. T.

    2015-01-01

    The recent discovery of the universal I-Love-Q relations connecting the moment of inertia, tidal deformability, and the spin-induced quadrupole moment of compact stars is intriguing and totally unexpected. In this paper, we provide numerical evidence showing that the universality can be attributed to the incompressible limit of the I-Love-Q relations. The fact that modern equations of state are stiff, with an effective adiabatic index larger than about two, above the nuclear density range is the key to establishing the universality for neutron stars and quark stars with typical compactness from about 0.1 to 0.3. On the other hand, the I-Love-Q relations of low-mass neutron stars near the minimum mass limit depend more sensitively on the underlying equation of state because these stars are composed mainly of softer matter at low densities. However, the I-Love-Q relations for low-mass quark stars can still be represented accurately by the incompressible limit. We also study the I-Love relation connecting the moment of inertia and tidal deformability analytically in Newtonian gravity and show why the I-Love-Q relation is weakly dependent on the underlying equation of state and can be attributed to its incompressible limit.

  20. Genome-wide detection of CNVs associated with beak deformity in chickens using high-density 600K SNP arrays.

    PubMed

    Bai, H; Sun, Y; Liu, N; Liu, Y; Xue, F; Li, Y; Xu, S; Ni, A; Ye, J; Chen, Y; Chen, J

    2018-06-01

    Beak deformity (crossed beaks) is found in several indigenous chicken breeds including Beijing-You studied here. Birds with deformed beaks have reduced feed intake and poor production performance. Recently, copy number variation (CNV) has been examined in many species and is recognized as a source of genetic variation, especially for disease phenotypes. In this study, to unravel the genetic mechanisms underlying beak deformity, we performed genome-wide CNV detection using Affymetrix chicken high-density 600K data on 48 deformed-beak and 48 normal birds using penncnv. As a result, two and eight CNV regions (CNVRs) covering 0.32 and 2.45 Mb respectively on autosomes were identified in deformed-beak and normal birds respectively. Further RT-qPCR studies validated nine of the 10 CNVRs. The ratios of six CNVRs were significantly different between deformed-beak and normal birds (P < 0.01). Within these six regions, three and 21 known genes were identified in deformed-beak and normal birds respectively. Bioinformatics analysis showed that these genes were enriched in six GO terms and one KEGG pathway. Five candidate genes in the CNVRs were further validated using RT-qPCR. The expression of LRIG2 (leucine rich repeats and immunoglobulin like domains 2) was lower in birds with deformed beaks (P < 0.01). Therefore, the LRIG2 gene could be considered a key factor in view of its known functions and its potential roles in beak deformity. Overall, our results will be helpful for future investigations of the genomic structural variations underlying beak deformity in chickens. © 2018 Stichting International Foundation for Animal Genetics.

  1. Long-Term Serological Follow-Up of Acute Q-Fever Patients after a Large Epidemic

    PubMed Central

    Wielders, Cornelia C. H.; van Loenhout, Joris A. F.; Morroy, Gabriëlla; Rietveld, Ariene; Notermans, Daan W.; Wever, Peter C.; Renders, Nicole H. M.; Leenders, Alexander C. A. P.; van der Hoek, Wim; Schneeberger, Peter M.

    2015-01-01

    Background Serological follow-up of acute Q-fever patients is important for detection of chronic infection but there is no consensus on its frequency and duration. The 2007–2009 Q-fever epidemic in the Netherlands allowed for long-term follow-up of a large cohort of acute Q-fever patients. The aim of this study was to validate the current follow-up strategy targeted to identify patients with chronic Q-fever. Methods A cohort of adult acute Q-fever patients, diagnosed between 2007 and 2009, for whom a twelve-month follow-up sample was available, was invited to complete a questionnaire and provide a blood sample, four years after the acute episode. Antibody profiles, determined by immunofluorescence assay in serum, were investigated with a special focus on high titres of IgG antibodies against phase I of Coxiella burnetii, as these are considered indicative for possible chronic Q-fever. Results Of the invited 1,907 patients fulfilling inclusion criteria, 1,289 (67.6%) were included in the analysis. At any time during the four-year follow-up period, 58 (4.5%) patients were classified as possible, probable, or proven chronic Q-fever according to the Dutch Q-fever Consensus Group criteria (which uses IgG phase I ≥1:1,024 to as serologic criterion for chronic Q-fever). Fifty-two (89.7%) of these were identified within the first year after the acute episode. Of the six patients that were detected for the first time at four-year follow-up, five had an IgG phase I titre of 1:512 at twelve months. Conclusions A twelve-month follow-up check after acute Q-fever is recommended as it adequately detects chronic Q-fever in patients without known risk factors. Additional serological and clinical follow-up is recommended for patients with IgG phase I ≥1:512, as they showed the highest risk to progress to chronic Q-fever. PMID:26161658

  2. Structure and Function of Interacting IcmR-IcmQ Domains from a Type IVb Secretion System in Legionella pneumophila

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raychaudhury, S.; Farelli, J; Montminy, T

    2009-01-01

    During infection, Legionella pneumophila creates a replication vacuole within eukaryotic cells and this requires a Type IVb secretion system (T4bSS). IcmQ plays a critical role in the translocase and associates with IcmR. In this paper, we show that the N-terminal domain of IcmQ (Qn) mediates self-dimerization, whereas the C-terminal domain with a basic linker promotes membrane association. In addition, the binding of IcmR to IcmQ prevents self-dimerization and also blocks membrane permeabilization. However, IcmR does not completely block membrane binding by IcmQ. We then determined crystal structures of Qn with the interacting region of IcmR. In this complex, each proteinmore » forms an ?-helical hairpin within a parallel four-helix bundle. The amphipathic nature of helices in Qn suggests two possible models for membrane permeabilization by IcmQ. The Rm-Qn structure also suggests how IcmR-like proteins in other L. pneumophila species may interact with their IcmQ partners.« less

  3. Chromosome 10q tetrasomy: First reported case

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blackston, R.D.; May, K.M.; Jones, F.D.

    1994-09-01

    While there are several reports of trisomy 10q (at least 35), we are not aware of previous cases of 10q tetrasomy. We present what we believe to be the initial report of such a case. R.J. is a 6 1/2 year old white male who presented with multiple dysmorphic features, marked articulation problems, hyperactivity, and developmental delays. He is the product of a term uncomplicated pregnancy. There was a normal spontaneous vaginal delivery with a birth weight of 6 lbs. 4oz. and length was 19 1/2 inch. Dysmorphic features include small size, an asymmetrically small head, low set ears withmore » overfolded helixes, bilateral ptosis, downslanting eyes, right eye esotropia, prominent nose, asymmetric facies, high palate, mild pectus excavatum deformity of chest, and hyperextensible elbow joints. The patient is in special needs classes for mildly mentally handicapped students. Chromosome analysis at a resolution of 800 bands revealed a complex rearrangement of chromosomes 10 and 11. The segment 10q25.3 to q16.3 appears to be inverted and duplicated within the long arm of chromosome 10 at band q25.3 and the same segment of chromosome 10 is present on the terminal end of the short arm of chromosome 11. There is no visible loss of material from chromosome 11. Fluorescence in situ hybridization was performed with a chromosome 10 specific {open_quotes}paint{close_quotes} to confirm that all of the material on the abnormal 10 and the material on the terminal short arm of 11 was from chromosome 10. Thus, it appears that the segment 10q25.3 to q26.3 is present in four copies. Parental chromosome studies are normal. We compared findings which differ in that the case of 10q tetrasomy did not have prenatal growth deficiency, microphthalmia, cleft palate, digital anomalies, heart, or renal defects. Whereas most cases of 10q trisomy are said to have severe mental deficiency, our case of 10q tetrasomy was only mildly delayed. We report this first apparent cited case of 10q tetrasomy.« less

  4. Coupled electrostatic and material surface stresses yield anomalous particle interactions and deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kemp, B. A., E-mail: bkemp@astate.edu; Nikolayev, I.; Sheppard, C. J.

    2016-04-14

    Like-charges repel, and opposite charges attract. This fundamental tenet is a result of Coulomb's law. However, the electrostatic interactions between dielectric particles remain topical due to observations of like-charged particle attraction and the self-assembly of colloidal systems. Here, we show, using both an approximate description and an exact solution of Maxwell's equations, that nonlinear charged particle forces result even for linear material systems and can be responsible for anomalous electrostatic interactions such as like-charged particle attraction and oppositely charged particle repulsion. Furthermore, these electrostatic interactions and the deformation of such particles have fundamental implications for our understanding of macroscopic electrodynamics.

  5. Complex multireference configuration interaction calculations for the K-vacancy Auger states of N{sup q+} (q = 2-5) ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Yi-Geng; Data Center for High Energy Density Physics, Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088; Wu, Yong, E-mail: wu-yong@iapcm.ac.cn

    2016-02-07

    K-vacancy Auger states of N{sup q+} (q = 2-5) ions are studied by using the complex multireference single- and double-excitation configuration interaction (CMRD-CI) method. The calculated resonance parameters are in good agreement with the available experimental and theoretical data. It shows that the resonance positions and widths converge quickly with the increase of the atomic basis sets in the CMRD-CI calculations; the standard atomic basis set can be employed to describe the atomic K-vacancy Auger states well. The strong correlations between the valence and core electrons play important roles in accurately determining those resonance parameters, Rydberg electrons contribute negligibly inmore » the calculations. Note that it is the first time that the complex scaling method has been successfully applied for the B-like nitrogen. CMRD-CI is readily extended to treat the resonance states of molecules in the near future.« less

  6. Genomewide Linkage Scan for Split–Hand/Foot Malformation with Long-Bone Deficiency in a Large Arab Family Identifies Two Novel Susceptibility Loci on Chromosomes 1q42.2-q43 and 6q14.1

    PubMed Central

    Naveed, Mohammed; Nath, Swapan K.; Gaines, Mathew; Al-Ali, Mahmoud T.; Al-Khaja, Najib; Hutchings, David; Golla, Jeffrey; Deutsch, Samuel; Bottani, Armand; Antonarakis, Stylianos E.; Ratnamala, Uppala; Radhakrishna, Uppala

    2007-01-01

    Split–hand/foot malformation with long-bone deficiency (SHFLD) is a rare, severe limb deformity characterized by tibia aplasia with or without split-hand/split-foot deformity. Identification of genetic susceptibility loci for SHFLD has been unsuccessful because of its rare incidence, variable phenotypic expression and associated anomalies, and uncertain inheritance pattern. SHFLD is usually inherited as an autosomal dominant trait with reduced penetrance, although recessive inheritance has also been postulated. We conducted a genomewide linkage analysis, using a 10K SNP array in a large consanguineous family (UR078) from the United Arab Emirates (UAE) who had disease transmission consistent with an autosomal dominant inheritance pattern. The study identified two novel SHFLD susceptibility loci at 1q42.2-q43 (nonparametric linkage [NPL] 9.8, P=.000065) and 6q14.1 (NPL 7.12, P=.000897). These results were also supported by multipoint parametric linkage analysis. Maximum multipoint LOD scores of 3.20 and 3.78 were detected for genomic locations 1q42.2-43 and 6q14.1, respectively, with the use of an autosomal dominant mode of inheritance with reduced penetrance. Haplotype analysis with informative crossovers enabled mapping of the SHFLD loci to a region of ∼18.38 cM (8.4 Mb) between single-nucleotide polymorphisms rs1124110 and rs535043 on 1q42.2-q43 and to a region of ∼1.96 cM (4.1 Mb) between rs623155 and rs1547251 on 6q14.1. The study identified two novel loci for the SHFLD phenotype in this UAE family. PMID:17160898

  7. Reconciling GRACE and GPS estimates of long-term load deformation in southern Greenland

    NASA Astrophysics Data System (ADS)

    Wang, Song-Yun; Chen, J. L.; Wilson, Clark R.; Li, Jin; Hu, Xiaogong

    2018-02-01

    We examine vertical load deformation at four continuous Global Positioning System (GPS) sites in southern Greenland relative to Gravity Recovery and Climate Experiment (GRACE) predictions of vertical deformation over the period 2002-2016. With limited spatial resolution, GRACE predictions require adjustment before they can be compared with GPS height time series. Without adjustment, both GRACE spherical harmonic (SH) and mascon solutions predict significant vertical displacement rate differences relative to GPS. We use a scaling factor method to adjust GRACE results, based on a long-term mass rate model derived from GRACE measurements, glacial geography, and ice flow data. Adjusted GRACE estimates show significantly improved agreement with GPS, both in terms of long-term rates and interannual variations. A deceleration of mass loss is observed in southern Greenland since early 2013. The success at reconciling GPS and GRACE observations with a more detailed mass rate model demonstrates the high sensitivity to load distribution in regions surrounding GPS stations. Conversely, the value of GPS observations in constraining mass changes in surrounding regions is also demonstrated. In addition, our results are consistent with recent estimates of GIA uplift (˜4.4 mm yr-1) at the KULU site.

  8. Complex patchy colloids shaped from deformable seed particles through capillary interactions.

    PubMed

    Meester, V; Kraft, D J

    2018-02-14

    We investigate the mechanisms underlying the reconfiguration of random aggregates of spheres through capillary interactions, the so-called "colloidal recycling" method, to fabricate a wide variety of patchy particles. We explore the influence of capillary forces on clusters of deformable seed particles by systematically varying the crosslink density of the spherical seeds. Spheres with a poorly crosslinked polymer network strongly deform due to capillary forces and merge into large spheres. With increasing crosslink density and therefore rigidity, the shape of the spheres is increasingly preserved during reconfiguration, yielding patchy particles of well-defined shape for up to five spheres. In particular, we find that the aspect ratio between the length and width of dumbbells, L/W, increases with the crosslink density (cd) as L/W = B - A·exp(-cd/C). For clusters consisting of more than five spheres, the particle deformability furthermore determines the patch arrangement of the resulting particles. The reconfiguration pathway of clusters of six densely or poorly crosslinked seeds leads to octahedral and polytetrahedral shaped patchy particles, respectively. For seven particles several geometries were obtained with a preference for pentagonal dipyramids by the rigid spheres, while the soft spheres do rarely arrive in these structures. Even larger clusters of over 15 particles form non-uniform often aspherical shapes. We discuss that the reconfiguration pathway is largely influenced by confinement and geometric constraints. The key factor which dominates during reconfiguration depends on the deformability of the spherical seed particles.

  9. Deformation and stress change associated with plate interaction at subduction zones: a kinematic modelling

    NASA Astrophysics Data System (ADS)

    Zhao, Shaorong; Takemoto, Shuzo

    2000-08-01

    The interseismic deformation associated with plate coupling at a subduction zone is commonly simulated by the steady-slip model in which a reverse dip-slip is imposed on the down-dip extension of the locked plate interface, or by the backslip model in which a normal slip is imposed on the locked plate interface. It is found that these two models, although totally different in principle, produce similar patterns for the vertical deformation at a subduction zone. This suggests that it is almost impossible to distinguish between these two models by analysing only the interseismic vertical deformation observed at a subduction zone. The steady-slip model cannot correctly predict the horizontal deformation associated with plate coupling at a subduction zone, a fact that is proved by both the numerical modelling in this study and the GPS (Global Positioning System) observations near the Nankai trough, southwest Japan. It is therefore inadequate to simulate the effect of the plate coupling at a subduction zone by the steady-slip model. It is also revealed that the unphysical assumption inherent in the backslip model of imposing a normal slip on the locked plate interface makes it impossible to predict correctly the horizontal motion of the subducted plate and the stress change within the overthrust zone associated with the plate coupling during interseismic stages. If the analysis made in this work is proved to be correct, some of the previous studies on interpreting the interseismic deformation observed at several subduction zones based on these two models might need substantial revision. On the basis of the investigations on plate interaction at subduction zones made using the finite element method and the kinematic/mechanical conditions of the plate coupling implied by the present plate tectonics, a synthesized model is proposed to simulate the kinematic effect of the plate interaction during interseismic stages. A numerical analysis shows that the proposed model

  10. Fermi-Pasta-Ulam-Tsingou problems: Passage from Boltzmann to q-statistics

    NASA Astrophysics Data System (ADS)

    Bagchi, Debarshee; Tsallis, Constantino

    2018-02-01

    The Fermi-Pasta-Ulam (FPU) one-dimensional Hamiltonian includes a quartic term which guarantees ergodicity of the system in the thermodynamic limit. Consistently, the Boltzmann factor P(ε) ∼e-βε describes its equilibrium distribution of one-body energies, and its velocity distribution is Maxwellian, i.e., P(v) ∼e - βv2 /2. We consider here a generalized system where the quartic coupling constant between sites decays as 1 / dijα (α ≥ 0 ;dij = 1 , 2 , …) . Through first-principle molecular dynamics we demonstrate that, for large α (above α ≃ 1), i.e., short-range interactions, Boltzmann statistics (based on the additive entropic functional SB [ P(z) ] = - k ∫ dzP(z) ln P(z)) is verified. However, for small values of α (below α ≃ 1), i.e., long-range interactions, Boltzmann statistics dramatically fails and is replaced by q-statistics (based on the nonadditive entropic functional Sq [ P(z) ] = k(1 - ∫ dz[ P(z) ]q) /(q - 1) , with S1 =SB). Indeed, the one-body energy distribution is q-exponential, P(ε) ∼ eqε-βε ε ≡[ 1 +(qε - 1) βε ε ]-1 /(qε - 1) with qε > 1, and its velocity distribution is given by P(v) ∼ eqv-βvv2 / 2 with qv > 1. Moreover, within small error bars, we verify qε =qv = q, which decreases from an extrapolated value q ≃ 5 / 3 to q = 1 when α increases from zero to α ≃ 1, and remains q = 1 thereafter.

  11. UNVEILING THE UNIVERSALITY OF I-LOVE-Q RELATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sham, Y.-H.; Lin, L.-M.; Leung, P. T.

    The recent discovery of the universal I-Love-Q relations connecting the moment of inertia, tidal deformability, and the spin-induced quadrupole moment of compact stars is intriguing and totally unexpected. In this paper, we provide numerical evidence showing that the universality can be attributed to the incompressible limit of the I-Love-Q relations. The fact that modern equations of state are stiff, with an effective adiabatic index larger than about two, above the nuclear density range is the key to establishing the universality for neutron stars and quark stars with typical compactness from about 0.1 to 0.3. On the other hand, the I-Love-Qmore » relations of low-mass neutron stars near the minimum mass limit depend more sensitively on the underlying equation of state because these stars are composed mainly of softer matter at low densities. However, the I-Love-Q relations for low-mass quark stars can still be represented accurately by the incompressible limit. We also study the I-Love relation connecting the moment of inertia and tidal deformability analytically in Newtonian gravity and show why the I-Love-Q relation is weakly dependent on the underlying equation of state and can be attributed to its incompressible limit.« less

  12. Interaction of the mitochondria-targeted antioxidant MitoQ with phospholipid bilayers and ubiquinone oxidoreductases.

    PubMed

    James, Andrew M; Sharpley, Mark S; Manas, Abdul-Rahman B; Frerman, Frank E; Hirst, Judy; Smith, Robin A J; Murphy, Michael P

    2007-05-18

    MitoQ(10) is a ubiquinone that accumulates within mitochondria driven by a conjugated lipophilic triphenylphosphonium cation (TPP(+)). Once there, MitoQ(10) is reduced to its active ubiquinol form, which has been used to prevent mitochondrial oxidative damage and to infer the involvement of reactive oxygen species in signaling pathways. Here we show MitoQ(10) is effectively reduced by complex II, but is a poor substrate for complex I, complex III, and electron-transferring flavoprotein (ETF):quinone oxidoreductase (ETF-QOR). This differential reactivity could be explained if the bulky TPP(+) moiety sterically hindered access of the ubiquinone group to enzyme active sites with a long, narrow access channel. Using a combination of molecular modeling and an uncharged analog of MitoQ(10) with similar sterics (tritylQ(10)), we infer that the interaction of MitoQ(10) with complex I and ETF-QOR, but not complex III, is inhibited by its bulky TPP(+) moiety. To explain its lack of reactivity with complex III we show that the TPP(+) moiety of MitoQ(10) is ineffective at quenching pyrene fluorophors deeply buried within phospholipid bilayers and thus is positioned near the membrane surface. This superficial position of the TPP(+) moiety, as well as the low solubility of MitoQ(10) in non-polar organic solvents, suggests that the concentration of the entire MitoQ(10) molecule in the membrane core is very limited. As overlaying MitoQ(10) onto the structure of complex III indicates that MitoQ(10) cannot react with complex III without its TPP(+) moiety entering the low dielectric of the membrane core, we conclude that the TPP(+) moiety does anchor the tethered ubiquinol group out of reach of the active site(s) of complex III, thus explaining its slow oxidation. In contrast the ubiquinone moiety of MitoQ(10) is able to quench fluorophors deep within the membrane core, indicating a high concentration of the ubiquinone moiety within the membrane and explaining its good anti

  13. Interactive deformation registration of endorectal prostate MRI using ITK thin plate splines.

    PubMed

    Cheung, M Rex; Krishnan, Karthik

    2009-03-01

    Magnetic resonance imaging with an endorectal coil allows high-resolution imaging of prostate cancer and the surrounding normal organs. These anatomic details can be used to direct radiotherapy. However, organ deformation introduced by the endorectal coil makes it difficult to register magnetic resonance images for treatment planning. In this study, plug-ins for the volume visualization software VolView were implemented on the basis of algorithms from the National Library of Medicine's Insight Segmentation and Registration Toolkit (ITK). Magnetic resonance images of a phantom simulating human pelvic structures were obtained with and without the endorectal coil balloon inflated. The prostate not deformed by the endorectal balloon was registered to the deformed prostate using an ITK thin plate spline (TPS). This plug-in allows the use of crop planes to limit the deformable registration in the region of interest around the prostate. These crop planes restricted the support of the TPS to the area around the prostate, where most of the deformation occurred. The region outside the crop planes was anchored by grid points. The TPS was more accurate in registering the local deformation of the prostate compared with a TPS variant, the elastic body spline. The TPS was also applied to register an in vivo T(2)-weighted endorectal magnetic resonance image. The intraprostatic tumor was accurately registered. This could potentially guide the boosting of intraprostatic targets. The source and target landmarks were placed graphically. This TPS plug-in allows the registration to be undone. The landmarks could be added, removed, and adjusted in real time and in three dimensions between repeated registrations. This interactive TPS plug-in allows a user to obtain a high level of accuracy satisfactory to a specific application efficiently. Because it is open-source software, the imaging community will be able to validate and improve the algorithm.

  14. Rapid quantification of plant-powdery mildew interactions by qPCR and conidiospore counts.

    PubMed

    Weßling, Ralf; Panstruga, Ralph

    2012-08-31

    The powdery mildew disease represents a valuable patho-system to study the interaction between plant hosts and obligate biotrophic fungal pathogens. Numerous discoveries have been made on the basis of the quantitative evaluation of plant-powdery mildew interactions, especially in the context of hyper-susceptible and/or resistant plant mutants. However, the presently available methods to score the pathogenic success of powdery mildew fungi are laborious and thus not well suited for medium- to high-throughput analysis. Here we present two new protocols that allow the rapid quantitative assessment of powdery mildew disease development. One procedure depends on quantitative polymerase chain reaction (qPCR)-based evaluation of fungal biomass, while the other relies on the quantification of fungal conidiospores. We validated both techniques using the powdery mildew pathogen Golovinomyces orontii on a set of hyper-susceptible and resistant Arabidopsis thaliana mutants and found that both cover a wide dynamic range of one to two (qPCR) and four to five (quantification of conidia) orders of magnitude, respectively. The two approaches yield reproducible results and are easy to perform without specialized equipment. The qPCR and spore count assays rapidly and reproducibly quantify powdery mildew pathogenesis. Our methods are performed at later stages of infection and discern mutant phenotypes accurately. The assays therefore complement currently used procedures of powdery mildew quantification and can overcome some of their limitations. In addition, they can easily be adapted to other plant-powdery mildew patho-systems.

  15. T -folds from Yang-Baxter deformations

    NASA Astrophysics Data System (ADS)

    Fernández-Melgarejo, José J.; Sakamoto, Jun-ichi; Sakatani, Yuho; Yoshida, Kentaroh

    2017-12-01

    Yang-Baxter (YB) deformations of type IIB string theory have been well studied from the viewpoint of classical integrability. Most of the works, however, are focused upon the local structure of the deformed geometries and the global structure still remains unclear. In this work, we reveal a non-geometric aspect of YB-deformed backgrounds as T -fold by explicitly showing the associated O( D, D; ℤ) T -duality monodromy. In particular, the appearance of an extra vector field in the generalized supergravity equations (GSE) leads to the non-geometric Q-flux. In addition, we study a particular solution of GSE that is obtained by a non-Abelian T-duality but cannot be expressed as a homogeneous YB deformation, and show that it can also be regarded as a T -fold. This result indicates that solutions of GSE should be non-geometric quite in general beyond the YB deformation.

  16. Modeling Membrane Deformations and Lipid Demixing upon Protein-Membrane Interaction: The BAR Dimer Adsorption

    PubMed Central

    Khelashvili, George; Harries, Daniel; Weinstein, Harel

    2009-01-01

    We use a self-consistent mean-field theory, designed to investigate membrane reshaping and lipid demixing upon interaction with proteins, to explore BAR domains interacting with large patches of lipid membranes of heterogeneous compositions. The computational model includes contributions to the system free energy from electrostatic interactions and elastic energies of the membrane, as well as salt and lipid mixing entropies. The results from our simulation of a single adsorbing Amphiphysin BAR dimer indicate that it is capable of stabilizing a significantly curved membrane. However, we predict that such deformations will occur only for membrane patches that have the inherent propensity for high curvature, reflected in the tendency to create local distortions that closely match the curvature of the BAR dimer itself. Such favorable preconditioning for BAR-membrane interaction may be the result of perturbations such as local lipid demixing induced by the interaction, or of a prior insertion of the BAR domain's amphiphatic N-helix. From our simulations it appears that local segregation of charged lipids under the influence of the BAR dimer cannot produce high enough asymmetry between bilayer leaflets to induce significant bending. In the absence of additional energy contributions that favor membrane asymmetry, the membrane will remain nearly flat upon single BAR dimer adsorption, relative to the undulation expected from thermal fluctuations. Thus, we conclude that the N-helix insertions have a critical mechanistic role in the local perturbation and curving of the membrane, which is then stabilized by the electrostatic interaction with the BAR dimer. We discuss how these results can be used to estimate the tendency of BARs to bend membranes in terms of a spatially nonisotropic spontaneous curvature. PMID:19751667

  17. Teaching Interpersonal Communication through an Analysis of Students' Initial Interaction: A Q-Methodological Study of Styles in Meeting People.

    ERIC Educational Resources Information Center

    Aitken, Joan E.

    A study categorized self-perceptions of subjects regarding their feelings about initial communication interaction. Using Q-Technique, a total of 138 subjects, mostly students at a midsized, midwestern, urban university enrolled in interpersonal communication courses, were studied through the use of two structured Q-sorts containing statements…

  18. Rate and state dependent processes in sea ice deformation

    NASA Astrophysics Data System (ADS)

    Sammonds, P. R.; Scourfield, S.; Lishman, B.

    2014-12-01

    Realistic models of sea ice processes and properties are needed to assess sea ice thickness, extent and concentration and, when run within GCMs, provide prediction of climate change. The deformation of sea ice is a key control on the Arctic Ocean dynamics. But the deformation of sea ice is dependent not only on the rate of the processes involved but also the state of the sea ice and particular in terms of its evolution with time and temperature. Shear deformation is a dominant mechanism from the scale of basin-scale shear lineaments, through floe-floe interaction to block sliding in ice ridges. The shear deformation will not only depend on the speed of movement of ice surfaces but also the degree that the surfaces have bonded during thermal consolidation and compaction. Frictional resistance to sliding can vary by more than two orders of magnitude depending on the state of the interface. But this in turn is dependent upon both imposed conditions and sea ice properties such as size distribution of interfacial broken ice, angularity, porosity, salinity, etc. We review experimental results in sea ice mechanics from mid-scale experiments, conducted in the Hamburg model ship ice tank, simulating sea ice floe motion and interaction and compare these with laboratory experiments on ice friction done in direct shear from which a rate and state constitutive relation for shear deformation is derived. Finally we apply this to field measurement of sea ice friction made during experiments in the Barents Sea to assess the other environmental factors, the state terms, that need to be modelled in order to up-scale to Arctic Ocean-scale dynamics.

  19. Tsallis q-triplet, intermittent turbulence and Portevin-Le Chatelier effect

    NASA Astrophysics Data System (ADS)

    Iliopoulos, A. C.; Aifantis, E. C.

    2018-05-01

    In this paper, we extend a previous study concerning Portevin-LeChatelier (PLC) effect and Tsallis statistics (Iliopoulos et al., 2015). In particular, we estimate Tsallis' q-triplet, namely {qstat, qsens, qrel} for two sets of stress serration time series concerning the deformation of Cu-15%Al alloy corresponding to different deformation temperatures and thus types (A and B) of PLC bands. The results concerning the stress serrations analysis reveal that Tsallis q- triplet attains values different from unity ({qstat, qsens, qrel} ≠ {1,1,1}). In particular, PLC type A bands' serrations were found to follow Tsallis super-q-Gaussian, non-extensive, sub-additive, multifractal statistics indicating that the underlying dynamics are at the edge of chaos, characterized by global long range correlations and power law scaling. For PLC type B bands' serrations, the results revealed a Tsallis sub-q-Gaussian, non-extensive, super-additive, multifractal statistical profile. In addition, our results reveal also significant differences in statistical and dynamical features, indicating important variations of the stress field dynamics in terms of rate of entropy production, relaxation dynamics and non-equilibrium meta-stable stationary states. We also estimate parameters commonly used for characterizing fully developed turbulence, such as structure functions and flatness coefficient (F), in order to provide further information about jerky flow underlying dynamics. Finally, we use two multifractal models developed to describe turbulence, namely Arimitsu and Arimitsu (A&A) [2000, 2001] theoretical model which is based on Tsallis statistics and p-model to estimate theoretical multifractal spectrums f(a). Furthermore, we estimate flatness coefficient (F) using a theoretical formula based on Tsallis statistics. The theoretical results are compared with the experimental ones showing a remarkable agreement between modeling and experiment. Finally, the results of this study verify, as

  20. Isolation and the interaction between a mineral-weathering Rhizobium tropici Q34 and silicate minerals.

    PubMed

    Wang, Rong Rong; Wang, Qi; He, Lin Yan; Qiu, Gang; Sheng, Xia Fang

    2015-05-01

    The purposes of this study were to isolate and evaluate the interaction between mineral-weathering bacteria and silicate minerals (feldspar and biotite). A mineral-weathering bacterium was isolated from weathered rocks and identified as Rhizobium tropici Q34 based on 16S rRNA gene sequence analysis. Si and K concentrations were increased by 1.3- to 4.0-fold and 1.1- to 1.7-fold in the live bacterium-inoculated cultures compared with the controls respectively. Significant increases in the productions of tartaric and succinic acids and extracellular polysaccharides by strain Q34 were observed in cultures with minerals. Furthermore, significantly more tartaric acid and polysaccharide productions by strain Q34 were obtained in the presence of feldspar, while better growth and more citric acid production of strain Q34 were observed in the presence of biotite. Mineral dissolution experiments showed that the organic acids and polysaccharides produced by strain Q34 were also capable of promoting the release of Si and K from the minerals. The results showed that the growth and metabolite production of strain Q34 were enhanced in the presence of the minerals and different mineral exerted distinct impacts on the growth and metabolite production. The bio-weathering process is probably a synergistic action of organic acids and extracellular polysaccharides produced by the bacterium.

  1. Deformable Self-Propelled Micro-Object Comprising Underwater Oil Droplets

    PubMed Central

    Banno, Taisuke; Asami, Arisa; Ueno, Naoko; Kitahata, Hiroyuki; Koyano, Yuki; Asakura, Kouichi; Toyota, Taro

    2016-01-01

    The self-propelled motion with deformation of micrometer-sized soft matter in water has potential application not only for underwater carriers or probes in very narrow spaces but also for understanding cell locomotion in terms of non-equilibrium physics. As far as we know, there have been no reports about micrometer-sized self-propelled soft matter mimicking amoeboid motion underwater. Here, we report an artificial molecular system of underwater oil droplets exhibiting self-propelled motion with deformation as an initial experimental model. We describe the heterogeneity in a deformable self-propelled oil droplet system in aqueous and oil phases and at their interface based on the behavior and interaction of surfactant and oil molecules. The current results have great importance for scientific frontiers such as developing deformable micro-swimmers and exploring the emergence of self-locomotion of oil droplet-type protocells. PMID:27503336

  2. Deformable Self-Propelled Micro-Object Comprising Underwater Oil Droplets

    NASA Astrophysics Data System (ADS)

    Banno, Taisuke; Asami, Arisa; Ueno, Naoko; Kitahata, Hiroyuki; Koyano, Yuki; Asakura, Kouichi; Toyota, Taro

    2016-08-01

    The self-propelled motion with deformation of micrometer-sized soft matter in water has potential application not only for underwater carriers or probes in very narrow spaces but also for understanding cell locomotion in terms of non-equilibrium physics. As far as we know, there have been no reports about micrometer-sized self-propelled soft matter mimicking amoeboid motion underwater. Here, we report an artificial molecular system of underwater oil droplets exhibiting self-propelled motion with deformation as an initial experimental model. We describe the heterogeneity in a deformable self-propelled oil droplet system in aqueous and oil phases and at their interface based on the behavior and interaction of surfactant and oil molecules. The current results have great importance for scientific frontiers such as developing deformable micro-swimmers and exploring the emergence of self-locomotion of oil droplet-type protocells.

  3. Deformable Self-Propelled Micro-Object Comprising Underwater Oil Droplets.

    PubMed

    Banno, Taisuke; Asami, Arisa; Ueno, Naoko; Kitahata, Hiroyuki; Koyano, Yuki; Asakura, Kouichi; Toyota, Taro

    2016-08-09

    The self-propelled motion with deformation of micrometer-sized soft matter in water has potential application not only for underwater carriers or probes in very narrow spaces but also for understanding cell locomotion in terms of non-equilibrium physics. As far as we know, there have been no reports about micrometer-sized self-propelled soft matter mimicking amoeboid motion underwater. Here, we report an artificial molecular system of underwater oil droplets exhibiting self-propelled motion with deformation as an initial experimental model. We describe the heterogeneity in a deformable self-propelled oil droplet system in aqueous and oil phases and at their interface based on the behavior and interaction of surfactant and oil molecules. The current results have great importance for scientific frontiers such as developing deformable micro-swimmers and exploring the emergence of self-locomotion of oil droplet-type protocells.

  4. Non-commutative geometry of the h-deformed quantum plane

    NASA Astrophysics Data System (ADS)

    Cho, S.; Madore, J.; Park, K. S.

    1998-03-01

    The h-deformed quantum plane is a counterpart of the q-deformed one in the set of quantum planes which are covariant under those quantum deformations of GL(2) which admit a central determinant. We have investigated the non-commutative geometry of the h-deformed quantum plane. There is a two-parameter family of torsion-free linear connections, a one-parameter sub-family of which are compatible with a skew-symmetric non-degenerate bilinear map. The skew-symmetric map resembles a symplectic 2-form and induces a metric. It is also shown that the extended h-deformed quantum plane is a non-commutative version of the Poincaré half-plane, a surface of constant negative Gaussian

  5. Solid-phase classical complement activation by C-reactive protein (CRP) is inhibited by fluid-phase CRP-C1q interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjoewall, Christopher; Wetteroe, Jonas; Bengtsson, Torbjoern

    2007-01-05

    C-reactive protein (CRP) interacts with phosphorylcholine (PC), Fc{gamma} receptors, complement factor C1q and cell nuclear constituents, yet its biological roles are insufficiently understood. The aim was to characterize CRP-induced complement activation by ellipsometry. PC conjugated with keyhole limpet hemocyanin (PC-KLH) was immobilized to cross-linked fibrinogen. A low-CRP serum with different amounts of added CRP was exposed to the PC-surfaces. The total serum protein deposition was quantified and deposition of IgG, C1q, C3c, C4, factor H, and CRP detected with polyclonal antibodies. The binding of serum CRP to PC-KLH dose-dependently triggered activation of the classical pathway. Unexpectedly, the activation was efficientlymore » down-regulated at CRP levels >150 mg/L. Using radial immunodiffusion, CRP-C1q interaction was observed in serum samples with high CRP concentrations. We propose that the underlying mechanism depends on fluid-phase interaction between C1q and CRP. This might constitute another level of complement regulation, which has implications for systemic lupus erythematosus where CRP is often low despite flare-ups.« less

  6. Shell evolution above Z ,N =50 within Skyrme density functional theory: The impact of deformation and tensor interactions

    NASA Astrophysics Data System (ADS)

    Shi, Yue

    2017-03-01

    Background: Recent years have seen considerable effort in associating the shell evolution (SE) for a chain of isotones or isotopes with the underlying nuclear interactions. In particular, it has been fairly well established that the tensor part of the Skyrme interaction is indispensable for understanding certain SE above Z ,N =50 shell closures, as a function of nucleon numbers. Purpose: The purpose of the present work is twofold: (1) to study the effect of deformation due to blocking on the SE above Z ,N =50 shell closures and (2) to examine the optimal parametrizations in the tensor part which gives a proper description of the SE above Z ,N =50 shell closures. Methods: I use the Skyrme-Hartree-Fock-Bogoliubov (SHFB) method to compute the even-even vacua of the Z =50 isotopes and N =50 isotones. For Sb and odd-A Sn isotopes, I perform calculations with a blocking procedure which accounts for the polarization effects, including deformations. Results: The blocking SHFB calculations show that the light odd-A Sb isotopes, with only one valence proton occupying down-sloping Ω =11 /2- and Ω =7 /2+ Nilsson orbits, assume finite oblate deformations. This reduces the energy differences between 11 /2- and 7 /2+ states by about 500 keV for 51Sb56 -66 , bringing the energy-difference curve closer to the experimental one. With une2t1 energy density functional (EDF), which differs from unedf2 parametrization by tensor terms, a better description of the slope of Δ e (π 1 h11 /2-π 1 g7 /2) as a function of neutron number has been obtained. However, the trend of Δ e (π 1 g7 /2-π 2 d5 /2) curve is worse using une2t1 EDF. Δ e (ν 3 s1 /2-ν 2 d5 /2) and Δ e (ν 1 g7 /2-ν 2 d5 /2) curve for N =50 isotones using une2t1 seems to be consistent with experimental data. The neutron SE of Δ e (ν 1 h11 /2-ν 1 g7 /2) and Δ e (ν 1 g7 /2-ν 2 d5 /2) for Sn isotopes are shown to be sensive to αT tensor parameter. Conclusions: Within the Skyrme self-consistent mean-field model

  7. Use of protein cross-linking and radiolytic footprinting to elucidate PsbP and PsbQ interactions within higher plant Photosystem II

    DOE PAGES

    Mummadisetti, Manjula P.; Frankel, Laurie K.; Bellamy, Henry D.; ...

    2014-10-27

    We used protein cross-linking and radiolytic footprinting coupled with high-resolution mass spectrometry to examine the structure of PsbP and PsbQ when they are bound to Photosystem II, in this paper. In its bound state, the N-terminal 15-amino-acid residue domain of PsbP, which is unresolved in current crystal structures, interacts with domains in the C terminus of the protein. These interactions may serve to stabilize the structure of the N terminus and may facilitate PsbP binding and function. These interactions place strong structural constraints on the organization of PsbP when associated with the Photosystem II complex. Additionally, amino acid residues inmore » the structurally unresolved loop 3A domain of PsbP ( 90K– 107V), 93Y and 96K, are in close proximity (≤11.4 Å) to the N-terminal 1E residue of PsbQ. Our findings are the first, to our knowledge, to identify a putative region of interaction between these two components. Cross-linked domains within PsbQ were also identified, indicating that two PsbQ molecules can interact in higher plants in a manner similar to that observed by Liu et al. [(2014) Proc Natl Acad Sci 111(12):4638–4643] in cyanobacterial Photosystem II. Furthermore, this interaction is consistent with either intra-Photosystem II dimer or inter-Photosystem II dimer models in higher plants. Finally, OH• produced by synchrotron radiolysis of water was used to oxidatively modify surface residues on PsbP and PsbQ. Finally, domains on the surface of both protein subunits were resistant to modification, indicating that they were shielded from water and appear to define buried regions that are in contact with other Photosystem II components.« less

  8. Combining the bi-Yang-Baxter deformation, the Wess-Zumino term and TsT transformations in one integrable σ-model

    NASA Astrophysics Data System (ADS)

    Delduc, F.; Hoare, B.; Kameyama, T.; Magro, M.

    2017-10-01

    A multi-parameter integrable deformation of the principal chiral model is presented. The Yang-Baxter and bi-Yang-Baxter σ-models, the principal chiral model plus a Wess-Zumino term and the TsT transformation of the principal chiral model are all recovered when the appropriate deformation parameters vanish. When the Lie group is SU(2), we show that this four-parameter integrable deformation of the SU(2) principal chiral model corresponds to the Lukyanov model.

  9. Fault-slip inversions: Their importance in terms of strain, heterogeneity, and kinematics of brittle deformation

    NASA Astrophysics Data System (ADS)

    Riller, U.; Clark, M. D.; Daxberger, H.; Doman, D.; Lenauer, I.; Plath, S.; Santimano, T.

    2017-08-01

    Heterogeneous deformation is intrinsic in natural deformation, but often underestimated in the analysis and interpretation of mesoscopic brittle shear faults. Based on the analysis of 11,222 faults from two distinct tectonic settings, the Central Andes in Argentina and the Sudbury area in Canada, interpolation of principal strain directions and scaled analogue modelling, we revisit controversial issues of fault-slip inversions, collectively adhering to heterogeneous deformation. These issues include the significance of inversion solutions in terms of (1) strain or paleo-stress; (2) displacement, notably plate convergence; (3) local versus far-field deformation; (4) strain perturbations and (5) spacing between stations of fault-slip data acquisition. Furthermore, we highlight the value of inversions for identifying the kinematics of master fault zones in the absence of displaced geological markers. A key result of our assessment is that fault-slip inversions relate to local strain, not paleo-stress, and thus can aid in inferring, the kinematics of master faults. Moreover, strain perturbations caused by mechanical anomalies of the deforming upper crust significantly influence local principal strain directions. Thus, differently oriented principal strain axes inferred from fault-slip inversions in a given region may not point to regional deformation caused by successive and distinct deformation regimes. This outcome calls into question the common practice of separating heterogeneous fault-slip data sets into apparently homogeneous subsets. Finally, the fact that displacement vectors and principal strains are rarely co-linear defies the use of brittle fault data as proxy for estimating directions of plate-scale motions.

  10. Fluid-Structure Interaction Study on a Pre-Buckled Deformable Flat Ribbon

    NASA Astrophysics Data System (ADS)

    Fovargue, Lauren; Shams, Ehsan; Watterson, Amy; Corson, Dave; Filardo, Benjamin; Zimmerman, Daniel; Shan, Bob; Oberai, Assad

    2015-11-01

    A Fluid-Structure Interaction study is conducted for the flow over a deformable flat ribbon. This mechanism, which is called ribbon frond, maybe used as a device for pumping water and/or harvesting energy in rivers. We use a lower dimensional mathematical model, which represents the ribbon as a pre-buckled structure. The surface forces from the fluid flow, dictate the deformation of the ribbon, and the ribbon in turn imposes boundary conditions for the incompressible Navier-Stokes equations. The mesh motion is handled using an Arbitrary Lagrangian-Eulerian (ALE) scheme and the fluid-structure coupling is handled by iterating over the staggered governing equations for the structure, the fluid and the mesh. Simulations are conducted at three different free stream velocities. The results, including the frequency of oscillations, show agreement with experimental data. The vortical structures near the surface of the ribbon and its deformation are highly correlated. It is observed that the ribbon motion exhibits deviation from a harmonic motion, especially at lower free stream velocities. The behavior of the ribbon is compared to swimming animals, such as eels, in order to better understand its performance. The authors acknowledge support from ONR SBIR Phase II, contract No. N0001412C0604 and USDA, NIFA SBIR Phase I, contract No. 2013-33610-20836 and NYSERDA PON 2569, contract No. 30364.

  11. The mitochondria-targeted antioxidant MitoQ modulates oxidative stress, inflammation and leukocyte-endothelium interactions in leukocytes isolated from type 2 diabetic patients.

    PubMed

    Escribano-Lopez, Irene; Diaz-Morales, Noelia; Rovira-Llopis, Susana; de Marañon, Arantxa Martinez; Orden, Samuel; Alvarez, Angeles; Bañuls, Celia; Rocha, Milagros; Murphy, Michael P; Hernandez-Mijares, Antonio; Victor, Victor M

    2016-12-01

    It is not known if the mitochondria-targeted antioxidants such as mitoquinone (MitoQ) can modulate oxidative stress and leukocyte-endothelium interactions in T2D patients. We aimed to evaluate the beneficial effect of MitoQ on oxidative stress parameters and leukocyte-endothelium interactions in leukocytes of T2D patients. The study population consisted of 98 T2D patients and 71 control subjects. We assessed metabolic and anthropometric parameters, mitochondrial reactive oxygen species (ROS) production, glutathione peroxidase 1 (GPX-1), NFκB-p65, TNFα and leukocyte-endothelium interactions. Diabetic patients exhibited higher weight, BMI, waist circumference, SBP, DBP, glucose, insulin, HOMA-IR, HbA1c, triglycerides, hs-CRP and lower HDL-c with respect to controls. Mitochondrial ROS production was enhanced in T2D patients and decreased by MitoQ. The antioxidant also increased GPX-1 levels and PMN rolling velocity and decreased PMN rolling flux and PMN adhesion in T2D patients. NFκB-p65 and TNFα were augmented in T2D and were both reduced by MitoQ treatment. Our findings support that the antioxidant MitoQ has an anti-inflammatory and antioxidant action in the leukocytes of T2D patients by decreasing ROS production, leukocyte-endothelium interactions and TNFα through the action of NFκB. These data suggest that mitochondria-targeted antioxidants such as MitoQ should be investigated as a novel means of preventing cardiovascular events in T2D patients. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Alterations of social interaction through genetic and environmental manipulation of the 22q11.2 gene Sept5 in the mouse brain.

    PubMed

    Harper, Kathryn M; Hiramoto, Takeshi; Tanigaki, Kenji; Kang, Gina; Suzuki, Go; Trimble, William; Hiroi, Noboru

    2012-08-01

    Social behavior dysfunction is a symptomatic element of schizophrenia and autism spectrum disorder (ASD). Although altered activities in numerous brain regions are associated with defective social cognition and perception, the causative relationship between these altered activities and social cognition and perception-and their genetic underpinnings-are not known in humans. To address these issues, we took advantage of the link between hemizygous deletion of human chromosome 22q11.2 and high rates of social behavior dysfunction, schizophrenia and ASD. We genetically manipulated Sept5, a 22q11.2 gene, and evaluated its role in social interaction in mice. Sept5 deficiency, against a high degree of homogeneity in a congenic genetic background, selectively impaired active affiliative social interaction in mice. Conversely, virally guided overexpression of Sept5 in the hippocampus or, to a lesser extent, the amygdala elevated levels of active affiliative social interaction in C57BL/6J mice. Congenic knockout mice and mice overexpressing Sept5 in the hippocampus or amygdala were indistinguishable from control mice in novelty and olfactory responses, anxiety or motor activity. Moreover, post-weaning individual housing, an environmental condition designed to reduce stress in male mice, selectively raised levels of Sept5 protein in the amygdala and increased active affiliative social interaction in C57BL/6J mice. These findings identify this 22q11.2 gene in the hippocampus and amygdala as a determinant of social interaction and suggest that defective social interaction seen in 22q11.2-associated schizophrenia and ASD can be genetically and environmentally modified by altering this 22q11.2 gene.

  13. Partial trisomy 12q24.31----qter.

    PubMed Central

    Tajara, E H; Varella-Garcia, M; Gusson, A C

    1985-01-01

    Clinical details of a male child with the karyotype 46,XY,-4,+der(4),t(4;12) (p16;q24.31)mat are reported and compared with those of other known cases of partial trisomy of the distal region of 12q. This condition is apparently associated with mental and psychomotor retardation, widely spaced eyes, flat nasal bridge, low set ears, down-turned mouth, micrognathia, loose skin at the nape, widely spaced nipples, simian creases, clinodactyly, abnormalities of the genitourinary system, alterations in the sacrococcygeal region, and deformities of the lower limbs. In the majority of the reported cases, the break-point was in the 12q24 region and resulted from adjacent 1 segregation of a maternal balanced translocation. Images PMID:3981585

  14. [Mid-term effectiveness of rotating hinge knee prosthesis for severe knee deformity].

    PubMed

    Zeng, Min; Hu, Yihe; Xie, Jie; Li, Mingqing; Lin, Shaoru

    2014-01-01

    To evaluate the mid-term effectiveness of rotating hinge knee prosthesis for severe knee deformity. A retrospective analysis was made on the clinical data of 24 patients (24 knees) who received rotating hinge knee prosthesis for total knee arthroplasty between January 2003 and June 2011. There were 14 males and 10 females, aged from 60 to 81 years (mean, 70 years). The disease causes included osteoarthritis in 5 cases, rheumatoid arthritis in 7 cases, traumatic arthritis in 9 cases, and Charcot's arthropathy in 3 cases. The disease duration ranged from 5 to 25 years (mean, 14.5 years). Of them, 13 cases had flexion deformity, 7 cases had valgus deformity, and 16 cases had varus deformity. The operation time, the amount of bleeding between operation and drainage-tubes removal, hospitalization time, incision healing, and complications were recorded. The results were evaluated according to Knee Society Score (KSS), visual analogue scale (VAS), and the range of motion (ROM) of knee. Short-form 36 health survey scale (SF-36) was used to evaluate the life quality of patients. The position of prosthesis was observed through X-ray examination. The operation time ranged from 70 to 90 minutes (mean, 78 minutes). The amount of bleeding between operation and drainage-tubes removal ranged from 400 to 1 000 mL (mean, 650 mL). The hospitalization time ranged from 14 to 18 days (mean, 15.2 days). Patellar fracture occurred in 1 case (4.17%) during operation, swelling and effusion of incision in 1 case (4.17%), and periprosthetic infections in 2 cases (8.33%) after operation. All patients were followed up 2-10 years (mean, 5.5 years). The X-ray films showed no evidence of obvious radiolucent line, osteolysis, prosthesis subsidence, and limb alignment change. The results of KSS, VAS socres, and ROM of knee at 1 year postoperatively and last follow-up were significantly better than preoperative ones (P < 0.05), but no significant difference was found between at 1 year postoperatively

  15. Design of an Orthodontic Torque Simulator for Measurement of Bracket Deformation

    NASA Astrophysics Data System (ADS)

    Melenka, G. W.; Nobes, D. S.; Major, P. W.; Carey, J. P.

    2013-12-01

    The design and testing of an orthodontic torque simulator that reproduces the effect of archwire rotation on orthodontic brackets is described. This unique device is capable of simultaneously measuring the deformation and loads applied to an orthodontic bracket due to archwire rotation. Archwire rotation is used by orthodontists to correct the inclination of teeth within the mouth. This orthodontic torque simulator will provide knowledge of the deformation and loads applied to orthodontic bracket that will aide clinicians by describing the effect of archwire rotation on brackets. This will also impact that design on new archwirebracket systems by providing an assessment of performance. Deformation of the orthodontic bracket tie wings is measured using a digital image correlation process to measure elastic and plastic deformation. The magnitude of force and moments applied to the bracket though the archwire is also measured using a six-axis load cell. Initial tests have been performed on two orthodontic brackets of varying geometry to demonstrate the measurement capability of the orthodontic torque simulator. The demonstration experiment shows that a Damon Q bracket had a final plastic deformation after a single loading of 0.022 mm while the Speed bracket deformed 0.071 mm. This indicates that the Speed bracket plastically deforms 3.2 times more than the Damon Q bracket for similar magnitude of applied moment. The demonstration experiment demonstrates that bracket geometry affect the deformation of orthodontic brackets and this difference can be detected using the orthodontic torque simulator.

  16. Simulation technique for slurries interacting with moving parts and deformable solids with applications

    NASA Astrophysics Data System (ADS)

    Mutabaruka, Patrick; Kamrin, Ken

    2018-04-01

    A numerical method for particle-laden fluids interacting with a deformable solid domain and mobile rigid parts is proposed and implemented in a full engineering system. The fluid domain is modeled with a lattice Boltzmann representation, the particles and rigid parts are modeled with a discrete element representation, and the deformable solid domain is modeled using a Lagrangian mesh. The main issue of this work, since separately each of these methods is a mature tool, is to develop coupling and model-reduction approaches in order to efficiently simulate coupled problems of this nature, as in various geological and engineering applications. The lattice Boltzmann method incorporates a large eddy simulation technique using the Smagorinsky turbulence model. The discrete element method incorporates spherical and polyhedral particles for stiff contact interactions. A neo-Hookean hyperelastic model is used for the deformable solid. We provide a detailed description of how to couple the three solvers within a unified algorithm. The technique we propose for rubber modeling/coupling exploits a simplification that prevents having to solve a finite-element problem at each time step. We also developed a technique to reduce the domain size of the full system by replacing certain zones with quasi-analytic solutions, which act as effective boundary conditions for the lattice Boltzmann method. The major ingredients of the routine are separately validated. To demonstrate the coupled method in full, we simulate slurry flows in two kinds of piston valve geometries. The dynamics of the valve and slurry are studied and reported over a large range of input parameters.

  17. E4 properties in deformed nuclei and the sdg interacting boson model

    NASA Astrophysics Data System (ADS)

    Wu, H. C.; Dieperink, A. E. L.; Scholten, O.; Harakeh, M. N.; de Leo, R.; Pignanelli, M.; Morrison, I.

    1988-10-01

    The hexadecapole transition strength distribution is measured for the deformed nucleus 150Nd using the (p,p') reaction at Ep=30 MeV. The experimental information on B(E4) values in this nucleus and in 156Gd is interpreted in the framework of the sdg interacting boson model. It is found that the main features of the experimental data are fairly well reproduced by a Hartree-Bose method plus Tamm-Dancoff approximation.

  18. Open-flavor charm and bottom s q q ¯ Q ¯ and q q q ¯ Q ¯ tetraquark states

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Chen, Hua-Xing; Liu, Xiang; Steele, T. G.; Zhu, Shi-Lin

    2017-06-01

    We provide comprehensive investigations for the mass spectrum of exotic open-flavor charmed/bottom s q q ¯ c ¯ , q q q ¯ c ¯ , s q q ¯ b ¯ , q q q ¯ b ¯ tetraquark states with various spin-parity assignments JP=0+,1+,2+ and 0- , 1- in the framework of QCD sum rules. In the diquark configuration, we construct the diquark-antidiquark interpolating tetraquark currents using the color-antisymmetric scalar and axial-vector diquark fields. The stable mass sum rules are established in reasonable parameter working ranges, which are used to give reliable mass predictions for these tetraquark states. We obtain the mass spectra for the open-flavor charmed/bottom s q q ¯c ¯, q q q ¯c ¯, s q q ¯b ¯, q q q ¯b ¯ tetraquark states with various spin-parity quantum numbers. In addition, we suggest searching for exotic doubly-charged tetraquarks, such as [s d ][u ¯ c ¯ ]→Ds(*)-π- in future experiments at facilities such as BESIII, BelleII, PANDA, LHCb, and CMS, etc.

  19. Mother-Child Interaction as a Window to a Unique Social Phenotype in 22q11.2 Deletion Syndrome and in Williams Syndrome

    ERIC Educational Resources Information Center

    Weisman, Omri; Feldman, Ruth; Burg-Malki, Merav; Keren, Miri; Geva, Ronny; Diesendruck, Gil; Gothelf, Doron

    2015-01-01

    Mother-child interactions in 22q11.2 Deletion syndrome (22q11.2DS) and Williams syndrome (WS) were coded for maternal sensitivity/intrusiveness, child's expression of affect, levels of engagement, and dyadic reciprocity. WS children were found to express more positive emotions towards their mothers compared to 22q11.2DS children and those with…

  20. Long-term Postseismic Deformation Following the 1964 Alaska Earthquake

    NASA Astrophysics Data System (ADS)

    Freymueller, J. T.; Cohen, S. C.; Hreinsdöttir, S.; Suito, H.

    2003-12-01

    Geodetic data provide a rich data set describing the postseismic deformation that followed the 1964 Alaska earthquake (Mw 9.2). This is particularly true for vertical deformation, since tide gauges and leveling surveys provide extensive spatial coverage. Leveling was carried out over all of the major roads of Alaska in 1964-65, and over the last several years we have resurveyed an extensive data set using GPS. Along Turnagain Arm of Cook Inlet, south of Anchorage, a trench-normal profile was surveyed repeatedly over the first decade after the earthquake, and many of these sites have been surveyed with GPS. After using a geoid model to correct for the difference between geometric and orthometric heights, the leveling+GPS surveys reveal up to 1.25 meters of uplift since 1964. The largest uplifts are concentrated in the northern part of the Kenai Peninsula, SW of Turnagain Arm. In some places, steep gradients in the cumulative uplift measurements point to a very shallow source for the deformation. The average 1964-late 1990s uplift rates were substantially higher than the present-day uplift rates, which rarely exceed 10 mm/yr. Both leveling and tide gauge data document a decay in uplift rate over time as the postseismic signal decreases. However, even today the postseismic deformation represents a substantial portion of the total observe deformation signal, illustrating that very long-lived postseismic deformation is an important element of the subduction zone earthquake cycle for the very largest earthquakes. This is in contrast to much smaller events, such as M~8 earthquakes, for which postseismic deformation in many cases decays within a few years. This suggests that the very largest earthquakes may excite different processes than smaller events.

  1. A parallel interaction potential approach coupled with the immersed boundary method for fully resolved simulations of deformable interfaces and membranes

    NASA Astrophysics Data System (ADS)

    Spandan, Vamsi; Meschini, Valentina; Ostilla-Mónico, Rodolfo; Lohse, Detlef; Querzoli, Giorgio; de Tullio, Marco D.; Verzicco, Roberto

    2017-11-01

    In this paper we show and discuss how the deformation dynamics of closed liquid-liquid interfaces (for example drops and bubbles) can be replicated with use of a phenomenological interaction potential model. This new approach to simulate liquid-liquid interfaces is based on the fundamental principle of minimum potential energy where the total potential energy depends on the extent of deformation of a spring network distributed on the surface of the immersed drop or bubble. Simulating liquid-liquid interfaces using this model require computing ad-hoc elastic constants which is done through a reverse-engineered approach. The results from our simulations agree very well with previous studies on the deformation of drops in standard flow configurations such as a deforming drop in a shear flow or cross flow. The interaction potential model is highly versatile, computationally efficient and can be easily incorporated into generic single phase fluid solvers to also simulate complex fluid-structure interaction problems. This is shown by simulating flow in the left ventricle of the heart with mechanical and natural mitral valves where the imposed flow, motion of ventricle and valves dynamically govern the behaviour of each other. Results from these simulations are compared with ad-hoc in-house experimental measurements. Finally, we present a simple and easy to implement parallelisation scheme, as high performance computing is unavoidable when studying large scale problems involving several thousands of simultaneously deforming bodies in highly turbulent flows.

  2. Neck formation and deformation effects in a preformed cluster model of exotic cluster decays

    NASA Astrophysics Data System (ADS)

    Kumar, Satish; Gupta, Raj K.

    1997-01-01

    Using the nuclear proximity approach and the two center nuclear shape parametrization, the interaction potential between two deformed and pole-to-pole oriented nuclei forming a necked configuration in the overlap region is calculated and its role is studied for the cluster decay half-lives. The barrier is found to move to a larger relative separation, with its proximity minimum lying in the neighborhood of the Q value of decay and its height and width reduced considerably. For cluster decay calculations in the preformed cluster model of Malik and Gupta, due to deformations and orientations of nuclei, the (empirical) preformation factor is found to get reduced considerably and agrees nicely with other model calculations known to be successful for their predictions of cluster decay half-lives. Comparison with the earlier case of nuclei treated as spheres suggests that the effects of both deformations and neck formation get compensated by choosing the position of cluster preformation and the inner classical turning point for penetrability calculations at the touching configuration of spherical nuclei.

  3. Pulsed optical fibre lasers: Self-pulsation, Q-switching and tissue interactions

    NASA Astrophysics Data System (ADS)

    El-Sherif, Ashraf Fathy

    Hz). Residual damage and affected zones using the CW laser were nearly 6 times greater than using the Q-switched fibre laser for about 50 s of exposure time, and increased with pulse repetition rate. The energy required to ablate tissues with the CW-fibre laser ranged from 153 to 334 kJ/cm3 and was significantly smaller from 0.2 to 0.6 kJ/cm3 for the Q-switched fibre laser. This study is the first direct comparison of tissue interaction of CW and Q- switched Tm3+-doped silica fibre lasers on crater depth, heat of ablation and collateral damage. The Q-switched Tm3+-doped silica fibre laser effectively ablates tissue with little secondary damage.

  4. Changes in the striatal proteome of YAC128Q mice exhibit gene-environment interactions between mutant huntingtin and manganese.

    PubMed

    Wegrzynowicz, Michal; Holt, Hunter K; Friedman, David B; Bowman, Aaron B

    2012-02-03

    Huntington's disease (HD) is a neurodegenerative disorder caused by expansion of a CAG repeat within the Huntingtin (HTT) gene, though the clinical presentation of disease and age-of-onset are strongly influenced by ill-defined environmental factors. We recently reported a gene-environment interaction wherein expression of mutant HTT is associated with neuroprotection against manganese (Mn) toxicity. Here, we are testing the hypothesis that this interaction may be manifested by altered protein expression patterns in striatum, a primary target of both neurodegeneration in HD and neurotoxicity of Mn. To this end, we compared striatal proteomes of wild-type and HD (YAC128Q) mice exposed to vehicle or Mn. Principal component analysis of proteomic data revealed that Mn exposure disrupted a segregation of WT versus mutant proteomes by the major principal component observed in vehicle-exposed mice. Identification of altered proteins revealed novel markers of Mn toxicity, particularly proteins involved in glycolysis, excitotoxicity, and cytoskeletal dynamics. In addition, YAC128Q-dependent changes suggest that axonal pathology may be an early feature in HD pathogenesis. Finally, for several proteins, genotype-specific responses to Mn were observed. These differences include increased sensitivity to exposure in YAC128Q mice (UBQLN1) and amelioration of some mutant HTT-induced alterations (SAE1, ENO1). We conclude that the interaction of Mn and mutant HTT may suppress proteomic phenotypes of YAC128Q mice, which could reveal potential targets in novel treatment strategies for HD.

  5. ICCD: interactive continuous collision detection between deformable models using connectivity-based culling.

    PubMed

    Tang, Min; Curtis, Sean; Yoon, Sung-Eui; Manocha, Dinesh

    2009-01-01

    We present an interactive algorithm for continuous collision detection between deformable models. We introduce multiple techniques to improve the culling efficiency and the overall performance of continuous collision detection. First, we present a novel formulation for continuous normal cones and use these normal cones to efficiently cull large regions of the mesh as part of self-collision tests. Second, we introduce the concept of "procedural representative triangles" to remove all redundant elementary tests between nonadjacent triangles. Finally, we exploit the mesh connectivity and introduce the concept of "orphan sets" to eliminate redundant elementary tests between adjacent triangle primitives. In practice, we can reduce the number of elementary tests by two orders of magnitude. These culling techniques have been combined with bounding volume hierarchies and can result in one order of magnitude performance improvement as compared to prior collision detection algorithms for deformable models. We highlight the performance of our algorithm on several benchmarks, including cloth simulations, N-body simulations, and breaking objects.

  6. Analysis of fluid-structure interaction in a frame pipe undergoing plastic deformations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khamlichi, A.; Jezequel, L.; Jacques, Y.

    1995-11-01

    Water hammer pressure waves of sufficiently large magnitude can cause plastic flexural deformations in a frame pipe. In this study, the authors propose a modelization of this problem based on plane wave approximation for the fluid equations and approximation of the structure motion by a single-degree-of-freedom elastic-plastic oscillator. Direct analytical integration of elastic-plastic equations through pipe sections, then over the pipe length is performed in order to identify the oscillator parameters. Comparison of the global load-displacement relationship obtained with the finite element solution was considered and has shown good agreement. Fluid-structure coupling is achieved by assuming elbows to act likemore » plane monopole sources, where localized jumps of fluid velocity occur and where net pressure forces are exerted on the structure. The authors have applied this method to analyze the fluid-structure interaction in this range of deformations. Energy exchange between the fluid and the structure and energy dissipation are quantified.« less

  7. Meshless Modeling of Deformable Shapes and their Motion

    PubMed Central

    Adams, Bart; Ovsjanikov, Maks; Wand, Michael; Seidel, Hans-Peter; Guibas, Leonidas J.

    2010-01-01

    We present a new framework for interactive shape deformation modeling and key frame interpolation based on a meshless finite element formulation. Starting from a coarse nodal sampling of an object’s volume, we formulate rigidity and volume preservation constraints that are enforced to yield realistic shape deformations at interactive frame rates. Additionally, by specifying key frame poses of the deforming shape and optimizing the nodal displacements while targeting smooth interpolated motion, our algorithm extends to a motion planning framework for deformable objects. This allows reconstructing smooth and plausible deformable shape trajectories in the presence of possibly moving obstacles. The presented results illustrate that our framework can handle complex shapes at interactive rates and hence is a valuable tool for animators to realistically and efficiently model and interpolate deforming 3D shapes. PMID:24839614

  8. De novo microduplication at 22q11.21 in a patient with VACTERL association.

    PubMed

    Schramm, Charlotte; Draaken, Markus; Bartels, Enrika; Boemers, Thomas M; Aretz, Stefan; Brockschmidt, Felix F; Nöthen, Markus M; Ludwig, Michael; Reutter, Heiko

    2011-01-01

    The non-random association of vertebral defects (V), anorectal malformations (A), cardiac defects (C), tracheoesophageal fistula with esophageal atresia (TE), renal malformations (R), and limb defects (L) is termed VACTERL association. The aim of the present study was to identify microaberrations characterized by a loss or gain of genomic material that contribute to VACTERL association at a genome-wide level. Molecular karyotyping was performed in a cohort of 12 patients with anorectal malformations and at least two additional cardinal features of the VACTERL association. A de novo microduplication at chromosomal region 22q11.21 was identified in a patient presenting with three cardinal VACTERL features (V, A, R) and vesicoureteral reflux, penile hypospadias, caudal regression syndrome, and right-sided congenital equinovarus deformity. Chromosomal region 22q11.2 is known for its susceptibility to rearrangements. Associated syndromes include the velo-cardio-facial and DiGeorge deletion syndromes, and the complementary 22q11.2 duplication syndrome. The findings of the present study extend the phenotypic spectrum of the 22q11.2 duplication syndrome, and indicate that it also predisposes to VACTERL association. We discuss the overlap between the phenotypic features of our patient and those reported for other 22q11.2 aberrations, and propose that dosage-sensitive loci for all of these phenotypic features may reside on 22q11.2. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  9. Xanthomonas euvesicatoria type III effector XopQ interacts with tomato and pepper 14-3-3 isoforms to suppress effector-triggered immunity.

    PubMed

    Teper, Doron; Salomon, Dor; Sunitha, Sukumaran; Kim, Jung-Gun; Mudgett, Mary Beth; Sessa, Guido

    2014-01-01

    Effector-triggered immunity (ETI) to host-adapted pathogens is associated with rapid cell death at the infection site. The plant-pathogenic bacterium Xanthomonas euvesicatoria (Xcv) interferes with plant cellular processes by injecting effector proteins into host cells through the type III secretion system. Here, we show that the Xcv effector XopQ suppresses cell death induced by components of the ETI-associated MAP kinase cascade MAPKKKα MEK2/SIPK and by several R/avr gene pairs. Inactivation of xopQ by insertional mutagenesis revealed that this effector inhibits ETI-associated cell death induced by avirulent Xcv in resistant pepper (Capsicum annuum), and enhances bacterial growth in resistant pepper and tomato (Solanum lycopersicum). Using protein-protein interaction studies in yeast (Saccharomyces cerevisiae) and in planta, we identified the tomato 14-3-3 isoform SlTFT4 and homologs from other plant species as XopQ interactors. A mutation in the putative 14-3-3 binding site of XopQ impaired interaction of the effector with CaTFT4 in yeast and its virulence function in planta. Consistent with a role in ETI, TFT4 mRNA abundance increased during the incompatible interaction of tomato and pepper with Xcv. Silencing of NbTFT4 in Nicotiana benthamiana significantly reduced cell death induced by MAPKKKα. In addition, silencing of CaTFT4 in pepper delayed the appearance of ETI-associated cell death and enhanced growth of virulent and avirulent Xcv, demonstrating the requirement of TFT4 for plant immunity to Xcv. Our results suggest that the XopQ virulence function is to suppress ETI and immunity-associated cell death by interacting with TFT4, which is an important component of ETI and a bona fide target of XopQ. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  10. The effect of visual arrangement on visuospatial short-term memory: Insights from children with 22q11.2 deletion syndrome.

    PubMed

    Attout, Lucie; Noël, Marie-Pascale; Rousselle, Laurence

    2018-04-11

    Recent models of visuospatial (VSSP) short-term memory postulate the existence of two dissociable mechanisms depending on whether VSSP information is presented simultaneously or sequentially. However, they do not specify to what extent VSSP short-term memory is under the influence of general VSSP processing. This issue was examined in people with 22q11.2 deletion syndrome, a genetic condition involving a VSSP deficit. The configuration of VSSP information was manipulated (structured vs. unstructured) to explore the impact of arrangement on VSSP short-term memory. Two presentation modes were used to see whether the VSSP arrangement has the same impact on simultaneous and sequential short-term memory. Compared to children matched on chronological age, children with 22q11.2 deletion syndrome showed impaired performance only for structured arrangement, regardless of the presentation mode, suggesting an influence of VSSP processing on VSSP short-term memory abilities. A revised cognitive architecture for a model of VSSP short-term memory is proposed.

  11. Deformation processes within wheel-rail adhesion in contact area

    NASA Astrophysics Data System (ADS)

    Albagachiev, A. Yu; Keropyan, A. M.

    2018-03-01

    The study of working surface deformation during interaction of open-pit locomotive tires allowed defining outstanding features of phenomena occurring in the contact area of interacting surfaces. It was found that processes typical for plastic saturated contact occur in the area of wheel-rail interaction of industrial railway transport. In case of plastic deformation exposed to heavy loads typical for open-pit locomotives, upon all rough surfaces of the contour contact area being fully deformed, the frame on which they are found is exposed to plastic deformation. Plastic deformation of roughness within the contact area of interacting surfaces leads to the increase in the actual area of their contact and, therefore, increases the towing capacity of mining machines. Finally, the available data on deformation characteristics with regard to processes occurring in the contact area of wheel-rail interaction will allow making theoretical forecasts on the expected design value of friction coefficient and, therefore, the towing capacity of open-pit locomotives.

  12. CPU-GPU mixed implementation of virtual node method for real-time interactive cutting of deformable objects using OpenCL.

    PubMed

    Jia, Shiyu; Zhang, Weizhong; Yu, Xiaokang; Pan, Zhenkuan

    2015-09-01

    Surgical simulators need to simulate interactive cutting of deformable objects in real time. The goal of this work was to design an interactive cutting algorithm that eliminates traditional cutting state classification and can work simultaneously with real-time GPU-accelerated deformation without affecting its numerical stability. A modified virtual node method for cutting is proposed. Deformable object is modeled as a real tetrahedral mesh embedded in a virtual tetrahedral mesh, and the former is used for graphics rendering and collision, while the latter is used for deformation. Cutting algorithm first subdivides real tetrahedrons to eliminate all face and edge intersections, then splits faces, edges and vertices along cutting tool trajectory to form cut surfaces. Next virtual tetrahedrons containing more than one connected real tetrahedral fragments are duplicated, and connectivity between virtual tetrahedrons is updated. Finally, embedding relationship between real and virtual tetrahedral meshes is updated. Co-rotational linear finite element method is used for deformation. Cutting and collision are processed by CPU, while deformation is carried out by GPU using OpenCL. Efficiency of GPU-accelerated deformation algorithm was tested using block models with varying numbers of tetrahedrons. Effectiveness of our cutting algorithm under multiple cuts and self-intersecting cuts was tested using a block model and a cylinder model. Cutting of a more complex liver model was performed, and detailed performance characteristics of cutting, deformation and collision were measured and analyzed. Our cutting algorithm can produce continuous cut surfaces when traditional minimal element creation algorithm fails. Our GPU-accelerated deformation algorithm remains stable with constant time step under multiple arbitrary cuts and works on both NVIDIA and AMD GPUs. GPU-CPU speed ratio can be as high as 10 for models with 80,000 tetrahedrons. Forty to sixty percent real

  13. Haploinsufficiency of the 22q11.2 microdeletion gene Mrpl40 disrupts short-term synaptic plasticity and working memory through dysregulation of mitochondrial calcium.

    PubMed

    Devaraju, P; Yu, J; Eddins, D; Mellado-Lagarde, M M; Earls, L R; Westmoreland, J J; Quarato, G; Green, D R; Zakharenko, S S

    2017-09-01

    Hemizygous deletion of a 1.5- to 3-megabase region on chromosome 22 causes 22q11.2 deletion syndrome (22q11DS), which constitutes one of the strongest genetic risks for schizophrenia. Mouse models of 22q11DS have abnormal short-term synaptic plasticity that contributes to working-memory deficiencies similar to those in schizophrenia. We screened mutant mice carrying hemizygous deletions of 22q11DS genes and identified haploinsufficiency of Mrpl40 (mitochondrial large ribosomal subunit protein 40) as a contributor to abnormal short-term potentiation (STP), a major form of short-term synaptic plasticity. Two-photon imaging of the genetically encoded fluorescent calcium indicator GCaMP6, expressed in presynaptic cytosol or mitochondria, showed that Mrpl40 haploinsufficiency deregulates STP via impaired calcium extrusion from the mitochondrial matrix through the mitochondrial permeability transition pore. This led to abnormally high cytosolic calcium transients in presynaptic terminals and deficient working memory but did not affect long-term spatial memory. Thus, we propose that mitochondrial calcium deregulation is a novel pathogenic mechanism of cognitive deficiencies in schizophrenia.

  14. Numerical study of suspensions of deformable particles.

    NASA Astrophysics Data System (ADS)

    Brandt, Luca; Rosti, Marco Edoardo

    2017-11-01

    We consider a model non-Newtonian fluid consisting of a suspension of deformable particles in a Newtonian solvent. Einstein showed in his pioneering work that the relative increase in effective viscosity is a linear function of the particle volume fraction for dilute suspensions of rigid particles. Inertia has been shown to introduce deviations from the behaviour predicted by the different empirical fits, an effect that can be related to an increase of the effective volume fraction. We here focus on the effect of elasticity, i.e. visco-elastic deformable particles. To tackle the problem at hand, we perform three-dimensional Direct Numerical Simulation of a plane Couette flow with a suspension of neutrally buoyant deformable viscous hyper-elastic particles. We show that elasticity produces a shear-thinning effect in elastic suspensions (in comparison to rigid ones) and that it can be understood in terms of a reduction of the effective volume fraction of the suspension. The deformation modifies the particle motion reducing the level of mutual interaction. Normal stress differences will also be considered. European Research Council, Grant No. ERC-2013-CoG- 616186, TRITOS; SNIC (the Swedish National Infrastructure for Computing).

  15. Deformation history of Mauna Loa (Hawaii) from 2003 to 2014 through InSAR data: understanding the shorter-term processes

    NASA Astrophysics Data System (ADS)

    La Marra, Daniele; Poland, Michael P.; Acocella, Valerio; Battaglia, Maurizio; Miklius, Asta

    2016-04-01

    Geodesy allows detecting the deformation of volcanoes, thus understanding magmatic processes. This becomes particularly efficient when time series are available and volcanoes can be monitored on the mean-term (decades), and not only during a specific event. Here we exploit the SBAS technique, using SAR images from ENVISAT (descending and ascending orbits; 2003 - 2010) and COSMO-SkyMed (descending and ascending orbits; 2012 - 2014), to study a decade of deformation at Mauna Loa (Hawaii). These data are merged time series data from 24 continuously operating GPS stations, which allows us to calibrate the InSAR time series. Our results show a long-term inflation of the volcano from 2003 to 2014, reaching a peak of ~11 cm/yr on the summit area between mid-2004 to mid-2005 and then slowing down. Within this frame, we were able to identify five main periods with approximately linear deformation behavior. The inversion of the deformation data in the first four periods suggests the repeated, though not constant, intrusion of one or more dikes below the summit caldera and the upper Southwest Rift Zone. Moreover, the dike intrusion coincides with minor acceleration of flank slip. Such a behavior is distinctive and, with the exception of the nearby Kilauea, has not been observed at any other volcano on the mean term. It is proposed that continuous, even though not constant flank instability of the SE flank may promote semi-continuous intrusions in a volcano with a ready magma supply.

  16. Towards classical spectrum generating algebras for f-deformations

    NASA Astrophysics Data System (ADS)

    Kullock, Ricardo; Latini, Danilo

    2016-01-01

    In this paper we revise the classical analog of f-oscillators, a generalization of q-oscillators given in Man'ko et al. (1997) [8], in the framework of classical spectrum generating algebras (SGA) introduced in Kuru and Negro (2008) [9]. We write down the deformed Poisson algebra characterizing the entire family of non-linear oscillators and construct its general solution algebraically. The latter, covering the full range of f-deformations, shows an energy dependence both in the amplitude and the frequency of the motion.

  17. Ferromagnetic Potts models with multisite interaction

    NASA Astrophysics Data System (ADS)

    Schreiber, Nir; Cohen, Reuven; Haber, Simi

    2018-03-01

    We study the q -state Potts model with four-site interaction on a square lattice. Based on the asymptotic behavior of lattice animals, it is argued that when q ≤4 the system exhibits a second-order phase transition and when q >4 the transition is first order. The q =4 model is borderline. We find 1 /lnq to be an upper bound on Tc, the exact critical temperature. Using a low-temperature expansion, we show that 1 /(θ lnq ) , where θ >1 is a q -dependent geometrical term, is an improved upper bound on Tc. In fact, our findings support Tc=1 /(θ lnq ) . This expression is used to estimate the finite correlation length in first-order transition systems. These results can be extended to other lattices. Our theoretical predictions are confirmed numerically by an extensive study of the four-site interaction model using the Wang-Landau entropic sampling method for q =3 ,4 ,5 . In particular, the q =4 model shows an ambiguous finite-size pseudocritical behavior.

  18. Proton-neutron sdg boson model and spherical-deformed phase transition

    NASA Astrophysics Data System (ADS)

    Otsuka, Takaharu; Sugita, Michiaki

    1988-12-01

    The spherical-deformed phase transition in nuclei is described in terms of the proton-neutron sdg interacting boson model. The sdg hamiltonian is introduced to model the pairing+quadrupole interaction. The phase transition is reproduced in this framework as a function of the boson number in the Sm isotopes, while all parameters in the hamiltonian are kept constant at values reasonable from the shell-model point of view. The sd IBM is derived from this model through the renormalization of g-boson effects.

  19. Spherical solid model system: Exact evaluation of the van der Waals interaction between a microscopic or submacroscopic spherical solid and a deformable fluid interface

    NASA Astrophysics Data System (ADS)

    Wang, Y. Z.; Wang, B.; Xiong, X. M.; Zhang, J. X.

    2011-03-01

    In many previous research work associated with studying the deformation of the fluid interface interacting with a solid, the theoretical calculation of the surface energy density on the deformed fluid interface (or its interaction surface pressure) is often approximately obtained by using the expression for the interaction energy per unit area (or pressure) between two parallel macroscopic plates, e.g. σ(D) = - A / 12 πD2or π(D) = - A / 6 πD3for the van der Waals (vdW) interaction, through invoking the Derjaguin approximation (DA). This approximation however would result in over- or even inaccurate-prediction of the interaction force and the corresponding deformation of the fluid interface due to the invalidation of Derjaguin approximation in cases of microscopic or submacroscopic solids. To circumvent the above limitations existing in the previous DA-based theoretical work, a more accurate and quantitative theoretical model, available for exactly calculating the vdW-induced deformation of a planar fluid interface interacting with a sphere, and the interaction forces taking into account its change, is presented in this paper. The validity and advantage of the new mathematical and physical technique is rigorously verified by comparison with the numerical results on basis of the previous Paraboloid solid (PS) model and the Hamaker's sphere-flat expression (viz. F = - 2 Aa3 / (3 D2( D + 2 a) 2)), as well as its well-known DA-based general form of F / a = - A / 6z p02.

  20. Sensory subtraction in robot-assisted surgery: fingertip skin deformation feedback to ensure safety and improve transparency in bimanual haptic interaction.

    PubMed

    Meli, Leonardo; Pacchierotti, Claudio; Prattichizzo, Domenico

    2014-04-01

    This study presents a novel approach to force feedback in robot-assisted surgery. It consists of substituting haptic stimuli, composed of a kinesthetic component and a skin deformation, with cutaneous stimuli only. The force generated can then be thought as a subtraction between the complete haptic interaction, cutaneous, and kinesthetic, and the kinesthetic part of it. For this reason, we refer to this approach as sensory subtraction. Sensory subtraction aims at outperforming other nonkinesthetic feedback techniques in teleoperation (e.g., sensory substitution) while guaranteeing the stability and safety of the system. We tested the proposed approach in a challenging 7-DoF bimanual teleoperation task, similar to the Pegboard experiment of the da Vinci Skills Simulator. Sensory subtraction showed improved performance in terms of completion time, force exerted, and total displacement of the rings with respect to two popular sensory substitution techniques. Moreover, it guaranteed a stable interaction in the presence of a communication delay in the haptic loop.

  1. Quantitative characterization of 3D deformations of cell interactions with soft biomaterials

    NASA Astrophysics Data System (ADS)

    Franck, Christian

    -induced or externally applied deformations. This method is validated by comparing experimentally measured non-uniform deformation fields near hard and soft spherical inclusions under uniaxial compression with the corresponding analytical solution. Utilization of a newly developed computationally efficient stretch-correlation and deconvolution algorithm is shown to improve the overall measurement accuracy, in particular under large deformations. Using this technique, the full three-dimensional substrate displacement fields are experimentally determined during the migration of individual fibroblast cells on polyacrylamide gels. This is the first study to show the highly three-dimensional structure of cell-induced displacement and traction fields. These new findings suggest a three-dimensional push-pull cell motility, which differs from the traditional theories based on two-dimensional data. These results provide new insight into the dynamic cell-matrix force exchange or mechanotransduction of migrating cells, and will aid in the development of new three-dimensional cell motility and adhesion models. As this study reveals, the mechanical interactions of cells and their extracellular matrix appear to be highly three-dimensional. It also shows that the LSCM-DVC technique is well suited for investigating the mechanics of cell-matrix interactions while providing a platform to access detailed information of the intricate biomechanical coupling for many cellular responses. Thus, this method has the capability to provide direct quantitative experimental data showing how cells interact with their surroundings in three dimensions and might stimulate new avenues of scientific thought in understanding the fundamental role physical forces play in regulating cell behavior.

  2. Progress and challenges in the understanding of long term evolution of deep-seated gravitational slope deformations

    NASA Astrophysics Data System (ADS)

    Pánek, Tomáš

    2017-04-01

    Deep-seated gravitational slope deformations (DSGSDs; Agliardi et al., 2001) is a generic term for slow moving (mm year-1) rock-mass movements that encompass the entire mountain slopes or valley flanks occurring in a wide spectrum of terrestrial and extraterrestrial settings (Mège and Bourgeois, 2011). Current progress in mapping technologies, geophysics, modelling and monitoring has provided valuable insights into the distribution, internal structure, mechanics and recent movements of DSGSDs. However, amidst all this progress, long-term (≥102 years) temporal dynamics remains one of the least explored aspects of DSGSDs (Pánek and Klimeš, 2016). Based on both the in-depth review of published studies from all around the world and several detailed geochronological investigations in the Carpathians, the Crimean peninsula and the Taurus Mts, this paper accents recent progress in the understanding of the lifespan, long-term rates and potential catastrophic accelerations of DSGSDs. Major concern is paid to the differences between glaciated and non-glaciated mountain landscapes. Outcomes of this review can be summarized as follows: (i) DSGSDs occurring outside the limits of Quaternary glaciations reveal more complex and generally longer lifespans. (ii) Despite traditional views, the dating results show that immediate chronological response of DSGSDs to glacier withdrawal is rather rare. On the contrary, there tends to be a significant (millennial) time-lag due to a complex interaction of paraglacial processes. (iii) Some DSGSDs (or their parts) may originate episodically and relatively fast, which is in contradiction to traditional definitions. (iv) Recurrent catastrophic collapses of slopes (e.g. rock avalanches, rockfalls, earthflows) are frequently sourced within DSGSDs bodies, irrespective of whether localized within glaciated or non-glaciated areas. Although a boom in geochronological methods has significantly improved our knowledge of the temporal dynamics of

  3. A Lattice Boltzmann Fictitious Domain Method for Modeling Red Blood Cell Deformation and Multiple-Cell Hydrodynamic Interactions in Flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Xing; Lin, Guang; Zou, Jianfeng

    To model red blood cell (RBC) deformation in flow, the recently developed LBM-DLM/FD method ([Shi and Lim, 2007)29], derived from the lattice Boltzmann method and the distributed Lagrange multiplier/fictitious domain methodthe fictitious domain method, is extended to employ the mesoscopic network model for simulations of red blood cell deformation. The flow is simulated by the lattice Boltzmann method with an external force, while the network model is used for modeling red blood cell deformation and the fluid-RBC interaction is enforced by the Lagrange multiplier. To validate parameters of the RBC network model, sThe stretching numerical tests on both coarse andmore » fine meshes are performed and compared with the corresponding experimental data to validate the parameters of the RBC network model. In addition, RBC deformation in pipe flow and in shear flow is simulated, revealing the capacity of the current method for modeling RBC deformation in various flows.« less

  4. A Physics-driven Neural Networks-based Simulation System (PhyNNeSS) for multimodal interactive virtual environments involving nonlinear deformable objects

    PubMed Central

    De, Suvranu; Deo, Dhannanjay; Sankaranarayanan, Ganesh; Arikatla, Venkata S.

    2012-01-01

    Background While an update rate of 30 Hz is considered adequate for real time graphics, a much higher update rate of about 1 kHz is necessary for haptics. Physics-based modeling of deformable objects, especially when large nonlinear deformations and complex nonlinear material properties are involved, at these very high rates is one of the most challenging tasks in the development of real time simulation systems. While some specialized solutions exist, there is no general solution for arbitrary nonlinearities. Methods In this work we present PhyNNeSS - a Physics-driven Neural Networks-based Simulation System - to address this long-standing technical challenge. The first step is an off-line pre-computation step in which a database is generated by applying carefully prescribed displacements to each node of the finite element models of the deformable objects. In the next step, the data is condensed into a set of coefficients describing neurons of a Radial Basis Function network (RBFN). During real-time computation, these neural networks are used to reconstruct the deformation fields as well as the interaction forces. Results We present realistic simulation examples from interactive surgical simulation with real time force feedback. As an example, we have developed a deformable human stomach model and a Penrose-drain model used in the Fundamentals of Laparoscopic Surgery (FLS) training tool box. Conclusions A unique computational modeling system has been developed that is capable of simulating the response of nonlinear deformable objects in real time. The method distinguishes itself from previous efforts in that a systematic physics-based pre-computational step allows training of neural networks which may be used in real time simulations. We show, through careful error analysis, that the scheme is scalable, with the accuracy being controlled by the number of neurons used in the simulation. PhyNNeSS has been integrated into SoFMIS (Software Framework for Multimodal

  5. High-Q and highly reproducible microdisks and microlasers.

    PubMed

    Zhang, Nan; Wang, Yujie; Sun, Wenzhao; Liu, Shuai; Huang, Can; Jiang, Xiaoshun; Xiao, Min; Xiao, Shumin; Song, Qinghai

    2018-01-25

    High quality (Q) factor microdisks are fundamental building blocks of on-chip integrated photonic circuits and biological sensors. The resonant modes in microdisks circulate near their boundaries, making their performances strongly dependent upon surface roughness. Surface-tension-induced microspheres and microtoroids are superior to other dielectric microdisks when comparing Q factors. However, most photonic materials such as silicon and negative photoresists are hard to be reflowed and thus the realizations of high-Q microdisks are strongly dependent on electron-beam lithography. Herein, we demonstrate a robust, cost-effective, and highly reproducible technique to fabricate ultrahigh-Q microdisks. By using silica microtoroids as masks, we have successfully replicated their ultrasmooth boundaries in a photoresist via anisotropic dry etching. The experimentally recorded Q factors of passive microdisks can be as large as 1.5 × 10 6 . Similarly, ultrahigh Q microdisk lasers have also been replicated in dye-doped polymeric films. The laser linewidth is only 8 pm, which is limited by the spectrometer and is much narrower than that in previous reports. Meanwhile, high-Q deformed microdisks have also been fabricated by controlling the shape of microtoroids, making the internal ray dynamics and external directional laser emissions controllable. Interestingly, this technique also applies to other materials. Silicon microdisks with Q > 10 6 have been experimentally demonstrated with a similar process. We believe this research will be important for the advances of high-Q micro-resonators and their applications.

  6. Longitudinal associations between maternal disrupted representations, maternal interactive behavior and infant attachment: a comparison between full-term and preterm dyads.

    PubMed

    Hall, R A S; Hoffenkamp, H N; Tooten, A; Braeken, J; Vingerhoets, A J J M; van Bakel, H J A

    2015-04-01

    This prospective study examined whether or not a mother's representations of her infant were more often disrupted after premature childbirth. Furthermore, the study examined if different components of maternal interactive behavior mediated the relation between maternal disrupted representations and infant attachment. The participants were mothers of full-term (n = 75), moderately preterm (n = 68) and very preterm infants (n = 67). Maternal representations were assessed by the Working Model of the Child Interview at 6 months post-partum. Maternal interactive behavior was evaluated at 6 and 24 months post-partum, using the National Institute of Child Health and Human Development Early Care Research Network mother-infant observation scales. Infant attachment was observed at 24 months post-partum and was coded by the Attachment Q-Set. The results reveal that a premature childbirth does not necessarily generate disrupted maternal representations of the infant. Furthermore, maternal interactive behavior appears to be an important mechanism through which maternal representations influence the development of infant attachment in full-term and preterm infants. Early assessment of maternal representations can identify mother-infant dyads at risk, in full-term and preterm samples.

  7. [Nonuniform distribution and contribution of the P- and P/Q-type calcium channels to short-term inhibitory synaptic transmission in cultured hippocampal neurons].

    PubMed

    Mizerna, O P; Fedulova, S A; Veselovs'kyĭ, M S

    2010-01-01

    In the present study, we investigated the sensitivity of GABAergic short-term plasticity to the selective P- and P/Q-type calcium channels blocker omega-agatoxin-IVA. To block the P-type channels we used 30 nM of this toxin and 200 nM of the toxin was used to block the P/Q channel types. The evoked inhibitory postsynaptic currents (eIPSC) were studied using patch-clamp technique in whole-cell configuration in postsynaptic neuron and local extracellular stimulation of single presynaptic axon by rectangular pulse. The present data show that the contribution of P- and P/Q-types channels to GABAergic synaptic transmission in cultured hippocampal neurons are 30% and 45%, respectively. It was shown that the mediate contribution of the P- and P/Q-types channels to the amplitudes of eIPSC is different to every discovered neuron. It means that distribution of these channels is non-uniform. To study the short-term plasticity of inhibitory synaptic transmission, axons of presynaptic neurons were paired-pulse stimulated with the interpulse interval of 150 ms. Neurons demonstrated both the depression and facilitation. The application of 30 nM and 200 nM of the blocker decreased the depression and increased facilitation to 8% and 11%, respectively. In addition, we found that the mediate contribution of the P- and P/Q-types channels to realization of synaptic transmission after the second stimuli is 4% less compared to that after the first one. Therefore, blocking of both P- and P/Q-types calcium channels can change the efficiency of synaptic transmission. In this instance it facilitates realization of the transmission via decreased depression or increased facilitation. These results confirm that the P- and P/Q-types calcium channels are involved in regulation of the short-term inhibitory synaptic plasticity in cultured hippocampal neurons.

  8. Cooperative deformations of periodically patterned hydrogels.

    PubMed

    Wang, Zhi Jian; Zhu, Chao Nan; Hong, Wei; Wu, Zi Liang; Zheng, Qiang

    2017-09-01

    Nature has shown elegant paradigms of smart deformation, which inspired biomimetic systems with controllable bending, folding, and twisting that are significant for the development of soft electronics and actuators. Complex deformations are usually realized by additively incorporating typical structures in selective domains with little interaction. We demonstrate the cooperative deformations of periodically patterned hydrogel sheets, in which neighboring domains mutually interact and cooperatively deform. Nonswelling disc gels are periodically positioned in a high-swelling gel. During the swelling process, the compartmentalized high-swelling gel alternately bends upward or downward to relieve the in-plane compression, but the overall integrated structure remains flat. The synergy between the elastic mismatch and the geometric periodicity selects the outcome pattern. Both experiment and modeling show that various types of cooperative deformation can be achieved by tuning the pattern geometry and gel properties. Different responsive polymers can also be patterned in one composite gel. Under stimulation, reversible transformations between different cooperative deformations are realized. The principle of cooperative deformation should be applicable to other materials, and the patterns can be miniaturized to the micrometer- or nanometer-scale level, providing the morphing materials with advanced functionalities for applications in various fields.

  9. Gait control in a soft robot by sensing interactions with the environment using self-deformation.

    PubMed

    Umedachi, Takuya; Kano, Takeshi; Ishiguro, Akio; Trimmer, Barry A

    2016-12-01

    All animals use mechanosensors to help them move in complex and changing environments. With few exceptions, these sensors are embedded in soft tissues that deform in normal use such that sensory feedback results from the interaction of an animal with its environment. Useful information about the environment is expected to be embedded in the mechanical responses of the tissues during movements. To explore how such sensory information can be used to control movements, we have developed a soft-bodied crawling robot inspired by a highly tractable animal model, the tobacco hornworm Manduca sexta . This robot uses deformations of its body to detect changes in friction force on a substrate. This information is used to provide local sensory feedback for coupled oscillators that control the robot's locomotion. The validity of the control strategy is demonstrated with both simulation and a highly deformable three-dimensionally printed soft robot. The results show that very simple oscillators are able to generate propagating waves and crawling/inching locomotion through the interplay of deformation in different body parts in a fully decentralized manner. Additionally, we confirmed numerically and experimentally that the gait pattern can switch depending on the surface contact points. These results are expected to help in the design of adaptable, robust locomotion control systems for soft robots and also suggest testable hypotheses about how soft animals use sensory feedback.

  10. Gait control in a soft robot by sensing interactions with the environment using self-deformation

    PubMed Central

    Ishiguro, Akio; Trimmer, Barry A.

    2016-01-01

    All animals use mechanosensors to help them move in complex and changing environments. With few exceptions, these sensors are embedded in soft tissues that deform in normal use such that sensory feedback results from the interaction of an animal with its environment. Useful information about the environment is expected to be embedded in the mechanical responses of the tissues during movements. To explore how such sensory information can be used to control movements, we have developed a soft-bodied crawling robot inspired by a highly tractable animal model, the tobacco hornworm Manduca sexta. This robot uses deformations of its body to detect changes in friction force on a substrate. This information is used to provide local sensory feedback for coupled oscillators that control the robot's locomotion. The validity of the control strategy is demonstrated with both simulation and a highly deformable three-dimensionally printed soft robot. The results show that very simple oscillators are able to generate propagating waves and crawling/inching locomotion through the interplay of deformation in different body parts in a fully decentralized manner. Additionally, we confirmed numerically and experimentally that the gait pattern can switch depending on the surface contact points. These results are expected to help in the design of adaptable, robust locomotion control systems for soft robots and also suggest testable hypotheses about how soft animals use sensory feedback. PMID:28083114

  11. Fusion of Huntingtin interacting protein 1 to platelet-derived growth factor beta receptor (PDGFbetaR) in chronic myelomonocytic leukemia with t(5;7)(q33;q11.2).

    PubMed

    Ross, T S; Bernard, O A; Berger, R; Gilliland, D G

    1998-06-15

    We report the fusion of the Huntingtin interactin protein 1 (HIP1) gene to the platelet-derived growth factor betareceptor (PDGFbetaR) gene in a patient with chronic myelomonocytic leukemia (CMML) with a t(5;7)(q33;q11.2) translocation. Southern blot analysis of patient bone marrow cells with a PDGFbetaR gene probe demonstrated rearrangement of the PDGFbetaR gene. Anchored polymerase chain reaction using PDGFbetaR primers identified a chimeric transcript containing the HIP1 gene located at 7q11.2 fused to the PDGFbetaR gene on 5q33. HIP1 is a 116-kD protein recently cloned by yeast two-hybrid screening for proteins that interact with Huntingtin, the mutated protein in Huntington's disease. The consequence of t(5;7)(q33;q11.2) is an HIP1/PDGFbetaR fusion gene that encodes amino acids 1 to 950 of HIP1 joined in-frame to the transmembrane and tyrosine kinase domains of the PDGFbetaR. The reciprocal PDGFbetaR/HIP1 transcript is not expressed. HIP1/PDGFbetaR is a 180-kD protein when expressed in the murine hematopoietic cell line, Ba/F3, and is constitutively tyrosine phosphorylated. Furthermore, HIP1/PDGFbetaR transforms the Ba/F3 cells to interleukin-3-independent growth. These data are consistent with an alternative mechanism for activation of PDGFbetaR tyrosine kinase activity by fusion with HIP1, leading to transformation of hematopoietic cells, and may implicate Huntingtin or HIP1 in the pathogenesis of hematopoietic malignancies.

  12. Construction of general colored R matrices for the Yang-Baxter equation and q-boson realization of quantum algebra SL[sub q](2) when q is a root of unity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ge, M.L.; Sun, C.P.; Xue, K.

    1992-10-20

    In this paper, through a general q-boson realization of quantum algebra sl[sub q](2) and its universal R matrix an operator R matrix with many parameters is obtained in terms of q-boson operators. Building finite-dimensional representations of q-boson algebra, the authors construct various colored R matrices associated with nongeneric representations of sl[sub q](2) with dimension-independent parameters. The nonstandard R matrices obtained by Lee-Couture and Murakami are their special examples.

  13. Reconciling Geodetic Deformation and Long-term Exhumation Rates Across the Western Greater Caucasus

    NASA Astrophysics Data System (ADS)

    Avdeev, B.; Niemi, N. A.

    2011-12-01

    Low modern geodetic strain rates and minimal instrumentally recorded seismicity in the western Greater Caucasus contradict the the high topography, deep exhumation, and young low-temperature thermochronometric ages indicative of active tectonic deformation in this mountain range. We use new and existing low-temperature thermochronometric data to show that the rate of present-day convergence across the range is sufficient to sustain observed rates of long-term exhumation and topographic growth. Thus, it is possible that the western Greater Caucasus has existed in an erosional steady state since shortly after the onset of exhumation of the range in Pliocene. We employ a Markov chain Monte Carlo algorithm to estimate the parameters of a thermokinematic model constrained by thermochronometric data and a focal mechanism solution from the 1991 Racha earthquake. We find that the thermochronometric data are best fit by exhumation commencing at ~4 Ma and driven by 3-5 mm/y of overthrusting on the Main Caucasus thrust dipping 40-45° at the surface and becoming flat at a depth of 15-20 km. This long-term exhumation model was compared with active rates of convergence in the western Greater Caucasus using an elastic half-space deformation model to estimate the geometry and rate of slip on a buried dislocation that best fits the observed geodetic velocity field. The estimated active slip of 4-7 mm/y is comparable to the long-term rate of overthrusting and is, therefore, sufficient to produce the observed rock uplift. Up to 4 mm/y excess of active convergence may potentially be consumed by underthrusting of the Transcaucasus or on faults south of the Main Caucasus thrust. We conclude that high rates of rock uplift observed in the western Greater Caucasus are the result of focused shortening occurring on a single fault. This differs from the deformation style of the eastern Greater Caucasus, where a larger amount of shortening is distributed across the width of the range with

  14. Emotional and behavioral reactions to facially deformed patients before and after craniofacial surgery.

    PubMed

    Barden, R C; Ford, M E; Wilhelm, W M; Rogers-Salyer, M; Salyer, K E

    1988-09-01

    The present experiment investigated whether observers' emotional and behavioral reactions to facially deformed patients could be substantially improved by surgical procedures conducted by well-trained specialists in an experienced multidisciplinary team. Also investigated was the hypothesis that emotional states mediate the effects of physical attractiveness and facial deformity on social interaction. Twenty patients between the ages of 3 months and 17 years were randomly selected from over 2000 patients' files of Kenneth E. Salyer of Dallas, Texas. Patient diagnoses included facial clefts, hypertelorism, Treacher Collins syndrome, and craniofacial dysostoses (Crouzon's and Apert's syndromes). Rigorously standardized photographs of patients taken before and after surgery were shown to 22 "naive" raters ranging in age from 18 to 54 years. Raters were asked to predict their emotional and behavioral responses to the patients. These ratings indicated that observers' behavioral reactions to facially deformed children and adolescents would be more positive following craniofacial surgery. Similarly, the ratings indicated that observers' emotional reactions to these patients would be more positive following surgery. The results are discussed in terms of current sociopsychologic theoretical models for the effects of attractiveness on social interaction. A new model is presented that implicates induced emotional states as a mediating process in explaining the effects of attractiveness and facial deformity on the quality of social interactions. Limitations of the current investigation and directions for future research are also discussed.

  15. Hot compression deformation behavior of AISI 321 austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Haj, Mehdi; Mansouri, Hojjatollah; Vafaei, Reza; Ebrahimi, Golam Reza; Kanani, Ali

    2013-06-01

    The hot compression behavior of AISI 321 austenitic stainless steel was studied at the temperatures of 950-1100°C and the strain rates of 0.01-1 s-1 using a Baehr DIL-805 deformation dilatometer. The hot deformation equations and the relationship between hot deformation parameters were obtained. It is found that strain rate and deformation temperature significantly influence the flow stress behavior of the steel. The work hardening rate and the peak value of flow stress increase with the decrease of deformation temperature and the increase of strain rate. In addition, the activation energy of deformation ( Q) is calculated as 433.343 kJ/mol. The microstructural evolution during deformation indicates that, at the temperature of 950°C and the strain rate of 0.01 s-1, small circle-like precipitates form along grain boundaries; but at the temperatures above 950°C, the dissolution of such precipitates occurs. Energy-dispersive X-ray analyses indicate that the precipitates are complex carbides of Cr, Fe, Mn, Ni, and Ti.

  16. Numerical analysis on interactions between fluid flow and structure deformation in plate-fin heat exchanger by Galerkin method

    NASA Astrophysics Data System (ADS)

    Liu, Jing-cheng; Wei, Xiu-ting; Zhou, Zhi-yong; Wei, Zhen-wen

    2018-03-01

    The fluid-structure interaction performance of plate-fin heat exchanger (PFHE) with serrated fins in large scale air-separation equipment was investigated in this paper. The stress and deformation of fins were analyzed, besides, the interaction equations were deduced by Galerkin method. The governing equations of fluid flow and heat transfer in PFHE were deduced by finite volume method (FVM). The distribution of strain and stress were calculated in large scale air separation equipment and the coupling situation of serrated fins under laminar situation was analyzed. The results indicated that the interactions between fins and fluid flow in the exchanger have significant impacts on heat transfer enhancement, meanwhile, the strain and stress of fins includes dynamic pressure of the sealing head and flow impact with the increase of flow velocity. The impacts are especially significant at the conjunction of two fins because of the non-alignment fins. It can be concluded that the soldering process and channel width led to structure deformation of fins in the exchanger, and degraded heat transfer efficiency.

  17. Electron removal from H and He atoms in collisions with C q+ , O q+ ions

    NASA Astrophysics Data System (ADS)

    Janev, R. K.; McDowell, M. R. C.

    1984-06-01

    Cross sections for electron capture and ionisation in collision of partially and completely stripped C q+ , N q+ and O q+ ions with hydrogen and helium atoms have been calculated at selected energies. The classical trajectory Monte Carlo method was used with a variable-charge pseudopotential to describe the interaction of the active electron with the projectile ion. A scalling relationship has been derived for the electron removal (capture and ionisation) cross section which allows a unifield representation of the data.

  18. Use of Terrestrial Laser Scanning Technology for Long Term High Precision Deformation Monitoring

    PubMed Central

    Vezočnik, Rok; Ambrožič, Tomaž; Sterle, Oskar; Bilban, Gregor; Pfeifer, Norbert; Stopar, Bojan

    2009-01-01

    The paper presents a new methodology for high precision monitoring of deformations with a long term perspective using terrestrial laser scanning technology. In order to solve the problem of a stable reference system and to assure the high quality of possible position changes of point clouds, scanning is integrated with two complementary surveying techniques, i.e., high quality static GNSS positioning and precise tacheometry. The case study object where the proposed methodology was tested is a high pressure underground pipeline situated in an area which is geologically unstable. PMID:22303152

  19. A new 3D immersed boundary method for non-Newtonian fluid-structure-interaction with application

    NASA Astrophysics Data System (ADS)

    Zhu, Luoding

    2017-11-01

    Motivated by fluid-structure-interaction (FSI) phenomena in life sciences (e.g., motions of sperm and cytoskeleton in complex fluids), we introduce a new immersed boundary method for FSI problems involving non-Newtonian fluids in three dimensions. The non-Newtonian fluids are modelled by the FENE-P model (including the Oldroyd-B model as an especial case) and numerically solved by a lattice Boltzmann scheme (the D3Q7 model). The fluid flow is modelled by the lattice Boltzmann equations and numerically solved by the D3Q19 model. The deformable structure and the fluid-structure-interaction are handled by the immersed boundary method. As an application, we study a FSI toy problem - interaction of an elastic plate (flapped at its leading edge and restricted nowhere else) with a non-Newtonian fluid in a 3D flow. Thanks to the support of NSF-DMS support under research Grant 1522554.

  20. Structural and electronic properties of Cu2Q and CuQ (Q = O, S, Se, and Te) studied by first-principles calculations

    NASA Astrophysics Data System (ADS)

    Zhao, Ting; Wang, Yu-An; Zhao, Zong-Yan; Liu, Qiang; Liu, Qing-Ju

    2018-01-01

    In order to explore the similarity, difference, and tendency of binary copper-based chalcogenides, the crystal structure, electronic structure, and optical properties of eight compounds of Cu2Q and CuQ (Q = O, S, Se, and Te) have been calculated by density functional theory with HSE06 method. According to the calculated results, the electronic structure and optical properties of Cu2Q and CuQ present certain similarities and tendencies, with the increase of atomic number of Q elements: the interactions between Cu-Q, Cu-Cu, and Q-Q are gradually enhancing; the value of band gap is gradually decreasing, due to the down-shifting of Cu-4p states; the covalent feature of Cu atoms is gradually strengthening, while their ionic feature is gradually weakening; the absorption coefficient in the visible-light region is also increasing. On the other hand, some differences can be found, owing to the different crystal structure and component, for example: CuO presents the characteristics of multi-band gap, which is very favorable to absorb infrared-light; the electron transfer in CuQ is stronger than that in Cu2Q; the absorption peaks and intensity are very strong in the ultraviolet-light region and infrared-light region. The findings in the present work will help to understand the underlying physical mechanism of binary copper-based chalcogenides, and available to design novel copper-based chalcogenides photo-electronics materials and devices.

  1. The Q-Slope Method for Rock Slope Engineering

    NASA Astrophysics Data System (ADS)

    Bar, Neil; Barton, Nick

    2017-12-01

    Q-slope is an empirical rock slope engineering method for assessing the stability of excavated rock slopes in the field. Intended for use in reinforcement-free road or railway cuttings or in opencast mines, Q-slope allows geotechnical engineers to make potential adjustments to slope angles as rock mass conditions become apparent during construction. Through case studies across Asia, Australia, Central America, and Europe, a simple correlation between Q-slope and long-term stable slopes was established. Q-slope is designed such that it suggests stable, maintenance-free bench-face slope angles of, for instance, 40°-45°, 60°-65°, and 80°-85° with respective Q-slope values of approximately 0.1, 1.0, and 10. Q-slope was developed by supplementing the Q-system which has been extensively used for characterizing rock exposures, drill-core, and tunnels under construction for the last 40 years. The Q' parameters (RQD, J n, J a, and J r) remain unchanged in Q-slope. However, a new method for applying J r/ J a ratios to both sides of potential wedges is used, with relative orientation weightings for each side. The term J w, which is now termed J wice, takes into account long-term exposure to various climatic and environmental conditions such as intense erosive rainfall and ice-wedging effects. Slope-relevant SRF categories for slope surface conditions, stress-strength ratios, and major discontinuities such as faults, weakness zones, or joint swarms have also been incorporated. This paper discusses the applicability of the Q-slope method to slopes ranging from less than 5 m to more than 250 m in height in both civil and mining engineering projects.

  2. Q-balls in flat potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Copeland, Edmund J.; Tsumagari, Mitsuo I.

    2009-07-15

    We study the classical and absolute stability of Q-balls in scalar field theories with flat potentials arising in both gravity-mediated and gauge-mediated models. We show that the associated Q-matter formed in gravity-mediated potentials can be stable against decay into their own free particles as long as the coupling constant of the nonrenormalizable term is small, and that all of the possible three-dimensional Q-ball configurations are classically stable against linear fluctuations. Three-dimensional gauge-mediated Q-balls can be absolutely stable in the thin-wall limit, but are completely unstable in the thick-wall limit.

  3. Triply heavy Q Q Q ¯ q ¯ tetraquark states

    NASA Astrophysics Data System (ADS)

    Jiang, Jin-Feng; Chen, Wei; Zhu, Shi-Lin

    2017-11-01

    Within the framework of QCD sum rules, we have investigated the tetraquark states with three heavy quarks. We systematically construct the interpolating currents for the possible c c c ¯ q ¯ , c c b ¯q ¯, b c b ¯q ¯, b b b ¯q ¯ tetraquark states with quantum numbers JP=0+ and JP=1+. Using these interpolating currents, we have calculated the two-point correlation functions and extracted the mass spectra for the above tetraquark states. We also discuss the decay patterns of these tetraquarks, and notice that the c c c ¯q ¯, c c b ¯q ¯, b c b ¯q ¯ may decay quickly with a narrow width due to their mass spectra. The b b b ¯q ¯ tetraquarks are expected to be very narrow resonances since their OZI (Okubo-Zweig-Iizuka)-allowed decay modes are kinematically forbidden. These states may be searched for in the final states with a B meson plus a light meson or photon.

  4. Fluid-structure interaction simulations of deformable structures with non-linear thin shell elements

    NASA Astrophysics Data System (ADS)

    Asgharzadeh, Hafez; Hedayat, Mohammadali; Borazjani, Iman; Scientific Computing; Biofluids Laboratory Team

    2017-11-01

    Large deformation of structures in a fluid is simulated using a strongly coupled partitioned fluid-structure interaction (FSI) approach which is stabilized with under-relaxation and the Aitken acceleration technique. The fluid is simulated using a recently developed implicit Newton-Krylov method with a novel analytical Jacobian. Structures are simulated using a triangular thin-shell finite element formulation, which considers only translational degrees of freedom. The thin-shell method is developed on the top of a previously implemented membrane finite element formulation. A sharp interface immersed boundary method is used to handle structures in the fluid domain. The developed FSI framework is validated against two three-dimensional experiments: (1) a flexible aquatic vegetation in the fluid and (2) a heaving flexible panel in fluid. Furthermore, the developed FSI framework is used to simulate tissue heart valves, which involve large deformations and non-linear material properties. This work was supported by American Heart Association (AHA) Grant 13SDG17220022 and the Center of Computational Research (CCR) of University at Buffalo.

  5. TreeQ-VISTA: An Interactive Tree Visualization Tool withFunctional Annotation Query Capabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Shengyin; Anderson, Iain; Kunin, Victor

    2007-05-07

    Summary: We describe a general multiplatform exploratorytool called TreeQ-Vista, designed for presenting functional annotationsin a phylogenetic context. Traits, such as phenotypic and genomicproperties, are interactively queried from a relational database with auser-friendly interface which provides a set of tools for users with orwithout SQL knowledge. The query results are projected onto aphylogenetic tree and can be displayed in multiple color groups. A richset of browsing, grouping and query tools are provided to facilitatetrait exploration, comparison and analysis.Availability: The program,detailed tutorial and examples are available online athttp://genome-test.lbl.gov/vista/TreeQVista.

  6. Post Deformation at Room and Cryogenic Temperature Cooling Media on Severely Deformed 1050-Aluminum

    NASA Astrophysics Data System (ADS)

    Khorrami, M. Sarkari; Kazeminezhad, M.

    2018-03-01

    The annealed 1050-aluminum sheets were initially subjected to the severe plastic deformation through two passes of constrained groove pressing (CGP) process. The obtained specimens were post-deformed by friction stir processing at room and cryogenic temperature cooling media. The microstructure evolutions during mentioned processes in terms of grain structure, misorientation distribution, and grain orientation spread (GOS) were characterized using electron backscattered diffraction. The annealed sample contained a large number of "recrystallized" grains and relatively large fraction (78%) of high-angle grain boundaries (HAGBs). When CGP process was applied on the annealed specimen, the elongated grains with interior substructure were developed, which was responsible for the formation of 80% low-angle grain boundaries. The GOS map of the severely deformed specimen manifested the formation of 43% "distorted" and 51% "substructured" grains. The post deformation of severely deformed aluminum at room temperature led to the increase in the fraction of HAGBs from 20 to 60%. Also, it gave rise to the formation of "recrystallized" grains with the average size of 13 μm, which were coarser than the grains predicted by Zener-Hollomon parameter. This was attributed to the occurrence of appreciable grain growth during post deformation. In the case of post deformation at cryogenic temperature cooling medium, the grain size was decreased, which was in well agreement with the predicted grain size. The cumulative distribution of misorientation was the same for both processing routes. Mechanical properties characterizations in terms of nano-indentation and tensile tests revealed that the post deformation process led to the reduction in hardness, yield stress, and ultimate tensile strength of the severely deformed aluminum.

  7. Homogeneous Yang-Baxter deformations as generalized diffeomorphisms

    NASA Astrophysics Data System (ADS)

    Sakamoto, Jun-ichi; Sakatani, Yuho; Yoshida, Kentaroh

    2017-10-01

    Yang-Baxter (YB) deformations of string sigma model provide deformed target spaces. We propose that homogeneous YB deformations always lead to a certain class of β-twisted backgrounds and represent the bosonic part of the supergravity fields in terms of the classical r-matrix associated with the YB deformation. We then show that various β-twisted backgrounds can be realized by considering generalized diffeomorphisms in the undeformed background. Our result extends the notable relation between the YB deformations and (non-commuting) TsT transformations. We also discuss more general deformations beyond the YB deformations.

  8. Coulomb-like elastic interaction induced by symmetry breaking in nematic liquid crystal colloids.

    PubMed

    Lee, Beom-Kyu; Kim, Sung-Jo; Kim, Jong-Hyun; Lev, Bohdan

    2017-11-21

    It is generally thought that colloidal particles in a nematic liquid crystal do not generate the first multipole term called deformation elastic charge as it violates the mechanical equilibrium. Here, we demonstrate theoretically and experimentally that this is not the case, and deformation elastic charges, as well as dipoles and quadrupoles, can be induced through anisotropic boundary conditions. We report the first direct observation of Coulomb-like elastic interactions between colloidal particles in a nematic liquid crystal. The behaviour of two spherical colloidal particles with asymmetric anchoring conditions induced by asymmetric alignment is investigated experimentally; the interaction of two particles located at the boundary of twist and parallel aligned regions is observed. We demonstrate that such particles produce deformation elastic charges and interact by Coulomb-like interactions.

  9. Polygonal deformation bands in sandstone

    NASA Astrophysics Data System (ADS)

    Antonellini, Marco; Nella Mollema, Pauline

    2017-04-01

    We report for the first time the occurrence of polygonal faults in sandstone, which is compelling given that layer-bound polygonal fault systems have been observed so far only in fine-grained sediments such as clay and chalk. The polygonal faults are dm-wide zones of shear deformation bands that developed under shallow burial conditions in the lower portion of the Jurassic Entrada Fm (Utah, USA). The edges of the polygons are 1 to 5 meters long. The shear deformation bands are organized as conjugate faults along each edge of the polygon and form characteristic horst-like structures. The individual deformation bands have slip magnitudes ranging from a few mm to 1.5 cm; the cumulative average slip magnitude in a zone is up to 10 cm. The deformation bands heaves, in aggregate form, accommodate a small isotropic horizontal extension (strain < 0.005). The individual shear deformation bands show abutting T-junctions, veering, curving, and merging where they mechanically interact. Crosscutting relationships are rare. The interactions of the deformation bands are similar to those of mode I opening fractures. Density inversion, that takes place where under-compacted and over-pressurized layers (Carmel Fm) lay below normally compacted sediments (Entrada Sandstone), may be an important process for polygonal deformation bands formation. The gravitational sliding and soft sediment structures typically observed within the Carmel Fm support this hypothesis. Soft sediment deformation may induce polygonal faulting in the section of the Entrada Sandstone just above the Carmel Fm. The permeability of the polygonal deformation bands is approximately 10-14 to 10-13 m2, which is less than the permeability of the host, Entrada Sandstone (range 10-12 to 10-11 m2). The documented fault networks have important implications for evaluating the geometry of km-scale polygonal fault systems in the subsurface, top seal integrity, as well as constraining paleo-tectonic stress regimes.

  10. Deformations of the Almheiri-Polchinski model

    NASA Astrophysics Data System (ADS)

    Kyono, Hideki; Okumura, Suguru; Yoshida, Kentaroh

    2017-03-01

    We study deformations of the Almheiri-Polchinski (AP) model by employing the Yang-Baxter deformation technique. The general deformed AdS2 metric becomes a solution of a deformed AP model. In particular, the dilaton potential is deformed from a simple quadratic form to a hyperbolic function-type potential similarly to integrable deformations. A specific solution is a deformed black hole solution. Because the deformation makes the spacetime structure around the boundary change drastically and a new naked singularity appears, the holographic interpretation is far from trivial. The Hawking temperature is the same as the undeformed case but the Bekenstein-Hawking entropy is modified due to the deformation. This entropy can also be reproduced by evaluating the renormalized stress tensor with an appropriate counter-term on the regularized screen close to the singularity.

  11. Chaperones in Polyglutamine Aggregation: Beyond the Q-Stretch

    PubMed Central

    Kuiper, E. F. E.; de Mattos, Eduardo P.; Jardim, Laura B.; Kampinga, Harm H.; Bergink, Steven

    2017-01-01

    Expanded polyglutamine (polyQ) stretches in at least nine unrelated proteins lead to inherited neuronal dysfunction and degeneration. The expansion size in all diseases correlates with age at onset (AO) of disease and with polyQ protein aggregation, indicating that the expanded polyQ stretch is the main driving force for the disease onset. Interestingly, there is marked interpatient variability in expansion thresholds for a given disease. Between different polyQ diseases the repeat length vs. AO also indicates the existence of modulatory effects on aggregation of the upstream and downstream amino acid sequences flanking the Q expansion. This can be either due to intrinsic modulation of aggregation by the flanking regions, or due to differential interaction with other proteins, such as the components of the cellular protein quality control network. Indeed, several lines of evidence suggest that molecular chaperones have impact on the handling of different polyQ proteins. Here, we review factors differentially influencing polyQ aggregation: the Q-stretch itself, modulatory flanking sequences, interaction partners, cleavage of polyQ-containing proteins, and post-translational modifications, with a special focus on the role of molecular chaperones. By discussing typical examples of how these factors influence aggregation, we provide more insight on the variability of AO between different diseases as well as within the same polyQ disorder, on the molecular level. PMID:28386214

  12. Modeling the Evolution of Localized Strain in Orogenic Wedges: From Short-term Deformation to Long-term Tectonic States

    NASA Astrophysics Data System (ADS)

    Weiss, J. R.; Ito, G.; Brooks, B. A.; Olive, J. A. L.; Foster, J. H.; Howell, S. M.

    2015-12-01

    Some of the most destructive earthquakes on Earth are associated with active orogenic wedges. Despite a sound understanding of the basic mechanics that govern whole wedge structure over geologic time scales and a growing body of studies that have characterized the deformation associated with historic to recent earthquakes, first order questions remain about the linkage of the two sets of processes at the intermediate seismotectonic timescales. Numerical models have the power to test the effects of specific mechanical conditions on the evolution of observables at active orogenic wedges. Here we use a two-dimensional, continuum mechanics-based, finite difference method with a visco-elasto-plastic rheology coupled with surface processes to investigate the spatiotemporal distribution of deformation during wedge growth. The model simulates the contraction of a crustal layer overlying a weak base (décollement) against a rigid backstop and the spontaneous nucleation and evolution of fault zones due to cohesive, Mohr-Coulomb failure with strain weakening. Consistent with critical wedge theory, the average slope across the wedge is controlled by the relative frictional strengths of the wedge and décollement. Initial calculations predict changes in wedge deformation on short geologic timescales (103-105yrs) that involve episodes of widening as new, foreland-verging thrusts nucleate near the surface beyond the wedge toe and propagate down-dip to intersect the décollement. All the while, the wedge thickens via slip on older, internal fault zones. The aim of this study is to identify the parameters controlling the timescales of 1) episodic widening versus thickening and 2) nucleation and life-span of individual fault zones. These are initial steps needed to link earthquake observations to the long-term tectonic states inferred at various orogenic belts around the world.

  13. Human COQ9 Rescues a coq9 Yeast Mutant by Enhancing Coenzyme Q Biosynthesis from 4-Hydroxybenzoic Acid and Stabilizing the CoQ-Synthome

    PubMed Central

    He, Cuiwen H.; Black, Dylan S.; Allan, Christopher M.; Meunier, Brigitte; Rahman, Shamima; Clarke, Catherine F.

    2017-01-01

    Coq9 is required for the stability of a mitochondrial multi-subunit complex, termed the CoQ-synthome, and the deamination step of Q intermediates that derive from para-aminobenzoic acid (pABA) in yeast. In human, mutations in the COQ9 gene cause neonatal-onset primary Q10 deficiency. In this study, we determined whether expression of human COQ9 could complement yeast coq9 point or null mutants. We found that expression of human COQ9 rescues the growth of the temperature-sensitive yeast mutant, coq9-ts19, on a non-fermentable carbon source and increases the content of Q6, by enhancing Q biosynthesis from 4-hydroxybenzoic acid (4HB). To study the mechanism for the rescue by human COQ9, we determined the steady-state levels of yeast Coq polypeptides in the mitochondria of the temperature-sensitive yeast coq9 mutant expressing human COQ9. We show that the expression of human COQ9 significantly increased steady-state levels of yeast Coq4, Coq6, Coq7, and Coq9 at permissive temperature. Human COQ9 polypeptide levels persisted at non-permissive temperature. A small amount of the human COQ9 co-purified with tagged Coq6, Coq6-CNAP, indicating that human COQ9 interacts with the yeast Q-biosynthetic complex. These findings suggest that human COQ9 rescues the yeast coq9 temperature-sensitive mutant by stabilizing the CoQ-synthome and increasing Q biosynthesis from 4HB. This finding provides a powerful approach to studying the function of human COQ9 using yeast as a model. PMID:28736527

  14. Deformation cycles of subduction earthquakes in a viscoelastic Earth.

    PubMed

    Wang, Kelin; Hu, Yan; He, Jiangheng

    2012-04-18

    Subduction zones produce the largest earthquakes. Over the past two decades, space geodesy has revolutionized our view of crustal deformation between consecutive earthquakes. The short time span of modern measurements necessitates comparative studies of subduction zones that are at different stages of the deformation cycle. Piecing together geodetic 'snapshots' from different subduction zones leads to a unifying picture in which the deformation is controlled by both the short-term (years) and long-term (decades and centuries) viscous behaviour of the mantle. Traditional views based on elastic models, such as coseismic deformation being a mirror image of interseismic deformation, are being thoroughly revised.

  15. Study of charged—current ep interactions at Q 2>200 GeV2 with the ZEUS detector at HERA

    NASA Astrophysics Data System (ADS)

    Derrick, M.; Krakauer, D.; Magill, S.; Mikunas, D.; Musgrave, B.; Okrasinski, J. R.; Repond, J.; Stanek, R.; Talaga, R. L.; Zhang, H.; Mattingly, M. C. K.; Antonioli, P.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruni, P.; Romeo, G. Cara; Castellini, G.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; Gialas, I.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Palmonari, F.; Pesci, A.; Polini, A.; Sartorelli, G.; Garcia, Y. Zamora; Zichichi, A.; Amelung, C.; Bornheim, A.; Crittenden, J.; Deffner, R.; Doeker, T.; Eckert, M.; Feld, L.; Frey, A.; Geerts, M.; Grothe, M.; Hartmann, H.; Heinloth, K.; Heinz, L.; Hilger, E.; Jakob, H.-P.; Katz, U. F.; Mengel, S.; Paul, E.; Pfeiffer, M.; Rembser, Ch.; Schramm, D.; Stamm, J.; Wedemeyer, R.; Campbell-Robson, S.; Cassidy, A.; Cottingham, W. N.; Dyce, N.; Foster, B.; George, S.; Hayes, M. E.; Heath, G. P.; Heath, H. F.; Piccioni, D.; Roff, D. G.; Tapper, R. J.; Yoshida, R.; Arneodo, M.; Ayad, R.; Capua, M.; Garfagnini, A.; Iannotti, L.; Schioppa, M.; Susinno, G.; Caldwell, A.; Cartiglia, N.; Jing, Z.; Liu, W.; Parsons, J. A.; Ritz, S.; Sciulli, F.; Straub, P. B.; Wai, L.; Yang, S.; Zhu, Q.; Borzemski, P.; Chwastowski, J.; Eskreys, A.; Jakubowski, Z.; Przybycień, M. B.; Zachara, M.; Zawiejski, L.; Adamczyk, L.; Bednarek, B.; Jeleń, K.; Kisielewska, D.; Kowalski, T.; Przybycień, M.; Rulikowska-Zarębska, E.; Suszycki, L.; Zając, J.; Duliński, Z.; Kotański, A.; Abbiendi, G.; Bauerdick, L. A. T.; Behrens, U.; Beier, H.; Bienlein, J. K.; Cases, G.; Deppe, O.; Desler, K.; Drews, G.; Flasiński, M.; Gilkinson, D. J.; Glasman, C.; Göttlicher, P.; Große-Knetter, J.; Haas, T.; Hain, W.; Hasell, D.; Heßling, H.; Iga, Y.; Johnson, K. F.; Joos, P.; Kasemann, M.; Klanner, R.; Koch, W.; Kötz, U.; Kowalski, H.; Labs, J.; Ladage, A.; Löhr, B.; Löwe, M.; Lüke, D.; Mainusch, J.; Mańczak, O.; Milewski, J.; Monteiro, T.; Ng, J. S. T.; Notz, D.; Ohrenberg, K.; Piotrzkowski, K.; Roco, M.; Rohde, M.; Roldán, J.; Schneekloth, U.; Schulz, W.; Selonke, F.; Surrow, B.; Tassi, E.; Voß, T.; Westphal, D.; Wolf, G.; Wollmer, U.; Youngman, C.; Zeuner, W.; Grabosch, H. J.; Kharchilava, A.; Mari, S. M.; Meyer, A.; Schlenstedt, S.; Wulff, N.; Barbagli, G.; Gallo, E.; Pelfer, P.; Maccarrone, G.; de Pasquale, S.; Votano, L.; Bamberger, A.; Eisenhardt, S.; Trefzger, T.; Wölfle, S.; Bromley, J. T.; Brook, N. H.; Bussey, P. J.; Doyle, A. T.; Saxon, D. H.; Sinclair, L. E.; Utley, M. L.; Wilson, A. S.; Dannemann, A.; Holm, U.; Horstmann, D.; Sinkus, R.; Wick, K.; Burow, B. D.; Hagge, L.; Lohrmann, E.; Poelz, G.; Schott, W.; Zetsche, F.; Bacon, T. C.; Brümmer, N.; Butterworth, I.; Harris, V. L.; Howell, G.; Hung, B. H. Y.; Lamberti, L.; Long, K. R.; Miller, D. B.; Pavel, N.; Prinias, A.; Sedgbeer, J. K.; Sideris, D.; Whitfield, A. F.; Mallik, U.; Wang, M. Z.; Wang, S. M.; Wu, J. T.; Cloth, P.; Filges, D.; An, S. H.; Cho, G. H.; Ko, B. J.; Lee, S. B.; Nam, S. W.; Park, H. S.; Park, S. K.; Kartik, S.; Kim, H.-J.; McNeil, R. R.; Metcalf, W.; Nadendla, V. K.; Barreiro, F.; Fernandez, J. P.; Graciani, R.; Hernández, J. M.; Hervás, L.; Labarga, L.; Martinez, M.; Del Peso, J.; Puga, J.; Terron, J.; de Trocóniz, J. F.; Corriveau, F.; Hanna, D. S.; Hartmann, J.; Hung, L. W.; Lim, J. N.; Matthews, C. G.; Patel, P. M.; Riveline, M.; Stairs, D. G.; St-Laurent, M.; Ullmann, R.; Zacek, G.; Tsurugai, T.; Bashkirov, V.; Dolgoshein, B. A.; Stifutkin, A.; Bashindzhagyan, G. L.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Yu. A.; Kobrin, V. D.; Korzhavina, I. A.; Kuzmin, V. A.; Lukina, O. Yu.; Proskuryakov, A. S.; Savin, A. A.; Shcheglova, L. M.; Solomin, A. N.; Zotov, N. P.; Botje, M.; Chlebana, F.; Engelen, J.; de Kamps, M.; Kooijman, P.; Kruse, A.; van Sighem, A.; Tiecke, H.; Verkerke, W.; Vossebeld, J.; Vreeswijk, M.; Wiggers, L.; de Wolf, E.; van Woudenberg, R.; Acosta, D.; Bylsma, B.; Durkin, L. S.; Gilmore, J.; Li, C.; Ling, T. Y.; Nylander, P.; Park, I. H.; Romanowski, T. A.; Bailey, D. S.; Cashmore, R. J.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Harnew, N.; Lancaster, M.; Lindemann, L.; McFall, J. D.; Nath, C.; Noyes, V. A.; Quadt, A.; Tickner, J. R.; Uijterwaal, H.; Walczak, R.; Waters, D. S.; Wilson, F. F.; Yip, T.; Bertolin, A.; Brugnera, R.; Carlin, R.; Dal Corso, F.; de Giorgi, M.; Dosselli, U.; Limentani, S.; Morandin, M.; Posocco, M.; Stanco, L.; Stroili, R.; Voci, C.; Zuin, F.; Bulmahn, J.; Feild, R. G.; Oh, B. Y.; Whitmore, J. J.; D'Agostini, G.; Marini, G.; Nigro, A.; Hart, J. C.; McCubbin, N. A.; Shah, T. P.; Barberis, E.; Dubbs, T.; Heusch, C.; van Hook, M.; Lockman, W.; Rahn, J. T.; Sadrozinski, H. F.-W.; Seiden, A.; Williams, D. C.; Biltzinger, J.; Seifert, R. J.; Schwarzer, O.; Walenta, A. H.; Abramowicz, H.; Briskin, G.; Dagan, S.; Levy, A.; Fleck, J. I.; Inuzuka, M.; Ishii, T.; Kuze, M.; Mine, S.; Nakao, M.; Suzuki, I.; Tokushuku, K.; Umemori, K.; Yamada, S.; Yamazaki, Y.; Chiba, M.; Hamatsu, R.; Hirose, T.; Homma, K.; Kitamura, S.; Matsushita, T.; Yamauchi, K.; Cirio, R.; Costa, M.; Ferrero, M. I.; Maselli, S.; Peroni, C.; Sacchi, R.; Solano, A.; Staiano, A.; Dardo, M.; Bailey, D. C.; Benard, F.; Brkic, M.; Fagerstroem, C.-P.; Hartner, G. F.; Joo, K. K.; Levman, G. M.; Martin, J. F.; Orr, R. S.; Polenz, S.; Sampson, C. R.; Simmons, D.; Teuscher, R. J.; Butterworth, J. M.; Catterall, C. D.; Jones, T. W.; Kaziewicz, P. B.; Lane, J. B.; Saunders, R. L.; Shulman, J.; Sutton, M. R.; Lu, B.; Mo, L. W.; Bogusz, W.; Ciborowski, J.; Gajewski, J.; Grzelak, G.; Kasprzak, M.; Krzyżanowski, M.; Muchorowski, K.; Nowak, R. J.; Pawlak, J. M.; Tymieniecka, T.; Wróblewski, A. K.; Zakrzewski, J. A.; Żarnecki, A. F.; Adamus, M.; Coldewey, C.; Eisenberg, Y.; Hochman, D.; Karshon, U.; Revel, D.; Zer-Zion, D.; Badgett, W. F.; Breitweg, J.; Chapin, D.; Cross, R.; Dasu, S.; Foudas, C.; Loveless, R. J.; Mattingly, S.; Reeder, D. D.; Silverstein, S.; Smith, W. H.; Vaiciulis, A.; Wodarczyk, M.; Bhadra, S.; Cardy, M. L.; Frisken, W. R.; Khakzad, M.; Murray, W. N.; Schmidke, W. B.

    1996-12-01

    Deep inelastic charged-current reactions have been studied in e + p and e - p collisions at a center of mass energy of about 300GeV in the kinematic region Q 2>200GeV2 and x>0.006 using the ZEUS detector at HERA. The integrated cross sections for Q 2>200GeV2 are found to be σ _{e^ + p to bar ν X} = 30.3_{ - 4.2 - 2.6}^{ + 5.5 + 1.6} pb and σ _{e^ - p to ν X} = 54.7_{ - 9.8 - 3.4}^{ + 15.9 + 2.8} pb . Differential cross sections have been measured as functions of the variables x, y and Q 2. From the measured differential cross sections dσ/dQ 2, the W boson mass is determined to be M_W = 79_{ - 7 - 4}^{ + 8 + 4} GeV . Measured jet rates and transverse energy profiles agree with model predictions. A search for charged-current interactions with a large rapidity gap yielded one candidate event, corresponding to a cross section of σ _{e^ + p to bar ν X} (Q^2 > 200 GeV^2 ; η _{max }< 2.5) = 0.8_{ - 0.7}^{ + 1.8} ± 0.1 pb

  16. The interpretation of crustal dynamics data in terms of plate motions and regional deformation near plate boundaries

    NASA Technical Reports Server (NTRS)

    Soloman, Sean C.

    1991-01-01

    The focus was in two broad areas during the most recent 6-month period: (1) the nature and dynamics of time dependent deformation and stress along major seismic zones; and (2) the nature of long-wavelength oceanic geoid anomalies in terms of lateral variations in upper mantle temperature and composition. The principle findings are described in the accompanying appendices.

  17. Revisit of the interacting holographic dark energy model after Planck 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Lu; Zhang, Xin, E-mail: fengluu@foxmail.com, E-mail: zhangxin@mail.neu.edu.cn

    We investigate the observational constraints on the interacting holographic dark energy model. We consider five typical interacting models with the interaction terms Q = 3β H ρ{sub de}, Q = 3β H ρ{sub c}, Q = 3β H (ρ{sub de}+ρ{sub c}), Q = 3β H √ρ{sub de}ρ{sub c}, and Q = 3β H ρ{sub de}ρ {sub c} /ρ{sub de}+ρ{sub c}, respectively, where β is a dimensionless coupling constant. The observational data we use in this paper include the JLA compilation of type Ia supernovae data, the Planck 2015 distance priors data of cosmic microwave background observation, the baryon acoustic oscillationsmore » measurements, and the Hubble constant direct measurement. We make a comparison for these five interacting holographic dark energy models by employing the information criteria, and we find that, within the framework of holographic dark energy, the Q = 3β H ρ{sub de}ρ{sub c}/ρ{sub de}+ρ{sub c} model is most favored by current data, and the Q = 3β H ρ{sub c} model is relatively not favored by current data. For the Q = 3β H ρ{sub de} and Q = 3β H ρ{sub de}ρ{sub c}/ρ{sub de}+ρ{sub c} models, a positive coupling β can be detected at more than 2σ significance.« less

  18. Coenzyme Q biosynthesis and its role in the respiratory chain structure.

    PubMed

    Alcázar-Fabra, María; Navas, Plácido; Brea-Calvo, Gloria

    2016-08-01

    Coenzyme Q (CoQ) is a unique electron carrier in the mitochondrial respiratory chain, which is synthesized on-site by a nuclear encoded multiprotein complex. CoQ receives electrons from different redox pathways, mainly NADH and FADH2 from tricarboxylic acid pathway, dihydroorotate dehydrogenase, electron transfer flavoprotein dehydrogenase and glycerol-3-phosphate dehydrogenase that support key aspects of the metabolism. Here we explore some lines of evidence supporting the idea of the interaction of CoQ with the respiratory chain complexes, contributing to their superassembly, including respirasome, and its role in reactive oxygen species production in the mitochondrial inner membrane. We also review the current knowledge about the involvement of mitochondrial genome defects and electron transfer flavoprotein dehydrogenase mutations in the induction of secondary CoQ deficiency. This mechanism would imply specific interactions coupling CoQ itself or the CoQ-biosynthetic apparatus with the respiratory chain components. These interactions would regulate mitochondrial CoQ steady-state levels and function. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Thermodynamics properties study of diatomic molecules with q-deformed modified Poschl-Teller plus Manning Rosen non-central potential in D dimensions using SUSYQM approach

    NASA Astrophysics Data System (ADS)

    Suparmi, A.; Cari, C.; Pratiwi, B. N.

    2016-04-01

    D-dimensional Dirac equation of q-deformed modified Poschl-Teller plus Manning Rosen non-central potential was solved using supersymmetric quantum mechanics (SUSY QM). The relativistic energy spectra were analyzed by using SUSY QM and shape invariant properties from radial part of D dimensional Dirac equation and the angular quantum numbers were obtained from angular part of D dimensional Dirac equation. The SUSY operators was used to generate the D dimensional relativistic wave functions both for radial and angular parts. In the non-relativistic limit, the relativistic energy equation was reduced to the non-relativistic energy. In the classical limit, the partition function of vibrational, the specific heat of vibrational, and the mean energy of vibrational of some diatomic molecules were calculated from the equation of non-relativistic energy with the help of error function and Mat-lab 2011.

  20. Prefrontocortical dopamine loss in rats delays long-term extinction of contextual conditioned fear, and reduces social interaction without affecting short-term social interaction memory.

    PubMed

    Fernandez Espejo, Emilio

    2003-03-01

    Prefrontal dopamine loss delays extinction of cued fear conditioning responses, but its role in contextual fear conditioning has not been explored. Medial prefrontal lesions also enhance social interaction in rats, but the role of prefrontal dopamine loss on social interaction memory is not known. Besides, a role for subcortical accumbal dopamine on mnesic changes after prefrontal dopamine manipulation has been proposed but not explored. The objective was to study the involvement of dopaminergic neurotransmission in the medial prefrontal cortex (mPFC) and nucleus accumbens in two mnesic tasks: contextual fear conditioning and social interaction memory. For contextual fear conditioning, short- and long-term freezing responses after an electric shock were studied, as well as extinction retention. Regarding social interaction memory, the recognition of a juvenile, a very sensitive short-term memory test, was used. Dopamine loss was carried out by injection of 6-hydroxydopamine, and postmortem catecholamine levels were analyzed by high-performance liquid chromatography. Prefrontocortical dopamine loss (>76%) led to a reactive enhancement of accumbal dopamine content (p<0.01), supporting the hypothesis that a hyperdopaminergic tone emerges in the nucleus accumbens after prefrontocortical dopamine loss. In lesioned rats, long-term extinction of contextual fear conditioning was significantly delayed and extinction retention was impaired without changes in acquisition and short-term contextual fear conditioning and, on the other hand, acquisition and short-term social interaction memory were not affected, although time spent on social interaction was significantly reduced. Added dopamine loss in the nucleus accumbens (>76%) did not alter these behavioral changes. In summary, the results of the present study indicate that the dopaminergic network in the mPFC (but not in the nucleus accumbens) coordinates the normal long-term extinction of contextual fear conditioning

  1. Measurement of plastic and elastic deformation due to third-order torque in self-ligated orthodontic brackets.

    PubMed

    Major, Thomas W; Carey, Jason P; Nobes, David S; Heo, Giseon; Major, Paul W

    2011-09-01

    Control of root torque is often achieved by introducing a twist in a rectangular archwire. The purpose of this study was to investigate third-order torque on different types of self-ligated brackets by analyzing the bracket's elastic and plastic deformations in conjunction with the expressed torque at varying angles of twist. An orthodontic bracket was mounted to a load cell that measured forces and moments in all directions. The wire was twisted in the bracket via a stepper motor, controlled by custom software. Overhead images were taken by a camera through a microscope and processed by using optical correlation to measure deformation. At the maximum torquing angle of 63° with 0.019 × 0.025-in stainless steel wire, the total elastic and plastic deformation values were 0.063, 0.033, and 0.137 mm for Damon Q (Ormco, Orange, Calif), In-Ovation R (GAC, Bohemia, NY), and Speed (Strite Industries, Cambridge, Ontario, Canada), respectively. The total plastic deformation values were 0.015, 0.006, and 0.086 mm, respectively, measured at 0° of unloading. In-Ovation R had the least deformation due to torquing of the 3 investigated bracket types. Damon Q and Speed on average had approximately 2.5 and 14 times greater maximum plastic deformation, respectively, than did In-Ovation R. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  2. Emergence of Q fever

    PubMed Central

    Angelakis, E; Raoult, D

    2011-01-01

    Q fever is a worldwide zoonosis with many acute and chronic manifestations caused by the pathogen Coxiella burnetii. Farm animals and pets are the main reservoirs of infection, and transmission to human beings is mainly accomplished through inhalation of contaminated aerosols. Persons at greatest risk are those in contact with farm animals and include farmers, abattoir workers, and veterinarians. The organs most commonly affected during Q fever are the heart, the arteries, the bones and the liver. The most common clinical presentation is an influenza-like illness with varying degrees of pneumonia and hepatitis. Although acute disease is usually self-limiting, people do occasionally die from this condition. Endocarditis is the most serious and most frequent clinical presentation of chronic Q fever. Vascular infection is the second most frequent presentation of Q fever. The diagnosis of Q fever is based on a significant increase in serum antibody titers. The treatment is effective and well tolerated, but must be adapted to the acute or chronic pattern with the tetracyclines to be considered the mainstay of antibiotic therapy. For the treatment of Q fever during pregnancy the use of long-term cotrimoxazole therapy is proposed. PMID:23113081

  3. The interaction between neurocognitive functioning, subthreshold psychotic symptoms and pharmacotherapy in 22q11.2 deletion syndrome: A longitudinal comparative study.

    PubMed

    Weinberger, R; Weisman, O; Guri, Y; Harel, T; Weizman, A; Gothelf, D

    2018-02-01

    The 22q11.2 deletion syndrome (22q11DS) is the most common genetic syndrome associated with schizophrenia. The goal of this study was to evaluate longitudinally the interaction between neurocognitive functioning, the presence of subthreshold psychotic symptoms (SPS) and conversion to psychosis in individuals with 22q11DS. In addition, we attempted to identify the specific neurocognitive domains that predict the longitudinal evolution of positive and negative SPS, as well as the effect of psychiatric medications on 22q11DS psychiatric and cognitive developmental trajectories. Forty-four participants with 22q11DS, 19 with Williams syndrome (WS) and 30 typically developing (TD) controls, age range 12-35years, were assessed at two time points (15.2±2.1months apart). Evaluation included the Structured Interview for Prodromal Symptoms (SIPS), structured psychiatric evaluation and the Penn Computerized Neurocognitive Battery (CNB). 22q11DS individuals with SPS had a yearly conversion rate to psychotic disorders of 8.8%, compared to none in both WS and TD controls. Baseline levels of negative SPS were associated with global neurocognitive performance (GNP), executive function and social cognition deficits, in individuals with 22q11DS, but not in WS. Deficits in GNP predicted negative SPS in 22q11DS and the emergence or persistence of negative SPS. 22q11DS individuals treated with psychiatric medications showed significant improvement in GNP score between baseline and follow-up assessments, an improvement that was not seen in untreated 22q11DS. Our results highlight the time-dependent interplay among positive and negative SPS symptoms, neurocognition and pharmacotherapy in the prediction of the evolution of psychosis in 22q11DS. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Oscillations of a deformed liquid drop in an acoustic field

    NASA Astrophysics Data System (ADS)

    Shi, Tao; Apfel, Robert E.

    1995-07-01

    The oscillations of an axially symmetric liquid drop in an acoustic standing wave field in air have been studied using the boundary integral method. The interaction between the drop oscillation and sound field has been included in this analysis. Our computations focus on the frequency shift of small-amplitude oscillations of an acoustically deformed drop typical of a drop levitated in air. In the presence or absence of gravity, the trend and the magnitude of the frequency shift have been given in terms of drop size, drop deformation, and the strength of the sound field. Our calculations are compared with experiments performed on the United States Microgravity Laboratory (USML-1) and with ground-based measurements, and are found to be in good agreement within the accuracy of the experimental data.

  5. Developing a Virtual Rock Deformation Laboratory

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Ougier-simonin, A.; Lisabeth, H. P.; Banker, J. S.

    2012-12-01

    Experimental rock physics plays an important role in advancing earthquake research. Despite its importance in geophysics, reservoir engineering, waste deposits and energy resources, most geology departments in U.S. universities don't have rock deformation facilities. A virtual deformation laboratory can serve as an efficient tool to help geology students naturally and internationally learn about rock deformation. Working with computer science engineers, we built a virtual deformation laboratory that aims at fostering user interaction to facilitate classroom and outreach teaching and learning. The virtual lab is built to center around a triaxial deformation apparatus in which laboratory measurements of mechanical and transport properties such as stress, axial and radial strains, acoustic emission activities, wave velocities, and permeability are demonstrated. A student user can create her avatar to enter the virtual lab. In the virtual lab, the avatar can browse and choose among various rock samples, determine the testing conditions (pressure, temperature, strain rate, loading paths), then operate the virtual deformation machine to observe how deformation changes physical properties of rocks. Actual experimental results on the mechanical, frictional, sonic, acoustic and transport properties of different rocks at different conditions are compiled. The data acquisition system in the virtual lab is linked to the complied experimental data. Structural and microstructural images of deformed rocks are up-loaded and linked to different deformation tests. The integration of the microstructural image and the deformation data allows the student to visualize how forces reshape the structure of the rock and change the physical properties. The virtual lab is built using the Game Engine. The geological background, outstanding questions related to the geological environment, and physical and mechanical concepts associated with the problem will be illustrated on the web portal. In

  6. Interacting steps with finite-range interactions: Analytical approximation and numerical results

    NASA Astrophysics Data System (ADS)

    Jaramillo, Diego Felipe; Téllez, Gabriel; González, Diego Luis; Einstein, T. L.

    2013-05-01

    We calculate an analytical expression for the terrace-width distribution P(s) for an interacting step system with nearest- and next-nearest-neighbor interactions. Our model is derived by mapping the step system onto a statistically equivalent one-dimensional system of classical particles. The validity of the model is tested with several numerical simulations and experimental results. We explore the effect of the range of interactions q on the functional form of the terrace-width distribution and pair correlation functions. For physically plausible interactions, we find modest changes when next-nearest neighbor interactions are included and generally negligible changes when more distant interactions are allowed. We discuss methods for extracting from simulated experimental data the characteristic scale-setting terms in assumed potential forms.

  7. Interactive Retro-Deformation of Terrain for Reconstructing 3D Fault Displacements.

    PubMed

    Westerteiger, R; Compton, T; Bernadin, T; Cowgill, E; Gwinner, K; Hamann, B; Gerndt, A; Hagen, H

    2012-12-01

    Planetary topography is the result of complex interactions between geological processes, of which faulting is a prominent component. Surface-rupturing earthquakes cut and move landforms which develop across active faults, producing characteristic surface displacements across the fault. Geometric models of faults and their associated surface displacements are commonly applied to reconstruct these offsets to enable interpretation of the observed topography. However, current 2D techniques are limited in their capability to convey both the three-dimensional kinematics of faulting and the incremental sequence of events required by a given reconstruction. Here we present a real-time system for interactive retro-deformation of faulted topography to enable reconstruction of fault displacement within a high-resolution (sub 1m/pixel) 3D terrain visualization. We employ geometry shaders on the GPU to intersect the surface mesh with fault-segments interactively specified by the user and transform the resulting surface blocks in realtime according to a kinematic model of fault motion. Our method facilitates a human-in-the-loop approach to reconstruction of fault displacements by providing instant visual feedback while exploring the parameter space. Thus, scientists can evaluate the validity of traditional point-to-point reconstructions by visually examining a smooth interpolation of the displacement in 3D. We show the efficacy of our approach by using it to reconstruct segments of the San Andreas fault, California as well as a graben structure in the Noctis Labyrinthus region on Mars.

  8. Coenzyme Q10-Loaded Fish Oil-Based Bigel System: Probing the Delivery Across Porcine Skin and Possible Interaction with Fish Oil Fatty Acids.

    PubMed

    Zulfakar, Mohd Hanif; Chan, Lee Mei; Rehman, Khurram; Wai, Lam Kok; Heard, Charles M

    2018-04-01

    Coenzyme Q10 (CoQ10) is a vitamin-like oil-soluble molecule that has anti-oxidant and anti-ageing effects. To determine the most optimal CoQ10 delivery vehicle, CoQ10 was solubilised in both water and fish oil, and formulated into hydrogel, oleogel and bigel. Permeability of CoQ10 from each formulation across porcine ear skin was then evaluated. Furthermore, the effects of the omega-3 fatty eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids from fish oil on skin permeation were investigated by means of nuclear magnetic resonance (NMR) and computerised molecular modelling docking experiments. The highest drug permeation was achieved with the bigel formulation that proved to be the most effective vehicle in delivering CoQ10 across the skin membrane due to a combination of its adhesive, viscous and lipophilic properties. Furthermore, the interactions between CoQ10 and fatty acids revealed by NMR and molecular modelling experiments likely accounted for skin permeability of CoQ10. NMR data showed dose-dependent changes in proton chemical shifts in EPA and DHA. Molecular modelling revealed complex formation and large binding energies between fatty acids and CoQ10. This study advances the knowledge about bigels as drug delivery vehicles and highlights the use of NMR and molecular docking studies for the prediction of the influence of drug-excipient relationships at the molecular level.

  9. Simulation of Deformation, Momentum and Energy Coupling Particles Deformed by Intense Shocks

    NASA Astrophysics Data System (ADS)

    Lieberthal, B.; Stewart, D. S.; Bdzil, J. B.; Najjar, F. M.; Balachandar, S.; Ling, Y.

    2011-11-01

    Modern energetic materials have embedded solids and inerts in an explosive matrix. A detonation in condensed phase materials, generates intense shocks that deform particles as the incident shock diffracts around them. The post-shock flow generates a wake behind the particle that is influenced by the shape changes of the particle. The gasdynamic flow in the explosive products and its interaction with the deformation of the particle must be treated simultaneously. Direct numerical simulations are carried out that vary the particle-to-surrounding density and impedance ratios to consider heavier and lighter particle. The vorticity deposited on the interface due to shock interaction with the particle, the resulting particle deformation and the net momentum and energy transferred to the particle, on the acoustic and longer viscous time scale are considered. The LLNL multi-physics hydrodynamic code ALE3D is used to carry out the simulations. BL, DSS and JBB supported by AFRL/RW AF FA8651-10-1-0004 & DTRA, HDTRA1-10-1-0020 Off Campus. FMN's work supported by the U.S. DOE/ LLNL, Contract DE-AC52-07NA27344. LLNL-ABS-491794.

  10. Deforming regular black holes

    NASA Astrophysics Data System (ADS)

    Neves, J. C. S.

    2017-06-01

    In this work, we have deformed regular black holes which possess a general mass term described by a function which generalizes the Bardeen and Hayward mass functions. By using linear constraints in the energy-momentum tensor to generate metrics, the solutions presented in this work are either regular or singular. That is, within this approach, it is possible to generate regular or singular black holes from regular or singular black holes. Moreover, contrary to the Bardeen and Hayward regular solutions, the deformed regular black holes may violate the weak energy condition despite the presence of the spherical symmetry. Some comments on accretion of deformed black holes in cosmological scenarios are made.

  11. Deformed supersymmetric quantum mechanics with spin variables

    NASA Astrophysics Data System (ADS)

    Fedoruk, Sergey; Ivanov, Evgeny; Sidorov, Stepan

    2018-01-01

    We quantize the one-particle model of the SU(2|1) supersymmetric multiparticle mechanics with the additional semi-dynamical spin degrees of freedom. We find the relevant energy spectrum and the full set of physical states as functions of the mass-dimension deformation parameter m and SU(2) spin q\\in (Z_{>0,}1/2+Z_{≥0}) . It is found that the states at the fixed energy level form irreducible multiplets of the supergroup SU(2|1). Also, the hidden superconformal symmetry OSp(4|2) of the model is revealed in the classical and quantum cases. We calculate the OSp(4|2) Casimir operators and demonstrate that the full set of the physical states belonging to different energy levels at fixed q are unified into an irreducible OSp(4|2) multiplet.

  12. Deformation of extremal black holes from stringy interactions

    NASA Astrophysics Data System (ADS)

    Chen, Baoyi; Stein, Leo C.

    2018-04-01

    Black holes are a powerful setting for studying general relativity and theories beyond GR. However, analytical solutions for rotating black holes in beyond-GR theories are difficult to find because of the complexity of such theories. In this paper, we solve for the deformation to the near-horizon extremal Kerr metric due to two example string-inspired beyond-GR theories: Einstein-dilaton-Gauss-Bonnet and dynamical Chern-Simons theory. We accomplish this by making use of the enhanced symmetry group of NHEK and the weak-coupling limit of EdGB and dCS. We find that the EdGB metric deformation has a curvature singularity, while the dCS metric is regular. From these solutions, we compute orbital frequencies, horizon areas, and entropies. This sets the stage for analytically understanding the microscopic origin of black hole entropy in beyond-GR theories.

  13. Asymptotic representations of augmented q-Onsager algebra and boundary K-operators related to Baxter Q-operators

    NASA Astrophysics Data System (ADS)

    Baseilhac, Pascal; Tsuboi, Zengo

    2018-04-01

    We consider intertwining relations of the augmented q-Onsager algebra introduced by Ito and Terwilliger, and obtain generic (diagonal) boundary K-operators in terms of the Cartan element of Uq (sl2). These K-operators solve reflection equations. Taking appropriate limits of these K-operators in Verma modules, we derive K-operators for Baxter Q-operators and corresponding reflection equations.

  14. Quasiparticle Energy in a Strongly Interacting Homogeneous Bose-Einstein Condensate.

    PubMed

    Lopes, Raphael; Eigen, Christoph; Barker, Adam; Viebahn, Konrad G H; Robert-de-Saint-Vincent, Martin; Navon, Nir; Hadzibabic, Zoran; Smith, Robert P

    2017-05-26

    Using two-photon Bragg spectroscopy, we study the energy of particlelike excitations in a strongly interacting homogeneous Bose-Einstein condensate, and observe dramatic deviations from Bogoliubov theory. In particular, at large scattering length a the shift of the excitation resonance from the free-particle energy changes sign from positive to negative. For an excitation with wave number q, this sign change occurs at a≈4/(πq), in agreement with the Feynman energy relation and the static structure factor expressed in terms of the two-body contact. For a≳3/q we also see a breakdown of this theory, and better agreement with calculations based on the Wilson operator product expansion. Neither theory explains our observations across all interaction regimes, inviting further theoretical efforts.

  15. 3D DDD modelling of dislocation-precipitate interaction in a nickel-based single crystal superalloy under cyclic deformation

    NASA Astrophysics Data System (ADS)

    Lin, Bing; Huang, Minsheng; Zhao, Liguo; Roy, Anish; Silberschmidt, Vadim; Barnard, Nick; Whittaker, Mark; McColvin, Gordon

    2018-06-01

    Strain-controlled cyclic deformation of a nickel-based single crystal superalloy has been modelled using three-dimensional (3D) discrete dislocation dynamics (DDD) for both [0 0 1] and [1 1 1] orientations. The work focused on the interaction between dislocations and precipitates during cyclic plastic deformation at elevated temperature, which has not been well studied yet. A representative volume element with cubic γ‧-precipitates was chosen to represent the material, with enforced periodical boundary conditions. In particular, cutting of superdislocations into precipitates was simulated by a back-force method. The global cyclic stress-strain responses were captured well by the DDD model when compared to experimental data, particularly the effects of crystallographic orientation. Dislocation evolution showed that considerably high density of dislocations was produced for [1 1 1] orientation when compared to [0 0 1] orientation. Cutting of dislocations into the precipitates had a significant effect on the plastic deformation, leading to material softening. Contour plots of in-plane shear strain proved the development of heterogeneous strain field, resulting in the formation of shear-band embryos.

  16. The Teacher's Role in Quality Classroom Interactions: Q&A with Dr. Drew Gitomer. REL Mid-Atlantic Teacher Effectiveness Webinar Series

    ERIC Educational Resources Information Center

    Regional Educational Laboratory Mid-Atlantic, 2013

    2013-01-01

    In this webinar, Dr. Drew Gitomer, professor at Rutgers University, shared results from recent studies of classroom observations that helped participants understand both general findings about the qualities of classroom interactions and also the challenges to carrying out valid and reliable observations. This Q&A addressed the questions…

  17. Querying quantitative logic models (Q2LM) to study intracellular signaling networks and cell-cytokine interactions.

    PubMed

    Morris, Melody K; Shriver, Zachary; Sasisekharan, Ram; Lauffenburger, Douglas A

    2012-03-01

    Mathematical models have substantially improved our ability to predict the response of a complex biological system to perturbation, but their use is typically limited by difficulties in specifying model topology and parameter values. Additionally, incorporating entities across different biological scales ranging from molecular to organismal in the same model is not trivial. Here, we present a framework called "querying quantitative logic models" (Q2LM) for building and asking questions of constrained fuzzy logic (cFL) models. cFL is a recently developed modeling formalism that uses logic gates to describe influences among entities, with transfer functions to describe quantitative dependencies. Q2LM does not rely on dedicated data to train the parameters of the transfer functions, and it permits straight-forward incorporation of entities at multiple biological scales. The Q2LM framework can be employed to ask questions such as: Which therapeutic perturbations accomplish a designated goal, and under what environmental conditions will these perturbations be effective? We demonstrate the utility of this framework for generating testable hypotheses in two examples: (i) a intracellular signaling network model; and (ii) a model for pharmacokinetics and pharmacodynamics of cell-cytokine interactions; in the latter, we validate hypotheses concerning molecular design of granulocyte colony stimulating factor. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Supermassive dark-matter Q-balls in galactic centers?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troitsky, Sergey; Moscow Institute for Physics and Technology,Institutskii per. 9, 141700, Dolgoprudny, Moscow Region

    2016-11-11

    Though widely accepted, it is not proven that supermassive compact objects (SMCOs) residing in galactic centers are black holes. In particular, the Milky Way’s SMCO can be a giant nontopological soliton, Q-ball, made of a scalar field: this fits perfectly all observational data. Similar but tiny Q-balls produced in the early Universe may constitute, partly or fully, the dark matter. This picture explains in a natural way, why our SMCO has very low accretion rate and why the observed angular size of the corresponding radio source is much smaller than expected. Interactions between dark-matter Q-balls may explain how SMCOs weremore » seeded in galaxies and resolve well-known problems of standard (non-interacting) dark matter.« less

  19. From progressive to finite deformation, and back: the universal deformation matrix

    NASA Astrophysics Data System (ADS)

    Provost, A.; Buisson, C.; Merle, O.

    2003-04-01

    It is widely accepted that any finite strain recorded in the field may be interpreted in terms of the simultaneous combination of a pure shear component with one or several simple shear components. To predict strain in geological structures, approximate solutions may be obtained by multiplying successive small increments of each elementary strain component. A more rigorous method consists in achieving the simultaneous combination in the velocity gradient tensor but solutions already proposed in the literature are valid for special cases only and cannot be used, e.g., for the general combination of a pure shear component and six elementary simple shear components. In this paper, we show that the combination of any strain components is as simple as a mouse click, both analytically and numerically. The finite deformation matrix is given by L=exp(L.Δt) where L.Δt is the time-integrated velocity gradient tensor. This method makes it possible to predict finite strain for any combination of strain components. Reciprocally, L.Δt=ln(D) , which allows to unravel the simplest deformation history that might be liable for a given finite deformation. Given the strain ellipsoid only, it is still possible to constrain the range of compatible deformation matrices and thus the range of strain component combinations. Interestingly, certain deformation matrices, though geologically sensible, have no real logarithm so cannot be explained by a deformation history implying strain rate components with constant proportions, what implies significant changes of the stress field during the history of deformation. The study as a whole opens the possibility for further investigations on deformation analysis in general, the method could be used wathever the configuration is.

  20. Chemistry and Molecular Dynamics Simulations of Heme b-HemQ and Coproheme-HemQ

    PubMed Central

    2016-01-01

    Recently, a novel pathway for heme b biosynthesis in Gram-positive bacteria has been proposed. The final poorly understood step is catalyzed by an enzyme called HemQ and includes two decarboxylation reactions leading from coproheme to heme b. Coproheme has been suggested to act as both substrate and redox active cofactor in this reaction. In the study presented here, we focus on HemQs from Listeria monocytogenes (LmHemQ) and Staphylococcus aureus (SaHemQ) recombinantly produced as apoproteins in Escherichia coli. We demonstrate the rapid and two-phase uptake of coproheme by both apo forms and the significant differences in thermal stability of the apo forms, coproheme-HemQ and heme b-HemQ. Reduction of ferric high-spin coproheme-HemQ to the ferrous form is shown to be enthalpically favored but entropically disfavored with standard reduction potentials of −205 ± 3 mV for LmHemQ and −207 ± 3 mV for SaHemQ versus the standard hydrogen electrode at pH 7.0. Redox thermodynamics suggests the presence of a pronounced H-bonding network and restricted solvent mobility in the heme cavity. Binding of cyanide to the sixth coproheme position is monophasic but relatively slow (∼1 × 104 M–1 s–1). On the basis of the available structures of apo-HemQ and modeling of both loaded forms, molecular dynamics simulation allowed analysis of the interaction of coproheme and heme b with the protein as well as the role of the flexibility at the proximal heme cavity and the substrate access channel for coproheme binding and heme b release. Obtained data are discussed with respect to the proposed function of HemQ in monoderm bacteria. PMID:27599156

  1. A Novel Bioreactor System for the Assessment of Endothelialization on Deformable Surfaces

    PubMed Central

    Bachmann, Björn J.; Bernardi, Laura; Loosli, Christian; Marschewski, Julian; Perrini, Michela; Ehrbar, Martin; Ermanni, Paolo; Poulikakos, Dimos; Ferrari, Aldo; Mazza, Edoardo

    2016-01-01

    The generation of a living protective layer at the luminal surface of cardiovascular devices, composed of an autologous functional endothelium, represents the ideal solution to life-threatening, implant-related complications in cardiovascular patients. The initial evaluation of engineering strategies fostering endothelial cell adhesion and proliferation as well as the long-term tissue homeostasis requires in vitro testing in environmental model systems able to recapitulate the hemodynamic conditions experienced at the blood-to-device interface of implants as well as the substrate deformation. Here, we introduce the design and validation of a novel bioreactor system which enables the long-term conditioning of human endothelial cells interacting with artificial materials under dynamic combinations of flow-generated wall shear stress and wall deformation. The wall shear stress and wall deformation values obtained encompass both the physiological and supraphysiological range. They are determined through separate actuation systems which are controlled based on validated computational models. In addition, we demonstrate the good optical conductivity of the system permitting online monitoring of cell activities through live-cell imaging as well as standard biochemical post-processing. Altogether, the bioreactor system defines an unprecedented testing hub for potential strategies toward the endothelialization or re-endothelialization of target substrates. PMID:27941901

  2. W 2 and Q 2 dependence of charged hadron and pion multiplicities in vp andbar vp charged current interactionscharged current interactions

    NASA Astrophysics Data System (ADS)

    Jones, G. T.; Jones, R. W. L.; Morrison, D. R. O.; Mobayyen, M. M.; Wainstein, S.; Aderholz, M.; Hantke, D.; Hoffmann, E.; Katz, U. F.; Kern, J.; Schmitz, N.; Wittek, W.; Allport, P.; Borner, H. P.; Myatt, G.; Radojicic, D.; Bullock, F. W.; Burke, S.

    1990-03-01

    Using data on vp andbar vp charged current interactions from a bubble chamber experiment with BEBC at CERN, the average multiplicities of charged hadrons and pions are determined as functions of W 2 and Q 2. The analysis is based on ˜20000 events with incident v and ˜10000 events with incidentbar v. In addition to the known dependence of the average multiplicity on W 2 a weak dependence on Q 2 for fixed intervals of W is observed. For W>2 GeV and Q 2>0.1 GeV2 the average multiplicity of charged hadrons is well described by =a 1+ a 2ln( W 2/GeV2)+ a 3ln( Q 2/GeV2) with a 1=0.465±0.053, a 2=1.211±0.021, a 3=0.103±0.014 for the vp and a 1=-0.372±0.073, a 2=1.245±0.028, a 3=0.093±0.015 for thebar vp reaction.

  3. [Chromosomal localization of the speltoidy gene, introgressed into bread wheat from Aegilops speltoides Tausch., and its interaction with the Q gene of Triticum spelta L].

    PubMed

    Simonov, A V; Pshenichnikova, T A

    2012-11-01

    The differences between bread wheat (Triticum aestivum L.) and spelt (Triticum spelta L.) in the shape of the spike and threshing character are determined by the allelic status of one major Q gene, mapped to the long arm of chromosome 5A. This gene is a member of the APETALA2 family of transcription factors and plays an important role in domestication of wheat. In the present study, using monosomic analysis, we determined the chromosomal localization of the Q(S)gene, introgressed into bread wheat from Aegilops speltoides Tausch. and homoallelic to the Q gene. It was demonstrated that the Q(S) gene was located in chromosome 5A of the bread wheat line from the Arsenal collection. This gene conferred spike speltoidy in the line itself, as well as in its hybrids with bread wheat cultivars. The Q(S) gene dominated over the bread wheat Q gene and was equally effective in the homo-, hemi-, and heterozygous states. In hybrids between the introgression line and a number of spring spelt accessions, interaction between the Q and Q(S) genes was observed, manifested as the formation of superspeltoid spike.

  4. Effects of Fault Segmentation, Mechanical Interaction, and Structural Complexity on Earthquake-Generated Deformation

    NASA Astrophysics Data System (ADS)

    Haddad, David Elias

    Earth's topographic surface forms an interface across which the geodynamic and geomorphic engines interact. This interaction is best observed along crustal margins where topography is created by active faulting and sculpted by geomorphic processes. Crustal deformation manifests as earthquakes at centennial to millennial timescales. Given that nearly half of Earth's human population lives along active fault zones, a quantitative understanding of the mechanics of earthquakes and faulting is necessary to build accurate earthquake forecasts. My research relies on the quantitative documentation of the geomorphic expression of large earthquakes and the physical processes that control their spatiotemporal distributions. The first part of my research uses high-resolution topographic lidar data to quantitatively document the geomorphic expression of historic and prehistoric large earthquakes. Lidar data allow for enhanced visualization and reconstruction of structures and stratigraphy exposed by paleoseismic trenches. Lidar surveys of fault scarps formed by the 1992 Landers earthquake document the centimeter-scale erosional landforms developed by repeated winter storm-driven erosion. The second part of my research employs a quasi-static numerical earthquake simulator to explore the effects of fault roughness, friction, and structural complexities on earthquake-generated deformation. My experiments show that fault roughness plays a critical role in determining fault-to-fault rupture jumping probabilities. These results corroborate the accepted 3-5 km rupture jumping distance for smooth faults. However, my simulations show that the rupture jumping threshold distance is highly variable for rough faults due to heterogeneous elastic strain energies. Furthermore, fault roughness controls spatiotemporal variations in slip rates such that rough faults exhibit lower slip rates relative to their smooth counterparts. The central implication of these results lies in guiding the

  5. Mechanics of adsorption-deformation coupling in porous media

    NASA Astrophysics Data System (ADS)

    Zhang, Yida

    2018-05-01

    This work extends Coussy's macroscale theory for porous materials interacting with adsorptive fluid mixtures. The solid-fluid interface is treated as an independent phase that obeys its own mass, momentum and energy balance laws. As a result, a surface strain energy term appears in the free energy balance equation of the solid phase, which further introduces the so-called adsorption stress in the constitutive equations of the porous skeleton. This establishes a fundamental link between the adsorption characteristics of the solid-fluid interface and the mechanical response of the porous media. The thermodynamic framework is quite general in that it recovers the coupled conduction laws, Gibbs isotherm and the Shuttleworth's equation for surface stress, and imposes no constraints on the magnitude of deformation and the functional form of the adsorption isotherms. A rich variety of coupling between adsorption and deformation is recovered as a result of combining different poroelastic models (isotropic vs. anisotropic, linear vs. nonlinear) and adsorption models (unary vs. mixture adsorption, uncoupled vs. stretch-dependent adsorption). These predictions are discussed against the backdrop of recent experimental data on coal swelling subjected to CO2 and CO2sbnd CH4 injections, showing the capability and versatility of the theory in capturing adsorption-induced deformation of porous materials.

  6. Physics-based deformable organisms for medical image analysis

    NASA Astrophysics Data System (ADS)

    Hamarneh, Ghassan; McIntosh, Chris

    2005-04-01

    Previously, "Deformable organisms" were introduced as a novel paradigm for medical image analysis that uses artificial life modelling concepts. Deformable organisms were designed to complement the classical bottom-up deformable models methodologies (geometrical and physical layers), with top-down intelligent deformation control mechanisms (behavioral and cognitive layers). However, a true physical layer was absent and in order to complete medical image segmentation tasks, deformable organisms relied on pure geometry-based shape deformations guided by sensory data, prior structural knowledge, and expert-generated schedules of behaviors. In this paper we introduce the use of physics-based shape deformations within the deformable organisms framework yielding additional robustness by allowing intuitive real-time user guidance and interaction when necessary. We present the results of applying our physics-based deformable organisms, with an underlying dynamic spring-mass mesh model, to segmenting and labelling the corpus callosum in 2D midsagittal magnetic resonance images.

  7. Coenzyme Q as an antiadipogenic factor.

    PubMed

    Bour, Sandy; Carmona, Maria-Carmen; Galinier, Anne; Caspar-Bauguil, Sylvie; Van Gaal, Luc; Staels, Bart; Pénicaud, Luc; Casteilla, Louis

    2011-02-01

    Coenzyme Q (CoQ) is not only the single antioxidant synthesized in humans but also an obligatory element of mitochondrial functions. We have previously reported CoQ deficiency in white adipose tissue of ob/ob mice. We sought to determine (i) whether this deficit exists in all species and its relevance in human obesity and (ii) to what extent CoQ could be involved in adipocyte differentiation. Here we identified in rodents as well as in humans a specific very strong nonlinear negative correlation between CoQ content in subcutaneous adipose tissue and obesity indexes. This striking correlation reveals a threshold value similar in both species. This relative deficit in CoQ content in adipose tissue rapidly took place during the time course of high-fat-diet-induced obesity in mice. Adipocyte differentiation was assessed in vitro using the preadipocyte 3T3-F442A cell line. When CoQ synthesis was inhibited by a pharmacological approach using chlorobenzoic acid, this strongly triggered adipose differentiation. In contrast, adipogenesis was strongly inhibited when a long-term increase in CoQ content was obtained by overexpressing human 4-hydroxy benzoate acid polyprenyltransferase gene. Altogether, these data suggest that a strict level of CoQ remains essential for adipocyte differentiation, and its impairment is associated with obesity.

  8. Fluids in crustal deformation: Fluid flow, fluid-rock interactions, rheology, melting and resources

    NASA Astrophysics Data System (ADS)

    Lacombe, Olivier; Rolland, Yann

    2016-11-01

    Fluids exert a first-order control on the structural, petrological and rheological evolution of the continental crust. Fluids interact with rocks from the earliest stages of sedimentation and diagenesis in basins until these rocks are deformed and/or buried and metamorphosed in orogens, then possibly exhumed. Fluid-rock interactions lead to the evolution of rock physical properties and rock strength. Fractures and faults are preferred pathways for fluids, and in turn physical and chemical interactions between fluid flow and tectonic structures, such as fault zones, strongly influence the mechanical behaviour of the crust at different space and time scales. Fluid (over)pressure is associated with a variety of geological phenomena, such as seismic cycle in various P-T conditions, hydrofracturing (including formation of sub-horizontal, bedding-parallel veins), fault (re)activation or gravitational sliding of rocks, among others. Fluid (over)pressure is a governing factor for the evolution of permeability and porosity of rocks and controls the generation, maturation and migration of economic fluids like hydrocarbons or ore forming hydrothermal fluids, and is therefore a key parameter in reservoir studies and basin modeling. Fluids may also help the crust partially melt, and in turn the resulting melt may dramatically change the rheology of the crust.

  9. Viscoelasticity, postseismic slip, fault interactions, and the recurrence of large earthquakes

    USGS Publications Warehouse

    Michael, A.J.

    2005-01-01

    The Brownian Passage Time (BPT) model for earthquake recurrence is modified to include transient deformation due to either viscoelasticity or deep post seismic slip. Both of these processes act to increase the rate of loading on the seismogenic fault for some time after a large event. To approximate these effects, a decaying exponential term is added to the BPT model's uniform loading term. The resulting interevent time distributions remain approximately lognormal, but the balance between the level of noise (e.g., unknown fault interactions) and the coefficient of variability of the interevent time distribution changes depending on the shape of the loading function. For a given level of noise in the loading process, transient deformation has the effect of increasing the coefficient of variability of earthquake interevent times. Conversely, the level of noise needed to achieve a given level of variability is reduced when transient deformation is included. Using less noise would then increase the effect of known fault interactions modeled as stress or strain steps because they would be larger with respect to the noise. If we only seek to estimate the shape of the interevent time distribution from observed earthquake occurrences, then the use of a transient deformation model will not dramatically change the results of a probability study because a similar shaped distribution can be achieved with either uniform or transient loading functions. However, if the goal is to estimate earthquake probabilities based on our increasing understanding of the seismogenic process, including earthquake interactions, then including transient deformation is important to obtain accurate results. For example, a loading curve based on the 1906 earthquake, paleoseismic observations of prior events, and observations of recent deformation in the San Francisco Bay region produces a 40% greater variability in earthquake recurrence than a uniform loading model with the same noise level.

  10. Late-Paleozoic-Mesozoic deformational and deformation related metamorphic structures of Kuznetsk-Altai region

    NASA Astrophysics Data System (ADS)

    Zinoviev, Sergei

    2014-05-01

    Kuznetsk-Altai region is a part of the Central Asian Orogenic Belt. The nature and formation mechanisms of the observed structure of Kuznetsk-Altai region are interpreted by the author as the consequence of convergence of Tuva-Mongolian and Junggar lithospheric block structures and energy of collision interaction between the blocks of crust in Late-Paleozoic-Mesozoic period. Tectonic zoning of Kuznetsk-Altai region is based on the principle of adequate description of geological medium (without methods of 'primary' state recovery). The initial indication of this convergence is the crust thickening in the zone of collision. On the surface the mechanisms of lateral compression form a regional elevation; with this elevation growth the 'mountain roots' start growing. With an approach of blocks an interblock elevation is divided into various fragments, and these fragments interact in the manner of collision. The physical expression of collision mechanisms are periodic pulses of seismic activity. The main tectonic consequence of the block convergence and collision of interblock units is formation of an ensemble of regional structures of the deformation type on the basis of previous 'pre-collision' geological substratum [Chikov et al., 2012]. This ensemble includes: 1) allochthonous and autochthonous blocks of weakly deformed substratum; 2) folded (folded-thrust) systems; 3) dynamic metamorphism zones of regional shears and main faults. Characteristic of the main structures includes: the position of sedimentary, magmatic and PT-metamorphic rocks, the degree of rock dynamometamorphism and variety rock body deformation, as well as the styles and concentrations of mechanic deformations. 1) block terranes have weakly elongated or isometric shape in plane, and they are the systems of block structures of pre-collision substratum separated by the younger zones of interblock deformations. They stand out among the main deformation systems, and the smallest are included into the

  11. Interaction of external n = 1 magnetic fields with the sawtooth instability in low- q RFX-mod and DIII-D tokamaks

    DOE PAGES

    Piron, C.; Martin, P.; Bonfiglio, D.; ...

    2016-08-11

    External n = 1 magnetic fields are applied in RFX-mod and DIII-D low safety factor Tokamak plasmas to investigate their interaction with the internal MHD dynamics and in particular with the sawtooth instability. In these experiments the applied magnetic fields cause a reduction of both the sawtooth amplitude and period, leading to an overall stabilizing effect on the oscillations. In RFX-mod sawteeth eventually disappear and are replaced by a stationary m = 1, n = 1 helical equilibrium without an increase in disruptivity. However toroidal rotation is significantly reduced in these plasmas, thus it is likely that the sawtooth mitigationmore » in these experiments is due to the combination of the helically deformed core and the reduced rotation. The former effect is qualitatively well reproduced by nonlinear MHD simulations performed with the PIXIE3D code. The results obtained in these RFX-mod experiments motivated similar ones in DIII-D L-mode diverted Tokamak plasmas at low q 95. These experiments succeeded in reproducing the sawtooth mitigation with the approach developed in RFX-mod. In DIII-D this effect is correlated with a clear increase of the n = 1 plasma response, that indicates an enhancement of the coupling to the marginally stable n = 1 external kink, as simulations with the linear MHD code IPEC suggest. A significant rotation braking in the plasma core is also observed in DIII-D. Finally, numerical calculations of the neoclassical toroidal viscosity (NTV) carried out with PENT identify this torque as a possible contributor for this effect.« less

  12. Verbal short-term memory in individuals with chromosome 22q11.2 deletion: specific deficit in serial order retention capacities?

    PubMed

    Majerus, Steve; Van der Linden, Martial; Braissand, Vérane; Eliez, Stephan

    2007-03-01

    Many researchers have recently explored the cognitive profile of velocardiofacial syndrome (VCFS), a neurodevelopmental disorder linked to a 22q11.2 deletion. However, verbal short-term memory has not yet been systematically investigated. We explored verbal short-term memory abilities in a group of 11 children and adults presenting with VCFS and two control groups, matched on either CA or vocabulary knowledge, by distinguishing short-term memory for serial order and item information. The VCFS group showed impaired performance on the serial order short-term memory tasks compared to both control groups. Relative to the vocabulary-matched control group, item short-term memory was preserved. The implication of serial order short-term memory deficits on other aspects of cognitive development in VCFS (e.g., language development, numerical cognition) is discussed.

  13. Analysis of Mining Terrain Deformation Characteristics with Deformation Information System

    NASA Astrophysics Data System (ADS)

    Blachowski, Jan; Milczarek, Wojciech; Grzempowski, Piotr

    2014-05-01

    Mapping and prediction of mining related deformations of the earth surface is an important measure for minimising threat to surface infrastructure, human population, the environment and safety of the mining operation itself arising from underground extraction of useful minerals. The number of methods and techniques used for monitoring and analysis of mining terrain deformations is wide and increasing with the development of geographical information technologies. These include for example: terrestrial geodetic measurements, global positioning systems, remote sensing, spatial interpolation, finite element method modelling, GIS based modelling, geological modelling, empirical modelling using the Knothe theory, artificial neural networks, fuzzy logic calculations and other. The aim of this paper is to introduce the concept of an integrated Deformation Information System (DIS) developed in geographic information systems environment for analysis and modelling of various spatial data related to mining activity and demonstrate its applications for mapping and visualising, as well as identifying possible mining terrain deformation areas with various spatial modelling methods. The DIS concept is based on connected modules that include: the spatial database - the core of the system, the spatial data collection module formed by: terrestrial, satellite and remote sensing measurements of the ground changes, the spatial data mining module for data discovery and extraction, the geological modelling module, the spatial data modeling module with data processing algorithms for spatio-temporal analysis and mapping of mining deformations and their characteristics (e.g. deformation parameters: tilt, curvature and horizontal strain), the multivariate spatial data classification module and the visualization module allowing two-dimensional interactive and static mapping and three-dimensional visualizations of mining ground characteristics. The Systems's functionality has been presented on

  14. Biochemical and Genetic Evidence that Enterococcus faecium L50 Produces Enterocins L50A and L50B, the sec-Dependent Enterocin P, and a Novel Bacteriocin Secreted without an N-Terminal Extension Termed Enterocin Q

    PubMed Central

    Cintas, Luis M.; Casaus, Pilar; Herranz, Carmen; Håvarstein, Leiv Sigve; Holo, Helge; Hernández, Pablo E.; Nes, Ingolf F.

    2000-01-01

    Enterococcus faecium L50 grown at 16 to 32°C produces enterocin L50 (EntL50), consisting of EntL50A and EntL50B, two unmodified non-pediocin-like peptides synthesized without an N-terminal leader sequence or signal peptide. However, the bacteriocin activity found in the cell-free culture supernatants following growth at higher temperatures (37 to 47°C) is not due to EntL50. A purification procedure including cation-exchange, hydrophobic interaction, and reverse-phase liquid chromatography has shown that the antimicrobial activity is due to two different bacteriocins. Amino acid sequences obtained by Edman degradation and DNA sequencing analyses revealed that one is identical to the sec-dependent pediocin-like enterocin P produced by E. faecium P13 (L. M. Cintas, P. Casaus, L. S. Håvarstein, P. E. Hernández, and I. F. Nes, Appl. Environ. Microbiol. 63:4321–4330, 1997) and the other is a novel unmodified non-pediocin-like bacteriocin termed enterocin Q (EntQ), with a molecular mass of 3,980. DNA sequencing analysis of a 963-bp region of E. faecium L50 containing the enterocin P structural gene (entP) and the putative immunity protein gene (entiP) reveals a genetic organization identical to that previously found in E. faecium P13. DNA sequencing analysis of a 1,448-bp region identified two consecutive but diverging open reading frames (ORFs) of which one, termed entQ, encodes a 34-amino-acid protein whose deduced amino acid sequence was identical to that obtained for EntQ by amino acid sequencing, showing that EntQ, similarly to EntL50A and EntL50B, is synthesized without an N-terminal leader sequence or signal peptide. The second ORF, termed orf2, was located immediately upstream of and in opposite orientation to entQ and encodes a putative immunity protein composed of 221 amino acids. Bacteriocin production by E. faecium L50 showed that EntP and EntQ are produced in the temperature range from 16 to 47°C and maximally detected at 47 and 37 to 47

  15. Acquisition and Neural Network Prediction of 3D Deformable Object Shape Using a Kinect and a Force-Torque Sensor.

    PubMed

    Tawbe, Bilal; Cretu, Ana-Maria

    2017-05-11

    The realistic representation of deformations is still an active area of research, especially for deformable objects whose behavior cannot be simply described in terms of elasticity parameters. This paper proposes a data-driven neural-network-based approach for capturing implicitly and predicting the deformations of an object subject to external forces. Visual data, in the form of 3D point clouds gathered by a Kinect sensor, is collected over an object while forces are exerted by means of the probing tip of a force-torque sensor. A novel approach based on neural gas fitting is proposed to describe the particularities of a deformation over the selectively simplified 3D surface of the object, without requiring knowledge of the object material. An alignment procedure, a distance-based clustering, and inspiration from stratified sampling support this process. The resulting representation is denser in the region of the deformation (an average of 96.6% perceptual similarity with the collected data in the deformed area), while still preserving the object's overall shape (86% similarity over the entire surface) and only using on average of 40% of the number of vertices in the mesh. A series of feedforward neural networks is then trained to predict the mapping between the force parameters characterizing the interaction with the object and the change in the object shape, as captured by the fitted neural gas nodes. This series of networks allows for the prediction of the deformation of an object when subject to unknown interactions.

  16. Dynamics and statistics of the Fermi-Pasta-Ulam β-model with different ranges of particle interactions

    NASA Astrophysics Data System (ADS)

    Christodoulidi, Helen; Bountis, Tassos; Tsallis, Constantino; Drossos, Lambros

    2016-12-01

    In the present work we study the Fermi-Pasta-Ulam (FPU) β -model involving long-range interactions (LRI) in both the quadratic and quartic potentials, by introducing two independent exponents {α1} and {α2} respectively, which make the forces decay with distance r. Our results demonstrate that weak chaos, in the sense of decreasing Lyapunov exponents, and q-Gaussian probability density functions (pdfs) of sums of the momenta, occurs only when long-range interactions are included in the quartic part. More importantly, for 0≤slant {α2}<1 , we obtain extrapolated values for q\\equiv {{q}∞}>1 , as N\\to ∞ , suggesting that these pdfs persist in that limit. On the other hand, when long-range interactions are imposed only on the quadratic part, strong chaos and purely Gaussian pdfs are always obtained for the momenta. We have also focused on similar pdfs for the particle energies and have obtained q E -exponentials (with q E   >  1) when the quartic-term interactions are long-ranged, otherwise we get the standard Boltzmann-Gibbs weight, with q  =  1. The values of q E coincide, within small discrepancies, with the values of q obtained by the momentum distributions.

  17. Partial trisomy 14q and monosomy 20q due to an unbalanced familial translocation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menasse-Palmer, L; Leo, J.; Cannizaro, L.

    Partial trisomy of distal 14q and monosomy of 20q are rare. There have been several reports of a partial distal trisomy 14q with characteristic clinical findings, including hypogonadism and a conotruncal cardiac anomaly. There is no deletion distal 20q syndrome. We have recently examined a newborn with this unique duplication/deletion syndrome. Case report: J.S. was the 2980 gm product of a term uneventful pregnancy delivered to a 24-year-old gravida 2, para 1001 mother. The newborn exam revealed a dysmorphic newborn male with a sloping forehead, bitemporal narrowing, glabellar furrowing and micrognathia. A systolic murmur was audible. The genital abnormalities weremore » micropenis, hypospadias with chordee and bifid scrotum with prominent raphe, and gonads were palpable. A CAT scan of the head revealed grade I IVH. An echocardiogram showed a VSD, ASD and an AP window. A sonogram of the liver showed absence of the gallbladder. Chromosome analysis revealed an abnormal male karyotype containing a derivative 20, subsequently shown to be inherited as a result of malsegregation of a paternal translocation: 46,XY,-20,+der(20)t(14;20)(q32.1;q13.3)pat. The infant fed poorly and required tube feedings and was treated for congestive heart failure with Digoxin, Lasix and oxygen. A decreased cortisol level and cholestasis were noted. The infant died after a cardiopulmonary arrest at one month of age. No post-mortem was obtained. Clinical cytogenetic correlation (conotruncal abnormality and hypogonadism) with partial duplication of distal 14q was positive. This case helps to further delineate duplication 14q and a syndrome due to partial deletion 20q.« less

  18. Reconstruction of Northeast Asian Deformation Integrated with Western Pacific Plate Subduction since 200 Ma

    NASA Astrophysics Data System (ADS)

    Liu, S.; Gurnis, M.; Ma, P.; Zhang, B.

    2017-12-01

    The configuration and kinematics of continental deformation and its marginal plate tectonics on the Earth's surface are intrinsic manifestations of plate-mantle coupling. The complex interactions of plate boundary forces result in plate motions that are dominated by slab pull and ridge push forces and the effects of mantle drag; these interactions also result in continental deformation with a complex basin-mountain architecture and evolution. The kinematics and evolution of the western Pacific subduction and northeast Asian continental-margin deformation are a first-order tectonic process whose nature and chronology remains controversial. This paper implements a "deep-time" reconstruction of the western Pacific subduction, continental accretion or collision and basin-mountain deformation in northeast Asia since 200 Ma based on a newly revised global plate model. The results demonstrate a NW-SE-oriented shortening from 200-137 Ma, a NWW-SEE-oriented extension from 136-101 Ma, a nearly N-S-oriented extension and uplift with a short-term NWW-SEE-oriented compressional inversion in northeast China from 100-67 Ma, and a NW-SE- and nearly N-S-oriented extension from 66 Ma to the present day. The western Pacific oceanic plate subducted forward under East Asia along Mudanjiang-Honshu Island during the Jurassic, and the trenches retreated to the Sikhote-Alin, North Shimanto, and South Shimanto zones from ca. 137-128 Ma, ca. 130-90 Ma, and in ca. 60 Ma, respectively. Our time-dependent analysis of plate motion and continental deformation coupling suggests that the multi-plate convergent motion and ocean-continent convergent orogeny were induced by advance subduction during the Jurassic and earliest Cretaceous. Our analysis also indicates that the intra-continent rifting and back-arc extension were triggered by trench retreat during the Cretaceous and that the subduction of oceanic ridge and arc were triggered by trench retreat during the Cenozoic. Therefore, reconstructing

  19. Q-operators for the open Heisenberg spin chain

    NASA Astrophysics Data System (ADS)

    Frassek, Rouven; Szécsényi, István M.

    2015-12-01

    We construct Q-operators for the open spin-1/2 XXX Heisenberg spin chain with diagonal boundary matrices. The Q-operators are defined as traces over an infinite-dimensional auxiliary space involving novel types of reflection operators derived from the boundary Yang-Baxter equation. We argue that the Q-operators defined in this way are polynomials in the spectral parameter and show that they commute with transfer matrix. Finally, we prove that the Q-operators satisfy Baxter's TQ-equation and derive the explicit form of their eigenvalues in terms of the Bethe roots.

  20. gC1q-R/p32, a C1q-binding protein, is a receptor for the InlB invasion protein of Listeria monocytogenes.

    PubMed

    Braun, L; Ghebrehiwet, B; Cossart, P

    2000-04-03

    InlB is a Listeria monocytogenes protein that promotes entry of the bacterium into mammalian cells by stimulating tyrosine phosphorylation of the adaptor proteins Gab1, Cbl and Shc, and activation of phosphatidyl- inositol (PI) 3-kinase. Using affinity chromatography and enzyme-linked immunosorbent assay, we demonstrate a direct interaction between InlB and the mammalian protein gC1q-R, the receptor of the globular part of the complement component C1q. Soluble C1q or anti-gC1q-R antibodies impair InlB-mediated entry. Transient transfection of GPC16 cells, which are non-permissive to InlB-mediated entry, with a plasmid-expressing human gC1q-R promotes entry of InlB-coated beads. Furthermore, several experiments indicate that membrane recruitment and activation of PI 3-kinase involve an InlB-gC1q-R interaction and that gC1q-R associates with Gab1 upon stimulation of Vero cells with InlB. Thus, gC1q-R constitutes a cellular receptor involved in InlB-mediated activation of PI 3-kinase and tyrosine phosphorylation of the adaptor protein Gab1. After E-cadherin, the receptor for internalin, gC1q-R is the second identified mammalian receptor promoting entry of L. monocytogenes into mammalian cells.

  1. Heavy-Quark Symmetry Implies Stable Heavy Tetraquark Mesons Q i Q j q ¯ k q ¯ l

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eichten, Estia J.; Quigg, Chris

    For very heavy quarks Q, relations derived from heavy-quark symmetry predict the existence of novel narrow doubly heavy tetraquark states of the form Q iQqq l (subscripts label flavors), where q designates a light quark. By evaluating finite-mass corrections, we predict that double-beauty states composed of bb¯u¯d, bb¯u¯s, and bb¯d¯s will be stable against strong decays, whereas the double-charm states cc¯qq l, mixed beauty+charm states bc¯qq l, and heavier bb¯qk¯ql states will dissociate into pairs of heavy-light mesons. Furthermore, observation of a new double-beauty state through its weak decays would establish the existence of tetraquarks andmore » illuminate the role of heavy color-antitriplet diquarks as hadron constituents.« less

  2. Heavy-Quark Symmetry Implies Stable Heavy Tetraquark Mesons Q i Q j q ¯ k q ¯ l

    DOE PAGES

    Eichten, Estia J.; Quigg, Chris

    2017-11-15

    For very heavy quarks Q, relations derived from heavy-quark symmetry predict the existence of novel narrow doubly heavy tetraquark states of the form Q iQqq l (subscripts label flavors), where q designates a light quark. By evaluating finite-mass corrections, we predict that double-beauty states composed of bb¯u¯d, bb¯u¯s, and bb¯d¯s will be stable against strong decays, whereas the double-charm states cc¯qq l, mixed beauty+charm states bc¯qq l, and heavier bb¯qk¯ql states will dissociate into pairs of heavy-light mesons. Furthermore, observation of a new double-beauty state through its weak decays would establish the existence of tetraquarks andmore » illuminate the role of heavy color-antitriplet diquarks as hadron constituents.« less

  3. Propagation of self-localized Q -ball solitons in the 3He universe

    NASA Astrophysics Data System (ADS)

    Autti, S.; Heikkinen, P. J.; Volovik, G. E.; Zavjalov, V. V.; Eltsov, V. B.

    2018-01-01

    In relativistic quantum field theories, compact objects of interacting bosons can become stable owing to conservation of an additive quantum number Q . Discovering such Q balls propagating in the universe would confirm supersymmetric extensions of the standard model and may shed light on the mysteries of dark matter, but no unambiguous experimental evidence exists. We have created long-lived Q -ball solitons in superfluid 3He, where the role of the Q ball is played by a Bose-Einstein condensate of magnon quasiparticles. The principal qualitative attribute of a Q ball is observed experimentally: its propagation in space together with the self-created potential trap. Additionally, we show that this system allows for a quantitatively accurate representation of the Q -ball Hamiltonian. Our Q ball belongs to the class of the Friedberg-Lee-Sirlin Q balls with an additional neutral field ζ , which is provided by the orbital part of the Nambu-Goldstone mode. Multiple Q balls can be created in the experiment, and we have observed collisions between them. This set of features makes the magnon condensates in superfluid 3He a versatile platform for studies of Q -ball dynamics and interactions in three spatial dimensions.

  4. Carnot cycle for interacting particles in the absence of thermal noise.

    PubMed

    Curado, Evaldo M F; Souza, Andre M C; Nobre, Fernando D; Andrade, Roberto F S

    2014-02-01

    A thermodynamic formalism is developed for a system of interacting particles under overdamped motion, which has been recently analyzed within the framework of nonextensive statistical mechanics. It amounts to expressing the interaction energy of the system in terms of a temperature θ, conjugated to a generalized entropy s(q), with q = 2. Since θ assumes much higher values than those of typical room temperatures T ≪ θ, the thermal noise can be neglected for this system (T/θ ≃ 0). This framework is now extended by the introduction of a work term δW which, together with the formerly defined heat contribution (δ Q = θ ds(q)), allows for the statement of a proper energy conservation law that is analogous to the first law of thermodynamics. These definitions lead to the derivation of an equation of state and to the characterization of s(q) adiabatic and θ isothermic transformations. On this basis, a Carnot cycle is constructed, whose efficiency is shown to be η = 1-(θ(2)/θ(1)), where θ(1) and θ(2) are the effective temperatures of the two isothermic transformations, with θ(1)>θ(2). The results for a generalized thermodynamic description of this system open the possibility for further physical consequences, like the realization of a thermal engine based on energy exchanges gauged by the temperature θ.

  5. Static response of deformable microchannels

    NASA Astrophysics Data System (ADS)

    Christov, Ivan C.; Sidhore, Tanmay C.

    2017-11-01

    Microfluidic channels manufactured from PDMS are a key component of lab-on-a-chip devices. Experimentally, rectangular microchannels are found to deform into a non-rectangular cross-section due to fluid-structure interactions. Deformation affects the flow profile, which results in a nonlinear relationship between the volumetric flow rate and the pressure drop. We develop a framework, within the lubrication approximation (l >> w >> h), to self-consistently derive flow rate-pressure drop relations. Emphasis is placed on handling different types of elastic response: from pure plate-bending, to half-space deformation, to membrane stretching. The ``simplest'' model (Stokes flow in a 3D rectangular channel capped with a linearly elastic Kirchhoff-Love plate) agrees well with recent experiments. We also simulate the static response of such microfluidic channels under laminar flow conditions using ANSYSWorkbench. Simulations are calibrated using experimental flow rate-pressure drop data from the literature. The simulations provide highly resolved deformation profiles, which are difficult to measure experimentally. By comparing simulations, experiments and our theoretical models, we show good agreement in many flow/deformation regimes, without any fitting parameters.

  6. A geometric exploration of stress in deformed liquid foams

    NASA Astrophysics Data System (ADS)

    Evans, Myfanwy E.; Schröder-Turk, Gerd E.; Kraynik, Andrew M.

    2017-03-01

    We explore an alternate way of looking at the rheological response of a yield stress fluid: using discrete geometry to probe the heterogeneous distribution of stress in soap froth. We present quasi-static, uniaxial, isochoric compression and extension of three-dimensional random monodisperse soap froth in periodic boundary conditions and examine the stress and geometry that result. The stress and shape anisotropy of individual cells is quantified by Q, a scalar measure derived from the interface tensor that gauges each cell’s contribution to the global stress. Cumulatively, the spatial distribution of highly deformed cells allows us to examine how stress is internally distributed. The topology of highly deformed cells, how they arrange relative to one another in space, gives insight into the heterogeneous distribution of stress.

  7. Simulating 3D deformation using connected polygons

    NASA Astrophysics Data System (ADS)

    Tarigan, J. T.; Jaya, I.; Hardi, S. M.; Zamzami, E. M.

    2018-03-01

    In modern 3D application, interaction between user and the virtual world is one of an important factor to increase the realism. This interaction can be visualized in many forms; one of them is object deformation. There are many ways to simulate object deformation in virtual 3D world; each comes with different level of realism and performance. Our objective is to present a new method to simulate object deformation by using a graph-connected polygon. In this solution, each object contains multiple level of polygons in different level of volume. The proposed solution focusses on performance rather while maintaining the acceptable level of realism. In this paper, we present the design and implementation of our solution and show that this solution is usable in performance sensitive 3D application such as games and virtual reality.

  8. Universality hypothesis breakdown at one-loop order

    NASA Astrophysics Data System (ADS)

    Carvalho, P. R. S.

    2018-05-01

    We probe the universality hypothesis by analytically computing the at least two-loop corrections to the critical exponents for q -deformed O (N ) self-interacting λ ϕ4 scalar field theories through six distinct and independent field-theoretic renormalization group methods and ɛ -expansion techniques. We show that the effect of q deformation on the one-loop corrections to the q -deformed critical exponents is null, so the universality hypothesis is broken down at this loop order. Such an effect emerges only at the two-loop and higher levels, and the validity of the universality hypothesis is restored. The q -deformed critical exponents obtained through the six methods are the same and, furthermore, reduce to their nondeformed values in the appropriated limit.

  9. Calcium binding and transport by coenzyme Q.

    PubMed

    Bogeski, Ivan; Gulaboski, Rubin; Kappl, Reinhard; Mirceski, Valentin; Stefova, Marina; Petreska, Jasmina; Hoth, Markus

    2011-06-22

    Coenzyme Q10 (CoQ10) is one of the essential components of the mitochondrial electron-transport chain (ETC) with the primary function to transfer electrons along and protons across the inner mitochondrial membrane (IMM). The concomitant proton gradient across the IMM is essential for the process of oxidative phosphorylation and consequently ATP production. Cytochrome P450 (CYP450) monoxygenase enzymes are known to induce structural changes in a variety of compounds and are expressed in the IMM. However, it is unknown if CYP450 interacts with CoQ10 and how such an interaction would affect mitochondrial function. Using voltammetry, UV-vis spectrometry, electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), fluorescence microscopy and high performance liquid chromatography-mass spectrometry (HPLC-MS), we show that both CoQ10 and its analogue CoQ1, when exposed to CYP450 or alkaline media, undergo structural changes through a complex reaction pathway and form quinone structures with distinct properties. Hereby, one or both methoxy groups at positions 2 and 3 on the quinone ring are replaced by hydroxyl groups in a time-dependent manner. In comparison with the native forms, the electrochemically reduced forms of the new hydroxylated CoQs have higher antioxidative potential and are also now able to bind and transport Ca(2+) across artificial biomimetic membranes. Our results open new perspectives on the physiological importance of CoQ10 and its analogues, not only as electron and proton transporters, but also as potential regulators of mitochondrial Ca(2+) and redox homeostasis.

  10. Analysis of autism susceptibility gene loci on chromosomes 1p, 4p, 6q, 7q, 13q, 15q, 16p, 17q, 19q and 22q in Finnish multiplex families.

    PubMed

    Auranen, M; Nieminen, T; Majuri, S; Vanhala, R; Peltonen, L; Järvelä, I

    2000-05-01

    The role of genetic factors in the etiology of the autistic spectrum of disorders has clearly been demonstrated. Ten chromosomal regions, on chromosomes 1p, 4p, 6q, 7q, 13q, 15q, 16p, 17q, 19q and 22q have potentially been linked to autism.1-8 We have analyzed these chromosomal regions in a total of 17 multiplex families with autism originating from the isolated Finnish population by pairwise linkage analysis and sib-pair analysis. Mild evidence for putative contribution was found only with the 1p chromosomal region in the susceptibility to autism. Our data suggest that additional gene loci exist for autism which will be detectable in and even restricted to the isolated Finnish population.

  11. The noncommutative Poisson bracket and the deformation of the family algebras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Zhaoting, E-mail: zhaotwei@indiana.edu

    The family algebras are introduced by Kirillov in 2000. In this paper, we study the noncommutative Poisson bracket P on the classical family algebra C{sub τ}(g). We show that P controls the first-order 1-parameter formal deformation from C{sub τ}(g) to Q{sub τ}(g) where the latter is the quantum family algebra. Moreover, we will prove that the noncommutative Poisson bracket is in fact a Hochschild 2-coboundary, and therefore, the deformation is infinitesimally trivial. In the last part of this paper, we discuss the relation between Mackey’s analogue and the quantization problem of the family algebras.

  12. Non extensive statistical physics applied in fracture-induced electric signals during triaxial deformation of Carrara marble

    NASA Astrophysics Data System (ADS)

    Cartwright-Taylor, Alexis; Vallianatos, Filippos; Sammonds, Peter

    2014-05-01

    indices (q-values) for electric current fluctuations in the brittle and semi-brittle regimes (c. 1.5 and 1.8 respectively), implying an increase in interactions between microcracks in the semi-brittle regime. We interpret this non-Gaussian behaviour as a 'superstatistical' superposition of local Gaussian fluctuations that combine to produce a higher-order overall distribution; i.e. the measured electric current is driven to varying, temporary, local equilibria during deformation. This behaviour is analogous to the self-organising avalanche-like behaviour of fracture events, suggesting that the observed behaviour of measured electric current is a direct response to the microcracking events themselves and supporting the idea of a fracture-generated electrification mechanism in the crust. Our results have implications for the earthquake preparation process and the application of Tsallis statistical physics to the analysis of electric earthquake precursors. This research has been funded by the European Union (European Social Fund) and Greek national resources under the framework of the "THALES Program: SEISMO FEAR HELLARC" project of the "Education & Lifelong Learning" Operational Programme.

  13. Surface dislocation nucleation controlled deformation of Au nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roos, B.; Kapelle, B.; Volkert, C. A., E-mail: volkert@ump.gwdg.de

    2014-11-17

    We investigate deformation in high quality Au nanowires under both tension and bending using in-situ transmission electron microscopy. Defect evolution is investigated during: (1) tensile deformation of 〈110〉 oriented, initially defect-free, single crystal nanowires with cross-sectional widths between 30 and 300 nm, (2) bending deformation of the same wires, and (3) tensile deformation of wires containing coherent twin boundaries along their lengths. We observe the formation of twins and stacking faults in the single crystal wires under tension, and storage of full dislocations after bending of single crystal wires and after tension of twinned wires. The stress state dependence of themore » deformation morphology and the formation of stacking faults and twins are not features of bulk Au, where deformation is controlled by dislocation interactions. Instead, we attribute the deformation morphologies to the surface nucleation of either leading or trailing partial dislocations, depending on the Schmid factors, which move through and exit the wires producing stacking faults or full dislocation slip. The presence of obstacles such as neutral planes or twin boundaries hinder the egress of the freshly nucleated dislocations and allow trailing and leading partial dislocations to combine and to be stored as full dislocations in the wires. We infer that the twins and stacking faults often observed in nanoscale Au specimens are not a direct size effect but the result of a size and obstacle dependent transition from dislocation interaction controlled to dislocation nucleation controlled deformation.« less

  14. Assessment of short and long-term outcomes of diabetes patient education using the health education impact questionnaire (HeiQ).

    PubMed

    Laursen, Ditte Hjorth; Christensen, Karl Bang; Christensen, Ulla; Frølich, Anne

    2017-06-15

    Type 2 diabetes is a progressive chronic illness that will affect more than 500 million people worldwide by 2030. It is a significant cause of morbidity and mortality. Finding the right care management for diabetes patients is necessary to effectively address the growing population of affected individuals and escalating costs. Patient education is one option for improving patient self-management. However, there are large discrepancies in the outcomes of such programs and long-term data are lacking. We assessed the short and long-term outcomes of diabetes patient education using the health education impact questionnaire (HeiQ). We conducted a observational cohort study of 83 type 2 diabetes patients participating in patient education programs in Denmark. The seven-scale HeiQ was completed by telephone interview at baseline and 2 weeks (76 participants, 93%) and 12 months (66, 80%) after the patient education ended. Changes over time were assessed using mean values and standard deviation at each time point and Cohen effect sizes. Patients reported improvements 2 weeks after the program ended in 4 of 7 constructs: skills and technique acquisition (ES = 0.59), self-monitoring and insight (ES = 0.52), constructive attitudes and approaches (ES = 0.43) and social integration and support (ES = 0.27). After 12 months, patients reported improvements in 3 of 7 constructs: skills and technique acquisition (ES = 0.66), constructive attitudes and approaches (ES = 0.43), and emotional wellbeing (ES = 0.44). Skills and technique showed the largest short- and long-term effect size. No significant changes were found in health-related activity or positive and active engagement in life over time. After 12 months, diabetes patients who participated in patient education demonstrated increased self-management skills, improved acceptance of their chronic illness and decreased negative emotional response to their disease. Applying HeiQ as an outcome measure yielded new

  15. Persistent monoclonality after histological remission in gastric mucosa-associated lymphoid tissue lymphoma treated with chemotherapy and/or surgery: influence of t(11;18)(q21;q21).

    PubMed

    Santón, Almudena; García-Cosio, Mónica; Bellosillo, Beatriz; Rodríguez, Patricia; Cristóbal, Eva; Serrano, Sergio; Besses, Carlos; Abraira, Victor; Salar, Antonio; Montalbán, Carlos

    2008-08-01

    The purpose of this work was to study retrospectively the molecular response and outcome of 19 gastric mucosa associated lymphoid tissue (MALT) lymphoma patients achieving histological remission after chemotherapy or surgery. Immunoglobulin heavy chain variable (IgV(H)) gene rearrangements were studied by PCR in biopsies obtained at diagnosis and follow-up. Presence of t(11;18)(q21;q21) was studied by FISH or RT-PCR. Sequencing analysis of three t(11;18)(q21;q21) positive and two negative lymphomas with persistent monoclonal IgV(H) rearrangements was also performed. Long-term IgV(H) monoclonality was demonstrated in 11/19 patients (58%); in five of them monoclonal rearrangements were present in all samples throughout the follow-up. Persistent IgV(H) monoclonality was detected a median of 49 months after the achievement of histological response and did not condition histological relapse in most cases. All three t(11;18)(q21;q21) positive patients had maintained IgV(H) monoclonality and sequencing analyses revealed the same mutated IgV(H) alleles in the diagnostic and the follow-up samples. Over half of the patients with gastric MALT lymphoma with histological response after chemotherapy and/or surgery have long-term persistent monoclonality. The presence of t(11;18)(q21;q21) seems to condition long-term persistence of the initial lymphoma clone.trade mark.

  16. Fatigue following Acute Q-Fever: A Systematic Literature Review

    PubMed Central

    Delsing, Corine E.; Bleijenberg, Gijs; Langendam, Miranda; Timen, Aura; Bleeker-Rovers, Chantal P.

    2016-01-01

    Background Long-term fatigue with detrimental effects on daily functioning often occurs following acute Q-fever. Following the 2007–2010 Q-fever outbreak in the Netherlands with over 4000 notified cases, the emphasis on long-term consequences of Q-fever increased. The aim of this study was to provide an overview of all relevant available literature, and to identify knowledge gaps regarding the definition, diagnosis, background, description, aetiology, prevention, therapy, and prognosis, of fatigue following acute Q-fever. Design A systematic review was conducted through searching Pubmed, Embase, and PsycInfo for relevant literature up to 26th May 2015. References of included articles were hand searched for additional documents, and included articles were quality assessed. Results Fifty-seven articles were included and four documents classified as grey literature. The quality of most studies was low. The studies suggest that although most patients recover from fatigue within 6–12 months after acute Q-fever, approximately 20% remain chronically fatigued. Several names are used indicating fatigue following acute Q-fever, of which Q-fever fatigue syndrome (QFS) is most customary. Although QFS is described to occur frequently in many countries, a uniform definition is lacking. The studies report major health and work-related consequences, and is frequently accompanied by nonspecific complaints. There is no consensus with regard to aetiology, prevention, treatment, and prognosis. Conclusions Long-term fatigue following acute Q-fever, generally referred to as QFS, has major health-related consequences. However, information on aetiology, prevention, treatment, and prognosis of QFS is underrepresented in the international literature. In order to facilitate comparison of findings, and as platform for future studies, a uniform definition and diagnostic work-up and uniform measurement tools for QFS are proposed. PMID:27223465

  17. Fatigue following Acute Q-Fever: A Systematic Literature Review.

    PubMed

    Morroy, Gabriella; Keijmel, Stephan P; Delsing, Corine E; Bleijenberg, Gijs; Langendam, Miranda; Timen, Aura; Bleeker-Rovers, Chantal P

    2016-01-01

    Long-term fatigue with detrimental effects on daily functioning often occurs following acute Q-fever. Following the 2007-2010 Q-fever outbreak in the Netherlands with over 4000 notified cases, the emphasis on long-term consequences of Q-fever increased. The aim of this study was to provide an overview of all relevant available literature, and to identify knowledge gaps regarding the definition, diagnosis, background, description, aetiology, prevention, therapy, and prognosis, of fatigue following acute Q-fever. A systematic review was conducted through searching Pubmed, Embase, and PsycInfo for relevant literature up to 26th May 2015. References of included articles were hand searched for additional documents, and included articles were quality assessed. Fifty-seven articles were included and four documents classified as grey literature. The quality of most studies was low. The studies suggest that although most patients recover from fatigue within 6-12 months after acute Q-fever, approximately 20% remain chronically fatigued. Several names are used indicating fatigue following acute Q-fever, of which Q-fever fatigue syndrome (QFS) is most customary. Although QFS is described to occur frequently in many countries, a uniform definition is lacking. The studies report major health and work-related consequences, and is frequently accompanied by nonspecific complaints. There is no consensus with regard to aetiology, prevention, treatment, and prognosis. Long-term fatigue following acute Q-fever, generally referred to as QFS, has major health-related consequences. However, information on aetiology, prevention, treatment, and prognosis of QFS is underrepresented in the international literature. In order to facilitate comparison of findings, and as platform for future studies, a uniform definition and diagnostic work-up and uniform measurement tools for QFS are proposed.

  18. Stress, deformation and diffusion interactions in solids - A simulation study

    NASA Astrophysics Data System (ADS)

    Fischer, F. D.; Svoboda, J.

    2015-05-01

    Equations of diffusion treated in the frame of Manning's concept, are completed by equations for generation/annihilation of vacancies at non-ideal sources and sinks, by conservation laws, by equations for generation of an eigenstrain state and by a strain-stress analysis. The stress-deformation-diffusion interactions are demonstrated on the evolution of a diffusion couple consisting of two thin layers of different chemical composition forming a free-standing plate without external loading. The equations are solved for different material parameters represented by the values of diffusion coefficients of individual components and by the intensity of sources and sinks for vacancies. The results of simulations indicate that for low intensity of sources and sinks for vacancies a significant eigenstress state can develop and the interdiffusion process is slowed down. For high intensity of sources and sinks for vacancies a significant eigenstrain state can develop and the eigenstress state quickly relaxes. If the difference in the diffusion coefficients of individual components is high, then the intensity of sources and sinks for vacancies influences the interdiffusion process considerably. For such systems their description only by diffusion coefficients is insufficient and must be completed by a microstructure characterization.

  19. Long‐distance interaction of the integrated HPV fragment with MYC gene and 8q24.22 region upregulating the allele‐specific MYC expression in HeLa cells

    PubMed Central

    Shen, Congle; Liu, Yongzhen; Shi, Shu; Zhang, Ruiyang; Zhang, Ting; Xu, Qiang; Zhu, Pengfei; Lu, Fengmin

    2017-01-01

    Human papillomavirus (HPV) infection is the most important risk factor for cervical cancer development. In HeLa cell line, the HPV viral genome is integrated at 8q24 in one allele of chromosome 8. It has been reported that the HPV fragment integrated in HeLa genome can cis‐activate the expression of proto‐oncogene MYC, which is located at 500 kb downstream of the integrated site. However, the underlying molecular mechanism of this regulation is unknown. A recent study reported that MYC was highly expressed exclusively from the HPV‐integrated haplotype, and a long‐range chromatin interaction between the integrated HPV fragment and MYC gene has been hypothesized. In this study, we provided the experimental evidences supporting this long‐range chromatin interaction in HeLa cells by using Chromosome Conformation Capture (3C) method. We found that the integrated HPV fragment, MYC and 8q24.22 was close to each other and might form a trimer in spatial location. When knocking out the integrated HPV fragment or 8q24.22 region from chromosome 8 by CRISPR/Cas9 system, the expression of MYC reduced dramatically in HeLa cells. Interestingly, decreased expression was only observed in three from eight cell clones, when only one 8q24.22 allele was knocked out. Functionally, HPV knockout caused senescence‐associated acidic β‐gal activity in HeLa cells. These data indicate a long‐distance interaction of the integrated HPV fragment with MYC gene and 8q24.22 region, providing an alternative mechanism relevant to the carcinogenicity of HPV integration. PMID:28470669

  20. Capillary flow enhancement in rectangular polymer microchannels with a deformable wall.

    PubMed

    Anoop, R; Sen, A K

    2015-07-01

    We report the capillary flow enhancement in rectangular polymer microchannels, when one of the channel walls is a deformable polymer membrane. We provide detailed insight into the physics of elastocapillary interaction between the capillary flow and elastic membrane, which leads to significant improvements in capillary flow performance. As liquid flows by capillary action in such channels, the deformable wall deflects inwards due to the Young-Laplace pressure drop across the liquid meniscus. This, in turn, decreases the radius of curvature of the meniscus and increases the driving capillary pressure. A theoretical model is proposed to predict the resultant increase in filling speed and rise height, respectively, in deformable horizontal and vertical microchannels having large aspect ratios. A non-dimensional parameter J, which represents the ratio of the capillary force to the mechanical restoring force, is identified to quantify the elastocapillary effects in terms of the improvement in filling speed (for J>0.238) and the condition for channel collapse (J>1). The theoretical predictions show good agreement with experimental data obtained using deformable rectangular poly(dimethylsiloxane) microchannels. Both model predictions and experimental data show that over 15% improvement in the Washburn coefficient in horizontal channels, and over 30% improvement in capillary rise height in vertical channels, are possible prior to channel collapse. The proposed technique of using deformable membranes as channel walls is a viable method for capillary flow enhancement in microfluidic devices.

  1. Fluid Surface Deformation by Objects in the Cheerios Effect

    NASA Astrophysics Data System (ADS)

    Nguyen, Khoi; Miller, Michael; Mandre, Shreyas; Mandre Lab Team

    2012-11-01

    Small objects floating on a fluid/air interface deform of the surface depending on material surface properties, density, and geometry. These objects attract each other through capillary interactions, a phenomenon dubbed the ``cheerios effect.'' The attractive force and torque exerted on these objects by the interface can be estimated if the meniscus deformation is known. In addition, the floating objects can also rotate due to such an interaction. We present a series of experiments focused on visualizing the the motions of the floating objects and the deformation of the interface. The experiments involve thin laser-cut acrylic pieces attracting each other on water in a large glass petri dish and a camera set-up to capture the process. Furthermore, optical distortion of a grid pattern is used to visualize the water surface deformation near the edge of the objects. This study of the deformation of the water surface around a floating object, of the attractive/repulsive forces, and of post-contact rotational dynamics are potentially instrumental in the study of colloidal self-assembly.

  2. The hippocampi of children with chromosome 22q11.2 deletion syndrome have localized anterior alterations that predict severity of anxiety.

    PubMed

    Scott, Julia A; Goodrich-Hunsaker, Naomi; Kalish, Kristopher; Lee, Aaron; Hunsaker, Michael R; Schumann, Cynthia M; Carmichael, Owen T; Simon, Tony J

    2016-04-01

    Individuals with 22q11.2 deletion syndrome (22q11.2DS) have an elevated risk for schizophrenia, which increases with history of childhood anxiety. Altered hippocampal morphology is a common neuroanatomical feature of 22q11.2DS and idiopathic schizophrenia. Relating hippocampal structure in children with 22q11.2DS to anxiety and impaired cognitive ability could lead to hippocampus-based characterization of psychosis-proneness in this at-risk population. We measured hippocampal volume using a semiautomated approach on MRIs collected from typically developing children and children with 22q11.2DS. We then analyzed hippocampal morphology with Localized Components Analysis. We tested the modulating roles of diagnostic group, hippocampal volume, sex and age on local hippocampal shape components. Lastly, volume and shape components were tested as covariates of IQ and anxiety. We included 48 typically developing children and 69 children with 22q11.2DS in our study. Hippocampal volume was reduced bilaterally in children with 22q11.2DS, and these children showed greater variation in the shape of the anterior hippocampus than typically developing children. Children with 22q11.2DS had greater inward deformation of the anterior hippocampus than typically developing children. Greater inward deformation of the anterior hippocampus was associated with greater severity of anxiety, specifically fear of physical injury, within the 22q11.2DS group. Shape alterations are not specific to hippocampal subfields. Alterations in the structure of the anterior hippocampus likely affect function and may impact limbic circuitry. We suggest these alterations potentially contribute to anxiety symptoms in individuals with 22q11.2DS through modulatory pathways. Altered hippocampal morphology may be uniquely linked to anxiety risk factors for schizophrenia, which could be a powerful neuroanatomical marker of schizophrenia risk and hence protection.

  3. Numerical modeling of intraplate seismicity with a deformable loading plate

    NASA Astrophysics Data System (ADS)

    So, B. D.; Capitanio, F. A.

    2017-12-01

    We use finite element modeling to investigate on the stress loading-unloading cycles and earthquakes occurrence in the plate interiors, resulting from the interactions of tectonic plates along their boundary. We model a visco-elasto-plastic plate embedding a single or multiple faults, while the tectonic stress is applied along the plate boundary by an external loading visco-elastic plate, reproducing the tectonic setting of two interacting lithospheres. Because the two plates deform viscously, the timescale of stress accumulation and release on the faults is self-consistently determined, from the boundary to the interiors, and seismic recurrence is an emerging feature. This approach overcomes the constraints on recurrence period imposed by stress (stress-drop) and velocity boundary conditions, while here it is unconstrained. We illustrate emerging macroscopic characteristics of this system, showing that the seismic recurrence period τ becomes shorter as Γ and Θ decreases, where Γ = ηI/ηL the viscosity ratio of the viscosities of the internal fault-embedded to external loading plates, respectively, and Θ = σY/σL the stress ratio of the elastic limit of the fault to far-field loading stress. When the system embeds multiple, randomly distributed faults, stress transfer results in recurrence period deviations, however the time-averaged recurrence period of each fault show the same dependence on Γ and Θ, illustrating a characteristic collective behavior. The control of these parameters prevails even when initial pre-stress was randomly assigned in terms of the spatial arrangement and orientation on the internal plate, mimicking local fluctuations. Our study shows the relevance of macroscopic rheological properties of tectonic plates on the earthquake occurrence in plate interiors, as opposed to local factors, proposing a viable model for the seismic behavior of continent interiors in the context of large-scale, long-term deformation of interacting tectonic

  4. Quantum effect on the nucleation of plastic deformation carriers and destruction in crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khon, Yury A., E-mail: khon@ispms.tsc.ru; Kaminskii, Petr P., E-mail: ppk@ispms.tsc.ru

    2015-10-27

    New concepts on the irreversible crystal deformation as a structure transformation caused by a change in interatomic interactions at fluctuations of the electron density under loading are described. The change in interatomic interactions lead to the excitation of dynamical displacements of atoms. A model and a theory of a deformable pristine crystal taking into account the excitation of thermally activated and dynamical displacements of atoms are suggested. New mechanisms of the nucleation of plastic deformation carriers and destruction in pristine crystals at the real value of the deforming stress are studied.

  5. Double-β decay within a consistent deformed approach

    NASA Astrophysics Data System (ADS)

    Delion, D. S.; Suhonen, J.

    2015-05-01

    In this paper we present a timely application of the proton-neutron deformed quasiparticle random-phase approximation (p n -dQRPA), designed to describe in a consistent way the 1+ Gamow-Teller states in odd-odd deformed nuclei. For this purpose we apply a projection before variation procedure by using a single-particle basis with projected angular momentum, provided by the diagonalization of a spherical mean field plus quadrupole-quadrupole interaction. The residual Hamiltonian contains pairing plus proton-neutron dipole terms in particle-hole and particle-particle channels, with constant strengths. As an example we describe the two-neutrino double-beta (2 ν β β ) decay of 150Nd to the ground state of 150Sm. The experimental (p ,n ) type of strength in 150Nd and the (n ,p ) type of strength in 150Sm are reasonably reproduced and the 2 ν β β decay matrix element depicts a strong dependence upon the particle-particle strength gp p. The experimental half-life is reproduced for gp p=0.05 . It turns out that the measured half-lives for 2 ν β β transitions between other deformed superfluid partners with mass numbers A =82 ,96,100,128,130,238 are reproduced with fairly good accuracy by using this value of gp p.

  6. Investigation of deformation of elements of three-dimensional reinforced concrete structures located in the soil, interacting with each other through rubber gaskets

    NASA Astrophysics Data System (ADS)

    Berezhnoi, D. V.; Balafendieva, I. S.; Sachenkov, A. A.; Sekaeva, L. R.

    2017-06-01

    In work the technique of calculation of elements of three-dimensional reinforced concrete substructures located in a soil, interacting with each other through rubber linings is realized. To describe the interaction of deformable structures with the ground, special “semi-infinite” finite elements are used. A technique has been implemented that allows one to describe the contact interaction of three-dimensional structures by means of a special contact finite element with specific properties. The obtained numerical results are compared with the experimental data, their good agreement is noted.

  7. Deformation interplay at Hawaii Island

    NASA Astrophysics Data System (ADS)

    Shirzaei, M.; Walter, T. R.

    2009-12-01

    Volcanoes are known to be closely related to the tectonic environment, including vent locations and eruptions resulting from faults and earthquakes. Similarly, adjacent volcanoes interact with each other in time and space, as suggested for the Hawaiian volcanoes Kilauea and Mauna Loa. New satellite radar data imply even more complex deformation interplay in Hawaii than previously thought, involving magma chamber pressure changes, dike intrusions, slow earthquakes and ground subsidence. The affected regions are the Mauna Loa and Kilauea volcano summits, their active rift zones, the island’s unstable southeast flank and even the capital city of Hilo. Based on the data acquired by the European satellite ENVISAT, we present in this work a five-year spatio-temporal analysis of the deformation signals recorded between 2003 and 2008. The data suggests that most of the deformation sources are acting in chorus. The magma intrusion at the Mauna Loa chamber and the intrusion into the Kilauea rift dike are correlated in time while also interacting with gravity-driven flank movement events. Some of the events occur silently underneath the Kilauea south flank, such as slow earthquakes that may largely affect all of the active magmatic systems and reverse their sign of correlation. This study of the interplay between multiple deformations and inherently coupled systems provides a better understanding of Hawaiian volcano activity and may lead to new methods for assessing the hazards that arise during volcano-tectonic activities elsewhere.

  8. BREAKDOWN OF I-LOVE-Q UNIVERSALITY IN RAPIDLY ROTATING RELATIVISTIC STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doneva, Daniela D.; Yazadjiev, Stoytcho S.; Kokkotas, Kostas D.

    It was shown recently that normalized relations between the moment of inertia (I), the quadrupole moment (Q), and the tidal deformability (Love number) exist and for slowly rotating neutron stars they are almost independent of the equation of state (EOS). We extend the computation of the I-Q relation to models rotating up to the mass-shedding limit and show that the universality of the relations is lost. With increasing rotation rate, the normalized I-Q relation departs significantly from its slow-rotation limit, deviating up to 40% for neutron stars and up to 75% for strange stars. The deviation is also EOS dependentmore » and for a broad set of hadronic and strange matter EOSs the spread due to rotation is comparable to the spread due to the EOS, if one considers sequences with fixed rotational frequency. Still, for a restricted sample of modern realistic EOSs one can parameterize the deviations from universality as a function of rotation only. The previously proposed I-Love-Q relations should thus be used with care, because they lose their universality in astrophysical situations involving compact objects rotating faster than a few hundred Hz.« less

  9. Breakdown of I-Love-Q Universality in Rapidly Rotating Relativistic Stars

    NASA Astrophysics Data System (ADS)

    Doneva, Daniela D.; Yazadjiev, Stoytcho S.; Stergioulas, Nikolaos; Kokkotas, Kostas D.

    2014-01-01

    It was shown recently that normalized relations between the moment of inertia (I), the quadrupole moment (Q), and the tidal deformability (Love number) exist and for slowly rotating neutron stars they are almost independent of the equation of state (EOS). We extend the computation of the I-Q relation to models rotating up to the mass-shedding limit and show that the universality of the relations is lost. With increasing rotation rate, the normalized I-Q relation departs significantly from its slow-rotation limit, deviating up to 40% for neutron stars and up to 75% for strange stars. The deviation is also EOS dependent and for a broad set of hadronic and strange matter EOSs the spread due to rotation is comparable to the spread due to the EOS, if one considers sequences with fixed rotational frequency. Still, for a restricted sample of modern realistic EOSs one can parameterize the deviations from universality as a function of rotation only. The previously proposed I-Love-Q relations should thus be used with care, because they lose their universality in astrophysical situations involving compact objects rotating faster than a few hundred Hz.

  10. How deformed are the TSD bands in odd Lu isotopes?

    NASA Astrophysics Data System (ADS)

    Ragnarsson, I.

    2017-12-01

    The experimental fingerprints for large deformation in the triaxial strongly deformed (TSD) bands of 163,165,167Lu are discussed. It is argued that these fingerprints are not very convincing. On the contrary, especially the fact that there exist strong interactions between the TSD bands and normal-deformed (ND) bands indicates that the deformation of the TSD bands cannot be very different from that of the ND bands. The need for detailed new experimental data is underlined.

  11. Analytical volcano deformation source models

    USGS Publications Warehouse

    Lisowski, Michael; Dzurisin, Daniel

    2007-01-01

    Primary volcanic landforms are created by the ascent and eruption of magma. The ascending magma displaces and interacts with surrounding rock and fluids as it creates new pathways, flows through cracks or conduits, vesiculates, and accumulates in underground reservoirs. The formation of new pathways and pressure changes within existing conduits and reservoirs stress and deform the surrounding rock. Eruption products load the crust. The pattern and rate of surface deformation around volcanoes reflect the tectonic and volcanic processes transmitted to the surface through the mechanical properties of the crust.

  12. Quantifying dynamic rheology, phase interactions and strain localisation in deforming three phase magmas using high-speed x-ray tomography

    NASA Astrophysics Data System (ADS)

    Dobson, Katherine; Pistone, Mattia; Fife, Julie; Cordonnier, Benoit; Blundy, Jon; Dingwell, Don; Lee, Peter

    2015-04-01

    The crystal and bubble cargoes of magmas are critical to controlling magma mobility and rheology. These cargos vary in both time and space and the local, and bulk, rheological behaviour are correspondingly heterogeneous. Tracking how these heterogeneous cargoes evolve, and how crystals and bubbles interact with each other in deforming systems is a critical challenge in volcanology, as these processes control both the chemical and physical evolution of the magma, including phenomena such as melt-crystal segregation, strain localisation, and fragmentation. The only methodology available to track these processes in real time, and at the scale of individual melt-crystal-bubble interactions is high speed x-ray tomography. This non-destructive imaging technique allows the rapid acquisition of sequential 3D images that capture the physical, and to some degree chemical, microstructure of the sample during a deformation cycle. We utilise in situ tomographic methods developed in materials science to perfume magmatic deformation experiments on synthesized three phase systems at magmatic temperatures. Through a novel combination of a high temperature laser heating system [1] in situ micro-precision deformation apparatus [2] and the temporal and spatial resolution available at the TOMCAT beam line at the Swiss Light Source synchrotron facility we performed in situ observations of the microstructural evolution of a synthesized anhydrous borosilicate melt seeded with a variable concentration of non-reactive rutile crystals and air bubbles (30-70 volume %). The experiments were conducted at 800-1000C, under constant deformation rates of 0.25-5.00 microns/second. Each 3D image has 2D and 3D spatial resolution of approximately 3 microns per pixel, and each 3D image took ~3 seconds to acquire. Here we present this innovative high speed, high temperature, syn-deformation tomographic data , and show how it can be used to trace the location and local distribution of each crystal and

  13. Simultaneous concentration and purification through gradient deformation chromatography

    NASA Technical Reports Server (NTRS)

    Velayudhan, A.; Hendrickson, R. L.; Ladisch, M. R.; Mitchell, C. A. (Principal Investigator)

    1995-01-01

    Mobile-phase additives, commonly used to modulate absorbate retention in gradient elution chromatography, are usually assumed to be either linearly retained or unretained. Previous theoretical work from our laboratory has shown that these modulators, such as salts in ion-exchange and hydrophobic interaction chromatography and organic modifiers in reversed-phase chromatography, can absorb nonlinearly, giving rise to gradient deformation. Consequently, adsorbate peaks that elute in the vicinity of the head of the deformed gradient may exhibit unusual shapes, form shoulders, and/or be concentrated. These effects for a reversed-phase sorbent with aqueous acetonitrile (ACN) as the modulator are verified experimentally. Gradient deformation is demonstrated experimentally and agrees with simulations based on ACN isotherm parameters that are independently determined from batch equilibrium studies using the layer model. Unusual absorbate peak shapes were found experimentally for single-component injections of phenylalanine, similar to those calculated by the simulations. A binary mixture of tryptophan and phenylalanine is used to demonstrate simultaneous concentration and separation, again in agreement with simulations. The possibility of gradient deformation in ion-exchange and hydrophobic interaction chromatography is discussed.

  14. Wilson loops and chiral correlators on squashed spheres

    NASA Astrophysics Data System (ADS)

    Fucito, F.; Morales, J. F.; Poghossian, R.

    2015-11-01

    We study chiral deformations of N=2 and N=4 supersymmetric gauge theories obtained by turning on τ J tr Φ J interactions with Φ the N=2 superfield. Using localization, we compute the deformed gauge theory partition function Z(overrightarrow{τ}|q) and the expectation value of circular Wilson loops W on a squashed four-sphere. In the case of the deformed {N}=4 theory, exact formulas for Z and W are derived in terms of an underlying U( N) interacting matrix model replacing the free Gaussian model describing the {N}=4 theory. Using the AGT correspondence, the τ J -deformations are related to the insertions of commuting integrals of motion in the four-point CFT correlator and chiral correlators are expressed as τ-derivatives of the gauge theory partition function on a finite Ω-background. In the so called Nekrasov-Shatashvili limit, the entire ring of chiral relations is extracted from the ɛ-deformed Seiberg-Witten curve. As a byproduct of our analysis we show that SU(2) gauge theories on rational Ω-backgrounds are dual to CFT minimal models.

  15. Disappearing Q operator

    NASA Astrophysics Data System (ADS)

    Jones, H. F.; Rivers, R. J.

    2007-01-01

    In the Schrödinger formulation of non-Hermitian quantum theories a positive-definite metric operator η≡e-Q must be introduced in order to ensure their probabilistic interpretation. This operator also gives an equivalent Hermitian theory, by means of a similarity transformation. If, however, quantum mechanics is formulated in terms of functional integrals, we show that the Q operator makes only a subliminal appearance and is not needed for the calculation of expectation values. Instead, the relation to the Hermitian theory is encoded via the external source j(t). These points are illustrated and amplified for two non-Hermitian quantum theories: the Swanson model, a non-Hermitian transform of the simple harmonic oscillator, and the wrong-sign quartic oscillator, which has been shown to be equivalent to a conventional asymmetric quartic oscillator.

  16. Deformed coset models from gauged WZW actions

    NASA Astrophysics Data System (ADS)

    Park, Q.-Han

    1994-06-01

    A general Lagrangian formulation of integrably deformed G/H-coset models is given. We consider the G/H-coset model in terms of the gauged Wess-Zumino-Witten action and obtain an integrable deformation by adding a potential energy term Tr(gTg -1overlineT) , where algebra elements T, overlineT belong to the center of the algebra h associated with the subgroup H. We show that the classical equation of motion of the deformed coset model can be identified with the integrability condition of certain linear equations which makes the use of the inverse scattering method possible. Using the linear equation, we give a systematic way to construct infinitely many conserved currents as well as soliton solutions. In the case of the parafermionic SU(2)/U(1)-coset model, we derive n-solitons and conserved currents explicitly.

  17. Long-distance interaction of the integrated HPV fragment with MYC gene and 8q24.22 region upregulating the allele-specific MYC expression in HeLa cells.

    PubMed

    Shen, Congle; Liu, Yongzhen; Shi, Shu; Zhang, Ruiyang; Zhang, Ting; Xu, Qiang; Zhu, Pengfei; Chen, Xiangmei; Lu, Fengmin

    2017-08-01

    Human papillomavirus (HPV) infection is the most important risk factor for cervical cancer development. In HeLa cell line, the HPV viral genome is integrated at 8q24 in one allele of chromosome 8. It has been reported that the HPV fragment integrated in HeLa genome can cis-activate the expression of proto-oncogene MYC, which is located at 500 kb downstream of the integrated site. However, the underlying molecular mechanism of this regulation is unknown. A recent study reported that MYC was highly expressed exclusively from the HPV-integrated haplotype, and a long-range chromatin interaction between the integrated HPV fragment and MYC gene has been hypothesized. In this study, we provided the experimental evidences supporting this long-range chromatin interaction in HeLa cells by using Chromosome Conformation Capture (3C) method. We found that the integrated HPV fragment, MYC and 8q24.22 was close to each other and might form a trimer in spatial location. When knocking out the integrated HPV fragment or 8q24.22 region from chromosome 8 by CRISPR/Cas9 system, the expression of MYC reduced dramatically in HeLa cells. Interestingly, decreased expression was only observed in three from eight cell clones, when only one 8q24.22 allele was knocked out. Functionally, HPV knockout caused senescence-associated acidic β-gal activity in HeLa cells. These data indicate a long-distance interaction of the integrated HPV fragment with MYC gene and 8q24.22 region, providing an alternative mechanism relevant to the carcinogenicity of HPV integration. © 2017 The Authors International Journal of Cancer published by John Wiley & Sons Ltd on behalf of UICC.

  18. Investigation of heavy-ion fusion with deformed surface diffuseness: Actinide and lanthanide targets

    NASA Astrophysics Data System (ADS)

    Alavi, S. A.; Dehghani, V.

    2017-05-01

    By using a deformed Broglia-Winther nuclear interaction potential in the framework of the WKB method, the near- and above-barrier heavy-ion-fusion cross sections of 16O with some lanthanides and actinides have been calculated. The effect of deformed surface diffuseness on the nuclear interaction potential, the effective interaction potential at distinct angle, barrier position, barrier height, cross section at each angles, and fusion cross sections of 16O+147Sm,150Nd,154Sm , and 166Er and 16O+232Th,238U,237Np , and 248Cm have been studied. The differences between the results obtained by using deformed surface diffuseness and those obtained by using constant surface diffuseness were noticeable. Good agreement between experimental data and theoretical calculation with deformed surface diffuseness were observed for 16O+147Sm,154Sm,166Er,238U,237Np , and 248Cm reactions. It has been observed that deformed surface diffuseness plays a significant role in heavy-ion-fusion studies.

  19. Supersymmetric interactions of a six-dimensional self-dual tensor and fixed-shape second quantized strings

    NASA Astrophysics Data System (ADS)

    Ganor, Ori J.

    2018-02-01

    "Curvepole (2,0)-theory" is a deformation of the (2,0)-theory with nonlocal interactions. A curvepole is defined as a two-dimensional generalization of a dipole. It is an object of fixed two-dimensional shape of which the boundary is a charged curve that interacts with a 2-form gauge field. Curvepole theory was previously only defined indirectly via M-theory. Here, we propose a supersymmetric Lagrangian, constructed explicitly up to quartic terms, for an "Abelian" curvepole theory, which is an interacting deformation of the free (2,0) tensor multiplet. This theory contains fields of which the quanta are curvepoles (i.e., fixed-shape strings). Supersymmetry is preserved (at least up to quartic terms) if the shape of the curvepoles is (two-dimensional) planar. This nonlocal six-dimensional quantum field theory may also serve as a UV completion for certain (local) five-dimensional gauge theories.

  20. Exchange-Correlation Effects for Noncovalent Interactions in Density Functional Theory.

    PubMed

    Otero-de-la-Roza, A; DiLabio, Gino A; Johnson, Erin R

    2016-07-12

    In this article, we develop an understanding of how errors from exchange-correlation functionals affect the modeling of noncovalent interactions in dispersion-corrected density-functional theory. Computed CCSD(T) reference binding energies for a collection of small-molecule clusters are decomposed via a molecular many-body expansion and are used to benchmark density-functional approximations, including the effect of semilocal approximation, exact-exchange admixture, and range separation. Three sources of error are identified. Repulsion error arises from the choice of semilocal functional approximation. This error affects intermolecular repulsions and is present in all n-body exchange-repulsion energies with a sign that alternates with the order n of the interaction. Delocalization error is independent of the choice of semilocal functional but does depend on the exact exchange fraction. Delocalization error misrepresents the induction energies, leading to overbinding in all induction n-body terms, and underestimates the electrostatic contribution to the 2-body energies. Deformation error affects only monomer relaxation (deformation) energies and behaves similarly to bond-dissociation energy errors. Delocalization and deformation errors affect systems with significant intermolecular orbital interactions (e.g., hydrogen- and halogen-bonded systems), whereas repulsion error is ubiquitous. Many-body errors from the underlying exchange-correlation functional greatly exceed in general the magnitude of the many-body dispersion energy term. A functional built to accurately model noncovalent interactions must contain a dispersion correction, semilocal exchange, and correlation components that minimize the repulsion error independently and must also incorporate exact exchange in such a way that delocalization error is absent.

  1. Bright x-rays reveal shifting deformation states and effects of the microstructure on the plastic deformation of crystalline materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beaudoin, A. J.; Shade, P. A.; Schuren, J. C.

    The plastic deformation of crystalline materials is usually modeled as smoothly progressing in space and time, yet modern studies show intermittency in the deformation dynamics of single-crystals arising from avalanche behavior of dislocation ensembles under uniform applied loads. However, once the prism of the microstructure in polycrystalline materials disperses and redistributes the load on a grain-by-grain basis, additional length and time scales are involved. Thus, the question is open as to how deformation intermittency manifests for the nonuniform grain-scale internal driving forces interacting with the finer-scale dislocation ensemble behavior. In this work we track the evolution of elastic strain withinmore » individual grains of a creep-loaded titanium alloy, revealing widely varying internal strains that fluctuate over time. Here, the findings provide direct evidence of how flow intermittency proceeds for an aggregate of ~700 grains while showing the influences of multiscale ensemble interactions and opening new avenues for advancing plasticity modeling.« less

  2. Bright x-rays reveal shifting deformation states and effects of the microstructure on the plastic deformation of crystalline materials

    DOE PAGES

    Beaudoin, A. J.; Shade, P. A.; Schuren, J. C.; ...

    2017-11-30

    The plastic deformation of crystalline materials is usually modeled as smoothly progressing in space and time, yet modern studies show intermittency in the deformation dynamics of single-crystals arising from avalanche behavior of dislocation ensembles under uniform applied loads. However, once the prism of the microstructure in polycrystalline materials disperses and redistributes the load on a grain-by-grain basis, additional length and time scales are involved. Thus, the question is open as to how deformation intermittency manifests for the nonuniform grain-scale internal driving forces interacting with the finer-scale dislocation ensemble behavior. In this work we track the evolution of elastic strain withinmore » individual grains of a creep-loaded titanium alloy, revealing widely varying internal strains that fluctuate over time. Here, the findings provide direct evidence of how flow intermittency proceeds for an aggregate of ~700 grains while showing the influences of multiscale ensemble interactions and opening new avenues for advancing plasticity modeling.« less

  3. q-bosons and the q-analogue quantized field

    NASA Technical Reports Server (NTRS)

    Nelson, Charles A.

    1995-01-01

    The q-analogue coherent states are used to identify physical signatures for the presence of a 1-analogue quantized radiation field in the q-CS classical limits where the absolute value of z is large. In this quantum-optics-like limit, the fractional uncertainties of most physical quantities (momentum, position, amplitude, phase) which characterize the quantum field are O(1). They only vanish as O(1/absolute value of z) when q = 1. However, for the number operator, N, and the N-Hamiltonian for a free q-boson gas, H(sub N) = h(omega)(N + 1/2), the fractional uncertainties do still approach zero. A signature for q-boson counting statistics is that (Delta N)(exp 2)/ (N) approaches 0 as the absolute value of z approaches infinity. Except for its O(1) fractional uncertainty, the q-generalization of the Hermitian phase operator of Pegg and Barnett, phi(sub q), still exhibits normal classical behavior. The standard number-phase uncertainty-relation, Delta(N) Delta phi(sub q) = 1/2, and the approximate commutation relation, (N, phi(sub q)) = i, still hold for the single-mode q-analogue quantized field. So, N and phi(sub q) are almost canonically conjugate operators in the q-CS classical limit. The q-analogue CS's minimize this uncertainty relation for moderate (absolute value of z)(exp 2).

  4. Mitochondrial Protein Interaction Mapping Identifies Regulators of Respiratory Chain Function.

    PubMed

    Floyd, Brendan J; Wilkerson, Emily M; Veling, Mike T; Minogue, Catie E; Xia, Chuanwu; Beebe, Emily T; Wrobel, Russell L; Cho, Holly; Kremer, Laura S; Alston, Charlotte L; Gromek, Katarzyna A; Dolan, Brendan K; Ulbrich, Arne; Stefely, Jonathan A; Bohl, Sarah L; Werner, Kelly M; Jochem, Adam; Westphall, Michael S; Rensvold, Jarred W; Taylor, Robert W; Prokisch, Holger; Kim, Jung-Ja P; Coon, Joshua J; Pagliarini, David J

    2016-08-18

    Mitochondria are essential for numerous cellular processes, yet hundreds of their proteins lack robust functional annotation. To reveal functions for these proteins (termed MXPs), we assessed condition-specific protein-protein interactions for 50 select MXPs using affinity enrichment mass spectrometry. Our data connect MXPs to diverse mitochondrial processes, including multiple aspects of respiratory chain function. Building upon these observations, we validated C17orf89 as a complex I (CI) assembly factor. Disruption of C17orf89 markedly reduced CI activity, and its depletion is found in an unresolved case of CI deficiency. We likewise discovered that LYRM5 interacts with and deflavinates the electron-transferring flavoprotein that shuttles electrons to coenzyme Q (CoQ). Finally, we identified a dynamic human CoQ biosynthetic complex involving multiple MXPs whose topology we map using purified components. Collectively, our data lend mechanistic insight into respiratory chain-related activities and prioritize hundreds of additional interactions for further exploration of mitochondrial protein function. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Long-term deformation in the Mississippi Embayment (Central USA) imaged by high-resolution seismic reflection data

    NASA Astrophysics Data System (ADS)

    Hao, Yanjun

    Large magnitude intraplate earthquakes are a puzzling exception to plate tectonic theory. Unlike earthquakes occurring along plate boundaries, large continental intraplate earthquakes are a rare occurrence and are often distributed over broad regions. Albeit rare, their occurrence can cause widespread damage because of the low attenuation of seismic energy typical of plate interiors [Hanks and Johnston, 1992]. In the Central USA, most of the recent tectonic intraplate seismicity concentrates along the New Madrid seismic zone (NMSZ), where three large (M>7) earthquakes occurred between 1811--1812 [Johnston and Schweig, 1996]. Here the low surface deformation rates [Calais and Stein, 2009] conflict with the elevated instrument-recorded seismicity and the occurrence of historical and prehistorical large magnitude events [Tuttle et al., 2002]. One of the promising hypotheses proposed to reconcile this apparent contradiction is that intraplate earthquakes may be temporally clustered, episodic or cyclic, and may migrate spatially at the regional or continental scale across multiple faults or fault systems. In order to test this hypothesis and to understand how and where the long-term deformation is accommodated in the Mississippi Embayment, Central USA, I utilize high-resolution seismic reflection data acquired by the Mississippi River Project [Magnani and McIntosh, 2009] and by a 2010 survey across the Meeman-Shelby fault [Magnani, 2011; Hao et al., 2013]. To identify the location of Quaternary deformation and characterize deformation history, I acquired, processed, and interpreted the seismic reflection data and integrated them with other available geophysical (e.g. seismicity, crustal and lithospheric models) and geological (e.g. magmatism and borehole) data. For my research, I focus on three regions in the Mississippi Embayment: 1) the Meeman-Shelby fault west of Memphis, Tennessee, 2) the eastern Reelfoot rift margin north of Memphis, Tennessee, and 3) the area in

  6. Heavy-Quark Symmetry Implies Stable Heavy Tetraquark Mesons Q_{i}Q_{j}q[over ¯]_{k}q[over ¯]_{l}.

    PubMed

    Eichten, Estia J; Quigg, Chris

    2017-11-17

    For very heavy quarks Q, relations derived from heavy-quark symmetry predict the existence of novel narrow doubly heavy tetraquark states of the form Q_{i}Q_{j}q[over ¯]_{k}q[over ¯]_{l} (subscripts label flavors), where q designates a light quark. By evaluating finite-mass corrections, we predict that double-beauty states composed of bbu[over ¯]d[over ¯], bbu[over ¯]s[over ¯], and bbd[over ¯]s[over ¯] will be stable against strong decays, whereas the double-charm states ccq[over ¯]_{k}q[over ¯]_{l}, mixed beauty+charm states bcq[over ¯]_{k}q[over ¯]_{l}, and heavier bbq[over ¯]_{k}q[over ¯]_{l} states will dissociate into pairs of heavy-light mesons. Observation of a new double-beauty state through its weak decays would establish the existence of tetraquarks and illuminate the role of heavy color-antitriplet diquarks as hadron constituents.

  7. Theory of the deformation of aligned polyethylene.

    PubMed

    Hammad, A; Swinburne, T D; Hasan, H; Del Rosso, S; Iannucci, L; Sutton, A P

    2015-08-08

    Solitons are proposed as the agents of plastic and viscoelastic deformation in aligned polyethylene. Interactions between straight, parallel molecules are mapped rigorously onto the Frenkel-Kontorova model. It is shown that these molecular interactions distribute an applied load between molecules, with a characteristic transfer length equal to the soliton width. Load transfer leads to the introduction of tensile and compressive solitons at the chain ends to mark the onset of plasticity at a well-defined yield stress, which is much less than the theoretical pull-out stress. Interaction energies between solitons and an equation of motion for solitons are derived. The equation of motion is based on Langevin dynamics and the fluctuation-dissipation theorem and it leads to the rigorous definition of an effective mass for solitons. It forms the basis of a soliton dynamics in direct analogy to dislocation dynamics. Close parallels are drawn between solitons in aligned polymers and dislocations in crystals, including the configurational force on a soliton. The origins of the strain rate and temperature dependencies of the viscoelastic behaviour are discussed in terms of the formation energy of solitons. A failure mechanism is proposed involving soliton condensation under a tensile load.

  8. The interpretation of crustal dynamics data in terms of plate motions and regional deformation near plate boundaries

    NASA Technical Reports Server (NTRS)

    Soloman, Sean C.

    1991-01-01

    The focus of the research was in two broad areas: (1) the nature and dynamics of time dependent deformation and stress along major seismic zones; and (2) the nature of long wavelength oceanic geoid anomalies in terms of lateral variations in upper mantle temperature and composition. The principle findings of the research are described in the accompanying appendices. The first two and the fourth appendices are reprints of papers recently submitted for publication, and the third is the abstract of a recently completed thesis supported by this project.

  9. A Comparison of Dyadic Interactions and Coping with Still-Face in Healthy Pre-Term and Full-Term Infants

    ERIC Educational Resources Information Center

    Montirosso, Rosario; Borgatti, Renato; Trojan, Sabina; Zanini, Rinaldo; Tronick, Ed

    2010-01-01

    Pre-term birth has a significant impact on infants' social and emotional competence, however, little is known about regulatory processes in pre-term mother-infant dyads during normal or stressful interactions. The primary goals of this study were to investigate the differences in infant and caregiver interactive behaviour and dyadic coordination…

  10. Effect of interaction range on phonon relaxation in Fermi-Pasta-Ulam beta chain.

    PubMed

    Santhosh, G; Kumar, Deepak

    2007-08-01

    We study the effect of increasing the range of interactions on phonon relaxation in a chain of atoms with quartic anharmonicity. The study is motivated by recent numerical studies, showing that the value of the exponent alpha characterizing the divergence of conductivity with system size apparently depends on the presence of second neighbor couplings. We perform a quantum calculation of the wave-vector (q) dependent relaxation rate gamma(q) in the second order perturbation theory. The nonanalytic dependence of gamma(q) arises due to small-q singularity of the collision integral. We find that gamma(q) proportional to Aq(5/3) + Bq2. This gives rise to an asymptotic value alpha = 0.4, but the q2 terms lead to a higher apparent value of alpha at small sizes of the chain.

  11. Monogamy relation of multi-qubit systems for squared Tsallis-q entanglement

    PubMed Central

    Yuan, Guang-Ming; Song, Wei; Yang, Ming; Li, Da-Chuang; Zhao, Jun-Long; Cao, Zhuo-Liang

    2016-01-01

    Tsallis-q entanglement is a bipartite entanglement measure which is the generalization of entanglement of formation for q tending to 1. We first expand the range of q for the analytic formula of Tsallis-q entanglement. For , we prove the monogamy relation in terms of the squared Tsallis-q entanglement for an arbitrary multi-qubit systems. It is shown that the multipartite entanglement indicator based on squared Tsallis-q entanglement still works well even when the indicator based on the squared concurrence loses its efficacy. We also show that the μ-th power of Tsallis-q entanglement satisfies the monogamy or polygamy inequalities for any three-qubit state. PMID:27346605

  12. Monogamy relation of multi-qubit systems for squared Tsallis-q entanglement

    NASA Astrophysics Data System (ADS)

    Yuan, Guang-Ming; Song, Wei; Yang, Ming; Li, Da-Chuang; Zhao, Jun-Long; Cao, Zhuo-Liang

    2016-06-01

    Tsallis-q entanglement is a bipartite entanglement measure which is the generalization of entanglement of formation for q tending to 1. We first expand the range of q for the analytic formula of Tsallis-q entanglement. For , we prove the monogamy relation in terms of the squared Tsallis-q entanglement for an arbitrary multi-qubit systems. It is shown that the multipartite entanglement indicator based on squared Tsallis-q entanglement still works well even when the indicator based on the squared concurrence loses its efficacy. We also show that the μ-th power of Tsallis-q entanglement satisfies the monogamy or polygamy inequalities for any three-qubit state.

  13. Monogamy relation of multi-qubit systems for squared Tsallis-q entanglement.

    PubMed

    Yuan, Guang-Ming; Song, Wei; Yang, Ming; Li, Da-Chuang; Zhao, Jun-Long; Cao, Zhuo-Liang

    2016-06-27

    Tsallis-q entanglement is a bipartite entanglement measure which is the generalization of entanglement of formation for q tending to 1. We first expand the range of q for the analytic formula of Tsallis-q entanglement. For , we prove the monogamy relation in terms of the squared Tsallis-q entanglement for an arbitrary multi-qubit systems. It is shown that the multipartite entanglement indicator based on squared Tsallis-q entanglement still works well even when the indicator based on the squared concurrence loses its efficacy. We also show that the μ-th power of Tsallis-q entanglement satisfies the monogamy or polygamy inequalities for any three-qubit state.

  14. Postsynaptic N-type or P/Q-type calcium channels mediate long-term potentiation by group I metabotropic glutamate receptors in the trigeminal oralis.

    PubMed

    Weon, Haein; Kim, Tae Wan; Youn, Dong-Ho

    2017-11-01

    Both N-type and P/Q-type voltage-gated Ca 2+ channels (VGCCs) are involved in the induction of long-term potentiation (LTP), the long-lasting increase of synaptic strength, in the central nervous system. To provide further information on the roles of N-type and P/Q-type VGCCs in the induction of LTP at excitatory synapses of trigeminal primary afferents in the spinal trigeminal subnucleus oralis (Vo), we investigated whether they contribute to the induction of LTP by activation of group I metabotropic glutamate receptors (mGluRs). (S)-3,5-Dihydroxyphenylglycine (DHPG; 10μM for 5min), the group I mGluR agonist, was used to induce LTP of excitatory postsynaptic currents that were evoked in the Vo neurons by stimulating the trigeminal track. Weak blockade of the N-type or P/Q-type VGCCs by ω-conotoxin GVIA or ω-agatoxin IVA, respectively, which inhibited only 20-40% of Ca 2+ currents recorded in isolated trigeminal ganglion neurons but had no effect on the basal excitatory synaptic transmission, completely blocked the induction of LTP. In contrast, stronger blockade of the channels, which inhibited >50% of Ca 2+ currents and about 30% of basal synaptic transmission, resulted in the development of long-term depression (LTD), the long-lasting decrease of synaptic strength. Interestingly, the postsynaptic mechanism of DHPG-induced LTP, which was determined by paired-pulse ratio, disappeared when LTP was blocked, or LTD occurred, while a presynaptic mechanism still remained. Our data suggest that postsynaptic N-type and P/Q-type VGCCs mediate the DHPG-induced LTP at the trigeminal afferent synapses in the Vo. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. A combination of experimental and finite element analyses of needle-tissue interaction to compute the stresses and deformations during injection at different angles.

    PubMed

    Halabian, Mahdi; Beigzadeh, Borhan; Karimi, Alireza; Shirazi, Hadi Asgharzadeh; Shaali, Mohammad Hasan

    2016-12-01

    One of the main clinical applications of the needles is its practical usage in the femoral vein catheterization. Annually more than two million peoples in the United States are exposed to femoral vein catheterization. How to use the input needles into the femoral vein has a key role in the sense of pain in post-injection and possible injuries, such as tissue damage and bleeding. It has been shown that there might be a correlation between the stresses and deformations due to femoral injection to the tissue and the sense of pain and, consequently, injuries caused by needles. In this study, the stresses and deformations induced by the needle to the femoral tissue were experimentally and numerically investigated in response to an input needle at four different angles, i.e., 30°, 45°, 60°, and 90°, via finite element method. In addition, a set of experimental injections at different angles were carried out to compare the numerical results with that of the experimental ones, namely pain score. The results revealed that by increasing the angle of injection up to 60°, the strain at the interaction site of the needle-tissue is increased accordingly while a significant falling is observed at the angle of 90°. In contrast, the stress due to injection was decreased at the region of needle-tissue interaction with showing the lowest one at the angle of 90°. Experimental results were also well confirmed the numerical observations since the lowest pain score was seen at the angle of 90°. The results suggest that the most effective angle of injection would be 90° due to a lower amount of stresses and deformations compared to the other angles of injection. These findings may have implications not only for understating the stresses and deformations induced during injection around the needle-tissue interaction, but also to give an outlook to the doctors to implement the most suitable angle of injection in order to reduce the pain as well as post injury of the patients.

  16. How to Combine ChIP with qPCR.

    PubMed

    Asp, Patrik

    2018-01-01

    Chromatin immunoprecipitation (ChIP) coupled with quantitative PCR (qPCR) has in the last 15 years become a basic mainstream tool in genomic research. Numerous commercially available ChIP kits, qPCR kits, and real-time PCR systems allow for quick and easy analysis of virtually anything chromatin-related as long as there is an available antibody. However, the highly accurate quantitative dimension added by using qPCR to analyze ChIP samples significantly raises the bar in terms of experimental accuracy, appropriate controls, data analysis, and data presentation. This chapter will address these potential pitfalls by providing protocols and procedures that address the difficulties inherent in ChIP-qPCR assays.

  17. Tensor products of U{sub q}{sup Prime }sl-caret(2)-modules and the big q{sup 2}-Jacobi function transform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gade, R. M.

    2013-01-15

    Four tensor products of evaluation modules of the quantum affine algebra U{sub q}{sup Prime }sl-caret(2) obtained from the negative and positive series, the complementary and the strange series representations are investigated. Linear operators R(z) satisfying the intertwining property on finite linear combinations of the canonical basis elements of the tensor products are described in terms of two sets of infinite sums {l_brace}{tau}{sup (r,t)}{r_brace}{sub r,t Element-Of Z{sub {>=}{sub 0}}} and {l_brace}{tau}{sup (r,t)}{r_brace}{sub r,t Element-Of Z{sub {>=}{sub 0}}} involving big q{sup 2}-Jacobi functions or related nonterminating basic hypergeometric series. Inhomogeneous recurrence relations can be derived for both sets. Evaluations of the simplestmore » sums provide the corresponding initial conditions. For the first set of sums the relations entail a big q{sup 2}-Jacobi function transform pair. An integral decomposition is obtained for the sum {tau}{sup (r,t)}. A partial description of the relation between the decompositions of the tensor products with respect to U{sub q}sl(2) or with respect to its complement in U{sub q}{sup Prime }sl-caret(2) can be formulated in terms of Askey-Wilson function transforms. For a particular combination of two tensor products, the occurrence of proper U{sub q}{sup Prime }sl-caret(2)-submodules is discussed.« less

  18. Length and sequence dependence in the association of Huntingtin protein with lipid membranes

    NASA Astrophysics Data System (ADS)

    Jawahery, Sudi; Nagarajan, Anu; Matysiak, Silvina

    2013-03-01

    There is a fundamental gap in our understanding of how aggregates of mutant Huntingtin protein (htt) with overextended polyglutamine (polyQ) sequences gain the toxic properties that cause Huntington's disease (HD). Experimental studies have shown that the most important step associated with toxicity is the binding of mutant htt aggregates to lipid membranes. Studies have also shown that flanking amino acid sequences around the polyQ sequence directly affect interactions with the lipid bilayer, and that polyQ sequences of greater than 35 glutamine repeats in htt are a characteristic of HD. The key steps that determine how flanking sequences and polyQ length affect the structure of lipid bilayers remain unknown. In this study, we use atomistic molecular dynamics simulations to study the interactions between lipid membranes of varying compositions and polyQ peptides of varying lengths and flanking sequences. We find that overextended polyQ interactions do cause deformation in model membranes, and that the flanking sequences do play a role in intensifying this deformation by altering the shape of the affected regions.

  19. Disappearing Q operator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, H. F.; Rivers, R. J.

    In the Schroedinger formulation of non-Hermitian quantum theories a positive-definite metric operator {eta}{identical_to}e{sup -Q} must be introduced in order to ensure their probabilistic interpretation. This operator also gives an equivalent Hermitian theory, by means of a similarity transformation. If, however, quantum mechanics is formulated in terms of functional integrals, we show that the Q operator makes only a subliminal appearance and is not needed for the calculation of expectation values. Instead, the relation to the Hermitian theory is encoded via the external source j(t). These points are illustrated and amplified for two non-Hermitian quantum theories: the Swanson model, a non-Hermitianmore » transform of the simple harmonic oscillator, and the wrong-sign quartic oscillator, which has been shown to be equivalent to a conventional asymmetric quartic oscillator.« less

  20. On the universality of I-Love-Q relations in magnetized neutron stars

    NASA Astrophysics Data System (ADS)

    Haskell, B.; Ciolfi, R.; Pannarale, F.; Rezzolla, L.

    2014-02-01

    Recently, general relations among the quadrupole moment (Q), the moment of inertia (I) and the tidal deformability (Love number) of a neutron star were shown to exist. They are nearly independent of the nuclear matter equation of state and would be of great aid in extracting parameters from observed gravitational waves and in testing general relativity. These relations, however, do not account for strong magnetic fields. We consider this problem by studying the effect of a strong magnetic field on slowly rotating relativistic neutron stars and show that, for simple magnetic field configurations that are purely poloidal or purely toroidal, the relation between Q and I is again nearly universal. However, different magnetic field geometries lead to different I-Q relations, and, in the case of a more realistic twisted-torus magnetic field configuration, the relation depends significantly on the equation of state, losing its universality. I-Love-Q relations must thus be used with very great care, since universality is lost for stars with long spin periods, i.e. P ≳ 10 s, and strong magnetic fields, i.e. B ≳ 1012 G.

  1. Familial partial trisomy 6q syndromes resulting from inherited ins (5;6) (q33;q15q27).

    PubMed

    Chen, H; Tyrkus, M; Cohen, F; Woolley, P V; Mayeda, K; Bhogaonker, A; Espirtu, C E; Simpson, W

    1976-06-01

    Two cases are reported of familial partial trisomy 6q syndrome due to segregation of ins(5;6) (q33;q15q27) in three generations. The common clinical features include growth and mental retardation, feeding difficulty during infancy, microcephaly with downward slanting palpebral fissures, flattened nasal bridge with anteverted and flared nares, long philtrum, high arched palate, partially opened and protruding mouth with receding chin, deep transverse creases of the ears, three creases on the 4th fingers, clinodactyly of the 5th fingers with a single crease, and other dermatoglyphic findings. These characteristic features of two patients appear to make partial trisomy 6q a clinically recognizable syndrome.

  2. Integrated monitoring system for ground deformation hazard assessment in Telese Terme (Benevento province, Italy)

    NASA Astrophysics Data System (ADS)

    Tessitore, S.; Castiello, G.; Fedi, M.; Florio, G.; Fuschini, V.; Ramondini, M.; Calcaterra, D.

    2012-04-01

    TeleseTerme plain is characterized by a very articulated stratigraphy (levels of travertine, fluvial-marshy and pyroclastic deposits), that allows the occurrence of underground water circulation with overlapping aquifers. These aquifers are locally in pressure and, because of chemical characteristics and physical properties of the water, they may activate processes of accelerated travertine's corrosion; the consequence is the formation of cavity along the ground water's preferential flow paths, and the activation of subsidence and sinkholes phenomena. In particular test area includes two zones, where in 2002 and 2006 occurred two sinkholes events, classified as "piping sinkholes". The hazard evaluation was carried out trhought an integrated monitoring system, based on "traditional" techniques conduced "in situ", as geological-geomorphological and geophysical (microgravity) surveys, integrated by the most innovative techniques of Remote sensing interferometry(Advanced DInSAR Interferometry Techniques). The last allow to evaluate the ground deformation, characterized by a predominantvertical component (typical deformation of sinkholes and subsidence phenomena), and are well suited to operate a continuous and long monitoring ofvery extended areas. Through an initial analysis of the Permanent Scatterers available in the Telese municipality, we found the envelopes of the areal that contain PS with negative and positive mean velocities; these velocities showed the presence of a possible phenomenon of subsidence detected by ERS and ENVISAT satellites. Through interferometric processing of ENVISAT images, the soil deformations of 2002-2010 year sare evaluated and compared with the data obtainedby survey took "in situ" during the same period. The knowledge of the deformation's evolution of the area made it possible to organize a more focused future monitoring through traditional techniques of relief (with the help of geophysical methodologies). Since the zone affected by

  3. The combination of high Q factor and chirality in twin cavities and microcavity chain

    PubMed Central

    Song, Qinghai; Zhang, Nan; Zhai, Huilin; Liu, Shuai; Gu, Zhiyuan; Wang, Kaiyang; Sun, Shang; Chen, Zhiwei; Li, Meng; Xiao, Shumin

    2014-01-01

    Chirality in microcavities has recently shown its bright future in optical sensing and microsized coherent light sources. The key parameters for such applications are the high quality (Q) factor and large chirality. However, the previous reported chiral resonances are either low Q modes or require very special cavity designs. Here we demonstrate a novel, robust, and general mechanism to obtain the chirality in circular cavity. By placing a circular cavity and a spiral cavity in proximity, we show that ultra-high Q factor, large chirality, and unidirectional output can be obtained simultaneously. The highest Q factors of the non-orthogonal mode pairs are almost the same as the ones in circular cavity. And the co-propagating directions of the non-orthogonal mode pairs can be reversed by tuning the mode coupling. This new mechanism for the combination of high Q factor and large chirality is found to be very robust to cavity size, refractive index, and the shape deformation, showing very nice fabrication tolerance. And it can be further extended to microcavity chain and microcavity plane. We believe that our research will shed light on the practical applications of chirality and microcavities. PMID:25262881

  4. Deformations of vector-scalar models

    NASA Astrophysics Data System (ADS)

    Barnich, Glenn; Boulanger, Nicolas; Henneaux, Marc; Julia, Bernard; Lekeu, Victor; Ranjbar, Arash

    2018-02-01

    Abelian vector fields non-minimally coupled to uncharged scalar fields arise in many contexts. We investigate here through algebraic methods their consistent deformations ("gaugings"), i.e., the deformations that preserve the number (but not necessarily the form or the algebra) of the gauge symmetries. Infinitesimal consistent deformations are given by the BRST cohomology classes at ghost number zero. We parametrize explicitly these classes in terms of various types of global symmetries and corresponding Noether currents through the characteristic cohomology related to antifields and equations of motion. The analysis applies to all ghost numbers and not just ghost number zero. We also provide a systematic discussion of the linear and quadratic constraints on these parameters that follow from higher-order consistency. Our work is relevant to the gaugings of extended supergravities.

  5. Query2Question: Translating Visualization Interaction into Natural Language.

    PubMed

    Nafari, Maryam; Weaver, Chris

    2015-06-01

    Richly interactive visualization tools are increasingly popular for data exploration and analysis in a wide variety of domains. Existing systems and techniques for recording provenance of interaction focus either on comprehensive automated recording of low-level interaction events or on idiosyncratic manual transcription of high-level analysis activities. In this paper, we present the architecture and translation design of a query-to-question (Q2Q) system that automatically records user interactions and presents them semantically using natural language (written English). Q2Q takes advantage of domain knowledge and uses natural language generation (NLG) techniques to translate and transcribe a progression of interactive visualization states into a visual log of styled text that complements and effectively extends the functionality of visualization tools. We present Q2Q as a means to support a cross-examination process in which questions rather than interactions are the focus of analytic reasoning and action. We describe the architecture and implementation of the Q2Q system, discuss key design factors and variations that effect question generation, and present several visualizations that incorporate Q2Q for analysis in a variety of knowledge domains.

  6. Three-dimensional deformation of orthodontic brackets

    PubMed Central

    Melenka, Garrett W; Nobes, David S; Major, Paul W

    2013-01-01

    Braces are used by orthodontists to correct the misalignment of teeth in the mouth. Archwire rotation is a particular procedure used to correct tooth inclination. Wire rotation can result in deformation to the orthodontic brackets, and an orthodontic torque simulator has been designed to examine this wire–bracket interaction. An optical technique has been employed to measure the deformation due to size and geometric constraints of the orthodontic brackets. Images of orthodontic brackets are collected using a stereo microscope and two charge-coupled device cameras, and deformation of orthodontic brackets is measured using a three-dimensional digital image correlation technique. The three-dimensional deformation of orthodontic brackets will be evaluated. The repeatability of the three-dimensional digital image correlation measurement method was evaluated by performing 30 archwire rotation tests using the same bracket and archwire. Finally, five Damon 3MX and five In-Ovation R self-ligating brackets will be compared using this technique to demonstrate the effect of archwire rotation on bracket design. PMID:23762201

  7. Three-dimensional deformation of orthodontic brackets.

    PubMed

    Melenka, Garrett W; Nobes, David S; Major, Paul W; Carey, Jason P

    2013-01-01

    Braces are used by orthodontists to correct the misalignment of teeth in the mouth. Archwire rotation is a particular procedure used to correct tooth inclination. Wire rotation can result in deformation to the orthodontic brackets, and an orthodontic torque simulator has been designed to examine this wire-bracket interaction. An optical technique has been employed to measure the deformation due to size and geometric constraints of the orthodontic brackets. Images of orthodontic brackets are collected using a stereo microscope and two charge-coupled device cameras, and deformation of orthodontic brackets is measured using a three-dimensional digital image correlation technique. The three-dimensional deformation of orthodontic brackets will be evaluated. The repeatability of the three-dimensional digital image correlation measurement method was evaluated by performing 30 archwire rotation tests using the same bracket and archwire. Finally, five Damon 3MX and five In-Ovation R self-ligating brackets will be compared using this technique to demonstrate the effect of archwire rotation on bracket design.

  8. Fluid-Driven Deformation of a Soft Granular Material

    NASA Astrophysics Data System (ADS)

    MacMinn, Christopher W.; Dufresne, Eric R.; Wettlaufer, John S.

    2015-01-01

    Compressing a porous, fluid-filled material drives the interstitial fluid out of the pore space, as when squeezing water out of a kitchen sponge. Inversely, injecting fluid into a porous material can deform the solid structure, as when fracturing a shale for natural gas recovery. These poromechanical interactions play an important role in geological and biological systems across a wide range of scales, from the propagation of magma through Earth's mantle to the transport of fluid through living cells and tissues. The theory of poroelasticity has been largely successful in modeling poromechanical behavior in relatively simple systems, but this continuum theory is fundamentally limited by our understanding of the pore-scale interactions between the fluid and the solid, and these problems are notoriously difficult to study in a laboratory setting. Here, we present a high-resolution measurement of injection-driven poromechanical deformation in a system with granular microsctructure: We inject fluid into a dense, confined monolayer of soft particles and use particle tracking to reveal the dynamics of the multiscale deformation field. We find that a continuum model based on poroelasticity theory captures certain macroscopic features of the deformation, but the particle-scale deformation field exhibits dramatic departures from smooth, continuum behavior. We observe particle-scale rearrangement and hysteresis, as well as petal-like mesoscale structures that are connected to material failure through spiral shear banding.

  9. Lifting q-difference operators for Askey-Wilson polynomials and their weight function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atakishiyeva, M. K.; Atakishiyev, N. M., E-mail: natig_atakishiyev@hotmail.com

    2011-06-15

    We determine an explicit form of a q-difference operator that transforms the continuous q-Hermite polynomials H{sub n}(x | q) of Rogers into the Askey-Wilson polynomials p{sub n}(x; a, b, c, d | q) on the top level in the Askey q-scheme. This operator represents a special convolution-type product of four one-parameter q-difference operators of the form {epsilon}{sub q}(c{sub q}D{sub q}) (where c{sub q} are some constants), defined as Exton's q-exponential function {epsilon}{sub q}(z) in terms of the Askey-Wilson divided q-difference operator D{sub q}. We also determine another q-difference operator that lifts the orthogonality weight function for the continuous q-Hermite polynomialsH{submore » n}(x | q) up to the weight function, associated with the Askey-Wilson polynomials p{sub n}(x; a, b, c, d | q).« less

  10. An Analysis of Bubble Deformation by a Sphere Relevant to the Measurements of Bubble-Particle Contact Interaction and Detachment Forces.

    PubMed

    Sherman, H; Nguyen, A V; Bruckard, W

    2016-11-22

    Atomic force microscopy makes it possible to measure the interacting forces between individual colloidal particles and air bubbles, which can provide a measure of the particle hydrophobicity. To indicate the level of hydrophobicity of the particle, the contact angle can be calculated, assuming that no interfacial deformation occurs with the bubble retaining a spherical profile. Our experimental results obtained using a modified sphere tensiometry apparatus to detach submillimeter spherical particles show that deformation of the bubble interface does occur during particle detachment. We also develop a theoretical model to describe the equilibrium shape of the bubble meniscus at any given particle position, based on the minimization of the free energy of the system. The developed model allows us to analyze high-speed video captured during detachment. In the system model deformation of the bubble profile is accounted for by the incorporation of a Lagrange multiplier into both the Young-Laplace equation and the force balance. The solution of the bubble profile matched to the high-speed video allows us to accurately calculate the contact angle and determine the total force balance as a function of the contact point of the bubble on the particle surface.

  11. Comparative study on different types of segmented micro deformable mirrors

    NASA Astrophysics Data System (ADS)

    Qiao, Dayong; Yuan, Weizheng; Li, Kaicheng; Li, Xiaoying; Rao, Fubo

    2006-02-01

    In an adaptive-optical (AO) system, the wavefront of optical beam can be corrected with deformable mirror (DM). Based on MicroElectroMechanical System (MEMS) technology, segmented micro deformable mirrors can be built with denser actuator spacing than continuous face-sheet designs and have been widely researched. But the influence of the segment structure has not been thoroughly discussed until now. In this paper, the design, performance and fabrication of several micromachined, segmented deformable mirror for AO were investigated. The wavefront distorted by atmospheric turbulence was simulated in the frame of Kolmogorov turbulence model. Position function was used to describe the surfaces of the micro deformable mirrors in working state. The performances of deformable mirrors featuring square, brick, hexagonal and ring segment structures were evaluated in criteria of phase fitting error, the Strehl ratio after wavefront correction and the design considerations. Then the micro fabrication process and mask layout were designed and the fabrication of micro deformable mirrors was implemented. The results show that the micro deformable mirror with ring segments performs the best, but it is very difficult in terms of layout design. The micro deformable mirrors with square and brick segments are easy to design, but their performances are not good. The micro deformable mirror with hexagonal segments has not only good performance in terms of phase fitting error, the Strehl ratio and actuation voltage, but also no overwhelming difficulty in layout design.

  12. Restriction of the Patau syndrome to duplication of 13q22{yields}q.32 and possible role of interphase nuclear structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helali, A.N.; Jafolla, A.K.; Oumsiych, M.B.

    1994-09-01

    A 10-year-old white male presented with mild microcephaly, slight growth and psychomotor retardation, soft fleshy ears, and normal facial features except for thin lips. No other significant anomalies were reported except for tethered cord discovered at age 8 years. The karyotype was found to be 46,XY,der(18)t(13;18)(q32;p11.32)pat. The mild phenotype appears to be primarily due to the duplication of 13q32{yields}qter. None of the cardinal features of trisomy 13 are found in cases of duplication of bands 13q22 to qter. This case shows that Patau syndrome phenotype does not originate by duplication of 13q32{yields}qter and may thus be restricted to 13q22 tomore » 13q32. The variability in phenotypes points to an alternative explanation to the classical one of additive and interactive gene effects. This model involves effects of changes in chromosome position in the interphase nucleus on gene expression.« less

  13. I-Love-Q relations: from compact stars to black holes

    NASA Astrophysics Data System (ADS)

    Yagi, Kent; Yunes, Nicolás

    2016-05-01

    The relations between most observables associated with a compact star, such as the mass and radius of a neutron star or a quark star, typically depend strongly on their unknown internal structure. The recently discovered I-Love-Q relations (between the moment of inertia, the tidal deformability and the quadrupole moment) are however approximately insensitive to this structure. These relations become exact for stationary black holes (BHs) in General Relativity as shown by the no-hair theorems, mainly because BHs are vacuum solutions with event horizons. In this paper, we take the first steps toward studying how the approximate I-Love-Q relations become exact in the limit as compact stars become BHs. To do so, we consider a toy model for compact stars, i.e. incompressible stars with anisotropic pressure, which allows us to model an equilibrium sequence of stars with ever increasing compactness that approaches the BH limit arbitrarily closely. We numerically construct such a sequence in the slow-rotation and in the small-tide approximations by extending the Hartle-Thorne formalism, and then extract the I-Love-Q trio from the asymptotic behavior of the metric tensor at spatial infinity. We find that the I-Love-Q relations approach the BH limit in a nontrivial way, with the quadrupole moment and the tidal deformability changing sign as the compactness and the amount of anisotropy are increased. Through a generalization of Maclaurin spheroids to anisotropic stars, we show that the multipole moments also change sign in the Newtonian limit as the amount of anisotropy is increased because the star becomes prolate. We also prove analytically that the stellar moment of inertia reaches the BH limit as the compactness reaches a critical BH value in the strongly anisotropic limit. Modeling the BH limit through a sequence of anisotropic stars, however, can fail when considering other theories of gravity. We calculate the scalar dipole charge and the moment of inertia in a

  14. Complementation of UPLC-Q-TOF-MS and CESI-Q-TOF-MS on identification and determination of peptides from bovine lactoferrin.

    PubMed

    Chen, Hui; Shi, Pujie; Fan, Fengjiao; Tu, Maolin; Xu, Zhe; Xu, Xianbing; Du, Ming

    2018-05-01

    Digested peptides of bovine lactoferrin as the functional hydrolysates were identified by the Q-TOF tandem mass spectrometry (Q-TOF-MS) coupled with ultra performance liquid chromatograph (UPLC) and capillary electrophoresis (CE). The former (UPLC-Q-TOF-MS) identified 106 peptides while the latter (CE-Q-TOF-MS) characterized 102 peptides after comparison of peptides in terms of their molecular weight (MW), mass-to-charge ratio (m/z), and isoelectric point (pI). In addition, the hydrophilic value, net charge (q), and molecular radius (r) of the peptides were calculated, and a correlation analysis of the two methods was conducted between the retention time (RT) and r/q ratio of the peptides in order to elucidate the different separation principles of the unique peptides. It was shown that the peptides with larger hydrophilic value were beneficial to be separated by UPLC, while the peptides with larger r/q ratio were beneficial to be separated by CE. Combination of the above mentioned two complementary techniques have confidently improved the sequence coverage of lactoferrin and enhanced the identification of peptides, which makes it up to 65.8% in this study. Copyright © 2018. Published by Elsevier B.V.

  15. A common base method for analysis of qPCR data and the application of simple blocking in qPCR experiments.

    PubMed

    Ganger, Michael T; Dietz, Geoffrey D; Ewing, Sarah J

    2017-12-01

    qPCR has established itself as the technique of choice for the quantification of gene expression. Procedures for conducting qPCR have received significant attention; however, more rigorous approaches to the statistical analysis of qPCR data are needed. Here we develop a mathematical model, termed the Common Base Method, for analysis of qPCR data based on threshold cycle values (C q ) and efficiencies of reactions (E). The Common Base Method keeps all calculations in the logscale as long as possible by working with log 10 (E) ∙ C q , which we call the efficiency-weighted C q value; subsequent statistical analyses are then applied in the logscale. We show how efficiency-weighted C q values may be analyzed using a simple paired or unpaired experimental design and develop blocking methods to help reduce unexplained variation. The Common Base Method has several advantages. It allows for the incorporation of well-specific efficiencies and multiple reference genes. The method does not necessitate the pairing of samples that must be performed using traditional analysis methods in order to calculate relative expression ratios. Our method is also simple enough to be implemented in any spreadsheet or statistical software without additional scripts or proprietary components.

  16. 3D Coda Attenuation Tomography of Acoustic Emission Data from Laboratory Samples as a tool for imaging pre-failure deformation mechanisms

    NASA Astrophysics Data System (ADS)

    Vinciguerra, S.; King, T. I.; Benson, P. M.; De Siena, L.

    2017-12-01

    In recent years, 3D and 4D seismic tomography have unraveled medium changes during the seismic cycle or before eruptive events. As our resolving power increases, however, complex structures increasingly affect images. Being able to interpret and understand these features requires a multi-discipline approach combining different methods, each sensitive to particular properties of the sub-surface. Rock deformation laboratory experiments can relate seismic properties to the evolving medium quantitatively. Here, an array of 1 MHz Piezo-Electric Transducers has recorded high-quality low-noise acoustic emission (AE) data during triaxial compressional experiments. Samples of Carrara Marble, Darley Dale Sandstone and Westerly Granite were deformed in saturated conditions representative of a depth of about 1 km until brittle failure. Using a time window around sample failure, AE data were filtered between 5 and 75 KHz and processed using a 3D P-coda attenuation-tomography method. Ratios of P-direct to P-coda energies calculated for each source-receiver path were inverted using the coda normalisation method for values of Q (P-wave quality factor). The results show Q-variation with respect to an average Q. Q is a combination of the effects of scattering attenuation (Qs) and intrinsic attenuation Q (Qi), which can be correlated to the sample structure. Qs primary controls energy dissipation in the presence at acoustic impedance (AI) surfaces and at fracture tips, independently of rock type, while pore fluid effects dissipate energy (Qi). Damaged zones appear as high-Q and low-Q anomalies in unsaturated and saturated samples, respectively. We have attributed frequency-dependent high-Q to resonance in the presence of AI surfaces. Low Q areas appear behind AI surfaces and are interpreted as energy shadows. These shadows can affect attenuation tomography imaging at field scale.

  17. Deformation Theory and Physics Model Building

    NASA Astrophysics Data System (ADS)

    Sternheimer, Daniel

    2006-08-01

    The mathematical theory of deformations has proved to be a powerful tool in modeling physical reality. We start with a short historical and philosophical review of the context and concentrate this rapid presentation on a few interrelated directions where deformation theory is essential in bringing a new framework - which has then to be developed using adapted tools, some of which come from the deformation aspect. Minkowskian space-time can be deformed into Anti de Sitter, where massless particles become composite (also dynamically): this opens new perspectives in particle physics, at least at the electroweak level, including prediction of new mesons. Nonlinear group representations and covariant field equations, coming from interactions, can be viewed as some deformation of their linear (free) part: recognizing this fact can provide a good framework for treating problems in this area, in particular global solutions. Last but not least, (algebras associated with) classical mechanics (and field theory) on a Poisson phase space can be deformed to (algebras associated with) quantum mechanics (and quantum field theory). That is now a frontier domain in mathematics and theoretical physics called deformation quantization, with multiple ramifications, avatars and connections in both mathematics and physics. These include representation theory, quantum groups (when considering Hopf algebras instead of associative or Lie algebras), noncommutative geometry and manifolds, algebraic geometry, number theory, and of course what is regrouped under the name of M-theory. We shall here look at these from the unifying point of view of deformation theory and refer to a limited number of papers as a starting point for further study.

  18. Identification and comprehensive evaluation of reference genes for RT-qPCR analysis of host gene-expression in Brassica juncea-aphid interaction using microarray data.

    PubMed

    Ram, Chet; Koramutla, Murali Krishna; Bhattacharya, Ramcharan

    2017-07-01

    Brassica juncea is a chief oil yielding crop in many parts of the world including India. With advancement of molecular techniques, RT-qPCR based study of gene-expression has become an integral part of experimentations in crop breeding. In RT-qPCR, use of appropriate reference gene(s) is pivotal. The virtue of the reference genes, being constant in expression throughout the experimental treatments, needs to be validated case by case. Appropriate reference gene(s) for normalization of gene-expression data in B. juncea during the biotic stress of aphid infestation is not known. In the present investigation, 11 reference genes identified from microarray database of Arabidopsis-aphid interaction at a cut off FDR ≤0.1, along with two known reference genes of B. juncea, were analyzed for their expression stability upon aphid infestation. These included 6 frequently used and 5 newly identified reference genes. Ranking orders of the reference genes in terms of expression stability were calculated using advanced statistical approaches such as geNorm, NormFinder, delta Ct and BestKeeper. The analysis suggested CAC, TUA and DUF179 as the most suitable reference genes. Further, normalization of the gene-expression data of STP4 and PR1 by the most and the least stable reference gene, respectively has demonstrated importance and applicability of the recommended reference genes in aphid infested samples of B. juncea. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Physical Accuracy of Q Models of Seismic Attenuation

    NASA Astrophysics Data System (ADS)

    Morozov, I. B.

    2016-12-01

    Accuracy of theoretical models is a required prerequisite for any type of seismic imaging and interpretation. Among all geophysical disciplines, the theory of seismic and tidal attenuation is the least developed, and most practical studies use viscoelastic models based on empirical Q factors. To simplify imaging and inversions, the Qs are often approximated as frequency-independent or following a power law with frequency. However, simplicity of inversion should not outweigh the problematic physical accuracy of such models. Typical images of spatially-variable crustal and mantle Qs are "apparent," analogously to pseudo-depth, apparent-resistivity images in electrical imaging. Problems with Q models can be seen from controversial general observations present in many studies; for example: 1) In global Q models, bulk attenuation is much lower than the shear one throughout the whole Earth. This is considered a fundamental relation for the Earth; nevertheless, it is also very peculiar physically and suggests a negative Q for the Lamé modulus. This relation is also not supported by most first-principle models of materials and laboratory studies. 2) The Q parameterization requires that the entire outer core of the Earth is assigned zero attenuation, despite its large volume, presence of viscosity and shear deformation in free oscillations. 3) In laboratory and surface-wave studies, the bulk and shear Qs can be different for different wave modes, different sample sizes boundary conditions on the surface. Similarly, the Qs measured from body-S, Love, Lg, or ScS waves may not equal each other. 4) In seismic coda studies, the Q is often found to be linearly (or even faster) increasing with frequency. Such character of energy dissipation is controversial physically, but can be readily explained as an artifact of inaccurately-known geometrical spreading. To overcome the physical inaccuracies and apparent character of seismic attenuation models, mechanical theories of materials

  20. Developing a prototype for short-term psychodynamic (supportive-expressive) therapy: An empirical study with the psychotherapy process Q-set.

    PubMed

    Leichsenring, Falk; Ablon, Stuart; Barber, Jacques P; Beutel, Manfred; Gibbons, Mary Beth Connolly; Crits-Christoph, Paul; Klein, Susanne; Leweke, Frank; Steinert, Christiane; Wiltink, Jörg; Salzer, Simone

    2016-07-01

    A Psychotherapy Process Q-set (PQS) prototype characteristic of short-term psychodynamic therapy (STPP) does not yet exist. Experts in supportive-expressive (SE) therapy used the 100-Item PQS questionnaire to rate an ideal short-term SE therapy. Agreement between raters was high (Cronbach's alpha = 0.94). The prototype for SE therapy showed a significant correlation with the psychoanalytic prototype, but with 28% of variance explained, the majority of variance of the former was not explained by the latter or vice versa. Furthermore, the SE prototype showed significant correlations with the cognitive-behavioral prototype and the prototype of interpersonal therapy by Ablon and Jones (r = 0.69, 0.43). We recommend using the PQS prototype presented here for future process research on STPP.

  1. Long-Term Effect of Maxillary Distraction Osteogenesis (DO) on Nasal Index in Adult Patients with Cleft Lip and Palate Deformities.

    PubMed

    Jena, Ashok Kumar; Rattan, Vidya; Singh, Satinder Pal; Utreja, Ashok Kumar; Sombir, Singh

    2016-03-01

    To test the hypothesis that there is no immediate and long-term effects of maxillary distraction osteogenesis (DO) on nasal index among adult subjects with cleft lip and palate deformities. Twelve adult subjects in the age range of 17-20 years with complete unilateral cleft lip and palate underwent advancement of maxilla by DO. The immediate and long-term effects of maxillary DO on nasal index were evaluated from extra-oral full face frontal photographs recorded prior to DO (T0), at the end of active DO (T1) and at least 2-years after the DO (T2). The ANOVA, Post Hoc test (Bonferroni) and Pearson correlation coefficients were used. The probability value (P value) 0.05 was considered as statistically significant. SNM angle and Ptm-M distance increased significantly by DO (P < 0.001). The nasal index increased significantly (P < 0.01) by 13.85 % from T0 value of 85.15 ± 4.49 to 99.02 ± 11.16 % at the end of active distraction (T1) and by 12.69 to 97.84 ± 9.14 % at the end of long-term follow-up (T2). The correlation between sagittal maxillary advancement and nasal index was statistically significant (P < 0.001). For each millimeter of maxillary advancement, the nasal index increased by 1.38 % and 1.8 % at the end of active distraction and long-term follow-up respectively. The advancement of maxilla by distraction osteogenesis among subjects with cleft lip and palate deformities increased nasal index significantly.

  2. Cranking Calculation in the sdg Interacting Boson Model

    NASA Astrophysics Data System (ADS)

    Wang, Baolin

    1998-10-01

    A self-consistent cranking calculation of the intrinsic states of the sdg interacting boson model is performed. The formulae of the moment of inertia are given in a general sdg IBM multipole Hamiltonian with one- and two-body terms. In the quadrupole interaction, the intrinsic states, the quadrupole and hexadecapole deformation and the moment of inertia are investigated in the large N limit. Using a simple Hamiltonian, the results of numerical calculations for 152, 154Sm and 154-160 Gd satisfactorily reproduce the experimental data.

  3. Solving the scalability issue in quantum-based refinement: Q|R#1.

    PubMed

    Zheng, Min; Moriarty, Nigel W; Xu, Yanting; Reimers, Jeffrey R; Afonine, Pavel V; Waller, Mark P

    2017-12-01

    Accurately refining biomacromolecules using a quantum-chemical method is challenging because the cost of a quantum-chemical calculation scales approximately as n m , where n is the number of atoms and m (≥3) is based on the quantum method of choice. This fundamental problem means that quantum-chemical calculations become intractable when the size of the system requires more computational resources than are available. In the development of the software package called Q|R, this issue is referred to as Q|R#1. A divide-and-conquer approach has been developed that fragments the atomic model into small manageable pieces in order to solve Q|R#1. Firstly, the atomic model of a crystal structure is analyzed to detect noncovalent interactions between residues, and the results of the analysis are represented as an interaction graph. Secondly, a graph-clustering algorithm is used to partition the interaction graph into a set of clusters in such a way as to minimize disruption to the noncovalent interaction network. Thirdly, the environment surrounding each individual cluster is analyzed and any residue that is interacting with a particular cluster is assigned to the buffer region of that particular cluster. A fragment is defined as a cluster plus its buffer region. The gradients for all atoms from each of the fragments are computed, and only the gradients from each cluster are combined to create the total gradients. A quantum-based refinement is carried out using the total gradients as chemical restraints. In order to validate this interaction graph-based fragmentation approach in Q|R, the entire atomic model of an amyloid cross-β spine crystal structure (PDB entry 2oNA) was refined.

  4. Thermal Microstructural Stability of AZ31 Magnesium after Severe Plastic Deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, John P.; Askari, Hesam A.; Hovanski, Yuri

    2015-03-01

    Both equal channel angular pressing and friction stir processing have the ability to refine the grain size of twin roll cast AZ31 magnesium and potentially improve its superplastic properties. This work used isochronal and isothermal heat treatments to investigate the microstructural stability of twin roll cast, equal channel angular pressed and friction stir processed AZ31 magnesium. For both heat treatment conditions, it was found that the twin roll casted and equal channel angular pressed materials were more stable than the friction stir processed material. Calculations of the grain growth kinetics showed that severe plastic deformation processing decreased the activation energymore » for grain boundary motion with the equal channel angular pressed material having the greatest Q value of the severely plastically deformed materials and that increasing the tool travel speed of the friction stir processed material improved microstructural stability. The Hollomon-Jaffe parameter was found to be an accurate means of identifying the annealing conditions that will result in substantial grain growth and loss of potential superplastic properties in the severely plastically deformed materials. In addition, Humphreys’s model of cellular microstructural stability accurately predicted the relative microstructural stability of the severely plastically deformed materials and with some modification, closely predicted the maximum grain size ratio achieved by the severely plastically deformed materials.« less

  5. Crystallization of Deformable Spherical Colloids

    NASA Astrophysics Data System (ADS)

    Batista, Vera M. O.; Miller, Mark A.

    2010-08-01

    We introduce and characterize a first-order model for a generic class of colloidal particles that have a preferred spherical shape but can undergo deformations while always maintaining hard-body interactions. The model consists of hard spheres that can continuously change shape at fixed volume into prolate or oblate ellipsoids of revolution, subject to an energetic penalty. The severity of this penalty is specified by a single parameter that determines the flexibility of the particles. The deformable hard spheres crystallize at higher packing fractions than rigid hard spheres, have a narrower solid-fluid coexistence region and can reach high densities by a second transition to an orientationally ordered crystal.

  6. Mechanical deformation of carbon nanotube nano-rings on flat substrate

    NASA Astrophysics Data System (ADS)

    Zheng, Meng; Ke, Changhong

    2011-04-01

    We present a numerical analysis of the mechanical deformation of carbon nanotube (CNT) nano-rings on flat graphite substrates, which is motivated by our recent experimental findings on the elastic deformation of CNT nano-rings. Our analysis considers a perfectly circular CNT ring formed by bending a straight individual or bundled single-walled nanotube to connect its two ends. The seamless CNT ring is placed vertically on a flat graphite substrate and its respective deformation curvatures under zero external force, compressive, and tensile forces are determined using a continuum model based on nonlinear elastica theory. Our results show that the van der Waals interaction between the CNT ring and the substrate has profound effects on the deformation of the CNT ring, and that the interfacial binding interaction between the CNT ring and the substrate is strongly modulated by the ring deformation. Our results demonstrate that the CNT ring in force-free conditions has a flat ring segment in contact with the substrate if the ring radius R ≥√EI/2Wvdw , in which EI is the flexural rigidity of the nanotube and Wvdw is the per-unit-length van der Waals energy between the flat ring segment and the substrate. Our results reveal that the load-deformation profiles of the CNT ring under tensile loadings exhibit bifurcation behavior, which is ascribed to its van der Waals interaction with the substrate and is dependent on its relaxed conformation on the substrate. Our work suggests that CNT nano-rings are promising for a number of applications, such as ultrasensitive force sensors and stretchable and flexible structural components in nanoscale mechanical and electromechanical systems.

  7. Deformation of island-arc lithosphere due to steady plate subduction

    NASA Astrophysics Data System (ADS)

    Fukahata, Yukitoshi; Matsu'ura, Mitsuhiro

    2016-02-01

    Steady plate subduction elastically brings about permanent lithospheric deformation in island arcs, though this effect has been neglected in most studies based on elastic dislocation theory. We investigate the characteristics of the permanent lithospheric deformation using a kinematic model, in which steady slip motion is given along a plate interface in the elastic lithosphere overlying the viscoelastic asthenosphere under gravity. As a rule of thumb, long-term lithospheric deformation can be understood as a bending of an elastic plate floating on non-viscous fluid, because the asthenosphere behaves like water on the long term. The steady slip below the lithosphere-asthenosphere boundary does not contribute to long-term lithospheric deformation. Hence, the key parameters that control the lithospheric deformation are only the thickness of the lithosphere and the geometry of the plate interface. Slip on a plate interface generally causes substantial vertical displacement, and gravity always tries to retrieve the original gravitational equilibrium. For a curved plate interface gravity causes convex upward bending of the island-arc lithosphere, while for a planar plate interface gravity causes convex downward bending. Larger curvature and thicker lithosphere generally results in larger deformation. When the curvature changes along the plate interface, internal deformation is also involved intrinsically, which modifies the deformation field due to gravity. Because the plate interface generally has some curvature, at least near the trench, convex upward bending of the island-arc lithosphere, which involves uplift of island-arc and subsidence around the trench, is always realized. On the other hand, the deformation field of the island-arc lithosphere sensitively depends on lithospheric thickness and plate interface geometry. These characteristics obtained by the numerical simulation are consistent with observed topography and free-air gravity anomalies in subduction

  8. Properties of ΣQ*, ΞQ* and ΩQ* heavy baryons in cold nuclear matter

    NASA Astrophysics Data System (ADS)

    Azizi, K.; Er, N.

    2018-02-01

    The in-medium properties of the heavy spin-3/2 ΣQ*, ΞQ* and ΩQ* baryons with Q being b or c quark are investigated. The shifts in some spectroscopic parameters of these particles due to the saturated cold nuclear matter are calculated. The variations of those parameters with respect to the changes in the density of the cold nuclear medium are studied, as well. It is observed that the parameters of ΣQ* baryons are considerably affected by the nuclear matter compared to the ΞQ* and ΩQ* particles that roughly do not see the medium. The results obtained may be used in analyses of the data to be provided by the in-medium experiments like PANDA.

  9. Effect Modification and Interaction Terms: It Takes Two to Tango.

    PubMed

    Jupiter, Daniel C

    2016-01-01

    In this Investigators' Corner I look more deeply into the previously discussed phenomenon of effect modification. I revisit an explanation and examples of the phenomenon and then examine how to account for it statistically. Specifically, I show, in detail, how to write a regression equation that includes interaction terms that account for the effect modification. Finally, I look at interpretation of regression coefficients both with and without the presence of effect modification, and the associated interaction terms. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  10. Interaction of Huntingtin Exon-1 Peptides with Lipid-Based Micellar Nanoparticles Probed by Solution NMR and Q-Band Pulsed EPR.

    PubMed

    Ceccon, Alberto; Schmidt, Thomas; Tugarinov, Vitali; Kotler, Samuel A; Schwieters, Charles D; Clore, G Marius

    2018-05-23

    Lipid-based micellar nanoparticles promote aggregation of huntingtin exon-1 peptides. Here we characterize the interaction of two such peptides, htt NT Q  7 and htt NT Q  10 comprising the N-terminal amphiphilic domain of huntingtin followed by 7 and 10 glutamine repeats, respectively, with 8 nm lipid micelles using NMR chemical exchange saturation transfer (CEST), circular dichroism and pulsed Q-band EPR. Exchange between free and micelle-bound htt NT Q  n peptides occurs on the millisecond time scale with a K D ∼ 0.5-1 mM. Upon binding micelles, residues 1-15 adopt a helical conformation. Oxidation of Met 7 to a sulfoxide reduces the binding affinity for micelles ∼3-4-fold and increases the length of the helix by a further two residues. A structure of the bound monomer unit is calculated from the backbone chemical shifts of the micelle-bound state obtained from CEST. Pulsed Q-band EPR shows that a monomer-dimer equilibrium exists on the surface of the micelles and that the two helices of the dimer adopt a parallel orientation, thereby bringing two disordered polyQ tails into close proximity which may promote aggregation upon dissociation from the micelle surface.

  11. Influence on serum asymmetric dimethylarginine (ADMA) concentrations of human paraoxonase 1 polymorphism (Q192R) and exposure to polycyclic aromatic hydrocarbons (PAHs) in Mexican women, a gene-environment interaction.

    PubMed

    Ochoa-Martínez, Ángeles C; Ruíz-Vera, Tania; Almendarez-Reyna, Claudia I; Orta-García, Sandra T; Pérez-Maldonado, Iván N

    2017-11-01

    It has been demonstrated that Cardiovascular Diseases (CVD) are a consequence of the combination of genetic and environmental factors and/or the interaction between them. Therefore, the aim of this study was to evaluate the impact of polycyclic aromatic hydrocarbon (PAHs) exposure and PON1 Q192R polymorphism (genetic susceptibility) on serum asymmetric dimethylarginine (ADMA) levels in Mexican women (n = 206). Urinary 1-hydroxypyrene concentrations (1-OHP; exposure biomarker for PAHs) were quantified using a high-performance liquid chromatography technique, PON1 Q192R polymorphism was genotyped using TaqMan probes and serum ADMA concentrations were evaluated using a commercially available ELISA kit. Urinary 1-OHP levels detected in this study ranged from 0.07 to 9.37 μmol/mol of creatinine (0.13-18.0 μg/g of creatinine). Regarding allele frequency (PON1 Q192R polymorphism), the 192Q-allele frequency was 0.43 and for the 192R-allele it was 0.57. In relation to serum ADMA levels, the levels ranged from 0.06 to 1.46 μmol/L. Moreover, multiple linear regression analysis was performed and associations between urinary 1-OHP levels (β = 0.05, p = 0.002), PON1 Q192R polymorphism (β = 0.04, p = 0.003) and serum ADMA concentrations were found. Besides, an interaction (gene-environment interaction) of both independent variables (1-OHP and PON1 polymorphism) on serum ADMA levels was found (β = 0.04, p = 0.02) in the constructed multiple linear model. Therefore, according to the significance of this research, it is necessary to execute health programs to reduce cardiovascular risk in the assessed population. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Drug-nutrient interactions in three long-term-care facilities.

    PubMed

    Lewis, C W; Frongillo, E A; Roe, D A

    1995-03-01

    To assess the risk of drug-nutrient interactions (DNIs) in three long-term-care facilities. Retrospective audit of charts. Three long-term-care facilities in central New York State. Fifty-three patients selected randomly from each facility. Data were collected from the medical record of each patient for a period of 6 months. A computerized algorithm was used to assess the risk for DNIs. Mean drug use, most frequently consumed drugs, incidence of potential DNIs, and the most commonly observed potential DNIs are reported. In facilities A, B, and C, respectively, patients consumed a mean of 4.86, 4.04, and 5.27 drugs per patient per month and were at risk for a mean of 1.43, 2.69, and 1.43 potential DNIs per patient per month. The most commonly observed potential DNIs were gastrointestinal interactions affecting drug bioavailability and interactions affecting electrolyte status. Patients in long-term-care facilities, who are primarily elderly and chronically ill and who consume multiple medications, are at notable risk for certain DNIs. Efforts need to be made to ensure appropriate pharmacologic and nutrition therapies as well as adequate and timely monitoring of patients in these facilities. Dietitians can play an important role in training other health professionals and in designing policies to prevent DNIs.

  13. Syn-deformational features of Carlin-type Au deposits

    USGS Publications Warehouse

    Peters, S.G.

    2004-01-01

    Syn-deformational ore deposition played an important role in some Carlin-type Au deposits according to field and laboratory evidence, which indicates that flow of Au-bearing fluids was synchronous with regional-scale deformation events. Gold-related deformation events linked to ore genesis were distinct from high-level, brittle deformation that is typical of many epithermal deposits. Carlin-type Au deposits, with brittle-ductile features, most likely formed during tectonic events that were accompanied by significant fluid flow. Interactive deformation-fluid processes involved brittle-ductile folding, faulting, shearing, and gouge development that were focused along illite-clay and dissolution zones caused by hydrothermal alteration. Alteration along these deformation zones resulted in increased porosity and enhancement of fluid flow, which resulted in decarbonated, significant dissolution, collapse, and volume and mass reduction. Carlin-type Au deposits commonly are hosted in Paleozoic and Mesozoic sedimentary rocks (limestone, siltstone, argillite, shale, and quartzite) on the margins of cratons. The sedimentary basins containing the host rocks underwent tectonic events that influenced the development of stratabound, structurally controlled orebodies. Published by Elsevier Ltd.

  14. CHARGE association in a child with de novo inv dup (14)(q22{yields}q24.3)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    North, K.; Wu, B.L.; Whiteman, D.

    1994-09-01

    The CHARGE association is an increasingly recognized complex of multiple malformations, that include Coloboma, Heart defect, choanal Atresia, Retardation of mental and somatic development, hypoplastic Genitalia, and Ear abnormalities or deafness. It has been postulated that many of the defects result from abnormalities in the development, migration or interaction of cells of the cephalic neural crest. The majority of cases are sporadic. We report a case of an inverted duplication (14)(q22{yields}q24.3) associated with CHARGE association. The patient was a 4 {1/2}-year-old female and was the product of a normal pregnancy. Family history was unremarkable. The clinical manifestations included the combinationmore » of congenital anomalies (coloboma, ventricular septal defect, severe developmental delay and growth retardation, genital hypoplasia and sensorineural deafness) in association with soft tissue choanal atresia, dysphagia, and minor dysmorphic features (low set ears, upslanting palpebral fissures). High resolution cytogenetic studies revealed that the child has 46,XX,inv dup(14)(q22{yields}q24.3) and parents have normal chromosomes. FISH with a chromosome 14 paint probe confirmed that the duplicated region is entirely derived from chromosome 14. FISH with D22S75 probe for region 22q11.2 detected no deletion for this locus. Several duplications or deletions involving different chromosomes have been reported for patients with conditions resembling CHARGE association. This indicates that CHARGE is possible genetically heterogenous, parallelling the phenotypic heterogeneity of the disorder. Two published cases with unbalanced rearrengements involving 14q22 have some comparable features with our case, which suggests that the locus for a gene causing some of the features of CHARGE association may reside at 14q22 or 14q24.3.« less

  15. The ANACONDA algorithm for deformable image registration in radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weistrand, Ola; Svensson, Stina, E-mail: stina.svensson@raysearchlabs.com

    2015-01-15

    Purpose: The purpose of this work was to describe a versatile algorithm for deformable image registration with applications in radiotherapy and to validate it on thoracic 4DCT data as well as CT/cone beam CT (CBCT) data. Methods: ANAtomically CONstrained Deformation Algorithm (ANACONDA) combines image information (i.e., intensities) with anatomical information as provided by contoured image sets. The registration problem is formulated as a nonlinear optimization problem and solved with an in-house developed solver, tailored to this problem. The objective function, which is minimized during optimization, is a linear combination of four nonlinear terms: 1. image similarity term; 2. grid regularizationmore » term, which aims at keeping the deformed image grid smooth and invertible; 3. a shape based regularization term which works to keep the deformation anatomically reasonable when regions of interest are present in the reference image; and 4. a penalty term which is added to the optimization problem when controlling structures are used, aimed at deforming the selected structure in the reference image to the corresponding structure in the target image. Results: To validate ANACONDA, the authors have used 16 publically available thoracic 4DCT data sets for which target registration errors from several algorithms have been reported in the literature. On average for the 16 data sets, the target registration error is 1.17 ± 0.87 mm, Dice similarity coefficient is 0.98 for the two lungs, and image similarity, measured by the correlation coefficient, is 0.95. The authors have also validated ANACONDA using two pelvic cases and one head and neck case with planning CT and daily acquired CBCT. Each image has been contoured by a physician (radiation oncologist) or experienced radiation therapist. The results are an improvement with respect to rigid registration. However, for the head and neck case, the sample set is too small to show statistical significance. Conclusions

  16. Pocket formula for nuclear deformations of actinides

    NASA Astrophysics Data System (ADS)

    Manjunatha, H. C.; Sridhar, K. N.

    2018-06-01

    We have formulated a pocket formula for quadrupole (β2), octupole (β3), hexadecapole (β4) and hexacontatetrapole (β6) deformation of the nuclear ground state of all isotopes of actinide nuclei (89 < Z < 103). This formula is first of its kind and produces a nuclear deformation of all isotopes actinide nuclei 89 < Z < 103 with simple inputs of Z and A. Hence, this formula is useful in the fields of nuclear physics to study the structure and interaction of nuclei.

  17. Measuring and analyzing thermal deformations of the primary reflector of the Tianma radio telescope

    NASA Astrophysics Data System (ADS)

    Dong, Jian; Fu, Li; Liu, Qinghui; Shen, Zhiqiang

    2018-06-01

    The primary reflector of the Tianma Radio Telescope (TMRT) distorts due to the varying thermal conditions, which dramatically reduces the aperture efficiency of Q-band observations. To evaluate and overcome the thermal effects, a thermal deformations measurement system has been established based on the extended Out-of-Focus holography (e-OOF). The thermal deformations can be measured in approximately 20 min with an illumination-weighted surface root mean square (RMS) accuracy of approximately 50 μm. We have measured the thermal deformations when the backup and front structure were heated by the sun respectively, and used the active surface system to correct the thermal deformations immediately to confirm the measurements. The thermal deformations when the backup structure is heated are larger than those when the front structure is heated. The values of half power beam width (HPBW) are related to the illumination-weighted surface RMS, and can be used to check the thermal deformations. When the backup structure is heated, the aperture efficiencies can remain above 90% of the maximum efficiency at 40 GHz for approximately two hours after one adjustment. While the front structure is heated, the aperture efficiencies can remain above 90% of the maximum efficiency at 40 GHz, and above 95% after one adjustment in approximately three hours.

  18. Measuring infant attachment security in rhesus macaques (Macaca mulatta): adaptation of the attachment Q-set.

    PubMed

    Warfield, James J; Kondo-Ikemura, Kiyomi; Waters, Everett

    2011-02-01

    John Bowlby defined offspring-parent attachment as a relationship in which an infant or child uses one or a few preferred adults as a secure base from which to explore and as a haven of safety. He defined attachment security in terms of confidence in the adult's availability and responsiveness and the smooth organization of exploration and proximity seeking. Developmental psychologists have found this perspective productive in both observational and laboratory research. At the same time, they emphasize that such a construct cannot be operationalized in terms of one or a few behaviors. Instead, naturalistic observations of human infant attachment typically employ the Q-sort method to develop the Attachment q-set (AQS), 90 behaviorally descriptive items sorted in terms of how characteristic each item is of the infant's typical behavior. Meta-analyses of research using the AQS attest to its reliability and validity. This article reports an adaptation of the AQS to the task of assessing infant attachment security in nonhuman primates and illustrates its use. The availability of comparable measures of attachment security will contribute to an expanded understanding of patterns of attachment behavior in nonhuman primate societies and will facilitate interaction between comparative and developmental psychologists. © 2010 Wiley-Liss, Inc.

  19. Revealing protein functions based on relationships of interacting proteins and GO terms.

    PubMed

    Teng, Zhixia; Guo, Maozu; Liu, Xiaoyan; Tian, Zhen; Che, Kai

    2017-09-20

    In recent years, numerous computational methods predicted protein function based on the protein-protein interaction (PPI) network. These methods supposed that two proteins share the same function if they interact with each other. However, it is reported by recent studies that the functions of two interacting proteins may be just related. It will mislead the prediction of protein function. Therefore, there is a need for investigating the functional relationship between interacting proteins. In this paper, the functional relationship between interacting proteins is studied and a novel method, called as GoDIN, is advanced to annotate functions of interacting proteins in Gene Ontology (GO) context. It is assumed that the functional difference between interacting proteins can be expressed by semantic difference between GO term and its relatives. Thus, the method uses GO term and its relatives to annotate the interacting proteins separately according to their functional roles in the PPI network. The method is validated by a series of experiments and compared with the concerned method. The experimental results confirm the assumption and suggest that GoDIN is effective on predicting functions of protein. This study demonstrates that: (1) interacting proteins are not equal in the PPI network, and their function may be same or similar, or just related; (2) functional difference between interacting proteins can be measured by their degrees in the PPI network; (3) functional relationship between interacting proteins can be expressed by relationship between GO term and its relatives.

  20. Gravitational Redshift of Deformed Neutron Stars

    NASA Astrophysics Data System (ADS)

    Romero, Alexis; Zubairi, Omair; Weber, Fridolin

    2015-04-01

    Non-rotating neutron stars are generally treated in theoretical studies as perfect spheres. Such a treatment, however, may not be correct if strong magnetic fields are present and/or the pressure of the matter in the cores of neutron stars is non-isotropic, leading to neutron stars which are deformed. In this work, we investigate the impact of deformation on the gravitational redshift of neutron stars in the framework of general relativity. Using a parameterized metric to model non-spherical mass distributions, we derive an expression for the gravitational redshift in terms of the mass, radius, and deformity of a neutron star. Numerical solutions for the redshifts of sequences of deformed neutron stars are presented and observational implications are pointed out. This research is funded by the NIH through the Maximizing Access to Research Careers (MARC), under Grant Number: 5T34GM008303-25 and through the National Science Foundation under grant PHY-1411708.

  1. An adaptive deep Q-learning strategy for handwritten digit recognition.

    PubMed

    Qiao, Junfei; Wang, Gongming; Li, Wenjing; Chen, Min

    2018-02-22

    Handwritten digits recognition is a challenging problem in recent years. Although many deep learning-based classification algorithms are studied for handwritten digits recognition, the recognition accuracy and running time still need to be further improved. In this paper, an adaptive deep Q-learning strategy is proposed to improve accuracy and shorten running time for handwritten digit recognition. The adaptive deep Q-learning strategy combines the feature-extracting capability of deep learning and the decision-making of reinforcement learning to form an adaptive Q-learning deep belief network (Q-ADBN). First, Q-ADBN extracts the features of original images using an adaptive deep auto-encoder (ADAE), and the extracted features are considered as the current states of Q-learning algorithm. Second, Q-ADBN receives Q-function (reward signal) during recognition of the current states, and the final handwritten digits recognition is implemented by maximizing the Q-function using Q-learning algorithm. Finally, experimental results from the well-known MNIST dataset show that the proposed Q-ADBN has a superiority to other similar methods in terms of accuracy and running time. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Modeling mechanical cardiopulmonary interactions for virtual environments.

    PubMed

    Kaye, J M

    1997-01-01

    We have developed a computer system for modeling mechanical cardiopulmonary behavior in an interactive, 3D virtual environment. The system consists of a compact, scalar description of cardiopulmonary mechanics, with an emphasis on respiratory mechanics, that drives deformable 3D anatomy to simulate mechanical behaviors of and interactions between physiological systems. Such an environment can be used to facilitate exploration of cardiopulmonary physiology, particularly in situations that are difficult to reproduce clinically. We integrate 3D deformable body dynamics with new, formal models of (scalar) cardiorespiratory physiology, associating the scalar physiological variables and parameters with corresponding 3D anatomy. Our approach is amenable to modeling patient-specific circumstances in two ways. First, using CT scan data, we apply semi-automatic methods for extracting and reconstructing the anatomy to use in our simulations. Second, our scalar models are defined in terms of clinically-measurable, patient-specific parameters. This paper describes our approach and presents a sample of results showing normal breathing and acute effects of pneumothoraces.

  3. Differential calculus and gauge transformations on a deformed space

    NASA Astrophysics Data System (ADS)

    Wess, Julius

    2007-08-01

    We consider a formalism by which gauge theories can be constructed on noncommutative space time structures. The coordinates are supposed to form an algebra, restricted by certain requirements that allow us to realise the algebra in terms of star products. In this formulation it is useful to define derivatives and to extend the algebra of coordinates by these derivatives. The elements of this extended algebra are deformed differential operators. We then show that there is a morphism between these deformed differential operators and the usual higher order differential operators acting on functions of commuting coordinates. In this way we obtain deformed gauge transformations and a deformed version of the algebra of diffeomorphisms. The deformation of these algebras can be clearly seen in the category of Hopf algebras. The comultiplication will be twisted. These twisted algebras can be realised on noncommutative spaces and allow the construction of deformed gauge theories and deformed gravity theory.

  4. Acoustic emission study of the plastic deformation of quenched and partitioned 35CrMnSiA steel

    NASA Astrophysics Data System (ADS)

    Li, Yang; Xiao, Gui-yong; Chen, Lu-bin; Lu, Yu-peng

    2014-12-01

    Acoustic emission (AE) monitored tensile tests were performed on 35CrMnSiA steel subjected to different heat treatments. The results showed that quenching and partitioning (Q-P) heat treatments enhanced the combined mechanical properties of high strength and high ductility for commercial 35CrMnSiA steel, as compared with traditional heat treatments such as quenching and tempering (Q-T) and austempering (AT). AE signals with high amplitude and high energy were produced during the tensile deformation of 35CrMnSiA steel with retained austenite (RA) in the microstructure (obtained via Q-P and AT heat treatments) due to an austenite-to-martensite phase transformation. Moreover, additional AE signals would not appear again and the mechanical properties would degenerate to a lower level once RA degenerated by tempering for the Q-P treated steel.

  5. Long-Term Patterns in C-Q Relations in an Adirondack Stream Reveal Decreasing Severity of Episodic Acidification

    NASA Astrophysics Data System (ADS)

    Burns, D. A.; Lawrence, G. B.; Driscoll, C. T.; Sullivan, T. J.; Shao, S.; McDonnell, T. C.

    2017-12-01

    Episodic acidification occurs when surface water pH and ANC decrease temporarily during rain events and snowmelt. The principal drivers of episodic acidification are increases in sulfuric acid, nitric acid, organic acids, and dilution of base cations. In regions where surface waters are sensitive to acid deposition, ANC values may approach or decline below 0 µeq/L during high flows, which may result in deleterious effects to sensitive aquatic biota. The Adirondack Mountains of New York have abundant streams and lakes, many of which are highly sensitive to the effects of acid deposition. Long-term monitoring data indicate that pH and ANC in regional surface waters are increasing in response to decreases in the acidity of atmospheric deposition that result from decreasing SO2 and NOx emissions as the Clean Air Act and its ancillary rules and amendments have been implemented. Most surface-water monitoring focuses on low-flow and broad seasonal patterns, and less is known about how episodic acidification has responded to emissions decreases. Here, we report on spatial and temporal patterns in episodic acidification through analysis of C-Q relations from surveys that target varying flow conditions as well as data from a few long-term intensively sampled stream monitoring sites. Each stream sample was assigned a Q percentile value based on a resident or nearby gage, and a statistical relation between ANC values and Q percentile was developed. The magnitude of episodic decreases in ANC increases as low-flow ANC increases, a pattern that likely results from an increasing influence of dilution, especially evident when low-flow ANC values exceed 100 µeq/L. Chronically acidic streams with low-flow ANC near 0 µeq/L show little episodic acidification, whereas streams with low-flow ANC values of about 50 µeq/L generally show ANC decreases to less than 0 µeq/L at high flow. Preliminary analysis of a 24-yr data set (1991-2014) at Buck Creek indicates that increases in high

  6. Numerical computation of the effective-one-body potential q using self-force results

    NASA Astrophysics Data System (ADS)

    Akcay, Sarp; van de Meent, Maarten

    2016-03-01

    The effective-one-body theory (EOB) describes the conservative dynamics of compact binary systems in terms of an effective Hamiltonian approach. The Hamiltonian for moderately eccentric motion of two nonspinning compact objects in the extreme mass-ratio limit is given in terms of three potentials: a (v ) , d ¯ (v ) , q (v ) . By generalizing the first law of mechanics for (nonspinning) black hole binaries to eccentric orbits, [A. Le Tiec, Phys. Rev. D 92, 084021 (2015).] recently obtained new expressions for d ¯(v ) and q (v ) in terms of quantities that can be readily computed using the gravitational self-force approach. Using these expressions we present a new computation of the EOB potential q (v ) by combining results from two independent numerical self-force codes. We determine q (v ) for inverse binary separations in the range 1 /1200 ≤v ≲1 /6 . Our computation thus provides the first-ever strong-field results for q (v ) . We also obtain d ¯ (v ) in our entire domain to a fractional accuracy of ≳10-8 . We find that our results are compatible with the known post-Newtonian expansions for d ¯(v ) and q (v ) in the weak field, and agree with previous (less accurate) numerical results for d ¯(v ) in the strong field.

  7. R248Q mutation--Beyond p53-DNA binding.

    PubMed

    Ng, Jeremy W K; Lama, Dilraj; Lukman, Suryani; Lane, David P; Verma, Chandra S; Sim, Adelene Y L

    2015-12-01

    R248 in the DNA binding domain (DBD) of p53 interacts directly with the minor groove of DNA. Earlier nuclear magnetic resonance (NMR) studies indicated that the R248Q mutation resulted in conformation changes in parts of DBD far from the mutation site. However, how information propagates from the mutation site to the rest of the DBD is still not well understood. We performed a series of all-atom molecular dynamics (MD) simulations to dissect sterics and charge effects of R248 on p53-DBD conformation: (i) wild-type p53 DBD; (ii) p53 DBD with an electrically neutral arginine side-chain; (iii) p53 DBD with R248A; (iv) p53 DBD with R248W; and (v) p53 DBD with R248Q. Our results agree well with experimental observations of global conformational changes induced by the R248Q mutation. Our simulations suggest that both charge- and sterics are important in the dynamics of the loop (L3) where the mutation resides. We show that helix 2 (H2) dynamics is altered as a result of a change in the hydrogen bonding partner of D281. In turn, neighboring L1 dynamics is altered: in mutants, L1 predominantly adopts the recessed conformation and is unable to interact with the major groove of DNA. We focused our attention the R248Q mutant that is commonly found in a wide range of cancer and observed changes at the zinc-binding pocket that might account for the dominant negative effects of R248Q. Furthermore, in our simulations, the S6/S7 turn was more frequently solvent exposed in R248Q, suggesting that there is a greater tendency of R248Q to partially unfold and possibly lead to an increased aggregation propensity. Finally, based on the observations made in our simulations, we propose strategies for the rescue of R248Q mutants. © 2015 Wiley Periodicals, Inc.

  8. A Boy with an LCR3/4-Flanked 10q22.3q23.2 Microdeletion and Uncommon Phenotypic Features

    PubMed Central

    Petrova, E.; Neuner, C.; Haaf, T.; Schmid, M.; Wirbelauer, J.; Jurkutat, A.; Wermke, K.; Nanda, I.; Kunstmann, E.

    2014-01-01

    The recurrent 10q22.3q23.2 deletion with breakpoints within low copy repeats 3 and 4 is a rare genomic disorder, reported in only 13 patients to date. The phenotype is rather uncharacteristic, which makes a clinical diagnosis difficult. A phenotypic feature described in almost all patients is a delay in speech development, albeit systematic studies are still pending. In this study, we report on a boy with an LCR3/4-flanked 10q22.3q23.2 deletion exhibiting an age-appropriate language development evaluated by a standardized test at an age of 2 years and 3 months. The boy was born with a cleft palate – a feature not present in any of the patients described before. Previously reported cases are reviewed, and the role of the BMPR1A gene is discussed. The phenotype of patients with an LCR3/4-flanked 10q22.3q23.2 deletion can be rather variable, so counseling the families regarding the prognosis of an affected child should be done with caution. Long-term studies of affected children are needed to delineate the natural history of this rare disorder. PMID:24550761

  9. From labyrinthine aplasia to otocyst deformity.

    PubMed

    Giesemann, Anja Maria; Goetz, Friedrich; Neuburger, Jürgen; Lenarz, Thomas; Lanfermann, Heinrich

    2010-02-01

    Inner ear malformations (IEMs) are rare and it is unusual to encounter the rarest of them, namely labyrinthine aplasia (LA) and otocyst deformity. They do, however, provide useful pointers as to the early embryonic development of the ear. LA is characterised as a complete absence of inner ear structures. While some common findings do emerge, a clear definition of the otocyst deformity does not exist. It is often confused with the common cavity first described by Edward Cock. Our purpose was to radiologically characterise LA and otocyst deformity. Retrospective analysis of CT and MRI data from four patients with LA or otocyst deformity. Middle and inner ear findings were categorised by two neuroradiologists. The bony carotid canal was found to be absent in all patients. Posterior located cystic structures were found in association with LA and otocyst deformity. In the most severe cases, only soft tissue was present at the medial border of the middle ear cavity. The individuals with otocyst deformity also had hypoplasia of the petrous apex bone. These cases demonstrate gradual changes in the two most severe IEMs. Clarification of terms was necessary and, based on these findings, we propose defining otocyst deformity as a cystic structure in place of the inner ear, with the cochlea, IAC and carotid canal absent. This condition needs to be differentiated from the common cavity described by Edward Cook. A clear definition of inner ear malformations is essential if outcomes following cochlear implantation are to be compared.

  10. The short-term effects of running on the deformation of knee articular cartilage and its relationship to biomechanical loads at the knee.

    PubMed

    Boocock, M; McNair, P; Cicuttini, F; Stuart, A; Sinclair, T

    2009-07-01

    To investigate the short-term effects of recreational running on the deformation of knee articular cartilage and to examine the relationship between changes in knee cartilage volume and biomechanical modulators of knee joint load. Twenty healthy volunteers participated in a two phase cross-sectional study. Session 1 involved Magnetic Resonance Imaging (MRI) of femoral and tibial cartilage volumes prior to and following a 30 min period of relaxed sitting, which was directly followed by a recreational run of 5000 steps. Subsequently, all participants undertook a laboratory study of their running gait to compare biomechanical derived measures of knee joint loading with changes in cartilage volume. Estimates of knee joint load were determined using a rigid-link segment, dynamic biomechanical model of the lower limbs and a simplified muscle model. Running resulted in significant deformation of the medial (5.3%, P<0.01) and lateral femoral cartilage (4.0%, P<0.05) and lateral aspect of the tibial cartilage (5.7%, P<0.01), with no significant differences between genders. Maximum compression stress was significantly correlated with percentage changes in lateral femoral cartilage volume (r(2)=0.456, P<0.05). No other biomechanical variables correlated with volume changes. Limited evidence was found linking biomechanical measures of knee joint loading and observed short-term deformation of knee articular cartilage volume following running. Further enhancement of knee muscle modelling and analysis of stress distribution across cartilage are needed if we are to fully understand the contribution of biomechanical factors to knee joint loading and the pathogenesis of knee osteoarthritis (OA).

  11. M1 excitation in Sm isotopes and the proton-neutron sdg interacting boson model

    NASA Astrophysics Data System (ADS)

    Mizusaki, Takahiro; Otsuka, Takaharu; Sugita, Michiaki

    1991-10-01

    The magnetic-dipole scissors mode in spherical to deformed Sm isotopes is studied in terms of the proton-neutron sdg interacting boson model, providing a good agreement with recent experiment by Ziegler et al. The present calculation correctly reproduces the increase of M1 excitation strength in going from spherical to deformed nuclei. It is suggested that there may be 1+ states which do not correspond to the scissors mode but absorb certain M1 strength from the ground state.

  12. Parity Deformed Jaynes-Cummings Model: “Robust Maximally Entangled States”

    PubMed Central

    Dehghani, A.; Mojaveri, B.; Shirin, S.; Faseghandis, S. Amiri

    2016-01-01

    The parity-deformations of the quantum harmonic oscillator are used to describe the generalized Jaynes-Cummings model based on the λ-analog of the Heisenberg algebra. The behavior is interestingly that of a coupled system comprising a two-level atom and a cavity field assisted by a continuous external classical field. The dynamical characters of the system is explored under the influence of the external field. In particular, we analytically study the generation of robust and maximally entangled states formed by a two-level atom trapped in a lossy cavity interacting with an external centrifugal field. We investigate the influence of deformation and detuning parameters on the degree of the quantum entanglement and the atomic population inversion. Under the condition of a linear interaction controlled by an external field, the maximally entangled states may emerge periodically along with time evolution. In the dissipation regime, the entanglement of the parity deformed JCM are preserved more with the increase of the deformation parameter, i.e. the stronger external field induces better degree of entanglement. PMID:27917882

  13. Deformation rates across the San Andreas Fault system, central California determined by geology and geodesy

    NASA Astrophysics Data System (ADS)

    Titus, Sarah J.

    The San Andreas fault system is a transpressional plate boundary characterized by sub-parallel dextral strike-slip faults separating internally deformed crustal blocks in central California. Both geodetic and geologic tools were used to understand the short- and long-term partitioning of deformation in both the crust and the lithospheric mantle across the plate boundary system. GPS data indicate that the short-term discrete deformation rate is ˜28 mm/yr for the central creeping segment of the San Andreas fault and increases to 33 mm/yr at +/-35 km from the fault. This gradient in deformation rates is interpreted to reflect elastic locking of the creeping segment at depth, distributed off-fault deformation, or some combination of these two mechanisms. These short-term fault-parallel deformation rates are slower than the expected geologic slip rate and the relative plate motion rate. Structural analysis of folds and transpressional kinematic modeling were used to quantify long-term distributed deformation adjacent to the Rinconada fault. Folding accommodates approximately 5 km of wrench deformation, which translates to a deformation rate of ˜1 mm/yr since the start of the Pliocene. Integration with discrete offset on the Rinconada fault indicates that this portion of the San Andreas fault system is approximately 80% strike-slip partitioned. This kinematic fold model can be applied to the entire San Andreas fault system and may explain some of the across-fault gradient in deformation rates recorded by the geodetic data. Petrologic examination of mantle xenoliths from the Coyote Lake basalt near the Calaveras fault was used to link crustal plate boundary deformation at the surface with models for the accommodation of deformation in the lithospheric mantle. Seismic anisotropy calculations based on xenolith petrofabrics suggest that an anisotropic mantle layer thickness of 35-85 km is required to explain the observed shear wave splitting delay times in central

  14. Genetics Home Reference: 17q12 deletion syndrome

    MedlinePlus

    ... spectrum disorder (which affects social interaction and communication), schizophrenia , anxiety, and bipolar disorder . Less commonly, 17q12 deletion ... Encyclopedia: Autism Spectrum Disorder Encyclopedia: Bipolar Disorder Encyclopedia: ... Topic: Developmental Disabilities Health Topic: Diabetes Health ...

  15. Fluctuating Nonlinear Spring Model of Mechanical Deformation of Biological Particles

    PubMed Central

    Kononova, Olga; Snijder, Joost; Kholodov, Yaroslav; Marx, Kenneth A.; Wuite, Gijs J. L.; Roos, Wouter H.; Barsegov, Valeri

    2016-01-01

    The mechanical properties of virus capsids correlate with local conformational dynamics in the capsid structure. They also reflect the required stability needed to withstand high internal pressures generated upon genome loading and contribute to the success of important events in viral infectivity, such as capsid maturation, genome uncoating and receptor binding. The mechanical properties of biological nanoparticles are often determined from monitoring their dynamic deformations in Atomic Force Microscopy nanoindentation experiments; but a comprehensive theory describing the full range of observed deformation behaviors has not previously been described. We present a new theory for modeling dynamic deformations of biological nanoparticles, which considers the non-linear Hertzian deformation, resulting from an indenter-particle physical contact, and the bending of curved elements (beams) modeling the particle structure. The beams’ deformation beyond the critical point triggers a dynamic transition of the particle to the collapsed state. This extreme event is accompanied by a catastrophic force drop as observed in the experimental or simulated force (F)-deformation (X) spectra. The theory interprets fine features of the spectra, including the nonlinear components of the FX-curves, in terms of the Young’s moduli for Hertzian and bending deformations, and the structural damage dependent beams’ survival probability, in terms of the maximum strength and the cooperativity parameter. The theory is exemplified by successfully describing the deformation dynamics of natural nanoparticles through comparing theoretical curves with experimental force-deformation spectra for several virus particles. This approach provides a comprehensive description of the dynamic structural transitions in biological and artificial nanoparticles, which is essential for their optimal use in nanotechnology and nanomedicine applications. PMID:26821264

  16. Short-term and long-term plasticity interaction in human primary motor cortex.

    PubMed

    Iezzi, Ennio; Suppa, Antonio; Conte, Antonella; Li Voti, Pietro; Bologna, Matteo; Berardelli, Alfredo

    2011-05-01

    Repetitive transcranial magnetic stimulation (rTMS) over primary motor cortex (M1) elicits changes in motor evoked potential (MEP) size thought to reflect short- and long-term forms of synaptic plasticity, resembling short-term potentiation (STP) and long-term potentiation/depression (LTP/LTD) observed in animal experiments. We designed this study in healthy humans to investigate whether STP as elicited by 5-Hz rTMS interferes with LTP/LTD-like plasticity induced by intermittent and continuous theta-burst stimulation (iTBS and cTBS). The effects induced by 5-Hz rTMS and iTBS/cTBS were indexed as changes in MEP size. We separately evaluated changes induced by 5-Hz rTMS, iTBS and cTBS applied alone and those induced by iTBS and cTBS delivered after priming 5-Hz rTMS. Interactions between 5-Hz rTMS and iTBS/cTBS were investigated under several experimental conditions by delivering 5-Hz rTMS at suprathreshold and subthreshold intensity, allowing 1 and 5 min intervals to elapse between 5-Hz rTMS and TBS, and delivering one and ten 5-Hz rTMS trains. We also investigated whether 5-Hz rTMS induces changes in intracortical excitability tested with paired-pulse transcranial magnetic stimulation. When given alone, 5-Hz rTMS induced short-lasting and iTBS/cTBS induced long-lasting changes in MEP amplitudes. When M1 was primed with 10 suprathreshold 5-Hz rTMS trains at 1 min before iTBS or cTBS, the iTBS/cTBS-induced after-effects disappeared. The 5-Hz rTMS left intracortical excitability unchanged. We suggest that STP elicited by suprathreshold 5-Hz rTMS abolishes iTBS/cTBS-induced LTP/LTD-like plasticity through non-homeostatic metaplasticity mechanisms. Our study provides new information on interactions between short-term and long-term rTMS-induced plasticity in human M1. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  17. Transient Dynamic Response and Failure of Composite Structure Under Cyclic Loading with Fluid Structure Interaction

    DTIC Science & Technology

    2014-09-01

    TERMS fluid structure interaction, composite structures shipbuilding, fatigue loading 15. NUMBER OF PAGES 85 16. PRICE CODE 17. SECURITY...under the three point bending test. All the composites exhibit an initial nonlinear and inelastic deformation trend and end with a catastrophic abrupt

  18. Raman q-plates for Singular Atom Optics

    NASA Astrophysics Data System (ADS)

    Schultz, Justin T.; Hansen, Azure; Murphree, Joseph D.; Jayaseelan, Maitreyi; Bigelow, Nicholas P.

    2016-05-01

    We use a coherent two-photon Raman interaction as the atom-optic equivalent of a birefringent optical q-plate to facilitate spin-to-orbital angular momentum conversion in a pseudo-spin-1/2 BEC. A q-plate is a waveplate with a fixed retardance but a spatially varying fast axis orientation angle. We derive the time evolution operator for the system and compare it to a Jones matrix for an optical waveplate to show that in our Raman q-plate, the equivalent orientation of the fast axis is described by the relative phase of the Raman beams and the retardance is determined by the pulse area. The charge of the Raman q-plate is determined by the orbital angular momentum of the Raman beams, and the beams contain umbilic C-point polarization singularities which are imprinted into the condensate as spin singularities: lemons, stars, spirals, and saddles. By tuning the optical beam parameters, we can create a full-Bloch BEC, which is a coreless vortex that contains every possible superposition of two spin states, that is, it covers the Bloch sphere.

  19. Phase transitions in the sdg interacting boson model

    NASA Astrophysics Data System (ADS)

    Van Isacker, P.; Bouldjedri, A.; Zerguine, S.

    2010-05-01

    A geometric analysis of the sdg interacting boson model is performed. A coherent state is used in terms of three types of deformation: axial quadrupole ( β), axial hexadecapole ( β) and triaxial ( γ). The phase-transitional structure is established for a schematic sdg Hamiltonian which is intermediate between four dynamical symmetries of U(15), namely the spherical U(5)⊗U(9), the (prolate and oblate) deformed SU(3) and the γ-soft SO(15) limits. For realistic choices of the Hamiltonian parameters the resulting phase diagram has properties close to what is obtained in the sd version of the model and, in particular, no transition towards a stable triaxial shape is found.

  20. Simulation of laser-tattoo pigment interaction in a tissue-mimicking phantom using Q-switched and long-pulsed lasers.

    PubMed

    Ahn, K J; Kim, B J; Cho, S B

    2017-08-01

    Laser therapy is the treatment of choice in tattoo removal. However, the precise mechanisms of laser-tattoo pigment interactions remain to be evaluated. We evaluated the geometric patterns of laser-tattoo pigment particle interactions using a tattoo pigment-embedded tissue-mimicking (TM) phantom. A Q-switched (QS) neodymium-doped yttrium aluminum garnet laser was used at settings of 532-, 660-, and 1064-nm wavelengths, single-pulse and quick pulse-to-pulse treatment modes, and spot sizes of 4 and 7 mm. Most of the laser-tattoo interactions in the experimental conditions formed cocoon-shaped or oval photothermal and photoacoustic injury zones, which contained fragmented tattoo particles in various sizes depending on the conditions. In addition, a long-pulsed 755-nm alexandrite laser was used at a spot size of 6 mm and pulse widths of 3, 5, and 10 ms. The finer granular pattern of tattoo destruction was observed in TM phantoms treated with 3- and 5-ms pulse durations compared to those treated with a 10-ms pulse. We outlined various patterns of laser-tattoo pigment interactions in a tattoo-embedded TM phantom to predict macroscopic tattoo and surrounding tissue reactions after laser treatment for tattoo removal. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Global tectonic reconstructions with continuously deforming and evolving rigid plates

    NASA Astrophysics Data System (ADS)

    Gurnis, Michael; Yang, Ting; Cannon, John; Turner, Mark; Williams, Simon; Flament, Nicolas; Müller, R. Dietmar

    2018-07-01

    Traditional plate reconstruction methodologies do not allow for plate deformation to be considered. Here we present software to construct and visualize global tectonic reconstructions with deforming plates within the context of rigid plates. Both deforming and rigid plates are defined by continuously evolving polygons. The deforming regions are tessellated with triangular meshes such that either strain rate or cumulative strain can be followed. The finite strain history, crustal thickness and stretching factor of points within the deformation zones are tracked as Lagrangian points. Integrating these tools within the interactive platform GPlates enables specialized users to build and refine deforming plate models and integrate them with other models in time and space. We demonstrate the integrated platform with regional reconstructions of Cenozoic western North America, the Mesozoic South American Atlantic margin, and Cenozoic southeast Asia, embedded within global reconstructions, using different data and reconstruction strategies.

  2. Comparison of thermal modeling, microstructural analysis, and Ti-in-quartz thermobarometry to constrain the thermal history of a cooling pluton during deformation in the Mount Abbot Quadrangle, CA

    NASA Astrophysics Data System (ADS)

    Nevitt, Johanna M.; Warren, Jessica M.; Kidder, Steven; Pollard, David D.

    2017-03-01

    Granitic plutons commonly preserve evidence for jointing, faulting, and ductile fabric development during cooling. Constraining the spatial variation and temporal evolution of temperature during this deformation could facilitate an integrated analysis of heterogeneous deformation over multiple length-scales through time. Here, we constrain the evolving temperature of the Lake Edison granodiorite within the Mount Abbot Quadrangle (central Sierra Nevada, CA) during late Cretaceous deformation by combining microstructural analysis, titanium-in-quartz thermobarometry (TitaniQ), and thermal modeling. Microstructural and TitaniQ analyses were applied to 12 samples collected throughout the pluton, representative of either the penetrative "regional" fabric or the locally strong "fault-related" fabric. Overprinting textures and mineral assemblages indicate the temperature decreased from 400-500°C to <350°C during faulting. TitaniQ reveals consistently lower Ti concentrations for partially reset fault-related fabrics (average: 12 ± 4 ppm) than for regional fabrics (average: 31 ± 12 ppm), suggesting fault-related fabrics developed later, following a period of pluton cooling. Uncertainties, particularly in TiO2 activity, significantly limit further quantitative thermal estimates using TitaniQ. In addition, we present a 1-D heat conduction model that suggests average pluton temperature decreased from 585°C at 85 Ma to 332°C at 79 Ma, consistent with radiometric age data for the field. Integrated with the model results, microstructural temperature constraints suggest faulting initiated by ˜83 Ma, when the temperature was nearly uniform across the pluton. Thus, spatially heterogeneous deformation cannot be attributed to a persistent temperature gradient, but may be related to regional structures that develop in cooling plutons.

  3. Q-Sample Construction: A Critical Step for a Q-Methodological Study.

    PubMed

    Paige, Jane B; Morin, Karen H

    2016-01-01

    Q-sample construction is a critical step in Q-methodological studies. Prior to conducting Q-studies, researchers start with a population of opinion statements (concourse) on a particular topic of interest from which a sample is drawn. These sampled statements are known as the Q-sample. Although literature exists on methodological processes to conduct Q-methodological studies, limited guidance exists on the practical steps to reduce the population of statements to a Q-sample. A case exemplar illustrates the steps to construct a Q-sample in preparation for a study that explored perspectives nurse educators and nursing students hold about simulation design. Experts in simulation and Q-methodology evaluated the Q-sample for readability, clarity, and for representativeness of opinions contained within the concourse. The Q-sample was piloted and feedback resulted in statement refinement. Researchers especially those undertaking Q-method studies for the first time may benefit from the practical considerations to construct a Q-sample offered in this article. © The Author(s) 2014.

  4. Normal and lateral Casimir forces between deformed plates

    NASA Astrophysics Data System (ADS)

    Emig, Thorsten; Hanke, Andreas; Golestanian, Ramin; Kardar, Mehran

    2003-02-01

    The Casimir force between macroscopic bodies depends strongly on their shape and orientation. To study this geometry dependence in the case of two deformed metal plates, we use a path-integral quantization of the electromagnetic field which properly treats the many-body nature of the interaction, going beyond the commonly used pairwise summation (PWS) of van der Waals forces. For arbitrary deformations we provide an analytical result for the deformation induced change in the Casimir energy, which is exact to second order in the deformation amplitude. For the specific case of sinusoidally corrugated plates, we calculate both the normal and the lateral Casimir forces. The deformation induced change in the Casimir interaction of a flat and a corrugated plate shows an interesting crossover as a function of the ratio of the mean plate distance H to the corrugation length λ: For λ≪H we find a slower decay ˜H-4, compared to the H-5 behavior predicted by PWS which we show to be valid only for λ≫H. The amplitude of the lateral force between two corrugated plates which are out of registry is shown to have a maximum at an optimal wavelength of λ≈2.5 H. With increasing H/λ≳0.3 the PWS approach becomes a progressively worse description of the lateral force due to many-body effects. These results may be of relevance for the design and operation of novel microelectromechanical systems (MEMS) and other nanoscale devices.

  5. The Interaction of Statistics and Geology -- Finite Deformations.

    DTIC Science & Technology

    1980-11-01

    UNCLASSIFIlED TR-178-SER-2 N 7 DIZO9 f l l ff-63f ~ l f f PRNEO VN TO TTSISF61/ EOM.’..lN 11 1 .1 2I " IIIj.5IIHL4. 1. 111 1----_III MICROCOPY RESOLUTION TEST ... Ramsey (1967). These might be the result of a sequence of linear deformations or homogeneous strains. In this section we summarize the description of...problem may be found in textbooks (see e.g. Theil (1971)) on Econometrics : y=B&+f, x=&+e where the errors of measurement e and f of x and y are

  6. Genetics Home Reference: 3q29 microdeletion syndrome

    MedlinePlus

    ... social interaction and communication), anxiety, bipolar disorder , and schizophrenia . Infants with 3q29 microdeletion syndrome often have feeding ... Bipolar Disorder Health Topic: Developmental Disabilities Health Topic: Schizophrenia Genetic and Rare Diseases Information Center (1 link) ...

  7. Engineering and Design: Structural Deformation Surveying

    DTIC Science & Technology

    2002-06-01

    loading deformations. Long-term measurements are far more common and somewhat more complex given their external nature . Long-term monitoring of a...fitting of structural elements, environmental protection, and development of mitigative measures in the case of natural disasters (land slides, earthquakes...of additional localized monitoring points (i.e., points not intended for routine observation) to determine the nature and extent of large displacements

  8. Spatial variation of crustal coda Q in California

    USGS Publications Warehouse

    Philips, W.S.; Lee, W.H.K.; Newberry, J.T.

    1988-01-01

    Coda wave data from California microearthquakes were studied in order to delineate regional fluctuations of apparent crustal attenuation in the band 1.5 to 24 Hz. Apparent attenuation was estimated using a single back scattering model of coda waves. The coda wave data were restricted to ???30 s following the origin time; this insures that crustal effects dominate the results as the backscattered shear waves thought to form the coda would not have had time to penetrate much deeper. Results indicate a strong variation in apparent crustal attenuation at high frequencies between the Franciscan and Salinian regions of central California and the Long Valley area of the Sierra Nevada. Although the coda Q measurements coincide at 1.5 Hz (Qc=100), at 24 Hz there is a factor of four difference between the measurements made in Franciscan (Qc=525) and Long Valley (Qc=2100) with the Salinian midway between (Qc=900). These are extremely large variations compared to measures of seismic velocities of comparable resolution, demonstrating the exceptional sensitivity of the high frequency coda Q measurement to regional geology. In addition, the frequency trend of the results is opposite to that seen in a compilation of coda Q measurements made worldwide by other authors which tend to converge at high and diverge at low frequencies, however, the worldwide results generally were obtained without limiting the coda lengths and probably reflect upper mantle rather than crustal properties. Our results match those expected due to scattering in random media represented by Von Karman autocorrelation functions of orders 1/2 to 1/3. The Von Karman medium of order 1/3 corresponding to the Franciscan coda Q measurement contains greater amounts of high wavenumber fluctuations. This indicates relatively large medium fluctuations with wavelengths on the order of 100 m in the highly deformed crust associated with the Franciscan, however, the influence of scattering on the coda Q measurement is

  9. Long-term results of forearm lengthening and deformity correction by the Ilizarov method.

    PubMed

    Orzechowski, Wiktor; Morasiewicz, Leszek; Krawczyk, Artur; Dragan, Szymon; Czapiński, Jacek

    2002-06-30

    Background. Shortening and deformity of the forearm is most frequently caused by congenital disorders or posttraumatic injury. Given its complex anatomy and biomechanics, the forearm is clearly the most difficult segment for lengthening and deformity correction.
    Material and methods. We analyzed 16 patients with shortening and deformity of the forearm, treated surgically, using the Ilizarov method in our Department from 1989 to 2001. in 9 cases 1-stage surgery was sufficient, while the remaining 7 patients underwent 2-5 stages of treatment. At total of 31 surgical operations were performed. The extent of forearm shortening ranged from 1,5 to 14,5 cm (5-70%). We development a new fixator based on Schanz half-pins.
    Results. The length of forearm lengthening per operative stage averaged 2,35 cm. the proportion of lengthening ranged from 6% to 48% with an average of 18,3%. The mean lengthening index was 48,15 days/cm. the per-patient rate of complications was 88% compared 45% per stage of treatment, mostly limited rotational mobility and abnormal consolidation of regenerated bone.
    Conclusions. Despite the high complication rate, the Ilizarov method is the method of choice for patients with forearm shortenings and deformities. Treatment is particularly indicated in patients with shortening caused by disproportionate length of the ulnar and forearm bones. Treatment should be managed so as cause the least possible damage to arm function, even at the cost of limited lengthening. Our new stabilizer based on Schanz half-pins makes it possible to preserve forearm rotation.

  10. The pore-forming bacterial effector, VopQ, halts autophagic turnover.

    PubMed

    Sreelatha, Anju; Orth, Kim; Starai, Vincent J

    2013-12-01

    Vibrio parahemolyticus Type III effector VopQ is both necessary and sufficient to induce autophagy within one hour of infection. We demonstrated that VopQ interacts with the Vo domain of the conserved vacuolar H(+)-ATPase. Membrane-associated VopQ subsequently forms pores in the membranes of acidic compartments, resulting in immediate release of protons without concomitant release of lumenal protein contents. These studies show how a bacterial pathogen can compromise host ion potentials using a gated pore-forming effector to equilibrate levels of small molecules found in endolysosomal compartments and disrupt cellular processes such as autophagy.

  11. Interaction of external n  =  1 magnetic fields with the sawtooth instability in low-q RFX-mod and DIII-D tokamaks

    NASA Astrophysics Data System (ADS)

    Piron, C.; Martin, P.; Bonfiglio, D.; Hanson, J.; Logan, N. C.; Paz-Soldan, C.; Piovesan, P.; Turco, F.; Bialek, J.; Franz, P.; Jackson, G.; Lanctot, M. J.; Navratil, G. A.; Okabayashi, M.; Strait, E.; Terranova, D.; Turnbull, A.

    2016-10-01

    External n  =  1 magnetic fields are applied in RFX-mod and DIII-D low safety factor Tokamak plasmas to investigate their interaction with the internal MHD dynamics and in particular with the sawtooth instability. In these experiments the applied magnetic fields cause a reduction of both the sawtooth amplitude and period, leading to an overall stabilizing effect on the oscillations. In RFX-mod sawteeth eventually disappear and are replaced by a stationary m  =  1, n  =  1 helical equilibrium without an increase in disruptivity. However toroidal rotation is significantly reduced in these plasmas, thus it is likely that the sawtooth mitigation in these experiments is due to the combination of the helically deformed core and the reduced rotation. The former effect is qualitatively well reproduced by nonlinear MHD simulations performed with the PIXIE3D code. The results obtained in these RFX-mod experiments motivated similar ones in DIII-D L-mode diverted Tokamak plasmas at low q 95. These experiments succeeded in reproducing the sawtooth mitigation with the approach developed in RFX-mod. In DIII-D this effect is correlated with a clear increase of the n  =  1 plasma response, that indicates an enhancement of the coupling to the marginally stable n  =  1 external kink, as simulations with the linear MHD code IPEC suggest. A significant rotation braking in the plasma core is also observed in DIII-D. Numerical calculations of the neoclassical toroidal viscosity (NTV) carried out with PENT identify this torque as a possible contributor for this effect.

  12. Cell-wall recovery after irreversible deformation of wood

    NASA Astrophysics Data System (ADS)

    Keckes, Jozef; Burgert, Ingo; Frühmann, Klaus; Müller, Martin; Kölln, Klaas; Hamilton, Myles; Burghammer, Manfred; Roth, Stephan V.; Stanzl-Tschegg, Stefanie; Fratzl, Peter

    2003-12-01

    The remarkable mechanical properties of biological materials reside in their complex hierarchical architecture and in specific molecular mechanistic phenomena. The fundamental importance of molecular interactions and bond recovery has been suggested by studies on deformation and fracture of bone and nacre. Like these mineral-based materials, wood also represents a complex nanocomposite with excellent mechanical performance, despite the fact that it is mainly based on polymers. In wood, however, the mechanistic contribution of processes in the cell wall is not fully understood. Here we have combined tensile tests on individual wood cells and on wood foils with simultaneous synchrotron X-ray diffraction analysis in order to separate deformation mechanisms inside the cell wall from those mediated by cell-cell interactions. We show that tensile deformation beyond the yield point does not deteriorate the stiffness of either individual cells or foils. This indicates that there is a dominant recovery mechanism that re-forms the amorphous matrix between the cellulose microfibrils within the cell wall, maintaining its mechanical properties. This stick-slip mechanism, rather like Velcro operating at the nanometre level, provides a 'plastic response' similar to that effected by moving dislocations in metals. We suggest that the molecular recovery mechanism in the cell matrix is a universal phenomenon dominating the tensile deformation of different wood tissue types.

  13. Moduli space potentials for heterotic non-Abelian flux tubes: Weak deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shifman, M.; Yung, A.; Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg 188300

    2010-09-15

    We consider N=2 supersymmetric QCD with the U(N) gauge group (with no Fayet-Iliopoulos term) and N{sub f} flavors of massive quarks deformed by the mass term {mu} for the adjoint matter, W={mu}A{sup 2}, assuming that N{<=}N{sub f}<2N. This deformation breaks N=2 supersymmetry down to N=1. This theory supports non-Abelian flux tubes (strings) which are stabilized by W. They are referred to as F-term stabilized strings. We focus on the studies of such strings in the vacuum in which N squarks condense, at small {mu}, so that the Z{sub N} strings preserve, in a sense, their Bogomol'nyi-Prasad-Sommerfield nature. The (s)quark massesmore » are assumed to be nondegenerate. We calculate string tensions both in the classical and quantum regimes. Then we translate our results for the tensions in terms of the effective low-energy weighted CP(N{sub f}-1) model on the string world sheet. The bulk {mu} deformation makes this theory N=(0,2) supersymmetric heterotic weighted CP(N{sub f}-1) model in two dimensions. We find the deformation potential on the world sheet. This significantly expands the class of the heterotically deformed CP models emerging on the string world sheet compared to that suggested by Edalati and Tong. Among other things, we show that nonperturbative quantum effects in the bulk theory are exactly reproduced by the quantum effects in the world-sheet theory.« less

  14. Defect Initiation/Growth and Energy Dissipation Induced by Deformation and Fracture

    DTIC Science & Technology

    1993-01-01

    deformation in MgO single crystals . 4 III. Molecular CO emission accompanying fracture of polycarbonate: evidence for chain cleavage J. T. Dickinson, L. C... Crystal MgO Although not a polymer, we wish to point out that the fracture-induced phE and EE from the fracture of single crystal MgQ 17 (Fig. 7) is...long times. This is a good qualitative description of the behavior exhibited by EE from in some systems. C. Single Crystal MgO Williams et al. have

  15. Modeling Dynamic Helium Release as a Tracer of Rock Deformation

    DOE PAGES

    Gardner, W. Payton; Bauer, Stephen J.; Kuhlman, Kristopher L.; ...

    2017-11-03

    Here, we use helium released during mechanical deformation of shales as a signal to explore the effects of deformation and failure on material transport properties. A dynamic dual-permeability model with evolving pore and fracture networks is used to simulate gases released from shale during deformation and failure. Changes in material properties required to reproduce experimentally observed gas signals are explored. We model two different experiments of 4He flow rate measured from shale undergoing mechanical deformation, a core parallel to bedding and a core perpendicular to bedding. We also found that the helium signal is sensitive to fracture development and evolutionmore » as well as changes in the matrix transport properties. We constrain the timing and effective fracture aperture, as well as the increase in matrix porosity and permeability. Increases in matrix permeability are required to explain gas flow prior to macroscopic failure, and the short-term gas flow postfailure. Increased matrix porosity is required to match the long-term, postfailure gas flow. This model provides the first quantitative interpretation of helium release as a result of mechanical deformation. The sensitivity of this model to changes in the fracture network, as well as to matrix properties during deformation, indicates that helium release can be used as a quantitative tool to evaluate the state of stress and strain in earth materials.« less

  16. Modeling Dynamic Helium Release as a Tracer of Rock Deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, W. Payton; Bauer, Stephen J.; Kuhlman, Kristopher L.

    Here, we use helium released during mechanical deformation of shales as a signal to explore the effects of deformation and failure on material transport properties. A dynamic dual-permeability model with evolving pore and fracture networks is used to simulate gases released from shale during deformation and failure. Changes in material properties required to reproduce experimentally observed gas signals are explored. We model two different experiments of 4He flow rate measured from shale undergoing mechanical deformation, a core parallel to bedding and a core perpendicular to bedding. We also found that the helium signal is sensitive to fracture development and evolutionmore » as well as changes in the matrix transport properties. We constrain the timing and effective fracture aperture, as well as the increase in matrix porosity and permeability. Increases in matrix permeability are required to explain gas flow prior to macroscopic failure, and the short-term gas flow postfailure. Increased matrix porosity is required to match the long-term, postfailure gas flow. This model provides the first quantitative interpretation of helium release as a result of mechanical deformation. The sensitivity of this model to changes in the fracture network, as well as to matrix properties during deformation, indicates that helium release can be used as a quantitative tool to evaluate the state of stress and strain in earth materials.« less

  17. Maternal uniparental disomy of chromosome 14 in a boy with t(14q14q) associated with a paternal t(13q14q)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomkins, D.J.; Waye, J.S.; Whelan, D.T.

    An 11-year-old boy was referred for chromosomal analysis because of precocious development and behavioral problems suggestive of the fragile X syndrome. The cytogenetic fragile X studies were normal, but a routine GTG-banded karyotype revealed an abnormal male karyotype with a Robertsonian translocation between the two chromosome 14`s: 46,XY,t(14q14q). Paternal karyotyping revealed another abnormal karyotype: 46,XY,t(13q14q). A brother had the same karyotype as the father; the mother was deceased. In order to determine if the apparently balanced t(14q14q) in the proband might be the cause of the clinical findings, molecular analysis of the origin of the chromosome 14`s was initiated. Southernmore » blotting and hybridization with D4S13 showed that the proband had two copies of one maternal allele which was shared by his brother. The brother`s second allele corresponded to one of the paternal alleles; the proband had no alleles from the father. Analysis of four other VNTRs demonstrated the probability of paternity to be greater than 99%. Thus, the t(14q14q) was most likely composed of two maternal chromosome 14`s. Further characterization of the t(14q14q) by dinucleotide repeat polymorphic markers is in progress to determine whether it has arisen from maternal isodisomy or heterodisomy. Several cases of uniparental disomy for chromosome 14 have been reported recently. Paternal disomy appears to be associated with more severe congenital anomalies and mental retardation, whereas maternal disomy may be associated with premature puberty and minimal intellectual impairment. The origin of the t(14q14q) in the present case may be related to the paternal translocation, as the segregation of the t(13q14q) in meiosis could lead to sperm that are nullisomic for chromosome 14.« less

  18. Mid-Space-Independent Deformable Image Registration

    PubMed Central

    Aganj, Iman; Iglesias, Juan Eugenio; Reuter, Martin; Sabuncu, Mert Rory; Fischl, Bruce

    2017-01-01

    Aligning images in a mid-space is a common approach to ensuring that deformable image registration is symmetric – that it does not depend on the arbitrary ordering of the input images. The results are, however, generally dependent on the mathematical definition of the mid-space. In particular, the set of possible solutions is typically restricted by the constraints that are enforced on the transformations to prevent the mid-space from drifting too far from the native image spaces. The use of an implicit atlas has been proposed as an approach to mid-space image registration. In this work, we show that when the atlas is aligned to each image in the native image space, the data term of implicit-atlas-based deformable registration is inherently independent of the mid-space. In addition, we show that the regularization term can be reformulated independently of the mid-space as well. We derive a new symmetric cost function that only depends on the transformation morphing the images to each other, rather than to the atlas. This eliminates the need for anti-drift constraints, thereby expanding the space of allowable deformations. We provide an implementation scheme for the proposed framework, and validate it through diffeomorphic registration experiments on brain magnetic resonance images. PMID:28242316

  19. New localization mechanism and Hodge duality for q -form field

    NASA Astrophysics Data System (ADS)

    Fu, Chun-E.; Liu, Yu-Xiao; Guo, Heng; Zhang, Sheng-Li

    2016-03-01

    In this paper, we investigate the problem of localization and the Hodge duality for a q -form field on a p -brane with codimension one. By a general Kaluza-Klein (KK) decomposition without gauge fixing, we obtain two Schrödinger-like equations for two types of KK modes of the bulk q -form field, which determine the localization and mass spectra of these KK modes. It is found that there are two types of zero modes (the 0-level modes): a q -form zero mode and a (q -1 )-form one, which cannot be localized on the brane at the same time. For the n -level KK modes, there are two interacting KK modes, a massive q -form KK mode and a massless (q -1 )-form one. By analyzing gauge invariance of the effective action and choosing a gauge condition, the n -level massive q -form KK mode decouples from the n -level massless (q -1 )-form one. It is also found that the Hodge duality in the bulk naturally becomes two dualities on the brane. The first one is the Hodge duality between a q -form zero mode and a (p -q -1 )-form one, or between a (q -1 )-form zero mode and a (p -q )-form one. The second duality is between two group KK modes: one is an n -level massive q -form KK mode with mass mn and an n -level massless (q -1 )-form mode; another is an n -level (p -q )-form one with the same mass mn and an n -level massless (p -q -1 )-form mode. Because of the dualities, the effective field theories on the brane for the KK modes of the two dual bulk form fields are physically equivalent.

  20. Myelodysplastic Syndrome with concomitant t(5;21)(q15;q22) and del(5)(q13q33): case report and review of literature

    PubMed Central

    Weckbaugh, Brandon; Sirridge, Christopher; Woodroof, Janet; Persons, Diane

    2016-01-01

    Chromosomal abnormalities lead to the development of hematologic malignancies such as Myelodysplastic Syndrome (MDS). Known chromosomal changes causing MDS include deletion of the long arm of chromosome 5, runt-related transcription factor 1 (RUNX1) also known as acute myeloid leukemia 1 protein (AML1), and very rarely fusion genes involving RUNX1 at t(5;21)(q15;q22). We present a case of a 71-year-old female with MDS, refractory anemia with excess blasts, type 1, with a combination of two cytogenetic abnormalities, specifically a concomitant translocation between chromosomes 5q15 and 21q22 and deletion of chromosome 5q13q33. Fluorescence in-situ hybridization (FISH) using a probe for RUNX1 (AML1), localized to 21q22, showed three FISH signals for RUNX1, consistent with rearrangement of RUNX1. Therapy was started with Lenalidomide leading to normal blood counts. Most significantly, repeat cytogenetics revealed normal karyotype and resolution of deletion on the long arm of chromosome 5 and a t(5;21). FISH negative for deletion 5q. The results altogether meet criteria for a complete cytogenetic remission (CR). We report a new case of t(5;21)(q15;q22) involving the RUNX1 gene and del(5)(q13q33) in a MDS patient, a combination of chromosomal abnormalities heretofore not reported in the literature. RUNX1 rearrangement is usually associated with an adverse prognosis in AML and MDS. Deletions of 5q are typically associated with poor prognosis in AML, however it is usually associated with a favorable prognosis in MDS. Our patient responded very well to Lenalidomide therapy with achievement of CR. Lenalidomide is approved for treatment of anemia in low and intermediate risk MDS with del (5q), however based on a search of literature it seems that RUNX1 mutations are also more prominent in patients who have responded to Lenalidomide therapy. MDS is a genomically unstable disease. Hence, it is conceivable that our patient started with a 5q minus syndrome and then acquired the

  1. How the continents deform: The evidence from tectonic geodesy

    USGS Publications Warehouse

    Thatcher, Wayne R.

    2009-01-01

    Space geodesy now provides quantitative maps of the surface velocity field within tectonically active regions, supplying constraints on the spatial distribution of deformation, the forces that drive it, and the brittle and ductile properties of continental lithosphere. Deformation is usefully described as relative motions among elastic blocks and is block-like because major faults are weaker than adjacent intact crust. Despite similarities, continental block kinematics differs from global plate tectonics: blocks are much smaller, typically ∼100–1000 km in size; departures from block rigidity are sometimes measurable; and blocks evolve over ∼1–10 Ma timescales, particularly near their often geometrically irregular boundaries. Quantitatively relating deformation to the forces that drive it requires simplifying assumptions about the strength distribution in the lithosphere. If brittle/elastic crust is strongest, interactions among blocks control the deformation. If ductile lithosphere is the stronger, its flow properties determine the surface deformation, and a continuum approach is preferable.

  2. Social evolution and genetic interactions in the short and long term.

    PubMed

    Van Cleve, Jeremy

    2015-08-01

    The evolution of social traits remains one of the most fascinating and feisty topics in evolutionary biology even after half a century of theoretical research. W.D. Hamilton shaped much of the field initially with his 1964 papers that laid out the foundation for understanding the effect of genetic relatedness on the evolution of social behavior. Early theoretical investigations revealed two critical assumptions required for Hamilton's rule to hold in dynamical models: weak selection and additive genetic interactions. However, only recently have analytical approaches from population genetics and evolutionary game theory developed sufficiently so that social evolution can be studied under the joint action of selection, mutation, and genetic drift. We review how these approaches suggest two timescales for evolution under weak mutation: (i) a short-term timescale where evolution occurs between a finite set of alleles, and (ii) a long-term timescale where a continuum of alleles are possible and populations evolve continuously from one monomorphic trait to another. We show how Hamilton's rule emerges from the short-term analysis under additivity and how non-additive genetic interactions can be accounted for more generally. This short-term approach reproduces, synthesizes, and generalizes many previous results including the one-third law from evolutionary game theory and risk dominance from economic game theory. Using the long-term approach, we illustrate how trait evolution can be described with a diffusion equation that is a stochastic analogue of the canonical equation of adaptive dynamics. Peaks in the stationary distribution of the diffusion capture classic notions of convergence stability from evolutionary game theory and generally depend on the additive genetic interactions inherent in Hamilton's rule. Surprisingly, the peaks of the long-term stationary distribution can predict the effects of simple kinds of non-additive interactions. Additionally, the peaks

  3. Orbital shape in intentional skull deformations and adult sagittal craniosynostoses.

    PubMed

    Sandy, Ronak; Hennocq, Quentin; Nysjö, Johan; Giran, Guillaume; Friess, Martin; Khonsari, Roman Hossein

    2018-06-21

    Intentional cranial deformations are the result of external mechanical forces exerted on the skull vault that modify the morphology of various craniofacial structures such as the skull base, the orbits and the zygoma. In this controlled study, we investigated the 3D shape of the orbital inner mould and the orbital volume in various types of intentional deformations and in adult non-operated scaphocephaly - the most common type of craniosynostosis - using dedicated morphometric methods. CT scans were performed on 32 adult skulls with intentional deformations, 21 adult skull with scaphocephaly and 17 non-deformed adult skulls from the collections of the Muséum national d'Histoire naturelle in Paris, France. The intentional deformations group included six skulls with Toulouse deformations, eight skulls with circumferential deformations and 18 skulls with antero-posterior deformations. Mean shape models were generated based on a semi-automatic segmentation technique. Orbits were then aligned and compared qualitatively and quantitatively using colour-coded distance maps and by computing the mean absolute distance, the Hausdorff distance, and the Dice similarity coefficient. Orbital symmetry was assessed after mirroring, superimposition and Dice similarity coefficient computation. We showed that orbital shapes were significantly and symmetrically modified in intentional deformations and scaphocephaly compared with non-deformed control skulls. Antero-posterior and circumferential deformations demonstrated a similar and severe orbital deformation pattern resulting in significant smaller orbital volumes. Scaphocephaly and Toulouse deformations had similar deformation patterns but had no effect on orbital volumes. This study showed that intentional deformations and scaphocephaly significantly interact with orbital growth. Our approach was nevertheless not sufficient to identify specific modifications caused by the different types of skull deformations or by scaphocephaly.

  4. Language Impairment Resulting from a de novo Deletion of 7q32.1q33.

    PubMed

    Jiménez-Romero, María S; Barcos-Martínez, Montserrat; Espejo-Portero, Isabel; Benítez-Burraco, Antonio

    2016-10-01

    We report on a girl who presents with hearing loss, behavioral disturbances (according to the Inventory for Client and Agency Planning) as well as motor and cognitive delay (according to Battelle Developmental Inventories) which have a significant impact on her speech and language abilities [according to the Peabody Picture Vocabulary Test (ed 3), and the Prueba de Lenguaje Oral de Navarra-Revisada (Navarra Oral Language Test, Revised)]. Five copy number variations (CNVs) were identified in the child: arr[hg18] 7q32.1q33(127109685-132492196)×1, 8p23.1(7156900-7359099) ×1, 15q13.1(26215673-26884937)×1, Xp22.33(17245- 102434)×3, and Xp22.33(964441-965024)×3. The pathogenicity of similar CNVs is mostly reported as unknown. The largest deletion is found in a hot spot for cognitive disease and language impairment and contains several genes involved in brain development and function, many of which have been related to developmental disorders encompassing language deficits (dyslexia, speech-sound disorder, and autism). Some of these genes interact with FOXP2 . The proband's phenotype may result from a reduced expression of some of these genes.

  5. Language Impairment Resulting from a de novo Deletion of 7q32.1q33

    PubMed Central

    Jiménez-Romero, María S.; Barcos-Martínez, Montserrat; Espejo-Portero, Isabel; Benítez-Burraco, Antonio

    2016-01-01

    We report on a girl who presents with hearing loss, behavioral disturbances (according to the Inventory for Client and Agency Planning) as well as motor and cognitive delay (according to Battelle Developmental Inventories) which have a significant impact on her speech and language abilities [according to the Peabody Picture Vocabulary Test (ed 3), and the Prueba de Lenguaje Oral de Navarra-Revisada (Navarra Oral Language Test, Revised)]. Five copy number variations (CNVs) were identified in the child: arr[hg18] 7q32.1q33(127109685-132492196)×1, 8p23.1(7156900-7359099) ×1, 15q13.1(26215673-26884937)×1, Xp22.33(17245- 102434)×3, and Xp22.33(964441-965024)×3. The pathogenicity of similar CNVs is mostly reported as unknown. The largest deletion is found in a hot spot for cognitive disease and language impairment and contains several genes involved in brain development and function, many of which have been related to developmental disorders encompassing language deficits (dyslexia, speech-sound disorder, and autism). Some of these genes interact with FOXP2. The proband's phenotype may result from a reduced expression of some of these genes. PMID:27867345

  6. Stent Design Affects Femoropopliteal Artery Deformation.

    PubMed

    MacTaggart, Jason; Poulson, William; Seas, Andreas; Deegan, Paul; Lomneth, Carol; Desyatova, Anastasia; Maleckis, Kaspars; Kamenskiy, Alexey

    2018-03-23

    Poor durability of femoropopliteal artery (FPA) stenting is multifactorial, and severe FPA deformations occurring with limb flexion are likely involved. Different stent designs result in dissimilar stent-artery interactions, but the degree of these effects in the FPA is insufficiently understood. To determine how different stent designs affect limb flexion-induced FPA deformations. Retrievable markers were deployed into n = 28 FPAs of lightly embalmed human cadavers. Bodies were perfused and CT images were acquired with limbs in the standing, walking, sitting, and gardening postures. Image analysis allowed measurement of baseline FPA foreshortening, bending, and twisting associated with each posture. Markers were retrieved and 7 different stents were deployed across the adductor hiatus in the same limbs. Markers were then redeployed in the stented FPAs, and limbs were reimaged. Baseline and stented FPA deformations were compared to determine the influence of each stent design. Proximal to the stent, Innova, Supera, and SmartFlex exacerbated foreshortening, SmartFlex exacerbated twisting, and SmartControl restricted bending of the FPA. Within the stent, all devices except Viabahn restricted foreshortening; Supera, SmartControl, and AbsolutePro restricted twisting; SmartFlex and Innova exacerbated twisting; and Supera and Viabahn restricted bending. Distal to the stents, all devices except AbsolutePro and Innova exacerbated foreshortening, and Viabahn, Supera, Zilver, and SmartControl exacerbated twisting. All stents except Supera were pinched in flexed limb postures. Peripheral self-expanding stents significantly affect limb flexion-induced FPA deformations, but in different ways. Although certain designs seem to accommodate some deformation modes, no device was able to match all FPA deformations.

  7. The Identification of the Deformation Stage of a Metal Specimen Based on Acoustic Emission Data Analysis

    PubMed Central

    Zou, Shenao; Yan, Fengying; Yang, Guoan; Sun, Wei

    2017-01-01

    The acoustic emission (AE) signals of metal materials have been widely used to identify the deformation stage of a pressure vessel. In this work, Q235 steel samples with different propagation distances and geometrical structures are stretched to get the corresponding acoustic emission signals. Then the obtained acoustic emission signals are de-noised by empirical mode decomposition (EMD), and then decomposed into two different frequency ranges, i.e., one mainly corresponding to metal deformation and the other mainly corresponding to friction signals. The ratio of signal energy between two frequency ranges is defined as a new acoustic emission characteristic parameter. Differences can be observed at different deformation stages in both magnitude and data distribution range. Compared with other acoustic emission parameters, the proposed parameter is valid in different setups of the propagation medium and the coupled stiffness. PMID:28387703

  8. Modelling large deformation and soil—water—structure interaction with material point method: Briefing on MPM2017 conference

    NASA Astrophysics Data System (ADS)

    Rohe, Alexander; Liang, Dongfang

    2017-06-01

    The 1st International Conference on the Material Point Method for "Modelling Large Deformation and Soil-Water-Structure Interaction" (MPM2017) was held in Delft, The Netherlands on 10-13 January 2017. This is the first conference organised by the Anura3D MPM Research Community, following a series of international workshops and symposia previously held in The Netherlands, UK, Spain and Italy, as part of the European Commission FP7 Marie-Curie project MPM-DREDGE. We are delighted to present seven contributions in this Special Column of the Journal of Hydrodynamics, and take this opportunity to announce that the 2nd conference, MPM2019, will be held in Cambridge, UK in January 2019.

  9. Analytical Approach to Large Deformation Problems of Frame Structures

    NASA Astrophysics Data System (ADS)

    Ohtsuki, Atsumi; Ellyin, Fernand

    In elements used as flexible linking devices and structures, the main characteristic is a fairly large deformation without exceeding the elastic limit of the material. This property is of both analytical and technological interests. Previous studies of large deformation have been generally concerned with a single member (e.g. a cantilever beam, a simply supported beam, etc.). However, there are very few large deformation studies of assembled members such as frames. This paper deals with a square frame with rigid joints, loaded diagonally in either tension or compression by a pair of opposite forces. Analytical solutions for large deformation are obtained in terms of elliptic integrals, and are compared with the experimental data. The agreement is found to be fairly close.

  10. Transient deformation of karst aquifers observed by GPS: improved knowledge from Central Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Silverii, F.; D'Agostino, N.; Borsa, A. A.

    2017-12-01

    The redistribution of water masses due to temporal variations of hydrological conditions can produce observable deformation of the shallow crust. Space geodesy, e.g., GPS and InSAR, has provided a considerable improvement in terms of data accuracy and spatial and temporal resolution for the detection and investigation of this kind of deformation. In particular, in the areas where snow and water accumulate for long periods, such as aquifers, relatively high deformation (up to several millimeters) has been observed. Karst aquifers are able to store huge amounts of water and a clear deformation related to the groundwater storage variations has been observed in some regions. In a recent study we showed that the karst aquifers of Southern Apennines deform in response of seasonal and interannual variations of groundwater content, producing a visible transient signal in the time series of the surrounding GPS sites. In this work, we analyze the GPS time series and hydrological data of Central Italy, an interesting and complex area which hosts huge karst aquifers and is characterized by high seismic activity. We show that a noticeable transient signal with features similar to those of Southern Apennines affects also the time series of Central Apennines, suggesting that the large karst aquifers of this region experience a process analogue to the ones in Southern Italy. Thanks to the availability of a dense GPS network and different kinds of hydrological data (rainfall, spring discharge, groundwater level) we focus on the process causing the observed deformation. In particular, we model the observed deformation by inverting the GPS data using Green's functions for finite strain cuboid sources (Barbot et al. 2017). An enhanced understanding of the causes and implications of the highlighted deformation of karst aquifers is of primary interest for an improved management of this important water resource and for a better understanding of the possible interactions between

  11. Work participation in Q-fever patients and patients with Legionnaires' disease: a 12-month cohort study.

    PubMed

    Van Loenhout, Joris A F; Hautvast, Jeannine L A; Akkermans, Reinier P; Donders, Nathalie C G M; Vercoulen, Jan H; Paget, W John; van der Velden, Koos

    2015-05-01

    The aim of the study was to assess long-term work participation of Q-fever patients and patients with Legionnaires' disease, and to identify which factors are associated with a reduced work participation in Q-fever patients. Q-fever patients participated at four time points until 12 months after onset of illness, patients with Legionnaires' disease only at 12 months. Data were self-reported using questionnaires on the amount of hours that patients worked, and on socio-demographic, medical, psychosocial and lifestyle aspects. Our study included 336 Q-fever patients and 190 patients with Legionnaires' disease. There was a decrease in the proportion of Q-fever patients with reduced work participation over time, from 45% at 3 months to 19% at 12 months (versus 15% of patients with Legionnaires' disease at 12 months). Factors associated with reduced work participation of Q-fever patients in a multivariate model were having symptoms, a higher level of sorrow, being a former smoker (compared to never smoking), not consuming any alcohol and following additional treatment for the long-term health effects of Q-fever. Despite an increase in work participation of Q-fever patients over time, almost one in five Q-fever patients and one in six patients with Legionnaires' disease still suffer from reduced work participation at 12 months. Occupational and insurance physicians need to be aware of the long-term impact of these diseases on work participation. © 2015 the Nordic Societies of Public Health.

  12. Relation of a†a terms to higher-order terms in the adiabatic expansion for large-amplitude collective motion

    NASA Astrophysics Data System (ADS)

    Sato, Koichi

    2017-12-01

    We investigate the relation of a^\\dagger a terms in the collective operator to the higher-order terms in the adiabatic self-consistent collective coordinate (ASCC) method. In the ASCC method, a state vector is written as e^{i\\hat G(q,p,n)}|φ(q)> with \\hat G(q,p,n), which is a function of the collective coordinate q, its conjugate momentum p, and the particle number n. According to the generalized Thouless theorem, \\hat G can be written as a linear combination of two-quasiparticle creation and annihilation operators a^\\dagger_μ a^\\dagger_ν and a_ν a_μ. We show that, if a^\\dagger a terms are included in \\hat G(q,p,n), it corresponds to the higher-order terms in the adiabatic expansion of \\hat G. This relation serves as a prescription to determine the higher-order collective operators from the a^\\dagger a part of the collective operator, once it is given, without solving the higher-order equations of motion.

  13. Stability of Tsallis entropy and instabilities of Rényi and normalized Tsallis entropies: a basis for q-exponential distributions.

    PubMed

    Abe, Sumiyoshi

    2002-10-01

    The q-exponential distributions, which are generalizations of the Zipf-Mandelbrot power-law distribution, are frequently encountered in complex systems at their stationary states. From the viewpoint of the principle of maximum entropy, they can apparently be derived from three different generalized entropies: the Rényi entropy, the Tsallis entropy, and the normalized Tsallis entropy. Accordingly, mere fittings of observed data by the q-exponential distributions do not lead to identification of the correct physical entropy. Here, stabilities of these entropies, i.e., their behaviors under arbitrary small deformation of a distribution, are examined. It is shown that, among the three, the Tsallis entropy is stable and can provide an entropic basis for the q-exponential distributions, whereas the others are unstable and cannot represent any experimentally observable quantities.

  14. Spinal deformities rehabilitation - state of the art review.

    PubMed

    Weiss, Hans-Rudolf

    2010-12-24

    Medical rehabilitation aims at an improvement in function, capacity and participation. For the rehabilitation of spinal deformities, the goal is to maintain function and prevent secondary symptoms in the short- and long-term. In patients with scoliosis, predictable signs and symptoms include pain and reduced pulmonary function. A Pub Med review was completed in order to reveal substantial evidence for inpatient rehabilitation as performed in Germany. No evidence has been found in general to support claims for actual inpatient rehabilitation programmes as used today. Nevertheless, as there is some evidence that inpatient rehabilitation may be beneficial to patients with spinal deformities complicated by certain additional conditions, the body of evidence there is for conservative treatment of spinal deformities has been reviewed in order to allow suggestions for outpatient conservative treatment and inpatient rehabilitation. Today, for both children and adolescents, we are able to offer intensive rehabilitation programmes lasting three to five days, which enable the patients to acquire the skills necessary to prevent postures fostering scoliosis in everyday life without missing too much of school teaching subjects at home. The secondary functional impairments adult scoliosis patients might have, as in the opinion of the author, still today require the time of 3-4 weeks in the clinical in-patient setting. Time to address psychosocial as well as somatic limitations, namely chronic pains and cardiorespiratory malfunction is needed to preserve the patients working capability in the long-term. Outpatient treatment/rehabilitation is sufficient for adolescents with spinal deformities.Inpatient rehabilitation is recommended for patients with spinal deformities and pain or severe restrictive ventilation disorder.

  15. In-vitro long term and electrochemical corrosion resistance of cold deformed nitrogen containing austenitic stainless steels in simulated body fluid.

    PubMed

    Talha, Mohd; Behera, C K; Sinha, O P

    2014-07-01

    This work was focused on the evaluation of the corrosion behavior of deformed (10% and 20% cold work) and annealed (at 1050 °C for 15 min followed by water quenching) Ni-free high nitrogen austenitic stainless steels (HNSs) in simulated body fluid at 37°C using weight loss method (long term), electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. Scanning electron microscopy (SEM) was used to understand the surface morphology of the alloys after polarization test. It has been observed that cold working had a significant influence on the corrosion resistant properties of these alloys. The weight loss and corrosion rates were observed to decrease with increasing degree of cold working and nitrogen content in the alloy. The corrosion resistance of the material is directly related to the resistance of the passive oxide film formed on its surface which was enhanced with cold working and nitrogen content. It was also observed that corrosion current densities were decreased and corrosion potentials were shifted to more positive values. By seeing pit morphology under SEM, shallower and smaller pits were associated with HNSs and cold worked samples, indicating that corrosion resistance increases with increasing nitrogen content and degree of cold deformation. X-ray diffraction profiles of annealed as well as deformed alloys were revealed and there is no evidence for formation of martensite or any other secondary phases. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Evolution and function of CAG/polyglutamine repeats in protein–protein interaction networks

    PubMed Central

    Schaefer, Martin H.; Wanker, Erich E.; Andrade-Navarro, Miguel A.

    2012-01-01

    Expanded runs of consecutive trinucleotide CAG repeats encoding polyglutamine (polyQ) stretches are observed in the genes of a large number of patients with different genetic diseases such as Huntington's and several Ataxias. Protein aggregation, which is a key feature of most of these diseases, is thought to be triggered by these expanded polyQ sequences in disease-related proteins. However, polyQ tracts are a normal feature of many human proteins, suggesting that they have an important cellular function. To clarify the potential function of polyQ repeats in biological systems, we systematically analyzed available information stored in sequence and protein interaction databases. By integrating genomic, phylogenetic, protein interaction network and functional information, we obtained evidence that polyQ tracts in proteins stabilize protein interactions. This happens most likely through structural changes whereby the polyQ sequence extends a neighboring coiled-coil region to facilitate its interaction with a coiled-coil region in another protein. Alteration of this important biological function due to polyQ expansion results in gain of abnormal interactions, leading to pathological effects like protein aggregation. Our analyses suggest that research on polyQ proteins should shift focus from expanded polyQ proteins into the characterization of the influence of the wild-type polyQ on protein interactions. PMID:22287626

  17. Study of seasonal and long-term vertical deformation in Nepal based on GPS and GRACE observations

    NASA Astrophysics Data System (ADS)

    Zhang, Tengxu; Shen, WenBin; Pan, Yuanjin; Luan, Wei

    2018-02-01

    Lithospheric deformation signal can be detected by combining data from continuous global positioning system (CGPS) and satellite observations from the Gravity Recovery and Climate Experiment (GRACE). In this paper, we use 2.5- to 19-year-long time series from 35 CGPS stations to estimate vertical deformation rates in Nepal, which is located in the southern side of the Himalaya. GPS results were compared with GRACE observations. Principal component analysis was conducted to decompose the time series into three-dimensional principal components (PCs) and spatial eigenvectors. The top three high-order PCs were calculated to correct common mode errors. Both GPS and GRACE observations showed significant seasonal variations. The observed seasonal GPS vertical variations are in good agreement with those from the GRACE-derived results, particularly for changes in surface pressure, non-tidal oceanic mass loading, and hydrologic loading. The GPS-observed rates of vertical deformation obtained for the region suggest both tectonic impact and mass decrease. The rates of vertical crustal deformation were estimated by removing the GRACE-derived hydrological vertical rates from the GPS measurements. Most of the sites located in the southern part of the Main Himalayan Thrust subsided, whereas the northern part mostly showed an uplift. These results may contribute to the understanding of secular vertical crustal deformation in Nepal.

  18. Impact of deformed extreme-ultraviolet pellicle in terms of CD uniformity

    NASA Astrophysics Data System (ADS)

    Kim, In-Seon; Yeung, Michael; Barouch, Eytan; Oh, Hye-Keun

    2015-07-01

    The usage of the extreme ultraviolet (EUV) pellicle is regarded as the solution for defect control since it can protect the mask from airborne debris. However some obstacles disrupt real-application of the pellicle such as structural weakness, thermal damage and so on. For these reasons, flawless fabrication of the pellicle is impossible. In this paper, we discuss the influence of deformed pellicle in terms of non-uniform intensity distribution and critical dimension (CD) uniformity. It was found that non-uniform intensity distribution is proportional to local tilt angle of pellicle and CD variation was linearly proportional to transmission difference. When we consider the 16 nm line and space pattern with dipole illumination (σc=0.8, σr=0.1, NA=0.33), the transmission difference (max-min) of 0.7 % causes 0.1 nm CD uniformity. Influence of gravity caused deflection to the aerial image is small enough to ignore. CD uniformity is less than 0.1 nm even for the current gap of 2 mm between mask and pellicle. However, heat caused EUV pellicle wrinkle might cause serious image distortion because a wrinkle of EUV pellicle causes a transmission loss variation as well as CD non-uniformity. In conclusion, local angle of a wrinkle, not a period or an amplitude of a wrinkle is a main factor to CD uniformity, and local angle of less than ~270 mrad is needed to achieve 0.1 nm CD uniformity with 16 nm L/S pattern.

  19. Fluid flow in deforming media: interpreting stable isotope signatures of marbles

    NASA Astrophysics Data System (ADS)

    Bond, C. E.

    2016-12-01

    Fluid flow in the crust is controlled by permeable networks. These networks can be created and destroyed dynamically during rock deformation. Rock deformation is therefore critical in controlling fluid pathways in the crust and hence the location of mineral and other resources. Here, evidence for deformation-enhanced fluid infiltration shows that a range of deformation mechanisms control fluid flow and chemical and isotopic equilibration. The results attest to localised fluid infiltration within a single metamorphic terrain (12km) over a range of metamorphic grades; ecologite- blueschist to greenschist. For fluid infiltrating marbles during ductile deformation, chemical and isotopic signatures are now homogenous; whilst fluid infiltration associated with brittle deformation results in chemical and isotopic heterogeneity at a microscale. The findings demonstrate how ductile deformation enhances equilibration of δ18O at a grain scale whilst brittle deformation does not. The control of deformation mechanisms in equilibrating isotopic and chemical heterogeneities have implications for the understanding of fluid-rock interaction in the crust. Interpretation of bulk stable isotope data, particularly in the use of isotope profiles to determine fluid fluxes into relatively impermeable units that have been deformed need to be used with care when trying to determine fluid fluxes and infiltration mechanisms.

  20. Composition, Alteration, and Texture of Fault-Related Rocks from Safod Core and Surface Outcrop Analogs: Evidence for Deformation Processes and Fluid-Rock Interactions

    NASA Astrophysics Data System (ADS)

    Bradbury, Kelly K.; Davis, Colter R.; Shervais, John W.; Janecke, Susanne U.; Evans, James P.

    2015-05-01

    We examine the fine-scale variations in mineralogical composition, geochemical alteration, and texture of the fault-related rocks from the Phase 3 whole-rock core sampled between 3,187.4 and 3,301.4 m measured depth within the San Andreas Fault Observatory at Depth (SAFOD) borehole near Parkfield, California. This work provides insight into the physical and chemical properties, structural architecture, and fluid-rock interactions associated with the actively deforming traces of the San Andreas Fault zone at depth. Exhumed outcrops within the SAF system comprised of serpentinite-bearing protolith are examined for comparison at San Simeon, Goat Rock State Park, and Nelson Creek, California. In the Phase 3 SAFOD drillcore samples, the fault-related rocks consist of multiple juxtaposed lenses of sheared, foliated siltstone and shale with block-in-matrix fabric, black cataclasite to ultracataclasite, and sheared serpentinite-bearing, finely foliated fault gouge. Meters-wide zones of sheared rock and fault gouge correlate to the sites of active borehole casing deformation and are characterized by scaly clay fabric with multiple discrete slip surfaces or anastomosing shear zones that surround conglobulated or rounded clasts of compacted clay and/or serpentinite. The fine gouge matrix is composed of Mg-rich clays and serpentine minerals (saponite ± palygorskite, and lizardite ± chrysotile). Whole-rock geochemistry data show increases in Fe-, Mg-, Ni-, and Cr-oxides and hydroxides, Fe-sulfides, and C-rich material, with a total organic content of >1 % locally in the fault-related rocks. The faults sampled in the field are composed of meters-thick zones of cohesive to non-cohesive, serpentinite-bearing foliated clay gouge and black fine-grained fault rock derived from sheared Franciscan Formation or serpentinized Coast Range Ophiolite. X-ray diffraction of outcrop samples shows that the foliated clay gouge is composed primarily of saponite and serpentinite, with localized

  1. Angular Deformities of the Lower Limb in Children

    PubMed Central

    Espandar, Ramin; Mortazavi, Seyed Mohammad-Javad; Baghdadi, Taghi

    2010-01-01

    Angular deformities of the lower limbs are common during childhood. In most cases this represents a variation in the normal growth pattern and is an entirely benign condition. Presence of symmetrical deformities and absence of symptoms, joint stiffness, systemic disorders or syndromes indicates a benign condition with excellent long-term outcome. In contrast, deformities which are asymmetrical and associated with pain, joint stiffness, systemic disorders or syndromes may indicate a serious underlying cause and require treatment. Little is known about the relationship between sport participation and body adaptations during growth. Intense soccer participation increases the degree of genu varum in males from the age of 16. Since, according to some investigations, genu varum predisposes individuals to more injuries, efforts to reduce the development of genu varum in soccer players are warranted. In this article major topics of angular deformities of the knees in pediatric population are practically reviewed. PMID:22375192

  2. Deformation of Surface Nanobubbles Induced by Substrate Hydrophobicity.

    PubMed

    Wei, Jiachen; Zhang, Xianren; Song, Fan

    2016-12-13

    Recent experimental measurements have shown that there exists a population of nanobubbles with different curvature radii, whereas both computer simulations and theoretical analysis indicated that the curvature radii of different nanobubbles should be the same at a given supersaturation. To resolve such inconsistency, we perform molecular dynamics simulations on surface nanobubbles that are stabilized by heterogeneous substrates either in the geometrical heterogeneity model (GHM) or in the chemical heterogeneity model (CHM) and propose that the inconsistency could be ascribed to the substrate-induced nanobubble deformation. We find that, as expected from theory and computer simulation, for either the GHM or the CHM, there exists a universal upper limit of contact angle for the nanobubbles, which is determined by the degree of supersaturation alone. By analyzing the evolution of the shape of nanobubbles as a function of substrate hydrophobicity that is controlled here by the liquid-solid interaction, two different origins of nanobubble deformation are identified. For substrates in the GHM, where the contact line is pinned by surface roughness, variation in the liquid-solid interaction changes only the location of the contact line and the measured contact angle, without causing a change in the nanobubble curvature. For substrates in the CHM, however, the liquid-solid interaction exerted by the bottom substrate can deform the vapor-liquid interface, resulting in variations in both the curvature of the vapor-liquid interface and the contact angle.

  3. q-Space Upsampling Using x-q Space Regularization.

    PubMed

    Chen, Geng; Dong, Bin; Zhang, Yong; Shen, Dinggang; Yap, Pew-Thian

    2017-09-01

    Acquisition time in diffusion MRI increases with the number of diffusion-weighted images that need to be acquired. Particularly in clinical settings, scan time is limited and only a sparse coverage of the vast q -space is possible. In this paper, we show how non-local self-similar information in the x - q space of diffusion MRI data can be harnessed for q -space upsampling. More specifically, we establish the relationships between signal measurements in x - q space using a patch matching mechanism that caters to unstructured data. We then encode these relationships in a graph and use it to regularize an inverse problem associated with recovering a high q -space resolution dataset from its low-resolution counterpart. Experimental results indicate that the high-resolution datasets reconstructed using the proposed method exhibit greater quality, both quantitatively and qualitatively, than those obtained using conventional methods, such as interpolation using spherical radial basis functions (SRBFs).

  4. MitoQ Loaded Chitosan-Hyaluronan Composite Membranes for Wound Healing.

    PubMed

    Tamer, Tamer M; Collins, Maurice N; Valachová, Katarina; Hassan, Mohamed A; Omer, Ahmed M; Mohy-Eldin, Mohamed S; Švík, Karol; Jurčík, Rastislav; Ondruška, Ľubomír; Biró, Csaba; Albadarin, Ahmad B; Šoltés, Ladislav

    2018-04-07

    Two self-associating biopolymers, namely chitosan (Ch) and a high-molar-mass hyaluronan (HA), were used to prepare membranes with the aim to protect and to enhance the healing of injured skin. A mitochondrially-targeted antioxidant-MitoQ-was incorporated into the mixture of biopolymers prior to their self-association. These three-component membranes were evaluated in detail utilising surface roughness measurements, contact angle measurements, hemocompatibility, and thrombogenicity analyses. Furthermore, in vivo application of Ch/HA/MitoQ membranes was assessed on injured rabbit and rat skin utilizing histological methods. The results showed that the prepared thrombogenic Ch/HA/MitoQ membranes had higher roughness, which allowed for greater surface area for tissue membrane interaction during the healing processes, and lower cytotoxicity levels than controls. MitoQ-loaded composite membranes displayed superior healing properties in these animal models compared to control membranes.

  5. [Which foot deformities should be radiologist be familiar with?

    PubMed

    von Stillfried, E

    2018-05-01

    Most deformities of the foot are visible at birth and can be diagnosed without imaging. They can be divided into congenital flexible, congenital structural and acquired foot deformities. The most common congenital flexible foot deformity in children is the metatarsus adductus, which usually requires no long-term therapy. Regarding congenital structural deformities, such as the clubfoot and talus verticalis, plaster therapy should be started during the first week of life, so that by the end of the first year of life and the beginning of the verticalization, a pain-free resilient foot with normal function is present. Imaging is usually only necessary if a relapse arises. Coalitio of the tarsal bones is often visible only in the course of growth through the development of a rigid flatfoot and always requires imaging to confirm the diagnosis. This article is intended to give the radiologist an overview of the most important deformities and to inform about their course and therapy.

  6. Mid-space-independent deformable image registration.

    PubMed

    Aganj, Iman; Iglesias, Juan Eugenio; Reuter, Martin; Sabuncu, Mert Rory; Fischl, Bruce

    2017-05-15

    Aligning images in a mid-space is a common approach to ensuring that deformable image registration is symmetric - that it does not depend on the arbitrary ordering of the input images. The results are, however, generally dependent on the mathematical definition of the mid-space. In particular, the set of possible solutions is typically restricted by the constraints that are enforced on the transformations to prevent the mid-space from drifting too far from the native image spaces. The use of an implicit atlas has been proposed as an approach to mid-space image registration. In this work, we show that when the atlas is aligned to each image in the native image space, the data term of implicit-atlas-based deformable registration is inherently independent of the mid-space. In addition, we show that the regularization term can be reformulated independently of the mid-space as well. We derive a new symmetric cost function that only depends on the transformation morphing the images to each other, rather than to the atlas. This eliminates the need for anti-drift constraints, thereby expanding the space of allowable deformations. We provide an implementation scheme for the proposed framework, and validate it through diffeomorphic registration experiments on brain magnetic resonance images. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Generalized seniority on a deformed single-particle basis

    NASA Astrophysics Data System (ADS)

    Jia, L. Y.

    2017-09-01

    Recently, I proposed a fast computing scheme for generalized seniority on a spherical single-particle basis [J. Phys. G: Nucl. Part. Phys. 42, 115105 (2015), 10.1088/0954-3899/42/11/115105]. This work redesigns the scheme to make it applicable to deformed single-particle basis. The algorithm is applied to the rare-earth-metal nucleus 94 64 158Gd for intrinsic (body-fixed frame) neutron excitations under the low-momentum NN interaction Vlow -k. By allowing as many as four broken pairs, I compute the lowest 300 intrinsic states of several multipolarities. These states converge well to the exact ones, showing generalized seniority is very effective in truncating the deformed shell model. Under realistic interactions, the picture remains approximately valid: The ground state is a coherent pair condensate and the pairs gradually break up as excitation energy increases.

  8. Hierarchical Polygamy Inequality for Entanglement of Tsallis q-Entropy

    NASA Astrophysics Data System (ADS)

    Luo, Yu; Li, Yong-Ming

    2018-05-01

    In this paper, we study the polygamy inequality of quantum entanglement in terms of Tsallis q-entropy. We first give a lower bound of Tsallis q-entropy entanglement of assistance (TOA) in the 2 ⊗ d systems. The relation-ships between Tsallis q-entropy entanglement (TEE) and TOA are also given. Furthermore, we prove TOA follows a hierarchical polygamy inequality in a 2 ⊗ 2 ⊗ 2 N‑2 systems. Supported by the National Natural Science Foundation of China under Grant No. 11671244, the Higher School Doctoral Subject Foun- dation of Ministry of Education of China under Grant No. 20130202110001, and Fundamental Research Funds for the Central Universities under Grants Nos. 2016TS060 and 2016CBY003

  9. Threshold q -voter model

    NASA Astrophysics Data System (ADS)

    Vieira, Allan R.; Anteneodo, Celia

    2018-05-01

    We introduce the threshold q -voter opinion dynamics where an agent, facing a binary choice, can change its mind when at least q0 among q neighbors share the opposite opinion. Otherwise, the agent can still change its mind with a certain probability ɛ . This threshold dynamics contemplates the possibility of persuasion by an influence group even when there is not full agreement among its members. In fact, individuals can follow their peers not only when there is unanimity (q0=q ) in the lobby group, as assumed in the q -voter model, but also, depending on the circumstances, when there is simple majority (q0>q /2 ), Byzantine consensus (q0>2 q /3 ), or any minimal number q0 among q . This realistic threshold gives place to emerging collective states and phase transitions which are not observed in the standard q voter. The threshold q0, together with the stochasticity introduced by ɛ , yields a phenomenology that mimics as particular cases the q voter with stochastic drivings such as nonconformity and independence. In particular, nonconsensus majority states are possible, as well as mixed phases. Continuous and discontinuous phase transitions can occur, but also transitions from fluctuating phases into absorbing states.

  10. Effects of Structural Deformation and Tube Chirality on Electronic Conductance of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Maiti, Amitesh; Anantram, M. P.; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    A combination of large scale classical force-field (UFF), density functional theory (DFT), and tight-binding Green's function transport calculations is used to study the electronic properties of carbon nanotubes under the twist, bending, and atomic force microscope (AFM)-tip deformation. We found that in agreement with experiment a significant change in electronic conductance can be induced by AFM-tip deformation of metallic zigzag tubes and by twist deformation of armchair tubes. The effect is explained in terms of bandstructure change under deformation.

  11. Coenzyme Q deficiency causes impairment of the sulfide oxidation pathway.

    PubMed

    Ziosi, Marcello; Di Meo, Ivano; Kleiner, Giulio; Gao, Xing-Huang; Barca, Emanuele; Sanchez-Quintero, Maria J; Tadesse, Saba; Jiang, Hongfeng; Qiao, Changhong; Rodenburg, Richard J; Scalais, Emmanuel; Schuelke, Markus; Willard, Belinda; Hatzoglou, Maria; Tiranti, Valeria; Quinzii, Catarina M

    2017-01-01

    Coenzyme Q (CoQ) is an electron acceptor for sulfide-quinone reductase (SQR), the first enzyme of the hydrogen sulfide oxidation pathway. Here, we show that lack of CoQ in human skin fibroblasts causes impairment of hydrogen sulfide oxidation, proportional to the residual levels of CoQ. Biochemical and molecular abnormalities are rescued by CoQ supplementation in vitro and recapitulated by pharmacological inhibition of CoQ biosynthesis in skin fibroblasts and ADCK3 depletion in HeLa cells. Kidneys of Pdss2 kd/kd mice, which only have ~15% residual CoQ concentrations and are clinically affected, showed (i) reduced protein levels of SQR and downstream enzymes, (ii) accumulation of hydrogen sulfides, and (iii) glutathione depletion. These abnormalities were not present in brain, which maintains ~30% residual CoQ and is clinically unaffected. In Pdss2 kd/kd mice, we also observed low levels of plasma and urine thiosulfate and increased blood C4-C6 acylcarnitines. We propose that impairment of the sulfide oxidation pathway induced by decreased levels of CoQ causes accumulation of sulfides and consequent inhibition of short-chain acyl-CoA dehydrogenase and glutathione depletion, which contributes to increased oxidative stress and kidney failure. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  12. Tsallis’ quantum q-fields

    NASA Astrophysics Data System (ADS)

    Plastino, A.; Rocca, M. C.

    2018-05-01

    We generalize several well known quantum equations to a Tsallis’ q-scenario, and provide a quantum version of some classical fields associated with them in the recent literature. We refer to the q-Schródinger, q-Klein-Gordon, q-Dirac, and q-Proca equations advanced in, respectively, Phys. Rev. Lett. 106, 140601 (2011), EPL 118, 61004 (2017) and references therein. We also introduce here equations corresponding to q-Yang-Mills fields, both in the Abelian and non-Abelian instances. We show how to define the q-quantum field theories corresponding to the above equations, introduce the pertinent actions, and obtain equations of motion via the minimum action principle. These q-fields are meaningful at very high energies (TeV scale) for q = 1.15, high energies (GeV scale) for q = 1.001, and low energies (MeV scale) for q = 1.000001 [Nucl. Phys. A 955 (2016) 16 and references therein]. (See the ALICE experiment at the LHC). Surprisingly enough, these q-fields are simultaneously q-exponential functions of the usual linear fields’ logarithms.

  13. Coenzyme Q10 and statins: biochemical and clinical implications.

    PubMed

    Littarru, Gian Paolo; Langsjoen, Peter

    2007-06-01

    Statins are drugs of known and undisputed efficacy in the treatment of hypercholesterolemia, usually well tolerated by most patients. In some cases treatment with statins produces skeletal muscle complaints, and/or mild serum CK elevation; the incidence of rhabdomyolysis is very low. As a result of the common biosynthetic pathway Coenzyme Q (ubiquinone) and dolichol levels are also affected, to a certain degree, by the treatment with these HMG-CoA reductase inhibitors. Plasma levels of CoQ10 are lowered in the course of statin treatment. This could be related to the fact that statins lower plasma LDL levels, and CoQ10 is mainly transported by LDL, but a decrease is also found in platelets and in lymphocytes of statin treated patients, therefore it could truly depend on inhibition of CoQ10 synthesis. There are also some indications that statin treatment affects muscle ubiquinone levels, although it is not yet clear to which extent this depends on some effect on mitochondrial biogenesis. Some papers indicate that CoQ10 depletion during statin therapy might be associated with subclinical cardiomyopathy and this situation is reversed upon CoQ10 treatment. We can reasonably hypothesize that in some conditions where other CoQ10 depleting situations exist treatment with statins may seriously impair plasma and possible tissue levels of coenzyme Q10. While waiting for a large scale clinical trial where patients treated with statins are also monitored for their CoQ10 status, with a group also being given CoQ10, physicians should be aware of this drug-nutrient interaction and be vigilant to the possibility that statin drugs may, in some cases, impair skeletal muscle and myocardial bioenergetics.

  14. Clinical report of a 17q12 microdeletion with additionally unreported clinical features.

    PubMed

    Roberts, Jennifer L; Gandomi, Stephanie K; Parra, Melissa; Lu, Ira; Gau, Chia-Ling; Dasouki, Majed; Butler, Merlin G

    2014-01-01

    Copy number variations involving the 17q12 region have been associated with developmental and speech delay, autism, aggression, self-injury, biting and hitting, oppositional defiance, inappropriate language, and auditory hallucinations. We present a tall-appearing 17-year-old boy with marfanoid habitus, hypermobile joints, mild scoliosis, pectus deformity, widely spaced nipples, pes cavus, autism spectrum disorder, intellectual disability, and psychiatric manifestations including physical and verbal aggression, obsessive-compulsive behaviors, and oppositional defiance. An echocardiogram showed borderline increased aortic root size. An abdominal ultrasound revealed a small pancreas, mild splenomegaly with a 1.3 cm accessory splenule, and normal kidneys and liver. A testing panel for Marfan, aneurysm, and related disorders was negative. Subsequently, a 400 K array-based comparative genomic hybridization (aCGH) + SNP analysis was performed which identified a de novo suspected pathogenic deletion on chromosome 17q12 encompassing 28 genes. Despite the limited number of cases described in the literature with 17q12 rearrangements, our proband's phenotypic features both overlap and expand on previously reported cases. Since syndrome-specific DNA sequencing studies failed to provide an explanation for this patient's unusual habitus, we postulate that this case represents an expansion of the 17q12 microdeletion phenotype. Further analysis of the deleted interval is recommended for new genotype-phenotype correlations.

  15. Bacterial Two-Hybrid Analysis of Interactions between Region 4 of the ς70 Subunit of RNA Polymerase and the Transcriptional Regulators Rsd from Escherichia coli and AlgQ from Pseudomonas aeruginosa

    PubMed Central

    Dove, Simon L.; Hochschild, Ann

    2001-01-01

    A number of transcriptional regulators mediate their effects through direct contact with the ς70 subunit of Escherichia coli RNA polymerase (RNAP). In particular, several regulators have been shown to contact a C-terminal portion of ς70 that harbors conserved region 4. This region of ς contains a putative helix-turn-helix DNA-binding motif that contacts the −35 element of ς70-dependent promoters directly. Here we report the use of a recently developed bacterial two-hybrid system to study the interaction between the putative anti-ς factor Rsd and the ς70 subunit of E. coli RNAP. Using this system, we found that Rsd can interact with an 86-amino-acid C-terminal fragment of ς70 and also that amino acid substitution R596H, within region 4 of ς70, weakens this interaction. We demonstrated the specificity of this effect by showing that substitution R596H does not weaken the interaction between ς and two other regulators shown previously to contact region 4 of ς70. We also demonstrated that AlgQ, a homolog of Rsd that positively regulates virulence gene expression in Pseudomonas aeruginosa, can contact the C-terminal region of the ς70 subunit of RNAP from this organism. We found that amino acid substitution R600H in ς70 from P. aeruginosa, corresponding to the R596H substitution in E. coli ς70, specifically weakens the interaction between AlgQ and ς70. Taken together, our findings suggest that Rsd and AlgQ contact similar surfaces of RNAP present in region 4 of ς70 and probably regulate gene expression through this contact. PMID:11591686

  16. Bacterial two-hybrid analysis of interactions between region 4 of the sigma(70) subunit of RNA polymerase and the transcriptional regulators Rsd from Escherichia coli and AlgQ from Pseudomonas aeruginosa.

    PubMed

    Dove, S L; Hochschild, A

    2001-11-01

    A number of transcriptional regulators mediate their effects through direct contact with the sigma(70) subunit of Escherichia coli RNA polymerase (RNAP). In particular, several regulators have been shown to contact a C-terminal portion of sigma(70) that harbors conserved region 4. This region of sigma contains a putative helix-turn-helix DNA-binding motif that contacts the -35 element of sigma(70)-dependent promoters directly. Here we report the use of a recently developed bacterial two-hybrid system to study the interaction between the putative anti-sigma factor Rsd and the sigma(70) subunit of E. coli RNAP. Using this system, we found that Rsd can interact with an 86-amino-acid C-terminal fragment of sigma(70) and also that amino acid substitution R596H, within region 4 of sigma(70), weakens this interaction. We demonstrated the specificity of this effect by showing that substitution R596H does not weaken the interaction between sigma and two other regulators shown previously to contact region 4 of sigma(70). We also demonstrated that AlgQ, a homolog of Rsd that positively regulates virulence gene expression in Pseudomonas aeruginosa, can contact the C-terminal region of the sigma(70) subunit of RNAP from this organism. We found that amino acid substitution R600H in sigma(70) from P. aeruginosa, corresponding to the R596H substitution in E. coli sigma(70), specifically weakens the interaction between AlgQ and sigma(70). Taken together, our findings suggest that Rsd and AlgQ contact similar surfaces of RNAP present in region 4 of sigma(70) and probably regulate gene expression through this contact.

  17. A key role for foxQ2 in anterior head and central brain patterning in insects

    PubMed Central

    Kitzmann, Peter; Weißkopf, Matthias; Schacht, Magdalena Ines

    2017-01-01

    ABSTRACT Anterior patterning of animals is based on a set of highly conserved transcription factors but the interactions within the protostome anterior gene regulatory network (aGRN) remain enigmatic. Here, we identify the red flour beetle Tribolium castaneum ortholog of foxQ2 (Tc-foxQ2) as a novel upstream component of the aGRN. It is required for the development of the labrum and higher order brain structures, namely the central complex and the mushroom bodies. We reveal Tc-foxQ2 interactions by RNAi and heat shock-mediated misexpression. Surprisingly, Tc-foxQ2 and Tc-six3 mutually activate each other, forming a novel regulatory module at the top of the aGRN. Comparisons of our results with those of sea urchins and cnidarians suggest that foxQ2 has acquired more upstream functions in the aGRN during protostome evolution. Our findings expand the knowledge on foxQ2 gene function to include essential roles in epidermal development and central brain patterning. PMID:28811313

  18. An efficient and scalable deformable model for virtual reality-based medical applications.

    PubMed

    Choi, Kup-Sze; Sun, Hanqiu; Heng, Pheng-Ann

    2004-09-01

    Modeling of tissue deformation is of great importance to virtual reality (VR)-based medical simulations. Considerable effort has been dedicated to the development of interactively deformable virtual tissues. In this paper, an efficient and scalable deformable model is presented for virtual-reality-based medical applications. It considers deformation as a localized force transmittal process which is governed by algorithms based on breadth-first search (BFS). The computational speed is scalable to facilitate real-time interaction by adjusting the penetration depth. Simulated annealing (SA) algorithms are developed to optimize the model parameters by using the reference data generated with the linear static finite element method (FEM). The mechanical behavior and timing performance of the model have been evaluated. The model has been applied to simulate the typical behavior of living tissues and anisotropic materials. Integration with a haptic device has also been achieved on a generic personal computer (PC) platform. The proposed technique provides a feasible solution for VR-based medical simulations and has the potential for multi-user collaborative work in virtual environment.

  19. Discriminating between natural versus induced seismicity from long-term deformation history of intraplate faults.

    PubMed

    Magnani, Maria Beatrice; Blanpied, Michael L; DeShon, Heather R; Hornbach, Matthew J

    2017-11-01

    To assess whether recent seismicity is induced by human activity or is of natural origin, we analyze fault displacements on high-resolution seismic reflection profiles for two regions in the central United States (CUS): the Fort Worth Basin (FWB) of Texas and the northern Mississippi embayment (NME). Since 2009, earthquake activity in the CUS has increased markedly, and numerous publications suggest that this increase is primarily due to induced earthquakes caused by deep-well injection of wastewater, both flowback water from hydrofracturing operations and produced water accompanying hydrocarbon production. Alternatively, some argue that these earthquakes are natural and that the seismicity increase is a normal variation that occurs over millions of years. Our analysis shows that within the NME, faults deform both Quaternary alluvium and underlying sediments dating from Paleozoic through Tertiary, with displacement increasing with geologic unit age, documenting a long history of natural activity. In the FWB, a region of ongoing wastewater injection, basement faults show deformation of the Proterozoic and Paleozoic units, but little or no deformation of younger strata. Specifically, vertical displacements in the post-Pennsylvanian formations, if any, are below the resolution (~15 m) of the seismic data, far less than expected had these faults accumulated deformation over millions of years. Our results support the assertion that recent FWB earthquakes are of induced origin; this conclusion is entirely independent of analyses correlating seismicity and wastewater injection practices. To our knowledge, this is the first study to discriminate natural and induced seismicity using classical structural geology analysis techniques.

  20. Discriminating between natural versus induced seismicity from long-term deformation history of intraplate faults

    PubMed Central

    Magnani, Maria Beatrice; Blanpied, Michael L.; DeShon, Heather R.; Hornbach, Matthew J.

    2017-01-01

    To assess whether recent seismicity is induced by human activity or is of natural origin, we analyze fault displacements on high-resolution seismic reflection profiles for two regions in the central United States (CUS): the Fort Worth Basin (FWB) of Texas and the northern Mississippi embayment (NME). Since 2009, earthquake activity in the CUS has increased markedly, and numerous publications suggest that this increase is primarily due to induced earthquakes caused by deep-well injection of wastewater, both flowback water from hydrofracturing operations and produced water accompanying hydrocarbon production. Alternatively, some argue that these earthquakes are natural and that the seismicity increase is a normal variation that occurs over millions of years. Our analysis shows that within the NME, faults deform both Quaternary alluvium and underlying sediments dating from Paleozoic through Tertiary, with displacement increasing with geologic unit age, documenting a long history of natural activity. In the FWB, a region of ongoing wastewater injection, basement faults show deformation of the Proterozoic and Paleozoic units, but little or no deformation of younger strata. Specifically, vertical displacements in the post-Pennsylvanian formations, if any, are below the resolution (~15 m) of the seismic data, far less than expected had these faults accumulated deformation over millions of years. Our results support the assertion that recent FWB earthquakes are of induced origin; this conclusion is entirely independent of analyses correlating seismicity and wastewater injection practices. To our knowledge, this is the first study to discriminate natural and induced seismicity using classical structural geology analysis techniques. PMID:29202029

  1. Non-Newtonian fluid structure interaction in flexible biomimetic microchannels

    NASA Astrophysics Data System (ADS)

    Kiran, M.; Dasgupta, Sunando; Chakraborty, Suman

    2017-11-01

    To investigate the complex fluid structure interactions in a physiologically relevant microchannel with deformable wall and non-Newtonian fluid that flows within it, we fabricated cylindrical microchannels of various softness out of PDMS. Experiments to measure the transient pressure drop across the channel were carried out with high sampling frequencies to capture the intricate flow physics. In particular, we showed that the waveforms varies greatly for each of the non-Newtonian and Newtonian cases for both non-deformable and deformable microchannels in terms of the peak amplitude, r.m.s amplitude and the crest factor. In addition, we carried out frequency sweep experiments to evaluate the frequency response of the system. We believe that these results will aid in the design of polymer based microfluidic phantoms for arterial FSI studies, and in particular for studying blood analog fluids in cylindrical microchannels as well as developing frequency specific Lab-on-chip systems for medical diagnostics.

  2. Mechanical biocompatibility of highly deformable biomedical materials.

    PubMed

    Mazza, Edoardo; Ehret, Alexander E

    2015-08-01

    Mismatch of mechanical properties between highly deformable biomedical materials and adjacent native tissue might lead to short and long term health impairment. The capability of implants to deform at the right level, i.e. similar to the macroscopic mechanical response of the surrounding biological materials, is often associated with dissimilar microstructural deformation mechanisms. This mismatch on smaller length scales might lead to micro-injuries, cell damage, inflammation, fibrosis or necrosis. Hence, the mechanical biocompatibility of soft implants depends not only on the properties and composition of the implant material, but also on its organization, distribution and motion at one or several length scales. The challenges related to the analysis and attainment of mechanical biocompatibility are illustrated with two examples: prosthetic meshes for hernia and pelvic repair and electrospun scaffolds for tissue engineering. For these material systems we describe existing methods for characterization and analysis of the non-linear response to uniaxial and multiaxial stress states, its time and history dependence, and the changes in deformation behavior associated with tissue in-growth and material resorption. We discuss the multi-scale deformation behavior of biomaterials and adjacent tissue, and indicate major interdisciplinary questions to be addressed in future research. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Ra isotopes in the sdg interacting-boson model with one f-boson

    NASA Astrophysics Data System (ADS)

    Naotaka, Yoshinaga; Takahiro, Mizusaki; Takaharu, Otsuka

    1993-06-01

    We study positive- and negative-parity states in Ra isotopes in terms of the proton-neutron sdg interacting-boson model with one f-boson. The present calculation correctly reproduces the spherical to deformed phase transition. Especially, we would like to stress the importance of the g-boson for reproducing the E1 transitions which are very strong in this region.

  4. Deformation in amorphous–crystalline nanolaminates—an effective-temperature theory and interaction between defects

    DOE PAGES

    Lieou, Charles K. C.; Mayeur, Jason R.; Beyerlein, Irene J.

    2017-02-24

    Experiments and atomic-scale simulations suggest that the transmission of plasticity carriers in deforming amorphous–crystalline nanolaminates is mediated by the biphase interface between the amorphous and crystalline layers. In this study, we present a micromechanics model for these biphase nanolaminates that describes defect interactions through the amorphous–crystalline interface (ACI). The model is based on an effective-temperature framework to achieve a unified description of the slow, configurational atomic rearrangements in both phases when driven out of equilibrium. We show how the second law of thermodynamics constrains the density of defects and the rate of configurational rearrangements, and apply this framework to dislocationsmore » in crystalline solids and shear transformation zones (STZs) in amorphous materials. The effective-temperature formulation enables us to interpret the observed movement of dislocations to the ACI and the production of STZs at the interface as a 'diffusion' of configurational disorder across the material. Finally, we demonstrate favorable agreement with experimental findings reported in (Kim et al 2011 Adv. Funct. Mater. 21 4550–4), and demonstrate how the ACI acts as a sink of dislocations and a source of STZs.« less

  5. Interaction Enthalpy of Side Chain and Backbone Amides in Polyglutamine Solution Monomers and Fibrils.

    PubMed

    Punihaole, David; Jakubek, Ryan S; Workman, Riley J; Asher, Sanford A

    2018-04-19

    We determined an empirical correlation that relates the amide I vibrational band frequencies of the glutamine (Q) side chain to the strength of hydrogen bonding, van der Waals, and Lewis acid-base interactions of its primary amide carbonyl. We used this correlation to determine the Q side chain carbonyl interaction enthalpy (Δ H int ) in monomeric and amyloid-like fibril conformations of D 2 Q 10 K 2 (Q10). We independently verified these Δ H int values through molecular dynamics simulations that showed excellent agreement with experiments. We found that side chain-side chain and side chain-peptide backbone interactions in fibrils and monomers are more enthalpically favorable than are Q side chain-water interactions. Q10 fibrils also showed a more favorable Δ H int for side chain-side chain interactions compared to backbone-backbone interactions. This work experimentally demonstrates that interamide side chain interactions are important in the formation and stabilization of polyQ fibrils.

  6. Mathematical model of rolling an elastic wheel over deformable support base

    NASA Astrophysics Data System (ADS)

    Volskaia, V. N.; Zhileykin, M. M.; Zakharov, A. Y.

    2018-02-01

    One of the main direction of economic growth in Russia remains to be a speedy development of north and northeast regions that are the constituents of the 60 percent of the country territory. The further development of these territories requires new methods and technologies for solving transport and technological problems when off-road transportation of cargoes and people is conducting. One of the fundamental methods of patency prediction is imitation modeling of wheeled vehicles movement in different operating conditions. Both deformable properties of tires and physical and mechanical properties of the ground: normal tire deflection and gauge depth; variation of contact patch area depending on the load and pressure of air in the tire; existence of hysteresis losses in the tire material which are influencing on the rolling resistance due to friction processes between tire and ground in the contact patch; existence of the tangential reaction from the ground by entire contact area influence on the tractive patency. Nowadays there are two main trends in theoretical research of interaction wheeled propulsion device with ground: analytical method involving mathematical description of explored process and finite element method based on computational modeling. Mathematical models of interaction tire with the ground are used both in processes of interaction individual wheeled propulsion device with ground and researches of mobile vehicle dynamical models operated in specific road and climate conditions. One of the most significant imperfection of these models is the description of interaction wheel with flat deformable support base whereas profile of real support base surface has essential height of unevenness which is commensurate with radius of the wheel. The description of processes taking place in the ground under influence of the wheeled propulsion device using the finite element method is relatively new but most applicable lately. The application of this method allows

  7. Correlating Single Crystal Structure, Nanomechanical, and Bulk Compaction Behavior of Febuxostat Polymorphs.

    PubMed

    Yadav, Jayprakash A; Khomane, Kailas S; Modi, Sameer R; Ugale, Bharat; Yadav, Ram Naresh; Nagaraja, C M; Kumar, Navin; Bansal, Arvind K

    2017-03-06

    Febuxostat exhibits unprecedented solid forms with a total of 40 polymorphs and pseudopolymorphs reported. Polymorphs differ in molecular arrangement and conformation, intermolecular interactions, and various physicochemical properties, including mechanical properties. Febuxostat Form Q (FXT Q) and Form H1 (FXT H1) were investigated for crystal structure, nanomechanical parameters, and bulk deformation behavior. FXT Q showed greater compressibility, densification, and plastic deformation as compared to FXT H1 at a given compaction pressure. Lower mechanical hardness of FXT Q (0.214 GPa) as compared to FXT H1 (0.310 GPa) was found to be consistent with greater compressibility and lower mean yield pressure (38 MPa) of FXT Q. Superior compaction behavior of FXT Q was attributed to the presence of active slip systems in crystals which offered greater plastic deformation. By virtue of greater compressibility and densification, FXT Q showed higher tabletability over FXT H1. Significant correlation was found with anticipation that the preferred orientation of molecular planes into a crystal lattice translated nanomechanical parameters to a bulk compaction process. Moreover, prediction of compactibility of materials based on true density or molecular packing should be carefully evaluated, as slip-planes may cause deviation in the structure-property relationship. This study supported how molecular level crystal structure confers a bridge between particle level nanomechanical parameters and bulk level deformation behavior.

  8. Historical overview of spinal deformities in ancient Greece

    PubMed Central

    Vasiliadis, Elias S; Grivas, Theodoros B; Kaspiris, Angelos

    2009-01-01

    Little is known about the history of spinal deformities in ancient Greece. The present study summarizes what we know today for diagnosis and management of spinal deformities in ancient Greece, mainly from the medical treatises of Hippocrates and Galen. Hippocrates, through accurate observation and logical reasoning was led to accurate conclusions firstly for the structure of the spine and secondly for its diseases. He introduced the terms kyphosis and scoliosis and wrote in depth about diagnosis and treatment of kyphosis and less about scoliosis. The innovation of the board, the application of axial traction and even the principle of trans-abdominal correction for correction of spinal deformities have their origin in Hippocrates. Galen, who lived nearly five centuries later impressively described scoliosis, lordosis and kyphosis, provided aetiologic implications and used the same principles with Hippocrates for their management, while his studies influenced medical practice on spinal deformities for more than 1500 years. PMID:19243609

  9. Statistical mechanics of neocortical interactions. Derivation of short-term-memory capacity

    NASA Astrophysics Data System (ADS)

    Ingber, Lester

    1984-06-01

    A theory developed by the author to describe macroscopic neocortical interactions demonstrates that empirical values of chemical and electrical parameters of synaptic interactions establish several minima of the path-integral Lagrangian as a function of excitatory and inhibitory columnar firings. The number of possible minima, their time scales of hysteresis and probable reverberations, and their nearest-neighbor columnar interactions are all consistent with well-established empirical rules of human short-term memory. Thus, aspects of conscious experience are derived from neuronal firing patterns, using modern methods of nonlinear nonequilibrium statistical mechanics to develop realistic explicit synaptic interactions.

  10. Evaluation of high-resolution sea ice models on the basis of statistical and scaling properties of Arctic sea ice drift and deformation

    NASA Astrophysics Data System (ADS)

    Girard, L.; Weiss, J.; Molines, J. M.; Barnier, B.; Bouillon, S.

    2009-08-01

    Sea ice drift and deformation from models are evaluated on the basis of statistical and scaling properties. These properties are derived from two observation data sets: the RADARSAT Geophysical Processor System (RGPS) and buoy trajectories from the International Arctic Buoy Program (IABP). Two simulations obtained with the Louvain-la-Neuve Ice Model (LIM) coupled to a high-resolution ocean model and a simulation obtained with the Los Alamos Sea Ice Model (CICE) were analyzed. Model ice drift compares well with observations in terms of large-scale velocity field and distributions of velocity fluctuations although a significant bias on the mean ice speed is noted. On the other hand, the statistical properties of ice deformation are not well simulated by the models: (1) The distributions of strain rates are incorrect: RGPS distributions of strain rates are power law tailed, i.e., exhibit "wild randomness," whereas models distributions remain in the Gaussian attraction basin, i.e., exhibit "mild randomness." (2) The models are unable to reproduce the spatial and temporal correlations of the deformation fields: In the observations, ice deformation follows spatial and temporal scaling laws that express the heterogeneity and the intermittency of deformation. These relations do not appear in simulated ice deformation. Mean deformation in models is almost scale independent. The statistical properties of ice deformation are a signature of the ice mechanical behavior. The present work therefore suggests that the mechanical framework currently used by models is inappropriate. A different modeling framework based on elastic interactions could improve the representation of the statistical and scaling properties of ice deformation.

  11. Role of higher-multipole deformations in exotic {sup 14}C cluster radioactivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawhney, Gudveen; Sharma, Manoj K.; Gupta, Raj K.

    2011-06-15

    We have studied nine cases of spontaneous emission of {sup 14}C clusters in the ground-state decays of the same number of parent nuclei from the trans-lead region, specifically from {sup 221}Fr to {sup 226}Th, using the preformed cluster model (PCM) of Gupta and collaborators, with choices of spherical, quadrupole deformation ({beta}{sub 2}) alone, and higher-multipole deformations ({beta}{sub 2}, {beta}{sub 3}, {beta}{sub 4}) with cold ''compact'' orientations {theta}{sup c} of decay products. The calculated {sup 14}C cluster decay half-life times are found to be in nice agreement with experimental data only for the case of higher-multipole deformations ({beta}{sub 2}-{beta}{sub 4}) andmore » {theta}{sup c} orientations of cold elongated configurations. In other words, compared to our earlier study of clusters heavier than {sup 14}C, where the inclusion of {beta}{sub 2} alone, with ''optimum'' orientations, was found to be enough to give the best comparison with data, here for {sup 14}C cluster decay the inclusion of higher-multipole deformations (up to hexadecapole), together with {theta}{sup c} orientations, is found to be essential on the basis of the PCM. Interestingly, whereas both the penetration probability and assault frequency work simply as scaling factors, the preformation probability is strongly influenced by the order of multipole deformations and orientations of nuclei. The possible role of Q value and angular-momentum effects are also considered in reference to {sup 14}C cluster radioactivity.« less

  12. Q?rius: An innovative and new interactive educational space at the Smithsonian Institution's National Museum of Natural History, in Washington, D.C

    NASA Astrophysics Data System (ADS)

    Blankenbicker, R.

    2013-12-01

    The Fall of 2013 marks the opening of Q?rius ('curious'), a 10,000 square foot, interactive educational space at the Smithsonian Institution's National Museum of Natural History. Representing the 7 areas of the museum's research divisions, Q?rius includes a publicly accessible collection of over 6,000 natural history objects and multiple opportunities for visitors to engage themselves in natural history and the research conducted at the museum in various settings, including a lab, theater, and studio. A digital component to the space allows visitors to save parts of their experiences to a personal account, which they can later access remotely from their home or school. The space also serves as a tool for scientists to conduct outreach programs for museum visitors and for schools across the country through distance learning capabilities. Geology content for Q?rius was developed through collaboration between the Office of Education and Outreach and the Department of Mineral Sciences, as well as scientists and educators from outside agencies. Current experiences for the public include modeling plate tectonics and how they change rocks on small and large scales, identifying minerals in rocks, and using Earth to understand Martian geology. A school program adds the concept of drill cores and natural resources to the plate tectonics activity, which allows discussion about resource extraction. Developing experiences for Q?rius in all content areas took place over 2 phases; first, through taking prototypes into the museum exhibition halls to test with visitors through several iterations, and second in the new space, where all of the activities could be tested as a group and in the appropriate environment. By the time this abstract has been submitted, the official opening will not have occurred, though Q?rius will have been open for about 1 month by the time of the 2013 AGU annual conference, allowing us to further evaluate the development of the space.

  13. Understanding thermally activated plastic deformation behavior of Zircaloy-4

    NASA Astrophysics Data System (ADS)

    Kumar, N.; Alomari, A.; Murty, K. L.

    2018-06-01

    Understanding micromechanics of plastic deformation of existing materials is essential for improving their properties further and/or developing advanced materials for much more severe load bearing applications. The objective of the present work was to understand micromechanics of plastic deformation of Zircaloy-4, a zirconium-based alloy used as fuel cladding and channel (in BWRs) material in nuclear reactors. The Zircaloy-4 in recrystallized (at 973 K for 4 h) condition was subjected to uniaxial tensile testing at a constant cross-head velocity at temperatures in the range 293 K-1073 K and repeated stress relaxation tests at 293 K, 573 K, and 773 K. The minimum in the total elongation was indicative of dynamic strain aging phenomenon in this alloy in the intermediate temperature regime. The yield stress of the alloy was separated into effective and athermal components and the transition from thermally activated dislocation glide to athermal regime took place at around 673 K with the athermal stress estimated to be 115 MPa. The activation volume was found to be in the range of 40 b3 to 160 b3. The activation volume values and the data analyses using the solid-solution models in literature indicated dislocation-solute interaction to be a potential deformation mechanism in thermally activated regime. The activation energy calculated at 573 K was very close to that found for diffusivity of oxygen in α-Zr that was suggestive of dislocations-oxygen interaction during plastic deformation. This type of information may be helpful in alloy design in selecting different elements to control the deformation behavior of the material and impart desired mechanical properties in those materials for specific applications.

  14. Siblings with opposite chromosome constitutions, dup(2q)/del(7q) and del(2q)/dup(7q).

    PubMed

    Shim, Sung Han; Shim, Jae Sun; Min, Kyunghoon; Lee, Hee Song; Park, Ji Eun; Park, Sang Hee; Hwang, Euna; Kim, Minyoung

    2014-01-15

    Chromosome 7q36 microdeletion syndrome is a rare genomic disorder characterized by underdevelopment of the brain, microcephaly, anomalies of the sex organs, and language problems. Developmental delay, intellectual disability, autistic spectrum disorders, BDMR syndrome, and unusual facial morphology are the key features of the chromosome 2q37 microdeletion syndrome. A genetic screening for two brothers with global developmental delay using high-resolution chromosomal analysis and subtelomeric multiplex ligation-dependent probe amplification revealed subtelomeric rearrangements on the same sites of 2q37.2 and 7q35, with reversed deletion and duplication. Both of them showed dysmorphic facial features, severe disability of physical and intellectual development, and abnormal genitalia with differential abnormalities in their phenotypes. The family did not have abnormal genetic phenotypes. According to the genetic analysis of their parents, adjacent-1 segregation from their mother's was suggested as a mechanism of their gene mutation. By comparing the phenotypes of our patients with previous reports on similar patients, we tried to obtain the information of related genes and their chromosomal locations. © 2013.

  15. X-ray Diffraction Investigation of Annealing Behavior of Peened Surface Deformation Layer on Precipitation Hardening Stainless Steel

    NASA Astrophysics Data System (ADS)

    Huang, Junjie; Wang, Zhou; Gan, Jin; Yang, Ying; Huang, Feng; Wu, Gang; Meng, Qingshuai

    2018-05-01

    In order to investigate the recrystallization behavior of peened surface deformation layer of precipitation hardening stainless steel, a classic x-ray diffraction line profile analysis, Voigt method, was carried out on peened 17-4PH with different isothermal annealing temperatures. The activation energy of domain boundary migration ( Q a) and the activation energy of microstrain relaxation ( Q b) were calculated by regression analysis in different annealing temperature conditions. The results show that the value of Q a decreases with annealing temperature increasing, which is due to the influence of precipitation (ɛ-Cu) size on the movements of grain and subgrain boundaries. The maximum growth rate of ɛ-Cu particles occurs during 400 to 500 °C interval. Compared with growth behavior of domain size, microstrain relaxation behavior is less sensitive to precipitation particle size. The effects of annealing temperature and time on dislocation density are both significant when annealing temperature is lower than 500 °C. However, the effect of annealing temperature on dislocation density becomes insignificant when annealing temperature is higher than 500 °C. 300 °C annealing temperature only leads to the microstrain relaxation but nearly cannot lead to the domain size growth even if prolonging annealing time. Microstructure enhancement effect still exists in plastic deformation layer when 300 °C annealing temperature lasts for 60 min but nearly disappears when 600 °C annealing temperature lasts for 20 min.

  16. X-ray Diffraction Investigation of Annealing Behavior of Peened Surface Deformation Layer on Precipitation Hardening Stainless Steel

    NASA Astrophysics Data System (ADS)

    Huang, Junjie; Wang, Zhou; Gan, Jin; Yang, Ying; Huang, Feng; Wu, Gang; Meng, Qingshuai

    2018-04-01

    In order to investigate the recrystallization behavior of peened surface deformation layer of precipitation hardening stainless steel, a classic x-ray diffraction line profile analysis, Voigt method, was carried out on peened 17-4PH with different isothermal annealing temperatures. The activation energy of domain boundary migration (Q a) and the activation energy of microstrain relaxation (Q b) were calculated by regression analysis in different annealing temperature conditions. The results show that the value of Q a decreases with annealing temperature increasing, which is due to the influence of precipitation (ɛ-Cu) size on the movements of grain and subgrain boundaries. The maximum growth rate of ɛ-Cu particles occurs during 400 to 500 °C interval. Compared with growth behavior of domain size, microstrain relaxation behavior is less sensitive to precipitation particle size. The effects of annealing temperature and time on dislocation density are both significant when annealing temperature is lower than 500 °C. However, the effect of annealing temperature on dislocation density becomes insignificant when annealing temperature is higher than 500 °C. 300 °C annealing temperature only leads to the microstrain relaxation but nearly cannot lead to the domain size growth even if prolonging annealing time. Microstructure enhancement effect still exists in plastic deformation layer when 300 °C annealing temperature lasts for 60 min but nearly disappears when 600 °C annealing temperature lasts for 20 min.

  17. Deformation geometry and timing of theWupoer thrust belt in the NE Pamir and its tectonic implications

    NASA Astrophysics Data System (ADS)

    Cheng, Xiaogan; Chen, Hanlin; Lin, Xiubin; Yang, Shufeng; Chen, Shenqiang; Zhang, Fenfen; Li, Kang; Liu, Zelin

    2016-12-01

    The Pamir region, located to the northwest of the Tibetan Plateau, provides important information that can aid the understanding of the plateau's tectonic evolution. Here we present new findings on the deformation geometry and timing of the Wupoer thrust belt at the northeastern margin of Pamir. Field investigations and interpretations of seismic profiles indicate that the eastern portion of the Wupoer thrust belt is dominated by an underlying foreland basin and an overlying piggy-back basin. A regional unconformity occurs between the Pliocene (N2) and the underlying Miocene (N1) or Paleogene (Pg) strata associated with two other local unconformities between Lower Pleistocene (Q1) and N2 and between Middle Pleistocene (Q2-4) and Q1 strata. Results of structural restorations suggest that compressional deformation was initiated during the latest Miocene to earliest Pliocene, contributing a total shortening magnitude of 48.6 km with a total shortening rate of 48.12%, most of which occurred in the period from the latest Miocene to earliest Pliocene. These results, combined with previous studies on the Kongur and Tarshkorgan extensional system, suggest an interesting picture of strong piedmont compressional thrusting activity concurrent with interorogen extensional rifting. Combining these results with previously published work on the lithospheric architecture of the Pamir, we propose that gravitational collapse drove the formation of simultaneous extensional and compressional structures with a weak, ductile middle crustal layer acting as a décollement along which both the extensional and compressional faults merged.

  18. Strongly Interacting Fermi Gases in Two Dimensions

    DTIC Science & Technology

    2012-07-17

    other in k- space owing to the spin- orbit interaction. For a finite field B (Z) z , a gap opens in the spectrum. This gap, known as the spin-orbit...from the trap. Time-of-flight maps momentum to real space , allowing direct momentum resolution of the spin popula- tions. As a function of pulse...at a given quasi-momentum q, can be expanded in terms of free space eigenstates as 5 FIG. 3. Creating and probing a spin-orbit coupled lattice. (A

  19. On alternative q-Weibull and q-extreme value distributions: Properties and applications

    NASA Astrophysics Data System (ADS)

    Zhang, Fode; Ng, Hon Keung Tony; Shi, Yimin

    2018-01-01

    Tsallis statistics and Tsallis distributions have been attracting a significant amount of research work in recent years. Importantly, the Tsallis statistics, q-distributions have been applied in different disciplines. Yet, a relationship between some existing q-Weibull distributions and q-extreme value distributions that is parallel to the well-established relationship between the conventional Weibull and extreme value distributions through a logarithmic transformation has not be established. In this paper, we proposed an alternative q-Weibull distribution that leads to a q-extreme value distribution via the q-logarithm transformation. Some important properties of the proposed q-Weibull and q-extreme value distributions are studied. Maximum likelihood and least squares estimation methods are used to estimate the parameters of q-Weibull distribution and their performances are investigated through a Monte Carlo simulation study. The methodologies and the usefulness of the proposed distributions are illustrated by fitting the 2014 traffic fatalities data from The National Highway Traffic Safety Administration.

  20. The role of polyglutamine expansion and protein context in disease-related huntingtin/lipid interactions

    NASA Astrophysics Data System (ADS)

    Burke, Kathleen Anne

    Huntington's Disease (HD) is a neurodegenerative disorder that is defined by the accumulation of nanoscale aggregates comprised of the huntingtin (htt) protein. Aggregation is directly caused by an expanded polyglutamine (polyQ) domain in htt, leading to a diverse population of aggregate species, such as oligomers, fibrils, and annular aggregates. Furthermore, the length of this polyQ domain is directly related to onset and severity of disease. The first 17 amino acids on the N-terminus (N17) and the polyproline domain on the C-terminal side of the polyQ domain have been shown to further modulate the aggregation process. Additionally, N17 appears to have lipid binding properties as htt interacts with a variety of membrane-containing structures present in cells, such as organelles, and interactions with these membrane surfaces may further modulate htt aggregation. To investigate the interaction between htt exon1 and lipid bilayers, in situ atomic force microscopy (AFM) was used to directly monitor the aggregation of htt exon1 constructs with varying Q-length (35Q, 46Q, 51Q, and myc- 53Q) or synthetic peptides with different polyQ domain flanking sequences (KK-Q35-KK, KK-Q 35-P10-KK, N17-Q35-KK, and N 17-Q35-P10-KK) on supported lipid membranes comprised of total brain lipid extract. The exon1 fragments accumulated on the lipid membranes, causing disruption of the membrane, in a polyQ dependent manner. By adding N-terminal tags to the htt exon1 fragments, the interaction with the lipid bilayer was impeded. The KK-Q35-KK and KK-Q 35-P10-KK peptides had no appreciable interaction with lipid bilayers. Interestingly, polyQ peptides with the N17 flanking sequence interacted with the bilayer. N17-Q35-KK formed discrete aggregates on the bilayer, but there was minimal membrane disruption. The N17-Q35-P10-KK peptide interacted more aggressively with the lipid bilayer in a manner reminiscent of the htt exon1 proteins.

  1. High Resolution, Large Deformation 3D Traction Force Microscopy

    PubMed Central

    López-Fagundo, Cristina; Reichner, Jonathan; Hoffman-Kim, Diane; Franck, Christian

    2014-01-01

    Traction Force Microscopy (TFM) is a powerful approach for quantifying cell-material interactions that over the last two decades has contributed significantly to our understanding of cellular mechanosensing and mechanotransduction. In addition, recent advances in three-dimensional (3D) imaging and traction force analysis (3D TFM) have highlighted the significance of the third dimension in influencing various cellular processes. Yet irrespective of dimensionality, almost all TFM approaches have relied on a linear elastic theory framework to calculate cell surface tractions. Here we present a new high resolution 3D TFM algorithm which utilizes a large deformation formulation to quantify cellular displacement fields with unprecedented resolution. The results feature some of the first experimental evidence that cells are indeed capable of exerting large material deformations, which require the formulation of a new theoretical TFM framework to accurately calculate the traction forces. Based on our previous 3D TFM technique, we reformulate our approach to accurately account for large material deformation and quantitatively contrast and compare both linear and large deformation frameworks as a function of the applied cell deformation. Particular attention is paid in estimating the accuracy penalty associated with utilizing a traditional linear elastic approach in the presence of large deformation gradients. PMID:24740435

  2. Detection of 6-demethoxyubiquinone in CoQ10 deficiency disorders: Insights into enzyme interactions and identification of potential therapeutics.

    PubMed

    Herebian, Diran; Seibt, Annette; Smits, Sander H J; Bünning, Gisela; Freyer, Christoph; Prokisch, Holger; Karall, Daniela; Wredenberg, Anna; Wedell, Anna; López, Luis C; Mayatepek, Ertan; Distelmaier, Felix

    2017-07-01

    Coenzyme Q 10 (CoQ 10 ) is an essential cofactor of the mitochondrial oxidative phosphorylation (OXPHOS) system and its deficiency has important implications for several inherited metabolic disorders of childhood. The biosynthesis of CoQ 10 is a complicated process, which involves at least 12 different enzymes. One of the metabolic intermediates that are formed during CoQ 10 biosynthesis is the molecule 6-demethoxyubiquinone (6-DMQ). This CoQ precursor is processed at the level of COQ7 and COQ9. We selected this metabolite as a marker substance for metabolic analysis of cell lines with inherited genetic defects (COQ2, COQ4, COQ7 and COQ9) or siRNA knockdown in CoQ biosynthesis enzymes using ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS). In COQ4, COQ7 and COQ9 deficient cell lines, we detected significantly elevated levels of 6-DMQ. This suggests a functional interplay of these proteins. However, additional siRNA studies demonstrated that elevated 6-DMQ levels are not an exclusive marker of the COQ7/COQ9 enzymatic step of CoQ 10 biosynthesis but constitute a more general phenomenon that occurs in disorders impairing the function or stability of the CoQ-synthome. To further investigate the interdependence of CoQ 10 biosynthesis enzyme expression, we performed immunoblotting in various cell lines with CoQ 10 deficiency, indicating that COQ4, COQ7 and COQ9 protein expression levels are highly regulated depending on the underlying defect. Supplementation of cell lines with synthetic CoQ precursor compounds demonstrated beneficial effects of 2,4-dihydroxybenzoic acid in COQ7 and COQ9 deficiency. Moreover, vanillic acid selectively stimulated CoQ 10 biosynthesis and improved cell viability in COQ9 deficiency. However, compounds tested in this study failed to rescue COQ4 deficiency. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Deformation of N = 4 SYM with varying couplings via fluxes and intersecting branes

    NASA Astrophysics Data System (ADS)

    Choi, Jaewang; Fernández-Melgarejo, José J.; Sugimoto, Shigeki

    2018-03-01

    We study deformations of N = 4 supersymmetric Yang-Mills theory with space-time dependent couplings by embedding probe D3-branes in supergravity backgrounds with non-trivial fluxes. The effective action on the world-volume of the D3-branes is analyzed and a map between the deformation parameters and the fluxes is obtained. As an explicit example, we consider D3-branes in a background corresponding to ( p, q) 5-branes intersecting them and show that the effective theory on the D3-branes precisely agrees with the supersymmetric Janus configuration found by Gaiotto and Witten in [1]. D3-branes in an intersecting D3-brane background is also analyzed and the D3-brane effective action reproduces one of the supersymmetric configurations with ISO(1 , 1) × SO(2) × SO(4) symmetry found in our previous paper [2].

  4. Enriching consumer health vocabulary through mining a social Q&A site: A similarity-based approach.

    PubMed

    He, Zhe; Chen, Zhiwei; Oh, Sanghee; Hou, Jinghui; Bian, Jiang

    2017-05-01

    The widely known vocabulary gap between health consumers and healthcare professionals hinders information seeking and health dialogue of consumers on end-user health applications. The Open Access and Collaborative Consumer Health Vocabulary (OAC CHV), which contains health-related terms used by lay consumers, has been created to bridge such a gap. Specifically, the OAC CHV facilitates consumers' health information retrieval by enabling consumer-facing health applications to translate between professional language and consumer friendly language. To keep up with the constantly evolving medical knowledge and language use, new terms need to be identified and added to the OAC CHV. User-generated content on social media, including social question and answer (social Q&A) sites, afford us an enormous opportunity in mining consumer health terms. Existing methods of identifying new consumer terms from text typically use ad-hoc lexical syntactic patterns and human review. Our study extends an existing method by extracting n-grams from a social Q&A textual corpus and representing them with a rich set of contextual and syntactic features. Using K-means clustering, our method, simiTerm, was able to identify terms that are both contextually and syntactically similar to the existing OAC CHV terms. We tested our method on social Q&A corpora on two disease domains: diabetes and cancer. Our method outperformed three baseline ranking methods. A post-hoc qualitative evaluation by human experts further validated that our method can effectively identify meaningful new consumer terms on social Q&A. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. The parity-adapted basis set in the formulation of the photofragment angular momentum polarization problem: The role of the Coriolis interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shternin, Peter S.; Vasyutinskii, Oleg S.

    We present a theoretical framework for calculating the recoil-angle dependence of the photofragment angular momentum polarization taking into account both radial and Coriolis nonadiabatic interactions in the diatomic/linear photodissociating molecules. The parity-adapted representation of the total molecular wave function has been used throughout the paper. The obtained full quantum-mechanical expressions for the photofragment state multipoles have been simplified by using the semiclassical approximation in the high-J limit and then analyzed for the cases of direct photodissociation and slow predissociation in terms of the anisotropy parameters. In both cases, each anisotropy parameter can be presented as a linear combination of themore » generalized dynamical functions f{sub K}(q,q{sup '},q-tilde,q-tilde{sup '}) of the rank K representing contribution from different dissociation mechanisms including possible radial and Coriolis nonadiabatic transitions, coherent effects, and the rotation of the recoil axis. In the absence of the Coriolis interactions, the obtained results are equivalent to the earlier published ones. The angle-recoil dependence of the photofragment state multipoles for an arbitrary photolysis reaction is derived. As shown, the polarization of the photofragments in the photolysis of a diatomic or a polyatomic molecule can be described in terms of the anisotropy parameters irrespective of the photodissociation mechanism.« less

  6. Internal friction peaks observed in explosively deformed polycrystalline Mo, Nb, and Cu

    NASA Technical Reports Server (NTRS)

    Rieu, G. E.; Grimes, H. H.; Romain, J. P.; Defouquet, J.

    1974-01-01

    Explosive deformation (50 kbar range) induced, in Cu, Mo and Nb, internal friction peaks identical to those observed after large normal deformation. The variation of the peaks with pressure for Mo and Nb lead to an explanation of these processes in terms of double kink generation in screw and edge dislocations.

  7. Relationships between plate convergence, the earthquake cycle, and long-term accumulation of net tectonic deformation at island arcs; not so simple as it seems

    NASA Astrophysics Data System (ADS)

    Taylor, F. W.; Lavier, L. L.; Bevis, M. G.; Thirumalai, K.; Frohlich, C. A.

    2012-12-01

    Over million-year time scales, what is the relationship between the meter-scale vertical displacements that occur in individual large subduction-zone earthquakes, and the observed topography and geology of island arcs? Because the geographic distribution of vertical displacements associated with the earthquake cycle sometimes mimics topography, it is tempting to assume that vertical deformation simply accrues as the coseismic part of the cycle that is preserved from one event to another. However, our research in the Central New Hebrides and Western Solomon arcs demonstrates that truly permanent tectonic deformation is a step farther removed from the earthquake cycle than we originally assumed. By precisely dating of coral reef terraces we are able to evaluate vertical deformation over time scales of 10,000 to 100,000 years. This analysis indicates that these arcs undergo episodes of hundreds of meters of subsidence and uplift over time scales of tens of thousands of years. Thus what remains in the geologic record is potentially providing invaluable information about more fundamental processes than the elastic earthquake cycle. These longer-term episodes of vertical motion may act in many arcs throughout the world, but evidence of them may be poorly preserved outside of tropical regions where corals along island coastlines provide a record of their occurrence.In our presentation we will describe the tectonic behavior observed in the Central New Hebrides and Western Solomons. We will speculate about some possible mechanisms that explain how the subduction process generates longer-term episodes of subsidence and uplift, and make suggestions about future observations that could better constrain the nature of these processes.

  8. Primary coenzyme Q10 (CoQ 10) deficiencies and related nephropathies.

    PubMed

    Ozaltin, Fatih

    2014-06-01

    Oxidative phosphorylation (OXPHOS) is a metabolic pathway that uses energy released by the oxidation of nutrients to generate adenosine triphosphate (ATP). Coenzyme Q10 (CoQ10), also known as ubiquinone, plays an essential role in the human body not only by generating ATP in the mitochondrial respiratory chain but also by providing protection from reactive oxygen species (ROS) and functioning in the activation of many mitochondrial dehydrogenases and enzymes required in pyrimidine nucleoside biosynthesis. The presentations of primary CoQ10 deficiencies caused by genetic mutations are very heterogeneous. The phenotypes related to energy depletion or ROS production may depend on the content of CoQ10 in the cell, which is determined by the severity of the mutation. Primary CoQ10 deficiency is unique among mitochondrial disorders because early supplementation with CoQ10 can prevent the onset of neurological and renal manifestations. In this review I summarize primary CoQ10 deficiencies caused by various genetic abnormalities, emphasizing its nephropathic form.

  9. Time-dependent Brittle Deformation in Etna Basalt

    NASA Astrophysics Data System (ADS)

    Heap, M. J.; Baud, P.; Meredith, P. G.; Vinciguerra, S.; Bell, A. F.; Main, I. G.

    2008-12-01

    Mt Etna is the largest and most active volcano in Europe. Due to the high permeability of its volcanic rocks, the volcanic edifice hosts one of the biggest hydrogeologic reservoirs of Sicily (Ogniben, 1966). Pre-eruptive patterns of flank eruptions, closely monitored by means of ground deformation and seismicity, revealed the slow development of fracture systems at different altitudes, marked by repeated bursts of seismicity and accelerating/decelerating deformation patterns acting over the scale of months to days. The presence of a fluid phase in cracks within rock has been shown to dramatically affect both mechanical and chemical interactions. Chemically, it promotes time-dependent brittle deformation through such mechanisms as stress corrosion cracking that allows rocks to deform at stresses far below their short-term failure strength. Such crack growth is highly non-linear and accelerates towards dynamic failure over extended periods of time, even under constant applied stress; a phenomenon known as 'brittle creep'. Stress corrosion is considered to be responsible for the acceleratory cracking and seismicity prior to volcanic eruptions and is invoked as an important mechanism in forecasting models. Here we report results from a study of time-dependent brittle creep in water-saturated samples of Etna basalt (EB) under triaxial stress conditions (confining pressure of 50 MPa and pore fluid pressure of 20 MPa). Samples of EB were loaded at a constant strain rate of 10-5 s-1 to a pre-determined percentage of the short- term strength and left to deform under constant stress until failure. Crack damage evolution was monitored throughout each experiment by measuring the independent damage proxies of axial strain, pore volume change and output of acoustic emission (AE) energy, during brittle creep of creep strain rates ranging over four orders of magnitude. Our data demonstrate that the applied differential stress exerts a crucial influence on both time-to-failure and

  10. Deformation of the Engle-Livine-Pereira-Rovelli spin foam model by a cosmological constant

    NASA Astrophysics Data System (ADS)

    Bahr, Benjamin; Rabuffo, Giovanni

    2018-04-01

    In this article, we consider an ad hoc deformation of the Engle-Livine-Pereira-Rovelli model for quantum gravity by a cosmological constant term. This sort of deformation was first introduced by Han for the case of the 4-simplex. In this article, we generalize the deformation to the case of arbitrary vertices, and compute its large-j asymptotics. We show that, if the boundary data correspond to a four-dimensional polyhedron P , then the asymptotic formula gives the usual Regge action plus a cosmological constant term. We pay particular attention to the determinant of the Hessian matrix, and show that it can be related to that of the undeformed vertex.

  11. Tectonic deformation in southern California

    NASA Technical Reports Server (NTRS)

    Jackson, David D.

    1993-01-01

    Our objectives were to use modem geodetic data, especially those derived from space techniques like Very Long Baseline Interferometry (VLBI), Satellite Laser Ranging (SLR), and the Global Positioning System (GPS) to infer crustal deformation in southern California and relate it to plate tectonics and earthquake hazard. To do this, we needed to collect some original data, write computer programs to determine positions of survey markers from geodetic observables, interpret time dependent positions in terms of velocity and earthquake caused episodic displacements, and construct a model to explain these velocities and displacements in terms of fault slip and plate movements.

  12. Coenzyme Q10 for the treatment of heart failure: a review of the literature

    PubMed Central

    DiNicolantonio, James J; Bhutani, Jaikrit; McCarty, Mark F; O'Keefe, James H

    2015-01-01

    Coenzyme Q10 (CoQ10) is an endogenously synthesised and diet-supplied lipid-soluble cofactor that functions in the mitochondrial inner membrane to transfer electrons from complexes I and II to complex III. In addition, its redox activity enables CoQ10 to act as a membrane antioxidant. In patients with congestive heart failure, myocardial CoQ10 content tends to decline as the degree of heart failure worsens. A number of controlled pilot trials with supplemental CoQ10 in heart failure found improvements in functional parameters such as ejection fraction, stroke volume and cardiac output, without side effects. Subsequent meta-analyses have confirmed these findings, although the magnitude of benefit tends to be less notable in patients with severe heart failure, or within the context of ACE inhibitor therapy. The multicentre randomised placebo-controlled Q-SYMBIO trial has assessed the impact of supplemental CoQ10 on hard endpoints in heart failure. A total of 420 patients received either CoQ10 (100 mg three times daily) or placebo and were followed for 2 years. Although short-term functional endpoints were not statistically different in the two groups, CoQ10 significantly reduced the primary long-term endpoint—a major adverse cardiovascular event—which was observed in 15% of the treated participants compared to 26% of those receiving placebo (HR=0.50, CI 0.32 to 0.80, p=0.003). Particularly in light of the excellent tolerance and affordability of this natural physiological compound, supplemental CoQ10 has emerged as an attractive option in the management of heart failure, and merits evaluation in additional large studies. PMID:26512330

  13. Extracting Cell Stiffness from Real-Time Deformability Cytometry: Theory and Experiment

    PubMed Central

    Mietke, Alexander; Otto, Oliver; Girardo, Salvatore; Rosendahl, Philipp; Taubenberger, Anna; Golfier, Stefan; Ulbricht, Elke; Aland, Sebastian; Guck, Jochen; Fischer-Friedrich, Elisabeth

    2015-01-01

    Cell stiffness is a sensitive indicator of physiological and pathological changes in cells, with many potential applications in biology and medicine. A new method, real-time deformability cytometry, probes cell stiffness at high throughput by exposing cells to a shear flow in a microfluidic channel, allowing for mechanical phenotyping based on single-cell deformability. However, observed deformations of cells in the channel not only are determined by cell stiffness, but also depend on cell size relative to channel size. Here, we disentangle mutual contributions of cell size and cell stiffness to cell deformation by a theoretical analysis in terms of hydrodynamics and linear elasticity theory. Performing real-time deformability cytometry experiments on both model spheres of known elasticity and biological cells, we demonstrate that our analytical model not only predicts deformed shapes inside the channel but also allows for quantification of cell mechanical parameters. Thereby, fast and quantitative mechanical sampling of large cell populations becomes feasible. PMID:26588562

  14. Soft tissue deformation modelling through neural dynamics-based reaction-diffusion mechanics.

    PubMed

    Zhang, Jinao; Zhong, Yongmin; Gu, Chengfan

    2018-05-30

    Soft tissue deformation modelling forms the basis of development of surgical simulation, surgical planning and robotic-assisted minimally invasive surgery. This paper presents a new methodology for modelling of soft tissue deformation based on reaction-diffusion mechanics via neural dynamics. The potential energy stored in soft tissues due to a mechanical load to deform tissues away from their rest state is treated as the equivalent transmembrane potential energy, and it is distributed in the tissue masses in the manner of reaction-diffusion propagation of nonlinear electrical waves. The reaction-diffusion propagation of mechanical potential energy and nonrigid mechanics of motion are combined to model soft tissue deformation and its dynamics, both of which are further formulated as the dynamics of cellular neural networks to achieve real-time computational performance. The proposed methodology is implemented with a haptic device for interactive soft tissue deformation with force feedback. Experimental results demonstrate that the proposed methodology exhibits nonlinear force-displacement relationship for nonlinear soft tissue deformation. Homogeneous, anisotropic and heterogeneous soft tissue material properties can be modelled through the inherent physical properties of mass points. Graphical abstract Soft tissue deformation modelling with haptic feedback via neural dynamics-based reaction-diffusion mechanics.

  15. A case of duplication of 13q32-->qter and deletion of 18p11.32-->pter with mild phenotype: Patau syndrome and duplications of 13q revisited.

    PubMed Central

    Helali, N; Iafolla, A K; Kahler, S G; Qumsiyeh, M B

    1996-01-01

    A mild clinical phenotype is described in a patient with duplication of 13q32-->qter and a small deletion of 18p11.32-->pter. The 8 year old white male presented with psychomotor retardation, tethered cord, soft, fleshy ears, and normal facial features except for thin lips. The karyotype was found to be 46, XY, der(18)t(13;18) (q32;p11.32) pat confirmed by fluorescence in situ hybridisation (FISH). A review of earlier studies showed that features of trisomy 13 are found in cases of duplication of bands 13q14 to qter. None of the cardinal features of trisomy 13 was seen in this patient. The absence of polydactyly, hernias, urogenital abnormalities, and haemangiomas contrast this condition with both trisomy 13 and duplication of 13q14-22-->qter. Possible explanations for lack of Patau syndrome in this patient could include restriction of the critical region for Patau syndrome to duplication 13q14-->13q32 with variable expression, gene interactions, or interchromosomal effects. Images PMID:8818949

  16. A case of duplication of 13q32-->qter and deletion of 18p11.32-->pter with mild phenotype: Patau syndrome and duplications of 13q revisited.

    PubMed

    Helali, N; Iafolla, A K; Kahler, S G; Qumsiyeh, M B

    1996-07-01

    A mild clinical phenotype is described in a patient with duplication of 13q32-->qter and a small deletion of 18p11.32-->pter. The 8 year old white male presented with psychomotor retardation, tethered cord, soft, fleshy ears, and normal facial features except for thin lips. The karyotype was found to be 46, XY, der(18)t(13;18) (q32;p11.32) pat confirmed by fluorescence in situ hybridisation (FISH). A review of earlier studies showed that features of trisomy 13 are found in cases of duplication of bands 13q14 to qter. None of the cardinal features of trisomy 13 was seen in this patient. The absence of polydactyly, hernias, urogenital abnormalities, and haemangiomas contrast this condition with both trisomy 13 and duplication of 13q14-22-->qter. Possible explanations for lack of Patau syndrome in this patient could include restriction of the critical region for Patau syndrome to duplication 13q14-->13q32 with variable expression, gene interactions, or interchromosomal effects.

  17. Active tectonics of the Binalud Mountains, a key puzzle segment to describe Quaternary deformations at the northeastern boundary of the Arabia-Eurasia collision

    NASA Astrophysics Data System (ADS)

    Shabanian, Esmaeil; Bellier, Olivier; Siame, Lionel L.; Abbassi, Mohammad R.; Leanni, Laetitia; Braucher, Régis; Farbod, Yassaman; Bourlès, Didier L.

    2010-05-01

    In northeast Iran, the Binalud Mountains accommodate part of active convergence between the Arabian and Eurasian plates. This fault-bounded mountain range has been considered a key region to describe Quaternary deformations at the northeastern boundary of the Arabia-Eurasia collision. But, the lack of knowledge on active faulting hampered evaluating the geological reliability of tectonic models describing the kinematics of deformation in northeast Iran. Morphotectonic investigations along both sides of the Binalud Mountains allowed us to characterize the structural and active faulting patterns along the Neyshabur and Mashhad fault systems on the southwest and northeast sides of the mountain range, respectively. We applied combined approaches of morphotectonic analyses based on satellite imageries (SPOT5 and Landsat ETM+), STRM and site-scale digital topographic data, and field surveys complemented with in situ-produced 10Be exposure dating to determine the kinematics and rate of active faulting. Three regional episodes of alluvial surface abandonments were dated at 5.3±1.1 kyr (Q1), 94±5 kyr (Q3), and 200±14 kyr (S3). The geomorphic reconstruction of both vertical and right-lateral fault offsets postdating these surface abandonment episodes yielded Quaternary fault slip rates on both sides of the Binalud Mountains. On the Neyshabur Fault System, thanks to geomorphic reconstructions of cumulative offsets recorded by Q3 fan surfaces, slip rates of 2.7±0.8 mm/yr and 2.4±0.2 mm/yr are estimated for right-lateral and reverse components of active faulting, respectively. Those indicate a total slip rate of 3.6±1.2 mm/yr for the late Quaternary deformation on the southwest flank of the Binalud Mountains. Reconstructing the cumulative right-lateral offset recorded by S3 surfaces, a middle-late Quaternary slip rate of 1.6±0.1 mm/yr is determined for the Mashhad Fault System. Altogether, our geomorphic observations reveal that, on both sides of the Binalud Mountains

  18. Microstructure characterization based on the type of deformed grains in cold-rolled, Cu-added, bake-hardenable steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, J.S.; Kim, S.I.; Choi, S.-H., E-mail: shihoon@sunchon.ac.kr

    2014-06-01

    The electron backscatter diffraction technique has been used to characterize the microstructure of deformed grains in cold-rolled, Cu-added, bake-hardenable steel. A new scheme based on the kind and number of average orientations, as determined from a unique grain map of the deformed grains, was developed in order to classify deformed grains by type. The α-fiber components, γ-fiber components and random orientations, those which could not be assigned to either γ-fiber or α-fiber components, were used to define the average orientation of unique grains within individual deformed grains. The microstructures of deformed grains in as-rolled specimens were analyzed based on themore » Taylor factor, stored energy, and misorientation. The relative levels and distributions of the Taylor factor, the stored energy and the misorientation were examined in terms of the types of deformed grains. - Highlights: • We characterized the microstructure of Cu-added BH steel using EBSD. • A new scheme was developed in order to classify deformed grains by type. • Stored energy and misorientation are strongly dependent on the type of deformed grains. • Microstructure was examined in terms of the types of deformed grains.« less

  19. Octupole deformations in high-K isomeric states of heavy and superheavy nuclei

    NASA Astrophysics Data System (ADS)

    Minkov, N.; Walker, P. M.

    2016-01-01

    We study the effects of quadrupole-octupole deformations on the energy and magnetic properties of high-K isomeric states in even-even heavy and superheavy nuclei. The neutron two-quasiparticle (2qp) isomeric energies and magnetic dipole moments are calculated within a deformed shell model with the Bardeen-Cooper- Schrieffer (BCS) pairing interaction over a wide range of quadrupole and octupole deformations. We found that in most cases the magnetic moments exhibit a pronounced sensitivity to the octupole deformation, while the 2qp energies indicate regions of nuclei in which the presence of high-K isomeric states may be associated with the presence of octupole softness or even with octupole deformation. In the present work we also examine the influence of the BCS pairing strength on the energy of the blocked isomer configuration. We show that the formation of 2qp energy minima in the space of quadrupole-octupole and eventually higher multipolarity deformations is a subtle effect depending on nuclear pairing correlations.

  20. Frequency-dependent Lg Q within the continental United States

    USGS Publications Warehouse

    Erickson, D.; McNamara, D.E.; Benz, H.M.

    2004-01-01

    Frequency-dependent crustal attenuation (1/Q) is determined for seven distinct physiographic/tectonic regions of the continental United States using high-quality Lg waveforms recorded on broadband stations in the frequency band 0.5 to 16 Hz. Lg attenuation is determined from time-domain amplitude measurements in one-octave frequency bands centered on the frequencies 0.75, 1.0, 3.0, 6.0, and 12.0 Hz. Modeling errors are determined using a delete-j jackknife resampling technique. The frequency-dependent quality factor is modeled in the form of Q = Q0 fη. Regions were initially selected based on tectonic provinces but were eventually limited and adjusted to maximize ray path coverage in each area. Earthquake data was recorded on several different networks and constrained to events occurring within the crust (<40 km depth) and at least mb 3.5 in size. A singular value decomposition inversion technique was applied to the data to simultaneously solve for source and receiver terms along with Q for each region at specific frequencies. The lowest crustal Q was observed in northern and southern California where Q is described by the functions Q = 152(±37)f0.72(±0.16) and Q = 105(±26)f0.67(±0.16), respectively. The Basin and Range Province, Pacific Northwest, and Rocky Mountain states also display lower Q and a strong frequency dependence characterized by the functions Q = 200(±40)f0.68(±0.12), Q = 152(±49)f0.76(±0.18), and Q = 166(±37)f0.61(±0.14), respectively. In contrast, in the central and northeast United States Q functions are Q = 640(±225)f0.344(±0.22) and Q = 650(±143)f0.36(±0.14), respectively, show a high crustal Q and a weaker frequency dependence. These results improve upon previous Lg modeling by subdividing the United States into smaller, distinct tectonic regions and using significantly more data that provide improved constraints on frequency-dependent attenuation and errors. A detailed attenuation map of the continental United States can

  1. Trench curvature and deformation of the subducting lithosphere

    NASA Astrophysics Data System (ADS)

    Schettino, Antonio; Tassi, Luca

    2012-01-01

    The subduction of oceanic lithosphere is generally accompanied by downdip and lateral deformation. The downdip component of strain is associated with external forces that are applied to the slab during its sinking, namely the gravitational force and the mantle resistance to penetration. Here, we present theoretical arguments showing that a tectonic plate is also subject to a predictable amount of lateral deformation as a consequence of its bending along an arcuate trench zone, independently from the long-term physical processes that have determined the actual curvature of the subduction zone. In particular, we show that the state of lateral strain and the lateral strain rate of a subducting slab depend from geometric and kinematic parameters, such as trench curvature, dip function and subduction velocity. We also demonstrate that the relationship between the state of lateral strain in a subducting slab and the geometry of bending at the corresponding active margin implies a small component of lateral shortening at shallow depths, and may include large extensional lateral deformation at intermediate depths, whereas a state of lateral mechanical equilibrium can only represent a localized exception. Our formulation overcomes the flaws of the classic 'ping-pong ball' model for the bending of the lithosphere at subduction zones, which lead to severe discrepancies with the observed geometry and style of deformation of the modern subducting slabs. A study of the geometry and seismicity of eight modern subduction zones is performed, to assess the validity of the theoretical relationship between trench curvature, slab dip function, and lateral strain rate. The strain pattern within the eight present-day slabs, which is reconstructed through an analysis of Harvard CMT solutions, shows that tectonic plates cannot be considered as flexible-inextensible spherical caps, whereas the lateral intraslab deformation which is accommodated through seismic slip can be explained in terms

  2. Hydrodynamic resistance and mobility of deformable objects in microfluidic channels

    PubMed Central

    Sajeesh, P.; Doble, M.; Sen, A. K.

    2014-01-01

    This work reports experimental and theoretical studies of hydrodynamic behaviour of deformable objects such as droplets and cells in a microchannel. Effects of mechanical properties including size and viscosity of these objects on their deformability, mobility, and induced hydrodynamic resistance are investigated. The experimental results revealed that the deformability of droplets, which is quantified in terms of deformability index (D.I.), depends on the droplet-to-channel size ratio ρ and droplet-to-medium viscosity ratio λ. Using a large set of experimental data, for the first time, we provide a mathematical formula that correlates induced hydrodynamic resistance of a single droplet ΔRd with the droplet size ρ and viscosity λ. A simple theoretical model is developed to obtain closed form expressions for droplet mobility ϕ and ΔRd. The predictions of the theoretical model successfully confront the experimental results in terms of the droplet mobility ϕ and induced hydrodynamic resistance ΔRd. Numerical simulations are carried out using volume-of-fluid model to predict droplet generation and deformation of droplets of different size ratio ρ and viscosity ratio λ, which compare well with that obtained from the experiments. In a novel effort, we performed experiments to measure the bulk induced hydrodynamic resistance ΔR of different biological cells (yeast, L6, and HEK 293). The results reveal that the bulk induced hydrodynamic resistance ΔR is related to the cell concentration and apparent viscosity of the cells. PMID:25538806

  3. Vertical deformation at western part of Sumatra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Febriyani, Caroline, E-mail: caroline.fanuel@students.itb.ac.id; Prijatna, Kosasih, E-mail: prijatna@gd.itb.ac.id; Meilano, Irwan, E-mail: irwan.meilano@gd.itb.ac.id

    2015-04-24

    This research tries to make advancement in GPS signal processing to estimate the interseismic vertical deformation field at western part of Sumatra Island. The data derived by Continuous Global Positioning System (CGPS) from Badan Informasi Geospasial (BIG) between 2010 and 2012. GPS Analyze at Massachusetts Institute of Technology (GAMIT) software and Global Kalman Filter (GLOBK) software are used to process the GPS signal to estimate the vertical velocities of the CGPS station. In order to minimize noise due to atmospheric delay, Vienna Mapping Function 1 (VMF1) is used as atmospheric parameter model and include daily IONEX file provided by themore » Center for Orbit Determination in Europe (CODE) as well. It improves GAMIT daily position accuracy up to 0.8 mm. In a second step of processing, the GLOBK is used in order to estimate site positions and velocities in the ITRF08 reference frame. The result shows that the uncertainties of estimated displacement velocity at all CGPS stations are smaller than 1.5 mm/yr. The subsided deformation patterns are seen at the northern and southern part of west Sumatra. The vertical deformation at northern part of west Sumatra indicates postseismic phase associated with the 2010 and 2012 Northern Sumatra earthquakes and also the long-term postseismic associated with the 2004 and 2005 Northern Sumatra earthquakes. The uplifted deformation patterns are seen from Bukit Tinggi to Seblat which indicate a long-term interseismic phase after the 2007 Bengkulu earthquake and 2010 Mentawai earthquake. GANO station shows a subsidence at rate 12.25 mm/yr, indicating the overriding Indo-Australia Plate which is dragged down by the subducting Southeast Asian Plate.« less

  4. Landau-Zener extension of the Tavis-Cummings model: Structure of the solution

    DOE PAGES

    Sun, Chen; Sinitsyn, Nikolai A.

    2016-09-07

    We explore the recently discovered solution of the driven Tavis-Cummings model (DTCM). It describes interaction of an arbitrary number of two-level systems with a bosonic mode that has linearly time-dependent frequency. We derive compact and tractable expressions for transition probabilities in terms of the well-known special functions. In this form, our formulas are suitable for fast numerical calculations and analytical approximations. As an application, we obtain the semiclassical limit of the exact solution and compare it to prior approximations. Furthermore, we also reveal connection between DTCM and q-deformed binomial statistics.

  5. Structure of the Regulator of G Protein Signaling 8 (RGS8)-Gαq Complex: MOLECULAR BASIS FOR Gα SELECTIVITY.

    PubMed

    Taylor, Veronica G; Bommarito, Paige A; Tesmer, John J G

    2016-03-04

    Regulator of G protein signaling (RGS) proteins interact with activated Gα subunits via their RGS domains and accelerate the hydrolysis of GTP. Although the R4 subfamily of RGS proteins generally accepts both Gαi/o and Gαq/11 subunits as substrates, the R7 and R12 subfamilies select against Gαq/11. In contrast, only one RGS protein, RGS2, is known to be selective for Gαq/11. The molecular basis for this selectivity is not clear. Previously, the crystal structure of RGS2 in complex with Gαq revealed a non-canonical interaction that could be due to interfacial differences imposed by RGS2, the Gα subunit, or both. To resolve this ambiguity, the 2.6 Å crystal structure of RGS8, an R4 subfamily member, was determined in complex with Gαq. RGS8 adopts the same pose on Gαq as it does when bound to Gαi3, indicating that the non-canonical interaction of RGS2 with Gαq is due to unique features of RGS2. Based on the RGS8-Gαq structure, residues in RGS8 that contact a unique α-helical domain loop of Gαq were converted to those typically found in R12 subfamily members, and the reverse substitutions were introduced into RGS10, an R12 subfamily member. Although these substitutions perturbed their ability to stimulate GTP hydrolysis, they did not reverse selectivity. Instead, selectivity for Gαq seems more likely determined by whether strong contacts can be maintained between α6 of the RGS domain and Switch III of Gαq, regions of high sequence and conformational diversity in both protein families. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Time-dependent deformation of gas shales - role of rock framework versus reservoir fluids

    NASA Astrophysics Data System (ADS)

    Hol, Sander; Zoback, Mark

    2013-04-01

    Hydraulic fracturing operations are generally performed to achieve a fast, drastic increase of permeability and production rates. Although modeling of the underlying short-term mechanical response has proven successful via conventional geomechanical approaches, predicting long-term behavior is still challenging as the formation interacts physically and chemically with the fluids present in-situ. Recent experimental work has shown that shale samples subjected to a change in effective stress deform in a time-dependent manner ("creep"). Although the magnitude and nature of this behavior is strongly related to the composition and texture of the sample, also the choice of fluid used in the experiments affects the total strain response - strongly adsorbing fluids result in more, recoverable creep. The processes underlying time-dependent deformation of shales under in-situ stresses, and the long-term impact on reservoir performance, are at present poorly understood. In this contribution, we report triaxial mechanical tests, and theoretical/thermodynamic modeling work with the aim to identify and describe the main mechanisms that control time-dependent deformation of gas shales. In particular, we focus on the role of the shale solid framework versus the type and pressure of the present pore fluid. Our experiments were mainly performed on Eagle Ford Shale samples. The samples were subjected to cycles of loading and unloading, first in the dry state, and then again after equilibrating them with (adsorbing) CO2 and (non-adsorbing) He at fluid pressures of 4 MPa. Stresses were chosen close to those persisting under in-situ conditions. The results of our tests demonstrate that likely two main types of deformation mechanisms operate that relate to a) the presence of microfractures as a dominating feature in the solid framework of the shale, and b) the adsorbing potential of fluids present in the nanoscale voids of the shale. To explain the role of adsorption in the observed

  7. Technical aspects and recommendations for single-cell qPCR.

    PubMed

    Ståhlberg, Anders; Kubista, Mikael

    2018-02-01

    Single cells are basic physiological and biological units that can function individually as well as in groups in tissues and organs. It is central to identify, characterize and profile single cells at molecular level to be able to distinguish different kinds, to understand their functions and determine how they interact with each other. During the last decade several technologies for single-cell profiling have been developed and used in various applications, revealing many novel findings. Quantitative PCR (qPCR) is one of the most developed methods for single-cell profiling that can be used to interrogate several analytes, including DNA, RNA and protein. Single-cell qPCR has the potential to become routine methodology but the technique is still challenging, as it involves several experimental steps and few molecules are handled. Here, we discuss technical aspects and provide recommendation for single-cell qPCR analysis. The workflow includes experimental design, sample preparation, single-cell collection, direct lysis, reverse transcription, preamplification, qPCR and data analysis. Detailed reporting and sharing of experimental details and data will promote further development and make validation studies possible. Efforts aiming to standardize single-cell qPCR open up means to move single-cell analysis from specialized research settings to standard research laboratories. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Deformation response of cube-on-cube and non-coherent twin interfaces in AgCu eutectic after dynamic plastic compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eftink, Benjamin P.; Mara, Nathan Allan; Kingstedt, Owen T.

    For this research, Split-Hopkinson pressure bar dynamic compression experiments were conducted to determine the defect/interface interaction dependence on interface type, bilayer thickness and interface orientation with respect to the loading direction in the Ag-Cu eutectic system. Specifically, the deformation microstructure in alloys with either a cube-on-cube orientation relationship with {111} Ag||{111} Cu interface habit planes or a twin orientation relationship with {more » $$\\overline{3}13$$} Ag||{$$\\overline{1}12$$} Cu interface habit planes and with bilayer thicknesses of 500 nm, 1.1 µm and 2.2 µm were probed using TEM. The deformation was carried by dislocation slip and in certain conditions, deformation twinning. The twinning response was dependent on loading orientation with respect to the interface plane, bilayer thickness, and interface type. Twinning was only observed when loading at orientations away from the growth direction and decreased in prevalence with decreasing bilayer thickness. Twinning in Cu was dependent on twinning partial dislocations being transmitted from Ag, which only occurred for cube-on-cube interfaces. Lastly, dislocation slip and deformation twin transfer across the interfaces is discussed in terms of the slip transfer conditions developed for grain boundaries in FCC alloys.« less

  9. Deformation response of cube-on-cube and non-coherent twin interfaces in AgCu eutectic after dynamic plastic compression

    DOE PAGES

    Eftink, Benjamin P.; Mara, Nathan Allan; Kingstedt, Owen T.; ...

    2017-12-02

    For this research, Split-Hopkinson pressure bar dynamic compression experiments were conducted to determine the defect/interface interaction dependence on interface type, bilayer thickness and interface orientation with respect to the loading direction in the Ag-Cu eutectic system. Specifically, the deformation microstructure in alloys with either a cube-on-cube orientation relationship with {111} Ag||{111} Cu interface habit planes or a twin orientation relationship with {more » $$\\overline{3}13$$} Ag||{$$\\overline{1}12$$} Cu interface habit planes and with bilayer thicknesses of 500 nm, 1.1 µm and 2.2 µm were probed using TEM. The deformation was carried by dislocation slip and in certain conditions, deformation twinning. The twinning response was dependent on loading orientation with respect to the interface plane, bilayer thickness, and interface type. Twinning was only observed when loading at orientations away from the growth direction and decreased in prevalence with decreasing bilayer thickness. Twinning in Cu was dependent on twinning partial dislocations being transmitted from Ag, which only occurred for cube-on-cube interfaces. Lastly, dislocation slip and deformation twin transfer across the interfaces is discussed in terms of the slip transfer conditions developed for grain boundaries in FCC alloys.« less

  10. The <q>ABC modelq>: a non-hydrostatic toy model for use in convective-scale data assimilation investigations

    NASA Astrophysics Data System (ADS)

    Petrie, Ruth Elizabeth; Bannister, Ross Noel; Priestley Cullen, Michael John

    2017-12-01

    In developing methods for convective-scale data assimilation (DA), it is necessary to consider the full range of motions governed by the compressible Navier-Stokes equations (including non-hydrostatic and ageostrophic flow). These equations describe motion on a wide range of timescales with non-linear coupling. For the purpose of developing new DA techniques that suit the convective-scale problem, it is helpful to use so-called <q>toy modelsq> that are easy to run and contain the same types of motion as the full equation set. Such a model needs to permit hydrostatic and geostrophic balance at large scales but allow imbalance at small scales, and in particular, it needs to exhibit intermittent convection-like behaviour. Existing <q>toy modelsq> are not always sufficient for investigating these issues. A simplified system of intermediate complexity derived from the Euler equations is presented, which supports dispersive gravity and acoustic modes. In this system, the separation of timescales can be greatly reduced by changing the physical parameters. Unlike in existing toy models, this allows the acoustic modes to be treated explicitly and hence inexpensively. In addition, the non-linear coupling induced by the equation of state is simplified. This means that the gravity and acoustic modes are less coupled than in conventional models. A vertical slice formulation is used which contains only dry dynamics. The model is shown to give physically reasonable results, and convective behaviour is generated by localised compressible effects. This model provides an affordable and flexible framework within which some of the complex issues of convective-scale DA can later be investigated. The model is called the <q>ABC modelq> after the three tunable parameters introduced: A (the pure gravity wave frequency), B (the modulation of the divergent term in the continuity equation), and C (defining the compressibility).

  11. A family of nonlinear Schrödinger equations admitting q-plane wave solutions

    NASA Astrophysics Data System (ADS)

    Nobre, F. D.; Plastino, A. R.

    2017-08-01

    Nonlinear Schrödinger equations with power-law nonlinearities have attracted considerable attention recently. Two previous proposals for these types of equations, corresponding respectively to the Gross-Pitaievsky equation and to the one associated with nonextensive statistical mechanics, are here unified into a single, parameterized family of nonlinear Schrödinger equations. Power-law nonlinear terms characterized by exponents depending on a real index q, typical of nonextensive statistical mechanics, are considered in such a way that the Gross-Pitaievsky equation is recovered in the limit q → 1. A classical field theory shows that, due to these nonlinearities, an extra field Φ (x → , t) (besides the usual one Ψ (x → , t)) must be introduced for consistency. The new field can be identified with Ψ* (x → , t) only when q → 1. For q ≠ 1 one has a pair of coupled nonlinear wave equations governing the joint evolution of the complex valued fields Ψ (x → , t) and Φ (x → , t). These equations reduce to the usual pair of complex-conjugate ones only in the q → 1 limit. Interestingly, the nonlinear equations obeyed by Ψ (x → , t) and Φ (x → , t) exhibit a common, soliton-like, traveling solution, which is expressible in terms of the q-exponential function that naturally emerges within nonextensive statistical mechanics.

  12. Structural Elements in the Gαs and Gαq C Termini That Mediate Selective G Protein-coupled Receptor (GPCR) Signaling.

    PubMed

    Semack, Ansley; Sandhu, Manbir; Malik, Rabia U; Vaidehi, Nagarajan; Sivaramakrishnan, Sivaraj

    2016-08-19

    Although the importance of the C terminus of the α subunit of the heterotrimeric G protein in G protein-coupled receptor (GPCR)-G protein pairing is well established, the structural basis of selective interactions remains unknown. Here, we combine live cell FRET-based measurements and molecular dynamics simulations of the interaction between the GPCR and a peptide derived from the C terminus of the Gα subunit (Gα peptide) to dissect the molecular mechanisms of G protein selectivity. We observe a direct link between Gα peptide binding and stabilization of the GPCR conformational ensemble. We find that cognate and non-cognate Gα peptides show deep and shallow binding, respectively, and in distinct orientations within the GPCR. Binding of the cognate Gα peptide stabilizes the agonist-bound GPCR conformational ensemble resulting in favorable binding energy and lower flexibility of the agonist-GPCR pair. We identify three hot spot residues (Gαs/Gαq-Gln-384/Leu-349, Gln-390/Glu-355, and Glu-392/Asn-357) that contribute to selective interactions between the β2-adrenergic receptor (β2-AR)-Gαs and V1A receptor (V1AR)-Gαq The Gαs and Gαq peptides adopt different orientations in β2-AR and V1AR, respectively. The β2-AR/Gαs peptide interface is dominated by electrostatic interactions, whereas the V1AR/Gαq peptide interactions are predominantly hydrophobic. Interestingly, our study reveals a role for both favorable and unfavorable interactions in G protein selection. Residue Glu-355 in Gαq prevents this peptide from interacting strongly with β2-AR. Mutagenesis to the Gαs counterpart (E355Q) imparts a cognate-like interaction. Overall, our study highlights the synergy in molecular dynamics and FRET-based approaches to dissect the structural basis of selective G protein interactions. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. The existence of electron-acoustic shock waves and their interactions in a non-Maxwellian plasma with q-nonextensive distributed electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Jiu-Ning; He, Yong-Lin; Han, Zhen-Hai

    2013-07-15

    We present a theoretical investigation for the nonlinear interaction between electron-acoustic shock waves in a nonextensive two-electron plasma. The interaction is governed by a pair of Korteweg-de Vries-Burgers equations. We focus on studying the colliding effects on the propagation of shock waves, more specifically, we have studied the effects of plasma parameters, i.e., the nonextensive parameter q, the “hot” to “cold” electron number density ratio α, and the normalized electron kinematic viscosity η{sub 0} on the trajectory changes (phase shifts) of shock waves. It is found that there are trajectory changes (phase shifts) for both colliding shock waves in themore » present plasma system. We also noted that the nonlinearity has no decisive effect on the trajectory changes, the occurrence of trajectory changes may be due to the combined role played by the dispersion and dissipation of the nonlinear structure. Our theoretical study may be beneficial to understand the propagation and interaction of nonlinear electrostatic waves and may brings a possibility to develop the nonlinear theory of electron-acoustic waves in astrophysical plasma systems.« less

  14. Paleohydrologic controls on soft-sediment deformation in the Navajo Sandstone

    NASA Astrophysics Data System (ADS)

    Bryant, Gerald; Cushman, Robert; Nick, Kevin; Miall, Andrew

    2016-10-01

    Many workers have noted the presence of contorted cross-strata in the Navajo Sandstone and other ancient eolianites, and have recognized their significance as indicators of sediment saturation during the accumulation history. Horowitz (1982) proposed a general model for the production of such features in ancient ergs by episodic, seismically induced liquefaction of accumulated sand. A key feature of that popular model is the prevalence of a flat water table, characteristic of a hyper-arid climatic regime, during deformation. Under arid climatic conditions, the water table is established by regional flow and liquefaction is limited to the saturated regions below the level of interdune troughs. However, various paleohydrological indicators from Navajo Sandstone outcrops point toward a broader range of water table configurations during the deformation history of that eolianite. Some outcrops reveal extensive deformation complexes that do not appear to have extended to the contemporary depositional surface. These km-scale zones of deformation, affecting multiple sets of cross-strata, and grading upward into undeformed crossbeds may represent deep water table conditions, coupled with high intensity triggers, which produced exclusively intrastratal deformation. Such occurrences contrast with smaller-scale complexes formed within the zone of interaction between the products of soft-sediment deformation and surface processes of deposition and erosion. The Horowitz model targets the smaller-scale deformation morphologies produced in this near-surface environment. This study examines the implications of a wet climatic regime for the Horowitz deformation model. It demonstrates how a contoured water table, characteristic of humid climates, may have facilitated deformation within active bedforms, as well as in the accumulation. Intra-dune deformation would enable deflation of deformation features during the normal course of dune migration, more parsimoniously accounting for

  15. Mesh Deformation Based on Fully Stressed Design: The Method and Two-Dimensional Examples

    NASA Technical Reports Server (NTRS)

    Hsu, Su-Yuen; Chang, Chau-Lyan

    2007-01-01

    Mesh deformation in response to redefined boundary geometry is a frequently encountered task in shape optimization and analysis of fluid-structure interaction. We propose a simple and concise method for deforming meshes defined with three-node triangular or four-node tetrahedral elements. The mesh deformation method is suitable for large boundary movement. The approach requires two consecutive linear elastic finite-element analyses of an isotropic continuum using a prescribed displacement at the mesh boundaries. The first analysis is performed with homogeneous elastic property and the second with inhomogeneous elastic property. The fully stressed design is employed with a vanishing Poisson s ratio and a proposed form of equivalent strain (modified Tresca equivalent strain) to calculate, from the strain result of the first analysis, the element-specific Young s modulus for the second analysis. The theoretical aspect of the proposed method, its convenient numerical implementation using a typical linear elastic finite-element code in conjunction with very minor extra coding for data processing, and results for examples of large deformation of two-dimensional meshes are presented in this paper. KEY WORDS: Mesh deformation, shape optimization, fluid-structure interaction, fully stressed design, finite-element analysis, linear elasticity, strain failure, equivalent strain, Tresca failure criterion

  16. Extended q -Gaussian and q -exponential distributions from gamma random variables

    NASA Astrophysics Data System (ADS)

    Budini, Adrián A.

    2015-05-01

    The family of q -Gaussian and q -exponential probability densities fit the statistical behavior of diverse complex self-similar nonequilibrium systems. These distributions, independently of the underlying dynamics, can rigorously be obtained by maximizing Tsallis "nonextensive" entropy under appropriate constraints, as well as from superstatistical models. In this paper we provide an alternative and complementary scheme for deriving these objects. We show that q -Gaussian and q -exponential random variables can always be expressed as a function of two statistically independent gamma random variables with the same scale parameter. Their shape index determines the complexity q parameter. This result also allows us to define an extended family of asymmetric q -Gaussian and modified q -exponential densities, which reduce to the standard ones when the shape parameters are the same. Furthermore, we demonstrate that a simple change of variables always allows relating any of these distributions with a beta stochastic variable. The extended distributions are applied in the statistical description of different complex dynamics such as log-return signals in financial markets and motion of point defects in a fluid flow.

  17. Model for the dynamics of two interacting axisymmetric spherical bubbles undergoing small shape oscillations

    PubMed Central

    Kurihara, Eru; Hay, Todd A.; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F.

    2011-01-01

    Interaction between acoustically driven or laser-generated bubbles causes the bubble surfaces to deform. Dynamical equations describing the motion of two translating, nominally spherical bubbles undergoing small shape oscillations in a viscous liquid are derived using Lagrangian mechanics. Deformation of the bubble surfaces is taken into account by including quadrupole and octupole perturbations in the spherical-harmonic expansion of the boundary conditions on the bubbles. Quadratic terms in the quadrupole and octupole amplitudes are retained, and surface tension and shear viscosity are included in a consistent manner. A set of eight coupled second-order ordinary differential equations is obtained. Simulation results, obtained by numerical integration of the model equations, exhibit qualitative agreement with experimental observations by predicting the formation of liquid jets. Simulations also suggest that bubble-bubble interactions act to enhance surface mode instability. PMID:22088009

  18. MultispeQ Beta: a tool for large-scale plant phenotyping connected to the open PhotosynQ network

    PubMed Central

    Austic, Greg; Zegarac, Robert; Osei-Bonsu, Isaac; Hoh, Donghee; Chilvers, Martin I.; Roth, Mitchell G.; Bi, Kevin; TerAvest, Dan; Weebadde, Prabode; Kramer, David M.

    2016-01-01

    Large-scale high-throughput plant phenotyping (sometimes called phenomics) is becoming increasingly important in plant biology and agriculture and is essential to cutting-edge plant breeding and management approaches needed to meet the food and fuel needs for the next century. Currently, the application of these approaches is severely limited by the availability of appropriate instrumentation and by the ability to communicate experimental protocols, results and analyses. To address these issues, we have developed a low-cost, yet sophisticated open-source scientific instrument designed to enable communities of researchers, plant breeders, educators, farmers and citizen scientists to collect high-quality field data on a large scale. The MultispeQ provides measurements in the field or laboratory of both, environmental conditions (light intensity and quality, temperature, humidity, CO2 levels, time and location) and useful plant phenotypes, including photosynthetic parameters—photosystem II quantum yield (ΦII), non-photochemical exciton quenching (NPQ), photosystem II photoinhibition, light-driven proton translocation and thylakoid proton motive force, regulation of the chloroplast ATP synthase and potentially many others—and leaf chlorophyll and other pigments. Plant phenotype data are transmitted from the MultispeQ to mobile devices, laptops or desktop computers together with key metadata that gets saved to the PhotosynQ platform (https://photosynq.org) and provides a suite of web-based tools for sharing, visualization, filtering, dissemination and analyses. We present validation experiments, comparing MultispeQ results with established platforms, and show that it can be usefully deployed in both laboratory and field settings. We present evidence that MultispeQ can be used by communities of researchers to rapidly measure, store and analyse multiple environmental and plant properties, allowing for deeper understanding of the complex interactions between plants

  19. MultispeQ Beta: a tool for large-scale plant phenotyping connected to the open PhotosynQ network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhlgert, Sebastian; Austic, Greg; Zegarac, Robert

    Large-scale high-throughput plant phenotyping (sometimes called phenomics) is becoming increasingly important in plant biology and agriculture and is essential to cutting-edge plant breeding and management approaches needed to meet the food and fuel needs for the next century. Currently, the application of these approaches is severely limited by the availability of appropriate instrumentation and by the ability to communicate experimental protocols, results and analyses. To address these issues, we have developed a low-cost, yet sophisticated open-source scientific instrument designed to enable communities of researchers, plant breeders, educators, farmers and citizen scientists to collect high-quality field data on a large scale.more » The MultispeQ provides measurements in the field or laboratory of both, environmental conditions (light intensity and quality, temperature, humidity, CO 2 levels, time and location) and useful plant phenotypes, including photosynthetic parameters—photosystem II quantum yield (Φ II), non-photochemical exciton quenching (NPQ), photosystem II photoinhibition, light-driven proton translocation and thylakoid proton motive force, regulation of the chloroplast ATP synthase and potentially many others—and leaf chlorophyll and other pigments. Plant phenotype data are transmitted from the MultispeQ to mobile devices, laptops or desktop computers together with key metadata that gets saved to the PhotosynQ platform (https://photosynq.org) and provides a suite of web-based tools for sharing, visualization, filtering, dissemination and analyses. We present validation experiments, comparing MultispeQ results with established platforms, and show that it can be usefully deployed in both laboratory and field settings. We present evidence that MultispeQ can be used by communities of researchers to rapidly measure, store and analyse multiple environmental and plant properties, allowing for deeper understanding of the complex interactions between

  20. MultispeQ Beta: a tool for large-scale plant phenotyping connected to the open PhotosynQ network

    DOE PAGES

    Kuhlgert, Sebastian; Austic, Greg; Zegarac, Robert; ...

    2016-10-26

    Large-scale high-throughput plant phenotyping (sometimes called phenomics) is becoming increasingly important in plant biology and agriculture and is essential to cutting-edge plant breeding and management approaches needed to meet the food and fuel needs for the next century. Currently, the application of these approaches is severely limited by the availability of appropriate instrumentation and by the ability to communicate experimental protocols, results and analyses. To address these issues, we have developed a low-cost, yet sophisticated open-source scientific instrument designed to enable communities of researchers, plant breeders, educators, farmers and citizen scientists to collect high-quality field data on a large scale.more » The MultispeQ provides measurements in the field or laboratory of both, environmental conditions (light intensity and quality, temperature, humidity, CO 2 levels, time and location) and useful plant phenotypes, including photosynthetic parameters—photosystem II quantum yield (Φ II), non-photochemical exciton quenching (NPQ), photosystem II photoinhibition, light-driven proton translocation and thylakoid proton motive force, regulation of the chloroplast ATP synthase and potentially many others—and leaf chlorophyll and other pigments. Plant phenotype data are transmitted from the MultispeQ to mobile devices, laptops or desktop computers together with key metadata that gets saved to the PhotosynQ platform (https://photosynq.org) and provides a suite of web-based tools for sharing, visualization, filtering, dissemination and analyses. We present validation experiments, comparing MultispeQ results with established platforms, and show that it can be usefully deployed in both laboratory and field settings. We present evidence that MultispeQ can be used by communities of researchers to rapidly measure, store and analyse multiple environmental and plant properties, allowing for deeper understanding of the complex interactions between

  1. Generalized ensemble theory with non-extensive statistics

    NASA Astrophysics Data System (ADS)

    Shen, Ke-Ming; Zhang, Ben-Wei; Wang, En-Ke

    2017-12-01

    The non-extensive canonical ensemble theory is reconsidered with the method of Lagrange multipliers by maximizing Tsallis entropy, with the constraint that the normalized term of Tsallis' q -average of physical quantities, the sum ∑ pjq, is independent of the probability pi for Tsallis parameter q. The self-referential problem in the deduced probability and thermal quantities in non-extensive statistics is thus avoided, and thermodynamical relationships are obtained in a consistent and natural way. We also extend the study to the non-extensive grand canonical ensemble theory and obtain the q-deformed Bose-Einstein distribution as well as the q-deformed Fermi-Dirac distribution. The theory is further applied to the generalized Planck law to demonstrate the distinct behaviors of the various generalized q-distribution functions discussed in literature.

  2. Gauge interaction as periodicity modulation

    NASA Astrophysics Data System (ADS)

    Dolce, Donatello

    2012-06-01

    The paper is devoted to a geometrical interpretation of gauge invariance in terms of the formalism of field theory in compact space-time dimensions (Dolce, 2011) [8]. In this formalism, the kinematic information of an interacting elementary particle is encoded on the relativistic geometrodynamics of the boundary of the theory through local transformations of the underlying space-time coordinates. Therefore gauge interactions are described as invariance of the theory under local deformations of the boundary. The resulting local variations of the field solution are interpreted as internal transformations. The internal symmetries of the gauge theory turn out to be related to corresponding space-time local symmetries. In the approximation of local infinitesimal isometric transformations, Maxwell's kinematics and gauge invariance are inferred directly from the variational principle. Furthermore we explicitly impose periodic conditions at the boundary of the theory as semi-classical quantization condition in order to investigate the quantum behavior of gauge interaction. In the abelian case the result is a remarkable formal correspondence with scalar QED.

  3. LAMMPS strong scaling performance optimization on Blue Gene/Q

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coffman, Paul; Jiang, Wei; Romero, Nichols A.

    2014-11-12

    LAMMPS "Large-scale Atomic/Molecular Massively Parallel Simulator" is an open-source molecular dynamics package from Sandia National Laboratories. Significant performance improvements in strong-scaling and time-to-solution for this application on IBM's Blue Gene/Q have been achieved through computational optimizations of the OpenMP versions of the short-range Lennard-Jones term of the CHARMM force field and the long-range Coulombic interaction implemented with the PPPM (particle-particle-particle mesh) algorithm, enhanced by runtime parameter settings controlling thread utilization. Additionally, MPI communication performance improvements were made to the PPPM calculation by re-engineering the parallel 3D FFT to use MPICH collectives instead of point-to-point. Performance testing was done using anmore » 8.4-million atom simulation scaling up to 16 racks on the Mira system at Argonne Leadership Computing Facility (ALCF). Speedups resulting from this effort were in some cases over 2x.« less

  4. Deformations, moduli stabilisation and gauge couplings at one-loop

    NASA Astrophysics Data System (ADS)

    Honecker, Gabriele; Koltermann, Isabel; Staessens, Wieland

    2017-04-01

    We investigate deformations of Z_2 orbifold singularities on the toroidal orbifold {T}^6/(Z_2× Z_6) with discrete torsion in the framework of Type IIA orientifold model building with intersecting D6-branes wrapping special Lagrangian cycles. To this aim, we employ the hypersurface formalism developed previously for the orbifold {T}^6/(Z_2× Z_6) with discrete torsion and adapt it to the (Z_2× Z_6× Ω R) point group by modding out the remaining Z_3 subsymmetry and the orientifold projection Ω R. We first study the local behaviour of the Z_3× Ω R invariant deformation orbits under non-zero deformation and then develop methods to assess the deformation effects on the fractional three-cycle volumes globally. We confirm that D6-branes supporting USp(2 N) or SO(2 N) gauge groups do not constrain any deformation, while deformation parameters associated to cycles wrapped by D6-branes with U( N) gauge groups are constrained by D-term supersymmetry breaking. These features are exposed in global prototype MSSM, Left-Right symmetric and Pati-Salam models first constructed in [1, 2], for which we here count the number of stabilised moduli and study flat directions changing the values of some gauge couplings.

  5. Dynamic soft tissue deformation estimation based on energy analysis

    NASA Astrophysics Data System (ADS)

    Gao, Dedong; Lei, Yong; Yao, Bin

    2016-10-01

    The needle placement accuracy of millimeters is required in many needle-based surgeries. The tissue deformation, especially that occurring on the surface of organ tissue, affects the needle-targeting accuracy of both manual and robotic needle insertions. It is necessary to understand the mechanism of tissue deformation during needle insertion into soft tissue. In this paper, soft tissue surface deformation is investigated on the basis of continuum mechanics, where a geometry model is presented to quantitatively approximate the volume of tissue deformation. The energy-based method is presented to the dynamic process of needle insertion into soft tissue based on continuum mechanics, and the volume of the cone is exploited to quantitatively approximate the deformation on the surface of soft tissue. The external work is converted into potential, kinetic, dissipated, and strain energies during the dynamic rigid needle-tissue interactive process. The needle insertion experimental setup, consisting of a linear actuator, force sensor, needle, tissue container, and a light, is constructed while an image-based method for measuring the depth and radius of the soft tissue surface deformations is introduced to obtain the experimental data. The relationship between the changed volume of tissue deformation and the insertion parameters is created based on the law of conservation of energy, with the volume of tissue deformation having been obtained using image-based measurements. The experiments are performed on phantom specimens, and an energy-based analytical fitted model is presented to estimate the volume of tissue deformation. The experimental results show that the energy-based analytical fitted model can predict the volume of soft tissue deformation, and the root mean squared errors of the fitting model and experimental data are 0.61 and 0.25 at the velocities 2.50 mm/s and 5.00 mm/s. The estimating parameters of the soft tissue surface deformations are proven to be useful

  6. Coenzyme Q10 Therapy

    PubMed Central

    Garrido-Maraver, Juan; Cordero, Mario D.; Oropesa-Ávila, Manuel; Fernández Vega, Alejandro; de la Mata, Mario; Delgado Pavón, Ana; de Miguel, Manuel; Pérez Calero, Carmen; Villanueva Paz, Marina; Cotán, David; Sánchez-Alcázar, José A.

    2014-01-01

    For a number of years, coenzyme Q10 (CoQ10) was known for its key role in mitochondrial bioenergetics; later studies demonstrated its presence in other subcellular fractions and in blood plasma, and extensively investigated its antioxidant role. These 2 functions constitute the basis for supporting the clinical use of CoQ10. Also, at the inner mitochondrial membrane level, CoQ10 is recognized as an obligatory cofactor for the function of uncoupling proteins and a modulator of the mitochondrial transition pore. Furthermore, recent data indicate that CoQ10 affects the expression of genes involved in human cell signaling, metabolism and transport, and some of the effects of CoQ10 supplementation may be due to this property. CoQ10 deficiencies are due to autosomal recessive mutations, mitochondrial diseases, aging-related oxidative stress and carcinogenesis processes, and also statin treatment. Many neurodegenerative disorders, diabetes, cancer, and muscular and cardiovascular diseases have been associated with low CoQ10 levels as well as different ataxias and encephalomyopathies. CoQ10 treatment does not cause serious adverse effects in humans and new formulations have been developed that increase CoQ10 absorption and tissue distribution. Oral administration of CoQ10 is a frequent antioxidant strategy in many diseases that may provide a significant symptomatic benefit. PMID:25126052

  7. Gender-specific differences of interaction between cadmium exposure and obesity on prediabetes in the NHANES 2007-2012 population.

    PubMed

    Jiang, Fei; Zhi, Xueyuan; Xu, Miao; Li, Bingyan; Zhang, Zengli

    2018-05-30

    Data from National Health and Nutrition Examination Survey (NHANES) for the years 2007-2012 were used to evaluate the interactions of cadmium (Cd) exposure with being overweight/obesity on the risk of prediabetes among adults 20 years older. A total of 3552 subjects were included in the analysis. Urinary cadmium levels (UCd) was used as a biomarker for long-term exposure to Cd. Additive interaction was estimated using relative excess risk due to interaction (RERI), attributable proportion due to interaction (AP) and synergy index (S). Following covariates adjustments, we found significant associations of UCd with higher prediabetes prevalence, and this association was more apparent in males (Q4 vs Q1: OR = 1.95, 95%CI: 1.34-2.84); while overweight/obesity was associated with prediabetes both in males and in females. Additionally, there was a significant interaction between Cd exposure and being overweight/obesity on prediabetes risk among males (RERI = 1.18, 95% CI: 0.42-1.93; AP = 0.35, 95% CI: 0.12-0.58; S = 2.00, 95% CI: 0.92-4.34). Our results suggest that being overweight/obesity may substantially amplify the adverse effects of long-term cadmium exposure on prediabetes risk, and this interaction is more severe in male adults. Further studies are needed to confirm these findings.

  8. Effect of small perturbations on the evolution of polycrystalline structure during plastic deformation

    NASA Astrophysics Data System (ADS)

    Korznikova, E. A.; Baimova, Yu. A.; Kistanov, A. A.; Dmitriev, S. V.; Korznikov, A. V.

    2014-09-01

    The method of molecular dynamics has been used to study the influence of initial perturbations on the evolution of grain boundaries during the shear plastic deformation of a two-dimensional polycrystalline material with nanoscale grains. It has been shown that short-term thermalization-induced small perturbations result in noticeable differences in grain boundaries configurations at the deformation of 0.05 and the polycrystal completely loses its initial grain boundary structure at the deformation of 0.4.

  9. Mammalian polo-like kinase 1-dependent regulation of the PBIP1-CENP-Q complex at kinetochores.

    PubMed

    Kang, Young H; Park, Chi Hoon; Kim, Tae-Sung; Soung, Nak-Kyun; Bang, Jeong K; Kim, Bo Y; Park, Jung-Eun; Lee, Kyung S

    2011-06-03

    Mammalian polo-like kinase 1 (Plk1) plays a pivotal role during M-phase progression. Plk1 localizes to specific subcellular structures through the targeting activity of the C-terminal polo-box domain (PBD). Disruption of the PBD function results in improper bipolar spindle formation, chromosome missegregation, and cytokinesis defect that ultimately lead to the generation of aneuploidy. It has been shown that Plk1 recruits itself to centromeres by phosphorylating and binding to a centromere scaffold, PBIP1 (also called MLF1IP and CENP-U[50]) through its PBD. However, how PBIP1 itself is targeted to centromeres and what roles it plays in the regulation of Plk1-dependent mitotic events remain unknown. Here, we demonstrated that PBIP1 directly interacts with CENP-Q, and this interaction was mutually required not only for their stability but also for their centromere localization. Plk1 did not appear to interact with CENP-Q directly. However, Plk1 formed a ternary complex with PBIP1 and CENP-Q through a self-generated p-T78 motif on PBIP1. This complex formation was central for Plk1-dependent phosphorylation of PBIP1-bound CENP-Q and delocalization of the PBIP1-CENP-Q complex from mitotic centromeres. This study reveals a unique mechanism of how PBIP1 mediates Plk1-dependent phosphorylation event onto a third protein, and provides new insights into the mechanism of how Plk1 and its recruitment scaffold, PBIP1-CENP-Q complex, are localized to and delocalized from centromeres.

  10. Mammalian Polo-like Kinase 1-dependent Regulation of the PBIP1-CENP-Q Complex at Kinetochores*

    PubMed Central

    Kang, Young H.; Park, Chi Hoon; Kim, Tae-Sung; Soung, Nak-Kyun; Bang, Jeong K.; Kim, Bo Y.; Park, Jung-Eun; Lee, Kyung S.

    2011-01-01

    Mammalian polo-like kinase 1 (Plk1) plays a pivotal role during M-phase progression. Plk1 localizes to specific subcellular structures through the targeting activity of the C-terminal polo-box domain (PBD). Disruption of the PBD function results in improper bipolar spindle formation, chromosome missegregation, and cytokinesis defect that ultimately lead to the generation of aneuploidy. It has been shown that Plk1 recruits itself to centromeres by phosphorylating and binding to a centromere scaffold, PBIP1 (also called MLF1IP and CENP-U[50]) through its PBD. However, how PBIP1 itself is targeted to centromeres and what roles it plays in the regulation of Plk1-dependent mitotic events remain unknown. Here, we demonstrated that PBIP1 directly interacts with CENP-Q, and this interaction was mutually required not only for their stability but also for their centromere localization. Plk1 did not appear to interact with CENP-Q directly. However, Plk1 formed a ternary complex with PBIP1 and CENP-Q through a self-generated p-T78 motif on PBIP1. This complex formation was central for Plk1-dependent phosphorylation of PBIP1-bound CENP-Q and delocalization of the PBIP1-CENP-Q complex from mitotic centromeres. This study reveals a unique mechanism of how PBIP1 mediates Plk1-dependent phosphorylation event onto a third protein, and provides new insights into the mechanism of how Plk1 and its recruitment scaffold, PBIP1-CENP-Q complex, are localized to and delocalized from centromeres. PMID:21454580

  11. Global synthesis of volcano deformation: Results of the Volcano Deformation Task Force

    NASA Astrophysics Data System (ADS)

    Pritchard, M. E.; Jay, J.; Biggs, J.; Ebmeier, S. K.; Delgado, F.

    2013-12-01

    Ground deformation in volcanic regions is being observed more frequently -- the number of known deforming volcanoes has increased from 44 in 1997 to more than 210 in 2013 thanks in large part thanks to the availability of satellite InSAR observations. With the launch of new SAR satellites in the coming years devoted to global deformation monitoring, the number of well-studied episodes of volcano deformation will continue to increase. But evaluating the significance of the observed deformation is not always straightforward -- how often do deformation episodes lead to eruption? Are there certain characteristics of the deformation or the volcano that make the linkage between deformation and eruption more robust -- for example the duration or magnitude of the ground deformation and/or the composition and tectonic setting of the volcano? To answer these questions, a global database of volcano deformation events is needed. Recognizing the need for global information on volcano deformation and the opportunity to address it with InSAR and other techniques, we formed the Volcano Deformation Database Task force as part of Global Volcano Model. The three objectives of our organization are: 1) to compile deformation observations of all volcanoes globally into appropriate formats for WOVOdat and the Global Volcanism Program of the Smithsonian Institution. 2) document any relation between deformation events and eruptions for the Global assessment of volcanic hazard and risk report for 2015 (GAR15) for the UN. 3) to better link InSAR and other remote sensing observations to volcano observatories. We present the first results from our global study of the relation between deformation and eruptions, including case studies of particular eruptions. We compile a systematically-observed catalog of >500 volcanoes with observation windows up to 20 years. Of 90 volcanoes showing deformation, 40 erupted. The positive predictive value (PPV = 0.44) linking deformation and eruption on this

  12. Modeling plasticity by non-continuous deformation

    NASA Astrophysics Data System (ADS)

    Ben-Shmuel, Yaron; Altus, Eli

    2017-10-01

    Plasticity and failure theories are still subjects of intense research. Engineering constitutive models on the macroscale which are based on micro characteristics are very much in need. This study is motivated by the observation that continuum assumptions in plasticity in which neighbour material elements are inseparable at all-time are physically impossible, since local detachments, slips and neighbour switching must operate, i.e. non-continuous deformation. Material microstructure is modelled herein by a set of point elements (particles) interacting with their neighbours. Each particle can detach from and/or attach with its neighbours during deformation. Simulations on two- dimensional configurations subjected to uniaxial compression cycle are conducted. Stochastic heterogeneity is controlled by a single "disorder" parameter. It was found that (a) macro response resembles typical elasto-plastic behaviour; (b) plastic energy is proportional to the number of detachments; (c) residual plastic strain is proportional to the number of attachments, and (d) volume is preserved, which is consistent with macro plastic deformation. Rigid body displacements of local groups of elements are also observed. Higher disorder decreases the macro elastic moduli and increases plastic energy. Evolution of anisotropic effects is obtained with no additional parameters.

  13. Activation of Gαq Signaling Enhances Memory Consolidation and Slows Cognitive Decline.

    PubMed

    Arey, Rachel N; Stein, Geneva M; Kaletsky, Rachel; Kauffman, Amanda; Murphy, Coleen T

    2018-05-02

    Perhaps the most devastating decline with age is the loss of memory. Therefore, identifying mechanisms to restore memory function with age is critical. Using C. elegans associative learning and memory assays, we identified a gain-of-function G αq signaling pathway mutant that forms a long-term (cAMP response element binding protein [CREB]-dependent) memory following one conditioned stimulus-unconditioned stimulus (CS-US) pairing, which usually requires seven CS-US pairings. Increased CREB activity in AIM interneurons reduces the threshold for memory consolidation through transcription of a set of previously identified "long-term memory" genes. Enhanced G αq signaling in the AWC sensory neuron is both necessary and sufficient for improved memory and increased AIM CREB activity, and activation of G αq specifically in aged animals rescues the ability to form memory. Activation of G αq in AWC sensory neurons non-cell autonomously induces consolidation after one CS-US pairing, enabling both cognitive function maintenance with age and restoration of memory function in animals with impaired memory performance without decreased longevity. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Deletion (11)(q14.1q21)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stratton, R.F.; Lazarus, K.H.; Ritchie, E.J.L.

    1994-02-01

    The authors report on a 4-year-old girl with moderate development delay, horseshoe kidney, bilateral duplication of the ureters with right upper pole obstruction, hydronephrosis and nonfunction, and subsequent Wilms tumor of the right lower pole. She had an interstitial deletion of the long arm of chromosome 11 involving the region 11(q14.1q21). 22 refs., 2 figs., 1 tab.

  15. Improving the Long-Term Stability of Atmospheric Surface Deformation Predictions by Mitigating the Effects of Orography Updates in Operational Weather Forecast Models

    NASA Astrophysics Data System (ADS)

    Dill, Robert; Bergmann-Wolf, Inga; Thomas, Maik; Dobslaw, Henryk

    2016-04-01

    The global numerical weather prediction model routinely operated at the European Centre for Medium-Range Weather Forecasts (ECMWF) is typically updated about two times a year to incorporate the most recent improvements in the numerical scheme, the physical model or the data assimilation procedures into the system for steadily improving daily weather forecasting quality. Even though such changes frequently affect the long-term stability of meteorological quantities, data from the ECMWF deterministic model is often preferred over alternatively available atmospheric re-analyses due to both the availability of the data in near real-time and the substantially higher spatial resolution. However, global surface pressure time-series, which are crucial for the interpretation of geodetic observables, such as Earth rotation, surface deformation, and the Earth's gravity field, are in particular affected by changes in the surface orography of the model associated with every major change in horizontal resolution happened, e.g., in February 2006, January 2010, and May 2015 in case of the ECMWF operational model. In this contribution, we present an algorithm to harmonize surface pressure time-series from the operational ECMWF model by projecting them onto a time-invariant reference topography under consideration of the time-variable atmospheric density structure. The effectiveness of the method will be assessed globally in terms of pressure anomalies. In addition, we will discuss the impact of the method on predictions of crustal deformations based on ECMWF input, which have been recently made available by GFZ Potsdam.

  16. Distribution of Steps with Finite-Range Interactions: Analytic Approximations and Numerical Results

    NASA Astrophysics Data System (ADS)

    GonzáLez, Diego Luis; Jaramillo, Diego Felipe; TéLlez, Gabriel; Einstein, T. L.

    2013-03-01

    While most Monte Carlo simulations assume only nearest-neighbor steps interact elastically, most analytic frameworks (especially the generalized Wigner distribution) posit that each step elastically repels all others. In addition to the elastic repulsions, we allow for possible surface-state-mediated interactions. We investigate analytically and numerically how next-nearest neighbor (NNN) interactions and, more generally, interactions out to q'th nearest neighbor alter the form of the terrace-width distribution and of pair correlation functions (i.e. the sum over n'th neighbor distribution functions, which we investigated recently.[2] For physically plausible interactions, we find modest changes when NNN interactions are included and generally negligible changes when more distant interactions are allowed. We discuss methods for extracting from simulated experimental data the characteristic scale-setting terms in assumed potential forms.

  17. The Role of Long-Term Tectonic Deformation on the Distribution of Present-Day Seismic Activity in the Caribbean and Central America

    NASA Astrophysics Data System (ADS)

    Schobelock, J.; Stamps, D. S.; Pagani, M.; Garcia, J.; Styron, R. H.

    2017-12-01

    The Caribbean and Central America region (CCAR) undergoes the entire spectrum of earthquake types due to its complex tectonic setting comprised of transform zones, young oceanic spreading ridges, and subductions along its eastern and western boundaries. CCAR is, therefore, an ideal setting in which to study the impacts of long-term tectonic deformation on the distribution of present-day seismic activity. In this work, we develop a continuous tectonic strain rate model based on inter-seismic geodetic data and compare it with known active faults and earthquake focal mechanism data. We first create a 0.25o x 0.25o finite element mesh that is comprised of block geometries defined in previously studies. Second, we isolate and remove transient signals from the latest open access community velocity solution from UNAVCO, which includes 339 velocities from COCONet and TLALOCNet GNSS data for the Caribbean and Central America, respectively. In a third step we define zones of deformation and rigidity by creating a buffer around the boundary of each block that varies depending on the size of the block and the expected deformation zone based on locations of GNSS data that are consistent with rigid block motion. We then assign each node within the buffer a 0 for the deforming areas and a plate index outside the buffer for the rigid. Finally, we calculate a tectonic strain rate model for CCAR using the Haines and Holt finite element approach to fit bi-cubic Bessel splines to the the GNSS/GPS data assuming block rotation for zones of rigidity. Our model of the CCAR is consistent with compression along subduction zones, extension across the mid-Pacific Rise, and a combination of compression and extension across the North America - Caribbean plate boundary. The majority of CCAR strain rate magnitudes range from -60 to 60 nanostrains/yr. Modeling results are then used to calculate expected faulting behaviors that we compare with mapped geologic faults and seismic activity.

  18. Scaling properties of sea ice deformation from buoy dispersion analysis

    NASA Astrophysics Data System (ADS)

    Rampal, P.; Weiss, J.; Marsan, D.; Lindsay, R.; Stern, H.

    2008-03-01

    A temporal and spatial scaling analysis of Arctic sea ice deformation is performed over timescales from 3 h to 3 months and over spatial scales from 300 m to 300 km. The deformation is derived from the dispersion of pairs of drifting buoys, using the IABP (International Arctic Buoy Program) buoy data sets. This study characterizes the deformation of a very large solid plate (the Arctic sea ice cover) stressed by heterogeneous forcing terms like winds and ocean currents. It shows that the sea ice deformation rate depends on the scales of observation following specific space and time scaling laws. These scaling properties share similarities with those observed for turbulent fluids, especially for the ocean and the atmosphere. However, in our case, the time scaling exponent depends on the spatial scale, and the spatial exponent on the temporal scale, which implies a time/space coupling. An analysis of the exponent values shows that Arctic sea ice deformation is very heterogeneous and intermittent whatever the scales, i.e., it cannot be considered as viscous-like, even at very large time and/or spatial scales. Instead, it suggests a deformation accommodated by a multiscale fracturing/faulting processes.

  19. Tricriticality in the q-neighbor Ising model on a partially duplex clique.

    PubMed

    Chmiel, Anna; Sienkiewicz, Julian; Sznajd-Weron, Katarzyna

    2017-12-01

    We analyze a modified kinetic Ising model, a so-called q-neighbor Ising model, with Metropolis dynamics [Phys. Rev. E 92, 052105 (2015)PLEEE81539-375510.1103/PhysRevE.92.052105] on a duplex clique and a partially duplex clique. In the q-neighbor Ising model each spin interacts only with q spins randomly chosen from its whole neighborhood. In the case of a duplex clique the change of a spin is allowed only if both levels simultaneously induce this change. Due to the mean-field-like nature of the model we are able to derive the analytic form of transition probabilities and solve the corresponding master equation. The existence of the second level changes dramatically the character of the phase transition. In the case of the monoplex clique, the q-neighbor Ising model exhibits a continuous phase transition for q=3, discontinuous phase transition for q≥4, and for q=1 and q=2 the phase transition is not observed. On the other hand, in the case of the duplex clique continuous phase transitions are observed for all values of q, even for q=1 and q=2. Subsequently we introduce a partially duplex clique, parametrized by r∈[0,1], which allows us to tune the network from monoplex (r=0) to duplex (r=1). Such a generalized topology, in which a fraction r of all nodes appear on both levels, allows us to obtain the critical value of r=r^{*}(q) at which a tricriticality (switch from continuous to discontinuous phase transition) appears.

  20. 40 CFR Table 1 to Subpart Q of... - General Provisions Applicability to Subpart Q

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Subpart Q 1 Table 1 to Subpart Q of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY.... 63, Subpt. Q, Table 1 Table 1 to Subpart Q of Part 63—General Provisions Applicability to Subpart Q Reference Applies to Subpart Q Comment 63.1 Yes 63.2 Yes 63.3 No 63.4 Yes 63.5 No 63.6 (a), (b), (c), and (j...