NASA Astrophysics Data System (ADS)
Chopra, Pragya; Chakraborty, Shamik
2018-01-01
This work presents Csbnd H⋯Se hydrogen bonding interaction at the MP2 level of theory. The system Q3Csbnd H⋯SeH2 (Q = Cl, F, and H) provides an opportunity to investigate red- and blue-shifted hydrogen bonds. The origin of the red- and blue-shift in Csbnd H stretching frequency has been investigated using Natural Bond Orbital analysis. A large amount of electron density is being transferred to the σ∗Csbnd H orbital in red-shifted Cl3Csbnd H⋯SeH2. Electron density transfer in the blue-shifted F3Csbnd H⋯SeH2 is primarily to the remote fluorine atoms. Further, due to polarization of the Csbnd H bond, the contradicting effects of rehybridization and hyperconjugation are important. The extent of hyperconjugation reigns predominant in explaining the nature of the Csbnd H⋯Se hydrogen bond in Q3Csbnd H⋯SeH2 complexes as the hydrogen bond acceptor remain same in this investigation. Red- and blue-shift in Q3Csbnd H⋯SeH2 (Q = Cl and F) complexes is best described by pro-improper hydrogen bond donor concept.
Light-meson masses in an unquenched quark model
NASA Astrophysics Data System (ADS)
Chen, Xiaoyun; Ping, Jialun; Roberts, Craig D.; Segovia, Jorge
2018-05-01
We perform a coupled-channels calculation of the masses of light mesons with the quantum numbers I JP =-, (I ,J )=0 , 1, by including q q ¯ and (q q ¯)2 components in a nonrelativistic chiral quark model. The coupling between two- and four-quark configurations is realized through a 3P0 quark-pair creation model. With the usual form of this operator, the mass shifts are large and negative, an outcome which raises serious issues of validity for the quenched quark model. Herein, therefore, we introduce some improvements of the 3P0 operator in order to reduce the size of the mass shifts. By introducing two simple factors, physically well motivated, the coupling between q q ¯ and (q q ¯)2 components is weakened, producing mass shifts that are around 10%-20% of hadron bare masses.
Light-meson masses in an unquenched quark model
Chen, Xiaoyun; Ping, Jialun; Roberts, Craig D.; ...
2018-05-17
We perform a coupled-channels calculation of the masses of light mesons with the quantum numbers IJ P=-, (I,J) = 0,1, by includingmore » $$q\\bar{q}$$ and ($$q\\bar{q}$$) 2 components in a nonrelativistic chiral quark model. The coupling between two- and four-quark configurations is realized through a 3P 0 quark-pair creation model. With the usual form of this operator, the mass shifts are large and negative, an outcome which raises serious issues of validity for the quenched quark model. Therefore, we introduce some improvements of the 3P 0 operator in order to reduce the size of the mass shifts. By introducing two simple factors, physically well motivated, the coupling between $$q\\bar{q}$$ and ($$q\\bar{q}$$) 2 components is weakened, producing mass shifts that are around 10%–20% of hadron bare masses.« less
Light-meson masses in an unquenched quark model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xiaoyun; Ping, Jialun; Roberts, Craig D.
We perform a coupled-channels calculation of the masses of light mesons with the quantum numbers IJ P=-, (I,J) = 0,1, by includingmore » $$q\\bar{q}$$ and ($$q\\bar{q}$$) 2 components in a nonrelativistic chiral quark model. The coupling between two- and four-quark configurations is realized through a 3P 0 quark-pair creation model. With the usual form of this operator, the mass shifts are large and negative, an outcome which raises serious issues of validity for the quenched quark model. Therefore, we introduce some improvements of the 3P 0 operator in order to reduce the size of the mass shifts. By introducing two simple factors, physically well motivated, the coupling between $$q\\bar{q}$$ and ($$q\\bar{q}$$) 2 components is weakened, producing mass shifts that are around 10%–20% of hadron bare masses.« less
NASA Astrophysics Data System (ADS)
Song, Hyeong Yong; Salehiyan, Reza; Li, Xiaolei; Lee, Seung Hak; Hyun, Kyu
2017-11-01
In this study, the effects of cone-plate (C/P) and parallel-plate (P/P) geometries were investigated on the rheological properties of various complex fluids, e.g. single-phase (polymer melts and solutions) and multiphase systems (polymer blend and nanocomposite, and suspension). Small amplitude oscillatory shear (SAOS) tests were carried out to compare linear rheological responses while nonlinear responses were compared using large amplitude oscillatory shear (LAOS) tests at different frequencies. Moreover, Fourier-transform (FT)-rheology method was used to analyze the nonlinear responses under LAOS flow. Experimental results were compared with predictions obtained by single-point correction and shear rate correction. For all systems, SAOS data measured by C/P and P/P coincide with each other, but results showed discordance between C/P and P/P measurements in the nonlinear regime. For all systems except xanthan gum solutions, first-harmonic moduli were corrected using a single horizontal shift factor, whereas FT rheology-based nonlinear parameters ( I 3/1, I 5/1, Q 3, and Q 5) were corrected using vertical shift factors that are well predicted by single-point correction. Xanthan gum solutions exhibited anomalous corrections. Their first-harmonic Fourier moduli were superposed using a horizontal shift factor predicted by shear rate correction applicable to highly shear thinning fluids. The distinguished corrections were observed for FT rheology-based nonlinear parameters. I 3/1 and I 5/1 were superposed by horizontal shifts, while the other systems displayed vertical shifts of I 3/1 and I 5/1. Q 3 and Q 5 of xanthan gum solutions were corrected using both horizontal and vertical shift factors. In particular, the obtained vertical shift factors for Q 3 and Q 5 were twice as large as predictions made by single-point correction. Such larger values are rationalized by the definitions of Q 3 and Q 5. These results highlight the significance of horizontal shift corrections in nonlinear oscillatory shear data.
Chen, Lixiang; She, Weilong
2008-09-15
We demonstrate that single photons from a rotating q-plate exhibit an entanglement in three degrees of freedom of spin, orbital angular momentum, and the rotational Doppler shift (RDS) due to the nonconservation of total spin and orbital angular momenta. We find that the rotational Doppler shift deltaomega = Omega((delta)s + deltal) , where s, l and Omega are quantum numbers of spin, orbital angular momentum, and rotating velocity of the q-plate, respectively. Of interest is that the rotational Doppler shift directly reflects the rotational symmetry of q-plates and can be also expressed as deltaomega = (Omega)n , where n = 2(q-1) denotes the fold number of rotational symmetry. Besides, based on this single-photon spin-orbit-RDS entanglement, we propose an experimental scheme to sort photons of different frequency shifts according to individual orbital angular momentum.
Attitudes towards rotating shift work in clinical nurses: a Q-methodology study.
Ha, Eun-Ho
2015-09-01
To identify clinical nurses' attitudes towards rotating shift work. Many hospitals worldwide employ rotating shift work patterns to staff their facilities. Attitudes of clinical nurses towards rotating shift work vary. To understand clinical nurses' attitudes towards rotating shift work, Q-methodology, a method for the analysis of subjective viewpoints with the strengths of both qualitative and quantitative methods, was used. Forty-six selected Q-statements from each of the 39 participants were classified into a normal distribution using an 11-point bipolar scale. The collected data were analysed using pc-QUANL program. Three discrete factors emerged as follows: factor I (rotating shift work is frustrating: objectionable perspective), factor II (rotating shift work is satisfactory: constructive perspective) and factor III (rotating shift work is problematic, but necessary: ambivalent perspective). The subjective viewpoints of the three identified factors can be applied in developing various roster designs for nurses engaging in rotating shift work. The findings provide the baseline for nurse leaders in helping nurses adjust and deal with rotating shift work. © 2015 John Wiley & Sons Ltd.
Active Duty-U.S. Army Noise Induced Hearing Injury Quarterly Surveillance Q3 2007 thru Q4 2009
2014-05-11
years (CY) Q3 2007-Q4 2009 shows incident case rates for sensorineural hearing loss (SNHL), significant threshold shift (STS), tinnitus , and Noise-Induced...Prev Med. 2010;38(1S):S71-S77. Humes LE, Jollenbeck LM, Durch JS. Noise and military service: Implications for hearing loss and tinnitus . Washington...threshold shift 79415 NONSPECIFIC ABNORMAL AUDITORY FUNCTION STUDIES TINN Tinnitus 38830 TINNITUS UNSPECIFIED TINN Tinnitus 38831 SUBJECTIVE TINNITUS
Klerman, Elizabeth B; Beckett, Scott A; Landrigan, Christopher P
2016-09-13
In 2011 the U.S. Accreditation Council for Graduate Medical Education began limiting first year resident physicians (interns) to shifts of ≤16 consecutive hours. Controversy persists regarding the effectiveness of this policy for reducing errors and accidents while promoting education and patient care. Using a mathematical model of the effects of circadian rhythms and length of time awake on objective performance and subjective alertness, we quantitatively compared predictions for traditional intern schedules to those that limit work to ≤ 16 consecutive hours. We simulated two traditional schedules and three novel schedules using the mathematical model. The traditional schedules had extended duration work shifts (≥24 h) with overnight work shifts every second shift (including every third night, Q3) or every third shift (including every fourth night, Q4) night; the novel schedules had two different cross-cover (XC) night team schedules (XC-V1 and XC-V2) and a Rapid Cycle Rotation (RCR) schedule. Predicted objective performance and subjective alertness for each work shift were computed for each individual's schedule within a team and then combined for the team as a whole. Our primary outcome was the amount of time within a work shift during which a team's model-predicted objective performance and subjective alertness were lower than that expected after 16 or 24 h of continuous wake in an otherwise rested individual. The model predicted fewer hours with poor performance and alertness, especially during night-time work hours, for all three novel schedules than for either the traditional Q3 or Q4 schedules. Three proposed schedules that eliminate extended shifts may improve performance and alertness compared with traditional Q3 or Q4 schedules. Predicted times of worse performance and alertness were at night, which is also a time when supervision of trainees is lower. Mathematical modeling provides a quantitative comparison approach with potential to aid residency programs in schedule analysis and redesign.
Differentially coherent quadrature-quadrature phase shift keying (Q2PSK)
NASA Astrophysics Data System (ADS)
Saha, Debabrata; El-Ghandour, Osama
The quadrature-quadrature phase-shift-keying (Q2PSK) signaling scheme uses the vertices of a hypercube of dimension four. A generalized Q2PSK signaling format for differentially coherent detection at the receiver is considered. Performance in the presence of additive white Gaussian noise (AWGN) is analyzed. The symbol error rate is found to be approximately twice the symbol error rate in a quaternary DPSK system operating at the same Eb/Nb. However, the bandwidth efficiency of differential Q2PSK is substantially higher than that of quaternary DPSK.
Attenuation analysis of real GPR wavelets: The equivalent amplitude spectrum (EAS)
NASA Astrophysics Data System (ADS)
Economou, Nikos; Kritikakis, George
2016-03-01
Absorption of a Ground Penetrating Radar (GPR) pulse is a frequency dependent attenuation mechanism which causes a spectral shift on the dominant frequency of GPR data. Both energy variation of GPR amplitude spectrum and spectral shift were used for the estimation of Quality Factor (Q*) and subsequently the characterization of the subsurface material properties. The variation of the amplitude spectrum energy has been studied by Spectral Ratio (SR) method and the frequency shift by the estimation of the Frequency Centroid Shift (FCS) or the Frequency Peak Shift (FPS) methods. The FPS method is more automatic, less robust. This work aims to increase the robustness of the FPS method by fitting a part of the amplitude spectrum of GPR data with Ricker, Gaussian, Sigmoid-Gaussian or Ricker-Gaussian functions. These functions fit different parts of the spectrum of a GPR reference wavelet and the Equivalent Amplitude Spectrum (EAS) is selected, reproducing Q* values used in forward Q* modeling analysis. Then, only the peak frequencies and the time differences between the reference wavelet and the subsequent reflected wavelets are used to estimate Q*. As long as the EAS is estimated, it is used for Q* evaluation in all the GPR section, under the assumption that the selected reference wavelet is representative. De-phasing and constant phase shift, for obtaining symmetrical wavelets, proved useful in the sufficiency of the horizons picking. Synthetic, experimental and real GPR data were examined in order to demonstrate the effectiveness of the proposed methodology.
Broadening and Shifting of Atomic Strontium and Diatomic Bismuth Spectral Lines
2003-05-01
Upper Energy State, Ek kA q kA q jA jA Figure 2-4. Transition between the lower and upper energy states of an atom or molecule affected by quenching...broadened by both lifetime effects and quenching. This profile has a F HM given by Equation 2-16. W q q jA kA qq vNA (2-17) where N is the...December 1998 (AD-A361408)(9921302). 42. Predoi-Cross, Adriana , J. P. Bouanich, D. C. Benner, A. D. May, and J. R. Drummond. “Broadening, Shifting
Fiber-optic refractometer based on an etched high-Q π-phase-shifted fiber-Bragg-grating.
Zhang, Qi; Ianno, Natale J; Han, Ming
2013-07-10
We present a compact and highly-sensitive fiber-optic refractometer based on a high-Q π-phase-shifted fiber-Bragg-grating (πFBG) that is chemically etched to the core of the fiber. Due to the p phase-shift, a strong πFBG forms a high-Q optical resonator and the reflection spectrum features an extremely narrow notch that can be used for highly sensitivity refractive index measurement. The etched πFBG demonstrated here has a diameter of ~9.3 μm and a length of only 7 mm, leading to a refractive index responsivity of 2.9 nm/RIU (RIU: refractive index unit) at an ambient refractive index of 1.318. The reflection spectrum of the etched πFBG features an extremely narrow notch with a linewidth of only 2.1 pm in water centered at ~1,550 nm, corresponding to a Q-factor of 7.4 × 10(5), which allows for potentially significantly improved sensitivity over refractometers based on regular fiber Bragg gratings.
River mixing in the Amazon as a driver of concentration-discharge relationships
NASA Astrophysics Data System (ADS)
Moquet, Jean-Sébastien; Bouchez, Julien; Carlo Espinoza, Jhan; Martinez, Jean-Michel; Guyot, Jean-Loup; Lagane, Christelle; Filizola, Naziano; Aniceto, Keila; Noriega, Luis; Hidalgo Sanchez, Liz; Pombosa, Rodrigo; Fraizy, Pascal; Santini, William; Timouk, Franck; Vauchel, Philippe
2017-04-01
Large hydrological systems such as continental-scale river basins aggregate water from compositionally different tributaries. Here we explore how such aggregation can affect solute concentration-discharge (C-Q) relationships and thus obscure the message carried by these relationships in terms of weathering properties of the Critical Zone. We compute 10 day-frequency time series of Q and major solute (Si, Ca2+, Mg2+, K+, Na+, Cl-, SO42-) C and fluxes (F) for 13 gauging stations of the SNO-HYBAM Monitoring Program (Geodynamical, hydrological and Biogeochemical control of erosion/weathering and material transport in the Amazon, Orinoco and Congo basins) located throughout the Amazon basin, the largest river basin in the world. Concentration-discharge relationships vary in a systematic manner, shifting for most solutes from a nearly "chemostatic" behavior (constant C) at the Andean mountain front to a more "dilutional" pattern (negative C-Q relationship) towards the system mouth. Associated to this shift in trend is a shift in shape: C-Q hysteresis becomes more prominent at the most downstream stations. A simple model of tributary mixing allows us to identify the important parameters controlling C-Q trends and shapes in the mixture, and we show that for the Amazon case, the model results are in qualitative agreement with the observations. Altogether, this study suggests that mixing of water and solutes between different flowpaths leads to altered C-Q relationships.
Fiber-Optic Refractometer Based on an Etched High-Q π-Phase-Shifted Fiber-Bragg-Grating
Zhang, Qi; Ianno, Natale J.; Han, Ming
2013-01-01
We present a compact and highly-sensitive fiber-optic refractometer based on a high-Q π-phase-shifted fiber-Bragg-grating (πFBG) that is chemically etched to the core of the fiber. Due to the π phase-shift, a strong πFBG forms a high-Q optical resonator and the reflection spectrum features an extremely narrow notch that can be used for highly sensitivity refractive index measurement. The etched πFBG demonstrated here has a diameter of ∼9.3 μm and a length of only 7 mm, leading to a refractive index responsivity of 2.9 nm/RIU (RIU: refractive index unit) at an ambient refractive index of 1.318. The reflection spectrum of the etched πFBG features an extremely narrow notch with a linewidth of only 2.1 pm in water centered at ∼1,550 nm, corresponding to a Q-factor of 7.4 × 105, which allows for potentially significantly improved sensitivity over refractometers based on regular fiber Bragg gratings. PMID:23845932
Quadrature-quadrature phase-shift keying
NASA Astrophysics Data System (ADS)
Saha, Debabrata; Birdsall, Theodore G.
1989-05-01
Quadrature-quadrature phase-shift keying (Q2PSK) is a spectrally efficient modulation scheme which utilizes available signal space dimensions in a more efficient way than two-dimensional schemes such as QPSK and MSK (minimum-shift keying). It uses two data shaping pulses and two carriers, which are pairwise quadrature in phase, to create a four-dimensional signal space and increases the transmission rate by a factor of two over QPSK and MSK. However, the bit error rate performance depends on the choice of pulse pair. With simple sinusoidal and cosinusoidal data pulses, the Eb/N0 requirement for Pb(E) = 10 to the -5 is approximately 1.6 dB higher than that of MSK. Without additional constraints, Q2PSK does not maintain constant envelope. However, a simple block coding provides a constant envelope. This coded signal substantially outperforms MSKS and TFM (time-frequency multiplexing) in bandwidth efficiency. Like MSK, Q2PSK also has self-clocking and self-synchronizing ability. An optimum class of pulse shapes for use in Q2PSK-format is presented. One suboptimum realization achieves the Nyquist rate of 2 bits/s/Hz using binary detection.
Cao, Yuan-Yuan; Su, Yan-Gang; Bai, Jin; Wang, Wei; Wang, Jing-Feng; Qin, Sheng-Mei; Ge, Jun-Bo
2015-01-01
Loss of left ventricular (LV) capture may lead to deterioration of heart failure in patients with cardiac resynchronization therapy (CRT). Recognition of loss of LV capture in time is important in clinical practice. A total of 422 electrocardiograms were acquired and analyzed from 53 CRT patients at 8 different pacing settings (LV only, right ventricle [RV] only, biventricular [BV] pacing with LV preactivation of 60, 40, 20, and 0 milliseconds and RV preactivation of 20 and 40 milliseconds). A modified Ammann algorithm by adding a third step-presence of Q (q, or QS) wave-to the original 2-step Ammann algorithm and a QRS axis shift method were devised to identify the loss of LV capture. The accuracy of modified Ammann algorithm was significantly higher than that of Ammann algorithm (78.9% vs. 69.1%, P < 0.001). The accuracy of the axis shift method was 66.4%, which was significantly lower than the modified Ammann algorithm (P < 0.001) and similar to the original one (P = 0.412). However, in the ECGs with QRS axis shift, 96.8% were correctly classified. LV preactivation or simultaneous BV activation and LV lead positioned in nonposterior or noninferior wall could elevate the accuracies of the modified Ammann algorithm and the QRS axis shift method. The accuracy of the modified Ammann algorithm is greatly improved. The QRS axis shift method can help diagnose LV capture. The LV preactivation, or simultaneous BV activation and LV lead positioned in nonposterior or noninferior wall can increase the diagnostic power of the modified Ammann algorithm and QRS axis shift method. © 2014 Wiley Periodicals, Inc.
Comment on linewidths and shifts in the Stokes-Raman Q branch of D2 in He
NASA Technical Reports Server (NTRS)
Green, Sheldon; Blackmore, Robert; Monchick, Louis
1989-01-01
Collision-induced widths and shifts for Raman Q-branch transitions of D2 in He were calculated from S matrices obtained with converged close coupling scattering calculations on an accurate theoretical interaction potential. Results agree well with experimental values. Discrepancies between experimental line shifts and theoretical values from an earlier study (Blackmore et al., 1988) are traced to a computational error in that work. The effects of vibrational inelasticity and of centrifugal distortion on energy levels and on potential matrix elements, all of which were ignored in the earlier study, are explicitly considered here and found to be small.
NASA Astrophysics Data System (ADS)
Nutku, Ferhat; Aydıner, Ekrem
2018-02-01
The Gross-Pitaevskii equation, which is the governor equation of Bose-Einstein condensates, is solved by first order perturbation expansion under various q-deformed potentials. Stationary probability distributions reveal one and two soliton behavior depending on the type of the q-deformed potential. Additionally a spatial shift of the probability distribution is found for the dark soliton solution, when the q parameter is changed.
Core-shifts and proper-motion constraints in the S5 polar cap sample at the 15 and 43 GHz bands
NASA Astrophysics Data System (ADS)
Abellán, F. J.; Martí-Vidal, I.; Marcaide, J. M.; Guirado, J. C.
2018-06-01
We have studied a complete radio sample of active galactic nuclei with the very-long-baseline-interferometry (VLBI) technique and for the first time successfully obtained high-precision phase-delay astrometry at Q band (43 GHz) from observations acquired in 2010. We have compared our astrometric results with those obtained with the same technique at U band (15 GHz) from data collected in 2000. The differences in source separations among all the source pairs observed in common at the two epochs are compatible at the 1σ level between U and Q bands. With the benefit of quasi-simultaneous U and Q band observations in 2010, we have studied chromatic effects (core-shift) at the radio source cores with three different methods. The magnitudes of the core-shifts are of the same order (about 0.1 mas) for all methods. However, some discrepancies arise in the orientation of the core-shifts determined through the different methods. In some cases these discrepancies are due to insufficient signal for the method used. In others, the discrepancies reflect assumptions of the methods and could be explained by curvatures in the jets and departures from conical jets.
Membrane Composition Tunes the Outer Hair Cell Motor
NASA Astrophysics Data System (ADS)
Rajagopalan, L.; Sfondouris, J.; Oghalai, J. S.; Pereira, F. A.; Brownell, W. E.
2009-02-01
Cholesterol and docosahexaenoic acid (DHA), an ω-3 fatty acid, affect membrane mechanical properties in different ways and modulate the function of membrane proteins. We have probed the functional consequence of altering cholesterol and DHA levels in the membranes of OHCs and prestin expressing HEK cells. Large, dynamic and reversible changes in prestin-associated charge movement and OHC motor activity result from altering the concentration of membrane cholesterol. Increasing membrane cholesterol shifts the q/V function ~ 50 mV in the hyperpolarizing direction, possibly a response related to increases in membrane stiffness. The voltage shift is linearly related to total membrane cholesterol. Increasing cholesterol also decreases the total charge moved in a linear fashion. Decreasing membrane cholesterol shifts the q/V function ~ 50 mV in the depolarizing direction with little or no effect on the amount of charge moved. In vivo increases in membrane cholesterol transiently increase but ultimately lead to decreases in DPOAE. Docosahexaenoic acid shifts the q/V function in the hyperpolarizing direction < 15 mV and increases total charge moved. Tuning of cochlear function by membrane cholesterol contributes to the exquisite temporal and frequency processing of mammalian hearing by optimizing the cochlear amplifier.
RF-MEMS Load Sensors with Enhanced Q-factor and Sensitivity in a Suspended Architecture.
Melik, Rohat; Unal, Emre; Perkgoz, Nihan Kosku; Puttlitz, Christian; Demir, Hilmi Volkan
2011-03-01
In this paper, we present and demonstrate RF-MEMS load sensors designed and fabricated in a suspended architecture that increases their quality-factor (Q-factor), accompanied with an increased resonance frequency shift under load. The suspended architecture is obtained by removing silicon under the sensor. We compare two sensors that consist of 195 μm × 195 μm resonators, where all of the resonator features are of equal dimensions, but one's substrate is partially removed (suspended architecture) and the other's is not (planar architecture). The single suspended device has a resonance of 15.18 GHz with 102.06 Q-factor whereas the single planar device has the resonance at 15.01 GHz and an associated Q-factor of 93.81. For the single planar device, we measured a resonance frequency shift of 430 MHz with 3920 N of applied load, while we achieved a 780 MHz frequency shift in the single suspended device. In the planar triplet configuration (with three devices placed side by side on the same chip, with the two outmost ones serving as the receiver and the transmitter), we observed a 220 MHz frequency shift with 3920 N of applied load while we obtained a 340 MHz frequency shift in the suspended triplet device with 3920 N load applied. Thus, the single planar device exhibited a sensitivity level of 0.1097 MHz/N while the single suspended device led to an improved sensitivity of 0.1990 MHz/N. Similarly, with the planar triplet device having a sensitivity of 0.0561 MHz/N, the suspended triplet device yielded an enhanced sensitivity of 0.0867 MHz/N.
Anomalous DC Hall response in noncentrosymmetric tilted Weyl semimetals
NASA Astrophysics Data System (ADS)
Mukherjee, S. P.; Carbotte, J. P.
2018-03-01
Weyl nodes come in pairs of opposite chirality. For broken time reversal symmetry (TR) they are displaced in momentum space by {Q} and the anomalous DC Hall conductivity σxy is proportional to {Q} at charge neutrality. For finite doping there are additive corrections to σxy which depend on the chemical potential as well as on the tilt (C ) of the Dirac cones and on their relative orientation. If inversion symmetry (I) is also broken the Weyl nodes are shifted in energy by an amount Q0 . This introduces further changes in σxy and we provide simple analytic formulas for these modifications for both type I (C<1 ) and type II (C>1 , overtilted) Weyl. For type I when the Weyl nodes have equal magnitude but oppositely directed tilts, the correction to σxy is proportional to the chemical potential μ and completely independent of the energy shift Q0 . When instead the tilts are parallel, the correction is linear in Q0 and μ drops out. For type II the corrections involve both μ and Q0 , are nonlinear and also involve a momentum cut off. We discuss the implied changes to the Nernst coefficient and to the thermal Hall effect of a finite Q0 .
Properties of ΣQ*, ΞQ* and ΩQ* heavy baryons in cold nuclear matter
NASA Astrophysics Data System (ADS)
Azizi, K.; Er, N.
2018-02-01
The in-medium properties of the heavy spin-3/2 ΣQ*, ΞQ* and ΩQ* baryons with Q being b or c quark are investigated. The shifts in some spectroscopic parameters of these particles due to the saturated cold nuclear matter are calculated. The variations of those parameters with respect to the changes in the density of the cold nuclear medium are studied, as well. It is observed that the parameters of ΣQ* baryons are considerably affected by the nuclear matter compared to the ΞQ* and ΩQ* particles that roughly do not see the medium. The results obtained may be used in analyses of the data to be provided by the in-medium experiments like PANDA.
NASA Astrophysics Data System (ADS)
Singh Kainth, Harpreet; Singh, Ranjit; Singh, Gurjot; Mehta, D.
2018-01-01
Positive and negative shifts in L shell emission lines of 47Ag, 48Cd and 50Sn elements in different chemical compounds were determined from their recorded X-ray emission spectra in high resolution wavelength dispersive X-ray fluorescence (WDXRF) spectrometer. In 47Ag compounds, the measured energy shifts in Lα X-ray emission line were in the ranges from (0.12 to 0.40) eV, Lβ1 (0.27 to 0.36) eV, Lβ3,4 (1.10 to 4.89) eV, Lγ1 (-0.09 to 1.13) eV and Lγ2,3 (-2.08 to 0.59) eV. Likewise, for 48Cd compounds, the estimated shifts in Lα X-ray emission lines were in the range (-0.27 to 0.69) eV, Lβ1 (0.50 to 2.06) eV, Lβ2,15 (0.12 to 0.79), Lβ3,4 (-0.62 to 1.79) eV, Lγ1 (0.10 to 1.35) eV and Lγ2,3 (-0.73 to 1.75) eV, while for 50Sn compounds, the measured shifts in Lα X-ray emission lines were in the range of (0.02 to 1.81) eV, Lβ1 (0.11 to 0.78) eV, Lβ2,15 (0.15 to 1.40), Lβ3,4 (0.17 to 2.01) eV, Lγ1 (0.09 to 1.08) eV and Lγ2,3 (0.17 to 1.40) eV respectively. The effective charges (qP, qS, qL and qB) were calculated by four different theoretical methods (Pauling method, Suchet method, Levine method and Batsonav method) and found to be linear dependent with the chemical shift. Further, the measured chemical shifts were correlated with bond length, relative line-width (FWHM), effective charge, electronegativity, number of ligands and Coster-Kronig (CK) transition processes.
Fransen, Signe; Gupta, Soumi; Frantzell, Arne; Petropoulos, Christos J.
2012-01-01
Mutations at amino acids 143, 148, and 155 in HIV-1 integrase (IN) define primary resistance pathways in subjects failing raltegravir (RAL)-containing treatments. Although each pathway appears to be genetically distinct, shifts in the predominant resistant virus population have been reported under continued drug pressure. To better understand this dynamic, we characterized the RAL susceptibility of 200 resistant viruses, and we performed sequential clonal analysis for selected cases. Patient viruses containing Y143R, Q148R, or Q148H mutations consistently exhibited larger reductions in RAL susceptibility than patient viruses containing N155H mutations. Sequential analyses of virus populations from three subjects revealed temporal shifts in subpopulations representing N155H, Y143R, or Q148H escape pathways. Evaluation of molecular clones isolated from different time points demonstrated that Y143R and Q148H variants exhibited larger reductions in RAL susceptibility and higher IN-mediated replication capacity (RC) than N155H variants within the same subject. Furthermore, shifts from the N155H pathway to either the Q148R or H pathway or the Y143R pathway were dependent on the amino acid substitution at position 148 and the secondary mutations in Y143R- or Q148R- or H-containing variants and correlated with reductions in RAL susceptibility and restorations in RC. Our observations in patient viruses were confirmed by analyzing site-directed mutations. In summary, viruses that acquire mutations defining the 143 or 148 escape pathways are less susceptible to RAL and exhibit greater RC than viruses containing 155 pathway mutations. These selective pressures result in the displacement of N155H variants by 143 or 148 variants under continued drug exposure. PMID:22553340
The phasor-FLIM fingerprints reveal shifts from OXPHOS to enhanced glycolysis in Huntington Disease
Sameni, Sara; Syed, Adeela; Marsh, J. Lawrence; Digman, Michelle A.
2016-01-01
Huntington disease (HD) is an autosomal neurodegenerative disorder caused by the expansion of Polyglutamine (polyQ) in exon 1 of the Huntingtin protein. Glutamine repeats below 36 are considered normal while repeats above 40 lead to HD. Impairment in energy metabolism is a common trend in Huntington pathogenesis; however, this effect is not fully understood. Here, we used the phasor approach and Fluorescence Lifetime Imaging Microscopy (FLIM) to measure changes between free and bound fractions of NADH as a indirect measure of metabolic alteration in living cells. Using Phasor-FLIM, pixel maps of metabolic alteration in HEK293 cell lines and in transgenic Drosophila expressing expanded and unexpanded polyQ HTT exon1 in the eye disc were developed. We found a significant shift towards increased free NADH, indicating an increased glycolytic state for cells and tissues expressing the expanded polyQ compared to unexpanded control. In the nucleus, a further lifetime shift occurs towards higher free NADH suggesting a possible synergism between metabolic dysfunction and transcriptional regulation. Our results indicate that metabolic dysfunction in HD shifts to increased glycolysis leading to oxidative stress and cell death. This powerful label free method can be used to screen native HD tissue samples and for potential drug screening. PMID:27713486
The phasor-FLIM fingerprints reveal shifts from OXPHOS to enhanced glycolysis in Huntington Disease
NASA Astrophysics Data System (ADS)
Sameni, Sara; Syed, Adeela; Marsh, J. Lawrence; Digman, Michelle A.
2016-10-01
Huntington disease (HD) is an autosomal neurodegenerative disorder caused by the expansion of Polyglutamine (polyQ) in exon 1 of the Huntingtin protein. Glutamine repeats below 36 are considered normal while repeats above 40 lead to HD. Impairment in energy metabolism is a common trend in Huntington pathogenesis; however, this effect is not fully understood. Here, we used the phasor approach and Fluorescence Lifetime Imaging Microscopy (FLIM) to measure changes between free and bound fractions of NADH as a indirect measure of metabolic alteration in living cells. Using Phasor-FLIM, pixel maps of metabolic alteration in HEK293 cell lines and in transgenic Drosophila expressing expanded and unexpanded polyQ HTT exon1 in the eye disc were developed. We found a significant shift towards increased free NADH, indicating an increased glycolytic state for cells and tissues expressing the expanded polyQ compared to unexpanded control. In the nucleus, a further lifetime shift occurs towards higher free NADH suggesting a possible synergism between metabolic dysfunction and transcriptional regulation. Our results indicate that metabolic dysfunction in HD shifts to increased glycolysis leading to oxidative stress and cell death. This powerful label free method can be used to screen native HD tissue samples and for potential drug screening.
Inertial mass sensing with low Q-factor vibrating microcantilevers
NASA Astrophysics Data System (ADS)
Adhikari, S.
2017-10-01
Mass sensing using micromechanical cantilever oscillators has been established as a promising approach. The scientific principle underpinning this technique is the shift in the resonance frequency caused by the additional mass in the dynamic system. This approach relies on the fact that the Q-factor of the underlying oscillator is high enough so that it does not significantly affect the resonance frequencies. We consider the case when the Q-factor is low to the extent that the effect of damping is prominent. It is shown that the mass sensing can be achieved using a shift in the damping factor. We prove that the shift in the damping factor is of the same order as that of the resonance frequency. Based on this crucial observation, three new approaches have been proposed, namely, (a) mass sensing using frequency shifts in the complex plane, (b) mass sensing from damped free vibration response in the time domain, and (c) mass sensing from the steady-state response in the frequency domain. Explicit closed-form expressions relating absorbed mass with changes in the measured dynamic properties have been derived. The rationale behind each new method has been explained using non-dimensional graphical illustrations. The new mass sensing approaches using damped dynamic characteristics can expand the current horizon of micromechanical sensing by incorporating a wide range of additional measurements.
Zinc induces exposure of hydrophobic sites in the C-terminal domain of gC1q-R/p33.
Kumar, Rajeev; Peerschke, Ellinor I B; Ghebrehiwet, Berhane
2002-09-01
Endothelial cells and platelets are known to express gC1q-R on their surface. In addition to C1q, endothelial cell gC1q-R has been shown to bind high molecular weight kininogen (HK) and factor XII (FXII). However, unlike C1q, whose interaction with gC1q-R does not require divalent ions, the binding of HK to gC1q-R is absolutely dependent on the presence of zinc. However, the mechanism by which zinc modulates this interaction is not fully understood. To investigate the role of zinc, binding studies were done using the hydrophobic dye, bis-ANS. The fluorescence intensity of bis-ANS, greatly increases and the emission maximum is blue-shifted from 525 to 485nm upon binding to hydrophobic sites on proteins. In this report, we show that a blue-shift in emission maximum is also observed when bis-ANS binds to gC1q-R in the presence but not in the absence of zinc suggesting that zinc induces exposure of hydrophobic sites in the molecule. The binding of bis-ANS to gC1q-R is specific, dose-dependent, and reversible. In the presence of zinc, this binding is abrogated by monoclonal antibody 74.5.2 directed against gC1q-R residues 204-218. This segment of gC1q-R, which corresponds to the beta6 strand in the crystal structure, has been shown previously to be the binding site for HK. A similar trend in zinc-induced gC1q-R binding was also observed using the hydrophobic matrix octyl-Sepharose. Taken together, our data suggest that zinc can induce the exposure of hydrophobic sites in the C-terminal domain of gC1q-R involved in binding to HK/FXII.
Hartmann, E K; Duenges, B; Boehme, S; Szczyrba, M; Liu, T; Klein, K U; Baumgardner, J E; Markstaller, K; David, M
2014-09-01
During cardiopulmonary resuscitation (CPR) the ventilation/perfusion distribution (VA /Q) within the lung is difficult to assess. This experimental study examines the capability of multiple inert gas elimination (MIGET) to determine VA /Q under CPR conditions in a pig model. Twenty-one anaesthetised pigs were randomised to three fractions of inspired oxygen (1.0, 0.7 or 0.21). VA/ Q by micropore membrane inlet mass spectrometry-derived MIGET was determined at baseline and during CPR following induction of ventricular fibrillation. Haemodynamics, blood gases, ventilation distribution by electrical impedance tomography and return of spontaneous circulation were assessed. Intergroup differences were analysed by non-parametric testing. MIGET measurements were feasible in all animals with an excellent correlation of measured and predicted arterial oxygen partial pressure (R(2) = 0.96, n = 21 for baseline; R(2) = 0.82, n = 21 for CPR). CPR induces a significant shift from normal VA /Q ratios to the high VA /Q range. Electrical impedance tomography indicates a dorsal to ventral shift of the ventilation distribution. Diverging pulmonary shunt fractions induced by the three inspired oxygen levels considerably increased during CPR and were traceable by MIGET, while 100% oxygen most negatively influenced the VA /Q. Return of spontaneous circulation were achieved in 52% of the animals. VA /Q assessment by MIGET is feasible during CPR and provides a novel tool for experimental purposes. Changes in VA /Q caused by different oxygen fractions are traceable during CPR. Beyond pulmonary perfusion deficits, these data imply an influence of the inspired oxygen level on VA /Q. Higher oxygen levels significantly increase shunt fractions and impair the normal VA /Q ratio. © 2014 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Ahmad, Mohd Ali Khameini; Liao, Lingmin; Saburov, Mansoor
2018-06-01
We study the set of p-adic Gibbs measures of the q-state Potts model on the Cayley tree of order three. We prove the vastness of the set of the periodic p-adic Gibbs measures for such model by showing the chaotic behavior of the corresponding Potts-Bethe mapping over Q_p for the prime numbers p≡1 (mod 3). In fact, for 0< |θ -1|_p< |q|_p^2 < 1 where θ =\\exp _p(J) and J is a coupling constant, there exists a subsystem that is isometrically conjugate to the full shift on three symbols. Meanwhile, for 0< |q|_p^2 ≤ |θ -1|_p< |q|_p < 1, there exists a subsystem that is isometrically conjugate to a subshift of finite type on r symbols where r ≥ 4. However, these subshifts on r symbols are all topologically conjugate to the full shift on three symbols. The p-adic Gibbs measures of the same model for the prime numbers p=2,3 and the corresponding Potts-Bethe mapping are also discussed. On the other hand, for 0< |θ -1|_p< |q|_p < 1, we remark that the Potts-Bethe mapping is not chaotic when p=3 and p≡ 2 (mod 3) and we could not conclude the vastness of the set of the periodic p-adic Gibbs measures. In a forthcoming paper with the same title, we will treat the case 0< |q|_p ≤ |θ -1|_p < 1 for all prime numbers p.
The q-G method : A q-version of the Steepest Descent method for global optimization.
Soterroni, Aline C; Galski, Roberto L; Scarabello, Marluce C; Ramos, Fernando M
2015-01-01
In this work, the q-Gradient (q-G) method, a q-version of the Steepest Descent method, is presented. The main idea behind the q-G method is the use of the negative of the q-gradient vector of the objective function as the search direction. The q-gradient vector, or simply the q-gradient, is a generalization of the classical gradient vector based on the concept of Jackson's derivative from the q-calculus. Its use provides the algorithm an effective mechanism for escaping from local minima. The q-G method reduces to the Steepest Descent method when the parameter q tends to 1. The algorithm has three free parameters and it is implemented so that the search process gradually shifts from global exploration in the beginning to local exploitation in the end. We evaluated the q-G method on 34 test functions, and compared its performance with 34 optimization algorithms, including derivative-free algorithms and the Steepest Descent method. Our results show that the q-G method is competitive and has a great potential for solving multimodal optimization problems.
NASA Astrophysics Data System (ADS)
Lensky, Vadim; Hagelstein, Franziska; Pascalutsa, Vladimir; Vanderhaeghen, Marc
2018-04-01
We derive two new sum rules for the unpolarized doubly virtual Compton scattering process on a nucleon, which establish novel low-Q2 relations involving the nucleon's generalized polarizabilities and moments of the nucleon's unpolarized structure functions F1(x ,Q2) and F2(x ,Q2). These relations facilitate the determination of some structure constants which can only be accessed in off-forward doubly virtual Compton scattering, not experimentally accessible at present. We perform an empirical determination for the proton and compare our results with a next-to-leading-order chiral perturbation theory prediction. We also show how these relations may be useful for a model-independent determination of the low-Q2 subtraction function in the Compton amplitude, which enters the two-photon-exchange contribution to the Lamb shift of (muonic) hydrogen. An explicit calculation of the Δ (1232 )-resonance contribution to the muonic-hydrogen 2 P -2 S Lamb shift yields -1 ±1 μ eV , confirming the previously conjectured smallness of this effect.
On the Performance of the Marginal Homogeneity Test to Detect Rater Drift.
Sgammato, Adrienne; Donoghue, John R
2018-06-01
When constructed response items are administered repeatedly, "trend scoring" can be used to test for rater drift. In trend scoring, raters rescore responses from the previous administration. Two simulation studies evaluated the utility of Stuart's Q measure of marginal homogeneity as a way of evaluating rater drift when monitoring trend scoring. In the first study, data were generated based on trend scoring tables obtained from an operational assessment. The second study tightly controlled table margins to disentangle certain features present in the empirical data. In addition to Q , the paired t test was included as a comparison, because of its widespread use in monitoring trend scoring. Sample size, number of score categories, interrater agreement, and symmetry/asymmetry of the margins were manipulated. For identical margins, both statistics had good Type I error control. For a unidirectional shift in margins, both statistics had good power. As expected, when shifts in the margins were balanced across categories, the t test had little power. Q demonstrated good power for all conditions and identified almost all items identified by the t test. Q shows substantial promise for monitoring of trend scoring.
Selective tuning of high-Q silicon photonic crystal nanocavities via laser-assisted local oxidation.
Chen, Charlton J; Zheng, Jiangjun; Gu, Tingyi; McMillan, James F; Yu, Mingbin; Lo, Guo-Qiang; Kwong, Dim-Lee; Wong, Chee Wei
2011-06-20
We examine the cavity resonance tuning of high-Q silicon photonic crystal heterostructures by localized laser-assisted thermal oxidation using a 532 nm continuous wave laser focused to a 2.5 μm radius spot-size. The total shift is consistent with the parabolic rate law. A tuning range of up to 8.7 nm is achieved with ∼ 30 mW laser powers. Over this tuning range, the cavity Qs decreases from 3.2×10(5) to 1.2×10(5). Numerical simulations model the temperature distributions in the silicon photonic crystal membrane and the cavity resonance shift from oxidation.
Wavelength-tunable, sub-picosecond pulses from a passively Q-switched microchip laser system.
Lehneis, R; Steinmetz, A; Limpert, J; Tünnermann, A
2013-07-15
We present a novel concept to generate sub-picosecond pulses from a passively Q-switched Nd:YVO4 microchip laser system with an adjustable wavelength shift up to a few tens of nanometers around the original emission wavelength of 1064 nm. This concept comprises two stages: one that carries out a nonlinear compression of fiber-amplified microchip pulses and a subsequent stage in which the compressed pulses are coupled into a further waveguide structure followed by a bandpass filter. In a proof-of-principle experiment, pedestal-free 0.62 ps long pulses have been demonstrated with a wavelength shift to 1045 nm.
Personal exposure to particulate PAHs and anthraquinone and oxidative DNA damages in humans.
Wei, Yongjie; Han, In-Kyu; Hu, Min; Shao, Min; Zhang, Junfeng Jim; Tang, Xiaoyan
2010-11-01
Recent studies suggest that DNA oxidative damage be related to the chemical constituents of ambient particles. The purpose of this study was to examine whether particulate polycyclic aromatic hydrocarbons (PAHs) and quinone-structure chemicals increase body burden of oxidative stress in human exposed to heavy traffic volume. We recruited two nonsmoking security guards who worked at a university campus gate near a heavily trafficked road. Each subject wore a personal air sampler for 24h per day to estimate exposures to 24 PAHs and anthraquinone (AnQ) in PM(2.5). Daily pre- and post-work shift spot urines were collected for 29d from each subject. Urine samples were analyzed for 8-hydroxy-2'-deoxyguanosine (8-OHdG). Additionally, using 19 organic tracers other than 24 PAHs and AnQ, a receptor source apportionment model of chemical mass balance was applied to determine the contributions of sources on the PM: gasoline vehicle, diesel vehicle, coal burning, vegetable debris, cooking, natural gas and biomass burning. The relationship among urinary 8-OHdG, individual PAH, and AnQ was demonstrated as follows: the average urinary concentration of 8-OHdG was increased more than three times after 8-h work-shift than those before the work shift. All the 24 PAH and AnQ levels were positively and significantly associated with the post-work urinary 8-OHdG. The results from source apportionment suggest vehicular emission to be the dominant source of personal exposure to PM(2.5). Our finding indicates that personal air exposures to 24 individual PAHs and AnQ originating from traffic emissions are important in increasing oxidative burdens in human body. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Shuanggen; Guo, Wengang; Lv, Fuyun
2014-07-01
A PPKTP crystal was used to efficient green emission. Spectrum characteristics of FF and SH wave was analyzed, and phase-matching wavelength shift results from thermally-induced poling period shift. A conversion efficiency of 26.1% can be achieved.
NASA Astrophysics Data System (ADS)
Wang, Qian; Gao, Jinghuai
2018-02-01
As a powerful tool for hydrocarbon detection and reservoir characterization, the quality factor, Q, provides useful information in seismic data processing and interpretation. In this paper, we propose a novel method for Q estimation. The generalized seismic wavelet (GSW) function was introduced to fit the amplitude spectrum of seismic waveforms with two parameters: fractional value and reference frequency. Then we derive an analytical relation between the GSW function and the Q factor of the medium. When a seismic wave propagates through a viscoelastic medium, the GSW function can be employed to fit the amplitude spectrum of the source and attenuated wavelets, then the fractional values and reference frequencies can be evaluated numerically from the discrete Fourier spectrum. After calculating the peak frequency based on the obtained fractional value and reference frequency, the relationship between the GSW function and the Q factor can be built by the conventional peak frequency shift method. Synthetic tests indicate that our method can achieve higher accuracy and be more robust to random noise compared with existing methods. Furthermore, the proposed method is applicable to different types of source wavelet. Field data application also demonstrates the effectiveness of our method in seismic attenuation and the potential in the reservoir characteristic.
NASA Astrophysics Data System (ADS)
Soliman, Saied M.; Kassem, Taher S.; Badr, Ahmed M. A.; Abou Youssef, Morsy A.; Assem, Rania
2014-09-01
A new [Ag(E3Q)2(TCA)] complex; (E3Q = Ethyl 3-quinolinecarboxylate and TCA = Trichloroacetate) has been synthesized and characterized using elemental analysis, FTIR, NMR and mass spectroscopy. The molecular geometry and spectroscopic properties of the complex as well as the free ligand have been calculated using the hybrid B3LYP method. The calculations predicted a distorted tetrahedral arrangement around Ag(I) ion. The vibrational spectra of the studied compounds have been assigned using potential energy distribution (PED). TD-DFT method was used to predict the electronic absorption spectra. The most intense absorption band showed a bathochromic shift and lowering of intensity in case of the complex (233.7 nm, f = 0.5604) compared to E3Q (λmax = 228.0 nm, f = 0.9072). The calculated 1H NMR chemical shifts using GIAO method showed good correlations with the experimental data. The computed dipole moment, polarizability and HOMO-LUMO energy gap were used to predict the nonlinear optical (NLO) properties. It is found that Ag(I) enhances the NLO activity. The natural bond orbital (NBO) analyses were used to elucidate the intramolecular charge transfer interactions causing stabilization for the investigated systems.
High-pressure and stark hole-burning studies of chlorosome antennas from Chlorobium tepidum.
Wu, H M; Rätsep, M; Young, C S; Jankowiak, R; Blankenship, R E; Small, G J
2000-09-01
Results from high-pressure and Stark hole-burning experiments on isolated chlorosomes from the green sulfur bacterium Chlorobium tepidum are presented, as well as Stark hole-burning data for bacteriochlorophyll c (BChl c) monomers in a poly(vinyl butyral) copolymer film. Large linear pressure shift rates of -0.44 and -0.54 cm(-1)/MPa were observed for the chlorosome BChl c Q(y)-band at 100 K and the lowest Q(y)-exciton level at 12 K, respectively. It is argued that approximately half of the latter shift rate is due to electron exchange coupling between BChl c molecules. The similarity between the above shift rates and those observed for the B875 and B850 BChl a rings of the light-harvesting complexes of purple bacteria is emphasized. For BChl c monomer, fDeltamu++ = 0.35 D, where Deltamu+ is the dipole moment change for the Q(y) transition and f is the local field correction factor. The data establish that Deltamu+ is dominated by the matrix-induced contribution. The change in polarizability (Deltaalpha) for the Q(y) transition of the BChl c monomer is estimated at 19 A(3), which is essentially identical to that of the Chl a monomer. Interestingly, no Stark effects were observed for the lowest exciton level of the chlorosomes (maximum Stark field of 10(5) V/cm). Possible explanations for this are given, and these include consideration of structural models for the chlorosome BChl c aggregates.
Allakhverdiev, Suleyman I; Tsuchiya, Tohru; Watabe, Kazuyuki; Kojima, Akane; Los, Dmitry A; Tomo, Tatsuya; Klimov, Vyacheslav V; Mimuro, Mamoru
2011-05-10
In a previous study, we measured the redox potential of the primary electron acceptor pheophytin (Phe) a of photosystem (PS) II in the chlorophyll d-dominated cyanobacterium Acaryochloris marina and a chlorophyll a-containing cyanobacterium, Synechocystis. We obtained the midpoint redox potential (E(m)) values of -478 mV for A. marina and -536 mV for Synechocystis. In this study, we measured the redox potentials of the primary electron acceptor quinone molecule (Q(A)), i.e., E(m)(Q(A)/Q(A)(-)), of PS II and the energy difference between [P680·Phe a(-)·Q(A)] and [P680·Phe a·Q(A)(-)], i.e., ΔG(PhQ). The E(m)(Q(A)/Q(A)(-)) of A. marina was determined to be +64 mV without the Mn cluster and was estimated to be -66 to -86 mV with a Mn-depletion shift (130-150 mV), as observed with other organisms. The E(m)(Phe a/Phe a(-)) in Synechocystis was measured to be -525 mV with the Mn cluster, which is consistent with our previous report. The Mn-depleted downshift of the potential was measured to be approximately -77 mV in Synechocystis, and this value was applied to A. marina (-478 mV); the E(m)(Phe a/Phe a(-)) was estimated to be approximately -401 mV. These values gave rise to a ΔG(PhQ) of -325 mV for A. marina and -383 mV for Synechocystis. In the two cyanobacteria, the energetics in PS II were conserved, even though the potentials of Q(A)(-) and Phe a(-) were relatively shifted depending on the special pair, indicating a common strategy for electron transfer in oxygenic photosynthetic organisms.
Zhu, Yuzhen; Wu, Ying; Luo, Yin; Zou, Yu; Ma, Buyong; Zhang, Qingwen
2014-11-20
Neuronal calcium sensor-1 (NCS-1) protein has a variety of different neuronal functions and interacts with multiple binding partners mostly through a large solvent-exposed hydrophobic crevice (HC). A single R102Q mutation in human NCS-1 protein was demonstrated to be associated with autism disease. Solution NMR study reported that this R102Q mutant had long-range chemical shift effects on the HC and the C-terminal tail (L3). To understand the influence of the R102Q mutation on the HC and L3 of NCS-1, we have investigated the conformational dynamics and the structural flexibility of wild type (WT) NCS-1 and its R102Q mutant by conducting extensive all-atom molecular dynamics (MD) simulations. On the basis of six independent 450 ns MD simulations, we have found that the R102Q mutation in NCS-1 protein (1) dramatically reduces the flexibility of loops L2 and L3, (2) facilitates L3 in a more extended state to occupy the hydrophobic crevice to a larger extent, (3) significantly affects the intersegment salt bridges, and (4) changes the subspace of the free energy landscape of NCS-1 protein. Analysis of the salt bridge network in both WT and the R102Q variant demonstrates that the R102Q-mutation-induced salt bridge alternations play a critical role on the reduced flexibility of L2 and L3. These results reveal the important role of salt bridges on the structural properties of NCS-1 protein and that R102Q mutation disables the dynamic relocation of C-terminus, which may block the binding of NCS-1 protein to its receptors. This study may provide structural insights into the autistic spectrum disorder associated with R102Q mutation.
Pavlov, Evgeny; Britvina, Tatiana; McArthur, Jeff R; Ma, Quanli; Sierralta, Iván; Zamponi, Gerald W; French, Robert J
2008-11-01
External mu-conotoxins and internal amine blockers inhibit each other's block of voltage-gated sodium channels. We explore the basis of this interaction by measuring the shifts in voltage-dependence of channel inhibition by internal amines induced by two mu-conotoxin derivatives with different charge distributions and net charges. Charge changes on the toxin were made at residue 13, which is thought to penetrate most deeply into the channel, making it likely to have the strongest individual interaction with an internal charged ligand. When an R13Q or R13E molecule was bound to the channel, the voltage dependence of diethylammonium (DEA)-block shifted toward more depolarized potentials (23 mV for R13Q, and 16 mV for R13E). An electrostatic model of the repulsion between DEA and the toxin simulated these data, with a distance between residue 13 of the mu-conotoxin and the DEA-binding site of approximately 15 A. Surprisingly, for tetrapropylammonium, the shifts were only 9 mV for R13Q, and 7 mV for R13E. The smaller shifts associated with R13E, the toxin with a smaller net charge, are generally consistent with an electrostatic interaction. However, the smaller shifts observed for tetrapropylammonium than for DEA suggest that other factors must be involved. Two observations indicate that the coupling of permeant ion occupancy of the channel to blocker binding may contribute to the overall amine-toxin interaction: 1), R13Q binding decreases the apparent affinity of sodium for the conducting pore by approximately 4-fold; and 2), increasing external [Na(+)] decreases block by DEA at constant voltage. Thus, even though a number of studies suggest that sodium channels are occupied by no more than one ion most of the time, measurable coupling occurs between permeant ions and toxin or amine blockers. Such interactions likely determine, in part, the strength of trans-channel, amine-conotoxin interactions.
Pavlov, Evgeny; Britvina, Tatiana; McArthur, Jeff R.; Ma, Quanli; Sierralta, Iván; Zamponi, Gerald W.; French, Robert J.
2008-01-01
External μ-conotoxins and internal amine blockers inhibit each other's block of voltage-gated sodium channels. We explore the basis of this interaction by measuring the shifts in voltage-dependence of channel inhibition by internal amines induced by two μ-conotoxin derivatives with different charge distributions and net charges. Charge changes on the toxin were made at residue 13, which is thought to penetrate most deeply into the channel, making it likely to have the strongest individual interaction with an internal charged ligand. When an R13Q or R13E molecule was bound to the channel, the voltage dependence of diethylammonium (DEA)-block shifted toward more depolarized potentials (23 mV for R13Q, and 16 mV for R13E). An electrostatic model of the repulsion between DEA and the toxin simulated these data, with a distance between residue 13 of the μ-conotoxin and the DEA-binding site of ∼15 Å. Surprisingly, for tetrapropylammonium, the shifts were only 9 mV for R13Q, and 7 mV for R13E. The smaller shifts associated with R13E, the toxin with a smaller net charge, are generally consistent with an electrostatic interaction. However, the smaller shifts observed for tetrapropylammonium than for DEA suggest that other factors must be involved. Two observations indicate that the coupling of permeant ion occupancy of the channel to blocker binding may contribute to the overall amine-toxin interaction: 1), R13Q binding decreases the apparent affinity of sodium for the conducting pore by ∼4-fold; and 2), increasing external [Na+] decreases block by DEA at constant voltage. Thus, even though a number of studies suggest that sodium channels are occupied by no more than one ion most of the time, measurable coupling occurs between permeant ions and toxin or amine blockers. Such interactions likely determine, in part, the strength of trans-channel, amine-conotoxin interactions. PMID:18658222
Q(n) species distribution in K2O.2SiO2 glass by 29Si magic angle flipping NMR.
Davis, Michael C; Kaseman, Derrick C; Parvani, Sahar M; Sanders, Kevin J; Grandinetti, Philip J; Massiot, Dominique; Florian, Pierre
2010-05-06
Two-dimensional magic angle flipping (MAF) was employed to measure the Q((n)) distribution in a (29)Si-enriched potassium disilicate glass (K(2)O.2SiO(2)). Relative concentrations of [Q((4))] = 7.2 +/- 0.3%, [Q((3))] = 82.9 +/- 0.1%, and [Q((2))] = 9.8 +/- 0.6% were obtained. Using the thermodynamic model for Q((n)) species disproportionation, these relative concentrations yield an equilibrium constant k(3) = 0.0103 +/- 0.0008, indicating, as expected, that the Q((n)) species distribution is close to binary in the potassium disilicate glass. A Gaussian distribution of isotropic chemical shifts was observed for each Q((n)) species with mean values of -82.74 +/- 0.03, -91.32 +/- 0.01, and -101.67 +/- 0.02 ppm and standard deviations of 3.27 +/- 0.03, 4.19 +/- 0.01, and 5.09 +/- 0.03 ppm for Q((2)), Q((3)), and Q((4)), respectively. Additionally, nuclear shielding anisotropy values of zeta =-85.0 +/- 1.3 ppm, eta = 0.48 +/- 0.02 for Q((2)) and zeta = -74.9 +/- 0.2 ppm, eta = 0.03 +/- 0.01 for Q((3)) were observed in the potassium disilicate glass.
Comparing Shock geometry from MHD simulation to that from the Q/A-scaling analysis
NASA Astrophysics Data System (ADS)
Li, G.; Zhao, L.; Jin, M.
2017-12-01
In large SEP events, ions can be accelerated at CME-driven shocks to very high energies. Spectra of heavy ions in many large SEP events show features such as roll-overs or spectral breaks. In some events when the spectra are plotted in energy/nucleon they can be shifted relatively to each other so that the spectra align. The amount of shift is charge-to-mass ratio (Q/A) dependent and varies from event to event. In the work of Li et al. (2009), the Q/A dependences of the scaling is related to shock geometry when the CME-driven shock is close to the Sun. For events where multiple in-situ spacecraft observations exist, one may expect that different spacecraft are connected to different portions of the CME-driven shock that have different shock geometries, therefore yielding different Q/A dependence. At the same time, shock geometry can be also obtained from MHD simulations. This means we can compare shock geometry from two completely different approaches: one from MHD simulation and the other from in-situ spectral fitting. In this work, we examine this comparison for selected events.
Aniline-containing guests recognized by α,α',δ,δ'-tetramethyl-cucurbit[6]uril host.
Lin, Rui-Lian; Fang, Guo-Sheng; Sun, Wen-Qi; Liu, Jing-Xin
2016-12-13
The host-guest complexation of symmetrical α,α',δ,δ'-tetramethyl-cucurbit[6]uril (TMeQ[6]) and cucurbit[7]uril (Q[7]) with a series of aniline-containing guests has been investigated by various experimental techniques including NMR, ITC, and X-ray crystallography. Experimental results indicate that both TMeQ[6] and Q[7] hosts can encapsulate aniline-containing guests to form stable inclusion complexes. However, the oval cavity of TMeQ[6] is more complementary in size and shape to the aromatic ring of the guests than the spherical cavity of Q[7]. Shielding and deshielding effects of the aromatic ring on guests lead to the remarkable chemical shifts of the TMeQ[6] host protons. The rotational restriction of the guests in the oval cavity of TMeQ[6] results in the large negative values of entropy. The X-ray crystal structure of the 1:1 inclusion complex between TMeQ[6] and N,N'-diethyl-benzene-1,4-diamine unambiguously reveals that the aromatic ring of the guest resides in the oval cavity of TMeQ[6].
Trade-off of Elastic Structure and Q in Interpretations of Seismic Attenuation
NASA Astrophysics Data System (ADS)
Deng, Wubing; Morozov, Igor B.
2017-10-01
The quality factor Q is an important phenomenological parameter measured from seismic or laboratory seismic data and representing wave-energy dissipation rate. However, depending on the types of measurements and models or assumptions about the elastic structure, several types of Qs exist, such as intrinsic and scattering Qs, coda Q, and apparent Qs observed from wavefield fluctuations. We consider three general types of elastic structures that are commonly encountered in seismology: (1) shapes and dimensions of rock specimens in laboratory studies, (2) geometric spreading or scattering in body-, surface- and coda-wave studies, and (3) reflectivity on fine layering in reflection seismic studies. For each of these types, the measured Q strongly trades off with the (inherently limited) knowledge about the respective elastic structure. For the third of the above types, the trade-off is examined quantitatively in this paper. For a layered sequence of reflectors (e.g., an oil or gas reservoir or a hydrothermal zone), reflection amplitudes and phases vary with frequency, which is analogous to a reflection from a contrast in attenuation. We demonstrate a quantitative equivalence between phase-shifted reflections from anelastic zones and reflections from elastic layering. Reflections from the top of an elastic layer followed by weaker reflections from its bottom can appear as resulting from a low Q within or above this layer. This apparent Q can be frequency-independent or -dependent, according to the pattern of thin layering. Due to the layering, the interpreted Q can be positive or negative, and it can depend on source-receiver offsets. Therefore, estimating Q values from frequency-dependent or phase-shifted reflection amplitudes always requires additional geologic or rock-physics constraints, such as sparseness and/or randomness of reflectors, the absence of attenuation in certain layers, or specific physical mechanisms of attenuation. Similar conclusions about the necessity of extremely detailed models of the elastic structure apply to other types of Q measurements.
Wang, Jue; Maier, Robert L
2006-08-01
The requirements for optical components have drastically increased for the deep-ultraviolet and vacuum-ultraviolet spectral regions. Low optical loss, high laser damage threshold, and long lifetime fluoride optics are required for microlithographic applications. A nondestructive quasi-Brewster angle technique (qBAT) has been developed for evaluating the quality of optical surfaces including both top surface and subsurface information. By using effective medium approximation, the negative quasi-Brewster angle shift at wavelengths longer than 200 nm has been used to model the distribution of subsurface damage, whereas the positive quasi-Brewster angle shift for wavelengths shorter than 200 nm has been explained by subsurface contamination. The top surface roughness depicted by the qBAT is consistent with atomic force microscopy measurements. The depth and the microporous structure of the subsurface damage measured by the qBAT has been confirmed by magnetorheological finishing. The technique has been extended to evaluate both polished and antireflection-coated CaF(2) components.
Differential detection in quadrature-quadrature phase shift keying (Q2PSK) systems
NASA Astrophysics Data System (ADS)
El-Ghandour, Osama M.; Saha, Debabrata
1991-05-01
A generalized quadrature-quadrature phase shift keying (Q2PSK) signaling format is considered for differential encoding and differential detection. Performance in the presence of additive white Gaussian noise (AWGN) is analyzed. Symbol error rate is found to be approximately twice the symbol error rate in a quaternary DPSK system operating at the same Eb/N0. However, the bandwidth efficiency of differential Q2PSK is substantially higher than that of quaternary DPSK. When the error is due to AWGN, the ratio of double error rate to single error rate can be very high, and the ratio may approach zero at high SNR. To improve error rate, differential detection through maximum-likelihood decoding based on multiple or N symbol observations is considered. If N and SNR are large this decoding gives a 3-dB advantage in error rate over conventional N = 2 differential detection, fully recovering the energy loss (as compared to coherent detection) if the observation is extended to a large number of symbol durations.
Representing Lumped Markov Chains by Minimal Polynomials over Field GF(q)
NASA Astrophysics Data System (ADS)
Zakharov, V. M.; Shalagin, S. V.; Eminov, B. F.
2018-05-01
A method has been proposed to represent lumped Markov chains by minimal polynomials over a finite field. The accuracy of representing lumped stochastic matrices, the law of lumped Markov chains depends linearly on the minimum degree of polynomials over field GF(q). The method allows constructing the realizations of lumped Markov chains on linear shift registers with a pre-defined “linear complexity”.
NASA Astrophysics Data System (ADS)
Wang, Junhu; Abe, Junko; Kitazawa, Takafumi; Takahashi, Masashi; Takeda, Masuo
2002-07-01
155Gd Mössbauer spectroscopic studies of the title complexes have been performed. Although the 155Gd isomer shifts (d) varied scarcely, the quadrupole coupling constants (e2qQ) changed in the range 4.07-4.81 mm s-1. The e2qQ values of KGdM(CN)6 · 3H2O (M = FeII and RuII) are larger than those of GdM(CN)6 · 4H2O (M = CrIII, FeIII, and CoIII), these values increasing with increasing orthorhombic distortion of the crystal structures. A relationship between the e2qQ values and the ionic radii of the transition metal ions has also been recognized
Xie, Yirui; Luo, Zhuanbo; Li, Zhengfeng; Deng, Min; Liu, Hao; Zhu, Biao; Ruan, Bing; Li, Lanjuan
2012-08-01
Bacterial translocation and the development of sepsis after orthotopic liver transplantation (OLT) may be promoted by immunological damage to the intestinal mucosa or by quantitative and qualitative changes in intestinal microbiota. This study monitored structural shifts of gut microbiota in rats with OLT using PCR-denaturing gradient gel electrophoresis (DGGE) and real-time quantitative PCR (RT-qPCR). RT-qPCR targets six major microorganisms (Domain Bacteria, Bacteroides, Bifidobacteria, Enterobacteriaceae, Lactobacillus and Clostridium leptum subgroup). Isograft, Allograft and Sham model were studied. Bacterial translocation to host organs and plasma endotoxin were determined. Alteration in gut microbiota was associated with the elevation of plasma endotoxin and a higher rate of bacterial translocation (BT) to liver in rats with acute rejection. Dynamic analysis of DGGE fingerprints showed that the gut microbiota structure of animals in the three groups was similar before the operation. But significant alterations in the composition of fecal microbiota in Allograft group were observed at 1 and 2 weeks after the OLT. The acute rejection was accompanied by the shifts of gut microbiota towards members of Bacteroides and Ruminococcus. Results from RT-qPCR indicated that Bacteroides significantly increased at 2 weeks after the OLT, whereas numbers of Bifidobacterium spp. decreased at 1 week and recovered at 2 weeks after the OLT. In summary, our data showed that rats with acute rejection after OLT exhibited significant structure shifts in the gut microbiota which dominant by overgrowth of Bacteroides and Ruminococcus, and these were associated with elevation of plasma endotoxin and higher rate of BT.
Tyystjärvi, Esa; Rantamäki, Susanne; Tyystjärvi, Joonas
2009-01-01
Energy transfer between photosystem II (PSII) centers is known from previous fluorescence studies. We have studied the theoretical consequences of energetic connectivity of PSII centers on photosynthetic thermoluminescence (TL) and predict that connectivity affects the TL Q band. First, connectivity is expected to make the Q band wider and more symmetric than an ideal first-order TL band. Second, the presence of closed PSII centers in an energetically connected group of PSII centers is expected to lower the probability that an exciton originating in a recombination reaction becomes retrapped. The latter effect would shift the Q band toward lower temperature, and the shift would be greater the higher the percentage of closed PSII centers at the beginning of the measurement. These effects can be generalized as second-order effects, as they make the Q band resemble the second-order TL bands obtained from semiconducting solids. We applied the connected-units model of chlorophyll fluorescence to derive equations for quantifying the second-order effects in TL. To test the effect of the initial proportion of closed reaction centers, we measured the Q band with different intensities of the excitation flash and found that the peak position changed by 2.5°C toward higher temperature when the flash intensity was lowered from saturating to 0.39% of saturating. The result shows that energy transfer between reaction centers of PSII forms the physical basis of retrapping in photosynthetic TL. The second-order effects partially explain the deviation of the form of the Q band from ideal first-order TL. PMID:19413979
Zhang, Angel; Stillman, Martin J
2018-05-09
The electronic structures of three previously synthesized Ni-coordinated chlorins with β-substituents of thioketone, fluorene, and ketone were investigated using magnetic circular dichroism spectroscopy (MCD) and density functional theory (DFT) for potential application as sensitizers for dye-sensitized solar cells (DSSCs). Computational studies on modeled Zn-coordinated chlorins allowed identification of charge transfer and d-d transitions of the Ni2+ coordinated chlorins. Two fictive Zn chlorins, M1 and M2, were designed with thiophene units based on the fluorene substituted chlorin. Substitution with thiophene altered the typical arrangement of the four Gouterman molecular orbitals (MOs) and red-shifted and greatly intensified the lowest energy absorption band (the Q band). The introduction of the thiophene-based MO as the LUMO below the usual Gouterman LUMO is predicted to increase the efficiency of electron transfer from the dye to the conduction band of the semiconductor in DSSCs. The addition of a donor group on the opposite pyrrole (M2) red-shifted the Q band further and introduced a donor-based MO between the typical Gouterman HOMO and HOMO-1. Despite the relatively small ΔHOMO, M1 and M2 exhibited remarkably intense Q bands. M2 would be a possible candidate for application in DSSCs due to its panchromatic absorption, intense and red-shifted Q band, and the presence of the substituent based MO properties. Another indicator of a successful dye is the alignment of the ground state and excited state oxidation potentials (GSOP and ESOP, respectively) with respect to the conduction band of the semiconductor. The GSOP for M2 lies 0.55 eV below the I-/I3- redox potential and the ESOP lies 0.48 eV above the TiO2 conduction band. The impact of the thiophene dominance in the LUMO also supports the prediction of efficient sensitization properties. The remarkably intense Q band of M2 predicted to be at 777 nm with a ΔHOMO of just 1.04 eV provides a synthetic route to tetrapyrroles with extremely intense, red Q bands without the need for aza nitrogens of the phthalocyanines. This study illustrates the value of guided synthesis using MCD spectral analysis and computational methods for optimizing the design of porphyrin dyes.
Attitudes toward child rearing in female clinical nurses working in three shifts.
Ha, Eun-Ho
2016-12-01
The balance between child-rearing and work may be one of the most challenging issues facing female clinical nurses, particularly those who work in three shifts. This study aimed to identify attitudes toward child-rearing in this particular cohort, female clinical nurses working three shifts. Q methodology, a research method concerned with individuals' subjective points of view, was used. Thirty-five selected Q statements from 51 participants were divided into a normal distribution using a nine-point bipolar scale, and the collected data were analyzed using the QUANL program. Three discrete factors emerged: Factor I: child-rearing is natural work (child-rearing and work are separate); Factor II: child-rearing is hard work (child-rearing and work are in conflict); and Factor III: child-rearing requires help from someone (child-rearing and work are balanced). The subjective viewpoints of the three identified factors can be applied to develop diverse strategies to support child-rearing in female clinical nurses. © 2016 John Wiley & Sons Australia, Ltd.
Multi-indexed (q-)Racah polynomials
NASA Astrophysics Data System (ADS)
Odake, Satoru; Sasaki, Ryu
2012-09-01
As the second stage of the project multi-indexed orthogonal polynomials, we present, in the framework of ‘discrete quantum mechanics’ with real shifts in one dimension, the multi-indexed (q-)Racah polynomials. They are obtained from the (q-)Racah polynomials by the multiple application of the discrete analogue of the Darboux transformations or the Crum-Krein-Adler deletion of ‘virtual state’ vectors, in a similar way to the multi-indexed Laguerre and Jacobi polynomials reported earlier. The virtual state vectors are the ‘solutions’ of the matrix Schrödinger equation with negative ‘eigenvalues’, except for one of the two boundary points.
Active Duty- U.S. Army Noise-Induced Hearing Injury Quarterly Surveillance: Q1 2010 Thru Q2 2012
2014-06-10
threshold shift, tinnitus , and Noise-Induced Hearing Loss. RECOMMENDATIONS: Commanders and Preventive Medicine assets at multiple levels should use...Humes LE, Jollenbeck LM, Durch JS: Noise and military service: Implications for hearing loss and tinnitus . Washington, DC: National Academy Press...NONSPECIFIC ABNORMAL AUDITORY FUNCTION STUDIES TINN Tinnitus 38830 TINNITUS UNSPECIFIED TINN Tinnitus 38831 SUBJECTIVE TINNITUS TINN Tinnitus 38832 OBJECTIVE
Active Duty-U.S. Army Noise Induced Hearing Injury Quarterly Surveillance Q3 2011 thru Q4 2013
2014-06-30
incident case rates for sensorineural hearing loss significant threshold shift, tinnitus , and Noise-Induced Hearing Loss. RECOMMENDATIONS: Commanders...2013 A-1 APPENDIX A REFERENCES Humes LE, Jollenbeck LM, Durch JS: Noise and military service: Implications for hearing loss and tinnitus . Washington...FUNCTION STUDIES TINN Tinnitus 38830 TINNITUS UNSPECIFIED TINN Tinnitus 38831 SUBJECTIVE TINNITUS TINN Tinnitus 38832 OBJECTIVE TINNITUS CPT Codes
CMOS Bit-Stream Band-Pass Beamforming
2016-03-31
unlimited. with direct IF sampling, most of the signal processing, including digital down-conversion ( DDC ), is carried out in the digital domain, and I/Q...level digitized signals are directly processed without decimation filtering for I/Q DDC and phase shifting. This novel BSP approach replaces bulky...positive feedback. The resonator center frequency of fs/4 (260MHz) simplifies the design of DDC . 4b tunable capacitors adjust the center frequency
Experimental Air-Broadened Line Parameters in the nu2 Band of CH3D
NASA Technical Reports Server (NTRS)
Cross, Adriana Predoi; Brawley-Tremblay, Shannon; Povey, Chad; Smith, Mary Ann H.
2007-01-01
In this study we report the first experimental measurements of air-broadening and air-induced pressure-shift coefficients for approximately 378 transitions in the nu2 fundamental band of CH3D. These results were obtained from analysis of 17 room temperature laboratory absorption spectra recorded at 0.0056 cm(exp -1) resolution using the McMath-Pierce Fourier transform spectrometer located on Kitt Peak, Arizona. Three absorption cells with path lengths of 10.2, 25 and 150 cm were used to record the spectra. The total sample pressures ranged from 0.129x10(exp -2) to 52.855x10(exp -2) atm with CH3D volume mixing ratios of approximately 0.0109 in air. The spectra were analyzed using a multispectrum non-linear least-squares fitting technique. We report measurements for air pressure-broadening coefficients for transitions with quantum numbers as high as J" = 20 and K = 15, where K" = K' equivalent to K (for a parallel band). The measured air broadening coefficients range from 0.0205 to 0.0835 cm(exp -1) atm(exp -1) at 296 K. All the measured pressure-shift coefficients are negative and are found to vary from about -0.0005 to -0.0080 cm(exp -1) atm(exp -1) at the temperature of the spectra. We have examined the dependence of the measured broadening and shift parameters on the J" and K quantum numbers and also developed empirical expressions to describe the broadening coefficients in terms of m (m = -J", J" and J" + 1 in the (sup Q)P- (sup Q)Q-, and (sup Q)R-branch, respectively) and K. On average, the empirical expressions reproduce the measured broadening coefficients to within 4.4%.
Léglise, M C; Rivière, D; Brière, J
1990-01-01
We present a cytogenetic clonal evolution that correlates morphological and immunological shifts in a case of a patient with a t(4;11) (q21;q23) acute leukemia. We take this opportunity to review 146 cases reported so far, with special reference to morphology, immunophenotyping, cytogenetics, clinical characteristics and evolution. Particular features are underlined, and prognosis, leukemic stem cell origin, chromosomal breakpoints and genes involved are discussed. A relationship between this type of leukemia and exposure to carcinogens is suggested by a high rate of secondary leukemia in adults and a high frequency in newborns and infants.
NASA Astrophysics Data System (ADS)
Li, Jingnan; Wang, Shangxu; Yang, Dengfeng; Tang, Genyang; Chen, Yangkang
2018-02-01
Seismic waves propagating in the subsurface suffer from attenuation, which can be represented by the quality factor Q. Knowledge of Q plays a vital role in hydrocarbon exploration. Many methods to measure Q have been proposed, among which the central frequency shift (CFS) and the peak frequency shift (PFS) are commonly used. However, both methods are under the assumption of a particular shape for amplitude spectra, which will cause systematic error in Q estimation. Recently a new method to estimate Q has been proposed to overcome this disadvantage by using frequency weighted exponential (FWE) function to fit amplitude spectra of different shapes. In the FWE method, a key procedure is to calculate the central frequency and variance of the amplitude spectrum. However, the amplitude spectrum is susceptible to noise, whereas the power spectrum is less sensitive to random noise and has better anti-noise performance. To enhance the robustness of the FWE method, we propose a novel hybrid method by combining the advantage of the FWE method and the power spectrum, which is called the improved FWE method (IFWE). The basic idea is to consider the attenuation of the power spectrum instead of the amplitude spectrum and to use a modified FWE function to fit power spectra, according to which we derive a new Q estimation formula. Tests of noisy synthetic data show that the IFWE are more robust than the FWE. Moreover, the frequency bandwidth selection in the IFWE can be more flexible than that in the FWE. The application to field vertical seismic profile data and surface seismic data further demonstrates its validity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barber, Jeffrey B.; Masiello, Tony; Chrysostom, Engelene
2003-06-15
The infrared spectrum of the v2, v4 bending mode region of 34S-substituted sulfur trioxide, 34S16O3, has been recorded at a resolution of 0.0025 cm-1. The v2 and v4 levels are coupled by a Coriolis interaction, yielding significant spectral shifts that have been successfully analyzed to obtain rovibrational constants for the ground state and both fundamentals. Comparisons are made with 32S16O3 parameters and the Bo rotational constant is found to be 0.348 556 04(28) cm-1, only very slightly larger than the corresponding value of 0.348 543 33(5) cm-1 for 32S16O3. Coriolis and l-type resonance interactions between the v2 and v4 levelsmore » produce frequency shifts and strong intensity perturbations in the spectra that are considered for both 34S16O3 and 32S16O3. The resulting analysis yields an average value of+0.62(8) for the dipole derivative ratio (?x/?Q4x) (?z/?Q2) and a positive sign for the product of this ratio with the?y2,4 Coriolis constant, for which experiment gives+0.5940(15) . Ab initio calculations indicate that the signs of?x/?Q4x and?z/?Q2 are both positive and hence?y2,4 is also positive, in agreement with earlier calculations. These signs indicate that the effective charge movement in the xz plane has the same sense of rotation as Q2, Q4x atom motion in this plane that produces a py vibrational angular momentum component, correlated motion that is confirmed by ab initio calculations.« less
Correction of I/Q channel errors without calibration
Doerry, Armin W.; Tise, Bertice L.
2002-01-01
A method of providing a balanced demodular output for a signal such as a Doppler radar having an analog pulsed input; includes adding a variable phase shift as a function of time to the input signal, applying the phase shifted input signal to a demodulator; and generating a baseband signal from the input signal. The baseband signal is low-pass filtered and converted to a digital output signal. By removing the variable phase shift from the digital output signal, a complex data output is formed that is representative of the output of a balanced demodulator.
Evolution and function of CAG/polyglutamine repeats in protein–protein interaction networks
Schaefer, Martin H.; Wanker, Erich E.; Andrade-Navarro, Miguel A.
2012-01-01
Expanded runs of consecutive trinucleotide CAG repeats encoding polyglutamine (polyQ) stretches are observed in the genes of a large number of patients with different genetic diseases such as Huntington's and several Ataxias. Protein aggregation, which is a key feature of most of these diseases, is thought to be triggered by these expanded polyQ sequences in disease-related proteins. However, polyQ tracts are a normal feature of many human proteins, suggesting that they have an important cellular function. To clarify the potential function of polyQ repeats in biological systems, we systematically analyzed available information stored in sequence and protein interaction databases. By integrating genomic, phylogenetic, protein interaction network and functional information, we obtained evidence that polyQ tracts in proteins stabilize protein interactions. This happens most likely through structural changes whereby the polyQ sequence extends a neighboring coiled-coil region to facilitate its interaction with a coiled-coil region in another protein. Alteration of this important biological function due to polyQ expansion results in gain of abnormal interactions, leading to pathological effects like protein aggregation. Our analyses suggest that research on polyQ proteins should shift focus from expanded polyQ proteins into the characterization of the influence of the wild-type polyQ on protein interactions. PMID:22287626
The CoQH2/CoQ Ratio Serves as a Sensor of Respiratory Chain Efficiency.
Guarás, Adela; Perales-Clemente, Ester; Calvo, Enrique; Acín-Pérez, Rebeca; Loureiro-Lopez, Marta; Pujol, Claire; Martínez-Carrascoso, Isabel; Nuñez, Estefanía; García-Marqués, Fernando; Rodríguez-Hernández, María Angeles; Cortés, Ana; Diaz, Francisca; Pérez-Martos, Acisclo; Moraes, Carlos T; Fernández-Silva, Patricio; Trifunovic, Aleksandra; Navas, Plácido; Vazquez, Jesús; Enríquez, Jose A
2016-04-05
Electrons feed into the mitochondrial electron transport chain (mETC) from NAD- or FAD-dependent enzymes. A shift from glucose to fatty acids increases electron flux through FAD, which can saturate the oxidation capacity of the dedicated coenzyme Q (CoQ) pool and result in the generation of reactive oxygen species. To prevent this, the mETC superstructure can be reconfigured through the degradation of respiratory complex I, liberating associated complex III to increase electron flux via FAD at the expense of NAD. Here, we demonstrate that this adaptation is driven by the ratio of reduced to oxidized CoQ. Saturation of CoQ oxidation capacity induces reverse electron transport from reduced CoQ to complex I, and the resulting local generation of superoxide oxidizes specific complex I proteins, triggering their degradation and the disintegration of the complex. Thus, CoQ redox status acts as a metabolic sensor that fine-tunes mETC configuration in order to match the prevailing substrate profile. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Mitochondria-Targeted Antioxidant Mitoquinone Reduces Cisplatin-Induced Ototoxicity in Guinea Pigs.
Tate, Alan D; Antonelli, Patrick J; Hannabass, Kyle R; Dirain, Carolyn O
2017-03-01
Objective To determine if mitoquinone (MitoQ) attenuates cisplatin-induced hearing loss in guinea pigs. Study Design Prospective and controlled animal study. Setting Academic, tertiary medical center. Subjects and Methods Guinea pigs were injected subcutaneously with either 5 mg/kg MitoQ (n = 9) or normal saline (control, n = 9) for 7 days and 1 hour before receiving a single dose of 10 mg/kg cisplatin. Auditory brainstem response thresholds were measured before MitoQ or saline administration and 3 to 4 days after cisplatin administration. Results Auditory brainstem response threshold shifts after cisplatin treatment were smaller by 28 to 47 dB in guinea pigs injected with MitoQ compared with those in the control group at all tested frequencies (4, 8, 16, and 24 kHz, P = .0002 to .04). Scanning electron microscopy of cochlear hair cells showed less outer hair cell loss and damage in the MitoQ group. Conclusion MitoQ reduced cisplatin-induced hearing loss in guinea pigs. MitoQ appears worthy of further investigation as a means of preventing cisplatin ototoxicity in humans.
NASA Astrophysics Data System (ADS)
Zhao, Ting; Wang, Yu-An; Zhao, Zong-Yan; Liu, Qiang; Liu, Qing-Ju
2018-01-01
In order to explore the similarity, difference, and tendency of binary copper-based chalcogenides, the crystal structure, electronic structure, and optical properties of eight compounds of Cu2Q and CuQ (Q = O, S, Se, and Te) have been calculated by density functional theory with HSE06 method. According to the calculated results, the electronic structure and optical properties of Cu2Q and CuQ present certain similarities and tendencies, with the increase of atomic number of Q elements: the interactions between Cu-Q, Cu-Cu, and Q-Q are gradually enhancing; the value of band gap is gradually decreasing, due to the down-shifting of Cu-4p states; the covalent feature of Cu atoms is gradually strengthening, while their ionic feature is gradually weakening; the absorption coefficient in the visible-light region is also increasing. On the other hand, some differences can be found, owing to the different crystal structure and component, for example: CuO presents the characteristics of multi-band gap, which is very favorable to absorb infrared-light; the electron transfer in CuQ is stronger than that in Cu2Q; the absorption peaks and intensity are very strong in the ultraviolet-light region and infrared-light region. The findings in the present work will help to understand the underlying physical mechanism of binary copper-based chalcogenides, and available to design novel copper-based chalcogenides photo-electronics materials and devices.
Phase ambiguity resolution for offset QPSK modulation systems
NASA Technical Reports Server (NTRS)
Nguyen, Tien M. (Inventor)
1991-01-01
A demodulator for Offset Quaternary Phase Shift Keyed (OQPSK) signals modulated with two words resolves eight possible combinations of phase ambiguity which may produce data error by first processing received I(sub R) and Q(sub R) data in an integrated carrier loop/symbol synchronizer using a digital Costas loop with matched filters for correcting four of eight possible phase lock errors, and then the remaining four using a phase ambiguity resolver which detects the words to not only reverse the received I(sub R) and Q(sub R) data channels, but to also invert (complement) the I(sub R) and/or Q(sub R) data, or to at least complement the I(sub R) and Q(sub R) data for systems using nontransparent codes that do not have rotation direction ambiguity.
Yokoyama, S
2000-01-01
The coelacanth, a "living fossil," lives at a depth of about 200 m near the coast of the Comoros archipelago in the Indian Ocean and receives only a narrow range of light at about 480 nm. To see the entire range of "color" the Comoran coelacanth appears to use only rod-specific RH1 and cone-specific RH2 visual pigments, with the optimum light sensitivities (lambda max) at 478 nm and 485 nm, respectively. These blue-shifted lambda max values of RH1 and RH2 pigments are fully explained by independent double amino acid replacements E122Q/A292S and E122Q/M207L, respectively. More generally, currently available mutagenesis experiments identify only 10 amino acid changes that shift the lambda max values of visual pigments more than 5 nm. Among these, D83N, E1220, M207L, and A292S are associated strongly with the adaptive blue shifts in the lambda max values of RH1 and RH2 pigments in vertebrates.
Cerdán-Pasarán, Andrea; López-Luke, Tzarara; Esparza, Diego; Zarazúa, Isaac; De la Rosa, Elder; Fuentes-Ramírez, Rosalba; Alatorre-Ordaz, Alejandro; Sánchez-Solís, Ana; Torres-Castro, Alejandro; Zhang, Jin Z
2015-07-28
A multilayered semiconductor sensitizer structure composed of three differently sized CdSe quantum rods (QRs), labeled as Q530, Q575, Q590, were prepared and deposited on the surface of mesoporous TiO2 nanoparticles by electrophoretic deposition (EPD) for photovoltaic applications. By varying the arrangement of layers as well as the time of EPD, the photoconversion efficiency was improved from 2.0% with the single layer of CdSe QRs (TiO2/Q590/ZnS) to 2.9% for multilayers (TiO2/Q590Q575/ZnS). The optimal EPD time was shorter for the multilayered structures. The effect of CdS quantum dots (QDs) deposited by successive ionic layer adsorption and reaction (SILAR) was also investigated. The addition of CdS QDs resulted in the enhancement of efficiency to 4.1% for the configuration (TiO2/CdS/Q590Q575/ZnS), due to increased photocurrent and photovoltage. Based on detailed structural, optical, and photoelectrical studies, the increased photocurrent is attributed to broadened light absorption while the increased voltage is due to a shift in the relevant energy levels.
A comparison of Q-factor estimation methods for marine seismic data
NASA Astrophysics Data System (ADS)
Kwon, J.; Ha, J.; Shin, S.; Chung, W.; Lim, C.; Lee, D.
2016-12-01
The seismic imaging technique draws information from inside the earth using seismic reflection and transmission data. This technique is an important method in geophysical exploration. Also, it has been employed widely as a means of locating oil and gas reservoirs because it offers information on geological media. There is much recent and active research into seismic attenuation and how it determines the quality of seismic imaging. Seismic attenuation is determined by various geological characteristics, through the absorption or scattering that occurs when the seismic wave passes through a geological medium. The seismic attenuation can be defined using an attenuation coefficient and represented as a non-dimensional variable known as the Q-factor. Q-factor is a unique characteristic of a geological medium. It is a very important material property for oil and gas resource development. Q-factor can be used to infer other characteristics of a medium, such as porosity, permeability and viscosity, and can directly indicate the presence of hydrocarbons to identify oil and gas bearing areas from the seismic data. There are various ways to estimate Q-factor in three different domains. In the time domain, pulse amplitude decay, pulse rising time, and pulse broadening are representative. Logarithm spectral ratio (LSR), centroid frequency shift (CFS), and peak frequency shift (PFS) are used in the frequency domain. In the time-frequency domain, Wavelet's Envelope Peak Instantaneous Frequency (WEPIF) is most frequently employed. In this study, we estimated and analyzed the Q-factor through the numerical model test and used 4 methods: the LSR, CFS, PFS, and WEPIF. Before we applied these 4 methods to observed data, we experimented with the numerical model test. The numerical model test data is derived from Norsar-2D, which is the basis of the ray-tracing algorithm, and we used reflection and normal incidence surveys to calculate Q-factor according to the array of sources and receivers. After the numerical model test, we chose the most accurate of the 4 methods by comparing Q-factor through reflection and normal incidence surveys. We applied the method to the observed data and proved its accuracy.
Blue and red shifted temperature dependence of implicit phonon shifts in graphene
NASA Astrophysics Data System (ADS)
Mann, Sarita; Jindal, V. K.
2017-07-01
We have calculated the implicit shift for various modes of frequency in a pure graphene sheet. Thermal expansion and Grüneisen parameter which are required for implicit shift calculation have already been studied and reported. For this calculation, phonon frequencies are obtained using force constants derived from dynamical matrix calculated using VASP code where the density functional perturbation theory (DFPT) is used in interface with phonopy software. The implicit phonon shift shows an unusual behavior as compared to the bulk materials. The frequency shift is large negative (red shift) for ZA and ZO modes and the value of negative shift increases with increase in temperature. On the other hand, blue shift arises for all other longitudinal and transverse modes with a similar trend of increase with increase in temperature. The q dependence of phonon shifts has also been studied. Such simultaneous red and blue shifts in transverse or out plane modes and surface modes, respectively leads to speculation of surface softening in out of plane direction in preference to surface melting.
NASA Astrophysics Data System (ADS)
Bunte, K.; Swingle, K. W.; Abt, S. R.; Cenderelli, D.
2012-12-01
Effective discharge (Qeff) is defined as the flow at which the product of flow frequency and bedload transport rates obtains its maximum. Qeff is often reported to correspond with bankfull flow (Qbf), where Qeff approximates the 1.5 year recurrence interval flow (Q1.5). Because it transports the majority of all bedload, Qeff is considered a design flow for stream restoration and flow management. This study investigates the relationship between Qeff and Q1.5 for gravel bedload in high elevation Rocky Mountain streams. Both the flow frequency distribution (FQ = a × Qbin-b) where Qbin is the flow class, and the bedload transport rating curve (QB = c × Qd) can be described by power functions. The product FQ × QB = (a × c × Q(-b + d)) is positive if d + -b >0, and negative if d + -b <0. FQ × QB can only attain a maximum (=Qeff) if either FQ or QB exhibit an inflection point. In snowmelt regimes, low flows prevail for much of the year, while high flows are limited to a few days, and extreme floods are rare. In log-log plotting scale, this distribution causes the longterm flow frequency function FQ to steepen in the vicinity of Q1.5. If the bedload rating curve exponent is small, e.g., = 3 as is typical of Helley-Smith bedload samples, d + -b shifts from >0 to <0, causing FQ × QB to peak, and Qeff to be around Q1.5. For measurements thought to be more representative of actual gravel transport obtained using bedload traps and similar devices, large rating curve exponents d of 6 - 16 are typical. In this case, d + -b remains >0, and FQ × QB reaches its maximum near the largest flow on record (Qeff,BT = Qmax). Expression of FQ by negative exponential functions FQ = k × e(Qbin×-m) smooths the product function FQ × QB that displays its maximum as a gentle hump rather than a sharp peak, but without drastically altering Qeff. However, a smooth function FQ × QB allows Qeff to react to small changes in rating curve exponents d. As d increases from <1 to >10, Qeff increases from Qmin to Qmax. The S-shaped relationship of Qeff vs. d shows that changes in d between about 4 and 8 exert the largest influence on Qeff. Not only FQ, but also QB may change its steepness. QB may flatten during floods as flows overtop banks. Many high elevation Rocky Mountain streams are entrenched due to floodplain buildup (overbank deposition and beaver activity) and downcutting. Preliminary flow modeling suggests that bank overtopping starts when Q1.5 >150%, and flows are fully out-of-bank past 200-250% Q1.5. A flattening of the bedload rating curve shifts Qeff from Qmax to within 150-250% Q1.5. Study results suggest that Qeff likely occurs within 150-250% Q1.5, and the often-quoted similarity of Qeff and Qbf (assuming Qbf = Q1.5) does not hold for the study streams, but is rather an artifact of using a Helley-Smith sampler that produces low rating curve exponents near 3. This finding calls into question the utility of Q1.5 or "bankfull flow" as a morphological design flow in high elevation Rocky Mountain streams.
All-optical, ultra-wideband microwave I/Q mixer and image-reject frequency down-converter.
Gao, Yongsheng; Wen, Aijun; Chen, Wei; Li, Xiaoyan
2017-03-15
An all-optical and ultra-wideband microwave in-phase/quadrature (I/Q) mixer, based on a dual-parallel Mach-Zehnder modulator and a wavelength division multiplexer, is proposed. Due to the simultaneous frequency down-conversion and 360-deg tunable phase shifting in the optical domain, the proposed I/Q mixer has the advantages of high conversion gain and excellent quadrature phase balance (<±1.3 deg) with a wide operating frequency from 10 to 40 GHz. Assisted by an analog or digital intermediate-frequency quadrature coupler, an image-reject frequency down-converter is then implemented, with an image rejection exceeding 50 dB over the working band.
NASA Astrophysics Data System (ADS)
Garofalo, A. M.; Gong, X. Z.; Ding, S. Y.; Huang, J.; McClenaghan, J.; Pan, C. K.; Qian, J.; Ren, Q. L.; Staebler, G. M.; Chen, J.; Cui, L.; Grierson, B. A.; Hanson, J. M.; Holcomb, C. T.; Jian, X.; Li, G.; Li, M.; Pankin, A. Y.; Peysson, Y.; Zhai, X.; Bonoli, P.; Brower, D.; Ding, W. X.; Ferron, J. R.; Guo, W.; Lao, L. L.; Li, K.; Liu, H.; Lyv, B.; Xu, G.; Zang, Q.
2018-01-01
Experimental and modeling investigations on the DIII-D and EAST tokamaks show the attractive transport and stability properties of fully noninductive, high poloidal-beta (β P ) plasmas, and their suitability for steady-state operating scenarios in ITER and CFETR. A key feature of the high-β P regime is the large-radius (ρ > 0.6) internal transport barrier (ITB), often observed in all channels (ne, Te, Ti, rotation), and responsible for both excellent energy confinement quality and excellent stability properties. Experiments on DIII-D have shown that, with a large-radius ITB, very high β N and β P values (both ≥ 4) can be reached by taking advantage of the stabilizing effect of a nearby conducting wall. Synergistically, higher plasma pressure provides turbulence suppression by Shafranov shift, leading to ITB sustainment independent of the plasma rotation. Experiments on EAST have been used to assess the long pulse potential of the high-β P regime. Using RF-only heating and current drive, EAST achieved minute-long fully noninductive steady state H-mode operation with strike points on an ITER-like tungsten divertor. Improved confinement (relative to standard H-mode) and steady state ITB features are observed with a monotonic q-profile with q min ˜ 1.5. Separately, experiments have shown that increasing the density in plasmas driven by lower hybrid wave broadens the q-profile, a technique that could enable a large radius ITB. These experimental results have been used to validate MHD, current drive, and turbulent transport models, and to project the high-β P regime to a burning plasma. These projections suggest the Shafranov shift alone will not suffice to provide improved confinement (over standard H-mode) without rotation and rotation shear. However, increasing the negative magnetic shear (higher q on axis) provides a similar turbulence suppression mechanism to Shafranov shift, and can help devices such as ITER and CFETR achieve their steady-state fusion goals.
Quantification Bias Caused by Plasmid DNA Conformation in Quantitative Real-Time PCR Assay
Lin, Chih-Hui; Chen, Yu-Chieh; Pan, Tzu-Ming
2011-01-01
Quantitative real-time PCR (qPCR) is the gold standard for the quantification of specific nucleic acid sequences. However, a serious concern has been revealed in a recent report: supercoiled plasmid standards cause significant over-estimation in qPCR quantification. In this study, we investigated the effect of plasmid DNA conformation on the quantification of DNA and the efficiency of qPCR. Our results suggest that plasmid DNA conformation has significant impact on the accuracy of absolute quantification by qPCR. DNA standard curves shifted significantly among plasmid standards with different DNA conformations. Moreover, the choice of DNA measurement method and plasmid DNA conformation may also contribute to the measurement error of DNA standard curves. Due to the multiple effects of plasmid DNA conformation on the accuracy of qPCR, efforts should be made to assure the highest consistency of plasmid standards for qPCR. Thus, we suggest that the conformation, preparation, quantification, purification, handling, and storage of standard plasmid DNA should be described and defined in the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) to assure the reproducibility and accuracy of qPCR absolute quantification. PMID:22194997
Electric Field Induced Spectra of H sub 2 and D sub 2
NASA Technical Reports Server (NTRS)
Boyd, William Joseph
1974-01-01
The frequencies of four Q-branch lines of H2 and five Q-branch lines of D2 were measured as a function of density, and their shifts were observed to be in the linear region. The individual slopes and extrapolated zero density frequency of each line was determined. Hydrogen was measured for polarizability using the integrated intensity of the Q1(0) and S1(1), H2 absorption line. A highly automated technique for determining the response function of the spectrometer using digitally recorded data is presented. For the Q1(0) and Q1(1) lines of H2 the halfwidths were measured as a function of electric field intensity at constant pressure, and again at several densities and compared to previously measured widths. Technical and operational details of equipment built for this experiment, and for the five-meter Littrow spectrometer used, are described. Modifications of the spectrometer optics to accept the Stark cell are discussed.
Effective potentials for H2O-He and H2O-Ar systems. Isotropic induction-dispersion potentials
NASA Astrophysics Data System (ADS)
Starikov, Vitali I.; Petrova, Tatiana M.; Solodov, Alexander M.; Solodov, Alexander A.; Deichuli, Vladimir M.
2017-05-01
The vibrational and rotational dependence of the effective isotropic interaction potential of H2O-He and H2O-Ar systems, taken in the form of Lennard-Jones 6-12 potential has been analyzed. The analysis is based on the experimental line broadening (γ) and line shift (δ) coefficients obtained for different vibrational bands of H2O molecule perturbed by He and Ar. The first and second derivatives of the function C(1)(q) for the long-range part of the induction-dispersion potential with respect to the dimensionless normal coordinates q were calculated using literature information for the dipole moment and mean polarizability functions μ(q) and α(q), respectively. These derivatives have been used in the calculations of the quantities which determine the vibrational and rotational dependence of the long-range part of the effective isotropic potential. The optimal set of the derivatives for the function C(1)(q) is proposed. The comparison with the experimental data has been performed.
Extension of high poloidal beta scenario in DIII-D to lower q95 for steady state fusion reactor
NASA Astrophysics Data System (ADS)
Huang, J.; Gong, X.; Qian, J.; Ding, S.; Ren, Q.; Guo, W.; Pan, C.; Li, G.; Xia, T.; Garofalo, A.; Lao, L.; Hyatt, A.; Ferron, J.; Collins, C.; Lin, D.; McKee, G.; Rhode, T.; McClenaghan, J.; Holcomb, C.; Cui, L.; Heidbrink, W.; Zhu, Y.; Diiid Team; East Team
2017-10-01
DIII-D/EAST joint experiments have improved the high poloidal beta scenario with sustained large-radius internal transport barrier (ITB) extended to high plasma current Ip 1MA with q95 6.0. Slight off-axis NBCD is applied to obtain broader current density profile, ITBs can now be sustained below the previously observed βp threshold with excellent confinement (H98y2 1.8). The scenario also exhibits a local negative shear appearing with q increased at rho 0.4, which helps ITB formation and sustainment. This confirms TGLF prediction that negative magnetic shear can help recover ITB and achieve high confinement with reduced q95. Detailed analysis shows that the Shafranov shift and q profile is critical in the ITB formation at high βp regime. Supported in part by National Magnetic Confinement Fusion Program of China 2015GB102000, 2015GB110005, and US Department of Energy under DE-FC02-04ER54698.
Host Coenzyme Q Redox State Is an Early Biomarker of Thermal Stress in the Coral Acropora millepora
Motti, Cherie A.; Miller, David J.; van Oppen, Madeleine J. H.
2015-01-01
Bleaching episodes caused by increasing seawater temperatures may induce mass coral mortality and are regarded as one of the biggest threats to coral reef ecosystems worldwide. The current consensus is that this phenomenon results from enhanced production of harmful reactive oxygen species (ROS) that disrupt the symbiosis between corals and their endosymbiotic dinoflagellates, Symbiodinium. Here, the responses of two important antioxidant defence components, the host coenzyme Q (CoQ) and symbiont plastoquinone (PQ) pools, are investigated for the first time in colonies of the scleractinian coral, Acropora millepora, during experimentally-induced bleaching under ecologically relevant conditions. Liquid chromatography-mass spectrometry (LC-MS) was used to quantify the states of these two pools, together with physiological parameters assessing the general state of the symbiosis (including photosystem II photochemical efficiency, chlorophyll concentration and Symbiodinium cell densities). The results show that the responses of the two antioxidant systems occur on different timescales: (i) the redox state of the Symbiodinium PQ pool remained stable until twelve days into the experiment, after which there was an abrupt oxidative shift; (ii) by contrast, an oxidative shift of approximately 10% had occurred in the host CoQ pool after 6 days of thermal stress, prior to significant changes in any other physiological parameter measured. Host CoQ pool oxidation is thus an early biomarker of thermal stress in corals, and this antioxidant pool is likely to play a key role in quenching thermally-induced ROS in the coral-algal symbiosis. This study adds to a growing body of work that indicates host cellular responses may precede the bleaching process and symbiont dysfunction. PMID:26426118
Free-Energy Landscape of the Amino-Terminal Fragment of Huntingtin in Aqueous Solution
Binette, Vincent; Côté, Sébastien; Mousseau, Normand
2016-01-01
The first exon of Huntingtin—a protein with multiple biological functions whose misfolding is related to Huntington’s disease—modulates its localization, aggregation, and function within the cell. It is composed of a 17-amino-acid amphipathic segment (Htt17), an amyloidogenic segment of consecutive glutamines (QN), and a proline-rich segment. Htt17 is of fundamental importance: it serves as a membrane anchor to control the localization of huntingtin, it modulates huntingtin’s function through posttranslational modifications, and it controls the self-assembly of the amyloidogenic QN segment into oligomers and fibrils. Experimentally, the conformational ensemble of the Htt17 monomer, as well as the impact of the polyglutamine and proline-rich segments, remains, however, mostly uncharacterized at the atomic level due to its intrinsic flexibility. Here, we unveil the free-energy landscape of Htt17, Htt17Q17, and Htt17Q17P11 using Hamiltonian replica exchange combined with well-tempered metadynamics. We characterize the free-energy landscape of these three fragments in terms of a few selected collective variables. Extensive simulations reveal that the free energy of Htt17 is dominated by a broad ensemble of configurations that agree with solution NMR chemical shifts. Addition of Q17 at its carboxy-terminus reduces the extent of the main basin to more extended configurations of Htt17 with lower helix propensity. Also, the aliphatic carbons of Q17 partially sequester the nonpolar amino acids of Htt17. For its part, addition of Q17P11 shifts the overall landscape to a more extended and helical Htt17 stabilized by interactions with Q17 and P11, which almost exclusively form a PPII-helix, as well as by intramolecular H-bonds and salt bridges. Our characterization of Huntingtin’s amino-terminus provides insights into the structural origin of its ability to oligomerize and interact with phospholipid bilayers, processes closely linked to the biological functions of this protein. PMID:26958885
Polarization and microstructural effects of ceramic hydroxyapatite electrets
NASA Astrophysics Data System (ADS)
Tanaka, Yumi; Iwasaki, Takeshi; Nakamura, Miho; Nagai, Akiko; Katayama, Keiichi; Yamashita, Kimihiro
2010-01-01
To provide bioelectrets with controlled electrical energy, the polarization and relaxation characteristics of hydroxyapatite (HA) ceramic electrets were investigated in terms of poling conditions and microstructures. HA electrets were prepared between 250 and 500 °C for 5-120 min under a 5 kV cm-1 dc electrical field. Poling conditions and grain size of HA ceramics significantly influenced the thermally stimulated depolarization current (TSDC) spectra and charge storage (Q). Under a poling field of 5 kV cm-1, varying the poling temperature from 250 to 500 °C drastically shifted the TSDC peak temperature from 250 to 620 °C and increased Q from 0.5 to 45 μC cm-2. The change in the average grain size from 2 to 11 μm increased the Q value from 15 to 60 μC cm-2 with a negligible shift in the TSDC peak position. The measured difference of the TSDC peak shapes and positions, as well as the Q values, was theoretically due to the four polarization states with different activation energies (Edr) of dipole relaxation and the pre-exponential factor of relaxation times (τ0). The dependences on the poling conditions and grain size indicated that the four states were due to the orientation polarization of absorbed water (state 1), the localizations of displaced protons around PO43- and OH- in the grains (states 2 and 3), and the localization of displaced protons in the grain boundaries (state 4).
Zhu, Longbao; Zhou, Li; Cui, Wenjing; Liu, Zhongmei; Zhou, Zhemin
2014-09-01
Phenylalanine ammonia-lyase ( Rg PAL) from Rhodotorula glutinis JN-1 stereoselectively catalyzes the conversion of the l-phenylalanine into trans -cinnamic acid and ammonia, and was used in chiral resolution of dl-phenylalanine to produce the d-phenylalanine under acidic condition. However, the optimum pH of Rg PAL is 9 and the Rg PAL exhibits low catalytic efficiency at acidic side. Therefore, a mutant Rg PAL with a lower optimum pH is expected. Based on catalytic mechanism and structure analysis, we constructed a mutant Rg PAL-Q137E by site-directed mutagenesis, and found that this mutant had an extended optimum pH 7-9 with activity of 1.8-fold higher than that of the wild type at pH 7. As revealed by Friedel-Crafts-type mechanism of Rg PAL, the improvement of the Rg PAL-Q137E might be due to the negative charge of Glu137 which could stabilize the intermediate transition states through electrostatic interaction. The Rg PAL-Q137E mutant was used to resolve the racemic dl-phenylalanine, and the conversion rate and the ee D value of d-phenylalanine using Rg PAL-Q137E at pH 7 were increased by 29% and 48%, and achieved 93% and 86%, respectively. This work provides an effective strategy to shift the optimum pH which is favorable to further applications of Rg PAL.
Flexible digital modulation and coding synthesis for satellite communications
NASA Technical Reports Server (NTRS)
Vanderaar, Mark; Budinger, James; Hoerig, Craig; Tague, John
1991-01-01
An architecture and a hardware prototype of a flexible trellis modem/codec (FTMC) transmitter are presented. The theory of operation is built upon a pragmatic approach to trellis-coded modulation that emphasizes power and spectral efficiency. The system incorporates programmable modulation formats, variations of trellis-coding, digital baseband pulse-shaping, and digital channel precompensation. The modulation formats examined include (uncoded and coded) binary phase shift keying (BPSK), quatenary phase shift keying (QPSK), octal phase shift keying (8PSK), 16-ary quadrature amplitude modulation (16-QAM), and quadrature quadrature phase shift keying (Q squared PSK) at programmable rates up to 20 megabits per second (Mbps). The FTMC is part of the developing test bed to quantify modulation and coding concepts.
Evidence for Cation-Controlled Excited-State Localization in a Ruthenium Polypyridyl Compound.
Beauvilliers, Evan E; Meyer, Gerald J
2016-08-01
The visible absorption and photoluminescence (PL) properties of the four neutral ruthenium diimine compounds [Ru(bpy)2(dcb)] (B2B), [Ru(dtb)2(dcb)] (D2B), [Ru(bpy)2(dcbq)] (B2Q), and [Ru(dtb)2(dcbq)] (D2Q), where bpy is 2,2'-bipyridine, dcb is 4,4'-(CO2(-))2-bpy, dtb is 4,4'-(tert-butyl)2-bpy, and dcbq is 4,4'-(CO2(-))2-2,2'-biquinoline, are reported in the presence of Lewis acidic cations present in fluid solutions at room temperature. In methanol solutions, the measured spectra were insensitive to the presence of these cations, while in acetonitrile a significant red shift in the PL spectra (≤1400 cm(-1)) was observed consistent with stabilization of the metal-to-ligand charge transfer (MLCT) excited state through Lewis acid-base adduct formation. No significant spectral changes were observed in control experiments with the tetrabutylammonium cation. Titration data with Li(+), Na(+), Mg(2+), Ca(2+), Zn(2+), Al(3+), Y(3+), and La(3+) showed that the extent of stabilization saturated at high cation concentration with magnitudes that scaled roughly with the cation charge-to-size ratio. The visible absorption spectra of D2Q was particularly informative due to the presence of two well-resolved MLCT absorption bands: (1) Ru → bpy, λmax ≈ 450 nm; and (2) Ru → dcbq, λmax ≈ 540 nm. The higher-energy band blue-shifted and the lower-energy band red-shifted upon cation addition. The PL intensity and lifetime of the excited state of B2B first increased with cation addition without significant shifts in the measured spectra, behavior attributed to a cation-induced change in the localization of the emissive excited state from bpy to dcb. The importance of excited-state localization and stabilization for solar energy conversion is discussed.
Moritake, Yuto; Tanaka, Takuo
2018-02-05
We propose and demonstrate the elimination of substrate influence on plasmon resonance by using selective and isotropic etching of substrates. Preventing the red shift of the resonance due to substrates and improving refractive index sensitivity were experimentally demonstrated by using plasmonic nanostructures fabricated on silicon substrates. Applying substrate etching decreases the effective refractive index around the metal nanostructures, resulting in elimination of the red shift. Improvement of sensitivity to the refractive index environment was demonstrated by using plasmonic metamaterials with Fano resonance based on far field interference. Change in quality factors (Q-factors) of the Fano resonance by substrate etching was also investigated in detail. The presence of a closely positioned substrate distorts the electric field distribution and degrades the Q-factors. Substrate etching dramatically increased the refractive index sensitivity reaching to 1532 nm/RIU since the electric fields under the nanostructures became accessible through substrate etching. The FOM was improved compared to the case without the substrate etching. The method presented in this paper is applicable to a variety of plasmonic structures to eliminate the influence of substrates for realizing high performance plasmonic devices.
Vibration responses of h-BN sheet to charge doping and external strain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Wei; Yang, Yu; Zheng, Fawei
2013-12-07
Based on density functional theory and density functional perturbation theory calculations, we systematically investigate the vibration responses of h-BN sheet to charge doping and external strains. It is found that under hole doping, the phonon frequencies of the ZO and TO branches at different wave vector q shift linearly with different slopes. Under electron doping, although the phonon frequencies shift irregularly, the shifting values are different at different phonon wave vectors. Interestingly, we find that external strain can restrain the irregular vibration responses of h-BN sheet to electron doping. The critical factor is revealed to be the relative position ofmore » the nearly free electron and boron p{sub z} states of h-BN sheet. Under external strains, the vibration responses of h-BN sheet are also found to be highly dependent on the phonon branches. Different vibration modes at different q points are revealed to be responsible for the vibration responses of h-BN sheet to charge doping and external strain. Our results point out a new way to detect the doping or strain status of h-BN sheet by measuring the vibration frequencies at different wave vector.« less
Direct measurement of Lorentz transformation with Doppler effects
NASA Astrophysics Data System (ADS)
Chen, Shao-Guang
For space science and astronomy the fundamentality of one-way velocity of light (OWVL) is selfevident. The measurement of OWVL (distance/interval) and the clock synchronization with light-signal transfer make a logical circulation. This means that OWVL could not be directly measured but only come indirectly from astronomical method (Romer's Io eclipse and Bradley's sidereal aberration), furthermore, the light-year by definitional OWVL and the trigonometry distance with AU are also un-measurable. For to solve this problem two methods of clock synchronization were proposed: The direct method is that at one end of dual-speed transmissionline with single clock measure the arriving-time difference of longitudinal wave and transverse wave or ordinary light and extraordinary light, again to calculate the collective sending-time of two wave with Yang's /shear elastic-modulus ratio (E/k) or extraordinary/ordinary light refractive-index ratio (ne/no), which work as one earthquake-station with single clock measures first-shake time and the distance to epicenter; The indirect method is that the one-way wavelength l is measured by dual-counters Ca and Cb and computer's real-time operation of reading difference (Nb - Na) of two counters, the frequency f is also simultaneously measured, then l f is just OWVL. Therefore, with classical Newtonian mechanics and ether wave optics, OWVL can be measured in the Galileo coordinate system with an isotropic length unit (1889 international meter definition). Without any hypotheses special relativity can entirely establish on the metrical results. When a certain wavelength l is defined as length unit, foregoing measurement of one-way wavelength l will become as the measurement of rod's length. Let a rigidity-rod connecting Ca and Cb moves relative to lamp-house with velocity v, rod's length L = (Nb - Na) l will change follow v by known Doppler effect, i.e., L(q) =L0 (1+ (v/c) cos q), where L0 is the proper length when v= 0, v• r = v cos q, r is the unit vector from lamphouse point to counters. Or: L (0) L (pi) =L0 (1+(v/c)) L0 (1 - (v/c)) =L0 2 y2 =L2 Or: L ≡ [L(0)L(pi)]1/2 =L0 y , which y ≡ (1 - (v/c)2 )1/2 is just Fitzgerald-Lorentzian contraction-factor. Also, when a light-wave period p is defined as time unit, from Doppler's frequency-shift the count N with p of one period T of moving-clock is: T(q) = N(q) p = T0 /(1+(v/c) cos q) Or: T ≡ (T(0) T(pi))1/2 = T 0 /y , where T0 is the proper period when v = 0, which is just the moving-clock-slower effect. Let r from clock point to lamp-house ((v/c) symbol reverse), Doppler formula in the usual form is: f (q) = 1/T(q) = f0 (1 - (v/c) cos q). Therefore, Lorentz transformation is the square root average of positive and negative directions twice metrical results of Doppler's frequency-shift, which Doppler's once items ( positive and negative v/c ) are counteract only residual twice item (v/c)2 (relativity-factor). Then Lorentz transformation can be directly measured by Doppler's frequency-shift method. The half-life of moving mu-meson is statistical average of many particles, the usual explanation using relativity-factor y is correct. An airship moving simultaneously along contrary directions is impossible, which makes that the relativity-factor y and the twin-paradox are inexistent in the macroscopical movement. Thereby, in the navigations of airship or satellite only use the measurement of Doppler's frequency-shift but have no use for Lorentz transformation.
Nozawa, Yosuke; Noguchi, Takumi
2018-05-15
Photosystem II (PSII) is a protein complex that performs water oxidation using light energy during photosynthesis. In PSII, electrons abstracted from water are eventually transferred to the secondary quinone electron acceptor, Q B , and upon double reduction, Q B is converted to quinol by binding two protons. Thus, excess electron transfer in PSII increases the pH of the stroma. In this study, to investigate the pH-dependent regulation of the electron flow in PSII, we have estimated the relaxation rate of the Q B - radical anion in the pH region between 5 and 8 by direct monitoring of its population using light-induced Fourier transform infrared difference spectroscopy. The decay of Q B - by charge recombination with the S 2 state of the water oxidation center in PSII membranes was shown to be accelerated at higher pH, whereas that of Q A - examined in the presence of a herbicide was virtually unaffected at pH ≤7.5 and slightly slowed at pH 8. These observations were consistent with the previous studies that included rather indirect monitoring of the Q B - and Q A - decays using fluorescence detection. The accelerated relaxation of Q B - was explained by the shift of a redox equilibrium between Q A - and Q B - to the Q A - side due to the decrease in the redox potential of Q B at higher pH, which is induced by deprotonation of a single amino acid residue near Q B . It is proposed that this pH-dependent Q B - relaxation is one of the mechanisms of electron flow regulation in PSII for its photoprotection.
NASA Astrophysics Data System (ADS)
Nagpure, I. M.; Painuly, Deepshikha; Rabanal, Maria Eugenia
2016-05-01
The various composition of ZnAlQ5 such as Zn1.5A10.5Q5, Zn1Al1Q5, Zn0.5Al1.5Q5 organic phosphors were prepared via simple cost effective co-precipitation method. The FTIR, SEM, photoluminescence analysis of the prepared phosphors were reported. ZnQ2 and AlQ3 were also prepared by similar method and their properties were compared with different composition of ZnAlQ5. The structural elucidation in the form of stretching frequencies of chemical bonds of the prepared phosphor was carried out using Fourier Transform Infrared Spectroscopy (FTIR). The stretching frequency analysis confirms the formation of prepared phosphor materials. The SEM analysis shows the surface morphological behavior of prepared phosphor materials. Greenish photoluminescence were observed at 505 to 510 nm for the different composition of ZnAlQ5,in which Zn1.5Al0.5Q5 shows maximum luminescence intensity at 505 nm. PL emission of ZnQ2 was observed at 515 nm, while for AlQ3 at 520 nm. The blue shift of 10 nm was observed in Zn1.5A10.5Q5 due to modification of energy level due to presence of Zn2+ and Al3+. The enhancement in PL intensity was observed in Zn1.5A10.5Q5 compared to the other composition due to transfer of energy between Zn2+ and quinolate complex. Optical properties of the prepared materials were evaluated for possible applications in organic light emitting devices (OLED).
Wu, Zefei; Xu, Shuigang; Lu, Huanhuan; Khamoshi, Armin; Liu, Gui-Bin; Han, Tianyi; Wu, Yingying; Lin, Jiangxiazi; Long, Gen; He, Yuheng; Cai, Yuan; Yao, Yugui; Zhang, Fan; Wang, Ning
2016-01-01
In few-layer transition metal dichalcogenides (TMDCs), the conduction bands along the ΓK directions shift downward energetically in the presence of interlayer interactions, forming six Q valleys related by threefold rotational symmetry and time reversal symmetry. In even layers, the extra inversion symmetry requires all states to be Kramers degenerate; whereas in odd layers, the intrinsic inversion asymmetry dictates the Q valleys to be spin-valley coupled. Here we report the transport characterization of prominent Shubnikov-de Hass (SdH) oscillations and the observation of the onset of quantum Hall plateaus for the Q-valley electrons in few-layer TMDCs. Universally in the SdH oscillations, we observe a valley Zeeman effect in all odd-layer TMDC devices and a spin Zeeman effect in all even-layer TMDC devices, which provide a crucial information for understanding the unique properties of multi-valley band structures of few-layer TMDCs. PMID:27651106
NASA Astrophysics Data System (ADS)
Li, Ning; Wu, Ya-Jie; Liu, Zhan-Wei
2018-01-01
The relations between the baryon-baryon elastic scattering phase shifts and the two-particle energy spectrum in the elongated box are established. We studied the cases with both the periodic boundary condition and twisted boundary condition in the center of mass frame. The framework is also extended to the system of nonzero total momentum with periodic boundary condition in the moving frame. Moreover, we discussed the sensitivity functions σ (q ) that represent the sensitivity of higher scattering phases. Our analytical results will be helpful to extract the baryon-baryon elastic scattering phase shifts in the continuum from lattice QCD data by using elongated boxes.
NASA Astrophysics Data System (ADS)
de Araújo, W. R. B.; de Melo, J. P. B. C.; Tsushima, K.
2018-02-01
We study the nucleon electromagnetic (EM) form factors in symmetric nuclear matter as well as in vacuum within a light-front approach using the in-medium inputs calculated by the quark-meson coupling model. The same in-medium quark properties are used as those used for the study of in-medium pion properties. The zero of the proton EM form factor ratio in vacuum, the electric to magnetic form factor ratio μpGEp (Q2) /GMp (Q2) (Q2 = -q2 > 0 with q being the four-momentum transfer), is determined including the latest experimental data by implementing a hard constituent quark component in the nucleon wave function. A reasonable fit is achieved for the ratio μpGEp (Q2) /GMp (Q2) in vacuum, and we predict that the Q02 value to cross the zero of the ratio to be about 15 GeV2. In addition the double ratio data of the proton EM form factors in 4He and H nuclei, [GEp4He (Q2) /G4HeMp (Q2) ] / [GEp1H (Q2) /GMp1H (Q2) ], extracted by the polarized (e → ,e‧ p →) scattering experiment on 4He at JLab, are well described. We also predict that the Q02 value satisfying μpGEp (Q02) /GMp (Q0 2) = 0 in symmetric nuclear matter, shifts to a smaller value as increasing nuclear matter density, which reflects the facts that the faster falloff of GEp (Q2) as increasing Q2 and the increase of the proton mean-square charge radius. Furthermore, we calculate the neutron EM form factor double ratio in symmetric nuclear matter for 0.1
Quasiparticle Energy in a Strongly Interacting Homogeneous Bose-Einstein Condensate.
Lopes, Raphael; Eigen, Christoph; Barker, Adam; Viebahn, Konrad G H; Robert-de-Saint-Vincent, Martin; Navon, Nir; Hadzibabic, Zoran; Smith, Robert P
2017-05-26
Using two-photon Bragg spectroscopy, we study the energy of particlelike excitations in a strongly interacting homogeneous Bose-Einstein condensate, and observe dramatic deviations from Bogoliubov theory. In particular, at large scattering length a the shift of the excitation resonance from the free-particle energy changes sign from positive to negative. For an excitation with wave number q, this sign change occurs at a≈4/(πq), in agreement with the Feynman energy relation and the static structure factor expressed in terms of the two-body contact. For a≳3/q we also see a breakdown of this theory, and better agreement with calculations based on the Wilson operator product expansion. Neither theory explains our observations across all interaction regimes, inviting further theoretical efforts.
Zulfakar, Mohd Hanif; Chan, Lee Mei; Rehman, Khurram; Wai, Lam Kok; Heard, Charles M
2018-04-01
Coenzyme Q10 (CoQ10) is a vitamin-like oil-soluble molecule that has anti-oxidant and anti-ageing effects. To determine the most optimal CoQ10 delivery vehicle, CoQ10 was solubilised in both water and fish oil, and formulated into hydrogel, oleogel and bigel. Permeability of CoQ10 from each formulation across porcine ear skin was then evaluated. Furthermore, the effects of the omega-3 fatty eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids from fish oil on skin permeation were investigated by means of nuclear magnetic resonance (NMR) and computerised molecular modelling docking experiments. The highest drug permeation was achieved with the bigel formulation that proved to be the most effective vehicle in delivering CoQ10 across the skin membrane due to a combination of its adhesive, viscous and lipophilic properties. Furthermore, the interactions between CoQ10 and fatty acids revealed by NMR and molecular modelling experiments likely accounted for skin permeability of CoQ10. NMR data showed dose-dependent changes in proton chemical shifts in EPA and DHA. Molecular modelling revealed complex formation and large binding energies between fatty acids and CoQ10. This study advances the knowledge about bigels as drug delivery vehicles and highlights the use of NMR and molecular docking studies for the prediction of the influence of drug-excipient relationships at the molecular level.
Dispersion of folded phonons in {Si}/{Si xGe1- x} superlattices
NASA Astrophysics Data System (ADS)
Brugger, H.; Reiner, H.; Abstreiter, G.; Jorke, H.; Herzog, H. J.; Kasper, E.
Zone folding effects on acoustic phonons in {Si}/{Si xGe1- x} strained layer superlattices are studied by Raman spectroscopy. A quantitative explanation of the measured frequencies is given in terms of the elastic continuum theory. The scattering wavevector q s is varied by use of different laser lines to probe directly the phonon dispersion curve in the superlattices. For large period samples q s can be shifted through the new Brillouin zone boundary. We report on observation of a finite doublet splitting corresponding to the first zone-edge gap.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagpure, I. M., E-mail: indrajitnagpure@gmail.com; Painuly, Deepshikha; Rabanal, Maria Eugenia
The various composition of ZnAlQ{sub 5} such as Zn{sub 1.5}A{sub 10.5}Q{sub 5}, Zn{sub 1}Al{sub 1}Q{sub 5}, Zn{sub 0.5}Al{sub 1.5}Q{sub 5} organic phosphors were prepared via simple cost effective co-precipitation method. The FTIR, SEM, photoluminescence analysis of the prepared phosphors were reported. ZnQ{sub 2} and AlQ{sub 3} were also prepared by similar method and their properties were compared with different composition of ZnAlQ{sub 5}. The structural elucidation in the form of stretching frequencies of chemical bonds of the prepared phosphor was carried out using Fourier Transform Infrared Spectroscopy (FTIR). The stretching frequency analysis confirms the formation of prepared phosphor materials. Themore » SEM analysis shows the surface morphological behavior of prepared phosphor materials. Greenish photoluminescence were observed at 505 to 510 nm for the different composition of ZnAlQ{sub 5},in which Zn{sub 1.5}Al{sub 0.5}Q{sub 5} shows maximum luminescence intensity at 505 nm. PL emission of ZnQ{sub 2} was observed at 515 nm, while for AlQ{sub 3} at 520 nm. The blue shift of 10 nm was observed in Zn{sub 1.5}A{sub 10.5}Q{sub 5} due to modification of energy level due to presence of Zn{sup 2+} and Al{sup 3+}. The enhancement in PL intensity was observed in Zn{sub 1.5}A{sub 10.5}Q{sub 5} compared to the other composition due to transfer of energy between Zn{sup 2+} and quinolate complex. Optical properties of the prepared materials were evaluated for possible applications in organic light emitting devices (OLED).« less
Intracavity brillouin scattering from passive Q-spoiling cells.
Wick, R V; Guenther, A H
1968-01-01
Stimulated Brillouin scattering from the methanol solvent used in conjunction with cryptocyanine bleachable dye in a ruby laser cavity has been observed at low megawatt output powers. The frequency shifts of the Brillouin scattered radiation produced within the laser cavity are slightly less than frequency shifts produced in an external methanol cell. The Brillouin radiation was eliminated even at output power levels in excess of 250 MW when a 3-mm length cell was used in place of the 25.4-mm commercial cell.
On the normal scalar ECG. A new classification system considering age, sex and heart position.
Lundh, B
1984-01-01
472 randomly selected men and women from the city of Lund were examined for disease in the heart, lungs and for hypertension. 163 men and 194 women who had no symptom or sign of disease were accepted for the further study. The prevalence of various exclusion criterias, such as symptoms and signs of heart disease, lung disease and other diseases which may possibly affect the ECG are reported as well as the distribution of blood pressures in the sample. A computer-averaged standard 12-lead ECG (leads aVL, I, -aVR, II, aVF, III, V1-V6) was recorded. All measurements of ECG-deflections have been made visually using a magnifying glass (6 times). ST-segments were classified according to the Punsar code by independent visual observers as well as by the computer. The mean frontal QRS-axis shifted to the left with advancing age, but the shift was statistically significant only in men. In both men and women there was a leftward shift of the mean frontal QRS-axis with increased weight, increased chest circumference and increased obesity index. The normal range of axis was found to be 0 degrees to 90 degrees in men and +15 degrees to 90 degrees in women. The problems concerning the definition of the electrical heart position is discussed. The concept of a Q-axis is introduced as an alternative way to indicate electrical heart position. There is a statistical significant relationship between the Q-axis and the QRS-axis in the frontal plane, although this relationship is not always apparent in the individual ECG. The presence or absence of a Q-wave in an individual lead was used to denote a lead as being a left ventricular lead or not. Using the Q-wave as a marker of heart position in the individual lead is more practical than to use the QRS-axis or the transitional zone. Duration and amplitude of the Q-wave have been measured. The upper limit of normal duration exceeded 0.03 s in leads aVL and aVF in men but not in women. The R-wave amplitudes proved to vary with age and heart position in men. In women variation of the R-wave amplitude was found with heart position but not with age.(ABSTRACT TRUNCATED AT 400 WORDS)
De Novo Mutation in the SCN5A Gene Associated with Brugada Syndrome.
Wang, Lumin; Meng, Xiangyun; Yuchi, Zhiguang; Zhao, Zhenghang; Xu, Dehui; Fedida, David; Wang, Zhuren; Huang, Chen
2015-01-01
Brugada syndrome (BrS) is a genetically determined cardiac electrical disorder, characterized by typical electrocardiography (ECG) alterations, and it is an arrhythmogenic syndrome that may lead to sudden cardiac death. The most common genotype found among BrS patients is caused by mutations in the SCN5A gene, which lead to a loss of function of the cardiac sodium (Na(+)) channel (Nav1.5) by different mechanisms. The assay of confocal laser microscopy and western blot were used to identify the expression and location of L812Q at the cell surface. Characterization of Nav1.5 L812Q mutant Na(+) channels was text by patch-clamp recordings, and the PHYRE2 server was used to build a model for human Nav1.5 channel. Here, we report that a novel missense SCN5A mutation, L812Q, localized in the DII-S4 transmembrane region of the Nav1.5 channel protein, was identified in an index patient who showed a typical BrS type-1 ECG phenotype. The mutation was absent in the patient's parents and brother. Heterologous expression of the wild-type (WT) and L812Q mutant Nav1.5 channels in human embryonic kidney cells (HEK293 cells) reveals that the mutation results in a reduction of Na(+) current density as well as ∼20 mV hyperpolarizing shift of the voltage dependence of inactivation. The voltage dependence of activation and the time course for recovery from inactivation are not affected by the mutation. The hyperpolarizing shift of the voltage dependence of inactivation caused a reduction of the Na(+) window current as well. In addition, western blot and confocal laser microscopy imaging experiments showed that the mutation causes fewer channel to be expressed at the membrane than WT channel. A large proportion of the mutant channels are retained in the cytoplasm, probably in the endoplasmic reticulum. The decrease of channel expression, hyperpolarizing shift of voltage dependence of inactivation, and a decline of Na(+) window current caused by L812Q mutation lead to a reduction of Na(+) current during the upstroke and the repolarization phases of cardiac action potential, which contribute to the development of BrS. © 2015 S. Karger AG, Basel.
Ooms, Kristopher J; Feindel, Kirk W; Terskikh, Victor V; Wasylishen, Roderick E
2006-10-16
55Mn NMR spectra acquired at 21.14 T (nu(L)(55Mn) = 223.1 MHz) are presented and demonstrate the advantages of using ultrahigh magnetic fields for characterizing the chemical shift tensors of several manganese carbonyls: eta5-CpMn(CO)3, Mn2(CO)10, and (CO)5MnMPh3 (M = Ge, Sn, Pb). For the compounds investigated, the anisotropies of the manganese chemical shift tensors are less than 250 ppm except for eta5-CpMn(CO)3, which has an anisotropy of 920 ppm. At 21.14 T, one can excite the entire m(I) = 1/2 <--> m(I) = -1/2 central transition of eta5-CpMn(CO)3, which has a breadth of approximately 700 kHz. The breadth arises from second-order quadrupolar broadening due to the 55Mn quadrupolar coupling constant of 64.3 MHz, as well as the anisotropic shielding. Subtle variations in the electric field gradient tensors at the manganese are observed for crystallographically unique sites in two of the solid pentacarbonyls, resulting in measurably different C(Q) values. MQMAS experiments are able to distinguish four magnetically unique Mn sites in (CO)(5)MnPbPh3, each with slightly different values of delta(iso), C(Q), and eta(Q).
NASA Astrophysics Data System (ADS)
Agrawal, L.; Bhardwaj, A.; Pal, S.; Kumar, A.
2007-11-01
This article presents the results of a detailed theoretical and experimental analysis carried out on a folded Z-shaped polarization coupled, electro-optically Q-switched laser resonator with Porro prisms and waveplates. The advantages of adding waveplates in a Porro prism resonator have been explored for creating high loss condition prior to Q-switching and obtaining variable reflectivity with fixed orientation of Porro prism. Generalized expressions have been derived in terms of azimuth angles and phase shifts introduced by the polarizing elements. These expressions corroborate with known reported results under appropriate substitutions. A specific case of a crossed Porro prism diode-pumped Nd:YAG laser has been theoretically and experimentally investigated. In the feedback arm, a 0.57λ waveplate oriented at 135° completely compensates the phase shift of a fused silica Porro prism and provides better tolerances than a BK-7 prism/0.60λ waveplate combination to stop prelasing. The fused silica prism/0.57λ combination with waveplate at 112° acts like a 100% mirror and was utilized for optimization of free running performance. The effective reflectivity was determined for various orientations of the quarter waveplate in the gain arm to numerically estimate the Q-switched laser pulse parameters through rate equation analysis. Experimental results match well with the theoretical analysis.
The fast decoding of Reed-Solomon codes using number theoretic transforms
NASA Technical Reports Server (NTRS)
Reed, I. S.; Welch, L. R.; Truong, T. K.
1976-01-01
It is shown that Reed-Solomon (RS) codes can be encoded and decoded by using a fast Fourier transform (FFT) algorithm over finite fields. The arithmetic utilized to perform these transforms requires only integer additions, circular shifts and a minimum number of integer multiplications. The computing time of this transform encoder-decoder for RS codes is less than the time of the standard method for RS codes. More generally, the field GF(q) is also considered, where q is a prime of the form K x 2 to the nth power + 1 and K and n are integers. GF(q) can be used to decode very long RS codes by an efficient FFT algorithm with an improvement in the number of symbols. It is shown that a radix-8 FFT algorithm over GF(q squared) can be utilized to encode and decode very long RS codes with a large number of symbols. For eight symbols in GF(q squared), this transform over GF(q squared) can be made simpler than any other known number theoretic transform with a similar capability. Of special interest is the decoding of a 16-tuple RS code with four errors.
NASA Astrophysics Data System (ADS)
Mao, Mao; Wang, Jian-Bo; Liu, Xiu-Lin; Wu, Guo-Hua; Fang, Xia-Qin; Song, Qin-Hua
2018-02-01
A series of organic dyes based on quinoline as an electron-deficient π-linker, were designed and synthesized for dye sensitized solar cells (DSSC) application. These push-pull conjugated dyes, sharing same anchoring group with distinctive electron-rich donating groups such as N,N-diethyl (DEA-Q), 3,6-dimethoxy carbazole (CBZ-Q), bis(4-butoxyphenyl)amine (BPA-Q), were synthesized by Riley oxidation of sbnd CH3 followed by Knoevenagel condensation of the corresponding aldehyde precursors 2a-c with cyanoacrylic acid. The optical, electrochemical, theoretical calculation and photovoltaic properties with these three dyes were systematically investigated. Compared to DEA-Q and CBZ-Q, BPA-Q possesses better light harvesting properties with regard to extended conjugate length, red-shifted intramolecular charge transfer band absorption and broaden light-responsive IPCE spectrum, resulting in a greater short circuit photocurrent density output. BPA-Q also has improved open-circuit voltage due to the apparent large charge recombination resistance. Consequently, assembled with iodine redox electrolytes, the device with BPA-Q achieved the best overall conversion efficiency value of 3.07% among three dyes under AM 1.5G standard conditions. This present investigation demonstrates the importance of various N-substituent chromophores in the prevalent D-π-A type organic sensitizers for tuning the photovoltaic performance of their DSSCs.
Rosenbaum, M B; Girotti, L A; Lázzari, J O; Halpern, M S; Elizari, M V
1982-01-01
In five cases of anteroseptal myocardial infarction complicated by intermittent right bundle-branch block, the onset of right bundle-branch block provoked the appearance of abnormal Q waves in leads V1 and V2, whereas a small initial R wave was present in the same leads during normal conduction. The intermittency of the conduction disturbance indicated that the Q waves were "right bundle-branch block dependent". It was also apparent that right bundle-branch block shifted the electrical location of the infarct towards the right, and made it look much larger. Right bundle-branch block dependent Q waves may arise during the acute stage of an anterior infarct suggesting, fallaciously, that an acute extension has occurred, or during the chronic stage, leading to the erroneous supposition that a new infarct had developed. The abnormal Q waves anteroseptal infarction complicated by fixed right bundle-branch block, though obviously related to the infarct, may be dependent on the right bundle-branch block. PMID:7059400
Seismic Full Waveform Modeling & Imaging in Attenuating Media
NASA Astrophysics Data System (ADS)
Guo, Peng
Seismic attenuation strongly affects seismic waveforms by amplitude loss and velocity dispersion. Without proper inclusion of Q parameters, errors can be introduced for seismic full waveform modeling and imaging. Three different (Carcione's, Robertsson's, and the generalized Robertsson's) isotropic viscoelastic wave equations based on the generalized standard linear solid (GSLS) are evaluated. The second-order displacement equations are derived, and used to demonstrate that, with the same stress relaxation times, these viscoelastic formulations are equivalent. By introducing separate memory variables for P and S relaxation functions, Robertsson's formulation is generalized to allow different P and S wave stress relaxation times, which improves the physical consistency of the Qp and Qs modelled in the seismograms.The three formulations have comparable computational cost. 3D seismic finite-difference forward modeling is applied to anisotropic viscoelastic media. The viscoelastic T-matrix (a dynamic effective medium theory) relates frequency-dependent anisotropic attenuation and velocity to reservoir properties in fractured HTI media, based on the meso-scale fluid flow attenuation mechanism. The seismic signatures resulting from changing viscoelastic reservoir properties are easily visible. Analysis of 3D viscoelastic seismograms suggests that anisotropic attenuation is a potential tool for reservoir characterization. To compensate the Q effects during reverse-time migration (RTM) in viscoacoustic and viscoelastic media, amplitudes need to be compensated during wave propagation; the propagation velocity of the Q-compensated wavefield needs to be the same as in the attenuating wavefield, to restore the phase information. Both amplitude and phase can be compensated when the velocity dispersion and the amplitude loss are decoupled. For wave equations based on the GSLS, because Q effects are coupled in the memory variables, Q-compensated wavefield propagates faster than the attenuating wavefield, and introduce unwanted phase shift. Numerical examples show that there are phase (depth) shifts in the Q-compensated RTM images from the GSLS equation. An adjoint-based least-squares reverse-time migration is proposed for viscoelastic media (Q-LSRTM), to compensate the attenuation losses in P and S images. The viscoelastic adjoint operator, and the P and S modulus perturbation imaging conditions are derived using the adjoint-state method and an augmented Lagrangian functional. Q-LSRTM solves the viscoelastic linearized modeling operator for synthetic data, and the adjoint operator is used for back propagating the data residual. Q-LSRTM is capable of iteratively updating the P and S modulus perturbations,in the direction of minimizing data residuals, and attenuation loss is iteratively compensated. A novel Q compensation approach is developed for adjoint seismic imaging by pseudodifferential scaling. With a correct Q model included in the migration algorithm, propagation effects, including the Q effects, can be compensated with the application of the inverse Hessian to the RTM image. Pseudodifferential scaling is used to efficiently approximate the action of the inverse Hessian. Numerical examples indicate that the adjoint RTM images with pseudodifferential scaling approximate the true model perturbation, and can be used as well-conditioned gradients for least-squares imaging.
Vacuum Bloch-Siegert shift in Landau polaritons with ultra-high cooperativity
NASA Astrophysics Data System (ADS)
Li, Xinwei; Bamba, Motoaki; Zhang, Qi; Fallahi, Saeed; Gardner, Geoff C.; Gao, Weilu; Lou, Minhan; Yoshioka, Katsumasa; Manfra, Michael J.; Kono, Junichiro
2018-06-01
A two-level system resonantly interacting with an a.c. magnetic or electric field constitutes the physical basis of diverse phenomena and technologies. However, Schrödinger's equation for this seemingly simple system can be solved exactly only under the rotating-wave approximation, which neglects the counter-rotating field component. When the a.c. field is sufficiently strong, this approximation fails, leading to a resonance-frequency shift known as the Bloch-Siegert shift. Here, we report the vacuum Bloch-Siegert shift, which is induced by the ultra-strong coupling of matter with the counter-rotating component of the vacuum fluctuation field in a cavity. Specifically, an ultra-high-mobility two-dimensional electron gas inside a high-Q terahertz cavity in a quantizing magnetic field revealed ultra-narrow Landau polaritons, which exhibited a vacuum Bloch-Siegert shift up to 40 GHz. This shift, clearly distinguishable from the photon-field self-interaction effect, represents a unique manifestation of a strong-field phenomenon without a strong field.
First direct determination of the 48Ca double-β decay Q value
NASA Astrophysics Data System (ADS)
Bustabad, S.; Bollen, G.; Brodeur, M.; Lincoln, D. L.; Novario, S. J.; Redshaw, M.; Ringle, R.; Schwarz, S.; Valverde, A. A.
2013-08-01
The low-energy beam and ion trap Penning trap mass spectrometer was used for an improved determination of the 48Ca double-β decay Q value: Qββ=4268.121(79)keV. The new value is 1.2 keV greater than the value in the 2012 atomic mass evaluation [Chin. Phys. CCPCHCQ1674-113710.1088/1674-1137/36/12/003 36, 1603 (2012)], a shift of three σ, and is a factor of 5 more precise. Accurate knowledge of this Q value is important for experimental searches to observe neutrinoless double-β decay (0νββ) in 48Ca and is essential for extracting the effective mass of the electron neutrino if the 48Ca half-life of 0νββ was experimentally determined.
Characteristic analysis of a polarization output coupling Porro prism resonator
NASA Astrophysics Data System (ADS)
Yang, Hailong; Meng, Junqing; Chen, Weibiao
2015-02-01
An Electro-optical Q-switched Nd:YAG slab laser with a crossed misalignment Porro prism resonator for space applications has been theoretically and experimentally investigated. The phase shift induced by the combination of different wave plates and Porro prism azimuth angles have been studied for creating high loss condition prior to Q-switching. The relationship of the effective output coupling reflectivity and the employed Q-switch driving voltage is explored by using Jones matrix optics. In the experiment, the maximum output pulse energy of 93 mJ with 14-ns pulse duration is obtained at the repetition rate of 20 Hz and the optical-to-optical conversion efficiency is 16.8%. The beam quality factors are M 2 x = 2.5 and M 2y = 2.2, respectively.
The gut resistome is highly dynamic during the first months of life.
von Wintersdorff, Christian J H; Wolffs, Petra F G; Savelkoul, Paul H M; Nijsen, Rianne R R; Lau, Susanne; Gerhold, Kerstin; Hamelmann, Eckard; Penders, John
2016-01-01
We investigated the longitudinal development of several antibiotic resistance genes (ARGs) of the infant gut resistome during the first months after birth. Fecal samples from 120 infants collected at the ages of 5, 13 and 31 weeks were analyzed and subjected to qPCR for the detection of several ARGs. The prevalence of ARGs significantly increased for ermB, tetM and tetQ, while it decreased for aac(6')-aph(2'). Birth mode and breastfeeding significantly affected tetQ prevalence. Correlations to bacterial taxa suggest that fluctuations in some ARGs are (partly) attributed to shifts in bacteroides colonization rates. Acquisition of ARGs in the gut microbiota occurs shortly after birth and resistome composition fluctuates over the course of several months, reflecting changes in microbial community structure.
Digital signal processing techniques for pitch shifting and time scaling of audio signals
NASA Astrophysics Data System (ADS)
Buś, Szymon; Jedrzejewski, Konrad
2016-09-01
In this paper, we present the techniques used for modifying the spectral content (pitch shifting) and for changing the time duration (time scaling) of an audio signal. A short introduction gives a necessary background for understanding the discussed issues and contains explanations of the terms used in the paper. In subsequent sections we present three different techniques appropriate both for pitch shifting and for time scaling. These techniques use three different time-frequency representations of a signal, namely short-time Fourier transform (STFT), continuous wavelet transform (CWT) and constant-Q transform (CQT). The results of simulation studies devoted to comparison of the properties of these methods are presented and discussed in the paper.
Detection and Composition of Bacterial Communities in Waters using RNA-based Methods
In recent years, microbial water quality assessments have shifted from solely relying on pure culture-based methods to monitoring bacterial groups of interest using molecular assays such as PCR and qPCR. Furthermore, coupling next generation sequencing technologies with ribosomal...
People and water: Exploring the social-ecological condition of watersheds of the United States
A recent paradigm shift from purely biophysical towards social-ecological assessment of watersheds has been proposed to understand, monitor, and manipulate the myriad interactions between human well-being and the ecosystem services that watersheds provide. However, large-scale, q...
Li, Fei; Xie, Jingcong; Zhang, Xuesong; Zhao, Linguo
2015-01-01
In an attempt to shift the optimal pH of the xylanase B (XynB) from Aspergillus niger towards alkalinity, target mutation sites were selected by alignment between Aspergillus niger xylanase B and other xylanases that have alkalophilic pH optima that highlight charged residues in the eight-residues-longer loop in the alkalophilic xylanase. Multiple engineered XynB mutants were created by site-directed mutagenesis with substitutions Q164K and Q164K+D117N. The variant XynB-117 had the highest optimum pH (at 5.5), which corresponded to a basic 0.5 pH unit shift when compared with the wild-type enzyme. However, the optimal pH of the XynB- 164 mutation was not changed, similar to the wild type. These results suggest that the residues at positions 164 and 117 in the eight-residues-longer loop and the cleft's edge are important in determining the pH optima of XynB from Aspergillus niger.
Lei, Chao; Wang, Jingzhi; Liu, Yuanyuan; Liu, Xinqiang; Zhao, Guoping; Wang, Jin
2018-01-29
Due to the important role of rifamycin in curing tuberculosis infection, the study on rifamycin has never been stopped. Although RifZ, which locates within the rifamycin biosynthetic cluster, has recently been characterized as a pathway-specific regulator for rifamycin biosynthesis, little is known about the regulation of rifamycin export. In this work, we proved that the expression of the rifamycin efflux pump (RifP) was regulated by RifQ, a TetR-family transcriptional regulator. Deletion of rifQ had little impact on bacterial growth, but resulted in improved rifamycin production, which was consistent with the reverse transcription PCR results that RifQ negatively regulated rifP's transcription. With electrophoretic mobility shift assay and DNase I Footprinting assay, RifQ was found to directly bind to the promoter region of rifP, and a typical inverted repeat was identified within the RifQ-protected sequences. The transcription initiation site of rifP was further characterized and found to be upstream of the RifQ binding sites, well explaining the RifQ-mediated repression of rifP's transcription in vivo. Moreover, rifamycin B (the end product of rifamycin biosynthesis) remarkably decreased the DNA binding affinity of RifQ, which led to derepression of rifamycin export, reducing the intracellular concentration of rifamycin B as well as its toxicity against the host. Here, we proved that the export of rifamycin B was repressed by RifQ in Amycolatopsis mediterranei, and the RifQ-mediated repression could be specifically relieved by rifamycin B, the end product of rifamycin biosynthesis, based on which a feedback model was proposed for regulation of rifamycin export. With the findings here, one could improve the antibiotic yield by simply inactivating the negative regulator of the antibiotic transporter.
Mitochondria-targeted antioxidant MitoQ reduces gentamicin-induced ototoxicity.
Ojano-Dirain, Carolyn P; Antonelli, Patrick J; Le Prell, Colleen G
2014-03-01
Oral supplementation with mitoquinone (MitoQ) prevents gentamicin-induced ototoxicity in guinea pigs. Antioxidants have been shown to protect against aminoglycoside (AG)-induced ototoxicity. MitoQ, a mitochondria-targeted derivative of the antioxidant ubiquinone, is attached to a lipophilic triphenylphosphonium (TPP) cation, which enables its accumulation inside the mitochondria several hundred-fold over the untargeted antioxidant. MitoQ has improved bioavailability and can reach most tissues and has been used in Parkinson's disease and hepatitis C human trials, which demonstrated that MitoQ can be safely used in humans. Thus, MitoQ is a promising novel therapeutic approach for protecting against AG-induced ototoxicity. Gentamicin-treated guinea pigs were supplied with water alone (control), decyl-TPP (positive control), or MitoQ-supplemented drinking water. Auditory function was assessed by auditory brainstem response. Cochlear damage was assessed using scanning electron microscopy. Western blotting was performed to evaluate changes in proteins related to apoptosis and oxidative damage in the cochlea. Threshold shifts at 4 and 8 kHz at 4 and 7 weeks after gentamicin treatment were smaller in animals treated with MitoQ compared with those in the control- and decyl-TPP-treated animals (p < 0.05). Protein carbonyls and levels of the proapoptotic protein Bak were lower (p < 0.05 and p = 0.008, respectively), whereas the level of the antioxidant enzyme manganese superoxide dismutase was higher (p = 0.01) in the cochlea of MitoQ-treated animals. The expression of 3-nitrotyrosine and Hrk were not different between groups (p > 0.05). Oral supplementation with MitoQ attenuated gentamicin-induced cochlear damage and hearing loss in guinea pigs. MitoQ holds promise as a means for protecting against AG ototoxicity.
Extreme wildfire events are linked to global-change-type droughts in the northern Mediterranean
NASA Astrophysics Data System (ADS)
Ruffault, Julien; Curt, Thomas; Martin-StPaul, Nicolas K.; Moron, Vincent; Trigo, Ricardo M.
2018-03-01
Increasing drought conditions under global warming are expected to alter the frequency and distribution of large and high-intensity wildfires. However, our understanding of the impact of increasing drought on extreme wildfires events remains incomplete. Here, we analyzed the weather conditions associated with the extreme wildfires events that occurred in Mediterranean France during the exceptionally dry summers of 2003 and 2016. We identified that these fires were related to two distinct shifts in the fire weather space towards fire weather conditions that had not been explored before and resulting from specific interactions between different types of drought and different fire weather types. In 2016, a long-lasting press drought
intensified wind-driven fires. In 2003, a hot drought
combining a heat wave with a press drought intensified heat-induced fires. Our findings highlight that increasing drought conditions projected by climate change scenarios might affect the dryness of fuel compartments and lead to a higher frequency of extremes wildfires events.
Folding of a transcriptionally acting PreQ1 riboswitch
Rieder, Ulrike; Kreutz, Christoph; Micura, Ronald
2010-01-01
7-Aminomethyl-7-deazaguanine (preQ1) sensitive mRNA domains belong to the smallest riboswitches known to date. Although recent efforts have revealed the three-dimensional architecture of the ligand–aptamer complex less is known about the molecular details of the ligand-induced response mechanism that modulates gene expression. We present an in vitro investigation on the ligand-induced folding process of the preQ1 responsive RNA element from Fusobacterium nucleatum using biophysical methods, including fluorescence and NMR spectroscopy of site-specifically labeled riboswitch variants. We provide evidence that the full-length riboswitch domain adopts two different coexisting stem-loop structures in the expression platform. Upon addition of preQ1, the equilibrium of the competing hairpins is significantly shifted. This system therefore, represents a finely tunable antiterminator/terminator interplay that impacts the in vivo cellular response mechanism. A model is presented how a riboswitch that provides no obvious overlap between aptamer and terminator stem-loop solves this communication problem by involving bistable sequence determinants. PMID:20534493
Free-Energy Landscape of the Amino-Terminal Fragment of Huntingtin in Aqueous Solution.
Binette, Vincent; Côté, Sébastien; Mousseau, Normand
2016-03-08
The first exon of Huntingtin-a protein with multiple biological functions whose misfolding is related to Huntington's disease-modulates its localization, aggregation, and function within the cell. It is composed of a 17-amino-acid amphipathic segment (Htt17), an amyloidogenic segment of consecutive glutamines (QN), and a proline-rich segment. Htt17 is of fundamental importance: it serves as a membrane anchor to control the localization of huntingtin, it modulates huntingtin's function through posttranslational modifications, and it controls the self-assembly of the amyloidogenic QN segment into oligomers and fibrils. Experimentally, the conformational ensemble of the Htt17 monomer, as well as the impact of the polyglutamine and proline-rich segments, remains, however, mostly uncharacterized at the atomic level due to its intrinsic flexibility. Here, we unveil the free-energy landscape of Htt17, Htt17Q17, and Htt17Q17P11 using Hamiltonian replica exchange combined with well-tempered metadynamics. We characterize the free-energy landscape of these three fragments in terms of a few selected collective variables. Extensive simulations reveal that the free energy of Htt17 is dominated by a broad ensemble of configurations that agree with solution NMR chemical shifts. Addition of Q17 at its carboxy-terminus reduces the extent of the main basin to more extended configurations of Htt17 with lower helix propensity. Also, the aliphatic carbons of Q17 partially sequester the nonpolar amino acids of Htt17. For its part, addition of Q17P11 shifts the overall landscape to a more extended and helical Htt17 stabilized by interactions with Q17 and P11, which almost exclusively form a PPII-helix, as well as by intramolecular H-bonds and salt bridges. Our characterization of Huntingtin's amino-terminus provides insights into the structural origin of its ability to oligomerize and interact with phospholipid bilayers, processes closely linked to the biological functions of this protein. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ma, Xiaoxue; Chen, Xin; Nie, Hongrui; Yang, Daquan
2018-01-01
Recently, due to its superior characteristics and simple manufacture, such as small size, low loss, high sensitivity and convenience to couple, the optical fiber sensor has become one of the most promising sensors. In order to achieve the most effective realization of light propagation by changing the structure of sensors, FOM(S •Q/λres) ,which is determined by two significant variables Q-factor and sensitivity, as a trade-off parameter should be optimized to a high value. In typical sensors, a high Q can be achieved by confining the optical field in the high refractive index dielectric region to make an interaction between analytes and evanescent field of the resonant mode. However, the ignored sensitivity is relatively low with a high Q achieved, which means that the resonant wavelength shift changes non-obviously when the refractive index increases. Meanwhile, the sensitivity also leads to a less desirable FOM. Therefore, a gradient structure, which can enhance the performance of sensors by achieving high Q and high sensitivity, has been developed by Kim et al. later. Here, by introducing parabolic-tapered structure, the light field localized overlaps strongly and sufficiently with analytes. And based on a one-dimensional photonic-crystal nanofiber air-mode cavity, a creative optical fiber sensor is proposed by combining good stability and transmission characteristics of fiber and strengths of tapered structure, realizing excellent FOM {4.7 x 105 with high Q-factors (Q{106) and high sensitivities (<700 nm/RIU).
River Mixing in the Amazon as a Driver of Concentration-Discharge Relationships
NASA Astrophysics Data System (ADS)
Bouchez, Julien; Moquet, Jean-Sébastien; Espinoza, Jhan Carlo; Martinez, Jean-Michel; Guyot, Jean-Loup; Lagane, Christelle; Filizola, Naziano; Noriega, Luis; Hidalgo Sanchez, Liz; Pombosa, Rodrigo
2017-11-01
Large hydrological systems aggregate compositionally different waters derived from a variety of pathways. In the case of continental-scale rivers, such aggregation occurs noticeably at confluences between tributaries. Here we explore how such aggregation can affect solute concentration-discharge (C-Q) relationships and thus obscure the message carried by these relationships in terms of weathering properties of the Critical Zone. We build up a simple model for tributary mixing to predict the behavior of C-Q relationships during aggregation. We test a set of predictions made in the context of the largest world's river, the Amazon. In particular, we predict that the C-Q relationships of the rivers draining heterogeneous catchments should be the most "dilutional" and should display the widest hysteresis loops. To check these predictions, we compute 10 day-periodicity time series of Q and major solute (Si, Ca2+, Mg2+, K+, Na+, Cl-, SO42-) C and fluxes (F) for 13 gauging stations located throughout the Amazon basin. In agreement with the model predictions, C-Q relationships of most solutes shift from a fairly "chemostatic" behavior (nearly constant C) at the Andean mountain front and in pure lowland areas, to more "dilutional" patterns (negative C-Q relationship) toward the system mouth. More prominent C-Q hysteresis loops are also observed at the most downstream stations. Altogether, this study suggests that mixing of water and solutes between different flowpaths exerts a strong control on C-Q relationships of large-scale hydrological systems.
The goal of this chapter is to provide an overview of MST marker characteristics, to describe performance criteria of detection protocols used and to offer guidelines for the effective interpretation of the results. Since the trend in the research community has shifted towards (q...
Dynamics of proteins at low temperatures: fibrous vs. globular
NASA Astrophysics Data System (ADS)
Foucat, L.; Renou, J.-P.; Tengroth, C.; Janssen, S.; Middendorf, H. D.
We have measured quasielastic neutron scattering from H2O-hydrated collagen and haemoglobin at T<=270K. The data consist of sets of nearly elastic peaks showing (i) Q,T-dependent decreases in window-integrated intensities Sqe(Q;T) proportional to effective Debye-Waller factors and (ii) small line-shape changes due to various types of proton motions with ns>τ>10 ps. Relative to haemoglobin, the 200-K dynamic transition is shifted upward by 20-25 K in collagen, and the T-dependence of m.-sq. displacements derived from Sqe(Q;T) suggests that in triple-helical systems there are three rather than two regimes: one up to around 120K (probably purely harmonic), an intermediate quasiharmonic region with a linear dependence up to 240K, followed by a steeper nonlinear rise similar to that in globular proteins.
Jenkins, Jermaine L; Krucinska, Jolanta; McCarty, Reid M; Bandarian, Vahe; Wedekind, Joseph E
2011-07-15
Riboswitches are RNA regulatory elements that govern gene expression by recognition of small molecule ligands via a high affinity aptamer domain. Molecular recognition can lead to active or attenuated gene expression states by controlling accessibility to mRNA signals necessary for transcription or translation. Key areas of inquiry focus on how an aptamer attains specificity for its effector, the extent to which the aptamer folds prior to encountering its ligand, and how ligand binding alters expression signal accessibility. Here we present crystal structures of the preQ(1) riboswitch from Thermoanaerobacter tengcongensis in the preQ(1)-bound and free states. Although the mode of preQ(1) recognition is similar to that observed for preQ(0), surface plasmon resonance revealed an apparent K(D) of 2.1 ± 0.3 nm for preQ(1) but a value of 35.1 ± 6.1 nm for preQ(0). This difference can be accounted for by interactions between the preQ(1) methylamine and base G5 of the aptamer. To explore conformational states in the absence of metabolite, the free-state aptamer structure was determined. A14 from the ceiling of the ligand pocket shifts into the preQ(1)-binding site, resulting in "closed" access to the metabolite while simultaneously increasing exposure of the ribosome-binding site. Solution scattering data suggest that the free-state aptamer is compact, but the "closed" free-state crystal structure is inadequate to describe the solution scattering data. These observations are distinct from transcriptional preQ(1) riboswitches of the same class that exhibit strictly ligand-dependent folding. Implications for gene regulation are discussed.
Structural effects of extracellular loop mutations in CFTR helical hairpins.
Chang, Yuan-Heng; Stone, Tracy A; Chin, Stephanie; Glibowicka, Mira; Bear, Christine E; Deber, Charles M
2018-05-01
Missense mutations constitute 40% of 2000 cystic fibrosis-phenotypic mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) database, yet the precise mechanism as to how a point mutation can render the entire 1480-residue CFTR protein dysfunctional is not well-understood. Here we investigate the structural effects of two CF-phenotypic mutations - glutamic acid to glycine at position 217 (E217G) and glutamine to arginine at position 220 (Q220R) - in the extracellular (ECL2) loop region of human CFTR using helical hairpin constructs derived from transmembrane (TM) helices 3 and 4 of the first membrane domain. We systematically replaced the wild type (WT) residues E217 and Q220 with the subset of missense mutations that could arise through a single nucleotide change in their respective codons. Circular dichroism spectra of E217G revealed that a significant increase in helicity vs. WT arises in the membrane-mimetic environment of sodium dodecylsulfate (SDS) micelles, while this mutant showed a similar gel shift to WT on SDS-PAGE gels. In contrast, the CF-mutant Q220R showed similar helicity but an increased gel shift vs. WT. These structural variations are compared with the maturation levels of the corresponding mutant full-length CFTRs, which we found are reduced to approx. 50% for E217G and 30% for Q220R vs. WT. The overall results with CFTR hairpins illustrate the range of impacts that single mutations can evoke in intramolecular protein-protein and/or protein-lipid interactions - and the levels to which corresponding mutations in full-length CFTR may be flagged by quality control mechanisms during biosynthesis. Copyright © 2018 Elsevier B.V. All rights reserved.
Doping and tilting on optics in noncentrosymmetric multi-Weyl semimetals
NASA Astrophysics Data System (ADS)
Mukherjee, S. P.; Carbotte, J. P.
2018-01-01
We calculate the absorptive part of the ac optical conductivity of a multi-Weyl semimetal with winding number J in both the direction of the tilt σz z(Ω ) and perpendicular to it σx x(Ω ) as a function of photon energy Ω , tilt C, and chemical potential μ (doping). For zero tilt there is a discontinuous rise in the conductivity at twice the value of the chemical potential Ω =2 μ . Below 2 μ , both σx x(Ω ) and σz z(Ω ) are zero and above 2 μ they merge with their value at charge neutrality and display a linear in Ω dependence for J =1 while for J =2 , σx x(Ω ) remains linear but σz z(Ω ) is instead constant. For finite tilt the sharp jump at Ω =2 μ is lost and the onset of absorption starts instead from zero at a lower photon energy Ω =2 μ /(1 +C ) after which it acquires a quasilinear rise to merge with the undoped untilted interband background at Ω =2 μ /(1 -C ) for type I Weyl while for type II the undoped untilted background is never recovered. For noncentrosymmetric materials the energies of a pair of opposite chirality Weyl nodes become shifted by ±Q0 and this leads to two separate absorption edges corresponding to the effective chemical potential of each of the two nodes at 2 (μ +χ Q0) depending on chirality χ =± . We provide analytic expressions for the conductivity in this case which depend only on the ratio Q0/μ and tilt when plotted against Ω /μ . The signature of finite energy shift Q0 is more pronounced for σz z and J =2 than for the other cases.
Juneau, Andrea D.; Frankel, Laurie K.; Bricker, Terry M.; ...
2016-09-22
Here, the CyanoQ protein has been demonstrated to be a component of cyanobacterial Photosystem II (PS II), but there exist a number of outstanding questions concerning its physical association with the complex. CyanoQ is a lipoprotein; upon cleavage of its transit peptide by Signal Peptidase II, which targets delivery of the mature protein to the thylakoid lumenal space, the N-terminal cysteinyl residue is lipid-modified. This modification appears to tether this otherwise soluble component to the thylakoid membrane. To probe the functional significance of the lipid anchor, mutants of the CyanoQ protein have been generated in Synechocystis sp. PCC 6803 tomore » eliminate the N-terminal cysteinyl residue, preventing lipid modification. Substitution of the N-terminal cysteinyl residue with serine (Q-C22S) resulted in a decrease in the amount of detectable CyanoQ protein to 17% that of the wild-type protein. Moreover, the physical properties of the accumulated Q-C22S protein were consistent with altered processing of the CyanoQ precursor. The Q-C22S protein was shifted to a higher apparent molecular mass and partitioned in the hydrophobic phase in TX-114 phase-partitioning experiments. These results suggest that the hydrophobic N-terminal 22 amino acids were not properly cleaved by a signal peptidase. Substitution of the entire CyanoQ transit peptide with the transit peptide of the soluble lumenal protein PsbO yielded the Q-SS mutant and resulted in no detectable accumulation of the modified CyanoQ protein. Finally, the CyanoQ protein was present at normal amounts in the PS II mutant strains ΔpsbB and ΔpsbO, indicating that an association with PS II was not a prerequisite for stable CyanoQ accumulation. Together these results indicate that CyanoQ accumulation in Synechocystis sp. PCC 6803 depends on the presence of the N-terminal lipid anchor, but not on the association of CyanoQ with the PS II complex.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juneau, Andrea D.; Frankel, Laurie K.; Bricker, Terry M.
Here, the CyanoQ protein has been demonstrated to be a component of cyanobacterial Photosystem II (PS II), but there exist a number of outstanding questions concerning its physical association with the complex. CyanoQ is a lipoprotein; upon cleavage of its transit peptide by Signal Peptidase II, which targets delivery of the mature protein to the thylakoid lumenal space, the N-terminal cysteinyl residue is lipid-modified. This modification appears to tether this otherwise soluble component to the thylakoid membrane. To probe the functional significance of the lipid anchor, mutants of the CyanoQ protein have been generated in Synechocystis sp. PCC 6803 tomore » eliminate the N-terminal cysteinyl residue, preventing lipid modification. Substitution of the N-terminal cysteinyl residue with serine (Q-C22S) resulted in a decrease in the amount of detectable CyanoQ protein to 17% that of the wild-type protein. Moreover, the physical properties of the accumulated Q-C22S protein were consistent with altered processing of the CyanoQ precursor. The Q-C22S protein was shifted to a higher apparent molecular mass and partitioned in the hydrophobic phase in TX-114 phase-partitioning experiments. These results suggest that the hydrophobic N-terminal 22 amino acids were not properly cleaved by a signal peptidase. Substitution of the entire CyanoQ transit peptide with the transit peptide of the soluble lumenal protein PsbO yielded the Q-SS mutant and resulted in no detectable accumulation of the modified CyanoQ protein. Finally, the CyanoQ protein was present at normal amounts in the PS II mutant strains ΔpsbB and ΔpsbO, indicating that an association with PS II was not a prerequisite for stable CyanoQ accumulation. Together these results indicate that CyanoQ accumulation in Synechocystis sp. PCC 6803 depends on the presence of the N-terminal lipid anchor, but not on the association of CyanoQ with the PS II complex.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piro, Anthony L., E-mail: piro@caltech.edu
The recently discovered system J0651 is the tightest known detached white dwarf (WD) binary. Since it has not yet initiated Roche-lobe overflow, it provides a relatively clean environment for testing our understanding of tidal interactions. I investigate the tidal heating of each WD, parameterized in terms of its tidal Q parameter. Assuming that the heating can be radiated efficiently, the current luminosities are consistent with Q {sub 1} {approx} 7 x 10{sup 10} and Q {sub 2} {approx} 2 x 10{sup 7}, for the He and C/O WDs, respectively. Conversely, if the observed luminosities are merely from the cooling ofmore » the WDs, these estimated values of Q represent the upper limits. A large Q {sub 1} for the He WD means its spin velocity will be slower than that expected if it was tidally locked, which, since the binary is eclipsing, may be measurable via the Rossiter-McLaughlin effect. After one year, gravitational wave emission shifts the time of eclipses by 5.5 s, but tidal interactions cause the orbit to shrink more rapidly, changing the time by up to an additional 0.3 s after a year. Future eclipse timing measurements may therefore infer the degree of tidal locking.« less
Fluorescence from Multiple Chromophore Hydrogen-Bonding States in the Far-Red Protein TagRFP675.
Konold, Patrick E; Yoon, Eunjin; Lee, Junghwa; Allen, Samantha L; Chapagain, Prem P; Gerstman, Bernard S; Regmi, Chola K; Piatkevich, Kiryl D; Verkhusha, Vladislav V; Joo, Taiha; Jimenez, Ralph
2016-08-04
Far-red fluorescent proteins are critical for in vivo imaging applications, but the relative importance of structure versus dynamics in generating large Stokes-shifted emission is unclear. The unusually red-shifted emission of TagRFP675, a derivative of mKate, has been attributed to the multiple hydrogen bonds with the chromophore N-acylimine carbonyl. We characterized TagRFP675 and point mutants designed to perturb these hydrogen bonds with spectrally resolved transient grating and time-resolved fluorescence (TRF) spectroscopies supported by molecular dynamics simulations. TRF results for TagRFP675 and the mKate/M41Q variant show picosecond time scale red-shifts followed by nanosecond time blue-shifts. Global analysis of the TRF spectra reveals spectrally distinct emitting states that do not interconvert during the S1 lifetime. These dynamics originate from photoexcitation of a mixed ground-state population of acylimine hydrogen bond conformers. Strategically tuning the chromophore environment in TagRFP675 might stabilize the most red-shifted conformation and result in a variant with a larger Stokes shift.
All-fiber pulse shortening of passively Q-switched microchip laser pulses down to sub-200 fs.
Lehneis, R; Steinmetz, A; Limpert, J; Tünnermann, A
2014-10-15
We present an all-fiber concept that generates ultrashort pulses using a passively Q-switched microchip seed laser. A proof-of-principle configuration combines nonlinear pulse compression applying a chirped fiber-Bragg-grating, dispersion-free pulse shortening by means of a fiber-integrated spectral filtering, and a final hollow-core-fiber compression to reach the sub-200-fs pulse-duration region. In a compact all-fiber pulse-shortening unit, initial 100 ps long microchip pulses at 1064 nm wavelength have been shortened to 174 fs and shifted to 1034 nm while preserving a high temporal quality.
Seasonal evolution of S q current system at sub-auroral latitude
NASA Astrophysics Data System (ADS)
Vichare, Geeta; Rawat, Rahul; Hanchinal, A.; Sinha, A. K.; Dhar, A.; Pathan, B. M.
2012-11-01
The quiet-time (Σ K p ≤ 3) daily variations of the geomagnetic field at the Indian Antarctic station, Maitri (Geographic Coord.: 70.75°S, 11.73°E; Geomagnetic Coord.: 66.84°S, 56.29°E) during two consecutive years of a solar minimum are considered in order to investigate the characteristics of the solar quiet ( S q) current system. The present work reports the signatures of the south limb of the S q current loop of the southern hemisphere over a sub-auroral station. It is observed that the seasonal variation of the S q current strength over Maitri is strongest during the summer months and weakest during the winter months. In spite of the total darkness during the winter months, an S q pattern is identified at Maitri. The range of the horizontal field variation in the daily S q pattern during summer is one order higher than that during winter. An interesting feature regarding the phase of the local time variation in the seasonal pattern is found here. A sharp shift in the time of the peak S q current to later local times (> 1 hour per month) is observed during January-February and July-August, which may correspond to the transition from the complete presence, or absence, of sunlight to partial sunlight. The differences in the incoming solar UV radiation during such transitions can cause a sudden change in the local ionospheric conductivity pattern, and can also trigger some unusual thermo-tidal activity, that might be responsible for modifying the global S q pattern.
Meta-analysis of 32 genome-wide linkage studies of schizophrenia
Ng, MYM; Levinson, DF; Faraone, SV; Suarez, BK; DeLisi, LE; Arinami, T; Riley, B; Paunio, T; Pulver, AE; Irmansyah; Holmans, PA; Escamilla, M; Wildenauer, DB; Williams, NM; Laurent, C; Mowry, BJ; Brzustowicz, LM; Maziade, M; Sklar, P; Garver, DL; Abecasis, GR; Lerer, B; Fallin, MD; Gurling, HMD; Gejman, PV; Lindholm, E; Moises, HW; Byerley, W; Wijsman, EM; Forabosco, P; Tsuang, MT; Hwu, H-G; Okazaki, Y; Kendler, KS; Wormley, B; Fanous, A; Walsh, D; O’Neill, FA; Peltonen, L; Nestadt, G; Lasseter, VK; Liang, KY; Papadimitriou, GM; Dikeos, DG; Schwab, SG; Owen, MJ; O’Donovan, MC; Norton, N; Hare, E; Raventos, H; Nicolini, H; Albus, M; Maier, W; Nimgaonkar, VL; Terenius, L; Mallet, J; Jay, M; Godard, S; Nertney, D; Alexander, M; Crowe, RR; Silverman, JM; Bassett, AS; Roy, M-A; Mérette, C; Pato, CN; Pato, MT; Roos, J Louw; Kohn, Y; Amann-Zalcenstein, D; Kalsi, G; McQuillin, A; Curtis, D; Brynjolfson, J; Sigmundsson, T; Petursson, H; Sanders, AR; Duan, J; Jazin, E; Myles-Worsley, M; Karayiorgou, M; Lewis, CM
2009-01-01
A genome scan meta-analysis (GSMA) was carried out on 32 independent genome-wide linkage scan analyses that included 3255 pedigrees with 7413 genotyped cases affected with schizophrenia (SCZ) or related disorders. The primary GSMA divided the autosomes into 120 bins, rank-ordered the bins within each study according to the most positive linkage result in each bin, summed these ranks (weighted for study size) for each bin across studies and determined the empirical probability of a given summed rank (PSR) by simulation. Suggestive evidence for linkage was observed in two single bins, on chromosomes 5q (142-168 Mb) and 2q (103-134 Mb). Genome-wide evidence for linkage was detected on chromosome 2q (119-152 Mb) when bin boundaries were shifted to the middle of the previous bins. The primary analysis met empirical criteria for ‘aggregate’ genome-wide significance, indicating that some or all of 10 bins are likely to contain loci linked to SCZ, including regions of chromosomes 1, 2q, 3q, 4q, 5q, 8p and 10q. In a secondary analysis of 22 studies of European-ancestry samples, suggestive evidence for linkage was observed on chromosome 8p (16-33 Mb). Although the newer genome-wide association methodology has greater power to detect weak associations to single common DNA sequence variants, linkage analysis can detect diverse genetic effects that segregate in families, including multiple rare variants within one locus or several weakly associated loci in the same region. Therefore, the regions supported by this meta-analysis deserve close attention in future studies. PMID:19349958
Mitochondrial Citrate Transporter-dependent Metabolic Signature in the 22q11.2 Deletion Syndrome.
Napoli, Eleonora; Tassone, Flora; Wong, Sarah; Angkustsiri, Kathleen; Simon, Tony J; Song, Gyu; Giulivi, Cecilia
2015-09-18
The congenital disorder 22q11.2 deletion syndrome (22qDS), characterized by a hemizygous deletion of 1.5-3 Mb on chromosome 22 at locus 11.2, is the most common microdeletion disorder (estimated prevalence of 1 in 4000) and the second risk factor for schizophrenia. Nine of ∼30 genes involved in 22qDS have the potential of disrupting mitochondrial metabolism (COMT, UFD1L, DGCR8, MRPL40, PRODH, SLC25A1, TXNRD2, T10, and ZDHHC8). Deficits in bioenergetics during early postnatal brain development could set the basis for a disrupted neuronal metabolism or synaptic signaling, partly explaining the higher incidence in developmental and behavioral deficits in these individuals. Here, we investigated whether mitochondrial outcomes and metabolites from 22qDS children segregated with the altered dosage of one or several of these mitochondrial genes contributing to 22qDS etiology and/or morbidity. Plasma metabolomics, lymphocytic mitochondrial outcomes, and epigenetics (histone H3 Lys-4 trimethylation and 5-methylcytosine) were evaluated in samples from 11 22qDS children and 13 age- and sex-matched neurotypically developing controls. Metabolite differences between 22qDS children and controls reflected a shift from oxidative phosphorylation to glycolysis (higher lactate/pyruvate ratios) accompanied by an increase in reductive carboxylation of α-ketoglutarate (increased concentrations of 2-hydroxyglutaric acid, cholesterol, and fatty acids). Altered metabolism in 22qDS reflected a critical role for the haploinsufficiency of the mitochondrial citrate transporter SLC25A1, further enhanced by HIF-1α, MYC, and metabolite controls. This comprehensive profiling served to clarify the biochemistry of this disease underlying its broad, complex phenotype. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Gómez-Silván, C; Vílchez-Vargas, R; Arévalo, J; Gómez, M A; González-López, J; Pieper, D H; Rodelas, B
2014-10-01
The abundance and transcription levels of specific gene markers of total bacteria, ammonia-oxidizing Betaproteobacteria, nitrite-oxidizing bacteria (Nitrospira-like) and denitrifiers (N2O-reducers) were analyzed using quantitative PCR (qPCR) and reverse-transcription qPCR during 9 months in a full-scale membrane bioreactor treating urban wastewater. A stable community of N-removal key players was developed; however, the abundance of active populations experienced sharper shifts, demonstrating their fast adaptation to changing conditions. Despite constituting a small percentage of the total bacterial community, the larger abundances of active populations of nitrifiers explained the high N-removal accomplished by the MBR. Multivariate analyses revealed that temperature, accumulation of volatile suspended solids in the sludge, BOD5, NH4(+) concentration and C/N ratio of the wastewater contributed significantly (23-38%) to explain changes in the abundance of nitrifiers and denitrifiers. However, each targeted group showed different responses to shifts in these parameters, evidencing the complexity of the balance among them for successful biological N-removal. Copyright © 2014 Elsevier Ltd. All rights reserved.
Real-Time Detection of Staphylococcus Aureus Using Whispering Gallery Mode Optical Microdisks
Ghali, Hala; Chibli, Hicham; Nadeau, Jay L.; Bianucci, Pablo; Peter, Yves-Alain
2016-01-01
Whispering Gallery Mode (WGM) microresonators have recently been studied as a means to achieve real-time label-free detection of biological targets such as virus particles, specific DNA sequences, or proteins. Due to their high quality (Q) factors, WGM resonators can be highly sensitive. A biosensor also needs to be selective, requiring proper functionalization of its surface with the appropriate ligand that will attach the biomolecule of interest. In this paper, WGM microdisks are used as biosensors for detection of Staphylococcus aureus. The microdisks are functionalized with LysK, a phage protein specific for staphylococci at the genus level. A binding event on the surface shifts the resonance peak of the microdisk resonator towards longer wavelengths. This reactive shift can be used to estimate the surface density of bacteria that bind to the surface of the resonator. The limit of detection of a microdisk with a Q-factor around 104 is on the order of 5 pg/mL, corresponding to 20 cells. No binding of Escherichia coli to the resonators is seen, supporting the specificity of the functionalization scheme. PMID:27153099
Plasma q -plate for generation and manipulation of intense optical vortices
NASA Astrophysics Data System (ADS)
Qu, Kenan; Jia, Qing; Fisch, Nathaniel J.
2017-11-01
An optical vortex is a light wave with a twisting wavefront around its propagation axis and null intensity in the beam center. Its unique spatial structure of field lends itself to a broad range of applications, including optical communication, quantum information, superresolution microscopy, and multidimensional manipulation of particles. However, accessible intensity of optical vortices have been limited to material ionization threshold. This limitation might be removed by using the plasma medium. Here we propose the design of suitably magnetized plasmas which, functioning as a q -plate, leads to a direct conversion from a high-intensity Gaussian beam into a twisted beam. A circularly polarized laser beam in the plasma accumulates an azimuthal-angle-dependent phase shift and hence forms a twisting wavefront. Our three-dimensional particle-in-cell simulations demonstrate extremely high-power conversion efficiency. The plasma q -plate can work in a large range of frequencies spanning from terahertz to the optical domain.
Efficient and compact Q-switched green laser using graphene oxide as saturable absorber
NASA Astrophysics Data System (ADS)
Chang, Jianhua; Li, Hanhan; Yang, Zhenbo; Yan, Na
2018-01-01
A new type of graphene oxide (GO) is successfully prepared using an improved modified Hummers method. The Raman shift, X-ray diffraction (XRD), and scanning electron microscope (SEM) measurement techniques are used to characterize the GO. An efficient and compact Q-switched green laser based on Nd:YVO4/PPLN is demonstrated with a few-layered GO as the saturable absorber. Our experimental results show that such a few-layered GO saturable absorber allows for the generation of a stable Q-switched laser pulse centered at 532.1 nm with a 3 dB spectral bandwidth of 2.78 nm, a repetition rate of 71.4 kHz, and a pulse duration of 98 ns. The maximum average output power of 536 mW is obtained at the absorbed pump power of 5.16 W, corresponding to an optical conversion efficiency of 10.3%.
Examination of the possible enhancement of neutrinoless double-electron capture in 78Kr
NASA Astrophysics Data System (ADS)
Bustabad, S.; Bollen, G.; Brodeur, M.; Lincoln, D. L.; Novario, S. J.; Redshaw, M.; Ringle, R.; Schwarz, S.
2013-09-01
Penning-trap mass spectrometry was used at the Low-Energy Beam and Ion Trap (LEBIT) facility at the National Superconducting Cyclotron Laboratory (NSCL) to investigate 78Kr, a candidate for resonantly enhanced neutrinoless double-electron capture (0νECEC). The newly determined Q value of 2847.75 (27) keV is 1.4 keV greater than the value from the most recent atomic mass evaluation [Chin. Phys. C1674-113710.1088/1674-1137/36/12/003 36, 1603 (2012)], a change of two sigma, and the uncertainty has been reduced by a factor of three. The change in the Q value shifts allowed 0νECEC in 78Kr further from resonant enhancement. With the improved determination of the Q value, all known excited states can now be confidently excluded from possible 78Se candidates that could lead to resonantly enhanced 0νECEC.
Dominant phonon wave vectors and strain-induced splitting of the 2D Raman mode of graphene
NASA Astrophysics Data System (ADS)
Narula, Rohit; Bonini, Nicola; Marzari, Nicola; Reich, Stephanie
2012-03-01
The dominant phonon wave vectors q* probed by the 2D Raman mode of pristine and uniaxially strained graphene are determined via a combination of ab initio calculations and a full two-dimensional integration of the transition matrix. We show that q* are highly anisotropic and rotate about K with the polarizer and analyzer condition relative to the lattice. The corresponding phonon-mediated electronic transitions show a finite component along K-Γ that sensitively determines q*. We invalidate the notion of “inner” and “outer” processes. The characteristic splitting of the 2D mode of graphene under uniaxial tensile strain and given polarizer and analyzer setting is correctly predicted only if the strain-induced distortion and red-shift of the in-plane transverse optical (iTO) phonon dispersion as well as the changes in the electronic band structure are taken into account.
Applying Occam's Razor To The Proton Radius Puzzle
NASA Astrophysics Data System (ADS)
Higinbotham, Douglas
2016-09-01
Over the past five decades, ever more complex mathematical functions have been used to extract the radius of the proton from electron scattering data. For example, in 1963 the proton radius was extracted with linear and quadratic fits of low Q2 data (< 3 fm-2) and by 2014 a non-linear regression of two tenth order power series functions with thirty-one normalization parameters and data out to 25 fm-2 was used. But for electron scattering, the radius of the proton is determined by extracting the slope of the charge form factor at a Q2 of zero. By using higher precision data than was available in 1963 and focusing on the low Q2 data from 1974 to today, we find extrapolating functions consistently produce a proton radius of around 0.84 fm. A result that is in agreement with modern Lamb shift measurements.
NASA Astrophysics Data System (ADS)
Eichenfield, Matt; Chan, Jasper; Safavi-Naeini, Amir H.; Vahala, Kerry J.; Painter, Oskar
2009-10-01
Periodically structured materials can sustain both optical and mechanical excitations which are tailored by the geometry. Here we analyze the properties of dispersively coupled planar photonic and phononic crystals: optomechanical crystals. In particular, the properties of co-resonant optical and mechanical cavities in quasi-1D (patterned nanobeam) and quasi-2D (patterned membrane) geometries are studied. It is shown that the mechanical Q and optomechanical coupling in these structures can vary by many orders of magnitude with modest changes in geometry. An intuitive picture is developed based upon a perturbation theory for shifting material boundaries that allows the optomechanical properties to be designed and optimized. Several designs are presented with mechanical frequency ~ 1-10 GHz, optical Q-factor Qo > 10^7, motional masses meff 100 femtograms, optomechanical coupling length LOM < 5 microns, and a radiation-limited mechanical Q-factor Qm > 10^7.
Multi-indexed Meixner and little q-Jacobi (Laguerre) polynomials
NASA Astrophysics Data System (ADS)
Odake, Satoru; Sasaki, Ryu
2017-04-01
As the fourth stage of the project multi-indexed orthogonal polynomials, we present the multi-indexed Meixner and little q-Jacobi (Laguerre) polynomials in the framework of ‘discrete quantum mechanics’ with real shifts defined on the semi-infinite lattice in one dimension. They are obtained, in a similar way to the multi-indexed Laguerre and Jacobi polynomials reported earlier, from the quantum mechanical systems corresponding to the original orthogonal polynomials by multiple application of the discrete analogue of the Darboux transformations or the Crum-Krein-Adler deletion of virtual state vectors. The virtual state vectors are the solutions of the matrix Schrödinger equation on all the lattice points having negative energies and infinite norm. This is in good contrast to the (q-)Racah systems defined on a finite lattice, in which the ‘virtual state’ vectors satisfy the matrix Schrödinger equation except for one of the two boundary points.
Staufert, Daniel; Cudney, Roger S
2018-05-10
We report a laser that emits two Q-switched pulses, one at 1.047 μm and the other at 1.064 μm, generated by a Nd:YLF and a Nd:YVO 4 , respectively. The crystals are pumped by two fiber-coupled diode lasers (808 nm and 880 nm); the delay between the pulses can be controlled by adjusting the power of the pumps. Two kinds of Q-switching techniques are reported, passive (Cr:YAG saturable absorber) and active (electro-optic modulator). We model both the active and passive Q switching and make a comparison between numerical simulations and experiments. We show experimentally and theoretically that in both cases the pulses can be synchronized; however, the stability of the synchronization (sensitivity to pump power fluctuations) is better for active than for passive Q switching. We also report that under certain experimental conditions a third wavelength is obtained, 1156 nm, which corresponds to the first Stokes shift of the 1047 nm pulse produced by stimulated Raman scattering from the Nd:YVO 4 crystal.
Cosmic structures and gravitational waves in ghost-free scalar-tensor theories of gravity
NASA Astrophysics Data System (ADS)
Bartolo, Nicola; Karmakar, Purnendu; Matarrese, Sabino; Scomparin, Mattia
2018-05-01
We study cosmic structures in the quadratic Degenerate Higher Order Scalar Tensor (qDHOST) model, which has been proposed as the most general scalar-tensor theory (up to quadratic dependence on the covariant derivatives of the scalar field), which is not plagued by the presence of ghost instabilities. We then study a static, spherically symmetric object embedded in de Sitter space-time for the qDHOST model. This model exhibits breaking of the Vainshtein mechanism inside the cosmic structure and Schwarzschild-de Sitter space-time outside, where General Relativity (GR) can be recovered within the Vainshtein radius. We constrained the parameters of the qDHOST model by requiring the validity of the Vainshtein screening mechanism inside the cosmic structures and the consistency with the recently established bounds on gravitational wave speed from GW170817/GRB170817A event. We find that these two constraints rule out the same set of parameters, corresponding to the Lagrangians that are quadratic in second-order derivatives of the scalar field, for the shift symmetric qDHOST.
Pauli graphs, Riemann hypothesis, and Goldbach pairs
NASA Astrophysics Data System (ADS)
Planat, M.; Anselmi, F.; Solé, P.
2012-06-01
We consider the Pauli group Pq generated by unitary quantum generators X (shift) and Z (clock) acting on vectors of the q-dimensional Hilbert space. It has been found that the number of maximal mutually commuting sets within Pq is controlled by the Dedekind psi function ψ(q) and that there exists a specific inequality involving the Euler constant γ ˜ 0.577 that is only satisfied at specific low dimensions q ∈ A = { 2, 3, 4, 5, 6, 8, 10, 12, 18, 30}. The set A is closely related to the set A∪{ 1, 24} of integers that are totally Goldbach, i.e., that consist of all primes p < n - 1 with p not dividing n and such that n-p is prime. In the extreme high-dimensional case, at primorial numbers Nr, the Hardy-Littlewood function R(q) is introduced for estimating the number of Goldbach pairs, and a new inequality (Theorem 4) is established for the equivalence to the Riemann hypothesis in terms of R(Nr). We discuss these number-theoretical properties in the context of the qudit commutation structure.
Coded aperture ptychography: uniqueness and reconstruction
NASA Astrophysics Data System (ADS)
Chen, Pengwen; Fannjiang, Albert
2018-02-01
Uniqueness of solution is proved for any ptychographic scheme with a random mask under a minimum overlap condition and local geometric convergence analysis is given for the alternating projection (AP) and Douglas-Rachford (DR) algorithms. DR is shown to possess a unique fixed point in the object domain and for AP a simple criterion for distinguishing the true solution among possibly many fixed points is given. A minimalist scheme, where the adjacent masks overlap 50% of the area and each pixel of the object is illuminated by exactly four illuminations, is conveniently parametrized by the number q of shifted masks in each direction. The lower bound 1 - C/q 2 is proved for the geometric convergence rate of the minimalist scheme, predicting a poor performance with large q which is confirmed by numerical experiments. The twin-image ambiguity is shown to arise for certain Fresnel masks and degrade the performance of reconstruction. Extensive numerical experiments are performed to explore the general features of a well-performing mask, the optimal value of q and the robustness with respect to measurement noise.
Fonseca, P J; Correia, T
2007-05-01
The effects of temperature on hearing in the cicada Tettigetta josei were studied. The activity of the auditory nerve and the responses of auditory interneurons to stimuli of different frequencies and intensities were recorded at different temperatures ranging from 16 degrees C to 29 degrees C. Firstly, in order to investigate the temperature dependence of hearing processes, we analyzed its effects on auditory tuning, sensitivity, latency and Q(10dB). Increasing temperature led to an upward shift of the characteristic hearing frequency, to an increase in sensitivity and to a decrease in the latency of the auditory response both in the auditory nerve recordings (periphery) and in some interneurons at the metathoracic-abdominal ganglionic complex (MAC). Characteristic frequency shifts were only observed at low frequency (3-8 kHz). No changes were seen in Q(10dB). Different tuning mechanisms underlying frequency selectivity may explain the results observed. Secondly, we investigated the role of the mechanical sensory structures that participate in the transduction process. Laser vibrometry measurements revealed that the vibrations of the tympanum and tympanal apodeme are temperature independent in the biologically relevant range (18-35 degrees C). Since the above mentioned effects of temperature are present in the auditory nerve recordings, the observed shifts in frequency tuning must be performed by mechanisms intrinsic to the receptor cells. Finally, the role of potassium channels in the response of the auditory system was investigated using a specific inhibitor of these channels, tetraethylammonium (TEA). TEA caused shifts on tuning and sensitivity of the summed response of the receptors similar to the effects of temperature. Thus, potassium channels are implicated in the tuning of the receptor cells.
NASA Astrophysics Data System (ADS)
Narayan, Jagdish; Bhaumik, Anagh
2016-04-01
We review the discovery of new phases of carbon (Q-carbon) and BN (Q-BN) and address critical issues related to direct conversion of carbon into diamond and hBN into cBN at ambient temperatures and pressures in air without any need for catalyst and the presence of hydrogen. The Q-carbon and Q-BN are formed as a result of quenching from super undercooled state by using high-power nanosecond laser pulses. We discuss the equilibrium phase diagram ( P vs T) of carbon, and show that by rapid quenching, kinetics can shift thermodynamic graphite/diamond/liquid carbon triple point from 5000 K/12 GPa to super undercooled carbon at atmospheric pressure in air. Similarly, the hBN-cBN-Liquid triple point is shifted from 3500 K/9.5 GPa to as low as 2800 K and atmospheric pressure. It is shown that nanosecond laser heating of amorphous carbon and nanocrystalline BN on sapphire, glass, and polymer substrates can be confined to melt in a super undercooled state. By quenching this super undercooled state, we have created a new state of carbon (Q-carbon) and BN (Q-BN) from which nanocrystals, microcrystals, nanoneedles, microneedles, and thin films are formed depending upon the nucleation and growth times allowed and the presence of growth template. The large-area epitaxial diamond and cBN films are formed, when appropriate planar matching or lattice matching template is provided for growth from super undercooled liquid. The Q-phases have unique atomic structure and bonding characteristics as determined by high-resolution SEM and backscatter diffraction, HRTEM, STEM-Z, EELS, and Raman spectroscopy, and exhibit new and improved mechanical hardness, electrical conductivity, and chemical and physical properties, including room-temperature ferromagnetism and enhanced field emission. The Q-carbon exhibits robust bulk ferromagnetism with estimated Curie temperature of about 500 K and saturation magnetization value of 20 emu g-1. We have also deposited diamond on cBN by using a novel pulsed laser evaporation of carbon and obtained cBN/diamond composites, where cBN acts as template for diamond growth. Both diamond and cBN grown from super undercooled liquid can be alloyed with both p- and n-type dopants. This process allows carbon to diamond and hBN to cBN conversions and formation of useful nanostructures and microstructures at ambient temperatures in air at atmospheric pressure on practical and heat-sensitive substrates in a controlled way without need for any catalysts and hydrogen to stabilize sp3 bonding for diamond and cBN phases.
Jacques, Steven L.; Roussel, Stéphane; Samatham, Ravikant
2016-01-01
Abstract. This report describes how optical images acquired using linearly polarized light can specify the anisotropy of scattering (g) and the ratio of reduced scattering [μs′=μs(1−g)] to absorption (μa), i.e., N′=μs′/μa. A camera acquired copolarized (HH) and crosspolarized (HV) reflectance images of a tissue (skin), which yielded images based on the intensity (I=HH+HV) and difference (Q=HH−HV) of reflectance images. Monte Carlo simulations generated an analysis grid (or lookup table), which mapped Q and I into a grid of g versus N′, i.e., g(Q,I) and N′(Q,I). The anisotropy g is interesting because it is sensitive to the submicrometer structure of biological tissues. Hence, polarized light imaging can monitor shifts in the submicrometer (50 to 1000 nm) structure of tissues. The Q values for forearm skin on two subjects (one Caucasian, one pigmented) were in the range of 0.046±0.007 (24), which is the mean±SD for 24 measurements on 8 skin sites×3 visible wavelengths, 470, 524, and 625 nm, which indicated g values of 0.67±0.07 (24). PMID:27165546
Qian, Jinping P.; Garofalo, Andrea M.; Gong, Xianzu Z.; ...
2017-03-20
Recent EAST/DIII-D joint experiments on the high poloidal betamore » $${{\\beta}_{\\text{P}}}$$ regime in DIII-D have extended operation with internal transport barriers (ITBs) and excellent energy confinement (H 98y2 ~ 1.6) to higher plasma current, for lower q 95 ≤ 7.0, and more balanced neutral beam injection (NBI) (torque injection < 2 Nm), for lower plasma rotation than previous results. Transport analysis and experimental measurements at low toroidal rotation suggest that the E × B shear effect is not key to the ITB formation in these high $${{\\beta}_{\\text{P}}}$$ discharges. Experiments and TGLF modeling show that the Shafranov shift has a key stabilizing effect on turbulence. Extrapolation of the DIII-D results using a 0D model shows that with the improved confinement, the high bootstrap fraction regime could achieve fusion gain Q = 5 in ITER at $${{\\beta}_{\\text{N}}}$$ ~ 2.9 and q 95 ~ 7. With the optimization of q(0), the required improved confinement is achievable when using 1.5D TGLF-SAT1 for transport simulations. Furthermore, results reported in this paper suggest that the DIII-D high $${{\\beta}_{\\text{P}}}$$ scenario could be a candidate for ITER steady state operation.« less
Awad, Agape M; Venkataramanan, Srivats; Nag, Anish; Galivanche, Anoop Raj; Bradley, Michelle C; Neves, Lauren T; Douglass, Stephen; Clarke, Catherine F; Johnson, Tracy L
2017-09-08
Despite its relatively streamlined genome, there are many important examples of regulated RNA splicing in Saccharomyces cerevisiae Here, we report a role for the chromatin remodeler SWI/SNF in respiration, partially via the regulation of splicing. We find that a nutrient-dependent decrease in Snf2 leads to an increase in splicing of the PTC7 transcript. The spliced PTC7 transcript encodes a mitochondrial phosphatase regulator of biosynthesis of coenzyme Q 6 (ubiquinone or CoQ 6 ) and a mitochondrial redox-active lipid essential for electron and proton transport in respiration. Increased splicing of PTC7 increases CoQ 6 levels. The increase in PTC7 splicing occurs at least in part due to down-regulation of ribosomal protein gene expression, leading to the redistribution of spliceosomes from this abundant class of intron-containing RNAs to otherwise poorly spliced transcripts. In contrast, a protein encoded by the nonspliced isoform of PTC7 represses CoQ 6 biosynthesis. Taken together, these findings uncover a link between Snf2 expression and the splicing of PTC7 and establish a previously unknown role for the SWI/SNF complex in the transition of yeast cells from fermentative to respiratory modes of metabolism. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richards, David G.
I present a survey of calculations of the excited $N^*$ spectrum in lattice QCD. I then describe recent advances aimed at extracting the momentum-dependent phase shifts from lattice calculations, notably in the meson sector, and the potential for their application to baryons. I conclude with a discussion of calculations of the electromagnetic transition form factors to excited nucleons, including calculations at high $Q^2$.
Detection and quantitation of Escherichia coli O157:H7 in raw milk by direct qPCR
USDA-ARS?s Scientific Manuscript database
There has been a shift in US food consumption patterns toward unprocessed foods perceived to be healthier. Part of this trend is increasing consumption of raw, unpasteurized milk. Raw milk can be a source of pathogens that cause serious or fatal illness, particularly in immuno-compromised individ...
Identification of a novel C1q family member in color crucian carp (Carassius auratus) ovary.
Chen, Bo; Gui, Jianfang
2004-07-01
Potential roles of C1q/tumor necrosis factor (TNF) superfamily proteins have been observed in vertebrate oogenesis and oocyte maturation, but no ovary-specific member has been identified so far. In this study, we have cloned and identified a novel member of C1q family with a C1q domain in the C-terminal from fully grown oocyte cDNA library of color crucian carp and demonstrated that the gene might be specifically expressed in ovary and therefore designated as Carassius auratus ovary-specific C1q-like factor, CaOC1q-like factor. It encodes a 213 amino acid protein with a 17 amino acid signal peptide. There is only one protein band of about 24.5 kDa in the extracts from phase I to phase IV oocytes, but two positive protein bands are detected in the extracts of mature eggs and fertilized eggs. Furthermore, the mobility shift of the smaller target protein band cannot be eliminated by phosphatase treatment, but the larger protein band increases its mobility on the gel after phosphatase treatment, suggesting that the larger protein might be a phosphorylated form. Immunofluorescence localization indicates that the CaOC1q-like proteins localize in cytoplasm, cytoplasm membrane and egg envelope of the oocytes at cortical granule stage and vitellogenesis stage, whereas they were compressed to cytoplasm margin in ovulated mature eggs and discharged into perivitelline space between cytoplasm membrane and egg envelope after egg fertilization. Further studies on distribution and translocation mechanism of the CaOC1q-like factor will be benefit to elucidate the unique function in oogenesis, oocyte maturation and egg fertilization.
Surface charge engineering of a Bacillus gibsonii subtilisin protease.
Jakob, Felix; Martinez, Ronny; Mandawe, John; Hellmuth, Hendrik; Siegert, Petra; Maurer, Karl-Heinz; Schwaneberg, Ulrich
2013-08-01
In proteins, a posttranslational deamidation process converts asparagine (Asn) and glutamine (Gln) residues into negatively charged aspartic (Asp) and glutamic acid (Glu), respectively. This process changes the protein net charge affecting enzyme activity, pH optimum, and stability. Understanding the principles which affect these enzyme properties would be valuable for protein engineering in general. In this work, three criteria for selecting amino acid substitutions of the deamidation type in the Bacillus gibsonii alkaline protease (BgAP) are proposed and systematically studied in their influence on pH-dependent activity and thermal resistance. Out of 113 possible surface amino acids, 18 (11 Asn and 7 Gln) residues of BgAP were selected and evaluated based on three proposed criteria: (1) The Asn or Gln residues should not be conserved, (2) should be surface exposed, and (3) neighbored by glycine. "Deamidation" in five (N97, N253, Q37, Q200, and Q256) out of eight (N97, N154, N250, N253, Q37, Q107, Q200, and Q256) amino acids meeting all criteria resulted in increased proteolytic activity. In addition, pH activity profiles of the variants N253D and Q256E and the combined variant N253DQ256E were dramatically shifted towards higher activity at lower pH (range of 8.5-10). Variant N253DQ256E showed twice the specific activity of wild-type BgAP and its thermal resistance increased by 2.4 °C at pH 8.5. These property changes suggest that mimicking surface deamidation by substituting Gln by Glu and/or Asn by Asp might be a simple and fast protein reengineering approach for modulating enzyme properties such as activity, pH optimum, and thermal resistance.
NASA Astrophysics Data System (ADS)
Chen, Xuying; Liu, Xinxin; Wang, Tao; Le, Xianhao; Ma, Fangyi; Lee, Chengkuo; Xie, Jin
2018-05-01
Thermoelastic dissipation is one of the main dissipative mechanisms in piezoelectric micromachined ultrasonic transducers (pMUTs). In this paper, we firstly propose pMUTs with etching holes to decrease thermoelastic dissipation and enhance quality factor (Q). The etching holes effectively disturb heat flow, and thus reduce thermoelastic loss. Working mechanism based on the Zener’s model is interpreted. The experiment results show that the Q of pMUT with three rows of holes is increased by 139% from 2050 to 4909 compared with the traditional one. Temperature coefficient of frequency (TCF) and vibration performance are also improved. The enhanced pMUT can be widely used in measurement of Doppler shift and relative high power applications.
Magnetic Spin Correlations in the One-dimensional Frustrated Spin-chain System Ca3Co2O6
NASA Astrophysics Data System (ADS)
Månsson, M.; Sugiyama, J.; Roessli, B.; Hitti, B.; Ikedo, Y.; Zivkovic, I.; Nozaki, H.; Harada, M.; Sassa, Y.; Andreica, D.; Goko, T.; Amato, A.; Ofer, O.; Ansaldo, E. J.; Brewer, J. H.; Chow, K. H.; Yi, H. T.; Cheong, S.-W.; Prsa, K.
In this work we present a combination of zero-field and high transverse-field muon spin rotation/relaxation (μ+SR) measurements. The current μ+SR Knight-shift measurements clearly shows that Ca3Co2O6 display strong spin correlations even at room-temperature. Further, several anomalies in the temperature dependent data are proposed to be connected to the onset of a quasi-one-dimensional (Q1D) ferrimagnetic order. Further, we suggest that in the low-temperature regime, the Q1D ferrimagnetic order co-exist within a long-range antiferromagnetic phase, which has been confirmed by our recent neutron scattering studies.
Hanna, John V; Pike, Kevin J; Charpentier, Thibault; Kemp, Thomas F; Smith, Mark E; Lucier, Bryan E G; Schurko, Robert W; Cahill, Lindsay S
2010-03-08
A variable B(0) field static (broadline) NMR study of a large suite of niobate materials has enabled the elucidation of high-precision measurement of (93)Nb NMR interaction parameters such as the isotropic chemical shift (delta(iso)), quadrupole coupling constant and asymmetry parameter (C(Q) and eta(Q)), chemical shift span/anisotropy and skew/asymmetry (Omega/Deltadelta and kappa/eta(delta)) and Euler angles (alpha, beta, gamma) describing the relative orientation of the quadrupolar and chemical shift tensorial frames. These measurements have been augmented with ab initio DFT calculations by using WIEN2k and NMR-CASTEP codes, which corroborate these reported values. Unlike previous assertions made about the inability to detect CSA (chemical shift anisotropy) contributions from Nb(V) in most oxo environments, this study emphasises that a thorough variable B(0) approach coupled with the VOCS (variable offset cumulative spectroscopy) technique for the acquisition of undistorted broad (-1/2<-->+1/2) central transition resonances facilitates the unambiguous observation of both quadrupolar and CSA contributions within these (93)Nb broadline data. These measurements reveal that the (93)Nb electric field gradient tensor is a particularly sensitive measure of the immediate and extended environments of the Nb(V) positions, with C(Q) values in the 0 to >80 MHz range being measured; similarly, the delta(iso) (covering an approximately 250 ppm range) and Omega values (covering a 0 to approximately 800 ppm range) characteristic of these niobate systems are also sensitive to structural disposition. However, their systematic rationalisation in terms of the Nb-O bond angles and distances defining the immediate Nb(V) oxo environment is complicated by longer-range influences that usually involve other heavy elements comprising the structure. It has also been established in this study that the best computational method(s) of analysis for the (93)Nb NMR interaction parameters generated here are the all-electron WIEN2k and the gauge included projector augmented wave (GIPAW) NMR-CASTEP DFT approaches, which account for the short- and long-range symmetries, periodicities and interaction-potential characteristics for all elements (and particularly the heavy elements) in comparison with Gaussian 03 methods, which focus on terminated portions of the total structure.
Liquid core microbubble resonators for highly sensitive temperature sensing
NASA Astrophysics Data System (ADS)
Ward, Jonathan M.; Yang, Yong; Nic Chormaic, Sile
2014-03-01
It is experimentally shown that a large thermal blue shift of up to 100 GHz/K (0.2 nm/K at a wavelength of 775 nm) can be achieved with higher order radial modes in an ethanol-filled microbubble whispering gallery mode resonator (WGR). Q-factors for the most thermally sensitive modes are typically 105, equivalent to a measurement resolution of 8.5 mK. The thermal shift rate is determined for different modes when the core of the microbubble is filled with air, water, and ethanol. The measured shifts are compared against Finite Element Model (FEM) simulations. It is also shown that, if the microbubble is in the quasi-droplet regime, the fundamental TE mode in a bubble with a 500 nm wall is estimated to experience a shift of 35 GHz/K, while the effective index is still high enough to allow efficient coupling to a tapered optical fiber. Nonetheless, at a wall thickness of 1 μm, the most sensitive modes (n = 2) observed were still strongly coupled.
NASA Astrophysics Data System (ADS)
Iorio, Lorenzo
2017-07-01
We develop a general approach to analytically calculate the perturbations Δ δ τ _ {p} of the orbital component of the change δ τ _ {p} of the times of arrival of the pulses emitted by a binary pulsar p induced by the post-Keplerian accelerations due to the mass quadrupole Q_2, and the post-Newtonian gravitoelectric (GE) and Lense-Thirring (LT) fields. We apply our results to the so-far still hypothetical scenario involving a pulsar orbiting the supermassive black hole in the galactic center at Sgr A^*. We also evaluate the gravitomagnetic and quadrupolar Shapiro-like propagation delays δ τ _ {prop}. By assuming the orbit of the existing main sequence star S2 and a time span as long as its orbital period P_b, we obtain | Δ δ τ _ {p}^ {GE}| ≲ 10^3 {s}, | Δ δ τ _ {p}^ {LT}| ≲ 0.6 {s},| Δ δ τ _ {p}^{Q_2}| ≲ 0.04 {s}. Faster ( P_b= 5 {years}) and more eccentric ( e=0.97) orbits would imply net shifts per revolution as large as | < Δ δ τ _ {p}^ {GE}\\rangle | ≲ 10 {Ms}, | < Δ δ τ _ {p}^ {LT}\\rangle | ≲ 400 {s},| < Δ δ τ _ {p}^{Q_2}\\rangle | ≲ 10^3 {s}, depending on the other orbital parameters and the initial epoch. For the propagation delays, we have | δ τ _ {prop}^ {LT}| ≲ 0.02 {s}, | δ τ _ {prop}^{Q_2}| ≲ 1 μs. The results for the mass quadrupole and the Lense-Thirring field depend, among other things, on the spatial orientation of the spin axis of the Black Hole. The expected precision in pulsar timing in Sgr A^* is of the order of 100 μs, or, perhaps, even 1-10 μs. Our method is, in principle, neither limited just to some particular orbital configuration nor to the dynamical effects considered in the present study.
Poutsma, Marvin L.
2016-04-21
The recently proposed term radicalicity was described as a measure of the reactivity of a free radical Q*, i.e., a kinetic quantity. Here it is shown that in fact it is simply a frame-shifted version of the well-known bond dissociation energy, a thermodynamic quantity. Hence its use is discouraged.
Creed, Irena F.; McKnight, Diane M.; Pellerin, Brian; Green, Mark B.; Bergamaschi, Brian; Aiken, George R.; Burns, Douglas A.; Findlay, Stuart E G; Shanley, James B.; Striegl, Robert G.; Aulenbach, Brent T.; Clow, David W.; Laudon, Hjalmar; McGlynn, Brian L.; McGuire, Kevin J.; Smith, Richard A.; Stackpoole, Sarah M.
2015-01-01
A better understanding is needed of how hydrological and biogeochemical processes control dissolved organic carbon (DOC) concentrations and dissolved organic matter (DOM) composition from headwaters downstream to large rivers. We examined a large DOM dataset from the National Water Information System of the US Geological Survey, which represents approximately 100 000 measurements of DOC concentration and DOM composition at many sites along rivers across the United States. Application of quantile regression revealed a tendency towards downstream spatial and temporal homogenization of DOC concentrations and a shift from dominance of aromatic DOM in headwaters to more aliphatic DOM downstream. The DOC concentration–discharge (C-Q) relationships at each site revealed a downstream tendency towards a slope of zero. We propose that despite complexities in river networks that have driven many revisions to the River Continuum Concept, rivers show a tendency towards chemostasis (C-Q slope of zero) because of a downstream shift from a dominance of hydrologic drivers that connect terrestrial DOM sources to streams in the headwaters towards a dominance of instream and near-stream biogeochemical processes that result in preferential losses of aromatic DOM and preferential gains of aliphatic DOM.
Optical micro-bubble resonators as promising biosensors
NASA Astrophysics Data System (ADS)
Giannetti, A.; Barucci, A.; Berneschi, S.; Cosci, A.; Cosi, F.; Farnesi, D.; Nunzi Conti, G.; Pelli, S.; Soria, S.; Tombelli, S.; Trono, C.; Righini, G. C.; Baldini, F.
2015-05-01
Recently, optical micro-bubble resonators (OMBRs) have gained an increasing interest in many fields of photonics thanks to their particular properties. These hollow microstructures can be suitable for the realization of label - free optical biosensors by combining the whispering gallery mode (WGM) resonator properties with the intrinsic capability of integrated microfluidics. In fact, the WGMs are morphology-dependent modes: any change on the OMBR inner surface (due to chemical and/or biochemical binding) causes a shift of the resonance position and reduces the Q factor value of the cavity. By measuring this shift, it is possible to obtain information on the concentration of the analyte to be detected. A crucial step for the development of an OMBR-based biosensor is constituted by the functionalization of its inner surface. In this work we report on the development of a physical and chemical process able to guarantee a good homogeneity of the deposed bio-layer and, contemporary, to preserve a high quality factor Q of the cavity. The OMBR capability of working as bioassay was proved by different optical techniques, such as the real time measurement of the resonance broadening after each functionalization step and fluorescence microscopy.
Optical antenna enhanced spontaneous emission
Eggleston, Michael S.; Messer, Kevin; Zhang, Liming; Yablonovitch, Eli; Wu, Ming C.
2015-01-01
Atoms and molecules are too small to act as efficient antennas for their own emission wavelengths. By providing an external optical antenna, the balance can be shifted; spontaneous emission could become faster than stimulated emission, which is handicapped by practically achievable pump intensities. In our experiments, InGaAsP nanorods emitting at ∼200 THz optical frequency show a spontaneous emission intensity enhancement of 35× corresponding to a spontaneous emission rate speedup ∼115×, for antenna gap spacing, d = 40 nm. Classical antenna theory predicts ∼2,500× spontaneous emission speedup at d ∼ 10 nm, proportional to 1/d2. Unfortunately, at d < 10 nm, antenna efficiency drops below 50%, owing to optical spreading resistance, exacerbated by the anomalous skin effect (electron surface collisions). Quantum dipole oscillations in the emitter excited state produce an optical ac equivalent circuit current, Io = qω|xo|/d, feeding the antenna-enhanced spontaneous emission, where q|xo| is the dipole matrix element. Despite the quantum-mechanical origin of the drive current, antenna theory makes no reference to the Purcell effect nor to local density of states models. Moreover, plasmonic effects are minor at 200 THz, producing only a small shift of antenna resonance frequency. PMID:25624503
Optical antenna enhanced spontaneous emission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eggleston, Michael S.; Messer, Kevin; Zhang, Liming
Atoms and molecules are too small to act as efficient antennas for their own emission wavelengths. By providing an external optical antenna, the balance can be shifted; spontaneous emission could become faster than stimulated emission, which is handicapped by practically achievable pump intensities. In our experiments, InGaAsP nanorods emitting at ~200 THz optical frequency show a spontaneous emission intensity enhancement of 35 × corresponding to a spontaneous emission rate speedup ~115 ×, for antenna gap spacing, d = 40 nm. Classical antenna theory predicts ~2,500 × spontaneous emission speedup at d ~10 nm, proportional to 1/d 2. Unfortunately, at dmore » < 10 nm, antenna efficiency drops below 50%, owing to optical spreading resistance, exacerbated by the anomalous skin effect (electron surface collisions). Quantum dipole oscillations in the emitter excited state produce an optical ac equivalent circuit current, I(o) = qω|x(o)|/d, feeding the antenna-enhanced spontaneous emission, where q|x(o)| is the dipole matrix element. Despite the quantum-mechanical origin of the drive current, antenna theory makes no reference to the Purcell effect nor to local density of states models. Additionally, plasmonic effects are minor at 200 THz, producing only a small shift of antenna resonance frequency.« less
Optical antenna enhanced spontaneous emission.
Eggleston, Michael S; Messer, Kevin; Zhang, Liming; Yablonovitch, Eli; Wu, Ming C
2015-02-10
Atoms and molecules are too small to act as efficient antennas for their own emission wavelengths. By providing an external optical antenna, the balance can be shifted; spontaneous emission could become faster than stimulated emission, which is handicapped by practically achievable pump intensities. In our experiments, InGaAsP nanorods emitting at ∼ 200 THz optical frequency show a spontaneous emission intensity enhancement of 35 × corresponding to a spontaneous emission rate speedup ∼ 115 ×, for antenna gap spacing, d = 40 nm. Classical antenna theory predicts ∼ 2,500 × spontaneous emission speedup at d ∼ 10 nm, proportional to 1/d(2). Unfortunately, at d < 10 nm, antenna efficiency drops below 50%, owing to optical spreading resistance, exacerbated by the anomalous skin effect (electron surface collisions). Quantum dipole oscillations in the emitter excited state produce an optical ac equivalent circuit current, I(o) = qω|x(o)|/d, feeding the antenna-enhanced spontaneous emission, where q|x(o)| is the dipole matrix element. Despite the quantum-mechanical origin of the drive current, antenna theory makes no reference to the Purcell effect nor to local density of states models. Moreover, plasmonic effects are minor at 200 THz, producing only a small shift of antenna resonance frequency.
Optical antenna enhanced spontaneous emission
Eggleston, Michael S.; Messer, Kevin; Zhang, Liming; ...
2015-01-26
Atoms and molecules are too small to act as efficient antennas for their own emission wavelengths. By providing an external optical antenna, the balance can be shifted; spontaneous emission could become faster than stimulated emission, which is handicapped by practically achievable pump intensities. In our experiments, InGaAsP nanorods emitting at ~200 THz optical frequency show a spontaneous emission intensity enhancement of 35 × corresponding to a spontaneous emission rate speedup ~115 ×, for antenna gap spacing, d = 40 nm. Classical antenna theory predicts ~2,500 × spontaneous emission speedup at d ~10 nm, proportional to 1/d 2. Unfortunately, at dmore » < 10 nm, antenna efficiency drops below 50%, owing to optical spreading resistance, exacerbated by the anomalous skin effect (electron surface collisions). Quantum dipole oscillations in the emitter excited state produce an optical ac equivalent circuit current, I(o) = qω|x(o)|/d, feeding the antenna-enhanced spontaneous emission, where q|x(o)| is the dipole matrix element. Despite the quantum-mechanical origin of the drive current, antenna theory makes no reference to the Purcell effect nor to local density of states models. Additionally, plasmonic effects are minor at 200 THz, producing only a small shift of antenna resonance frequency.« less
NASA Technical Reports Server (NTRS)
Ahearn, J. S.; Venables, J. D.
1992-01-01
Factors determining the radiation sensitivity of quartz crystal oscillators were studied on NASA's LDEF. Quartz materials were examined in the transmission electron microscope (TEM) and classified as to their sensitivity to radiation damage by establishing the rate of damage caused by the electron beam in the microscope. Two types of materials, i.e., swept premium Q quartz and natural quartz were chosen because clear differences were observed in their response to the electron beam in the TEM studies. Quartz resonators were then fabricated from them, tested for frequency stability over a greater than 6 mo. period and flown on the LDEF satellite. After retrieval (more than 7 yrs in space) the stability of the resonators was again determined. All of the space exposed resonators fabricated with swept premium Q material exhibited a frequency shift above that of the control resonators: none of the resonators fabricated from the natural quartz materials exhibited such a shift. The significant differences observed between the two types of materials in both the ground-based TEM studies and the space radiation induced frequency changes suggest that there may be a correlation between the two observations.
Systematic Anomalies in Rainfall Intensity Estimates Over the Continental U.S.
NASA Technical Reports Server (NTRS)
Amitai, Eyal; Petersen, Walter Arthur; Llort, Xavier; Vasiloff, Steve
2010-01-01
Rainfall intensities during extreme events over the continental U.S. are compared for several advanced radar products. These products include: 1) TRMM spaceborne radar (PR) near surface estimates; 2) NOAA Next-Generation Quantitative Precipitation Estimation (QPE) very high-resolution (1 km) radar-only national mosaics (Q2); 3) very high-resolution instantaneous gauge adjusted radar national mosaics, which we have developed by applying gauge correction on the Q2 instantaneous radar-only products; and 4) several independent C-band dual-polarimetric radar-estimated rainfall samples collected with the ARMOR radar in northern Alabama. Though accumulated rainfall amounts are often similar, we find the satellite and the ground radar rain rate pdfs to be quite different. PR pdfs are shifted towards lower rain rates, implying a much larger stratiform/convective rain ratio than do ground radar products. The shift becomes more evident during strong continental convective storms and much less during tropical storms. Resolving the continental/maritime regime behavior and other large discrepancies between the products presents an important challenge. A challenge to improve our understanding of the source of the discrepancies, to determine the uncertainties of the estimates, and to improve remote-sensing estimates of precipitation in general.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Jiu-Ning; He, Yong-Lin; Han, Zhen-Hai
2013-07-15
We present a theoretical investigation for the nonlinear interaction between electron-acoustic shock waves in a nonextensive two-electron plasma. The interaction is governed by a pair of Korteweg-de Vries-Burgers equations. We focus on studying the colliding effects on the propagation of shock waves, more specifically, we have studied the effects of plasma parameters, i.e., the nonextensive parameter q, the “hot” to “cold” electron number density ratio α, and the normalized electron kinematic viscosity η{sub 0} on the trajectory changes (phase shifts) of shock waves. It is found that there are trajectory changes (phase shifts) for both colliding shock waves in themore » present plasma system. We also noted that the nonlinearity has no decisive effect on the trajectory changes, the occurrence of trajectory changes may be due to the combined role played by the dispersion and dissipation of the nonlinear structure. Our theoretical study may be beneficial to understand the propagation and interaction of nonlinear electrostatic waves and may brings a possibility to develop the nonlinear theory of electron-acoustic waves in astrophysical plasma systems.« less
On the distribution of local dissipation scales in turbulent flows
NASA Astrophysics Data System (ADS)
May, Ian; Morshed, Khandakar; Venayagamoorthy, Karan; Dasi, Lakshmi
2014-11-01
Universality of dissipation scales in turbulence relies on self-similar scaling and large scale independence. We show that the probability density function of dissipation scales, Q (η) , is analytically defined by the two-point correlation function, and the Reynolds number (Re). We also present a new analytical form for the two-point correlation function for the dissipation scales through a generalized definition of a directional Taylor microscale. Comparison of Q (η) predicted within this framework and published DNS data shows excellent agreement. It is shown that for finite Re no single similarity law exists even for the case of homogeneous isotropic turbulence. Instead a family of scaling is presented, defined by Re and a dimensionless local inhomogeneity parameter based on the spatial gradient of the rms velocity. For moderate Re inhomogeneous flows, we note a strong directional dependence of Q (η) dictated by the principal Reynolds stresses. It is shown that the mode of the distribution Q (η) significantly shifts to sub-Kolmogorov scales along the inhomogeneous directions, as in wall bounded turbulence. This work extends the classical Kolmogorov's theory to finite Re homogeneous isotropic turbulence as well as the case of inhomogeneous anisotropic turbulence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian, Jinping P.; Garofalo, Andrea M.; Gong, Xianzu Z.
Recent EAST/DIII-D joint experiments on the high poloidal betamore » $${{\\beta}_{\\text{P}}}$$ regime in DIII-D have extended operation with internal transport barriers (ITBs) and excellent energy confinement (H 98y2 ~ 1.6) to higher plasma current, for lower q 95 ≤ 7.0, and more balanced neutral beam injection (NBI) (torque injection < 2 Nm), for lower plasma rotation than previous results. Transport analysis and experimental measurements at low toroidal rotation suggest that the E × B shear effect is not key to the ITB formation in these high $${{\\beta}_{\\text{P}}}$$ discharges. Experiments and TGLF modeling show that the Shafranov shift has a key stabilizing effect on turbulence. Extrapolation of the DIII-D results using a 0D model shows that with the improved confinement, the high bootstrap fraction regime could achieve fusion gain Q = 5 in ITER at $${{\\beta}_{\\text{N}}}$$ ~ 2.9 and q 95 ~ 7. With the optimization of q(0), the required improved confinement is achievable when using 1.5D TGLF-SAT1 for transport simulations. Furthermore, results reported in this paper suggest that the DIII-D high $${{\\beta}_{\\text{P}}}$$ scenario could be a candidate for ITER steady state operation.« less
Numata, Tomohiro; Tsumoto, Kunichika; Yamada, Kazunori; Kurokawa, Tatsuki; Hirose, Shinichi; Nomura, Hideki; Kawano, Mitsuhiro; Kurachi, Yoshihisa; Inoue, Ryuji; Mori, Yasuo
2017-08-29
Numerical model-based simulations provide important insights into ion channel gating when experimental limitations exist. Here, a novel strategy combining numerical simulations with patch clamp experiments was used to investigate the net positive charges in the putative transmembrane segment 4 (S4) of the atypical, positively-shifted voltage-dependence of polycystic kidney disease 2-like 1 (PKD2L1) channel. Charge-neutralising mutations (K452Q, K455Q and K461Q) in S4 reduced gating charges, positively shifted the Boltzmann-type activation curve [i.e., open probability (P open )-V curve] and altered the time-courses of activation/deactivation of PKD2L1, indicating that this region constitutes part of a voltage sensor. Numerical reconstruction of wild-type (WT) and mutant PKD2L1-mediated currents necessitated, besides their voltage-dependent gating parameters, a scaling factor that describes the voltage-dependence of maximal conductance, G max . Subsequent single-channel conductance (γ) measurements revealed that voltage-dependence of G max in WT can be explained by the inward-rectifying property of γ, which is greatly changed in PKD2L1 mutants. Homology modelling based on PKD2 and Na V Ab structures suggest that such voltage dependence of P open and γ in PKD2L1 could both reflect the charged state of the S4 domain. The present conjunctive experimental and theoretical approaches provide a framework to explore the undetermined mechanism(s) regulating TRP channels that possess non-classical voltage-dependent properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Breton, J.; Berger, G.; Nabedryk, E.
The photoreduction of the secondary quinone acceptor Q{sub B} in reaction centers (RCs) of the photosynthetic bacteria Rhodobacter sphaeroides and Rhodopseudomonas viridis has been investigated by light-induced FTIR difference spectroscopy of RCs reconstituted with several isotopically labeled ubiquinones. The labels used were {sup 18}O on both carbonyls and {sup 13}C either uniformly or selectively at the 1- or the 4-position, i.e., on either one of the two carbonyls. The Q{sub B}{sup {minus}}/Q{sub B} spectra of RCs reconstituted with the isotopically labeled and unlabeled quinones as well as the double differences calculated form these spectra exhibit distinct isotopic shifts for amore » numer of bands attributed to vibrations of Q{sub B} and Q{sub B}{sup {minus}}. The vibrational modes of the quinone in the Q{sub B} site are compared to those of ubiquinone in vitro, leading to band assignments for the C{double_bond}O and C{double_bond}C vibrations of the neutral Q{sub B} and for the C---O and C---C of the semiquinone. The C{double_bond}O frequency of each of the carbonyls of the unlabeled quinone is revealed at 1641 cm{sup {minus}1} for both species. This demonstrates symmetrical and weak hydrogen bonding of the two C{double_bond}O groups to the protein at the Q{sub B} site. In contrast, the C{double_bond}C vibrations are not equivalent for selective labeling at C{sub 1} or at C{sub 4}, although they both contribute to the {approximately}1611-cm{sup {minus}1} band in the Q{sub B}{sup {minus}}/Q{sub B} spectra of the two species. Compared to the vibrations of isolated ubiquinone, the C{double_bond}C mode of Q{sub B} does not involve displacement of the C{sub 4} carbon atom, while the motion of C{sub 1} is not hindered. Further analysis of the spectra suggests that the protein at the binding site imposes a specific constraint on the methoxy and/or the methyl group proximal to the C{sub 4} carbonyl. 49 refs., 5 figs.« less
Abuelezz, Sally A; Hendawy, Nevien; Magdy, Yosra
2017-06-01
Depression is a major health problem in which oxidative stress and inflammation are inextricably connected in its pathophysiology. Coenzyme Q10 (CoQ10) is an important anti-oxidant compound with anti-inflammatory and neuro-protective properties. This study was designed to investigate the hypothesis that CoQ10 by its anti-oxidant and anti-inflammatory potentials can alleviate depressive- like behavior by restoring the balance of the tryptophan catabolites kynurenine/serotonin toward the serotonin pathway by down-regulation of hippocampal indoleamine 2,3-dioxygenase 1 (IDO-1). Depressive-like behavior was induced by chronic unpredictable mild stress (CUMS) protocol including food or water deprivation, cage tilting, reversed light cycle etc. Male Wistar rats were randomly divided into five groups; Control, CUMS, CUMS and CoQ10 (50,100 and 200 mg/kg/day i.p. respectively) groups. CoQ10 effects on different behavioral and biochemical tests were analyzed. CoQ10 showed significant antidepressant efficacy, as evidenced by significantly decreased stress induced changes to forced swimming challenge and open field test, as well as attenuating raised corticosterone level and adrenal glands weight. The anti-oxidant effect of CoQ10 was exhibited by its ability to significantly reduce hippocampal elevated malondialdehyde and 4-hydroxynonenal levels and elevate the reduced glutathione and catalase levels. CoQ10 significantly reduced different pro-inflammatory cytokines levels including interleukin (IL)-1β, IL-2, IL-6 and tumor necrosis factor-α. It suppressed hippocampal IDO-1 and subsequent production of kynurenine and enhanced the hippocampal contents of tryptophan and serotonin. Immunohistochemical analysis revealed that CoQ10 was able to attenuate the elevated microglial CD68 and elevate the astrocyte glial fibrillary acidic protein compared to CUMS group. CoQ10 exhibited antidepressant-like effects on rats exposed to CUMS. This could be attributed to its ability to reduce IDO-1 leading to shift the balance of the Kynurenine/ serotonin toward the serotonin pathway.
Alexander, Jeffrey A; Hearld, Larry R; Wolf, Laura J; Vanderbrink, Jocelyn M
2016-08-01
Multi-stakeholder healthcare alliances in the Robert Wood Johnson Foundation's Aligning Forces for Quality (AF4Q) program brought together diverse stakeholders to work collaboratively to improve healthcare in their local communities. This article evaluates how well the AF4Q alliances were collectively positioned to sustain themselves as AF4Q program support ended. This analysis relied on a mixed-methods design using data from a survey of more than 700 participants in 15 of the 16 AF4Q alliances (1 alliance was unable to participate because it was in the process of closing down operations at the time of survey implementation), qualitative interviews with leaders in all 16 of the alliances, and secondary sources. Qualitative analysis of interview data and secondary sources were used to develop a classification of alliance strategic directions after the AF4Q program relative to their strategies during the AF4Q initiative. Descriptive analyses of survey data were conducted in the following areas: (1) alliance priorities for sustainability, (2) alliance positioning for sustainability, and (3) alliance challenges to sustainability. The likelihood of sustainability and the strategic direction of the former AF4Q alliances are both decidedly mixed. A substantial number of alliances are at risk because of an unclear strategic direction following the AF4Q program, poor financial support, and a lack of relevant community leadership. Some have a clear plan to continue on the path they set during the program. Others appear likely to continue to operate, but they plan to do so in a form that differs from the neutral convener multi-stakeholder model emphasized during the AF4Q program as they specialize, make a major shift in focus, develop fee-for-service products, or focus on particular stakeholder groups (ie, employers and providers). In most cases, preserving the organization itself, rather than its programmatic activities from the AF4Q program era, appeared to receive the greatest emphasis in sustainability efforts. As their core strategy, most alliances will not perpetuate the original AF4Q program vision of diverse local stakeholders coming together to implement a prescribed set of aligned interventions centered on healthcare improvement.
Plasma q -plate for generation and manipulation of intense optical vortices
Qu, Kenan; Jia, Qing; Fisch, Nathaniel J.
2017-11-28
An optical vortex is a light wave with a twisting wavefront around its propagation axis and null intensity in the beam center. Its unique spatial structure of field lends itself to a broad range of applications, including optical communication, quantum information, superresolution microscopy, and multidimensional manipulation of particles. However, accessible intensity of optical vortices have been limited to material ionization threshold. This limitation might be removed by using the plasma medium. Here in this paper, we propose the design of suitably magnetized plasmas which, functioning as a q-plate, leads to a direct conversion from a high-intensity Gaussian beam into amore » twisted beam. A circularly polarized laser beam in the plasma accumulates an azimuthal-angle-dependent phase shift and hence forms a twisting wavefront. Our three-dimensional particle-in-cell simulations demonstrate extremely high-power conversion efficiency. The plasma q-plate can work in a large range of frequencies spanning from terahertz to the optical domain.« less
NASA Astrophysics Data System (ADS)
Eliseev, S.; Blaum, K.; Block, M.; Chenmarev, S.; Dorrer, H.; Düllmann, Ch. E.; Enss, C.; Filianin, P. E.; Gastaldo, L.; Goncharov, M.; Köster, U.; Lautenschläger, F.; Novikov, Yu. N.; Rischka, A.; Schüssler, R. X.; Schweikhard, L.; Türler, A.
2015-08-01
The atomic mass difference of 163 and 163Dy has been directly measured with the Penning-trap mass spectrometer SHIPTRAP applying the novel phase-imaging ion-cyclotron-resonance technique. Our measurement has solved the long-standing problem of large discrepancies in the Q value of the electron capture in 163Ho determined by different techniques. Our measured mass difference shifts the current Q value of 2555(16) eV evaluated in the Atomic Mass Evaluation 2012 [G. Audi et al., Chin. Phys. C 36, 1157 (2012)] by more than 7 σ to 2833 (30stat)(15sys) eV /c2 . With the new mass difference it will be possible, e.g., to reach in the first phase of the ECHo experiment a statistical sensitivity to the neutrino mass below 10 eV, which will reduce its present upper limit by more than an order of magnitude.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eronen, T.; Elomaa, V.; Hager, U.
2006-12-08
The {beta}-decay Q{sub EC} values of the superallowed beta emitters {sup 26}Al{sup m}, {sup 42}Sc, and {sup 46}V have been measured with a Penning trap to a relative precision of better than 8x10{sup -9}. Our result for {sup 46}V, 7052.72(31) keV, confirms a recent measurement that differed from the previously accepted reaction-based Q{sub EC} value. However, our results for {sup 26}Al{sup m} and {sup 42}Sc, 4232.83(13) keV and 6426.13(21) keV, are consistent with previous reaction-based values. By eliminating the possibility of a systematic difference between the two techniques, this result demonstrates that no significant shift in the deduced value ofmore » V{sub ud} should be anticipated.« less
Plasma q -plate for generation and manipulation of intense optical vortices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qu, Kenan; Jia, Qing; Fisch, Nathaniel J.
An optical vortex is a light wave with a twisting wavefront around its propagation axis and null intensity in the beam center. Its unique spatial structure of field lends itself to a broad range of applications, including optical communication, quantum information, superresolution microscopy, and multidimensional manipulation of particles. However, accessible intensity of optical vortices have been limited to material ionization threshold. This limitation might be removed by using the plasma medium. Here in this paper, we propose the design of suitably magnetized plasmas which, functioning as a q-plate, leads to a direct conversion from a high-intensity Gaussian beam into amore » twisted beam. A circularly polarized laser beam in the plasma accumulates an azimuthal-angle-dependent phase shift and hence forms a twisting wavefront. Our three-dimensional particle-in-cell simulations demonstrate extremely high-power conversion efficiency. The plasma q-plate can work in a large range of frequencies spanning from terahertz to the optical domain.« less
Gulyuz, K.; Ariche, J.; Bollen, G.; ...
2015-05-06
Experimental searches for neutrinoless double-β decay offer one of the best opportunities to look for physics beyond the standard model. Detecting this decay would confirm the Majorana nature of the neutrino, and a measurement of its half-life can be used to determine the absolute neutrino mass scale. Important to both tasks is an accurate knowledge of the Q value of the double-β decay. The LEBIT Penning trap mass spectrometer was used for the first direct experimental determination of the ⁹⁶Zr double-β decay Q value: Q ββ=3355.85(15) keV. This value is nearly 7 keV larger than the 2012 Atomic Mass Evaluationmore » [M. Wang et al., Chin. Phys. C 36, 1603 (2012)] value and one order of magnitude more precise. The 3-σ shift is primarily due to a more accurate measurement of the ⁹⁶Zr atomic mass: m(⁹⁶Zr)=95.90827735(17) u. Using the new Q value, the 2νββ-decay matrix element, |M 2ν|, is calculated. Improved determinations of the atomic masses of all other zirconium ( 90-92,94,96Zr) and molybdenum ( 92,94-98,100Mo) isotopes using both ¹²C₈ and ⁸⁷Rb as references are also reported.« less
Reciprocal Efficiency of RNQ1 and Polyglutamine Detoxification in the Cytosol and Nucleus
Douglas, Peter M.; Summers, Daniel W.; Ren, Hong-Yu
2009-01-01
Onset of proteotoxicity is linked to change in the subcellular location of proteins that cause misfolding diseases. Yet, factors that drive changes in disease protein localization and the impact of residence in new surroundings on proteotoxicity are not entirely clear. To address these issues, we examined aspects of proteotoxicity caused by Rnq1-green fluorescent protein (GFP) and a huntingtin's protein exon-1 fragment with an expanded polyglutamine tract (Htt-103Q), which is dependent upon the intracellular presence of [RNQ+] prions. Increasing heat-shock protein 40 chaperone activity before Rnq1-GFP expression, shifted Rnq1-GFP aggregation from the cytosol to the nucleus. Assembly of Rnq1-GFP into benign amyloid-like aggregates was more efficient in the nucleus than cytosol and nuclear accumulation of Rnq1-GFP correlated with reduced toxicity. [RNQ+] prions were found to form stable complexes with Htt-103Q, and nuclear Rnq1-GFP aggregates were capable of sequestering Htt-103Q in the nucleus. On accumulation in the nucleus, conversion of Htt-103Q into SDS-resistant aggregates was dramatically reduced and Htt-103Q toxicity was exacerbated. Alterations in activity of molecular chaperones, the localization of intracellular interaction partners, or both can impact the cellular location of disease proteins. This, in turn, impacts proteotoxicity because the assembly of proteins to a benign state occurs with different efficiencies in the cytosol and nucleus. PMID:19656852
Q fever in the Southern California desert: epidemiology, clinical presentation and treatment.
Cone, Lawrence A; Curry, Noel; Shaver, Phillip; Brooks, David; DeForge, James; Potts, Barbara E
2006-07-01
Despite the absence of a natural reservoir for Q fever in the desert of Southern California, six cases have been identified during the past 32 years. During that period of time, two areas have been used by northern sheep ranchers from Idaho and Wyoming to import sheep to an area in the Coachella Valley through 1985. Thereafter, because of housing development, the sheep area was moved to Blythe along the Colorado River. All but two of these patients probably acquired infection by Coxiella burnetii by living or working in close proximity to these grazing areas but not directly involved with the sheep. The shift of infected patients from the Coachella Valley to Blythe (100 miles distant) seems to support that supposition. All patients with acute Q fever developed antibodies primarily to phase II antigen, whereas the only person with chronic Q fever developed phase I antibodies. All patients presented with granulomatous hepatitis. One also had a pulmonary infiltrate, and the single individual with chronic Q fever also had a mitral valve prosthesis, although echocardiography could not define endocarditis. All patients with acute infections responded to 3-5 weeks of therapy with doxycycline, whereas the patient with chronic disease failed 3 years of therapy with combination regimens. Further studies at the Eisenhower Medical Center on the prevalence of infection in Blythe, CA, and elsewhere are anticipated.
Simonic, I; Gericke, G S; Ott, J; Weber, J L
1998-01-01
Because gene-mapping efforts, using large kindreds and parametric methods of analysis, for the neurologic disorder Tourette syndrome have failed, efforts are being redirected toward association studies in young, genetically isolated populations. The availability of dense marker maps makes it feasible to search for association throughout the entire genome. We report the results of such a genome scan using DNA samples from Tourette patients and unaffected control subjects from the South African Afrikaner population. To optimize mapping efficiency, we chose a two-step strategy. First, we screened pools of DNA samples from both affected and control individuals, using a dense collection of 1,167 short tandem-repeat polymorphisms distributed throughout the genome. Second, we typed those markers displaying evidence of allele frequency-distribution shifts, along with additional tightly linked markers, using DNA from each affected and unaffected individual. To reduce false positives, we tested two independent groups of case and control subjects. Strongest evidence for association (P values 10-2 to 10-5) were obtained for markers within chromosomal regions encompassing D2S1790 near the chromosome 2 centromere, D6S477 on distal 6p, D8S257 on 8q, D11S933 on 11q, D14S1003 on proximal 14q, D20S1085 on distal 20q, and D21S1252 on 21q. PMID:9718333
Simonic, I; Gericke, G S; Ott, J; Weber, J L
1998-09-01
Because gene-mapping efforts, using large kindreds and parametric methods of analysis, for the neurologic disorder Tourette syndrome have failed, efforts are being redirected toward association studies in young, genetically isolated populations. The availability of dense marker maps makes it feasible to search for association throughout the entire genome. We report the results of such a genome scan using DNA samples from Tourette patients and unaffected control subjects from the South African Afrikaner population. To optimize mapping efficiency, we chose a two-step strategy. First, we screened pools of DNA samples from both affected and control individuals, using a dense collection of 1,167 short tandem-repeat polymorphisms distributed throughout the genome. Second, we typed those markers displaying evidence of allele frequency-distribution shifts, along with additional tightly linked markers, using DNA from each affected and unaffected individual. To reduce false positives, we tested two independent groups of case and control subjects. Strongest evidence for association (P values 10-2 to 10-5) were obtained for markers within chromosomal regions encompassing D2S1790 near the chromosome 2 centromere, D6S477 on distal 6p, D8S257 on 8q, D11S933 on 11q, D14S1003 on proximal 14q, D20S1085 on distal 20q, and D21S1252 on 21q.
NASA Astrophysics Data System (ADS)
Zare, Hamid R.; Jahangiri-Dehaghani, Fahime; Shekari, Zahra; Benvidi, Ali
2016-07-01
By immobilizing of quercetin at the surface of a glassy carbon electrode modified with silver nanoparticles and graphene nanosheets (Q-AgNPs-GNs-GCE) a new sensor has been fabricated. The cyclic voltammogram of Q-AgNPs-GNs-GCE shows a stable redox couple with surface confined characteristics. Q-AgNPs-GNs-GCE demonstrated a high catalytic activity for L-Cysteine (L-Cys) oxidation. Results indicated that L-Cys peak potential at Q-AgNPs-GNs-GCE shifted to less positive values compared to GNs-GCE or AgNPs-GCE. Also, the kinetic parameters such as the electron transfer coefficient,, and the heterogeneous electron transfer rate constant, k‧, for the oxidation of L-Cys at the Q-AgNPs-GNs-GCE surface were estimated. In differential pulse voltammetric determination, the detection limit of L-Cys was obtained 0.28 μM, and the calibration plots were linear within two ranges of 0.9-12.4 μM and 12.4-538.5 μM of L-Cys. Also, the proposed modified electrode is used for the simultaneous determinations of ascorbic acid (AA), uric acid (UA), and L-Cys. Finally, this study has demonstrated the practical analytical utility of the sensor for determination of AA in vitamin C tablet, L-Cys in a milk sample and UA in a human urine sample.
Multinuclear (27Al, 29Si, 47,49Ti) solid-state NMR of titanium substituted zeolite USY.
Ganapathy, S; Gore, K U; Kumar, Rajiv; Amoureux, Jean-Paul
2003-01-01
Multinuclear solid-state NMR spectroscopy, employing 29Si MAS,27Al MAS/3Q-MAS and (47,49)Ti wide-line experiments, has been used for the structural characterization of titanium substituted ultra-stable zeolite Y (Ti-USY). 27Al MAS experiments show the presence of aluminum in four (Al(IV)), five (Al(V)), and six (Al(VI)) coordination, whereas the multiplicity within Al(IV) and Al(VI) is revealed by 27Al 3Q-MAS experiments. Two different tetrahedral and octahedral Al environments are resolved and their isotropic chemical shifts (delta(CS)) and second-order quadrupole interaction parameters (P(Q)) have been determined by a graphical analysis of the 3Q-MAS spectra. The emergence of signal with higher intensity at -101 ppm in the 29Si MAS spectrum of Ti-USY samples indicates the possible occurrence of Q4(3Si,1Ti) type silicon environments due to titanium substitution in the faujasite framework. High-field (11.74T) operation, using a probehead specially designed to handle a large sample volume, has enabled the acquisition of 47,49Ti static spectra and identification of the titanium environment in the zeolite. The chemical shielding and electric field gradient tensors for the titanium environment in the zeolite have been determined by a computer simulation of the quadrupolar broadened static 47,49Ti NMR spectra.
Apex-angle-dependent resonances in triangular split-ring resonators
NASA Astrophysics Data System (ADS)
Burnett, Max A.; Fiddy, Michael A.
2016-02-01
Along with other frequency selective structures (Pendry et al. in IEEE Trans Microw Theory Tech 47(11):2075-2084, 1999) (circles and squares), triangular split-ring resonators (TSRRs) only allow frequencies near the center resonant frequency to propagate. Further, TSRRs are attractive due to their small surface area (Vidhyalakshmi et al. in Stopband characteristics of complementary triangular split ring resonator loaded microstrip line, 2011), comparatively, and large quality factors ( Q) as previously investigated by Gay-Balmaz et al. (J Appl Phys 92(5):2929-2936, 2002). In this work, we examine the effects of varying the apex angle on the resonant frequency, the Q factor, and the phase shift imparted by the TSRR element within the GHz frequency regime.
Stepwise Bose-Einstein Condensation in a Spinor Gas.
Frapolli, C; Zibold, T; Invernizzi, A; Jiménez-García, K; Dalibard, J; Gerbier, F
2017-08-04
We observe multistep condensation of sodium atoms with spin F=1, where the different Zeeman components m_{F}=0,±1 condense sequentially as the temperature decreases. The precise sequence changes drastically depending on the magnetization m_{z} and on the quadratic Zeeman energy q (QZE) in an applied magnetic field. For large QZE, the overall structure of the phase diagram is the same as for an ideal spin-1 gas, although the precise locations of the phase boundaries are significantly shifted by interactions. For small QZE, antiferromagnetic interactions qualitatively change the phase diagram with respect to the ideal case, leading, for instance, to condensation in m_{F}=±1, a phenomenon that cannot occur for an ideal gas with q>0.
Q-band 4-state phase shifter in planar technology: Circuit design and performance analysis.
Villa, E; Cagigas, J; Aja, B; de la Fuente, L; Artal, E
2016-09-01
A 30% bandwidth phase shifter with four phase states is designed to be integrated in a radio astronomy receiver. The circuit has two 90° out-of-phase microwave phase-shifting branches which are combined by Wilkinson power dividers. Each branch is composed of a 180° phase shifter and a band-pass filter. The 180° phase shifter is made of cascaded hybrid rings with microwave PIN diodes as switching devices. The 90° phase shift is achieved with the two band-pass filters. Experimental characterization has shown significant results, with average phase shift values of -90.7°, -181.7°, and 88.5° within the operation band, 35-47 GHz, and mean insertion loss of 7.4 dB. The performance of its integration in a polarimetric receiver for radio astronomy is analyzed, which validates the use of the presented phase shifter in such type of receiver.
NASA Astrophysics Data System (ADS)
Jiang, C.; Christensen-Dalsgaard, J.; Cunha, M.
2018-03-01
Mixed modes have been extensively observed in post-main-sequence stars by the Kepler and CoRoT space missions. The mixture of the p and g modes can be measured by the dimensionless coefficient q, the so-called coupling strength factor. In this paper, we discuss the utility of the phase shifts θ from the eigenvalue condition for mixed modes as a tool to characterize dipolar mixed modes from the theoretical as well as the practical point of view. Unlike the coupling strength, whose variation in a given star is very small over the relevant frequency range, the phase shifts vary significantly for different modes. The analysis in terms of θ can also provide a better understanding of the pressure and gravity radial order for a given mixed mode. Observed frequencies of the Kepler red-giant star KIC 3744043 are used to test the method. The results are very promising.
Monte Carlo calculations of electron beam quality conversion factors for several ion chamber types.
Muir, B R; Rogers, D W O
2014-11-01
To provide a comprehensive investigation of electron beam reference dosimetry using Monte Carlo simulations of the response of 10 plane-parallel and 18 cylindrical ion chamber types. Specific emphasis is placed on the determination of the optimal shift of the chambers' effective point of measurement (EPOM) and beam quality conversion factors. The EGSnrc system is used for calculations of the absorbed dose to gas in ion chamber models and the absorbed dose to water as a function of depth in a water phantom on which cobalt-60 and several electron beam source models are incident. The optimal EPOM shifts of the ion chambers are determined by comparing calculations of R50 converted from I50 (calculated using ion chamber simulations in phantom) to R50 calculated using simulations of the absorbed dose to water vs depth in water. Beam quality conversion factors are determined as the calculated ratio of the absorbed dose to water to the absorbed dose to air in the ion chamber at the reference depth in a cobalt-60 beam to that in electron beams. For most plane-parallel chambers, the optimal EPOM shift is inside of the active cavity but different from the shift determined with water-equivalent scaling of the front window of the chamber. These optimal shifts for plane-parallel chambers also reduce the scatter of beam quality conversion factors, kQ, as a function of R50. The optimal shift of cylindrical chambers is found to be less than the 0.5 rcav recommended by current dosimetry protocols. In most cases, the values of the optimal shift are close to 0.3 rcav. Values of kecal are calculated and compared to those from the TG-51 protocol and differences are explained using accurate individual correction factors for a subset of ion chambers investigated. High-precision fits to beam quality conversion factors normalized to unity in a beam with R50 = 7.5 cm (kQ (')) are provided. These factors avoid the use of gradient correction factors as used in the TG-51 protocol although a chamber dependent optimal shift in the EPOM is required when using plane-parallel chambers while no shift is needed with cylindrical chambers. The sensitivity of these results to parameters used to model the ion chambers is discussed and the uncertainty related to the practical use of these results is evaluated. These results will prove useful as electron beam reference dosimetry protocols are being updated. The analysis of this work indicates that cylindrical ion chambers may be appropriate for use in low-energy electron beams but measurements are required to characterize their use in these beams.
A Surrogate for Debye-Waller Factors from Dynamic Stokes Shifts
Zhong, Qin; Johnson, Jerainne; Aamer, Khaled A.; Tyagi, Madhusudan
2011-01-01
We show that the short-time behavior of time-resolved fluorescence Stokes shifts (TRSS) are similar to that of the intermediate scattering function obtained from neutron scattering at q near the peak in the static structure factor for glycerol. This allows us to extract a Debye-Waller (DW) factor analog from TRSS data at times as short as 1 ps in a relatively simple way. Using the time-domain relaxation data obtained by this method we show that DW factors evaluated at times ≥ 40 ps can be directly influenced by α relaxation and thus should be used with caution when evaluating relationships between fast and slow dynamics in glassforming systems. PMID:21701673
Quadrature-Quadrature Phase Shift Keying.
1986-09-01
SECURITY CLASSIFICATION OF -IS PAfr All other editions are obsolete ’r- Ac P..N -N- %.. .. V . .. b . h S Debabrata Saha 1986 All Rights Reserved...1.2/T T~,pe of AISA Q -PSK AMSK 0 Y(IitIo ?6 orthogonal Four -level F, J." 1i 1/ 2 H13.4 a H P6 E 44 3.5 Modulator Demodulator and Synchronization
Passivation on High Q Acoustic Strain Sensor for Accelerometer.
1984-11-01
selection of passivation layers. Preliminary results indicated that V203 , (yttrium oxide ) and AIN (aluminum nitride) were the best materials for...thickness selection of passivation layers. Preliminary results indicated that Y203 (yttrium oxide ) and AIN (aluminum nitride) were the best materials...crystal, in this case a parabolic temperature characteristic. Several circuits were designed using varactor diode phase shifting networks. FOjcTl Ta tor
Can Concentration - Discharge Relationships Diagnose Material Source During Extreme Events?
NASA Astrophysics Data System (ADS)
Karwan, D. L.; Godsey, S.; Rose, L.
2017-12-01
Floods can carry >90% of the basin material exported in a given year as well as alter flow pathways and material sources. In turn, sediment and solute fluxes can increase flood damages and negatively impact water quality and integrate physical and chemical weathering of landscapes and channels. Concentration-discharge (C-Q) relationships are used to both describe export patterns as well as compute them. Metrics for describing C-Q patterns and inferring their controls are vulnerable to infrequent sampling that affects how C-Q relationships are interpolated and interpreted. C-Q relationships are typically evaluated from multiple samples, but because hydrological extremes are rare, data are often unavailable for extreme events. Because solute and sediment C-Q relationships likely respond to changes in hydrologic extremes in different ways, there is a pressing need to define their behavior under extreme conditions, including how to properly sample to capture these patterns. In the absence of such knowledge, improving load estimates in extreme floods will likely remain difficult. Here we explore the use of C-Q relationships to determine when an event alters a watershed system such that it enters a new material source/transport regime. We focus on watersheds with sediment and discharge time series include low-frequency and/or extreme events. For example, we compare solute and sediment patterns in White Clay Creek in southeastern Pennsylvania across a range of flows inclusive of multiple hurricanes for which we have ample ancillary hydrochemical data. TSS is consistently mobilized during high flow events, even during extreme floods associated with hurricanes, and sediment fingerprinting indicates different sediment sources, including in-channel remobilization and landscape erosion, are active at different times. In other words, TSS mobilization in C-Q space is not sensitive to the source of material being mobilized. Unlike sediments, weathering solutes in this watershed tend to exhibit a relatively chemostatic C-Q pattern, except during the runoff-dominated Hurricane Irene, when they exhibit a diluting C-Q pattern. Finally, we summarize the vulnerability of these observations to shifts in sampling effort to highlight the utility and limitations of C-Q-derived export patterns.
Standard Model in multiscale theories and observational constraints
NASA Astrophysics Data System (ADS)
Calcagni, Gianluca; Nardelli, Giuseppe; Rodríguez-Fernández, David
2016-08-01
We construct and analyze the Standard Model of electroweak and strong interactions in multiscale spacetimes with (i) weighted derivatives and (ii) q -derivatives. Both theories can be formulated in two different frames, called fractional and integer picture. By definition, the fractional picture is where physical predictions should be made. (i) In the theory with weighted derivatives, it is shown that gauge invariance and the requirement of having constant masses in all reference frames make the Standard Model in the integer picture indistinguishable from the ordinary one. Experiments involving only weak and strong forces are insensitive to a change of spacetime dimensionality also in the fractional picture, and only the electromagnetic and gravitational sectors can break the degeneracy. For the simplest multiscale measures with only one characteristic time, length and energy scale t*, ℓ* and E*, we compute the Lamb shift in the hydrogen atom and constrain the multiscale correction to the ordinary result, getting the absolute upper bound t*<10-23 s . For the natural choice α0=1 /2 of the fractional exponent in the measure, this bound is strengthened to t*<10-29 s , corresponding to ℓ*<10-20 m and E*>28 TeV . Stronger bounds are obtained from the measurement of the fine-structure constant. (ii) In the theory with q -derivatives, considering the muon decay rate and the Lamb shift in light atoms, we obtain the independent absolute upper bounds t*<10-13 s and E*>35 MeV . For α0=1 /2 , the Lamb shift alone yields t*<10-27 s , ℓ*<10-19 m and E*>450 GeV .
NASA Astrophysics Data System (ADS)
Bhyrappa, P.; Sankar, M.
2018-01-01
A series of mixed β-octasubstituted Zn(II)-porphyrins, 2,3,12,13-tetra(chloro/cyano/methyl)-5,7,8,10,15,17,18,20-octaphenylporphinato zinc(II), ZnTPP(Ph)4X4 (X = CN, Cl and CH3) have been examined by electronic absorption spectroscopy in various solvents. These Zn(II)-porphyrins exhibited varying degree of red-shift of absorption bands as high as 20-30 nm in 'B' band and 50-60 nm in longest wavelength band, 'Q(0,0)' band in polar solvents relative to that found in nonpolar solvents. The red-shift of B and Q(0,0) bands showed an unusual trend, ZnTPP(Ph)4(CN)4 > ZnTPP(Ph)4(CH3)4 > ZnTPP(Ph)4Cl4 but fails to follow an anticipated anodic shift in first porphyrin ring oxidation (vs Ag/AgCl) potential: ZnTPP(Ph)4(CN)4 (1.02 V) > ZnTPP(Ph)4Cl4 (0.74 V) > ZnTPP(Ph)4(CH3)4 (0.38 V). Such a trend suggests the combined effect of non-planarity of the macrocycle and electronic effect of the peripheral substituents. The equilibrium constants for the binding of nitrogenous bases with the Zn(II)-porphyrins showed as high as twenty fold increase for ZnTPP(Ph)4X4 (X = Br and CN) relative to ZnTPP(Ph)4(CH3)4 and follow the order: ZnTPP(Ph)4(CN)4 > ZnTPP(Ph)4Br4 > ZnTPP(Ph)4(CH3)4 ≤ ZnTPP which is approximately in line with an increase in anodic shift of their first ring redox potentials (ZnTPP(Ph)4(CN)4 (1.02 V) > ZnTPP(Ph)4Br4 (0.72 V) > ZnTPP (0.84 V) > ZnTPP(Ph)4(CH3)4) (0.38 V).
Cleaning procedure for improved photothermal background of toroidal optical microresonators
NASA Astrophysics Data System (ADS)
Horak, Erik H.; Knapper, Kassandra A.; Heylman, Kevin D.; Goldsmith, Randall H.
2016-09-01
High Q-factors and small mode volumes have made toroidal optical microresonators exquisite sensors to small shifts in the effective refractive index of the WGM modes. Eliminating contaminants and improving quality factors is key for many different sensing techniques, and is particularly important for photothermal imaging as contaminants add photothermal background obscuring objects of interest. Several different cleaning procedures including wet- and dry-chemical procedures are tested for their effect on Q-factors and photothermal background. RCA cleaning was shown to be successful in contrast to previously described acid cleaning procedures, most likely due to the different surface reactivity of the acid reagents used. UV-ozone cleaning was shown to be vastly superior to O2 plasma cleaning procedures, significantly reducing the photothermal background of the resonator.
Localized Plasmon resonance in metal nanoparticles using Mie theory
NASA Astrophysics Data System (ADS)
Duque, J. S.; Blandón, J. S.; Riascos, H.
2017-06-01
In this work, scattering light by colloidal metal nanoparticles with spherical shape was studied. Optical properties such as diffusion efficiencies of extinction and absorption Q ext and Q abs were calculated using Mie theory. We employed a MATLAB program to calculate the Mie efficiencies and the radial dependence of electric field intensities emitted for colloidal metal nanoparticles (MNPs). By UV-Vis spectroscopy we have determined the LSPR for Cu nanoparticles (CuNPs), Ni nanoparticles (NiNPs) and Co nanoparticles (CoNPs) grown by laser ablation technique. The peaks of resonances appear in 590nm, 384nm and 350nm for CuNPs, NiNPs and CoNPs respectively suspended in water. Changing the medium to acetone and ethanol we observed a shift of the resonance peaks, these values agreed with our simulations results.
NASA Astrophysics Data System (ADS)
Lackenby, B. G. C.; Flambaum, V. V.
2018-07-01
We introduce the weak quadrupole moment (WQM) of nuclei, related to the quadrupole distribution of the weak charge in the nucleus. The WQM produces a tensor weak interaction between the nucleus and electrons and can be observed in atomic and molecular experiments measuring parity nonconservation. The dominating contribution to the weak quadrupole is given by the quadrupole moment of the neutron distribution, therefore, corresponding experiments should allow one to measure the neutron quadrupoles. Using the deformed oscillator model and the Schmidt model we calculate the quadrupole distributions of neutrons, Q n , the WQMs, {Q}W(2), and the Lorentz invariance violating energy shifts in 9Be, 21Ne, 27Al, 131Xe, 133Cs, 151Eu, 153Eu, 163Dy, 167Er, 173Yb, 177Hf, 179Hf, 181Ta, 201Hg and 229Th.
Photoinduced Charge Transport Spectra for Porphyrin and Naphthalene Derivative-based Dendrimers
NASA Astrophysics Data System (ADS)
Park, J. H.; Wu, Y.; Parquette, J. R.; Epstein, A. J.
2006-03-01
Dendrimers are important chemical structures for harvesting charge. We prepared model dendrimers using two porphyrin derivatives and a naphthalene derivative. Films of these porphyrin derivatives have a strong Soret band (˜430nm) and four significant Q-bands; the naphthalene derivative has strong absorption at 365 and 383nm. Two kinds of photovoltaic cell structures [ITO/BaytronP/(thick or thin) dendrimer/Al] are constructed to investigate the optical response spectra of dendrimers under electric potential(V) on the cell (range from -1V to 2V). To obtain pure optical responses, incident light is modulated with an optical chopper and a lock-in amplifier is used to measure current (IAC) and phase (θ). For the excitation of the Soret band, IAC and θ do not change substantially with change of sign and amplitude of V. For Q-bands and naphthalene absorption bands, θ nearly follows the polarity of V on the cells and IAC is linear with V. Hence, IAC is nearly ohmic for Q- band although there are shifts due to built-in-potential. IAC for Soret band is almost same for thick and thin active layer cells. In contrast, IAC increases with thickness increase for Q bands. Mechanisms of photogeneration and charge transport will be discussed.
Brouwers, M H; Bor, H; Laan, R; van Weel, C; van Weel-Baumgarten, E
2018-05-07
Breaking bad news (BBN) should be trained, preferably early and following a helical model with multiple sessions over time, including feedback on performance. It's unclear how medical students evaluate such an approach. We gathered student opinions regarding a helical BBN training programme, the feedback and emotional support they received, and the applicability of the skills training immediately after BBN skills training (Q1) and after finishing their clinical clerkships (Q2). Students find a helical curriculum useful, but this declines on follow-up. At Q2 students report less satisfaction with the amount of feedback and emotional support they received and report that the skills training was less applicable in clinical practice compared to what they reported at Q1. A helical BBN training programme with early exposure seems to lead to a shift from students being unconsciously incompetent to consciously incompetent. Students would have appreciated more emotional support and feedback. We recommend more feedback and emotional support after BBN during clerkships. The gap between classroom and practice can be diminished by emphasizing real life role play and clinical role models should demonstrate continuity and agreement between the skills that are taught and those that are used in clinical practice. Copyright © 2018 Elsevier B.V. All rights reserved.
Ceccon, Alberto; Schmidt, Thomas; Tugarinov, Vitali; Kotler, Samuel A; Schwieters, Charles D; Clore, G Marius
2018-05-23
Lipid-based micellar nanoparticles promote aggregation of huntingtin exon-1 peptides. Here we characterize the interaction of two such peptides, htt NT Q 7 and htt NT Q 10 comprising the N-terminal amphiphilic domain of huntingtin followed by 7 and 10 glutamine repeats, respectively, with 8 nm lipid micelles using NMR chemical exchange saturation transfer (CEST), circular dichroism and pulsed Q-band EPR. Exchange between free and micelle-bound htt NT Q n peptides occurs on the millisecond time scale with a K D ∼ 0.5-1 mM. Upon binding micelles, residues 1-15 adopt a helical conformation. Oxidation of Met 7 to a sulfoxide reduces the binding affinity for micelles ∼3-4-fold and increases the length of the helix by a further two residues. A structure of the bound monomer unit is calculated from the backbone chemical shifts of the micelle-bound state obtained from CEST. Pulsed Q-band EPR shows that a monomer-dimer equilibrium exists on the surface of the micelles and that the two helices of the dimer adopt a parallel orientation, thereby bringing two disordered polyQ tails into close proximity which may promote aggregation upon dissociation from the micelle surface.
Lifetime measurement of high spin states in (75) Kr
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheikh, Javid; Trivedi, T.; Maurya, K.
2010-01-01
The lifetimes of high spin states of {sup 75}Kr have been determined via {sup 50}Cr ({sup 28}Si, 2pn) {sup 75}Kr reaction in positive parity band using the Doppler-shift attenuation method. The transition quadrupole moments Q deduced from lifetime measurements have been compared with {sup 75}Br. Experimental results obtained from lifetime measurement are interpreted in the framework of projected shell model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamm, Peter; Fanourgakis, George S.; Xantheas, Sotiris S.
Nuclear quantum effects in liquid water have profound implications for several of its macroscopic properties related to structure, dynamics, spectroscopy and transport. Although several of water’s macroscopic properties can be reproduced by classical descriptions of the nuclei using potentials effectively parameterized for a narrow range of its phase diagram, a proper account of the nuclear quantum effects is required in order to ensure that the underlying molecular interactions are transferable across a wide temperature range covering different regions of that diagram. When performing an analysis of the hydrogen bonded structural networks in liquid water resulting from the classical (class.) andmore » quantum (q.m.) descriptions of the nuclei with the transferable, flexible, polarizable TTM3-F interaction potential, we found that the two results can be superimposed over the temperature range of T=270-350 K using a surprisingly simple, linear scaling of the two temperatures according to T(q.m.)=aT(class)- T , where a=1.2 and T=51 K. The linear scaling and constant shift of the temperature scale can be considered as a generalization of the previously reported temperature shifts (corresponding to structural changes and the melting T) induced by quantum effects in liquid water.« less
Diversified pulse generation from frequency shifted feedback Tm-doped fibre lasers.
Chen, He; Chen, Sheng-Ping; Jiang, Zong-Fu; Hou, Jing
2016-05-19
Pulsed fibre lasers operating in the eye-safe 2 μm spectral region have numerous potential applications in areas such as remote sensing, medicine, mid-infrared frequency conversion, and free-space communication. Here, for the first time, we demonstrate versatile 2 μm ps-ns pulses generation from Tm-based fibre lasers based on frequency shifted feedback and provide a comprehensive report of their special behaviors. The lasers are featured with elegant construction and the unparalleled capacity of generating versatile pulses. The self-starting mode-locking is initiated by an intra-cavity acousto-optical frequency shifter. Diversified mode-locked pulse dynamics were observed by altering the pump power, intra-cavity polarization state and cavity structure, including as short as 8 ps single pulse sequence, pulse bundle state and up to 12 nJ, 3 ns nanosecond rectangular pulse. A reflective nonlinear optical loop mirror was introduced to successfully shorten the pulses from 24 ps to 8 ps. Beside the mode-locking operation, flexible Q-switching and Q-switched mode-locking operation can also be readily achieved in the same cavity. Up to 78 μJ high energy nanosecond pulse can be generated in this regime. Several intriguing pulse dynamics are characterized and discussed.
A polygonal double-layer coil design for high-efficiency wireless power transfer
NASA Astrophysics Data System (ADS)
Mao, Shitong; Wang, Hao; Mao, Zhi-Hong; Sun, Mingui
2018-05-01
In this work, we present a novel coil structure for the design of Wireless Power Transfer (WPT) systems via magnetic resonant coupling. The new coil consists of two layers of flat polygonal windings in square, pentagonal and hexagonal shapes. The double-layer coil can be conveniently fabricated using the print circuit broad (PCB) technology. In our design, we include an angle between the two layers which can be adjusted to change the area of inter-layer overlap. This unique structure is thoroughly investigated with respect to the quality factor Q and the power transfer efficiency (PTE) using the finite element method (FEM). An equivalent circuit is derived and used to explain the properties of the angularly shifted double-layer coil theoretically. Comparative experiments are conducted from which the performance of the new coil is evaluated quantitatively. Our results have shown that an increased shift angle improves the Q-factor, and the optimal PTE is achieved when the angle reaches the maximum. When compared to the pentagonal and hexagonal coils, the square coil achieves the highest PTE due to its lowest parasitic capacitive effects. In summary, our new coil design improves the performance of WPT systems and allows a formal design procedure for optimization in a given application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, M.A.; Schenter, G.K.
We present a hybrid quantum mechanical/molecular mechanical (QM/MM) model for microscopic solvation effects that includes polarizability in the MM region (QM/MMpol). QM/MMpol treatment of both ground and excited states is presented in the formalism. We present QM/MMpol analysis of the ground and electronic excited states of the bacteriochlorophyll b dimer (P) of the photosynthetic reaction center (RC) of Rhodopseudomonas viridis using the INDO/S method. The static-charge potential from the MM model of the RC alone causes Q{sub y1} to have significantly better agreement with the Stark effect results than isolated P. However, consideration of the protein polarization potential is furthermore » required to obtain more complete agreement with Stark effect experiments. Thus, we calculate a Q{sub y1} transition energy at 10826 cm{sup -1} with a ground to excited state change in dipole moment of 4.8 D; an absorption Stark effect angle of 43{degree}; a net shift of 0.15 electrons from the L subunit to the M subunit of P; and a linear dichroism angle (between the transition moment of Q{sub y1} and the pseudo-C{sub 2} axis of the RC) of 81{degree}. These results are in good agreement with experiment. Interestingly, we find that net CT increase is greater for Q{sub y1} than for the second excited state of P (Q{sub y2}), a result that we anticipated in an early model dimer study. 77 refs., 3 figs., 2 tabs.« less
Boukhayma, Assim; Dupret, Antoine; Rostaing, Jean-Pierre; Enz, Christian
2016-03-03
This paper presents the first low noise complementary metal oxide semiconductor (CMOS) deletedCMOS terahertz (THz) imager based on source modulation and in-pixel high-Q filtering. The 31 × 31 focal plane array has been fully integrated in a 0 . 13 μ m standard CMOS process. The sensitivity has been improved significantly by modulating the active THz source that lights the scene and performing on-chip high-Q filtering. Each pixel encompass a broadband bow tie antenna coupled to an N-type metal-oxide-semiconductor (NMOS) detector that shifts the THz radiation, a low noise adjustable gain amplifier and a high-Q filter centered at the modulation frequency. The filter is based on a passive switched-capacitor (SC) N-path filter combined with a continuous-time broad-band Gm-C filter. A simplified analysis that helps in designing and tuning the passive SC N-path filter is provided. The characterization of the readout chain shows that a Q factor of 100 has been achieved for the filter with a good matching between the analytical calculation and the measurement results. An input-referred noise of 0 . 2 μ V RMS has been measured. Characterization of the chip with different THz wavelengths confirms the broadband feature of the antenna and shows that this THz imager reaches a total noise equivalent power of 0 . 6 nW at 270 GHz and 0 . 8 nW at 600 GHz.
Boukhayma, Assim; Dupret, Antoine; Rostaing, Jean-Pierre; Enz, Christian
2016-01-01
This paper presents the first low noise complementary metal oxide semiconductor (CMOS) terahertz (THz) imager based on source modulation and in-pixel high-Q filtering. The 31×31 focal plane array has been fully integrated in a 0.13μm standard CMOS process. The sensitivity has been improved significantly by modulating the active THz source that lights the scene and performing on-chip high-Q filtering. Each pixel encompass a broadband bow tie antenna coupled to an N-type metal-oxide-semiconductor (NMOS) detector that shifts the THz radiation, a low noise adjustable gain amplifier and a high-Q filter centered at the modulation frequency. The filter is based on a passive switched-capacitor (SC) N-path filter combined with a continuous-time broad-band Gm-C filter. A simplified analysis that helps in designing and tuning the passive SC N-path filter is provided. The characterization of the readout chain shows that a Q factor of 100 has been achieved for the filter with a good matching between the analytical calculation and the measurement results. An input-referred noise of 0.2μV RMS has been measured. Characterization of the chip with different THz wavelengths confirms the broadband feature of the antenna and shows that this THz imager reaches a total noise equivalent power of 0.6 nW at 270 GHz and 0.8 nW at 600 GHz. PMID:26950131
Carbon Dioxide Line Shapes for Atmospheric Remote Sensing
NASA Astrophysics Data System (ADS)
Predoi-Cross, Adriana; Ibrahim, Amr; Wismath, Alice; Teillet, Philippe M.; Devi, V. Malathy; Benner, D. Chris; Billinghurst, Brant
2010-02-01
We present a detailed spectroscopic study of carbon dioxide in support of atmospheric remote sensing. We have studied two weak absorption bands near the strong ν2 band that is used to derive atmospheric temperature profiles. We have analyzed our laboratory spectra recorded with the synchrotron and globar sources with spectral line profiles that reproduce the absorption features with high accuracy. The Q-branch transitions exhibited asymmetric line shape due to weak line-mixing. For these weak transitions, we have retrieved accurate experimental line strengths, self- and air-broadening, self- and air-induced shift coefficients and weak line mixing parameters. The experimental precision is sufficient to reveal inherent variations of the width and shift coefficients according to transition quantum numbers.
Size Effect of the 2-D Bodies on the Geothermal Gradient and Q-A Plot
NASA Astrophysics Data System (ADS)
Thakur, M.; Blackwell, D. D.
2009-12-01
Using numerical models we have investigated some of the criticisms on the Q-A plot of related to the effect of size of the body on the slope and reduced heat flow. The effects of horizontal conduction depend on the relative difference of radioactivity between the body and the country rock (assuming constant thermal conductivity). Horizontal heat transfer due to different 2-D bodies was numerically studied in order to quantify resulting temperature differences at the Moho and errors on the predication of Qr (reduced heat flow). Using the two end member distributions of radioactivity, the step model (thickness 10km) and exponential model, different 2-D models of horizontal scale (width) ranging from 10 -500 km were investigated. Increasing the horizontal size of the body tends to move observations closer towards the 1-D solution. A temperature difference of 50 oC is produced (for the step model) at Moho between models of width 10 km versus 500 km. In other words the 1-D solution effectively provides large scale averaging in terms of heat flow and temperature field in the lithosphere. For bodies’ ≤ 100 km wide the geotherms at shallower levels are affected, but at depth they converge and are 50 oC lower than that of the infinite plate model temperature. In case of 2-D bodies surface heat flow is decreased due to horizontal transfer of heat, which will shift the Q-A point vertically downward on the Q-A plot. The smaller the size of the body, the more will be the deviation from the 1-D solution and the more will be the movement of Q-A point downwards on a Q-A plot. On the Q-A plot, a limited points of bodies of different sizes with different radioactivity contrast (for the step and exponential model), exactly reproduce the reduced heat flow Qr. Thus the size of the body can affect the slope on a Q-A plot but Qr is not changed. Therefore, Qr ~ 32 mWm-2 obtained from the global terrain average Q-A plot represents the best estimate of stable continental mantle heat flow.
Revisiting the rotating call schedule in less than 80 hours per week.
Roses, Robert E; Foley, Paul J; Paulson, Emily C; Pray, Lori; Kelz, Rachel R; Williams, Noel N; Morris, Jon B
2009-01-01
The Accreditation Council for Graduate Medical Education (ACGME) work-hour restrictions have prompted many surgical training programs to adopt a night-float resident coverage system (NF). Dissatisfaction with NF prompted us to transition to a rotating junior resident call model (Q4) with 24-hour call shifts at the outset of the 2007-2008 academic year. We performed a prospective study to determine the influence of this transition on resident education, morale, and quality of life, as well as on ACGME work rule compliance and American Board of Surgery In-Training Examination (ABSITE) scores. Residents were surveyed after 1 year of NF and again 1 year after the introduction of Q4. Responses to a series of statements about the influence of the call model (NF or Q4) on educational opportunities and morale were solicited. The survey used a 5-point Likert response scale (1 = complete disagreement to 5 = complete agreement). Median values of participant responses were calculated and compared using the Wilcoxon rank-sum test. Compliance with ACGME work rules, ABSITE scores, and operative case logs from the 2006-2007 and 2007-2008 academic years were also compared. Residents were significantly more enthusiastic about Q4 compared with NF, particularly when asked about the influence these systems had on morale (median response = 4.0 [Q4] compared with 2.0 [NF]; p = 0.001) and engagement of residents by the teaching faculty (median response = 4.0 [Q4] compared with 1.0 [NF]; p = 0.001). Case logs revealed a similar operative experience for first-year residents irrespective of the call schedule (p = 0.51). Excellent compliance with ACGME work rules was maintained as reflected by the percentage of monthly 80-hour violations per resident months worked (3% [Q4] compared with 0.7% [NF]). No difference was observed in the ABSITE scores of first-year residents (a mean percentile point increase of 1 was found after the introduction of Q4). Educational opportunities, compliance with ACGME work rules, and ABSITE scores can be preserved despite a transition from NF to Q4. Residents greatly prefer a rotating call schedule.
Tétreault, Marie-Philippe; Bourdin, Benoîte; Briot, Julie; Segura, Emilie; Lesage, Sylvie; Fiset, Céline; Parent, Lucie
2016-01-01
Alteration in the L-type current density is one aspect of the electrical remodeling observed in patients suffering from cardiac arrhythmias. Changes in channel function could result from variations in the protein biogenesis, stability, post-translational modification, and/or trafficking in any of the regulatory subunits forming cardiac L-type Ca2+ channel complexes. CaVα2δ1 is potentially the most heavily N-glycosylated subunit in the cardiac L-type CaV1.2 channel complex. Here, we show that enzymatic removal of N-glycans produced a 50-kDa shift in the mobility of cardiac and recombinant CaVα2δ1 proteins. This change was also observed upon simultaneous mutation of the 16 Asn sites. Nonetheless, the mutation of only 6/16 sites was sufficient to significantly 1) reduce the steady-state cell surface fluorescence of CaVα2δ1 as characterized by two-color flow cytometry assays and confocal imaging; 2) decrease protein stability estimated from cycloheximide chase assays; and 3) prevent the CaVα2δ1-mediated increase in the peak current density and voltage-dependent gating of CaV1.2. Reversing the N348Q and N812Q mutations in the non-operational sextuplet Asn mutant protein partially restored CaVα2δ1 function. Single mutation N663Q and double mutations N348Q/N468Q, N348Q/N812Q, and N468Q/N812Q decreased protein stability/synthesis and nearly abolished steady-state cell surface density of CaVα2δ1 as well as the CaVα2δ1-induced up-regulation of L-type currents. These results demonstrate that Asn-663 and to a lesser extent Asn-348, Asn-468, and Asn-812 contribute to protein stability/synthesis of CaVα2δ1, and furthermore that N-glycosylation of CaVα2δ1 is essential to produce functional L-type Ca2+ channels. PMID:26742847
Effects of relativity of RTEX in collisions of U sup q+ with light targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Mau Hsiung.
1990-11-07
We have calculated the resonant transfer and excitation cross sections in collisions of U{sup q+} (q = 82, 89, 90) ion with H{sub 2}, He and C in impulse approximation using the multi-configuration Dirac-Fock method. The calculations were carried out in intermediate coupling with configuration interaction. The quantum electrodynamic and finite nuclear size corrections were included in the calculations of transition energies. The Auger rates were calculated including the contributions from Coulomb as well as the transverse Breit interactions. For U{sup 89+} and U{sup 90+}, effects of relatively not only shift the peak positions but also change the peak structure.more » The total dielectronic recombination strength has been found to increase by 50% due to the effects of relativity. The present theoretical RTEX cross sections for U{sup 90+} in hydrogen agree well with experiment. For U{sup 82+}, Breit interaction had been found to have little effect on the RTEX cross sections involving L-shell excitation. However, the spin-orbit interaction can still make significant change in the peak structure. 24 refs., 4 figs.« less
Shimizu, Soji; Zhu, Hua; Kobayashi, Nagao
2010-09-24
Mixed-condensation reaction of 1,8-naphthalenedicarbonitrile and a 4,5-disubstituted phthalonitrile provided a series of phthalocyanine (Pc) analogues with azaphenalene (AP) moieties in place of the isoindole moieties. Monosubstituted species, APPc, and the two structural isomers of disubstituted species, adj-AP(2)Pc and opp-AP(2)Pc, were successfully isolated by gel-permeation chromatography on HPLC apparatus. Their structures were elucidated by (1)H NMR spectroscopy and X-ray crystallographic analysis. Replacement of the isoindole moieties with azaphenalene moieties created six-membered-ring units in the core and caused distortion of the molecular structures. The Q-band absorption shifted to the red upon an increase in the number of azaphenalene units; the shape of the absorption spectra depended on the molecular symmetries. APPc and opp-AP(2)Pc showed a large splitting of the Q band, whereas adj-AP(2)Pc exhibited a single broad Q band. These changes in the absorption spectra, as well as the unique electronic structures, are discussed in detail, based on magnetic circular dichroism spectra, electrochemical measurements, and density functional theory calculations.
Colloid-polymer mixtures under slit confinement
NASA Astrophysics Data System (ADS)
Pérez-Ramírez, Allan; Figueroa-Gerstenmaier, Susana; Odriozola, Gerardo
2017-03-01
We report a NVT molecular dynamic study of colloid-polymer mixtures under slit confinement. For this purpose, we are employing the Asakura-Oosawa model for studying colloidal particles, polymer coils, and hard walls as the external confining field. The colloid-polymer size ratio, q, is varied in the range 1 ⩾q ⩾0.4 and the confinement distance, H, in 10 σc ⩾H ⩾3 σc , σc being the colloidal diameter. Vapor-liquid coexistence properties are assessed, from which phase diagrams are built. The obtained data fulfill the corresponding states law for a constant H when q is varied. The shift of the polymer and colloidal chemical potentials of coexistence follows a linear relationship with (H-σc ) -1 for H ≳4 σc . The confined vapor-liquid interfaces can be fitted with a semicircular line of curvature (H-σc ) -1, from which the contact angle can be obtained. We observe complete wetting of the confining walls for reservoir polymer concentrations above and close to the critical value, and partial wetting for reservoir polymer concentrations above and far from it.
Black holes in multi-fractional and Lorentz-violating models
NASA Astrophysics Data System (ADS)
Calcagni, Gianluca; Rodríguez Fernández, David; Ronco, Michele
2017-05-01
We study static and radially symmetric black holes in the multi-fractional theories of gravity with q-derivatives and with weighted derivatives, frameworks where the spacetime dimension varies with the probed scale and geometry is characterized by at least one fundamental length ℓ _*. In the q-derivatives scenario, one finds a tiny shift of the event horizon. Schwarzschild black holes can present an additional ring singularity, not present in general relativity, whose radius is proportional to ℓ _*. In the multi-fractional theory with weighted derivatives, there is no such deformation, but non-trivial geometric features generate a cosmological-constant term, leading to a de Sitter-Schwarzschild black hole. For both scenarios, we compute the Hawking temperature and comment on the resulting black-hole thermodynamics. In the case with q-derivatives, black holes can be hotter than usual and possess an additional ring singularity, while in the case with weighted derivatives they have a de Sitter hair of purely geometric origin, which may lead to a solution of the cosmological constant problem similar to that in unimodular gravity. Finally, we compare our findings with other Lorentz-violating models.
Mariano, Margaret A; Tang, Kerri; Kurtz, Matthew; Kates, Wendy R
2015-08-01
22q11DS is a multiple anomaly syndrome involving intellectual and behavioral deficits, and increased risk for schizophrenia. As cognitive remediation (CR) has recently been found to improve cognition in younger patients with schizophrenia, we investigated the efficacy, feasibility, and fidelity of a remote, hybrid strategy, computerized CR program in youth with 22q11DS. A longitudinal design was implemented in which 21 participants served as their own controls. Following an eight month baseline period in which no interventions were provided, cognitive coaches met with participants remotely for CR via video conferencing three times a week over a targeted 8month timeframe and facilitated their progress through the intervention, offering task-specific strategies. A subset of strategies were examined for fidelity. Outcomes were evaluated using a neurocognitive test battery at baseline, pre-treatment and post-treatment. All participants adhered to the intervention. The mean length of the treatment phase was 7.96months. A moderately high correlation (intraclass correlation coefficient, 0.73) was found for amount and type of strategies offered by coaches. Participants exhibited significant improvements (ES=.36-.55, p≤.009) in working memory, shifting attention and cognitive flexibility. All significant models were driven by improvements in pre to post-treatment scores. Based on our preliminary investigation, a remote, hybrid strategy, computerized CR program can be implemented with 22q11DS youth despite geographic location, health, and cognitive deficits. It appears effective in enhancing cognitive skills during the developmental period of adolescence, making this type of CR delivery useful for youth with 22q11DS transitioning into post-school environments. Copyright © 2015 Elsevier B.V. All rights reserved.
Frontiñán-Rubio, Javier; Santiago-Mora, Raquel María; Nieva-Velasco, Consuelo María; Ferrín, Gustavo; Martínez-González, Alicia; Gómez, María Victoria; Moreno, María; Ariza, Julia; Lozano, Eva; Arjona-Gutiérrez, Jacinto; Gil-Agudo, Antonio; De la Mata, Manuel; Pesic, Milica; Peinado, Juan Ramón; Villalba, José M; Pérez-Romasanta, Luis; Pérez-García, Víctor M; Alcaín, Francisco J; Durán-Prado, Mario
2018-05-18
To investigate how the modulation of the oxidative balance affects cytotoxic therapies in glioblastoma, in vitro. Human glioblastoma U251 and T98 cells and normal astrocytes C8D1A were loaded with coenzyme Q10 (CoQ). Mitochondrial superoxide ion (O 2 - ) and H 2 O 2 were measured by fluorescence microscopy. OXPHOS performance was assessed in U251 cells with an oxytherm Clark-type electrode. Radio- and chemotherapy cytotoxicity was assessed by immunostaining of γH2AX (24 h), annexin V and nuclei morphology, at short (72 h) and long (15 d) time. Hif-1α, SOD1, SOD2 and NQO1 were determined by immunolabeling. Catalase activity was measured by classic enzymatic assay. Glutathione levels and total antioxidant capacity were quantified using commercial kits. CoQ did not affect oxygen consumption but reduced the level of O 2 - and H 2 O 2 while shifted to a pro-oxidant cell status mainly due to a decrease in catalase activity and SOD2 level. Hif-1α was dampened, echoed by a decrease lactate and several key metabolites involved in glutathione synthesis. CoQ-treated cells were twofold more sensitive than control to radiation-induced DNA damage and apoptosis in short and long-term clonogenic assays, potentiating TMZ-induced cytotoxicity, without affecting non-transformed astrocytes. CoQ acts as sensitizer for cytotoxic therapies, disarming GBM cells, but not normal astrocytes, against further pro-oxidant injuries, being potentially useful in clinical practice for this fatal pathology. Copyright © 2018 Elsevier B.V. All rights reserved.
Borgmästars, Emmy; Jazi, Mehrdad Mousavi; Persson, Sofia; Jansson, Linda; Rådström, Peter; Simonsson, Magnus; Hedman, Johannes; Eriksson, Ronnie
2017-12-01
Quantitative reverse transcriptase polymerase chain reaction (RT-qPCR) detection of waterborne RNA viruses generally requires concentration of large water volumes due to low virus levels. A common approach is to use dead-end ultrafiltration followed by precipitation with polyethylene glycol. However, this procedure often leads to the co-concentration of PCR inhibitors that impairs the limit of detection and causes false-negative results. Here, we applied the concept of pre-PCR processing to optimize RT-qPCR detection of norovirus genogroup I (GI), genogroup II (GII), and hepatitis A virus (HAV) in challenging water matrices. The RT-qPCR assay was improved by screening for an inhibitor-tolerant master mix and modifying the primers with twisted intercalating nucleic acid molecules. Additionally, a modified protocol based on chaotropic lysis buffer and magnetic silica bead nucleic acid extraction was developed for complex water matrices. A validation of the modified extraction protocol on surface and drinking waters was performed. At least a 26-fold improvement was seen in the most complex surface water studied. The modified protocol resulted in average recoveries of 33, 13, 8, and 4% for mengovirus, norovirus GI, GII, and HAV, respectively. The modified protocol also improved the limit of detection for norovirus GI and HAV. RT-qPCR inhibition with C q shifts of 1.6, 2.8, and 3.5 for norovirus GI, GII, and HAV, respectively, obtained for the standard nucleic acid extraction were completely eliminated by the modified protocol. The standard nucleic acid extraction method worked well on drinking water with no RT-qPCR inhibition observed and average recoveries of 80, 124, 89, and 32% for mengovirus, norovirus GI, GII, and HAV, respectively.
Kocolas, Irene; Day, Kristen; King, Marta; Stevenson, Adam; Sheng, Xiaoming; Hobson, Wendy; Bruse, Jaime; Bale, James
2017-03-01
The effects of 2011 Accreditation Council on Graduate Medical Education (ACGME) duty hour standards on intern work hours, patient load, conference attendance, and sleep have not been fully determined. We prospectively compared intern work hours, patient numbers, conference attendance, sleep duration, pattern, and quality in a 2011 ACGME duty hour-compliant shift schedule with a 2003 ACGME duty hour-compliant call schedule at a single pediatric residency program. Interns were assigned to shift or call schedules during 4 alternate months in the winter of 2010-2011. Work hours, patient numbers, conference attendance, sleep duration, pattern, and quality were tracked. Interns worked significantly fewer hours per week on day (73.2 hours) or night (71.6 hours) shifts than during q4 call (79.6 hours; P < .01). During high census months, shift schedule interns cared for significantly more patients/day (8.1/day shift vs 6.2/call; P < .001) and attended significantly fewer conferences than call schedule interns. Night shift interns slept more hours per 24-hour period than call schedule interns (7.2 ± 0.5 vs 6.3 ± 0.9 hours; P < .05) and had more consistent sleep patterns. A shift schedule resulted in reduced intern work hours and improved sleep duration and pattern. Although intern didactic conference attendance declined significantly during high census months, opportunities for experiential learning remained robust with unchanged or increased intern patient numbers. Copyright © 2016 Academic Pediatric Association. Published by Elsevier Inc. All rights reserved.
Factors affecting the appearance of the hump charge movement component in frog cut twitch fibers.
Hui, C S
1991-08-01
Charge movement was measured in frog cut twitch fibers with the double Vaseline gap technique. Five manipulations listed below were applied to investigate their effects on the hump component (I gamma) in the ON segments of TEST minus CONTROL current traces. When external Cl-1 was replaced by MeSO3- to eliminate Cl current, I gamma peaked earlier due to a few millivolts shift of the voltage dependence of I gamma kinetics in the negative direction. The Q-V plots in the TEA.Cl and TEA.MeSO3 solutions were well fitted by a sum of two Boltzmann distribution functions. The more steeply voltage-dependent component (Q gamma) had a V approximately 6 mV more negative in the TEA.MeSO3 solution than in the TEA.Cl solution. These voltage shifts were partially reversible. When creatine phosphate in the end pool solution was removed, the I gamma hump disappeared slowly over the course of 20-30 min, partly due to a suppression of Q gamma. The hump reappeared when creatine phosphate was restored. When 0.2-1.0 mM Cd2+ was added to the center pool solution to block inward Ca current, the I gamma hump became less prominent due to a prolongation in the time course of I gamma but not to a suppression of Q gamma. When the holding potential was changed from -90 to -120 mV, the amplitude of I beta was increased, thereby obscuring the I gamma hump. Finally, when a cut fiber was stimulated repetitively, I gamma lost its hump appearance because its time course was prolonged. In an extreme case, a 5-min resting interval was insufficient for a complete recovery of the waveform. In general, a stimulation rate of once per minute had a negligible effect on the shape of I gamma. Of the five manipulations, MeSO3- has the least perturbation on the appearance of I gamma and is potentially a better substitute for Cl- than SO2-(4) in eliminating Cl current if the appearance of the I gamma hump is to be preserved.
A generic method for evaluating crowding in the emergency department.
Eiset, Andreas Halgreen; Erlandsen, Mogens; Møllekær, Anders Brøns; Mackenhauer, Julie; Kirkegaard, Hans
2016-06-14
Crowding in the emergency department (ED) has been studied intensively using complicated non-generic methods that may prove difficult to implement in a clinical setting. This study sought to develop a generic method to describe and analyse crowding from measurements readily available in the ED and to test the developed method empirically in a clinical setting. We conceptualised a model with ED patient flow divided into separate queues identified by timestamps for predetermined events. With temporal resolution of 30 min, queue lengths were computed as Q(t + 1) = Q(t) + A(t) - D(t), with A(t) = number of arrivals, D(t) = number of departures and t = time interval. Maximum queue lengths for each shift of each day were found and risks of crowding computed. All tests were performed using non-parametric methods. The method was applied in the ED of Aarhus University Hospital, Denmark utilising an open cohort design with prospectively collected data from a one-year observation period. By employing the timestamps already assigned to the patients while in the ED, a generic queuing model can be computed from which crowding can be described and analysed in detail. Depending on availability of data, the model can be extended to include several queues increasing the level of information. When applying the method empirically, 41,693 patients were included. The studied ED had a high risk of bed occupancy rising above 100 % during day and evening shift, especially on weekdays. Further, a 'carry over' effect was shown between shifts and days. The presented method offers an easy and generic way to get detailed insight into the dynamics of crowding in an ED.
NASA Astrophysics Data System (ADS)
Koh, Eunjung; Song, Ha Jeong; Kwon, Na Young; Kim, Gi Won; Lee, Kwang Ho; Jo, Soyeon; Park, Sujin; Park, Jihyun; Park, Eun Kyeong; Hwang, Seung Yong
2017-06-01
Real time PCR is a standard method for identification of species. One of limitations of the qPCR is that there would be false-positive result due to mismatched hybridization between target sequence and probe depending on the annealing temperature in the PCR condition. As an alternative, fluorescence melting curve analysis (FMCA) could be applied for species identification. FMCA is based on a dual-labeled probe. Even with subtle difference of target sequence, there are visible melting temperature (Tm) shift. One of FMCA applications is distinguishing organisms distributed and consumed globally as popular food ingredients. Their prices are set by species or country of origin. However, counterfeiting or distributing them without any verification procedure are becoming social problems and threatening food safety. Besides distinguishing them in naked eye is very difficult and almost impossible in any processed form. Therefore, it is necessary to identify species in molecular level. In this research three species of squids which have 1-2 base pair differences each are selected as samples since they have the same issue. We designed a probe which perfectly matches with one species and the others mismatches 2 and 1 base pair respectively and labeled with fluorophore and quencher. In an experiment with a single probe, we successfully distinguished them by Tm shift depending on the difference of base pair. By combining FMCA and qPCR chip, smaller-scale assay with higher sensitivity and resolution could be possible, andc furthermore, enabling results analysis with smart phone would realize point-of-care testing (POCT).
Raman spectrum of methane in nitrogen, carbon dioxide, hydrogen, ethane, and propane environments
NASA Astrophysics Data System (ADS)
Petrov, D. V.
2018-02-01
Using binary CH4 - mixtures with varied concentrations of H2, N2, CO2, C2H6 and C3H8 and a fixed ambient pressure of 25 bar, the influence of the environment on spectral characteristics (Raman shift, half-width, peak intensity) of Q-branches of the ν1, ν2, ν3, and 2ν4 methane Raman bands are investigated. It is found that depending on the environment these bands demonstrate different changes in their Raman shifts and half-widths. It is shown that the ratios of peak intensities I(ν2)/I(ν1), I(ν3)/I(ν1) and I(2ν4)/I(ν1) are very sensitive to the environment. The Raman shifts and half-widths of CH4 bands are assumed to depend on the absolute concentration of molecules in the analyzed medium. The data obtained would be useful in Raman diagnostics of natural gas.
Cheng, Jingchi; Tang, Ming; Fu, Songnian; Shum, Perry Ping; Liu, Deming
2013-04-01
We show for the first time, to the best of our knowledge, that, in a coherent communication system that employs a phase-shift-keying signal and Raman amplification, besides the pump relative intensity noise (RIN) transfer to the amplitude, the signal's phase will also be affected by pump RIN through the pump-signal cross-phase modulation. Although the average pump power induced linear phase change can be compensated for by the phase-correction algorithm, a relative phase noise (RPN) parameter has been found to characterize pump RIN induced stochastic phase noise. This extra phase noise brings non-negligible system impairments in terms of the Q-factor penalty. The calculation shows that copumping leads to much more stringent requirements to pump RIN, and relatively larger fiber dispersion helps to suppress the RPN induced impairment. A higher-order phase-shift keying (PSK) signal is less tolerant to noise than a lower-order PSK.
Gough, Sheryl M; McDonald, Margaret; Chen, Xiao-Ning; Korenberg, Julie R; Neri, Antonino; Kahn, Tomas; Eccles, Michael R; Morris, Christine M
2003-01-01
Background Chromosome band 10q24 is a gene-rich domain and host to a number of cancer, developmental, and neurological genes. Recurring translocations, deletions and mutations involving this chromosome band have been observed in different human cancers and other disease conditions, but the precise identification of breakpoint sites, and detailed characterization of the genetic basis and mechanisms which underlie many of these rearrangements has yet to be resolved. Towards this end it is vital to establish a definitive genetic map of this region, which to date has shown considerable volatility through time in published works of scientific journals, within different builds of the same international genomic database, and across the differently constructed databases. Results Using a combination of chromosome and interphase fluorescent in situ hybridization (FISH), BAC end-sequencing and genomic database analysis we present a physical map showing that the order and chromosomal orientation of selected genes within 10q24 is CEN-CYP2C9-PAX2-HOX11-NFKB2-TEL. Our analysis has resolved the orientation of an otherwise dynamically evolving assembly of larger contigs upstream of this region, and in so doing verifies the order and orientation of a further 9 cancer-related genes and GOT1. This study further shows that the previously reported human papillomavirus type 6a DNA integration site HPV6AI1 does not map to 10q24, but that it maps at the interface of chromosome bands 14q13.3-q21.1. Conclusions This revised map will allow more precise localization of chromosome rearrangements involving chromosome band 10q24, and will serve as a useful baseline to better understand the molecular aetiology of chromosomal instability in this region. In particular, the relocation of HPV6AI1 is important to report because this HPV6a integration site, originally isolated from a tonsillar carcinoma, was shown to be rearranged in other HPV6a-related malignancies, including 2 of 25 genital condylomas, and 2 of 7 head and neck tumors tested. Our finding shifts the focus of this genomic interest from 10q24 to the chromosome 14 site. PMID:12697057
Quantum-Sequencing: Fast electronic single DNA molecule sequencing
NASA Astrophysics Data System (ADS)
Casamada Ribot, Josep; Chatterjee, Anushree; Nagpal, Prashant
2014-03-01
A major goal of third-generation sequencing technologies is to develop a fast, reliable, enzyme-free, high-throughput and cost-effective, single-molecule sequencing method. Here, we present the first demonstration of unique ``electronic fingerprint'' of all nucleotides (A, G, T, C), with single-molecule DNA sequencing, using Quantum-tunneling Sequencing (Q-Seq) at room temperature. We show that the electronic state of the nucleobases shift depending on the pH, with most distinct states identified at acidic pH. We also demonstrate identification of single nucleotide modifications (methylation here). Using these unique electronic fingerprints (or tunneling data), we report a partial sequence of beta lactamase (bla) gene, which encodes resistance to beta-lactam antibiotics, with over 95% success rate. These results highlight the potential of Q-Seq as a robust technique for next-generation sequencing.
Magnetization of AGN jets as imposed by leptonic models of luminous blazars
NASA Astrophysics Data System (ADS)
Janiak, Mateusz; Sikora, Marek; Moderski, Rafal
2015-03-01
Recent measurements of frequency-dependent shift of radio-core locations indicate that the ratio of the magnetic to kinetic energy flux (the σ parameter) is of the order of unity. These results are consistent with predictions of magnetically-arrested-disk (MAD) models of a jet formation, but contradict the predictions of leptonic models of γ-ray production in luminous blazars. We demonstrate this discrepancy by computing the γ-ray-to-synchrotron luminosity ratio (the q parameter) as a function of a distance from the black hole for different values of σ and using both spherical and planar models for broad-line region and dusty torus. We find that it is impossible to reproduce observed q >> 1 for jets with σ >= 1. This may indicate that blazar radiation is produced in reconnection layers or in spines of magnetically stratified jets.
Gimeno, Teresa E; Escudero, Adrián; Valladares, Fernando
2015-01-01
In harsh environments facilitation alleviates biotic and abiotic constraints on tree recruitment. Under ongoing drier climate change, we expect facilitation to increase as a driver of coexistence. However, this might not hold under extreme abiotic stress and when the outcome depends on the interaction with other drivers such as altered herbivore pressure due to land use change. We performed a field water-manipulation experiment to quantify the importance of facilitation in two coexisting Mediterranean trees (dominant Juniperus thurifera and coexisting Quercus ilex subsp. ballota) under a climate change scenario. Shifts in canopy dominance favouring Q. ilex could be based on the extension of heterospecific facilitation to the detriment of conspecific alleviation. We found that saplings of both species transplanted under the canopy of nurse trees had greater survival probability, growth and photochemical efficiency. Intra- and interspecific facilitation mechanisms differed: alleviation of abiotic stress benefited both species during summer and J. thurifera during winter, whereas browsing protection was relevant only for Q. ilex. Facilitation was greater under the dry treatment only for Q. ilex, which partially agreed with the predictions of the stress gradient hypothesis. We conclude that present rainfall availability limits neither J. thurifera nor Q. ilex establishment. Nevertheless, under current global change scenarios, imposing increasing abiotic stress together with altered herbivore browsing, nurse trees could differentially facilitate the establishment of Q. ilex due to species-specific traits, i.e. palatability; drought, heat and cold tolerance, underlying species differences in the facilitation mechanisms and eventually triggering a change from pure juniper woodlands to mixed formations.
Allosteric modulation of Ras positions Q61 for a direct role in catalysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buhrman, Greg; Holzapfel, Genevieve; Fetics, Susan
2010-11-03
Ras and its effector Raf are key mediators of the Ras/Raf/MEK/ERK signal transduction pathway. Mutants of residue Q61 impair the GTPase activity of Ras and are found prominently in human cancers. Yet the mechanism through which Q61 contributes to catalysis has been elusive. It is thought to position the catalytic water molecule for nucleophilic attack on the {gamma}-phosphate of GTP. However, we previously solved the structure of Ras from crystals with symmetry of the space group R32 in which switch II is disordered and found that the catalytic water molecule is present. Here we present a structure of wild-type Rasmore » with calcium acetate from the crystallization mother liquor bound at a site remote from the active site and likely near the membrane. This results in a shift in helix 3/loop 7 and a network of H-bonding interactions that propagates across the molecule, culminating in the ordering of switch II and placement of Q61 in the active site in a previously unobserved conformation. This structure suggests a direct catalytic role for Q61 where it interacts with a water molecule that bridges one of the {gamma}-phosphate oxygen atoms to the hydroxyl group of Y32 to stabilize the transition state of the hydrolysis reaction. We propose that Raf together with the binding of Ca{sup 2+} and a negatively charged group mimicked in our structure by the acetate molecule induces the ordering of switch I and switch II to complete the active site of Ras.« less
High Resolution and Large Dynamic Range Resonant Pressure Sensor Based on Q-Factor Measurement
NASA Technical Reports Server (NTRS)
Gutierrez, Roman C. (Inventor); Stell, Christopher B. (Inventor); Tang, Tony K. (Inventor); Vorperian, Vatche (Inventor); Wilcox, Jaroslava (Inventor); Shcheglov, Kirill (Inventor); Kaiser, William J. (Inventor)
2000-01-01
A pressure sensor has a high degree of accuracy over a wide range of pressures. Using a pressure sensor relying upon resonant oscillations to determine pressure, a driving circuit drives such a pressure sensor at resonance and tracks resonant frequency and amplitude shifts with changes in pressure. Pressure changes affect the Q-factor of the resonating portion of the pressure sensor. Such Q-factor changes are detected by the driving/sensing circuit which in turn tracks the changes in resonant frequency to maintain the pressure sensor at resonance. Changes in the Q-factor are reflected in changes of amplitude of the resonating pressure sensor. In response, upon sensing the changes in the amplitude, the driving circuit changes the force or strength of the electrostatic driving signal to maintain the resonator at constant amplitude. The amplitude of the driving signals become a direct measure of the changes in pressure as the operating characteristics of the resonator give rise to a linear response curve for the amplitude of the driving signal. Pressure change resolution is on the order of 10(exp -6) torr over a range spanning from 7,600 torr to 10(exp -6) torr. No temperature compensation for the pressure sensor of the present invention is foreseen. Power requirements for the pressure sensor are generally minimal due to the low-loss mechanical design of the resonating pressure sensor and the simple control electronics.
NASA Astrophysics Data System (ADS)
Kartini, E.; Kennedy, S. J.; Itoh, K.; Fukunaga, T.; Suminta, S.; Kamiyama, T.
Superionic conducting glasses are of considerable technological interest because of their use in batteries, sensors, and displays. We have investigated the new ternary systems AgI-Ag2S-AgPO3 where the ratio AgI:Ag2S is 1:1. The system (AgI)x(Ag2S)x(AgPO3)1-2x, for a AgI+Ag2S fraction less than 82mol%, yields glasses. We have used a neutron-diffraction technique to obtain the total scattering structure factor S(Q) of this system at room temperature by using the HIT spectrometer at the High Energy Accelerator (KEK), Tsukuba, Japan. As for AgI-AgPO3 glasses, S(Q) shows a peak at anomalously low Q in the range from 0.6 to 0.9 Å-1. This peak is not observed in the corresponding glass Ag2S-AgPO3 or pure AgPO3. The peak depends strongly on the dopant salt. Its intensity increases as the amount of (AgI+Ag2S) increases and its position shifts to lower Q, while the number density of the glasses decreases with x. This peak can be associated with an intermediate structure of particles lying inside a continuous host with the characteristic length between 5 and 10 Å [1].
Enabling ICH Q10 Implementation--Part 1. Striving for Excellence by Embracing ICH Q8 and ICH Q9.
Calnan, Nuala; O'Donnell, Kevin; Greene, Anne
2013-01-01
This article is the first in a series of articles that will focus on understanding the implementation essentials necessary to deliver operational excellence through a International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) Q10-based pharmaceutical quality system (PQS). The authors examine why, despite the fact that the ICH Q10 guideline has been with us since 2008, the transformation of the traditional Quality Management Systems QMS in use within the pharmaceutical industry is a work in progress for only a few forward-thinking organisations. Unfortunately, this transformation remains a mere aspiration for the majority of organisations. We explore the apparent lack of progress by the pharmaceutical sector in adopting six sigma and related quality management techniques to ensure the availability of high-quality medicines worldwide. The authors propose that the desired progress can be delivered through two key shifts in our current practices; by embodying the principles of operational excellence in every aspect of our business and by learning how to unlock the scientific and tacit knowledge within our organisations. It has been ten years since The Wall Street Journal revealed the pharmaceutical industry's "little secret" comparing the perceived level of manufacturing expertise in the industry as lagging far behind those of potato-chip and laundry-soap makers. Would you consider the quality and manufacturing strategies in place today in your organisation to be more efficient and scientifically based than those of 2003? If so, what evidence exists for you to draw any conclusion regarding enhanced performance? Do your current practices drive innovation and facilitate continual improvement and if so, how? Ultimately, can you confidently affirm that patient-related risks associated with the product(s) manufactured by your organisation have been reduced due to the quality assurance program now applied within your organisation? This article asks you to question if you have truly embraced Q8(R2), Q9, and Q10, and in doing so can you demonstrate that you have made the necessary changes that would warrant reduced regulatory oversight?
D autoionization states of He and ionic H
NASA Technical Reports Server (NTRS)
Bhatia, A. K.
1972-01-01
Positions of the lowest 1,3De autoionization states of He and H(-) below the n = 2 level of the He(+) and H were calculated variationally, using Feshbach's Q-operator formalism. The trial wave function is of the Hylleraas-type with appropriate angular momentum factors. The widths and the shifts of the states have also been calculated. The shifts are found to be positive for all the states calculated here. The results with 112 terms for most states are lower than any previously calculated. The calculated lowest autoionization states of the He and H(-) (relative to the ground states of He and H respectively) are 59.902 eV and 10.1185 eV, in good agreement with the observed values of 59.9 eV and 10.13 + or 0.015 eV.
Schreckenbach, Georg
2002-12-16
In this and a previous article (J. Phys. Chem. A 2000, 104, 8244), the range of application for relativistic density functional theory (DFT) is extended to the calculation of nuclear magnetic resonance (NMR) shieldings and chemical shifts in diamagnetic actinide compounds. Two relativistic DFT methods are used, ZORA ("zeroth-order regular approximation") and the quasirelativistic (QR) method. In the given second paper, NMR shieldings and chemical shifts are calculated and discussed for a wide range of compounds. The molecules studied comprise uranyl complexes, [UO(2)L(n)](+/-)(q); UF(6); inorganic UF(6) derivatives, UF(6-n)Cl(n), n = 0-6; and organometallic UF(6) derivatives, UF(6-n)(OCH(3))(n), n = 0-5. Uranyl complexes include [UO(2)F(4)](2-), [UO(2)Cl(4)](2-), [UO(2)(OH)(4)](2-), [UO(2)(CO(3))(3)](4-), and [UO(2)(H(2)O)(5)](2+). For the ligand NMR, moderate (e.g., (19)F NMR chemical shifts in UF(6-n)Cl(n)) to excellent agreement [e.g., (19)F chemical shift tensor in UF(6) or (1)H NMR in UF(6-n)(OCH(3))(n)] has been found between theory and experiment. The methods have been used to calculate the experimentally unknown (235)U NMR chemical shifts. A large chemical shift range of at least 21,000 ppm has been predicted for the (235)U nucleus. ZORA spin-orbit appears to be the most accurate method for predicting actinide metal chemical shifts. Trends in the (235)U NMR chemical shifts of UF(6-n)L(n) molecules are analyzed and explained in terms of the calculated electronic structure. It is argued that the energy separation and interaction between occupied and virtual orbitals with f-character are the determining factors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reddy, N.R.S.; Kolaczkowski, S.V.; Small, G.J.
Reddy et al. (Science, accepted) have reported persistent, nonphotochemical hole-burned (NPHB) spectra for the Q[sub y] states of the reaction center of Rhodopseudomonas viridis. The photoinduced structural transformation was shown to be highly localized on the special pair. This transformation leads to a red shift of the special pair's lowest-energy absorption band, P960, of 150 cm[sup [minus]1] and a comparable blue shift for a state at 850 nm, which, as a consequence, could be assigned as being most closely associated with the upper dimer component. Additional experimental results are presented here together with a theoretical analysis of the extent tomore » which the NPHB spectra provide information on the contribution from the bacteriochlorophyll monomers of the special pair to the Q[sub y] states that absorb higher in energy than P960. Structured photochemical hole-burned (PHB) spectra of P960 are also presented that underscore the importance of strong electron-phonon coupling from a broad distribution of modes with a mean frequency of 30 cm[sup [minus]1] for an understanding of the P960 absorption profile. These spectra also identify the zero-phonon hole of the strongly damped special pair marker mode (145 cm[sup [minus]1]) and its associated phonon sideband structure. Calculated spectra are presented which are in good agreement with the experimental PHB spectra. 30 refs., 6 figs., 4 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ki Deok Park; Guo, K.; Adebodun, F.
1991-03-05
The authors have obtained the oxygen-17 nuclear magnetic resonance (NMR) spectra of a variety of C{sup 17}O-labeled heme proteins, including sperm whale (Physeter catodon) myoglobin, two synthetic sperm whale myoglobin mutants (His E7 {yields} Val E7; His E7 {yields} Phe E7), adult human hemoglobin, rabbit (Oryctolagus cuniculus) hemoglobin, horseradish (Cochlearia armoracia) peroxidase isoenzymes A and C, and Caldariomyces fumago chloroperoxidase, in some cases as a function of pH, and have determined their isotropic {sup 17}O NMR chemical shifts, {delta}{sub i}, and spin-lattice relaxation times, T{sub 1}. They have also obtained similar results on a picket fence prophyrin. The results showmore » an excellent correlation between the infrared C-O vibrational frequencies, {nu}(C-O), and {delta}{sub i}, between {nu}(C-O) and the {sup 17}O nuclear quadrupole coupling constant, and as expected between e{sup 2}qQ/h and {delta}{sub i}. The results suggest the IR and NMR measurements reflect the same interaction, which is thought to be primarily the degree of {pi}-back-bonding from Fe d to CO {pi}* orbitals, as outlined previously.« less
Corwin, Dennis L.; Yemoto, Kevin; Clary, Wes; Banuelos, Gary; Skaggs, Todd H.; Lesch, Scott M.
2017-01-01
Though more costly than petroleum-based fuels and a minor component of overall military fuel sources, biofuels are nonetheless strategically valuable to the military because of intentional reliance on multiple, reliable, secure fuel sources. Significant reduction in oilseed biofuel cost occurs when grown on marginally productive saline-sodic soils plentiful in California’s San Joaquin Valley (SJV). The objective is to evaluate the feasibility of oilseed production on marginal soils in the SJV to support a 115 ML yr−1 biofuel conversion facility. The feasibility evaluation involves: (1) development of an Ida Gold mustard oilseed yield model for marginal soils; (2) identification of marginally productive soils; (3) development of a spatial database of edaphic factors influencing oilseed yield and (4) performance of Monte Carlo simulations showing potential biofuel production on marginally productive SJV soils. The model indicates oilseed yield is related to boron, salinity, leaching fraction, and water content at field capacity. Monte Carlo simulations for the entire SJV fit a shifted gamma probability density function: Q = 68.986 + gamma (6.134,5.285), where Q is biofuel production in ML yr−1. The shifted gamma cumulative density function indicates a 0.15–0.17 probability of meeting the target biofuel-production level of 115 ML yr−1, making adequate biofuel production unlikely. PMID:29036925
Raman Laser Spectrometer for 2020 ExoMars
NASA Astrophysics Data System (ADS)
Moral, Andoni G.; Pérez, Carlos; INTA, University of Valladolid, INSA, Leicester University, IRAP, RAL, OHB
2016-10-01
The Raman Laser Spectrometer (RLS) is one of the Pasteur Payload instruments, within the ESA's Aurora Exploration Programme, ExoMars mission.ExoMars 2020 main scientific objective is "Searching for evidence of past and present life on Mars".Raman Spectroscopy is used to analyze the vibrational modes of a substance either in the solid, liquid or gas state. It relies on the inelastic scattering (Raman Scattering) of monochromatic light produced by atoms and molecules. The radiation-matter interaction results in the energy of the exciting photons to be shifted up or down. The shift in energy appears as a spectral distribution and therefore provides an unique fingerprint by which the substances can be identified and structurally analyzed.The RLS is being developed by an European Consortium composed by Spanish, UK, French and German partners. It will perform Raman spectroscopy on crushed powdered samples, obtained from 2 meters depth under Mars surface, inside the Rover's Analytical Laboratory Drawer.After a wide campaign for evaluating Instrument performances by means of simulation tools and development of an instrument prototype, Instrument Structural and Thermal Model was successfully delivered on February 2015, and the Engineering and Qualification Model has been manufactured and is expected to be delivered by November 2016, after a testing campaign developed during Q2 & Q3 of 2016.A summary of main Instrument performances obtained during the last months, achieving high levels of spectral resolution and accuracy in the obtained spectra.
Q-switched Erbium-doped fiber laser at 1600 nm for photoacoustic imaging application
Zeng, Lvming; Chen, Zhongping; Kim, Chang-Seok
2016-01-01
We present a nanosecond Q-switched Erbium-doped fiber (EDF) laser system operating at 1600 nm with a tunable repetition rate from 100 kHz to 1 MHz. A compact fiber coupled, acousto-optic modulator-based EDF ring cavity was used to generate a nanosecond seed laser at 1600 nm, and a double-cladding EDF based power amplifier was applied to achieve the maximum average power of 250 mW. In addition, 12 ns laser pulses with the maximum pulse energy of 2.4 μJ were obtained at 100 kHz. Furthermore, the Stokes shift by Raman scattering over a 25 km long fiber was measured, indicating that the laser can be potentially used to generate the high repetition rate pulses at the 1.7 μm region. Finally, we detected the photoacoustic signal from a human hair at 200 kHz repetition rate with a pulse energy of 1.2 μJ, which demonstrates that a Q-switched Er-doped fiber laser can be a promising light source for the high speed functional photoacoustic imaging. PMID:27110032
Q-switched Erbium-doped fiber laser at 1600 nm for photoacoustic imaging application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piao, Zhonglie; Beckman Laser Institute, Department of Biomedical Engineering, University of California, Irvine, California 92612; Zeng, Lvming
We present a nanosecond Q-switched Erbium-doped fiber (EDF) laser system operating at 1600 nm with a tunable repetition rate from 100 kHz to 1 MHz. A compact fiber coupled, acousto-optic modulator-based EDF ring cavity was used to generate a nanosecond seed laser at 1600 nm, and a double-cladding EDF based power amplifier was applied to achieve the maximum average power of 250 mW. In addition, 12 ns laser pulses with the maximum pulse energy of 2.4 μJ were obtained at 100 kHz. Furthermore, the Stokes shift by Raman scattering over a 25 km long fiber was measured, indicating that the laser can be potentially used to generate the highmore » repetition rate pulses at the 1.7 μm region. Finally, we detected the photoacoustic signal from a human hair at 200 kHz repetition rate with a pulse energy of 1.2 μJ, which demonstrates that a Q-switched Er-doped fiber laser can be a promising light source for the high speed functional photoacoustic imaging.« less
Fejerman, Laura; Ahmadiyeh, Nasim; Hu, Donglei; Huntsman, Scott; Beckman, Kenneth B; Caswell, Jennifer L; Tsung, Karen; John, Esther M; Torres-Mejia, Gabriela; Carvajal-Carmona, Luis; Echeverry, María Magdalena; Tuazon, Anna Marie D; Ramirez, Carolina; Gignoux, Christopher R; Eng, Celeste; Gonzalez-Burchard, Esteban; Henderson, Brian; Le Marchand, Loic; Kooperberg, Charles; Hou, Lifang; Agalliu, Ilir; Kraft, Peter; Lindström, Sara; Perez-Stable, Eliseo J; Haiman, Christopher A; Ziv, Elad
2014-10-20
The genetic contributions to breast cancer development among Latinas are not well understood. Here we carry out a genome-wide association study of breast cancer in Latinas and identify a genome-wide significant risk variant, located 5' of the Estrogen Receptor 1 gene (ESR1; 6q25 region). The minor allele for this variant is strongly protective (rs140068132: odds ratio (OR) 0.60, 95% confidence interval (CI) 0.53-0.67, P=9 × 10(-18)), originates from Indigenous Americans and is uncorrelated with previously reported risk variants at 6q25. The association is stronger for oestrogen receptor-negative disease (OR 0.34, 95% CI 0.21-0.54) than oestrogen receptor-positive disease (OR 0.63, 95% CI 0.49-0.80; P heterogeneity=0.01) and is also associated with mammographic breast density, a strong risk factor for breast cancer (P=0.001). rs140068132 is located within several transcription factor-binding sites and electrophoretic mobility shift assays with MCF-7 nuclear protein demonstrate differential binding of the G/A alleles at this locus. These results highlight the importance of conducting research in diverse populations.
Black holes in multi-fractional and Lorentz-violating models.
Calcagni, Gianluca; Rodríguez Fernández, David; Ronco, Michele
2017-01-01
We study static and radially symmetric black holes in the multi-fractional theories of gravity with q -derivatives and with weighted derivatives, frameworks where the spacetime dimension varies with the probed scale and geometry is characterized by at least one fundamental length [Formula: see text]. In the q -derivatives scenario, one finds a tiny shift of the event horizon. Schwarzschild black holes can present an additional ring singularity, not present in general relativity, whose radius is proportional to [Formula: see text]. In the multi-fractional theory with weighted derivatives, there is no such deformation, but non-trivial geometric features generate a cosmological-constant term, leading to a de Sitter-Schwarzschild black hole. For both scenarios, we compute the Hawking temperature and comment on the resulting black-hole thermodynamics. In the case with q -derivatives, black holes can be hotter than usual and possess an additional ring singularity, while in the case with weighted derivatives they have a de Sitter hair of purely geometric origin, which may lead to a solution of the cosmological constant problem similar to that in unimodular gravity. Finally, we compare our findings with other Lorentz-violating models.
Fejerman, Laura; Ahmadiyeh, Nasim; Hu, Donglei; Huntsman, Scott; Beckman, Kenneth B.; Caswell, Jennifer L.; Tsung, Karen; John, Esther M.; Torres-Mejia, Gabriela; Carvajal-Carmona, Luis; Echeverry, María Magdalena; Tuazon, Anna Marie D.; Ramirez, Carolina; Carvajal-Carmona, Luis; Echeverry, María Magdalena; Bohórquez, Mabel Elena; Prieto, Rodrigo; Criollo, Ángel; Ramírez, Carolina; Estrada, Ana Patricia; Suáres, John Jairo; Mateus, Gilbert; Castro, Jorge Mario; Sánchez, Yesid; Murillo, Raúl; Lucia Serrano, Martha; Sanabria, Carolina; Olaya, Justo Germán; Bolaños, Fernando; Vélez, Alejandro; Carmona, Jenny Andrea; Vélez, Alejandro; Rodríguez, Nancy Guerrero; Serón Sousa, Cristina; Mendez, Cesar Eduardo Alvarez; Galviz, Ana Isabel Orduz; Gignoux, Christopher R.; Eng, Celeste; Gonzalez-Burchard, Esteban; Henderson, Brian; Marchand, Loic Le; Kooperberg, Charles; Hou, Lifang; Agalliu, Ilir; Kraft, Peter; Lindström, Sara; Perez-Stable, Eliseo J.; Haiman, Christopher A.; Ziv, Elad
2014-01-01
The genetic contributions to breast cancer development among Latinas are not well understood. Here we carry out a genome-wide association study of breast cancer in Latinas and identify a genome-wide significant risk variant, located 5′ of the Estrogen Receptor 1 gene (ESR1; 6q25 region). The minor allele for this variant is strongly protective (rs140068132: odds ratio (OR) 0.60, 95% confidence interval (CI) 0.53–0.67, P=9 × 10−18), originates from Indigenous Americans and is uncorrelated with previously reported risk variants at 6q25. The association is stronger for oestrogen receptor-negative disease (OR 0.34, 95% CI 0.21–0.54) than oestrogen receptor-positive disease (OR 0.63, 95% CI 0.49–0.80; P heterogeneity=0.01) and is also associated with mammographic breast density, a strong risk factor for breast cancer (P=0.001). rs140068132 is located within several transcription factor-binding sites and electrophoretic mobility shift assays with MCF-7 nuclear protein demonstrate differential binding of the G/A alleles at this locus. These results highlight the importance of conducting research in diverse populations. PMID:25327703
Redox sensor proteins for highly sensitive direct imaging of intracellular redox state.
Sugiura, Kazunori; Nagai, Takeharu; Nakano, Masahiro; Ichinose, Hiroshi; Nakabayashi, Takakazu; Ohta, Nobuhiro; Hisabori, Toru
2015-02-13
Intracellular redox state is a critical factor for fundamental cellular functions, including regulation of the activities of various metabolic enzymes as well as ROS production and elimination. Genetically-encoded fluorescent redox sensors, such as roGFP (Hanson, G. T., et al. (2004)) and Redoxfluor (Yano, T., et al. (2010)), have been developed to investigate the redox state of living cells. However, these sensors are not useful in cells that contain, for example, other colored pigments. We therefore intended to obtain simpler redox sensor proteins, and have developed oxidation-sensitive fluorescent proteins called Oba-Q (oxidation balance sensed quenching) proteins. Our sensor proteins derived from CFP and Sirius can be used to monitor the intracellular redox state as their fluorescence is drastically quenched upon oxidation. These blue-shifted spectra of the Oba-Q proteins enable us to monitor various redox states in conjunction with other sensor proteins. Copyright © 2015 Elsevier Inc. All rights reserved.
Rovibrational line-shape parameters for H2 in He and new H2-He potential energy surface
NASA Astrophysics Data System (ADS)
Thibault, Franck; Patkowski, Konrad; Żuchowski, Piotr S.; Jóźwiak, Hubert; Ciuryło, Roman; Wcisło, Piotr
2017-11-01
We report a new H2-He potential energy surface that, with respect to the previous one [Bakr et al.(2013)], covers much larger range of H2 stretching and exhibits more accurate asymptotic behavior for large separations between H2 and He. Close-coupling calculations performed on this improved potential energy surface allow us to provide line shape parameters for H2 between 5 and 2000 K for Raman isotropic Q lines and anisotropic Q lines (or electric quadrupole lines) and for vibrational bands from the ground up to v = 5 and rotational quantum numbers up to j = 5 . The parameters provided include the usual pressure -broadening and -shifting coefficients as well as the real and imaginary part of Dicke contribution to the Hess profile. The latter parameters can be readily implemented in other line-shape profiles like the most recent one of Hartmann and Tran.
High-order Stokes generation in a KTP Raman laser pumped by a passively Q-switched ND:YLF laser
NASA Astrophysics Data System (ADS)
Wang, Maorong; Zhong, Kai; Mei, Jialin; Guo, Shibei; Xu, Degang; Yao, Jianquan
2015-12-01
High-order Stokes wave was observed in an x-cut KTP crystal based on stimulated Raman scattering (SRS) pumped by a passively Q-switched Nd:YLF laser with a Cr4+:YAG saturable absorber. Output spectra including the fundamental wave at 1047 nm and six Stokes wavelengths at 1077 nm, 1110 nm, 1130 nm, 1143 nm, 1164 nm, 1180 nm based on two Raman frequency shift at 267.4 cm-1 and 693.0 cm-1 were obtained simultaneously. We also detected green light generation with output power of 12 mW from self frequency mixing in the KTP crystal. The maximum total output power reached 452 mW at the repetition frequency of 8.1 kHz, corresponding to the optical-to-optical conversion efficiency of 4.61% and pump-to-Raman conversion efficiency of 3.6%.
Afzelius, P; Bergmann, A; Henriksen, J H
2015-09-15
It is generally assumed that the lungs possess arterial autoregulation associated with bronchial obstruction. A patient with pneumonia and congestive heart failure unexpectedly developed frequent haemoptysis. High-resolution CT and diagnostic CT were performed as well as ventilation/perfusion (V/Q) scintigraphy with single-photon emission CT (SPECT)/CT. V/Q SPECT/CT demonstrated abolished ventilation due to obstruction of the left main bronchus and markedly reduced perfusion of the entire left lung, a condition that was completely reversed after removal of a blood clot. We present the first pictorially documented case of hypoxia-induced pulmonary vasoconstriction and flow shift in a main pulmonary artery due to a complete intrinsic obstruction of the ipsilateral main bronchus. The condition is reversible, contingent on being relieved within a few days. 2015 BMJ Publishing Group Ltd.
Nonextensive statistical mechanics approach to electron trapping in degenerate plasmas
NASA Astrophysics Data System (ADS)
Mebrouk, Khireddine; Gougam, Leila Ait; Tribeche, Mouloud
2016-06-01
The electron trapping in a weakly nondegenerate plasma is reformulated and re-examined by incorporating the nonextensive entropy prescription. Using the q-deformed Fermi-Dirac distribution function including the quantum as well as the nonextensive statistical effects, we derive a new generalized electron density with a new contribution proportional to the electron temperature T, which may dominate the usual thermal correction (∼T2) at very low temperatures. To make the physics behind the effect of this new contribution more transparent, we analyze the modifications arising in the propagation of ion-acoustic solitary waves. Interestingly, we find that due to the nonextensive correction, our plasma model allows the possibility of existence of quantum ion-acoustic solitons with velocity higher than the Fermi ion-sound velocity. Moreover, as the nonextensive parameter q increases, the critical temperature Tc beyond which coexistence of compressive and rarefactive solitons sets in, is shifted towards higher values.
Giger, Maryellen L.; Chen, Chin-Tu; Armato, Samuel; Doi, Kunio
1999-10-26
A method and system for the computerized registration of radionuclide images with radiographic images, including generating image data from radiographic and radionuclide images of the thorax. Techniques include contouring the lung regions in each type of chest image, scaling and registration of the contours based on location of lung apices, and superimposition after appropriate shifting of the images. Specific applications are given for the automated registration of radionuclide lungs scans with chest radiographs. The method in the example given yields a system that spatially registers and correlates digitized chest radiographs with V/Q scans in order to correlate V/Q functional information with the greater structural detail of chest radiographs. Final output could be the computer-determined contours from each type of image superimposed on any of the original images, or superimposition of the radionuclide image data, which contains high activity, onto the radiographic chest image.
Coupled π π , K K ¯ scattering in P -wave and the ρ resonance from lattice QCD
Wilson, David J.; Briceño, Raúl A.; Dudek, Jozef J.; ...
2015-11-02
In this study, we determine elastic and coupled-channel amplitudes for isospin-1 meson-meson scattering inmore » $P$-wave, by calculating correlation functions using lattice QCD with light quark masses such that $$m_\\pi = 236$$ MeV in a cubic volume of $$\\sim (4 \\,\\mathrm{fm})^3$$. Variational analyses of large matrices of correlation functions computed using operator constructions resembling $$\\pi\\pi$$, $$K\\overline{K}$$ and $$q\\bar{q}$$, in several moving frames and several lattice irreducible representations, leads to discrete energy spectra from which scattering amplitudes are extracted. In the elastic $$\\pi\\pi$$ scattering region we obtain a detailed energy-dependence for the phase-shift, corresponding to a $$\\rho$$ resonance, and we extend the analysis into the coupled-channel $$K\\overline{K}$$ region for the first time, finding a small coupling between the channels.« less
BiQ Analyzer HT: locus-specific analysis of DNA methylation by high-throughput bisulfite sequencing
Lutsik, Pavlo; Feuerbach, Lars; Arand, Julia; Lengauer, Thomas; Walter, Jörn; Bock, Christoph
2011-01-01
Bisulfite sequencing is a widely used method for measuring DNA methylation in eukaryotic genomes. The assay provides single-base pair resolution and, given sufficient sequencing depth, its quantitative accuracy is excellent. High-throughput sequencing of bisulfite-converted DNA can be applied either genome wide or targeted to a defined set of genomic loci (e.g. using locus-specific PCR primers or DNA capture probes). Here, we describe BiQ Analyzer HT (http://biq-analyzer-ht.bioinf.mpi-inf.mpg.de/), a user-friendly software tool that supports locus-specific analysis and visualization of high-throughput bisulfite sequencing data. The software facilitates the shift from time-consuming clonal bisulfite sequencing to the more quantitative and cost-efficient use of high-throughput sequencing for studying locus-specific DNA methylation patterns. In addition, it is useful for locus-specific visualization of genome-wide bisulfite sequencing data. PMID:21565797
Extended Czjzek model applied to NMR parameter distributions in sodium metaphosphate glass.
Vasconcelos, Filipe; Cristol, Sylvain; Paul, Jean-François; Delevoye, Laurent; Mauri, Francesco; Charpentier, Thibault; Le Caër, Gérard
2013-06-26
The extended Czjzek model (ECM) is applied to the distribution of NMR parameters of a simple glass model (sodium metaphosphate, NaPO3) obtained by molecular dynamics (MD) simulations. Accurate NMR tensors, electric field gradient (EFG) and chemical shift anisotropy (CSA) are calculated from density functional theory (DFT) within the well-established PAW/GIPAW framework. The theoretical results are compared to experimental high-resolution solid-state NMR data and are used to validate the considered structural model. The distributions of the calculated coupling constant C(Q) is proportional to |V(zz)| and the asymmetry parameter η(Q) that characterize the quadrupolar interaction are discussed in terms of structural considerations with the help of a simple point charge model. Finally, the ECM analysis is shown to be relevant for studying the distribution of CSA tensor parameters and gives new insight into the structural characterization of disordered systems by solid-state NMR.
Isotope effect in quasi-two-dimensional metal-organic antiferromagnets
NASA Astrophysics Data System (ADS)
Goddard, P. A.; Singleton, J.; Maitland, C.; Blundell, S. J.; Lancaster, T.; Baker, P. J.; McDonald, R. D.; Cox, S.; Sengupta, P.; Manson, J. L.; Funk, K. A.; Schlueter, J. A.
2008-08-01
Although the isotope effect in superconducting materials is well documented, changes in the magnetic properties of antiferromagnets due to isotopic substitution are seldom discussed and remain poorly understood. This is perhaps surprising given the possible link between the quasi-two-dimensional (Q2D) antiferromagnetic and superconducting phases of the layered cuprates. Here we report the experimental observation of shifts in the Néel temperature and critical magnetic fields (ΔTN/TN≈4%;ΔBc/Bc≈4%) in a Q2D organic molecular antiferromagnet on substitution of hydrogen for deuterium. These compounds are characterized by strong hydrogen bonds through which the dominant superexchange is mediated. We evaluate how the in-plane and interplane exchange energies evolve as the atoms of hydrogen on different ligands are substituted, and suggest a possible mechanism for this effect in terms of the relative exchange efficiency of hydrogen and deuterium bonds.
Chiang, Cheng-Yi; Chen, Yi-Lin; Tsai, Huai-Jen
2014-08-01
Green fluorescent protein (GFP)-like proteins have been studied with the aim of developing fluorescent proteins. Since the property of color variation is understudied, we isolated a novel GFP-like chromoprotein from the carpet anemone Stichodactyla haddoni, termed shCP. Its maximum absorption wavelength peak (λ(max)) is located at 574 nm, resulting in a purple color. The shCP protein consists of 227 amino acids (aa), sharing 96 % identity with the GFP-like chromoprotein of Heteractis crispa. We mutated aa residues to examine any alteration in color. When E63, the first aa of the chromophore, was replaced by serine (E63S), the λ(max) of the mutated protein shCP-E63S was shifted to 560 nm and exhibited a pink color. When Q39, T194, and I196, which reside in the surrounding 5 Å of the chromophore's microenvironment, were mutated, we found that (1) the λ(max) of the mutated protein shCP-Q39S was shifted to 518 nm and exhibited a red color, (2) shCP-T194I exhibited a purple-blue color, and (3) an additional mutation at I196H of the mutated protein shCP-E63L exhibited green fluorescence. In contrast, when the aa located neither at the chromophore nor within its microenvironment were mutated, the resultant proteins shCP-L122H, -E138G, -S137D, -T95I, -D129N, -T194V, -E138Q, -G75E, -I183V, and -I70V never altered their purple color, suggesting that mutations at the shCP chromophore and the surrounding 5 Å microenvironment mostly control changes in color expression or cause fluorescence to develop. Additionally, we found that the cDNAs of shCP and its mutated varieties are faithfully and stably expressed both in Escherichia coli and zebrafish embryos.
Wafer-to-wafer bonding of nonplanarized MEMS surfaces using solder
NASA Astrophysics Data System (ADS)
Sparks, D.; Queen, G.; Weston, R.; Woodward, G.; Putty, M.; Jordan, L.; Zarabadi, S.; Jayakar, K.
2001-11-01
The fabrication and reliability of a solder wafer-to-wafer bonding process is discussed. Using a solder reflow process allows vacuum packaging to be accomplished with unplanarized complementary metal-oxide semiconductor (CMOS) surface topography. This capability enables standard CMOS processes, and integrated microelectromechanical systems devices to be packaged at the chip-level. Alloy variations give this process the ability to bond at lower temperatures than most alternatives. Factors affecting hermeticity, shorts, Q values, shifting cavity pressure, wafer saw cleanliness and corrosion resistance will be covered.
Shuttle Ku-band signal design study
NASA Technical Reports Server (NTRS)
Lindsey, W. C.; Braun, W. R.; Mckenzie, T. M.
1978-01-01
Carrier synchronization and data demodulation of Unbalanced Quadriphase Shift Keyed (UQPSK) Shuttle communications' signals by optimum and suboptimum methods are discussed. The problem of analyzing carrier reconstruction techniques for unbalanced QPSK signal formats is addressed. An evaluation of the demodulation approach of the Ku-Band Shuttle return link for UQPSK when the I-Q channel power ratio is large is carried out. The effects that Shuttle rocket motor plumes have on the RF communications are determined also. The effect of data asymmetry on bit error probability is discussed.
Structural Basis for Bc12-Regulated Mitochondrion-Dependent Apoptosis
2005-04-01
groups , double-resonance (’H/15N or 1H/ 31P) probes had square r.f. which have a considerably narrower ’IN chemical shift coils wrapped directly around...bilayers, which provides no res- B E H olution [Fig. 5(D)]. The peak near 35 ppm results from the amino groups of the lysine side-chains and the N...tissue-specific and physiological state-specific sub- 21. Huang Q, Petros AM, Virgin HW, Fesik SW, Olejniczak ET. Proc. units of the Na+, K+-ATPase. The
1999-01-01
fMr- ir ») 5<s © oo vo «o vo vo t- 3 -6 TABLE 3 - 3 . REFERENCE SIGNAL USAGE Reference Frequencies for Tape Speed and Flutter Compensation...maximum frequency response of tables 3 -1 and 3 -2, !K. M. Uglow, Noise and Bandwidth in FM/FM Radio Telemetry. IRE Transaction on Telemetry and...t4 u N s O i Q • I-H D-12 Bit Rate Clock Input ’ r if ir it if , IF RNRZ-L Data 1 2 3 15 - Stage Shift Register 13
Infrared Sensor System for Mobile-Robot Positioning in Intelligent Spaces
Gorostiza, Ernesto Martín; Galilea, José Luis Lázaro; Meca, Franciso Javier Meca; Monzú, David Salido; Zapata, Felipe Espinosa; Puerto, Luis Pallarés
2011-01-01
The aim of this work was to position a Mobile Robot in an Intelligent Space, and this paper presents a sensorial system for measuring differential phase-shifts in a sinusoidally modulated infrared signal transmitted from the robot. Differential distances were obtained from these phase-shifts, and the position of the robot was estimated by hyperbolic trilateration. Due to the extremely severe trade-off between SNR, angle (coverage) and real-time response, a very accurate design and device selection was required to achieve good precision with wide coverage and acceptable robot speed. An I/Q demodulator was used to measure phases with one-stage synchronous demodulation to DC. A complete set of results from real measurements, both for distance and position estimations, is provided to demonstrate the validity of the system proposed, comparing it with other similar indoor positioning systems. PMID:22163907
The structure of Er3+-doped oxy-fluoride transparent glass-ceramics studied by Raman scattering
NASA Astrophysics Data System (ADS)
Tikhomirov, V. K.; Seddon, A. B.; Ferrari, M.; Montagna, M.; Santos, L. F.; Almeida, R. M.
2003-11-01
We show that the structure of transparent oxy-fluoride glass-ceramics formed by heat treatment of glasses of typical composition 32(SiO2):9(AlO1.5):31.5(CdF2):18.5(PbF2): 5.5(ZnF2):3.5(ErF3) mol% consists of ~ 12 nm diameter, Er3+-doped, β-PbF2 nano-crystals embedded in a silica-based glass network and connected to it via non-bridging O and F anions, or fluorine linkages such as Pb-F-Cd and Pb-F-Zn. It is proposed that the glass network structure is mostly chain-like and dominated by Si(O,F)4 tetrahedra with two bridging O and two non-bridging O and/or F atoms (Q2 units). SiO4 tetrahedra with zero and one bridging O (Q0 and Q1 units, respectively) are also present in the glass structure, in the approximate proportion Q0:Q1:Q2 = 1:1:3, a characteristic which appears to be of primary importance. The flexible, chain-like glass-network, with many broken bonds, results in easy accommodation of the Er3+-doped PbF2 nano-crystals, which are grown by heat-treatment of the precursor glass. The boson peak in the Raman spectrum of the precursor glass decreases in intensity upon ceramming and is partly converted to narrow crystalline peaks at lower frequency, consistent with the precipitation of PbF2 crystalline nano-particles. It is suggested that the boson peak involves localized vibrations of broken or stretched Pb-F bonds. The mean free path for these vibrations increases with ceramming, which involves partial crystallization of the glass network, resulting in a shift of the boson peak vibrations to lower-frequency crystalline peaks.
Widdifield, Cory M; Bryce, David L
2010-10-14
Central-transition (127)I solid-state nuclear magnetic resonance (SSNMR) spectra are presented for several anhydrous group 2 metal iodides (MgI(2), CaI(2), SrI(2), and BaI(2)), hydrates (BaI(2)·2H(2)O and SrI(2)·6H(2)O), and CdI(2) (4H polytype). Variable offset cumulative spectrum data acquisition coupled with echo pulse sequences and an 'ultrahigh' applied field of 21.1 T were usually suitable to acquire high-quality spectra. Spectral analysis revealed iodine-127 nuclear quadrupole coupling constants (C(Q)((127)I)) ranging in magnitude from 43.5 (CaI(2)) to 214 MHz (one site in SrI(2)). For very large C(Q), analytical second-order perturbation theory could not be used to reliably extract chemical shifts and a treatment which includes quadrupolar effects exactly was required (Bain, A. D. Mol. Phys. 2003, 101, 3163). Differences between second-order and exact modeling allowed us to observe 'higher-order' quadrupole-induced effects for the first time. This finding will have implications for the interpretation of SSNMR spectra of quadrupolar nuclei with large quadrupole moments. In favorable situations (i.e., C(Q)((127)I) < 120 MHz), measurements were also performed at 11.75 T which when combined with the 21.1 T data allowed us to measure iodine chemical shift (CS) tensor spans in the range from 60 (BaI(2)·2H(2)O) to 300 ppm (one site in BaI(2)). These measurements represent the first complete characterizations (i.e., electric field gradient and CS tensors as well as their relative orientation) of noncubic iodide sites using (127)I SSNMR. In select cases, the SSNMR data are supported with (127)I NQR measurements. We also summarize a variety of trends in the halogen SSNMR parameters for group 2 metal halides. Gauge-including projector-augmented wave DFT computations are employed to complement the experimental observations, to predict potential structures for the two hydrates, and to highlight the sensitivity of C(Q)((127)I) to minute structural changes, which has potential applications in NMR crystallography.
Coupled Riccati equations for complex plane constraint
NASA Technical Reports Server (NTRS)
Strong, Kristin M.; Sesak, John R.
1991-01-01
A new Linear Quadratic Gaussian design method is presented which provides prescribed imaginary axis pole placement for optimal control and estimation systems. This procedure contributes another degree of design freedom to flexible spacecraft control. Current design methods which interject modal damping into the system tend to have little affect on modal frequencies, i.e., they predictably shift open plant poles horizontally in the complex plane to form the closed loop controller or estimator pole constellation, but make little provision for vertical (imaginary axis) pole shifts. Imaginary axis shifts which reduce the closed loop model frequencies (the bandwidths) are desirable since they reduce the sensitivity of the system to noise disturbances. The new method drives the closed loop modal frequencies to predictable (specified) levels, frequencies as low as zero rad/sec (real axis pole placement) can be achieved. The design procedure works through rotational and translational destabilizations of the plant, and a coupling of two independently solved algebraic Riccati equations through a structured state weighting matrix. Two new concepts, gain transference and Q equivalency, are introduced and their use shown.
Callegari, D.; Ranaghan, K. E.; Woods, C. J.; Minari, R.; Tiseo, M.; Mor, M.; Mulholland, A. J.
2018-01-01
Osimertinib is a third-generation inhibitor approved for the treatment of non-small cell lung cancer. It overcomes resistance to first-generation inhibitors by incorporating an acrylamide group which alkylates Cys797 of EGFR T790M. The mutation of a residue in the P-loop (L718Q) was shown to cause resistance to osimertinib, but the molecular mechanism of this process is unknown. Here, we investigated the inhibitory process for EGFR T790M (susceptible to osimertinib) and EGFR T790M/L718Q (resistant to osimertinib), by modelling the chemical step (i.e., alkylation of Cys797) using QM/MM simulations and the recognition step by MD simulations coupled with free-energy calculations. The calculations indicate that L718Q has a negligible impact on both the activation energy for Cys797 alkylation and the free-energy of binding for the formation of the non-covalent complex. The results show that Gln718 affects the conformational space of the EGFR–osimertinib complex, stabilizing a conformation of acrylamide which prevents reaction with Cys797. PMID:29732058
NASA Astrophysics Data System (ADS)
Gulyuz, K.; Ariche, J.; Bollen, G.; Bustabad, S.; Eibach, M.; Izzo, C.; Novario, S. J.; Redshaw, M.; Ringle, R.; Sandler, R.; Schwarz, S.; Valverde, A. A.
2015-05-01
Experimental searches for neutrinoless double-β decay offer one of the best opportunities to look for physics beyond the standard model. Detecting this decay would confirm the Majorana nature of the neutrino, and a measurement of its half-life can be used to determine the absolute neutrino mass scale. Important to both tasks is an accurate knowledge of the Q value of the double-β decay. The LEBIT Penning trap mass spectrometer was used for the first direct experimental determination of the 96Zr double-β decay Q value: Qβ β=3355.85 (15 ) keV. This value is nearly 7 keV larger than the 2012 Atomic Mass Evaluation [M. Wang et al., Chin. Phys. C 36, 1603 (2012), 10.1088/1674-1137/36/12/003] value and one order of magnitude more precise. The 3-σ shift is primarily due to a more accurate measurement of the 96Zr atomic mass: m (96Zr ) =95.908 277 35 (17 ) u. Using the new Q value, the 2 ν β β -decay matrix element, | M2 ν| , is calculated. Improved determinations of the atomic masses of all other zirconium (
Ziels, Ryan M; Beck, David A C; Martí, Magalí; Gough, Heidi L; Stensel, H David; Svensson, Bo H
2015-04-01
The ecophysiology of long-chain fatty acid-degrading syntrophic β-oxidizing bacteria has been poorly understood due to a lack of quantitative abundance data. Here, TaqMan quantitative PCR (qPCR) assays targeting the 16S rRNA gene of the known mesophilic syntrophic β-oxidizing bacterial genera Syntrophomonas and Syntrophus were developed and validated. Microbial community dynamics were followed using qPCR and Illumina-based high-throughput amplicon sequencing in triplicate methanogenic bioreactors subjected to five consecutive batch feedings of oleic acid. With repeated oleic acid feeding, the initial specific methane production rate significantly increased along with the relative abundances of Syntrophomonas and methanogenic archaea in the bioreactor communities. The novel qPCR assays showed that Syntrophomonas increased from 7 to 31% of the bacterial community 16S rRNA gene concentration, whereas that of Syntrophus decreased from 0.02 to less than 0.005%. High-throughput amplicon sequencing also revealed that Syntrophomonas became the dominant genus within the bioreactor microbiomes. These results suggest that increased specific mineralization rates of oleic acid were attributed to quantitative shifts within the microbial communities toward higher abundances of syntrophic β-oxidizing bacteria and methanogenic archaea. The novel qPCR assays targeting syntrophic β-oxidizing bacteria may thus serve as monitoring tools to indicate the fatty acid β-oxidization potential of anaerobic digester communities. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
The mass of the super-Earth orbiting the brightest Kepler planet hosting star
NASA Astrophysics Data System (ADS)
Lopez-Morales, Mercedes; HARPS-N Team
2016-01-01
HD 179070, aka Kepler-21, is a V = 8.25 oscillating F6IV star and the brightest exoplanet host discovered by Kepler. An early analysis of the Q0 - Q5 Kepler light curves by Howell et al. (2012) revealed transits of a planetary companion, Kepler-21b, with a radius of 1.6 R_Earth and an orbital period of 2.7857 days. However, they could not determine the mass of the planet from the initial radial velocity observations with Keck-HIRES, and were only able to impose a 2s upper limit of about 10 M_Earth. Here we present 82 new radial velocity observations of this system obtained with the HARPS-N spectrograph. We detect the Doppler shift signal of Kepler-21b at the 3.6s level, and measure a planetary mass of 5.9 ± 1.6 M_Earth. We also update the radius of the planet to 1.65 ± 0.08 R_Earth, using the now available Kepler Q0 - Q17 photometry for this target. The mass of Kepler-21b appears to fall on the apparent dividing line between super-Earths that have lost all the material in their outer layers and those that have retained a significant amount of volatiles. Based on our results Kepler-21b belongs to the first group. Acknowledgement: This work was supported by funding from the NASA XRP Program and the John Templeton Foundation.
Dispersion-convolution model for simulating peaks in a flow injection system.
Pai, Su-Cheng; Lai, Yee-Hwong; Chiao, Ling-Yun; Yu, Tiing
2007-01-12
A dispersion-convolution model is proposed for simulating peak shapes in a single-line flow injection system. It is based on the assumption that an injected sample plug is expanded due to a "bulk" dispersion mechanism along the length coordinate, and that after traveling over a distance or a period of time, the sample zone will develop into a Gaussian-like distribution. This spatial pattern is further transformed to a temporal coordinate by a convolution process, and finally a temporal peak image is generated. The feasibility of the proposed model has been examined by experiments with various coil lengths, sample sizes and pumping rates. An empirical dispersion coefficient (D*) can be estimated by using the observed peak position, height and area (tp*, h* and At*) from a recorder. An empirical temporal shift (Phi*) can be further approximated by Phi*=D*/u2, which becomes an important parameter in the restoration of experimental peaks. Also, the dispersion coefficient can be expressed as a second-order polynomial function of the pumping rate Q, for which D*(Q)=delta0+delta1Q+delta2Q2. The optimal dispersion occurs at a pumping rate of Qopt=sqrt[delta0/delta2]. This explains the interesting "Nike-swoosh" relationship between the peak height and pumping rate. The excellent coherence of theoretical and experimental peak shapes confirms that the temporal distortion effect is the dominating reason to explain the peak asymmetry in flow injection analysis.
Is q̂ a physical quantity or just a parameter? and other unanswered questions in high-pT physics
NASA Astrophysics Data System (ADS)
Tannenbaum, M. J.
2017-02-01
The many different theoretical studies of energy loss of a quark or gluon traversing a medium have one thing in common: the transport coefficient of a gluon in the medium, denoted q̂, which is defined as the mean 4-momentum transfer-square, q 2, by a gluon to the medium per gluon mean free path, λmfp. In the original BDMPSZ formalism, the energy loss of an outgoing parton, -dE/dx, per unit length (x) of a medium with total length L, due to coherent gluon bremsstrahlung is proportional to the q 2 and takes the form: where µ, is the mean momentum transfer per collision. Thus, the total energy loss in the medium goes like L 2. Additionally, the accumulated momentum-square, ≤ft< {k_T^2} \\right> , transverse to a gluon traversing a length L in the medium is well approximated by < k_T^2> ≈ < {q^2}(L)> = \\hat qL. A simple estimate shows that the < k_T^2> ≈ \\hat qL should be observable at RHIC at \\sqrt {{s{{NN}}}} = 200{{ GeV}} via the broadening of di-hadron azimuthal correlations resulting in an azimuthal width ˜ \\sqrt 2 larger in Au+Au than in p + p collisions. Measurements relevant to this issue will be discussed as well as recent STAR jet results presented at QM2014 [1]. Other topics to be discussed include the danger of using forward energy to define centrality in p(d)+A collisions for high pT measurements, the danger of not using comparison p + p data at the same \\sqrt s in the same detector for R AA or lately for R pA measurements. Also, based on a comment at last year’s 9th workshop that the parton energy loss is proportional to dN ch /dη [2], new results on the dependence of the shift in the pT spectra in A+A collisions from the T AA-scaled p + p spectrum (to be discussed in detail in another presentation [3]) will be shown.
a Study of Dilute Aluminum and Vanadium NMR in Alpha-Titanium and in Hydrogen Doped Alpha-Titanium
NASA Astrophysics Data System (ADS)
Chou, Lih-Hsin
Nuclear magnetic resonance was used to investigate Ti-1 at.% V, Ti-2 at.% V, Ti-1 at.% Al, Ti-2 at.% Al and in addition samples of these alloys containing 1 and 2 at.% H. Computer simulation of the absorption curves incorporates the effects of nuclear quadrupole and anisotropic shift interactions, dipolar broadening, and inhomogeneous Knight shift distribution. From the simulation work, experimental parameters such as electric field gradient (EFG), axial anisotropic Knight shift K(,ax), and isotropic Knight shift are obtained. In addition to shedding light on certain features of bonding of V and Al in Ti, this information is used to discuss the trapping of hydrogen in these systems. The resonance of a simple metal (Al) and transition metal (V) at low concentration in a transition metal (Ti) matrix are compared. The localized states of an Al impurity appear to differ radically from the host Ti atomic structure; V present as a dilute solute appears to join the Ti lattice smoothly. Very small isotropic and anisotropic Knight shifts were observed for ('27)Al in Ti. This implies an absence of an orbital contribution and a small value for the s conduction electron density at the local Fermi surface in the vicinity of Al in Ti. A sizeable isotropic and anisotropic Knight shift was observed for ('51)V in Ti. This is thought to be the result of a large orbital contribution. The substitutional vanadium retains much of the character of V, but experiences the symmetry of the Ti lattice. Four outer electrons of V may form nearest neighbor bonds similarly to those between Ti atoms in pure titanium. The one extra electron on the V may be more s-like in character. Measurement of the temperature dependence of K(,ax) and EFG values at V solute atoms in a Ti matrix show that both K(,ax) and EFG increase as temperature decreases. The local electric field gradient contribution from non-s-electrons q(,non -s-el) is about 2 to 5 times larger than the q(,ion) values in magnitude. Because the sign of the EFG is not determined, the validity of the so called "universal correlation" could not be tested. For hydrogen charged Ti-2V alloys, a line shape change was observed at both room and liquid nitrogen temperatures. Thermodynamic and kinetic arguments which include the presence of hydride, dissolved hydrogen, and trapped hydrogen (trapping enthalpy 0.05 eV or greater) are offered to explain the data. No change in the solute resonance line was detected for hydrogen charged Ti-1V, or for hydrogen charged Ti-1Al and Ti-2Al.
HESS Opinions: A planetary boundary on freshwater use is misleading
NASA Astrophysics Data System (ADS)
Heistermann, Maik
2017-07-01
In 2009, a group of prominent Earth scientists introduced the planetary boundaries
(PB) framework: they suggested nine global control variables, and defined corresponding thresholds which, if crossed, could generate unacceptable environmental change
. The concept builds on systems theory, and views Earth as a complex adaptive system in which anthropogenic disturbances may trigger non-linear, abrupt, and irreversible changes at the global scale, and push the Earth system outside the stable environmental state of the Holocene
. While the idea has been remarkably successful in both science and policy circles, it has also raised fundamental concerns, as the majority of suggested processes and their corresponding planetary boundaries do not operate at the global scale, and thus apparently lack the potential to trigger abrupt planetary changes. This paper picks up the debate with specific regard to the planetary boundary on global freshwater use
. While the bio-physical impacts of excessive water consumption are typically confined to the river basin scale, the PB proponents argue that water-induced environmental disasters could build up to planetary-scale feedbacks and system failures. So far, however, no evidence has been presented to corroborate that hypothesis. Furthermore, no coherent approach has been presented to what extent a planetary threshold value could reflect the risk of regional environmental disaster. To be sure, the PB framework was revised in 2015, extending the planetary freshwater boundary with a set of basin-level boundaries inferred from environmental water flow assumptions. Yet, no new evidence was presented, either with respect to the ability of those basin-level boundaries to reflect the risk of regional regime shifts or with respect to a potential mechanism linking river basins to the planetary scale. So while the idea of a planetary boundary on freshwater use appears intriguing, the line of arguments presented so far remains speculative and implicatory. As long as Earth system science does not present compelling evidence, the exercise of assigning actual numbers to such a boundary is arbitrary, premature, and misleading. Taken as a basis for water-related policy and management decisions, though, the idea transforms from misleading to dangerous, as it implies that we can globally offset water-related environmental impacts. A planetary boundary on freshwater use should thus be disapproved and actively refuted by the hydrological and water resources community.
Selection of Reference Genes for Expression Studies of Xenobiotic Adaptation in Tetranychus urticae.
Morales, Mariany Ashanty; Mendoza, Bianca Marie; Lavine, Laura Corley; Lavine, Mark Daniel; Walsh, Douglas Bruce; Zhu, Fang
2016-01-01
Quantitative real-time PCR (qRT-PCR) is an extensively used, high-throughput method to analyze transcriptional expression of genes of interest. An appropriate normalization strategy with reliable reference genes is required for calculating gene expression across diverse experimental conditions. In this study, we aim to identify the most stable reference genes for expression studies of xenobiotic adaptation in Tetranychus urticae, an extremely polyphagous herbivore causing significant yield reduction of agriculture. We chose eight commonly used housekeeping genes as candidates. The qRT-PCR expression data for these genes were evaluated from seven populations: a susceptible and three acaricide resistant populations feeding on lima beans, and three other susceptible populations which had been shifted host from lima beans to three other plant species. The stability of the candidate reference genes was then assessed using four different algorithms (comparative ΔCt method, geNorm, NormFinder, and BestKeeper). Additionally, we used an online web-based tool (RefFinder) to assign an overall final rank for each candidate gene. Our study found that CycA and Rp49 are best for investigating gene expression in acaricide susceptible and resistant populations. GAPDH, Rp49, and Rpl18 are best for host plant shift studies. And GAPDH and Rp49 were the most stable reference genes when investigating gene expression under changes in both experimental conditions. These results will facilitate research in revealing molecular mechanisms underlying the xenobiotic adaptation of this notorious agricultural pest.
Selection of Reference Genes for Expression Studies of Xenobiotic Adaptation in Tetranychus urticae
Morales, Mariany Ashanty; Mendoza, Bianca Marie; Lavine, Laura Corley; Lavine, Mark Daniel; Walsh, Douglas Bruce; Zhu, Fang
2016-01-01
Quantitative real-time PCR (qRT-PCR) is an extensively used, high-throughput method to analyze transcriptional expression of genes of interest. An appropriate normalization strategy with reliable reference genes is required for calculating gene expression across diverse experimental conditions. In this study, we aim to identify the most stable reference genes for expression studies of xenobiotic adaptation in Tetranychus urticae, an extremely polyphagous herbivore causing significant yield reduction of agriculture. We chose eight commonly used housekeeping genes as candidates. The qRT-PCR expression data for these genes were evaluated from seven populations: a susceptible and three acaricide resistant populations feeding on lima beans, and three other susceptible populations which had been shifted host from lima beans to three other plant species. The stability of the candidate reference genes was then assessed using four different algorithms (comparative ΔCt method, geNorm, NormFinder, and BestKeeper). Additionally, we used an online web-based tool (RefFinder) to assign an overall final rank for each candidate gene. Our study found that CycA and Rp49 are best for investigating gene expression in acaricide susceptible and resistant populations. GAPDH, Rp49, and Rpl18 are best for host plant shift studies. And GAPDH and Rp49 were the most stable reference genes when investigating gene expression under changes in both experimental conditions. These results will facilitate research in revealing molecular mechanisms underlying the xenobiotic adaptation of this notorious agricultural pest. PMID:27570487
Zhang, Dan; Luo, Yanqing; Chu, Shaohua; Zhi, Yuee; Wang, Bin; Zhou, Pei
2016-01-01
In this study, the production of cellulase and xylanase by Streptomyces griseorubens JSD-1 was improved by integrating the pH-shift and dissolved oxygen (DO)-constant control strategies. The pH-shift control strategy was carried out by analyzing the specific cell growth rate (μ) and specific enzyme formation rate (Q p) of S. griseorubens JSD-1. The pH was controlled at 8.0 during the first 48 h to maintain high cell growth, which then shifted to 7.5 after 48 h to improve the production of cellulase and xylanase. Using this method, the maximum activities of cellulase, xylanase, and filter paper enzyme (FPase) increased by 47.9, 29.5, and 113.6 %, respectively, compared to that obtained without pH control. On the basis of pH-shift control, the influence of DO concentrations on biomass and enzyme production was further investigated. The maximum production of cellulase, xylanase, and FPase reached 114.38 ± 0.96 U mL(-1), 330.57 ± 2.54 U mL(-1), and 40.11 ± 0.38 U mL(-1), which were about 1.6-fold, 0.6-fold, and 3.2-fold higher than that of neutral pH without DO control conditions. These results supplied a functional approach for improving cellulase and xylanase production.
Impact of methionine oxidation on calmodulin structural dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCarthy, Megan R.; Thompson, Andrew R.; Nitu, Florentin
2015-01-09
Highlights: • We measured the distance distribution between two spin labels on calmodulin by DEER. • Two structural states, open and closed, were resolved at both low and high Ca. • Ca shifted the equilibrium toward the open state by a factor of 13. • Methionine oxidation, simulated by glutamine substitution, decreased the Ca effect. • These results have important implications for aging in muscle and other tissues. - Abstract: We have used electron paramagnetic resonance (EPR) to examine the structural impact of oxidizing specific methionine (M) side chains in calmodulin (CaM). It has been shown that oxidation of eithermore » M109 or M124 in CaM diminishes CaM regulation of the muscle calcium release channel, the ryanodine receptor (RyR), and that mutation of M to Q (glutamine) in either case produces functional effects identical to those of oxidation. Here we have used site-directed spin labeling and double electron–electron resonance (DEER), a pulsed EPR technique that measures distances between spin labels, to characterize the structural changes resulting from these mutations. Spin labels were attached to a pair of introduced cysteine residues, one in the C-lobe (T117C) and one in the N-lobe (T34C) of CaM, and DEER was used to determine the distribution of interspin distances. Ca binding induced a large increase in the mean distance, in concert with previous X-ray crystallography and NMR data, showing a closed structure in the absence of Ca and an open structure in the presence of Ca. DEER revealed additional information about CaM’s structural heterogeneity in solution: in both the presence and absence of Ca, CaM populates both structural states, one with probes separated by ∼4 nm (closed) and another at ∼6 nm (open). Ca shifts the structural equilibrium constant toward the open state by a factor of 13. DEER reveals the distribution of interprobe distances, showing that each of these states is itself partially disordered, with the width of each population ranging from 1 to 3 nm. Both mutations (M109Q and M124Q) decrease the effect of Ca on the structure of CaM, primarily by decreasing the closed-to-open equilibrium constant in the presence of Ca. We propose that Met oxidation alters CaM’s functional interaction with its target proteins by perturbing this Ca-dependent structural shift.« less
Jakobsen, Hans J; Bildsøe, Henrik; Skibsted, Jørgen; Brorson, Michael; Gor'kov, Peter; Gan, Zhehong
2010-02-01
A strategy, involving (i) sensitivity enhancement for the central transition (CT) by population transfer (PT) employing WURST inversion pulses to the satellite transitions (STs) in natural abundance (33)S MAS NMR for two different MAS frequencies (nu(r)=5.0 and 10.0kHz) at 14.1T and (ii) a (33)S static QCPMG experiment at 19.6T, has allowed acquisition and analysis of very complex solid-state (33)S CT NMR spectra for the disordered tetrathioperrhenate anion ReS(4)(-) in [(C(2)H(5))(4)N][ReS(4)]. This strategy of different NMR experiments combined with spectral analysis/simulations has allowed determination of precise values for two sets of quadrupole coupling parameters (C(Q) and eta(Q)) assigned to the two different S sites for the four sulfur atoms in the ReS(4)(-) anion in the ratio S1:S2=1:3. These sets of C(Q), eta(Q) values for the S1 and S2 site are quite similar and the magnitudes of the quadrupole coupling constants (C(Q)=2.2-2.5MHz) are a factor of about three larger than observed for other tetrathiometalates A(2)MS(4) (A=NH(4), Cs, Rb and M=W, Mo). In addition, the spectral analysis also leads to a determination of the chemical shift anisotropy (CSA) parameters (delta(sigma) and eta(sigma)) for the S1 and S2 site, however, with much lower precisions (about 20% error margins) compared to those for C(Q), eta(Q), because the magnitudes of the two CSAs (i.e., delta(sigma)=60-90ppm) are about a factor of six smaller than observed for the other tetrathiometalates mentioned above. This large difference in the magnitudes of the anisotropic parameters C(Q) and delta(sigma) for the ReS(4)(-) anion, compared to those for the WS(4)(2-) and MoS(4)(2-) anions determined previously under identical experimental conditions, accounts for the increased complexity of the PT-enhanced (33)S MAS spectra observed for the ReS(4)(-) anion in this study. This difference in C(Q) also contributes significantly to the intensity distortions observed in the outer wings of the CTs when employing PT from the STs under conditions of slow-speed MAS. Copyright 2009 Elsevier Inc. All rights reserved.
Grimm, Jonathan B; Klein, Teresa; Kopek, Benjamin G; Shtengel, Gleb; Hess, Harald F; Sauer, Markus; Lavis, Luke D
2016-01-26
The rhodamine system is a flexible framework for building small-molecule fluorescent probes. Changing N-substitution patterns and replacing the xanthene oxygen with a dimethylsilicon moiety can shift the absorption and fluorescence emission maxima of rhodamine dyes to longer wavelengths. Acylation of the rhodamine nitrogen atoms forces the molecule to adopt a nonfluorescent lactone form, providing a convenient method to make fluorogenic compounds. Herein, we take advantage of all of these structural manipulations and describe a novel photoactivatable fluorophore based on a Si-containing analogue of Q-rhodamine. This probe is the first example of a "caged" Si-rhodamine, exhibits higher photon counts compared to established localization microscopy dyes, and is sufficiently red-shifted to allow multicolor imaging. The dye is a useful label for super-resolution imaging and constitutes a new scaffold for far-red fluorogenic molecules. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
A comparison of the bonding in organoiron clusters
NASA Astrophysics Data System (ADS)
Buhl, Margaret L.; Long, Gary J.
1994-12-01
The Mössbauer effect hyperfine parameters and the results of the Fenske-Hall molecular orbit (mo) calculations have been used to study the electronic properties of trinuclear iron, tetranuclear iron butterfly, Fe-Co, and Fe-Cu carbonyl clusters. The more negative Fe charge and the larger Fe 4s population in an Fe(CO)4 fragment as compared with that in an Fe(CO)3 or an Fe(CO)2 fragment is a result of the CO ligands rather than the near-neighbor metals. The clusters which contain heterometals have more negative isomer shifts. The isomer shift correlated well with the sum of the Fe 4s orbital population and the Zeff these electrons experience. The mo wave functions and the atomic charges generally give a larger calculated Δ E Q than is observed, indicating the need to include Sternheimer factors in the calculation. The valence contribution dominates the EFG.
Optical sensors based on photonic crystal: a new route
NASA Astrophysics Data System (ADS)
Romano, S.; Torino, S.; Coppola, G.; Cabrini, S.; Mocella, V.
2017-05-01
The realization of miniaturized devices able to accumulate a higher number of information in a smallest volume is a challenge of the technological development. This trend increases the request of high sensitivity and selectivity sensors which can be integrated in microsystems. In this landscape, optical sensors based on photonic crystal technology can be an appealing solution. Here, a new refractive index sensor device, based on the bound states in the continuum (BIC) resonance shift excited in a photonic crystal membrane, is presented. A microfluidic cell was used to control the injection of fluids with different refractive indices over the photonic crystal surface. The shift of very high Q-factor resonances excited into the photonic crystal open cavity was monitored as a function of the refractive index n of the test liquid. The excellent stability we found and the minimal, loss-free optical equipment requirement, provide a new route for achieving high performance in sensing applications.
Ultralow-threshold cascaded Brillouin microlaser for tunable microwave generation.
Guo, Changlei; Che, Kaijun; Cai, Zhiping; Liu, Shuai; Gu, Guoqiang; Chu, Chengxu; Zhang, Pan; Fu, Hongyan; Luo, Zhengqian; Xu, Huiying
2015-11-01
We experimentally demonstrate an ultralow-threshold cascaded Brillouin microlaser for tunable microwave generation in a high-Q silica microsphere resonator. The threshold of the Brillouin microlaser is as low as 8 μW, which is close to the theoretical prediction. Moreover, the fifth-order Stokes line with a frequency shift up to 55 GHz is achieved with a coupled pump power of less than 0.6 mW. Benefiting from resonant wavelength shifts driven by thermal dynamics in the microsphere, we further realized tunable microwave signals with tuning ranges of 40 MHz at an 11 GHz band and 20 MHz at a 22 GHz band. To the best of our knowledge, it was the first attempt for tunable microwave source based on the whispering-gallery-mode Brillouin microlaser. Such a tunable microwave source from a cascaded Brillouin microlaser could find significant applications in aerospace, communication engineering, and metrology.
2017-12-08
Strands of solar material at the sun's edge shifted and twisted back and forth over a 22-hour period in this footage captured May 2-3, 2017, by NASA’s Solar Dynamics Observatory. In this close-up, the strands are being manipulated by strong magnetic forces associated with active regions. To give a sense of scale, the strands that hover above the sun are more than several times the size of Earth. These images were taken in a wavelength of extreme ultraviolet light, which is typically invisible to our eyes, but was colorized here in red. go.nasa.gov/2qJzPD2 Credit: NASA/Goddard/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Wang, Ping; Liu, Xiaoxia; Cao, Tian; Fu, Huihua; Wang, Ranran; Guo, Lixin
2016-09-20
The impact of nonzero boresight pointing errors on the system performance of decode-and-forward protocol-based multihop parallel optical wireless communication systems is studied. For the aggregated fading channel, the atmospheric turbulence is simulated by an exponentiated Weibull model, and pointing errors are described by one recently proposed statistical model including both boresight and jitter. The binary phase-shift keying subcarrier intensity modulation-based analytical average bit error rate (ABER) and outage probability expressions are achieved for a nonidentically and independently distributed system. The ABER and outage probability are then analyzed with different turbulence strengths, receiving aperture sizes, structure parameters (P and Q), jitter variances, and boresight displacements. The results show that aperture averaging offers almost the same system performance improvement with boresight included or not, despite the values of P and Q. The performance enhancement owing to the increase of cooperative path (P) is more evident with nonzero boresight than that with zero boresight (jitter only), whereas the performance deterioration because of the increasing hops (Q) with nonzero boresight is almost the same as that with zero boresight. Monte Carlo simulation is offered to verify the validity of ABER and outage probability expressions.
Yan, Juan; Wang, Gang; Sui, Yi; Wang, Menglin; Zhang, Ling
2016-04-13
Floral colour change is visual signals for pollinators to avoid old flowers and increase pollination efficiency. Quisqualis indica flowers change colour from white to pink to red may be associated with a shift from moth to butterfly pollination. To test this hypothesis, we investigated Q. indica populations in Southwest China. Flowers secreted nectar continuously from the evening of anthesis until the following morning, then decreased gradually with floral colour change. The scent compounds in the three floral colour stages were similar; however, the scent composition was different, and the scent emission rate decreased from the white to red stage. Dichogamy in Q. indica prevents self-pollination and interference of male and female functions. Controlled pollinations demonstrated that this species is self-incompatible and needs pollinators for seed production. Different pollinators were attracted in each floral colour stage; mainly moths at night and bees and butterflies during the day. Observations of open-pollinated inflorescences showed that white flowers had a higher fruit set than pink or red flowers, indicating the high contribution of moths to reproductive success. We concluded that the nectar and scent secretion are related to floral colour change in Q. indica, in order to attract different pollinators and promote reproductive fitness.
Line mixing effects in isotropic Raman spectra of pure N{sub 2}: A classical trajectory study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanov, Sergey V., E-mail: serg.vict.ivanov@gmail.com; Boulet, Christian; Buzykin, Oleg G.
2014-11-14
Line mixing effects in the Q branch of pure N{sub 2} isotropic Raman scattering are studied at room temperature using a classical trajectory method. It is the first study using an extended modified version of Gordon's classical theory of impact broadening and shift of rovibrational lines. The whole relaxation matrix is calculated using an exact 3D classical trajectory method for binary collisions of rigid N{sub 2} molecules employing the most up-to-date intermolecular potential energy surface (PES). A simple symmetrizing procedure is employed to improve off-diagonal cross-sections to make them obeying exactly the principle of detailed balance. The adequacy of themore » results is confirmed by the sum rule. The comparison is made with available experimental data as well as with benchmark fully quantum close coupling [F. Thibault, C. Boulet, and Q. Ma, J. Chem. Phys. 140, 044303 (2014)] and refined semi-classical Robert-Bonamy [C. Boulet, Q. Ma, and F. Thibault, J. Chem. Phys. 140, 084310 (2014)] results. All calculations (classical, quantum, and semi-classical) were made using the same PES. The agreement between classical and quantum relaxation matrices is excellent, opening the way to the analysis of more complex molecular systems.« less
Joint quantum measurement using unbalanced array detection.
Beck, M; Dorrer, C; Walmsley, I A
2001-12-17
We have measured the joint Q-function of a highly multimode field using unbalanced heterodyne detection with a charge-coupled device array detector. We use spectral interferometry between a weak signal field and a strong, 100 fs duration local oscillator pulse to reconstruct the joint quadrature amplitude statistics of about 25 temporal modes. By adjusting the time delay between the signal and local oscillator pulses we are able to shift all the classical noise to modes distinct from the signal. This obviates the need to use a balanced detector.
Gao, Miaomiao; Wei, Cong; Lin, Xianqing; Liu, Yuan; Hu, Fengqin; Zhao, Yong Sheng
2017-03-09
We demonstrate the fabrication of organic high Q active whispering-gallery-mode (WGM) resonators from π-conjugated polymer by a controlled emulsion-solvent-evaporation method, which can simultaneously provide optical gain and act as an effective resonant cavity. By measuring the shift of their lasing modes on exposure to organic vapor, we successfully monitored the slight concentration variation in the chemical gas. These microlaser sensors demonstrated high detection sensitivity and good signal repeatability under continuous chemical gas treatments. The results offer an effective strategy to design miniaturized optical sensors.
Adsorption Characteristics of Bixin on Acid- and Alkali-Treated Kaolinite in Aprotic Solvents
Rahmalia, Winda; Fabre, Jean-François; Usman, Thamrin
2018-01-01
The adsorption of bixin in aprotic solvents onto acid- and alkali-treated kaolinite was investigated. Kaolinite was treated three times, for 6 h each, with 8 M HCl or 5 M KOH. The adsorbents were characterized by XRD, FT-IR, EDS, and BET-N2. The effects of contact time and dye concentration on adsorption capacity and kinetics, electronic transition of bixin before and after adsorption, and also mechanism of bixin-kaolinite adsorption were investigated. Dye adsorption followed pseudo-second order kinetics and was faster in acetone than in dimethyl carbonate. The best adsorption results were obtained for KOH-treated kaolinite. In both of the solvents, the adsorption isotherm followed the Langmuir model and adsorption capacity was higher in dimethyl carbonate (q m = 0.43 mg/g) than in acetone (0.29 mg/g). The adsorption capacity and kinetics of KOH-treated kaolinite (q m = 0.43 mg/g, k 2 = 3.27 g/mg·min) were better than those of HCl-treated kaolinite (q m = 0.21 mg/g, k 2 = 0.25 g/mg·min) and natural kaolinite (q m = 0.18 mg/g, k 2 = 0.32 g/mg·min). There are shift in the band position of maximum intensity of bixin after adsorption on this adsorbent. Adsorption in this system seemed to be based essentially on chemisorption due to the electrostatic interaction of bixin with the strong basic and reducing sites of kaolinite. PMID:29581720
Ooe, Hiroaki; Fujii, Mikihiro; Tomitori, Masahiko; Arai, Toyoko
2016-02-01
High-Q factor retuned fork (RTF) force sensors made from quartz tuning forks, and the electric circuits for the sensors, were evaluated and optimized to improve the performance of non-contact atomic force microscopy (nc-AFM) performed under ultrahigh vacuum (UHV) conditions. To exploit the high Q factor of the RTF sensor, the oscillation of the RTF sensor was excited at its resonant frequency, using a stray capacitance compensation circuit to cancel the excitation signal leaked through the stray capacitor of the sensor. To improve the signal-to-noise (S/N) ratio in the detected signal, a small capacitor was inserted before the input of an operational (OP) amplifier placed in an UHV chamber, which reduced the output noise from the amplifier. A low-noise, wideband OP amplifier produced a superior S/N ratio, compared with a precision OP amplifier. The thermal vibrational density spectra of the RTF sensors were evaluated using the circuit. The RTF sensor with an effective spring constant value as low as 1000 N/m provided a lower minimum detection limit for force differentiation. A nc-AFM image of a Si(111)-7 × 7 surface was produced with atomic resolution using the RTF sensor in a constant frequency shift mode; tunneling current and energy dissipation images with atomic resolution were also simultaneously produced. The high-Q factor RTF sensor showed potential for the high sensitivity of energy dissipation as small as 1 meV/cycle and the high-resolution analysis of non-conservative force interactions.
Mapping the active site helix-to-strand conversion of CxxxxC peroxiredoxin Q enzymes.
Perkins, Arden; Gretes, Michael C; Nelson, Kimberly J; Poole, Leslie B; Karplus, P Andrew
2012-09-25
Peroxiredoxins (Prx) make up a family of enzymes that reduce peroxides using a peroxidatic cysteine residue; among these, members of the PrxQ subfamily are proposed to be the most ancestral-like yet are among the least characterized. In many PrxQ enzymes, a second "resolving" cysteine is located five residues downstream from the peroxidatic Cys, and these residues form a disulfide during the catalytic cycle. Here, we describe three hyperthermophilic PrxQ crystal structures originally determined by the RIKEN structural genomics group. We reprocessed the diffraction data and conducted further refinement to yield models with R(free) values lowered by 2.3-7.2% and resolution extended by 0.2-0.3 Å, making one, at 1.4 Å, one of the best resolved peroxiredoxins to date. Comparisons of two matched thiol and disulfide forms reveal that the active site conformational change required for disulfide formation involves a transition of ~20 residues from a pair of α-helices to a β-hairpin and 3(10)-helix. Each conformation has ~10 residues with a high level of disorder providing slack that allows the dramatic shift, and the two conformations are anchored to the protein core by distinct nonpolar side chains that fill three hydrophobic pockets. Sequence conservation patterns confirm the importance of these and a few additional residues for function. From a broader perspective, this study raises the provocative question of how to make use of the valuable information in the Protein Data Bank generated by structural genomics projects but not described in the literature, perhaps remaining unrecognized and certainly underutilized.
Mapping the Active Site Helix-to-Strand Conversion of CxxxxC Peroxiredoxin Q Enzymes †
Perkins, Arden; Gretes, Michael C.; Nelson, Kimberly J.; Poole, Leslie B.; Karplus, P. Andrew
2012-01-01
Peroxiredoxins (Prx) are a family of enzymes which reduce peroxides using a peroxidatic cysteine residue; among these, the PrxQ subfamily members are proposed to be the most ancestral-like yet are among the least characterized. In many PrxQ enzymes, a second “resolving” cysteine is located six residues downstream from the peroxidatic Cys, and these residues form a disulfide during the catalytic cycle. Here, we describe three hyperthermophilic PrxQ crystal structures originally solved by the RIKEN structural genomics group. We reprocessed the diffraction data and carried out further refinement to yield models with Rfree lowered by 2.3–7.2% and resolution extended by 0.2–0.3 Å, making one, at 1.4 Å, the best resolved peroxiredoxin to date. Comparisons of two matched thiol and disulfide forms reveal that the active site conformational change required for disulfide formation involves a transition of about 20 residues from a pair of α-helices to a β-hairpin and 310-helix. Each conformation has about 10 residues with high disorder providing slack that enables the dramatic shift, and the two conformations are anchored to the protein core by distinct non-polar side chains that fill three hydrophobic pockets. Sequence conservation patterns confirm the importance of these and a few additional residues for function. From a broader perspective, this study raises the provocative question of how to make use of the valuable information in the protein data bank generated by structural genomics projects but not described in the literature, perhaps remaining unrecognized and certainly underutilized. PMID:22928725
Regioregular Phthalocyanines Substituted with Bulky Donors at Non-Peripheral Positions.
Yamamoto, Satoshi; Kuribayashi, Kengo; Murakami, Takuro N; Kwon, Eunsang; Stillman, Martin J; Kobayashi, Nagao; Segawa, Hiroshi; Kimura, Mutsumi
2017-11-02
Three regioregular phthalocyanines (1-3) were synthesized selectively by the cyclic tetramerization of phthalonitriles bearing a bulky diarylamine substituent at the next position of nitrile. The steric repulsion at the tetramerization of bulky phthalonitriles allowed for the selective formation of regioregular phthalocyanines as confirmed by NMR and single crystal X-ray structural analyses. The absorption spectrum of 1 substituted with di(4-tert-butylphenyl)amine groups at the non-peripheral positions showed a non-split Q-band at 764 nm, which was redshifted by 83 nm compared with that of metal free phthalocyanine (H 2 Pc). The TD-DFT calculation and electrochemical studies prove that the substitution of diarylamine groups at the α-positions effectively destabilizes the HOMO energy level, which causes a large redshift of the Q-band. Moreover, 1 can generate a one-electron oxidation species through chemical oxidation. The Q-band position of 2 bearing 4,4'-dimetoxyphenylamine units was further shifted by 10 nm compared with that of 1. In addition, 3 having carbazole units showed a small redshift of the Q-band relative to H 2 Pc. The hole-mobility of 2 in thin film was determined to be 1.1×10 -5 cm V -1 s -1 by using a space charge limited current method. A perovskite solar cell employing 2 as a hole-transporting layer gave an efficiency of 5.1 % under standard global 100 Wcm -2 AM 1.5 G illumination. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Poster - 19: Investigation of Electron Reference Dosimetry Based on Optimal Chamber Shift
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhan, Lixin; Jiang, Runqing; Liu, Baochang
An addendum/revision to AAPM TG-51 electron reference dosimetry is highly expected to meet the clinical requirement with the increasing usage of new ion chambers not covered in TG-51. A recent study, Med. Phys. 41, 111701, proposed a new fitting equation for the beam quality conversion factor k’{sub Q} to a wide spectrum of chambers. In the study, an optimal Effective Point of Measurement (EPOM) from Monte Carlo calculations was recommended and the fitting parameters to k’{sub Q} was based on it. We investigated the absolute dose obtained based on the optimal EPOM method and the original TG-51 method with k’{submore » R50} determined differently. The results showed that using the Markus curve is a better choice than the well-guarded chamber fitting for an IBA PPC-05 parallel plate chamber if we need to strictly follow the AAPM TG-51 protocol. We also examined the usage of the new fitting equation with measurement performed at the physical EPOM, instead of the optimal EPOM. The former is more readily determined and more practical in clinics. Our study indicated that the k’{sub Q} fitting based on the optimal EPOM can be used to measurement at the physical EPOM with no significant clinical impact. The inclusion of Farmer chamber gradient correction P{sub gr} in k’{sub Q}, as in the mentioned study, asks for the precise positioning of chamber center at dref. It is not recommended in clinics to avoid over-correction for low electron energies, especially for an institute having matching Linacs implemented.« less
Beam, Monica; Silva, M. Catarina; Morimoto, Richard I.
2012-01-01
Protein misfolding and aggregation are exacerbated by aging and diseases of protein conformation including neurodegeneration, metabolic diseases, and cancer. In the cellular environment, aggregates can exist as discrete entities, or heterogeneous complexes of diverse solubility and conformational state. In this study, we have examined the in vivo dynamics of aggregation using imaging methods including fluorescence microscopy, fluorescence recovery after photobleaching (FRAP), and fluorescence correlation spectroscopy (FCS), to monitor the diverse biophysical states of expanded polyglutamine (polyQ) proteins expressed in Caenorhabditis elegans. We show that monomers, oligomers and aggregates co-exist at different concentrations in young and aged animals expressing different polyQ-lengths. During aging, when aggregation and toxicity are exacerbated, FCS-based burst analysis and purified single molecule FCS detected a populational shift toward an increase in the frequency of brighter and larger oligomeric species. Regardless of age or polyQ-length, oligomers were maintained in a heterogeneous distribution that spans multiple orders of magnitude in brightness. We employed genetic suppressors that prevent polyQ aggregation and observed a reduction in visible immobile species with the persistence of heterogeneous oligomers, yet our analysis did not detect the appearance of any discrete oligomeric states associated with toxicity. These studies reveal that the reversible transition from monomers to immobile aggregates is not represented by discrete oligomeric states, but rather suggests that the process of aggregation involves a more complex pattern of molecular interactions of diverse intermediate species that can appear in vivo and contribute to aggregate formation and toxicity. PMID:22669943
Williamson, Tanja N.; Nystrom, Elizabeth A.; Milly, Paul C.D.
2016-01-01
The Delaware River Basin (DRB) encompasses approximately 0.4 % of the area of the United States (U.S.), but supplies water to 5 % of the population. We studied three forested tributaries to quantify the potential climate-driven change in hydrologic budget for two 25-year time periods centered on 2030 and 2060, focusing on sensitivity to the method of estimating potential evapotranspiration (PET) change. Hydrology was simulated using the Water Availability Tool for Environmental Resources (Williamson et al. 2015). Climate-change scenarios for four Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models (GCMs) and two Representative Concentration Pathways (RCPs) were used to derive monthly change factors for temperature (T), precipitation (PPT), and PET according to the energy-based method of Priestley and Taylor (1972). Hydrologic simulations indicate a general increase in annual (especially winter) streamflow (Q) as early as 2030 across the DRB, with a larger increase by 2060. This increase in Q is the result of (1) higher winter PPT, which outweighs an annual actual evapotranspiration (AET) increase and (2) (for winter) a major shift away from storage of PPT as snow pack. However, when PET change is evaluated instead using the simpler T-based method of Hamon (1963), the increases in Q are small or even negative. In fact, the change of Q depends as much on PET method as on time period or RCP. This large sensitivity and associated uncertainty underscore the importance of exercising caution in the selection of a PET method for use in climate-change analyses.
NASA Astrophysics Data System (ADS)
Bounoua, Dalila; Saint-Martin, Romuald; Petit, Sylvain; Bourdarot, Frédéric; Pinsard-Gaudart, Loreynne
2018-05-01
We report inelastic neutron scattering measurements of the phonons modes, in the one-dimensional half integer spin chains cuprate SrCuO2. We study the longitudinal and the transverse modes propagating in the direction of the chains, along Q (0 0 L) and Q (2 0 L), respectively. On the other hand, we investigate the effect of substitution by impurities in the corresponding doped compounds, namely, SrCu0.99M0.01O2 with M=Mg or Zn, and La0.01Sr0.99CuO2. Our results evidence a systematic strong spinon-phonon interaction leading to an important decrease of the phonon scattered intensity as well as a decrease of the group velocity of the transverse acoustic modes upon substitution, and a shift of the transverse optical B3 u mode in the La-doped SrCuO2, in terms of energy.
Basic features of the pion valence-quark distribution function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Lei; Mezrag, Cédric; Moutarde, Hervé
2014-10-07
The impulse-approximation expression used hitherto to define the pion's valence-quark distribution function is flawed because it omits contributions from the gluons which bind quarks into the pion. A corrected leading-order expression produces the model-independent result that quarks dressed via the rainbow–ladder truncation, or any practical analogue, carry all the pion's light-front momentum at a characteristic hadronic scale. Corrections to the leading contribution may be divided into two classes, responsible for shifting dressed-quark momentum into glue and sea-quarks. Working with available empirical information, we use an algebraic model to express the principal impact of both classes of corrections. This enables amore » realistic comparison with experiment that allows us to highlight the basic features of the pion's measurable valence-quark distribution, q π(x); namely, at a characteristic hadronic scale, q π(x)~(1-x) 2 for x≳0.85; and the valence-quarks carry approximately two-thirds of the pion's light-front momentum.« less
Effect of surface roughness on liquid property measurements using mechanically oscillating sensors
NASA Technical Reports Server (NTRS)
Jain, Mahaveer K.; Grimes, Craig A.
2002-01-01
The resonant frequency and quality factor Q of a liquid immersed magnetoelastic sensor are shown to shift linearly with the liquid viscosity and density product. Measurements using different grade oils, organic chemicals, and glycerol-water mixtures show that the surface roughness of the sensor in combination with the molecular size of the liquid play important roles in determining measurement sensitivity, which can be controlled through adjusting the surface roughness of the sensor surface. A theoretical model describing the sensor resonant frequency and quality factor Q as a function of liquid properties is developed using a novel equivalent circuit approach. Experimental results are in agreement with theory when the liquid molecule size is larger than the average surface roughness. However, when the molecular size of the liquid is small relative to the surface roughness features molecules are trapped, and the trapped molecules act both as a mass load and viscous load; the result is higher viscous damping of the sensor than expected. c2002 Elsevier Science B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Yuanyuan; Gao, Guanjun; Zhang, Jie; Zhang, Kai; Chen, Sai; Yu, Xiaosong; Gu, Wanyi
2015-06-01
A simplex-method based optimizing (SMO) strategy is proposed to improve the transmission performance for dispersion uncompensated (DU) coherent optical systems with non-identical spans. Through analytical expression of quality of transmission (QoT), this strategy improves the Q factors effectively, while minimizing the number of erbium-doped optical fiber amplifier (EDFA) that needs to be optimized. Numerical simulations are performed for 100 Gb/s polarization-division multiplexed quadrature phase shift keying (PDM-QPSK) channels over 10-span standard single mode fiber (SSMF) with randomly distributed span-lengths. Compared to the EDFA configurations with complete span loss compensation, the Q factor of the SMO strategy is improved by approximately 1 dB at the optimal transmitter launch power. Moreover, instead of adjusting the gains of all the EDFAs to their optimal value, the number of EDFA that needs to be adjusted for SMO is reduced from 8 to 2, showing much less tuning costs and almost negligible performance degradation.
LD-pumped actively Q-switched c-cut Nd:GdVO4 self-Raman laser operating at 1166 and 1176 nm
NASA Astrophysics Data System (ADS)
Sun, Xinzhi; Zhang, Xihe; Li, Shutao; Dong, Yuan
2017-12-01
A laser diode pumped actively Q-switched c-cut Nd:GdVO4 self-Raman laser is experimentally investigated. Simultaneous pulse outputs at 1166 nm and 1176 nm corresponding to the Raman shifts of 807 and 882 cm-1 are acquired. At the pulse repetition frequency (PRF) of 20 kHz, the maximum output power is 103 mW at 1166 nm with the incident pump power of 2.31 W, while 1176 nm output power reaches 530 mW with the incident pump power of 4.11 W. The maximum output power of Raman laser is 570 mW with the incident pump power of 4.11 W and the PRF of 30 kHz. With the incident pump power of 3.67 W and the PRF of 30 kHz, the highest diode-to-Stokes optical conversion efficiency of 14.9% is obtained with the corresponding average output power of 547 mW.
[Raman spectroscopic study of binary PbO-TeO2 glasses].
Huang, Li; You, Jing-Lin; Chen, Hui; Jiang, Guo-Chang
2008-07-01
Raman spectra of lead tellurite glasses and their melts were measured. Results show that four coordinate tellurite units convert into three coordinate units with increasing the concentration of PbO, and the number of non-bridging oxygen bonds (NBO) increases accordingly in this system. Three spectral peaks in the high frequency range were assigned to stretching vibration of bridging oxygen in four coordinate tellurite units (Q(b)), stretching vibration of non-bridging oxygen in four coordinate tellurite units (Q(nb)) and in three coordinate tellurite units (T(nb)). The relative density of four coordinate structure units decreases and the three coordinate tellurite units considerably exist in tellurite glasses when the concentration of PbO > 50%. Besides, the Raman frequencies of the three species' peaks become blue-shifted because of the temperature induced crystallization at high temperature, and the peak intensities increase and the peaks sharpen. The peaks merge together and become much broader while the glass is heated above the melting point because of multiple microstructure units coexisting.
Photon hopping and nanowire based hybrid plasmonic waveguide and ring-resonator
Gu, Zhiyuan; Liu, Shuai; Sun, Shang; Wang, Kaiyang; Lyu, Quan; Xiao, Shumin; Song, Qinghai
2015-01-01
Nanowire based hybrid plasmonic structure plays an important role in achieving nanodevices, especially for the wide band-gap materials. However, the conventional schemes of nanowire based devices such as nano-resonators are usually isolated from the integrated nano-network and have extremely low quality (Q) factors. Here we demonstrate the transmission of waves across a gap in hybrid plasmonic waveguide, which is termed as “photon hopping”. Based on the photon hopping, we show that the emissions from nanodevices can be efficiently collected and conducted by additional nanowires. The collection ratio can be higher than 50% for a wide range of separation distance, transverse shift, and tilt. Moreover, we have also explored the possibility of improving performances of individual devices by nano-manipulating the nanowire to a pseudo-ring. Our calculations show that both Q factor and Purcell factor have been increased by more than an order of magnitude. We believe that our researches will be essential to forming nanolasers and the following nano-networks.
A PKM2 signature in the failing heart
Rees, Meredith L.; Subramaniam, Janani; Li, Yuanteng; Hamilton, Dale J.; Frazier, O. Howard; Taegtmeyer, Heinrich
2015-01-01
A salient feature of the failing heart is metabolic remodeling towards predominant glucose metabolism and activation of the fetal gene program. Sunitinib is a multitargeted receptor tyrosine kinase inhibitor used for the treatment of highly vascularized tumors. In diabetic patients, sunitinib significantly decreases blood glucose. However, a considerable proportion of sunitinib-treated patients develop cardiac dysfunction or failure. We asked whether sunitinib treatment results in shift towards glycolysis in the heart. Glucose uptake by the heart was increased fivefold in mice treated with sunitinib. Transcript analysis by qPCR revealed an induction of genes associated with glycolysis and reactivation of the fetal gene program. Additionally, we observed a shift in the enzyme pyruvate kinase from the adult M1 (PKM1) isoform to the fetal M2 (PKM2) isoform, a hallmark of the Warburg Effect. This novel observation led us to examine whether a similar shift occurs in human heart failure. Examination of tissue from patients with heart failure similarly displayed an induction of PKM2. Moreover, this phenomenon was partially reversed following mechanical unloading. We propose that pyruvate kinase isoform switching represents a novel feature of the fetal gene program in the failing heart. PMID:25735978
Rectangular QPSK for generation of optical eight-ary phase-shift keying.
Lu, Guo-Wei; Sakamoto, Takahide; Kawanishi, Tetsuya
2011-09-12
Quadrature phase-shift keying (QPSK) is usually generated using an in-phase/quadrature (IQ) modulator in a balanced driving-condition, showing a square-shape constellation in complex plane. This conventional QPSK is referred to as square QPSK (S-QPSK) in this paper. On the other hand, when an IQ modulator is driven in an un-balanced manner with different amplitudes in in-phase (I) and quadrature (Q) branches, a rectangular QPSK (R-QPSK) could be synthesized. The concept of R-QPSK is proposed for the first time and applied to optical eight-ary phase-shift keying (8PSK) transmitter. By cascading an S-QPSK and an R-QPSK, an optical 8PSK could be synthesized. The transmitter configuration is based on two cascaded IQ modulators, which also could be used to generate other advanced multi-level formats like quadrature amplitude modulation (QAM) when different driving and bias conditions are applied. Therefore, the proposed transmitter structure has potential to be deployed as a versatile transmitter for synthesis of several different multi-level modulation formats for the future dynamic optical networks. A 30-Gb/s optical 8PSK is experimentally demonstrated using the proposed solution.
Proton radius from electron scattering data
NASA Astrophysics Data System (ADS)
Higinbotham, Douglas W.; Kabir, Al Amin; Lin, Vincent; Meekins, David; Norum, Blaine; Sawatzky, Brad
2016-05-01
Background: The proton charge radius extracted from recent muonic hydrogen Lamb shift measurements is significantly smaller than that extracted from atomic hydrogen and electron scattering measurements. The discrepancy has become known as the proton radius puzzle. Purpose: In an attempt to understand the discrepancy, we review high-precision electron scattering results from Mainz, Jefferson Lab, Saskatoon, and Stanford. Methods: We make use of stepwise regression techniques using the F test as well as the Akaike information criterion to systematically determine the predictive variables to use for a given set and range of electron scattering data as well as to provide multivariate error estimates. Results: Starting with the precision, low four-momentum transfer (Q2) data from Mainz (1980) and Saskatoon (1974), we find that a stepwise regression of the Maclaurin series using the F test as well as the Akaike information criterion justify using a linear extrapolation which yields a value for the proton radius that is consistent with the result obtained from muonic hydrogen measurements. Applying the same Maclaurin series and statistical criteria to the 2014 Rosenbluth results on GE from Mainz, we again find that the stepwise regression tends to favor a radius consistent with the muonic hydrogen radius but produces results that are extremely sensitive to the range of data included in the fit. Making use of the high-Q2 data on GE to select functions which extrapolate to high Q2, we find that a Padé (N =M =1 ) statistical model works remarkably well, as does a dipole function with a 0.84 fm radius, GE(Q2) =(1+Q2/0.66 GeV2) -2 . Conclusions: Rigorous applications of stepwise regression techniques and multivariate error estimates result in the extraction of a proton charge radius that is consistent with the muonic hydrogen result of 0.84 fm; either from linear extrapolation of the extremely-low-Q2 data or by use of the Padé approximant for extrapolation using a larger range of data. Thus, based on a purely statistical analysis of electron scattering data, we conclude that the electron scattering results and the muonic hydrogen results are consistent. It is the atomic hydrogen results that are the outliers.
Cerenkov emission of acoustic phonons electrically generated from three-dimensional Dirac semimetals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubakaddi, S. S., E-mail: sskubakaddi@gmail.com
2016-05-21
Cerenkov acoustic phonon emission is theoretically investigated in a three-dimensional Dirac semimetal (3DDS) when it is driven by a dc electric field E. Numerical calculations are made for Cd{sub 3}As{sub 2} in which mobility and electron concentration are large. We find that Cerenkov emission of acoustic phonons takes place when the electron drift velocity v{sub d} is greater than the sound velocity v{sub s}. This occurs at small E (∼few V/cm) due to large mobility. Frequency (ω{sub q}) and angular (θ) distribution of phonon emission spectrum P(ω{sub q}, θ) are studied for different electron drift velocities v{sub d} (i.e., differentmore » E) and electron concentrations n{sub e}. The frequency dependence of P(ω{sub q}, θ) shows a maximum P{sub m}(ω{sub q}, θ) at about ω{sub m} ≈ 1 THz and is found to increase with the increasing v{sub d} and n{sub e}. The value of ω{sub m} shifts to higher region for larger n{sub e}. It is found that ω{sub m}/n{sub e}{sup 1/3} and P{sub m}(ω{sub q}, θ)/n{sub e}{sup 2/3} are nearly constants. The latter is in contrast with the P{sub m}(ω{sub q}, θ)n{sub e}{sup 1/2 }= constant in conventional bulk semiconductor. Each maximum is followed by a vanishing spectrum at nearly “2k{sub f} cutoff,” where k{sub f} is the Fermi wave vector. Angular dependence of P(ω{sub q}, θ) and the intensity P(θ) of the phonon emission shows a maximum at an emission angle 45° and is found to increase with increasing v{sub d}. P(θ) is found to increase linearly with n{sub e} giving the ratio P(θ)/(n{sub e}v{sub d}) nearly a constant. We suggest that it is possible to have the controlled Cerenkov emission and generation of acoustic phonons with the proper choice of E, θ, and n{sub e}. 3DDS with large n{sub e} and mobility can be a good source of acoustic phonon generation in ∼THz regime.« less
NASA Astrophysics Data System (ADS)
Yang, Shao-Qiong; Li, Shan; Tian, Hai-Ping; Wang, Qing-Yi; Jiang, Nan
2016-04-01
Nature has shown us that the microstructure of the skin of fast-swimming sharks in the ocean can reduce the skin friction drag due to the well-known shark-skin effect. In the present study, the effect of shark-skin-inspired riblets on coherent vortex structures in a turbulent boundary layer (TBL) is investigated. This is done by means of tomographic particle image velocimetry (TPIV) measurements in channel flows over an acrylic plate of drag-reducing riblets at a friction Reynolds number of 190. The turbulent flows over drag-reducing riblets are verified by a planar time-resolved particle image velocimetry (TRPIV) system initially, and then the TPIV measurements are performed. Two-dimensional (2D) experimental results with a drag-reduction rate of around 4.81 % are clearly visible over triangle riblets with a peak-to-peak spacing s+ of 14, indicating from the drag-reducing performance that the buffer layer within the TBL has thickened; the logarithmic law region has shifted upward and the Reynolds shear stress decreased. A comparison of the spatial topological distributions of the spanwise vorticity of coherent vortex structures extracted at different wall-normal heights through the improved quadrant splitting method shows that riblets weaken the amplitudes of the spanwise vorticity when ejection (Q2) and sweep (Q4) events occur at the near wall, having the greatest effect on Q4 events in particular. The so-called quadrupole statistical model for coherent structures in the whole TBL is verified. Meanwhile, their spatial conditional-averaged topological shapes and the spatial scales of quadrupole coherent vortex structures as a whole in the overlying turbulent flow over riblets are changed, suggesting that the riblets dampen the momentum and energy exchange between the regions of near-wall and outer portion of the TBL by depressing the bursting events (Q2 and Q4), thereby reducing the skin friction drag.
Gounaridis, Lefteris; Groumas, Panos; Schreuder, Erik; Heideman, Rene; Avramopoulos, Hercules; Kouloumentas, Christos
2016-04-04
It is still a common belief that ultra-high quality-factors (Q-factors) are a prerequisite in optical resonant cavities for high refractive index resolution and low detection limit in biosensing applications. In combination with the ultra-short steps that are necessary when the measurement of the resonance shift relies on the wavelength scanning of a laser source and conventional methods for data processing, the high Q-factor requirement makes these biosensors extremely impractical. In this work we analyze an alternative processing method based on the fast-Fourier transform, and show through Monte-Carlo simulations that improvement by 2-3 orders of magnitude can be achieved in the resolution and the detection limit of the system in the presence of amplitude and spectral noise. More significantly, this improvement is maximum for low Q-factors around 104 and is present also for high intra-cavity losses and large scanning steps making the designs compatible with the low-cost aspect of lab-on-a-chip technology. Using a micro-ring resonator as model cavity and a system design with low Q-factor (104), low amplitude transmission (0.85) and relatively large scanning step (0.25 pm), we show that resolution close to 0.01 pm and detection limit close to 10-7 RIU can be achieved improving the sensing performance by more than 2 orders of magnitude compared to the performance of systems relying on a simple peak search processing method. The improvement in the limit of detection is present even when the simple method is combined with ultra-high Q-factors and ultra-short scanning steps due to the trade-off between the system resolution and sensitivity. Early experimental results are in agreement with the trends of the numerical studies.
Kohzuma, Kaori; Hikosaka, Kouki
2018-03-25
Non-photochemical quenching (NPQ) is the most important photoprotective system in higher plants. NPQ can be divided into several steps according to the timescale of relaxation of chlorophyll fluorescence after reaching a steady state (i.e., the fast phase, qE; middle phase, qZ or qT; and slow phase, qI). The dissipation of excess energy as heat during the xanthophyll cycle, a large component of NPQ, is detectable during the fast to middle phase (sec to min). Although thermal dissipation is primarily investigated using indirect methods such as chlorophyll a fluorescence measurements, such analyses require dark adaptation or the application of a saturating pulse during measurement, making it difficult to continuously monitor this process. Here, we designed an unconventional technique for real-time monitoring of changes in thylakoid lumen pH (as reflected by changes in xanthophyll pigment content) based on the photochemical reflectance index (PRI), which we estimated by measuring light-driven leaf reflectance at 531 nm. We analyzed two Arabidopsis thaliana mutants, npq1 (unable to convert violaxanthin to zeaxanthin due to inhibited violaxanthin de-epoxidase [VDE] activity) and npq4 (lacking PsbS protein), to uncover the regulator of the PRI. The PRI was variable in wild-type and npq4 plants, but not in npq1, indicating that the PRI is related to xanthophyll cycle-dependent thermal energy quenching (qZ) rather than the linear electron transport rate or NPQ. In situ lumen pH substitution using a pH-controlled buffer solution caused a shift in PRI. These results suggest that the PRI reflects only xanthophyll cycle conversion and is therefore a useful parameter for monitoring thylakoid lumen pH (reflecting VDE activity) in vivo. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Joint Carrier-Phase Synchronization and LDPC Decoding
NASA Technical Reports Server (NTRS)
Simon, Marvin; Valles, Esteban
2009-01-01
A method has been proposed to increase the degree of synchronization of a radio receiver with the phase of a suppressed carrier signal modulated with a binary- phase-shift-keying (BPSK) or quaternary- phase-shift-keying (QPSK) signal representing a low-density parity-check (LDPC) code. This method is an extended version of the method described in Using LDPC Code Constraints to Aid Recovery of Symbol Timing (NPO-43112), NASA Tech Briefs, Vol. 32, No. 10 (October 2008), page 54. Both methods and the receiver architectures in which they would be implemented belong to a class of timing- recovery methods and corresponding receiver architectures characterized as pilotless in that they do not require transmission and reception of pilot signals. The proposed method calls for the use of what is known in the art as soft decision feedback to remove the modulation from a replica of the incoming signal prior to feeding this replica to a phase-locked loop (PLL) or other carrier-tracking stage in the receiver. Soft decision feedback refers to suitably processed versions of intermediate results of iterative computations involved in the LDPC decoding process. Unlike a related prior method in which hard decision feedback (the final sequence of decoded symbols) is used to remove the modulation, the proposed method does not require estimation of the decoder error probability. In a basic digital implementation of the proposed method, the incoming signal (having carrier phase theta theta (sub c) plus noise would first be converted to inphase (I) and quadrature (Q) baseband signals by mixing it with I and Q signals at the carrier frequency [wc/(2 pi)] generated by a local oscillator. The resulting demodulated signals would be processed through one-symbol-period integrate and- dump filters, the outputs of which would be sampled and held, then multiplied by a soft-decision version of the baseband modulated signal. The resulting I and Q products consist of terms proportional to the cosine and sine of the carrier phase cc as well as correlated noise components. These products would be fed as inputs to a digital PLL that would include a number-controlled oscillator (NCO), which provides an estimate of the carrier phase, theta(sub c).
Nonoguchi, K; Itoh, K; Xue, J H; Tokuchi, H; Nishiyama, H; Kaneko, Y; Tatsumi, K; Okuno, H; Tomiwa, K; Fujita, J
1999-09-03
In mice, the Hsp110/SSE family is composed of the heat shock protein (Hsp)110/105, Apg-1 and Apg-2. In humans, however, only the Hsp110/105 homolog has been identified as a member, and two cDNAs, Hsp70RY and HS24/p52, potentially encoding proteins structurally similar to, but smaller than, mouse Apg-2 have been reported. To clarify the membership of Hsp110 family in humans, we isolated Apg-1 and Apg-2 cDNAs from a human testis cDNA library. The human Apg-1 was 100% and 91.8% identical in length and amino acid (aa) sequence, respectively, to mouse Apg-1. Human Apg-2 was one aa shorter than and 95.5% identical in sequence to mouse Apg-2. In ECV304, human endothelial cells Apg-1 but not Apg-2 transcripts were induced in 2 h by a temperature shift from 32 degrees C to 39 degrees C. As found in mice, the response was stronger than that to a 37-42 degrees C shift. The human Apg-1 and Apg-2 genes were mapped to the chromosomal loci 4q28 and 5q23.3-q31.1, respectively, by fluorescence in-situ hybridization. We isolated cDNA and genomic clones encompassing the region critical for the difference between Apg-2 and HS24/p52. Although the primer sets used were derived from the sequences common to both cDNAs, all cDNA and genomic clones corresponded to Apg-2. Using a similar approach, the relationship between Apg-2 and Hsp70RY was assessed, and no clone corresponding to Hsp70RY was obtained. These results demonstrated that the Hsp110 family consists of at least three members, Apg-1, Apg-2 and Hsp110 in humans as well as in mice. The significance of HS24/p52 and Hsp70RY cDNAs previously reported remains to be determined.
Nonsensing residues in S3-S4 linker's C terminus affect the voltage sensor set point in K+ channels.
Carvalho-de-Souza, Joao L; Bezanilla, Francisco
2018-02-05
Voltage sensitivity in ion channels is a function of highly conserved arginine residues in their voltage-sensing domains (VSDs), but this conservation does not explain the diversity in voltage dependence among different K + channels. Here we study the non-voltage-sensing residues 353 to 361 in Shaker K + channels and find that residues 358 and 361 strongly modulate the voltage dependence of the channel. We mutate these two residues into all possible remaining amino acids (AAs) and obtain Q-V and G-V curves. We introduced the nonconducting W434F mutation to record sensing currents in all mutants except L361R, which requires K + depletion because it is affected by W434F. By fitting Q-Vs with a sequential three-state model for two voltage dependence-related parameters ( V 0 , the voltage-dependent transition from the resting to intermediate state and V 1 , from the latter to the active state) and G-Vs with a two-state model for the voltage dependence of the pore domain parameter ( V 1/2 ), Spearman's coefficients denoting variable relationships with hydrophobicity, available area, length, width, and volume of the AAs in 358 and 361 positions could be calculated. We find that mutations in residue 358 shift Q-Vs and G-Vs along the voltage axis by affecting V 0 , V 1 , and V 1/2 according to the hydrophobicity of the AA. Mutations in residue 361 also shift both curves, but V 0 is affected by the hydrophobicity of the AA in position 361, whereas V 1 and V 1/2 are affected by size-related AA indices. Small-to-tiny AAs have opposite effects on V 1 and V 1/2 in position 358 compared with 361. We hypothesize possible coordination points in the protein that residues 358 and 361 would temporarily and differently interact with in an intermediate state of VSD activation. Our data contribute to the accumulating knowledge of voltage-dependent ion channel activation by adding functional information about the effects of so-called non-voltage-sensing residues on VSD dynamics. © 2018 Carvalho-de-Souza and Bezanilla.
Semin, Boris K; Davletshina, Lira N; Rubin, Andrei B
2015-08-01
Effects of pH, Ca(2+), and Cl(-) ions on the extraction of Mn cations from oxygen-evolving complex (OEC) in Ca-depleted photosystem II (PSII(-Ca)) by exogenous reductants hydroquinone (H2Q) and H2O2 were studied. Two of 4 Mn cations are released by H2Q and H2O2 at pHs 5.7, 6.5, and 7.5, and their extraction does not depend on the presence of Ca(2+) and Cl(-) ions. One of Mn cations ("resistant" Mn cation) cannot be extracted by H2Q and H2O2 at any pH. Extraction of 4th Mn ion ("flexible" Mn cation) is sensitive to pH, Ca(2+), and Cl(-). This Mn cation is released by reductants at pH 6.5 but not at pHs 5.7 and 7.5. A pH dependence curve of the oxygen-evolving activity in PSII(-Ca) membranes (in the presence of exogenous Ca(2+)) has a bell-shaped form with the maximum at pH 6.5. Thus, the increase in the resistance of flexible Mn cation in OEC to the action of reductants at acidic and alkaline pHs coincides with the decrease in oxygen evolution activity at these pHs. Exogenous Ca(2+) protects the extraction of flexible Mn cation at pH 6.5. High concentration of Cl(-) anions (100 mM) shifts the pH optimum of oxygen evolution to alkaline region (around pH 7.5), while the pH of flexible Mn extraction is also shifted to alkaline pH. This result suggests that flexible Mn cation plays a key role in the water-splitting reaction. The obtained results also demonstrate that only one Mn cation in Mn4 cluster is under strong control of calcium. The change in the flexible Mn cation resistance to exogenous reductants in the presence of Ca(2+) suggests that Ca(2+) can control the redox potential of this cation.
Loganovsky, Konstantyn; Perchuk, Iryna; Marazziti, Donatella
2016-12-01
The present study aimed at assessing bioelectric activity and cognitive functions in the workers on the conversion project of the "Shelter" object (SO) of the Chernobyl nuclear power plant into an environmentally safe system. A total of 196 men were included and examined before (t0) and after (t1) working on the SO in the period 2004-2008. They underwent a qEEG and a battery of neuropsychological and psychiatric assessments. At t1, the organized type of qEEG shifted towards the disorganized one. An increase of spectral δ-power in the left frontotemporal area, of θ- and α-power in the left temporal area, with redistribution of α-activity to the front and reduction of dominant frequency in the left temporal area, were registered. Further, neurocognitive tests revealed the presence of mild cognitive disorders at t1. Interestingly, those subjects previously exposed to radiation with no consequences, were more resistant to these detrimental effects. Taken together, the disturbances observed may be considered as cognitive symptoms of a chronic fatigue syndrome resulting from the exposure to ionizing radiation. Simple and non-invasive assessments, such as those performed by us, may be helpful to detect early brain changes caused by the presence of radiological risk factors.
NASA Astrophysics Data System (ADS)
Beger, Richard D.; Buzatu, Dan A.; Wilkes, Jon G.
2002-10-01
A three-dimensional quantitative spectrometric data-activity relationship (3D-QSDAR) modeling technique which uses NMR spectral and structural information that is combined in a 3D-connectivity matrix has been developed. A 3D-connectivity matrix was built by displaying all possible assigned carbon NMR chemical shifts, carbon-to-carbon connections, and distances between the carbons. Two-dimensional 13C-13C COSY and 2D slices from the distance dimension of the 3D-connectivity matrix were used to produce a relationship among the 2D spectral patterns for polychlorinated dibenzofurans, dibenzodioxins, and biphenyls (PCDFs, PCDDs, and PCBs respectively) binding to the aryl hydrocarbon receptor (AhR). We refer to this technique as comparative structural connectivity spectral analysis (CoSCoSA) modeling. All CoSCoSA models were developed using forward multiple linear regression analysis of the predicted 13C NMR structure-connectivity spectral bins. A CoSCoSA model for 26 PCDFs had an explained variance (r2) of 0.93 and an average leave-four-out cross-validated variance (q4 2) of 0.89. A CoSCoSA model for 14 PCDDs produced an r2 of 0.90 and an average leave-two-out cross-validated variance (q2 2) of 0.79. One CoSCoSA model for 12 PCBs gave an r2 of 0.91 and an average q2 2 of 0.80. Another CoSCoSA model for all 52 compounds had an r2 of 0.85 and an average q4 2 of 0.52. Major benefits of CoSCoSA modeling include ease of development since the technique does not use molecular docking routines.
Metabolic and cardiovascular adjustment to work in air and water at 18, 25, and 33 degrees C.
McArdle, W D; Magel, J R; Lesmes, G R; Pechar, G S
1976-01-01
By use of successive increments of discontinuous work with an arm-leg cycle ergometer the VO2, Q, SV, and HR were studied in six male subjects at rest and during exercise in air and in water at 18, 25, and 33 degrees C. The Q values obtained by CO2 rebreathing were reproducible. VO2 was linearly related to work with the plots for air and 33 degrees C water being similar. However, during work in 25 and 18 degrees C water, the VO2 averaged 9.0% (150 ml) and 25.3% (400 ml) higher, respectively, than values observed in 33 degrees C water, with the largest differences observed in leaner subjects. The plot of HR-VO2 was linear and almost identical during work in air and 33 degrees C water, but shifted significantly to the right in cooler water. VO2 averaged 250-700 ml higher in cold water compared to air and 33 degrees C water at a given mean heart rate. The Q vs. VO2 line was similar during work in air and in water with no effect of water or temperature. At similar levels of VO2, SV was significantly larger (P less than 0.05) in 25 and 18 degrees C water than in air or 33 degrees C water. Consequently, the reduction in heart rate during work in cold water was entirely compensated for by a proportionate increase in the SV of the heart. Q was therefore maintained at similar levels of energy expenditure in air and in 18, 25, and 30 degrees C water.
NASA Astrophysics Data System (ADS)
Rojstaczer, Stuart; Riley, Francis S.
1990-08-01
The response of the water level in a well to Earth tides and atmospheric loading under unconfined conditions can be explained if the water level is controlled by the aquifer response averaged over the saturated depth of the well. Because vertical averaging tends to diminish the influence of the water table, the response is qualitatively similar to the response of a well under partially confined conditions. When the influence of well bore storage can be ignored, the response to Earth tides is strongly governed by a dimensionless aquifer frequency Q'u. The response to atmospheric loading is strongly governed by two dimensionless vertical fluid flow parameters: a dimensionless unsaturated zone frequency, R, and a dimensionless aquifer frequency Qu. The differences between Q'u and Qu are generally small for aquifers which are highly sensitive to Earth tides. When Q'u and Qu are large, the response of the well to Earth tides and atmospheric loading approaches the static response of the aquifer under confined conditions. At small values of Q'u and Qu, well response to Earth tides and atmospheric loading is strongly influenced by water table drainage. When R is large relative to Qu, the response to atmospheric loading is strongly influenced by attenuation and phase shift of the pneumatic pressure signal in the unsaturated zone. The presence of partial penetration retards phase advance in well response to Earth tides and atmospheric loading. When the theoretical response of a phreatic well to Earth tides and atmospheric loading is fit to the well response inferred from cross-spectral estimation, it is possible to obtain estimates of the pneumatic diffusivity of the unsaturated zone and the vertical hydraulic conductivity of the aquifer.
Germano, M; Shkuropatov, A Y; Permentier, H; de Wijn, R; Hoff, A J; Shuvalov, V A; van Gorkom, H J
2001-09-25
Photosystem II reaction centers (RC) with selectively exchanged pheophytin (Pheo) molecules as described in [Germano, M., Shkuropatov, A. Ya., Permentier, H., Khatypov, R. A., Shuvalov, V. A., Hoff, A. J., and van Gorkom, H. J. (2000) Photosynth. Res. 64, 189-198] were studied by low-temperature absorption, linear and circular dichroism, and triplet-minus-singlet absorption-difference spectroscopy. The ratio of extinction coefficients epsilon(Pheo)/epsilon(Chl) for Q(Y) absorption in the RC is approximately 0.40 at 6 K and approximately 0.45 at room temperature. The presence of 2 beta-carotenes, one parallel and one perpendicular to the membrane plane, is confirmed. Absorption at 670 nm is due to the perpendicular Q(Y) transitions of the two peripheral chlorophylls (Chl) and not to either Pheo. The "core" pigments, two Pheo and four Chl absorb in the 676-685 nm range. Delocalized excited states as predicted by the "multimer model" are seen in the active branch. The inactive Pheo and the nearby Chl, however, mainly contribute localized transitions at 676 and 680 nm, respectively, although large CD changes indicate that exciton interactions are present on both branches. Replacement of the active Pheo prevents triplet formation, causes an LD increase at 676 and 681 nm, a blue-shift of 680 nm absorbance, and a bleach of the 685 nm exciton band. The triplet state is mainly localized on the Chl corresponding to B(A) in purple bacteria. Both Pheo Q(Y) transitions are oriented out of the membrane plane. Their Q(X) transitions are parallel to that plane, so that the Pheos in PSII are structurally similar to their homologues in purple bacteria.
NASA Astrophysics Data System (ADS)
Kusserow, Hannelore
2017-12-01
Since the turn of the millennium various scientific publications have been discussing a re-greening of the Sahel after the 1980s drought mainly based on coarse-resolution satellite data. However, the author's own field studies suggest that the situation is far more complex and that both paradigms, the encroaching Sahara
and the re-greening Sahel
, need to be questioned.
This paper discusses the concepts of desertification, resilience, and re-greening by addressing four main aspects: (i) the relevance of edaphic factors for a vegetation re-greening, (ii-iii) the importance of the selected observation period in the debate on Sahel greening or browning, and (iv) modifications in the vegetation pattern as possible indicators of ecosystem changes (shift from originally diffuse to contracted vegetation patterns).
The data referred to in this paper cover a time period of more than 150 years and include the author's own research results from the early 1980s until today. A special emphasis, apart from fieldwork data and remote sensing data, is laid on the historical documents.
The key findings summarised at the end show the following: (i) vegetation recovery predominantly depends on soil types; (ii) when discussing Sahel greening vs. Sahel browning, the majority of research papers only focus on post-drought conditions. Taking pre-drought conditions (before the 1980s) into account, however, is essential to fully understand the situation. Botanical investigations and remote-sensing-based time series clearly show a substantial decline in woody species diversity and cover density compared to pre-drought conditions; (iii) the self-organised patchiness of vegetation is considered to be an important indicator of ecosystem changes.
Nour, Eman H; Elsayed, Tarek R; Springael, Dirk; Smalla, Kornelia
2017-06-01
On-farm biopurification systems (BPSs) represent an efficient technology for treating pesticide-contaminated wastewater. Biodegradation by genetically adapted bacteria has been suggested to perform a major contribution to the removal of pesticides in BPSs. Recently, several studies pointed to the role of IncP-1 plasmids in the degradation of pesticides in BPSs but this was never linked with catabolic markers. Therefore, a microcosm experiment was conducted in order to examine whether changes in mobile genetic element (MGE) abundances in response to the application of phenylurea herbicide linuron are linked with changes in catabolic genes. Denaturing gradient gel electrophoresis (DGGE) fingerprints of 16S ribosomal RNA gene fragments amplified from total community (TC)-DNA suggested significant shifts in the bacterial community composition. PCR-Southern blot-based detection of genes involved in linuron hydrolysis (libA and hylA) or degradation of its metabolite 3,4-dichloroaniline (dcaQ I , dcaQ II , and ccdC) in TC-DNA showed that the abundance of the hylA gene was increased faster and stronger in response to linuron application than that of the libA gene, and that the dcaQ II gene was more abundant than the isofunctional gene dcaQ I 20 and 60 days after linuron addition. Furthermore, a significant increase in the relative abundance of the IncP-1-specific korB gene in response to linuron was recorded. Our data suggest that different bacterial populations bearing isofunctional genes coding for enzymes degrading linuron seemed to be enriched in BPSs in response to linuron and that IncP-1 plasmids might be involved in their dissemination.
Investigation of 16 × 10 Gbps DWDM System Based on Optimized Semiconductor Optical Amplifier
NASA Astrophysics Data System (ADS)
Rani, Aruna; Dewra, Sanjeev
2017-08-01
This paper investigates the performance of an optical system based on optimized semiconductor optical amplifier (SOA) at 160 Gbps with 0.8 nm channel spacing. Transmission distances up to 280 km at -30 dBm input signal power and up to 247 km at -32 dBm input signal power with acceptable bit error rate (BER) and Q-factor are examined. It is also analyzed that the transmission distance up to 292 km has been covered at -28 dBm input signal power using Dispersion Shifted (DS)-Normal fiber without any power compensation methods.
Wide-range tuning of polymer microring resonators by the photobleaching of CLD-1 chromophores
NASA Astrophysics Data System (ADS)
Poon, Joyce K. S.; Huang, Yanyi; Paloczi, George T.; Yariv, Amnon; Zhang, Cheng; Dalton, Larry R.
2004-11-01
We present a simple and effective method for the postfabrication trimming of optical microresonators. We photobleach CLD-1 chromophores to tune the resonance wavelengths of polymer microring resonator optical notch filters. A maximum wavelength shift of -8.73 nm is observed. The resonators are fabricated with a soft-lithography molding technique and have an intrinsic Q value of 2.6×10^4 and a finesse of 9.3. The maximum extinction ratio of the resonator filters is -34 dB, indicating that the critical coupling condition has been satisfied.
Signal Processing Design of Low Probability of Intercept Waveforms via Intersymbol Dither
2008-03-01
filter output asynchronously. 3.3.1 Basic Receiver. This section considers the receiver shown in Fig- ure 3.4. Note that the matched filter output is...0 0.5 1 Q ua dr at ur e In−phase s1s2 s3 s4 Figure 4.3: 4-ary DPSK Constellation Table 4.1: 4-ary DPSK Gray code mapping Word Phase Shift, ∆θ 00 0 01...both the real and imaginary parts of each noise samples following an independent Gaussian distribution. The Marsaglia ziggurat algorithm in Matlabr is
A symmetric metamaterial element-based RF biosensor for rapid and label-free detection
NASA Astrophysics Data System (ADS)
Lee, Hee-Jo; Lee, Jung-Hyun; Jung, Hyo-Il
2011-10-01
A symmetric metamaterial element-based RF biosensing scheme is experimentally demonstrated by detecting biomolecular binding between a prostate-specific antigen (PSA) and its antibody. The metamaterial element in a high-impedance microstrip line shows an intrinsic S21 resonance having a Q-factor of 55. The frequency shift with PSA concentration, i.e., 100 ng/ml, 10 ng/ml, and 1 ng/ml, is observed and the changes are Δf ≈ 20 MHz, 10 MHz, and 5 MHz, respectively. The proposed biosensor offers advantages of label-free detection, a simple and direct scheme, and cost-efficient fabrication.
NASA Astrophysics Data System (ADS)
Yagi, Kent; Yunes, Nicolas
2015-04-01
Recent work shows that rotating incompressible stars with anisotropic matter in the weak-field limit become prolate, which is rather counter-intuitive. We construct slowly-rotating, incompressible and anisotropic stellar solutions in full General Relativity valid to quadratic order in spin and show that the stellar shape shifts from prolate to oblate as one increases the relativistic effect. Anisotropic stars are also interesting because they can be more compact than isotropic stars, and can even be as compact as black holes. We present how stellar multipole moments approach the black hole limit as one increases the compactness, suggesting that they reach the black hole limit continuously.
Electrocutaneous sensitivity: effects of skin temperature.
Larkin, W D; Reilly, J P
1986-01-01
The effect of human skin temperature on electrocutaneous sensitivity was examined using brief capacitive discharges. Stimuli were designed to ensure that sensory effects would be independent of skin resistance and would reflect underlying neural excitability as closely as possible. Skin temperature was manipulated by immersing the forearm in circulating hot or cold air. Detection thresholds on the arm and fingertip were raised by cooling, but were not altered by heating. Temperature-related sensitivity shifts were described by the same multiplicative factors for both threshold and suprathreshold levels. The temperature coefficient (Q10) for cutaneous sensitivity under these conditions was approximately 1.3.
Skulachev, M V; Skulachev, V P
2017-12-01
(i) In 2015-2017 we compared possible reasons for longevity of two mammalian highly social species, i.e. naked mole rats and humans. We proposed that in both cases longevity is a result of neoteny, prolongation of youth by deceleration of late ontogeny (Skulachev, V. P. (2015) Abst. 11th Conf. on Mitochondrial Physiology (MiP2015), Lucni Bouda, Czech Republic, pp. 64-66; Skulachev, V. P., Holtze, S., Vyssokikh, M. Y., Bakeeva, L. E., Skulachev, M. V., Markov, A. V., Hildebrandt, T. B., and Sadovnichii, V. A. (2017) Physiol. Rev., 97, 699-720). Both naked mole rats and humans strongly decreased the pressure of natural selection, although in two different manners. Naked mole rats preferred an "aristocratic" pathway when reproduction (and, hence, involvement in evolution) is monopolized by the queen and her several husbands. Huge number of subordinates who have no right to take part in reproduction and hence in evolution serves the small queen's family. Humans used an alternative, "democratic" pathway, namely technical progress facilitating adaptation to the changing environmental conditions. This pathway is open to all humankind. (ii) As a result, aging as a mechanism increasing evolvability by means of facilitation of natural selection became unnecessary for naked mole rats and humans due to strong attenuation of this selection. This is apparently why aging became a counterproductive atavism for these two species and was strongly shifted to late ages. This shift is direct evidence of the hypothesis that aging is programmed, being the last step of late ontogeny. (iii) Further deceleration of aging for humans by means of neoteny is unrealistic since the development of neoteny probably takes million years. (iv) However, if biological aging is a program, an alternative and much simpler way to avoid it seems possible. We mean inhibition of an essential step of this program. (v) At present, the most probable scheme of the aging program assumes that it is a mechanism of slow poisoning of an organism by reactive oxygen species produced by mitochondria. If this is the case, a mitochondria-targeted antioxidant might be an inhibitor of the aging program. During the last 12 years, such an antioxidant, namely SkQ1, was synthesized and studied in detail in our group. It consists of plastoquinone and decyltriphenylphosphonium (a penetrating cation responsible for electrophoretic accumulation of SkQ1 in mitochondria). It was shown that long-term treatment with SkQ1 increased the lifespan of plants, fungi, invertebrates, fish, and mammals. Moreover, SkQ1 is effective in the therapy of various age-related diseases. It was also shown that a single SkQ1 injection could save life in certain models of sudden death of animals. (vi) A tentative scheme is proposed considering aging as a process of chronic phenoptosis, which eventually results in initiation of acute phenoptosis and death. This scheme also suggests that under certain conditions chronic phenoptosis can be neutralized by an anti-aging program that is activated by food restriction regarded by an organism as a signal of starvation. As for acute phenoptosis, it is apparently controlled by receptors responsible for measuring key parameters of homeostasis. The first experimental indications have been already obtained indicating that both chronic and acute phenoptosis are suppressed by SkQ1.
J-aggregation in porphyrin nanoparticles induced by diphenylalanine
NASA Astrophysics Data System (ADS)
Li, Fengqing; Liu, Dongzhi; Wang, Tianyang; Hu, Jianxin; Meng, Fancui; Sun, Haiya; Shang, Zhi; Li, Pingan; Feng, Wenhui; Li, Wei; Zhou, Xueqin
2017-08-01
In this report, L-diphenylalanine-decorated tetraphenylporphyrin (TPPtFFC) was synthesized and self-assembled into regular nano-architechtures. The morphology of the assemblies varied with the concentration of TPPtFFC. The absorption spectra of the nanoparticles show the Soret band merges with the Q bands and redistributes with great red-shift, indicative of the formation of J-aggregates of the porphyrin molecules. The fluorescence emission of the nanoparticles is merged and red-shifted to near-infrared region. Studies of absorption and fluorescence spectra reveal an indispensible role of diphenylalanine group in the formation of J-aggregates. The Raman spectra disclose that diprotonation of the porphyrin core contributes to delocalized coherent excited states in the nanoparticles. The positive cotton effect in circular dichroism spectra corresponding to the Soret band of TPPtFFC in solution confirms the formation of J-aggregates with right-handed chirality of the dipole moment. This report will shed light on the rational design of porphyrin-peptide conjugates to mimic naturally light-harvesting complexes.
Zhang, Hong; Zapol, Peter; Dixon, David A.; ...
2015-11-17
The Shift-and-invert parallel spectral transformations (SIPs), a computational approach to solve sparse eigenvalue problems, is developed for massively parallel architectures with exceptional parallel scalability and robustness. The capabilities of SIPs are demonstrated by diagonalization of density-functional based tight-binding (DFTB) Hamiltonian and overlap matrices for single-wall metallic carbon nanotubes, diamond nanowires, and bulk diamond crystals. The largest (smallest) example studied is a 128,000 (2000) atom nanotube for which ~330,000 (~5600) eigenvalues and eigenfunctions are obtained in ~190 (~5) seconds when parallelized over 266,144 (16,384) Blue Gene/Q cores. Weak scaling and strong scaling of SIPs are analyzed and the performance of SIPsmore » is compared with other novel methods. Different matrix ordering methods are investigated to reduce the cost of the factorization step, which dominates the time-to-solution at the strong scaling limit. As a result, a parallel implementation of assembling the density matrix from the distributed eigenvectors is demonstrated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hong; Zapol, Peter; Dixon, David A.
The Shift-and-invert parallel spectral transformations (SIPs), a computational approach to solve sparse eigenvalue problems, is developed for massively parallel architectures with exceptional parallel scalability and robustness. The capabilities of SIPs are demonstrated by diagonalization of density-functional based tight-binding (DFTB) Hamiltonian and overlap matrices for single-wall metallic carbon nanotubes, diamond nanowires, and bulk diamond crystals. The largest (smallest) example studied is a 128,000 (2000) atom nanotube for which ~330,000 (~5600) eigenvalues and eigenfunctions are obtained in ~190 (~5) seconds when parallelized over 266,144 (16,384) Blue Gene/Q cores. Weak scaling and strong scaling of SIPs are analyzed and the performance of SIPsmore » is compared with other novel methods. Different matrix ordering methods are investigated to reduce the cost of the factorization step, which dominates the time-to-solution at the strong scaling limit. As a result, a parallel implementation of assembling the density matrix from the distributed eigenvectors is demonstrated.« less
Shafranov shift bifurcation of turbulent transport in the high βp scenario on DIII-D
NASA Astrophysics Data System (ADS)
McClenaghan, J.; Garofalo, A. M.; Staebler, G. M.; Qian, J.; Gong, X.; Ding, S. Y.
2017-10-01
The Shafranov shift stabilization of turbulence creates a bifurcation in transport leading to formation of a large radius internal transport barrier (ITB) in the high βp scenario on DIII-D. The high βp scenario exhibits high confinement at high βN and high bootstrap fraction in the absence of rapid rotation or negative central shear. Spontaneous formation of an ITB at fixed βN is examined. The energy confinement improves following formation of the ITB. The improvement is associated with a decrease in the minimum mid-radius characteristic turbulence parameter associated with the Shafranov shift: α - s , where α =q2 Rdβ / dρ is a measure of the Shafranov shift, and s is the magnetic shear. After ITB formation, α - s > 0 within region of ITB and α - s < 0 outside the ITB. Before ITB formation, α - s < 0 throughout the entire core. TGLF transport simulations show a bifurcation of the transport depending on the electron pressure gradient scale length. Before ITB formation, the experimental scale length is on the high-transport side of bifurcation. After ITB formation, experimental scale length is on the low-transport side of the bifurcation in the region of the ITB. Work supported in part by the US Department of Energy, Office of Science, Office of Fusion Energy Sciences DE-FC02-04ER54698 (Cooperative Agreement #DE-SC0010685), and by the National Magnetic Confinement Fusion Program of China (No. 2015GB102002, 2015GB10.
Vibronic Structure of the tilde{X} ^2A_2' State of NO_3
NASA Astrophysics Data System (ADS)
Fukushima, Masaru
2015-06-01
We have measured dispersed fluorescence ( DF ) spectra from the single vibronic levels ( SVL's ) of the tilde{B} ^2E' state of jet cooled 14NO_3 and 15NO_3, and found a new vibronic band around the ν_1 fundamental This new band has two characteristics; (1) inverse isotope shift, and (2) unexpectedly strong intensity, i.e. comparable with that of the ν_1 fundamental. We concluded on the basis of the isotope effect that the terminated ( lower ) vibrational level of the new vibronic band should have vibrationally a_1' symmetry, and assigned to the third over-tone of the ν_4 asymmetric (e') mode, 3 ν_4 (a_1'). We also assigned a weaker band at about 160 cm-1 above the new band to one terminated to 3 ν_4 (a_2'). The 3 ν_4 (a_1') and (a_2') levels are ones with l = ±3. Hirota proposed new vibronic coupling mechanism which suggests that degenerate vibrational modes can induce electronic orbital angular momentum ( L ) even in non-degenerate electronic states. %It is thus thought the surprisingly wide splitting of 3 ν_4, a_1' and a_2', is resulted from vibronic coupling, and the explanation we proposed is as follows. We interpret this as a sort of break-down of the Born-Oppenheimer approximation, and think that ± l induces ∓barΛ, where barΛ expresses the pseudo-L; for the present system, one of the components of the third over-tone level, | Λ = 0; v_4 = 3, l = +3 rangle, can have contributions of | barΛ = -1; v_4 = 3, l = +2 rangle and | -2; 3, +1 rangle. Under this interpretation, it is expected that there is sixth-order vibronic coupling, (q_+^3Q_-^3 + q_-^3Q_+^3), between | 0; 3, +3 rangle and | 0; 3, -3 rangle. The sixth-order coupling is weaker than the Renner-Teller term ( the fourth-order term, (q_+^2Q_-^2 + q_-^2Q_+^2) ), but stronger than the eighth-order term, (q_+^4Q_-^4 + q_-^4Q_+^4). It is well known in linear molecules that the former shows huge separation, comparable with vibrational frequency, among the vibronic levels of Π electronic states, and the latter shows considerable splitting, ˜10 cm-1, at Δ electronic states. Consequently, the ˜160 cm-1 splitting at v_4 = 3 is attributed to the sixth-order interaction. The relatively strong intensity for the band to 3 ν_4 (a_1') can be interpreted as a part of the huge 0-0 band intensity, because the 3 ν_4 (a_1') level, | 0; 3, ±3 rangle, can connect with the vibrationless level, | 0; 0, 0 rangle. 3 ν_4 (a_1') has two-fold intensity because of the vibrational wavefunction, | 0; 3, +3 rangle + | 0; 3, -3 rangle, while negligible intensity is expected for 3 ν_4 (a_2') with | 0; 3, +3 rangle - | 0; 3, -3 rangle due to the cancellation. To confirm these interpretations, experiments on rotationally resolved spectra are underway. M. Fukushima and T. Ishiwata, paper WJ03, ISMS2013, and paper MI17, ISMS2014. E. Hirota, J. Mol. Spectrosc., in press.
Hurst, Michelle; Monahan, K Leigh; Heller, Elizabeth; Cordes, Sara
2014-11-01
When placing numbers along a number line with endpoints 0 and 1000, children generally space numbers logarithmically until around the age of 7, when they shift to a predominantly linear pattern of responding. This developmental shift of responding on the number placement task has been argued to be indicative of a shift in the format of the underlying representation of number (Siegler & Opfer, ). In the current study, we provide evidence from both child and adult participants to suggest that performance on the number placement task may not reflect the structure of the mental number line, but instead is a function of the fluency (i.e. ease) with which the individual can work with the values in the sequence. In Experiment 1, adult participants respond logarithmically when placing numbers on a line with less familiar anchors (1639 to 2897), despite linear responding on control tasks with standard anchors involving a similar range (0 to 1287) and a similar numerical magnitude (2000 to 3000). In Experiment 2, we show a similar developmental shift in childhood from logarithmic to linear responding for a non-numerical sequence with no inherent magnitude (the alphabet). In conclusion, we argue that the developmental trend towards linear behavior on the number line task is a product of successful strategy use and mental fluency with the values of the sequence, resulting from familiarity with endpoints and increased knowledge about general ordering principles of the sequence.A video abstract of this article can be viewed at:http://www.youtube.com/watch?v=zg5Q2LIFk3M. © 2014 John Wiley & Sons Ltd.
Facial Soft Tissue Measurement in Microgravity-induces Fluid Shifts
NASA Technical Reports Server (NTRS)
Marshburn, Thomas; Cole, Richard; Pavela, James; Garcia, Kathleen; Sargsyan, Ashot
2014-01-01
Fluid shifts are a well-known phenomenon in microgravity, and one result is facial edema. Objective measurement of tissue thickness in a standardized location could provide a correlate with the severity of the fluid shift. Previous studies of forehead tissue thickness (TTf) suggest that when exposed to environments that cause fluid shifts, including hypergravity, head-down tilt, and high-altitude/lowpressure, TTf changes in a consistent and measurable fashion. However, the technique in past studies is not well described or standardized. The International Space Station (ISS) houses an ultrasound (US) system capable of accurate sub-millimeter measurements of TTf. We undertook to measure TTf during long-duration space flight using a new accurate, repeatable and transferable technique. Methods: In-flight and post-flight B-mode ultrasound images of a single astronaut's facial soft tissues were obtained using a Vivid-q US system with a 12L-RS high-frequency linear array probe (General Electric, USA). Strictly mid-sagittal images were obtained involving the lower frontal bone, the nasofrontal angle, and the osseo-cartilaginous junction below. Single images were chosen for comparison that contained identical views of the bony landmarks and identical acoustical interface between the probe and skin. Using Gingko CADx DICOM viewing software, soft tissue thickness was measured at a right angle to the most prominent point of the inferior frontal bone to the epidermis. Four independent thickness measurements were made. Conclusions: Forehead tissue thickness measurement by ultrasound in microgravity is feasible, and our data suggest a decrease in tissue thickness upon return from microgravity environment, which is likely related to the cessation of fluid shifts. Further study is warranted to standardize the technique with regard to the individual variability of the local anatomy in this area.
NASA Astrophysics Data System (ADS)
Dudaryonok, A. S.; Lavrentieva, N. N.; Buldyreva, J.
2018-06-01
(J, K)-line broadening and shift coefficients with their temperature-dependence characteristics are computed for the perpendicular (ΔK = ±1) ν6 band of the 12CH3D-N2 system. The computations are based on a semi-empirical approach which consists in the use of analytical Anderson-type expressions multiplied by a few-parameter correction factor to account for various deviations from Anderson's theory approximations. A mathematically convenient form of the correction factor is chosen on the basis of experimental rotational dependencies of line widths, and its parameters are fitted on some experimental line widths at 296 K. To get the unknown CH3D polarizability in the excited vibrational state v6 for line-shift calculations, a parametric vibration-state-dependent expression is suggested, with two parameters adjusted on some room-temperature experimental values of line shifts. Having been validated by comparison with available in the literature experimental values for various sub-branches of the band, this approach is used to generate massive data of line-shape parameters for extended ranges of rotational quantum numbers (J up to 70 and K up to 20) typically requested for spectroscopic databases. To obtain the temperature-dependence characteristics of line widths and line shifts, computations are done for various temperatures in the range 200-400 K recommended for HITRAN and least-squares fit procedures are applied. For the case of line widths strong sub-branch dependence with increasing K is observed in the R- and P-branches; for the line shifts such dependence is stated for the Q-branch.
Dierks, Raphaela Marie Louisa; Bruyère, Olivier; Reginster, Jean-Yves; Richy, Florent-Frederic
2016-10-01
Technological innovations, new regulations, increasing costs of drug productions and new demands are only few key drivers of a projected alternation in the pharmaceutical industry. The purpose of this review is to understand the macro economic factors responsible for the business model revolution to possess a competitive advantage over market players. Areas covered: Existing literature on macro-economic factors changing the pharmaceutical landscape has been reviewed to present a clear image of the current market environment. Expert commentary: Literature shows that pharmaceutical companies are facing an architectural alteration, however the evidence on the rationale driving the transformation is outstanding. Merger & Acquisitions (M&A) deals and collaborations are headlining the papers. Q1 2016 did show a major slowdown in M&A deals by volume since 2013 (with deal cancellations of Pfizer and Allergan, or the downfall of Valeant), but pharmaceutical analysts remain confident that this shortfall was a consequence of the equity market volatility. It seems likely that the shift to an M&A model will become apparent during the remainder of 2016, with deal announcements of Abbott Laboratories, AbbVie and Sanofi worth USD 45billion showing the appetite of big pharma companies to shift from the fully vertical integrated business model to more horizontal business models.
Li, Song; Bañuelos, José Leobardo; Zhang, Pengfei; Feng, Guang; Dai, Sheng; Rother, Gernot; Cummings, Peter T
2014-12-07
The structural and dynamical properties of dicationic ionic liquids (DILs) [Cn(mim)2](Tf2N)2, that is, 3-methylimidazolium dications separated by an alkyl chain and with bis(trifluoromethylsulfonyl)amide as the anion, were investigated by molecular dynamics (MD) simulation in combination with small/wide-angle X-ray scattering (SWAXS) measurements. Enhanced spatial heterogeneity is observed as the DIL chain length is increased, characterized by the changes in the scattering and the increased heterogeneity order parameter (HOP). Temperature variation imposes only slight influences on the local structures of DILs compared to monocationic ionic liquids (MILs). The peaks at 0.9 Å(-1) and 1.4 Å(-1) of the structure function shift towards low Q as the temperature increases, in a similar manner to MILs, and changes in peak positions in response to temperature changes are reflected in HOP variations. However, the prepeak shift with increasing temperature is ∼3 times smaller in DILs compared to MILs, and both MD and SWAXS indicate a DIL-specific prepeak shifting. Furthermore, the high ion pair/ion cage stability in DILs is indicative of high thermal stability and relative insensitivity of structural heterogeneity to temperature variation, which might be caused by the stronger Coulombic interactions in DILs.
Colloid-polymer mixtures under slit confinement.
Pérez-Ramírez, Allan; Figueroa-Gerstenmaier, Susana; Odriozola, Gerardo
2017-03-14
We report a NVT molecular dynamic study of colloid-polymer mixtures under slit confinement. For this purpose, we are employing the Asakura-Oosawa model for studying colloidal particles, polymer coils, and hard walls as the external confining field. The colloid-polymer size ratio, q, is varied in the range 1⩾q⩾0.4 and the confinement distance, H, in 10σ c ⩾H⩾3σ c , σ c being the colloidal diameter. Vapor-liquid coexistence properties are assessed, from which phase diagrams are built. The obtained data fulfill the corresponding states law for a constant H when q is varied. The shift of the polymer and colloidal chemical potentials of coexistence follows a linear relationship with (H-σ c ) -1 for H≳4σ c . The confined vapor-liquid interfaces can be fitted with a semicircular line of curvature (H-σ c ) -1 , from which the contact angle can be obtained. We observe complete wetting of the confining walls for reservoir polymer concentrations above and close to the critical value, and partial wetting for reservoir polymer concentrations above and far from it.
NASA Technical Reports Server (NTRS)
VanKeuls, F. W.; Romanofsky, R. R.; Bohman, D. Y.; Miranda, F. A.
1998-01-01
The performance of gold/SrTio3 /LaAlO3 conductor/ferroelectric/dielectric side-coupled, tunable ring resonators at K-band frequencies is presented. The tunability of these rings arises from the sensitivity of the relative dielectric constant (Er) of SrTiO 3 to changes in temperature and dc electric fields (E). We observed that the change in F-, which takes place by biasing the ring up to 450 V alters the effective dielectric constant (e-eff) of the circuit resulting in a 3k resonant frequency shift of nearly 12 % at 77 K. By applying a separate dc bias between the microstrip line and the ring, one can optimize their coupling to obtain bandstop resonators with unloaded quality factors (Q(sub o)) as high as 12,000. The 31 resonance was tuned from 15.75 to 17.41 GHz while keeping Q. above 768 over this range. The relevance of these results for practical microwave components will be discussed.
Zgaren, Mohamed; Moradi, Arash; Sawan, Mohamad
2015-01-01
Energy-efficient and high-data rate are desired in biomedical devices transceivers. A high-performance transmitter (Tx) and an ultra-low-power receiver (Rx) dedicated to medical implants communications operating at Industrial, Scientific and Medical (ISM) frequency band are presented. Tx benefits from a new efficient Frequency-Shift Keying (FSK) modulation technique which provides up to 20 Mb/s of data-rate and consumes only 0.084 nJ/b validated through fabrication. The receiver consists of an FSK-to-ASK conversion based receiver with OOK fully passive wake-up device (WuRx). This WuRx is battery less with energy harvesting technique which plays an important role in making the RF transceiver energy-efficient. The Rx is achieved with a reduced hardware architecture which does not use an accurate local oscillator, high-Q external inductor and I/Q signal path. The Rx shows -78 dBm sensitivity for 8 Mbps data rate while consuming 639 μW. The proposed circuits are implemented in IBM 0.13 μm CMOS technology with 1.2 V supply voltage.
NASA Astrophysics Data System (ADS)
Milione, Giovanni; Lavery, Martin P. J.; Huang, Hao; Ren, Yongxiong; Xie, Guodong; Nguyen, Thien An; Karimi, Ebrahim; Marrucci, Lorenzo; Nolan, Daniel A.; Alfano, Robert R.; Willner, Alan E.
2015-05-01
Vector modes are spatial modes that have spatially inhomogeneous states of polarization, such as, radial and azimuthal polarization. They can produce smaller spot sizes and stronger longitudinal polarization components upon focusing. As a result, they are used for many applications, including optical trapping and nanoscale imaging. In this work, vector modes are used to increase the information capacity of free space optical communication via the method of optical communication referred to as mode division multiplexing. A mode (de)multiplexer for vector modes based on a liquid crystal technology referred to as a q-plate is introduced. As a proof of principle, using the mode (de)multiplexer four vector modes each carrying a 20 Gbit/s quadrature phase shift keying signal on a single wavelength channel (~1550nm), comprising an aggregate 80 Gbit/s, were transmitted ~1m over the lab table with <-16.4 dB (<2%) mode crosstalk. Bit error rates for all vector modes were measured at the forward error correction threshold with power penalties < 3.41dB.
NASA Astrophysics Data System (ADS)
Pihan-Le Bars, H.; Guerlin, C.; Lasseri, R.-D.; Ebran, J.-P.; Bailey, Q. G.; Bize, S.; Khan, E.; Wolf, P.
2017-04-01
We introduce an improved model that links the frequency shift of the 133Cs hyperfine Zeeman transitions |F =3 ,mF ⟩↔|F =4 ,mF ⟩ to the Lorentz-violating Standard Model extension (SME) coefficients of the proton and neutron. The new model uses Lorentz transformations developed to second order in boost and additionally takes the nuclear structure into account, beyond the simple Schmidt model used previously in Standard Model extension analyses, thereby providing access to both proton and neutron SME coefficients including the isotropic coefficient c˜T T. Using this new model in a second analysis of the data delivered by the FO2 dual Cs/Rb fountain at Paris Observatory and previously analyzed in [1], we improve by up to 13 orders of magnitude the present maximum sensitivities for laboratory tests [2] on the c˜Q, c˜T J, and c˜T T coefficients for the neutron and on the c˜Q coefficient for the proton, reaching respectively 10-20, 10-17, 10-13, and 10-15 GeV .
Toward one-loop tunneling rates of near-extremal magnetic black hole pair production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi, P.
Pair production of magnetic Reissner-Nordstroem black holes (of charges [plus minus][ital q]) was recently studied in the leading WKB approximation. Here we consider generic quantum fluctuations in the corresponding instanton geometry given by the Euclidean Ernst metric, in order to simulate the behavior of the one-loop tunneling rate. A detailed study of the Ernst metric suggests that for a sufficiently weak field [ital B], the problem can be reduced to that of quantum fluctuations around a single near-extremal Euclidean black hole in thermal equilibrium with a heat bath of finite size. After appropriate renormalization procedures, typical one-loop contributions to themore » WKB exponent are shown to be inversely proportional to [ital B], as [ital B][r arrow]0, indicating that the leading Schwinger term is corrected by a small fraction [similar to][h bar]/[ital q][sup 2]. We demonstrate that this correction to the Schwinger term is actually due to a semiclassical shift of the black hole mass-to-charge ratio that persists even in the extremal limit. Finally we discuss a few loose ends.« less
Conjugated polymer energy level shifts in lithium-ion battery electrolytes.
Song, Charles Kiseok; Eckstein, Brian J; Tam, Teck Lip Dexter; Trahey, Lynn; Marks, Tobin J
2014-11-12
The ionization potentials (IPs) and electron affinities (EAs) of widely used conjugated polymers are evaluated by cyclic voltammetry (CV) in conventional electrochemical and lithium-ion battery media, and also by ultraviolet photoelectron spectroscopy (UPS) in vacuo. By comparing the data obtained in the different systems, it is found that the IPs of the conjugated polymer films determined by conventional CV (IPC) can be correlated with UPS-measured HOMO energy levels (EH,UPS) by the relationship EH,UPS = (1.14 ± 0.23) × qIPC + (4.62 ± 0.10) eV, where q is the electron charge. It is also found that the EAs of the conjugated polymer films measured via CV in conventional (EAC) and Li(+) battery (EAB) media can be linearly correlated by the relationship EAB = (1.07 ± 0.13) × EAC + (2.84 ± 0.22) V. The slopes and intercepts of these equations can be correlated with the dielectric constants of the polymer film environments and the redox potentials of the reference electrodes, as modified by the surrounding electrolyte, respectively.
Zhou, Haoran; Xu, Ming; Pan, Hongli; Yu, Xiubo
2015-11-01
Temperature responses and sensitivity of photosynthesis (A(n_)T) and respiration for leaves at different ages are crucial to modeling ecosystem carbon (C) cycles and productivity of evergreen forests. Understanding the mechanisms and processes of temperature sensitivity may further shed lights on temperature acclimation of photosynthesis and respiration with leaf aging. The current study examined temperature responses of photosynthesis and respiration of young leaves (YLs) (fully expanded in current growth season) and old leaves (OLs) (fully expanded in last growth season) of Quercus aquifolioides Rehder and E.H. Wilson in an alpine oak forest, southwestern China. Temperature responses of dark respiration (R(dark)), net assimilation (A(n)), maximal velocity of carboxylation (V(cmax)) and maximum rate of electron transport (J(max)) were significantly different between the two leaf ages. Those differences implied different temperature response parameters should be used for leaves of different ages in modeling vegetation productivity and ecosystem C cycles in Q. aquifolioides forests and other evergreen forests. We found that RuBP carboxylation determined the downward shift of A(n_)T in OLs, while RuBP regeneration and the balance between Rubisco carboxylation and RuBP regeneration made little contribution. Sensitivity of stomatal conductance to vapor pressure deficit changed in OLs and compensated part of the downward shift. We also found that OLs of Q. aquifolioides had lower An due to lower stomatal conductance, higher stomatal conductance limitation and deactivation of the biochemical processes. In addition, the balance between R(dark) and A(n) changed between OLs and YLs, which was represented by a higher R(dark)/A(n) ratio for OLs. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
van As, Adele; Joubert, Chris C; Buitendach, Blenerhassitt E; Erasmus, Elizabeth; Conradie, Jeanet; Cammidge, Andrew N; Chambrier, Isabelle; Cook, Michael J; Swarts, Jannie C
2015-06-01
Nonperipherally hexyl-substituted metal-free tetrabenzoporphyrin (2H-TBP, 1a) tetrabenzomonoazaporphyrin (2H-TBMAP, 2a), tetrabenzo-cis-diazaporphyrin (2H-TBDAP, 3a), tetrabenzotriazaporphyrin (2H-TBTAP, 4a), and phthalocyanine (2H-Pc, 5a), as well as their copper complexes (1b-5b), were synthesized. As the number of meso nitrogen atoms increases from zero to four, λmax of the Q-band absorption peak becomes red-shifted by almost 100 nm, and extinction coefficients increased at least threefold. Simultaneously the blue-shifted Soret (UV) band substantially decreased in intensity. These changes were related to the relative electron-density of each macrocycle expressed as the group electronegativity sum of all meso N and CH atom groups, ∑χR. X-ray photoelectron spectroscopy differentiated between the three different types of macrocyclic nitrogen atoms (the Ninner, (NH)inner, and Nmeso) in the metal-free complexes. Binding energies of the Nmeso and Ninner,Cu atoms in copper chelates could not be resolved. Copper insertion lowered especially the cathodic redox potentials, while all four observed redox processes occurred at larger potentials as the number of meso nitrogens increased. Computational chemical methods using density functional theory confirmed 1b to exhibit a Cu(II) reduction prior to ring-based reductions, while for 2b, Cu(II) reduction is the first reductive step only if the nonperipheral substituents are hydrogen. When they are methyl groups, it is the second reduction process; when they are ethyl, propyl, or hexyl, it becomes the third reductive process. Spectro-electrochemical measurements showed redox processes were associated with a substantial change in intensity of at least two main absorbances (the Q and Soret bands) in the UV spectra of these compounds.
Axial resonances a$$_{1}$$(1260), b$$_{1}$$(1235) and their decays from the lattice
Lang, C. B.; Leskovec, Luka; Mohler, Daniel; ...
2014-04-28
The light axial-vector resonancesmore » $$a_1(1260)$$ and $$b_1(1235)$$ are explored in Nf=2 lattice QCD by simulating the corresponding scattering channels $$\\rho\\pi$$ and $$\\omega\\pi$$. Interpolating fields $$\\bar{q} q$$ and $$\\rho\\pi$$ or $$\\omega\\pi$$ are used to extract the s-wave phase shifts for the first time. The $$\\rho$$ and $$\\omega$$ are treated as stable and we argue that this is justified in the considered energy range and for our parameters $$m_\\pi\\simeq 266~$$MeV and $$L\\simeq 2~$$fm. We neglect other channels that would be open when using physical masses in continuum. Assuming a resonance interpretation a Breit-Wigner fit to the phase shift gives the $$a_1(1260)$$ resonance mass $$m_{a1}^{res}=1.435(53)(^{+0}_{-109})$$ GeV compared to $$m_{a1}^{exp}=1.230(40)$$ GeV. The $$a_1$$ width $$\\Gamma_{a1}(s)=g^2 p/s$$ is parametrized in terms of the coupling and we obtain $$g_{a_1\\rho\\pi}=1.71(39)$$ GeV compared to $$g_{a_1\\rho\\pi}^{exp}=1.35(30)$$ GeV derived from $$\\Gamma_{a1}^{exp}=425(175)$$ MeV. In the $$b_1$$ channel, we find energy levels related to $$\\pi(0)\\omega(0)$$ and $$b_1(1235)$$, and the lowest level is found at $$E_1 \\gtrsim m_\\omega+m_\\pi$$ but is within uncertainty also compatible with an attractive interaction. Lastly, assuming the coupling $$g_{b_1\\omega\\pi}$$ extracted from the experimental width we estimate $$m_{b_1}^{res}=1.414(36)(^{+0}_{-83})$$.« less
Ionization and dissociation of molecular ion beams by intense ultrafast laser pulses
NASA Astrophysics Data System (ADS)
Ben-Itzhak, Itzik
2007-06-01
Laser-induced dissociation and ionization of a diatomic molecular-ion beam were simultaneously measured using coincidence 3D momentum imaging, with direct separation of the two processes even where the fragment kinetic energy is the same for both processes. We mainly focus on the fundamental H2^+ molecule in 7-135 fs laser pulses having 10^13-10^15 W/cm^2 peak intensity. At high intensities the kinetic energy release (KER) distribution following ionization of H2^+ was measured to be broad and structureless. Its centroid shifts toward higher energies as the laser intensity is increased indicating that ionization shifts to smaller internuclear distances. In contrast, a surprising structure is observed near the ionization threshold, which we call above threshold Coulomb explosion (ATCE) [1]. The angular distributions of the two H^+ fragments are strongly peaked along the laser polarization, and the angular distribution is described well by [cos^2θ]^n, where n is the number of photons predicted by our ATCE model [1]. Our data indicates that n varies with the laser wavelength as predicted by the model. The KER and angular distributions of H2^+ dissociation change dramatically with decreasing pulse width over the 7-135 fs range in contrast to the reported trend for longer pulses. Others contributing to this work: A.M. Sayler, P.Q. Wang, J. McKenna, B. Gaire, Nora G. Johnson, E. Parke, K.D. Carnes, and B.D. Esry. Thank are due to Professor Zenghu Chang for providing the intense laser beams and Dr. Charles Fehrenbach for his help with the ion beams. [1] B.D. Esry, A.M. Sayler, P.Q. Wang, K.D. Carnes, and I. Ben-Itzhak, Phys. Rev. Lett. 97, 013003 (2006).
Milovanovic, Petar; Rakocevic, Zlatko; Djonic, Danijela; Zivkovic, Vladimir; Hahn, Michael; Nikolic, Slobodan; Amling, Michael; Busse, Bjoern; Djuric, Marija
2014-07-01
To unravel the origins of decreased bone strength in the superolateral femoral neck, we assessed bone structural features across multiple length scales at this cortical fracture initiating region in postmenopausal women with hip fracture and in aged-matched controls. Our combined methodological approach encompassed atomic force microscopy (AFM) characterization of cortical bone nano-structure, assessment of mineral content/distribution via quantitative backscattered electron imaging (qBEI), measurement of bone material properties by reference point indentation, as well as evaluation of cortical micro-architecture and osteocyte lacunar density. Our findings revealed a wide range of differences between the fracture group and the controls, suggesting a number of detrimental changes at various levels of cortical bone hierarchical organization that may render bone fragile. Namely, mineral crystals at external cortical bone surfaces of the fracture group were larger (65.22nm±41.21nm vs. 36.75nm±18.49nm, p<0.001), and a shift to a higher mineral content and more homogenous mineralization profile as revealed via qBEI were found in the bone matrix of the fracture group. Fracture cases showed nearly 35% higher cortical porosity and showed significantly reduced osteocyte lacunar density compared to controls (226±27 vs. 247±32#/mm(2), p=0.05). Along with increased crystal size, a shift towards higher mineralization and a tendency to increased cortical porosity and reduced osteocyte lacunar number delineate that cortical bone of the superolateral femoral neck bears distinct signs of fragility at various levels of its structural organization. These results contribute to the understanding of hierarchical bone structure changes in age-related fragility. Copyright © 2014 Elsevier Inc. All rights reserved.
Novel phase of carbon, ferromagnetism, and conversion into diamond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narayan, Jagdish, E-mail: narayan@ncsu.edu; Bhaumik, Anagh
2015-12-07
We report the discovery of a new phase of carbon (referred to as Q-carbon) and address fundamental issues related to direct conversion of carbon into diamond at ambient temperatures and pressures in air without any need for catalyst and presence of hydrogen. The Q-carbon is formed as result of quenching from super undercooled state by using high-power nanosecond laser pulses. We discuss the equilibrium phase diagram (P vs. T) of carbon and show that by rapid quenching kinetics can shift thermodynamic graphite/diamond/liquid carbon triple point from 5000 K/12 GPa to super undercooled carbon at atmospheric pressure in air. It is shown thatmore » nanosecond laser heating of diamond-like amorphous carbon on sapphire, glass, and polymer substrates can be confined to melt carbon in a super undercooled state. By quenching the carbon from the super undercooled state, we have created a new state of carbon (Q-carbon) from which nanodiamond, microdiamond, microneedles, and single-crystal thin films are formed depending upon the nucleation and growth times allowed for diamond formation. The Q-carbon quenched from liquid is a new state of solid carbon with a higher mass density than amorphous carbon and a mixture of mostly fourfold sp{sup 3} (75%–85%) with the rest being threefold sp{sup 2} bonded carbon (with distinct entropy). It is expected to have new and improved mechanical hardness, electrical conductivity, chemical, and physical properties, including room-temperature ferromagnetism (RTFM) and enhanced field emission. Here we present interesting results on RTFM, enhanced electrical conductivity and surface potential of Q-carbon to emphasize its unique properties. The Q-carbon exhibits robust bulk ferromagnetism with estimated Curie temperature of about 500 K and saturation magnetization value of 20 emu g{sup −1}. From the Q-carbon, diamond phase is nucleated and a variety of micro- and nanostructures and large-area single-crystal diamond sheets are grown by allowing growth times as needed. Subsequent laser pulses can be used to grow nanodiamond into microdiamond and nucleate other nanostructures of diamond on the top of existing microdiamond and create novel nanostructured materials. The microstructural details provide insights into the mechanism of formation of nanodiamond, microdiamond, nanoneedles, microneedles, and single-crystal thin films. This process allows carbon-to-diamond conversion and formation of useful nanostructures and microstructures at ambient temperatures in air at atmospheric pressure on practical and heat-sensitive substrates in a controlled way without need for any catalysts and hydrogen to stabilize sp{sup 3} bonding for diamond formation.« less
Novel phase of carbon, ferromagnetism, and conversion into diamond
NASA Astrophysics Data System (ADS)
Narayan, Jagdish; Bhaumik, Anagh
2015-12-01
We report the discovery of a new phase of carbon (referred to as Q-carbon) and address fundamental issues related to direct conversion of carbon into diamond at ambient temperatures and pressures in air without any need for catalyst and presence of hydrogen. The Q-carbon is formed as result of quenching from super undercooled state by using high-power nanosecond laser pulses. We discuss the equilibrium phase diagram (P vs. T) of carbon and show that by rapid quenching kinetics can shift thermodynamic graphite/diamond/liquid carbon triple point from 5000 K/12 GPa to super undercooled carbon at atmospheric pressure in air. It is shown that nanosecond laser heating of diamond-like amorphous carbon on sapphire, glass, and polymer substrates can be confined to melt carbon in a super undercooled state. By quenching the carbon from the super undercooled state, we have created a new state of carbon (Q-carbon) from which nanodiamond, microdiamond, microneedles, and single-crystal thin films are formed depending upon the nucleation and growth times allowed for diamond formation. The Q-carbon quenched from liquid is a new state of solid carbon with a higher mass density than amorphous carbon and a mixture of mostly fourfold sp3 (75%-85%) with the rest being threefold sp2 bonded carbon (with distinct entropy). It is expected to have new and improved mechanical hardness, electrical conductivity, chemical, and physical properties, including room-temperature ferromagnetism (RTFM) and enhanced field emission. Here we present interesting results on RTFM, enhanced electrical conductivity and surface potential of Q-carbon to emphasize its unique properties. The Q-carbon exhibits robust bulk ferromagnetism with estimated Curie temperature of about 500 K and saturation magnetization value of 20 emu g-1. From the Q-carbon, diamond phase is nucleated and a variety of micro- and nanostructures and large-area single-crystal diamond sheets are grown by allowing growth times as needed. Subsequent laser pulses can be used to grow nanodiamond into microdiamond and nucleate other nanostructures of diamond on the top of existing microdiamond and create novel nanostructured materials. The microstructural details provide insights into the mechanism of formation of nanodiamond, microdiamond, nanoneedles, microneedles, and single-crystal thin films. This process allows carbon-to-diamond conversion and formation of useful nanostructures and microstructures at ambient temperatures in air at atmospheric pressure on practical and heat-sensitive substrates in a controlled way without need for any catalysts and hydrogen to stabilize sp3 bonding for diamond formation.
Proton radius from electron scattering data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Higinbotham, Douglas W.; Kabir, Al Amin; Lin, Vincent
Background: The proton charge radius extracted from recent muonic hydrogen Lamb shift measurements is significantly smaller than that extracted from atomic hydrogen and electron scattering measurements. The discrepancy has become known as the proton radius puzzle. Purpose: In an attempt to understand the discrepancy, we review high-precision electron scattering results from Mainz, Jefferson Lab, Saskatoon and Stanford. Methods: We make use of stepwise regression techniques using the F-test as well as the Akaike information criterion to systematically determine the predictive variables to use for a given set and range of electron scattering data as well as to provide multivariate errormore » estimates. Results: Starting with the precision, low four-momentum transfer (Q 2) data from Mainz (1980) and Saskatoon (1974), we find that a stepwise regression of the Maclaurin series using the F-test as well as the Akaike information criterion justify using a linear extrapolation which yields a value for the proton radius that is consistent with the result obtained from muonic hydrogen measurements. Applying the same Maclaurin series and statistical criteria to the 2014 Rosenbluth results on GE from Mainz, we again find that the stepwise regression tends to favor a radius consistent with the muonic hydrogen radius but produces results that are extremely sensitive to the range of data included in the fit. Making use of the high-Q 2 data on G E to select functions which extrapolate to high Q 2, we find that a Pad´e (N = M = 1) statistical model works remarkably well, as does a dipole function with a 0.84 fm radius, G E(Q 2) = (1 + Q 2/0.66 GeV 2) -2. Conclusions: Rigorous applications of stepwise regression techniques and multivariate error estimates result in the extraction of a proton charge radius that is consistent with the muonic hydrogen result of 0.84 fm; either from linear extrapolation of the extreme low-Q 2 data or by use of the Pad´e approximant for extrapolation using a larger range of data. Thus, based on a purely statistical analysis of electron scattering data, we conclude that the electron scattering result and the muonic hydrogen result are consistent. Lastly, it is the atomic hydrogen results that are the outliers.« less
Proton radius from electron scattering data
Higinbotham, Douglas W.; Kabir, Al Amin; Lin, Vincent; ...
2016-05-31
Background: The proton charge radius extracted from recent muonic hydrogen Lamb shift measurements is significantly smaller than that extracted from atomic hydrogen and electron scattering measurements. The discrepancy has become known as the proton radius puzzle. Purpose: In an attempt to understand the discrepancy, we review high-precision electron scattering results from Mainz, Jefferson Lab, Saskatoon and Stanford. Methods: We make use of stepwise regression techniques using the F-test as well as the Akaike information criterion to systematically determine the predictive variables to use for a given set and range of electron scattering data as well as to provide multivariate errormore » estimates. Results: Starting with the precision, low four-momentum transfer (Q 2) data from Mainz (1980) and Saskatoon (1974), we find that a stepwise regression of the Maclaurin series using the F-test as well as the Akaike information criterion justify using a linear extrapolation which yields a value for the proton radius that is consistent with the result obtained from muonic hydrogen measurements. Applying the same Maclaurin series and statistical criteria to the 2014 Rosenbluth results on GE from Mainz, we again find that the stepwise regression tends to favor a radius consistent with the muonic hydrogen radius but produces results that are extremely sensitive to the range of data included in the fit. Making use of the high-Q 2 data on G E to select functions which extrapolate to high Q 2, we find that a Pad´e (N = M = 1) statistical model works remarkably well, as does a dipole function with a 0.84 fm radius, G E(Q 2) = (1 + Q 2/0.66 GeV 2) -2. Conclusions: Rigorous applications of stepwise regression techniques and multivariate error estimates result in the extraction of a proton charge radius that is consistent with the muonic hydrogen result of 0.84 fm; either from linear extrapolation of the extreme low-Q 2 data or by use of the Pad´e approximant for extrapolation using a larger range of data. Thus, based on a purely statistical analysis of electron scattering data, we conclude that the electron scattering result and the muonic hydrogen result are consistent. Lastly, it is the atomic hydrogen results that are the outliers.« less
Hirabayashi, Hideyuki; Sasaki, Kazuhiro; Kambe, Takashi; Gannaban, Ritchel B.; Miras, Monaliza A.; Mendioro, Merlyn S.; Simon, Eliza V.; Lumanglas, Patrick D.; Fujita, Daisuke; Takemoto-Kuno, Yoko; Takeuchi, Yoshinobu; Kaji, Ryota; Kondo, Motohiko; Kobayashi, Nobuya; Ogawa, Tsugufumi; Ando, Ikuo; Jagadish, Krishna S. V.; Ishimaru, Tsutomu
2015-01-01
A decline in rice (Oryza sativa L.) production caused by heat stress is one of the biggest concerns resulting from future climate change. Rice spikelets are most susceptible to heat stress at flowering. The early-morning flowering (EMF) trait mitigates heat-induced spikelet sterility at the flowering stage by escaping heat stress during the daytime. We attempted to develop near-isogenic lines (NILs) for EMF in the indica-type genetic background by exploiting the EMF locus from wild rice, O. officinalis (CC genome). A stable quantitative trait locus (QTL) for flower opening time (FOT) was detected on chromosome 3. A QTL was designated as qEMF3 and it shifted FOT by 1.5–2.0h earlier for cv. Nanjing 11 in temperate Japan and cv. IR64 in the Philippine tropics. NILs for EMF mitigated heat-induced spikelet sterility under elevated temperature conditions completing flower opening before reaching 35°C, a general threshold value leading to spikelet sterility. Quantification of FOT of cultivars popular in the tropics and subtropics did not reveal the EMF trait in any of the cultivars tested, suggesting that qEMF3 has the potential to advance FOT of currently popular cultivars to escape heat stress at flowering under future hotter climates. This is the first report to examine rice with the EMF trait through marker-assisted breeding using wild rice as a genetic resource. PMID:25534925
NASA Astrophysics Data System (ADS)
Qian, J. P.; Garofalo, A. M.; Gong, X. Z.; Ren, Q. L.; Ding, S. Y.; Solomon, W. M.; Xu, G. S.; Grierson, B. A.; Guo, W. F.; Holcomb, C. T.; McClenaghan, J.; McKee, G. R.; Pan, C. K.; Huang, J.; Staebler, G. M.; Wan, B. N.
2017-05-01
Recent EAST/DIII-D joint experiments on the high poloidal beta {β\\text{P}} regime in DIII-D have extended operation with internal transport barriers (ITBs) and excellent energy confinement (H 98y2 ~ 1.6) to higher plasma current, for lower q 95 ⩽ 7.0, and more balanced neutral beam injection (NBI) (torque injection < 2 Nm), for lower plasma rotation than previous results (Garofalo et al, IAEA 2014, Gong et al 2014 IAEA Int. Conf. on Fusion Energy). Transport analysis and experimental measurements at low toroidal rotation suggest that the E × B shear effect is not key to the ITB formation in these high {β\\text{P}} discharges. Experiments and TGLF modeling show that the Shafranov shift has a key stabilizing effect on turbulence. Extrapolation of the DIII-D results using a 0D model shows that with the improved confinement, the high bootstrap fraction regime could achieve fusion gain Q = 5 in ITER at {β\\text{N}} ~ 2.9 and q 95 ~ 7. With the optimization of q(0), the required improved confinement is achievable when using 1.5D TGLF-SAT1 for transport simulations. Results reported in this paper suggest that the DIII-D high {β\\text{P}} scenario could be a candidate for ITER steady state operation.
Huang, Shr-Wei; Ho, Chia-Fang; Chan, Kun-Wei; Cheng, Min-Chung; Shien, Jui-Hung; Liu, Hung-Jen; Wang, Chi-Young
2014-11-01
Infectious bronchitis virus (IBV; Avian coronavirus) causes acute respiratory and reproductive and urogenital diseases in chickens. Following sequence alignment of IBV strains, a combination of selective primer sets was designed to individually amplify the IBV wild-type and vaccine strains using a multiplex amplification refractory mutation system reverse transcription polymerase chain reaction (ARMS RT-PCR) approach. This system was shown to discriminate the IBV wild-type and vaccine strains. Moreover, an ARMS real-time RT-PCR (ARMS qRT-PCR) was combined with a high-resolution analysis (HRMA) to establish a melt curve analysis program. The specificity of the ARMS RT-PCR and the ARMS qRT-PCR was verified using unrelated avian viruses. Different melting temperatures and distinct normalized and shifted melting curve patterns for the IBV Mass, IBV H120, IBV TW-I, and IBV TW-II strains were detected. The new assays were used on samples of lung and trachea as well as virus from allantoic fluid and cell culture. In addition to being able to detect the presence of IBV vaccine and wild-type strains by ARMS RT-PCR, the IBV Mass, IBV H120, IBV TW-I, and IBV TW-II strains were distinguished using ARMS qRT-PCR by their melting temperatures and by HRMA. These approaches have acceptable sensitivities and specificities and therefore should be able to serve as options when carrying out differential diagnosis of IBV in Taiwan and China. © 2014 The Author(s).
Baroreflex Responses to Acute Changes in Blood Volume in Humans
NASA Technical Reports Server (NTRS)
Thompson, Cynthia A.; Tatro, Dana L.; Ludwig, David A.; Convertino, Victor A.
1990-01-01
To test the hypothesis that acute changes in plasma volume affect the stimulus-response relations of high- and low- pressure baroreflexes, eight men (27-44 yr old) underwent measurements for carotid-cardiac and cardiopulmonary baro- reflex responses under the following three volemic conditions: hypovolemic, normovolemic, and hypervolemic. The stimulus- response relation of the carotid-cardiac response curve was generated using a neck cuff device, which delivered pressure changes between +40 and -65 mmHg in continuous steps of 15 mmHg. The stimulus-response relationships of the cardiopulmonary baroreflex were studied by measurements of Forearm Vascular Resistance (FVR) and Peripheral Venotis Pressure (PVP) during low levels of lower body negative pressure (O to -20 mmHg). Altered vascular volume had no effect on response relations of the carotid-cardiac baroreflex but did alter the gain of the cardiopulmonary baroreflex (-7.93 q 1.71, -4.36 q 1.38, and -2.56 q 1.59 peripheral resistance units/mmHg for hypovolemic, normovolemic, and hypervolemic, respectively) independent of shifts in baseline FVR and PVP. These results indicate greater demand for vasoconstriction for equal reductions in venous pressure during progressive hypovolemia; this condition may compromise the capacity to provide adequate peripheral resistance during severe orthostatic stress. Fluid loading before reentry after spaceflight may act to restore vasoconstrictive capacity of the cardiopulnionary baroreflex but may not be an effective countermeasure against potential post- flight impairment of the carotid-cardiac baroreflex.
Quantification of syntrophic acetate-oxidizing microbial communities in biogas processes
Westerholm, Maria; Dolfing, Jan; Sherry, Angela; Gray, Neil D; Head, Ian M; Schnürer, Anna
2011-01-01
Changes in communities of syntrophic acetate-oxidizing bacteria (SAOB) and methanogens caused by elevated ammonia levels were quantified in laboratory-scale methanogenic biogas reactors operating at moderate temperature (37°C) using quantitative polymerase chain reaction (qPCR). The experimental reactor was subjected to gradually increasing ammonia levels (0.8–6.9 g NH4+-N l−1), whereas the level of ammonia in the control reactor was kept low (0.65–0.90 g NH4+-N l−1) during the entire period of operation (660 days). Acetate oxidation in the experimental reactor, indicated by increased production of 14CO2 from acetate labelled in the methyl carbon, occurred when ammonia levels reached 5.5 and 6.9 g NH4+-N l−1. Syntrophic acetate oxidizers targeted by newly designed qPCR primers were Thermacetogenium phaeum, Clostridium ultunense, Syntrophaceticus schinkii and Tepidanaerobacter acetatoxydans. The results showed a significant increase in abundance of all these bacteria except T. phaeum in the ammonia-stressed reactor, coincident with the shift to syntrophic acetate oxidation. As the abundance of the bacteria increased, a simultaneous decrease was observed in the abundance of aceticlastic methanogens from the families Methanosaetaceae and Methanosarcinaceae. qPCR analyses of sludge from two additional high ammonia processes, in which methane production from acetate proceeded through syntrophic acetate oxidation (reactor SB) or through aceticlastic degradation (reactor DVX), demonstrated that SAOB were significantly more abundant in the SB reactor than in the DVX reactor. PMID:23761313
Kang, Xiaolong; Liu, Yufang; Zhang, Jibin; Xu, Qinqin; Liu, Chengkun; Fang, Meiying
2017-07-01
As an important commercial trait for sheep, curly fleece has a great economic impact on production costs and efficiency in sheep industry. To identify genes that are important for curly fleece formation in mammals, a suppression subtractive hybridization analysis was performed on the shoulder skin tissues exposed to two different growth stages of Chinese Tan sheep with different phenotypes (curly fleece and noncurling fleece). BLAST analysis identified 67 differentially expressed genes, of which 31 were expressed lower and 36 were expressed higher in lambs than in adult sheep. Differential expressions of seven randomly selected genes were verified using quantitative real-time polymerase chain reaction (qRT-PCR). KRT71 gene was selected for further study due to its high correlation with the curly hair phenotype in various mammal species. Semi-qPCR showed distinctively high expression of KRT71 in skin tissues. Moreover, qPCR result showed a significantly higher expression of KRT71 in curly fleece than noncurling Tan sheep. The luciferase assay and electrophoresis mobility shift assay showed that there were transcription factor binding sites in the promoter region of KRT71 related to the differential expression of KRT71 at the two growth stages of Tan sheep. Online bioinformation tools predicted MFZ1 as a transcriptional factor that regulates the expression of KRT71. These studies on KRT71 gene revealed some mechanisms underlying the relationship between the KRT71 gene and the curly fleece phenotype of Tan sheep.
Integrated P-channel MOS gyrator
NASA Technical Reports Server (NTRS)
Hochmair, E. S. (Inventor)
1974-01-01
A gyrator circuit is described which is of the conventional configuration of two amplifiers in a circular loop, one producing zero phase shift and the other producing 180 phase reversal, in a circuit having medium Q composed of all field effect transistors of the same conductivity type. The current source to each gyrator amplifier comprises an amplifier which responds to changes in current, with the amplified signals feed back so as to limit current. The feedback amplifier has a large capacitor connected to bypass high frequency components, thereby stabilizing the output. The design makes possible fabrication of circuits with transistors of only one conductivity type, providing economies in manufacture and use.
Gerardo, Nicole; Hurst, Gregory
2017-12-27
Over the past decade, there has been a pronounced shift in the study of host-microbe associations, with recognition that many of these associations are beneficial, and often critical, for a diverse array of hosts. There may also be pronounced benefits for the microbes, though this is less well empirically understood. Significant progress has been made in understanding how ecology and evolution shape simple associations between hosts and one or a few microbial species, and this work can serve as a foundation to study the ecology and evolution of host associations with their often complex microbial communities (microbiomes).
Cascaded Brillouin lasing in monolithic barium fluoride whispering gallery mode resonators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Guoping, E-mail: guoping.lin@femto-st.fr; Diallo, Souleymane; Saleh, Khaldoun
2014-12-08
We report the observation of stimulated Brillouin scattering and lasing at 1550 nm in barium fluoride (BaF{sub 2}) crystal. Brillouin lasing was achieved with ultra-high quality (Q) factor monolithic whispering gallery mode mm-size disk resonators. Overmoded resonators were specifically used to provide cavity resonances for both the pump and all Brillouin Stokes waves. Single and multiple Brillouin Stokes radiations with frequency shift ranging from 8.2 GHz up to 49 GHz have been generated through cascaded Brillouin lasing. BaF{sub 2} resonator-based Brillouin lasing can find potential applications for high-coherence lasers and microwave photonics.
Development of optical WGM resonators for biosensors
NASA Astrophysics Data System (ADS)
Brice, I.; Pirktina, A.; Ubele, A.; Grundsteins, K.; Atvars, A.; Viter, R.; Alnis, J.
2017-12-01
Whispering Gallery Mode (WGM) resonators are very sensitive to nanoparticles attaching to the surface. We simulate this process using COMSOL Wave Optics module. Our spherical WGM resonators are produced by melting a tip of an optical fiber and we measure optical Q factors in the 105 range. Molecular oxygen lines of the air in the 760 nm region are used as reference markers when looking for the shifts of the WGM resonance lines. We demonstrate WGM microresonator surface coating with a layer of ZnO nanorods as well as with polystyrene microspheres. Coatings produce increased contact surface. Additional layer of antigens/antibodies will be coated to make high-specificity biosensors.
Quadrupolar asymmetry in shifted-stem vane-shaped-rod radio frequency quadrupole accelerator
NASA Astrophysics Data System (ADS)
Mehrotra, Nitin
2018-04-01
Quadrupolar Asymmetry (QA), which has been a rampant problem for rod-type Radio Frequency Quadrupole (RFQ) Linacs, arises due to the geometry of resonant structure. A systematic parametric simulation study has been performed to unravel their effect on Figure of Merit (FoM) quantities namely Quality Factor (Q), Shunt Impedance (Rsh) and Quadrupolar Asymmetry (QA). A novel stem and cavity shape is proposed, which caters to the profile of electromagnetic fields of the resonant structure. A design methodology is formulated, which demonstrates that Quadrupolar Asymmetry can be annihilated, and a symmetric electric field can be produced in all four quadrants of rod-type RFQ accelerator.
Silicon nano-membrane based photonic crystal microcavities for high sensitivity bio-sensing.
Lai, Wei-Cheng; Chakravarty, Swapnajit; Zou, Yi; Chen, Ray T
2012-04-01
We experimentally demonstrated photonic crystal microcavity based resonant sensors coupled to photonic crystal waveguides in silicon nano-membrane on insulator for chemical and bio-sensing. Linear L-type microcavities are considered. In contrast to cavities with small mode volumes, but low quality factors for bio-sensing, we showed increasing the length of the microcavity enhances the quality factor of the resonance by an order of magnitude and increases the resonance wavelength shift while retaining compact device characteristics. Q~26760 and sensitivity down to 15 ng/ml and ~110 pg/mm2 in bio-sensing was experimentally demonstrated on silicon-on-insulator devices.
Wei, Xiaorong; Sendall, Kerrie M; Stefanski, Artur; Zhao, Changming; Hou, Jihua; Rich, Roy L; Montgomery, Rebecca A; Reich, Peter B
2017-03-01
Most vascular plants acclimate respiration to changes in ambient temperature, but explicit tests of these responses in field settings are rare, and how acclimation responses vary in space and time is relatively unstudied, hindering our ability to predict respiratory release of carbon under future climatic conditions. We measured temperature response curves of leaf respiration for three deciduous tree species from 2009 to 2012 in a field warming experiment (+3.4 °C above ambient) in both open and understory conditions at two sites in the southern boreal forest in Minnesota, USA. We analyzed the effects of warming on leaf respiration, and how the effects varied among species, times of season (early, middle and late parts of the growing season), sites, habitats (understory, open) and years. We hypothesized that the respiration exponent (Q10) of the short-term temperature response curve and the degree of acclimation would be smaller under conditions where plants were more likely to be substrate limited, such as in the understory or the margins of the growing season. However, in contrast to these predictions, stable Q10 and strong respiratory acclimation were consistently observed. For each species, the Q10 did not vary with experimental warming, nor was its response to warming influenced by time of season, year, site or habitat. Strong leaf respiratory acclimation to warming occurred in each species and was consistent across most sources of variation. Most of the leaf traits studied were not affected by warming, while the Q10-leaf nitrogen and R25-soluble carbohydrate relationships were observed, and shifted with warming, implying that acclimation may be associated with the adjustment in respiratory capacity and its relation to leaf nitrogen and soluble carbohydrate content. Consistent Q10 and acclimation across habitats, sites, times of season and years suggest that modeling of temperature acclimation may be possible with relatively simple functions. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Mode coupling theory for nonequilibrium glassy dynamics of thermal self-propelled particles.
Feng, Mengkai; Hou, Zhonghuai
2017-06-28
We present a mode coupling theory study for the relaxation and glassy dynamics of a system of strongly interacting self-propelled particles, wherein the self-propulsion force is described by Ornstein-Uhlenbeck colored noise and thermal noises are included. Our starting point is an effective Smoluchowski equation governing the distribution function of particle positions, from which we derive a memory function equation for the time dependence of density fluctuations in nonequilibrium steady states. With the basic assumption of the absence of macroscopic currents and standard mode coupling approximation, we can obtain expressions for the irreducible memory function and other relevant dynamic terms, wherein the nonequilibrium character of the active system is manifested through an averaged diffusion coefficient D[combining macron] and a nontrivial structural function S 2 (q) with q being the magnitude of wave vector q. D[combining macron] and S 2 (q) enter the frequency term and the vertex term for the memory function, and thus influence both the short time and the long time dynamics of the system. With these equations obtained, we study the glassy dynamics of this thermal self-propelled particle system by investigating the Debye-Waller factor f q and relaxation time τ α as functions of the persistence time τ p of self-propulsion, the single particle effective temperature T eff as well as the number density ρ. Consequently, we find the critical density ρ c for given τ p shifts to larger values with increasing magnitude of propulsion force or effective temperature, in good accordance with previously reported simulation work. In addition, the theory facilitates us to study the critical effective temperature T for fixed ρ as well as its dependence on τ p . We find that T increases with τ p and in the limit τ p → 0, it approaches the value for a simple passive Brownian system as expected. Our theory also well recovers the results for passive systems and can be easily extended to more complex systems such as active-passive mixtures.
Transport anomalies of high-mobility Q-valley electrons in few-layer WS2 and MoS2
NASA Astrophysics Data System (ADS)
Wang, Ning
Atomically thin transition metal dichalcogenides (TMDCs) have opened new avenues for exploring physical property anomalies due to their large band gaps, strong spin-orbit couplings, and rich valley degrees of freedom. Although novel optical phenomena such as valley selective circular dichroism, opto-valley Hall effect, and valley Zeeman effect have been extensively studied in TMDCs, investigation of quantum transport properties has encountered a number of obstacles primarily due to the low carrier mobility and strong impurity scattering. Recently, we successfully fabricated ultrahigh-mobility few-layer TMDC field-effect transistors based on the boron nitride encapsulation method and observed a number of interesting transport properties, such as even-odd layer-dependent magnetotransport of Q-valley electrons in WS2 and MoS2 and unconventional quantum Hall transport of Γ-valley hole carriers in WSe2. In few-layer samples of these TMDCs, the conduction bands along the ΓK directions shift downward energetically in the presence of interlayer interactions, forming six Q-valleys related by three-fold rotational symmetry and time reversal symmetry. In even-layers the extra inversion symmetry requires all states to be Kramers degenerate, whereas in odd-layers the intrinsic inversion asymmetry dictates the Q-valleys to be spin-valley coupled. In this talk, I'll demonstrate the prominent Shubnikov-de Hass (SdH) oscillations and the observation of the onset of quantum Hall plateaus for the Q-valley electrons. Universally in the SdH oscillations, we observe a valley Zeeman effect in all odd-layer TMDC devices and a spin Zeeman effect in all even-layer TMDC devices. In addition, we observe a series of quantum Hall states following an unconventional sequence predominated by odd-integer states under a moderate strength magnetic field in p-type few-layer TMDCs, indicating a large Zeeman energy associated with the carriers in the valence band at the Γ-valley. Financial supports from the Research Grants Council of Hong Kong (Project Nos. 16302215, HKU9/CRF/13G, 604112 and N-HKUST613/12) are hereby acknowledged.
How much runoff originates as snow in the western United States and what its future changes tell us?
NASA Astrophysics Data System (ADS)
Li, D.; Wrzesien, M.; Durand, M. T.; Adam, J. C.; Lettenmaier, D. P.
2017-12-01
Snow is a vital hydrologic cycle component in the western United States. The seasonal phase of snowmelt bridges between winter-dominant precipitation and summer-dominant human and ecosystem water demand. Current estimates of the fraction of total annual runoff generated by snowmelt (f_Q,snow) are not based on defensible, systematic analyses. Here, based on hydrological model simulations, we describe a new algorithm that explicitly quantifies the contribution of snow to runoff in the Western U.S. Specifically, the algorithm tracks the fate of the snowmelt runoff in the modeled hydrological fluxes in the soil, surface water, and the atmosphere, and accounts for the exchanges among the three. The hydrological fluxes are simulated by the Variable Infiltration Capacity (VIC) model using an ensemble of ten general circulation model (GCM) outputs trained by ground observations. We conducted the tracking to the VIC modeling ensemble and reported the mean of the ten tracking results. We computed the historical f_Q,snow with the modeling estimates from 1960 to 2005, and predicted the future f_Q,snow using the modeling estimates from 2006 to 2100 in the RCP4.5 and RCP8.5 scenarios. Our tracking results show that from 1960 to 2005, slightly over one-half of the total runoff in the western United States originated as snowmelt, despite only 37% of the region's total precipitation falling as snow; snowfall is more efficient than rainfall in runoff generation. Snow's importance varies physiographically: snowmelt from the mountains is responsible for over 70% of the total runoff in the West. Snowmelt-derived runoff currently makes up about 2/3 of the inflow to the region's major reservoirs; for Lake Mead and Lake Powell, which are the two largest reservoirs of the nation, snow contributes over 70% of their storage. The contribution of snowmelt to the total runoff will decrease in a warmer climate, by about 1/3 over the West by 2100. Snow will melt earlier and the snowmelt-induced peak flow will shift earlier by 1.5 to up to 4 weeks. Thus, in the context of predicted reductions and earlier shifts of the snow-induced runoff, and the fact that the region's major reservoirs were designed for the historical snow climatology, we argue that substantial impacts on water supply may occur especially in the summer season when water demand peaks.
Wolfe, Benjamin E; Pringle, Anne
2012-04-01
The inability to associate with local species may constrain the spread of mutualists arriving to new habitats, but the fates of introduced, microbial mutualists are largely unknown. The deadly poisonous ectomycorrhizal fungus Amanita phalloides (the death cap) is native to Europe and introduced to the East and West Coasts of North America. By cataloging host associations across the two continents, we record dramatic changes in specificity among the three ranges. On the East Coast, where the fungus is restricted in its distribution, it associates almost exclusively with pines, which are rarely hosts of A. phalloides in its native range. In California, where the fungus is widespread and locally abundant, it associates almost exclusively with oaks, mirroring the host associations observed in Europe. The most common host of the death cap in California is the endemic coast live oak (Quercus agrifolia), and the current distribution of A. phalloides appears constrained within the distribution of Q. agrifolia. In California, host shifts to native plants are also associated with a near doubling in the resources allocated to sexual reproduction and a prolonged fruiting period; mushrooms are twice as large as they are elsewhere and mushrooms are found throughout the year. Host and niche shifts are likely to shape the continuing range expansion of A. phalloides and other ectomycorrhizal fungi introduced across the world.
Wolfe, Benjamin E; Pringle, Anne
2012-01-01
The inability to associate with local species may constrain the spread of mutualists arriving to new habitats, but the fates of introduced, microbial mutualists are largely unknown. The deadly poisonous ectomycorrhizal fungus Amanita phalloides (the death cap) is native to Europe and introduced to the East and West Coasts of North America. By cataloging host associations across the two continents, we record dramatic changes in specificity among the three ranges. On the East Coast, where the fungus is restricted in its distribution, it associates almost exclusively with pines, which are rarely hosts of A. phalloides in its native range. In California, where the fungus is widespread and locally abundant, it associates almost exclusively with oaks, mirroring the host associations observed in Europe. The most common host of the death cap in California is the endemic coast live oak (Quercus agrifolia), and the current distribution of A. phalloides appears constrained within the distribution of Q. agrifolia. In California, host shifts to native plants are also associated with a near doubling in the resources allocated to sexual reproduction and a prolonged fruiting period; mushrooms are twice as large as they are elsewhere and mushrooms are found throughout the year. Host and niche shifts are likely to shape the continuing range expansion of A. phalloides and other ectomycorrhizal fungi introduced across the world. PMID:22134645
Matsukuma, Shoichi; Yoshihara, Mitsuyo; Kasai, Fumio; Kato, Akinori; Yoshida, Akira; Akaike, Makoto; Kobayashi, Osamu; Nakayama, Haruhiko; Sakuma, Yuji; Yoshida, Tsutomu; Kameda, Yoichi; Tsuchiya, Eiju; Miyagi, Yohei
2006-01-01
A simple and rapid method to detect the epidermal growth factor receptor hot spot mutation L858R in lung adenocarcinoma was developed based on principles similar to the universal heteroduplex generator technology. A single-stranded oligonucleotide with an internal deletion was used to generate heteroduplexes (loop-hybrids) bearing a loop in the complementary strand derived from the polymerase chain reaction product of the normal or mutant allele. By placing deletion in the oligonucleotide adjacent to the mutational site, difference in electrophoretic mobility between loop-hybrids with normal and mutated DNA was distinguishable in a native polyacrylamide gel. The method was also modified to detect in-frame deletion mutations of epidermal growth factor receptor in lung adenocarcinomas. In addition, the method was adapted to detect hot spot mutations in the B-type Raf kinase (BRAF) at V600 and in a Ras-oncogene (NRAS) at Q61, the mutations commonly found in thyroid carcinomas. Our mutation detection system, designated the loop-hybrid mobility shift assay was sensitive enough to detect mutant DNA comprising 7.5% of the total DNA. As a simple and straightforward mutation detection technique, loop-hybrid mobility shift assay may be useful for the molecular diagnosis of certain types of clinical cancers. Other applications are also discussed. PMID:16931592
Gu, Ganyu; Ottesen, Andrea; Bolten, Samantha; Ramachandran, Padmini; Reed, Elizabeth; Rideout, Steve; Luo, Yaguang; Patel, Jitendra; Brown, Eric; Nou, Xiangwu
2018-08-01
Fresh produce, like spinach, harbors diverse bacterial populations, including spoilage and potentially pathogenic bacteria. This study examined the effects of produce washing in chlorinated water and subsequent storage on the microbiota of spinach. Baby spinach leaves from a commercial fresh-cut produce processor were assessed before and after washing in chlorinated water, and then after one week's storage at 4, 10, and 15 °C. Microbial communities on spinach were analyzed by non-selective plating, qPCR, and 16S rDNA amplicon sequencing. Bacterial populations on spinach, averaging 6.12 ± 0.61 log CFU/g, were reduced by 1.33 ± 0.57 log after washing. However, populations increased by 1.77-3.24 log after storage, with larger increases occurring at higher temperature (15 > 10 > 4 °C). The predominant phylum identified on unwashed spinach leaves was Proteobacteria; dominant genera were Pseudomonas and Sphingomonas. Bacterial communities shifted significantly after chlorine washing and storage. Several Proteobacteria species, such as Stenotrophomonas sp. and Erwinia sp., were relatively tolerant of chlorine treatment, while species of Flavobacterium and Pedobacter (phylum Bacteroidetes) grew rapidly during storage, especially at abusive temperatures. Cupriavidus sp. and Ralstonia sp. showed significant increases after washing. After storage, microbial communities on spinach appeared to shift back toward the pre-washing distributions. Copyright © 2018. Published by Elsevier Ltd.
Solution Structure of a Phytocystatin from Ananas comosus and Its Molecular Interaction with Papain
Irene, Deli; Chung, Tse-Yu; Chen, Bo-Jiun; Liu, Ting-Hang; Li, Feng-Yin; Tzen, Jason T. C.; Wang, Cheng-I; Chyan, Chia-Lin
2012-01-01
The structure of a recombinant pineapple cystatin (AcCYS) was determined by NMR with the RMSD of backbone and heavy atoms of twenty lowest energy structures of 0.56 and 1.11 Å, respectively. It reveals an unstructured N-terminal extension and a compact inhibitory domain comprising a four-stranded antiparallel β-sheet wrapped around a central α-helix. The three structural motifs (G45, Q89XVXG, and W120) putatively responsible for the interaction with papain-like proteases are located in one side of AcCYS. Significant chemical shift perturbations in two loop regions, residues 45 to 48 (GIYD) and residues 89 to 91 (QVV), of AcCYS strongly suggest their involvement in the binding to papain, consistent with studies on other members of the cystatin family. However, the highly conserved W120 appears not to be involved in the binding with papain as no chemical shift perturbation was observed. Chemical shift index analysis further indicates that the length of the α-helix is shortened upon association with papain. Collectively, our data suggest that AcCYS undergoes local secondary structural rearrangements when papain is brought into close contact. A molecular model of AcCYS/papain complex is proposed to illustrate the interaction between AcCYS and papain, indicating a complete blockade of the catalytic triad by AcCYS. PMID:23139757
Huang, Jun; Goolcharran, Chimanlall; Ghosh, Krishnendu
2011-05-01
This paper presents the use of experimental design, optimization and multivariate techniques to investigate root-cause of tablet dissolution shift (slow-down) upon stability and develop control strategies for a drug product during formulation and process development. The effectiveness and usefulness of these methodologies were demonstrated through two application examples. In both applications, dissolution slow-down was observed during a 4-week accelerated stability test under 51°C/75%RH storage condition. In Application I, an experimental design was carried out to evaluate the interactions and effects of the design factors on critical quality attribute (CQA) of dissolution upon stability. The design space was studied by design of experiment (DOE) and multivariate analysis to ensure desired dissolution profile and minimal dissolution shift upon stability. Multivariate techniques, such as multi-way principal component analysis (MPCA) of the entire dissolution profiles upon stability, were performed to reveal batch relationships and to evaluate the impact of design factors on dissolution. In Application II, an experiment was conducted to study the impact of varying tablet breaking force on dissolution upon stability utilizing MPCA. It was demonstrated that the use of multivariate methods, defined as Quality by Design (QbD) principles and tools in ICH-Q8 guidance, provides an effective means to achieve a greater understanding of tablet dissolution upon stability. Copyright © 2010 Elsevier B.V. All rights reserved.
Ren, Wenjie; Ren, Gaidi; Teng, Ying; Li, Zhengao; Li, Lina
2015-10-30
The increased application of graphene raises concerns about its environmental impact, but little information is available on the effect of graphene on the soil microbial community. This study evaluated the impact of graphene on the structure, abundance and function of the soil bacterial community based on quantitative real-time polymerase chain reaction (qPCR), pyrosequencing and soil enzyme activities. The results show that the enzyme activities of dehydrogenase and fluorescein diacetate (FDA) esterase and the biomass of the bacterial populations were transiently promoted by the presence of graphene after 4 days of exposure, but these parameters recovered completely after 21 days. Pyrosequencing analysis suggested a significant shift in some bacterial populations after 4 days, and the shift became weaker or disappeared as the exposure time increased to 60 days. During the entire exposure process, the majority of bacterial phylotypes remained unaffected. Some bacterial populations involved in nitrogen biogeochemical cycles and the degradation of organic compounds can be affected by the presence of graphene. Copyright © 2015 Elsevier B.V. All rights reserved.
Direct conversion of h-BN into c-BN and formation of epitaxial c-BN/diamond heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narayan, Jagdish, E-mail: narayan@ncsu.edu; Bhaumik, Anagh; Xu, Weizong
2016-05-14
We have created a new state of BN (named Q-BN) through rapid melting and super undercooling and quenching by using nanosecond laser pulses. Phase pure c-BN is formed either by direct quenching of super undercooled liquid or by nucleation and growth from Q-BN. Thus, a direct conversion of hexagonal boron nitride (h-BN) into phase-pure cubic boron nitride (c-BN) is achieved by nanosecond pulsed laser melting at ambient temperatures and atmospheric pressure in air. According to the P-T phase diagram, the transformation from h-BN into c-BN under equilibrium processing can occur only at high temperatures and pressures, as the hBN-cBN-Liquid triplemore » point is at 3500 K/9.5 GPa or 3700 K/7.0 GPa with a recent theoretical refinement. Using nonequilibrium nanosecond laser melting, we have created super undercooled state and shifted this triple point to as low as 2800 K and atmospheric pressure. The rapid quenching from super undercooled state leads to the formation of a new phase, named as Q-BN. We present detailed characterization of Q-BN and c-BN layers by using Raman spectroscopy, high-resolution scanning electron microscopy, electron-back-scatter diffraction, high-resolution TEM, and electron energy loss spectroscopy, and discuss the mechanism of formation of nanodots, nanoneedles, microneedles, and single-crystal c-BN on sapphire substrate. We have also deposited diamond by pulsed laser deposition of carbon on c-BN and created c-BN/diamond heterostructures, where c-BN acts as a template for epitaxial diamond growth. We discuss the mechanism of epitaxial c-BN and diamond growth on lattice matching c-BN template under pulsed laser evaporation of amorphous carbon, and the impact of this discovery on a variety of applications.« less
Tides on Self-gravitating, Compressible Bodies
NASA Astrophysics Data System (ADS)
Hurford, T. A.; Greenberg, R.
2001-11-01
Most modern derivations of tidal amplitude follow the approach presented by Love [1]. Love's analysis for a homogeneous sphere assumed an incompressible material, which required introduction of a non-rigorously justified pressure term. We have solved the more general case of arbitrary compressibility, which allows for a more straightforward derivation [2,3]. We find the h2 love number of a body of radius R, density ρ , by solving the deformation equation [4], μ ∇ 2 u = ρ ∇U - (λ + μ ) ∇ (∇ ṡ u) where μ is the rigidity of the body and λ the Lamé constant. The potential U is the sum of (a) the tide raising potential, (b) the potential of surface mass shifted above or below the spherical surface, (c) potential due to the internal density changes and (d) the change in potential of each bit of volume due to its displacement u. A self-consistent solution can be obtained with U = \\sum_{q=0}^{\\infty} b_{(2+2q)} r^{(2+2q)} ( {3}/{2} \\cos2 \\theta - {1}/{2} ). In [1] and [3] only the r2 term was considered, which was valid only if compressibility is small or elasticity governs deformation (i.e. ρ g R << (λ + 2 μ )). The solution with only the r2 term reduces to Love's [1] solution in the limit of zero compressibility (λ = ∞ ). However, for rock μ ~ λ [4], in which case h2 is enhanced by ~ 3 %, and solutions for greater compressibility give up to 8 % enhancement of tidal amplitude. If ρ g R is significant, higher order r(2q+2) terms are important and even greater corrections are required to the classical tidal amplitude. [1] Love, A.E.H., New York Dover Publications, 1944 [2] Hurford, T.A. and R. Greenberg, Lunar Plan. Sci. XXXII 1741, 2001 [3] Hurford, T.A. and R. Greenberg, 2001 DDA meeting, Bull. Amer. Astron. Soc. in press [4] Kaula, W.M., John Wiley & Sons, Inc., 1968
Effects of Climate Change on Extreme Streamflow Risks in the Olympic National Park
NASA Astrophysics Data System (ADS)
Tohver, I. M.; Lee, S.; Hamlet, A.
2011-12-01
Conventionally, natural resource management practices are designed within the framework that past conditions serve as a baseline for future conditions. However, the warmer future climate projected for the Pacific Northwest will alter the region's flood and low flow risks, posing considerable challenges to resource managers in the Olympic National Forest (ONF) and Olympic National Park (ONP). Shifts in extreme streamflow will influence two key management objectives in the ONF and ONP: the protection of wildlife and the maintenance of road infrastructure. The ONF is charged with managing habitat for species listed under the Endangered Species Act (ESA), and with maintaining the network of forest roads and culverts. Climate-induced increases in flood severity will introduce additional challenges in road and culvert design. Furthermore, the aging road infrastructure and more extreme summer low flows will compromise aquatic habitats, intrinsic to the health of threatened and endangered fish species listed under the ESA. Current practice uses estimates of Q100 (or the peak flow with an estimated 100 year return frequency) as the standard metric for stream crossing design. Simple regression models relating annual precipitation and basin area to Q100 are used in the design process. Low flow estimates are based on historical streamflow data to calculate the 7-day consecutive lowest flow with a 10-year return interval, or 7Q10. Under the projections a changing climate, these methods for estimating extreme flows are ill equipped to capture the complex and spatially varying effects of seasonal changes in temperature, precipitation, and snowpack on extreme flow risk. As an alternative approach, this study applies a physically-based hydrologic model to estimate historical and future flood risk at 1/16th degree (latitude/longitude) resolution (about 32 km2). We downscaled climate data derived from 10 global climate models to use as input for the Variable Infiltration Capacity (VIC) model, a macro-scale hydrologic model, which simulates various hydrologic variables at a daily time step. Using the VIC estimates for baseflow and run-off, we calculated Q100 and 7Q10 for the historical period and under two emission scenarios, A1B and B1, at three future time intervals: the 2020s, the 2040s and the 2080s. We also calculated Q100 and 7Q10 at the spatial scale of the 12-digit hydrologic unit codes (HUCs) as delineated by the United States Geologic Survey. The results demonstrate the sensitivity of snowpack at mid-elevation basins to a warmer climate, resulting in more severe winter flooding and lower streamflows in the summertime. These ensemble estimates of extreme streamflows will serve as a tool for management practices by providing high-resolution maps of changing risk over the ONF and ONP.
NASA Astrophysics Data System (ADS)
Bantel, Michael Kurt
1998-07-01
Using a torsion pendulum, we have investigated the anelastic properties of a CuBe torsion fiber for shear strains in the range 4×10-7 to 3×10-3 at temperatures 4.2K, 77K, and 295K. The fiber was 20 μm in diameter and 24 cm long, with a torsion constant of 0.033 dyn/cdot cm/cdot rad-1. It suspended an 11 gram azimuthally symmetric torsion pendulum which loaded the fiber to approximately 25% of its tensile strength at room temperature. The natural torsional oscillation frequency of this system was 6.4 mHz. An autocollimator viewing a set of mirrors on the oscillating pendulum served to measure with great accuracy the times at which the pendulum assumed a large set of discrete angular displacements during each oscillation cycle. This enabled a determination of the angular displacement of the pendulum as a function of time to better than a part in 107 of its oscillation amplitude, from which accurate information was obtained on the pendulum's frequency, damping, and harmonic content as functions of the oscillation amplitude. Analysis yields a determination of the fourth order shear elastic constant of CuBe. Expressing the shear potential energy density as: u(/epsilon)=c2ɛ2+c3ɛ3+ c4ɛ4 where ɛ is the shear strain, the values determined for (c2,/ c3,/ c4) are (25, 0.17, -550) GPa respectively. A striking feature of the fiber's internal friction Q-1 is that it appears to be the sum of two independent components: Q-1=Q I-1(T)+ Q II-1(A) where Q I-1(T) is temperature-dependent, varying by a factor of 3 between 4.2 and 77K, and Q II-1(A) is linearly dependent on amplitude and virtually independent of temperature; its linear dependence on amplitude varied by less than 4% between 4.2K and 77K. Interestingly the measurements of: the linear amplitude-dependent Q II-1, the linear component of the amplitude-dependent frequency shift, and the harmonic content associated with a dissipative hysteresis loop, are consistent with the motion generated by a simple stick-slip mechanism. Such a mechanism may be the result of microplastic behavior associated with the motion of dislocations and/or point defects. For a measurement of the gravitational constant using a torsion pendulum, these fiber-related properties may create a maximal 2-5 ppm systematic error assuming a comprehensive analysis is employed.
Waskasi, Morteza M; Newton, Marshall D; Matyushov, Dmitry V
2017-03-30
A combination of experimental data and theoretical analysis provides evidence of a bell-shaped kinetics of electron transfer in the Arrhenius coordinates ln k vs 1/T. This kinetic law is a temperature analogue of the familiar Marcus bell-shaped dependence based on ln k vs the reaction free energy. These results were obtained for reactions of intramolecular charge shift between the donor and acceptor separated by a rigid spacer studied experimentally by Miller and co-workers. The non-Arrhenius kinetic law is a direct consequence of the solvent reorganization energy and reaction driving force changing approximately as hyperbolic functions with temperature. The reorganization energy decreases and the driving force increases when temperature is increased. The point of equality between them marks the maximum of the activationless reaction rate. Reaching the consistency between the kinetic and thermodynamic experimental data requires the non-Gaussian statistics of the donor-acceptor energy gap described by the Q-model of electron transfer. The theoretical formalism combines the vibrational envelope of quantum vibronic transitions with the Q-model describing the classical component of the Franck-Condon factor and a microscopic solvation model of the solvent reorganization energy and the reaction free energy.
Compact Si-based asymmetric MZI waveguide on SOI as a thermo-optical switch
NASA Astrophysics Data System (ADS)
Rizal, C. S.; Niraula, B.
2018-03-01
A compact low power consuming asymmetric MZI based optical modulator with fast response time has been proposed on SOI platform. The geometrical and performance characteristics were analyzed in depth and optimized using coupled mode analysis and FDTD simulation tools, respectively. It was tested with and without implementation of thermo-optic (TO) effect. The device showed good frequency modulating characteristics when tested without the implementation of the TO effect. The fabricated device showed quality factor, Q ≈ 10,000, and this value is comparable to the Q of the device simulated with 25% transmission loss, showing FSR of 0.195 nm, FWHM ≈ 0.16 nm, and ER of 13 dB. With TO effect, it showed temperature sensitivity of 0.01 nm/°C and FSR of 0.19 nm. With the heater length of 4.18 mm, the device required 0.26 mW per π shift power with a switching voltage of 0.309 V, response time of 10 μ, and figure-of-merit of 2.6 mW μs. All of these characteristics make this device highly attractive for use in integrated Si photonics network as optical switch and wavelength modulator.
Estimation of shelf life of natural rubber latex exam-gloves based on creep behavior.
Das, Srilekha Sarkar; Schroeder, Leroy W
2008-05-01
Samples of full-length glove-fingers cut from chlorinated and nonchlorinated latex medical examination gloves were aged for various times at several fixed temperatures and 25% relative humidity. Creep testing was performed using an applied stress of 50 kPa on rectangular specimens (10 mm x 8 mm) of aged and unaged glove fingers as an assessment of glove loosening during usage. Variations in creep curves obtained were compared to determine the threshold aging time when the amount of creep became larger than the initial value. These times were then used in various models to estimate shelf lives at lower temperatures. Several different methods of extrapolation were used for shelf-life estimation and comparison. Neither Q-factor nor Arrhenius activation energies, as calculated from 10 degrees C interval shift factors, were constant over the temperature range; in fact, both decreased at lower temperatures. Values of Q-factor and activation energies predicted up to 5 years of shelf life. Predictions are more sensitive to values of activation energy as the storage temperature departs from the experimental aging data. Averaging techniques for prediction of average activation energy predicted the longest shelf life as the curvature is reduced. Copyright 2007 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waskasi, Morteza M.; Newton, Marshall D.; Matyushov, Dmitry V.
A combination of experimental data and theoretical analysis provides evidence of a bell-shaped kinetics of electron transfer in the Arrhenius coordinates ln k vs 1/T . This kinetic law is a temperature analog of the familiar Marcus bell-shaped dependence based on ln k vs the reaction free energy. These results were obtained for reactions of intramolecular charge shift between the donor and acceptor separated by a rigid spacer studied experimentally by Miller and co-workers. The non-Arrhenius kinetic law is a direct consequence of the solvent reorganization energy and reaction driving force changing approximately as hyperbolic functions with temperature. The reorganizationmore » energy decreases and the driving force increases when temperature is increased. The point of equality between them marks the maximum of the activationless reaction rate. Reaching the consistency between the kinetic and thermodynamic experimental data requires the non-Gaussian statistics of the donor-acceptor energy gap described by the Q-model of electron transfer. Furthermore, the theoretical formalism combines the vibrational envelope of quantum vibronic transitions with the Q-model describing the classical component of the Franck-Condon factor and a microscopic solvation model of the solvent reorganization energy and the reaction free energy.« less
Charge exchange of highly charged argon ions as a function of projectile energy
NASA Astrophysics Data System (ADS)
Allen, F. I.; Biedermann, C.; Radtke, R.; Fussmann, G.
2007-03-01
X-ray emission of highly charged argon ions following charge exchange collisions with argon atoms has been measured as a function of projectile energy. The ions are extracted from the Electron Beam Ion Trap (EBIT) in Berlin and selected according to their massto-charge ratios. Experiments focussed on hydrogen-like and bare argon ions which were decelerated from 125q eV/amu to below 0.25q eV/amu prior to interaction with an argon gas target. The x-ray spectra recorded probe the cascading transitions resulting from electron capture into Rydberg states and are found to vary significantly with collision velocity. This indicates a shift in the orbital angular momentum of the capture state. Hardness ratios are observed to increase with decreasing projectile energy though at a rate which differs from the results of simulations. For comparison, measurements of the x-ray emission following charge exchange within the trap were carried out and are in agreement with the findings of the EBIT group at LLNL. Both of these in situ measurements, however, are in discrepancy with the results of the experiments using extracted ions.
Visualizing photosynthesis through processing of chlorophyll fluorescence images
NASA Astrophysics Data System (ADS)
Daley, Paul F.; Ball, J. Timothy; Berry, Joseph A.; Patzke, Juergen; Raschke, Klaus E.
1990-05-01
Measurements of terrestrial plant photosynthesis frequently exploit sensing of gas exchange from leaves enclosed in gas-tight, climate controlled chambers. These methods are typically slow, and do not resolve variation in photosynthesis below the whole leaf level. A photosynthesis visualization technique is presented that uses images of leaves employing light from chlorophyll (Chl) fluorescence. Images of Chl fluorescence from whole leaves undergoing steady-state photosynthesis, photosynthesis induction, or response to stress agents were digitized during light flashes that saturated photochemical reactions. Use of saturating flashes permitted deconvolution of photochemical energy use from biochemical quenching mechanisms (qN) that dissipate excess excitation energy, otherwise damaging to the light harvesting apparatus. Combination of the digital image frames of variable fluorescence with reference frames obtained from the same leaves when dark-adapted permitted derivation of frames in which grey scale represented the magnitude of qN. Simultaneous measurements with gas-exchange apparatus provided data for non-linear calibration filters for subsequent rendering of grey-scale "images" of photosynthesis. In several experiments significant non-homogeneity of photosynthetic activity was observed following treatment with growth hormones, or shifts in light or humidity, and following infection by virus. The technique provides a rapid, non-invasive probe for stress physiology and plant disease detection.
Progress on Raman laser for sodium resonance fluorescence lidar
NASA Astrophysics Data System (ADS)
Li, Steven X.; Yu, Anthony W.; Krainak, Michael A.; Bai, Yingxin; Konoplev, Oleg; Fahey, Molly E.; Numata, Kenji
2018-02-01
We are developing a Q-switched narrow linewidth intra-cavity Raman laser for a space based sodium lidar application. A novel Raman laser injection seeding scheme is proposed and is experimentally verified. A Q-switched, diode pumped, c-cut Nd:YVO4 laser has been designed to emit a fundamental wavelength at 1066.6 nm. This fundamental wavelength is used as the pump in an intra-cavity Raman conversion in a Gd0.2Y0.8VO4 composite material. By tuning the temperature of the crystal, we tuned the Raman shifting to the desired sodium absorption line. A diode end pumped, T-shaped laser cavity has been built for experimental investigation. The fundamental pump laser cavity is a twisted mode cavity to eliminate the spatial hole burning for effective injection seeding. The Raman laser cavity is a linear standing wave cavity because Raman gain medium does not suffer spatial hole burning as traditional laser gain medium. The linewidth and temporal profile of the Raman laser is experimentally investigated with narrow and broadband fundamental pump emission. We have, for the first time, demonstrated an injection seeded, high peak power, narrow linewidth intra-cavity Raman laser for potential use in a sodium resonance fluorescence lidar.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ham, Kathryn J.; Vohra, Yogesh K.; Kono, Yoshio
Multi-angle energy-dispersive X-ray diffraction studies and white-beam X-ray radiography were conducted with a cylindrically shaped (1 mm diameter and 0.7 mm high) high-boron-content borosilicate glass sample (17.6% B 2O 3) to a pressure of 13.7 GPa using a Paris-Edinburgh (PE) press at Beamline 16-BM-B, HPCAT of the Advanced Photon Source. The measured structure factor S(q) to large q = 19 Å –1 is used to determine information about the internuclear bond distances between various species of atoms within the glass sample. Sample pressure was determined with gold as a pressure standard. The sample height as measured by radiography showed anmore » overall uniaxial compression of 22.5% at 13.7 GPa with 10.6% permanent compaction after decompression to ambient conditions. The reduced pair distribution function G(r) was extracted and Si–O, O–O and Si–Si bond distances were measured as a function of pressure. Lastly, Raman spectroscopy of the pressure recovered sample as compared to starting material showed blue-shift and changes in intensity and widths of Raman bands associated with silicate and four-coordinated boron.« less
Ham, Kathryn J.; Vohra, Yogesh K.; Kono, Yoshio; ...
2017-02-06
Multi-angle energy-dispersive X-ray diffraction studies and white-beam X-ray radiography were conducted with a cylindrically shaped (1 mm diameter and 0.7 mm high) high-boron-content borosilicate glass sample (17.6% B 2O 3) to a pressure of 13.7 GPa using a Paris-Edinburgh (PE) press at Beamline 16-BM-B, HPCAT of the Advanced Photon Source. The measured structure factor S(q) to large q = 19 Å –1 is used to determine information about the internuclear bond distances between various species of atoms within the glass sample. Sample pressure was determined with gold as a pressure standard. The sample height as measured by radiography showed anmore » overall uniaxial compression of 22.5% at 13.7 GPa with 10.6% permanent compaction after decompression to ambient conditions. The reduced pair distribution function G(r) was extracted and Si–O, O–O and Si–Si bond distances were measured as a function of pressure. Lastly, Raman spectroscopy of the pressure recovered sample as compared to starting material showed blue-shift and changes in intensity and widths of Raman bands associated with silicate and four-coordinated boron.« less
Silicon Integrated Cavity Optomechanical Transducer
NASA Astrophysics Data System (ADS)
Zou, Jie; Miao, Houxun; Michels, Thomas; Liu, Yuxiang; Srinivasan, Kartik; Aksyuk, Vladimir
2013-03-01
Cavity optomechanics enables measurements of mechanical motion at the fundamental limits of precision imposed by quantum mechanics. However, the need to align and couple devices to off-chip optical components hinders development, miniaturization and broader application of ultrahigh sensitivity chip-scale optomechanical transducers. Here we demonstrate a fully integrated and optical fiber pigtailed optomechanical transducer with a high Q silicon micro-disk cavity near-field coupled to a nanoscale cantilever. We detect the motion of the cantilever by measuring the resonant frequency shift of the whispering gallery mode of the micro-disk. The sensitivity near the standard quantum limit can be reached with sub-uW optical power. Our on-chip approach combines compactness and stability with great design flexibility: the geometry of the micro-disk and cantilever can be tailored to optimize the mechanical/optical Q factors and tune the mechanical frequency over two orders of magnitudes. Electrical transduction in addition to optical transduction was also demonstrated and both can be used to effectively cool the cantilever. Moreover, cantilevers with sharp tips overhanging the chip edge were fabricated to potentially allow the mechanical cantilever to be coupled to a wide range of off-chip systems, such as spins, DNA, nanostructures and atoms on clean surfaces.
Wang, Xiaojie; Wang, Xiaolei; Zheng, Zhifen; Qiao, Xihao; Dong, Jun
2018-04-20
A synchronous pulsed, dual-wavelength Raman laser at 1164.4 nm and 1174.7 nm has been demonstrated in a Nd:GdVO 4 /Cr 4+ :YAG/YVO 4 passively Q-switched Raman microchip laser (PQSRML). The 1164.4 nm and 1174.7 nm dual-wavelength first-order Stokes laser oscillation is attributed to the conversion of the 1063.2 nm and 1063.43 nm two-longitudinal-mode fundamental lasers with Raman frequency shifts of 816 cm -1 and 890 cm -1 , respectively. Stable dual-wavelength Raman laser pulses with nearly equal spectral intensities have been achieved independent of the pump power. A pulse repetition rate as high as 139.4 kHz has been achieved with T 0 =85%, and the pulse width has been shortened to 825 ps with T 0 =70%. A dual-wavelength Raman laser with sub-nanosecond pulse width and peak power of over 1 kW has been achieved in the Nd:GdVO 4 /Cr 4+ :YAG/YVO 4 PQSRML.
Guide star lasers for adaptive optics
NASA Astrophysics Data System (ADS)
Roberts, William Thomas, Jr.
Exploitation of the imaging capabilities of the new generation of ground-based astronomical telescopes relies heavily on Adaptive Optics (AO). Current AO system designs call for sodium guide star lasers capable of producing at least eight Watts of power tuned to the peak of the sodium D2 line, with a high duty cycle to avoid saturation, and with 0.5-1.0 GHz spectral broadening. This work comprises development and testing of six candidate laser systems and materials which may afford a path to achieving these goals. An end-pumped CW dye laser producing 4.0 Watts of tuned output power was developed and used to obtain the first accurate measurement of sodium layer scattering efficiency. Methods of optimizing the laser output through improving pump overlap efficiency and reducing the number of intracavity scattering surfaces are covered. The 1181 nm fluorescence peak of Mn5+ ion in Ba5 (PO4)3Cl could be tuned and doubled to reach 589 nm. While efforts to grow this crystal were under way, the Mn5+ ion in natural apatite (Ca5(PO4)3F) was studied as a potential laser material. Fluorescence saturation measurements and transmission saturation are presented, as well as efforts to obtain CW lasing in natural apatite. A Q-switched laser color-center laser in LiF : F-2 was developed and successfully tuned and doubled to the sodium D 2 line. Broad-band lasing of 80 mW and tuned narrow-band lasing of 35 mW at 1178 nm were obtained with 275 mW of input pump power at 1064 nm. The measured thermal properties of this material indicate its potential for scaling to much higher power. A Q-switched intracavity Raman laser was developed in which CaWO 4 was used to shift a Nd:YAG laser, the frequency-doubled output of which was centered at 589.3 nm. To obtain light at 589.0 nm, a compositionally tuned pump laser of Nd : Y3Ga1.1Al3.9O 12 was produced which generated the desired shift, but was inhomogeneous broadened, limiting the tunable power of the material. Finally, temperature tuning of a Nd:YAG laser was demonstrated in which the laser emitted up to 8.6 Watts at a temperature of -21.5 C, bringing the wavelength into a regime favorable for efficient Raman shifting by CaWO4.
NASA Technical Reports Server (NTRS)
Kawakita, Hideyo; Mumma, Michael J.
2011-01-01
Ammonia is a major reservoir of nitrogen atoms in cometary materials. However, detections of ammonia in comets are rare, with several achieved at radio wavelengths. A few more detections were obtained through near-infrared observations (around the 3 m wavelength region), but moderate relative velocity shifts are required to separate emission lines of cometary ammonia from telluric absorption lines in the 3 micron wavelength region. On the other hand, the amidogen radical (NH2 -- a photodissociation product of ammonia in the coma) also shows rovibrational emission lines in the 3 micron wavelength region. Thus, gas production rates for ammonia can be determined from the rovibrational emission lines of ammonia (directly) and amidogen radical (indirectly) simultaneously in the near-infrared. In this article, we present new fluorescence excitation models for cometary ammonia and amidogen radical in the near-infrared, and we apply these models to the near-infrared high-dispersion spectra of comet C/2004 Q2 (Machholz) to determine the mixing ratio of ammonia to water in the comet. Based on direct detection of NH3 lines, the mixing ratio of NH3/H2O is 0.46% +/- 0.03% in C/2004 Q2 (Machholz), in agreement with other results. The mixing ratio of ammonia determined from the NH2 observations (0.31% -- 0.79%) is consistent but has relatively larger error, owing to uncertainty in the photodissociation rates of ammonia. At the present level of accuracy, we confirm that NH3 could be the sole parent of NH2 in this comet.
Hirabayashi, Hideyuki; Sasaki, Kazuhiro; Kambe, Takashi; Gannaban, Ritchel B; Miras, Monaliza A; Mendioro, Merlyn S; Simon, Eliza V; Lumanglas, Patrick D; Fujita, Daisuke; Takemoto-Kuno, Yoko; Takeuchi, Yoshinobu; Kaji, Ryota; Kondo, Motohiko; Kobayashi, Nobuya; Ogawa, Tsugufumi; Ando, Ikuo; Jagadish, Krishna S V; Ishimaru, Tsutomu
2015-03-01
A decline in rice (Oryza sativa L.) production caused by heat stress is one of the biggest concerns resulting from future climate change. Rice spikelets are most susceptible to heat stress at flowering. The early-morning flowering (EMF) trait mitigates heat-induced spikelet sterility at the flowering stage by escaping heat stress during the daytime. We attempted to develop near-isogenic lines (NILs) for EMF in the indica-type genetic background by exploiting the EMF locus from wild rice, O. officinalis (CC genome). A stable quantitative trait locus (QTL) for flower opening time (FOT) was detected on chromosome 3. A QTL was designated as qEMF3 and it shifted FOT by 1.5-2.0 h earlier for cv. Nanjing 11 in temperate Japan and cv. IR64 in the Philippine tropics. NILs for EMF mitigated heat-induced spikelet sterility under elevated temperature conditions completing flower opening before reaching 35°C, a general threshold value leading to spikelet sterility. Quantification of FOT of cultivars popular in the tropics and subtropics did not reveal the EMF trait in any of the cultivars tested, suggesting that qEMF3 has the potential to advance FOT of currently popular cultivars to escape heat stress at flowering under future hotter climates. This is the first report to examine rice with the EMF trait through marker-assisted breeding using wild rice as a genetic resource. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Jin, Li; Huo, Renjie; Guo, Runping; Li, Fei; Wang, Dawei; Tian, Ye; Hu, Qingyuan; Wei, Xiaoyong; He, Zhanbing; Yan, Yan; Liu, Gang
2016-11-16
The electrostrictive effect has some advantages over the piezoelectric effect, including temperature stability and hysteresis-free character. In the present work, we report the diffuse phase transitions and electrostrictive properties in lead-free Fe 3+ -doped 0.5Ba(Zr 0.2 Ti 0.8 )O 3 -0.5(Ba 0.7 Ca 0.3 )TiO 3 (BZT-0.5BCT) ferroelectric ceramics. The doping concentration was set from 0.25 to 2 mol %. It is found that by introducing Fe 3+ ion into BZT-0.5BCT, the temperature corresponding to permittivity maximum T m was shifted toward lower temperature monotonically by 37 °C per mol % Fe 3+ ion. Simultaneously, the phase transitions gradually changed from classical ferroelectric-to-paraelectric phase transitions into diffuse phase transitions with a weak relaxor characteristic. Purely electrostrictive responses with giant electrostrictive coefficient Q 33 between 0.04 and 0.05 m 4 /C 2 are observed from 25 to 100 °C for the compositions doped with 1-2 mol % Fe 3+ ion. The Q 33 of Fe 3+ -doped BZT-0.5BCT ceramics is almost twice the Q 33 of other ferroelectric ceramics. These observations suggest that the present system can be considered as a potential lead-free material for the applications in electrostrictive area and that BT-based ferroelectric ceramics would have giant electrostrictive coefficient over other ferroelectric systems.
NASA Technical Reports Server (NTRS)
Diner, Daniel B. (Inventor)
1991-01-01
Methods for providing stereoscopic image presentation and stereoscopic configurations using stereoscopic viewing systems having converged or parallel cameras may be set up to reduce or eliminate erroneously perceived accelerations and decelerations by proper selection of parameters, such as an image magnification factor, q, and intercamera distance, 2w. For converged cameras, q is selected to be equal to Ve - qwl = 0, where V is the camera distance, e is half the interocular distance of an observer, w is half the intercamera distance, and l is the actual distance from the first nodal point of each camera to the convergence point, and for parallel cameras, q is selected to be equal to e/w. While converged cameras cannot be set up to provide fully undistorted three-dimensional views, they can be set up to provide a linear relationship between real and apparent depth and thus minimize erroneously perceived accelerations and decelerations for three sagittal planes, x = -w, x = 0, and x = +w which are indicated to the observer. Parallel cameras can be set up to provide fully undistorted three-dimensional views by controlling the location of the observer and by magnification and shifting of left and right images. In addition, the teachings of this disclosure can be used to provide methods of stereoscopic image presentation and stereoscopic camera configurations to produce a nonlinear relation between perceived and real depth, and erroneously produce or enhance perceived accelerations and decelerations in order to provide special effects for entertainment, training, or educational purposes.
Free-energy relationships in ion channels activated by voltage and ligand
Chowdhury, Sandipan
2013-01-01
Many ion channels are modulated by multiple stimuli, which allow them to integrate a variety of cellular signals and precisely respond to physiological needs. Understanding how these different signaling pathways interact has been a challenge in part because of the complexity of underlying models. In this study, we analyzed the energetic relationships in polymodal ion channels using linkage principles. We first show that in proteins dually modulated by voltage and ligand, the net free-energy change can be obtained by measuring the charge-voltage (Q-V) relationship in zero ligand condition and the ligand binding curve at highly depolarizing membrane voltages. Next, we show that the voltage-dependent changes in ligand occupancy of the protein can be directly obtained by measuring the Q-V curves at multiple ligand concentrations. When a single reference ligand binding curve is available, this relationship allows us to reconstruct ligand binding curves at different voltages. More significantly, we establish that the shift of the Q-V curve between zero and saturating ligand concentration is a direct estimate of the interaction energy between the ligand- and voltage-dependent pathway. These free-energy relationships were tested by numerical simulations of a detailed gating model of the BK channel. Furthermore, as a proof of principle, we estimate the interaction energy between the ligand binding and voltage-dependent pathways for HCN2 channels whose ligand binding curves at various voltages are available. These emerging principles will be useful for high-throughput mutagenesis studies aimed at identifying interaction pathways between various regulatory domains in a polymodal ion channel. PMID:23250866
Export of dissolved organic carbon from the Penobscot River basin in north-central Maine
Huntington, Thomas G.; Aiken, George R.
2013-01-01
Dissolved organic carbon (DOC) flux from the Penobscot River and its major tributaries in Maine was determined using continuous discharge measurements, discrete water sampling, and the LOADEST regression software. The average daily flux during 2004–2007 was 71 kg C ha−1 yr−1 (392 Mt C d−1), an amount larger than measured in most northern temperate and boreal rivers. Distinct seasonal variation was observed in the relation between concentration and discharge (C–Q). During June through December (summer/fall), there was a relatively steep positive C–Q relation where concentration increased by a factor of 2–3 over the approximately 20-fold range of observed stream discharge for the Penobscot River near Eddington, Maine. In contrast, during January through May (winter/spring), DOC concentration did not increase with increasing discharge. In addition, we observed a major shift in the C–Q between 2004–2005 and 2006–2007, apparently resulting from unprecedented rainfall, runoff, and soil flushing beginning in late fall 2005. The relative contribution to the total Penobscot River basin DOC flux from each tributary varied dramatically by season, reflecting the role of large regulated reservoirs in certain basins. DOC concentration and flux per unit watershed area were highest in tributaries containing the largest areas in palustrine wetlands. Tributary DOC concentration and flux was positively correlated to percentage wetland area. Climatic or environmental changes that influence the magnitude or timing of river discharge or the abundance of wetlands will likely affect the export of DOC to the near-coastal ocean.
Modeling the effect of climate change on the distribution of oak and pine species of Mexico.
Gómez-Mendoza, Leticia; Arriaga, Laura
2007-12-01
We examined the vulnerability of 34 species of oaks (Quercus) and pines (Pinus) to the effects of global climate change in Mexico. We regionalized the HadCM2 model of climate change with local climatic data (mean annual temperature and rainfall) and downscaled the model with the inverse distance-weighted method. Databases of herbaria specimens, genetic algorithms (GARP), and digital covers of biophysical variables that affect oaks and pines were used to project geographic distributions of the species under a severe and conservative scenario of climate change for the year 2050. Starting with the current average temperature of 20.2 degrees C and average precipitation of 793 mm, under the severe warming scenario mean temperature and precipitation changed to 22.7 degrees C and 660 mm, respectively, in 2050. For the conservative warming scenario, these variables shifted to 21.8 degrees C and 721 mm. Responses to the different scenarios of climate change were predicted to be species-specific and related to each species climate affinity. The current geographic distribution of oaks and pines decreased 7-48% and 0.2-64%, respectively. The more vulnerable pines were Pinus rudis, P. chihuahuana, P. oocarpa, and P. culminicola, and the most vulnerable oaks were Quercus crispipilis, Q. peduncularis, Q. acutifolia, and Q. sideroxyla. In addition to habitat conservation, we think sensitive pine and oak species should be looked at more closely to define ex situ strategies (i.e., seed preservation in germplasm banks) for their long-term conservation. Modeling climatic-change scenarios is important to the development of conservation strategies.
Critical evaluation of the potential energy surface of the CH3 + HO2reaction system
NASA Astrophysics Data System (ADS)
Faragó, E. P.; Szőri, M.; Owen, M. C.; Fittschen, C.; Viskolcz, B.
2015-02-01
The CH3 + HO2 reaction system was studied theoretically by a newly developed, HEAT345-(Q) method based CHEAT1 protocol and includes the combined singlet and triplet potential energy surfaces. The main simplification is based on the CCSDT(Q)/cc-pVDZ calculation which is computationally inexpensive. Despite the economic and black-box treatment of higher excitations, the results are within 0.6 kcal/mol of the highly accurate literature values. Furthermore, the CHEAT1 surpassed the popular standard composite methods such as CBS-4M, CBS-QB3, CBS-APNO, G2, G3, G3MP2B3, G4, W1U, and W1BD mainly due to their poor performance in characterizing transition states (TS). For TS structures, various standard DFT and MP2 method have also been tested against the resulting CCSD/cc-pVTZ geometry of our protocol. A fairly good agreement was only found in the cases of the B2PLYP and BHandHLYP functionals, which were able to reproduce the structures of all TS studied within a maximum absolute deviation of 7%. The complex reaction mechanism was extended by three new low lying reaction channels. These are indirect water elimination from CH3OOH resulted formaldehyde, H2 elimination yielded methylene peroxide, and methanol and reactive triplet oxygen were formed via H-shift in the third channel. CHEAT1 protocol based on HEAT345-(Q) method is a robust, general, and cheap alternative for high accurate kinetic calculations.
Dunlap, K D; Ragazzi, M A
2015-11-01
In ectotherms, the rate of many neural processes is determined externally, by the influence of the thermal environment on body temperature, and internally, by hormones secreted from the thyroid gland. Through thermal acclimation, animals can buffer the influence of the thermal environment by adjusting their physiology to stabilize certain processes in the face of environmental temperature change. The electric organ discharge (EOD) used by weak electric fish for electrocommunication and electrolocation is highly temperature sensitive. In some temperate species that naturally experience large seasonal fluctuations in environmental temperature, the thermal sensitivity (Q10) of the EOD shifts after long-term temperature change. We examined thermal acclimation of EOD frequency in a tropical electric fish, Apteronotus leptorhynchus that naturally experiences much less temperature change. We transferred fish between thermal environments (25.3 and 27.8 °C) and measured EOD frequency and its thermal sensitivity (Q10) over 11 d. After 6d, fish exhibited thermal acclimation to both warming and cooling, adjusting the thermal dependence of EOD frequency to partially compensate for the small change (2.5 °C) in water temperature. In addition, we evaluated the thyroid influence on EOD frequency by treating fish with thyroxine or the anti-thyroid compound propylthiouricil (PTU) to stimulate or inhibit thyroid activity, respectively. Thyroxine treatment significantly increased EOD frequency, but PTU had no effect. Neither thyroxine nor PTU treatment influenced the thermal sensitivity (Q10) of EOD frequency during acute temperature change. Thus, the EOD of Apteronotus shows significant thermal acclimation and responds to elevated thyroxine. Copyright © 2015 Elsevier Inc. All rights reserved.
Radio line observations of comet 109P/Swift-Tuttle at IRAM
NASA Astrophysics Data System (ADS)
Despois, D.; Biver, N.; Bockelée-Morvan, D.; Colom, P.; Crovisier, J.; Paubert, G.
1996-06-01
Observations are presented of comet 109P/Swift-Tuttle (1992t and 1992 XXVIII in the old style designations) obtained at the IRAM 30 m millimetre radio telescope both before (Nov. 1992) and after perihelion (Jan. 1993), when rh was ˜ 1 AU and Δ between 1 and 2 AU. The molecules HCN, H 2S, H 2CO and CH 2OH were detected, with good signal-to-noise ratios (up to 30). The line profiles are strongly asymmetric with a cusp at negative velocities; this leads to an important shift (-0.45 km s -1) of the mean gas velocity with respect to the nucleus. This profile is most probably linked to the jets seen at visual wavelengths. From methanol rotation diagrams, average rotational temperatures of 70 K for November 21 and 45 K for January are estimated. An isotropic distribution of the molecules is assumed, and Q(H 2O) ˜ 4.0 and 3.5 × 10 29 molec. s -1 for November 21 and January, respectively. Relative production rates Q/Q (H 2O) of 0.1, 0.4, 0.5 and 4-7% on November 21, 1992 for HCN, H 2S, H 2CO and CH 3OH, respectively, and 0.05, 0.2 and 2% on January 6-7, 1993, for HCN, H 2CO and CH 3OH, respectively, are derived. The effect of coma anisotropy on the derivation of these rates is briefly discussed. The decrease of non-water parent molecules from November to January, to be confirmed, raises questions about the nucleus homogeneity or sublimation process.
NASA Astrophysics Data System (ADS)
Demenev, A. A.; Gavrilov, S. S.; Brichkin, A. S.; Larionov, A. V.; Kulakovskii, V. D.
2014-12-01
The first-order spatial correlation function g (1)( r 12) and the polariton density distribution in the condensate of quasi-two-dimensional exciton polaritons formed in a high- Q semiconductor microcavity pillar under nonresonant optical pumping are investigated. It is found that the correlation function in certain regions of the micropillar decreases abruptly with increasing condensate density. It is shown that this behavior of the correlation function is caused by the formation of a localized dark soliton in these regions. A deep minimum of the polariton density and a shift in the phase of the condensate wavefunction by π occur within the soliton localization area.
NASA Astrophysics Data System (ADS)
Itoh, Takuro; Toyota, Taro; Higuchi, Hiroyuki; Matsushita, Michio M.; Suzuki, Kentaro; Sugawara, Tadashi
2017-03-01
A tetracyanoquaterthienoquinoid (TCT4Q)-based field effect transistor is characterized by the ambipolar transfer characteristics and the facile shift of the threshold voltage induced by the bias stress. The trapping and detrapping kinetics of charge carriers was investigated in detail by the temperature dependence of the decay of source-drain current (ISD). We found a repeatable formation of a molecular floating gate is derived from a 'charge carrier-and-gate' cycle comprising four stages, trapping of mobile carriers, formation of a floating gate, induction of oppositely charged mobile carriers, and recombination between mobile and trapped carriers to restore the initial state.
Cascaded a-cut Nd:YVO4 self-Raman with second-Stokes laser at 1313 nm
NASA Astrophysics Data System (ADS)
Xie, Zhi; Duan, Yanmin; Guo, Junhong; Huang, Xiaohong; Yan, Lifen; Zhu, Haiyong
2017-11-01
A diode-end-pumped, acousto-optic Q-switched second-Stokes self-Raman laser at 1313 nm was demonstrated in a common a-cut Nd:YVO4 crystal, with the primary Raman shift of 890 cm-1. At the incident pump power of 17.1 W, the maximum average output power up to 2.51 W and pulse width of 5 ns for second-Stokes were obtained with the pulse repetition frequency of 50 kHz. The slope efficiency and conversion efficiency with respect to the incident pump power are about 23.7% and 14.7%. The efficient output should be attributed to suitable transmittance of the output coupler used.
A correlated ab initio study of the A2 pi <-- X2 sigma+ transition in MgCCH
NASA Technical Reports Server (NTRS)
Woon, D. E.
1997-01-01
The A2 pi <-- X2 sigma+ transition in MgCCH was studied with correlation consistent basis sets and single- and multireference correlation methods. The A2 pi excited state was characterized in detail; the x2 sigma+ ground state has been described elsewhere recently. The estimated complete basis set (CBS) limits for valence correlation, including zero-point energy corrections, are 22668, 23191, and 22795 for the RCCSD(T), MRCI, and MRCI + Q methods, respectively. A core-valence correction of +162 cm-1 shifts the RCCSD(T) value to 22830 cm-1, in good agreement with the experimental result of 22807 cm-1.
Hong, Wei; Huang, Dexiu; Zhang, Xinliang; Zhu, Guangxi
2007-12-24
All-optical on-off keying (OOK) to binary phase-shift keying (BPSK) modulation format conversion based on gain-transparent semiconductor optical amplifier (GT-SOA) is simulated and analyzed, where GT-SOA is used as an all-optical phase-modulator (PM). Numerical simulation of the phase modulation effect of GT-SOA is performed using a wideband dynamic model of GT-SOA and the quality of the BPSK signal is evaluated using the differential-phase-Q factor. Performance improvement by holding light injection is analyzed and non-return-to-zero (NRZ) and return-to-zero (RZ) modulation formats of the OOK signal are considered.
Optical Studies of Nd-doped benzil, a potential luminescent and laser material
NASA Astrophysics Data System (ADS)
Noginov, M. A.; Curley, M.; Noginova, N.; Wang, W. S.; Aggarwal, M. D.
1998-08-01
Neodymium-doped benzil crystals have been synthesized and characterized for their absorption, emission, and kinetics properties. From Judd Ofelt analysis, the radiative decay time of Nd emission (peaking at 1055 nm) is estimated to be equal to 441 s. The experimental Nd lifetime (under Ar laser excitation) is equal to 19 s. The broad emission band centered at approximately 700 nm ( decay 15 ns) and the Raman scattering with characteristic frequency shift of 1600 cm 1 have been observed at excitation of benzil with 532-nm Q -switched laser pulses. We show that rare-earth-doped benzil can be considered as a potential candidate for luminescent and solid-state laser material.
Optical Studies of Nd-doped benzil, a potential luminescent and laser material.
Noginov, M A; Curley, M; Noginova, N; Wang, W S; Aggarwal, M D
1998-08-20
Neodymium-doped benzil crystals have been synthesized and characterized for their absorption, emission, and kinetics properties. From Judd-Ofelt analysis, the radiative decay time of Nd emission (peaking at 1055 nm) is estimated to be equal to 441 mus. The experimental Nd lifetime (under Ar+ laser excitation) is equal to 19 mus. The broad emission band centered at approximately 700 nm (tau(decay) approximately 15 ns) and the Raman scattering with characteristic frequency shift of 1600 cm(-1) have been observed at excitation of benzil with 532-nm Q-switched laser pulses. We show that rare-earth-doped benzil can be considered as a potential candidate for luminescent and solid-state laser material.
An Index-Mismatch Scattering Approach to Optical Limiting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Exarhos, Gregory J.; Ferris, Kim F.; Windisch, Charles F.
A densely packed bed of alkaline earth fluoride particles percolated by a fluid medium has been investigated as a potential index-matched optical limiter in the spirit of a Christiansen-Shelyubskii filter. Marked optical limiting was observed through this transparent medium under conditions where the focused second-harmonic output of a Q-swtiched Nd: YAG laser was on the order of about 1 J/cm2. An open-aperture Z-scan technique was used to quantify the limiting behavior. In this case, the mechanism of optical limiting is thought to be a nonlinear shift in the fluid index of refraction, resulting in an index mismatch between the disparatemore » phases at high laser fluence.« less
Whispering gallery resonators for optical sensing
NASA Astrophysics Data System (ADS)
Madugani, Ramgopal; Kasumie, Sho; Yang, Yong; Ward, Jonathan; Lei, Fuchuan; Nic Chormaic, Síle
2017-04-01
In recent years, whispering gallery mode devices have extended their functionality across a number of research fields from photonics to sensing applications. Here, we will discuss environmental sensing applications, such as pressure, flow, and temperature using ultrahigh Q-factor microspheres fabricated from ultrathin optical fiber and microbubbles fabricated from pretapered glass capillary. We will discuss device fabrication and the different types of sensing that can be pursued using such systems. Finally, we will introduce the concept of using cavity ring-up spectroscopy to perform dispersive transient sensing, whereby a perturbation to the environment leads to a frequency mode shift, and dissipative transient sensing, which can lead to broadening of the mode, in a whispering gallery mode resonator.
Quéméneur, Marianne; Cébron, Aurélie; Billard, Patrick; Battaglia-Brunet, Fabienne; Garrido, Francis; Leyval, Corinne; Joulian, Catherine
2010-07-01
Denaturing gradient gel electrophoresis (DGGE) and quantitative real-time PCR (qPCR) were successfully developed to monitor functional aoxB genes as markers of aerobic arsenite oxidizers. DGGE profiles showed a shift in the structure of the aoxB-carrying bacterial population, composed of members of the Alpha-, Beta- and Gammaproteobacteria, depending on arsenic (As) and E(h) levels in Upper Isle River Basin waters. The highest aoxB gene densities were found in the most As-polluted oxic surface waters but without any significant correlation with environmental factors. Arsenite oxidizers seem to play a key role in As mobility in As-impacted waters.
Samulin Erdem, Johanna; Notø, Heidi Ødegaard; Skare, Øivind; Lie, Jenny-Anne S; Petersen-Øverleir, Marte; Reszka, Edyta; Pepłońska, Beata; Zienolddiny, Shanbeh
2017-08-01
Occupational factors such as shiftwork and especially night work that involves disruption of the circadian rhythm may contribute to increased breast cancer risk. Circadian disruption may also affect telomere length (TL). While short TL generally is associated with increased cancer risk, its association with breast cancer risk is inconclusive. We suggest that working schedules might be an important factor in assessment of effects of TL on breast cancer risk. Moreover, telomere shortening might be a potential mechanism for night work-related breast cancer. In this study, effects of shift work on TL and its association with breast cancer risk were investigated in a nested breast cancer case-control study of Norwegian nurses. TL was assessed by qPCR in DNA from 563 breast cancer patients and 619 controls. Here, we demonstrate that TL is affected by intensive night work schedules, as work with six consecutive night for a period of more than 5 years was associated with decreased telomere lengths (-3.18, 95% CI: -6.46 to -0.58, P = 0.016). Furthermore, telomere shortening is associated with increased breast cancer risk in workers with long periods of consecutive night shifts. Thus, nurses with longer telomere lengths had a lower risk for breast cancer if they had worked more than four (OR: 0.37, 95% CI: 0.16-0.79, P = 0.014) or five (OR: 0.31, 95% CI: 0.10-0.83, P = 0.029) consecutive night shifts for a period of 5 years or more. These data suggest that telomere shortening is associated with the duration and intensity of night work and may be a contributing factor for breast cancer risk among female shift workers. © 2017 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
Perkins, Daya I.; Trudell, James R.; Asatryan, Liana; Alkana, Ronald L.
2012-01-01
Recent studies highlighted the importance of loop 2 of α1 glycine receptors (GlyRs) in the propagation of ligand-binding energy to the channel gate. Mutations that changed polarity at position 52 in the β hairpin of loop 2 significantly affected sensitivity to ethanol. The present study extends the investigation to charged residues. We found that substituting alanine with the negative glutamate at position 52 (A52E) significantly left-shifted the glycine concentration response curve and increased sensitivity to ethanol, whereas the negative aspartate substitution (A52D) significantly right-shifted the glycine EC50 but did not affect ethanol sensitivity. It is noteworthy that the uncharged glutamine at position 52 (A52Q) caused only a small right shift of the glycine EC50 while increasing ethanol sensitivity as much as A52E. In contrast, the shorter uncharged asparagine (A52N) caused the greatest right shift of glycine EC50 and reduced ethanol sensitivity to half of wild type. Collectively, these findings suggest that charge interactions determined by the specific geometry of the amino acid at position 52 (e.g., the 1-Å chain length difference between aspartate and glutamate) play differential roles in receptor sensitivity to agonist and ethanol. We interpret these results in terms of a new homology model of GlyR based on a prokaryotic ion channel and propose that these mutations form salt bridges to residues across the β hairpin (A52E-R59 and A52N-D57). We hypothesize that these electrostatic interactions distort loop 2, thereby changing agonist activation and ethanol modulation. This knowledge will help to define the key physical-chemical parameters that cause the actions of ethanol in GlyRs. PMID:22357974
Mitchell, Jeffrey; Scow, Kate
2018-01-01
Reducing tillage and growing cover crops, widely recommended practices for boosting soil health, have major impacts on soil communities. Surprisingly little is known about their impacts on soil microbial functional diversity, and especially so in irrigated Mediterranean ecosystems. In long-term experimental plots at the West Side Research and Extension Center in California’s Central Valley, we characterized soil microbial communities in the presence or absence of physical disturbance due to tillage, in the presence or absence of cover crops, and at three depths: 0–5, 5–15 and 15–30 cm. This characterization included qPCR for bacterial and archaeal abundances, DNA sequencing of the 16S rRNA gene, and phylogenetic estimation of two ecologically important microbial traits (rRNA gene copy number and genome size). Total (bacterial + archaeal) diversity was higher in no-till than standard till; diversity increased with depth in no-till but decreased with depth in standard till. Total bacterial numbers were higher in cover cropped plots at all depths, while no-till treatments showed higher numbers in 0–5 cm but lower numbers at lower depths compared to standard tillage. Trait estimates suggested that different farming practices and depths favored distinctly different microbial life strategies. Tillage in the absence of cover crops shifted microbial communities towards fast growing competitors, while no-till shifted them toward slow growing stress tolerators. Across all treatment combinations, increasing depth resulted in a shift towards stress tolerators. Cover crops shifted the communities towards ruderals–organisms with wider metabolic capacities and moderate rates of growth. Overall, our results are consistent with decreasing nutrient availability with soil depth and under no-till treatments, bursts of nutrient availability and niche homogenization under standard tillage, and increases in C supply and variety provided by cover crops. Understanding how agricultural practices shift microbial abundance, diversity and life strategies, such as presented here, can assist with designing farming systems that can support high yields, while enhancing C sequestration and increasing resilience to climate change. PMID:29447262
NASA Astrophysics Data System (ADS)
Fuchs, Hendrik; Albrecht, Sascha; Acir, Ismail-Hakki; Bohn, Birger; Breitenlechner, Martin; Dorn, Hans-Peter; Gkatzelis, Georgios I.; Hofzumahaus, Andreas; Holland, Frank; Kaminski, Martin; Keutsch, Frank N.; Novelli, Anna; Reimer, David; Rohrer, Franz; Tillmann, Ralf; Vereecken, Luc; Wegener, Robert; Zaytsev, Alexander; Kiendler-Scharr, Astrid; Wahner, Andreas
2018-06-01
The photooxidation of methyl vinyl ketone (MVK) was investigated in the atmospheric simulation chamber SAPHIR for conditions at which organic peroxy radicals (RO2) mainly reacted with NO (high NO
case) and for conditions at which other reaction channels could compete (low NO
case). Measurements of trace gas concentrations were compared to calculated concentration time series applying the Master Chemical Mechanism (MCM version 3.3.1). Product yields of methylglyoxal and glycolaldehyde were determined from measurements. For the high NO case, the methylglyoxal yield was (19 ± 3) % and the glycolaldehyde yield was (65 ± 14) %, consistent with recent literature studies. For the low NO case, the methylglyoxal yield reduced to (5 ± 2) % because other RO2 reaction channels that do not form methylglyoxal became important. Consistent with literature data, the glycolaldehyde yield of (37 ± 9) % determined in the experiment was not reduced as much as implemented in the MCM, suggesting additional reaction channels producing glycolaldehyde. At the same time, direct quantification of OH radicals in the experiments shows the need for an enhanced OH radical production at low NO conditions similar to previous studies investigating the oxidation of the parent VOC isoprene and methacrolein, the second major oxidation product of isoprene. For MVK the model-measurement discrepancy was up to a factor of 2. Product yields and OH observations were consistent with assumptions of additional RO2 plus HO2 reaction channels as proposed in literature for the major RO2 species formed from the reaction of MVK with OH. However, this study shows that also HO2 radical concentrations are underestimated by the model, suggesting that additional OH is not directly produced from RO2 radical reactions, but indirectly via increased HO2. Quantum chemical calculations show that HO2 could be produced from a fast 1,4-H shift of the second most important MVK derived RO2 species (reaction rate constant 0.003 s-1). However, additional HO2 from this reaction was not sufficiently large to bring modelled HO2 radical concentrations into agreement with measurements due to the small yield of this RO2 species. An additional reaction channel of the major RO2 species with a reaction rate constant of (0.006 ± 0.004) s-1 would be required that produces concurrently HO2 radicals and glycolaldehyde to achieve model-measurement agreement. A unimolecular reaction similar to the 1,5-H shift reaction that was proposed in literature for RO2 radicals from MVK would not explain product yields for conditions of experiments in this study. A set of H-migration reactions for the main RO2 radicals were investigated by quantum chemical and theoretical kinetic methodologies, but did not reveal a contributing route to HO2 radicals or glycolaldehyde.
Sarangi, Ritimukta; Aboelella, Nermeen; Fujisawa, Kiyoshi; Tolman, William B; Hedman, Britt; Hodgson, Keith O; Solomon, Edward I
2006-06-28
The geometric and electronic structures of two mononuclear CuO2 complexes, [Cu(O2){HB(3-Ad-5-(i)Prpz)3}] (1) and [Cu(O2)(beta-diketiminate)] (2), have been evaluated using Cu K- and L-edge X-ray absorption spectroscopy (XAS) studies in combination with valence bond configuration interaction (VBCI) simulations and spin-unrestricted broken symmetry density functional theory (DFT) calculations. Cu K- and L-edge XAS data indicate the Cu(II) and Cu(III) nature of 1 and 2, respectively. The total integrated intensity under the L-edges shows that the 's in 1 and 2 contain 20% and 28% Cu character, respectively, indicative of very covalent ground states in both complexes, although more so in 1. Two-state VBCI simulations also indicate that the ground state in 2 has more Cu (/3d8) character. DFT calculations show that the in both complexes is dominated by O2(n-) character, although the O2(n-) character is higher in 1. It is shown that the ligand L plays an important role in modulating Cu-O2 bonding in these LCuO2 systems and tunes the ground states of 1 and 2 to have dominant Cu(II)-superoxide-like and Cu(III)-peroxide-like character, respectively. The contributions of ligand field (LF) and the charge on the absorbing atom in the molecule (Q(mol)M) to L- and K-edge energy shifts are evaluated using DFT and time-dependent DFT calculations. It is found that LF makes a dominant contribution to the edge energy shift, while the effect of Q(mol)M is minor. The charge on the Cu in the Cu(III) complex is found to be similar to that in Cu(II) complexes, which indicates a much stronger interaction with the ligand, leading to extensive charge transfer.
Zhu, Yanji; Zhang, Ling; Lu, Qing; Gao, Yushuo; Cai, Yujuan; Sui, Ailing; Su, Ting; Shen, Xi; Xie, Bing
2017-01-01
The aim of the present study was to characterize the phenotypic shift, quantity and role changes in different subgroups of retinal macrophages in a mouse model of oxygen-induced retinopathy (OIR). The mRNA expression levels of macrophage M1 and M2 subgroup marker genes and polarization-associated genes were analyzed by RT-qPCR. The number of M1 and M2 macrophages in our mouse model of OIR was analyzed by flow cytometry at different time points during the progression of OIR. Immunofluorescence whole mount staining of the retinas of mice with OIR was performed at different time points to examine the influx of macrophages, as well as the morphological characteristics and roles of M1 and M2 macrophages. An increased number of macrophages was recruited during the progression of angiogenesis in the retinas of mice with OIR due to the pro-inflammatory microenvironment containing high levels of cell adhesion and leukocyte transendothelial migration molecules. RT-qPCR and flow cytometric analysis at different time points revealed a decline in the number of M1 cells from a significantly high level at post-natal day (P)13 to a relatively normal level at P21, as well as an increase in the number of M2 cells from P13 to P21 in the mice with OIR, implicating a shift of macrophage polarization towards the M2 subtype. Immunofluorescence staining suggested that the M1 cells interacted with endothelial tip cells at the vascular front, while M2 cells embraced the emerging vessels and bridged the neighboring vessel sprouts. Thus, our data indicate that macrophages play an active role in OIR by contributing to the different steps of neovascularization. Our findings indicate that tissue macrophages may be considered as a potential target for the anti-angiogenic therapy of ocular neovascularization disease. PMID:28627621
NASA Astrophysics Data System (ADS)
Basiuk, V.; Huynh, P.; Merle, A.; Nowak, S.; Sauter, O.; Contributors, JET; the EUROfusion-IM Team
2017-12-01
The neoclassical tearing modes (NTM) increase the effective heat and particle radial transport inside the plasma, leading to a flattening of the electron and ion temperature and density profiles at a given location depending on the safety factor q rational surface (Hegna and Callen 1997 Phys. Plasmas 4 2940). In burning plasma such as in ITER, this NTM-induced increased transport could reduce significantly the fusion performance and even lead to a disruption. Validating models describing the NTM-induced transport in present experiment is thus important to help quantifying this effect on future devices. In this work, we apply an NTM model to an integrated simulation of current, heat and particle transport on JET discharges using the European transport simulator. In this model, the heat and particle radial transport coefficients are modified by a Gaussian function locally centered at the NTM position and characterized by a full width proportional to the island size through a constant parameter adapted to obtain the best simulations of experimental profiles. In the simulation, the NTM model is turned on at the same time as the mode is triggered in the experiment. The island evolution is itself determined by the modified Rutherford equation, using self-consistent plasma parameters determined by the transport evolution. The achieved simulation reproduces the experimental measurements within the error bars, before and during the NTM. A small discrepancy is observed on the radial location of the island due to a shift of the position of the computed q = 3/2 surface compared to the experimental one. To explain such small shift (up to about 12% with respect to the position observed from the experimental electron temperature profiles), sensitivity studies of the NTM location as a function of the initialization parameters are presented. First results validate both the transport model and the transport modification calculated by the NTM model.
Medeiros, Juliana S; Tomeo, Nicholas J; Hewins, Charlotte R; Rosenthal, David M
2016-08-01
We investigated the effects of historic soil chemistry changes associated with acid rain, i.e., reduced soil pH and a shift from nitrogen (N)- to phosphorus (P)-limitation, on the coordination of leaf water demand and xylem hydraulic supply traits in two co-occurring temperate tree species differing in growth rate. Using a full-factorial design (N × P × pH), we measured leaf nutrient content, water relations, leaf-level and canopy-level gas exchange, total biomass and allocation, as well as stem xylem anatomy and hydraulic function for greenhouse-grown saplings of fast-growing Acer rubrum (L.) and slow-growing Quercus alba (L.). We used principle component analysis to characterize trait coordination. We found that N-limitation, but not P-limitation, had a significant impact on plant water relations and hydraulic coordination of both species. Fast-growing A. rubrum made hydraulic adjustments in response to N-limitation, but trait coordination was variable within treatments and did not fully compensate for changing allocation across N-availability. For slow-growing Q. alba, N-limitation engendered more strict coordination of leaf and xylem traits, resulting in similar leaf water content and hydraulic function across all treatments. Finally, low pH reduced the propensity of both species to adjust leaf water relations and xylem anatomical traits in response to nutrient manipulations. Our data suggest that a shift from N- to P-limitation has had a negative impact on the water relations and hydraulic function of A. rubrum to a greater extent than for Q. alba We suggest that current expansion of A. rubrum populations could be tempered by acidic N-deposition, which may restrict it to more mesic microsites. The disruption of hydraulic acclimation and coordination at low pH is emphasized as an interesting area of future study. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Effect of q-profile structure on intrinsic torque reversals
NASA Astrophysics Data System (ADS)
Lu, Zhixin
2014-10-01
Intrinsic toroidal rotation plays an important role in mitigating macroinstability and regulating turbulent transport in ITER, where neutral beams are not sufficient to provide the requisite torque. Recent experiments on C-Mod with LHCD observed rotation reversal related to a change in the q profile. In this work, we focus on understanding the physics of intrinsic rotation reversals in LHCD plasmas, using nonlinear, global gyro-kinetic simulations and analysis of mode structure and spectrum symmetry breaking. The sensitive dependence of turbulent residual stress on magnetic shear is identified and characterized. The basic residual stress is non-vanishing when the k-parallel spectrum symmetry is broken, e.g., by E × B shear induced radial shift, non-uniformity in turbulence intensity, etc.. It is found that at low magnetic shear, the poloidal harmonics can shift strongly in the radial direction, as a feature of non-local effects, due to radial propagation and amplitude variation of the mode. This new symmetry breaking mechanism leads to a change in the sign of spectrum averaged parallel wave vector and thus the direction of intrinsic torque. Theoretical study shows that the competition between magnetic drift and ion kinetic effects determines the non-local effects and the structure of the asymmetry. Specifically, it is found that the direction of the intrinsic torque changes from counter- to co-current in the core, when magnetic shear decreases through a critical value. A critical shear ŝR = 0 . 2 ~ 0 . 5 for reversal of CTEM-induced intrinsic torque found by simulation is consistent with that from the LHCD C-Mod reversal experiments. In addition, simulations indicate ŝR = 1 ~ 2 for the reversal of ITG-induced torque, a prediction which can be tested by experiments. This work is supported by CER and CMTFO, UCSD and U.S. DOE-PPPL Contract DE-AC02-09CH11466.
NASA Astrophysics Data System (ADS)
Devine, S.; O'Geen, A. T.; Dahlke, H. E.
2016-12-01
Understanding climate change impacts on hydrology is especially relevant to areas already dealing with water scarcity, common in Mediterranean regions such as California (CA). For instance, warming is expected to drive up evapotranspiration (ET) fluxes from vegetation, which could impact runoff (Q) and water supply by up to 30% from CA's Sierra Nevadas by 2100. In this study, we hypothesize that the 1-2 oC increase during the 20th and early 21st centuries should have resulted in a trend of decreasing Q for a given amount of precipitation (P) due to increasing ET through time. We also hypothesize that any observed differences in watershed ET response to warming could be explained by soil controls, since Mediterranean biomes require soil moisture storage to endure dry summers. We analyzed unimpaired runoff from 10 major CA watersheds relative to P over a 110 year record and found trends of increasing P minus Q in the northern watersheds, supporting the hypothesis of mountain Q vulnerability to warming but not in the central and southern watersheds. This may be partly due to the faster rates of summertime warming we observed in the northern watersheds when potential ET is highest. Analysis of several soil investigations in the study area on bioclimosequences suggests that these inter-watershed differences in P minus Q may also be due to soils. Soils formed from volcanic rocks, which are more prevalent in the northern watersheds, tend to have higher clay contents and water holding capacity. Moreover, the higher elevation central and southern watersheds were more widely glaciated throughout the Pleistocene, resulting in a wider extent of scoured landscapes and soils shallow to hard bedrock. Thus, the northern watershed ET flux could have previously been temperature constrained with untapped soil moisture storage. Going forward, an analysis is planned to quantify the extent of various soil-vegetation-climate zones. For each zone, we will build simple water balance models to estimate watershed ET response sensitivity. This should help resolve whether or not soil development is regulating hydrologic response to climate change. However, from an ecological resilience point of view, the southern watersheds may be the most sensitive. Lack of hydrologic response suggests that an upward biome shift may be ongoing or imminent there.
HIgh-Q Optical Micro-cavity Resonators as High Sensitive Bio-chemical and Ultrasonic Sensors
NASA Astrophysics Data System (ADS)
Ling, Tao
Optical micro-cavity resonators have quickly emerged in the past few years as a new sensing platform in a wide range of applications, such as bio-chemical molecular detection, environmental monitoring, acoustic and electromagnetic waves detection. In this thesis, we will mainly focus on developing high sensitivity silica micro-tube resonator bio-chemical sensors and high sensitivity polymer micro-ring resonator acoustic sensors. In high sensitivity silica micro-tube resonator bio-chemical sensors part: We first demonstrated a prism coupled silica micro-tube bio-chemical sensing platform to overcome the reliability problem in a fiber coupled thin wall silica micro-tube sensing platform. In refractive index sensing experiment, a unique resonance mode with sensitivity around 600nm/refractive index unit (RIU) has been observed. Surface sensing experiments also have been performed in this platform to detect lipid monolayer, lipid bilayer, electrostatic self assemble layer-by-layer as well as the interaction between the lipid bilayer and proteins. Then a theoretical study on various sensing properties on the silica micro-tube based sensing platform has been realized. Furthermore, we have proposed a coupled cavity system to further enhance the device's sensitivity above 1000nm/RIU. In high sensitivity polymer micro-ring resonator acoustic sensors part: We first presented a simplified fabrication process and realized a polymer microring with a Q factor around 6000. The fabricated device has been used to detect acoustic wave with noise equivalent pressure (NEP) around 230Pa over 1-75MHz frequency rang, which is comparable to state-of-art piezoelectric transducer and the device's frequency response also have been characterized to be up to 90MHz. A new fabrication process combined with resist reflow and thermal oxidation process has been used to improve the Q factor up to 10 5 and the device's NEP has been tested to be around 88Pa over 1-75MHz range. Further improving the device's Q factor has been realized by shifting the device's working wavelength to near-visible wavelength and further reducing the device's sidewall roughness. A record new high Q-˜x105 has been measured and the device's NEP as low as 21Pa has been measured. Furthermore, a smaller size polymer microring device has been developed and fabricated to realize larger angle beam forming applications.
Litosch, Irene; Pujari, Rajeshree; Lee, Shawn J
2009-09-01
Phosphatidic acid (PA), generated downstream of monomeric Rho GTPases via phospholipase D (PLD) and additionally by diacylglycerol kinases (DGK), both stimulates phospholipase C-beta(1) (PLC-beta(1)) and potentiates stimulation of PLC-beta(1) activity by Galpha(q) in vitro. PA is a potential candidate for integrating signaling by monomeric and heterotrimeric G proteins to regulate signal output by G protein coupled receptors (GPCR), and we have sought to understand the mechanisms involved. We previously identified the region spanning residues 944-957, lying within the PLC-beta(1) C-terminus alphaA helix and flexible loop of the Galpha(q) binding domain, as required for stimulation of lipase activity by PA in vitro. Regulation by PA does not require residues essential for stimulation by Galpha(q) or GTPase activating activity. The present studies evaluated shorter alanine/glycine replacement mutants and finally point mutations to identify Tyr(952) and Ile(955) as key determinants for regulation by PA, assessed by both in vitro enzymatic and cell-based co-transfection assays. Replacement of Tyr(952) and Ile(955), PLC-beta(1) (Y952G/I955G), results in an 85% loss in stimulation by PA relative to WT-PLC-beta(1) in vitro. COS 7 cells co-transfected with PLC-beta(1) (Y952G/I955G) demonstrate a 10-fold increase in the EC(50) for stimulation and a 60% decrease in maximum stimulation by carbachol via Galpha(q) linked m1 muscarinic receptors, relative to cells co-transfected with WT-PLC-beta(1) but otherwise similar conditions. Residues required for regulation by PA are not essential for stimulation by G protein subunits. WT-PLC-beta(1) and PLC-beta(1) (Y952G/I955G) activity is increased comparably by co-transfection with Galpha(q) and neither is markedly affected by co-transfection with Gbeta(1)gamma(2). Inhibiting PLD-generated PA production by 1-butanol has little effect on maximum stimulation, but shifts the EC(50) for agonist stimulation of WT-PLC-beta(1) by 10-fold, producing a phenotype similar to PLC-beta(1) (Y952G/I955G) with respect to agonist potency. 1-Butanol is without effect on carbachol stimulated PLC activity in cells co-transfected with either PLC-beta(1)(Y952G/I955G) or on endogenous PLC activity, indicating that regulation by PA requires direct interaction with the PLC-beta(1) PA-binding region. These data show that endogenous PA regulates signal output by Galpha(q)-linked GPCRs in transfected cells directly through PLC-beta(1). Galpha(q) and PA may co-ordinate to regulate signaling. Regulation by PA may constitute part of a mechanism that routes receptor signaling to specific PLC isoforms.
Deregulation of EIF4E: a novel mechanism for autism.
Neves-Pereira, M; Müller, B; Massie, D; Williams, J H G; O'Brien, P C M; Hughes, A; Shen, S-B; Clair, David St; Miedzybrodzka, Z
2009-11-01
Autism is a common childhood onset neurodevelopmental disorder, characterised by severe and sustained impairment of social interaction and social communication, as well as a notably restricted repertoire of activities and interests. Its aetiology is multifactorial with a strong genetic basis. EIF4E is the rate limiting component of eukaryotic translation initiation, and plays a key role in learning and memory through its control of translation within the synapse. EIF4E mediated translation is the final common process modulated by the mammalian target of rapamycin (mTOR), PTEN and fragile X mental retardation protein (FMRP) pathways, which are implicated in autism. Linkage of autism to the EIF4E region on chromosome 4q has been found in genome wide linkage studies. The authors present evidence that directly implicates EIF4E in autism. In a boy with classic autism, the authors observed a de novo chromosome translocation between 4q and 5q and mapped the breakpoint site to within a proposed alternative transcript of EIF4E. They then screened 120 autism families for mutations and found two unrelated families where in each case both autistic siblings and one of the parents harboured the same single nucleotide insertion at position -25 in the basal element of the EIF4E promoter. Electrophoretic mobility shift assays and reporter gene studies show that this mutation enhances binding of a nuclear factor and EIF4E promoter activity. These observations implicate EIF4E, and more specifically control of EIF4E activity, directly in autism. The findings raise the exciting possibility that pharmacological manipulation of EIF4E may provide therapeutic benefit for those with autism caused by disturbance of the converging pathways controlling EIF4E activity.
Luo, Zhenyu; Chen, Deyong; Wang, Junbo; Li, Yinan; Chen, Jian
2014-01-01
This paper presents a high-Q resonant pressure microsensor with through-glass electrical interconnections based on wafer-level MEMS vacuum packaging. An approach to maintaining high-vacuum conditions by integrating the MEMS fabrication process with getter material preparation is presented in this paper. In this device, the pressure under measurement causes a deflection of a pressure-sensitive silicon square diaphragm, which is further translated to stress build up in “H” type doubly-clamped micro resonant beams, leading to a resonance frequency shift. The device geometries were optimized using FEM simulation and a 4-inch SOI wafer was used for device fabrication, which required only three photolithographic steps. In the device fabrication, a non-evaporable metal thin film as the getter material was sputtered on a Pyrex 7740 glass wafer, which was then anodically bonded to the patterned SOI wafer for vacuum packaging. Through-glass via holes predefined in the glass wafer functioned as the electrical interconnections between the patterned SOI wafer and the surrounding electrical components. Experimental results recorded that the Q-factor of the resonant beam was beyond 22,000, with a differential sensitivity of 89.86 Hz/kPa, a device resolution of 10 Pa and a nonlinearity of 0.02% F.S with the pressure varying from 50 kPa to 100 kPa. In addition, the temperature drift coefficient was less than −0.01% F.S/°C in the range of −40 °C to 70 °C, the long-term stability error was quantified as 0.01% F.S over a 5-month period and the accuracy of the microsensor was better than 0.01% F.S. PMID:25521385
Bae, Hanna; Lee, Jung-Ho; Song, Sung Joon; Park, Jinsoon; Kwon, Bong-Oh; Hong, Seongjin; Ryu, Jongseong; Choi, Kyungsik; Khim, Jong Seong
2017-03-01
In this study, spatiotemporal dynamics of macrofaunal assemblages and their associations with environmental conditions were examined in Jinhae Bay (10 sites), where the obvious sources of pollution including industries, oyster farms (hanging cultures), and municipal discharges has surrounded. The survey had performed over five consecutive seasons in 2013-2014. Target sedimentary variables included grain size, organic content, C/N ratio, carbon and nitrogen stable isotope ratios, and some heavy metals. Five ecological quality indices (EcoQ) were calculated from the benthic community data to evaluate ecological qualities in site-specific manner. Jinhae Bay is a shallow (depths range, 11-24 m) and typical semi-enclosed bay. The benthic environments represented mud dominated bottoms (>70%) with fairly substantial organic content levels (>2%) over all five seasons. Seasonal patterns were observed with peak abundances in the spring and distinctive macrozoobenthos species shifts in the summer. The spring bloom could be explained by drastic increases of some polychaetes, mainly Capitella sp., at certain site, particularly near the shore. The oyster farms situated in the innermost locations seem to provide organic-rich bottoms being dominated by opportunistic species and/or organic pollution indicator species, such as Lumbrineris longifolia, Capitella sp., and Paraprionospio patiens. In general, the EcoQ indicators indicated that Jinhae Bay was moderately polluted, with exceptionally poor EcoQ in a few locations during the specific season(s). Overall, adverse effects on benthic community was broadly attributable to contaminations of heavy metals and nearby aquatic farm activities in Jinhae Bay, which requires a prompt action toward ecosystem-based management practice in the given area. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ye, Heng; Feng, Jiuhuan; Zhang, Lihua; Zhang, Jinfeng; Mispan, Muhamad S.; Cao, Zhuanqin; Beighley, Donn H.; Yang, Jianchang; Gu, Xing-You
2015-01-01
Natural variation in seed dormancy is controlled by multiple genes mapped as quantitative trait loci in major crop or model plants. This research aimed to clone and characterize the Seed Dormancy1-2 (qSD1-2) locus associated with endosperm-imposed dormancy and plant height in rice (Oryza sativa). qSD1-2 was delimited to a 20-kb region, which contains OsGA20ox2 and had an additive effect on germination. Naturally occurring or induced loss-of-function mutations of the gibberellin (GA) synthesis gene enhanced seed dormancy and also reduced plant height. Expression of this gene in seeds (including endospermic cells) during early development increased GA accumulation to promote tissue morphogenesis and maturation programs. The mutant allele prevalent in semidwarf cultivars reduced the seed GA content by up to 2-fold at the early stage, which decelerated tissue morphogenesis including endosperm cell differentiation, delayed abscisic acid accumulation by a shift in the temporal distribution pattern, and postponed dehydration, physiological maturity, and germinability development. As the endosperm of developing seeds dominates the moisture equilibrium and desiccation status of the embryo in cereal crops, qSD1-2 is proposed to control primary dormancy by a GA-regulated dehydration mechanism. Allelic distribution of OsGA20ox2, the rice Green Revolution gene, was associated with the indica and japonica subspeciation. However, this research provided no evidence that the primitive indica- and common japonica-specific alleles at the presumably domestication-related locus functionally differentiate in plant height and seed dormancy. Thus, the evolutionary mechanism of this agriculturally important gene remains open for discussion. PMID:26373662
Cascella, Vincenza; Giordano, Pietro; Hatzopoulos, Stavros; Petruccelli, Joseph; Prosser, Silvano; Simoni, Edi; Astolfi, Laura; Fetoni, Annarita Rita; Skarżyński, Henryk; Martini, Alessandro
2012-01-01
Summary Background Data from animal studies show that antioxidants can compensate against noise-induced stress and sensory hair cell death. The aim of this study was to evaluate the otoprotection efficacy of various versions of orally administered Acuval 400® against noise damage in a rat animal model. Material/Methods Fifty-five Sprague Dawley rats were divided into 4 groups: A) noise-exposed animals; B) animals exposed to noise and treated with the Acuval; C) animals exposed to noise and treated with a combination of Coenzyme Q10 and Acuval; D) animals treated only with Acuval and Coenzyme Q10 and with no exposure to noise. All solutions were administered orally 5 times: 24 and 2 hrs prior to noise exposure, and then daily for 3 days. The auditory function was assessed by measuring auditory brainstem responses (ABR) in the range from 2 to 32 kHz at times =1, 7, 14 and 21 days after noise exposure. Results At low frequencies (click and 4 kHz) animals from both A and B groups showed significant threshold shifts in the majority of the tested frequencies and tested times. For the same frequencies, animals from group C presented threshold levels similar to those from group D. At frequencies ≥8 kHz the protective performance of the 2 Acuval groups is more clearly distinguished from the noise group A. At 32 kHz the 2 Acuval groups perform equally well in terms of otoprotection. Animals in Group D did not show any significant differences in the hearing threshold during the experiment. Conclusions The data of this study suggest that a solution containing Coenzyme Q10 and Acuval 400®, administered orally, protects from noise-induced hearing loss. PMID:22207104
Cascella, Vincenza; Giordano, Pietro; Hatzopoulos, Stavros; Petruccelli, Joseph; Prosser, Silvano; Simoni, Edi; Astolfi, Laura; Fetoni, Anna Rita; Skarżyński, Henryk; Martini, Alessandro
2012-01-01
Data from animal studies show that antioxidants can compensate against noise-induced stress and sensory hair cell death. The aim of this study was to evaluate the otoprotection efficacy of various versions of orally administered Acuval 400 against noise damage in a rat animal model. Fifty-five Sprague Dawley rats were divided into 4 groups: A) noise-exposed animals; B) animals exposed to noise and treated with the Acuval; C) animals exposed to noise and treated with a combination of Coenzyme Q10 and Acuval; D) animals treated only with Acuval and Coenzyme Q10 and with no exposure to noise. All solutions were administered orally 5 times: 24 and 2 hrs prior to noise exposure, and then daily for 3 days. The auditory function was assessed by measuring auditory brainstem responses (ABR) in the range from 2 to 32 kHz at times =1, 7, 14 and 21 days after noise exposure. At low frequencies (click and 4 kHz) animals from both A and B groups showed significant threshold shifts in the majority of the tested frequencies and tested times. For the same frequencies, animals from group C presented threshold levels similar to those from group D. At frequencies ≥ 8 kHz the protective performance of the 2 Acuval groups is more clearly distinguished from the noise group A. At 32 kHz the 2 Acuval groups perform equally well in terms of otoprotection. Animals in Group D did not show any significant differences in the hearing threshold during the experiment. The data of this study suggest that a solution containing Coenzyme Q10 and Acuval 400, administered orally, protects from noise-induced hearing loss.
Characterization of aqueous interactions of copper-doped phosphate-based glasses by vapour sorption.
Stähli, Christoph; Shah Mohammadi, Maziar; Waters, Kristian E; Nazhat, Showan N
2014-07-01
Owing to their adjustable dissolution properties, phosphate-based glasses (PGs) are promising materials for the controlled release of bioinorganics, such as copper ions. This study describes a vapour sorption method that allowed for the investigation of the kinetics and mechanisms of aqueous interactions of PGs of the formulation 50P2O5-30CaO-(20-x)Na2O-xCuO (x=0, 1, 5 and 10mol.%). Initial characterization was performed using (31)P magic angle spinning nuclear magnetic resonance and attenuated total reflectance-Fourier transform infrared spectroscopy. Increasing CuO content resulted in chemical shifts of the predominant Q(2) NMR peak and of the (POP)as and (PO(-)) Fourier transform infrared absorptions, owing to the higher strength of the POCu bond compared to PONa. Vapour sorption and desorption were gravimetrically measured in PG powders exposed to variable relative humidity (RH). Sorption was negligible below 70% RH and increased exponentially with RH from 70 to 90%, where it exhibited a negative correlation with CuO content. Vapour sorption in 0% and 1% CuO glasses resulted in phosphate chain hydration and hydrolysis, as evidenced by protonated Q(0)(1H) and Q(1)(1H) species. Dissolution rates in deionized water showed a linear correlation (R(2)>0.99) with vapour sorption. Furthermore, cation release rates could be predicted based on dissolution rates and PG composition. The release of orthophosphate and short polyphosphate species corroborates the action of hydrolysis and was correlated with pH changes. In conclusion, the agreement between vapour sorption and routine characterization techniques in water demonstrates the potential of this method for the study of PG aqueous reactions. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Gollock, M J; Currie, S; Petersen, L H; Gamperl, A K
2006-08-01
For fish to survive large acute temperature increases (i.e. >10.0 degrees C) that may bring them close to their critical thermal maximum (CTM), oxygen uptake at the gills and distribution by the cardiovascular system must increase to match tissue oxygen demand. To examine the effects of an acute temperature increase ( approximately 1.7 degrees C h(-1) to CTM) on the cardiorespiratory physiology of Atlantic cod, we (1) carried out respirometry on 10.0 degrees C acclimated fish, while simultaneously measuring in vivo cardiac parameters using Transonic probes, and (2) constructed in vitro oxygen binding curves on whole blood from 7.0 degrees C acclimated cod at a range of temperatures. Both cardiac output (Q) and heart rate (fh) increased until near the fish's CTM (22.2+/-0.2 degrees C), and then declined rapidly. Q(10) values for Q and fh were 2.48 and 2.12, respectively, and increases in both parameters were tightly correlated with O(2) consumption. The haemoglobin (Hb)-oxygen binding curve at 24.0 degrees C showed pronounced downward and rightward shifts compared to 20.0 degrees C and 7.0 degrees C, indicating that both binding capacity and affinity decreased. Further, Hb levels were lower at 24.0 degrees C than at 20.0 degrees C and 7.0 degrees C. This was likely to be due to cell swelling, as electrophoresis of Hb samples did not suggest protein denaturation, and at 24.0 degrees C Hb samples showed peak absorbance at the expected wavelength (540 nm). Our results show that cardiac function is unlikely to limit metabolic rate in Atlantic cod from Newfoundland until close to their CTM, and we suggest that decreased blood oxygen binding capacity may contribute to the plateau in oxygen consumption.
NASA Astrophysics Data System (ADS)
Fernández, Julio A.
We analyze a sample of 58 Oort cloud comets (OCCs) (original orbital energies x in the range 0 < x < 100, in units of 10-6 AU-1), plus 45 long-period comets with negative orbital energies or poorly determined or undetermined x, discovered during the period 1999-2007. To analyze the degree of completeness of the sample, we use Everhart's (1967 Astr. J 72, 716) concept of “excess magnitude” (in magnitudes × days), defined as the integrated magnitude excess that a given comet presents over the time above a threshold magnitude for detection. This quantity is a measure of the likelihood that the comet will be finally detected. We define two sub-samples of OCCs: 1) new comets (orbital energies 0 < x < 30) as those whose perihelia can shift from outside to the inner planetary region in a single revolution; and 2) inner cloud comets (orbital energies 30 ≤ x < 100), that come from the inner region of the Oort cloud, and for which external perturbers (essentially galactic tidal forces and passing stars) are not strong enough to allow them to overshoot the Jupiter-Saturn barrier. From the observed comet flux and making allowance for missed discoveries, we find a flux of OCCs brighter than absolute total magnitude 9 of ≃0.65 ± 0.18 per year within Earth's orbit. From this flux, about two-thirds corresponds to new comets and the rest to inner cloud comets. We find striking differences in the q-distribution of these two samples: while new comets appear to follow an uniform q-distribution, inner cloud comets show an increase in the rate of perihelion passages with q.
Li, Bao-Wei; Ouyang, Shun-Li; Zhang, Xue-Feng; Jia, Xiao-Lin; Deng, Lei-Bo; Liu, Fang
2014-07-01
In the present paper, nanocrystalline glass-ceramic of CaO-MgO-Al2O3-SiO2 system was produced by melting method. The CaO-MgO-Al2O3-SiO2 nanocrystalline glass-ceramic was measured by Raman spectroscopy in the temperature range from -190 to 310 degrees C in order to study the effect of temperature on the structure of this system nanocrystalline glass-ceramics. The results showed that different non-bridge oxygen bond silicon-oxygen tetrahedron structural unit changes are not consistent with rising temperature. Further analyses indicated that: the SiO4 tetrahedron with 2 non-bridged oxygen (Q2), the SiO4 tetrahedron with 3 non-bridged oxygen (Q(1)), which are situated at the edge of the 3-D SiO4 tetrahedrons network, and the SiO4 tetrahedron with 4 non-bridged oxygen (Q(0)), which is situated outside the 3-D network all suffered a significant influence by the temperature change, which has been expressed as: shifts towards the high wave-number, increased bond force constants, and shortened bond lengths. This paper studied the influence of temperature on CMAS system nanocrystalline glass-ceramics using variable temperature Raman technology. It provides experiment basis to the research on external environment influence on CMAS system nanocrystalline glass-ceramics materials in terms of structure and performance. In addition, the research provides experimental basis for controlling the expansion coefficient of nanocrystalline glass-ceramic of CaO-MgO-Al2O3-SiO2 system.
Luo, Zhenyu; Chen, Deyong; Wang, Junbo; Li, Yinan; Chen, Jian
2014-12-16
This paper presents a high-Q resonant pressure microsensor with through-glass electrical interconnections based on wafer-level MEMS vacuum packaging. An approach to maintaining high-vacuum conditions by integrating the MEMS fabrication process with getter material preparation is presented in this paper. In this device, the pressure under measurement causes a deflection of a pressure-sensitive silicon square diaphragm, which is further translated to stress build up in "H" type doubly-clamped micro resonant beams, leading to a resonance frequency shift. The device geometries were optimized using FEM simulation and a 4-inch SOI wafer was used for device fabrication, which required only three photolithographic steps. In the device fabrication, a non-evaporable metal thin film as the getter material was sputtered on a Pyrex 7740 glass wafer, which was then anodically bonded to the patterned SOI wafer for vacuum packaging. Through-glass via holes predefined in the glass wafer functioned as the electrical interconnections between the patterned SOI wafer and the surrounding electrical components. Experimental results recorded that the Q-factor of the resonant beam was beyond 22,000, with a differential sensitivity of 89.86 Hz/kPa, a device resolution of 10 Pa and a nonlinearity of 0.02% F.S with the pressure varying from 50 kPa to 100 kPa. In addition, the temperature drift coefficient was less than -0.01% F.S/°C in the range of -40 °C to 70 °C, the long-term stability error was quantified as 0.01% F.S over a 5-month period and the accuracy of the microsensor was better than 0.01% F.S.
Ye, Heng; Feng, Jiuhuan; Zhang, Lihua; Zhang, Jinfeng; Mispan, Muhamad S; Cao, Zhuanqin; Beighley, Donn H; Yang, Jianchang; Gu, Xing-You
2015-11-01
Natural variation in seed dormancy is controlled by multiple genes mapped as quantitative trait loci in major crop or model plants. This research aimed to clone and characterize the Seed Dormancy1-2 (qSD1-2) locus associated with endosperm-imposed dormancy and plant height in rice (Oryza sativa). qSD1-2 was delimited to a 20-kb region, which contains OsGA20ox2 and had an additive effect on germination. Naturally occurring or induced loss-of-function mutations of the gibberellin (GA) synthesis gene enhanced seed dormancy and also reduced plant height. Expression of this gene in seeds (including endospermic cells) during early development increased GA accumulation to promote tissue morphogenesis and maturation programs. The mutant allele prevalent in semidwarf cultivars reduced the seed GA content by up to 2-fold at the early stage, which decelerated tissue morphogenesis including endosperm cell differentiation, delayed abscisic acid accumulation by a shift in the temporal distribution pattern, and postponed dehydration, physiological maturity, and germinability development. As the endosperm of developing seeds dominates the moisture equilibrium and desiccation status of the embryo in cereal crops, qSD1-2 is proposed to control primary dormancy by a GA-regulated dehydration mechanism. Allelic distribution of OsGA20ox2, the rice Green Revolution gene, was associated with the indica and japonica subspeciation. However, this research provided no evidence that the primitive indica- and common japonica-specific alleles at the presumably domestication-related locus functionally differentiate in plant height and seed dormancy. Thus, the evolutionary mechanism of this agriculturally important gene remains open for discussion. © 2015 American Society of Plant Biologists. All Rights Reserved.
[Analysis of gene expression pattern in peripheral blood leukocytes during experimental heat wave].
Feoktistova, E S; Skamrov, A V; Goryunova, L E; Khaspekov, G L; Osyaeva, M K; Rodnenkov, O V; Beabealashvilli, R Sh
2017-03-01
The conditions of Moscow 2010 summer heat wave were simulated in an accommodation module. Six healthy men aged from 22 to 46 years stayed in the module for 30 days. Measurements of gene expression in peripheral blood leukocytes before, during and 3 day after simulated heat wave were performed using qRT-PCR. We observed a shift in the expression level of certain genes after heat exposure for a long time, and rapid return to the initial level, when volunteers leaved the accommodation module. Eight genes were chosen to form the "heat expression signature". EGR2, EGR3 were upregulated in all six volunteers, EGR1, SIRT1, CYP51A1, MAPK9, BAG5, MNDA were upregulated in 5 volunteers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rossi, Paolo; Ramelot, Theresa A.; Xiao, Rong
2005-11-01
The product of gene locus BB0938 from Bordetella bronchiseptica (Swiss-Prot ID: Q7WNU7-BORBR; NESG target ID: BoR11; Wunderlich et al., 2004; Pfam ID: PF03476) is a 128-residue protein of unknown function. This broadly conserved protein family is found in eubacteria and eukaryotes. Using triple resonance NMR techniques, we have determined 98% of backbone and 94% of side chain 1H, 13C, and 15N resonance assignments. The chemical shift and 3J(HN?Ha) scalar coupling data reveal a b topology with a seven-residue helical insert, ??????????. BMRB deposit with accession number 6693. Reference: Wunderlich et al. (2004) Proteins, 56, 181?187.
The nuclear spin response to intermediate energy protons
NASA Astrophysics Data System (ADS)
Baker, F. T.; Bimbot, L.; Castel, B.; Fergerson, R. W.; Glashausser, C.; Green, A.; Hausser, O.; Hicks, K.; Jones, K.; Miller, C. A.; Nanda, S. K.; Smith, R. D.; Vetterli, M.; Wambach, J.; Abegg, R.; Beatty, D.; Cupps, V.; Djalali, C.; Henderson, R.; Jackson, K. P.; Jeppeson, R.; Lisantti, J.; Morlet, M.; Sawafta, R.; Unkelbach, W.; Willis, A.; Yen, S.
1990-03-01
Measurements of the spin-flip probability Snn for inclusive inelastic proton scattering around 300 MeV from nuclei between 12C and 90Zr show that an enhanced spin response near 40 MeV excitation at q ∼ 100 MeV/ c is a general feature of nuclear structure. Data for 40Ca at 800 MeV confirm that the enhancement is not a peculiarity of 300 MeV scattering. In addition, measurements in 44Ca up to 75 MeV show that the enhancement cannot be attributed solely to a relatively narrow resonance. Continuum RPA calculations suggest that the enhancement is due to the exhaustion of most S = 0 strength at lower energy and a shift of S = 1 strength to higher energy.
NASA Astrophysics Data System (ADS)
Wu, Jixuan; Liu, Bo; Zhang, Hao; Song, Binbin
2017-11-01
A silica-capillary-based whispering gallery mode (WGM) microresonator has been proposed and experimentally demonstrated for the real-time monitoring of the polylysine adsorption process. The spectral characteristics of the WGM resonance dips with high quality factor and good wavelength selectivity have been investigated to evaluate the dynamic process for the binding of polylysine with a capillary surface. The WGM transmission spectrum shows a regular shift with increments of observation time, which could be exploited for the analysis of the polylysine adsorption process. The proposed WGM microresonator system possesses desirable qualities such as high sensitivity, fast response, label-free method, high detection resolution and compactness, which could find promising applications in histology and related bioengineering areas.
Temperature sensor based on high-Q polymethylmethacrylate optical microbubble
NASA Astrophysics Data System (ADS)
He, Chunhong; Sun, Huijin; Mo, Jun; Yang, Chao; Feng, Guoying; Zhou, Hao; Zhou, Shouhuan
2018-07-01
A new flexible method to fabricate a temperature sensor based on polymethylmethacrylate (PMMA) optical microbubbles, using a volume-controllable pipette, is demonstrated. The high quality factor of the cavity is guaranteed by the smooth wall of the microbubble. The shape and refractive index of the microbubbles change with the surrounding temperature, which leads to the obvious displacement of the whispering gallery mode transmission spectrum. As the surrounding temperature increases, the spectrum undergoes a significant blue shift, hence the microresonator can be used for temperature sensing. A sensitivity of 39 pm °C‑1 is obtained in a PMMA microbubble with a diameter of 740 µm. This work suggests a new convenient approach to achieving high-quality flexible microscale sensors.
NASA Astrophysics Data System (ADS)
Nielsen, N. C.; Bildsøe, H.; Jakobsen, H. J.; Levitt, M. H.
1994-08-01
We describe an efficient method for the recovery of homonuclear dipole-dipole interactions in magic-angle spinning NMR. Double-quantum homonuclear rotary resonance (2Q-HORROR) is established by fulfilling the condition ωr=2ω1, where ωr is the sample rotation frequency and ω1 is the nutation frequency around an applied resonant radio frequency (rf) field. This resonance can be used for double-quantum filtering and measurement of homonuclear dipolar interactions in the presence of magic-angle spinning. The spin dynamics depend only weakly on crystallite orientation allowing good performance for powder samples. Chemical shift effects are suppressed to zeroth order. The method is demonstrated for singly and doubly 13C labeled L-alanine.
Design and analysis of photonic crystal micro-cavity based optical sensor platform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goyal, Amit Kumar, E-mail: amitgoyal.ceeri@gmail.com; Dutta, Hemant Sankar, E-mail: hemantdutta97@gmail.com; Pal, Suchandan, E-mail: spal@ceeri.ernet.in
2016-04-13
In this paper, the design of a two-dimensional photonic crystal micro-cavity based integrated-optic sensor platform is proposed. The behaviour of designed cavity is analyzed using two-dimensional Finite Difference Time Domain (FDTD) method. The structure is designed by deliberately inserting some defects in a photonic crystal waveguide structure. Proposed structure shows a quality factor (Q) of about 1e5 and the average sensitivity of 500nm/RIU in the wavelength range of 1450 – 1580 nm. Sensing technique is based on the detection of shift in upper-edge cut-off wavelength for a reference signal strength of –10 dB in accordance with the change in refractive index ofmore » analyte.« less
Quéméneur, Marianne; Cébron, Aurélie; Billard, Patrick; Battaglia-Brunet, Fabienne; Garrido, Francis; Leyval, Corinne; Joulian, Catherine
2010-01-01
Denaturing gradient gel electrophoresis (DGGE) and quantitative real-time PCR (qPCR) were successfully developed to monitor functional aoxB genes as markers of aerobic arsenite oxidizers. DGGE profiles showed a shift in the structure of the aoxB-carrying bacterial population, composed of members of the Alpha-, Beta- and Gammaproteobacteria, depending on arsenic (As) and Eh levels in Upper Isle River Basin waters. The highest aoxB gene densities were found in the most As-polluted oxic surface waters but without any significant correlation with environmental factors. Arsenite oxidizers seem to play a key role in As mobility in As-impacted waters. PMID:20453153
Yergeau, Etienne; Bokhorst, Stef; Kang, Sanghoon; Zhou, Jizhong; Greer, Charles W; Aerts, Rien; Kowalchuk, George A
2012-01-01
Because of severe abiotic limitations, Antarctic soils represent simplified systems, where microorganisms are the principal drivers of nutrient cycling. This relative simplicity makes these ecosystems particularly vulnerable to perturbations, like global warming, and the Antarctic Peninsula is among the most rapidly warming regions on the planet. However, the consequences of the ongoing warming of Antarctica on microorganisms and the processes they mediate are unknown. Here, using 16S rRNA gene pyrosequencing and qPCR, we report highly consistent responses in microbial communities across disparate sub-Antarctic and Antarctic environments in response to 3 years of experimental field warming (+0.5 to 2 °C). Specifically, we found significant increases in the abundance of fungi and bacteria and in the Alphaproteobacteria-to-Acidobacteria ratio, which could result in an increase in soil respiration. Furthermore, shifts toward generalist bacterial communities following warming weakened the linkage between the bacterial taxonomic and functional richness. GeoChip microarray analyses also revealed significant warming effects on functional communities, specifically in the N-cycling microorganisms. Our results demonstrate that soil microorganisms across a range of sub-Antarctic and Antarctic environments can respond consistently and rapidly to increasing temperatures. PMID:21938020
Shahoei, Hiva; Dumais, Patrick; Yao, Jianping
2014-05-01
We propose and experimentally demonstrate a continuously tunable fractional Hilbert transformer (FHT) based on a high-contrast germanium-doped silica-on-silicon (SOS) microring resonator (MRR). The propagation loss of a high-contrast germanium-doped SOS waveguide can be very small (0.02 dB/cm) while the lossless bend radius can be less than 1 mm. These characteristics lead to the fabrication of an MRR with a high Q-factor and a large free-spectral range (FSR), which is needed to implement a Hilbert transformer (HT). The SOS MRR is strongly polarization dependent. By changing the polarization direction of the input signal, the phase shift introduced at the center of the resonance spectrum is changed. The tunable phase shift at the resonance wavelength can be used to implement a tunable FHT. A germanium-doped SOS MRR with a high-index contrast of 3.8% is fabricated. The use of the fabricated MRR for the implementation of a tunable FHT with tunable orders at 1, 0.85, 0.95, 1.05, and 1.13 for a Gaussian pulse with the temporal full width at half-maximum of 80 ps is experimentally demonstrated.
Tevatron optics with magnet moves for Roman pots at CDF
DOE Office of Scientific and Technical Information (OSTI.GOV)
John A. Johnstone
2001-08-16
CDF would like to install high precision track detectors. There is ample room on A-sector side, but space needs to be created at B11. The favored plan is to shove the first 3 B11 dipoles inwards toward the IP by 2.274 m. This would require removal of the inert Q1 quadrupole and its spool plus an extensive number of other mechanical and cryogenic modifications. The orbit distortion these modifications introduce would then be compensated by shifting the six B16 and B17 dipoles outwards by about half that amount. Space for this dipole move could be generated by replacing the 72more » inch spool at B18 with a short 43 inch spool, and removing the 16.5 inch spacer after B17-5. The above scheme certainly recloses the orbit, and doesn't require the detector to move. However, by moving the B16 and B17 dipoles, the B17 and B18 arc quadrupoles also get shifted downstream--B17 by 1.115 m, and B18 by 0.696 m. Longitudinal movements of arc quads by such large fractions of their magnetic lengths will clearly impact the overall machine optics.« less
Quantitative two-dimensional HSQC experiment for high magnetic field NMR spectrometers
NASA Astrophysics Data System (ADS)
Koskela, Harri; Heikkilä, Outi; Kilpeläinen, Ilkka; Heikkinen, Sami
2010-01-01
The finite RF power available on carbon channel in proton-carbon correlation experiments leads to non-uniform cross peak intensity response across carbon chemical shift range. Several classes of broadband pulses are available that alleviate this problem. Adiabatic pulses provide an excellent magnetization inversion over a large bandwidth, and very recently, novel phase-modulated pulses have been proposed that perform 90° and 180° magnetization rotations with good offset tolerance. Here, we present a study how these broadband pulses (adiabatic and phase-modulated) can improve quantitative application of the heteronuclear single quantum coherence (HSQC) experiment on high magnetic field strength NMR spectrometers. Theoretical and experimental examinations of the quantitative, offset-compensated, CPMG-adjusted HSQC (Q-OCCAHSQC) experiment are presented. The proposed experiment offers a formidable improvement to the offset performance; 13C offset-dependent standard deviation of the peak intensity was below 6% in range of ±20 kHz. This covers the carbon chemical shift range of 150 ppm, which contains the protonated carbons excluding the aldehydes, for 22.3 T NMR magnets. A demonstration of the quantitative analysis of a fasting blood plasma sample obtained from a healthy volunteer is given.
Cardinali-Rezende, Juliana; Araújo, Juliana C; Almeida, Paulo G S; Chernicharo, Carlos A L; Sanz, José L; Chartone-Souza, Edmar; Nascimento, Andréa M A
2013-12-01
We investigated the microbial community in an up-flow anaerobic sludge blanket (UASB) reactor treating domestic wastewater (DW) during two different periods of organic loading rate (OLR) and food-to-microorganism (F/M) ratio. 16S rDNA clone libraries were generated, and quantitative real-time PCR (qPCR) analyses were performed. Fluctuations in the OLR and F/M ratio affected the abundance and the composition of the UASB prokaryotic community, mainly at the species level, as well as the performance of the UASB reactor. The qPCR analysis suggested that there was a decrease in the bacterial cell number during the rainy season, when the OLR and F/M ratio were lower. However, the bacterial diversity was higher during this time, suggesting that the community degraded more diversified substrates. The diversity and the abundance of the archaeal community were higher when the F/M ratio was lower. Shifts in the methanogenic community composition might have influenced the route of methane production, with methane produced by acetotrophic methanogens (dry season), and by hydrogenotrophic, methylotrophic and acetotrophic methanogens (rainy season). This study revealed higher levels of bacterial diversity, metabolic specialization and chemical oxygen demand removal efficiency of the DW UASB reactor during the rainy season.
Waskasi, Morteza M.; Newton, Marshall D.; Matyushov, Dmitry V.
2017-03-16
A combination of experimental data and theoretical analysis provides evidence of a bell-shaped kinetics of electron transfer in the Arrhenius coordinates ln k vs 1/T . This kinetic law is a temperature analog of the familiar Marcus bell-shaped dependence based on ln k vs the reaction free energy. These results were obtained for reactions of intramolecular charge shift between the donor and acceptor separated by a rigid spacer studied experimentally by Miller and co-workers. The non-Arrhenius kinetic law is a direct consequence of the solvent reorganization energy and reaction driving force changing approximately as hyperbolic functions with temperature. The reorganizationmore » energy decreases and the driving force increases when temperature is increased. The point of equality between them marks the maximum of the activationless reaction rate. Reaching the consistency between the kinetic and thermodynamic experimental data requires the non-Gaussian statistics of the donor-acceptor energy gap described by the Q-model of electron transfer. Furthermore, the theoretical formalism combines the vibrational envelope of quantum vibronic transitions with the Q-model describing the classical component of the Franck-Condon factor and a microscopic solvation model of the solvent reorganization energy and the reaction free energy.« less
A Phenological Timetable of Oak Growth under Experimental Drought and Air Warming
Kuster, Thomas M.; Dobbertin, Matthias; Günthardt-Goerg, Madeleine S.; Schaub, Marcus; Arend, Matthias
2014-01-01
Climate change is expected to increase temperature and decrease summer precipitation in Central Europe. Little is known about how warming and drought will affect phenological patterns of oaks, which are considered to possess excellent adaptability to these climatic changes. Here, we investigated bud burst and intra-annual shoot growth of Quercus robur, Q. petraea and Q. pubescens grown on two different forest soils and exposed to air warming and drought. Phenological development was assessed over the course of three growing seasons. Warming advanced bud burst by 1–3 days °C−1 and led to an earlier start of intra-annual shoot growth. Despite this phenological shift, total time span of annual growth and shoot biomass were not affected. Drought changed the frequency and intensity of intra-annual shoot growth and advanced bud burst in the subsequent spring of a severe summer drought by 1–2 days. After re-wetting, shoot growth recovered within a few days, demonstrating the superior drought tolerance of this tree genus. Our findings show that phenological patterns of oaks are modified by warming and drought but also suggest that ontogenetic factors and/or limitations of water and nutrients counteract warming effects on the biomass and the entire span of annual shoot growth. PMID:24586988
Management of diffuse low-grade gliomas in adults - use of molecular diagnostics.
Buckner, Jan; Giannini, Caterina; Eckel-Passow, Jeanette; Lachance, Daniel; Parney, Ian; Laack, Nadia; Jenkins, Robert
2017-06-01
Diffuse WHO grade II gliomas are histologically and genetically heterogeneous. The 2016 WHO classification redefines grade II gliomas with respect to morphological and molecular tumour alterations: grade II oligodendrogliomas are defined by the presence of whole-arm codeletion in chromosomal arms 1p/19q, whereas isocitrate dehydrogenase (IDH) mutations define subclasses of astrocytoma. Although histological grade remains useful, the prognoses of patients with glioma are more tightly associated with molecular alterations than with grade, and chromosomal and gene array technologies are becoming increasingly beneficial in understanding tumour genetic heterogeneity. The indolent nature of the disease often creates subtle neurological symptoms that can be overlooked or misunderstood, resulting in delayed diagnosis. Seizures often herald the diagnosis, especially in patients who have IDH mutations, which are associated with an increased production of 2-hydroxyglutarate. Treatment paradigms have shifted, owing to new diagnostic criteria and new clinical trial evidence. Patients benefit more from chemoradiation than radiation alone, especially those with tumour IDH1 Arg132His mutations; gross total resection of the tumour, including tumours with IDH mutations, is associated with prolonged survival. Initial observation remains appropriate in patients whose rate of disease growth is not yet completely defined; such patients could include those with completely resected disease and those with 1p/19q codeleted tumours.
Boundary crisis for degenerate singular cycles
NASA Astrophysics Data System (ADS)
Lohse, Alexander; Rodrigues, Alexandre
2017-06-01
The term boundary crisis refers to the destruction or creation of a chaotic attractor when parameters vary. The locus of a boundary crisis may contain regions of positive Lebesgue measure marking the transition from regular dynamics to the chaotic regime. This article investigates the dynamics occurring near a heteroclinic cycle involving a hyperbolic equilibrium point E and a hyperbolic periodic solution P, such that the connection from E to P is of codimension one and the connection from P to E occurs at a quadratic tangency (also of codimension one). We study these cycles as organizing centers of two-parameter bifurcation scenarios and, depending on properties of the transition maps, we find different types of shift dynamics that appear near the cycle. Breaking one or both of the connections we further explore the bifurcation diagrams previously begun by other authors. In particular, we identify the region of crisis near the cycle, by giving information on multipulse homoclinic solutions to E and P as well as multipulse heteroclinic tangencies from P to E, and bifurcating periodic solutions, giving partial answers to the problems (Q1)-(Q3) of Knobloch (2008 Nonlinearity 21 45-60). Throughout our analysis, we focus on the case where E has real eigenvalues and P has positive Floquet multipliers.
1 million-Q optomechanical microdisk resonators for sensing with very large scale integration
NASA Astrophysics Data System (ADS)
Hermouet, M.; Sansa, M.; Banniard, L.; Fafin, A.; Gely, M.; Allain, P. E.; Santos, E. Gil; Favero, I.; Alava, T.; Jourdan, G.; Hentz, S.
2018-02-01
Cavity optomechanics have become a promising route towards the development of ultrasensitive sensors for a wide range of applications including mass, chemical and biological sensing. In this study, we demonstrate the potential of Very Large Scale Integration (VLSI) with state-of-the-art low-loss performance silicon optomechanical microdisks for sensing applications. We report microdisks exhibiting optical Whispering Gallery Modes (WGM) with 1 million quality factors, yielding high displacement sensitivity and strong coupling between optical WGMs and in-plane mechanical Radial Breathing Modes (RBM). Such high-Q microdisks with mechanical resonance frequencies in the 102 MHz range were fabricated on 200 mm wafers with Variable Shape Electron Beam lithography. Benefiting from ultrasensitive readout, their Brownian motion could be resolved with good Signal-to-Noise ratio at ambient pressure, as well as in liquid, despite high frequency operation and large fluidic damping: the mechanical quality factor reduced from few 103 in air to 10's in liquid, and the mechanical resonance frequency shifted down by a few percent. Proceeding one step further, we performed an all-optical operation of the resonators in air using a pump-probe scheme. Our results show our VLSI process is a viable approach for the next generation of sensors operating in vacuum, gas or liquid phase.
Influence of high hydrostatic pressure on Alq3, Gaq3, and Inq3 (q = 8-hydroxyquinoline).
Hernández, Ignacio; Gillin, William P
2009-10-29
We have studied the spectroscopic properties of OLED materials Alq(3), Gaq(3) and Inq(3) (q = 8-hydroxyquinoline) under pressure. We discuss the results in terms of the influence of structural modifications, the isomeric state and the enhancement of the intermolecular interaction. As-grown Alq(3), Gaq(3), Inq(3) containing meridional (mer) isomer experience a red shift of nearly 90 nm (2400 cm(-1)) in the 0-8 GPa range. Abrupt changes in the photoluminescence occur during compression at intermediate pressures for all materials. We assign them to a phase transition, its critical pressure depending on the central cation. All three samples experience an amorphization at P approximately 6 GPa, with associated changes in the spectroscopic properties. The pressure-induced phase transitions present hysteresis to ambient conditions. Photoluminescence lifetime decreases in all cases in the explored pressure range. In the case of facial isomer containing polymorphs of Alq(3), luminescence does not change its energy significantly. The most significant spectroscopic change observed in fac-isomer containing materials corresponds to gamma-Alq(3), which presents a low energy component that gains relative importance when pressure is increased. We ascribe this phenomenon to the presence of sensitized mer isomer impurities.
Investigation into the semimagic nature of the tin isotopes through electromagnetic moments
Allmond, J. M.; Stuchbery, A. E.; Galindo-Uribarri, A.; ...
2015-10-19
A complete set of electromagnetic moments, B(E2;0 + 1 2 + 1), Q(2 + 1), and g(2 + 1), have been measured from Coulomb excitation of semi-magic 112,114,116,118,120,122,124Sn (Z = 50) on natural carbon and titanium targets. The magnitude of the B(E2) values, measured to a precision of ~4%, disagree with a recent lifetime study [Phys. Lett. B 695, 110 (2011)] that employed the Doppler- shift attenuation method. The B(E2) values show an overall enhancement compared with recent theoretical calculations and a clear asymmetry about midshell, contrary to naive expectations. A new static electric quadrupole moment, Q(2 + 1), hasmore » been measured for 114Sn. The static quadrupole moments are generally consistent with zero but reveal an enhancement near midshell; this had not been previously observed. The magnetic dipole moments are consistent with previous measurements and show a near monotonic decrease in value with neutron number. The current theory calculations fail to reproduce the electromagnetic moments of the tin isotopes. The role of 2p-2h and 4p-4h intruders, which are lowest in energy at mid shell and outside of current model spaces, needs to be investigated in the future.« less
NASA Astrophysics Data System (ADS)
Ham, Kathryn; Vohra, Yogesh; Kono, Yoshio; Wereszczak, Andrew; Patel, Parimal
Multi-angle energy-dispersive x-ray diffraction studies and white-beam x-ray radiography were conducted with a cylindrically shaped (1 mm diameter and 0.7 mm high) high-boron content borosilicate glass sample (17.6% B2O3) to a pressure of 13.7 GPa using a Paris-Edinburgh (PE) press at Beamline 16-BM-B, HPCAT of the Advanced Photon Source. The measured structure factor S(q) to large q = 19 Å-1, is used to determine information about the internuclear bond distances between various species of atoms within the glass sample. Sample pressure was determined with gold as a pressure standard. The sample height as measured by radiography showed an overall uniaxial compression of 22.5 % at 13.7 GPa with 10.6% permanent compaction after decompression to ambient conditions. The reduced pair distribution function G(r) was extracted and Si-O, O-O, and Si-Si bond distances were measured as a function of pressure. Raman spectroscopy of pressure recovered sample as compared to starting material showed blue-shift and changes in intensity and widths of Raman bands associated with silicate and B3O6 boroxol rings. US Army Research Office under Grant No. W911NF-15-1-0614.
High-Throughput Toxicity Testing: New Strategies for ...
In recent years, the food industry has made progress in improving safety testing methods focused on microbial contaminants in order to promote food safety. However, food industry toxicologists must also assess the safety of food-relevant chemicals including pesticides, direct additives, and food contact substances. With the rapidly growing use of new food additives, as well as innovation in food contact substance development, an interest in exploring the use of high-throughput chemical safety testing approaches has emerged. Currently, the field of toxicology is undergoing a paradigm shift in how chemical hazards can be evaluated. Since there are tens of thousands of chemicals in use, many of which have little to no hazard information and there are limited resources (namely time and money) for testing these chemicals, it is necessary to prioritize which chemicals require further safety testing to better protect human health. Advances in biochemistry and computational toxicology have paved the way for animal-free (in vitro) high-throughput screening which can characterize chemical interactions with highly specific biological processes. Screening approaches are not novel; in fact, quantitative high-throughput screening (qHTS) methods that incorporate dose-response evaluation have been widely used in the pharmaceutical industry. For toxicological evaluation and prioritization, it is the throughput as well as the cost- and time-efficient nature of qHTS that makes it
Mori, Tadashi; Tanaka, Takayuki; Higashino, Tomohiro; Yoshida, Kota; Osuka, Atsuhiro
2016-06-23
Intrinsically chiral Möbius aromatic [28]hexaphyrin monophosphorus(V) and Möbius antiaromatic [30]hexaphyrin bisphosphorus(V) complexes have been optically resolved and their absolute configurations (ACs) were determined by combined experimental and theoretical investigations on their circular dichroisms (CDs). First elutes in chiral HPLC exhibited strong positive Cotton effects (CEs) at the B-band, characteristic for the ML configurations in their Möbius strips. Weak CEs at the Q-band, if attainable, complemented their AC assignment. The whole CD pattern and intensity were well reproduced by time-dependent approximate coupled cluster theory using model systems that omit five outward meso-aryl substituents (inward-meso-retained model), providing a solid basis for AC assignment. The cost efficient TD-DFT method with appropriate functionals for fully substituted (nontruncated) complexes well reproduced CEs around the B-band (but less satisfactory at the Q-band), also allows the rapid AC estimation for their Möbius strips. Observed difference in CDs between aromatic and antiaromatic hexaphyrins were better interpreted by their shifts in energy levels and altered interactions of relevant molecular orbitals, rather than small differences in Möbius geometries nor aromatic/antiaromatic character, despite the correlations recently claimed in planar π-systems.
Barbeta, Adrià; Ogaya, Romà; Peñuelas, Josep
2013-10-01
Forests respond to increasing intensities and frequencies of drought by reducing growth and with higher tree mortality rates. Little is known, however, about the long-term consequences of generally drier conditions and more frequent extreme droughts. A Holm oak forest was exposed to experimental rainfall manipulation for 13 years to study the effect of increasing drought on growth and mortality of the dominant species Quercus ilex, Phillyrea latifolia, and Arbutus unedo. The drought treatment reduced stem growth of A. unedo (-66.5%) and Q. ilex (-17.5%), whereas P. latifolia remained unaffected. Higher stem mortality rates were noticeable in Q. ilex (+42.3%), but not in the other two species. Stem growth was a function of the drought index of early spring in the three species. Stem mortality rates depended on the drought index of winter and spring for Q. ilex and in spring and summer for P. latifolia, but showed no relation to climate in A. unedo. Following a long and intense drought (2005-2006), stem growth of Q. ilex and P. latifolia increased, whereas it decreased in A. unedo. Q. ilex also enhanced its survival after this period. Furthermore, the effect of drought treatment on stem growth in Q. ilex and A. unedo was attenuated as the study progressed. These results highlight the different vulnerabilities of Mediterranean species to more frequent and intense droughts, which may lead to partial species substitution and changes in forest structure and thus in carbon uptake. The response to drought, however, changed over time. Decreased intra- and interspecific competition after extreme events with high mortality, together with probable morphological and physiological acclimation to drought during the study period, may, at least in the short term, buffer forests against drier conditions. The long-term effects of drought consequently deserve more attention, because the ecosystemic responses are unlikely to be stable over time.Nontechnical summaryIn this study, we evaluate the effect of long-term (13 years) experimental drought on growth and mortality rates of three forest Mediterranean species, and their response to the different intensities and durations of natural drought. We provide evidence for species-specific responses to drought, what may eventually lead to a partial community shift favoring the more drought-resistant species. However, we also report a dampening of the treatment effect on the two drought-sensitive species, which may indicate a potential adaptation to drier conditions at the ecosystem or population level. These results are thus relevant to account for the stabilizing processes that would alter the initial response of ecosystem to drought through changes in plant physiology, morphology, and demography compensation. © 2013 John Wiley & Sons Ltd.
Warm-adapted microbial communities enhance their carbon-use efficiency in warmed soils
NASA Astrophysics Data System (ADS)
Rousk, Johannes; Frey, Serita
2017-04-01
Ecosystem models predict that climate warming will stimulate microbial decomposition of soil carbon (C), resulting in a positive feedback to increasing temperatures. The current generation of models assume that the temperature sensitivities of microbial processes do not respond to warming. However, recent studies have suggested that the ability of microbial communities to adapt to warming can lead both strengthened and weakened feedbacks. A further complication is that the balance between microbial C used for growth to that used for respiration - the microbial carbon-use efficiency (CUE) - also has been shown through both modelling and empirical study to respond to warming. In our study, we set out to assess how chronic warming (+5°C over ambient during 9 years) of a temperate hardwood forest floor (Harvard Forest LTER, USA) affected temperature sensitivities of microbial processes in soil. To do this, we first determined the temperature relationships for bacterial growth, fungal growth, and respiration in plots exposed to warmed or ambient conditions. Secondly, we parametrised the established temperature functions microbial growth and respiration with plot-specific measured soil temperature data at a hourly time-resolution over the course of 3 years to estimate the real-time variation of in situ microbial C production and respiration. To estimate the microbial CUE, we also divided the microbial C production with the sum of microbial C production and respiration as a proxy for substrate use. We found that warm-adapted bacterial and fungal communities both shifted their temperature relationships to grow at higher rates in warm conditions which coincided with reduced rates at cool conditions. As such, their optimal temperature (Topt), minimum temperature (Tmin) and temperature sensitivity (Q10) were all increased. The temperature relationship for temperature, in contrast, was only marginally shifted in the same direction, but at a much smaller effect size, with negligible changes in Topt, Tmin and Q10 for respiration. When these physiological changes were scaled with soil temperature data to estimate real-time variation in situ during three years, the warm-adaptation resulted in elevated microbial CUEs during summer temperatures in warm-adapted communities and reduced microbial CUEs during winter temperatures. By comparing simulated microbial CUEs in cold-adapted communities exposed to warmed conditions to microbial CUEs in the warm-adapted communities exposed to those temperatures, we could demonstrate that the shifts towards warm-adapted microbial communities had selected for elevated microbial CUEs for the full range of in situ soil temperatures during three years. Our results suggest that microbial adaptation to warming will enhance microbial CUEs, shifting their balance of C use from respiration to biomass production. If our estimates scale to ecosystem level, this would imply that warm-adapted microbial communities will ultimately have the potential to store more C in soil than their cold-adapted counter parts could when exposed to warmer temperatures.
μ-'Diving suit' for liquid-phase high-Q resonant detection.
Yu, Haitao; Chen, Ying; Xu, Pengcheng; Xu, Tiegang; Bao, Yuyang; Li, Xinxin
2016-03-07
A resonant cantilever sensor is, for the first time, dressed in a water-proof 'diving suit' for real-time bio/chemical detection in liquid. The μ-'diving suit' technology can effectively avoid not only unsustainable resonance due to heavy liquid-damping, but also inevitable nonspecific adsorption on the cantilever body. Such a novel technology ensures long-time high-Q resonance of the cantilever in solution environment for real-time trace-concentration bio/chemical detection and analysis. After the formation of the integrated resonant micro-cantilever, a patterned photoresist and hydrophobic parylene thin-film are sequentially formed on top of the cantilever as sacrificial layer and water-proof coat, respectively. After sacrificial-layer release, an air gap is formed between the parylene coat and the cantilever to protect the resonant cantilever from heavy liquid damping effect. Only a small sensing-pool area, located at the cantilever free-end and locally coated with specific sensing-material, is exposed to the liquid analyte for gravimetric detection. The specifically adsorbed analyte mass can be real-time detected by recording the frequency-shift signal. In order to secure vibration movement of the cantilever and, simultaneously, reject liquid leakage from the sensing-pool region, a hydrophobic parylene made narrow slit structure is designed surrounding the sensing-pool. The anti-leakage effect of the narrow slit and damping limited resonance Q-factor are modelled and optimally designed. Integrated with electro-thermal resonance excitation and piezoresistive frequency readout, the cantilever is embedded in a micro-fluidic chip to form a lab-chip micro-system for liquid-phase bio/chemical detection. Experimental results show the Q-factor of 23 in water and longer than 20 hours liquid-phase continuous working time. Loaded with two kinds of sensing-materials at the sensing-pools, two types of sensing chips successfully show real-time liquid-phase detection to ppb-level organophosphorous pesticide of acephate and E.coli DH5α in PBS, respectively. The proposed method fundamentally solves the long-standing problem of being unable to operate a resonant micro-sensor in liquid well.
Histidine168 is crucial for ΔpH-dependent gating of the human voltage-gated proton channel, hHV1.
Cherny, Vladimir V; Morgan, Deri; Thomas, Sarah; Smith, Susan M E; DeCoursey, Thomas E
2018-05-09
We recently identified a voltage-gated proton channel gene in the snail Helisoma trivolvis , HtH V 1, and determined its electrophysiological properties. Consistent with early studies of proton currents in snail neurons, HtH V 1 opens rapidly, but it unexpectedly exhibits uniquely defective sensitivity to intracellular pH (pH i ). The H + conductance ( g H )- V relationship in the voltage-gated proton channel (H V 1) from other species shifts 40 mV when either pH i or pH o (extracellular pH) is changed by 1 unit. This property, called ΔpH-dependent gating, is crucial to the functions of H V 1 in many species and in numerous human tissues. The HtH V 1 channel exhibits normal pH o dependence but anomalously weak pH i dependence. In this study, we show that a single point mutation in human hH V 1-changing His 168 to Gln 168 , the corresponding residue in HtH V 1-compromises the pH i dependence of gating in the human channel so that it recapitulates the HtH V 1 response. This location was previously identified as a contributor to the rapid gating kinetics of H V 1 in Strongylocentrotus purpuratus His 168 mutation in human H V 1 accelerates activation but accounts for only a fraction of the species difference. H168Q, H168S, or H168T mutants exhibit normal pH o dependence, but changing pH i shifts the g H - V relationship on average by <20 mV/unit. Thus, His 168 is critical to pH i sensing in hH V 1. His 168 , located at the inner end of the pore on the S3 transmembrane helix, is the first residue identified in H V 1 that significantly impairs pH sensing when mutated. Because pH o dependence remains intact, the selective erosion of pH i dependence supports the idea that there are distinct internal and external pH sensors. Although His 168 may itself be a pH i sensor, the converse mutation, Q229H, does not normalize the pH i sensitivity of the HtH V 1 channel. We hypothesize that the imidazole group of His 168 interacts with nearby Phe 165 or other parts of hH V 1 to transduce pH i into shifts of voltage-dependent gating. © 2018 Cherny et al.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, Lucas J.; Acheson, Justin F.; McCoy, Jason G.
Crystal structures of toluene 4-monooxygenase hydroxylase in complex with reaction products and effector protein reveal active site interactions leading to regiospecificity. Complexes with phenolic products yield an asymmetric {mu}-phenoxo-bridged diiron center and a shift of diiron ligand E231 into a hydrogen bonding position with conserved T201. In contrast, complexes with inhibitors p-NH{sub 2}-benzoate and p-Br-benzoate showed a {mu}-1,1 coordination of carboxylate oxygen between the iron atoms and only a partial shift in the position of E231. Among active site residues, F176 trapped the aromatic ring of products against a surface of the active site cavity formed by G103, E104 andmore » A107, while F196 positioned the aromatic ring against this surface via a {pi}-stacking interaction. The proximity of G103 and F176 to the para substituent of the substrate aromatic ring and the structure of G103L T4moHD suggest how changes in regiospecificity arise from mutations at G103. Although effector protein binding produced significant shifts in the positions of residues along the outer portion of the active site (T201, N202, and Q228) and in some iron ligands (E231 and E197), surprisingly minor shifts (<1 {angstrom}) were produced in F176, F196, and other interior residues of the active site. Likewise, products bound to the diiron center in either the presence or absence of effector protein did not significantly shift the position of the interior residues, suggesting that positioning of the cognate substrates will not be strongly influenced by effector protein binding. Thus, changes in product distributions in the absence of the effector protein are proposed to arise from differences in rates of chemical steps of the reaction relative to motion of substrates within the active site channel of the uncomplexed, less efficient enzyme, while structural changes in diiron ligand geometry associated with cycling between diferrous and diferric states are discussed for their potential contribution to product release.« less
Lakshmi, G. Girija; Ghosh, Sushmita; Jones, Gabriel P.; Parikh, Roshni; Rawlins, Bridgette A.; Vaughn, Jack C.
2014-01-01
Alternative splicing greatly enhances the diversity of proteins encoded by eukaryotic genomes, and is also important in gene expression control. In contrast to the great depth of knowledge as to molecular mechanisms in the splicing pathway itself, relatively little is known about the regulatory events behind this process. The 5′-UTR and 3′-UTR in pre-mRNAs play a variety of roles in controlling eukaryotic gene expression, including translational modulation, and nearly 4,000 of the roughly 14,000 protein coding genes in Drosophila contain introns of unknown functional significance in their 5′-UTR. Here we report the results of an RNA electrophoretic mobility shift analysis of Drosophila rnp-4f 5′-UTR intron 0 splicing regulatory proteins. The pre-mRNA potential regulatory element consists of an evolutionarily-conserved 177-nt stem-loop arising from pairing of intron 0 with part of adjacent exon 2. Incubation of in vitro transcribed probe with embryo protein extract is shown to result in two shifted RNA-protein bands, and protein extract from a dADAR null mutant fly line results in only one shifted band. A mutated stem-loop in which the conserved exon 2 primary sequence is changed but secondary structure maintained by introducing compensatory base changes results in diminished band shifts. To test the hypothesis that dADAR plays a role in intron splicing regulation in vivo, levels of unspliced rnp-4f mRNA in dADAR mutant were compared to wild-type via real-time qRT-PCR. The results show that during embryogenesis unspliced rnp-4f mRNA levels fall by up to 85% in the mutant, in support of the hypothesis. Taken together, these results demonstrate a novel role for dADAR protein in rnp-4f 5′-UTR alternative intron splicing regulation which is consistent with a previously proposed model. PMID:23026215
Ma, Q; Tipping, R H; Boulet, C
2006-01-07
By introducing the coordinate representation, the derivation of the perturbation expansion of the Liouville S matrix is formulated in terms of classically behaved autocorrelation functions. Because these functions are characterized by a pair of irreducible tensors, their number is limited to a few. They represent how the overlaps of the potential components change with a time displacement, and under normal conditions, their magnitudes decrease by several orders of magnitude when the displacement reaches several picoseconds. The correlation functions contain all dynamical information of the collision processes necessary in calculating half-widths and shifts and can be easily derived with high accuracy. Their well-behaved profiles, especially the rapid decrease of the magnitude, enables one to transform easily the dynamical information contained in them from the time domain to the frequency domain. More specifically, because these correlation functions are well time limited, their continuous Fourier transforms should be band limited. Then, the latter can be accurately replaced by discrete Fourier transforms and calculated with a standard fast Fourier transform method. Besides, one can easily calculate their Cauchy principal integrations and derive all functions necessary in calculating half-widths and shifts. A great advantage resulting from introducing the coordinate representation and choosing the correlation functions as the starting point is that one is able to calculate the half-widths and shifts with high accuracy, no matter how complicated the potential models are and no matter what kind of trajectories are chosen. In any case, the convergence of the calculated results is always guaranteed. As a result, with this new method, one can remove some uncertainties incorporated in the current width and shift studies. As a test, we present calculated Raman Q linewidths for the N2-N2 pair based on several trajectories, including the more accurate "exact" ones. Finally, by using this new method as a benchmark, we have carried out convergence checks for calculated values based on usual methods and have found that some results in the literature are not converged.
Fungi, bacteria and soil pH: the oxalate-carbonate pathway as a model for metabolic interaction.
Martin, Gaëtan; Guggiari, Matteo; Bravo, Daniel; Zopfi, Jakob; Cailleau, Guillaume; Aragno, Michel; Job, Daniel; Verrecchia, Eric; Junier, Pilar
2012-11-01
The oxalate-carbonate pathway involves the oxidation of calcium oxalate to low-magnesium calcite and represents a potential long-term terrestrial sink for atmospheric CO(2). In this pathway, bacterial oxalate degradation is associated with a strong local alkalinization and subsequent carbonate precipitation. In order to test whether this process occurs in soil, the role of bacteria, fungi and calcium oxalate amendments was studied using microcosms. In a model system with sterile soil amended with laboratory cultures of oxalotrophic bacteria and fungi, the addition of calcium oxalate induced a distinct pH shift and led to the final precipitation of calcite. However, the simultaneous presence of bacteria and fungi was essential to drive this pH shift. Growth of both oxalotrophic bacteria and fungi was confirmed by qPCR on the frc (oxalotrophic bacteria) and 16S rRNA genes, and the quantification of ergosterol (active fungal biomass) respectively. The experiment was replicated in microcosms with non-sterilized soil. In this case, the bacterial and fungal contribution to oxalate degradation was evaluated by treatments with specific biocides (cycloheximide and bronopol). Results showed that the autochthonous microflora oxidized calcium oxalate and induced a significant soil alkalinization. Moreover, data confirmed the results from the model soil showing that bacteria are essentially responsible for the pH shift, but require the presence of fungi for their oxalotrophic activity. The combined results highlight that the interaction between bacteria and fungi is essential to drive metabolic processes in complex environments such as soil. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Sirtori, Carlo
2017-02-01
Superradiance is one of the many fascinating phenomena predicted by quantum electrodynamics that have first been experimentally demonstrated in atomic systems and more recently in condensed matter systems like quantum dots, superconducting q-bits, cyclotron transitions and plasma oscillations in quantum wells (QWs). It occurs when a dense collection of N identical two-level emitters are phased via the exchange of photons, giving rise to enhanced light-matter interaction, hence to a faster emission rate. Of great interest is the regime where the ensemble interacts with one photon only and therefore all of the atoms, but one, are in the ground state. In this case the quantum superposition of all possible configurations produces a symmetric state that decays radiatively with a rate N times larger than that of the individual oscillators. This phenomenon, called single photon superradiance, results from the exchange of real photons among the N emitters. Yet, to single photon superradiance is also associated another collective effect that renormalizes the emission frequency, known as cooperative Lamb shift. In this work, we show that single photon superradiance and cooperative Lamb shift can be engineered in a semiconductor device by coupling spatially separated plasma resonances arising from the collective motion of confined electrons in QWs. These resonances hold a giant dipole along the growth direction z and have no mutual Coulomb coupling. They thus behave as a collection of macro-atoms on different positions along the z axis. Our device is therefore a test bench to simulate the low excitation regime of quantum electrodynamics.
Wu, Chin H; Grant, Christopher V; Cook, Gabriel A; Park, Sang Ho; Opella, Stanley J
2009-09-01
A strip-shield inserted between a high inductance double-tuned solenoid coil and the glass tube containing the sample improves the efficiency of probes used for high-field solid-state NMR experiments on lossy aqueous samples of proteins and other biopolymers. A strip-shield is a coil liner consisting of thin copper strips layered on a PTFE (polytetrafluoroethylene) insulator. With lossy samples, the shift in tuning frequency is smaller, the reduction in Q, and RF-induced heating are all significantly reduced when the strip-shield is present. The performance of 800MHz (1)H/(15)N and (1)H/(13)C double-resonance probes is demonstrated on aqueous samples of membrane proteins in phospholipid bilayers.
Zheng, Xiao-pan; He, Zhi-qun; Zhang, Chun-xiu; Xu, Zheng; Wang, Yong-sheng
2006-06-01
In the present work, the change in electronic absorption spectra from three copper phthalocyanines (CuPc, tb-CuPc, oo-CuPc) in different environments was investigated. The mechanism of red shift Q-band absorption from the three species in an organic solvent before and after protonation was discussed. This was used to compare with those dispersed in solid films. The relation between the molecular interactions and the spectra change was studied. In a combination of POM, DSC and XRD techniques, the structure and morphology of the thin films were characterised. It was found that the molecules in the doped matrices of PC were associated or aggregated. This association and hence the corresponding change in absorption spectra cannot be altered by the modification of dopant concentration.
High sensitivity gas sensor based on high-Q suspended polymer photonic crystal nanocavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clevenson, Hannah, E-mail: hannahac@mit.edu; Desjardins, Pierre; Gan, Xuetao
2014-06-16
We present high-sensitivity, multi-use optical gas sensors based on a one-dimensional photonic crystal cavity. These devices are implemented in versatile, flexible polymer materials which swell when in contact with a target gas, causing a measurable cavity length change. This change causes a shift in the cavity resonance, allowing precision measurements of gas concentration. We demonstrate suspended polymer nanocavity sensors and the recovery of sensors after the removal of stimulant gas from the system. With a measured quality factor exceeding 10{sup 4}, we show measurements of gas concentration as low as 600 parts per million (ppm) and an experimental sensitivity ofmore » 10 ppm; furthermore, we predict detection levels in the parts-per-billion range for a variety of gases.« less
Effects on Calculated Half-Widths and Shifts from the Line Coupling for Asymmetric-Top Molecules
NASA Technical Reports Server (NTRS)
Ma, Q.; Boulet, C.; Tipping, R. H.
2014-01-01
The refinement of the Robert-Bonamy formalism by considering the line coupling for linear molecules developed in our previous studies [Q. Ma, C. Boulet, and R. H. Tipping, J. Chem. Phys. 139, 034305 (2013); 140, 104304 (2014)] have been extended to asymmetric-top molecules. For H2O immersed in N2 bath, the line coupling selection rules applicable for the pure rotational band to determine whether two specified lines are coupled or not are established. Meanwhile, because the coupling strengths are determined by relative importance of off-diagonal matrix elements versus diagonal elements of the operator -iS1 -S2, quantitative tools are developed with which one is able to remove weakly coupled lines from consideration. By applying these tools, we have found that within reasonable tolerances, most of the H2O lines in the pure rotational band are not coupled. This reflects the fact that differences of energy levels of the H2O states are pretty large. But, there are several dozen strongly coupled lines and they can be categorized into different groups such that the line couplings occur only within the same groups. In practice, to identify those strongly coupled lines and to confine them into sub-linespaces are crucial steps in considering the line coupling. We have calculated half-widths and shifts for some groups, including the line coupling. Based on these calculations, one can conclude that for most of the H2O lines, it is unnecessary to consider the line coupling. However, for several dozens of lines, effects on the calculated half-widths from the line coupling are small, but remain noticeable and reductions of calculated half-widths due to including the line coupling could reach to 5%. Meanwhile, effects on the calculated shifts are very significant and variations of calculated shifts could be as large as 25%.
Comparison of the biometric formulas used for applanation A-scan ultrasound biometry.
Özcura, Fatih; Aktaş, Serdar; Sağdık, Hacı Murat; Tetikoğlu, Mehmet
2016-10-01
The purpose of the study was to compare the accuracy of various biometric formulas for predicting postoperative refraction determined using applanation A-scan ultrasound. This retrospective comparative study included 485 eyes that underwent uneventful phacoemulsification with intraocular lens (IOL) implantation. Applanation A-scan ultrasound biometry and postoperative manifest refraction were obtained in all eyes. Biometric data were entered into each of the five IOL power calculation formulas: SRK-II, SRK/T, Holladay I, Hoffer Q, and Binkhorst II. All eyes were divided into three groups according to axial length: short (≤22.0 mm), average (22.0-25.0 mm), and long (≥25.0 mm) eyes. The postoperative spherical equivalent was calculated and compared with the predicted refractive error using each biometric formula. The results showed that all formulas had significantly lower mean absolute error (MAE) in comparison with Binkhorst II formula (P < 0.01). The lowest MAE was obtained with the SRK-II for average (0.49 ± 0.40 D) and short (0.67 ± 0.54 D) eyes and the SRK/T for long (0.61 ± 0.50 D) eyes. The highest postoperative hyperopic shift was seen with the SRK-II for average (46.8 %), short (28.1 %), and long (48.4 %) eyes. The highest postoperative myopic shift was seen with the Holladay I for average (66.4 %) and long (71.0 %) eyes and the SRK/T for short eyes (80.6 %). In conclusion, the SRK-II formula produced the lowest MAE in average and short eyes and the SRK/T formula produced the lowest MAE in long eyes. The SRK-II has the highest postoperative hyperopic shift in all eyes. The highest postoperative myopic shift is with the Holladay I for average and long eyes and SRK/T for short eyes.
Effects on calculated half-widths and shifts from the line coupling for asymmetric-top molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Q.; Boulet, C.; Tipping, R. H.
2014-06-28
The refinement of the Robert-Bonamy formalism by considering the line coupling for linear molecules developed in our previous studies [Q. Ma, C. Boulet, and R. H. Tipping, J. Chem. Phys. 139, 034305 (2013); 140, 104304 (2014)] have been extended to asymmetric-top molecules. For H{sub 2}O immersed in N{sub 2} bath, the line coupling selection rules applicable for the pure rotational band to determine whether two specified lines are coupled or not are established. Meanwhile, because the coupling strengths are determined by relative importance of off-diagonal matrix elements versus diagonal elements of the operator −iS{sub 1} − S{sub 2}, quantitative toolsmore » are developed with which one is able to remove weakly coupled lines from consideration. By applying these tools, we have found that within reasonable tolerances, most of the H{sub 2}O lines in the pure rotational band are not coupled. This reflects the fact that differences of energy levels of the H{sub 2}O states are pretty large. But, there are several dozen strongly coupled lines and they can be categorized into different groups such that the line couplings occur only within the same groups. In practice, to identify those strongly coupled lines and to confine them into sub-linespaces are crucial steps in considering the line coupling. We have calculated half-widths and shifts for some groups, including the line coupling. Based on these calculations, one can conclude that for most of the H{sub 2}O lines, it is unnecessary to consider the line coupling. However, for several dozens of lines, effects on the calculated half-widths from the line coupling are small, but remain noticeable and reductions of calculated half-widths due to including the line coupling could reach to 5%. Meanwhile, effects on the calculated shifts are very significant and variations of calculated shifts could be as large as 25%.« less
NASA Astrophysics Data System (ADS)
Thieulot, Cedric
2016-04-01
Many Finite Element geodynamical codes (Fullsack,1995; Zhong et al., 2000; Thieulot, 2011) are based on bi/tri-linear velocity constant pressure element (commonly called Q1P0), because of its ease of programming and rather low memory footprint, despite the presence of (pressure) checkerboard modes. However, it is long known that the Q1P0 is not inf-sup stable and does not lend itself to the use of iterative solvers, which makes it a less than ideal candidate for high resolution 3D models. Other attempts were made more recently (Burstedde et al., 2013; Le Pourhiet et al., 2012) with the use of the stabilised Q1Q1 element (bi/tri-linear velocity and pressure). This element, while also attractive from an implementation and memory standpoint, suffers a major drawback due to the artificial compressibility introduced by the polynomial projection stabilization. These observations have shifted part of the community towards the Finite Difference Method while the remaining part is now embracing infsup stable second order elements [May et al., 2015; Kronbichler,2012). Rather surprinsingly, a third option exists when it comes to first order elements in the form of the stabilised Q1P0 element, but virtually no literature exists concerning its use for geodynamical applications. I will then recall the specificity of the stabilisation and will carry out a series of benchmark experiments and geodynamical tests to assess its performance. While being shown to work as expected in benchmark experiments, the stabilised Q1P0 element turns out to introduce first-order numerical artefacts in the velocity and pressure solutions in the case of buoyancy-driven flows. Burstedde, C., Stadler, G., Alisic, L., Wilcox, L. C., Tan, E., Gurnis, M., & Ghattas, O. (2013). Largescale adaptive mantle convection simulation. Geophysical Journal International, 192(3), 889906. Fullsack, P. (1995). An arbitrary LagrangianEulerian formulation for creeping flows and its application in tectonic models. Geophysical Journal International, 120(1), 123. Kronbichler, M., Heister, T., & Bangerth, W. (2012). High accuracy mantle convection simulation through modern numerical methods. Geophysical Journal International, 191(1), 1229. Le Pourhiet, L., Huet, B., May, D. A., Labrousse, L., & Jolivet, L. (2012). Kinematic interpretation of the 3D shapes of metamorphic core complexes. Geochemistry, Geophysics, Geosystems, 13(9). May, D. A., Brown, J., & Le Pourhiet, L. (2015). A scalable, matrixfree multigrid preconditioner for finite element discretizations of heterogeneous Stokes flow. Computer Methods in Applied Mechanics and Engineering, 290, 496523. Thieulot, C. (2011). FANTOM: Twoand threedimensional numerical modelling of creeping flows for the solution of geological problems. Physics of the Earth and Planetary Interiors, 188(1), 4768. Zhong, S., Zuber, M. T., Moresi, L., & Gurnis, M. (2000). Role of temperature-dependent viscosity and surface plates in spherical shell models of mantle convection. Journal of Geophysical Research: Solid Earth (1978-2012), 105(B5), 1106311082.
Open-flavor charm and bottom s q q ¯ Q ¯ and q q q ¯ Q ¯ tetraquark states
NASA Astrophysics Data System (ADS)
Chen, Wei; Chen, Hua-Xing; Liu, Xiang; Steele, T. G.; Zhu, Shi-Lin
2017-06-01
We provide comprehensive investigations for the mass spectrum of exotic open-flavor charmed/bottom s q q ¯ c ¯ , q q q ¯ c ¯ , s q q ¯ b ¯ , q q q ¯ b ¯ tetraquark states with various spin-parity assignments JP=0+,1+,2+ and 0- , 1- in the framework of QCD sum rules. In the diquark configuration, we construct the diquark-antidiquark interpolating tetraquark currents using the color-antisymmetric scalar and axial-vector diquark fields. The stable mass sum rules are established in reasonable parameter working ranges, which are used to give reliable mass predictions for these tetraquark states. We obtain the mass spectra for the open-flavor charmed/bottom s q q ¯c ¯, q q q ¯c ¯, s q q ¯b ¯, q q q ¯b ¯ tetraquark states with various spin-parity quantum numbers. In addition, we suggest searching for exotic doubly-charged tetraquarks, such as [s d ][u ¯ c ¯ ]→Ds(*)-π- in future experiments at facilities such as BESIII, BelleII, PANDA, LHCb, and CMS, etc.
NASA Astrophysics Data System (ADS)
Sharan, Lucky; Agrawal, Vaibhav M.; Chaubey, V. K.
2017-08-01
Higher spectral efficiency and greater data rate per channel are the most cost-effective strategies to meet the exponential demand of data traffic in the optical core network. Multilevel modulation formats being spectrally efficient enhance the transmission capacity by coding information in the amplitude, phase, polarization or a combination of all. This paper presents the design architecture of a 32-channel dense wavelength division multiplexed (DWDM) system, where each channel operates with multi-level phase modulation formats at 40 Gbps. The proposed design has been simulated for 50 GHz channel spacing to numerically compute the performance of both differential phase-shift keying (DPSK) and differential quadrature phase-shift keying (DQPSK) modulation formats in such high-speed DWDM system. The transmission link is analyzed with perfect dispersion compensation and also with under-compensation scheme. The link performance in terms of quality factor (Q) for varying input powers with different dispersion compensation schemes has been evaluated. The simulation study shows significant nonlinear mitigation for both DPSK- and DQPSK-based DWDM systems up to 1,000 km and beyond. It is concluded that at higher power levels DQPSK format having a narrower spectrum shows better tolerance to dispersion and nonlinearities than DPSK format.
Sardans, J; Gargallo-Garriga, A; Pérez-Trujillo, M; Parella, T J; Seco, R; Filella, I; Peñuelas, J
2014-03-01
Plants defend themselves against herbivory at several levels. One of these is the synthesis of inducible chemical defences. Using NMR metabolomic techniques, we studied the metabolic changes of plant leaves after a wounding treatment simulating herbivore attack in the Mediterranean sclerophyllous tree Quercus ilex. First, an increase in glucose content was observed in wounded plants. There was also an increase in the content of C-rich secondary metabolites such as quinic acid and quercitol, both related to the shikimic acid pathway and linked to defence against biotic stress. There was also a shift in N-storing amino acids, from leucine and isoleucine to asparagine and choline. The observed higher content of asparagine is related to the higher content of choline through serine that was proved to be the precursor of choline. Choline is a general anti-herbivore and pathogen deterrent. The study shows the rapid metabolic response of Q. ilex in defending its leaves, based on a rapid increase in the production of quinic acid, quercitol and choline. The results also confirm the suitability of (1)H NMR-based metabolomic profiling studies to detect global metabolome shifts after wounding stress in tree leaves, and therefore its suitability in ecometabolomic studies. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.
Baán, Júlia Aliz; Kocsis, Tamás; Keller-Pintér, Anikó; Müller, Géza; Zádor, Ernö; Dux, László
2013-01-01
Myostatin is an important negative regulator of skeletal muscle growth. The hypermuscular Compact (Cmpt) mice carry a 12-bp natural mutation in the myostatin propeptide, with additional modifier genes being responsible for the phenotype. Muscle cellularity of the fast-type tibialis anterior (TA) and extensor digitorum longus (EDL) as well as the mixed-type soleus (SOL) muscles of Cmpt and wild-type mice was examined by immunohistochemical staining of the myosin heavy chain (MHC) proteins. In addition, transcript levels of MHC isoforms were quantified by qPCR. Based on our results, all investigated muscles of Cmpt mice were significantly larger compared with that of wild-type mice, as characterized by fiber hyperplasia of different grades. Fiber hypertrophy was not present in TA; however, EDL muscles showed specific IIB fiber hypertrophy while the (I and IIA) fibers of SOL muscles were generally hypertrophied. Both the fast TA and EDL muscles of Cmpt mice contained significantly more glycolytic IIB fibers accompanied by a decreased number of IIX and IIA fibers; however, this was not the case for SOL muscles. In summary, despite the variances found in muscle cellularity between the different myostatin mutant mice, similar glycolytic shifts were observed in Cmpt fast muscles as in muscles from myostatin knockout mice. PMID:23979839
Zhang, Li-Mei; Duff, Aoife M; Smith, Cindy J
2018-04-24
Terrestrial-marine boundaries are significant sites of biogeochemical activity with delineated gradients from land to sea. While niche differentiation of ammonia-oxidizing archaea (AOA) and bacteria (AOB) driven by pH and nitrogen is well known, the patterns and environmental drivers of AOA and AOB community structure and activity across soil-sediment boundaries have not yet been determined. In this study, nitrification potential rate, community composition and transcriptional activity of AOA and AOB in soil, soil/sediment interface and sediments of two coastal Bays were characterized using a combination of field investigations and microcosm incubations. At DNA level, amoA gene abundances of AOA were significantly greater than AOB in soil, while in sediments AOB were significantly more abundant than AOA, but at the soil/sediment interface there were equal numbers of AOA and AOB amoA genes. Microcosm incubations provided further evidence, through qPCR and DGGE-sequencing analysis of amoA transcripts, that AOA were active in soil, AOB in sediment and both AOA and AOB were active at the soil/sediment interface. The AOA and AOB community composition shifted across the coastal soil-interface-sediment gradient with salinity and pH identified as major environmental drivers. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.
Cytogenetic and molecular characterization of plutonium-induced rat osteosarcomas.
Roch-Lefevre, Sandrine; Daino, Kazuhiro; Altmeyer-Morel, Sandrine; Guilly, Marie-Noëlle; Chevillard, Sylvie
2010-01-01
The association between ionizing radiation and the subsequent development of osteosarcoma has been well described, but little is known about the cytogenetic and molecular events, which could be involved in the formation of radiation-induced osteosarcomas. Here, we performed comparative genomic hybridization (CGH) to detect chromosomal copy number changes in a series of 16 rat osteosarcomas induced by injection of plutonium-238. Recurrent gains/amplifications were observed at chromosomal regions 3p12-q12, 3q41-qter, 4q41-qter, 6q12-q16, 7q22-q34, 8q11-q23, 9q11-q22, 10q32.1-qter, and 12q, whereas recurrent losses were observed at 1p, 1q, 3q23-q35, 5q21-q33, 8q24-q31, 10q22-q25, 15p, 15q, and 18q. The gained region at 7q22-q34 was homologous to human chromosome bands 12q13-q15/8q24/22q11-q13, including the loci of Mdm2, Cdk4, c-Myc and Pdgf-b genes. The lost regions at 5q21-q33, 10q22-q25 and 15q contained tumor suppressor genes such as p16INK4a/p19ARF, Tp53 and Rb1. To identify potential target gene(s) for the chromosomal aberrations, we compared the expression levels of several candidate genes, located within the regions of frequent chromosomal aberrations, between the tumors and normal osteoblasts by using quantitative RT-PCR analysis. The Cdk4, c-Myc, Pdgf-b and p57KIP2 genes were thought to be possible target genes for the frequent chromosomal gain at 7q22-34 and loss at 1q in the tumors, respectively. In addition, mutations of the Tp53 gene were found in 27% (4 of 15) osteosarcomas. Our data may contribute to further understanding of the molecular mechanisms underlying osteosarcomas induced by ionizing radiation in human.
Wafula, Denis; White, John R.; Canion, Andy; Jagoe, Charles; Pathak, Ashish
2015-01-01
Freshwater scarcity and regulations on wastewater disposal have necessitated the reuse of treated wastewater (TWW) for soil irrigation, which has several environmental and economic benefits. However, TWW irrigation can cause nutrient loading to the receiving environments. We assessed bacterial community structure and associated biogeochemical changes in soil plots irrigated with nitrate-rich TWW (referred to as pivots) for periods ranging from 13 to 30 years. Soil cores (0 to 40 cm) were collected in summer and winter from five irrigated pivots and three adjacently located nonirrigated plots. Total bacterial and denitrifier gene abundances were estimated by quantitative PCR (qPCR), and community structure was assessed by 454 massively parallel tag sequencing (MPTS) of small-subunit (SSU) rRNA genes along with terminal restriction fragment length polymorphism (T-RFLP) analysis of nirK, nirS, and nosZ functional genes responsible for denitrification of the TWW-associated nitrate. Soil physicochemical analyses showed that, regardless of the seasons, pH and moisture contents (MC) were higher in the irrigated (IR) pivots than in the nonirrigated (NIR) plots; organic matter (OM) and microbial biomass carbon (MBC) were higher as a function of season but not of irrigation treatment. MPTS analysis showed that TWW loading resulted in the following: (i) an increase in the relative abundance of Proteobacteria, especially Betaproteobacteria and Gammaproteobacteria; (ii) a decrease in the relative abundance of Actinobacteria; (iii) shifts in the communities of acidobacterial groups, along with a shift in the nirK and nirS denitrifier guilds as shown by T-RFLP analysis. Additionally, bacterial biomass estimated by genus/group-specific real-time qPCR analyses revealed that higher numbers of total bacteria, Acidobacteria, Actinobacteria, Alphaproteobacteria, and the nirS denitrifier guilds were present in the IR pivots than in the NIR plots. Identification of the nirK-containing microbiota as a proxy for the denitrifier community indicated that bacteria belonged to alphaproteobacteria from the Rhizobiaceae family within the agroecosystem studied. Multivariate statistical analyses further confirmed some of the above soil physicochemical and bacterial community structure changes as a function of long-term TWW application within this agroecosystem. PMID:26253672
NASA Astrophysics Data System (ADS)
Hoang, Thu Trang; Ngo, Quang Minh; Vu, Dinh Lam; Le, Khai Q.; Nguyen, Truong Khang; Nguyen, Hieu P. T.
2018-01-01
Shrinking the linewidth of resonances induced by multiple coupled resonators is comprehensively analyzed using the coupled-mode theory (CMT) in time. Two types of coupled resonators under investigation are coupled resonator optical waveguides (CROWs) and side-coupled resonators with waveguide (SCREW). We examine the main parameters influencing on the spectral response such as the number of resonators (n) and the phase shift (φ) between two adjacent resonators. For the CROWs geometry consisting of n coupled resonators, we observe the quality (Q) factor of the right- and left-most resonant lineshapes increases n times larger than that of a single resonator. For the SCREW geometry, relying on the phase shift, sharp, and asymmetric resonant lineshape of the high Q factor a narrow linewidth of the spectral response could be achieved. We employ the finite-difference time-domain (FDTD) method to design and simulate two proposed resonators for practical applications. The proposed coupled resonators in silicon-on-insulator (SOI) slotted two-dimensional (2-D) photonic crystals (PhCs) filled and covered with a low refractive index organic material. Slotted PhC waveguides and cavities are designed to enhance the electromagnetic intensity and to confine the light into small cross-sectional area with low refractive index so that efficient optical devices could be achieved. A good agreement between the theoretical CMT analysis and the FDTD simulation is shown as an evidence for our accurate investigation. All-optical switches based on the CROWs in the SOI slotted 2-D PhC waveguide that are filled and covered by a nonlinear organic cladding to overcome the limitations of its well-known intrinsic properties are also presented. From the calculations, we introduce a dependency of the normalized linewidth of the right-most resonance and its switching power of the all-optical switches on number of resonator, n. This result might provide a guideline for all-optical signal processing on a silicon PhC chip design.
Wong, Alan; Howes, Andy P; Parkinson, Ben; Anupõld, Tiit; Samoson, Ago; Holland, Diane; Dupree, Ray
2009-08-28
The application of double rotation (DOR) NMR to crystalline materials (both inorganic and organic) has made tremendous strides in providing site-specific information about materials in recent years. However (17)O DOR has yet to demonstrate its potential in disordered materials such as glasses. In the present study, we have successfully recorded high resolution (17)O DOR spectra of vitreous B(2)O(3) (v-B(2)O(3)), a highly effective glass-forming oxide of considerable technological importance. Two distinct oxygen sites are resolved and a complete set of (17)O NMR parameters were determined from the DOR spectra. These were assigned to oxygen atoms in the planar boroxol ring [B(3)O(6)] and in the non-boroxol [BO(3)] groups which share oxygen with the ring boron atoms. This assignment was based on the similarity of all of their (17)O parameters with those found by DFT calculation for caesium enneaborate, Cs(2)O.9B(2)O(3), which has two boroxol rings in its structure. The boroxol ring oxygens have a more positive chemical shift, a larger shift anisotropy and a smaller electric field gradient than non ring oxygens (O(R): delta(iso) = 100 +/- 1 ppm, span = 180 +/- 20 ppm, skew = -0.4 +/- 0.1, P(q) = 5.0 +/- 0.2 MHz; O(NR): delta(iso) = 86 +/- 1 ppm, span = 100 +/- 20 ppm, skew = 0.1 +/- 0.1, P(q) = 5.7 +/- 0.2 MHz). The relative proportions of the two sites in v-B(2)O(3) are approximately 1 : 1, as expected if all three boron atoms in the boroxol ring are each connected to one oxygen in a linking [BO(3)] group and there are very few [BO(3)]-[BO(3)] linkages. We see no evidence for a third oxygen site such as has been reported in an earlier study of v-B(2)O(3). This work demonstrates the potential of (17)O DOR to provide site-specific information in disordered materials.
Understanding DOC Mobilization Dynamics Through High Frequency Measurements in a Headwater Catchment
NASA Astrophysics Data System (ADS)
Werner, B.; Musolff, A.; Lechtenfeld, O.; de Rooij, G. H.; Fleckenstein, J. H.
2017-12-01
Increasing dissolved organic carbon (DOC) exports from headwater catchments impact the quality of downstream waters and pose challenges to water supply. The importance of riparian zones for DOC export from catchments in humid, temperate climates has generally been acknowledged, but the hydrological controls and biogeochemical factors that govern mobilization of DOC from riparian zones remain elusive. By analyzing high-frequency time series of UV-VIS based water quality we therefore aim at a better understanding on temporal dynamics of DOC mobilization and exports. In a first step a one year high frequency (15 minutes) data set from a headwater catchment in the Harz Mountains (Germany) was systematically analyzed for event-based patterns in DOC concentrations. Here, a simplistic linear model was generated to explain DOC concentration level and variability in the stream. Furthermore, spectral (e.g. slopes and SUVA254) and molecular (FT-ICR-MS) characterization of DOC was used to fingerprint in-stream DOC during events. Continuous DOC concentrations were best predicted (R², NSE = 0.53) by instantaneous discharge (Q) and antecede wetness conditions of the last 30 days (AWC30 = Precip.30/PET30) as well as mean air temperature (Tmean30) and mean discharge (Qmean30) of the preceding 30 days. Analyses of 36 events revealed seasonal trends for the slope, intercept and R² of linear log(DOC)-log(Q) regressions that can be best explained by the mean air temperature of the preceding 15 days. Continuously available optical DOC quality parameters SUVA254 and spectral slope (275 nm - 295 nm) systematically changed with shifts in discharge and in DOC concentration. This is underlined by selected FT-ICR-MS measurements indicating higher DOC aromaticity and oxygen content at high flow conditions. The change of DOC quality parameters during events indicate a shift in the activated source zones: DOC with a different quality was mobilized during high flow conditions when higher groundwater levels connected formerly disconnected DOC source zones to the stream. We conclude that the high concentration variability of DOC can be explained by a few controlling variables only. These variables can be linked to event-based DOC source activation and more seasonal controls of DOC production.
Álvarez, Alhejandra; Toledo, Héctor
2017-08-01
Gastritis, ulcers, and gastric malignancy have been linked to human gastric epithelial colonization by Helicobacter pylori. Characterization of the mechanisms by which H. pylori adapts to the human stomach environment is of crucial importance to understand H. pylori pathogenesis. In an effort to extend our knowledge of these mechanisms, we used proteomic analysis and qRT-PCR to characterize the role of the histone-like protein HU in the response of H. pylori to low pH. Proteomic analysis revealed that genes involved in chemotaxis, oxidative stress, or metabolism are under control of the HU protein. Also, expression of the virulence factors Ggt and NapA is affected by the null mutation of hup gene both at neutral and acid pH, as evidenced by qRT-PCR analysis. Those results showed that H. pylori gene expression is altered by shift to low pH, thus confirming that acid exposure leads to profound changes in genomic expression, and suggest that the HU protein is a regulator that may help the bacterium adapt to the acid stress. In accordance with previous reports, we found that the HU protein participates in gene expression regulation when the microorganism is exposed to acid stress. Such transcriptional regulation underlies protein accumulation in the H. pylori cell. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Kang, Yvonne Q.; François, Alexandre; Riesen, Nicolas; Monro, Tanya M.
2018-02-01
Whispering Gallery Mode (WGM) biosensors have been widely exploited over the past decade, owing to their unprecedented detection limits and label free capability. WGM based sensing mechanisms, such as resonance frequency shift, linewidth broadening, and splitting of the two counter-propagating WGMs, have been extensively researched and applied for bio-chemical sensing. However, the mode-splitting of the originally degenerate WGMs from different equatorial planes on a fluorescent microsphere has not been fully investigated. In this work, we break the symmetry of the surrounding environment outside the microsphere by partially embedding the sphere into a high-refractive-index medium (i.e. glue), to lift the degeneracy of the modes from different WGM planes. The split-modes from multiple planes of the fluorescent microsphere are indiscriminately collected. It is found that the effective quality factor Q of the WGMs increases non-conventionally as the Refractive Index (RI) of the probing liquid increases up to the point where it is equal to that of the glue. This presents a new methodology for quantifying changes in the probing environment based on the Q spoiling of the resonances as determined by the RI difference between the environment and that of the reference glue. Furthermore, we find that this sensing platform opens the door to simple self-referenced sensing techniques based on the analysis of the spectral positions of subsets of the split modes.
Yuan, Fenghua; Qian, Liangyue; Zhao, Xinliang; Liu, Jesse Y.; Song, Limin; D'Urso, Gennaro; Jain, Chaitanya; Zhang, Yanbin
2012-01-01
The Fanconi anemia complementation group A (FANCA) gene is one of 15 disease-causing genes and has been found to be mutated in ∼60% of Fanconi anemia patients. Using purified protein, we report that human FANCA has intrinsic affinity for nucleic acids. FANCA binds to both single-stranded (ssDNA) and double-stranded (dsDNA) DNAs; however, its affinity for ssDNA is significantly higher than for dsDNA in an electrophoretic mobility shift assay. FANCA also binds to RNA with an intriguingly higher affinity than its DNA counterpart. FANCA requires a certain length of nucleic acids for optimal binding. Using DNA and RNA ladders, we determined that the minimum number of nucleotides required for FANCA recognition is ∼30 for both DNA and RNA. By testing the affinity between FANCA and a variety of DNA structures, we found that a 5′-flap or 5′-tail on DNA facilitates its interaction with FANCA. A patient-derived FANCA truncation mutant (Q772X) has diminished affinity for both DNA and RNA. In contrast, the complementing C-terminal fragment of Q772X, C772–1455, retains the differentiated nucleic acid-binding activity (RNA > ssDNA > dsDNA), indicating that the nucleic acid-binding domain of FANCA is located primarily at its C terminus, where most disease-causing mutations are found. PMID:22194614
Yuan, Fenghua; Qian, Liangyue; Zhao, Xinliang; Liu, Jesse Y; Song, Limin; D'Urso, Gennaro; Jain, Chaitanya; Zhang, Yanbin
2012-02-10
The Fanconi anemia complementation group A (FANCA) gene is one of 15 disease-causing genes and has been found to be mutated in ∼60% of Fanconi anemia patients. Using purified protein, we report that human FANCA has intrinsic affinity for nucleic acids. FANCA binds to both single-stranded (ssDNA) and double-stranded (dsDNA) DNAs; however, its affinity for ssDNA is significantly higher than for dsDNA in an electrophoretic mobility shift assay. FANCA also binds to RNA with an intriguingly higher affinity than its DNA counterpart. FANCA requires a certain length of nucleic acids for optimal binding. Using DNA and RNA ladders, we determined that the minimum number of nucleotides required for FANCA recognition is ∼30 for both DNA and RNA. By testing the affinity between FANCA and a variety of DNA structures, we found that a 5'-flap or 5'-tail on DNA facilitates its interaction with FANCA. A patient-derived FANCA truncation mutant (Q772X) has diminished affinity for both DNA and RNA. In contrast, the complementing C-terminal fragment of Q772X, C772-1455, retains the differentiated nucleic acid-binding activity (RNA > ssDNA > dsDNA), indicating that the nucleic acid-binding domain of FANCA is located primarily at its C terminus, where most disease-causing mutations are found.
Oh, Jeong Seok; Cho, Daechul; Park, Tai Hyun
2005-11-01
A two-stage continuous culture of Escherichia coli in combination with a bacteriophage lambda system was performed in order to overcome the intrinsic plasmid instability that is frequently observed in recombinant fermentation. A phage lambda vector with a Q(-) mutation was used to enhance the expression of the lambda system. The optimal values of the important operational variables such as the substrate concentration, the dilution rate, and the mean residence time on the expression of the cloned gene were determined in both batch and continuous cultures. For all culturing modes, the full induction of the cloned gene was observed 4 h after the temperature shift. In the two stage continuous culture, the overproduction reached their maxima at D=0.25 h(-1) with 1.5 S(0) of the medium supply. The maximum productivity of the total beta-galactosidase was 16.3x10(6) U l(-1) h(-1), which was approximately seven times higher than that in the single-copy lysogenic stage. The recombinant cells were stable in the lysogenic state for more than 260 h, while they were stable for 40 h in the lytic state. The instability that developed rapidly in the second tank is believed to be due to the accumulation of lysis proteins as a result of vector leakage during the operation.
Abdi, Reza; Yasi, Mehdi
2015-01-01
The assessment of environmental flows in rivers is of vital importance for preserving riverine ecosystem processes. This paper addresses the evaluation of environmental flow requirements in three reaches along a typical perennial river (the Zab transboundary river, in north-west Iran), using different hydraulic, hydrological and ecological methods. The main objective of this study came from the construction of three dams and inter-basin transfer of water from the Zab River to the Urmia Lake. Eight hydrological methods (i.e. Tennant, Tessman, flow duration curve analysis, range of variability approach, Smakhtin, flow duration curve shifting, desktop reserve and 7Q2&10 (7-day low flow with a 2- and 10-year return period)); two hydraulic methods (slope value and maximum curvature); and two habitat simulation methods (hydraulic-ecologic, and Q Equation based on water quality indices) were used. Ecological needs of the riverine key species (mainly Barbus capito fish), river geometries, natural flow regime and the environmental status of river management were the main indices for determining the minimum flow requirements. The results indicate that the order of 35%, 17% and 18% of the mean annual flow are to be maintained for the upper, middle and downstream river reaches, respectively. The allocated monthly flow rates in the three Dams steering program are not sufficient to preserve the Zab River life.
Advanced purification strategy for CueR, a cysteine containing copper(I) and DNA binding protein.
Balogh, Ria K; Gyurcsik, Béla; Hunyadi-Gulyás, Éva; Christensen, Hans E M; Jancsó, Attila
2016-07-01
Metal ion regulation is essential for living organisms. In prokaryotes metal ion dependent transcriptional factors, the so-called metalloregulatory proteins play a fundamental role in controlling the concentration of metal ions. These proteins recognize metal ions with an outstanding selectivity. A detailed understanding of their function may be exploited in potential health, environmental and analytical applications. Members of the MerR protein family sense a broad range of mostly late transition and heavy metal ions through their cysteine thiolates. The air sensitivity of latter groups makes the expression and purification of such proteins challenging. Here we describe a method for the purification of the copper-regulatory CueR protein under optimized conditions. In order to avoid protein precipitation and/or eventual aggregation and to get rid of the co-purifying Escherichia coli elongation factor, our procedure consisted of four steps supplemented by DNA digestion. Subsequent anion exchange on Sepharose FF Q 16/10, affinity chromatography on Heparin FF 16/10, second anion exchange on Source 30 Q 16/13 and gel filtration on Superdex 75 26/60 resulted in large amounts of pure CueR protein without any affinity tag. Structure and functionality tests performed with mass spectrometry, circular dichroism spectroscopy and electrophoretic gel mobility shift assays approved the success of the purification procedure. Copyright © 2016 Elsevier Inc. All rights reserved.
Jin, Tao; Yan, Qingmei
2010-01-01
Using ammonia monooxygenase α-subunit (amoA) gene and 16S rRNA gene, the community structure and abundance of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in a nitrogen-removing reactor, which was operated for five phases, were characterized and quantified by cloning, terminal restriction fragment length polymorphism (T-RFLP), and quantitative polymerase chain reaction (qPCR). The results suggested that the dominant AOB in the reactor fell to the genus Nitrosomonas, while the dominant AOA belonged to Crenarchaeotal Group I.1a in phylum Crenarchaeota. Real-time PCR results demonstrated that the levels of AOB amoA varied from 2.9 × 103 to 2.3 × 105 copies per nanogram DNA, greatly (about 60 times) higher than those of AOA, which ranged from 1.7 × 102 to 3.8 × 103 copies per nanogram DNA. This indicated the possible leading role of AOB in the nitrification process in this study. T-RFLP results showed that the AOB community structure significantly shifted in different phases while AOA only showed one major peak for all the phases. The analyses also suggested that the AOB community was more sensitive than that of AOA to operational conditions, such as ammonia loading and dissolved oxygen. PMID:20405121