Sample records for q-switched nd-yag laser

  1. Combination of CO2 and Q-switched Nd:YAG lasers is more effective than Q-switched Nd:YAG laser alone for eyebrow tattoo removal.

    PubMed

    Radmanesh, Mohammad; Rafiei, Zohreh

    2015-04-01

    The eyebrow tattoo removal using Q-switched lasers is usually prolonged. Other modalities may be required to enhance the efficacy and shorten the treatment course. To compare the efficacy of Q-switched neodymium-doped yttrium aluminum garnet (Nd:YAG) laser alone versus combination of Q-switched Nd:YAG and Ultrapulse CO2 lasers for eyebrow tattoo removal after a single session. After local anesthesia, the right eyebrow of 20 patients was treated with Ultrapulse CO2 laser with the parameters of 4 J/cm(2) and 3.2 J/cm(2) for the first and the second passes. Both eyebrows were then treated with 1064-nm and 532-nm Q-switched Nd:YAG laser. The spot size and pulse duration were 3 mm and 5 nanoseconds for both wavelengths, and the fluence was 7 J/cm(2) for 1064 nm and 3 J/cm (2) for 532 nm. The side treated with combination of Q-switched Nd:YAG and CO2 lasers improved 75-100% in 6 of 20 patients versus only 1 of 20 in the side treated with Q-switched Nd:YAG alone. Similarly, the right side in 13 of 20 patients showed more than 50% improvement with combination therapy versus the left side (the monotherapy side), where only 6 of 20 cases showed more than 50% improvement. The Mann-Whitney test was 2.85 for the right side and 1.95 for the left side (P value = 0.007). Using Ultra pulse CO2 laser enhances the efficacy of Q-switched Nd:YAG laser in eyebrow tattoo removal.

  2. Compact conductively cooled electro-optical Q-switched Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Li, Chaoyang; Lu, Chengqiang; Li, Chuan; Zang, Yannan; Yang, Zhen; Han, Song; Li, Ye; Yang, Ning; Shi, Junfeng; Zhou, Zewu

    2017-11-01

    We report on a compact conductively cooled high-repetition-rate nanosecond Nd:YAG laser. The oscillator was an laser diode side-pumped electro-optical (EO) Q-switched Nd:YAG rod laser adopting unstable cavity with a variable reflectivity mirror. A pulse train of 142 mJ with duration of 10 ns, repetition rate of 80 Hz at 1064 nm has been achieved. Maximum pulse energy was obtained at the pump energy of 1380 mJ, corresponding to the optical-optical conversion efficiency of 10.3%. The peak power was deduced to be 14.2 MW. The near-field pattern demonstrated a nearly super Gaussian flat top profile. To our knowledge, this is the highest repetition rate operation for a conductively cooled EO Q-switched Nd:YAG rod laser.

  3. Passive Q switching of a solar-pumped Nd:YAG laser.

    PubMed

    Lando, M; Shimony, Y; Noter, Y; Benmair, R M; Yogev, A

    2000-04-20

    Passive Q switching is a preferable choice for switching the Q factor of a solar-pumped laser because it requires neither a driver nor an electrical power supply. The superior thermal characteristics and durability of Cr(4+):YAG single crystals as passive Q switches for lamp and diode-pumped high-power lasers has been demonstrated. Here we report on an average power of 37 W and a switching efficiency of 80% obtained by use of a solar-pumped Nd:YAG laser Q switched by a Cr(4+):YAG saturable absorber. Concentration of the pumping solar energy on the laser crystal was obtained with a three-stage concentrator, composed of 12 heliostats, a three-dimensional compound parabolic concentrator (CPC) and a two-dimensional CPC. The water-cooled passive Q switch also served as the laser rear mirror. Repetition rates of as much as 50 kHz, at pulse durations between 190 and 310 ns (FWHM) were achieved. From the experimental results, the saturated single-pass power absorption of the Cr(4+):YAG device was estimated as 3 ? 1%.

  4. Q-switched Nd:YAG optical vortex lasers.

    PubMed

    Kim, D J; Kim, J W; Clarkson, W A

    2013-12-02

    Q-switched operation of a high-quality Nd:YAG optical vortex laser with the first order Laguerre-Gaussian mode and well-determined helical wavefronts using a fiber-based pump beam conditioning scheme is reported. A simple two-mirror resonator incorporating an acousto-optic Q-switch was employed, along with an etalon and a Brewster plate to enforce the particular helicity of the output. The laser yielded Q-switched pulses with ~250 μJ pulse energy and ~33 ns pulse duration (FWHM) at a 0.1 kHz repetition rate for 5.1 W of absorbed pump power. The handedness of the helical wavefronts was preserved regardless of the repetition rates. The prospects of further power scaling and improved laser performance are discussed.

  5. Experimental study of electro-optical Q-switched pulsed Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    A, Maleki; M Kavosh, Tehrani; H, Saghafifar; M, H. Moghtader Dindarlu

    2016-03-01

    We report the specification of a compact and stable side diode-pumped Q-switched pulsed Nd:YAG laser. We experimentally study and compare the performance of the pulsed Nd:YAG laser in the free-running and Q-switched modes at different pulse repetition rates from 1 Hz to 100 Hz. The laser output energy is stabilized by using a special configuration of the optical resonator. In this laser, an unsymmetrical concave-concave resonator is used and this structure helps the mode volume to be nearly fixed when the pulse repetition rate is increased. According to the experimental results in the Q-switched operation, the laser output energy is nearly constant around 70 mJ with an FWHM pulse width of 7 ns at 100 Hz. The optical-to-optical conversion efficiency in the Q-switched regime is 17.5%.

  6. Pump beam waist-dependent pulse energy generation in Nd:YAG/Cr4+:YAG passively Q-switched microchip laser

    NASA Astrophysics Data System (ADS)

    Li, Chao-yu; Dong, Jun

    2016-08-01

    The incident pump beam waist-dependent pulse energy generation in Nd:YAG/Cr4+:YAG composite crystal passively Q-switched microchip laser has been investigated experimentally and theoretically by moving the Nd:YAG/Cr4+:YAG composite crystal along the pump beam direction. Highest pulse energy of 0.4 mJ has been generated when the Nd:YAG/Cr4+:YAG composite crystal is moved about 6 mm away from the focused pump beam waist. Laser pulses with pulse width of 1.7 ns and peak power of over 235 kW have been achieved. The theoretically calculated effective laser beam area at different positions of Nd:YAG/Cr4+:YAG composite crystal along the pump beam direction is in good agreement with the experimental results. The highest peak power can be generated by adjusting the pump beam waist incident on the Nd:YAG/Cr4+:YAG composite crystal to optimize the effective laser beam area in passively Q-switched microchip laser.

  7. Treatment of pigmented keratosis pilaris in Asian patients with a novel Q-switched Nd:YAG laser.

    PubMed

    Kim, Sangeun

    2011-06-01

    Treatment for most cases of keratosis pilaris requires simple reassurance and general skin care recommendations. Many Asian patients find lesions due to pigmented keratosis pilaris to be cosmetically unappealing. Treatment of post-inflammatory hyperpigmentation using a 1064-nm Q-switched Nd:YAG laser with low fluence is reported. To investigate the efficacy of a novel Q-switched Nd:YAG laser for the treatment of pigmented keratosis pilaris in Asian patients. Ten patients with pigmented keratosis pilaris underwent five weekly treatments using a Q-switched Nd:YAG laser (RevLite(®); HOYA ConBio(®), Freemont, CA, USA) at 1064 nm with a 6-mm spot size and a fluence of 5.9 J/cm(2). Photographic documentation was obtained at baseline and 2 months after the final treatment. Clinical improvement was achieved in all 10 patients with minimal adverse effects. For the treatment of keratosis pilaris, the use of a Q-switched Nd:YAG laser can be helpful for improving cosmetic appearance as it can improve pigmentation.

  8. Comparison of Q-switched Nd: YAG laser and fractional carbon dioxide laser for the treatment of solar lentigines in Asians.

    PubMed

    Vachiramon, Vasanop; Panmanee, Wikanda; Techapichetvanich, Thanya; Chanprapaph, Kumutnart

    2016-04-01

    Solar lentigines are benign pigmented lesions that occur mostly on sun-exposed areas. Q-switched and ablative lasers are effective for removing these lesions but the high incidence of postinflammatory hyperpigmentation raises concern in darker skin types. The objective of this study is to compare the efficacy and degree of postinflammatory hyperpigmentation with the Q-switched Nd:YAG and fractional carbon dioxide (CO2 ) laser for treatment of solar lentigines in Asians. Twenty-five Thai patients (skin phototype III-IV) with at least two lesions of solar lentigines on upper extremities were enrolled in this study. Two lesions were randomly selected for the treatment with a single session of Q-switched Nd:YAG or fractional CO2 laser. Outcomes were evaluated using physician grading scale, colorimeter, and patient self-assessment at 6 and 12 weeks after treatment. Side effects were recorded. A total of 532 nm Q-switched Nd:YAG laser showed significant improvement of pigmentation over fractional CO2 laser at 6th and 12th week by both colorimeter assessment and physician grading scale (P < 0.05). No significant difference in postinflammatory hyperpigmentation from both lasers was observed. In terms of patient self-assessment, 80% of the patients treated with 532 nm Q-switched Nd:YAG laser had excellent results compared to 8% in fractional CO2 laser group. However, fractional CO2 laser treatment had faster healing time and less pain score compared to Q-switched Nd:YAG laser. Q-switched Nd:YAG is superior to fractional CO2 laser for treatment of solar lentigines but requires longer healing time and produces more pain. The incidence of postinflammatory hyperpigmentation was not significantly different with both lasers. Further studies are needed to obtain the proper parameter and the treatment frequency of fractional CO2 laser in solar lentigines. © 2016 Wiley Periodicals, Inc.

  9. Actively Q-switched laser with novel Nd:YAG/YAG polygonal active-mirror

    NASA Astrophysics Data System (ADS)

    Lang, Ye; Chen, Yanzhong; Ge, Wenqi; He, Jianguo; Zhang, Hongbo; Liao, Lifen; Xin, Jianguo; Zhang, Jian; Fan, Zhongwei

    2018-03-01

    In this work, we demonstrate an efficient actively Q-switched laser based on a novel crystal Nd:YAG/YAG polygonal active mirror. A passively cooled crystal Nd:YAG/YAG polygonal active mirror with an end pump scheme was used as the gain medium. For the overlap between the TEM00 laser mode and large gain profile, a cavity was carefully designed with a large fundamental mode volume. With a maximum absorbed power of 3.1 W, a 685 mW average output power with a pulse repetition of 5 kHz was attained, and the corresponding optical-optical and slope efficiency were 22.1% and 27.7%, respectively. The pulse width was 133.9 ns. The beam quality (M 2) was 1.561 in the horizontal direction and 1.261 in the vertical direction.

  10. Q-switched pulse laser generation from double-cladding Nd:YAG ceramics waveguides.

    PubMed

    Tan, Yang; Luan, Qingfang; Liu, Fengqin; Chen, Feng; Vázquez de Aldana, Javier Rodríguez

    2013-08-12

    This work reports on the Q-switched pulsed laser generation from double-cladding Nd:YAG ceramic waveguides. Double-cladding waveguides with different combination of diameters were inscribed into a sample of Nd:YAG ceramic. With an additional semiconductor saturable absorber, stable pulsed laser emission at the wavelength of 1064 nm was achieved with pulses of 21 ns temporal duration and ~14 μJ pulse energy at a repetition rate of 3.65 MHz.

  11. The Effect of Anterior Stromal Puncture Using Q-Switched Nd:YAG Laser on Corneal Wound Healing

    PubMed Central

    Hamdy Abdelaziz, Mohamed; Fouad Ghoneim, Dina; Abdelkawi Ahmed, Salwa; Taher, Ibraheim Mohyeldin; Abdel- Salam, Ahmed Medhat

    2014-01-01

    Introduction: Recurrent corneal erosion occurs when the wounded corneal epithelium failed to adhere to the underlying stroma. Therefore, this work aimed to assess the effect of treatment of corneal injury using Q- switched Nd:YAG laser. Method: Twenty one New Zealand male rabbits weighing 2-2.5 kg and 3 months old were classified into three main groups. The control group: did not received any treatment (n=3 rabbits). The rest of the animals (n= 18 rabbits), corneal epithelium was injured by syringe needle and blade 15 and divided into:(A) Normal healing group: which was divided into three subgroups (n=3 rabbits each), and the animals were left for normal healing for1 day, 1 week, and 4 weeks respectively, (B) Laser treated group: divided into three subgroups (n=3 rabbit seach) and subjected to anterior stromal puncture using Q-switched Nd: YAG laser on corneal sub-epithelium or superficial stroma, and the animals were left for 1 day, 1 week, and 4 weeksrespectively. After the demonstrated periods, the corneas were isolated for estimation of total protein content, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), total antioxidative capacity (TAC), total oxidative capacity (TOC) and oxidative stress index (OSI). Results: The present results of corneal total protein showed increment in the percentage change in normal healed groups after 1 day, 1 week and 4 weeks by values of 93%, 68% and 39%. In Q-switched Nd: YAG laser treated group the results showed better improvement in corneal protein than normal healed group with percentage changes of 58%, 29%, and 7.5% respectively. In SDS- PAGE, a protein band at 110 KD appeared in the migrating epithelium for both normal healed group and Q-switched Nd:YAG laser treated group with changes in the peaks intensities at middle and low molecular weight regions. Moreover, after 4 weeks the peak at 110 KD disappeared in the wounded epithelium treated with Q-switched Nd:YAG. After four weeks, the OSI in laser

  12. Ablation of porcine ligamentum flavum with Ho:YAG, q-switched Ho:YAG, and quadrupled Nd:YAG lasers.

    PubMed

    Johnson, Matt R; Codd, Patrick J; Hill, Westin M; Boettcher, Tara

    2015-12-01

    Ligamentum flavum (LF) is a tough, rubbery connective tissue providing a portion of the ligamentous stability to the spinal column, and in its hypertrophied state forms a significant compressive pathology in degenerative spinal stenosis. The interaction of lasers and this biological tissue have not been thoroughly studied. Technological advances improving endoscopic surgical access to the spinal canal makes selective removal of LF using small, flexible tools such as laser-coupled fiber optics increasingly attractive for treatment of debilitating spinal stenosis. Testing was performed to assess the effect of Ho:YAG, Q-switched Ho:YAG, and frequency quadrupled Nd:YAG lasers on samples of porcine LF. The objective was to evaluate the suitability of these lasers for surgical removal of LF. LF was resected from porcine spine within 2 hours of sacrifice and stored in saline until immediately prior to laser irradiation, which occurred within an additional 2 hours. The optical absorbance of a sample was measured over the spectral band from 190 to 2,360 nm both before and after dehydration. For the experiments using the Ho:YAG (λ = 2,080 nm, tp  = 140 µs, FWHM) and Q-Switched Ho:YAG (λ = 2,080 nm, tp  = 260 ns, FWHM) lasers, energy was delivered to the LF through a laser-fiber optic with 600 µm core and NA = 0.39. For the experiment using the frequency quadrupled Nd:YAG laser (λ = 266 nm, tp  = 5 ns FWHM), rather than applying the laser energy through a laser-fiber, the energy was focused through an aperture and lens directly onto the LF. Five experiments were conducted to evaluate the effect of the given lasers on LF. First, using the Ho:YAG laser, the single-pulse laser-hole depth versus laser fluence was measured with the laser-fiber in direct contact with the LF (1 g force) and with a standoff distance of 1 mm between the laser-fiber face and the LF. Second, with the LF remaining in situ and the spine bisected

  13. Comparative study of passively Q-switched c-cut Nd:YVO4/Nd:YAG lasers based on CVD graphene and controlled operation

    NASA Astrophysics Data System (ADS)

    Jia, Fuqiang; Liu, Pei; Li, Kang; Chen, Hao; Cheng, Yongjie; Cai, Zhiping; Copner, Nigel

    2017-07-01

    In this paper, a comparative study of passively Q-switched c-cut Nd:YVO4 and Nd:YAG lasers using four different layers CVD graphene as saturable absorber are demonstrated experimentally for the first time. Moreover, it is successful to accurately control the frequency of repetition rates of the CVD graphern passively Q-switched lasers by pulsed pump. The impacts of laser materials, layers of CVD graphene and cavity length on output parameters are investigated intensively as well, the result shows that the c-cut Nd:YVO4 is a promising laser media compared with Nd:YAG for passively Q-switched lasers based on CVD graphene, as it has better performances in pulse width, pulse energy and peak power. A useful and cost-effective way to generate stable pulsed lasers by CVD graphene or other novel saturable materials are demonstrated.

  14. Hollow fiber optics with improved durability for high-peak-power pulses of Q-switched Nd:YAG lasers.

    PubMed

    Matsuura, Yuji; Tsuchiuchi, Akio; Noguchi, Hiroshi; Miyagi, Mitsunobu

    2007-03-10

    To improve the damage threshold of hollow optical waveguides for transmitting Q-switched Nd:YAG laser pulses, we optimize the metallization processes for the inner coating of fibers. For silver-coated hollow fiber as the base, second, and third Nd:YAG lasers, drying silver films at a moderate temperature and with inert gas flow is found to be effective. By using this drying process, the resistance to high-peak-power optical pulse radiation is drastically improved for fibers fabricated with and without the sensitizing process. The maximum peak power transmitted in the fiber is greater than 20 MW. To improve the energy threshold of aluminum-coated hollow fibers for the fourth and fifth harmonics of Nd:YAG lasers, a thin silver film is added between the aluminum film and the glass substrate to increase adhesion of the aluminum coating. By using this primer layer, the power threshold improves to 3 MW for the fourth harmonics of a Q-switched Nd:YAG laser light.

  15. A study on the clinical characteristics of treating nevus of Ota by Q-switched Nd:YAG laser.

    PubMed

    Yan, Liu; Di, Li; Weihua, Wang; Feng, Liu; Ruilian, Li; Jun, Zhou; Hui, Su; Zhaoxia, Ying; Weihui, Zeng

    2018-01-01

    The purpose of this study was to retrospectively analyze the clinical characteristics of treating nevus of Ota by Q-switched Nd:YAG laser in Laser Cosmetology Center of Department of Dermatology, the Second Hospital, Xi'an Jiaotong University. The data of 1168 patients of nevus of Ota were analyzed retrospectively, which included the correlation among lesion color, treatment sessions, sex, age, lesion types, and effect. The Q-switched (QS) Nd:YAG laser system had a higher number of treatment sessions which were positively associated with a better response to treatment. Other variables, including gender, age, the categorization of the lesion according to Tanino's classification, and the color of the lesion, were not associated with the response to treatment. The treatment of nevus of Ota with QS Nd:YAG laser is safe and effective, with rare complications.

  16. The pulsed dye laser versus the Q-switched Nd:YAG laser in laser-induced shock-wave lithotripsy.

    PubMed

    Thomas, S; Pensel, J; Engelhardt, R; Meyer, W; Hofstetter, A G

    1988-01-01

    To date, there are two fairly well-established alternatives for laser-induced shock-wave lithotripsy in clinical practice. The Q-switched Nd:YAG laser is distinguished by the high-stone selectivity of its coupler systems. The necessity of a coupler system and its fairly small conversion rate of light energy into mechanical energy present serious drawbacks. Furthermore, the minimal outer diameter of the transmission system is 1.8 mm. The pulsed-dye laser can be used with a highly flexible and uncomplicated 200-micron fiber. However, the laser system itself is more complicated than the Q-switched Nd:YAG laser and requires a great deal of maintenance. Biological evaluation of damage caused by direct irradiation shows that both laser systems produce minor damage of different degrees. YAG laser lithotripsy with the optomechanical coupler was assessed in 31 patients with ureteral calculi. The instability and limited effectiveness of the fiber application system necessitated auxiliary lithotripsy methods in 14 cases. Dye-laser lithotripsy is currently being tested in clinical application. Further development, such as systems for blind application or electronic feedback mechanisms to limit adverse tissue effects, have yet to be optimized. Nevertheless, laser-induced shock-wave lithotripsy has the potential to become a standard procedure in the endourologic management of stone disease.

  17. VCSEL end-pumped passively Q-switched Nd:YAG laser with adjustable pulse energy.

    PubMed

    Goldberg, Lew; McIntosh, Chris; Cole, Brian

    2011-02-28

    A compact, passively Q-switched Nd:YAG laser utilizing a Cr4+:YAG saturable absorber, is end-pumped by the focused emission from an 804 nm vertical-cavity surface-emitting laser (VCSEL) array. By changing the VCSEL operating current, we demonstrated 2x adjustability in the laser output pulse energy, from 9 mJ to 18 mJ. This energy variation was attributed to changes in the angular distribution of VCSEL emission with drive current, resulting in a change in the pump intensity distribution generated by a pump-light-focusing lens.

  18. High repetition-rate Q-switched and intracavity doubled diode-pumped Nd:YAG laser

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid; Lesh, James R.

    1992-01-01

    A Nd:YAG laser was end pumped with 2.2 W of continuous-wave (CW) diode laser output. Efficient operation of the laser at high repetition rates was emphasized. This laser provides 890 mW of TEM00 CW output at 1064 nm, and 340 mW of 532 nm average power at a Q-switched repetition rate of 25 kHz. Experimental data are compared with analysis.

  19. Reduction of timing jitter in a Q-Switched Nd:YAG laser by direct bleaching of a Cr4+:YAG saturable absorber.

    PubMed

    Cole, Brian; Goldberg, Lew; Trussell, C Ward; Hays, Alan; Schilling, Bradley W; McIntosh, Chris

    2009-02-02

    A method for optical triggering of a Q-switched Nd:YAG laser by direct bleaching of a Cr:YAG saturable absorber is described. This method involves the bleaching of a thin sheet of the saturable absorber from a direction orthogonal to the lasing axis using a single laser diode bar, where the Cr:YAG transmission increased from a non-bleached value of 47% to a bleached value of 63%. For steady state operation of a passively Q-switched laser (PRF=10 Hz), the pulse-to-pulse timing jitter showed approximately 12X reduction in standard deviation, from 241 nsec for free running operation to 20 nsec with optical triggering.

  20. Q-switched Nd:YAG/V:YAG microchip 1338 nm laser for laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Šulc, Jan; Jelínková, Helena; Nejezchleb, Karel; Škoda, Václav

    2017-12-01

    Q-switched microchip laser emitting radiation at wavelength 1338nm was tested as a radiation source for laser induced breakdown spectroscopy (LIBS). This laser used sandwich crystal which combined in one piece the cooling part (undoped YAG crystal 4mm long), the active laser part (Nd:YAG crystal 12mm long), and the saturable absorber (V:YAG crystal 0.7mm long). The diameter of this crystal was 5 mm. The microchip resonator consisted of dielectric mirrors directly deposited on the monolith crystal surfaces. The pump mirror (HT @ 808 nm, HR @ 1.3 ¹m) was placed on the undoped YAG part. The output coupler (R = 90% @ 1338 nm) was placed on the V:YAG part. The fibre-coupled 808nm pumping laser diode was operating in pulsed regime (rep. rate 250 Hz, pulse width 300 ¹s, pulse energy 6 mJ). Using this pumping, stable and high reproducible Q-switched pulses were generated at wavelength 1338 nm. Pulse length was 6.2 ns (FWHM) and the mean output power was 33mW. The single pulse energy and peak power was 0.13mJ and 21kW, respectively. Laser was operating in fundamental TEM00 mode. The laser radiation was focused on a tested sample using single plano-convex lens (focal length 75 mm). The focal spot radius was 40 ¹m. The corresponding peak-power density was 0.83GW/cm2. The laser induced break-down was successfully reached and corresponding laser-induced plasma spectra were recorded for set of metallic elements (Cu, Ag, Au, In, Zn, Al, Fe, Ni, Cr) and alloys (Sn-Pb solder, duralumin, stainless-steel, brass). To record the spectra, StellarNet BLACK-Comet concave grating CCD-based spectrometer was used without any special collimation optics. Thanks to used laser wavelength far from the detector sensitivity, no special filtering was needed to overcome the CCD dazzling. The constructed laser could significantly improve repletion-rate of up-to-date LIBS devices.

  1. Design of a high-power Nd:YAG Q-switched laser cavity

    NASA Astrophysics Data System (ADS)

    Singh, Ikbal; Kumar, Avinash; Nijhawan, O. P.

    1995-06-01

    An electro-optically Q-switched Nd:YAG laser resonator that uses two end prisms placed orthogonally perpendicular to each other has been designed. This configuration improves the stability of the resonator and does not alter the characteristics of the electro-optical Q switch. The outcoupling ratio of the cavity is optimized by a change in the azimuthal angle of a phase-matched Porro prism placed at one end of the cavity. The prism placed at the other end of the cavity is designed so that it introduces a phase change of Pi , regardless of its orientation and index of refraction, resulting in a more efficient and stable cavity.

  2. Theoretical and experimental investigations on high peak power Q-switched Nd:YAG laser at 1112 nm

    NASA Astrophysics Data System (ADS)

    He, Miao; Yang, Feng; Wang, Zhi-Chao; Gao, Hong-Wei; Yuan, Lei; Li, Chen-Long; Zong, Nan; Shen, Yu; Bo, Yong; Peng, Qin-Jun; Cui, Da-Fu; Xu, Zu-Yan

    2018-07-01

    We report on the experimental measurement and theoretical analysis on a Q-switched high peak power laser diode (LD) side-pumped 1112 nm Nd:YAG laser by means of special mirrors coating design in cavity. In theory, a numerical model, based on four-wavelength rate equations, is performed to analyze the competition process of different gain lines and the output characteristics of the Q-switched Nd:YAG laser. In the experiment, a maximum output power of 25.2 W with beam quality factor M2 of 1.46 is obtained at the pulse repetition rate of 2 kHz and 210 ns of pulse width, corresponding to a pulse energy and peak power of 12.6 mJ and 60 kW, respectively. The experimental data agree well with the theoretical simulation results.

  3. High-energy azimuthally polarized laser beam generation from an actively Q-switched Nd:YAG laser with c-cut YVO4 crystal

    NASA Astrophysics Data System (ADS)

    Guo, Jing; Zhang, Baofu; Jiao, Zhongxing; He, Guangyuan; Wang, Biao

    2018-05-01

    A high-energy, azimuthally polarized (AP) and actively Q-switched Nd:YAG laser is demonstrated. The thermal bipolar lensing effect in the Nd:YAG laser rod is used as a polarization discriminator, and a c-cut YVO4 crystal is inserted into the laser cavity to increase the mode-selecting ability of the cavity for AP mode. The laser generated AP pulses with maximum pulse energy as high as 4.2 mJ. To the best of our knowledge, this is the highest pulse energy obtained from an actively Q-switched AP laser. The pulse energy remained higher than 1 mJ over a wide range of repetition rates from 5 kHz to 25 kHz.

  4. The regeneration of thermal wound on mice skin (Mus Musculus) after Q-Switch Nd: YAG laser irradiation for cancer therapy candidate

    NASA Astrophysics Data System (ADS)

    Apsari, R.; Nahdliyatun, E.; Winarni, D.

    2017-09-01

    The aims of this study are to investigate the regeneration of mice skin tissue (Mus Musculus) irradiated by Q-Switch Nd: YAG laser and morphological change due to Q-Switch Nd: YAG laser irradiation compared to conventional heating (hairdryer). The 2-3 month of twenty-seven mice were used for experimental animals. Mice were incised in the dorsum by the damage effect of laser energy dose (therapeutic dose) of 29.5 J/cm2 with 10 seconds of exposure time, 10 Hz of repetition rate, and 100 pulses of the given single pulse energy. The mice skin tissue was injuried by hairdryer to get burned effect. Mice were divided into three groups, Group I (control) were not treated by anything, Group II were treated by Q-Switch Nd: YAG laser irradiation and sacrificed on (0, 1, 3, 5) days, and Group III were treated by hairdryer then sacrificed on (0, 1, 3, 5) days. Pathology examination showed that the energy of 29,5 J/cm2 dose produced the hole effect (ablation) through the hypodermic layer caused by optical breakdown and collagen coagulation. Thus, the 60 °C temperature of burn showed coagulation necrosis because piknosis discovered in the injured area. The regeneration process showed that the mice skin tissue's ability to regenerate was irradiated by fast laser because of the focus of Q-Switch Nd: YAG laser. It was showed by the scab releases on third day and completely reepithelialization formation on the fifth day. The collagen fibers distribution was same as normal skin tissue on day 5 and so did angiogenesis. Therefore, Q-Switch Nd: YAG laser can be applied for problems of dermatology medical therapies, especially melasma, nevus of ota and tatto therapy. For skin cancer therapy application, energy dose of unregenerated skin tissue is chosen because the death expected effect is permanent.

  5. Nanosecond-pulsed Q-switched Nd:YAG laser at 1064 nm with a gold nanotriangle saturable absorber

    NASA Astrophysics Data System (ADS)

    Chen, Xiaohan; Li, Ping; Dun, Yangyang; Song, Teng; Ma, Baomin

    2018-06-01

    Gold nanotriangles (GNTs) were successfully employed as a saturable absorber (SA) to achieve passively Q-switched lasers for the first time. The performance of the Q-switched Nd:YAG laser at 1064 nm has been systematically investigated. The corresponding shortest pulsewidth, the threshold pump power and the maximum Q-switched average output power were 275.5 ns, 1.37 W, and 171 mW, respectively. To our knowledge, this is the shortest pulsewidth and the lowest threshold in a passively Q-switched laser at approximately 1.1 µm based on a gold nanoparticle SA (GNPs-SA). Our experimental results proved that the GNTs-SA can be used as a promising saturable absorber for nanosecond-pulsed lasers.

  6. > 6 MW peak power at 532 nm from passively Q-switched Nd:YAG/Cr4+:YAG microchip laser.

    PubMed

    Bhandari, Rakesh; Taira, Takunori

    2011-09-26

    Megawatt peak power, giant pulse microchip lasers are attractive for wavelength conversion, provided their output is linearly polarized. We use a [110] cut Cr(4+):YAG for passively Q-switched Nd:YAG microchip laser to obtain a stable, linearly polarized output. Further, we optimize the conditions for second harmonic generation at 532 nm wavelength to achieve > 6 MW peak power, 1.7 mJ, 265 ps, 100 Hz pulses with a conversion efficiency of 85%. © 2011 Optical Society of America

  7. A Cr4+:YAG passively Q-switched Nd:YVO4 microchip laser for controllable high-order Hermite-Gaussian modes

    NASA Astrophysics Data System (ADS)

    Dong, Jun; He, Yu; Bai, Sheng-Chuang; Ueda, Ken-ichi; Kaminskii, Alexander A.

    2016-09-01

    A nanosecond, high peak power, passively Q-switched laser for controllable Hermite-Gaussian (HG) modes has been achieved by manipulating the saturated inversion population inside the gain medium. The stable HG modes are generated in a Cr4+:YAG passively Q-switched Nd:YVO4 microchip laser by applying a tilted pump beam. The asymmetrical saturated inversion population distribution inside the Nd:YVO4 crystal for desirable HG modes is manipulated by choosing the proper pump beam diameter and varying pump power. A HG9,8 mode passively Q-switched Nd:YVO4 microchip laser with average output power of 265 mW has been obtained. Laser pulses with a pulse width of 7.3 ns and peak power of over 1.7 kW working at 21 kHz have been generated in the passively Q-switched Nd:YVO4 microchip laser.

  8. Treatment of Melasma with the Photoacoustic Twin Pulse Mode of Low-Fluence 1,064 nm Q-Switched Nd:YAG Laser.

    PubMed

    Kim, Jee Young; Choi, Misoo; Nam, Chan Hee; Kim, Ji Seok; Kim, Myung Hwa; Park, Byung Cheol; Hong, Seung Phil

    2016-06-01

    Low-fluence 1,064 nm Q-switched Nd:YAG laser has been widely used for the treatment of melasma. Although new Q-switched Nd:YAG lasers with photoacoustic twin pulse (PTP) mode have been recently developed for high-efficiency, there is limited information available for the new technique. This study was designed to investigate the efficacy and adverse effects after few sessions of repeated low fluence 1,064 nm Q-switched Nd:YAG laser treatment with PTP mode in Asian women with melasma. Twenty-two Korean women were treated with a total of five sessions of low-fluence PTP mode Nd:YAG laser treatment (Pastelle®) at 2 weeks interval. Responses to treatments were evaluated by using Melasma Area and Severity Index (MASI) scoring, colorimeter measurement, and the investigators' and patients' overall assessments. Adverse events were recorded at each visit. Investigators' and patients' overall assessment showed that 'significantly improved' was assessed by 13 (59.1%) and 19 of 22 patients (86.4%), respectively. MASI scores were significantly reduced by 20.4%. The lightness, measured by using a colorimeter, was significantly increased by 1.3 point. Notable adverse events were not observed. After 5 sessions of laser therapy alone, about 60% of the subjects showed significant improvement. Few sessions of repeated laser toning treatment using the PTP mode is a safe and effective way to treat facial melasma.

  9. Repetitively Q-switched Nd:BeL lasers

    NASA Technical Reports Server (NTRS)

    Degnan, J.; Birnbaum, M.; Deshazer, L. G.

    1979-01-01

    The thermal and mechanical characteristics which will ultimately limit the performance of Nd:BeL at high average power levels were investigated. The output beam characteristics (pulse width, peak power, beam dimensions and collimation) were determined at high repetition rates for both Nd:BeL and Nd:YAG. The output of Nd:BeL was shown to exceed that of Nd:YAG by a factor of 2.7 at low Q-switched repetition rates (1 Hz). This result follows from the smaller stimulated emission cross section of x-axis Nb:BeL compared to that of NdYAG by the same factor. At high repetition rates (10 Hz) the output of Nd:Bel falls to a level of three-fifths of its low repetition rate value while under similar tests the output of Nd:YAG remains essentially constant. A comparison of the measured values of the elasto-optic coefficients, the dn/dT values and the linear expansion coefficients for BeL and YAG failed to provide an explanation for the performance of BeL; however, thermal lensing was observed in Nd:BeL. Results imply that the output of a high repetition rate Q-switched Nd:BeL laser (high thermal loading) could be dramatically increased by utilization of a resonator design to compensate for the thermal lensing effects.

  10. VCSEL End-Pumped Passively Q-Switched Nd:YAG Laser with Adjustable Pulse Energy

    DTIC Science & Technology

    2011-02-28

    entire VCSEL array. Neglecting lens aberrations, the focused spot diameter is given by focal length of the lens times the full divergence angle of the...pump intensity distribution generated by a pump-light-focusing lens . ©2011 Optical Society of America OCIS codes: (140.3530) Lasers Neodymium...Passive Q-Switch and Brewster Plate in a Pulsed Nd: YAG Laser,” IEEE J. Quantum Electron. 31(10), 1738–1741 (1995). 6. G. Xiao, and M. Bass, “A

  11. Comparison of Q-switched Nd:YAG laser alone versus its combination with ultrapulse CO2 laser for the treatment of black tattoo.

    PubMed

    Vanarase, Mithila; Gautam, Ram Krishan; Arora, Pooja; Bajaj, Sonali; Meena, Neha; Khurana, Ananta

    2017-10-01

    Q-switched lasers are conventionally used for the treatment of black tattoo. However, they require multiple sittings, and the response may be slow due to competing epidermal pigment in dark skin. To compare the efficacy of Q-switched Nd:YAG laser alone with its combination with ultrapulse CO 2 for the removal of black tattoo. Sixty patients with black tattoo were randomized into two groups viz., group A and group B. Group A was treated with QS Nd:YAG laser (1064 nm) alone, and group B received combination of ablative ultrapulse CO 2 followed by fixed-dose QS Nd:YAG laser (1064 nm), at 6-week interval for a maximum of 6 sittings. After each sitting, 3 independent physicians noted percentage of improvement that was evaluated using visual analogue scale (VAS) and grading system for tattoo ink lightening (TIL). Combination laser (group B) showed statistically significant improvement in mean VAS score in the last 2 noted visits as compared to 1st session (p < 0.007, p < 0.001) and TIL mean score in last three noted visits as compared to 1st session (p < 0.008, p < 0.020, and p < 0.004). There was no statistically significant difference in the side effect profile of both the groups. For refractory professional tattoos, combination of ultrapulse CO 2 laser and QS Nd:YAG laser is superior to QS Nd:YAG laser alone.

  12. Treatment of Melasma with the Photoacoustic Twin Pulse Mode of Low-Fluence 1,064 nm Q-Switched Nd:YAG Laser

    PubMed Central

    Kim, Jee Young; Choi, Misoo; Nam, Chan Hee; Kim, Ji Seok; Kim, Myung Hwa; Park, Byung Cheol

    2016-01-01

    Background Low-fluence 1,064 nm Q-switched Nd:YAG laser has been widely used for the treatment of melasma. Although new Q-switched Nd:YAG lasers with photoacoustic twin pulse (PTP) mode have been recently developed for high-efficiency, there is limited information available for the new technique. Objective This study was designed to investigate the efficacy and adverse effects after few sessions of repeated low fluence 1,064 nm Q-switched Nd:YAG laser treatment with PTP mode in Asian women with melasma. Methods Twenty-two Korean women were treated with a total of five sessions of low-fluence PTP mode Nd:YAG laser treatment (Pastelle®) at 2 weeks interval. Responses to treatments were evaluated by using Melasma Area and Severity Index (MASI) scoring, colorimeter measurement, and the investigators' and patients' overall assessments. Adverse events were recorded at each visit. Results Investigators' and patients' overall assessment showed that 'significantly improved' was assessed by 13 (59.1%) and 19 of 22 patients (86.4%), respectively. MASI scores were significantly reduced by 20.4%. The lightness, measured by using a colorimeter, was significantly increased by 1.3 point. Notable adverse events were not observed. Conclusion After 5 sessions of laser therapy alone, about 60% of the subjects showed significant improvement. Few sessions of repeated laser toning treatment using the PTP mode is a safe and effective way to treat facial melasma. PMID:27274626

  13. LD side-pumped Nd:YAG Q-switched laser without water cooling

    NASA Astrophysics Data System (ADS)

    Ling, Ming; Jin, Guang-yong; Tan, Xue-chun; Wu, Zhi-chao; Liang, Zhu

    2009-07-01

    A novel LD side-pumped Nd:YAG Q-switched solid-state laser, which made use of the special pumping strcture with conductive cooling instead of water cooling, was investigated.After selecting an appropriate length and diameter of Nd:YAG laser crystal rod and using three groups of laser diode centimeter bar which was composed by 12 laser diodes and uniformly arranged according to the angle of 120°,side-pumping structure of laser was accomplished.Adopting plano-concave resonator ,mending double end face of laser crystal and designing heat-stability resonator made the resonator steadily oscillate.Laser crystal rod which was tight fastened by copper net was conductively cooled and radiation block was furnished on the external of copper net for increasing the radiation capacity.High reflection gold film was plated on the cooling wall in the opposite way of pumping light, so that the laser crystal was uniformly pumped and the laser with low order mode output.Making the use of pillar lens focus and ray trace computing, reasonable parameters were caculated to couple pumping light to laser with high-efficiency.It was the electrooptic Q-switched which was made to be micro-integration eliminating voltage by KD*P crystal that improved the ratio between acting and unacting.Inner heat radiated from laser in good time with TE cooler and the laser ran at constant temperature with water cooling when the big external heat sink emanated a steady heat to periphery. Experiments revealed that the syetem pumping efficiency riseed by 18% and the laser threshold energy was 192 mJ under the condition of this novel pumping structure. The low mode output of 10-12ns pulse width and the maximum output energy of 98 mJ was achieved with an incident pump energy of 720 mJ in 1064nm.The optical-to-optical conversion efficiency was up to 13. 6 %,and the power instability in 24 h was better than +/-1. 7 %.

  14. Clinical effects of iridectomy performed by laser YAG Nd+3 Q switch

    NASA Astrophysics Data System (ADS)

    Kecik, Tadeusz; Zydecki, Miroslaw

    1995-03-01

    Clinical effects of iridectomy performed by the use of laser Yag Nd+3-Q-switch on 38 patients treated for intra-ocular pressure increase were analyzed. In 32 cases primary glaucoma was diagnosed. In 11 cases secondary glaucoma was caused by pupil blocking. Pressure normalization was obtained in 27 cases (71%). In the remaining 11 patients pressure decreasing was acquired but at the same time administration of antiglaucoma medicines was indispensable. Time of observation took from 4 weeks to 3 years.

  15. Passively Q-switched and mode-locked dual-wavelength Nd:GGG laser with Cr4+:YAG as a saturable absorber

    NASA Astrophysics Data System (ADS)

    Chu, Hongwei; Zhao, Shengzhi; Li, Yufei; Yang, Kejian; Li, Guiqiu; Li, Dechun; Zhao, Jia; Qiao, Wenchao; Li, Tao; Feng, Chuansheng; Zhang, Haijuan

    2014-03-01

    By using neodymium-doped gadolinium gallium garnet (Nd:GGG) as a laser medium, a simultaneously passively Q-switched and mode-locked (QML) dual-wavelength laser with Cr4+:YAG as a saturable absorber is presented. The laser simultaneously oscillated at 1061 nm and 1063 nm, corresponding to a frequency difference of 0.53 THz. QML pulses with nearly 100% modulation depth were observed. The mode-locked pulse duration underneath the Q-switched envelope was estimated to be about 908 ps. The experimental results indicated that the dual-wavelength QML Nd:GGG laser can be an excellent candidate for the generation of THz waves.

  16. Morphologic evaluations of Q-switched Nd:YAG laser injury of human retina

    NASA Astrophysics Data System (ADS)

    Scales, David K.; Schuschereba, Steven T.; Lund, David J.; Stuck, Bruce E.

    1997-05-01

    Depiction of the cellular and immune responses in the human model is critical to design rational therapies preventing/limiting cellular destruction and ultimately functional visual loss following acute laser injuries. We report the light and electron microscopy histologic findings in a controlled ocular human laser exposure. Following informed consent, the normal eye of a patient scheduled to undergo exenteration for invasive carcinoma of the orbit was exposed to both continuous wave and Q-switched lasers. Four hours prior to exenteration, argon G lesions were placed in the superior/temporal quadrant and Nd:YAG lesions were placed in the inferior/temporal quadrant. After enucleation, the retina was prepared for routine light and transmission electron microscopy. Histology of the argon G lesions showed primarily photoreceptor and RPE photocoagulation damage. Neutrophil adhesion was limited within the choroid and no neutrophils were observed in the subretinal space. In contrast, the 4 hr Nd:YAG lesions showed extensive retinal disruption, hemorrhage within subretinal and intraretinal spaces, neutrophil accumulation in the retina, and an extensive neutrophil chemotaxic and emigration response in the choroid. Severe laser injuries elicit a significant neutrophil response by 4 hr, suggesting that neutrophils should be an early stage therapeutic target.

  17. Compact, passively Q-switched Nd:YAG laser for the MESSENGER mission to Mercury.

    PubMed

    Krebs, Danny J; Novo-Gradac, Anne-Marie; Li, Steven X; Lindauer, Steven J; Afzal, Robert S; Yu, Anthony W

    2005-03-20

    A compact, passively Q-switched Nd:YAG laser has been developed for the Mercury Laser Altimeter, an instrument on the Mercury Surface, Space Environment, Geochemistry, and Ranging mission to the planet Mercury. The laser achieves 5.4% efficiency with a near-diffraction-limited beam. It passed all space-flight environmental tests at subsystem, instrument, and satellite integration testing and successfully completes a postlaunch aliveness check en route to Mercury. The laser design draws on a heritage of previous laser altimetry missions, specifically the Ice Cloud and Elevation Satellite and the Mars Global Surveyor, but incorporates thermal management features unique to the requirements of an orbit of the planet Mercury.

  18. Q-switched Nd: YAG laser versus trichloroacetic acid peeling in the treatment of melasma among Egyptian patients.

    PubMed

    Moubasher, Alaa E A; Youssef, Eman M K; Abou-Taleb, Doaa A E

    2014-08-01

    Melasma is a common disorder of facial hyperpigmentation that is often resistant to treatment. To evaluate the efficacy of trichloroacetic acid (TCA) peeling in comparison with double frequency Q-switched neodymium-doped:yttrium aluminum garnet (QS-Nd:YAG) laser in the treatment of melasma. Sixty-five adult Egyptian female patients with melasma were enrolled in this study. Wood light was used for determination of the histological type of melasma. The patients were divided into 4 groups according to treatment modalities: peeling with different concentrations of TCA and double frequency QS-Nd:YAG laser. Trichloroacetic acid peeling was performed every 2 weeks up to 8 sessions, whereas laser treatment was performed every month up to 6 sessions. Melasma area and severity index (MASI) score was used before and after treatment for evaluation. Improvement percentage of MASI score was significantly higher among patients treated with TCA 25% (p < .001). Epidermal type of melasma was significantly improved compared with the dermal type (p = .0029). Q-switched neodymium-doped:yttrium aluminum garnet laser showed the highest incidence of postinflammatory hyperpigmentation (53.3%). Trichloroacetic acid peeling is effective in the treatment of melasma, TCA 25% was the most effective concentration. Q-switched neodymium-doped:yttrium aluminum garnet laser is not recommended in the treatment of melasma because it was associated with the highest incidence of complications.

  19. MoS2-based passively Q-switched diode-pumped Nd:YAG laser at 946 nm

    NASA Astrophysics Data System (ADS)

    Lin, Haifeng; Zhu, Wenzhang.; Xiong, Feibing; Cai, Lie

    2017-06-01

    We demonstrate a passively Q-switched Nd: YAG quasi-three-level laser operating at 946 nm using MoS2 as saturable absorber. A maximum average output power of 210 mW is achieved at an absorbed pump power of 6.67 W with a slope efficiency of about 5.8%. The shortest pulse width and maximum pulse repetition frequency are measured to be 280 ns and 609 kHz, respectively. The maximum pulse energy and maximum pulse peak power are therefore estimated to be about 0.35 μJ and 1.23 W, respectively. This work represents the first MoS2-based Q-switched laser operating at 0.9 μm spectral region.

  20. Compact, Passively Q-Switched Nd:YAG Laser for the MESSENGER Mission to the Planet Mercury

    NASA Technical Reports Server (NTRS)

    Krebs, Danny J.; Novo-Gradac, Anne-Marie; Li, Steven X.; Lindauer, Steven J.; Afzal, Robert S.; Yu, Antony

    2004-01-01

    A compact, passively Q-switched Nd:YAG laser has been developed for the Mercury Laser Altimeter (MLA) instrument which is an instrument on the MESSENGER mission to the planet Mercury. The laser achieves 5.4 percent efficiency with a near diffraction limited beam. It has passed all space flight environmental tests at system, instrument, and satellite integration. The laser design draws on a heritage of previous laser altimetry missions, specifically ISESAT and Mars Global Surveyor; but incorporates thermal management features unique to the requirements of an orbit of the planet Mercury.

  1. Structure of picosecond pulses of a Q-switched and mode-locked diode-pumped Nd:YAG laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donin, V I; Yakovin, D V; Gribanov, A V

    2015-12-31

    The pulse duration of a diode-pumped Nd:YAG laser, in which Q-switching with mode-locking (QML regime) is achieved using a spherical mirror and a travelling-wave acousto-optic modulator, is directly measured with a streak camera. It is found that the picosecond pulses can have a non-single-pulse structure, which is explained by excitation of several competing transverse modes in the Q-switching regime with a pulse repetition rate of 1 kHz. In the case of cw mode-locking (without Q-switching), a new (auto-QML) regime is observed, in which the pulse train repetition rate is determined by the frequency of the relaxation oscillations of the lasermore » field while the train contains single picosecond pulses. (control of laser radiation parameters)« less

  2. Ten years of Nd:YAG Q-switched/mode-locked ophthalmic laser system clinical treatment

    NASA Astrophysics Data System (ADS)

    Jelinkova, Helena; Pasta, Jiri; Hamal, Karel; Cech, Miroslav; Prochazka, Ivan

    1999-06-01

    Plasma breakdown generated by high power lasers is used in ophthalmic microsurgery for perforation of the various membranes. We report on ten years of clinical experiences with the ophthalmic Nd:YAG laser system operating alternatively in both Q-switched or mode-locked regimes. This option gives the surgeon a possibility to compare the effect of treatments with nanosecond or picosecond pulses. The pulse duration in the picosecond regime is 25 ps, the length of a nanosecond pulse is 4 ns and the energy is variable up to 70 mJ. In the ten year period the laser system was used for more than 10 000 treatments. From the results is possible to conclude that in clinical practice the picosecond pulses are better for the posterior capsule opacification treatment and that there are not retinal complications. The nanosecond pulses are useful for iridectomies. Our constructed Nd:YAG laser system provides the surgeons with the possibility to use different photodisruptive regimes for special indications, which can be very useful for the ophthalmologists.

  3. High power high repetition rate diode side-pumped Q-switched Nd:YAG rod laser

    NASA Astrophysics Data System (ADS)

    Lebiush, E.; Lavi, R.; Tzuk, Y.; Jackel, S.; Lallouz, R.; Tsadka, S.

    1998-01-01

    A Q-switched diode side-pumped Nd:YAG rod laser is presented. The design is based on close coupled diodes which are mounted side by side to a laser rod cut at Brewster angle. No intra-cavity optics are needed to compensate for the induced thermal lensing of the rod. This laser produces 10 W average power with 30 ns pulse width and beam quality of 1.3 times diffraction limited at 10 kHz repetition rate. The light to light conversion efficiency is 12%. The same average power and beam quality is kept while operating the laser at repetition rates up to 50 kHz.

  4. Treatment of traumatic tattoo with the Q-switched Nd:YAG laser.

    PubMed

    Gorouhi, Farzam; Davari, Parastoo; Kashani, Mansour Nassiri; Firooz, Alireza

    2007-12-01

    Traumatic tattoos are undesirable tattoos caused by different foreign bodies such as fireworks' particles, sand, metals, glass, gunpowder, asphalt, dust, or petroleum products embedded forcefully in the dermis. We report the case of a 54-year-old man who presented with sand and asphalt tattooing on his face following a bomb explosion 15 years ago. Q-switched Nd:YAG laser at a wavelength of 1064 nm with a spot size of 4 mm and a fluence of 7.96 J/cm(2) were applied to treat the patient. The patient tolerated the treatment very well. Most of the blue dots became whitened immediately after the procedure and remained almost clear after a 6-month follow-up.

  5. An injection seeded single frequency Nd:YAG Q-switched laser with precisely controllable laser pulse firing time

    NASA Astrophysics Data System (ADS)

    Wu, Frank F.; Khizhnyak, Anatoliy; Markov, Vladimir

    2010-02-01

    We have realized a single frequency Q-switched Nd:YAG laser with precisely controllable lasing time and thus enabled synchronization of multi-laser systems. The use of injection seeding to the slave ring oscillator results in unidirectional Q-switched laser oscillation with suppression of bidirectional Q-switched oscillation that otherwise would be initiated from spontaneous emission if the seeding laser is not present. Under normal condition, the cavity is high in loss during the pumping period; then a Pockels cell opens the cavity to form the pulse build up, with a second Pockels cell to perform cavity dumping, generating the Q-switched pulse output with optimized characteristics. The two Pockels cells can be replaced by a single unit if an adjustable gated electrical pulse is applied to the Pockels cell in which the pulse front is used to open the cavity and the falling edge to dump the laser pulse. Proper selection of the pump parameters and Pockels-cell gating enables operation of the system in a mode in which the Q-switched pulse can be formed only under the seeding condition. The advantage of the realized regime is in stable laser operation with no need in adjustment of the seeded light wavelength and the mode of the cavity. It is found that the frequency of the Q-switched laser radiation matches well to the injected seeded laser mode. By using two-stage amplifiers, an output energy better than 300 mJ has been achieved in MOPA configuration without active control of the cavity length and with pulse width adjustability from several nanoseconds to 20 ns. The Q-switched oscillator operates not only at precisely controlled firing time but also can be tuned over wide range. This will enable multi-laser systems synchronization and frequency locking down each other if necessary.

  6. Suppression of parasitic oscillations in a core-doped ceramic Nd:YAG laser by Sm:YAG cladding.

    PubMed

    Huss, Rafael; Wilhelm, Ralf; Kolleck, Christian; Neumann, Jörg; Kracht, Dietmar

    2010-06-07

    The onset of parasitic oscillations limits the extraction efficiency and therefore energy scaling of Q-switched lasers. A solid-state laser was end pumped with a fiber-coupled diode laser and operated in q-cw as well as in passively Q-switched operation. For Q-switched operation, we demonstrate the suppression of parasitic oscillations in a core-doped ceramic Nd:YAG laser by Sm:YAG cladding.

  7. Influence of UV illumination on the cold temperature operation of a LiNbO(3) Q-switched Nd:YAG laser.

    PubMed

    Cole, Brian; Goldberg, Lew; King, Vernon; Leach, Jeff

    2010-04-26

    UV illumination of a lithium niobate Q-switch was demonstrated as an effective means to eliminate a loss in hold-off and associated prelasing that occurs under cold temperature operation of Q-switched lasers. This degradation occurs due to the pyroelectric effect, where an accumulation of charge on crystal faces results in a reduction in the Q-switch hold-off and a spatially variable loss of the Q-switch in its high-transmission state, both resulting in lowering of the maximum Q-switched pulse energy. With UV illumination, the resulting creation of photo-generated carriers was shown to be effective in eliminating both of these effects. A Q-switched Nd:YAG laser utilizing UV-illuminated LiNbO(3) was shown to operate under cold temperatures without prelasing or spatially variable loss.

  8. Optical triggering of a Q-switched Nd:YAG laser via transverse bleaching of a Cr:YAG saturable absorber.

    PubMed

    Cole, Brian; Lei, Jonathan; DiLazaro, Tom; Schilling, Bradley; Goldberg, Lew

    2009-11-01

    Optical triggering via direct bleaching of a Cr:YAG saturable absorber was applied to a monolithic Nd:YAG/Cr:YAG laser crystal. The method uses a single laser diode bar to bleach a thin sheet within the saturable absorber from a direction orthogonal to the lasing axis. By placing the Q-switch at the time corresponding to the steepest slope (dT/dt) for change in transmission during bleaching, the pulse-to-pulse timing jitter showed a 13.2x reduction in standard deviation, from 132 ns for free-running operation to 10 ns with optical triggering. We measured that a fluence of 60 kW/cm(2) was sufficient to enable optical triggering, where a diode appropriately sized for the length of the Cr:YAG (approximately 3 mm) would then require only approximately 150 W of optical power over a 1-2 micros duration to enable effective jitter reduction. Additionally, we measured an increase in optical-to-optical efficiency with optical triggering, where the efficiency improved from 12% to 13.5%.

  9. A split face study to document the safety and efficacy of clearance of melasma with a 5 ns q switched Nd YAG laser versus a 50 ns q switched Nd YAG laser.

    PubMed

    Alsaad, Salman M S; Ross, E Victor; Mishra, Vineet; Miller, Lee

    2014-12-01

    To determine the safety and efficacy of a 50 ns Q switched Nd YAG laser vs. a 5 ns Q switched Nd YAG laser for clearance of melasma. To compare subject satisfaction, efficacy, and comfort level between the two lasers. This is a prospective, randomized split face clinical study. The study was approved by the Scripps IRB. Ten healthy female subjects with moderate to severe melasma were enrolled. Each subject had three laser treatments one month apart. Patients were followed up approximately 1 month, 3 months, and 6 months after the final laser treatment. A treatment session consisted of a microdermabrasion, 1064 nm QS laser, and topicals. Subjects were asked to rate treatment pain based on a numerical scale range 0-10 (0 = no pain and 10 = worst pain). A melasma area and severity index (MASI) grading system was applied. Also, melanin measurements were acquired by a reflectance spectrophotometer. Side effects were documented during the study including post treatment erythema. Eight patients completed the study. Subjects showed improvement on both sides of the face. From baseline to 1 month post the final laser treatment, the average MASI scores showed a 16% reduction for the 50 ns QS 1064 nm laser vs. a 27% reduction for the 5 ns QS 1064 nm laser (both significant versus baseline pigment, P < 0.05). This difference in MASI scores between the two lasers was not statistically significant (P = 0.87930). Laser treatments displayed mild erythema that resolved after one day. The melanin meter measurements showed a reduction in pigment readings on both sides. Three months after the final treatment there was some relapse in the melasma, as the mean pigment reduction fell to 12% for the 50 ns laser and 11% for the 5 ns laser. By 3 months pigment reduction was not statistically significant for either laser, and no significant differences in pigment reduction were noted between the two pulse durations. There was a statistically significant difference (P < 0.05) in pain scores

  10. High-fluence 1064-nm Q-Switched Nd:YAG laser: Safe and effective treatment of café-au-lait macules in Asian patients.

    PubMed

    Baek, Jin Ok; Park, Il-Joong; Lee, Kyung Real; Ryu, Ha Ryeong; Kim, Jeongsoo; Lee, Seulki; Kim, Yu Ri; Hur, Hoon

    2018-06-01

    Café-au-lait macules (CALMs) are benign cutaneous hyperpigmentary disorders. Usually, laser therapies for cosmetic concerns result in more severe side effects in the people of Asian descent than that of Caucasians. Unfortunately, there is no gold standard for the laser treatment of CALMs in skin of people of Asian descent. To investigate the efficacy and safety of a high-fluence 1064-nm Q-switched neodymium-doped yttrium aluminum garnet (Nd:YAG) laser treatment of CALMs in Asian patients. The medical records of 35 Korean patients (age range: 1 to 40 years old, mean age: 18.5 years) diagnosed with isolated CALMs were reviewed retrospectively. The patients were treated with a 1064-nm Q-switched Nd:YAG laser. The parameters were a spot size of 7 mm, a fluence of 2.2-2.4 J/cm 2 with a slow single sliding-stacking pass, and a pulse rate of 10 Hz with a 1-week interval for 20-50 sessions. At the week of the final treatment, all treated CALMs showed considerable pigmentation removal without any permanent side effects, such as scaring, mottled hypopigmentation and postinflammatory hyperpigmentation (PIH). All treated CALMs showed more than 50% clinical improvement. No recurrence was observed in any of the patients after 12 months of follow-up. A high-fluence 1064-nm Q-switched Nd:YAG laser treatment of CALMs in Asian patients is a safe and effective method without side effects and recurrence. © 2018 Wiley Periodicals, Inc.

  11. Modeling and optimization of actively Q-switched Nd-doped quasi-three-level laser

    NASA Astrophysics Data System (ADS)

    Yan, Renpeng; Yu, Xin; Li, Xudong; Chen, Deying; Gao, Jing

    2013-09-01

    The energy transfer upconversion and the ground state absorption are considered in solving the rate equations for an active Q-switched quasi-three-level laser. The dependence of output pulse characters on the laser parameters is investigated by solving the rate equations. The influence of the energy transfer upconversion on the pulsed laser performance is illustrated and discussed. By this model, the optimal parameters could be achieved for arbitrary quasi-three-level Q-switched lasers. An acousto-optical Q-switched Nd:YAG 946 nm laser is constructed and the reliability of the theoretical model is demonstrated.

  12. Passively Q-switched Nd3+ solid-state lasers with antimonene as saturable absorber.

    PubMed

    Wang, Mengixa; Zhang, Fang; Wang, Zhengping; Wu, Zhixin; Xu, Xinguang

    2018-02-19

    Based on the saturable absorption feature of a two-dimensional (2D) nano-material, antimonene, the passively Q-switched operation for solid-state laser was realized for the first time. For the 946 and 1064 nm laser emissions of the Nd:YAG crystal, the Q-switched pulse widths were 209 and 129 ns, and the peak powers were 1.48, 1.77 W, respectively. For the 1342 nm laser emission of the Nd:YVO 4 crystal, the Q-switched pulse width was 48 ns, giving a peak power of 28.17 W. Our research shows that antimonene can be used as a stable, broadband optical modulating device for a solid-state laser, which will be particularly effective for long wavelength operation.

  13. Long-term results in low-fluence 1064-nm Q-Switched Nd:YAG laser for melasma: Is it effective?

    PubMed

    Gokalp, Hilal; Akkaya, Ayse Deniz; Oram, Yasemin

    2016-12-01

    This study assessed the safety and clinical efficacy of a low-fluence 1064-nm Q-switched neodymium-doped:yttrium aluminum garnet (QS-Nd:YAG) laser in the treatment of patients with melasma. The study evaluated 34 melasma patients treated at a single institution using a 1064-nm QS-Nd:YAG laser. The laser parameters were 6 mm spot size and 2.5 J/cm 2 fluence with multiple passes for 6-10 (median 8) sessions at 2-week intervals. Outcomes were evaluated using photography, the modified Melasma Area and Severity Index (mMASI) score, and patient satisfaction interviews after the last treatment and 1 year after the last treatment. After the low-fluence 1064-nm QS-Nd:YAG laser treatments, the mean mMASI score decreased from 6.7 ± 3.3 to 3.2 ± 1.6 (P < 0.01). After treatment completion, 20 of 34 patients (58.8%) rated themselves as having at least a 50% reduction in melasma severity. One year after the last treatment, recurrence was observed in 20 patients (58.8%) and the mean mMASI score increased from 3.2 ± 1.6 to 5.8 ± 1.9 in all patients. The recurrence of low-fluence 1064-nm QS-Nd:YAG laser rates in melasma was high when the long-term results were considered. This result may be attributed to certain patient and treatment-related factors. © 2016 Wiley Periodicals, Inc.

  14. Injection-seeded operation of a Q-switched Cr,Tm,Ho:YAG laser

    NASA Technical Reports Server (NTRS)

    Henderson, Sammy W.; Hale, Charley P.; Magee, James R.

    1991-01-01

    Single-frequency Tm,Ho:YAG lasers operating near 2 microns are attractive sources for several applications including eye-safe laser radar (lidar) and pumping of AgGaSe2 parametric oscillators for efficient generation of longer wavelengths. As part of a program to develop a coherent lidar system using Tm,Ho:YAG lasers, a diode laser-pumped tunable CW single-longitudinal-mode (SLM) Cr:Tm:Ho:YAG laser and a flashlamp-pumped single-transverse-mode Q-switched Cr,Tm,Ho:YAG laser were developed. The CW laser was used to injection-seed the flashlamp-pumped laser, resulting in SLM Q-switched output. Operational characteristics of the CW and Q-switched lasers and injection-seeding results are reported.

  15. Efficient Q-switched Tm:YAG ceramic slab laser.

    PubMed

    Zhang, Shuaiyi; Wang, Mingjian; Xu, Lin; Wang, Yan; Tang, Yulong; Cheng, Xiaojin; Chen, Weibiao; Xu, Jianqiu; Jiang, Benxue; Pan, Yubai

    2011-01-17

    Characteristics of Tm:YAG ceramic for high efficient 2-μm lasers are analyzed. Efficient diode end-pumped continuous-wave and Q-switched Tm:YAG ceramic lasers are demonstrated. At the absorbed pump power of 53.2W, the maximum continuous wave (cw) output power of 17.2 W around 2016 nm was obtained with the output transmission of 5%. The optical conversion efficiency is 32.3%, corresponding to a slope efficiency of 36.5%. For Q-switched operation, the shortest width of 69 ns was achieved with the pulse repetition frequency of 500 Hz and single pulse energy of 20.4 mJ, which indicates excellent energy storage capability of the Tm:YAG ceramic.

  16. Retrospective analysis of melasma treatment using a dual mode of low-fluence Q-switched and long-pulse Nd:YAG laser vs. low-fluence Q-switched Nd:YAG laser monotherapy.

    PubMed

    Choi, Chun Pil; Yim, Seon Mi; Seo, Soo Hong; Ahn, Hyo Hyun; Kye, Young Chul; Choi, Jae Eun

    2015-02-01

    Despite the effectiveness of low-fluence Q-switched Nd:YAG laser (QSNY) treatment in melasma, adverse events, including mottled hypopigmentation (MH) and rebound hyperpigmentation (RH) have been reported. To compare the effectiveness and safety of combination therapy using low-fluence QSNY and long-pulse Nd:YAG laser (LPNY) (Dual toning), with low-fluence QSNY monotherapy (QS toning), in Asian melasma patients. Patients were treated for 10 sessions at 1-week intervals with QSNY (6 mm spot); 2.5-3.0 J/cm(2) for QS toning (n = 177) or 2.1-2.5 J/cm(2) for dual toning (n = 183). The dual toning group was immediately treated with LPNY (7 mm spot, 15-17 J/cm(2)). The results were evaluated using the modified Melasma Area and Severity Index (mMASI) score and the physician's global assessment. MH or RH were significantly lower (1.1% vs. 14.1%) and the treatment efficacy was improved (median decrease of mMASI, 3.6 vs. 3.0) in the dual toning group compared with the QS toning group. Periorbital melasma showed distinctively high rates of adverse events in the QS toning group (23.9% vs. 5.7%), which were significantly reduced in the dual toning group (2.9%). Dual toning could represent a safe and effective treatment for Asian melasma patients, as it is associated with minimal adverse events and improved treatment efficacy compared with QS toning monotherapy.

  17. Novel treatment of Hori's nevus: A combination of fractional nonablative 2,940-nm Er:YAG and low-fluence 1,064-nm Q-switched Nd:YAG laser.

    PubMed

    Tian, Brian Wei Cheng Anthony

    2015-01-01

    To demonstrate a combination laser therapy to treat Hori's nevus. A prospective study. A Singapore-based clinic. Five female patients, aged 30-46 years, with bilateral malar Hori's nevus. Photographs were taken before treatment and 1 month after laser treatment was completed. These were graded by three independent physicians. The patients were also asked to grade their treatment response subjectively. They were followed up for a total of 3 months after laser treatment to monitor recurrence. The fractional nonablative 2,940-nm Er:YAG laser with a fluence of 0.7 J/cm(2), spot size 12 mm, and frequency 15 Hz was used to perform a full-face single-pass treatment. Subsequently, a second pass and third pass over Hori's nevi were done bilaterally till the clinical endpoint of skin whitening. The 1,064-nm Q-switched (QS) Nd:YAG at a fluence of 2.0 J/cm(2), frequency 2 Hz, and 4-mm spot size was used to deliver multiple passes over Hori's nevus till erythema with mild petechiae appeared. We repeated the treatment once a week for 3 more consecutive weeks. All five patients had above 80% improvement in their pigmentation and two (skin type III) achieved complete 100% clearance. Based on the patients' subjective assessments, all five of them expressed satisfaction and felt that their pigmentation had improved. There were no complications noted. The fractional nonablative 2940 nm Er:YAG laser and Q-switched 1064nm laser Nd:YAG combination is an effective and safe treatment for Hori's nevus.

  18. Pulse compression in an electro-optic Q-switched diode-pumped YVO4/Nd:YVO4 laser with a Cr4+:YAG saturable absorber.

    PubMed

    Li, Tao; Zhao, Shengzhi; Zhuo, Zhuang; Yang, Kejian; Li, Guiqiu; Li, Dechun

    2009-04-20

    A diode end-pumped doubly Q-switched YVO4/Nd:YVO4 laser has been realized for the first time to our knowledge by using both an electro-optic (EO) modulator and a Cr4):YAG saturable absorber. A 3.8 ns pulse width is generated by this laser under a pump power of 15 W at 2 kHz, which is obviously compressed in comparison with that of 8.8 ns from a single actively EO Q-switched laser. Under the same conditions, peak power values of 174.7 and 93 kW are also obtained. A coupled equation is given to theoretically analyze the experimental data. The experimental and theoretical results show that the doubly Q-switched laser has the advantages of a shorter pulse width and higher pulse peak power in contrast with a singly Q-switched laser.

  19. Nd:YAG-laser-Q-switching with a photo-elastic modulator and applications

    NASA Astrophysics Data System (ADS)

    Bammer, F.; Petkovšek, R.; Dominguez, H.; Liedl, G.

    2010-05-01

    We present a rod-Nd:YAG-Laser, side-pumped with eight 50W-laser diode bars at 808nm, and Q-switched with a Single Crystal Photo-Elastic Modulator at 95.1 kHz. The latter is made of a z-cut LiNbO3-crystal, which is electrically y-excited on the mechanical resonance frequency of the x-longitudinal oscillation. With a voltage amplitude of 3 V the crystal shows a strong oscillation such that due to the photo-elastic effect a high polarization modulation is achieved, which, together with a polarizer, can be used as a simple optical switch. With this inside the laser resonator the average power is 47.8W in cw-mode and 45.5W in pulsed mode, with pulse peak powers of 4 kW and pulse widths of 100ns. This kind of operation is similar to cw-operation but offers due to the high peak powers different interaction physics with matter. The source is therefore suited for micro-welding of metals, LIDAR, rapid prototyping of plastics, marking/engraving/cutting of plastics, marking of glasses. In cases where high precision and a small heat affected zone are necessary this simple kind of pulsed operation may be advantageous, when compared to cw-operation.

  20. Treatment of pigmentary disorders in patients with skin of color with a novel 755 nm picosecond, Q-switched ruby, and Q-switched Nd:YAG nanosecond lasers: A retrospective photographic review.

    PubMed

    Levin, Melissa Kanchanapoomi; Ng, Elise; Bae, Yoon-Soo Cindy; Brauer, Jeremy A; Geronemus, Roy G

    2016-02-01

    Laser procedures in skin of color (SOC) patients are challenging due to the increased risk of dyspigmentation and scarring. A novel 755 nm alexandrite picosecond laser has demonstrated effectiveness for tattoo removal and treatment of acne scars. No studies to date have evaluated its applications in pigmentary disorders. The purpose of this retrospective study was to evaluate the safety profile and efficacy of the picosecond alexandrite laser compared to the current standard treatment, Q-switched ruby and neodynium (Nd):YAG nanosecond lasers, for pigmentary disorders in SOC patients. A retrospective photographic and chart evaluation of seventy 755 nm alexandrite picosecond, ninety-two Q-switched frequency doubled 532 nm and 1,064 nm Nd:YAG nanosecond, and forty-seven Q-switched 694 nm ruby nanosecond laser treatments, in forty-two subjects of Fitzpatrick skin types III-VI was conducted in a single laser specialty center. The picosecond laser was a research prototype device. Treatment efficacy was assessed by two blinded physician evaluators, using a visual analog scale for percentage of pigmentary clearance in standard photographs. Subject assessment of efficacy, satisfaction, and adverse events was performed using a questionnaire survey. The most common pigmentary disorder treated was Nevus of Ota (38.1%), followed by solar lentigines (23.8%). Other pigmentary disorders included post-inflammatory hyperpigmentation, congenital nevus, café au lait macule, dermal melanocytosis, Nevus of Ito, and Becker's nevus. Clinical efficacy of the Q-switched nanosecond lasers and picosecond laser treatments were comparable for lesions treated on the face with a mean visual analog score of 2.57 and 2.44, respectively, corresponding to approximately 50% pigmentary clearance. Subject questionnaires were completed in 58.8% of the picosecond subjects and 52.0% of the Q-switched subjects. Eighty four percent of subjects receiving Q-switched nanosecond laser treatments and 50% of the

  1. Megawatt level UV output from [110] Cr⁴⁺:YAG passively Q-switched microchip laser.

    PubMed

    Bhandari, Rakesh; Taira, Takunori

    2011-11-07

    Recent development of megawatt peak power, giant pulse microchip lasers has opened new opportunities for efficient wavelength conversion, provided the output of the microchip laser is linearly polarized. We obtain > 2 MW peak power, 260 ps, 100 Hz pulses at 266 nm by fourth harmonic conversion of a linearly polarized Nd:YAG microchip laser that is passively Q-switched with [110] cut Cr⁴⁺:YAG. The SHG and FHG conversion efficiencies are 85% and 51%, respectively.

  2. Electrically Tunable Nd:YAG waveguide laser based on Graphene

    PubMed Central

    Ma, Linan; Tan, Yang; Akhmadaliev, Shavkat; Zhou, Shengqiang; Chen, Feng

    2016-01-01

    We demonstrate a tunable hybrid Graphene-Nd:YAG cladding waveguide laser exploiting the electro-optic and the Joule heating effects of Graphene. A cladding Nd:YAG waveguide was fabricated by the ion irradiation. The multi-layer graphene were transferred onto the waveguide surface as the saturable absorber to get the Q-switched pulsed laser oscillation in the waveguide. Composing with appropriate electrodes, graphene based capacitance and heater were formed on the surface of the Nd:YAG waveguide. Through electrical control of graphene, the state of the hybrid waveguide laser was turned on or off. And the laser operation of the hybrid waveguide was electrically tuned between the continuous wave laser and the nanosecond pulsed laser. PMID:27833114

  3. Novel treatment of Hori's nevus: A combination of fractional nonablative 2,940-nm Er:YAG and low-fluence 1,064-nm Q-switched Nd:YAG laser

    PubMed Central

    Tian, Brian Wei Cheng Anthony

    2015-01-01

    Objective: To demonstrate a combination laser therapy to treat Hori's nevus. Design: A prospective study. Setting: A Singapore-based clinic. Participants: Five female patients, aged 30-46 years, with bilateral malar Hori's nevus. Measurements: Photographs were taken before treatment and 1 month after laser treatment was completed. These were graded by three independent physicians. The patients were also asked to grade their treatment response subjectively. They were followed up for a total of 3 months after laser treatment to monitor recurrence. Materials and Methods: The fractional nonablative 2,940-nm Er:YAG laser with a fluence of 0.7 J/cm2, spot size 12 mm, and frequency 15 Hz was used to perform a full-face single-pass treatment. Subsequently, a second pass and third pass over Hori's nevi were done bilaterally till the clinical endpoint of skin whitening. The 1,064-nm Q-switched (QS) Nd:YAG at a fluence of 2.0 J/cm2, frequency 2 Hz, and 4-mm spot size was used to deliver multiple passes over Hori's nevus till erythema with mild petechiae appeared. We repeated the treatment once a week for 3 more consecutive weeks. Results: All five patients had above 80% improvement in their pigmentation and two (skin type III) achieved complete 100% clearance. Based on the patients’ subjective assessments, all five of them expressed satisfaction and felt that their pigmentation had improved. There were no complications noted. Conclusion: The fractional nonablative 2940 nm Er:YAG laser and Q-switched 1064nm laser Nd:YAG combination is an effective and safe treatment for Hori's nevus. PMID:26865788

  4. Passively Q-switched Nd:YAG/Cr(4+):YAG bonded crystal microchip laser operating at 1112  nm and its application for second-harmonic generation.

    PubMed

    Fu, S G; Ouyang, X Y; Liu, X J

    2015-10-10

    A passively Q-switched Nd:YAG/Cr4+:YAG microchip laser operating at 1112 nm is demonstrated. Under a pump power of 5.5 W, a maximum average output power of 623 mW was obtained with T=6% output coupler, corresponding to an optical-to-optical conversion efficiency of 11.3% and a slope efficiency of 19.5%. The minimum pulse width was 2.8 ns, the pulse energy and peak power were 39.3 μJ and 14 kW, respectively. Additionally, based on the 1112 nm laser, a 230 mW 556 nm green-yellow laser was achieved within an LBO crystal.

  5. Diode-end-pumped single-longitudinal-mode passively Q-switched Nd:GGG laser

    NASA Astrophysics Data System (ADS)

    Xue, Feng; Zhang, Sasa; Cong, Zhenhua; Huang, Qingjie; Guan, Chen; Wu, Qianwen; Chen, Hui; Bai, Fen; Liu, Zhaojun

    2018-03-01

    Diode-end-pumped passively Q-switched Nd:GGG laser in a ring cavity at 1062 nm was demonstrated. Single-longitudinal-mode laser linewidth less than 0.5 pm was accomplished by unidirectional operation. The maximum output pulse energy was 437 µJ and the pulse width was 43 ns when Cr4+:YAG with an initial transmission of 61% was used.

  6. Photoablation of the cornea with a Q-switched Er:YAG laser

    NASA Astrophysics Data System (ADS)

    Lubatschowski, Holger; Hetzel, U.; Kermani, Omid; Ziolek, Carsten; Drommer, Wolfgang; Ertmer, Wolfgang

    1997-12-01

    In this study the ablation characteristics and the wound healing process of rabbit cornea irradiated with a Q- switched Er:YAG laser was evaluated. The laser, emitting at 2.94 micrometers wavelength, has a pulse width of 100 ns. The spot size on the corneal surface was 1 mm in diameter at a fluence of 750 mJ/cm2. The laser beam was applied by a `flying spot' mode, performing refractive ablations of -7 to -8 dpt. As a biological model, the corneas of 9 rabbits were irradiated. The post-treatment follow-up was as long as 39 days. The treated corneas were investigated by light and electron microscopy. The wound healing on rabbit cornea of the Q-switched Er:YAG laser radiation in corneal tissue processing resembles to what is known from ArF- excimer laser application. To shorten the pulse width by means of Q-switching is one major key to the successful application of the Er:YAG laser for PRK.

  7. Novel technique to treat melasma in Chinese: The combination of 2940-nm fractional Er:YAG and 1064-nm Q-switched Nd:YAG laser.

    PubMed

    Tian, Wei Cheng Brian Anthony

    2016-01-01

    Melasma is one of the most common pigmented lesions in Chinese women. Although topical therapies are the mainstay treatment, lasers are being used increasingly to treat pigmented lesions. Laser treatment of melasma is however still controversial. This is because lasers have not been able to produce complete clearance of melasma and recurrence rates are high. Laser treatments also cause complications such as hypopigmentation and post-inflammatory hyperpigmentation. In this article, we report on a novel technique using a combination of fractional 2940-nm Er:YAG and 1064-nm Q-switched Nd:YAG lasers. We achieved a rapid improvement in two cases of melasma in Chinese type III skin. The improvement was seen rapidly within a month of treatment. Follow-up at 6 months showed sustained results with no complications. This novel technique is able to safely confer excellent and sustained clearance within a short treatment time.

  8. High-efficiency diode-pumped actively Q-switched ceramic Nd:YAG/BaWO₄ Raman laser operating at 1666 nm.

    PubMed

    Zhang, H N; Chen, X H; Wang, Q P; Zhang, X Y; Chang, J; Gao, L; Shen, H B; Cong, Z H; Liu, Z J; Tao, X T; Li, P

    2014-05-01

    A diode-pumped actively Q-switched Raman laser employing BaWO4 as the Raman active medium and a ceramic Nd:YAG laser operating at 1444 nm as the pump source is demonstrated. The first-Stokes-Raman generation at 1666 nm is achieved. With a pump power of 20.3 W and pulse repetition frequency rate of 5 kHz, a maximum output power of 1.21 W is obtained, which is the highest output power for a 1.6 μm Raman laser. The corresponding optical-to-optical conversion efficiency is 6%; the pulse energy and peak power are 242 μJ and 8.96 kW, respectively.

  9. Investigations of Q-switching and mode locking in diode-pumped Nd:YVO4 laser with passive saturable absorbers

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, Jacek; Jabczynski, Jan K.; Zendzian, Waldemar

    2005-03-01

    The saturable absorbers (Cr4+:YAG, GaAs and LiF crystals for 1064-nm wavelength, V3+:YAG crystals for 1340-nm respectively) were examined as passive Mode Lockers and Q-switches in diode pumped Nd:YVO4 lasers in the Z-type resonators. In each case, partially modulated long trains of QML pulses were observed. As a rule, envelopes with about 1 μs duration and more than 50% depth of modulation were observed. For stabilization of the mode locking trains nonlinear crystals (KTP or LBO) as negative feedback elements were inserted. The fully modulated QML trains for intracavity II harmonic conversion at 670-nm wavelength in V3+:YAG Q-switched Nd:YVO4 laser with LBO crystal were demonstrated.

  10. Diode-pumped passively Q-switched Nd:YAG ceramic laser with a gold nanotriangles saturable absorber at 1 µm

    NASA Astrophysics Data System (ADS)

    Bai, Jinxi; Li, Ping; Chen, Xiaohan; Guo, Lei; Wang, Lili; Liu, Binghai

    2017-08-01

    Passively Q-switched Nd:YAG ceramic lasers at 1064 and 1123 nm are demonstrated based on a gold nanotriangles saturable absorber (GNTs-SA) for the first time. The maximum average output power reaches 226 mW at 1064 nm and 172 mW at 1123 nm with corresponding shortest pulse widths and maximum pulse repetition rates of (179 ns, 320 kHz) and (231 ns, 457 kHz), respectively. Our results prove that the GNTs-SA is a promising saturable absorber around the 1-µm region.

  11. Potential role of S100A8 in skin rejuvenation with the 1064-nm Q-switched Nd:YAG laser.

    PubMed

    Qin, Yan; Qin, Xiaofeng; Xu, Peng; Zhi, Yuanting; Xia, Weili; Dang, Yongyan; Gu, Jun; Ye, Xiyun

    2018-04-01

    The 1064-nm Q-switched Nd:YAG laser is demonstrated to be effective for non-ablative skin rejuvenation, but the molecular mechanism by which dermis responses to laser-induced damage and initiates skin remodeling is still unclear. HaCaT cells and 3T3 skin fibroblasts were irradiated with the 1064-nm Q-switched Nd:YAG laser at the different doses. Then, cells were collected and lysed for PCR and Western blot analysis. Cell viability was detected by Cell Counting Kit-8 (CCK-8) before and after laser irradiation. The expressions of S100A8, advanced glycosylation end product-specific receptor (RAGE) and inflammatory cytokines in two cell lines were markedly upregulated after laser treatments. The PCR, Western blot, and ELISA analysis showed the significant increase of type I and III procollagen in the 3T3 cells treated with the 1064-nm laser. Interestingly, si S100A8 effectively inhibited the expression of cytokines and collagen, while S100A8 treatments significantly increased them. P-p38 and p-p65 levels were also elevated after the 1064-nm laser irradiation, which is positively related with S100A8. Cell viability and reactive oxygen species (ROS) levels were not changed, while the content of superoxidase dismutase (SOD) in two cells was increased after laser irradiation. Our results demonstrated that the overexpression of S100A8 induced by the 1064-nm laser irradiation triggered inflammatory reactions in skin cells. The inflammatory microenvironment and improvement of skin antioxidant capacity contribute to new collagen synthesis in the skin cells. Thus, S100A8 was required for laser-induced new collagen synthesis in skin cells. p38/MAPK and NF-κB signal pathways were involved in S100A8-mediated inflammatory reactions in response to laser irradiation.

  12. Evaluation of a commercially available passively Q-switched Nd:YAG laser with LiF: F2- saturable absorber for laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Carson, Cantwell G.; Goueguel, Christian L.; Sanghapi, Hervé; Jain, Jinesh; McIntyre, Dustin

    2016-05-01

    Interest in passively Q-switched microchip lasers as a means for miniaturization of laser-induced breakdown spectroscopy (LIBS) apparatus has rapidly grown in the last years. To explore the possibility of using a comparatively UV-vis transparent absorber, we herein present the first report on the evaluation of a commercially available flash lamp-pumped passively Q-switched Nd:YAG laser with LiF: F2- saturable absorber as an excitation source in LIBS. Quantitative measurements of barium, strontium, rubidium and lithium in granite, rhyolite, basalt and syenite whole-rock glass samples were performed. Using a gated intensified benchtop spectrometer, limits of detection of 0.97, 23, 37, and 144 ppm were obtained for Li, Sr, Rb, and Ba, respectively. Finally, we discuss the advantages of using such a laser unit for LIBS applications in terms of ablation efficiency, analytical performances, output energy, and standoff capabilities.

  13. Q-switched Nd: YAG laser alone or with modified Jessner chemical peeling for treatment of mixed melasma in dark skin types: A comparative clinical, histopathological, and immunohistochemical study.

    PubMed

    Saleh, Fatma; Moftah, Noha H; Abdel-Azim, Eman; Gharieb, Marwa G

    2017-10-22

    Treatment of mixed melasma remains challenging. Promising results have been achieved with low-fluence 1064-nm Q-switched Nd-YAG laser; however, multiple sessions are necessary with occurrence of complications especially in dark skin types. So, combination methods may be recommended. To compare efficacy of Q-switched Nd-YAG laser alone or with modified Jessner's peel in mixed melasma in dark skin. Nineteen patients with mixed melasma received 6 sessions of laser on left side of face and alternating laser and modified Jessner on right side. Evaluation was carried out clinically through modified melasma area and severity index at 1 month after last session. Using histopathological, immunohistochemical, and computerized morphometric analysis, objective evaluation of melanin particle surface area and MART-1-positive cells was performed for pre- and post-treated skin biopsies. There was significant clinical improvement on both sides of face (P < .001), without significant difference (P > .05). At the sixth laser session on left side of face, ill-defined mottled hypopigmentation was observed in 21.05% of patients. Histopathologically, melanin particle surface area and number of MART-1-positive cells (total, epidermal, and dermal) were significantly decreased after two treatment modalities (P < .001), without significant difference in their reduction percentage between both sides of face (P > .05). Low-fluence Q-switched Nd-YAG laser alone and with modified Jessner's peel are equally effective regimens for mixed melasma clinically, histopathologically, and immunohistochemically. However, combined method is preferred, especially in dark skin, for obtaining better cosmetic result with fewer side effects of multiple laser sessions and decreasing cost rate of laser. © 2017 Wiley Periodicals, Inc.

  14. Development of a passively Q-switched Nd:YAG microchip laser for use in the Satellite Laser Ranging 2000 project

    NASA Astrophysics Data System (ADS)

    Gompers, Samuel Leo

    Presently, NASA is designing a replacement for its existing satellite laser ranging systems. These systems are used to measure Earth-satellite distances, tectonic plate movement, variations in rotational motion and other geodetic phenomena. Satellite Laser Ranging 2000 (SLR2000) is envisioned as a fully automated, sub- centimeter accuracy, eye-safe, low-cost replacement to the current SLR systems. It is expected to overcome present limitations by operating autonomously; being free of optical, chemical or electrical hazards; and having a greater average time between failures. Expected shot range precision is about one centimeter with normal point precision of better than three centimeters. This system will have twenty-four hour tracking coverage. SLR2000 specifications dictate operation at visible wavelengths with eye-safe energies on the order of one hundred microjoules and repetition rates on the order of two kilohertz. The optical subsystem of SLR2000 includes a passively Q- switched Nd:YAG microlaser. Passive Q-switching will be achieved using a saturable absorber and offers a number of advantages over the mode-locked lasers currently used in ranging stations: no need for long resonators with tight thermal control; no electro-optic switch required for single pulse selection; saturable absorbers precluding the use of carcinogenic dyes and solvents; and RF drive frequency electronics not tied to the resonator length of the laser cavity. The presented work describes the research and development of a prototype laser used to produce the energies, repetition rates and pulsewidths required for SLR2000. Optimization theories and models were applied to the laser design in order to accurately predict and assess performance characteristics of both gain medium and saturable absorber. Data were obtained which illustrated the affect of pump laser saturation and thermal lensing of the gain medium. Important laboratory skills and techniques were acquired in the design and

  15. Multi-Billion Shot, High-Fluence Exposure of Cr(4+): YAG Passive Q-Switch

    NASA Technical Reports Server (NTRS)

    Stephen, Mark A.; Dallas, Joseph L.; Afzal, Robert S.

    1997-01-01

    NASA's Goddard Space Flight Center is developing the Geoscience Laser Altimeter System (GLAS) employing a diode pumped, Q-Switched, ND:YAG laser operating at 40 Hz repetition rate. To meet the five-year mission lifetime goal, a single transmitter would accumulate over 6.3 billion shots. Cr(4+):YAG is a promising candidate material for passively Q-switching the laser. Historically, the performance of saturable absorbers has degraded over long-duration usage. To measure the multi-billion shot performance of Cr(4+):YAG, a passively Q-switched GLAS-like oscillator was tested at an accelerated repetition rate of 500 Hz. The intracavity fluence was calculated to be approximately 2.5 J/cm(exp 2). The laser was monitored autonomously for 165 days. There was no evidence of change in the material optical properties during the 7.2 billion shot test.. All observed changes in laser operation could be attributed to pump laser diode aging. This is the first demonstration of multi-billion shot exposure testing of Cr(4+):YAG in this pulse energy regime

  16. Low-threshold, nanosecond, high-repetition-rate vortex pulses with controllable helicity generated in Cr,Nd:YAG self-Q-switched microchip laser

    NASA Astrophysics Data System (ADS)

    He, Hong-Sen; Chen, Zhen; Li, Hong-Bin; Dong, Jun

    2018-05-01

    A high repetition rate, nanosecond, pulsed optical vortex beam has been generated in a Cr,Nd:YAG self-Q-switched microchip laser pumped by the annular-beam formed with a hollow focus lens. The lasing threshold for vortex pulses is 0.9 W. A pulse width of 6.5 ns and a repetition rate of over 330 kHz have been achieved. The average output power of 1 W and the slope efficiency of 46.6% have been obtained. The helicity of the optical vortices has been controlled by adjusting the tilted angle between Cr,Nd:YAG crystal and output coupler. The work provides a new method for developing pulsed optical vortices for potential applications on quantum communication and optical trapping.

  17. Nd:YAG development for spaceborne laser ranging system

    NASA Technical Reports Server (NTRS)

    Harper, L. L.; Logan, K. E.; Williams, R. H.; Stevens, D. A.

    1979-01-01

    The results of the development of a unique modelocked laser device to be utilized in future NASA space-based, ultraprecision laser ranger systems are summarized. The engineering breadboard constructed proved the feasibility of the pump-pulsed, actively modelocked, PTM Q-switched Nd:YAG laser concept for the generation of subnanosecond pulses suitable for ultra-precision ranging. The laser breadboard also included a double-pass Nd:YAG amplifier and provision for a Type II KD*P frequency doubler. The specific technical accomplishment was the generation of single 150 psec, 20-mJ pulses at 10 pps at a wavelength of 1.064 micrometers with 25 dB suppression of pre-and post-pulses.

  18. Resonantly diode-pumped continuous-wave and Q-switched Er:YAG laser at 1645 nm.

    PubMed

    Chang, N W H; Simakov, N; Hosken, D J; Munch, J; Ottaway, D J; Veitch, P J

    2010-06-21

    We describe an efficient Er:YAG laser that is resonantly pumped using continuous-wave (CW) laser diodes at 1470 nm. For CW lasing, it emits 6.1 W at 1645 nm with a slope efficiency of 36%, the highest efficiency reported for an Er:YAG laser that is pumped in this manner. In Q-switched operation, the laser produces diffraction-limited pulses with an average power of 2.5 W at 2 kHz PRF. To our knowledge this is the first Q-switched Er:YAG laser resonantly pumped by CW laser diodes.

  19. One joule per Q-switched pulse diode-pumped laser

    NASA Technical Reports Server (NTRS)

    Holder, Lonnie E.; Kennedy, Chandler; Long, Larry; Dube, George

    1992-01-01

    Q-switched 1-J output has been achieved from diode-pumped zig-zag Nd:YAG slabs in an oscillator-amplifier configuration. The oscillator was single transverse and longitudinal model. This laser set records for Q-switched energy per pulse, and for average power from a diode-pumped laser. The laser was constructed in a rugged configuration suitable for routine laboratory use.

  20. Every Good Virtue You Ever Wanted in a Q-switched Solid-state Laser and More: Monolithic, Diode-pumped, Self-q-switched, Highly Reproducible, Diffraction-limited Nd:yag Laser

    NASA Technical Reports Server (NTRS)

    Chen, Y. C.; Lee, K. K.

    1993-01-01

    The applications of Q-switched lasers are well known, for example, laser radar, laser remote sensing, satellite orbit determination, Moon orbit and 'moon quake' determination, satellite laser communication, and many nonlinear optics applications. Most of the applications require additional properties of the Q-switched lasers, such as single-axial and/or single-transverse mode, high repetition rate, stable pulse shape and pulse width, or ultra compact and rugged oscillators. Furthermore, space based and airborne lasers for lidar and laser communication applications require efficient, compact, lightweight, long-lived, and stable-pulsed laser sources. Diode-pumped solid-state lasers (DPSSL) have recently shown the potential for satisfying all of these requirements. We will report on the operating characteristics of a diode-pumped, monolithic, self-Q-switched Cr,Nd:YAG laser where the chromium ions act as a saturable absorber for the laser emission at 1064 nm. The pulse duration is 3.5 ns and the output is highly polarized with an extinction ratio of 700:1. It is further shown that the output is single-longitudinal-mode with transform-limited spectral line width without pulse-to-pulse mode competition. Consequently, the pulse-to-pulse intensity fluctuation is less than the instrument resolution of 0.25 percent. This self-stabilization mechanism is because the lasing mode bleaches the distributed absorber and establishes a gain-loss grating similar to that used in the distributed feedback semiconductor lasers. A repetition rate above 5 KHz has also been demonstrated. For higher power, this laser can be used for injection seeding an amplifier (or amplifier chain) or injection locking of a power oscillator pumped by diode lasers. We will discuss some research directions on the master oscillator for higher output energy per pulse as well as how to scale the output power of the diode-pumped amplifier(s) to multi-kilowatt average power.

  1. Passive Q-switching of microchip lasers based on Ho:YAG ceramics.

    PubMed

    Lan, R; Loiko, P; Mateos, X; Wang, Y; Li, J; Pan, Y; Choi, S Y; Kim, M H; Rotermund, F; Yasukevich, A; Yumashev, K; Griebner, U; Petrov, V

    2016-06-20

    A Ho:YAG ceramic microchip laser pumped by a Tm fiber laser at 1910 nm is passively Q-switched by single- and multi-layer graphene, single-walled carbon nanotubes (SWCNTs), and Cr2+:ZnSe saturable absorbers (SAs). Employing SWCNTs, this laser generated an average power of 810 mW at 2090 nm with a slope efficiency of 68% and continuous wave to Q-switching conversion efficiency of 70%. The shortest pulse duration was 85 ns at a repetition rate of 165 kHz, and the pulse energy reached 4.9 μJ. The laser performance and pulse stability were superior compared to graphene SAs even for a different number of graphene layers (n=1 to 4). A model for the description of the Ho:YAG laser Q-switched by carbon nanostructures is presented. This modeling allowed us to estimate the saturation intensity for multi-layered graphene and SWCNT SAs to be 1.2±0.2 and 7±1  MW/cm2, respectively. When using Cr2+:ZnSe, the Ho:YAG microchip laser generated 11 ns/25 μJ pulses at a repetition rate of 14.8 kHz.

  2. Pulse Q-switched Nd:YAG laser ablation grown cinnamon nanomorphologies: Influence of different liquid medium

    NASA Astrophysics Data System (ADS)

    Salim, Ali Aqeel; Bidin, Noriah

    2017-12-01

    Broad range of biomedical applications demands accurate synthesis and characterization of various nanoparticles. We report the characterization of cinnamon nanoparticles (CNPs) grown via simple pulsed laser ablation in liquid (PLAL). The influence of different liquid media (olive oil, ethanol, and citric acid each of volume 4 ml) on the growth morphology, structure and optical properties of CNPs is determined. Q-switched 1064-Nd: YAG laser of 10 ns pulse duration, 1 Hz repetition rate, 532 nm s harmonic generation and laser fluence of 6.37 J/cm2 is used to irradiate the cinnamon targets immersed in those liquids. Samples are characterized using TEM, HRTEM, SAED, FTIR, UV-Vis and Photoluminescence measurements. TEM images revealed the nucleation of CNPs of average size 18.36 nm (in olive oil), 21.48 nm (in ethanol), and 29.56 nm (in citric acid). Morphology of CNPs is demonstrated to be sensitive to the liquid medium. Our simple and innovative method may constitute a basis to produce CNPs of desired size distribution potential for the development of nanobiomedicine.

  3. Successful Treatment of Tattoo-Induced Pseudolymphoma with Sequential Ablative Fractional Resurfacing Followed by Q-Switched Nd: YAG 532 nm Laser

    PubMed Central

    Lucinda, Tan Siyun; Hazel, Oon Hwee Boon; Joyce, Lee Siong Siong; Hon, Chua Sze

    2013-01-01

    Decorative tattooing has been linked with a range of complications, with pseudolymphoma being unusual and challenging to manage. We report a case of tattoo-induced pseudolymphoma, who failed treatment with potent topical and intralesional steroids. She responded well to sequential treatment with ablative fractional resurfacing (AFR) followed by Q-Switched (QS) Nd:YAG 532 nm laser. Interestingly, we managed to document the clearance of her tattoo pigments after laser treatments on histology and would like to highlight the use of special stains such as the Grocott's Methenamine Silver (GMS) stain as a useful method to assess the presence of tattoo pigment in cases where dense inflammatory infiltrates are present. PMID:24470721

  4. Diode pumped passively Q-switched Nd:LuAG laser at 1442.6 nm

    NASA Astrophysics Data System (ADS)

    Guan, Chen; Liu, Zhaojun; Cong, Zhenhua; Liu, Yang; Xu, Xiaodong; Xu, Jun; Huang, Qingjie; Rao, Han; Chen, Xia; Zhang, Yanmin; Wu, Qianwen; Bai, Fen; Zhang, Sasa

    2017-02-01

    A diode-end-pumped passively Q-switched Nd:LuAG laser at 1442.6 nm was demonstrated with a V3+:YAG crystal as the saturable absorber. Under continuous-wave (CW) operation, the maximum output power of 1.83 W was obtained with an absorbed pumping power of 11.1 W. The corresponding optical-to-optical conversion efficiency was 16.5%. Under Q-switched operation, the maximum average output power of 424 mW was obtained at the same pumping power. The pulse duration and pulse repetition rate were 72 ns and 17.4 kHz, respectively.

  5. Diode pumped CW and passively Q-switched Nd:LGGG laser at 1062 nm

    NASA Astrophysics Data System (ADS)

    Yang, H.; Jia, Z. T.; Zhang, B. T.; He, J. L.; Liu, S. D.; Yang, Y.; Tao, X. T.

    2012-05-01

    We report a Nd:LGGG laser at 1062 nm in the operations of the continuous-wave (CW) and passively Q-switching. The maximum CW output power of 5.62 W was obtained, corresponding to an optical-to-optical conversion efficiency of 49.0% and slope efficiency of 55.9%. By using Cr4+:YAG with initial transmission of 94% as the saturable absorber, for the first time, we got the maximum passively Q-switched output power of 1.21 W, accompanied with a highest pulse repetition rate of 27.1 kHz and a shortest pulse width of 9.1 ns.

  6. Nd:YAG laser system for ophthalmic microsurgery

    NASA Astrophysics Data System (ADS)

    Savastru, Dan; Ristici, Esofina; Dragu, T.; Cotirlan, C.; Miclos, Sorin; Mustata, Marina

    2005-04-01

    The Nd:YAG solid state laser can be used in ophthalmologic microsurgery because of its specific wavelength of 1064 nm, which has the property to penetrate the transparent medium of the eye. We design a specific ophthalmic system, containing a Q-switch Nd:YAG laser, an optical stereomicroscope and an aiming system. This laser-stereomicroscope system is used for eye examination and for microsurgical proceedings like posterior capsulotomy and pupilar membranectomy. We had to design an optical scheme of the laser to settle the radiation route. In order to cover the medical domain of the energies, we calibrate eleven attenuation filters using ratiometric method. For a correct position of the place where the laser pulse strikes, we used an original system consisting of two red laser diodes mounted on each side of the binocular One of the advantages of this laser system is taht the output energies can be varied widely (0.8-15 mJ), making a great numbers of applications in clinical ophthalmology possible.

  7. Diode-pumped continuous-wave and passively Q-switched 1066 nm Nd:GYNbO4 laser

    NASA Astrophysics Data System (ADS)

    Ma, Yufei; Peng, Zhenfang; He, Ying; Li, Xudong; Yan, Renpeng; Yu, Xin; Zhang, Qingli; Ding, Shoujun; Sun, Dunlu

    2017-08-01

    A diode-pumped passively Q-switched 1066 nm laser with a novel Nd:Gd0.69Y0.3NbO4 mixed crystal was demonstrated for the first time to the best of our knowledge. In the continuous-wave (CW) operation, optimization selection of output couplers was carried out, and a maximum output power of 2.13 W was obtained when the plane mirror with transmission of 25% was chosen and the absorbed pump power was 10.5 W. The Cr4+:YAG passively Q-switched Nd:Gd0.69Y0.3NbO4 laser performance was investigated. At an absorbed pump power of 10.5 W, using Cr4+:YAG with initial transmission of 80%, the obtained minimum pulse width was 7.2 ns with the pulse repetition rate of 19 kHz. The single pulse energy and peak power were estimated to be 26.7 µJ and 3.7 kW, respectively.

  8. Linearly polarized pumped passively Q-switched Nd:YVO4 microchip laser for Ince-Gaussian laser modes with controllable orientations

    NASA Astrophysics Data System (ADS)

    He, Hong-Sen; Zhang, Ming-Ming; Dong, Jun; Ueda, Ken-Ichi

    2016-12-01

    A tilted, linearly polarized laser diode end-pumped Cr4+:YAG passively Q-switched a-cut Nd:YVO4 microchip laser for generating numerous Ince-Gaussian (IG) laser modes with controllable orientations has been demonstrated by selecting the crystalline orientation of an a-cut Nd:YVO4 crystal. The same IG laser mode with different orientations has been achieved with the same absorbed pump power in a passively Q-switched Nd:YVO4 microchip laser under linearly polarized pumping when the incident pump power and the crystalline orientation of an a-cut Nd:YVO4 crystal are both properly selected. The significant improvement of pulsed laser performance of controllable IG modes has been achieved by selecting the crystalline orientation of an a-cut Nd:YVO4 crystal. The maximum pulse energy is obtained along the a-axis of an a-cut Nd:YVO4 crystal and the highest peak power is achieved along the c-axis of an a-cut Nd:YVO4 crystal, respectively, which has potential applications on quantum computation and optical manipulation. The generation of controllable IG laser modes in microchip lasers under linearly polarized pumping provides a convenient and universal way to control IG laser mode numbers with anisotropic crystal as a gain medium.

  9. Retinal damage from a Q-switched YAG laser.

    PubMed

    Jampol, L M; Goldberg, M F; Jednock, N

    1983-09-01

    A 42-year-old woman with sickle cell anemia and proliferative retinopathy underwent neodymium-YAG laser therapy for a taut posterior hyaloid membrane causing peripapillary and peripheral traction detachment of the retina. Vitrectomy was not done because the patient required anticoagulation. A Q-switched YAG laser was capable of cutting holes in the taut membrane, but treatment 2 to 3 mm from the retina resulted in microperforation of a retinal vein and focal areas of damage to the retinal pigment epithelium. The damage to the retinal pigment epithelium was not immediately apparent, and ophthalmoscopically visible lesions were seen only when the patient was reexamined 48 hours later.

  10. Eligibility criteria for Nd-YAG laser treatment of highly symptomatic vitreous floaters.

    PubMed

    Vandorselaer, T; Van De Velde, F; Tassignon, M J

    2001-01-01

    Ten eyes of nine patients were treated for very disturbing vitreous floaters with the technique of Nd-YAG laser vitreolysis. The Scanning Laser Ophthalmoscope (SLO) was used to objectivate the position, the size and the motility of the vitreous floaters with respect to the patient's visual axis, which can be precisely located with the SLO. With this technique it was possible to define more precisely some eligibility criteria for Nd-YAG laser treatment of vitreous floaters and to classify the vitreous floaters in ill-suspended and well-suspended floaters in the vitreous body, the well-suspended floaters responding better to treatment compared to the ill-suspended vitreous floaters. The treatment was performed using the Q-Switched Nd-YAG Laser type Nanolas 15S of Alcon.

  11. Histological Evaluation of Retina after Photo Disruption for Vitreous Humor by Q-Switched Neodymium-Doped Yttrium Aluminium Garnet (Nd:YAG) Laser

    PubMed Central

    Kameel Ghaly, Sally; Foad Ghoneim, Dina; Abdelkawi Ahmed, Salwa; Medhat Abdel-Salam, Ahmed

    2013-01-01

    Introduction: Rabbits’ eyes were exposed to vitreous humor liquefaction with Q - switched (sometimes called “ giant pulses”) Neodymium-Doped Yttrium Aluminium Garnet (Nd:YAG) laser using two different energy protocols (5 mJ X 100 pulse and 10 mJ X 50 pulse)with and without vitamin C administration. The histological changes in the retina were investigated to evaluate the protective role of vitamin C. Methods: The rabbits were divided into four main groups (n= 12 each). The first group was divided into three subgroups (n=4) and then treated with 5 mJ X 100 pulse (X means times) delivered to the anterior, middle and posterior vitreous humor respectively. The second group received a daily dose of 25 mg/Kg vitamin C for two weeks then was divided into three subgroups and treated with laser in the same manner as the first group.The third group was divided into three subgroups (n=4) and then treated with 10 mJ X 50 pulse delivered to the anterior, middle and posterior vitreous respectively. The fourth group received a daily dose of 25 mg/Kg vitamin C for two weeks then was divided into three subgroups and treated with laser in the same manner as the third group. After two weeks, rabbits were decapitated and histological examination for the retina was performed. Results: The results showed that, the anterior vitreous group exposed to 5mJX100 pulse and supplemented with vitamin C, showed no obvious change. Furthermore, all other treated groups showed alteration in retina’s tissues histology after laser. Conclusion: Application of Q-switched Nd: YAG laser in vitreous humor liquefaction induces changes in retina’s layers. Although there were some sorts of improvements in retinas supplemented with vitamin C, it cannot protect them against laser oxidative damage. PMID:25606329

  12. Single-frequency operation of diode-pumped 2 microm Q-switched Tm:YAG laser injection seeded by monolithic nonplanar ring laser.

    PubMed

    Gao, Chunqing; Lin, Zhifeng; Gao, Mingwei; Zhang, Yunshan; Zhu, Lingni; Wang, Ran; Zheng, Yan

    2010-05-20

    We present a diode-pumped, 2mum single-frequency Q-switched Tm:YAG laser. The Q-switched laser is injection seeded by a monolithic Tm:YAG nonplanar ring oscillator with the ramp-hold-fire technique. The output energy of the 2mum single-frequency Q-switched pulse is 2.23mJ, with a pulse width of 290ns and a repetition rate of 200Hz. From the heterodyne beating measurement, the frequency difference between the seed laser and the Q-switched laser is determined to be 37.66MHz, with a half-width of the symmetric spectrum of about 2 MHz.

  13. A continuously variable beam-diameter, high-fluence, Q-switched Nd:YAG laser for tattoo removal: comparison of the maximum beam diameter to a standard 4-mm-diameter treatment beam.

    PubMed

    Bernstein, Eric F; Civiok, Jennifer M

    2013-12-01

    Laser beam diameter affects the depth of laser penetration. Q-switched lasers tend to have smaller maximum spot sizes than other dermatologic lasers, making beam diameter a potentially more significant factor in treatment outcomes. To compare the clinical effect of using the maximum-size treatment beam available for each delivered fluence during laser tattoo removal to a standard 4-mm-diameter treatment beam. Thirteen tattoos were treated in 12 subjects using a Q-switched Nd:YAG laser equipped with a treatment beam diameter that was adjustable in 1 mm increments and a setting that would enable the maximally achievable diameter ("MAX-ON" setting) with any fluence. Tattoos were randomly bisected and treated on one side with the MAX-ON setting and on the contralateral side with a standard 4-mm-diameter spot ("MAX-OFF" setting). Photographs were taken 8 weeks following each treatment and each half-tattoo was evaluated for clearance on a 10-point scale by physicians blinded to the treatment conditions. Tattoo clearance was greater on the side treated with the MAX-ON setting in a statistically significant manner following the 1st through 4th treatments, with the MAX-OFF treatment site approaching the clearance of the MAX-ON treatment site after the 5th and 6th treatments. This high-energy, Q-switched Nd:YAG laser with a continuously variable spot-size safely and effectively removes tattoos, with greater removal when using a larger spot-size. © 2013 Wiley Periodicals, Inc.

  14. Fabrication of narrow pulse passively Q-switched self-stimulated Raman laser with c-cut Nd:GdVO4

    NASA Astrophysics Data System (ADS)

    Shen, Gao; Li, Zuo-han; Han, Ming

    2016-11-01

    Combining the self-stimulated Raman scattering technology and saturable absorber of Cr4+:YAG, a 1.17 μm c-cut Nd:GdVO4 picosecond Q-switched laser is demonstrated in this paper. With an incident pump power of 10 W, the Q-switched laser with average power of 430 mW for 1.17 μm, pulse width of 270 ps, repetition rate of 13 kHz and the first order Stokes conversion efficiency of 4.3% is obtained. The Q-switched pulse width can be the narrowest in our research. In addition, the yellow laser at 0.58 μm is also achieved by using the LiB3O5 frequency doubling crystal.

  15. Hypopigmentation Induced by Frequent Low-Fluence, Large-Spot-Size QS Nd:YAG Laser Treatments.

    PubMed

    Wong, Yisheng; Lee, Siong See Joyce; Goh, Chee Leok

    2015-12-01

    The Q-switched 1064-nm neodymium-doped yttrium aluminum garnet (QS 1064-nm Nd:YAG) laser is increasingly used for nonablative skin rejuvenation or "laser toning" for melasma. Multiple and frequent low-fluence, large-spot-size treatments are used to achieve laser toning, and these treatments are associated with the development of macular hypopigmentation as a complication. We present a case series of three patients who developed guttate hypomelanotic macules on the face after receiving laser toning treatment with QS 1064-nm Nd:YAG.

  16. Hybrid Pulsed Nd:YAG Laser

    NASA Astrophysics Data System (ADS)

    Miller, Sawyer; Trujillo, Skyler; Fort Lewis College Laser Group Team

    This work concerns the novel design of an inexpensive pulsed Nd:YAG laser, consisting of a hybrid Kerr Mode Lock (KLM) and Q-switch pulse. The two pulse generation systems work independently, non simultaneously of each other, thus generating the ability for the user to easily switch between ultra-short pulse widths or large energy density pulses. Traditionally, SF57 glass has been used as the Kerr medium. In this work, novel Kerr mode-locking mediums are being investigated including: tellurite compound glass (TeO2), carbon disulfide (CS2), and chalcogenide glass. These materials have a nonlinear index of refraction orders of magnitude,(n2), larger than SF57 glass. The Q-switched pulse will utilize a Pockels cell. As the two pulse generation systems cannot be operated simultaneously, the Pockels cell and Kerr medium are attached to kinematic mounts, allowing for quick interchange between systems. Pulse widths and repetition rates will vary between the two systems. A goal of 100 picosecond pulse widths are desired for the mode-locked system. A goal of 10 nanosecond pulse widths are desired for the Q-switch system, with a desired repetition rate of 50 Hz. As designed, the laser will be useful in imaging applications.

  17. Generation of Ince-Gaussian beams in highly efficient, nanosecond Cr, Nd:YAG microchip lasers

    NASA Astrophysics Data System (ADS)

    Dong, J.; Ma, J.; Ren, Y. Y.; Xu, G. Z.; Kaminskii, A. A.

    2013-08-01

    Direct generation of higher-order Ince-Gaussian (IG) beams from laser-diode end-pumped Cr, Nd:YAG self-Q-switched microchip lasers was achieved with high efficiency and high repetition rate. An average output power of over 2 W was obtained at an absorbed pump power of 8.2 W a corresponding optical-to-optical efficiency of 25% was achieved. Various IG modes with nanosecond pulse width and peak power of over 2 kW were obtained in laser-diode pumped Cr, Nd:YAG microchip lasers under different pump power levels by applying a tilted, large area pump beam. The effect of the inversion population distribution induced by the tilted pump beam and nonlinear absorption of Cr4+-ions for different pump power levels on the oscillation of higher-order IG modes in Cr, Nd:YAG microchip lasers is addressed. The higher-order IG mode oscillation has a great influence on the laser performance of Cr, Nd:YAG microchip lasers.

  18. Comprehensive study of electro-optic and passive Q-switching in solid state lasers for altimeter applications

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Atul; Agrawal, Lalita; Pal, Suranjan; Kumar, Anil

    2006-12-01

    Laser Science and Technology Center (LASTEC), Delhi, is developing a space qualified diode pumped Nd: YAG laser transmitter capable of generating 10 ns pulses of 30 mJ energy @ 10 pps. This paper presents the results of experiments for comparative studies between electro-optic and passively Q-switched Nd: YAG laser in a crossed porro prism based laser resonator. Experimental studies have been performed by developing an economical bench model of flash lamp pumped Nd: YAG laser (rod dimension, \

  19. 15 ps quasi-continuously pumped passively mode-locked highly doped Nd:YAG laser in bounce geometry

    NASA Astrophysics Data System (ADS)

    Jelínek, M., Jr.; Kubeček, V.

    2011-09-01

    A semiconductor saturable absorber mirror mode-locking of a quasi-continuously pumped laser based on 2.4 at.% Nd:YAG slab in a bounce geometry was demonstrated and investigated. Output mode-locked and Q-switched train containing 15 pulses with total energy of 500 μJ was generated directly from the oscillator. The measured 15 ps pulse duration and excellent temporal stability ±2 ps are the best values for pure passively mode-locked and Q-switched Nd:YAG laser with the pulse pumping. Furthermore, using the cavity dumping technique, single 19 ps pulse with energy of 25 μJ was extracted directly from the oscillator.

  20. Multi-watt passively Q-switched Yb:YAB/Cr:YAG microchip lasers

    NASA Astrophysics Data System (ADS)

    Serres, Josep Maria; Loiko, Pavel; Mateos, Xavier; Liu, Junhai; Zhang, Huaijing; Yumashev, Konstantin; Griebner, Uwe; Petrov, Valentin; Aguiló, Magdalena; Díaz, Francesc

    2017-02-01

    A trigonal 5.6 at.% Yb:YAl3(BO3)4 (Yb:YAB) crystal is employed in continuous-wave (CW) and passively Q-switched microchip lasers pumped by a diode at 978 nm. Using a 3 mm-thick, c-cut Yb:YAB crystal, which has a higher pump absorption efficiency, efficient CW microchip laser operation is demonstrated. This laser generated a maximum output power of 7.18 W at 1041-1044 nm with a slope efficiency η of 67% (with respect to the absorbed pump power) and an almost diffraction-limited beam, M2 x,y < 1.1. Inserting a Cr:YAG saturable absorber, stable passive Q-switching of the Yb:YAB microchip laser was obtained. The maximum average output power from the Yb:YAB/Cr:YAG laser reached 2.82 W at 1042 nm with η = 53% and a conversion efficiency with respect to the CW mode of 65% (when using a 0.7 mm-thick Cr:YAG). The latter corresponded to a pulse duration and energy of 7.1 ns / 47 μJ at a pulse repetition rate (PRR) of 60 kHz. Using a 1.3 mm-thick Cr:YAG, 2.02 W were achieved at 1041 nm corresponding to η = 38%. The pulse characteristics were 4.9 ns / 83 μJ at PRR = 24.3 kHz and the maximum peak power reached 17 kW. Yb:YAB crystals are very promising for compact sub-ns power-scalable microchip lasers.

  1. Ignition of an automobile engine by high-peak power Nd:YAG/Cr⁴⁺:YAG laser-spark devices.

    PubMed

    Pavel, Nicolaie; Dascalu, Traian; Salamu, Gabriela; Dinca, Mihai; Boicea, Niculae; Birtas, Adrian

    2015-12-28

    Laser sparks that were built with high-peak power passively Q-switched Nd:YAG/Cr(4+):YAG lasers have been used to operate a Renault automobile engine. The design of such a laser spark igniter is discussed. The Nd:YAG/Cr(4+):YAG laser delivered pulses with energy of 4 mJ and 0.8-ns duration, corresponding to pulse peak power of 5 MW. The coefficients of variability of maximum pressure (COV(Pmax)) and of indicated mean effective pressure (COV(IMEP)) and specific emissions like hydrocarbons (HC), carbon monoxide (CO), nitrogen oxides (NO(x)) and carbon dioxide (CO2) were measured at various engine speeds and high loads. Improved engine stability in terms of COV(Pmax) and COV(Pmax) and decreased emissions of CO and HC were obtained for the engine that was run by laser sparks in comparison with classical ignition by electrical spark plugs.

  2. A continuous-wave and passively Q-switched Nd:LaGGG laser at 937 nm

    NASA Astrophysics Data System (ADS)

    Li, Z.-Y.; Ying, H.-Y.; Yang, H.; He, J.-L.

    2013-10-01

    A diode-end-pumped continuous-wave (CW) and passively Q-switched Nd:LaGGG (GGG: gadolinium gallium garnet) laser at about 937 nm was demonstrated for the first time. The maximum CW output power of 540 mW was obtained with the optical-optical conversion efficiency of 3.2% and the slope efficiency of 4.4%. A V3+:YAG (yttrium aluminum garnet) saturable absorber with the initial transmission of 97% was used for the passive Q-switching regime. The shortest pulse width was achieved as 500 ns with the pulse repetition rate of 96 kHz. The corresponding single-pulse energy and pulse peak power were determined as 1.56 μJ and 3.12 W, respectively.

  3. Diode-pumped continuous-wave and passively Q-switched Nd:GdLuAG laser at 1443.9 nm

    NASA Astrophysics Data System (ADS)

    Wu, Qianwen; Liu, Zhaojun; Zhang, Sasa; Cong, Zhenghua; Guan, Chen; Xue, Feng; Chen, Hui; Huang, Qingjie; Xu, Xiaodong; Xu, Jun; Qin, Zengguang

    2017-12-01

    We investigated the 1443.9 nm laser characteristics of Nd:GdLuAG crystal. Diode-end-pumping configuration was employed under both continuous-wave (CW) and passively Q-switched operations. For CW operation, the maximum average output power was 1.36 W with a slope efficiency of 15%. By using a V3+:YAG crystal as the saturable absorber, we obtained the maximum average output power of 164 mW under Q-switched operation. The corresponding pulse energy was 29.3 μJ and pulse duration was 59 ns.

  4. Laser diode and pumped Cr:Yag passively Q-switched yellow-green laser at 543 nm

    NASA Astrophysics Data System (ADS)

    Yao, Y.; Ling, Zhao; Li, B.; Qu, D. P.; Zhou, K.; Zhang, Y. B.; Zhao, Y.; Zheng, Q.

    2013-03-01

    Efficient and compact yellow green pulsed laser output at 543 nm is generated by frequency doubling of a passively Q-switched end diode-pumped Nd:YVO4 laser at 1086 nm under the condition of sup-pressing the higher gain transition near 1064 nm. With 15 W of diode pump power and the frequency doubling crystal LBO, as high as 1.58 W output power at 543 nm is achieved. The optical to optical conversion efficiency from the corresponding Q-switched fundamental output to the yellow green output is 49%. The peak power of the Q-switched yellow green pulse laser is up to 30 kW with 5 ns pulse duration. The output power stability over 8 hours is better than 2.56% at the maximum output power. To the best of our knowledge, this is the highest watt-level laser at 543 nm generated by frequency doubling of a passively Q-switched end diode pumped Nd:YVO4 laser at 1086 nm.

  5. A randomized, split-face clinical trial of low-fluence Q-switched neodymium-doped yttrium aluminum garnet (1,064 nm) laser versus low-fluence Q-switched alexandrite laser (755 nm) for the treatment of facial melasma.

    PubMed

    Fabi, Sabrina G; Friedmann, Daniel P; Niwa Massaki, Ane B; Goldman, Mitchel P

    2014-09-01

    Melasma is distressing for patients and challenging for physicians to treat. Clinical data from controlled comparative studies is lacking to support the efficacy, longevity, and safety of laser treatments for melasma. Compare the efficacy and safety of low fluence Q-switched neodymium-doped yttrium aluminum garnet (1,064 nm) laser (Nd:YAG) versus low-fluence Q-switched alexandrite laser (755 nm) (QSAL) for the treatment of facial melasma. Twenty male and female subjects with moderate to severe mixed-type melasma on both sides of the face were randomized to six, weekly treatments with the low-fluence Q-switched Nd:YAG laser on one side and the low-fluence QSAL to the other side. Two independent investigators conducted Modified Melasma Area and Severity Index (MMASI) evaluations and subjects completed self-assessment questionnaires at baseline, after three treatments and each follow-up visit 2, 12, and 24 weeks after the last treatment. Standardized digital photographs were taken at baseline and at each subsequent follow-up visit. One male and fifteen females, mean age of 43.4 (range 32-64) years, completed the 29-week study. Both laser treated sides showed a significant improvement in MMASI evaluations after two treatments (22% improvement on the QS-Nd:YAG, 17% QSAL) and each follow-up visit 2 (36% QS-Nd:YAG; 44% QSAL), 12 (27% QS-Nd:YAG; and 24% QSAL), and 24 weeks (27% QS-Nd:YAG; and 19% QSAL) after the last treatment, but no significant difference was seen between study groups at any visit. There was also no significant difference in subject evaluation of improvement between both treatment sides at any visit. Both laser treated sides were tolerated well, and no serious adverse events were noted. Only one subject was taken out of the study due to development of post-inflammatory hyperpigmentation bilaterally. Both low-fluence Q-switched Nd:YAG and low-fluence QSAL were equally effective at improving moderate to severe mixed-type facial melasma. This was a

  6. Investigation of 100 mJ all solid state end-pumped 1064 nm Q-switched laser

    NASA Astrophysics Data System (ADS)

    Xie, Shiyong; Wang, Caili; Liu, Hui; Bo, Yong; Xu, Zuyan

    2017-11-01

    High energy 1064 nm Q-switched laser output is obtained by LD vertical array end pumping Nd:YAG. Cylindrical lens are used for beam shaping of LD array for different divergence angle of fast and slow axis. Based on the theoretical simulation of fundamental mode radius using ABCD transfer matrix, the resonant cavity is optimized and curvature radius of cavity mirrors is determined. The intracavity power density is calculated according to the output laser pulse energy and transmittance of output coupling mirror is optimized under the condition that optical device is not damaged. 1064 nm laser with a maximum output of 110 mJ is generated under LD pump energy of 600 mJ, corresponding to optical conversion efficiency of 18.3%. The laser pulse width is 11 ns and divergence angle is 1.2 mrad. For saturation phenomenon of Q-switched laser output, LD temperature is adjusted to make wavelength deviate from absorption peak of Nd:YAG crystal. The parasitic oscillation, which affects the enhancement of Q-switched laser energy, can be effectively suppressed by reducing gain of pump end of laser medium, which provides an effective technical means for obtaining high energy end-pumped Q-switched laser.

  7. Comparative study of dual-pulsed 1064 nm Q-switched Nd:YAG laser and single-pulsed 1064 nm Q-switched Nd:YAG laser by using zebrafish model and prospective split-face analysis of facial melasma.

    PubMed

    Jang, Hee Won; Chun, Seung Hyun; Park, Hae Chul; Ryu, Hwa Jung; Kim, Il-Hwan

    2017-04-01

    Recently dual-pulsed low-fluence 1064-nm Q-switched Nd:YAG (QSNY) laser has been developed for reducing complication during melasma treatment. Comparison of the efficacy and safety between dual-pulsed mode and single-pulsed mode for the treatment of melasma. In preclinical study, adult zebrafish were irradiated with dual-pulsed and single-pulsed mode. Changes of melanophore and cell death were assessed. In split-face clinical study, dual-pulsed and single-pulsed mode were irradiated on the left and right side of the face, respectively. L* value, clinical digital photos, modified Melasma Area and Severity Index (MASI) scores, and side effects were measured. As compared to single-pulsed mode and dual-pulsed mode with longer intervals, zebrafish melanophore was cleared quickly at dual-pulsed mode with 80-μsec interval and 0.3 J/cm 2 fluence. Dual-pulsed mode showed the least regeneration of melanophore at 4 weeks after irradiation and no cell death was observed with 80-μsec interval. Both pulse modes improved melasma significantly but modified MASI score and L* value were not significantly different between each other. Lesser pain and shorter duration of post-laser erythema were observed with dual-pulsed mode. Dual-pulsed mode was as effective as single-pulsed mode for the treatment of melasma and revealed less side effects.

  8. High peak power Q-switched Er:YAG laser with two polarizers and its ablation performance for hard dental tissues.

    PubMed

    Yang, Jingwei; Wang, Li; Wu, Xianyou; Cheng, Tingqing; Jiang, Haihe

    2014-06-30

    An electro-optically Q-switched high-energy Er:YAG laser with two polarizers is proposed. By using two Al(2)O(3) polarizing plates and a LiNbO(3) crystal with Brewster angle, the polarization efficiency is significantly improved. As a result, 226 mJ pulse energy with 62 ns pulse width is achieved at the repetition rate of 3 Hz, the corresponding peak power is 3.6 MW. To our knowledge, such a high peak power has not been reported in literature. With our designed laser, in-vitro teeth were irradiated under Q-switched and free-running modes. Results of a laser ablation experiment on hard dental tissue with the high-peak-power laser demonstrates that the Q-switched Er:YAG laser has higher ablation precision and less thermal damage than the free-running Er:YAG laser.

  9. Dual-laser-beam-induced breakdown spectroscopy of copper using simultaneous continuous wave CO(2) and Q-switched Nd:YAG lasers.

    PubMed

    Shoursheini, S Z; Parvin, P; Sajad, B; Bassam, M A

    2009-04-01

    In this work, we investigate the enhancement of Cu emission lines of a micro-plasma induced by a Nd:YAG laser due to the thermal effect of simultaneous irradiation by a continuous wave (CW) CO(2) laser. The enhancement of the emission lines was achieved at a higher temperature with minimal distortion of the target when the focal point of the Nd:YAG laser was located approximately 1 mm away from the sample surface.

  10. High-energy directly diode-pumped Q-switched 1617 nm Er:YAG laser at room temperature.

    PubMed

    Wang, Mingjian; Zhu, Liang; Chen, Weibiao; Fan, Dianyuan

    2012-09-01

    We describe high-energy Erbium-doped yttrium aluminum garnet (Er:YAG) lasers operating at 1617 nm, resonantly pumped using 1532 nm fiber-coupled laser diodes. A maximum continuous wave output power of 4.3 W at 1617 nm was achieved with an output coupler of 20% transmission under incident pump power of 29.7 W, resulting in an optical conversion of 14% with respect to the incident pump power. In Q-switched operation, the pulse energy of 11.8 mJ at 100 Hz pulse repetition frequency and 81 ns pulse duration was obtained. This energy is the highest pulse energy reported for a directly diode-pumped Q-switched Er:YAG laser operating at 1617 nm.

  11. A comparative study of low-fluence 1064-nm Q-switched Nd:YAG laser with or without chemical peeling using Jessner's solution in melasma patients.

    PubMed

    Lee, Dan Bi; Suh, Ho Seok; Choi, Yu Sung

    2014-12-01

    Although low-fluence 1064-nm Q-switched Nd:YAG laser (QSNYL) is widely used for the treatment of melasma, multiple treatments are necessary for clinical improvement. Superficial chemical peeling using Jessner's solution has been used for treatment of melasma conventionally. To evaluate the additional therapeutic effect and adverse effects of Jessner's peel when combined with 1064-nm QSNYL for melasma patients in a double-blind, placebo-controlled design. Total of 52 patients were included. Patients who received 10 sessions of 1064-nm QSNYL plus chemical peeling with placebo (group A) in a two-week interval and those who received 10 sessions of 1064-nm QSNYL plus chemical peeling with Jessner's solution (group B) in a two-week interval were analyzed. Responses were evaluated using the Melasma Area and Severity Index (MASI) score, physician's global assessment (PGA) and subjective self-assessment. At 8 weeks, the mean MASI score decreased from 8.68 ± 4.06 to 8.60 ± 3.88 in group A and from 8.98 ± 3.72 to 7.13 ± 2.57 in group B, showing a significant difference (p < 0.001). But at 20 weeks, there was no significant difference on reduction of MASI, self-assessment and PGA between the two groups. No serious adverse effects were reported with the additional Jessner's peeling. This study suggests Jessner's peel is a safe and effective method in the early course of treatment for melasma when combined with low-fluence 1064-nm Q-switched Nd:YAG laser.

  12. Cavity length dependence of mode beating in passively Q-switched Nd-solid state lasers

    NASA Astrophysics Data System (ADS)

    Zameroski, Nathan D.; Wanke, Michael; Bossert, David

    2013-03-01

    The temporal intensity profile of pulse(s) from passively Q-switched and passively Q-switched mode locked (QSML) solid-state lasers is known to be dependent on cavity length. In this work, the pulse width, modulation depth, and beat frequencies of a Nd:Cr:GSGG laser using a Cr+4:YAG passive Q-switch are investigated as function cavity length. Measured temporal widths are linearly correlated with cavity length but generally 3-5 ns larger than theoretical predictions. Some cavity lengths exhibit pulse profiles with no modulation while other lengths exhibit complete amplitude modulation. The observed beat frequencies at certain cavity lengths cannot be accounted for with passively QSML models in which the pulse train repetition rate is τRT-1, τRT= round-trip time. They can be explained, however, by including coupled cavity mode-locking effects. A theoretical model developed for a two section coupled cavity semiconductor laser is adapted to a solid-state laser to interpret measured beat frequencies. We also numerically evaluate the temporal criterion required to achieve temporally smooth Q-switched pulses, versus cavity length and pump rate. We show that in flash lamp pumped systems, the difference in buildup time between longitudinal modes is largely dependent on the pump rate. In applications where short pulse delay is important, the pumping rate may limit the ability to achieve temporally smooth pulses in passively Q-switched lasers. Simulations support trends in experimental data. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  13. Composite, all-ceramics, high-peak power Nd:YAG/Cr(4+):YAG monolithic micro-laser with multiple-beam output for engine ignition.

    PubMed

    Pavel, Nicolaie; Tsunekane, Masaki; Taira, Takunori

    2011-05-09

    A passively Q-switched Nd:YAG/Cr(4+):YAG micro-laser with three-beam output was realized. A single active laser source made of a composite, all-ceramics Nd:YAG/Cr(4+):YAG monolithic cavity was pumped by three independent lines. At 5 Hz repetition rate, each line delivered laser pulses with ~2.4 mJ energy and 2.8-MW peak power. The M(2) factor of a laser beam was 3.7, and stable air breakdowns were realized. The increase of pump repetition rate up to 100 Hz improved the laser pulse energy by 6% and required ~6% increase of the pump pulse energy. Pulse timing of the laser-array beams can by adjusted by less than 5% tuning of an individual line pump energy, and therefore simultaneous multi-point ignition is possible. This kind of laser can be used for multi-point ignition of an automobile engine. © 2011 Optical Society of America

  14. A low-fluence 1064-nm Q-switched neodymium-doped yttrium aluminium garnet laser for the treatment of café-au-lait macules.

    PubMed

    Kim, Hyeong-Rae; Ha, Jeong-Min; Park, Min-Soo; Lee, Young; Seo, Young-Joon; Kim, Chang-Deok; Lee, Jeung-Hoon; Im, Myung

    2015-09-01

    Café-au-lait macules (CALMs) are a common pigmentary disorder. Although a variety of laser modalities have been used to treat CALMs, their efficacies vary and dyspigmentation may develop. We evaluated the clinical efficacy and safety of a low-fluence 1064-nm Q-switched neodymium-doped yttrium aluminium garnet (Nd:YAG) laser for the treatment of CALMs. In a preliminary investigation, 6 patients underwent a split-lesion comparative study with 532- and 1064-nm Q-switched Nd:YAG laser treatment. In total, 32 patients with 39 CALMs were enrolled in a subsequent prospective trial to evaluate the treatment with a low-fluence 1064-nm Q-switched Nd:YAG laser. In the preliminary study, the 1064-nm treatment group had a more favorable response and a shorter recovery time. In a subsequent prospective trial of a 1064-nm laser, 74.4% of the lesions showed a clinical response with clearance of ≥50.0%. The treatment regimen was well tolerated; 15.4% of patients experienced adverse events. The study participants were followed for 6 months, and there were no relevant treatment controls in the prospective trial group. Low-fluence 1064-nm Q-switched Nd:YAG laser therapy afforded good clinical improvement for treating CALMs. Copyright © 2015 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  15. A Q-switched Ho:YAG laser with double anti-misalignment corner cubes pumped by a diode-pumped Tm:YLF laser

    NASA Astrophysics Data System (ADS)

    Wang, Y. P.; Dai, T. Y.; Wu, J.; Ju, Y. L.; Yao, B. Q.

    2018-06-01

    We report the acousto-optically Q-switched Ho:YAG laser with double anti-misalignment corner cubes pumped by a diode-pumped Tm:YLF laser. In the continuous-wave operation of Ho:YAG laser, the maximum s-polarized output power of 3.2 W at 2090.3 nm was obtained under the absorbed pump power of 12.9 W by rotating the fast axis of quarter-wave plate to change the output transmission of laser cavity. The corresponding optical-to-optical conversion efficiency was 24.8% and the slope efficiency was 55.7%. When one of the corner cubes was rotated to 11.8° around vertical direction or 6.7° around horizontal direction, the laser could still operate stably. For the Q-switched operation, the pulse energy of Ho:YAG laser was 9.9 mJ with a pulse width of 53 ns at the repetition rate of 100 Hz, resulting in a peak power of 186.8 kW. The beam quality factor M2 of Ho:YAG laser was 1.3.

  16. Q-Switched 660-nm Versus 532-nm Nd: YAG Laser for the Treatment for Facial Lentigines in Asian Patients: A Prospective, Randomized, Double-Blinded, Split-Face Comparison Pilot Study.

    PubMed

    Noh, Tai Kyung; Chung, Bo Young; Yeo, Un Cheol; Chang, SeoYoun; Lee, Mi Woo; Chang, Sung Eun

    2015-12-01

    Q-switched (QS) 532-nm lasers are widely used to treat solar lentigines. To compare the efficacy and safety of 660-nm and 532-nm QS neodymium-doped yttrium aluminum garnet (Nd:YAG) lasers in the treatment for lentigines in Asians. The halves of each face (randomly chosen) of 8 Korean Fitzpatrick Skin Type III-IV women with facial solar lentigines were treated with either 660-nm or 532-nm lasers. Pigmentation was measured objectively using a profilometric skin analysis tool and subjectively using the pigmentation area and severity index (PSI) score, global assessment of the aesthetic improvement scale (GAIS), and a patient satisfaction score at Weeks 4 and 8. Seven patients completed the study. No significant differences were found in the PSI, GAIS, patient satisfaction score, and melanin average score between the lasers. The melanin average level was significantly reduced by the 660-nm laser but not the 532-nm laser at Week 8 compared with the baseline. Both 660-nm and 532-nm QS Nd:YAG lasers effectively reduce pigmentation for up to 8 weeks with high patient satisfaction. The new 660-nm laser therefore increases the treatment options for lentigines in Asian skin.

  17. Treatment of melasma with low fluence, large spot size, 1064-nm Q-switched neodymium-doped yttrium aluminum garnet (Nd:YAG) laser for the treatment of melasma in Fitzpatrick skin types II-IV.

    PubMed

    Brown, Alia S; Hussain, Mussarat; Goldberg, David J

    2011-12-01

    Melasma is a common condition affecting over six million American women. Treatment of dermal or combined melasma is difficult and does not respond well to conventional topical therapies. Various light sources have been used recently in the treatment of melasma including fractionated ablative and non-ablative lasers as well as intense pulse light. We report the use of low fluence, large spot size Q-switched, Nd:Yag laser for the treatment of melasma in skin types II-IV.

  18. Simulation of medical Q-switch flash-pumped Er:YAG laser

    NASA Astrophysics Data System (ADS)

    -Yan-lin, Wang; Huang-Chuyun; Yao-Yucheng; Xiaolin, Zou

    2011-01-01

    Er: YAG laser, the wavelength is 2940nm, can be absorbed strongly by water. The absorption coefficient is as high as 13000 cm-1. As the water strong absorption, Erbium laser can bring shallow penetration depth and smaller surrounding tissue injury in most soft tissue and hard tissue. At the same time, the interaction between 2940nm radiation and biological tissue saturated with water is equivalent to instantaneous heating within limited volume, thus resulting in the phenomenon of micro-explosion to removal organization. Different parameters can be set up to cut enamel, dentin, caries and soft tissue. For the development and optimization of laser system, it is a practical choice to use laser modeling to predict the influence of various parameters for laser performance. Aim at the status of low Erbium laser output power, flash-pumped Er: YAG laser performance was simulated to obtain optical output in theory. the rate equation model was obtained and used to predict the change of population densities in various manifolds and use the technology of Q-switch the simulate laser output for different design parameters and results showed that Er: YAG laser output energy can achieve the maximum average output power of 9.8W under the given parameters. The model can be used to find the potential laser systems that meet application requirements.

  19. Maximum value of the pulse energy of a passively Q-switched laser as a function of the pump power.

    PubMed

    Li, Jianlang; Ueda, Ken-ichi; Dong, Jun; Musha, Mitsuru; Shirakawa, Akira

    2006-07-20

    The finite recovery time Ts of the bleached absorber is presented as one of the possible mechanisms accounting for the increase-maximum-decrease in pulse energy E with the pumping rate Wp in cw-pumped passively Q-switched solid-state lasers, by analytically evaluating the sign of the derivative partial differentialE/ partial differentialWP. The results show that, in the low pump regime (T>Ts, T is the interpulse period), the initial population density ni remains constant, the final population density nf decreases with Wp, and this results in a monotonic increase of E with Wp. In the high pump regime (TYAG laser passively Q switched by a Cr4+:YAG absorber is demonstrated to confirm this model. The theoretical model is also applied to the analysis of three previously reported passive Q switching solid-state [Nd:GdVO4, Nd+:LaSc3(BO3)4 (Nd+:LSB), and Nd:YAG] lasers experiments.

  20. Retreatment using a dual mode of low-fluence Q-switched and long-pulse Nd:YAG laser in patients with melasma aggravation after previous therapy.

    PubMed

    Choi, Chun Pil; Yim, Seon Mi; Seo, Soo Hong; Ahn, Hyo Hyun; Kye, Young Chul; Choi, Jae Eun

    2015-06-01

    Aggravated melasma after treatment is vulnerable to stimulation, can easily deteriorate, and may be distressing without proper management. To retrospectively assess the effectiveness and safety of combination therapy using low-fluence Q-switched neodymium-doped yttrium aluminum garnet (Nd:YAG) laser (QSNY) and long-pulse Nd:YAG laser (LPNY) (dual toning) in patients with rebound melasma. A total of 30 patients with aggravated melasma after previous therapy who were treated with dual toning were enrolled. A total of 10 sessions were conducted at 1-week intervals, followed by maintenance treatment. The results were evaluated using the modified Melasma Area and Severity Index (mMASI) and the physician's global assessment (PGA) before and 2 months after completing the 10 treatment sessions. The baseline mMASI was 10.48 ± 3.64, which significantly decreased to 3.22 ± 1.45 2 months after completing the 10 treatment sessions (p < 0.001). Twenty-four patients (80%) had PGA grade 4 (76-100% improvement) and 6 patients (20%) had PGA grade 3 (51-75% improvement). Dual toning may be a safe and effective salvage treatment for patients with aggravated melasma after previous treatment. LPNY may stabilize melasma activity to prevent rebound hyperpigmentation via dermal remodeling.

  1. Microstructure and mechanical changes induced by Q-Switched pulse laser on human enamel with aim of caries prevention

    NASA Astrophysics Data System (ADS)

    Apsari, R.; Pratomo, D. A.; Hikmawati, D.; Bidin, N.

    2016-03-01

    This study was conducted to determine the effect of Q-Switched Nd: YAG laser energy dose to human enamel caries. The specifications of Q-Switched Nd: YAG laser as followed: wavelength of 1064 nm and 6 ns pulse width. Caries enamel samples taken from human teeth molars of 17-35 ages and the type of media caries. Energy doses used in this study were 723.65 mJ/cm2, 767.72 mJ/cm2, and 1065.515 mJ/cm2; 5 Hz repetition rate, and 20 second exposure time. Samples characterized the surface morphology and the percentage of constituent elements, especially calcium/phosphorus (Ca/P) with FESEM-EDAX. The fraction volume and crystallinity percentage of hydroxyapatite (HA) with XRD and hardness value using Vickers Microhardness Test. The results indicated that exposure of Q-Switched Nd:YAG laser on enamel caries resulting cracks, holes, and melt due to plasma production effects in the surface. Plasma production effect also resulted in micro properties such as percentage of Ca/P was close to normal, the fraction volume and crystallinity percentage of HA went up but did not change the crystal structure (in terms of the lattice structure). The hardness value also rose as linear as exposure energy dose caused by phototermal effect. Based on the results, Q-Switched Nd:YAG laser can be used as contactless drill dental caries replacement candidate with the additional therapy effect such as localized caries in order to avoid the spread, the ratio of Ca/P approaching healthy teeth, the fraction volume and crystallinity percentage of HA rose and established stronger teeth with peak energy dose 1065.515 mJ/cm2.

  2. Numerical simulation of a battlefield Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Henriksson, Markus; Sjoqvist, Lars; Uhrwing, Thomas

    2005-11-01

    A numeric model has been developed to identify the critical components and parameters in improving the output beam quality of a flashlamp pumped Q-switched Nd:YAG laser with a folded Porro-prism resonator and polarization output coupling. The heating of the laser material and accompanying thermo-optical effects are calculated using the finite element partial differential equations package FEMLAB allowing arbitrary geometries and time distributions. The laser gain and the cavity are modeled with the physical optics simulation code GLAD including effects such as gain profile, thermal lensing and stress-induced birefringence, the Pockels cell rise-time and component aberrations. The model is intended to optimize the pumping process of an OPO providing radiation to be used for ranging, imaging or optical countermeasures.

  3. Efficient Q-switched operation in 1.64 μm Er:YAG tapered rod laser

    NASA Astrophysics Data System (ADS)

    Polyakov, Vadim M.; Vitkin, Vladimir V.; Krylov, Alexandr A.; Uskov, Alexander V.; Mak, Andrey A.

    2017-02-01

    We model output characteristics of the 1645 nm 8 mJ 10 ns 100 Hz Q-switched Er:YAG DPSSL. The laser is end pumped at a wavelength of 1532 nm. Fiber-coupled diode laser module was 10 nm FWHM, 12 W CW, 200 μm, NA 0.22. Various tapering of the active rod has been considered for 1 mm diameter, 20 mm long and 0.5% Er doping. We discuss the heat deposition process, the energy storage efficiency and the average power limitations for Q-switched regime of generation and amplification, and find the system scalable for the high power operation.

  4. Nd-YAG Laser Treatment for Tracheobronchial Obstruction

    PubMed Central

    Lee, Yu-Chin; Chiang, Kuo-Hwa

    1996-01-01

    The Nd-YAG laser has good tissue penetration and coagulation effects thus has become an important weapon for photoresection of tracheobronchial obstructive lesions since 1980. Treatment of benign lesions including benign tumors and scar tissues using the Nd-YAG laser has good results. In the treatment of malignant tumors however, it has a lower effectivity rate when compared to benign lesions. From July 1984 to September 1995, a total of 65 patients were treated with Nd-YAG laser for tracheobronchial obstruction. There were 32 (49%) malignant tumors and 33 (51%) benign lesions. 116 resections were performed in 48 patients using the non-contact Nd-YAG laser (MBB, Medilas 2) before 1992. Thereafter, another 41 resections were performed in 17 cases using contact Nd-YAG laser (SLT, CL-X). The overall effectivity rate was 60%. The effectivity rate for benign lesions was 81.3% and 39.4% for malignant tumor. The effectivity rate between non-contact and contact Nd-YAG laser was not significantly different. PMID:18493424

  5. Nd-YAG Laser Treatment for Tracheobronchial Obstruction.

    PubMed

    Perng, R P; Lee, Y C; Chiang, K H

    1996-01-01

    The Nd-YAG laser has good tissue penetration and coagulation effects thus has become an important weapon for photoresection of tracheobronchial obstructive lesions since 1980.Treatment of benign lesions including benign tumors and scar tissues using the Nd-YAG laser has good results. In the treatment of malignant tumors however, it has a lower effectivity rate when compared to benign lesions. From July 1984 to September 1995, a total of 65 patients were treated with Nd-YAG laser for tracheobronchial obstruction. There were 32 (49%) malignant tumors and 33 (51%) benign lesions. 116 resections were performed in 48 patients using the non-contact Nd-YAG laser (MBB, Medilas 2) before 1992. Thereafter, another 41 resections were performed in 17 cases using contact Nd-YAG laser (SLT, CL-X). The overall effectivity rate was 60%. The effectivity rate for benign lesions was 81.3% and 39.4% for malignant tumor. The effectivity rate between non-contact and contact Nd-YAG laser was not significantly different.

  6. A high repetition rate passively Q-switched microchip laser for controllable transverse laser modes

    NASA Astrophysics Data System (ADS)

    Dong, Jun; Bai, Sheng-Chuang; Liu, Sheng-Hui; Ueda, Ken-Ichi; Kaminskii, Alexander A.

    2016-05-01

    A Cr4+:YAG passively Q-switched Nd:YVO4 microchip laser for versatile controllable transverse laser modes has been demonstrated by adjusting the position of the Nd:YVO4 crystal along the tilted pump beam direction. The pump beam diameter-dependent asymmetric saturated inversion population inside the Nd:YVO4 crystal governs the oscillation of various Laguerre-Gaussian, Ince-Gaussian and Hermite-Gaussian modes. Controllable transverse laser modes with repetition rates over 25 kHz and up to 183 kHz, depending on the position of the Nd:YVO4 crystal, have been achieved. The controllable transverse laser beams with a nanosecond pulse width and peak power over hundreds of watts have been obtained for potential applications in optical trapping and quantum computation.

  7. Continuous-wave and passively Q-switched Nd:YVO4 laser at 1085 nm

    NASA Astrophysics Data System (ADS)

    Lin, Hongyi; Liu, Hong; Huang, Xiaohua; Zhang, Jiyan

    2017-11-01

    An admirable and efficient Nd:YVO4 laser at 1085 nm is demonstrated with a compact 35 mm plano-plano cavity. A chosen narrow bandpass filter with high-transmittance (HT) coating at 1064 nm (T=96%) and optimized part-reflection (PR) coating at 1085 nm (T=15%) is used as the output coupler. In the continuous-wave (CW) regime, the maximum output power reaches 3110 mW at the pump power of 11.41 W. Based on a Cr:YAG crystal with initial-transmittance of 91%, the first passively Q-switched Nd:YVO4 laser at 1085 nm is achieved. When the pump power is changed from the threshold of 4.50 to 6.08 W, the dual-wavelength lines at 1064 and 1085 nm are generated simultaneously. However, at the pump power of above 6.08 W, the single-wavelength line at 1085 nm is achieved. The largest output power, the highest peak power, and the narrowest pulse width are 1615 mW, 878 W and 26.2 ns, respectively.

  8. Performance enhancement of sub-nanosecond diode-pumped passively Q-switched Yb:YAG microchip laser with diamond surface cooling.

    PubMed

    Zhuang, W Z; Chen, Yi-Fan; Su, K W; Huang, K F; Chen, Y F

    2012-09-24

    We experimentally confirm that diamond surface cooling can significantly enhance the output performance of a sub-nanosecond diode-end-pumped passively Q-switched Yb:YAG laser. It is found that the pulse energy obtained with diamond cooling is approximately 1.5 times greater than that obtained without diamond cooling, where a Cr(4+):YAG absorber with the initial transmission of 84% is employed. Furthermore, the standard deviation of the pulse amplitude peak-to-peak fluctuation is found to be approximately 3 times lower than that measured without diamond cooling. Under a pump power of 3.9 W, the passively Q-switched Yb:YAG laser can generate a pulse train of 3.3 kHz repetition rate with a pulse energy of 287 μJ and with a pulse width of 650 ps.

  9. Low threshold diode-pumped picosecond mode-locked Nd:YAG laser with a semiconductor saturable absorber mirror

    NASA Astrophysics Data System (ADS)

    Eshghi, M. J.; Majdabadi, A.; Koohian, A.

    2017-01-01

    In this paper, a low threshold diode pumped passively mode-locked Nd:YAG laser has been demonstrated by using a semiconductor saturable absorber mirror. The threshold power for continuous-wave mode-locking is relatively low, about 3.2 W. The resonator stability across the pump power has been analytically examined. Moreover, the mode overlap between the pump beam and the laser fundamental mode has been simulated by MATLAB software. Adopting Z-shaped resonator configuration and suitable design of the resonator’s arm lengths, has enabled the author to prepare mode-locking conditions, and obtain 40 ps pulses with 112 MHz pulse repetition rate. The laser output was stable without any Q switched instability. To the best of our knowledge, this is the lowest threshold for CW mode-locking operation of a Nd:YAG laser.

  10. Treatment of resistant tattoos using a new generation Q-switched Nd:YAG laser: influence of beam profile and spot size on clearance success.

    PubMed

    Karsai, Syrus; Pfirrmann, Gudrun; Hammes, Stefan; Raulin, Christian

    2008-02-01

    Multiple treatments of resistant tattoos often result in fibrosis and visible textural changes that lessen response to subsequent treatments. The aim of this study is to evaluate the influence of beam profile and spot size on clearance rates and side effects in the setting of resistant tattoos. Thirty-six professional, black tattoos (32 patients) were treated unsuccessfully with a Q-switched Nd:YAG laser (MedLite C3, HoyaConBio Inc., Fremont, CA). Because of therapy resistance all tattoos were re-treated using a new generation Nd:YAG laser (MedLite C6, HoyaConBio Inc.). Maximum energy fluence (E (max)), mean energy fluence, mean spot size, level of clearance, side effects and beam profile (irradiance distribution) of both laser systems were assessed and evaluated in a retrospective study. All tattoos were previously treated with the C3 laser at 1,064 nm using a mean E(max) of 5.8+/-0.8 J/cm(2) (range 3.8-7.5 J/cm(2)) as compared with a mean E(max) of 6.4+/-1.6 J/cm(2) (range 3.2-9.0 J/cm(2)) during the C6 treatment course. Corresponding spot sizes were larger during C6 treatments as compared with C3 (5.0+/-0.9 and 3.6+/-0.2 mm, respectively). The C6 laser had a "flat top" and homogenous profile regardless of the spot size. For the C3 laser the beam shape was "Gaussian," and the homogeneity was reduced by numerous micro-spikes and micro-nadirs. After the C6 treatment course 33.3% of the tattoos showed clearance of grade 1 (0-25%), 16.7% of grade 2 (26-50%), 16.7% of grade 3 (51-75%), 30.5% of grade 4 (76-95%), 2.8% of grade 5 (96-100%). The total rate of side effects due to C6 treatment was 8.3% in all tattoos (hyperpigmentation 5.6%, hypopigmentation 2.7%, textural changes/scars 0%). This clinical study documents for the first time the impact of a 1,064-nm Nd:YAG laser with a more homogenous beam profile and a larger spot size on the management of resistant tattoos. Only a few treatment sessions were necessary to achieve an additional clearance with a low rate of

  11. Comparative research on medicine application with 0.53-um, 1.06-um, and 1.32-um Nd:YAG lasers

    NASA Astrophysics Data System (ADS)

    Li, Yahua; Li, Zhenjia; Zhu, Changhong; Huang, Yizhong

    1996-09-01

    Because of its high power and excellent optical features, laser has almost been applied to everywhere of medical research and clinic. Over the past several years, laser medical has achieved a rapid progress, and laser medical instruments has developed promptly, each new wavelength can be successfully applied in diagnostic and treatment of diseases. Among the medical lasers, Nd:YAG solid-state laser systems have proven useful in surgical use operate, such as neurosurgery, gastroenterology, cardioangiology, urology, gynecology, dermatology and ENT. As with other solid-state lasers, the Nd:YAG laser can be made to emit various wavelengths by means of suitable resonator configurations and some newest solid-state laser technology, pumped by the Krypton lamp, the Nd:YAG laser at room temperature exhibits transition at 1.06 micrometer Nd:YAG, using nonlinear crystal and Q-switch to double its frequency can attain 0.53 micrometer green beam. In our laser systems, the efficiency at 1.06 micrometer is more than 3 percent, an efficiency of 0.5 percent at 1.32 micrometer and 0.53 micrometer can be attained. For a power of 100w at 1.06 micrometer, 15w at 1.32 micrometer and 0.53 micrometer can therefore be produced. All of three kinds Nd:YAG laser hold these characteristics: high output power; optical fiber transition that can be cooperated with endoscope. The paper mainly discusses laser operating characteristics and clinic applications of three kinds wavelengths at 0.53 micrometer 1.06 micrometer and 1.32 micrometer Nd:YAG laser systems.

  12. The influence of the Nd:YAG laser bleaching on physical and mechanical properties of the dental enamel.

    PubMed

    Marcondes, Maurem; Paranhos, Maria Paula Gandolfi; Spohr, Ana Maria; Mota, Eduardo Gonçalves; da Silva, Isaac Newton Lima; Souto, André Arigony; Burnett, Luiz Henrique

    2009-07-01

    The Nd:YAG laser can be used in Dentistry to remove soft tissue, disinfect canals in endodontic procedures and prevent caries. However, there is no protocol for Nd:YAG laser application in dental bleaching. The aims of this in vitro study were: (a) to observe the tooth shade alteration when hydrogen peroxide whitening procedures are associated with dyes with different wavelengths and irradiated with Nd:YAG laser or halogen light; (b) to measure the Vickers (VHN) enamel microhardness before and after the whitening procedure; (c) to evaluate the tensile bond strength of two types of adhesive systems applied on bleached enamel; (d) to observe the failure pattern after bond strength testing; (e) to evaluate the pulpal temperature during the bleaching procedures with halogen light or laser; (f) to measure the kinetic reaction of hydrogen peroxide. Extracted sound human molar crowns were sectioned in the mesiodistal direction to obtain 150 fragments that were divided into five groups for each adhesive system: WL (H(2)O(2) + thickener and Nd:YAG), WH (H(2)O(2) + thickener and halogen light), QL (H(2)O(2) + carbopol + Q-switch and Nd:YAG), QH (H(2)O(2) + carbopol + Q-switch and halogen light), and C (Control, without whitening agent). Shade assessment was made with a shade guide and the microhardness tests were performed before and after the bleaching procedures. Immediately afterwards, the groups were restored with the adhesive systems Adper Single Bond 2 or Solobond M plus composite resin, and the tensile bond strength test was performed. The temperature was measured by thermocouples placed on the enamel surface and intrapulpal chamber. The kinetics of hydrogen peroxide was observed by ultraviolet analysis. The shade changed seven levels for Nd:YAG laser groups and eight levels for halogen light. According to the student's t-test, there was no statistical difference between the VHN before and after the whitening protocols (p > 0.05). The tensile bond strength showed no

  13. Development of flashlamp-pumped Q-switched Ho:Tm:Cr:YAG lasers for mid-infrared LIDAR application

    NASA Technical Reports Server (NTRS)

    Choi, Young S.; Kim, Kyong H.; Whitney, Donald A.; Hess, Robert V.; Barnes, Norman P.; Bair, Clayton H.; Brockman, Philip

    1989-01-01

    A flashlamp-pumped 2.1 micron Ho:Tm:Cr:YAG laser was studied for both normal mode and Q-switched operations under a wide variety of experimental conditions in order to optimize performance. Laser output energy, slope efficiency, threshold and pulselength were determined as a function of operating temperature, output mirror reflectivity, input electrical energy and Q-switch opening time. The measured normal-mode laser thresholds of a Ho(3+) (0.45 atomic percent):Tm(3+) (2.5 atomic percent):Cr(3+) (0.8 atomic percent):YAG crystal ranged form 26 to 50 J between 120 and 200 K with slope efficiencies up to 0.36 percent with a 60 percent reflective output mirror. Under Q-switched operation the slope efficiency was 90 percent of the normal-mode result. Development of solid state lasers with Ho(3+), Tm(3+) and/or Er(3+) doped crystals has been pursued by NASA for eye-dafe mid-infrared LIDAR (light detection and ranging) application. As a part of the project, the authors have been working on evaluating Ho(3+):Tm(3+):Cr(3+):YAG crystals for normal-mode and Q-switched 2.1 micron laser operations in order to determine an optimum Tm(3+) concentration under flashlamp pumping conditions. Lasing properties of the Ho(3+) in the mid-infrared region have been studied by many research groups since the early 1960's. However, the technology of those lasers is still premature for lidar application. In order to overcome the inefficiency related to narrow absorption bands of the Ho(3+), Tm(3+) and Er(3+), the erbium has been replaced by chromium. The improvement in flashlamp-pumped Ho(3+) laser efficiency has been demonstrated recently by several research groups by utilizing the broad absorption spectrum of Cr(3+) which covers the flashlamp's emission spectrum. Efficient energy transfer to the Tm(3+) and then the Ho(3+) occurs subsequently. It is known that high Tm(3+) concentration and low Ho(3+) concentration are preferred to achieve a quantum efficiency approaching two and to avoid

  14. Highly efficient solar-pumped Nd:YAG laser.

    PubMed

    Liang, Dawei; Almeida, Joana

    2011-12-19

    The recent progress in solar-pumped laser with Fresnel lens and Cr:Nd:YAG ceramic medium has revitalized solar laser researches, revealing a promising future for renewable reduction of magnesium from magnesium oxide. Here we show a big advance in solar laser collection efficiency by utilizing an economical Fresnel lens and a most widely used Nd:YAG single-crystal rod. The incoming solar radiation from the sun is focused by a 0.9 m diameter Fresnel lens. A dielectric totally internally reflecting secondary concentrator is employed to couple the concentrated solar radiation from the focal zone to a 4 mm diameter Nd:YAG rod within a conical pumping cavity. 12.3 W cw laser power is produced, corresponding to 19.3 W/m(2) collection efficiency, which is 2.9 times larger than the previous results with Nd:YAG single-crystal medium. Record-high slope efficiency of 3.9% is also registered. Laser beam quality is considerably improved by pumping a 3 mm diameter Nd:YAG rod.

  15. Electro-optically Q-switched dual-wavelength Nd:YLF laser emitting at 1047 nm and 1053 nm

    NASA Astrophysics Data System (ADS)

    Men, Shaojie; Liu, Zhaojun; Cong, Zhenhua; Li, Yongfu; Zhang, Xingyu

    2015-05-01

    A flash-lamp pumped electro-optically Q-switched dual-wavelength Nd:YLF laser is demonstrated. Two Nd:YLF crystals placed in two cavities are employed to generate orthogonally polarized 1047 nm and 1053 nm radiations, respectively. The two cavities are jointed together by a polarizer and share the same electro-optical Q-switch. Two narrow-band pass filters are used to block unexpected oscillations at the hold-off state of the electro-optical Q-switch. In this case, electro-optical Q-switching is able to operate successfully. With pulse synchronization realized, the maximum output energy of 66.2 mJ and 83.9 mJ are obtained for 1047 nm and 1053 nm lasers, respectively. Correspondingly, the minimum pulse width is both 17 ns for 1047 nm and 1053 nm lasers. Sum frequency generation is realized. This demonstrates the potential of this laser in difference-frequency generations to obtain terahertz wave.

  16. Compact high-pulse-energy passively Q-switched Nd:YLF laser with an ultra-low-magnification unstable resonator: application for efficient optical parametric oscillator.

    PubMed

    Cho, C Y; Huang, Y P; Huang, Y J; Chen, Y C; Su, K W; Chen, Y F

    2013-01-28

    We exploit an ultra-low-magnification unstable resonator to develop a high-pulse-energy side-pumped passively Q-switched Nd:YLF/Cr⁴⁺:YAG laser with improving beam quality. A wedged laser crystal is employed in the cavity to control the emissions at 1047 nm and 1053 nm independently through the cavity alignment. The pulse energies at 1047 nm and 1053 nm are found to be 19 mJ and 23 mJ, respectively. The peak powers for both wavelengths are higher than 2 MW. Furthermore, the developed Nd:YLF lasers are employed to pump a monolithic optical parametric oscillator for confirming the applicability in nonlinear wavelength conversions.

  17. Efficient, frequency-stable laser-diode-pumped Nd:YAG laser

    NASA Technical Reports Server (NTRS)

    Zhou, B.; Kane, T. J.; Dixon, G. J.; Byer, R. L.

    1985-01-01

    One of the main goals of the study was to demonstrate a low-power efficient Nd:YAG laser oscillator for applications in remote coherent Doppler anemometry. An electrical-to-optical slope efficiency of 6.5 percent has been achieved by using commercially available CW laser diodes of up to 100 mW to pump monolithic Nd:YAG rod lasers. The observed Nd:YAG oscillation threshold is at 2.3 mW of laser-diode output power, i.e., a small fraction of the rated output power. The highest Nd:YAG CW output power reached is 4.4 mW at an overall electrical-to-optical efficiency of 1.5 percent. The frequency jitter is less than 10 kHz in 0.3 s.

  18. Effects of neodymium-yttrium-aluminum garnet (Nd:YAG) pulsed high-intensity laser therapy on full thickness wound healing in an experimental animal model.

    PubMed

    Hong, Seung Eun; Hong, Mi Ki; Kang, So Ra; Young Park, Bo

    2016-12-01

    Wound healing can be aided by the use of low- and medium-intensity lasers. The use of pulsed neodymium-doped yttrium aluminum garnet (Nd:YAG) high-intensity laser therapy (HILT) with a 1064-nm wavelength laser provides deeper and more efficient penetration into tissue as it is being less absorbed by chromophores in tissue, e.g., hemoglobin, melanin, and water, thereby enhancing the wound-healing process. In this study, we examined the effect of HILT on wound healing with a Q-switched pulsed Nd:YAG laser in an animal model. Sixty SKH1 hairless male mice (seven weeks old) were randomly divided into four groups according to the amount of laser fluence: control, group 1 (0.8 J/cm 2 ), group 2 (1.6 J/cm 2 ), and group 3 (2.0 J/cm 2 ). Laser treatment was provided to groups 1, 2, and 3 with a 1064-nm Q-switched Nd:YAG laser. Histological analysis was performed with hematoxylin and eosin staining, Masson's Trichrome staining, and Ki-67 staining. Statistically significant increases in the accumulation of collagen fibers, thickness of granulation tissue, and numbers of fibroblasts were observed in group 2 (treated with 1.6 J/cm 2 ) as compared with the control (no laser treatment), group 1 (treated with 0.8 J/cm 2 ), and group 3 (treated with 2.0 J/cm 2 ). Nd:YAG HILT stimulated fibroblast proliferation and increased extracellular matrix production. We expect that this therapy could accelerate the wound-healing process.

  19. Q-switched Er:YAG radiation transmission through an oxide glass fiber for medical applications

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Dimitris N.; Papagiakoumou, Eirini; Serafetinides, Alexander A.

    2002-09-01

    In the last few years, there has been an increasing interest for the 3 μm laser radiation in various medical applications, as this wavelength is strongly absorbed by the water and the other components of soft and hard tissue. An intensive development effort is going on throughout the world, in order to develop reliable lasers emitting in the 3 μm wavelength range. Our laser development effort with the Q-switched Er:YAG laser is briefly described in this article. Additionally for medical applications there is a great demand for good flexible delivery systems, in the mid-IR wavelength region. In this work the radiation transmission of a Q-switched Er:YAG laser, emitting at 2.94 μm, through high power (HP) oxide glass fibers of 450 μm core diameter was studied. Attenuation measurements were obtained as a function of the laser energy input and as a function of curvature, at 90 °, 180° and 360° bending angle. The output beam quality was studied using a beam profiler. Experiments with the same delivery system transmitting free-running Er:YAG laser radiation, were performed for comparison. The results are promising for the delivery of Q-switched Er:YAG laser radiation, as the fibers exhibited attenuation of 0.7 dB/m, and no damage of them was observed.

  20. Dye foils with increased durability for passive Q-switching in a 1064 nm laser

    NASA Astrophysics Data System (ADS)

    Mierczyk, Z.; Kwasny, M.; Czeszko, J.

    The results of spectral gel permeation chromatography and differential thermal analysis investigations of structures of dye foils consisting of bis-(4-dimethyl-amino-dithio-benzil)-nickel dye suspended in polymethylmethacrylate matrix, to be used for passive Q-switching in a 1064 nm laser, are reported. Results of experimental measurements and of numerical calculations of thermal and generating properties, and of the endurance of passive foil type Q-switches in the resonator of YAG:Nd(3+) laser are also presented. Optimization of polymerization conditions has enabled the production of dye foils with high thermal and photochemical resistance, which give stable operation of a giant pulsed laser.

  1. Dye Foils With Increased Durability For Passive Q-Switching In A 1064 Nm Laser.

    NASA Astrophysics Data System (ADS)

    Mierczyk, Z.; Kwasny, M.; Czeszko, J.

    1987-10-01

    The results of spectral (IR, UV-VIS, H NMR) , gel permeation chromatography and differential thermal analysis investigations of structures of dye foils consisting of bis-(4-dimethyl-amino-dithio-benzil)-nickel dye suspended in polymethylmethacrylate matrix, to be used for passive Q-switching in a 1064 nm laser, are reported. Results of experimental measurements and of numerical calculations of thermal and generating properties, and of the endurance of passive foil type Q-switches in the resona-tor of YAG:Nd3+ laser are also presented. Optimization of polymerization conditions has enabled the production of dye foils with high thermal and photochemical resistance, which give stable operation of a giant pulsed laser.

  2. Large-energy, narrow-bandwidth laser pulse at 1645 nm in a diode-pumped Er:YAG solid-state laser passively Q-switched by a monolayer graphene saturable absorber.

    PubMed

    Zhou, Rong; Tang, Pinghua; Chen, Yu; Chen, Shuqing; Zhao, Chujun; Zhang, Han; Wen, Shuangchun

    2014-01-10

    Nonlinear transmission parameters of monolayer graphene at 1645 nm were obtained. Based on the monolayer graphene saturable absorber, a 1532 nm LD pumped 1645 nm passively Q-switched Er:YAG laser was demonstrated. Under the pump power of 20.8 W, a 1645 nm Q-switched pulse with FWHM of 0.13 nm (without the use of etalon) and energy of 13.5 μJ per pulse can be obtained. To the best of our knowledge, this is the highest pulse energy for graphene-based passively Q-switched Er:YAG laseroperating at 1645 nm, suggesting the potentials of graphene materials for high-energy solid-state laser applications.

  3. Red laser based on intra-cavity Nd:YAG/CH4 frequency doubled Raman lasers

    NASA Astrophysics Data System (ADS)

    Wang, Yanchao; Wang, Pengyuan; Liu, Jinbo; Liu, Wanfa; Guo, Jingwei

    2017-01-01

    Stimulated Raman scattering (SRS) is a powerful tool for the extension of the spectral range of lasers. To obtain efficient Raman conversion in SRS, many researchers have studied different types of Raman laser configurations. Among these configurations, the intra-cavity type is particularly attractive. Intra-cavity SRS has the advantages of high intra-cavity laser intensity, low-SRS threshold, and high Raman conversion efficiency. In this paper, An Q-switched intra-cavity Nd: YAG/CH4 frequency-doubled Raman lasers is reported. A negative branch confocal resonator with M= 1.25 is used for the frequency-doubling of Nd: YAG laser. The consequent 532nm light is confined in intra- cavity SRS with travelling wave resonator, and the focal of one mirror of cavity is overlap with the center of the other mirror of the cavity. We found this design is especially efficient to reduce the threshold of SRS, and increase conversion efficiency. The threshold is measured to be 0.62 MW, and at the pump energy of 16.1 mJ, the conversion efficiency is 34%. With the smaller magnification M, the threshold could further decrease, and the conversion efficiency could be improved further. This is a successful try to extend the spectral range of a laser to the shorter wavelength by SRS, and this design may play an important role in the fulfillment of high power red lasers.

  4. A-O Q-switching of 2.1-μm laser

    NASA Astrophysics Data System (ADS)

    Zheng, Jia; Liu, Jingjiao; Tang, Yi; Hu, Yongzhao

    2005-01-01

    2.1μm solid state laser operating at room temperature is a very useful laser source for optical communication, medical care, air pollution monitoring and Lidar, etc. It is eye-safe. It is also a very ideal pump source for optic parametric oscillator to get 3μm -5μm radiation. In order to further explore its potential applications, higher peak power and shorter pulse width are very desirable. Q-switching the laser is a most practical way to realize those goals. Among the most common used Q-switching techniques, mechanical Q-switching is not preferred due to that it involves use of a rotating motor, which has lower life time and causes undesirable vibration. E-O Q-switch material in this wavelength range is very expensive and quite susceptible to optical damage. On the other hand, low OH concentration quartz material exhibits very low absorption at the 2.1μm. The Cr:Tm:Ho:YAG 2.1μm laser has undesirable lower gain from the laser efficiency point of view, but offers a feasibility of using the A-O device for the Q-switching even the laser is pulse pumped. The Cr:Tm:Ho:YAG 2.1μm laser is a so called quasi-three level laser, which is characterized as having a higher threshold and lower gain. This study is focused on the optimization of the laser resonator design and the A-O Q-switch design for a higher laser peak power and shorter pulse width. Factors considered in the study include AO Q-switch"s RF frequency, modulation depth, active aperture, resonator length, resonator loss and pumping design, etc. Experiment results are compared with the Q-switched quasi-three level laser model. Final result of the Q-switched 2.1μm laser after preliminary optimization will be presented.

  5. Treatment of melasma with mixed parameters of 1,064-nm Q-switched Nd:YAG laser toning and an enhanced effect of ultrasonic application of vitamin C: a split-face study.

    PubMed

    Lee, Mei-Ching; Chang, Chun-Shin; Huang, Yau-Li; Chang, Shyue-Luen; Chang, Chih-Hsiang; Lin, Ying-Fang; Hu, Sindy

    2015-01-01

    Melasma is an acquired pigment disorder showing symmetrical hyperpigmentation of the face characterized by light to dark brown patches with indistinct borders on both cheeks. Melasma is prevalent in middle-aged women with harmless hormone imbalances. It is also known as the mask of pregnancy and is prevalent in most child-bearing women. It fluctuates month by month, and yet, there is no promising treatment. The Q-switched neodymium-doped yttrium aluminum garnet (QS-Nd:YAG) laser (1,064-nm wavelength) was introduced in Asia years ago for both skin toning and treatment of facial pigment. This low-fluence, 1,064-nm QS-Nd: YAG laser also reportedly improved melasma. Adjunctive treatments such as vitamin C iontophoresis or chemical peels were recommended in other reports. The technique using the 1,064-nm QS-Nd:YAG laser for toning and the enhancement of adjunctive treatments need further investigation and long-term follow-up before recommendations for the ideal protocol for melasma treatment can be made. The aim of this study is to evaluate the improvement of melasma using different parameters with the 1,064-nm QS-Nd:YAG laser with ultrasonic application of topical vitamin C. Eight patients, ranging in age from 32 to 45 years (mean 37 years), with long-term melasma were studied. Most of the melasma cases were dermal or mixed-type melasma. The patients had no cosmetic treatment (laser, intense pulsed light, or chemical peel) 1 year prior to the study. The entire face of each patient was treated with the 1,064-nm QS-Nd:YAG laser for four sessions at 1-month intervals. The laser treatment was divided into three parts with different parameters. First, each patient underwent whole face exposure for one pass with an 8-mm spot size at a power of 2.0 J/cm(2). Next, the spot size was shifted to 6 mm at a power of 3.5 J/cm(2) for one full-face pass, and then ended with a 4-mm spot size at 3.2 J/cm(2) for one full-face pass, with multiple passes for the main lesions. The end point

  6. Effect of laser beam conditioning on fabrication of clean micro-channel on stainless steel 316L using second harmonic of Q-switched Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Singh, Sanasam Sunderlal; Baruah, Prahlad Kr; Khare, Alika; Joshi, Shrikrishna N.

    2018-02-01

    Laser micromachining of metals for fabrication of micro-channels generate ridge formation along the edges accompanied by ripples along the channel bed. The ridge formation is due to the formation of interference pattern formed by back reflections from the beam splitter and other optical components involved before focusing on the work piece. This problem can be curtailed by using a suitable aperture or Iris diaphragm so as to cut the unwanted portion of the laser beam before illuminating the sample. This paper reports an experimental investigation on minimizing this problem by conditioning the laser beam using an Iris diaphragm and using optimum process parameters. In this work, systematic experiments have been carried out using the second harmonic of a Q-switched Nd:YAG laser to fabricate micro-channels. Initial experiments revealed that formation of ridges along the sides of micro-channel can easily be minimized with the help of Iris diaphragm. Further it is noted that a clean micro-channel of depth 43.39 μm, width up to 64.49 μm and of good surface quality with average surface roughness (Ra) value of 370 nm can be machined on stainless steel (SS) 316L by employing optimum process condition: laser beam energy of 30 mJ/pulse, 11 number of laser scans and scan speed of 169.54 μm/s with an opening of 4 mm diameter of Iris diaphragm in the path of the laser beam.

  7. Compact diode-pumped continuous-wave and passively Q-switched Nd:GYSO laser at 1.07 μm

    NASA Astrophysics Data System (ADS)

    Lin, Zhi; Huang, Xiaoxu; Lan, Jinglong; Cui, Shengwei; Wang, Yi; Xu, Bin; Luo, Zhengqian; Xu, Huiying; Cai, Zhiping; Xu, Xiaodong; Zhang, Xiaoyan; Wang, Jun; Xu, Jun

    2016-08-01

    We report diode-pumped continuous-wave (CW) and Q-switched Nd:GYSO lasers using a compact two-mirror linear laser cavity. Single-wavelength laser emissions at 1074.11 nm with 4.1-W power and at 1058.27 nm with 1.47-W power have been obtained in CW mode. The slope efficiencies with respect to the absorbed pump powers are 48.5% and 22.9%, respectively. Wavelength tunability is also demonstrated with range of about 8 nm. Using a MoS2 saturable absorber, maximum average output power up to 410 mW at 1074 nm can be yielded with absorbed pump power 6.41 W and the maximum pulse energy reaches 1.20 μJ with pulse repetition rate of 342.5 kHz and shortest pulse width of 810 ns. The CW laser results represent the best laser performance and the Q-switching also present the highest output power for Q-switched Nd3+ lasers with MoS2 as saturable absorber.

  8. Theoretical and experimental study on the Nd:YAG/BaWO4/KTP yellow laser generating 8.3 W output power.

    PubMed

    Cong, Zhenhua; Zhang, Xingyu; Wang, Qingpu; Liu, Zhaojun; Chen, Xiaohan; Fan, Shuzhen; Zhang, Xiaolei; Zhang, Huaijin; Tao, Xutang; Li, Shutao

    2010-06-07

    A diode-side-pumped actively Q-switched intracavity frequency-doubled Nd:YAG/BaWO(4)/KTP Raman laser is studied experimentally and theoretically. Rate equations are used to analyze the Q-switched yellow laser by considering the transversal distributions of the intracavity photon density and the inversion population density. An 8.3 W 590 nm laser is obtained with a 125.8 W 808 nm pump power and a 15 kHz pulse repetition frequency. The corresponding optical conversion efficiency from diode laser to yellow laser is 6.57%, much higher than that of the former reported side-pumped yellow laser. The output powers with respect to the incident pump power are in agreement with the theoretical results on the whole.

  9. Healing of rat mouth mucosa after irradiation with CO2, Nd:YAG, and CO2-Nd:YAG combination lasers.

    PubMed

    Luomanen, M; Rauhamaa-Mäkinen, R; Meurman, J H; Kosloff, T; Tiitta, O

    1994-08-01

    The healing process of wounds made by a combination laser was studied in 90 rats. The laser system enabled both separate and combined use of CO2 and Nd:YAG laser irradiations. The laser wounds and the control excision wounds made by alligator forceps appeared on both sides of the tongue. Specimens from the wound sites were taken immediately, 6 h, and 1, 2, 4, 7, 11, 21, 28, and 42 days after surgery. The wound-healing process was studied by macroscopic evaluation before preparing the specimens for light microscopy. Some differences were noted in the wound-healing process among the three groups into which the experimental animals were divided. Tissue coagulation damage was most extensive in the Nd:YAG laser sites, where it was observed in its full extent 4 days after surgery. Epithelial cells were seen to begin to proliferate in all the wounds 6 h after surgery. Re-epithelialization was completed by between 7 (CO2) and 21 days (Nd:YAG) at all the wound sites. The inflammatory cell infiltration was more prominent in the Nd:YAG and the CO2-Nd:YAG combination laser wounds than in the CO2 and excision wounds during healing. Tissue regeneration occurred faster with less contraction in the combination CO2-Nd:YAG wounds than in Nd:YAG wounds. The best macroscopic healing result was seen in the CO2 wound sites. The combination laser was effective both at cutting and at coagulating tissue. Combining the CO2 and Nd:YAG laser irradiation into one beam resulted in a greater incision depth than what could have been expected from using the two lasers separately.

  10. Q-switched Yb3+:YAG laser using plasmonic Cu2-xSe quantum dots as saturable absorbers

    NASA Astrophysics Data System (ADS)

    Wang, Yimeng; Zhan, Yi; Lee, Sooho; Wang, Li; Zhang, Xinping

    2018-04-01

    Cu2-xSe quantum dots (QDs) were synthesized by organometallic synthesis methods. Due to heavy self-doping, the Cu2-xSe QDs exhibit particle plasmon resonance in the near-infrared. Transient absorption spectroscopic investigation revealed strong nonlinear optical absorption and bleaching performance of the QDs under femtosecond pulse excitation, which enabled the Cu2-xSe QDs to be excellent saturable absorbers and applied in Q-switched or mode-locked lasers. A passively Q-switched Yb3+:YAG solid-state laser at 1.03 μm was achieved by coating Cu2-xSe QDs as saturable absorbers onto one of the output coupler of the V-shaped linear cavity.

  11. Efficient diode-end-pumped actively Q-switched Nd:YAG/SrWO4/KTP yellow laser.

    PubMed

    Cong, Zhenhua; Zhang, Xingyu; Wang, Qingpu; Liu, Zhaojun; Li, Shutao; Chen, Xiaohan; Zhang, Xiaolei; Fan, Shuzhen; Zhang, Huaijin; Tao, Xutang

    2009-09-01

    An efficient intracavity frequency-doubled Raman laser was obtained by using an SrWO(4) Raman medium, an Nd:YAG ceramic gain medium, and a KTP frequency-doubling medium. Three laser cavities, including a two-mirror cavity, a three-mirror coupled cavity, and a folded cavity, were investigated. With the coupled cavity, a 2.93 W, 590 nm laser was obtained at an incident pump power of 16.2 W and a pulse repetition frequency of 20 kHz; the corresponding conversion efficiency was 18.1%. The highest conversion efficiency of 19.2% was obtained at an incident pump power of 14.1 W and a pulse repetition frequency of 15 kHz. The obtained maximum output power and conversion efficiency were much higher than the results previously obtained with intracavity frequency-doubled solid-state Raman lasers.

  12. Continuous-wave and actively Q-switched resonantly dual-end-pumped Er : YAG ceramic laser emitting at 1.6 μm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, T Y; Deng, Yu; Ju, Y-L

    2015-12-31

    We demonstrate a continuous-wave (cw) and actively Q-switched Er : YAG ceramic laser resonantly dual-end-pumped by a 1532 nm fibre-coupled laser diode. A maximum cw output power of 1.48 W at 1645.3 nm is obtained at an absorbed pump power of 12.72 W, corresponding to a slope efficiency of 19.2%. In the Q-switched regime the maximum pulse energy of 0.84 mJ is reached at a pulse repetition rate of 100 Hz, pulse duration of 48.03 ns and absorbed pump power of 10.51 W. (lasers)

  13. High-order Stokes generation in a KTP Raman laser pumped by a passively Q-switched ND:YLF laser

    NASA Astrophysics Data System (ADS)

    Wang, Maorong; Zhong, Kai; Mei, Jialin; Guo, Shibei; Xu, Degang; Yao, Jianquan

    2015-12-01

    High-order Stokes wave was observed in an x-cut KTP crystal based on stimulated Raman scattering (SRS) pumped by a passively Q-switched Nd:YLF laser with a Cr4+:YAG saturable absorber. Output spectra including the fundamental wave at 1047 nm and six Stokes wavelengths at 1077 nm, 1110 nm, 1130 nm, 1143 nm, 1164 nm, 1180 nm based on two Raman frequency shift at 267.4 cm-1 and 693.0 cm-1 were obtained simultaneously. We also detected green light generation with output power of 12 mW from self frequency mixing in the KTP crystal. The maximum total output power reached 452 mW at the repetition frequency of 8.1 kHz, corresponding to the optical-to-optical conversion efficiency of 4.61% and pump-to-Raman conversion efficiency of 3.6%.

  14. Solid state saturable absorbers for Q-switching at 1 and 1.3μm: investigation and modeling

    NASA Astrophysics Data System (ADS)

    Šulc, Jan; Arátor, Pavel; Jelínková, Helena; Nejezchleb, Karel; Škoda, Václav; Kokta, Milan R.

    2008-02-01

    Yttrium and Lutecium garnets (YAG and LuAG) doped by Chromium or Vanadium ions (Cr 4+ or V 3+) were investigated as saturable absorbers potentially useful for passive Q-switching at wavelengths 1 μm and/or 1.3 μm. For comparison also color center saturable absorber LiF:F - II and Cobalt doped spinel (Co:MALO) were studied. Firstly, low power absorption spectra were recorded for all samples. Next, absorbers transmission in dependence on incident energy/power density was measured using the z-scan method. Crystals Cr:YAG, Cr:LuAG, V:YAG, and LiF:F - II were tested at wavelength 1064 nm. Therefore Alexandrite laser pumped Q-switched Nd:YAG laser was used as a radiation source (pulse length 6.9 ns, energy up to 1.5 mJ). Crystals V:YAG, V:LuAG, and Co:MALO were tested at wavelength 1338 nm. So diode pumped Nd:YAG/V:YAG microchip laser was used as a radiation source (pulse length 6.2 ns, energy up to 0.1 mJ). Using measured data fitting, and by their comparison with numerical model of a "thick" saturable absorber transmission for Q-switched Gaussian laser beam, following parameters were estimated: saturable absorber initial transmission T 0, saturation energy density w s, ground state absorption cross-section σ GSA, saturated absorber transmission T s, excited state absorption cross-section σ ESA, ratio γ = σ GSA/σ ESA, and absorbing ions density. For V:YAG crystal, a polarization dependence of T s was also investigated. With the help of rate equation numerical solution, an impact of saturable absorber parameters on generated Q-switched pulse properties was studied in plane wave approximation. Selected saturable absorbers were also investigated as a Q-switch and results were compared with the model.

  15. Sub-nanosecond periodically poled lithium niobate optical parametric generator and amplifier pumped by an actively Q-switched diode-pumped Nd:YAG microlaser

    NASA Astrophysics Data System (ADS)

    Liu, L.; Wang, H. Y.; Ning, Y.; Shen, C.; Si, L.; Yang, Y.; Bao, Q. L.; Ren, G.

    2017-05-01

    A sub-nanosecond seeded optical parametric generator (OPG) based on magnesium oxide-doped periodically poled lithium niobate (MgO:PPLN) crystal is presented. Pumped by an actively Q-switched diode-pumped 1 kHz, 1064 nm, Nd:YAG microlaser and seeded with a low power distributed feedback (DFB) diode continuous-wave (CW) laser, the OPG generated an output energy of 41.4 µJ and 681 ps pulse duration for the signal at 1652.4 nm, achieving a quantum conversion efficiency of 61.2% and a slope efficiency of 41.8%. Signal tuning was achieved from 1651.0 to 1652.4 nm by tuning the seed-laser current. The FWHM of the signal spectrum was approximately from 35 nm to 0.5 nm by injection seed laser. The SHG doubled the frequency of OPG signal to produce a output energy of 12 µJ with the energy conversion efficiency of 29.0% and tunanble wavelength near 826 nm.

  16. Lamp pumped Nd:YAG laser. Space-qualifiable Nd:YAG laser for optical communications

    NASA Technical Reports Server (NTRS)

    Ward, K. B.

    1973-01-01

    Results are given of a program concerned with the design, fabrication, and evaluation of alkali pump lamps for eventual use in a space qualified Nd:YAG laser system. The study included evaluation of 2mm through 6mm bore devices. Primary emphasis was placed upon the optimization of the 4mm bore lamp and later on the 6mm bore lamp. As part of this effort, reference was made to the Sylvania work concerned with the theoretical modeling of the Nd:YAG laser. With the knowledge gained, a projection of laser performance was made based upon realistic lamp parameters which should easily be achieved during following developmental efforts. Measurements were made on the lamp performance both in and out of the cavity configuration. One significant observation was that for a constant vapor pressure device, the spectral and fluorescent output did not vary for vacuum or argon environment. Therefore, the laser can be operated in an inert environment (eg. argon) with no degradation in output. Laser output of 3.26 watts at 430 watts input was obtained for an optimized 4mm bore lamp.

  17. 36 W Q-switched Ho:YAG laser at 2097 nm pumped by a Tm fiber laser: evaluation of different Ho3+ doping concentrations

    NASA Astrophysics Data System (ADS)

    Antipov, O. L.; Eranov, I. D.; Kositsyn, R. I.

    2017-01-01

    A laser oscillator based on Ho:YAG crystal pumped by a Tm fiber laser with an acousto-optical Q-switch was optimized for maximum output power and pulse-to-pulse stability. Stable operation at 2097 nm in Q-switched mode is demonstrated, with pulse repetition rates from 10 to 30 kHz, and output power of 36 W (at 55 W of pump power at 1908 nm) in the good quality beam. The influence of Ho ion up-conversion and thermal lensing on the oscillation efficiency is discussed.

  18. Room temperature operation of 2.67 mJ pulse LD end pumped Q-switched Tm:YAG laser

    NASA Astrophysics Data System (ADS)

    Song, Xuedi; Wu, Chunting; Chen, Xinyu; Yu, Kai; Jin, Guangyong

    2014-12-01

    Due to 2 μm band in the absorption of water and CO2, the diode pumped solid state lasers with wavelength around 2 μm have important applications in laser medicine and remote sensing, such as it can be used as a scalpe or a light source of Coherent Doppler Wind Lidar and Differential Absorption Lidar. In the recently years, scientists have done much work on the development of such lasers. There're many reports on continuous Tm:YAG laser. However, the study on Q-switched Tm:YAG laser, which is more useful in applications, was very rare. As the light source of Coherent Doppler Wind Lidar, large energy and wide pulse width is desired. Current reports mostly adopted CW pumped source, but it would make a mount of heat. Pulse pumping method could reduce the heat accumulation and improve the heat stability of the laser. How to improve the single pulse energy was the focus of current study. In this paper, a single end bonding Tm:YAG crystal with Tm3+ doping concentration of 3.5at.% was used. Acousto-optic (AO) Q-switched (GOOCH and HOUSEGO QS041-10M-HI8) operation was adopted in our experiment. In the repetition frequency of 100Hz, a maximum single energy of 2.67 mJ (measured by Ophir 30A-BB) and the narrowest pulse width of 149 ns (measured by Vigo PCI-3TE-12 detector) were achieved at room temperature. The M2x was 1.31 and the M2y was 1.35 (measured by Spiricon Pyrocam-III). Tm:YAG laser was developed by using a pulse diode pumped L shape resonant cavity. The transmittance of the curve output mirror was 4% and the curvature radius of which was 300 mm. The output center wavelength of the laser was measured to be 2013.5 nm (measured by YOKOGAWA AQ6375).

  19. Radially polarized and passively Q-switched fiber laser

    PubMed Central

    Lin, Di; Xia, Kegui; Li, Ruxin; Li, Xiaojun; Li, Guoqiang; Ueda, Ken-ichi; Li, Jianlang

    2017-01-01

    We report, for the first time to our knowledge, a radially polarized and passively Q-switched Yb-doped fiber laser. By using a Cr4+:YAG crystal as a saturable absorber and a photonic crystal grating as a polarization mirror, a radially polarized pulse is produced, which has 202 W of peak power, 75 ns duration, and ~92% polarization purity at a 56.6 kHz repetition rate. The Q-switched pulse with radial polarization from the fiber laser would facilitate numerous applications. PMID:21042354

  20. Analytical solution of the transient temperature profile in gain medium of passively Q-switched microchip laser.

    PubMed

    Han, Xiahui; Li, Jianlang

    2014-11-01

    The transient temperature evolution in the gain medium of a continuous wave (CW) end-pumped passively Q-switched microchip (PQSM) laser is analyzed. By approximating the time-dependent population inversion density as a sawtooth function of time and treating the time-dependent pump absorption of a CW end-pumped PQSM laser as the superposition of an infinite series of short pumping pulses, the analytical expressions of transient temperature evolution and distribution in the gain medium for four- and three-level laser systems, respectively, are given. These analytical solutions are applied to evaluate the transient temperature evolution and distribution in the gain medium of CW end-pumped PQSM Nd:YAG and Yb:YAG lasers.

  1. Overpaint Removal on a Gilded Wooden Bas-Relief Using a Nd:YAG Laser at 1.064 µm

    NASA Astrophysics Data System (ADS)

    Strzelec, M.; Marczak, J.; Koss, A.; Szambelan, R.

    The paper presents the work on laser renovation of wooden bas-relief (lime tree), consisting of three figures: Saint Anna and Mary with Jesus, made by unknown artist at the beginning of XVII century. Almost whole relief surface is covered by gilding placed on a special preparation (bolus alba) with binding media. The painting layers cover only the parts of complexion and hairs of figures. The application of a 1.064 µm, Q-switched, Nd:YAG laser, allowed to unveil, in a short time the intact substrate of the object with well preserved gilding remains.

  2. Diode pumped, regenerative Nd:YAG ring amplifier for space application

    NASA Technical Reports Server (NTRS)

    Coyle, D. B.; Kay, Richard B.; Degnan, John J.; Krebs, Danny J.; Seery, Bernard D.

    1992-01-01

    The study reviews the research and development of a prototype laser used to study one possible method of short-pulse production and amplification, in particular, a pulsed Nd:YAG ring laser pumped by laser diode arrays and injected seeded by a 100-ps source. The diode array pumped, regenerative amplifier consists of only five optical elements, two mirrors, one thin film polarizer, one Nd:YAG crystal, and one pockels cell. The pockels cell performed both as a Q-switch and a cavity dumper for amplified pulse ejection through the thin film polarizer. The total optical efficiency was low principally due to the low gain provided by the 2-bar pumped laser head. After comparison with a computer model, a real seed threshold of about 10 exp -15 J was achieved because only about 0.1 percent of the injected energy mode-matched with the ring.

  3. Comparison of two Q-switched lasers and a short-pulse erbium-doped yttrium aluminum garnet laser for treatment of cosmetic tattoos containing titanium and iron in an animal model.

    PubMed

    Wang, Chia-Chen; Huang, Chuen-Lin; Yang, An-Hang; Chen, Chih-Kang; Lee, Shao-Chen; Leu, Fur-Jiang

    2010-11-01

    Cosmetic tattoos contain titanium and ferric oxide and darken through reduction after Q-switched laser irradiation. The optimal treatment for removing these pigments remains unknown. To compare the effects of two Q-switched lasers and a short-pulse erbium-doped yttrium aluminum garnet (SP Er:YAG) laser to remove cosmetic tattoos in an animal model. Rats were tattooed using white, flesh-colored, and brown inks (4 bands of each color) on their backs. For each color, one band was left untreated, and one each was treated with a Q-switched neodymium-doped YAG laser, a Q-switched alexandrite laser, and a SP Er:YAG laser every 3 weeks until the pigments were clear. The two Q-switched lasers were equally effective; all three pigments darkened initially and then resolved gradually. Up to 20, 18, and 10 sessions were required to remove white, flesh-colored, and brown tattoos, respectively. Only six sessions were required with the SP Er:YAG laser. Minimal scarring was observed with all lasers. Skin biopsies confirmed pigment granule fragmentation after Q-switched laser treatment and a decrease in the amount of pigment after SP Er:YAG laser treatment. The SP Er:YAG laser was superior to the Q-switched lasers for removing cosmetic tattoos. © 2010 by the American Society for Dermatologic Surgery, Inc.

  4. Laser reduction of specific microorganisms in the periodontal pocket using Er:YAG and Nd:YAG lasers: a randomized controlled clinical study.

    PubMed

    Grzech-Leśniak, K; Sculean, A; Gašpirc, Boris

    2018-05-15

    The objective of this study was to evaluate the microbiological and clinical outcomes following nonsurgical treatment by either scaling and root planing, combination of Nd:YAG and Er:YAG lasers, or by Er:YAG laser treatment alone. The study involved 60 patients with generalized chronic periodontitis, randomly assigned into one of three treatment groups of 20 patients. The first group received scaling and root planing by hand instruments (SRP group), the second group received Er:YAG laser treatment alone (Er group), and the third group received combined treatment with Nd:YAG and Er:YAG lasers (NdErNd group). Microbiological samples, taken from the periodontal pockets at baseline and 6 months after treatments, were assessed with PET Plus tests. The combined NdErNd laser (93.0%), followed closely by Er:YAG laser (84.9%), treatment resulted in the highest reduction of all bacteria count after 6 months, whereas SRP (46.2%) failed to reduce Treponema denticola, Peptostreptococcus micros, and Capnocytophaga gingivalis. Full-mouth plaque and bleeding on probing scores dropped after 6 months and were the lowest in both laser groups. The combination of NdErNd resulted in higher probing pocket depth reduction and gain of clinical attachment level (1.99 ± 0.23 mm) compared to SRP (0.86 ± 0.13 mm) or Er:YAG laser alone (0.93 ± 0.20 mm) in 4-6 mm-deep pockets. Within their limits, the present results provide support for the combination of Nd:YAG and Er:YAG lasers to additionally improve the microbiological and clinical outcomes of nonsurgical periodontal therapy in patients with moderate to severe chronic periodontitis.

  5. The choice: Welding with CO2 or Nd:YAG lasers

    NASA Astrophysics Data System (ADS)

    Leong, Keng H.

    The recent commercial availability of multi-kilowatt Nd:YAG lasers has opened new avenues for rapid laser processing as well as intensified the competition (cost effectiveness) between CO2 and Nd:YAG laser systems. Vendors offering Nd:YAG laser systems may claim lower operating costs (than CO2) and fiberoptic beam delivery flexibility while CO2 systems vendors may emphasize lower capital cost and well established processing requirements and experience. The capital and operating costs of a laser system are impacted by demand and supply economics and technological advances. Frequently the total cost of a workcell using a laser for processing has to be considered rather than the laser system alone. Consequently it is not very practical to approach the selection of a laser system based on its capital cost and estimated operating cost only. This presentation describes a more pragmatic approach to aid the user in the selection of the optimal multi-kilowatt laser system for a particular processing requirement with emphasis on welding. CO2 laser systems are well established on the factory floor. Consequently, emphasis is given to the comparative application of Nd:YAG lasers, process requirements and performance. Requirements for the laser welding of different metals are examined in the context of hardware (laser system and beam delivery) selection and examples of welding speeds that can be achieved using CO2 and Nd:YAG lasers are examined.

  6. Idler-resonant intracavity KTA-based OPO pumped by a dual-loss modulated-Q-switched-laser with AOM and Cr4+:YAG

    NASA Astrophysics Data System (ADS)

    Qiao, Junpeng; Zhao, Shengzhi; Yang, Kejian; Zhao, Jia; Li, Guiqiu; Li, Dechun; Li, Tao; Qiao, Wenchao

    2017-06-01

    An idler-resonant KTiOAsO4 (KTA)-based intracavity optical parametric oscillator (IOPO) pumped by a dual-loss-modulated Q-switched laser with an acousto-optic modulator (AOM) and a Cr4+:YAG saturable absorber (Cr4+:YAG-SA) has been presented. By utilizing a type-II non-critically phase-matched KTA crystal, signal wave at 1535 nm and idler wave at 3467 nm have been generated. Under an incident pump power of 18.3 W, maximum output powers of 615 mW for signal wave and 228 mW for idler wave were obtained at an AOM modulation rate of 10 kHz, corresponding to a whole optical-to-optical conversion efficiency of 4.6%. The shortest pulse widths of signal and idler wave were measured to be 898 ps and 2.9 ns, corresponding to the highest peak powers of 68.4 and 7.9 kW, respectively. In comparison with IOPO pumped by a singly Q-switched laser with an AOM, the IOPO pumped by a doubly Q-switched laser (DIOPO) with an AOM and a Cr4+:YAG-SA can generate signal wave and idler wave with shorter pulse width and higher peak power. By considering the spatial Gaussian distribution of intracavity photon density, a set of coupled rate equations for the idler-resonant DIOPO were built for the first time to the best of our knowledge. The simulation results agreed well with the experimental results.

  7. Clinical and Histopathologic Assessment of Facial Melasma After Low-Fluence Q-Switched Neodymium-Doped Yttrium Aluminium Garnet Laser.

    PubMed

    Hofbauer Parra, Camila Anna; Careta, Mariana Figueroa; Valente, Neusa Yuriko Sakai; de Sanches Osório, Nuno Eduardo Guimaraes; Torezan, Luis Antonio Ribeiro

    2016-04-01

    Melasma is a frequent and difficult to treat skin disorder. Results of laser therapy are inconsistent. To determine the safety and efficacy of low-fluence Q-switched neodymium-doped yttrium aluminum garnet (QS Nd:YAG) laser for melasma treatment and assess recurrence rates and histopathologic findings before and after treatment. Twenty patients were treated with 10 weekly sessions of low-fluence 1064-nm QS Nd:YAG laser at 1-week intervals. The modified Melasma Area and Severity Index (mMASI) score was evaluated at baseline; 1 week; and 1, 3, and 6 months after treatment. Epidermal melanin quantification was performed on 10 biopsy samples and compared before and after treatment. All patients showed improvement by mMASI scores, range (21%-75%) compared with that at baseline. No permanent side effects occurred. The recurrence rate was 81%. By histopathology, a slight, nonsignificant (p = .305) decrease in melanin deposition was seen in all layers of the epidermis 1 week after the laser treatments ended. The results confirm the safety and effectiveness of low-fluence QS Nd:YAG laser for treating melasma; however, the high recurrence suggests poor long-term results when the laser is used as a monotherapy.

  8. Efficacy of long pulse Nd:YAG laser versus fractional Er:YAG laser in the treatment of hand wrinkles.

    PubMed

    Robati, Reza M; Asadi, Elmira; Shafiee, Anoosh; Namazi, Nastaran; Talebi, Atefeh

    2018-04-01

    There are different modalities for hand rejuvenation. Fractional Er:YAG laser and long pulse Nd:YAG laser were introduced for treating hand wrinkles. We plan to compare fractional Er:YAG laser and long pulse Nd:YAG laser in a randomized controlled double-blind design with multiple sessions and larger sample size in comparison with previous studies. Thirty-three participants with hand wrinkles entered this study. They were randomly allocated to undergo three monthly laser treatments on each hand, one with a fractional Er:YAG laser and the other with a long pulse Nd:YAG laser. The evaluations included assessment of clinical improvement determined by two independent dermatologists not enrolled in the treatment along with measuring skin biomechanical property of hands using a sensitive biometrologic device with the assessment of cutaneous resonance running time (CRRT). Moreover, potential side effects and patients' satisfaction have been documented at baseline, 1 month after each treatment, and 3 months after the final treatment session. Clinical evaluation revealed both modalities significantly reduce hand wrinkles (p value < 0.05), with no significant difference between two lasers. Mean CRRT values also decreased significantly after the laser treatment compared to those of the baseline in both laser groups. There was no serious persistent side effect after both laser treatments. Both fractional Er:YAG and long pulse Nd:YAG lasers show substantial clinical improvement of hand skin wrinkles with no serious side effects. However, combination treatment by these lasers along with the other modalities such as fat transfer could lead to better outcomes in hand rejuvenation. IRCT2016032020468N4.

  9. 21 CFR 886.4392 - Nd:YAG laser for posterior capsulotomy and peripheral iridotomy.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nd:YAG laser for posterior capsulotomy and...:YAG laser for posterior capsulotomy and peripheral iridotomy. (a) Identification. The Nd:YAG laser for... laser intended for disruption of the posterior capsule or the iris via optical breakdown. The Nd:YAG...

  10. 21 CFR 886.4392 - Nd:YAG laser for posterior capsulotomy and peripheral iridotomy.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nd:YAG laser for posterior capsulotomy and...:YAG laser for posterior capsulotomy and peripheral iridotomy. (a) Identification. The Nd:YAG laser for... laser intended for disruption of the posterior capsule or the iris via optical breakdown. The Nd:YAG...

  11. 21 CFR 886.4392 - Nd:YAG laser for posterior capsulotomy and peripheral iridotomy.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nd:YAG laser for posterior capsulotomy and...:YAG laser for posterior capsulotomy and peripheral iridotomy. (a) Identification. The Nd:YAG laser for... laser intended for disruption of the posterior capsule or the iris via optical breakdown. The Nd:YAG...

  12. 21 CFR 886.4392 - Nd:YAG laser for posterior capsulotomy and peripheral iridotomy.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nd:YAG laser for posterior capsulotomy and...:YAG laser for posterior capsulotomy and peripheral iridotomy. (a) Identification. The Nd:YAG laser for... laser intended for disruption of the posterior capsule or the iris via optical breakdown. The Nd:YAG...

  13. 1164.4  nm and 1174.7  nm dual-wavelength Nd : GdVO4/Cr4+ : YAG/YVO4 passively Q-switched Raman microchip laser.

    PubMed

    Wang, Xiaojie; Wang, Xiaolei; Zheng, Zhifen; Qiao, Xihao; Dong, Jun

    2018-04-20

    A synchronous pulsed, dual-wavelength Raman laser at 1164.4 nm and 1174.7 nm has been demonstrated in a Nd:GdVO 4 /Cr 4+ :YAG/YVO 4 passively Q-switched Raman microchip laser (PQSRML). The 1164.4 nm and 1174.7 nm dual-wavelength first-order Stokes laser oscillation is attributed to the conversion of the 1063.2 nm and 1063.43 nm two-longitudinal-mode fundamental lasers with Raman frequency shifts of 816  cm -1 and 890  cm -1 , respectively. Stable dual-wavelength Raman laser pulses with nearly equal spectral intensities have been achieved independent of the pump power. A pulse repetition rate as high as 139.4 kHz has been achieved with T 0 =85%, and the pulse width has been shortened to 825 ps with T 0 =70%. A dual-wavelength Raman laser with sub-nanosecond pulse width and peak power of over 1 kW has been achieved in the Nd:GdVO 4 /Cr 4+ :YAG/YVO 4 PQSRML.

  14. CW and passively Q-switched laser performance of Nd:Lu2SiO5 crystal

    NASA Astrophysics Data System (ADS)

    Xu, Xiaodong; Di, Juqing; Zhang, Jian; Tang, Dingyuan; Xu, Jun

    2016-01-01

    We demonstrated an efficient and controllable dual-wavelength continuous-wave (CW) laser of Nd:Lu2SiO5 (Nd:LSO) crystal. The maximum output power was 3.02 W at wavelength of 1075 nm and 1079 nm, and with increasing of absorbed pump power, the ratio of 1079 nm laser rose. The slope efficiency of 65.6% and optical-to-optical conversion efficiency of 63.3% were obtained. The passively Q-switched laser properties of Nd:LSO were investigated for the first time. The shortest pulse, maximum pulse energy and peak power were 11.58 ns, 29.05 μJ and 2.34 kW, respectively.

  15. Pulsed Nd:YAG laser beam drilling: A review

    NASA Astrophysics Data System (ADS)

    Gautam, Girish Dutt; Pandey, Arun Kumar

    2018-03-01

    Laser beam drilling (LBD) is one of non contact type unconventional machining process that are employed in machining of stiff and high-strength materials, high strength temperature resistance materials such as; metal alloys, ceramics, composites and superalloys. Most of these materials are difficult-to-machine by using conventional machining methods. Also, the complex and precise holes may not be obtained by using the conventional machining processes which may be obtained by using unconventional machining processes. The laser beam drilling in one of the most important unconventional machining process that may be used for the machining of these materials with satisfactorily. In this paper, the attention is focused on the experimental and theoretical investigations on the pulsed Nd:YAG laser drilling of different categories of materials such as ferrous materials, non-ferrous materials, superalloys, composites and Ceramics. Moreover, the review has been emphasized by the use of pulsed Nd:YAG laser drilling of different materials in order to enhance productivity of this process without adverse effects on the drilled holes quality characteristics. Finally, the review is concluded with the possible scope in the area of pulsed Nd:YAG laser drilling. This review work may be very useful to the subsequent researchers in order to give an insight in the area of pulsed Nd:YAG laser drilling of different materials and research gaps available in this area.

  16. A new procedure for refurbishment of power plant Superalloy 617 by pulsed Nd:YAG laser process

    NASA Astrophysics Data System (ADS)

    Taheri, Naser; Naffakh-Moosavy, Homam; Ghaini, Farshid Malek

    2017-06-01

    The present study has evaluated the surface rejuvenation of aged Inconel 617 superalloy by both GTAW and pulsed Nd:YAG laser techniques. The gas tungsten arc welding (GTAW) by heat input per unit length [Q/V(J/mm)] of 280, 291.67, 309.74 and 225.48 (J/mm), and the pulse Nd:YAG laser process by the 15.71, 19.43 and 22.32 (J/mm), were employed. The Rosenthal equation was used for calculation of mushy zone (MZ) and partially-melted zone (PMZ). Size of MZ and PMZ in GTAW are more than 31 and 6 times than that of formed in pulsed Nd:YAG laser. According to the characterizations, solidification and liquation cracks were observed in these areas produced by GTAW whereas no cracks were identified in laser treated samples. Also, line scan EDS analyses demonstrated the interdendritic chromium and molybdenum segregation, which facilitated formation of hot cracks. With reduction in heat input per unit length, the hardness increased and the size of solidified metal microstructure reduced in pulse Nd:YAG laser. These comparative results showed that pulse Nd:YAG laser can easily be utilized as a new rejuvenation technique for aged Alloy 617 in comparison to the conventional processes due to extremely narrow MZ and HAZ and better surface soundness and mechanical properties.

  17. Water content contribution in calculus phantom ablation during Q-switched Tm:YAG laser lithotripsy.

    PubMed

    Zhang, Jian J; Rajabhandharaks, Danop; Xuan, Jason Rongwei; Wang, Hui; Chia, Ray W J; Hasenberg, Tom; Kang, Hyun Wook

    2015-01-01

    Q-switched (QS) Tm:YAG laser ablation mechanisms on urinary calculi are still unclear to researchers. Here, dependence of water content in calculus phantom on calculus ablation performance was investigated. White gypsum cement was used as a calculus phantom model. The calculus phantoms were ablated by a total 3-J laser pulse exposure (20 mJ, 100 Hz, 1.5 s) and contact mode with N=15 sample size. Ablation volume was obtained on average 0.079, 0.122, and 0.391  mm3 in dry calculus in air, wet calculus in air, and wet calculus in-water groups, respectively. There were three proposed ablation mechanisms that could explain the effect of water content in calculus phantom on calculus ablation performance, including shock wave due to laser pulse injection and bubble collapse, spallation, and microexplosion. Increased absorption coefficient of wet calculus can cause stronger spallation process compared with that caused by dry calculus; as a result, higher calculus ablation was observed in both wet calculus in air and wet calculus in water. The test result also indicates that the shock waves generated by short laser pulse under the in-water condition have great impact on the ablation volume by Tm:YAG QS laser.

  18. Diode-pumped passively Q-switched Nd:GdTaO4 laser based on tungsten disulfide nanosheets saturable absorber at 1066 nm

    NASA Astrophysics Data System (ADS)

    Li, M. X.; Jin, G. Y.; Li, Y.

    2018-05-01

    In this paper, we investigated the passively Q-switched Nd:GdTaO4 laser based on tungsten disulfide (WS2) saturable absorber (SA). The preparation method of WS2 SA was to attach the WS2-alcohol dispersion onto the quartz substrates. The diode-pumped passively Q-switched Nd:GdTaO4 laser operated at a central wavelength of 1066 nm. The stable pulse output could be obtained at the single pulse width of 560 ns. In a word, WS2 seems to be a suitable saturable absorber for solid state lasers.

  19. On the use of a chirped Bragg grating as a cavity mirror of a picosecond Nd : YAG laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zubko, A E; Shashkov, E V; Smirnov, A V

    2016-02-28

    The first experimental evidence is presented that the use of a chirped volume Bragg grating (CVBG) as a cavity mirror of a Q-switched picosecond Nd : YAG laser with self-mode-locking leads to significant changes in the temporal parameters of the laser output. Measurements have been performed at two positions of the CVBG: with the grating placed so that shorter wavelengths reflected from its front part lead longer wavelengths or with the grating rotated through 180°, so that longer wavelengths are reflected first. In the former case, the duration of individual pulses in a train increased from ∼35 to ∼300 ps,more » whereas the pulse train shape and duration remained the same as in the case of a conventional laser with a mirror cavity. In the latter case, the full width at half maximum of pulse trains increased from ∼70 ns (Nd : YAG laser with a mirror cavity) to ∼1 ms, and the duration of individual pulses increased from 35 ps to ∼1.2 ns, respectively, which is more typical of free-running laser operation. (laser crystals and braggg ratings)« less

  20. Comparison between laser-induced photoemissions and phototransmission of hard tissues using fibre-coupled Nd:YAG and Er(3+)-doped fibre lasers.

    PubMed

    El-Sherif, Ashraf Fathy

    2012-07-01

    During pulsed laser irradiation of dental enamel, laser-induced photoemissions result from the laser-tissue interaction through mechanisms including fluorescence and plasma formation. Fluorescence induced by non-ablative laser light interaction has been used in tissue diagnosis, but the photoemission signal accompanying higher power ablative processes may also be used to provide real-time monitoring of the laser-tissue interaction. The spectral characteristics of the photoemission signals from normal and carious tooth enamel induced by two different pulsed lasers were examined. The radiation sources compared were a high-power extra-long Q-switched Nd:YAG laser operating at a wavelength of 1,066 nm giving pulses (with pulse durations in the range 200-250 μs) in the near infrared and a free-running Er(3+)-doped ZBLAN fibre laser operating at a wavelength near 3 μm with similar pulse durations in the mid-infrared region. The photoemission spectra produced during pulsed laser irradiation of enamel samples were recorded using a high-resolution spectrometer with a CCD array detector that enabled an optical resolution as high as 0.02 nm (FWHM). The spectral and time-dependence of the laser-induced photoemission due to thermal emission and plasma formation were detected during pulsed laser irradiation of hard tissues and were used to distinguish between normal and carious teeth. The use of these effects to distinguish between hard and soft biological tissues during photothermal ablation with a pulsed Nd:YAG laser or an Er fibre laser appears feasible. The real-time spectrally resolved phototransmission spectrum produced during pulsed Nd:YAG laser irradiation of human tooth enamel samples was recorded, with a (normalized) relative transmission coefficient of 1 (100%) for normal teeth and 0.6 (60%) for the carious teeth. The photoemission signal accompanying ablative events may also be used to provide real-time monitoring of the laser-tissue interaction.

  1. Beneficial Effect of Low Fluence 1,064 nm Q-Switched Neodymium:Yttrium-Aluminum-Garnet Laser in the Treatment of Senile Lentigo

    PubMed Central

    Nam, Jae-Hui; Kim, Han-Saem; Lee, Ga-Young

    2017-01-01

    Background Low fluence 1,064 nm Q-switched (QS) Neodymium:Yttrium-Aluminum-Garnet (Nd:YAG) laser treatment, also known as laser toning, is widely used for pigmentary disorders. There has been no reliable evaluation of the effect of low fluence 1,064 nm QS Nd:YAG laser for senile lentigo. Objective To investigate the beneficial effect of low fluence 1,064 nm QS Nd:YAG laser in the treatment of senile lentigo on the face. Methods A retrospective review was conducted on patients treated only with repetitive low fluence 1,064 nm QS Nd:YAG laser. Among them, 12 patients with multiple senile lentigines before treatment were included. All side effects were recorded to assess the safety of the modality. Results Mean age was 56.1±7.8 years old and male-to-female ratio was 1:11. Mean treatment fluence was 1.62±0.16 J/cm2 and mean total treatment session was 8.8±2.6. Mean interval period between each session was 28.0±11.4 days and mean treatment session to reach marked and near total improvement was 8.7±2.8. At the final visit, seven of 12 (58.3%) patients reached marked and near total improvement, and three of 12 (25.0%) reached moderate improvement. No side effects occurred. Conclusion Repetitive low fluence 1,064 nm QS Nd:YAG laser treatment may be an effective and safe optional modality for senile lentigo. PMID:28761290

  2. 885-nm Pumped Ceramic Nd:YAG Master Oscillator Power Amplifier Laser System

    NASA Technical Reports Server (NTRS)

    Yu, Anthony

    2012-01-01

    The performance of a traditional diode pumped solid-state laser that is typically pumped with 808-nm laser diode array (LDA) and crystalline Nd:YAG was improved by using 885-nm LDAs and ceramic Nd:YAG. The advantage is lower quantum defect, which will improve the thermal loading on laser gain medium, resulting in a higher-performance laser. The use of ceramic Nd:YAG allows a higher Nd dopant level that will make up the lower absorption at the 885-nm wavelength on Nd:YAG. When compared to traditional 808-nm pump, 885-nm diodes will have 30% less thermal load (or wasted heat) and will thus see a similar percentage improvement in the overall laser efficiency. In order to provide a more efficient laser system for future flight missions that require the use of low-repetition- rate (laser pulses, laser diodes such as the 885-nm LDA were used for pumping the Nd:YAG laser crystal. This pumping scheme has many potential advantages for improved reliability, efficiency, thermal management, contamination control, and mechanical flexibility. The advantages of using 885-nm pump diodes in Nd:YAG laser systems are numerous. The epitaxial structures of these 885-nm diodes are aluminum-free. There is a significant reduction in the thermal load generated from the Stokes shift or quantum defects. A Stokes shift is the energetic difference between the pump and laser photons. Pumping at a wavelength band closer to the lasing wavelength can reduce the thermal load by .30% compared to traditional pumping at 808 nm, and increase the optical- to-optical efficiency by the same factor. The slope efficiency is expected to increase with a reduction in the thermal load. The typical crystalline Nd:YAG can be difficult to produce with doping level >1% Nd. To make certain that the absorption at 885 nm is on the same par as the 808-nm diode, the Nd:YAG material needs to be doped with higher concentration of Nd. Ceramic Nd:YAG is the only material that can be tailored

  3. Long-term evaluation of ink clearance in tattoos with different color intensity using the 1064-nm Q-switched Nd:YAG laser.

    PubMed

    Mankowska, Agata; Kasprzak, Wojciech; Adamski, Zygmunt

    2015-12-01

    The aim of the study was to evaluate the efficacy of tattoo removal treatments using the 1064-nm Q-switched (QS) Nd:YAG laser. Today, QS lasers appear to be the most common, effective, and safest methods to treat unwanted markings. A total of 64 patients with 75 unwanted tattoos were enrolled in the study. Tattoo clearance was evaluated according to the color intensity - concentration of pigment: group I (34) - black; group II (41) - gray. Consideration included methods of tattooing and tattoo techniques. In group I, after the first treatment session the median of clearance was 30% (10-50%), while in group II, the median was 50% (40-70%). After the second treatment session, median in group I increased to 40% (30-50%). Median of group II increased to 70% (50-80%). The highest number of treatment in group I was 7. After that, the median grew to 75%, while the highest amount of treatment in group II was 5 and a median of 90% was achieved. Effects were dependent upon the amount of ink deposited in the tissue. Old amateur tattoos and tattoos containing small quantities of ink (technique: shading and lines) demonstrated the quickest and the most efficacious results. Tattoos with large quantities of ink, obtained by filling, required the greatest number of treatment sessions. The final outcome in tattoo clearing can only be assessed following treatment completion, which may in some cases take 2-3 years. Presumably, in some cases, complete clearance is impossible. © 2015 Wiley Periodicals, Inc.

  4. 1-mJ Q-switched diode-pumped Nd:BaY2F8 laser

    NASA Astrophysics Data System (ADS)

    Agnesi, Antonio; Carraro, Giovanni; Guandalini, Annalisa; Reali, Giancarlo; Sani, Elisa; Toncelli, Alessandra; Tonelli, Mauro

    2004-08-01

    We report what is to our knowledge the first high repetition rate Q-switched Nd:BaY2F8 (Nd:BaYF) laser pumped with a multiwatt fiber-coupled diode array tuned at 806 nm. As much as 2.42 W of average power and up to 1.05 mJ of pulse energy were obtained with 6.1 W of absorbed pump power, with excellent beam quality (M2<1.2) and linear polarization.

  5. A comparison of the effects of Nd:YAG and Ho:YAG laser irradiation on dentine and enamel.

    PubMed

    Cernavin, I

    1995-04-01

    This preliminary study was undertaken to investigate the effects of Nd:YAG and Ho:YAG lasers on enamel and dentine of extracted teeth. The Ho:YAG laser (spot size 250 microns, energy density 4160 J/cm2) produced a cleaner puncture in dentine with less melting of the surrounding tissue than did the Nd:YAG laser (spot size 20 microns), energy density 50,000 J/cm2), which produced considerable melting and recrystallization of dentine and was more difficult to control. It was possible to cut enamel and dentine with both lasers, but considerable melted and recrystallized enamel was produced. From the limited observations of this study it appears that the Ho:YAG laser is more suitable for cutting both enamel and dentine than the Nd:YAG laser. More work needs to be done to ascertain the effect on enamel and dentine of modification of the parameters of both lasers.

  6. Graphene oxide based reflective saturable absorber for Q-switched and mode-locked YVO4/Nd:YVO4/YVO4 laser

    NASA Astrophysics Data System (ADS)

    Zhang, Gang; Wang, Yonggang; Chen, Zhendong; Jiao, Zhiyong

    2018-05-01

    A reflective graphene oxide saturable absorber is fabricated and used in a Q-switched and mode-locked YVO4/Nd:YVO4/YVO4 laser. Stable Q-switched and mode-locked pulses with a repetition rate of 8 MHz can be obtained at a pump power of 9 W by using an X-type resonator. Pulses obtained in an X-type resonator possess higher stability, output power, and repetition rate, compared with those in a Z-type resonator. The pulse width and the repetition rate of the Q-switched envelop in an X-type resonator are superior to those in the reported Q-switched and mode-locked lasers with graphene oxide.

  7. 12 mJ Yb:YAG/Cr:YAG microchip laser

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoyang; Tokita, Shigeki; Kawanaka, Junji

    2018-02-01

    By cryogenically cooling the Yb:YAG/Cr:YAG medium, one can break through the damage limit of Yb:YAG/Cr:YAG passively Q-switched microchip lasers at room temperature and thus achieve a shorter minimum pulse duration. In the proof of principle experiment we carried out, a 160.6 ps pulse duration was obtained. To the best of our knowledge, this is the first realization of sub-200 ps pulse operation for an Yb:YAG/Cr:YAG microchip laser

  8. Nd:YAG laser therapy for rectal and vaginal venous malformations.

    PubMed

    Gurien, Lori A; Jackson, Richard J; Kiser, Michelle M; Richter, Gresham T

    2017-08-01

    Limited therapeutic options exist for rectal and vaginal venous malformations (VM). We describe our center's experience using Nd:YAG laser for targeted ablation of abnormal veins to treat mucosally involved pelvic VM. Records of patients undergoing non-contact Nd:YAG laser therapy of pelvic VM at a tertiary children's hospital were reviewed. Symptoms, operative findings and details, complications, and outcomes were evaluated. Nine patients (age 0-24) underwent Nd:YAG laser therapy of rectal and/or vaginal VM. Rectal bleeding was present in all patients and vaginal bleeding in all females (n = 5). 5/7 patients had extensive pelvic involvement on MRI. Typical settings were 30 (rectum) and 20-25 W (vagina), with 0.5-1.0 s pulse duration. Patients underwent the same-day discharge. Treatment intervals ranged from 14 to 180 (average = 56) weeks, with 6.1-year mean follow-up. Five patients experienced symptom relief with a single treatment. Serial treatments managed recurrent bleeding successfully in all patients, with complete resolution of vaginal lesions in 40% of cases. No complications occurred. Nd:YAG laser treatment of rectal and vaginal VM results in substantial improvement and symptom control, with low complication risk. Given the high morbidity of surgical resection, Nd:YAG laser treatment of pelvic VM should be considered as first line therapy.

  9. One joule output from a diode-array-pumped Nd:YAG laser with side-pumped rod geometry

    NASA Technical Reports Server (NTRS)

    Kasinski, Jeffrey J.; Hughes, Will; Dibiase, Don; Bournes, Patrick; Burnham, Ralph

    1992-01-01

    Output of 1.25 J per pulse (1.064 micron) with an absolute optical efficiency of 28 percent and corresponding electrical efficiency of 10 percent was demonstrated in a diode-array-pumped Nd:YAG laser using a side-pumped rod geometry in a master-oscillator/power-amplifier configuration. In Q-switched operation, an output of 0.75 J in a 17-ns pulse was obtained. The fundamental laser output was frequency doubled in KTP with 60 percent conversion efficiency to obtain 0.45 J in a 16-ns pulse at 532 nm. The output beam had high spatial quality with pointing stability better than 40 microrad and a shot-to-shot pulse energy fluctuation of less than +/-3 percent.

  10. Gold nanorods saturable absorber for Q-switched Nd:GAGG lasers at 1 μm

    NASA Astrophysics Data System (ADS)

    Feng, Chao; Liu, Mingyi; Li, Yanbin; Gao, Xuejian; Kang, Zhe; Qin, Guanshi; Jia, Zhitai; Tao, Xutang; Song, Teng; Dun, Yangyang; Bai, Fen; Li, Ping; Wang, Qingpu; Fang, Jiaxiong

    2017-03-01

    A gold nanorod saturable absorber has been synthesized by the seed-mediated growth method characterized in detail. The absorption peak wavelength was 1080 nm, and the modulation depth was measured to be 9%. The performance of its Q-switched Nd:GAGG lasers at 1061 and 1106 nm has been systematically investigated, respectively. The corresponding shortest pulsewidths were 250 and 480 ns. Our experiment results proved that the GNR-SA is a promising saturable absorber for nanosecond bulk lasers.

  11. Characterization of the Q-switched MOBLAS Laser Transmitter and Its Ranging Performance Relative to a PTM Q-switched System

    NASA Technical Reports Server (NTRS)

    Degnan, J. J., III; Zagwodski, T. W.

    1979-01-01

    A prototype Q-switched Nd:YAG laser transmitter intended for use in the NASA mobile laser ranging system was subjected to various tests of temporal pulse shape and stability, output energy and stability, beam divergence, and range bias errors. Peak to peak variations in the mean range were as large as 30 cm and drift rates of system bias with time as large as 6 mm per minute of operation were observed. The incorporation of a fast electro-optic cavity dump into the oscillator gave significantly improved results. Reevaluation of the ranging performance after modification showed a reduction in the peak to peak variation in the mean range to the 2 or 3 cm level and a drift rate of system time biases of less than 1 mm per minute of operation. A qualitative physical explanation for the superior performance of cavity dumped lasers is given.

  12. Clinical comparison of potassium-titanyl-phosphate (KTP) versus neodymium:YAG (Nd:YAG) laser treatment for lower extremity telangiectases.

    PubMed

    Ozden, Müge Güler; Bahçivan, Muzaffer; Aydin, Fatma; Şentürk, Nilgün; Bek, Yüksel; Cantürk, Tayyar; Turanli, Ahmet Yaşar

    2011-06-01

    The Nd:YAG laser has been considered the gold standard of treatment for leg veins, but pain and side effects have fueled physicians to use treatment alternatives. To compare the clinical efficacy of the long-pulsed 1064-nm Nd:YAG laser with KTP laser irradiation in the treatment of leg telangiectasia. A series of 16 patients with size-matched superficial telangiectases of the lower extremities were randomly assigned to receive three consecutive monthly treatments with the long-pulsed 1064-nm Nd:YAG on one leg and 532-nm KTP laser irradiation on the other. For the 16 patients who completed the study, 64 leg vein sites were treated. Average clinical improvement scores were 1.94 and 1.25 for the KTP laser-treated leg and 3.38 and 3.50 for the Nd:YAG laser-treated leg with thin (≤ 1 mm) and large (1-3 mm) vessels, respectively. After the third treatment session, average improvement scores of 2.44, 1.31 and 3.75, 3.23 were given for the KTP and Nd:YAG laser-treated sides, respectively. Both the 1064-nm Nd:YAG and KTP lasers are effective in the treatment of lower extremity telangiectases. However, the KTP laser has very low efficacy with vessels larger than 1 mm and should not be elected when treating such vessels.

  13. 21 CFR 886.4392 - Nd:YAG laser for posterior capsulotomy and peripheral iridotomy.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Parameters: Device must emit a laser beam with the following parameters: wavelength = 1064 nanometers; spot... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nd:YAG laser for posterior capsulotomy and...:YAG laser for posterior capsulotomy and peripheral iridotomy. (a) Identification. The Nd:YAG laser for...

  14. Dependence of Nd:YAG laser derusting and passivation of iron artifacts on pulse duration

    NASA Astrophysics Data System (ADS)

    Osticioli, Iacopo; Siano, Salvatore

    2013-11-01

    In this work laser derusting and passivation process of iron objects of conservation interest were investigated. In particular, the effects induced by laser irradiation of three lasers with different temporal emission regimes were studied, exhibiting very different behavior. Nd:YAG(1064 nm) laser systems were employed in the experiments: a Q-Switching laser with pulse duration of 8 ns, a Long Q-Switching laser with pulse duration of 120 ns and a Short Free Running pulse duration in a range of 40-120 μs. These lasers are commonly used in conservation. Lasers treatments were applied on iron samples subjected to natural weathering in outdoor conditions for about five years. Moreover some experiments were also performed on metallic parts of an original chandelier from the seventies as well as on a deeply corroded Roman sword. Results obtained reveals that longer pulse duration leads to phase changes on the rust layer and a homogeneous black-grayish coating is formed on the surface (identified as magnetite) after treatment. Whereas, QS laser pulses are capable to induce ablation of the corrosion layer exposing the pure metal underneath. Finally, LQS interaction includes deep ablation with localized micro-melting of the metal surface and partial transformation of the residual mineral areas was observed. The irradiation results were characterized through optical and BS- ESEM along with Raman spectroscopy, which allowed a clear phenomenological differentiation among the three operating regimes and provided information on their optimal exploitation in restoration of iron artifacts.

  15. ND:YAG laser for preretinal hemorrhage in diabetic retinopathy.

    PubMed

    Karagiannis, Dimitrios; Kontadakis, Georgios A; Flanagan, Declan

    2018-06-01

    To present fundus images of a case with severe preretinal hemorrhage in diabetic retinopathy that was treated with posterior hyaloidotomy with an Nd:YAG laser. A 35-year-old diabetic patient presented with sudden painless loss of vision due to severe preretinal hemorrhage over the macular area and high risk proliferative diabetic retinopathy. Her visual acuity was counting fingers. Posterior hyaloid face was treated with Nd:YAG laser (posterior hyaloidotomy). Panretinal laser photocoagulation was first performed to control the proliferative diabetic retinopathy. Blood drained inferiorly into the vitreous cavity with clearance of the premacular area. Prompt treatment with Panretinal laser photocoagulation followed by posterior hyaloidotomy with the YAG laser is a viable option in order to avoid further proliferative diabetic retinopathy complications and vision loss. The current image clearly depicts treatment efficacy.

  16. Low-fluence Q-switched Nd: YAG 1064-nm laser and intense pulsed light for the treatment of melasma.

    PubMed

    Vachiramon, V; Sirithanabadeekul, P; Sahawatwong, S

    2015-07-01

    Low-fluence Q-switched Nd:YAG 1064 nm laser (LFQS) and intense pulsed light (IPL) have been shown to be effective in the treatment of melasma. LFQS can target deeper pigment, while IPL can target a wide range of cutaneous structures. However, there is limited information on efficacy and side-effects of the combined treatment. To compare the efficacy and safety of combined LFQS and IPL therapy with LFQS monotherapy in the treatment of melasma. Twenty female patients with mixed-type melasma on both cheeks were treated with LFQS on full face for five sessions at 1-week intervals. One side of the face was randomly assigned to receive additional three sessions of IPL treatments at 2-week intervals. Patients were evaluated 12 weeks after the last treatment. Outcome measures include the assessment by colorimeter and calculated as relative lightness index (R*LI), modified Melasma Area and Severity Index (mMASI), patient satisfaction and adverse effects. Eighteen patients completed the study. Both sides of the face showed significant improvement of R*LI and mMASI. A more rapid improvement of R*LI and mMASI was observed on combined side. At the end of treatment, 55% improvement and 37% improvement of R*LI was observed on combined side and monotherapy side respectively. The overall patients' satisfaction was in favour of the combined side. Recurrence occurred on both sides but there was still a significant decrease compared to baseline. No serious side effect was noted. The combination of LFQS and IPL results in faster clearance of melasma and is more effective than LFQS alone for melasma treatment. However, recurrence is still inevitable. © 2014 European Academy of Dermatology and Venereology.

  17. High-pulse energy Q-switched Tm3+:YAG laser for nonlinear frequency conversion to the mid-IR

    NASA Astrophysics Data System (ADS)

    Stöppler, Georg; Kieleck, Christelle; Eichhorn, Marc

    2010-10-01

    For some medical fields in laser surgery and as a pump source for nonlinear materials to generate mid-IR radiation, e.g. for countermeasure applications, it is very useful to have a solid-state laser with high pulse energy at 2 μm. The rare earth ion Thulium offers a cross relaxation and can thus be directly diode pumped with common laser diodes around 800 nm for an efficient pumping. However, it was not considered for high pulse energy operation due to the high saturation fluence of around 62 J/cm2 at 2 μm. A limiting factor has always been the damage threshold of the optical elements inside the cavity. One of the reasons is the strong thermal lens of YAG, which affects a change of the beam radius inside the resonator and additionally degrades the beam quality with increasing pump power. Using a new pump geometry of the Tm3+:YAG laser system, it is now possible to reach pulse energies > 13 mJ at a diffraction limited beam quality of M2 < 1.1. The Q-switched Tm3+:YAG laser system uses an AOM operating at 100 Hz and will be described in detail. Due to the high pulse energy and very good beam quality, this laser is very interesting for nonlinear parametric frequency conversion.

  18. Time-resolved measurements of statistics for a Nd:YAG laser.

    PubMed

    Hubschmid, W; Bombach, R; Gerber, T

    1994-08-20

    Time-resolved measurements of the fluctuating intensity of a multimode frequency-doubled Nd:YAG laser have been performed. For various operating conditions the enhancement factors in nonlinear optical processes that use a fluctuating instead of a single-mode laser have been determined up to the sixth order. In the case of reduced flash-lamp excitation and a switched-off laser amplifier, the intensity fluctuations agree with the normalized Gaussian model for the fluctuations of the fundamental frequency, whereas strong deviations are found under usual operating conditions. The frequencydoubled light has in the latter case enhancement factors not so far from values of Gaussian statistics.

  19. Combined vitamin C sonophoresis and neodymium-doped yttrium aluminum garnet (NdYAG) laser for facial hyperpigmentation: An outcome observation study in Asian patients.

    PubMed

    Chen, Yu-Tsung; Chang, Chang-Cheng; Hsu, Cherng-Ru; Shen, Jen-Hsiang; Shih, Chao-Jen; Lin, Bor-Shyh

    2016-01-01

    The neodymium-doped yttrium aluminum garnet (NdYAG) laser therapy has been a popular technique for facial rejuvenation but certain adverse effects like post-inflammatory hyperpigmentation are issues of concern to Asian patients. To assess the outcome following combined treatment with vitamin C sonophoresis and NdYAG laser, in selected cases of facial hyperpigmentation. Twenty three women with dyschromia or melasma who had undergone five sessions of Q-switched NdYAG laser therapy followed by transdermal delivery of vitamin C via sonophoresis were selected after a retrospective review of case records. The objective and subjective clinical outcomes and the side effects, including erythema, scaling, pruritus, dryness and post-inflammatory hyperpigmentation were evaluated. In both objective or subjective outcomes, 91.3% (21/23) of the patients showed an excellent or better outcome, while 8.7% (2/23) showed no change. A majority of the patients (73.9%, 17/23) experienced no post-inflammatory hyperpigmentation or had slight post-inflammatory hyperpigmentation which quickly resolved within 1 week. Only one (4.3%) patient had extreme post-inflammatory hyperpigmentation which lasted for over a month. This was a retrospective study without a control group; a comparative study with a control group (patients treated with the laser alone, without vitamin C sonopheresis) is needed to determine the difference in the outcome. The use of vitamin C sonophoresis along with NdYAG laser may reduce the incidence of adverse effects in Asian patients. Patients experienced obvious improvement in hyperpigmentation and had lower chances of experiencing extreme or severe post-inflammatory hyperpigmentation.

  20. 12  mJ Yb:YAG/Cr:YAG microchip laser.

    PubMed

    Guo, Xiaoyang; Tokita, Shigeki; Kawanaka, Junji

    2018-02-01

    We have developed a quasi-continuous wave diode end-pumped cryogenically cooled Yb:YAG/Cr:YAG passively Q-switched microchip laser. A maximum energy of 12.1 mJ with 3.7 MW of peak power was obtained. To the best of our knowledge, this is the highest energy and peak power obtained by an Yb:YAG/Cr:YAG microchip laser so far.

  1. Continuous-wave and passively Q-switched laser performance of Nd:(LaxGd1-x)3Ga5O12 crystal at 1062 nm CW and PQS laser performance of Nd:LaGGG crystal at 1062 nm

    NASA Astrophysics Data System (ADS)

    Yang, H.; Fu, X.-W.; Jia, Z.-T.; He, J.-L.; Yang, X.-Q.; Zhang, B.-T.; Wang, R.-H.; Liu, X.-M.; Hou, J.; Lou, F.; Wang, Z.-W.; Yang, Y.

    2012-10-01

    The performance of diode-pumped continuous-wave (CW) and passively Q-switched (PQS) Nd:(LaxGd1-x)3Ga5O12 lasers at 1062 nm were demonstrated for the first time to our knowledge. The highest CW output power of 9.9 W was obtained, corresponding to an optical-to-optical efficiency of 42.9%. For the passive Q-switching operation, when the output coupler of Toc = 27% was adopted, the maximum output power of 3.97 W was obtained by a Cr4+:YAG saturable absorber with the initial transmission of T0 = 89.9%.While at T0 = 81.4% and Toc = 27%, the output power of 2.83 W, with pulse width of 7.4 ns and the repetition rate of 13.87 kHz, was obtained, corresponding to the maximum peak power of 27.6 kW and single pulse energy of 0.2 mJ, respectively.

  2. Effect of CO2, Nd:YAG and Er:YAG Lasers on Microtensile Bond Strength of Composite to Bleached-Enamel.

    PubMed

    Basir, Mahshid Mohammadi; Rezvani, Mohammad Bagher; Chiniforush, Nasim; Moradi, Zohreh

    2016-01-01

    Tooth restoration immediately after bleaching is challenging due to the potential problems in achieving adequate bond strength. The aim of this study was to evaluate the effect of surface treatment with ER:YAG, ND:YAG, CO2 lasers and 10% sodium ascorbate solution on immediate microtensile bond strength of composite resin to recently bleached enamel. Ninety sound molar teeth were randomly divided into three main groups (n:30) : NB (without bleaching), HB (bleached with 38% carbamide peroxide) and OB (bleached with Heydent bleaching gel assisted by diode laser). Each group was divided into five subgroups (n:6) : Si (without surface treatment), Er (Er:YAG laser), CO2 (CO2 laser), Nd (Nd:YAG laser) and As (Immersion in 10% sodium ascorbate solution). The bonding system was then applied and composite build-ups were constructed. The teeth were sectioned by low speed saw to obtain enamel- resin sticks and submitted to microtensile bond testing. Statistical analyses were done using two- way ANOVA, Tukey and Tamhane tests. µTBS of bleached teeth irradiated with ND:YAG laser was not significantly different from NB-Nd group. Microtensile bond strength of OB-Er group was higher than NB-Er and HB-Er groups. The mean µTBS of HB-CO2 group was higher than NB-CO2 group; the average µTBS of HB-As and OB-As groups was also higher than NB-As group. Use of Nd:YAG, CO2 lasers and 10% sodium ascorbate solution could improve the bond strength in home-bleached specimens. Application of ND:YAG laser on nonbleached specimens and Er:YAG laser on office-bleached specimens led to the highest µTBS in comparison to other surface treatments in each main group.

  3. 2.36 J, 50 Hz nanosecond pulses from a diode side-pumped Nd:YAG MOPA system

    NASA Astrophysics Data System (ADS)

    Li, Chaoyang; Lu, Chengqiang; Li, Chuan; Yang, Ning; Li, Ye; Yang, Zhen; Han, Song; Shi, Junfeng; Zhou, Zewu

    2017-07-01

    We report on a high-energy high-repetition-rate nanosecond Nd:YAG main oscillator power amplifier (MOPA) system. Maximum output pulse energy of 2.36 J with duration of 9.4 ns at 50 Hz has been achieved. The master oscillator was a LD side-pumped electro-optical Q-switched Nd:YAG rod laser adopting unstable cavity with variable reflectivity mirror (VRM). It delivered a pulse train with energy up to 180 mJ and pulse duration of 10.7 ns. The near-field pattern demonstrated a nearly super Gaussian flat top profile. In the amplification stage, the pulse was boosted via double-pass two Nd:YAG rod amplifiers. Maximum pulse energy was obtained at the peak pump power of 37.5 kW, corresponding to an optical-optical conversion efficiency of 25.2%. The correlative peak power was deduced to be 251 MW. We also presented the result of 100 Hz nanosecond laser with average output power of >100 W.

  4. Direct generation of vector vortex beams with switchable radial and azimuthal polarizations in a monolithic Nd:YAG microchip laser

    NASA Astrophysics Data System (ADS)

    He, Hong-Sen; Chen, Zhen; Dong, Jun

    2017-05-01

    A hollow focus lens (HFL) has been designed to effectively produce a focused annular beam for high-intensity pumping. By applying the central-dark pump beam, a monolithic Nd:YAG microchip laser without any extra optical elements is demonstrated to generate vector vortex beams with switchable radially polarized (RP) and azimuthally polarized (AP) states by easily controlling the pump power. The order and handedness of the output vortex beam remain stable during the switching of the RP and AP states. The monolithic Nd:YAG microchip laser provides a new laser source for applications such as material processing and optical manipulation.

  5. NdYag Laser for Acne Keloidalis Nuchae

    ClinicalTrials.gov

    2013-03-27

    Acne Keloidalis Nuchae; NdYag Laser; AKN; Acne Keloidalis; AK; Dermatitis Papillaris Capillitii; Folliculitis Keloidalis Nuchae; Sycosis Nuchae; Acne Keloid; Keloidal Folliculitis; Lichen Keloidalis Nuchae; Folliculitis Nuchae Scleroticans; Sycosis Framboesiformis

  6. Nd:YAG laser double wavelength ablation of pollution encrustation on marble and bonding glues on duplicated painting canvas

    NASA Astrophysics Data System (ADS)

    Batishche, Sergei; Englezis, Apostolis; Gorovets, Tatiana; Kouzmouk, Andrei; Pilipenka, Uladzimir; Pouli, Paraskevi; Tatur, Hennady; Totou, Garyfallia; Ukhau, Viktar

    2005-07-01

    In the present study, a newly developed one-beam IR-UV laser cleaning system is presented. This system may be used for different applications in diverse fields, such as outdoors stonework conservation and canvas paintings restoration. The simultaneous use of the fundamental radiation of a Q-switched Nd:YAG laser at 1064 nm and its third harmonic at 355 nm was found appropriate to clean pollution crusts, while ensuring that no discoloration ("yellowing") would occur. The optimum ratio of UV to IR wavelengths in the final cleaning beam was investigated. In parallel, the same system was tested in diverse applications, such as the removal of bonding glues from duplicated canvases. The optimum laser parameters were investigated both on technical samples as well as on original paintings.

  7. Effect of Nd:YAG laser on the solvent evaporation of adhesive systems.

    PubMed

    Batista, Graziela Ribeiro; Barcellos, Daphne Câmara; Rocha Gomes Torres, Carlos; Damião, Álvaro José; de Oliveira, Hueder Paulo Moisés; de Paiva Gonçalves, Sérgio Eduardo

    2015-01-01

    This study evaluated the influence of Nd:YAG laser on the evaporation degree (ED) of the solvent components in total-etch and self-etch adhesives. The ED of Gluma Comfort Bond (Heraeus-Kulzer) one-step self-etch adhesive, and Adper Single Bond 2 (3M ESPE), and XP Bond (Dentsply) total-etch adhesives was determined by weight alterations using two techniques: Control--spontaneous evaporation of the solvent for 5 min; Experimental--Nd:YAG laser irradiation for 1 min, followed by spontaneous evaporation for 4 min. The weight loss due to evaporation of the volatile components was measured at baseline and after 10 s, 20 s, 30 s, 40 s, 50 s, 60 s, 70 s, 80 s, 90 s, 100 s, 110 s, 2 min, 3 min, 4 min, and 5 min. Evaporation of solvent components significantly increased with Nd:YAG laser irradiation for all adhesives investigated. Gluma Comfort Bond showed significantly higher evaporation of solvent components than Adper Single Bond 2 and XP Bond. All the adhesives lost weight quickly during the first min of Nd:YAG laser irradiation. The application of Nd:YAG laser on adhesives before light curing had a significant effect on the evaporation of the solvent components, and the ED of Gluma Comfort Bond one-step self-etch adhesive was significantly higher than with Adper Single Bond 2 and XP Bond total-etch adhesives. The use of the Nd:YAG laser on the uncured adhesive technique can promote a greater ED of solvents, optimizing the longevity of the adhesive restorations.

  8. Passively Q-switched 1.6 µm Er:YAG laser with a γ-Ga2O3:Co-based glass-ceramics as a saturable absorber

    NASA Astrophysics Data System (ADS)

    Shi, Yang; Gao, Chunqing; Ye, Qing; Wang, Shuo; Wang, Qing; Gao, Mingwei; Loiko, Pavel; Skoptsov, Nikolai; Dymshits, Olga; Zhilin, Alexander; Zapalova, Svetlana; Tsenter, Marina; Vitkin, Vladimir; Mateos, Xavier; Yumashev, Konstantin

    2018-04-01

    A resonantly pumped passively Q-switched Er:YAG laser operating at 1.617 and 1.645 µm is reported with γ-Ga2O3:Co2+-based glass-ceramics (GCs) as a saturable absorber. The maximum average output power achieved from this laser was 273 mW; the highest pulse energy was 5.9 µJ, corresponding to a pulse duration of 3.0 µs at a repetition frequency of 31 kHz. To the best of our knowledge, this is the first time to use the γ-Ga2O3:Co2+-based GC as a passive Q-switcher for Er:YAG lasers and this is also the first time to obtain 1.617 µm and 1.645 µm pulses with a GC-based saturable absorber.

  9. Bactericidal effect of Nd:YAG laser irradiation in endodontics

    NASA Astrophysics Data System (ADS)

    Aun, Carlos E.; Barberini, Alexandre F.; Camargo, Selma C. C.; Silva Kfouri, Luciana; Lorenzetti Simionato, Maria R.

    1999-05-01

    The success of endodontic therapy is based on the elimination of bacterial colonization from the endodontic system and periapical tissues. Recent studies have been showing the bactericidal effect of laser in root canal treatment. The propose of the study is to evaluate the effect of Nd:YAG laser irradiation in contaminated root canal treatment. The propose of the study is to evaluate the effect of Nd:YAG laser irradiation in contaminated root canals from upper central incisor. For the experiment 12 teeth were selected, respect at the apical third, sterilized, and 10 μm Streptococcus sanguis liquid culture were inoculated in the root canals. The laser test groups were irradiated with Nd:YAG laser at standard setting of 15Hz, 100mj and 1,5 W for 10, 20 and 30 seconds each in slow helicoidal movements from the apex to the top using a 300 micrometers fiber. After the procedure the specimens were placed in Tryptic Soy Agar, the number of colony forming units was evaluated. The experiment showed a significant reduction on viability of Streptococcus sanguis at the respective time of 20 and 30 seconds.

  10. Development of a compact vertical-cavity surface-emitting laser end-pumped actively Q-switched laser for laser-induced breakdown spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Shuo; Chen, Rongzhang; Nelsen, Bryan

    2016-03-15

    This paper reports the development of a compact and portable actively Q-switched Nd:YAG laser and its applications in laser-induced breakdown spectroscopy (LIBS). The laser was end-pumped by a vertical-cavity surface-emitting laser (VCSEL). The cavity lases at a wavelength of 1064 nm and produced pulses of 16 ns with a maximum pulse energy of 12.9 mJ. The laser exhibits a reliable performance in terms of pulse-to-pulse stability and timing jitter. The LIBS experiments were carried out using this laser on NIST standard alloy samples. Shot-to-shot LIBS signal stability, crater profile, time evolution of emission spectra, plasma electron density and temperature, andmore » limits of detection were studied and reported in this paper. The test results demonstrate that the VCSEL-pumped solid-state laser is an effective and compact laser tool for laser remote sensing applications.« less

  11. Microchip laser based on Yb:YAG/V:YAG monolith crystal

    NASA Astrophysics Data System (ADS)

    Nejezchleb, Karel; Šulc, Jan; Jelínková, Helena; Škoda, Václav

    2016-03-01

    V:YAG crystal was investigated as a passive Q-switch of longitudinally diode-pumped microchip laser, emitting radiation at wavelength 1030.5 nm. This laser was based on diffusion bonded monolith crystal (diameter 3 mm) which combines in one piece an active laser part (Yb:YAG crystal, 10 at.% Yb/Y, 3 mm long) and saturable absorber (V:YAG crystal, 2 mm long, initial transmission 86 % @ 1031 nm). The microchip resonator consisted of dielectric mirrors directly deposited on the monolith surfaces (pump mirror HT @ 968 nm and HR @ 1031 nm on Yb:YAG part, output coupler with reflection 55 % @ 1031 nm on the V:YAG part). For longitudinal CW pumping of Yb:YAG part, a fibre coupled (core diameter 100 μm, NA = 0.22, emission @ 968 nm) laser diode was used. The laser threshold was 3.8W. The laser slope efficiency for output mean in respect to incident pumping was 16 %. The linearly polarized generated transversal intensity beam profile was close to the fundamental Gaussian mode. The generated pulse length, stable and mostly independent on pumping power, was equal to 1.3 ns (FWHM). The single pulse energy was increasing with the pumping power and for the maximum pumping 9.7W it was 78 μJ which corresponds to the pulse peak-power 56 kW. The maximum Yb:YAG/V:YAG microchip laser mean output power of 1W was reached without observable thermal roll-over. The corresponding Q-switched pulses repetition rate was 13.1 kHz.

  12. Nd:YAG laser ablation and acid resistance of enamel.

    PubMed

    Kwon, Yong Hoon; Kwon, Oh-Won; Kim, Hyung-Il; Kim, Kyo-Han

    2003-09-01

    The acid resistance of Nd:YAG laser-ablated enamel surfaces was studied by evaluating crystal structure, mineral distribution, and fluorescence radiance and image in the present study. For comparison, 37% phosphoric acid etching was performed. The formation of beta-tricalcium phosphate (beta-TCP) was confirmed in the laser-ablated surface. The Ca/P ratio increased after ablation due to mineral re-distribution. In contrast, the Ca/P ratio decreased after acid etching due to mineral loss. The laser-ablated enamels showed a smaller increase of fluorescence radiances and less clear laser confocal scanning microscope images than those observed in the acid-etched enamels. The former suggests a minimized mineral loss. The Nd:YAG laser irradiation will enhance the acid resistance and retard the carious progression in enamel.

  13. The possibility of clinical application of the solid state lasers: Nd:YAG, Ho:YAG, and Er:YAG in otolaryngology - head and neck surgery

    NASA Astrophysics Data System (ADS)

    Tomaszewska, M.; Kukwa, A.; Tulibacki, M.; Wójtowicz, P.; Olędzka, I.; Jeżewska, E.

    2007-02-01

    The purpose of this study was to summarize our experiences in clinical application of Nd:YAG, Ho:YAG and Er:YAG in otolaryngology- head and neck surgery. Choosing the laser type and parameters for the particular procedures was based on our previous research on tissue effects of those lasers. During the period of 1993-2006 we performed 3988 surgical procedures with the Nd:YAG laser. Over 87% of those were made for the nasal cavity pathologies as polyps, hyperplasia of inferior nasal turbinate, granulation tissue, postoperative adhesions, vascular malformations, under the local anesthesia conditions. In our experience Nd:YAG laser gives the possibility of good clinical control and low risk of side effects for disorders of high recurrence and frequent interventions necessity, as nasal polyps or respiratory papillomatosis. Nd:YAG assisted uvulopalatoplasty gives an interesting alternative for surgical procedures for snoring and slight/mild OSA-recognized patients. Due to its good hemostatic properties, it is a perfect tool for removal of the chemodectoma from meddle ear. During the period of 1995-2006 we performed 229 surgical procedures with the Ho:YAG laser, mostly for larynx pathologies (adhesion and scar tissue removal). In our experience Ho:YAG laser can serve as a precise laser knife for both soft and bony tissue. The ER:YAG laser still remain under clinical trial. Since 2001 year we performed 24 procedures of removing stone deposits from salivary glands. We believe it may become a promising method to cope with sialolithiasis which allows for glandule function preservation. All of the laser types mentioned above, can be easily coupled with endoscopes, what makes them available for all of the head and necklocalized disorders.

  14. A novel dual‐wavelength, Nd:YAG, picosecond‐domain laser safely and effectively removes multicolor tattoos

    PubMed Central

    Schomacker, Kevin T.; Basilavecchio, Lisa D.; Plugis, Jessica M.; Bhawalkar, Jayant D.

    2015-01-01

    Background and Objectives Although nanosecond‐domain lasers have been the mainstay of laser tattoo removal for decades, recent disruptive innovations in laser design have introduced a new class of commercial Q‐switched lasers that generate picosecond‐domain pulses. Study A picosecond‐domain, Nd:YAG laser with a KTP frequency‐doubling crystal was used to treat 31 decorative tattoos in 21 subjects. Safety and effectiveness were determined by blinded evaluation of digital images in this prospective clinical study. Results The average clearance overall as evaluated by blinded observers evaluating randomized digital photographs was 79 ± 0.9% (mean ± sem) after an average of 6.5 treatments. Of the 31 tattoos completing treatment, 6 had evidence of mild hyper‐ or hypo‐pigmentation by evaluation of photographs. Conclusion The 350 picosecond, 532 nm, and 450 picosecond 1,064 nm Nd:YAG laser is safe and effective for removing decorative tattoos. Lasers Surg. Med. 47:542–548, 2015. © 2015 The Authors. Lasers in Surgery and Medicine Published by Wiley Periodicals, Inc. PMID:26175187

  15. 1 kHz 3.3 μm Nd:YAG KTiOAsO₄ optical parametric oscillator system for laser ultrasound excitation of carbon-fiber-reinforced plastics.

    PubMed

    Puncken, Oliver; Gandara, David Mendoza; Damjanic, Marcin; Mahnke, Peter; Bergmann, Ralf B; Kalms, Michael; Peuser, Peter; Wessels, Peter; Neumann, Jörg; Schnars, Ulf

    2016-02-20

    We present a new laser prototype for laser ultrasonics excitation. The fundamental wavelength of a Q-switched Nd:YAG laser with a repetition rate of 1 kHz is converted to 3.3 μm with a KTiOAsO4 optical parametric oscillator. The achieved pulse energy at 3.3 μm is 1.7 mJ, and the pulse duration at the fundamental wavelength of 1.06 μm has been measured to be 21 ns. The ultrasonic excitation efficiency is about 3.5 times better compared to the application of state-of-the-art CO2 lasers.

  16. Combined pulsed dye laser and fiberoptic Nd-YAG laser for the treatment of hypertrophic port wine stain.

    PubMed

    Radmanesh, Mohammed; Radmanesh, Ramin

    2017-10-01

    The hypertrophic Port Wine Stain (PWS) is only partially and superficially treated with the Pulsed dye laser (PDL) because of its limited depth of penetration. We used combined PDL and fiberoptic 1444-nm Nd-YAG laser to treat a case with hypertrophic PWS. After tumescent anesthesia, few holes were made by a 16-gauge needle on different sides of the lesion. The fiberoptic tip of 1444-nm Nd-YAG laser was inserted within the holes and was pushed forward while triggering. In a fan pattern and by a back and forth movement, the subcutaneous and deep dermal areas were coagulated. The skin and outer mucosal surfaces were then treated by PDL. The fiberoptic system used was Accusculpt 1444-nm Nd-YAG laser (Lutronic lasers, South Korea), and the PDL used was 585 nm Nlite system (Chromogenex UK). The parameters used for PDL were fluence = 9 Joules/cm 2 and the spot size was 5 mm. The parameters used for fiberoptic 1444-nm Nd-YAG laser were: Pulse rate = 30 Hz, pulse energy = 300 mJ, power = 6 W, and the total energy = 4000 J for the whole face and mucosa. Little sign of regression and moderate purpura were detected immediately after combined fiberoptic Nd-YAG and PDL therapy. The lesion gradually regressed within 4 months with satisfactory color and volume change. Combined fiberoptic Nd-YAG laser and PDL can be used for the treatment of deeper and superficial layers of hypertrophic PWS.

  17. High-efficient Nd:YAG microchip laser for optical surface scanning

    NASA Astrophysics Data System (ADS)

    Šulc, Jan; Jelínková, Helena; Nejezchleb, Karel; Škoda, Václav

    2017-12-01

    A CW operating, compact, high-power, high-efficient diode pumped 1064nm laser, based on Nd:YAG active medium, was developed for optical surface scanning and mapping applications. To enhance the output beam quality, laser stability, and compactness, a microchip configuration was used. In this arrangement the resonator mirrors were deposited directly on to the laser crystal faces. The Nd-doping concentration was 1 at.% Nd/Y. The Nd:YAG crystal was 5mm long. The laser resonator without pumping radiation recuperation was investigated {the output coupler was transparent for pumping radiation. For the generated laser radiation the output coupler reflectivity was 95%@1064 nm. The diameter of the samples was 5 mm. For the laser pumping two arrangements were investigated. Firstly, a fibre coupled laser diode operating at wavelength 808nm was used in CW mode. The 400 ¹m fiber was delivering up to 14W of pump power amplitude to the microchip laser. The maximum CW output power of 7.2W @ 1064nm in close to TEM00 beam was obtained for incident pumping power 13.7W @ 808 nm. The differential efficiency in respect to the incident pump power reached 56 %. Secondly, a single-emitter, 1W laser diode operating at 808nm was used for Nd:YAG microchip pumping. The laser pumping was directly coupled into the microchip laser using free-space lens optics. Slope efficiency up to 70% was obtained in stable, high-quality, 1064nm laser beam with CW power up to 350mW. The system was successfully used for scanning of super-Gaussian laser mirrors reflectivity profile.

  18. Bactericidal effect of the Nd:YAG lasers in laser-supported curettage

    NASA Astrophysics Data System (ADS)

    Gutknecht, Norbert; Fischer, Julia; Conrads, Georg; Lampert, Friedrich

    1997-05-01

    In this study, the efficacy of laser-supported curettage was examined with relation to the periodontitis-reference germs. Initially, a manual subgingival curettage followed by irradiation using the Nd:YAG-laser was carried out on 18 diseased periodontia. At two further appointments with weekly intervals, only laser irradiation was performed. Prior to and upon completion of therapy, subgingival plaque samples were taken at each appointment from all the treated periodontia. These were then examined microbiologically to establish the number of prevotella intermedia. A distinct bacterial reduction as well as a decrease in recolonization was shown. In conclusion the application of the Nd:YAG laser with a 400 micron fiber and an energy setting of 2 watts, 20 pps is beneficial when used in conjunction with manual periodontal treatment because of its disinfecting effect.

  19. Improvement of the technique in treatment of internal hemorrhoids with Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Bao, Xiao-qing; Zhu, Jing; Shi, Hong-Min

    2005-07-01

    Objective: To observe and study the improvement of the technique in treatment of internal hemorrhoids with Nd:YAG laser and evaluate the effective rate. Methods: 60 patients of internal hemorrhoids were treated with Nd:YAG laser (10-15mw) irradiating on the mucosa of the lesions. Results: Among 60 patients, 57 patients were primarily cured with one treatment, 3 patients were primarily cured with two treatments. The effective rate was 95% with one treatment, and it reached to 100% with two treatments. Conclusions: the improvement of the technique in treatment of internal hemorrhoids with Nd:YAG laser is effective and easy to operate.

  20. Diode-side-pumped intracavity frequency-doubled Nd:YAG/BaWO4 Raman laser generating average output power of 3.14 W at 590 nm.

    PubMed

    Li, Shutao; Zhang, Xingyu; Wang, Qingpu; Zhang, Xiaolei; Cong, Zhenhua; Zhang, Huaijin; Wang, Jiyang

    2007-10-15

    We report a linear-cavity high-power all-solid-state Q-switched yellow laser. The laser source comprises a diode-side-pumped Nd:YAG module that produces 1064 nm fundamental radiation, an intracavity BaWO(4) Raman crystal that generates a first-Stokes laser at 1180 nm, and a KTP crystal that frequency doubles the first-Stokes laser to 590 nm. A convex-plane cavity is employed in this configuration to counteract some of the thermal effect caused by high pump power. An average output power of 3.14 W at 590 nm is obtained at a pulse repetition frequency of 10 kHz.

  1. Treatment of café-au-lait macules with a high-fluenced 1064-nm Q-switched neodymium:yttrium aluminum garnet laser.

    PubMed

    Kim, Jiehoon; Hur, Hoon; Kim, Yu Ri; Cho, Sung Bin

    2018-02-01

    Café-au-lait macules (CALMs) are light to dark brown macules or patches of increased melanin concentration found along the dermoepidermal junction. Although many attempts to treat CALMs using various kinds of laser/light-based devices have been reported, CALMs remain refractory thereto with high recurrence rates. In this case series, we describe four patients with idiopathic CALMs that were effectively and safely treated with a non-ablative, high-fluenced, Q-switched (QS), 1064-nm neodymium:yttrium aluminum garnet (Nd:YAG) laser. The typical laser parameters for treating CALMs, including a spot size of 7-7.5 mm, a fluence of 2.4-2.5 J/cm 2 , and one to two passes until the appearance of mild erythema, but not petechiae, were utilized in this study over 12-24 treatment sessions at 2-week intervals. We suggest that high-fluenced QS 1064-nm Nd:YAG laser treatment can be used as an effective and alternative treatment modality for CALMs with minimal risk of side effects.

  2. Treatment of patients with OSAS using Nd-YAG laser

    NASA Astrophysics Data System (ADS)

    Kukwa, Andrzej; Tulibacki, Marek P.; Zajac, Andrzej; Dudziec, Katarzyna

    2000-06-01

    The authors present their clinical experience regarding the possibilities of application of Nd:YAG and Ho:YAG lasers for the treatment of disorders in the are of the upper respiratory tract. The patients with symptoms of Obstructive Sleep Aphnoe Syndrom need a various operations techniques. Lasers techniques makes it possible to perform a number of procedures in local anesthesia which considerably improves the economic effectiveness of the treatment. The surgeries performed using laser beam enabled very good effect of treatment.

  3. The Construction of a Nd:YAG Laser and Observation of the Output.

    DTIC Science & Technology

    1983-12-01

    State Laser En ineering, p. 55, Springer-Verlag New York, Inc., 97.- 4. Koechner, W., p. 56. 5. Siegman , A. E., An Introduction to Lasers and Masers...AD-A138 855 THE CONSTRUCTION OF A ND YAG LASER AND OBSERVATION OF i/i THE OUTPUT(U) NAVAL POSTGRADUATE SCHOOL MONTEREY CAK H CHUNG DEC 83...CONSTRUCTION OF A Nd:YAG LASER AND OBSERVATION OF THE OUTPUT by Im. Ki Hyun Chung December 1983 Thesis Advisor: A. W. Cooper Approved for public release

  4. Minimally invasive scoliosis treatment with a Ho:YAG laser

    NASA Astrophysics Data System (ADS)

    Rumpf, Christian G.; Lang, Robert D.; Goetz, Marcus H.

    2000-11-01

    Today most surgical treatment of spinal deformations is concentrated on invasive mechanical techniques with long operation times and major effects on the patient's mobility. The proposed minimally invasive technique using laser light for tissue ablation offers a possibility of gentle scoliosis treatment. It is thought that an early removal of the epiphysial growth zone on the convex side over several vertebrae results in a straightening of the spine. In a first evaluation, four different laser systems including argon ion, Nd:YAG (Q-switched), Nd:YAG (cw), and Ho:YAG laser were compared with respect to thermal damage to adjacent tissue, ablation rates, efficiency and laser handling. For in-vivo investigation, fresh lamb spine was used. Comparison showed that the Ho:YAG laser is the most appropriate laser for the given goal, providing efficient photoablation with moderate thermal effects on the adjacent tissue. In a second step the proposed minimally invasive operation technique was performed in in-vivo experiments on young foxhounds using 3D- thoracoscopic operation techniques. During these operations temperature mapping was done using fiber-optic fluorescent probes. After 12 months of normal growth the animals were sacrificed and x-ray as well as MRI was performed on the spine. First results show a positive effect of scoliotic growth in two cases. Being able to produce a scoliosis by hemiepiphysiodesis on the vertebra, It is thought that this technique is successful for a straightening of the spine on patients with scoliosis.

  5. A retrospective analysis of the clinical efficacies of Q-switched Alexandrite and Q-switched Nd:YAG lasers in the treatment of nevus of Ota in Korean patients.

    PubMed

    Choi, Jae Eun; Lee, Joo Bong; Park, Ki Beom; Kim, Bang Soon; Yeo, Un-Cheol; Huh, Chang Hun; Kim, Jie Hoon; Kye, Young Chul

    2015-06-01

    While the Q-switched Alexandrite laser (QSAL) and the Q-switched neodymium: yttrium-aluminum-garnet (QSNY) laser have been widely used in treating nevus of Ota, few studies compared them. To compare the efficacies of the QSAL and the QSNY laser in the treatment of nevus of Ota in Korean patients. A retrospective multicenter study was conducted in 76 patients with nevus of Ota. Thirty-one patients were treated with a QSAL (5.5-8.0 J/cm(2), 4-mm spot size) and 45 patients were treated with QSNY laser (6.0-12.0 J/cm(2), 2-mm spot size). Treatment outcomes were categorized into five grades and the results were compared with the relevant variables taken into account using multivariate logistic regression analysis. QSAL treatment was more likely to achieve a better response compared with that with QSNY laser treatment. The odds ratio of achieving an excellent response, compared with the odds ratio of having a poor response, was 12.213-times more likely when a QSAL was used than when a QSNY laser was used (p = 0.026). The QSAL tends to be more efficient than the QSNY laser in the treatment of nevus of Ota in Korean patients. Further controlled, prospective comparison studies are needed.

  6. Sub-nanosecond lasers for cosmetics and dermatology

    NASA Astrophysics Data System (ADS)

    Tarasov, Aleksandr A.; Chu, Hong

    2018-02-01

    We report about the development of two new subnanosecond solid-state laser models for application in dermatology and cosmetics. One model uses subnanosecond Nd: YAG microchip laser as a master oscillator and includes Nd: YAG double- and single-pass amplifiers. At 10 Hz this laser produces more than 600 mJ pulse energy with duration 500 +/- 5 ps. Another model (under development) is gain-switched Ti: Sapphire laser with short cavity. This laser produces 200 mJ, 560 ps pulses at 790 nm and uses standard Q-Switched Nd: YAG laser with nanosecond pulse duration as a pumping sourse.

  7. Miniature CW and active internally Q-switched Nd:MgO:LiNbO/sub 3/ lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cordova-Plaza, A.; Digonnet, M.J.F.; Shaw, H.J.

    1987-02-01

    The authors report a 10 mW threshold mixture device in which internal Q-switching of a single Nd:MgO:LiNbO/sub 3/ crystal is achieved. Pulsewidths of 30 ns have been observed. Peak powers of 5 W have been attained with less than 60 mW of 598 nm pump power and with less than 1 percent output coupling. The switching voltage is lower than 300 V. The consequences of the elastooptic effect and the photoconductivity on device performance are investigated. A highly efficient CW laser and a low threshold CW laser made of the same material are also reported. Photorefractive damage due to themore » photovoltaic effect is found to be almost nonexistent in these lasers when pumped in the near-infrared.« less

  8. Dual Q-switched laser outputs from a single lasing medium using an intracavity MEMS micromirror array.

    PubMed

    Bauer, Ralf; Lubeigt, Walter; Uttamchandani, Deepak

    2012-09-01

    An intracavity array of individually controlled microelectromechanical system scanning micromirrors was used to actively Q-switch a single side-pumped Nd:YAG gain medium. Two equal power independent laser outputs were simultaneously obtained by separate actuation of two adjacent micromirrors with a combined average output power of 125 mW. Pulse durations of 28 ns FWHM at 8.7 kHz repetition frequency and 34 ns FWHM at 7.9 kHz repetition frequency were observed for the two output beams with beam quality factors M2 of 1.2 and 1.1 and peak powers of 253 W and 232 W, respectively.

  9. Room-temperature subnanosecond waveguide lasers in Nd:YVO4 Q-switched by phase-change VO2: A comparison with 2D materials

    NASA Astrophysics Data System (ADS)

    Nie, Weijie; Li, Rang; Cheng, Chen; Chen, Yanxue; Lu, Qingming; Romero, Carolina; Vázquez de Aldana, Javier R.; Hao, Xiaotao; Chen, Feng

    2017-04-01

    We report on room-temperature subnanosecond waveguide laser operation at 1064 nm in a Nd:YVO4 crystal waveguide through Q-switching of phase-change nanomaterial vanadium dioxide (VO2). The unique feature of VO2 nanomaterial from the insulating to metallic phases offers low-saturation-intensity nonlinear absorptions of light for subnanosecond pulse generation. The low-loss waveguide is fabricated by using the femtosecond laser writing with depressed cladding geometry. Under optical pump at 808 nm, efficient pulsed laser has been achieved in the Nd:YVO4 waveguide, reaching minimum pulse duration of 690 ps and maximum output average power of 66.7 mW. To compare the Q-switched laser performances by VO2 saturable absorber with those based on two-dimensional materials, the 1064-nm laser pulses have been realized in the same waveguide platform with either graphene or transition metal dichalcogenide (in this work, WS2) coated mirror. The results on 2D material Q-switched waveguide lasers have shown that the shortest pulses are with 22-ns duration, whilst the maximum output average powers reach ~161.9 mW. This work shows the obvious difference on the lasing properties based on phase-change material and 2D materials, and suggests potential applications of VO2 as low-cost saturable absorber for subnanosecond laser generation.

  10. Room-temperature subnanosecond waveguide lasers in Nd:YVO4 Q-switched by phase-change VO2: A comparison with 2D materials.

    PubMed

    Nie, Weijie; Li, Rang; Cheng, Chen; Chen, Yanxue; Lu, Qingming; Romero, Carolina; Vázquez de Aldana, Javier R; Hao, Xiaotao; Chen, Feng

    2017-04-06

    We report on room-temperature subnanosecond waveguide laser operation at 1064 nm in a Nd:YVO 4 crystal waveguide through Q-switching of phase-change nanomaterial vanadium dioxide (VO 2 ). The unique feature of VO 2 nanomaterial from the insulating to metallic phases offers low-saturation-intensity nonlinear absorptions of light for subnanosecond pulse generation. The low-loss waveguide is fabricated by using the femtosecond laser writing with depressed cladding geometry. Under optical pump at 808 nm, efficient pulsed laser has been achieved in the Nd:YVO 4 waveguide, reaching minimum pulse duration of 690 ps and maximum output average power of 66.7 mW. To compare the Q-switched laser performances by VO 2 saturable absorber with those based on two-dimensional materials, the 1064-nm laser pulses have been realized in the same waveguide platform with either graphene or transition metal dichalcogenide (in this work, WS 2 ) coated mirror. The results on 2D material Q-switched waveguide lasers have shown that the shortest pulses are with 22-ns duration, whilst the maximum output average powers reach ~161.9 mW. This work shows the obvious difference on the lasing properties based on phase-change material and 2D materials, and suggests potential applications of VO 2 as low-cost saturable absorber for subnanosecond laser generation.

  11. Room-temperature subnanosecond waveguide lasers in Nd:YVO4 Q-switched by phase-change VO2: A comparison with 2D materials

    PubMed Central

    Nie, Weijie; Li, Rang; Cheng, Chen; Chen, Yanxue; Lu, Qingming; Romero, Carolina; Vázquez de Aldana, Javier R.; Hao, Xiaotao; Chen, Feng

    2017-01-01

    We report on room-temperature subnanosecond waveguide laser operation at 1064 nm in a Nd:YVO4 crystal waveguide through Q-switching of phase-change nanomaterial vanadium dioxide (VO2). The unique feature of VO2 nanomaterial from the insulating to metallic phases offers low-saturation-intensity nonlinear absorptions of light for subnanosecond pulse generation. The low-loss waveguide is fabricated by using the femtosecond laser writing with depressed cladding geometry. Under optical pump at 808 nm, efficient pulsed laser has been achieved in the Nd:YVO4 waveguide, reaching minimum pulse duration of 690 ps and maximum output average power of 66.7 mW. To compare the Q-switched laser performances by VO2 saturable absorber with those based on two-dimensional materials, the 1064-nm laser pulses have been realized in the same waveguide platform with either graphene or transition metal dichalcogenide (in this work, WS2) coated mirror. The results on 2D material Q-switched waveguide lasers have shown that the shortest pulses are with 22-ns duration, whilst the maximum output average powers reach ~161.9 mW. This work shows the obvious difference on the lasing properties based on phase-change material and 2D materials, and suggests potential applications of VO2 as low-cost saturable absorber for subnanosecond laser generation. PMID:28383017

  12. Design of a high-power, high-brightness Nd:YAG solar laser.

    PubMed

    Liang, Dawei; Almeida, Joana; Garcia, Dário

    2014-03-20

    A simple high-power, high-brightness Nd:YAG solar laser pumping approach is presented in this paper. The incoming solar radiation is both collected and concentrated by four Fresnel lenses and redirected toward a Nd:YAG laser head by four plane-folding mirrors. A fused-silica secondary concentrator is used to compress the highly concentrated solar radiation to a laser rod. Optimum pumping conditions and laser resonator parameters are found through ZEMAX and LASCAD numerical analysis. Solar laser power of 96 W is numerically calculated, corresponding to the collection efficiency of 24  W/m². A record-high solar laser beam brightness figure of merit of 9.6 W is numerically achieved.

  13. Compact, passively Q-switched, all-solid-state master oscillator-power amplifier-optical parametric oscillator (MOPA-OPO) system pumped by a fiber-coupled diode laser generating high-brightness, tunable, ultraviolet radiation.

    PubMed

    Peuser, Peter; Platz, Willi; Fix, Andreas; Ehret, Gerhard; Meister, Alexander; Haag, Matthias; Zolichowski, Paul

    2009-07-01

    We report on a compact, tunable ultraviolet laser system that consists of an optical parametric oscillator (OPO) and a longitudinally diode-pumped Nd:YAG master oscillator-power amplifier (MOPA). The pump energy for the whole laser system is supplied via a single delivery fiber. Nanosecond pulses are produced by an oscillator that is passively Q-switched by a Cr(4+):YAG crystal. The OPO is pumped by the second harmonic of the Nd:YAG MOPA. Continuously tunable radiation is generated by an intracavity sum-frequency mixing process within the OPO in the range of 245-260 nm with high beam quality. Maximum pulse energies of 1.2 mJ were achieved, which correspond to an optical efficiency of 3.75%, relating to the pulse energy of the MOPA at 1064 nm.

  14. Inhibition of enamel demineralisation using "Nd-YAG and diode laser assisted fluoride therapy".

    PubMed

    Chand, B R; Kulkarni, S; Mishra, P

    2016-02-01

    This in vitro study was to evaluate the irradiation efficacy of the Diode laser and the Nd-YAG laser either un-assisted or assisted by acidulated phosphate fluoride (APF) treatment on enamel's acid resistance. Seventy-two enamel samples, obtained from 12 extracted human molars, were randomly assigned to 6 groups as follows: (1) Control (C); (2) Exposed to APF gel (F); (3) Diode laser (DL); (4) Irradiated with Diode laser through APF gel (DL/F); (5) Nd-YAG laser (NL) and (6) Irradiated with Nd-YAG laser through APF gel (NL/F). The specimens were individually demineralised in an acidified hydroxyethylcellulose system, and the acid resistance was evaluated by determining the calcium ion dissolution using atomic absorption spectrometry. The average concentration of the calcium ion determined in groups 1 to 6 was 901, 757, 736, 592, 497 and 416 parts per million micrograms/gram, respectively. The results showed that demineralisation in the NL/F group was significantly less than the other groups and the control group was significantly greater than the other groups (P < 0.001). The effect of Nd-YAG laser irradiation, used alone or in combination with APF, in decreasing the enamel demineralisation was greater than all the other groups.

  15. Efficient, high power, Q-switched Nd:YLF slab laser end-pumped by diode stack

    NASA Astrophysics Data System (ADS)

    Zhang, Hengli; Li, Daijun; Shi, Peng; Diart, Rober; Shell, Alexander; Haas, Claus R.; Du, Keming

    2005-06-01

    A high power diode stack end-pumped electro-optically Q-switched Nd:YLF slab laser with a stable and off-axis negative-branch confocal unstable hybrid resonator was demonstrated. By using a cylindrical lens in the stable direction the thermal lens effect was compensated. Pulse energy of 25 mJ was obtained with a pulse width of 22.4 ns at repetition rates of 500 Hz and a conversion efficiency of 22%. The stability was better than 0.8% and the beam propagation M2 factor was about 1.2.

  16. Instrumentation For The Surgical Application Of The Nd:YAG Laser

    NASA Astrophysics Data System (ADS)

    Frank, F.; Bailer, P.; Beck, O.; Bowering, R.; Hofstetter, A.

    1984-03-01

    The Nd:YAG laser has become a coagulation instrument, which has found acceptance in interdisciplinary surgery. The main contributors are its highly efficient coagulation capability in interaction with tissue and the fact that the Nd:YAG laser beam can be transmitted by means of a simple quartz-glass fiber. Appropriate systems and instruments for transmission and operation have been developed for the various applications in neurosurgery, pulmology, gastroenterology, urology, gynaecology and dermatology. Operation methods in open and endoscopic surgery under use of several hand held devices and flexible as well as rigid endoscopes are being demonstrated by clinical examples of application.

  17. Effects of a pulsed Nd:YAG laser on enamel and dentin

    NASA Astrophysics Data System (ADS)

    Myers, Terry D.

    1990-06-01

    Enamel and dentin samples were exposed extraorally to a pulsed neodymium yttriuma1uminumgarnet (Nd:YAG) laser. The lased samples were observed using both scanning electron microscopy and histological techniques to determine the effects of the laser. The present study has provided the following points: (1) Properly treated, enamel can be 1aser etched to a depth comparable to that achieved with phosphoric acid etching; and (2) both carious and noncarious dentin can be vaporized by the Nd:YAG laser. No cracking or chipping of any enamel or dentin sample was observed histologically or under the SEM.

  18. TEM00 mode Nd:YAG solar laser by side-pumping a grooved rod

    NASA Astrophysics Data System (ADS)

    Vistas, Cláudia R.; Liang, Dawei; Almeida, Joana; Guillot, Emmanuel

    2016-05-01

    A simple TEM00 mode solar laser system with a grooved Nd:YAG rod pumped through a heliostat-parabolic mirror system is reported here. The radiation coupling capacity of a fused silica tube lens was combined with the multipass pumping ability of a 2 V-shaped cavity to provide efficient side-pumping along a 4.0 mm diameter grooved Nd:YAG single-crystal rod. TEM00 mode solar laser power of 3.4 W was measured by adopting an asymmetric large-mode laser resonant cavity. Record TEM00 mode solar laser collection efficiency of 3.4 W/m2and slope efficiency of 1.9% was achieved, which corresponds to 1.8 and 2.4 times more than the previous TEM00 mode Nd:YAG solar laser using the PROMES-CNRS heliostat-parabolic mirror system, respectively.

  19. Performance study of highly efficient 520 W average power long pulse ceramic Nd:YAG rod laser

    NASA Astrophysics Data System (ADS)

    Choubey, Ambar; Vishwakarma, S. C.; Ali, Sabir; Jain, R. K.; Upadhyaya, B. N.; Oak, S. M.

    2013-10-01

    We report the performance study of a 2% atomic doped ceramic Nd:YAG rod for long pulse laser operation in the millisecond regime with pulse duration in the range of 0.5-20 ms. A maximum average output power of 520 W with 180 J maximum pulse energy has been achieved with a slope efficiency of 5.4% using a dual rod configuration, which is the highest for typical lamp pumped ceramic Nd:YAG lasers. The laser output characteristics of the ceramic Nd:YAG rod were revealed to be nearly equivalent or superior to those of high-quality single crystal Nd:YAG rod. The laser pump chamber and resonator were designed and optimized to achieve a high efficiency and good beam quality with a beam parameter product of 16 mm mrad (M2˜47). The laser output beam was efficiently coupled through a 400 μm core diameter optical fiber with 90% overall transmission efficiency. This ceramic Nd:YAG laser will be useful for various material processing applications in industry.

  20. Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: fabrication, fluorescence imaging and laser performance.

    PubMed

    Liu, Hongliang; Jia, Yuechen; Vázquez de Aldana, Javier Rodríguez; Jaque, Daniel; Chen, Feng

    2012-08-13

    We report on the fabrication of depressed cladding waveguide lasers in Nd:YAG (neodymium doped yttrium aluminum garnet, Nd:Y3Al5O12) ceramics microstructured by femtosecond laser pulses. Full control over the confined light spatial distribution is demonstrated by the fabrication of high contrast waveguides with hexagonal, circular and trapezoidal configurations. The confocal fluorescence measurements of the waveguides reveal that the original luminescence features of Nd3+ ions are well-preserved in the waveguide regions. Under optical pump at 808 nm, cladding waveguides showed continuous wave efficient laser oscillation. The maximum output power obtained at 1064.5 nm is ~181 mW with a slope efficiency as high as 44%, which suggests that the fabricated Nd:YAG ceramic waveguides are promising candidates for efficient integrated laser sources.

  1. Pulsed optical fibre lasers: Self-pulsation, Q-switching and tissue interactions

    NASA Astrophysics Data System (ADS)

    El-Sherif, Ashraf Fathy

    The experimental and theoretical aspects of self-pulsing and dynamics effects of a CW Tm3+-doped silica fibre laser operating near 2 mum are investigated and examined for the first time. Various self-pulsing regimes are observed for a range of pumping rates when the fibre is end-pumped with a high power Nd:YAG laser operating at 1.319 mum in a linear bidirectional cavity. A theoretical model based on pair induced quenching (PIQ) is considered. The quenching effect acts as a saturable absorber or an additional dynamical loss mechanism, this additional absorber then may make the laser system unstable depending on whether the obtained steady-state solution is stable or not. A comparison between measured self-pulsation frequency and calculated relaxation oscillation frequency as a function of pumping rate is presented and discussed. High performance operation of a mechanical shutter Q-switched Tm3+-doped silica fibre laser operating near 2 mum is observed and presented. A single Q-switched pulse with peak power of 18.5 W and pulse duration at full width half maximum (FWHM) of 300 ns at higher mechanical chopper frequencies of nearly 20 kHz is achieved. The pulse-to-pulse stability was measured and improved to be more less than 5 %. The development, optimisation of the performance and analysis of an acousto-optic modulator (AOM) Q-switched Tm3+-doped silica fibre laser operating near 2 mum are presented. The shortest pulse duration obtained was 150 ns, giving a highest peak power of 4.1 kW, and is the highest yet reported from any type of active Q-switched fibre laser operating in low order mode. The maximum peak power was obtained for an optimum cavity length of 1.15 meters made up of fibre length, Q-switch crystal and passive space. The pulse train with high pulse-to-pulse stability of 1 % occurred at a range of high repetition rates from 10 to 30 kHz. High energy, high brightness of an electro-optic modulator (EOM) Q-switched Tm3+-doped silica fibre laser operating

  2. A solar-pumped Nd:YAG laser in the high collection efficiency regime

    NASA Astrophysics Data System (ADS)

    Lando, Mordechai; Kagan, Jacob; Linyekin, Boris; Dobrusin, Vadim

    2003-07-01

    Solar-pumped lasers can be used for space and terrestrial applications. We report on solar side-pumped Nd:YAG laser experiments, which included comprehensive beam quality measurements and demonstrated record collection efficiency and day long operation. A 6.75 m 2 segmented primary mirror was mounted on a commercial two-axis positioner and focused the solar radiation towards a stationary non-imaging-optics secondary concentrator, which illuminated a Nd:YAG laser rod. Solar side-pumped laser experiments were conducted in both the low and the high pumping density regimes. The low density system was composed of a 89 × 98-mm 2 aperture two-dimensional compound parabolic concentrator (CPC) and a 10-mm diameter 130-mm long Nd:YAG laser rod. The laser emitted up to 46 W and operated continuously for 5 h. The high density system was composed of a three-dimensional CPC with 98 mm entrance diameter and 24 mm exit diameter, followed by a two-dimensional CPC with a rectangular 24 × 33 mm 2 aperture. It pumped a 6-mm diameter 72 mm long Nd:YAG laser rod, which emitted up to 45 W. The results constitute a record collection efficiency of 6.7 W/m 2 of primary mirror. We compare the current results to previous solar side-pumped laser experiments, including experiments at higher pumping density but with low collection efficiency. Finally, we present a scaled up design for a 400 W laser pumped by a solar collection area of 60 m 2, incorporating simultaneously high collection efficiency and high pumping density.

  3. Comparative study of Nd:KGW lasers pumped at 808 nm and 877 nm

    NASA Astrophysics Data System (ADS)

    Huang, Ke; Ge, Wen-Qi; Zhao, Tian-Zhuo; He, Jian-Guo; Feng, Chen-Yong; Fan, Zhong-Wei

    2015-10-01

    The laser performance and thermal analysis of Nd:KGW laser continuously pumped by 808 nm and 877 nm are comparatively investigated. Output power of 670 mW and 1587 mW, with nearly TEM00 mode, are achieved respectively at 808 nm pump and 877 nm pump. Meanwhile, a high-power passively Q-switched Nd:KGW/Cr4+:YAG laser pumped at 877 nm is demonstrated. An average output power of 1495 mW is obtained at pump power of 5.22 W while the laser is operating at repetition of 53.17 kHz. We demonstrate that 877 nm diode laser is a more potential pump source for Nd:KGW lasers.

  4. Scanning electron microscope comparative surface evaluation of glazed-lithium disilicate ceramics under different irradiation settings of Nd:YAG and Er:YAG lasers.

    PubMed

    Viskic, Josko; Jokic, Drazen; Jakovljevic, Suzana; Bergman, Lana; Ortolan, Sladana Milardovic; Mestrovic, Senka; Mehulic, Ketij

    2018-01-01

    To evaluate the surface of glazed lithium disilicate dental ceramics after irradiation under different irradiation settings of Nd:YAG and Er:YAG lasers using a scanning electron microscope (SEM). Three glazed-press lithium disilicate ceramic discs were treated with HF, Er:YAG, and Nd:YAG, respectively. The laser-setting variables tested were laser mode, repetition rate (Hz), power (W), time of exposure (seconds), and laser energy (mJ). Sixteen different variable settings were tested for each laser type, and all the samples were analyzed by SEM at 500× and 1000× magnification. Surface analysis of the HF-treated sample showed a typical surface texture with a homogenously rough pattern and exposed ceramic crystals. Er:YAG showed no effect on the surface under any irradiation setting. The surface of Nd:YAG-irradiated samples showed cracking, melting, and resolidifying of the ceramic glaze. These changes became more pronounced as the power increased. At the highest power setting (2.25 W), craters on the surface with large areas of melted or resolidified glaze surrounded by globules were visible. However, there was little to no exposure of ceramic crystals or visible regular surface roughening. Neither Er:YAG nor Nd:YAG dental lasers exhibited adequate surface modification for bonding of orthodontic brackets on glazed lithium disilicate ceramics compared with the control treated with 9.5% HF.

  5. Nd:YAG and CO2 laser therapy of oral mucosal lesions.

    PubMed

    White, J M; Chaudhry, S I; Kudler, J J; Sekandari, N; Schoelch, M L; Silverman, S

    1998-12-01

    Experiences gained in the management of oral mucosal lesions by CO2 and Nd:YAG laser therapy in an outpatient clinic treated over an 80-year period are described. Lasers have indications for use in dentistry for incision, excision, and coagulation of intraoral soft tissue. Advances in laser technology have provided delivery systems for site-specific delivery of laser energy with short interaction items on tissue to be ablated. This study retrospectively evaluates a series of clinical case studies. Sixty-four patients with a variety of benign oral soft tissue lesions were treated by laser excision. Thirty-five patients were treated by a pulsed fiberoptic delivered Nd:YAG contact laser, and 29 by a continuous free-beam CO2 non-contact laser. The largest group of lesions treated were leukoplakia (39 cases). Other lesions excised and biopsied were lichen planus, squamous papilloma, pyogenic granuloma, focal melanosis, nonhealing traumatic ulceration, hemangioma, and lymphangioma. All patients were followed postoperatively (mean 6.8 months, range 1-36 months). Laser excision was well tolerated by patients with no intraoperative or postoperative adverse effects. All patients healed postsurgically with no loss of function. CO2 and Nd:YAG lasers are successful surgical options when performing excision of benign intraoral lesions. Advantages of laser therapy include minimal postoperative pain, conservative site-specific minimally invasive surgeries, and elimination of need for sutures.

  6. Diode pumped Nd:YAG laser development

    NASA Technical Reports Server (NTRS)

    Reno, C. W.; Herzog, D. G.

    1976-01-01

    A low power Nd:YAG laser was constructed which employs GaAs injection lasers as a pump source. Power outputs of 125 mW TEM CW with the rod at 250 K and the pump at 180 K were achieved for 45 W input power to the pump source. Operation of the laser, with array and laser at a common heat sink temperature of 250 K, was inhibited by difficulties in constructing long-life GaAs LOC laser arrays. Tests verified pumping with output power of 20 to 30 mW with rod and pump at 250 K. Although life tests with single LOC GaAs diodes were somewhat encouraging (with single diodes operating as long as 9000 hours without degradation), failures of single diodes in arrays continue to occur, and 50 percent power is lost in a few hundred hours at 1 percent duty factor. Because of the large recent advances in the state of the art of CW room temperature AlGaAs diodes, their demonstrated lifetimes of greater than 5,000 hours, and their inherent advantages for this task, it is recommended that these sources be used for further CW YAG injection laser pumping work.

  7. 1 kW peak power passively Q-switched Nd(3+)-doped glass integrated waveguide laser.

    PubMed

    Charlet, B; Bastard, L; Broquin, J E

    2011-06-01

    Embedded optical sensors always require more compact, stable, and powerful laser sources. In this Letter, we present a fully integrated passively Q-switched laser, which has been realized by a Ag(+)/Na(+) ion exchange on a Nd(3+)-doped phosphate glass. A BDN-doped cellulose acetate thick film is deposited on the waveguide, acting as an upper cladding and providing a distributed saturable absorption. At λ=1054 nm, the device emits pulses of 1.3 ns FWHM with a repetition rate of 28 kHz. These performances, coupled with the 1 kW peak power, are promising for applications such as supercontinuum generation. © 2011 Optical Society of America

  8. Rectangular pulsed LD pumped saturable output coupler (SOC) Q-switched microchip laser

    NASA Astrophysics Data System (ADS)

    Wang, Yan-biao; Wang, Sha; Feng, Guo-ying; Zhou, Shou-huan

    2017-02-01

    We studied the cw LD and rectangular pulsed LD pumped saturable output coupler (SOC) passively Q-switched Nd:YVO4 transmission microchip laser experimentally. We demonstrated that the SOC passively Q-switched Nd:YVO4 transmission microchip laser pumped by a highly stabilized narrow bandwidth pulsed LD has a much lower timing jitter than pumped by a continuous wave (CW) LD, especially at low output frequency regime. By changing the pump beam size in the rectangular shape pulsed pump scheme, the output frequency can be achieved from 333.3 kHz to 71.4 kHz, while the relative timing jitter decreased from 0.09865% to 0.03115% accordingly. Additionally, the microchip laser has a good stability of output power, the power fluctuation below 2%.

  9. Diode-pumped continuous-wave eye-safe Nd:YAG laser at 1415 nm.

    PubMed

    Lee, Hee Chul; Byeon, Sung Ug; Lukashev, Alexei

    2012-04-01

    We describe the output performance of the 1415 nm emission in Nd:YAG in a plane-concave cavity under traditional pumping into the 4F5/2 level (808 nm) and direct in-band pumping into the 4F3/2 level (885 nm). An end-pumped Nd:YAG laser yielded maximum cw output power of 6.3 W and 4.2 W at 885 nm and 808 nm laser diode (LD) pumping, respectively. To the best of our knowledge, this is the highest output power of a LD-pumped 1415 nm laser.

  10. Optically Driven Q-Switches For Lasers

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid

    1994-01-01

    Optically driven Q-switches for pulsed lasers proposed, taking place of acousto-optical, magneto-optical, and electro-optical switches. Optical switching beams of proposed Q-switching most likely generated in pulsed diode lasers or light-emitting diodes, outputs of which are amplitude-modulated easily by direct modulation of relatively small input currents. Energy efficiencies exceed those of electrically driven Q-switches.

  11. FT-Raman spectroscopic characterization of enamel surfaces irradiated with Nd:YAG and Er:YAG lasers

    PubMed Central

    Shahabi, Sima; Fekrazad, Reza; Johari, Maryam; Chiniforoush, Nasim; Rezaei, Yashar

    2016-01-01

    Background. Despite recent advances in dental caries prevention, caries is common and remains a serious health problem. Laser irradiation is one of the most common methods in preventive measures in recent years. Raman spectroscopy technique is utilized to study the microcrystalline structure of dental enamel. In this study, FT-Raman spectroscopy was used to evaluate chemical changes in enamel structure irradiated with Nd:YAG and Er:YAG lasers. Methods. We used 15 freshly-extracted, non-carious, human molars that were treated as follows: No treatment was carried out in group A (control group); Group B was irradiated with Er:YAG laser for 10 seconds under air and water spray; and Group C was irradiated with Nd:YAG laser for 10 seconds under air and water spray. After treatment, the samples were analyzed by FT-Raman spectroscopy. Results. The carbonate content evaluation with regard to the integrated area under the curve (1065/960 cm–1) exhibited a significant reduction in its ratio in groups B and C. The organic content (2935/960 cm-1) area exhibited a significant decrease after laser irradiation in group B and C. Conclusion. The results showed that the mineral and organic matrices of enamel structure were affected by laser irradiation; therefore, it might be a suitable method for caries prevention. PMID:28096945

  12. New long-wavelength Nd:YAG laser at 1.44 micron: effect on brain.

    PubMed

    Martiniuk, R; Bauer, J A; McKean, J D; Tulip, J; Mielke, B W

    1989-02-01

    A wavelength-shifted Nd:YAG laser, tuned to coincide with the infrared absorption peak of water at 1.44 microns, was used to make lesions in normal rabbit brain. A total of 48 lesions were made with power up to 20 W, with energy up to 40 joules, and with two different spot sizes. These lesions were compared to lesions made with 1.06 microns radiation from an Nd:YAG laser under identical operating conditions. Measurements of blood-brain barrier damage and width, depth, and volume of tissue affected were obtained 30 minutes after placement of the lesions. It was found that 1.44-microns lesions produced photoevaporative tissue loss at the highest intensities used. The layer of coagulated tissue remaining after photovaporization had a mean thickness of 0.6 mm irrespective of the volume of tissue removed. There was no photovaporization in the 1.06-microns lesions. In addition, the amount of peripheral edema per unit volume of tissue coagulated was approximately half at the 1.44-microns wavelength. These findings suggest that the 1.44-microns Nd:YAG laser may be a useful surgical instrument since it combines the photoevaporative effect of the CO2 laser while maintaining the advantages of the conventional Nd:YAG laser (quartz fiber delivery and effective hemostasis).

  13. Holographic interferometry with an injection seeded Nd:YAG laser and two reference beams

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.

    1989-01-01

    The performance of twin injection seeded Nd:YAG lasers is compared with the performance of an argon-ion laser for recording dual-reference-beam holograms in AGFA 8E56 emulsion. Optical heterodyning is used to measure interference, and the results are expressed in terms of heterodyning signal level and intensity signal-to-noise. The Nd:YAG laser system is to be used for optical inspections of structures for cracks, defects, gas leaks, and structural changes.

  14. New application of a bipolar Nd:YAG handpiece in laser cardiac surgery

    NASA Astrophysics Data System (ADS)

    Mizutani, Tetsuo; Suzuki, Hitoshi; Katayama, Yoshihiko

    1997-05-01

    A bipolar Nd-YAG laser (1.064 micrometer) handpiece was experimentally examined for a venous dissection without scissors and sutures and clinically introduced for the vein graft harvesting in coronary artery bypass grafting (CABG). Experimental study: One hundred and thirty-five segments of the mongrel dog veins were employed. Nd-YAG laser was irradiated on the vein held by the bipolar Nd-YAG handpiece at the power of 5, 9, 13, and 17 watts, and success defined as a complete vein citing without bleeding at the laser-applied sites were gained in all except three; 97.8% of success rate. Laser exposure time for cutting the vein decreased in order to an increase of the applied laser power, and the veins of bigger diameter needed more longer exposure time in the group of the same laser power. An average exposure time was 4.4 seconds for the veins of 1 mm diameter at 13 watts. In histological examination, a vascular lumen at the cutting site was diminished and covered with a degenerated vascular wall, and bleeding was not seen in all specimen. Clinical study: In 18 cases of CABG the bipolar Nd-YAG handpiece was applied to cut the branches of the great saphenous vein without scissors and sutures. Forty-two grafts harvested by this handpiece were used for aortocoronary bypass grating. All were survived and the angiographic examination demonstrated a 90% of graft patency at an average period of 3.5 years after the operation. Laser-induced morphological change such as aneurysmal formation or graft stenosis was not recognized.

  15. Nd:YAG Pulsed Laser Assisted Machining of AMS 5708 Waspaloy Alloy

    NASA Astrophysics Data System (ADS)

    Sharifi, Zahra; Shoja-Razavi, Reza; Vafaei, Reza; Hashemi, Sayed Hamid

    2018-03-01

    Due to very high strenght, low thermal conductivity, and high work hardening rate, the machinability of nickel-based superalloys is poor at room temperature. Laser-assisted machining (LAM) can provide a better aspect of machining such alloys. Since the wavelength of Nd:YAG laser is about 1/10th of that of CO2 laser, absorption and heating efficiency of Nd:YAG laser is much higher on metals and especially superalloys. Transmission of Nd:YAG laser through fiber optics to the heating point on the workpiece is a simple task during machining. This makes the LAM process more convenient and practical than the CM process. In this study a model is introduced for LAM of waspaloy, and its machinability is evaluated in terms of ease of material removal. Also, a temperature generation model is introduced for the Nd:YAG laser beam. Furthemore, wear behavior of an uncoated tungsten carbide and the formed chips were compared during the LAM and the CM of waspolay. To study the wear mechanism, the worn cutting tool was studied via scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS). The formed chips were also evaluated via SEM and optical microscopy. Based on the results, the optimum LAM conditions were obtained at a cutting speed of 24 m/min and a feed rate of 0.06 mm/rev when a 400 W laser mean power and 80 Hz frequency are applied. Under these conditions, the temperature ahead of the cutting tool edge on the surface of workpiece was estimated to be 524°C. In comparison with CM, a significant improvement in tool wear and a better chip morphology were achieved through LAM, and also specific cutting energy and surface roughness were reduced by 25 and 20%, respectively.

  16. Comparison of the ablation ability of nucleus pulposus after 1,064 nm Nd:YAG laser and 980 nm diode laser radiation.

    PubMed

    Yin, Jian; Han, Zhengfeng; Guo, Baofeng; Guo, Han; Zhang, Tongtong; Zeng, Yanjun; Ren, Longxi

    2015-07-01

    To compare the ablation ability of nucleus pulposus after 1,064 nm Nd:YAG laser and 980 nm diode laser radiation. Goat spine specimen (GSS) was radiated using Nd:YAG laser and 980 nm diode laser and then divided into five groups based on the final energy--200, 400, 600, 800 and 1,000 J groups. The ablation quality of nucleus pulposus after radiation was recorded. The ablation quality of GSS was greater at higher radiation energies in both lasers. When compared at the same energy level, the ablation quality of GSS was greater in 980 nm diode laser than in 1,064 nm Nd:YAG laser. Statistical significance was observed in 200 and 400 J groups (P < 0.05) and in 600, 800 and 1,000 J groups (P < 0.01). Radiation with 980 nm diode laser showed better ablation ability than 1,064 nm Nd:YAG laser.

  17. Diode-Pumped, 2-Micron, Q-Switched Thulium: Y3Al5O12 (Tm:Yag) Microchip Laser

    DTIC Science & Technology

    2011-05-01

    switch with a chromium -doped zinc selenide crystal acting as a saturable absorber passive Q-switch. Finally, we will propose possible future...literature by Heine and Huber [4] and others, while passive Q-switching of 2 μm lasers by a chromium -doped zinc selenide has been demonstrated by Tsai and...these objectives for each component of the laser system. In Chapter 4 a design is presented for replacing our acousto-optic Q-switch with a chromium

  18. 1645-nm single-frequency, injection-seeded Q-switched Er:YAG master oscillator and power amplifier

    NASA Astrophysics Data System (ADS)

    Wang, Shuo; Gao, Chunqing; Shi, Yang; Song, Rui; Na, Quanxin; Gao, Mingwei; Wang, Qing

    2018-02-01

    A 1645-nm injection-seeded Q-switched Er:YAG master oscillator and power amplifier system is reported. The master oscillator generates single-frequency pulse energy of 11.10 mJ with a pulse width of 188.8 ns at 200 Hz. An Er:YAG monolithic nonplanar ring oscillator is employed as a seed laser. The output pulse from the master oscillator is amplified to 14.33-mJ pulse energy through an Er:YAG amplifier, with a pulse width of 183.3 ns. The M2-factors behind the amplifier are 1.14 and 1.23 in x- and y-directions, respectively. The full width at half maximum of the fast Fourier transformation spectrum of the heterodyne beating signal is 2.84 MHz.

  19. Four-wave-mixing and nonlinear cavity dumping of 280 picosecond 2nd Stokes pulse at 1.3 μm from Nd:SrMoO4 self-Raman laser

    NASA Astrophysics Data System (ADS)

    Smetanin, S. N.; Jelínek, M., Jr.; Kubeček, V.; Jelínková, H.; Ivleva, L. I.; Shurygin, A. S.

    2016-01-01

    The 280 picosecond 2nd Stokes Raman pulses at 1.3 μm were generated directly from the miniature diode-pumped Nd:SrMoO4 self-Raman laser. Using the 90° phase matching insensitive to the angular mismatch, the self-Raman laser allowed for the achievement of the four-wave-mixing generation of the 2nd Stokes Raman pulse directly in the active Nd:SrMoO4 crystal at stimulated Raman scattering (SRS) self-conversion of the laser radiation. The passive Cr:YAG Q-switching and nonlinear cavity dumping was used without any phase locking device.

  20. Efficient Dual Head Nd:YAG 100mJ Oscillator for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Coyle, Donald B.; Stysley, Paul R.; Kay, Richard b.; Poulios, Demetrios

    2007-01-01

    A diode pumped, Nd:YAG laser producing 100 mJ Q-switched pulses and employing a dual-pump head scheme in an unstable resonator configuration is described. Each head contains a side pumped zig-zag slab and four 6-bar QCW 808 nm diodes arrays which are de-rated 23%. Denoting 'z' as the lasing axis, the pump directions were along the x-axis in one head and the y-axis in the other, producing a circularized thermal lens, more typical in laser rod-based cavities. The dual head design's effective thermal lens is now corrected with a proper HR mirror curvature selection. This laser has demonstrated over 100 mJ output with high optical efficiency (24%), good TEM(sub 00) beam quality, and high pointing stability.

  1. Fractured Anterior Chamber Intraocular Lens (ACIOL) Complicating Nd: YAG Laser for Peripheral Iridotomy.

    PubMed

    Farah, Edgard; Koutsandrea, Chryssanthi; Papaefthimiou, Ioannis; Papaconstantinou, Dimitris; Georgalas, Ilias

    2013-01-01

    Laser peripheral iridotomy is the procedure of choice for the treatment of angle-closure glaucoma caused by relative or absolute pupillary block. Nd: YAG laser iridotomy has been reported to have several complications such as Iris bleeding, hyphema, transient IOP elevation, intraocular inflammation, choroidal, retinal detachment and vitreous hemorrhage. We report a case of a 74 year old lady on anticoagulant treatment who developed pupillary block and angle closure glaucoma after cataract surgery and anterior chamber intraocular lens (ACIOL) insertion complicated with intraoperative bleeding. The patient was treated with Nd: YAG laser iridotomy , however, the ACIOL was inadvertently fractured after a single shot of laser and it had to be replaced. Although the incidence is rare. Ophthalmologists and Opticians should be aware that an ACIOL may be fractured even after a single Nd:YAG laser shot and avoid to perform it close to the ACIOL. Pretreatment counseling should include this rare complication.

  2. Experimental investigation on cleaning of corroded ancient coins using a Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Zhu, Huazhong; Lu, Jian; Ni, Xiaowu; Shen, Zhonghua

    2017-05-01

    The objective of the work reported is to study experimentally on the removal of corrosion layer from the ancient coins using laser beam as the conservation tool. With the use of Q-switched Nd:YAG laser radiation at 1064 nm, dry laser cleaning, steam laser cleaning and chemical-assisted laser cleaning were used to find out a more suitable and efficient laser treatment for corrosion removal. Cleaning tests were performed on ancient Chinese coins. Experimental results shows that the dry laser cleaning was not successful at removing all types of corrosion crust. It was possible to remove the outer thicker layer of the corrosion products (typically known as patina), but failed on the thinner layer of cuprite. The steam laser cleaning could decrease the initial removal threshold and improve the removal efficiency especially for the oxidation with powdery structure. As for chemical-assisted laser treatment, the cleaning results demonstrate that the combination of laser and chemical reagent could provide a considerable improvement in corrosion removal compared with the conventional laser treatments. Most of the corrosion contaminant was stripped, even the cuprite layer. Moreover, no secondary pollution was formed on the cleaned surface. X-ray fluorescence was applied to determine the variation of composition of surface layer and bulk metal before and after the coins cleaned. It shows that all of the three laser treatments were efficient to reduce the chlorine concentration on the surface of the coins more than 75%.

  3. In vitro testing of Nd:YAG laser processed calcium phosphate coatings.

    PubMed

    De Carlos, A; Lusquiños, F; Pou, J; León, B; Pérez-Amor, M; Driessens, F C M; Hing, K; Best, S; Bonfield, W

    2006-11-01

    Nd:YAG laser cladding is a new method for deposition of a calcium phosphate onto metallic surfaces of interest in implantology. The aim of this study was to compare the biologic response of MG-63 human osteoblast-like cells grown on Ti-6Al-4V substrates coated with a calcium phosphate layer applied using different methods: plasma spraying as reference material and Nd:YAG laser cladding as test material. Tissue culture polystyrene was used as negative control. The Nd:YAG laser clad material showed a behaviour similar to the reference material, plasma spray, respective to cell morphology (SEM observations), cell proliferation (AlamarBlue assay) and cytotoxicity of extracts (MTT assay). Proliferation, as measured by the AlamarBlue assay, showed little difference in the metabolic activity of the cells on the materials over an 18 day culture period. There were no significant differences in the cellular growth response on the test material when compared to the ones exhibited by the reference material. In the solvent extraction test all the extracts had some detrimental effect on cellular activity at 100% concentration, although cells incubated in the test material extract showed a proliferation rate similar to that of the reference material. To better understand the scope of these results it should be taken into account that the Nd:YAG clad coating has recently been developed. The fact that its in vitro performance is comparable to that produced by plasma spray, a material commercially available for more than ten years, indicates that this new laser based method could be of commercial interest in the near future.

  4. Nd:YAG end pumped by semiconductor laser arrays for free space optical communications

    NASA Technical Reports Server (NTRS)

    Sipes, D. L., Jr.

    1985-01-01

    Preliminary experimental results are reported for a diode-pumped Nd:YAG laser employing a tightly focused end-pump geometry. The resonator configuration is planoconcave, with the pumped end of the Nd:YAG rod being coated for high reflection at 1.06 microns. This geometry rectifies nearly all the inefficiencies plaguing side-pumped schemes. This laser is further considered as a candidate for optical communication over the deep space channel.

  5. Postoperative discomfort after Nd:YAG laser and conventional frenectomy: comparison of both genders.

    PubMed

    Akpınar, A; Toker, H; Lektemur Alpan, A; Çalışır, M

    2016-03-01

    Evidence has suggested that males and females experience and report feeling pain differently. The aim of this study was to determine the postoperative perception levels of both females and males after neodymium-doped yttrium aluminum garnet (Nd:YAG) laser frenectomy and conventional frenectomy, and to compare the perceptions between genders. Eighty-nine patients requiring frenectomy were randomly assigned to have treatment with either the conventional frenectomy or with the Nd:YAG laser. Postoperative discomfort (pain, chewing, talking) was recorded using a visual analog scale (VAS) on the operation day and postoperative days 1, 3, 7 and 10. According to the female VAS scores of the pain, chewing and speaking discomfort were statistically higher in the conventional group than those of the laser group on the operation day, and on the first and third postoperative days. Pain discomfort in males was statistically higher in the conventional group than those of the laser group on the operation day. Speaking discomfort in males was statistically higher in the conventional group than those of the laser group on the operation day and the first postoperative day. The present study indicated that Nd:YAG laser treatment used for frenectomies provides better postoperative comfort for each gender, especially in females in terms of pain, chewing and speaking than the conventional procedure up to the seventh postoperative day. According to our results, Nd:YAG laser may provide a safe, bloodless, painless surgery and an impressive alternative for frenectomy operations. © 2015 Australian Dental Association.

  6. Laser emission from diode-pumped Nd:YAG ceramic waveguide lasers realized by direct femtosecond-laser writing technique.

    PubMed

    Salamu, Gabriela; Jipa, Florin; Zamfirescu, Marian; Pavel, Nicolaie

    2014-03-10

    We report on realization of buried waveguides in Nd:YAG ceramic media by direct femtosecond-laser writing technique and investigate the waveguides laser emission characteristics under the pump with fiber-coupled diode lasers. Laser pulses at 1.06 μm with energy of 2.8 mJ for the pump with pulses of 13.1-mJ energy and continuous-wave output power of 0.49 W with overall optical efficiency of 0.13 were obtained from a 100-μm diameter circular cladding waveguide realized in a 0.7-at.% Nd:YAG ceramic. A circular waveguide of 50-μm diameter yielded laser pulses at 1.3 μm with 1.2-mJ energy.

  7. Nd:YAG laser for epithelial ingrowth after laser in situ keratomileusis.

    PubMed

    Mohammed, Osama Ali; Mounir, Amr; Hassan, Amin Aboali; Alsmman, Alahmady Hamad; Mostafa, Engy Mohamed

    2018-05-04

    To evaluate the efficacy of neodymium:yttrium-aluminum-garnet (Nd:YAG) laser for treatment of epithelial ingrowth after laser in situ keratomileusis (LASIK). Fifty-eight patients with epithelial ingrowth presented to Sohag refractive center, Sohag, Egypt, between January 2015 and March 2017. Only 41 patients (18 females and 23 males, mean age: 33.4 years) involving 41 eyes were indicated for treatment by Nd:YAG laser as the rest of the eyes were only under observation. Patients with epithelial ingrowth were recognized at a mean of 6 months after primary LASIK procedure (range: 2-16 months). Four eyes had undergone previous LASIK enhancements. Four eyes had the epithelial ingrowth removed by flap lift and scrapping. The mean intensity of the spots used was 0.8 mJ with variable number of shots depending on the size and density of the epithelial ingrowth area. Twenty-eight eyes showed complete regression after one session, while the rest necessitated 2-3 sessions for complete resolution. Mean follow-up period was 8 months (range 5-12 months). Epithelial ingrowth was treated successfully in all 41 eyes. The uncorrected visual acuities were 20/20, and there was no evidence of recurrent epithelial ingrowth after 6 months with no complications reported. YAG laser is a simple, effective outpatient procedure for the management of epithelial ingrowth after LASIK.

  8. Large energy laser pulses with high repetition rate by graphene Q-switched solid-state laser.

    PubMed

    Li, Xian-lei; Xu, Jin-long; Wu, Yong-zhong; He, Jing-liang; Hao, Xiao-peng

    2011-05-09

    We demonstrated that the graphene could be used as an effective saturable absorber for Q-switched solid-state lasers. A graphene saturable absorber mirror was fabricated with large and high-quality graphene sheets deprived from the liquid phase exfoliation. Using this mirror, 105-ns pulses and 2.3-W average output power are obtained from a passively Q-switched Nd:GdVO(4) laser. The maximum pulse energy is 3.2 μJ. The slope efficiency is as high as 37% approximating to 40% of the continue-wave laser, indicating a low intrinsic loss of the graphene. © 2011 Optical Society of America

  9. Loss of structural water and carbonate of Nd:YAG laser-irradiated human enamel.

    PubMed

    Corrêa-Afonso, Alessandra Marques; Bachmann, Luciano; de Almeida, Cíntia Guimarães; Dibb, Regina Guenka Palma; Borsatto, Maria Cristina

    2015-05-01

    The objective of this study was to use Fourier Transform Infrared (FTIR) spectroscopy and Scanning Electron Microscopy (SEM) to assess whether Nd:YAG laser irradiation associated with a dye or not alters the chemical constitution of the enamel. Fourteen enamel sections were randomly divided into two groups: (1) Nd:YAG and (2) dye + Nd:YAG. First, the untreated enamel surfaces were analyzed by FTIR to acquire the control absorption spectrum. Next, Group 2 received a layer of inactivated coal diluted in deionized water before laser treatment. Enamel samples belonging to groups 1 and 2 were then irradiated with a 1,064-nm Nd:YAG laser (80 mJ, 10 Hz) in the contact mode; the carbonate absorption band and the water absorption band were measured in each sample after irradiation. The water band was measured again 24 h, 48 h, and 7 days after irradiation. Group 1 had statistically similar water and carbonate contents before and after irradiation. Group 2 displayed significantly lower (p < 0.05) water content after irradiation, which remained constant along time at 24 and 48 h. After 7 days, the water content increased slightly, being statistically higher than in the other experimental periods, except for the control. The carbonate/phosphate ratio was measured only at the beginning, and after irradiation, it decreased only in Group 2 indicating carbonate loss (p < 0.05). Irradiation with 1,064-nm Nd:YAG laser associated with a dye reduces the carbonate and structural water content in the enamel.

  10. Clinical Evaluation of Nd:YAG and 685-nm Diode Laser Therapy for Desensitization of Teeth with Gingival Recession

    PubMed Central

    Canakci, Varol; Ozdemir, Atilla; Kaya, Yavuz

    2009-01-01

    Abstract Objectives: The aim of this study was to evaluate the effectiveness of two types of lasers, the Nd:YAG laser and the 685-nm diode laser, as dentin desensitizers as well as both the immediate and late therapeutic effects on teeth with gingival recession. Materials and Methods: The study was conducted on 56 teeth in 14 patients with Miller's class 1 and 2 gingival recession with clinically elicitable dentin hypersensitivity (DH). The patients were divided into two groups: a Nd:YAG-laser-treated group and a 685-nm diode laser-treated group. DH was assessed by means of an air stimulus, and a visual analog scale (VAS) was used to measure DH. The selected teeth in the two groups received laser therapy for three sessions. Teeth subjected to Nd:YAG-laser treatment were irradiated at 1 W and 10 Hz for 60 sec at 1064 nm, and those receiving 685-nm diode laser treatment were irradiated at 25 mW and 9 Hz for 100 sec. Results: Significant reductions in DH occurred at all time points measured during the three treatment sessions in both treatment groups. Comparing the means of the responses in the three treatment sessions for the two groups revealed that the Nd:YAG laser group had a higher degree of desensitization compared to the other group (p < 0.01). The immediate and late therapeutic effects of the Nd:YAG laser were more evident than those of the 685-nm diode laser. Conclusions: Both of these lasers can be used to reduce DH without adverse effects. Desensitization of teeth with gingival recession with the Nd:YAG laser was more effective than with the diode laser. The Nd:YAG laser appears to be a promising new tool for successfully reducing DH. PMID:19281413

  11. Forskolin and rutin prevent intraocular pressure spikes after Nd:YAG laser iridotomy.

    PubMed

    Nebbioso, M; Belcaro, G; Librando, A; Rusciano, D; Steigerwalt, R D; Pescosolido, N

    2012-12-01

    the purpose of this research was to evaluate whether an oral treatment with an association of forskolin and rutin can blunt the intraocular pressure (IOP) spikes and avoid the damage that may occur after laser iridotomy. Ten patients underwent bilateral Neodymium:YAG (Nd:YAG) laser iridotomy (Visulas YAG III Laser, Zeiss), for the prevention of primary closed-angle glaucoma. IOP was measured in subjects before and after 7 days of pretreatment with placebo or forskolin and rutin by Goldman applanation tonometry. The IOP was measured before surgery and after surgery at 30-60-120 minutes, and 4-7 days. Analysis of variance indicated a significant increase of the postoperative values in patients receiving treatment with placebo (p < 0.001), but not in those who received treatment with the forskolin and rutin association. T test analysis confirmed that IOP still remained significantly elevated 7 days after laser intervention in placebo treated patients, whereas it stayed within normal values in forskolin/rutin treated patients. Forskolin and rutin can blunt the increase of IOP that occurs after Nd-YAG laser iridotomy. This can avoid serious risk to the optic nerve of the patients under laser treatment for iridotomy.

  12. Shear Bond Strength of Composite and Ceromer Superstructures to Direct Laser Sintered and Ni-Cr-Based Infrastructures Treated with KTP, Nd:YAG, and Er:YAG Lasers: An Experimental Study.

    PubMed

    Gorler, Oguzhan; Hubbezoglu, Ihsan; Ulgey, Melih; Zan, Recai; Guner, Kubra

    2018-04-01

    The aim of this study was to examine the shear bond strength (SBS) of ceromer and nanohybrid composite to direct laser sintered (DLS) Cr-Co and Ni-Cr-based metal infrastructures treated with erbium-doped yttrium aluminum garnet (Er:YAG), neodymium-doped yttrium aluminum garnet (Nd:YAG), and potassium titanyl phosphate (KTP) laser modalities in in vitro settings. Experimental specimens had four sets (n = 32) including two DLS infrastructures with ceromer and nanohybrid composite superstructures and two Ni-Cr-based infrastructures with ceromer and nanohybrid composite superstructures. Of each infrastructure set, the specimens randomized into four treatment modalities (n = 8): no treatment (controls) and Er:YAG, Nd:YAG, and KTP lasers. The infrastructures were prepared in the final dimensions of 7 × 3 mm. Ceromer and nanohybrid composite was applied to the infrastructures after their surface treatments according to randomization. The SBS of specimens was measured to test the efficacy of surface treatments. Representative scanning electron microscopy (SEM) images after laser treatments were obtained. Overall, in current experimental settings, Nd:YAG, KTP, and Er:YAG lasers, in order of efficacy, are effective to improve the bonding of ceromer and nanohybrid composite to the DLS and Ni-Cr-based infrastructures (p < 0.05). Nd:YAG laser is more effective in the DLS/ceromer infrastructures (p < 0.05). KTP laser, as second more effective preparation, is more effective in the DLS/ceromer infrastructures (p < 0.05). SEM findings presented moderate accordance with these findings. The results of this study supported the bonding of ceromer and nanohybrid composite superstructures to the DLS and Ni-Cr-based infrastructures suggesting that laser modalities, in order of success, Nd:YAG, KTP, and Er:YAG, are effective to increase bonding of these structures.

  13. Genotoxic effects of 1064-nm Nd:YAG and 532-nm KTP lasers on fibroblast cell cultures.

    PubMed

    Senturk, N; Bedir, A; Bilgici, B; Aydin, F; Okuyucu, A; Ozmen, Z C; Turanli, A Y

    2010-07-01

    Several different laser types are used in cutaneous surgery. The neodymium:yttrium-aluminium-garnet (Nd:YAG) and frequency-doubled Nd:YAG (KTP, potassium titanyl phosphate) lasers are widely used in dermatology. To investigate the possible genotoxic effects on fibroblasts of irradiation with a 1064-nm Nd:YAG laser and a 532-nm KTP laser. Fibroblast cell cultures were exposed to each of the lasers, using 10-mm spot size at 60 ms pulse duration with 10, 20, 40 J/cm(2) and 3, 6, 12 J/cm(2) fluences, respectively. Fibroblasts in passages 1-6 were used. During laser irradiation, 96-well microplate cultures were kept on a cooling block and transported on ice and in the dark, and processed immediately for single-cell gel electrophoresis (SCGE) assay (also known as a comet assay). DNA damage was determined by computerized assessment of comet assay. There was increasing damage with increasing numbers of passages. For the Nd:YAG laser, the greatest damage occurred on passages 5 and 6, whereas the greatest damage appeared at passages 3 and 4 for KTP and returned to baseline at passages 5 and 6. Damage also increased with each dose increment for both wavelengths. At the highest dose for both wavelengths (Nd:YAG 40 J/cm(2) and KTP 12 J/cm(2)), damage was higher with the Nd:YAG laser. Different patterns of cellular damage were seen for different cell-culture passages, treatment doses, and laser wavelengths. These dose ranges are generally used for the treatment of vascular and pigmented lesions and for rejuvenation purposes. As replicative ageing or cell senescence is one of the critical factors determining the extent of cell damage induced by laser therapy, these results may have important implications for clinical practice.

  14. Vapor emissions resulting from Nd:YAG laser interaction with tooth structure.

    PubMed

    Gelskey, S C; White, J M; Gelskey, D E; Kremers, W

    1998-11-01

    The Neodymium:yttrium aluminum garnet (Nd:YAG) dental laser has been cleared by the United States Food and Drug Administration (FDA) for marketing in intraoral soft tissue treatment. The efficacy and safety of the Nd:YAG laser in the treatment of hard dental tissue as well as the effects of dental irradiation on the pulp and periodontium have been investigated. Odors resulting from laser irradiation have been reported, but the nature and toxicity of associated decomposition vapors is unknown and the health consequences of their inhalation have not yet been studied. The purpose of this in vitro study was to identify vapors emitted during interaction of the Nd:YAG laser with carious human enamel and dentin and sound enamel and dentin coated with organic ink. Vapor emissions were collected from prepared sections of extracted human teeth receiving laser irradiation of 100 mJ and 10 Hz for a duration of 1, 10, or 60 s. Emissions were collected by means of charcoal absorption tubes, and subsequently analyzed using a Gas Chromatograph equipped with Mass Selective (GC/MS) and Flame Ionization Detectors to identify the chemical constituents of the vapors. No compounds were identified in Nd:YAG laser-treated caries, enamel and dentin. No volatile vapors were identified from samples of tooth materials exposed to the laser for 1 or 10 s. Camphor was positively identified in the test sample which consisted of India ink-coated dentin and the reference sample of India ink-coated glass beads, both exposed to the laser for 60 s. 2,5-norbornadiene was tentatively identified in these samples. The Threshold Limit Value (TLV) of camphor is 2 ppm with a Lethal Dose Level (LDLo) of 50 mg/kg (human oral), while the TLV and LDLo of 2,5-norbornadiene is unknown. Occupational and public health safety measures are discussed in this article. Further research is needed to quantify the compounds produced and to determine their toxicity to patients and to dental care providers.

  15. Morphological alterations of periodontal pocket epithelium following Nd:YAG laser irradiation.

    PubMed

    Ting, Chun-Chan; Fukuda, Mitsuo; Watanabe, Tomohisa; Sanaoka, Atsushi; Mitani, Akio; Noguchi, Toshihide

    2014-12-01

    The purpose of this in vivo study was to examine morphologic alterations in the periodontal pocket epithelium with presence or absence of clinical inflammation following the use of the Neodymium: Yttrium-Aluminum-Garnet (Nd:YAG) laser irradiation. Subgingival Nd:YAG laser irradiation has been proposed as an alternative technique for treatment of chronic periodontitis. Several published studies have reported the clinical outcomes of such treatment. Twenty patients, diagnosed with moderate chronic periodontitis, were selected for the study. A total of 32 sites was identified and divided into a control (n=18) and laser-treated test groups (n=14). Probing depth (PD) and bleeding on probing (BOP) were recorded for all sites. Test sites were irradiated with an Nd:YAG laser using parameters of 2 W, 200 mJ pulse energy, and 10 pps delivered through a 320 μm diameter tip. Total laser treatment time ranged from 1 to 2 min. Following treatment, all specimens were harvested via biopsy and processed for scanning electron microscopy (SEM) and histologic examination. Control group specimens, depending upon initial PD, exhibited either a relatively smooth and intact epithelium with little desquamation (PD≤3 mm), or increasing degrees of epithelial desquamation and leukocytic infiltration at a PD of ≥4 mm. In the laser-treated test group, the specimens with PD≤3 mm that were BOP negative (-) exhibited a thin layer of epithelium that was disrupted. In the specimens with initial PD of ≥4 mm, complete removal of the epithelium whose extent and degree were increasing, was observed in the inflamed portion, while epithelium remained in the uninflamed portion. The SEM and histologic findings demonstrated the feasibility of ablating pocket epithelium with an Nd:YAG laser irradiation using parameters of 2 W of power (200 mJ, 10 pps). Furthermore, the presence or absence of clinical inflammation appeared to have an impact on the degree of laser

  16. Nd:YAG Laser-aided ceramic brackets debonding: Effects on shear bond strength and enamel surface

    NASA Astrophysics Data System (ADS)

    Han, Xianglong; Liu, Xiaolin; Bai, Ding; Meng, Yao; Huang, Lan

    2008-11-01

    In order to evaluate the efficiency of Nd:YAG laser-aided ceramic brackets debonding technique, both ceramic brackets and metallic brackets were bonded with orthodontic adhesive to 30 freshly extracted premolars. The specimens were divided into three groups, 10 in each, according to the brackets employed and the debonding techniques used: (1) metallic brackets with shear debonding force, (2) ceramic brackets with shear debonding force, and (3) ceramic brackets with Nd:YAG laser irradiation. The result showed that laser irradiation could diminish shear bond strength (SBS) significantly and produce the most desired ARI scores. Moreover, scanning electron microscopy investigation displayed that laser-aided technique induced little enamel scratch or loss. It was concluded that Nd:YAG laser could facilitate the debonding of ceramic brackets and diminish the amount of remnant adhesive without damaging enamel structure.

  17. Nd:YAG-CO(2) double-pulse laser induced breakdown spectroscopy of organic films.

    PubMed

    Weidman, Matthew; Baudelet, Matthieu; Palanco, Santiago; Sigman, Michael; Dagdigian, Paul J; Richardson, Martin

    2010-01-04

    Laser-induced breakdown spectroscopy (LIBS) using double-pulse irradiation with Nd:YAG and CO(2) lasers was applied to the analysis of a polystyrene film on a silicon substrate. An enhanced emission signal, compared to single-pulse LIBS using a Nd:YAG laser, was observed from atomic carbon, as well as enhanced molecular emission from C(2) and CN. This double-pulse technique was further applied to 2,4,6-trinitrotoluene residues, and enhanced LIBS signals for both atomic carbon and molecular CN emission were observed; however, no molecular C(2) emission was detected.

  18. All solid-state diode pumped Nd:YAG MOPA with stimulated Brillouin phase conjugate mirror

    NASA Astrophysics Data System (ADS)

    Offerhaus, H. L.; Godfried, H. P.; Witteman, W. J.

    1996-02-01

    At the Nederlands Centrum voor Laser Research (NCLR) a 1 kHz diode-pumped Nd:YAG Master Oscillator Power Amplifier (MOPA) chain with a Stimulated Brillouin Scattering (SBS) Phase Conjugate mirror is designed and operated. A small Brewster angle Nd:YAG slab (2 by 2 by 20 mm) is side pumped with 200 μs diode pulses in a stable oscillator. The oscillator is Q-switched and injection seeded with a commercial diode pumped single frequency CW Nd:YAG laser. The output consists of single-transverse, single-longitudinal mode 25 ns FWHM-pulses at 1064 nm. The oscillator slab is imaged on a square aperture that transmits between 3 and 2 mJ (at 100 and 400 Hz, resp.) The aperture is subsequently imaged four times in the amplifier. The amplifier is a 3 by 6 by 60 mm Brewster angle zig-zag slab, pumped by an 80-bar diode stack with pulses up to 250 μs. After the second pass the light is focused in two consecutive cells containing Freon-113 for wave-front reversal in an oscillator/amplifier-setup with a reflectivity of 60%. The light then passes through the amplifier twice more to produce 20 W (at 400 Hz) of output with near diffraction limited beam quality. To increase the output to 50 W at 1 kHz thermal lensing in the oscillator will be reduced.

  19. Efficient high repetition rate electro-optic Q-switched laser with an optically active langasite crystal

    PubMed Central

    Ma, Shihui; Yu, Haohai; Zhang, Huaijin; Han, Xuekun; Lu, Qingming; Ma, Changqin; Boughton, Robert I.; Wang, Jiyang

    2016-01-01

    With an optically active langasite (LGS) crystal as the electro-optic Q-switch, we demonstrate an efficient Q-switched laser with a repetition rate of 200 kHz. Based on the theoretical analysis of the interaction between optical activity and electro-optic property, the optical activity of the crystal has no influence on the birefringence during Q-switching if the quarter wave plate used was rotated to align with the polarization direction. With a Nd:LuVO4 crystal possessing a large emission cross-section and a short fluorescence lifetime as the gain medium, a stable LGS Q-switched laser was designed with average output power of 4.39 W, corresponding to a slope efficiency of 29.4% and with a minimum pulse width of 5.1 ns. This work represents the highest repetition rate achieved so far in a LGS Q-switched laser and it can provide a practical Q-switched laser with a tunable high repetition rates for many applications, such as materials processing, laser ranging, medicine, military applications, biomacromolecule materials, remote sensing, etc. PMID:27461819

  20. A Comparison of Low-Fluence 1064-nm Q-Switched Nd: YAG Laser with Topical 20% Azelaic Acid Cream and their Combination in Melasma in Indian Patients.

    PubMed

    Bansal, Charu; Naik, Hira; Kar, Hemanta K; Chauhan, Amrita

    2012-10-01

    Melasma is an acquired symmetric hypermelanosis characterised by irregular light to gray-brown macules on sun-exposed skin with a predilection for the cheeks, forehead, upper lip, nose and chin. The management of melasma is challenging and requires meticulous use of available therapeutic options. To compare the therapeutic efficacy of low-fluence Q-switched Nd: YAG laser (QSNYL) with topical 20% azelaic acid cream and their combination in melasma in three study groups of 20 patients each. Sixty Indian patients diagnosed as melasma were included. These patients were randomly divided in three groups (group A = 20 patients of melasma treated with low-fluence QSNYL at weekly intervals, group B = 20 patients of melasma treated with twice daily application of 20% azelaic acid cream and group C = 20 patients of melasma treated with combination of both). Study period was of 12 weeks each. Response to treatment was assessed using melasma area and severity index score. The statistical analysis was done using Chi-square test, paired and unpaired student t-test. Significant improvement was recorded in all the three groups. The improvement was statistically highly significant in Group C as compared to group A (P < 0.001) and group B (P < 0.001). This study shows the efficacy of low-fluence QSNYL, topical 20% azelaic acid cream and their combination in melasma. The combination of low-fluence QSNYL and topical 20% azelaic acid cream yields better results as compared to low-fluence QSNYL and azelaic acid alone.

  1. Environmental testing of a diode-laser-pumped Nd:YAG laser and a set of diode-laser-arrays

    NASA Technical Reports Server (NTRS)

    Hemmati, H.; Lesh, J. R.

    1989-01-01

    Results of the environmental test of a compact, rigid and lightweight diode-laser-pumped Nd:YAG laser module are discussed. All optical elements are bonded onto the module using space applicable epoxy, and two 200 mW diode laser arrays for pump sources are used to achieve 126 mW of CW output with about 7 percent electrical-to-optical conversion efficiency. This laser assembly and a set of 20 semiconductor diode laser arrays were environmentally tested by being subjected to vibrational and thermal conditions similar to those experienced during launch of the Space Shuttle, and both performed well. Nevertheless, some damage to the laser front facet in diode lasers was observed. Significant degradation was observed only on lasers which performed poorly in the life test. Improvements in the reliability of the Nd:YAG laser are suggested.

  2. Effect of Nd:YAG laser capsulotomy on refraction in multifocal apodized diffractive pseudophakia.

    PubMed

    Vrijman, Violette; van der Linden, Jan Willem; Nieuwendaal, Carla P; van der Meulen, Ivanka J E; Mourits, Maarten P; Lapid-Gortzak, Ruth

    2012-08-01

    To evaluate the effect on refraction of neodymium:YAG (Nd:YAG) laser posterior capsulotomy for posterior capsule opacification (PCO), and to evaluate the correlation between automated and subjective refraction in multifocal apodized diffractive pseudophakia. A retrospective study of 75 pseudophakic eyes (50 patients) with multifocal apodized diffractive pseudophakia, treated for PCO with Nd:YAG laser posterior capsulotomy, was performed. Pre- and postintervention values of refractive and visual parameters were compared. The outcomes of autorefraction and subjective refraction were also compared. Uncorrected and corrected distance visual acuity improved significantly after Nd:YAG capsulotomy (P<.001). No significant changes were noted in defocus equivalent, astigmatic power vectors J(0) and J(45), and overall blurring strength in subjective refraction and autorefraction. Spherical equivalent changed significantly in autorefraction (P=.008), but not in subjective refraction. Autorefraction and subjective refraction were highly correlated in spherical equivalent, defocus equivalent, and blurring strength (r(2)>0.59). In approximately 7% of eyes, a change of more than 0.50 diopters in spherical equivalent in subjective refraction occurred. In most cases, Nd:YAG laser capsulotomy in patients with multifocal pseudophakia did not result in a change in refraction. However, 7% of eyes experienced a significant change in subjective refraction. Autorefraction correlated well with subjective refraction in apodized diffractive multifocal IOLs. Copyright 2012, SLACK Incorporated.

  3. Er:YAG and Nd:YAG laser in treatment of patients with contraindications of conventional dental and maxillofacial surgery

    NASA Astrophysics Data System (ADS)

    Smucler, Roman; Mazanek, Jiri

    2000-03-01

    In clinical praxis we must treat patients with some relative or absolute contraindications every day. Need of hospitalization, antibiotics, hemostyptics and complex examinations makes dentoalveolar and maxillofacial surgery in those cases quite expensive. Combination of Nd:YAG and Er:YAG laser gives us new possibilities. We can help some untreatable patients or transfer care from hospital to dental office. We have been trying to solve contraindications for laser therapy five years. In the center of our work are disorders of blood coagulation, immunity and metabolism. Nd:YAG laser is very useful in coagulation and vaporization of dental gum hypertrophies, benign and malign tumors in case of chronic anticoagulation therapy and immunosupress / in combination for example- after heart transplantation /. Special chapter is the care of patients with disseminated tumors. Er:YAG laser large solve big lesions because of minimal invasivity of course but for small benign tumors are recidives is ideal. Better and quicker healing make new standard of patients' cooperation. Generally fashionable and more comfortable laser treatment minimize need of general anesthesia. After five years we use complex laser therapy in our routine. Aim of our new work is to find ideal combination of cutting lasers to minimize classical complications of laser surgery / carbonization, long and secondary healing /.

  4. [Combined CO2 and Nd-YAG laser in neurosurgical practice. A 1st experience apropos of 40 intracranial procedures].

    PubMed

    Roux, F X; Leriche, B; Cioloca, C; Devaux, B; Turak, B; Nohra, G

    1992-01-01

    The authors present their experience concerning the use of Combolaser (Lasermatic, Finland), in neurosurgery. This laser-unit combines two wavelengths (CO2 and 1.06 Nd-YAG) which are emitted simultaneously and coaxially. During the last 12 months, 40 patients harbouring an intracranial tumor were operated upon with such a combolaser unit: 8 infra-tentorial, 32 supra-tentorial, 17 were meningiomas. The mean output power used during the procedures was 3-5 w for both CO2 and Nd-YAG beams. The authors discuss the advantages and inconveniences of such a laser; and they compare it with the other laser-units they have been using for the last 10 years: CO2-Laser, 1.06 Nd-YAG and 1.32 Nd-YAG laser. The main inconvenience of this unit is linked to the utilization of the articulated arm which conducts the CO2 laser beam. This drawback should be avoided or limited by the use of a fiber microguide, which will conduct both CO2 and Nd-YAG beams simultaneously. The principal contribution of a combined-laser unit is the quality of the haemostasis associated to a very good vaporization and cutting effect. When both wavelengths are synchronized, the combined laser beams penetrate into the nervous parenchyma more deeply than the only CO2 laser beam would with the same parameters. The vaporization effect is identical to that obtained with the isolated CO2 laser; the quality of haemostasis is limited to the effects of the Nd-YAG laser. Another advantage must be emphasized: the possibility of utilizing separately the CO2 laser and the 1.06 Nd-YAG.

  5. A comparative study of low-fluence 1,064 nm Q-Switched Nd:YAG laser with or without chemical peeling using Jessner's solution in melasma patients.

    PubMed

    Lee, Dan Bi; Suh, Ho Seok; Choi, Yu Sung

    2014-12-01

    Although low-fluence 1,064-nm Q-switched Nd:YAG laser (QSNYL) is widely used for the treatment of melasma, multiple treatments are necessary for clinical improvement. Superficial chemical peeling using Jessner's solution has been used for treatment of melasma conventionally. To evaluate the additional therapeutic effect and adverse effects of Jessner's peel when combined with 1,064 nm QSNYL for melasma patients in a double-blind, placebo-controlled design. Total of 52 patients were included. Patients who received 10 sessions of 1,064 nm QSNYL plus chemical peeling with placebo (Group A) in a two-week intervals and those who received 10 sessions of 1,064 nm QSNYL plus chemical peeling with Jessner's solution (Group B) in a 2-week intervals were analyzed. Responses were evaluated using the Melasma Area and Severity Index (MASI) score, physician's global assessment (PGA) and subjective self-assessment. At 8 weeks, the mean MASI score decreased from 8.68 ± 4.06 to 8.60 ± 3.88 in Group A and from 8.98 ± 3.72 to 7.13 ± 2.57 in Group B, showing a significant difference (p < 0.001). But at 20 weeks, there was no significant difference on reduction of MASI, self-assessment, and PGA between the two groups. No serious adverse effects were reported with the additional Jessner's peeling. This study suggests Jessner's peel is a safe and effective method in the early course of treatment for melasma, when combined with low-fluence 1,064-nm QSNYL.

  6. [The use of lasers in dermatology].

    PubMed

    Lecocq, C; Pirard, D; del Marmol, V; Berlingin, E

    2013-01-01

    Albert Einstein is undoubtedly the father of lasers. But it is not until 1964 that the first dermatological lasers were introduced. The Nd-YAG laser, the CO2 laser were developed by Kumar Patel. In a 40 year period lasers not only were diversified but have also become safer and miniaturized. This article hopes to strengthen general practionners' and specialist's knowledge of the different categories of available lasers. The most frequently used ones are ablative lasers (CO2-Erbium), vascular lasers (Nd-YAG, KTP, pulsed dye laser) and the pigment lasers (Q-Switched Nd-YAG, Alexandrite). A description of these lasers and their indications in dermatology will be discussed.

  7. Space qualified Nd:YAG laser (phase 1 - design)

    NASA Technical Reports Server (NTRS)

    Foster, J. D.; Kirk, R. F.

    1971-01-01

    Results of a design study and preliminary design of a space qualified Nd:YAG laser are presented. A theoretical model of the laser was developed to allow the evaluation of the effects of various parameters on its performance. Various pump lamps were evaluated and sum pumping was considered. Cooling requirements were examined and cooling methods such as radiation, cryogenic and conductive were analysed. Power outputs and efficiences of various configurations and the pump and laser lifetime are discussed. Also considered were modulation and modulating methods.

  8. Treatment of toe nail fungus infection using an AO Q-switched eye-safe erbium glass laser at 1534nm

    NASA Astrophysics Data System (ADS)

    Myers, Michael J.; Myers, Jeffrey A.; Roth, Franziska; Guo, Baoping; Hardy, Christopher R.; Myers, Sean; Carrabba, Angelo; Trywick, Carmen; Bryant, Stewart; Griswold, John Robert; Mazzochi, Aggie

    2013-03-01

    We report on "eye-safe" erbium glass laser operating at Short-Wave Infra-Red (SWIR) region at 1534nm, to treat Onychomycosis or toenail fungus. Infected toenails of 12 patients were treated over a 3 month period using both long pulse and Q-switched laser output pulses. Our results compared favorably to Neodymium Yittrium Aluminum Garnet (Nd:YAG) laser fungus treatment studies as reported in literature. Nd:YAG laser devices, operating in the Near Infra- Red, (NIR) region at 1064nm, have recently become an effective alternative treatment to traditional oral medications used to treat nail fungal infections. Conventional nail infection treatments employ medications such as allylamines, azoles and other classes of antifungal drugs that are unpopular due to numerous side-affects and drug interactions. Side effects of these drugs include headache, itching, loss of sense of taste, nausea, diarrhea, heart failure and even potential death from liver failure [1,2,3]. The effectiveness of conventional oral antifungal medications varies. In addition, antifungal prescription drugs are administered for long periods ranging from 6 weeks to 18 months. Nd:YAG antifungal laser treatment reports claim high success rates (65-95%) in eradicating toenail fungus and without adverse side-affects. Multiple laser treatments are administered over a 3 to 6 month period [4,5,6,7]. Our initial treatments performed with the Er:glass laser on toenail fungus patients required only 1 to 2 treatments for cure. This same SWIR laser was used in experiments to treat Athlete's Foot fungal infections. The 1534nm Er:glass laser emission has been found to be well optimized for dermatological treatments due high transmission properties of human skin in the SWIR region. Increased depth of tissue penetration is well

  9. 808-nm diode-pumped dual-wavelength passively Q-switched Nd:LuLiF4 laser with Bi-doped GaAs

    NASA Astrophysics Data System (ADS)

    Li, S. X.; Li, T.; Li, D. C.; Zhao, S. Z.; Li, G. Q.; Hang, Y.; Zhang, P. X.; Li, X. Y.; Qiao, H.

    2015-09-01

    Diode-pumped CW and passively Q-switched Nd:LuLiF4 lasers with stable, synchronous dual-wavelength operations near 1047 and 1053 nm were demonstrated for the first time. The maximal CW output power of 821 mW was obtained at an incident pump power of 6.52 W. Employing high quality Bi-doped GaAs as saturable absorber, stable dual-wavelength Q-switched operation was realized. Under 6.52 W incident pump power, the minimal pulse duration of 1.5 ns, the largest single pulse energy of 11.32 μJ, and the highest peak power of 7.25 kW were achieved.

  10. A random Q-switched fiber laser

    PubMed Central

    Tang, Yulong; Xu, Jianqiu

    2015-01-01

    Extensive studies have been performed on random lasers in which multiple-scattering feedback is used to generate coherent emission. Q-switching and mode-locking are well-known routes for achieving high peak power output in conventional lasers. However, in random lasers, the ubiquitous random cavities that are formed by multiple scattering inhibit energy storage, making Q-switching impossible. In this paper, widespread Rayleigh scattering arising from the intrinsic micro-scale refractive-index irregularities of fiber cores is used to form random cavities along the fiber. The Q-factor of the cavity is rapidly increased by stimulated Brillouin scattering just after the spontaneous emission is enhanced by random cavity resonances, resulting in random Q-switched pulses with high brightness and high peak power. This report is the first observation of high-brightness random Q-switched laser emission and is expected to stimulate new areas of scientific research and applications, including encryption, remote three-dimensional random imaging and the simulation of stellar lasing. PMID:25797520

  11. 885-nm laser diode array pumped ceramic Nd:YAG master oscillator power amplifier system

    NASA Astrophysics Data System (ADS)

    Yu, Anthony W.; Li, Steven X.; Stephen, Mark A.; Seas, Antonios; Troupaki, Elisavet; Vasilyev, Aleksey; Conley, Heather; Filemyr, Tim; Kirchner, Cynthia; Rosanova, Alberto

    2010-04-01

    The objective of this effort is to develop more reliable, higher efficiency diode pumped Nd:YAG laser systems for space applications by leveraging technology investments from the DoD and other commercial industries. Our goal is to design, build, test and demonstrate the effectiveness of combining 885 nm laser pump diodes and the use of ceramic Nd:YAG for future flight missions. The significant reduction in thermal loading on the gain medium by the use of 885 nm pump lasers will improve system efficiency.

  12. Continuous-wave and acousto-optically Q-switched 1066 nm laser performance of a novel Nd:GdTaO4 crystal

    NASA Astrophysics Data System (ADS)

    Ma, Yufei; He, Ying; Peng, Zhenfang; Sun, Haiyue; Peng, Fang; Yan, Renpeng; Li, Xudong; Yu, Xin; Zhang, Qingli; Ding, Shoujun

    2018-05-01

    A diode-pumped acousto-optically (AO) Q-switched 1066 nm laser with a novel Nd:GdTaO4 crystal was demonstrated for the first time to the best of our knowledge. The optimization selection of output coupler was carried out in the continuous-wave (CW) operation. After that the pulsed Nd:GdTaO4 laser performances using different modulation repetition rates of 10 kHz and 20 kHz were investigated. At an absorbed pump power of 10 W and repetition rates of 10 kHz, the obtained minimum pulse width was 28 ns and the maximum peak power was 5.4 kW.

  13. Highly efficient continuous-wave Nd:YAG ceramic lasers at 946 nm

    NASA Astrophysics Data System (ADS)

    Zhu, H. Y.; Xu, C. W.; Zhang, J.; Tang, D. Y.; Luo, D. W.; Duan, Y. M.

    2013-07-01

    Highly efficient CW operation of diode-end-pumped Nd:YAG ceramic lasers at 946 nm is experimentally demonstrated. When a 5 mm long in-house fabricated Nd:YAG ceramic was used as the gain medium, a maximum output power of 10.5 W was obtained under an incident pump power of 35 W, corresponding to an optical conversion efficiency of 30%, while, when a 3 mm long ceramic sample was used, a maximum output power of 8.7 W was generated with a slope efficiency of 65% with respect to the absorbed pump power. Both the optical conversion efficiency and slope efficiency are the highest results reported so far for the diode-pumped 946 nm lasers.

  14. Efficient dual-wavelength laser at 946 and 1064 nm with compactly combined Nd:YAG and Nd:YVO4 crystals

    NASA Astrophysics Data System (ADS)

    Cho, C. Y.; Chang, C. C.; Chen, Y. F.

    2013-04-01

    We originally employ a compact combination of a Nd:YAG crystal and a Nd:YVO4 crystal to develop an efficient dual-wavelength laser operating at 946 and 1064 nm. We exploit a short Nd:YAG crystal to generate 946 nm laser by reducing the reabsorption loss and a follow-up Nd:YVO4 crystal to generate a 1064 nm laser by absorbing the residual pump light. The output power ratio between the 946 and 1064 nm emissions can be flexibly adjusted from 0.3 to 0.9 by varying the separation between the two output couplers. At an incident pump power of 17 W, the total output power is generally higher than 5.2 W, with an overall optical-to-optical efficiency greater than 30%.

  15. Histologic comparison of the CO2 laser and Nd:YAG with and without water/air surface cooling on tooth root structure

    NASA Astrophysics Data System (ADS)

    Cobb, Charles M.; Spencer, Paulette; McCollum, Mark H.

    1995-05-01

    Specimens consisted of 18 extracted single rooted teeth unaffected by periodontal disease. After debriding roots, specimens were randomly divided into 4 treatment groups and subjected to a single pass, at varying energy densities, of a CO2, Nd:YAG, and Nd:YAG with air/water surface cooling (Nd:YAG-C). The rate of exposure was controlled at 4 mm/sec. Approximate energy densities were: CO2, 138, 206, 275, and 344 J/cm2; Nd:YAG, 114, 171, 229, and 286 J/cm2; Nd:YAG-C, 286, 343, 514, and 571 J/cm2. The CO2 laser was used both in continuous and pulsed beam modes (20 Hz, 0.01 sec pulse length and 0.8 mm dia spot size) whereas the Nd:YAG and Nd:YAG-C were preset at 50 Hz, 0.08 sec pulse length and 0.6 mm dia spot size. Specimen examination by SEM revealed, for all lasers, a direct correlation between increasing energy densities and depth of tissue ablation and width of tissue damage. However, to achieve the same relative dept of tissue ablation, the Nd:YAG-C required higher energy densities than either the CO2 or Nd:YAG lasers. The Nd:YAG-C generated a cavitation with sharply defined margins. Furthermore, regardless of energy density, and in contrast with other laser types, areas treated with the Nd:YAG-C did not exhibit collateral zones of heat damaged surface tissue.

  16. Effects of Nd:YAG and CO2 lasers on cerebral microvasculature. Study in normal rabbit brain.

    PubMed

    Kuroiwa, T; Tsuyumu, M; Takei, H; Inaba, Y

    1986-01-01

    The effect of Nd:YAG and CO2 laser beams on cerebral microvasculature was examined in experimental animals. Soft x-ray microangiography and histological examination of the brain after Nd:YAG laser exposure revealed broad avascular or oligovascular zones in the irradiated and the surrounding edematous tissue, in which the surviving vessels were narrowed and tapered without significant leakage of blood. After CO2 laser exposure, a wedge-shaped tissue defect surrounded by layers of charring, coagulation, and edema was observed. The main finding in the surrounding coagulation and edematous layers was dilatation of the vessels. Hemorrhage was sometimes observed, mainly in the edematous layer. These findings seem to explain the effective hemostatic capability of the Nd:YAG laser and the occasional hemorrhage following CO2 laser exposure, especially at high energy output.

  17. Continuous wave and passively Q-switched laser performance of Nd:LuxGd3-xGa5O12 crystal at 1062 nm

    NASA Astrophysics Data System (ADS)

    Fu, X. W.; Jia, Z. T.; Yang, H.; Li, Y. B.; Yuan, D. S.; Zhang, B. T.; Dong, C. M.; He, J. L.; Tao, X. T.

    2012-12-01

    Continuous wave (CW) and passively Q-switched (PQS) laser properties at 1062 nm of the Nd:LuxGd3-xGa5O12 (Nd:LGGG) disordered crystal have been demonstrated. The doping concentrations of Nd3+ and Lu3+ in the as obtained crystal were measured to be 0.96 and 0.66 at.%, respectively. In the CW regime, the output power of 9.73 W was obtained with an optical-to-optical efficiency as high as 60.7% and slope efficiency of 61.2%. During the passively Q-switched operation, the maximum output power of 1.24 W was achieved under the absorbed pump power of 6.86 W. The maximum peak power of 14.20 kW and single pulse energy of 148 μJ were obtained with the Toc = 10% under the absorbed pump power of 6.36 W. The results are much better than those obtained with Nd:LGGG crystal doped with 13.6 at.% Lu3+ and 0.53 at.% Nd3+ ions.

  18. Enhanced performance of Cr,Yb:YAG microchip laser by bonding Yb:YAG crystal.

    PubMed

    Cheng, Ying; Dong, Jun; Ren, Yingying

    2012-10-22

    Highly efficient, laser-diode pumped Yb:YAG/Cr,Yb:YAG self-Q-switched microchip lasers by bonding Yb:YAG crystal have been demonstrated for the first time to our best knowledge. The effect of transmission of output coupler (T(oc)) on the enhanced performance of Yb:YAG/Cr,Yb:YAG microchip lasers has been investigated and found that the best laser performance was achieved with T(oc) = 50%. Slope efficiency of over 38% was achieved. Average output power of 0.8 W was obtained at absorbed pump power of 2.5 W; corresponding optical-to-optical efficiency of 32% was obtained. Laser pulses with pulse width of 1.68 ns, pulse energy of 12.4 μJ, and peak power of 7.4 kW were obtained. The lasers oscillated in multi-longitudinal modes. The wide separation of longitudinal modes was attributed to the mode selection by combined etalon effect of Cr,Yb:YAG, Yb:YAG thin plates and output coupler. Stable periodical pulse trains at different pump power levels have been observed owing to the longitudinal modes coupling and competition.

  19. Hyperthermia treatment of spontaneously occurring oral cavity tumors using a computer-controlled Nd:YAG laser system

    NASA Astrophysics Data System (ADS)

    Panjehpour, Masoud; Overholt, Bergein F.; Frazier, Donita L.; Klebanow, Edward R.

    1991-05-01

    Conventional hyperthermia treatment of superficial tumors in the oral cavity is difficult due to inability in accessing the lesion. A new hyperthermia technique employing near infrared Nd:YAG irradiation delivered through an optical fiber is introduced for heating oral and nasal tumors in animals. This system consisted of an Nd:YAG laser, a He-Ne laser, a computer controlled optical shutter, an interstitial thermometer, computer and a printer. The tumors were heated via surface illumination of the lesion. A thermocouple implanted in the base of the tumor provided temperature feedback for laser energy regulation. Three spontaneously occurring canine (two squamous cell carcinoma on the gum, one pigmented melanoma on the hard palate) and one feline tumor (squamous cell carcinoma on the nose) have been treated with the Nd:YAG laser-induced hyperthermia delivered following radiation therapy. The tumor temperature was maintained between 43.2-43.5 degree(s)C for one hour. Nd:YAG hyperthermia allowed efficient delivery of heat to veterinary oral and nasal lesions otherwise impossible to treat with conventional heating techniques.

  20. [Intraocular pressure after ND: YAG laser capsulotomy in pseudophakic patients with glaucoma].

    PubMed

    Sesar, Antonio; Petric, Irena; Sesar, Ivanka; Lacmnovic-Loncar, Valentina; Jurisić, Darija; Tomić, Zeljka; Mandić, Zdravko

    2006-01-01

    The aim of the study was to analyze changes in intraocular pressure after Nd: YAG laser capsulotomy in pseudophakic patients with glaucoma. Intraocular pressure was recorded before, and 1 and 3 hours after YAG laser capsulotomy in 69 pseudophakic patients with glaucoma. Twenty eight patients received no therapy before capsulotomy, 21 patients received topical brimonidine 0.2%, and 20 patients received topical dorzolamide 2% 1 hour before laser capsulotomy. All patients received topical tropicamide 1% and tetracaine 0.5%. Nd: YAG laser posterior capsulotomy was performed using inverted-U technique to make a 3-4 mm diameter capsulotomy. After capsulotomy, all eyes received topical fluorometholone for 10 days. A pressure rise was greater in patients without any therapy before YAG laser capsulotomy. Eight patients with glaucoma showed intraocular pressure rise of 5 mm Hg, and 2 patients pressure rise of 10 mm Hg after laser capsulotomy. A reduction of intraocular pressure rise was found in patients who received dorzolamide 2% or brimonidine 0.2%, only 1 patient in each group developed a pressure rise of 5 mm Hg. In all patients a significant pressure rise developed within the first hour. It is difficult to compare different studies due to different techniques of cataract surgery and different intraocular lense material and design. Barnes showed that 6 of 29 (21%) developed a pressure rise of 5 mm Hg, and 1 of 29 (3%) patients a pressure rise of 10 mm Hg. In our study, 29% of patients had a pressure rise of > or =5 mm Hg, and 7% of patients had a rise of > or =10 mm Hg after laser capsulotomy. These results may be associated with a large proportion of extracapsular cataract extraction (71%) versus phacoemulsification (29%) in our patients. Pretreatment with dorzolamide 2% or brimonidine 0.2% reduce the intraocular pressure rise after Nd: YAG laser capsulotomy in pseudophakic patients with glaucoma.

  1. Thermal effects associated with the Nd/YAG dental laser.

    PubMed

    von Fraunhofer, J A; Allen, D J

    1993-01-01

    The heat produced at the dentinal pulpal wall opposite the irradiation site was measured during etching of dental enamel with an Nd:YAG laser in preparation for direct bonding of orthodontic appliances. Forty extracted human teeth were randomly divided into four groups of 10 teeth. Within each group, the buccal surfaces of 5 teeth and the lingual surfaces of the other 5 teeth were laser treated for 12 sec. Irradiation was performed with a commercial Nd:YAG laser at the power settings of 80mJ, 1W, 2W and 3W. Prior to irradiation, an occlusal access preparation was made into the pulp in order to facilitate the placement of a thermocouple for measurement of temperature changes at the dentinal pulpal wall opposite the irradiation site. The thermocouple was held against the dentinal pulpal wall and the resulting temperature changes were recorded. Heating effects at the dentinal pulpal wall on both buccal and lingual surfaces showed an increase in heat as a function of the increase in power output from the laser unit (p < 0.01). The temperatures measured at power levels 1-3W appeared to be of sufficient magnitude to cause at least localized pulpal inflammation and possible irreversible damage to the pulp tissue immediately opposite the site of laser irradiation.

  2. Comparison of pulsed dye laser versus combined pulsed dye laser and Nd:YAG laser in the treatment of inflammatory acne vulgaris.

    PubMed

    Salah El Din, Manal Mohamed; Samy, Nevien Ahmed; Salem, Amira Eid

    2017-06-01

    Both pulsed dye laser and combined 585/1064-nm (sequential dual-wavelength PDL and Nd:YAG) laser improves inflammatory skin disorders including acne vulgaris. To compare the efficacy of 585-nm pulsed dye laser versus sequential dual-wavelength PDL and Nd:YAG in treatment of acne vulgaris. Thirty patients with acne vulgaris were treated by PDL alone on half of the face while contra lateral half was treated by combined 585/1064 nm laser. The study showed that inflammatory acne lesions count was significantly reduced by 82.5% (p 0.0001) on PDL sides and by 83.5% (p 0.00001) on combined 585/1064-nm side after 8 weeks, while reduction of non-inflammatory acne lesions was observed at 8 weeks by 58.4% and 71.5% respectively. However, difference between the two modalities was not statistically significant. PDL and combined PDL/Nd:YAG laser treatment were found to be an effective, safe and well-tolerated treatment option for inflammatory and non-inflammatory acne vulgaris.

  3. New application of the long-pulsed Nd-YAG laser as an ablative resurfacing tool for skin rejuvenation: a 7-year study.

    PubMed

    Alshami, Mohammad Ali

    2013-09-01

    Carbon dioxide (CO2 ) and erbium-yttrium aluminum garnet (Er-YAG) lasers are the gold standards in ablative skin resurfacing. Neodymium-doped yttrium aluminum garnet (Nd-YAG) laser is considered a nonablative skin resurfacing laser whose usage is limited due to its high cost. To assess the efficacy and safety of Nd-YAG as an ablative resurfacing laser and to compare the results with those previously published for CO2 and Erbium-YAG lasers. A total of 296 patients (251 female and 45 male) with Fitzpatrick skin types III-IV and dermatological conditions amenable to ablative skin resurfacing participated in this study. Nd-YAG laser parameters assessed were wavelength (1064 nm), pulse duration (5 ms), fluence (10 J/cm(2) ), and spot size (8-10 mm). Efficacy of Nd-YAG laser was assessed by comparing pre- and posttreatment photographs. An improvement of 30-80% was observed in treated patients. The degree of improvement correlated positively with the number of laser sessions. The most common side effect was hyperpigmentation. Other side effects were less common and mild in intensity compared with published results for gold standard ablative lasers. Not only was the Nd-YAG laser found to be as effective as Er-YAG and CO2 lasers, but treated patients also had shorter recovery and treatment times, and at lower cost. © 2013 Wiley Periodicals, Inc.

  4. Continuous-wave and Q-switched microchip laser performance of Yb:Y3Sc2Al3O12 crystals.

    PubMed

    Dong, Jun; Ueda, Ken-ichi; Kaminskii, Alexander A

    2008-04-14

    Optical properties of Yb:Y(3)Sc(2)Al(3)O(12) crystal were investigated and compared with those from Yb:YAG crystals. The broad absorption and emission spectra of Yb:Y(3)Sc(2)Al(3)O(12) show that this crystal is very suitable for laser-diode pumping and ultrafast laser pulse generation. Laser-diode pumped continuous-wave and passively Q-switched Yb:Y(3)Sc(2)Al(3)O(12) lasers with Cr(4+):YAG crystals as saturable absorber have been demonstrated for the first time. Continuous-wave output power of 1.12 W around 1032 nm (multi-longitudinal modes) was measured with an optical-to-optical efficiency of 30%. Laser pulses with pulse energy of over 31 microJ and pulse width of 2.5 ns were measured at repetition rate of over 12.7 kHz; a corresponding peak power of over 12 kW was obtained. The longitudinal mode selection by a thin plate of Cr(4+):YAG as an intracavity etalon was also observed in passively Q-switched Yb:Y(3)Sc(2)Al(2)O(12) microchip lasers.

  5. Optimization of an intracavity Q-switched solid-state second order Raman laser

    NASA Astrophysics Data System (ADS)

    Chen, Zhiqiong; Fu, Xihong; Peng, Hangyu; Zhang, Jun; Qin, Li; Ning, Yongqiang

    2017-01-01

    In this paper, the model of an intracavity Q-switched second order Raman laser is established, the characteristics of the output 2nd Stokes are simulated. The dynamic balance mechanism among intracavity conversion rates of stimulated emission, first order Raman and second order Raman is obtained. Finally, optimization solutions for increasing output 2nd Stokes pulse energy are proposed.

  6. A Comparison of Low-Fluence 1064-nm Q-Switched Nd: YAG Laser with Topical 20% Azelaic Acid Cream and their Combination in Melasma in Indian Patients

    PubMed Central

    Bansal, Charu; Naik, Hira; Kar, Hemanta K; Chauhan, Amrita

    2012-01-01

    Background: Melasma is an acquired symmetric hypermelanosis characterised by irregular light to gray-brown macules on sun-exposed skin with a predilection for the cheeks, forehead, upper lip, nose and chin. The management of melasma is challenging and requires meticulous use of available therapeutic options. Aims: To compare the therapeutic efficacy of low-fluence Q-switched Nd: YAG laser (QSNYL) with topical 20% azelaic acid cream and their combination in melasma in three study groups of 20 patients each. Materials and Methods: Sixty Indian patients diagnosed as melasma were included. These patients were randomly divided in three groups (group A = 20 patients of melasma treated with low-fluence QSNYL at weekly intervals, group B = 20 patients of melasma treated with twice daily application of 20% azelaic acid cream and group C = 20 patients of melasma treated with combination of both). Study period was of 12 weeks each. Response to treatment was assessed using melasma area and severity index score. Statistical Analysis: The statistical analysis was done using Chi-square test, paired and unpaired student t-test. Results: Significant improvement was recorded in all the three groups. The improvement was statistically highly significant in Group C as compared to group A (P < 0.001) and group B (P < 0.001). Conclusions: This study shows the efficacy of low-fluence QSNYL, topical 20% azelaic acid cream and their combination in melasma. The combination of low-fluence QSNYL and topical 20% azelaic acid cream yields better results as compared to low-fluence QSNYL and azelaic acid alone. PMID:23378709

  7. Cutaneous pain effects induced by Nd:YAG and CO2 laser stimuli

    NASA Astrophysics Data System (ADS)

    Wang, Jia-Rui; Yu, Guang-Yuan; Yang, Zai-Fu; Chen, Hong-Xia; Hu, Dong-Dong; Zou, Xian-Biao

    2012-12-01

    The near infrared laser technique can activate cutaneous nociceptors with high specificity and reproducibility and be used in anti-riot equipment. This study aimed to explore cutaneous pain effect and determine the threshold induced by Nd:YAG and CO2 laser stimuli. The corresponding wavelength was 1.32μm and 10.6μm. The pain effect was assessed in three healthy subjects (1 woman and 2 men) on the skin of dorsum of both hands. The energy of each pulse and whether the subjects felt a painful sensation after each stimulus were recorded. A simplified Bliss Method was used to calculate the pain threshold which were determined under three pulse durations for Nd:YAG laser and one pulse duration for CO2 laser. As a result the pain thresholds were determined to be 5.6J/cm2, 5.4J/cm2 and 5.0J/cm2 respectively when using Nd:YAG laser, 4.0mm beam diameter, 8ms, 0.1s and 1s pulse duration. The pain threshold was 1.0J/cm2 when using CO2 laser, 4.0mm beam diameter and 0.1s pulse duration. We concluded that the threshold of cutaneous pain elicited by 1.32μm laser was independent upon the pulse duration when the exposure time ranged from 8ms to 1s. Under the same exposure condition, the threshold of cutaneous pain elicited by 1.32μm laser was higher than that elicited by 10.6μm laser.

  8. Single-Frequency Nd:YAG Ring Lasers with Corner Cube Prism

    NASA Astrophysics Data System (ADS)

    Wu, Ke-Ying; Yang, Su-Hui; Zhao, Chang-Ming; Wei, Guang-Hui

    2000-10-01

    We put forward another form of the non-planar ring lasers, in which the corner cube prism is the key element and the Nd:YAG crystal is used as a Porro prism to enclose the ring resonator. The phase shift due to the total internal reflections of the three differently orientated reflection planes of the corner cube prism, Faraday rotation in the Nd:YAG crystal placed in a magnetic field and the different output coupling in S and P polarization form an optical diode and enforce the single-frequency generating power. A round trip analysis of the polarization properties of the resonator is made by the evaluation of Jones matrix.

  9. Long-term remission of folliculitis decalvans after treatment with the long-pulsed Nd:YAG laser.

    PubMed

    Meesters, Arne A; Van der Veen, J P Wietze; Wolkerstorfer, Albert

    2014-04-01

    Folliculitis decalvans (FD) is a rare inflammatory scalp disorder presenting with tufted folliculitis, follicular papules and pustules, progressing to cicatricial alopecia. Current treatments mainly consist of antibiotic and immunomodulatory therapies and are often disappointing. FD has previously shown to respond to treatment with neodymium:yttrium aluminium garnet (Nd:YAG) laser in one case. We present a case of recalcitrant FD, successfully treated with a long-pulsed Nd:YAG laser.

  10. Blackbody absorption efficiencies for six lamp pumped Nd laser materials

    NASA Technical Reports Server (NTRS)

    Cross, Patricia L.; Barnes, Norman P.; Skolaut, Milton W., Jr.; Storm, Mark E.

    1990-01-01

    Utilizing high resolution spectra, the absorption efficiencies for six Nd laser materials were calculated as functions of the effective blackbody temperature of the lamp and laser crystal size. The six materials were Nd:YAG, Nd:YLF, Nd:Q-98 Glass, Nd:YVO4, Nd:BEL, and Nd:Cr:GSGG. Under the guidelines of this study, Nd:Cr:GSGG's absorption efficiency is twice the absorption efficiency of any of the other laser materials.

  11. SPF-RR sequential photothermal fractional resurfacing and remodeling with the variable pulse Er:YAG laser and scanner-assisted Nd:YAG laser.

    PubMed

    Marini, Leonardo

    2009-12-01

    Many different lasers, polychromatic high-intensity light sources (PCLs), and RF devices have claimed clinical efficacy in rejuvenating the skin. In this study, the sequential combination of two different laser wavelengths was evaluated to produce reliably significant clinical improvements optimizing treatment parameters. The left volar aspects of the forearms of four volunteers were treated with nine different parameter settings using a variable pulsewidth fractional Er:YAG 2940-nm laser with and without air cooling. The pain perception level was recorded on a 0-10 point scale (0=No pain; 10=Most severe pain). Three evaluations were made: during treatment, immediately after treatment, and 5 minutes after treatment. The same investigation was made on the right volar aspects of the same four volunteers using a short-pulse, random pattern, 3-mm spot, scanner-assisted Nd-YAG 1064-nm laser at 0.3 ms pulsewidth at seven different parameter settings. Clinical evaluations were made concerning erythema and edema 3 days after treatment, as well as pre-operative and 60 days postoperative skin texture plus color uniformity. Considering that the majority of cosmetic patients are willing to accept a relatively short and uneventful downtime (2-4 days according to a study we are presently conducting) and do prefer to limit their intra- and postoperative pain to a minimum, the best combination of clinical improvement matching these two important parameters were selected for our study. A treatment strategy combining two sequential passes of long-pulse Nd:YAG laser (Nd:YAG-LP) at 0.3 and 35 ms followed by two passes of long-pulse fractional Er:YAG laser (Er:YAG-FT) at 600 micros was designed to treat the facial regions of 10 volunteers affected by a combination of intrinsic (chrono-) and extrinsic (mostly photo-) aging. The pain perception level was recorded on a 0-10 scale (0=No pain; 10=Most severe pain). Three evaluations were made: during, immediately after, and 5 minutes after

  12. Efficacy of the Q-switched Neodymium: Yttrium Aluminum Garnet Laser in the Treatment of Blue-black Amateur and Professional Tattoos

    PubMed Central

    Lakshmi, Chembolli; Krishnaswamy, Gayathri

    2015-01-01

    Background: Q-switched neodymium: yttrium aluminum garnet (Nd: YAG) laser at a wavelength of 1064 nm primarily targets dermal melanin and black tattoo ink. Recent studies have shown that this laser is effective in treating black tattoos. There are few studies conducted in India for the same. Aim: The aim was to assess the effectiveness of Q-switched Nd: YAG laser (QSNYL) in the treatment of blue-black tattoos following 3 treatment sessions. Materials and Methods: This study, a prospective interventional study included a total of 12 blue-black tattoos. Following informed consent for the procedure, as well as for photographs, a questionnaire was administered, and improvement perceived by the patient was recorded. In addition, global assessment score (GAS) by a blinded physician was also recorded. Photographs were taken at baseline and at every follow-up. Each patient underwent three treatment sessions with 1064 nm QSNYL at 4–6 weekly intervals. Fluences ranged from 1.8 to 9 J/cm2. The follow-up was done monthly for 4 months from the first treatment session. The response was assessed by patient assessment (PA) and GAS by comparing photographs. Results: After three treatment sessions, although no patient achieved clearance, most patients showed good response with few adverse effects. An average of 64.1% (GAS) and 54.2% (PA) improvement was observed in 12 tattoos. Tattoos more than 10-year-old showed quicker clearing than those less than 10-year-old. Amateur tattoos also showed a better response in comparison to professional tattoos. Conclusion: Totally, 1064 nm QSNYL is safe and effective for lightening blue-black tattoos in pigmented Indian skin. All patients achieved near complete clearance following the continuation of treatment (an average of six sessions) although this was spaced at longer intervals. PMID:26677271

  13. Efficacy of the Q-switched Neodymium: Yttrium Aluminum Garnet Laser in the Treatment of Blue-black Amateur and Professional Tattoos.

    PubMed

    Lakshmi, Chembolli; Krishnaswamy, Gayathri

    2015-01-01

    Q-switched neodymium: yttrium aluminum garnet (Nd: YAG) laser at a wavelength of 1064 nm primarily targets dermal melanin and black tattoo ink. Recent studies have shown that this laser is effective in treating black tattoos. There are few studies conducted in India for the same. The aim was to assess the effectiveness of Q-switched Nd: YAG laser (QSNYL) in the treatment of blue-black tattoos following 3 treatment sessions. This study, a prospective interventional study included a total of 12 blue-black tattoos. Following informed consent for the procedure, as well as for photographs, a questionnaire was administered, and improvement perceived by the patient was recorded. In addition, global assessment score (GAS) by a blinded physician was also recorded. Photographs were taken at baseline and at every follow-up. Each patient underwent three treatment sessions with 1064 nm QSNYL at 4-6 weekly intervals. Fluences ranged from 1.8 to 9 J/cm(2). The follow-up was done monthly for 4 months from the first treatment session. The response was assessed by patient assessment (PA) and GAS by comparing photographs. After three treatment sessions, although no patient achieved clearance, most patients showed good response with few adverse effects. An average of 64.1% (GAS) and 54.2% (PA) improvement was observed in 12 tattoos. Tattoos more than 10-year-old showed quicker clearing than those less than 10-year-old. Amateur tattoos also showed a better response in comparison to professional tattoos. Totally, 1064 nm QSNYL is safe and effective for lightening blue-black tattoos in pigmented Indian skin. All patients achieved near complete clearance following the continuation of treatment (an average of six sessions) although this was spaced at longer intervals.

  14. Preparation and characterization of highly transparent Nd:YAG/YAG composite ceramics

    NASA Astrophysics Data System (ADS)

    Ma, Benyuan; Zhang, Wei; Shen, Bizhou; Wang, Yuezhong; Song, Haizhi; Li, Feng; Xie, Xiumin; Zhang, Zhibin; Yang, Yongqiang; Guan, Zhouguo

    2018-05-01

    Using the co-precipitated Nd:YAG and YAG powders as raw materials, the Nd:YAG/YAG composite ceramics (Ф 50 mm × 5 mm) were prepared by vacuum sintering (1790 °C 50 h), followed by hot isostatic pressing (HIP) post treatment (1700 °C 2 h, 200 MPa Ar atmosphere) and air annealing (1250 °C 100 h). The optical properties of Nd:YAG/YAG samples were improved markedly by HIP post-treatment, mainly due to the elimination of residual pores in the samples. The composite sample showed a perfect bonding interface from Nd:YAG to YAG regions without obvious grain size difference, pores or other defects. This structure should be responsible for the thermal conductivity larger than that of non-composite sample. The composite sample revealed good optical properties with transmittance up to 83.9% at 1064 nm and 80.8% at 400 nm, and a maximum laser output power of 1.38 KW with the slope efficiency of 36.7% was obtained.

  15. Nd:YAG laser vitreolysis versus pars plana vitrectomy for vitreous floaters.

    PubMed

    Kokavec, Jan; Wu, Zhichao; Sherwin, Justin C; Ang, Alan Js; Ang, Ghee Soon

    2017-06-01

    The vitreous is the clear jelly of the eye and contains fine strands of proteins. Throughout life the composition of this vitreous changes, which causes the protein strands in it to bundle together and scatter light before it reaches the retina. Individuals perceive the shadows cast by these protein bundles as 'floaters'. Some people are so bothered by floaters that treatment is required to control their symptoms. Two major interventions for floaters include Nd:YAG laser vitreolysis and vitrectomy. Nd:YAG laser vitreolysis involves using laser energy to fragment the vitreous opacities via a non-invasive approach. Vitrectomy involves the surgical replacement of the patient's vitreous (including the symptomatic vitreous floaters) with an inert and translucent balanced salt solution, through small openings in the pars plana. To compare the effectiveness and safety of Nd:YAG laser vitreolysis to pars plana vitrectomy for symptomatic vitreous floaters. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (which contains the Cochrane Eyes and Vision Trials Register) (2016, Issue 12), MEDLINE Ovid (1946 to 17 January 2017), Embase Ovid (1947 to 17 January 2017), LILACS (Latin American and Caribbean Health Sciences Literature Database) (1982 to 17 January 2017), the ISRCTN registry (www.isrctn.com/editAdvancedSearch); searched 17 January 2017, ClinicalTrials.gov (www.clinicaltrials.gov); searched 17 January 2017 and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en); searched 17 January 2017. We did not use any date or language restrictions in the electronic searches for trials. We also searched conference proceedings to identify additional studies. We included only randomised controlled trials (RCTs) that compared Nd:YAG laser vitreolysis to pars plana vitrectomy for treatment of symptomatic floaters. We planned to use methods recommended by Cochrane. The primary outcome we planned

  16. Passively Q-switched, intracavity frequency-doubled YVO{sub 4}/Nd : YVO{sub 4}/KTP green laser with a GaAs saturable absorber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shang Gao

    2015-11-30

    A diode-pumped, passively Q-switched, intracavity frequency-doubled YVO{sub 4}/Nd : YVO{sub 4}/KTP green laser is realised using a GaAs saturable absorber. Two pieces of GaAs wafers are employed in the experiment. In using a 400-μm-thick GaAs wafer and an incident pump power of 10.5 W, the maximum output power of the passively Q-switched green laser is 362 mW at a pulse repetition rate of 84 kHz and a pulse duration of 2.5 ns. When use is made of a 700-mm-thick GaAs wafer, the minimum pulse duration is 1.5 ns at a repetition rate of 67 kHz, pulse energy of 4.18 μJmore » and peak power of 2.8 kW. (control of laser radiation parameters)« less

  17. Changes in nail keratin observed by Raman spectroscopy after Nd:YAG laser treatment.

    PubMed

    Shin, Min Kyung; Kim, Tae In; Kim, Wan Sun; Park, Hun-Kuk; Kim, Kyung Sook

    2017-04-01

    Lasers and photodynamic therapy have been considered a convergence treatment for onychomycosis, which is a fungal infection on the nail bed and nail plate. Laser therapies have shown satisfactory results without significant complications for onychomycosis; however, the mechanism of clearing remains unknown. In this work, we investigated changes in the chemical structure of nail keratin induced by Nd:YAG laser using Raman spectroscopy. Toe nails with onychomycosis were treated with 1064 nm Nd:YAG laser. After laser treatment, the disulfide band (490-590 cm -1 ) of nail keratin was rarely observed or was reduced in intensity. The amide I band (1500-1700 cm -1 ) also showed changes induced by the laser. The α-helical (1652 cm -1 ) structures dominated the β-sheet (1673 cm -1 ) in nontreated nail, but the opposite phenomenon was observed after laser treatment. © 2016 Wiley Periodicals, Inc.

  18. Laboratory and clinical experience with neodymium:YAG laser prostatectomy

    NASA Astrophysics Data System (ADS)

    Kabalin, John N.

    1996-05-01

    Since 1991, we have undertaken extensive laboratory and clinical studies of the Neodymium:YAG (Nd:YAG) laser for surgical treatment of bladder outlet obstruction due to prostatic enlargement or benign prostatic hyperplasia (BPH). Side-firing optical fibers which emit a divergent, relatively low energy density Nd:YAG laser beam produce coagulation necrosis of obstructing periurethral prostate tissue, followed by gradual dissolution and slough in the urinary stream. Laser-tissue interactions and Nd:YAG laser dosimetry for prostatectomy have been studied in canine and human prostate model systems, enhancing clinical application. Ongoing studies examine comparative Nd:YAG laser dosimetry for various beam configurations produced by available side-firing optical fibers and continue to refine operative technique. We have documented clinical outcomes of Nd:YAG laser prostatectomy in 230 consecutive patients treated with the UrolaseTM side-firing optical fiber. Nd:YAG laser coagulation the prostate produces a remarkably low acute morbidity profile, with no significant bleeding or fluid absorption. No postoperative incontinence has been produced. Serial assessments of voiding outcomes over more than 3 years of followup show objective and symptomatic improvement following Nd:YAG laser prostatectomy which is comparable to older but more morbid electrosurgical approaches. Nd:YAG laser prostatectomy is a safe, efficacious, durable and cost-effective treatment for BPH.

  19. Experimental analysis of Nd-YAG laser cutting of sheet materials - A review

    NASA Astrophysics Data System (ADS)

    Sharma, Amit; Yadava, Vinod

    2018-01-01

    Cutting of sheet material is considered as an important process due to its relevance among products of everyday life such as aircrafts, ships, cars, furniture etc. Among various sheet cutting processes (ASCPs), laser beam cutting is one of the most capable ASCP to create complex geometries with stringent design requirements in difficult-to-cut sheet materials. Based on the recent research work in the area of sheet cutting, it is found that the Nd-YAG laser is used for cutting of sheet material in general and reflective sheet material in particular. This paper reviews the experimental analysis of Nd-YAG laser cutting process, carried out to study the influence of laser cutting parameters on the process performance index. The significance of experimental modeling and different optimization approaches employed by various researchers has also been discussed in this study.

  20. Histologic evaluation of laser lipolysis: pulsed 1064-nm Nd:YAG laser versus cw 980-nm diode laser.

    PubMed

    Mordon, Serge; Eymard-Maurin, Anne Françoise; Wassmer, Benjamin; Ringot, Jean

    2007-01-01

    The use of the laser as an auxiliary tool has refined the traditional technique for lipoplasty. During laser lipolysis, the interaction between the laser and the fat produced direct cellular destruction before the suction, reduced bleeding, and promoted skin tightening. This study sought to perform a comparative histologic evaluation of laser lipolysis with the pulsed 1064-nm Nd:YAG laser versus a continuous 980-nm diode laser. A pulsed 1064-nm Nd:YAG (Smart-Lipo; Deka, Italy) and a CW 980-nm diode laser (Pharaon, Osyris, France) were evaluated at different energy settings for lipolysis on the thighs of a fresh cadaver. The lasers were coupled to a 600-microm optical fiber inserted in a 1-mm diameter cannula. Biopsy specimens were taken on irradiated and non-irradiated areas. Hematoxylin-erythrosin-safran staining and immunostaining (anti-PS100 polyclonal antibody) were performed to identify fat tissue damage. In the absence of laser exposures (control specimens), cavities created by cannulation were seen; adipocytes were round in appearance and not deflated. At low energy settings, tumescent adipocytes were observed. At higher energy settings, cytoplasmic retraction, disruption of membranes, and heat-coagulated collagen fibers were noted; coagulated blood cells were also present. For the highest energy settings, carbonization of fat tissue involving fibers and membranes was clearly seen. For equivalent energy settings, 1064-nm and 980-nm wavelengths gave similar histologic results. Laser lipolysis is a relatively new technique that is still under development. Our histologic findings suggest several positive benefits of the laser, including skin retraction and a reduction in intraoperative bleeding. The interaction of the laser with the tissue is similar at 980 nm and 1064 nm with the same energy settings. Because higher volumes of fat are removed with higher total energy, a high-power 980-nm diode laser could offer an interesting alternative to the 1064-nm Nd:YAG

  1. 11-GHz waveguide Nd:YAG laser CW mode-locked with single-layer graphene.

    PubMed

    Okhrimchuk, Andrey G; Obraztsov, Petr A

    2015-06-08

    We report stable, passive, continuous-wave (CW) mode-locking of a compact diode-pumped waveguide Nd:YAG laser with a single-layer graphene saturable absorber. The depressed cladding waveguide in the Nd:YAG crystal is fabricated with an ultrafast laser inscription method. The saturable absorber is formed by direct deposition of CVD single-layer graphene on the output coupler. The few millimeter-long cavity provides generation of 16-ps pulses with repetition rates in the GHz range (up to 11.3 GHz) and 12 mW average power. Stable CW mode-locking operation is achieved by controlling the group delay dispersion in the laser cavity with a Gires-Tournois interferometer.

  2. 11-GHz waveguide Nd:YAG laser CW mode-locked with single-layer graphene

    PubMed Central

    Okhrimchuk, Andrey G.; Obraztsov, Petr A.

    2015-01-01

    We report stable, passive, continuous-wave (CW) mode-locking of a compact diode-pumped waveguide Nd:YAG laser with a single-layer graphene saturable absorber. The depressed cladding waveguide in the Nd:YAG crystal is fabricated with an ultrafast laser inscription method. The saturable absorber is formed by direct deposition of CVD single-layer graphene on the output coupler. The few millimeter-long cavity provides generation of 16-ps pulses with repetition rates in the GHz range (up to 11.3 GHz) and 12 mW average power. Stable CW mode-locking operation is achieved by controlling the group delay dispersion in the laser cavity with a Gires–Tournois interferometer. PMID:26052678

  3. Continuous two-wave lasing in microchip Nd : YAG lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ievlev, Ivan V; Koryukin, Igor' V; Lebedeva, Yu S

    2011-08-31

    Simultaneous two-wave lasing was obtained in microchip end-pumped Nd:YAG lasers at the wavelengths of 1061.5 and 1064.17 nm at room temperature. Laser wave intensities were studied as functions of crystal temperature and pump power. The ranges of parameters were determined in which the two-wave lasing occurs and the reasons for such lasing were established. A model is suggested, which adequately describes the experimental results obtained. (control of radiation parameters)

  4. Laser beam interactions with vapor plumes during Nd:YAG laser welding on aluminum

    NASA Astrophysics Data System (ADS)

    Peebles, H. C.; Russo, A. J.; Hadley, G. R.; Akau, R. L.

    Welds produced on pure aluminum targets using pulsed Nd:YAG lasers can be accurately described using a relatively simple conduction mode heat transfer model provided that the fraction of laser energy absorbed is known and the amount of metal vaporized is smalled however at laser fluences commonly used in many production welding schedules significant aluminum vaporization does occur. The possible mechanisms have been identified which could result in laser beam attenuation by the vapor plume.

  5. High-power pulsed and CW diode-pumped mode-locked Nd:YAG lasers

    NASA Technical Reports Server (NTRS)

    Marshall, Larry R.; Hays, A. D.; Kaz, Alex; Kasinski, Jeff; Burnham, R. L.

    1991-01-01

    The operation of both pulsed and CW diode-pumped mode-locked Nd:YAG lasers are presented. The pulsed laser produced 1.0 mJ with pulsewidths of 90 psec at 20 Hz. The CW pumped laser produced 6 W output at 1.064 microns and 3 W output at 532 nm.

  6. Phase conjugation of Nd:YAG laser radiation

    NASA Astrophysics Data System (ADS)

    Chen, Jun

    1988-06-01

    The phase conjugation of Nd:YAG laser radiation by four-wave mixing in silicon and by stimulated Brillouin scattering in acetone and other organic liquids was experimentally and theoretically investigated. Due to nonlinear absorption in Si a saturation of the reflection of the phase conjugator was theoretically predicted, and experimentally observed. It is theoretically and experimentally shown that the radiation profile behind the Si-sample is annular due to defocusing. The experiments show that CS2 and acetone have the lowest thresholds for stimulated Brillouin scattering. A laser resonator was built using a Brillouin cell and two normal mirrors; the emitted laser beam is insensitive to phase perturbations in the resonator, and has a pulse duration of 5 ns and a pulse energy of 220 m.

  7. Treatment of recurrent pilonidal cysts with nd-YAG laser: report of our experience.

    PubMed

    Dragoni, F; Moretti, S; Cannarozzo, G; Campolmi, P

    2018-02-01

    Surgical treatment remains the first-line therapy of pilonidal cyst but is associated with high levels of postoperative pain, adverse events and a recurrence rate of 30%. We report our experience with laser hair removal using the Nd-YAG laser for the treatment of pilonidal cyst. Ten patients affected by pilonidal cyst were examined and treated from October 2011 to November 2016. Treatments were carried out using the Nd-YAG laser (Deka M.E.L.A, Calenzano, Florence, Italy) at a wavelength of 1064 nm at 30-day interval. Nine patients were asymptomatic after the second treatment, while in one case the symptom disappeared after the fourth session. After 4-8 treatments, the pilonidal cyst had clinically disappeared and patients subjectively felt healed. In all cases, the soft-tissue ultrasounds performed before the first and after the last session showed the disappearance of the pilonidal cyst. In the follow-up, all the patients remained asymptomatic without any disease recurrence. Nd-YAG laser is an effective treatment for pilonidal cysts, providing excellent results with quick healing and no risk of serious adverse side-effects. It could be a very attractive alternative to open surgery, enabling patients to prevent the frequent and severe postoperative issues associated with surgery.

  8. Treatment of deep underlying reticular veins by Nd:Yag laser and IPL source.

    PubMed

    Colaiuda, S; Colaiuda, F; Gasparotti, M

    2000-10-01

    The purpose of this paper is to estimate the efficacy of Nd:Yag laser and IPL combined action for the treatment of deep (up to 5 mm) and large (up to 3 mm in diameter) reticular varicosity of the lower extremity. A group of 38 subjects (2 male and 36 female) aged from 34 to 65 years were treated for deep reticular varicosity of the legs. All patients underwent various clinical analyses in order to evaluate and exclude pre-existing cardiovascular pathology, coagulation disorders as well as pathology due to saphena incontinence. Also, for the first three months they underwent ambulatory specialistic treatments at 21-days intertreatment interval. A reduction of venous network of 80-90% after 2 treatment sessions with Nd:Yag laser was obtained in 84% of subjects. Successive 3 treatment sessions with IPL have achieved complete vanishing of the treated venous network in 36 patients (95%). A combined action of Nd:Yag laser and IPL has demonstrated its particular efficacy in non-invasive treatment of deep and extensive reticolar varicosity of the lower extremity, considering also that it is well tolerated by patients and applicable in each single case on out patient basis.

  9. Corneal perforation during Nd:YAG laser capsulotomy: a case report.

    PubMed

    Türkcü, Fatih Mehmet; Yüksel, Harun; Cingü, Kürşat; Cınar, Yasin; Murat, Mehmet; Caça, Ihsan

    2013-02-01

    We report a case where corneal perforation developed during Nd:YAG laser capsulotomy. We present a 20-year-old male with the complaint of impaired vision in the right eye. Leukoma consistent with the incision line in the cornea and opacity in the posterior capsule were observed.

  10. Single-frequency Nd:YAG ring lasers with corner cube prism

    NASA Astrophysics Data System (ADS)

    Wu, Ke Ying; Yang, Su Hui; Zhao, Chang Ming; Wei, Guang Hui

    2000-04-01

    Kane and Byer reported the first monolithic non-planar miniature ring lasers in 1985. An intrinsic optical diode enforces unidirectional and hence single-frequency oscillation of this device. It has the advantages of compactness, reliability and high efficiency. We put forward another form of the non-planar ring lasers, in which the corner cube prism is the key element and the Nd:YAG crystal is used as a Porro prism to enclose the ring resonator. The phase shift due to the total internal reflections of the three differently orientated reflection planes of the corner cube prism, Faraday rotation in the Nd:YAG crystal placed in a magnetic field and the different output coupling in S and P polarization form an optical diode and enforce the single- frequency generating. A round trip analysis of the polarization properties of the resonator is made by the evaluation of Jones matrix. The results of our initial experiment are given in the paper.

  11. Mathematical simulation of the thermal diffusion in dentine irradiated with Nd:YAG laser using finite difference method

    NASA Astrophysics Data System (ADS)

    Moriyama, Eduardo H.; Zangaro, Renato A.; Lobo, Paulo D. d. C.; Villaverde, Antonio G. J. B.; Watanabe-Sei, Ii; Pacheco, Marcos T. T.; Otsuka, Daniel K.

    2002-06-01

    Thermal damage in dental pulp during Nd:YAG laser irradiation have been studied by several researchers; but due to dentin inhomogeneous structure, laser interaction with dentin in the hypersensitivity treatment are not fully understood. In this work, heat distribution profile on human dentine samples irradiated with Nd:YAG laser was simulated at surface and subjacent layers. Calculations were carried out using the Crank-Nicolson's finite difference method. Sixteen dentin samples with 1,5 mm of thickness were evenly distributed into four groups and irradiated with Nd:YAG laser pulses, according to the following scheme: (I) 1 pulse of 900 mJ, (II) 2 pulses of 450 mJ, (III) 3 pulses of 300 mJ, (IV) 6 pulses of 150 mJ; corresponding to a total laser energy of 900 mJ. The pulse interval was 300ms, the pulse duration of 900 ms and irradiated surface area of 0,005 mm2. Laser induced morphological changes in dentin were observed for all the irradiated samples. The heat distribution throughout the dentin layer, from the external dentin surface to the pulpal chamber wall, was calculated for each case, in order to obtain further information about the pulsed Nd:YAG laser-oral hard tissue interaction. The simulation showed significant differences in the final temperature at the pulpal chamber, depending on the exposition time and the energy contained in the laser pulse.

  12. Endoscopic palliation of esophageal and cardial cancer: Nd:YAG laser and prosthesis

    NASA Astrophysics Data System (ADS)

    Norberto, Lorenzo; Ranzato, Riccardo; Marino, Saverio; Angriman, Imerio; Vella, Vincenzo; Donadi, Michele; D'Amico, D. F.

    1997-12-01

    From November 1, 1992 to January 31, 1997, 227 patients with inoperable esophageal and cardial carcinomas were treated with Nd:YAG laser therapy and prosthesis intubation. The retrograde technique was used in most cases. The tumor involved in 75 pts the Cardia, in 65 the middle thoracic esophagus, in 47 pts the lower thoracic esophagus, in 23 in the upper thoracic esophagus and in 17 in the cervical esophagus. The indications for palliative Nd:YAG laser and prosthesis intubation were a locally advanced or metastatic tumor in 146 pts (64.4%) and poor surgical risk in 81 pts (35.6%). The quality of palliation was evaluated according to the ability to swallow. The mean survival rate of the patients during the follow up was 22 weeks for the laser therapy and 16 weeks for the prosthesis intubation.

  13. Treatment of Laugier-Hunziker syndrome with the Q-switched alexandrite laser in 22 Chinese patients.

    PubMed

    Zuo, Ya-Gang; Ma, Dong-Lai; Jin, Hong-Zhong; Liu, Yue-Hua; Wang, Hong-Wei; Sun, Qiu-Ning

    2010-03-01

    Laugier-Hunziker syndrome (LHS), a rare, acquired pigmentary disorder of the lips, oral mucosa, and fingers, is known to be an entirely benign disease with no systemic manifestations. In the past, the pigmentation has been treated efficiently in a few patients with the Q-switched neodymium: yttrium-aluminum-garnet (Nd:YAG) laser and the Q-switched alexandrite laser (QSAL). In order to evaluate the efficacy and safety of QSAL on Chinese patients of LHS, we treated 22 patients with QSAL in the past 5 years. Treatments were delivered on a bimonthly or trimonthly basis until the abnormal pigmentation totally disappeared. Patients were evaluated at each visit for evidence of dyspigmentation, scarring, or other untoward effects from the laser treatment. Our 22 subjects consisted of 18 females and 4 males with a mean age of 42.4 years. After only one session of laser treatment, the clearing on the lips was as follow: 18 (81.8%) excellent, 2 (9.1%) good, 1 (4.5%) fair and 1 (4.5%) poor. Eighteen patients (81.8%) with LHS, who had achieved excellent clearing after only one session of laser treatment, did not receive further treatment. Among the left four patients, three patients (13.6%) achieved complete results after three laser treatments. Only one patient required six sessions to achieve complete clearance. No scarring was noted after any of the treatments. The appearance of pigmentation on mucous membranes in a middle-aged patient without a significant family history for skin disorders should prompt consideration for the possible diagnosis of LHS. Our study has also demonstrated QSAL to be highly effective and safe in the treatment of LHS.

  14. Pulsed Nd-YAG laser in endodontics

    NASA Astrophysics Data System (ADS)

    Ragot-Roy, Brigitte; Severin, Claude; Maquin, Michel

    1994-12-01

    The purpose of this study was to establish an operative method in endodontics. The effect of a pulsed Nd:YAG laser on root canal dentin has been examined with a scanning electron microscope. Our first experimentation was to observe the impacts carried out perpendicularly to root canal surface with a 200 micrometers fiber optic in the presence of dye. Secondarily, the optical fiber was used as an endodontic instrument with black dye. The irradiation was performed after root canal preparation (15/100 file or 40/100 file) or directly into the canal. Adverse effects are observed. The results show that laser irradiation on root canal dentin surfaces induces a nonhomogeneous modified dentin layer, melted and resolidified dentin closed partially dentinal tubules. The removal of debris is not efficient enough. The laser treatment seems to be indicated only for endodontic and periapical spaces sterilization after conventional root canal preparation.

  15. The role of anterior hyaloid face integrity on retinal complications during Nd: YAG laser capsulotomy.

    PubMed

    Ozyol, Erhan; Ozyol, Pelin; Doğanay Erdoğan, Beyza; Onen, Mehmet

    2014-01-01

    This study evaluated anterior hyaloid damage (AHD), AHD-related Nd:YAG laser parameters, and retinal complications in subjects that underwent Nd:YAG laser posterior capsulotomy for cataracts. In this prospective, cross-sectional study, 277 pseudophakic eyes of 216 patients treated with Nd:YAG laser capsulotomy for posterior capsule opacification were enrolled. Pulse number, pulse energy, and total energy were noted for each eye. All procedures were performed with a sense of anterior hyaloid protection. Anterior hyaloid faces were assessed during procedure and 1 day after the procedure. Eyes with biomicroscopically invisible anterior hyaloid face were excluded from statistical analysis. Eyes with and without AHD were compared according to Nd:YAG laser parameters. Retinal complications were evaluated at day 1, week 1, month 1, and month 3. In 22 eyes (7.9 % of 277 eyes), the anterior hyaloid face couldn't be assessed biomicroscopically. Anterior hyaloid damage was observed in 49 eyes (19.2 % of 255 eyes). The pulse number, pulse energy, and total energy were observed to be higher in eyes with AHD (P < .001, P = .024, P < .001, respectively). Cystoid macular edema was detected in five eyes (three with AHD) at 1-week examination. Localized retinal detachment occurred in one eye with AHD. Occurrence of retinal complication in the AHD(+) group was 12.7 times higher than in the AHD(-) group, adjusted for total energy used (P < 0.001). The risk of AHD may increase with high pulse number, pulse energy, and total energy. Anterior hyaloid face integrity should be considered for YAG laser-related retinal complications.

  16. High-power actively Q-switched single-mode 1342 nm Nd:YVO4 ring laser, injection-locked by a cw single-frequency microchip laser.

    PubMed

    Koch, Peter; Bartschke, Juergen; L'huillier, Johannes A

    2015-11-30

    In this paper we report on the realization of a single-mode Q-switched Nd:YVO4 ring laser at 1342 nm. Unidirectional and single-mode operation of the ring laser is achieved by injection-locking with a continuous wave Nd:YVO4 microchip laser, emitting a single-frequency power of up to 40 mW. The ring laser provides a single-mode power of 13.9 W at 10 kHz pulse repetition frequency with a pulse duration of 18.2 ns and an excellent beam quality (M2 < 1.05). By frequency doubling of the fundamental 1342 nm laser, a power of 8.7 W at 671 nm with a pulse duration of 14.8 ns and a beam propagation factor of M2 < 1.1 is obtained. The 671 nm radiation features a long-term spectral width of 75 MHz.

  17. [Effects of Nd: YAG laser irradiation on the root surfaces and adhesion of Streptococcus mutans].

    PubMed

    Yuanhong, Li; Zhongcheng, Li; Mengqi, Luo; Daonan, Shen; Shu, Zhang; Shu, Meng

    2016-12-01

    This study aimed to evaluate the effects of treatment with different powers of Nd: YAG laser irradiation on root surfaces and Streptococcus mutans (S. mutans) adhesion. Extracted teeth because of severe periodontal disease were divided into the following four groups: control group, laser group 1, laser group 2, and laser group 3. After scaling and root planning, laser group 1, laser group 2, and laser group 3 were separately treated with Nd: YAG laser irradiation (4/6/8 W, 60 s); however, the control group did not receive the treatment. Scanning electron microscopy (SEM) was used to determine the morphology. S. mutans were cultured with root slices from each group. Colony forming unit per mL (CFU·mL⁻¹) was used to count and compare the amounts of bacteria adhesion among groups. SEM was used to observe the difference of bacteria adhesion to root surfaces between control group (scaling) and laser group 2 (6 W, 60 s), thereby indicating the different bacteria adhesions because of different treatments. Morphology alterations indicated that root surfaces in control group contain obvious smear layer, debris, and biofilm; whereas the root surfaces in laser group contain more cracks with less smear layer and debris. The bacteria counting indicated that S. mutans adhesion to laser group was weaker than that of control group (P<0.05). No statistical significance among the laser groups (P>0.05) was observed. Morphology alterations also verified that S. mutans adhesion to laser group 2 (6 W, 60 s) was weaker than that of control group (scaling). This study demonstrated that Nd: YAG laser irradiation treatment after scaling can reduce smear layer, debris, and biofilm on the root surfaces as compared with conventional scaling. The laser treatment reduces the adhesion of S. mutans as well. However, Nd: YAG laser irradiation can cause cracks on the root surfaces. In this experiment, the optimum laser power of 6 W can thoroughly remove the smear layer and debris, as well as

  18. LED pumped Nd:YAG laser development program

    NASA Technical Reports Server (NTRS)

    Farmer, G. I.; Kiang, Y. C.; Lynch, R. J.

    1973-01-01

    The results of a development program for light emitting diode (LED) pumped Nd:YAG lasers are described. An index matching method to increase the coupling efficiency of the laser is described. A solid glass half-cylinder of 5.0 by 5.6 centimeters was used for index matching and also as a pumping cavity reflector. The laser rods were 1.5 by 56 millimeters with dielectric coatings on both end surfaces. The interfaces between the diode array, glass cylinder, and laser rod were filled with viscous fluid of refractive index n = 1.55. Experiments performed with both the glass cylinder and a gold coated stainless steel reflector of the same dimensions under the same operating conditions indicate that the index matching cylinder gave 159 to 200 percent improvement of coupling efficiency over the metal reflector at various operating temperatures.

  19. Nd:GdVO4 ring laser pumped by laser diodes

    NASA Astrophysics Data System (ADS)

    Hao, E. J.; Li, T.; Wang, Z. D.; Zhang, Y.

    2013-02-01

    The design and operation of a laser diode-pumped Nd:GdVO4 ring laser is described. A composite crystal (Nd:GdVO4/YVO4) with undoped ends is single-end pumped by a fiber-coupled laser diode (LD) at 808 nm. A four-mirror ring cavity is designed to keep the laser operating unidirectionally, which eliminates spatial hole burning in the standing-wave cavity. This laser can operate either as continuous wave (CW) or Q-switched. The single-frequency power obtained was 9.1 W at 1063 nm. Q-switched operation produced 0.23 mJ/pulse at 20 kHz in the fundamental laser.

  20. Giant-pulse Nd:YVO4 microchip laser with MW-level peak power by emission cross-sectional control.

    PubMed

    Kausas, Arvydas; Taira, Takunori

    2016-02-22

    We present a giant-pulse generation laser realized by the emission cross-section control of a gain medium in a passively Q-switched Nd:YVO4 microchip laser with a Cr4+:YAG saturable absorber. Up to 1.17 MW peak power and 1.03 mJ pulse energy were obtained with a 100 Hz repetition rate. By combining the Nd:YVO4 crystal with a Sapphire plate, lower temperature difference between a pump region in the gain crystal and a crystal holder was obtained which helped to keep the cavity in stability zone at elevated temperatures and allowed the achievement of the high peak power for this laser system.

  1. Evaluation of primary tooth enamel surface morphology and microhardness after Nd:YAG laser irradiation and APF gel treatment--an in vitro study.

    PubMed

    Banda, Naveen Reddy; Vanaja Reddy, G; Shashikiran, N D

    2011-01-01

    Laser irradiation and fluoride has been used as a preventive tool to combat dental caries in permanent teeth, but little has been done for primary teeth which are more prone to caries. The purpose of this study was to evaluate microhardness alterations in the primary tooth enamel after Nd-YAG laser irradiation alone and combined with topical fluoride treatment either before or after Nd-YAG laser irradiation. Ten primary molars were sectioned and assigned randomly to: control group, Nd-YAG laser irradiation, Nd-YAG lasing before APF and APF followed by Nd-YAG lasing. The groups were evaluated for microhardness. Surface morphological changes were observed using SEM. Statistical comparisons were performed. The control group's SEM showed a relatively smooth enamel surface and lasing group had fine cracks and porosities. In the lasing + fluoride group a homogenous confluent surface was seen. In the fluoride + lasing group an irregular contour with marked crack propagation was noted. There was a significant increase in the microhardness of the treatment groups. Nd-YAG laser irradiation and combined APF treatment of the primary tooth enamel gave morphologically hardened enamel surface which can be a protective barrier against a cariogenic attack.

  2. A Visualization Method for Corrosion Damage on Aluminum Plates Using an Nd:YAG Pulsed Laser Scanning System.

    PubMed

    Lee, Inbok; Zhang, Aoqi; Lee, Changgil; Park, Seunghee

    2016-12-16

    This paper proposes a non-contact nondestructive evaluation (NDE) technique that uses laser-induced ultrasonic waves to visualize corrosion damage in aluminum alloy plate structures. The non-contact, pulsed-laser ultrasonic measurement system generates ultrasonic waves using a galvanometer-based Q-switched Nd:YAG laser and measures the ultrasonic waves using a piezoelectric (PZT) sensor. During scanning, a wavefield can be acquired by changing the excitation location of the laser point and measuring waves using the PZT sensor. The corrosion damage can be detected in the wavefield snapshots using the scattering characteristics of the waves that encounter corrosion. The structural damage is visualized by calculating the logarithmic values of the root mean square (RMS), with a weighting parameter to compensate for the attenuation caused by geometrical spreading and dispersion of the waves. An intact specimen is used to conduct a comparison with corrosion at different depths and sizes in other specimens. Both sides of the plate are scanned with the same scanning area to observe the effect of the location where corrosion has formed. The results show that the damage can be successfully visualized for almost all cases using the RMS-based functions, whether it formed on the front or back side. Also, the system is confirmed to have distinguished corroded areas at different depths.

  3. Effect of pump polarization direction on power characteristics in monolithic microchip Nd:YAG dual-frequency laser.

    PubMed

    Chen, Hao; Zhang, Shulian; Tan, Yidong

    2016-04-10

    The pump polarization direction can greatly influence the characteristics of the laser diode end-pumped monolithic microchip Nd:YAG dual-frequency laser. We experimentally observe the lasing thresholds and the optical powers of two splitting modes versus the pump polarization direction. The effect of the pump-induced gain anisotropy on the mode oscillation sequence is analyzed. And the effect on the intensities of these modes is also proved with a rate equation model. This study contributes to the improvement of the stability and the reliability of the Nd:YAG dual-frequency laser.

  4. Flexural strength of pure Ti, Ni-Cr and Co-Cr alloys submitted to Nd:YAG laser or TIG welding.

    PubMed

    Rocha, Rick; Pinheiro, Antônio Luiz Barbosa; Villaverde, Antonio Balbin

    2006-01-01

    Welding of metals and alloys is important to Dentistry for fabrication of dental prostheses. Several methods of soldering metals and alloys are currently used. The purpose of this study was to assess, using the flexural strength testing, the efficacy of two processes Nd:YAG laser and TIG (tungsten inert gas) for welding of pure Ti, Co-Cr and Ni-Cr alloys. Sixty cylindrical specimens were prepared (20 of each material), bisected and welded using different techniques. Four groups were formed (n=15). I: Nd:YAG laser welding; II- Nd:YAG laser welding using a filling material; III- TIG welding and IV (control): no welding (intact specimens). The specimens were tested in flexural strength and the results were analyzed statistically by one-way ANOVA. There was significant differences (p<0.001) among the non-welded materials, the Co-Cr alloy being the most resistant to deflection. Comparing the welding processes, significant differences (p<0.001) where found between TIG and laser welding and also between laser alone and laser plus filling material. In conclusion, TIG welding yielded higher flexural strength means than Nd:YAG laser welding for the tested Ti, Co-Cr and Ni-Cr alloys.

  5. Real-time ultrasonography as a monitoring technique for interstitial Nd:YAG laser treatment of voluminous hemangiomas and vascular malformations

    NASA Astrophysics Data System (ADS)

    Werner, Jochen A.; Gottschlich, Stefan; Lippert, Burkard M.; Folz, Benedikt J.

    1998-01-01

    Voluminous vascular anomalies of the head and neck region are still treated with conventional surgery although Neodymium:Yttrium-Aluminum-Garnet (Nd:YAG) laser therapy is an effective treatment method. One hundred thirty give patients with voluminous hemangiomas and vascular malformations were treated with interstitial Nd:YAG laser therapy, partly complemented by a non-contact mode Nd:YAG laser light application. The vascular tumors had a diameter of more than 3 cm in two or all three dimensions. Treatment was carried out under ultrasound and manual control. Nearly 60% of the patients showed a complete clinical regression of the vascular tumor, a third of the patients had a partial regression and were satisfied with the treatment outcome. Four patients were treated unsuccessfully with the laser and three of them subsequently underwent conventional surgery. Only 10 patients showed cosmetic and functional deficits. These results on the interstitial Nd:YAG laser therapy of voluminous hemangiomas and vascular malformations in a large patient group demonstrated the high effectiveness of this novel and innovative therapy modality.

  6. Highly efficient, versatile, self-Q-switched, high-repetition-rate microchip laser generating Ince–Gaussian modes for optical trapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jun Dong; Yu He; Xiao Zhou

    2016-03-31

    Lasers operating in the Ince-Gaussian (IG) mode have potential applications for optical manipulation of microparticles and formation of optical vortices, as well as for optical trapping and optical tweezers. Versatile, self-Q-switched, high-peak-power, high-repetition-rate Cr, Nd:YAG microchip lasers operating in the IG mode are implemented under tilted, tightly focused laser-diode pumping. An average output power of over 2 W is obtained at an absorbed pump power of 6.4 W. The highest optical-to-optical efficiency of 33.2% is achieved at an absorbed pump power of 3.9 W. Laser pulses with a pulse energy of 7.5 μJ, pulse width of 3.5 ns and peakmore » power of over 2 kW are obtained. A repetition rate up to 335 kHz is reached at an absorbed pump power of 5.8 W. Highly efficient, versatile, IG-mode lasers with a high repetition rate and a high peak power ensure a better flexibility in particle manipulation and optical trapping. (control of laser radiation parameters)« less

  7. Solid state lasers based on chromium- and neodymium-activated scandium garnets operating in the Q-switched mode

    NASA Astrophysics Data System (ADS)

    Denisov, A. L.; Zharikov, E. V.; Zavartsev, Iu. D.; Zagumennyi, A. I.; Lutts, G. B.

    1991-02-01

    The development of passively Q-switched and self-Q-switched lasers based on chromium-containing scandium garnets with phototropic centers is reported. The lasers operate over a wide frequency repetition rate with a mean output up to 100 W. The characteristics of phototropic absorption in the 1-micron region are examined, and the possibility of lasing at the weak transition of the Nd(3+) ion in chromium-containing scandium garnets with phototropic centers is discussed.

  8. Yellow light generation by frequency doubling of a diode-pumped Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Jia, Fu-qiang; Zheng, Quan; Xue, Qing-hua; Bu, Yi-kun; Qian, Long-sheng

    2006-03-01

    We demonstrate the generation of TEM00 mode yellow light in critically type II phase-matched KTiOPO4 (KTP) with intracavity frequency doubling of a diode-pumped Nd:YAG laser at room temperature. After a 150 μm thick etalon have been inserted into the cavity, the stability and beam quality of the second harmonic generation (SHG) is enhanced. A continuous wave (CW) TEM00 mode output power of 1.67 W at 556 nm is obtained at a pump level of 16 W. The total optical to optical conversion efficiency is about 10.44%. To the best of our knowledge, this is the first Watt-level yellow light generation by frequency doubling of Nd:YAG laser.

  9. High-pulse-energy passively Q-switched quasi-monolithic microchip lasers operating in the sub-100-ps pulse regime.

    PubMed

    Nodop, D; Limpert, J; Hohmuth, R; Richter, W; Guina, M; Tünnermann, A

    2007-08-01

    We present passively Q-switched microchip lasers with items bonded by spin-on-glass glue. Passive Q-switching is obtained by a semiconductor saturable absorber mirror. The laser medium is a Nd:YVO(4) crystal. These lasers generate pulse peak powers up to 20 kW at a pulse duration as short as 50 ps and pulse repetition rates of 166 kHz. At 1064 nm, a linear polarized transversal and longitudinal single-mode beam is emitted. To the best of our knowledge, these are the shortest pulses in the 1 microJ energy range ever obtained with passively Q-switched microchip lasers. The quasi-monolithic setup ensures stable and reliable performance.

  10. Multi-Fresnel lenses pumping approach for improving high-power Nd:YAG solar laser beam quality.

    PubMed

    Liang, Dawei; Almeida, Joana

    2013-07-20

    To significantly improve the present-day high-power solar laser beam quality, a three-stage multi-Fresnel lenses approach is proposed for side-pumping either a Nd:YAG single-crystal or a core-doped Sm(3+)Nd:YAG ceramic rod. Optimum pumping and laser beam parameters are found through ZEMAX and LASCAD numerical analysis. The proposed scheme offers a uniform absorption profile along the rod. 167 W laser power can be achieved, corresponding to 29.3 W/m(2) collection efficiency. High brightness figure of merit of 8.34 W is expected for the core-doped rod within a convex-concave resonator, which is 1300 times higher than that of the most-recent high-power solar laser.

  11. Comparative morphological investigation on the rabbit's auricle after exposure to CO2- and Nd:YAG-laser radiation.

    PubMed

    Wandhöfer, A; Bally, G; Kauffmann, G; Karduck, A

    1977-10-31

    By comparing the effects of CO2- and Nd:YAG-laser radiation (mainly differing in wave-length by a factor of 10), a surgical instrument suitable for Otorhinolaryngology had to be found. The studies were performed on the rabbit's auricle in order to examine the effect of the laser irradiation mainly on the cartilage. The CO2-laser was found to be more efficient in cutting and caused less extended tissue damage than the Nd:YAG-laser. The latter seems to be more suitable for soft tissue surgery.

  12. Phase, compositional, and morphological changes of human dentin after Nd:YAG laser treatment.

    PubMed

    Lin, C P; Lee, B S; Lin, F H; Kok, S H; Lan, W H

    2001-06-01

    Although techniques for repairing root fracture have been proposed, the prognosis is generally poor. If the fusion of a root fracture by laser is possible, it will offer an alternative to extraction. Our group has attempted to use lasers to fuse a low melting-point bioactive glass to fractured dentin. This report is focused on the phase, compositional, and morphological changes observed by means of X-ray diffractometer, Fourier transforming infrared spectroscopy, and scanning electron microscopy-energy dispersive X-ray spectroscopy in human dentin after exposure to Nd:YAG laser. The irradiation energies were from 150 mJ/ pulse-10 pps-4 s to 150 mJ/pulse-30 pps-4 s. After exposure to Nd:YAG laser, dentin showed four peaks on the X-ray diffractometer that corresponding to a-tricalcium phosphate (TCP) and beta-TCP at 20 = 30.78 degrees/34.21 degrees and 32.47 degrees/33.05 degrees, respectively. The peaks of a-TCP and beta-TCP gradually increased in intensity with the elevation of irradiation energy. In Fourier transforming infrared analysis, two absorption bands at 2200 cm(-1) and 2015 cm(-1) could be traced on dentin treated by Nd:YAG laser with the irradiation energies beyond 150 mJ/pulse-10 pps-4 s. The energy dispersive X-ray results showed that the calcium/phosphorus ratios of the irradiated area proportionally increased with the elevation of irradiation energy. The laser energies of 150 mJ/ pulse-30 pps-4 s and 150 mJ/pulse-20 pps-4 s could result in the a-TCP formation and collagen breakdown. However, the formation of glass-like melted substances without a-TCP at the irradiated site was induced by the energy output of 150 mJ/ pulse-10 pps-4 s. Scanning electron micrographs also revealed that the laser energy of 150 mJ/ pulse-10 pps-4 s was sufficient to prompt melting and recrystallization of dentin crystals without cracking. Therefore, we suggest that the irradiation energy of Nd:YAG laser used to fuse a low melting-point bioactive glass to dentin is 150 m

  13. Solar-Pumped TEM₀₀ Mode Nd:YAG laser.

    PubMed

    Liang, Dawei; Almeida, Joana

    2013-10-21

    Here we show a significant advance in solar-pumped laser beam brightness by utilizing a 1.0 m diameter Fresnel lens and a 3 mm diameter Nd:YAG single-crystal rod. The incoming solar radiation is firstly focused by the Fresnel lens on a solar tracker. A large aspheric lens and a 2D-CPC concentrator are then combined to further compress the concentrated solar radiation along the thin laser rod within a V-shaped pumping cavity. 2.3 W cw TEM₀₀ (M² ≤ 1.1) solar laser power is finally produced, attaining 1.9 W laser beam brightness figure of merit, which is 6.6 times higher than the previous record. For multimode operation, 8.1 W cw laser power is produced, corresponding to 143% enhancement in collection efficiency.

  14. 120 watt continuous wave solar-pumped laser with a liquid light-guide lens and an Nd:YAG rod.

    PubMed

    Dinh, T H; Ohkubo, T; Yabe, T; Kuboyama, H

    2012-07-01

    We propose a simple and efficient pumping approach for a high-power solar-pumped laser by using a liquid light-guide lens (LLGL) and a hybrid pumping cavity. A 2×2 m Fresnel lens is used as a primary concentrator to collect natural sunlight; 120 W cw laser power and a 4.3% total slope efficiency are achieved with a 6-mm diameter Nd:YAG rod within a 14-mm diameter LLGL. The corresponded collection efficiency is 30.0 W/m(2), which is 1.5 times larger than the previous record. This result is unexpectedly better than that of Cr:Nd:YAG ceramics. It is because the scattering coefficient of Cr:Nd:YAG ceramics is 0.004cm(1), which is 2 times larger than that of the Nd:YAG crystal, although both have similar saturation gains.

  15. Highly efficient end-side-pumped Nd:YAG solar laser by a heliostat-parabolic mirror system.

    PubMed

    Almeida, J; Liang, D; Vistas, C R; Guillot, E

    2015-03-10

    We report a large improvement in the collection and slope efficiency of an Nd:YAG solar laser pumped by a heliostat-parabolic mirror system. A conical fused silica lens was used to further concentrate the solar radiation from the focal zone of a 2 m diameter primary concentrator to a Nd:YAG single-crystal rod within a conical pump cavity, which enabled multipass pumping to the active medium. A 56 W cw laser power was measured, corresponding to 21.1  W/m2 record-high solar laser collection efficiency with the heliostat-parabolic mirror system. 4.9% slope efficiency was calculated, corresponding to 175% enhancement over our previous result.

  16. Treatment of onychomycosis using a 1064nm Nd:YAG laser.

    PubMed

    Noguchi, Hiromitsu; Miyata, Keishi; Sugita, Takashi; Hiruma, Midori; Hiruma, Masataro

    2013-01-01

    We investigated the efficacy of 1064nm Nd:YAG laser for the treatment of onychomycosis caused by dermatophytes. The study population consisted of 12 patients (6 male, 6 female ; average age 53.5 years), with onychomycosis confirmed by fungal culture and/or real-time PCR identification of the pathogen. The causative agent was identified as Trichophyton rubrum in 11 cases and a mixture of T. rubrum and T. mentagrophytes in 1 case. For each patient, laser treatment was given to a single hallux nail, with turbidity at baseline affecting <75% of the nail surface and thickness at baseline <3mm. Treatment was given in 3 sessions at 4-week intervals, and nail turbidity was evaluated 3 and 6 months after the first laser treatment. After 6 months the efficacy results were as follows: 3 cases, turbidity significantly improved ( >70%) ; 2 cases, turbidity improved (50-70%), 1 case, turbidity slightly improved (30-50%) ; 5 cases, no change in turbidity (<30% improvement) ; and 1 case, turbidity worsened. Overall, the total lesion area with turbidity in 12 patients decreased from 664.4mm(2) to 481.0mm(2), corresponding to a 27.6% improvement after treatment. Pain during laser treatment was well tolerated, and all patients underwent all 3 treatments. These results suggest that the 1064nm Nd:YAG laser could be a useful treatment alternative for patients with mild onychomycosis.

  17. Multi-wavelength Yb:YAG/Nd3+:YVO4 continuous-wave microchip Raman laser.

    PubMed

    Wang, Xiao-Lei; Dong, Jun; Wang, Xiao-Jie; Xu, Jie; Ueda, Ken-Ichi; Kaminskii, Alexander A

    2016-08-01

    Multi-wavelength continuous-wave (CW) Raman lasers in a laser diode pumped Yb:YAG/Nd3+:YVO4 microchip Raman laser have been demonstrated for the first time to our best knowledge. The multi-wavelength laser of the first Stokes radiation around 1.08 μm has been achieved with a Raman shift of 261  cm-1 for a-cut Nd:YVO4 crystal corresponding to the fundamental wavelength at 1.05 μm. Multi-wavelength laser operation simultaneously around 1.05 and 1.08 μm has been achieved under the incident pump power between 1.5 and 1.7 W. Multi-wavelength Raman laser with frequency separation of 1 THz around 1.08 μm has been obtained when the incident pump power is higher than 1.7 W. The maximum Raman laser output power of 260 mW at 1.08 μm is obtained and the corresponding optical-to-optical conversion efficiency is 4.2%. Elliptically polarized fundamental laser and linearly polarized Raman laser were observed in an Yb:YAG/Nd:YVO4 CW microchip Raman laser. The experimental results of linearly polarized, multi-wavelength Yb:YAG/Nd:YVO4 CW microchip Raman laser with adjustable frequency separation provide a novel approach for developing potential compact laser sources for Terahertz generation.

  18. The Nd-YAG laser is useful in prevention of dental caries during orthodontic treatment.

    PubMed

    Harazaki, M; Hayakawa, K; Fukui, T; Isshiki, Y; Powell, L G

    2001-05-01

    Plaque control during the course of orthodontic treatment is not an easy task, and dental caries are not an unlikely complication. We examined the possibility of controlling dental caries with Nd-YAG laser irradiation in orthodontic patients. As a preliminary experiment, we used the Nd-YAG laser to irradiate an extracted tooth and then left it to soak in lactic acid. The decay of the tooth was evaluated with a scanning electron microscope (SEM); tooth decay was inhibited by the action of the laser. Twenty patients undergoing orthodontic treatment for early decalcification of the teeth (white spot lesions) were selected, and photographs were taken of their oral cavities. White spot lesions on the four incisors and two canines of the maxilla were traced on tracing paper, and their areas were calculated by computer. Ten of the patients received laser treatment and acidulated phosphate fluoride solution (APF); the other ten acted as the control group. Between 11 and 12 months later, we photographed the oral cavity as we had previously; the white spot lesions were again traced and their areas calculated. The changes in the areas of the white spots of the laser-irradiated and control groups showed the following increases: laser-irradiated group, 1.41 times; controls, 2.87 times. The difference was statistically significant. These results demonstrate that Nd-YAG laser irradiation with application of APF acts as an effective method of caries control during orthodontic treatment.

  19. Implementation of a diode-pumped Nd:YAG laser with quick-change output couplers for high-beam quality 1064 or 532 nm wavelength generation

    NASA Astrophysics Data System (ADS)

    Li, Chun-Hao; Tsai, Ming-Jong

    2009-06-01

    A novel diode-pumped Nd:YAG laser system that employs a fixed active laser medium and a pair of quick-change output couplers on a precision linear stage for 1064 or 532 nm wavelength generation is presented. Fixed elements include a rear mirror, an acousto-optical Q-switch, and a diode-pumped solid-state laser (DPSSL). Movable elements for 1064 nm generation include an intra-cavity aperture as a mode selection element (MSE) and an output coupler. Movable elements for 532 nm generation include an intra-cavity frequency conversion with KTP, an intra-cavity aperture as a mode selection element (MSE), and an output coupler. Under stable operating conditions, the 1064 nm configuration produced a beam propagation ratio of 1.18 whereas the 532 nm configuration produced a beam propagation ratio of 1.1, both of which used an intra-cavity MSE with an aperture of 1.2 mm and a length of 5 mm.

  20. Highly Efficient Nd:yag Lasers for Free-space Optical Communications

    NASA Technical Reports Server (NTRS)

    Sipes, D. L., Jr.

    1985-01-01

    A highly efficient Nd:YAG laser end-pumped by semiconductor lasers as a possible free-space optical communications source is discussed. Because this concept affords high pumping densities, a long absorption length, and excellent mode-matching characteristics, it is estimated that electrical-to-optical efficiencies greater than 5% could be achieved. Several engineering aspects such as resonator size and configuration, pump collecting optics, and thermal effects are also discussed. Finally, possible methods for combining laser-diode pumps to achieve higher output powers are illustrated.

  1. Highly efficient, versatile, self-Q-switched, high-repetition-rate microchip laser generating Ince-Gaussian modes for optical trapping

    NASA Astrophysics Data System (ADS)

    Dong, Jun; He, Yu; Zhou, Xiao; Bai, Shengchuang

    2016-03-01

    Lasers operating in the Ince-Gaussian (IG) mode have potential applications for optical manipulation of microparticles and formation of optical vortices, as well as for optical trapping and optical tweezers. Versatile, self-Q-switched, high-peak-power, high-repetition-rate Cr, Nd:YAG microchip lasers operating in the IG mode are implemented under tilted, tightly focused laser-diode pumping. An average output power of over 2 W is obtained at an absorbed pump power of 6.4 W. The highest optical-to-optical efficiency of 33.2% is achieved at an absorbed pump power of 3.9 W. Laser pulses with a pulse energy of 7.5 μJ, pulse width of 3.5 ns and peak power of over 2 kW are obtained. A repetition rate up to 335 kHz is reached at an absorbed pump power of 5.8 W. Highly efficient, versatile, IG-mode lasers with a high repetition rate and a high peak power ensure a better flexibility in particle manipulation and optical trapping.

  2. Nd:YAG laser-induced morphology change and photothermal conversion of gold nanorods with potential application in the treatment of port-wine stain.

    PubMed

    Xing, Linzhuang; Chen, Bin; Li, Dong; Ma, Jun; Wu, Wenjuan; Wang, Guoxiang

    2017-04-01

    Based on the principle of selective photothermolysis, 1064 nm Nd:YAG laser has great potential for the treatment of deeper and larger PWS. However, the clinical effectiveness is limited because of the weak absorption of blood to Nd:YAG laser. The aim of this study is to obtain the optimal irradiation conditions to effectively destroy vascular lesions with the assistance of PEG-modified gold NRs to enhance blood absorption of Nd:YAG laser. In our study, PEG-modified gold NRs were prepared by the seeded growth method. Gold NRs after exposure to Nd:YAG laser were characterized using absorption spectra and transmission electron microscope images. The tissue-like phantom containing a glass capillary with blood was prepared and exposed to Nd:YAG laser to investigate the laser energy density and pulse number required for blood coagulation before and after the addition of gold NRs in blood. The results show that the millisecond Nd:YAG laser irradiation does not result in the shape change of gold NRs. After injection of gold NRs into the bloodstream (4.60 mg/kg), the absorbance of blood at 1064 nm increased 3.9 times. The threshold energy density for the treatment of PWS decreased by 33% (from 30 to 20 J/cm 2 ). Our findings provide an experimental guide for choosing laser parameters and gold NRs concentration for the treatment of deeper and larger PWS with the assistance of PEG-modified gold NRs in vivo in the future.

  3. The influence of the Q-switched and free-running Er:YAG laser beam characteristics on the ablation of root canal dentine

    NASA Astrophysics Data System (ADS)

    Papagiakoumou, Eirini; Papadopoulos, Dimitrios N.; Khabbaz, Marouan G.; Makropoulou, Mersini I.; Serafetinides, Alexander A.

    2004-06-01

    Laser based dental treatment is attractive to many researchers. Lasers in the 3 μm region, as the Er:YAG, are suitable especially for endodontic applications. In this study a pulsed free-running and Q-switched laser was used for the ablation experiments of root canal dentine. The laser beam was either directly focused on the dental tissue or delivered to it through an infrared fiber. For different spatial beam distributions, energies, number of pulses and both laser operations the quality characteristics (crater's shape formation, ablation efficiency and surface characteristics modification) were evaluated using scanning electron microscopy (SEM). The craters produced, generally, reflect the relevant beam profile. Inhomogeneous spatial beam profiles and short pulse duration result in cracks formation and lower tissue removal efficiency, while longer pulse durations cause hard dentine fusion. Any beam profile modification, due to laser characteristics variations and the specific delivering system properties, is directly reflected in the ablation crater shape and the tissue removal efficiency. Therefore, the laser parameters, as fluence, pulse repetition rate and number of pulses, have to be carefully adjusted in relation to the desirable result.

  4. Lasers for tattoo removal: a review.

    PubMed

    Choudhary, Sonal; Elsaie, Mohamed L; Leiva, Angel; Nouri, Keyvan

    2010-09-01

    Tattoos have existed and have been used as an expression of art by man for ages-and so have the techniques to remove them. Lasers based on the principle of selective photothermolysis are now being used to remove black as well as colorful tattoos with varying successes. The commonly used lasers for tattoo removal are the Q-switched 694-nm ruby laser, the Q-switched 755-nm alexandrite laser, the 1,064-nm Nd:YAG laser, and the 532-nm Nd:YAG laser. Newer techniques and methods are evolving in tattoo removal with lasers. Choosing the right laser for the right tattoo color is necessary for a successful outcome. Our review aims to understand the principles of laser tattoo removal and their applications for different types and colors of tattoos. The review also highlights the complications that can occur such as dyspigmentation, allergic reactions, epidermal debris, ink darkening, and so on, in this process and how to prevent them.

  5. Nd:YAG laser combined with gold nanorods for potential application in port-wine stains: an in vivo study

    NASA Astrophysics Data System (ADS)

    Xing, Linzhuang; Chen, Bin; Li, Dong; Wu, Wenjuan; Wang, Guoxiang

    2017-11-01

    Neodymium:yttrium aluminum garnet (Nd:YAG) lasers exhibit considerable potential for treating deeply buried port-wine stains. However, the application of Nd:YAG laser is limited by its weak absorption to blood. This in vivo study tested the efficacy and safety of utilizing thiol-terminated methoxypolyethylene glycol-modified gold nanorods (PEG-GNRs) to enhance the absorption of Nd:YAG laser to blood. Mouse mesentery and dorsal skinfold chamber (DSC) model were prepared to analyze the thermal responses of a single venule without anatomic structures, as well as blood vessels in the complex structure of the skin, to laser light. After the injection of 0.44 mg of PEG-GNRs, the required threshold density of laser energy for blood coagulation and complete vasoconstriction decreased from 24 to 18 J/cm2 in the mesentery model and from 36 to 31 J/cm2 in the DSC model. The laser pulse required for blood coagulation and complete vasoconstriction decreased by 67.75% and 62.25% on average in the mesentery model and by 67.55% and 54.45% on average in the DSC model. Histological and histochemical results confirmed that PEG-GNRs are nontoxic in the entire mouse life span. Therefore, combining PEG-GNRs with Nd:YAG laser may be effective and safe for inducing an obvious thermal response of blood vessels under low energy density and minimal pulse conditions.

  6. Comparison between a CO2 and a Nd-YAG laser with fibertom system in the treatment of frenulum breve

    NASA Astrophysics Data System (ADS)

    Wozniak, Jakub; Dydowicz, Piotr; Jedrzejczak, Piotr; Opala, Tomasz; Wilczak, Maciej; Pisarska-Krawczyk, Magdalena; Pisarski, Tadeusz

    1997-10-01

    The study showed the treatment of frenulum breve in 24 patients. Nine of them were treated with CO2 and eight ones with Nd:YAG lasers. In seven males the classical surgical procedures were done. All patients were treated in Department of Reproduction, Institute of Gynecology and Obstetrics, Karol Marcinkowski School of Medical Sciences, Poznan, Poland between March 1995 and September 1996. All procedures were collected successful and no serious complications were observed. The all males are still under control in our department. The use of lasersurgery is the safe and efficient method in treatment of frenulum breve. Lasersurgery may be conducting as the out-patient procedure or one-day surgery because of possibility of NLA and local anesthesia. The use of CO2 seems to be the better method than Nd:YAG laser with fibertom system in treatment of frenulum breve because of shorter time of healing. There are no differences between hemostasis achieved by CO2 and Nd:YAG lasers. The incision effect is the same, when CO2 and Nd:YAG laser with fibertom system are used.

  7. Histological and ultrastructural effect of an Nd:YAG pulsed laser beam on dental hard tissue and pulp

    NASA Astrophysics Data System (ADS)

    Vignato, Costantino; Vignato, Giuseppe; Nardelli, Antonella; Baldan, Arianna; Mason, Pier N.

    1994-09-01

    The purpose of this study was to determine histological and ultrastructural modifications produced by an Nd:YAG pulsed laser beam after an in vivo exposure of human molars. Using a Nd:YAG pulsed laser beam delivered by a 600 micrometers optical fiber and concurrent air and water cooling spray, 14 human third molars with artificial first class cavities were exposed at different power levels (6, 7, and 8 W). All the teeth were extracted at different time periods between 10 and 25 days and prepared for histological examination. The results of the histological examination showed no evidence of degeneration or necrosis of the pulpar tissue. Analysis of the dentinal surfaces after exposure demonstrated that the dentinal tubules are completely closed due to the melted dentin. In conclusion a Nd:YAG pulsed laser beam with an air and water cooling spray is safe for treatments of class I decay and no necrosis or degeneration of the pulp was found for laser powers of 6, 7, and 8 W.

  8. In vitro bactericidal effect of Nd:YAG laser on Actinomyces israelii.

    PubMed

    Vescovi, Paolo; Conti, Stefania; Merigo, Elisabetta; Ciociola, Tecla; Polonelli, Luciano; Manfredi, Maddalena; Meleti, Marco; Fornaini, Carlo; Rocca, Jean-Paul; Nammour, S Amir

    2013-07-01

    A bactericidal effect has been reported by the use of near-infrared laser light on both Gram-positive and Gram-negative bacteria. The aim of this study was to evaluate the effect of Nd:YAG laser on Actinomyces israelii, filamentous bacteria causing cervicofacial actinomycosis. Experiments were realized on bacterial cells in saline suspension or streaked on Mueller-Hinton (MH) agar plates with or without India ink. Laser application was performed in Eppendorf tubes with different powers and frequencies for 40 s; bacterial suspensions were then streaked on agar plates and incubated at 35 °C in proper conditions for 5 days before colony enumeration. A reduction of colony number variable from 60.13 to 100 % for powers of 2, 4, and 6 W at 25-50 Hz of frequency was observed in comparison with growth control. For agar plates, laser application was performed with different powers at 50 Hz for 60 s. A growth inhibition was observed after 5 days of incubation on MH plates with powers of 6 W and on MH-ink plates with all applied powers. This preliminary study showed a bactericidal effect caused by Nd:YAG laser application worthy to be evaluated in further experiments in vivo.

  9. Severe unexpected adverse effects after permanent eye makeup and their management by Q-switched Nd:YAG laser.

    PubMed

    Goldman, Alberto; Wollina, Uwe

    2014-01-01

    Permanent makeup is a cosmetic tattoo that is used to enhance one's appearance, and which has become more popular among middle-aged and elderly women. A couple of benefits seem to be associated with permanent tattoos in the elderly: saving time (wake up with makeup); poor eyesight (difficult to apply makeup); and saving money. On the other hand, cosmetic tattoos bear the same risks as other tattoo procedures. We report on fading and unintended hyperpigmentation after tattooing on eyebrows and eyelids, and discuss the scientific and anatomical background behind the possible cause. Dermatochalasis may be a possible risk factor for excessive unwanted discolorations. Q-switched neodymium-doped yttrium aluminum garnet laser is an appropriate and safe therapeutic tool that can manage such adverse effects. Consumer protection warrants better information and education of the risks of cosmetic tattoos - in particular, for elderly women.

  10. Study of structural and optical properties of YAG and Nd:YAG single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kostić, S.; Lazarević, Z.Ž., E-mail: lzorica@yahoo.com; Radojević, V.

    2015-03-15

    Highlights: • Transparent YAG and pale pink Nd:YAG single crystals were produced by the Czochralski technique. • Growth mechanisms and shape of the liquid/solid interface and incorporation of Nd{sup 3+} were studied. • The structure of the crystals was investigated by X-ray diffraction, Raman and IR spectroscopy. • The 15 Raman and 17 IR modes were observed. • The obtained YAG and Nd:YAG single crystals were without core and of good optical quality. - Abstract: Yttrium aluminum garnet (YAG, Y{sub 3}Al{sub 5}O{sub 12}) and yttrium aluminum garnet doped with neodymium (Nd:YAG) single crystals were grown by the Czochralski technique. Themore » critical diameter and the critical rate of rotation were calculated. Suitable polishing and etching solutions were determined. As a result of our experiments, the transparent YAG and pale pink Nd:YAG single crystals were produced. The obtained crystals were studied by X-ray diffraction, Raman and IR spectroscopy. The crystal structure was confirmed by XRD. The 15 Raman and 17 IR modes were observed. The Raman and IR spectroscopy results are in accordance with X-ray diffraction analysis. The obtained YAG and Nd:YAG single crystals were without core and of good optical quality. The absence of a core was confirmed by viewing polished crystal slices. Also, it is important to emphasize that the obtained Nd:YAG single crystal has a concentration of 0.8 wt.% Nd{sup 3+} that is characteristic for laser materials.« less

  11. Arthroscopic contact Nd:YAG laser meniscectomy: basic science, surgical technique, and clinical follow up

    NASA Astrophysics Data System (ADS)

    O'Brien, Stephen J.; Fealy, Stephen V.; Gibney, Mary A.; Miller, Drew V.; Kelly, Anne M.

    1990-06-01

    Recent basic science studies (5) have provided a scientific foundation for the use of the Contact Nd:YAG Laser as an arthroscopic tool for xneniscal resection and acroxnioplasty of the shoulder in a saline medium. This study prospectively evaluates the results of a three stage laboratory investigation as well as the clinical results of arthroscopic xneniscal resection. Fifteen patients with meniscal tears underwent subtotal meniscectomies utilizing a Contact Nd:YAG Laser (Surgical Laser Technologies; Malvern, Pennsylvania) . This was done in a saline medium with an average laser wattage of 25 W, (range 20 W to 30 W). Patients were evaluated postoperatively with reference to subjective and objective parameters at one week and four weeks postoperatively. Patients were evaluated with regard to wound healing, intraarticular swelling and pain. Assessment of technical parameters such as ease of resection, time of resection and instrument access were compared to conventional instruments. All fifteen patients were rated as having clinically excellent results based on pain relief, wound healing and swelling. In addition, although there was increased time with setting up the laser and calibrating it, there was not an increase in time for meniscal resection. Little, or no, secondary "trimmuning" was necessary with the laser. Increased accessibility was noted due to the small size of the laser. Arthroscopic Contact Nd:YAG Laser surgery is a safe and effective tool for menisca]. resection and coagulation in arthroscopic acromioplasties. It provides significant advantages over conventional cutting instruments with regard to accessibility and reduced need for secondary instruments.

  12. 16.7 W 885 nm diode-side-pumped actively Q-switched Nd:YAG/YVO4 intracavity Raman laser at 1176 nm

    NASA Astrophysics Data System (ADS)

    Jiang, Pengbo; Zhang, Guizhong; Liu, Jian; Ding, Xin; Sheng, Quan; Yu, Xuanyi; Sun, Bing; Shi, Rui; Wu, Liang; Wang, Rui; Yao, Jianquan

    2017-11-01

    We proposed and experimentally demonstrated the generation of high-power 1176 nm Stokes wave by frequency shifting of a 885 nm diode-side-pumped Nd:YAG laser using a YVO4 crystal in a Z-shaped cavity configuration. Employing the 885 nm diode-side-pumped scheme and the Z-shaped cavity, for the first time to our knowledge, we realized the thermal management effectively, achieving excellent 1176 nm Stokes wave consequently. With an incident pump power of ~190.0 W, a maximum average output power of 16.7 W was obtained at the pulse repetition frequency of 10 kHz. The pulse duration and spectrum linewidth of the Stokes wave at the maximum output power were 20.3 ns and ~0.08 nm, respectively.

  13. Long-pulsed Nd:YAG laser vs. intense pulsed light for hair removal in dark skin: a randomized controlled trial.

    PubMed

    Ismail, S A

    2012-02-01

    Although several lasers meet the wavelength criteria for selective follicular destruction, the treatment of darker skin phototypes is particularly challenging because absorption of laser energy by the targeted hairs is compromised by an increased concentration of epidermal melanin. To compare satisfaction level, safety and effectiveness of a long-pulsed Nd:YAG laser and intense pulsed light (IPL) in axillary hair reduction in subjects with dark skin. The study design was a within-patient, right-left, assessor-blinded, comparison of long-pulsed Nd:YAG laser and IPL. Fifty women (skin phototypes IV-VI) volunteered for removal of axillary hair. Five sessions at 4- to 6-week intervals were performed. Hair counts at both sides were compared at baseline and 6months after the last session. Final overall evaluations were performed by subjects and clinician at the end of the study. Satisfaction was scored for both devices. Thirty-nine women completed the study. At 6months, the decrease in hair counts on the laser side (79·4%, P<0·001 vs. pretreatment) was significantly (P<0·01) greater than that on the IPL side (54·4%, P<0·01 vs. pretreatment). Only temporary adverse effects were reported at both sides. Higher pain scores and more inflammation were reported with Nd:YAG laser; however, it was preferred by 29 volunteers (74%). Volunteers reported higher satisfaction score with Nd:YAG laser (P<0·01). Dark skin can be treated by both systems safely and effectively; however, long-pulsed (1064 nm) Nd:YAG laser is more effective as reported by both subjects and clinician. © 2011 The Authors. BJD © 2011 British Association of Dermatologists.

  14. A Q-switched Ho:YAG laser assisted nanosecond time-resolved T-jump transient mid-IR absorbance spectroscopy with high sensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Deyong; Li, Yunliang; Li, Hao

    2015-05-15

    Knowledge of dynamical structure of protein is an important clue to understand its biological function in vivo. Temperature-jump (T-jump) time-resolved transient mid-IR absorbance spectroscopy is a powerful tool in elucidating the protein dynamical structures and the folding/unfolding kinetics of proteins in solution. A home-built setup of T-jump time-resolved transient mid-IR absorbance spectroscopy with high sensitivity is developed, which is composed of a Q-switched Cr, Tm, Ho:YAG laser with an output wavelength at 2.09 μm as the T-jump heating source, and a continuous working CO laser tunable from 1580 to 1980 cm{sup −1} as the IR probe. The results demonstrate thatmore » this system has a sensitivity of 1 × 10{sup −4} ΔOD for a single wavelength detection, and 2 × 10{sup −4} ΔOD for spectral detection in amide I′ region, as well as a temporal resolution of 20 ns. Moreover, the data quality coming from the CO laser is comparable to the one using the commercial quantum cascade laser.« less

  15. Single, composite, and ceramic Nd:YAG 946-nm lasers

    NASA Astrophysics Data System (ADS)

    Lan, Rui-Jun; Yang, Guang; Zheng-Ping, Wang

    2015-06-01

    Single, composite crystal and ceramic continuous wave (CW) 946-nm Nd:YAG lasers are demonstrated, respectively. The ceramic laser behaves better than the crystal laser. With 5-mm long ceramic, a CW output power of 1.46 W is generated with an optical conversion efficiency of 13.9%, while the slope efficiency is 17.9%. The optimal ceramic length for a 946-nm laser is also calculated. Project supported by the National Natural Science Foundation of China (Grant No. 61405171), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2012FQ014), and the Science and Technology Program of the Shandong Higher Education Institutions of China (Grant No. J13LJ05).

  16. Laser lipolysis with pulsed 1064 nm Nd:YAG laser for the treatment of gynecomastia.

    PubMed

    Rho, Yong Kwan; Kim, Beom Joon; Kim, Myeung Nam; Kang, Kweon Soo; Han, Hee Jin

    2009-12-01

    Lipolysis using laser is currently widely used for reducing localized fat. A 1064 nm neodynium-doped yttrium aluminum garnet (Nd:YAG) laser lipolysis was investigated in this study to evaluate its efficacy and safety in the treatment of gynecomastia. Five male patients diagnosed with gynecomastia were enrolled in this study, which was designed as a controlled split-breast trial. One breast of each patient was subjected to laser lipolysis and was then compared with a contralateral breast. Photographs and clinical assessments were obtained before the lipolysis, and at the fourth and eighth weeks thereafter. Computed tomography (CT) scan and ultrasound (US) imaging were used to evaluate the changes in the breasts' thicknesses. The mean chest circumference was found to have been significantly reduced 8 weeks after the laser lipolysis. The clinical outcomes of the laser lipolysis were considered favorable by both the patients and clinicians. The CT and US scans showed that the thicknesses of the treated right breasts reduced more than those of the left breasts were 8 weeks after the laser lipolysis. The side effects (pain, edema, and ecchymosis) were minimal and disappeared shortly after they first manifested. Limitations The limitations of this study are that it employed small treatment groups and short-term follow-up. This study demonstrated that gynecomastia can be treated effectively and safely through 1064 nm Nd:YAG laser lipolysis.

  17. Thermo-optical and spectroscopic properties of Nd:YAG fine grain ceramics: towards a better performance than the Nd:YAG laser crystals

    NASA Astrophysics Data System (ADS)

    Santos, W. Q.; Benayas, A.; Jaque, D.; García-Solé, J.; Catunda, T.; Jacinto, C.

    2016-02-01

    In this work, we investigated the thermo-optical properties of highly Nd3+ doped YAG ceramics. The normalized lifetime thermal lens method was used to obtain the fluorescence quantum efficiency (η) versus Nd3+ concentration (N t) and to study the energy transfer microparameters C DD and C DA. The N t dependence of η was compared to the results of the previous literature. The C DA found is very similar to those of the previous literature, while the C DD is very different and higher than C DA, although the main dependence of η with N t is assigned to C DA. The figure of merit (η.N t versus N t) indicated a maximum around 3.8 at.% Nd2O3, which in addition to the very low ds/dT value, evidences the YAG ceramic as an excellent material for an ultra-high-power microchip laser system and for devices requiring minimum pump-induced local heating generation.

  18. Influence of temperature on Yb:YAG/Cr:YAG microchip laser operation

    NASA Astrophysics Data System (ADS)

    Šulc, Jan; Eisenschreiber, Jan; Jelínková, Helena; Nejezchleb, Karel; Å koda, Václav

    2017-02-01

    The goal of this work was an investigation of the temperature influence (in range from 80 up to 320 K) on the laser properties of Yb:YAG/Cr:YAG Q-switched diode-pumped microchip laser. This laser was based on monolith crystal (diameter 3mm) which combines in one piece an active laser part (Yb:YAG crystal, 10 at.% Yb/Y, 3mm long) and saturable absorber (Cr:YAG crystal, 1.36mm long, initial transmission 90% @ 1031 nm). The laser resonator pump mirror (HT for pump radiation, HR for generated radiation) was directly deposited on the Yb:YAG monolith part. The output coupler with reflection 55% for the generated wavelength was placed on the Cr:YAG part. The microchip laser was placed in the temperature controlled cupreous holder inside vacuum chamber of the liquid nitrogen cryostat. For Yb:YAG part longitudinal pulsed pumping (pumping pulse length 2.5 ms, rep-rate 20 Hz, power amplitude 21W) a fibre coupled (core diameter 400 μm, NA= 0:22) laser diode, operating at wavelength 933 nm, was used. The microchip laser mean output power, pulse duration, repetition rate, emission wavelength, and laser beam profile were measured in dependence on temperature. The generated pulse length was in range from 2.2 ns to 1.1 ns (FWHM) with the minimum at 230 K. The single pulse energy was peaking (0.4 mJ) at 180 K. The highest peak power (325 kW) was obtained at 220 K. The highest pulse repetition rate (38 kHz) and output mean power (370mW) was reached for temperature 80 K.

  19. Continuous 1052, 1064 nm dual-wavelength Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Wang, Xiaozhong; Yuan, Haiyang; Wang, Mingshan; Huang, Wencai

    2016-10-01

    Dual-wavelength lasers are usually obtained through balancing the net gain of the two oscillating lines. Competition between transitions 1052 nm, 1061 nm and 1064 nm is utilized to realize a continuous wave 1052 and 1064 nm dual-wavelength Nd:YAG laser firstly in this paper. A specially designed Fabry-Perot band-pass filter is exploited as output coupler to control the thresholds of the oscillating wavelengths. The maximum power of the dual-wavelength laser is 1.6 W and the slope efficiency is about 10%. The power instability of the output dual-wavelength laser is smaller than ±4% in half an hour. The mechanism presented in this paper may provide a new way to obtain dual-wavelength lasers.

  20. Histologic effects of a high-repetition pulsed Nd:YAG laser on intraoral soft tissue

    NASA Astrophysics Data System (ADS)

    White, Joel M.; Goodis, Harold E.; Yessik, Michael J.; Myers, Terry D.

    1995-05-01

    High-repetition rate, fiberoptic-delivered Nd:YAG lasers have increased oral soft tissue laser applications. This study focused on three parameters: the temperature rise occurring in deeper tissue during excision, the histology of thermal coagulation during excision of oral tissue, and effects of accidental exposure to adjacent hard tissue. Thermocouples were placed 5.0 +/- 0.5 mm in bone below fresh bovine gingiva and at the same depth in tongue; temperatures in the underlying tissue were measured during laser excision. An Nd:YAG laser with 100 microsecond(s) pulse duration was used to excise the tissue using a 200 or 300 micrometers diameter fiber in contact with the tissue. The soft tissue was excised using constant force and rate with laser powers of 1.5, 3, 5, and 10 W, and a variety of pulse rates. The tissue was bioprepared, sectioned and stained with hematoxylin and eosin. The width and depth of the tissue removed as well as lateral and deep thermal coagulation were measured in histologic sections with a measuring microscope (10x). Multifactor randomized ANOVA showed that probe diameter and repetition rates were not significant variables (p laser power. Excision began between 2 and 4 W regardless of repetition rate. Excision efficiencies were determined for power and repetition rate. Within the parameters tested in this study, the pulsed fiberoptic-delivered Nd:YAG laser did not cause detrimental temperature rise or deep thermal coagulation in the excision of oral soft tissue.

  1. Quenching And Luminescence Efficiency Of Nd3+ In YAG

    NASA Astrophysics Data System (ADS)

    Lupei, Voicu; Lupei, Aurelia; Georgescu, Serban; Ionescu, Christian I.; Yen, William M.

    1989-05-01

    The effect of the concentration luminescence quenching of the 4F 3/2, level of Nd3+ in YAG on the relative efficiency is presented. Based on the analysis of the decay curves in terms of the energy transfer theory, an analytical expression for the relative luminescence efficiency is obtained. In the low concentration range (up to q,1.5 at % Nd3+), the efficiency linearly decreases when Nd3+ concentration increases. It is also stressed that pairs quenching contribute about 20 % to the nonradiative energy transfer losses. Quantum efficiency of luminescence is an important parameter for the characterization of laser active media; its lowering is due to either multiphonon relaxation or energy transfer processes. The multiphonon non-radiative probability depends on the energy gap between levels, on the phonon energy and temperature; usually at low activator doping it is practically independent on concentration. On the other hand, energy transfer losses show a marked dependence on activator concentration, a fact that severely limits the range of useful con-centration of active centers in some laser crystals. In the YAG:Nd case the minimum energy gap between the Stark components of the 4F,I.) and the next lower level 4F15/2 is of about 4700 cm-1. Since in YAG tree phonons most effdbtively coupled to the Rare pi.th ions have an energy of 1, 700 cm-1, the probability for multiphonon relaxation from the 'F3/, level, even at room temperature, is very low and therefore for low Nd 3+ concentrations quantum efficiency is expected to be close to 1.

  2. Nd:YAG laser combined with gold nanorods for potential application in port-wine stains: an in vivo study.

    PubMed

    Xing, Linzhuang; Chen, Bin; Li, Dong; Wu, Wenjuan; Wang, Guoxiang

    2017-11-01

    Neodymium:yttrium aluminum garnet (Nd:YAG) lasers exhibit considerable potential for treating deeply buried port-wine stains. However, the application of Nd:YAG laser is limited by its weak absorption to blood. This in vivo study tested the efficacy and safety of utilizing thiol-terminated methoxypolyethylene glycol-modified gold nanorods (PEG-GNRs) to enhance the absorption of Nd:YAG laser to blood. Mouse mesentery and dorsal skinfold chamber (DSC) model were prepared to analyze the thermal responses of a single venule without anatomic structures, as well as blood vessels in the complex structure of the skin, to laser light. After the injection of 0.44 mg of PEG-GNRs, the required threshold density of laser energy for blood coagulation and complete vasoconstriction decreased from 24 to 18  J/cm2 in the mesentery model and from 36 to 31  J/cm2 in the DSC model. The laser pulse required for blood coagulation and complete vasoconstriction decreased by 67.75% and 62.25% on average in the mesentery model and by 67.55% and 54.45% on average in the DSC model. Histological and histochemical results confirmed that PEG-GNRs are nontoxic in the entire mouse life span. Therefore, combining PEG-GNRs with Nd:YAG laser may be effective and safe for inducing an obvious thermal response of blood vessels under low energy density and minimal pulse conditions. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  3. Clinical studies of Nd:YAG laser and Chinese herbal medicine in treatment of patients with tinea unguium

    NASA Astrophysics Data System (ADS)

    Dan, Ming-bing; Chen, Nanjin; Chao, Changyuan

    1993-03-01

    Forty-seven patients with tinea unguium and 110 tinea unguium, proven bacteriologically and pathologically, were treated with an Nd:YAG laser and Chinese herbal medicine, after which they were analyzed. All patients were adult men and women. The duration of illness varied from 1 to 10 years. The patients were treated with Nd:YAG laser wavelength 1.06 micrometers and the ending output power 500 w/cm2. The diseased nail was removed by laser scanning or cauterization, charring, gasification and coagulation layer by layer until the nail matrix was exposed, and then it was bandaged with a small amount of Chinese herbal medicine. The cure rate is 80.0%. The tinea unguium infection rate of pars super finialis is very high in cities, accounting for more than 80% of the cases among the population. It influences patients' lives and finger appearance. However, removal of tinea unguium with Nd:YAG laser cauterization and coagulation is simple, painless, and does not require disinfection. Also, the reoccurrence rate is low. Treatment of tinea unguium is intractable. Oral administration of griseofulvin and ketoconazole are not completely satisfactory and hardly persist for a long-term treatment course. Moreover, long-term administration of these drugs might produce serious side effects such as renal injuries, leukopenia, psychosis, etc. Thus, we conclude from this data that Nd:YAG laser and Chinese herbal medicine are an effective treatment for hypertrophic scarand kiloid and valuable for further investigations.

  4. Improvement in Suppression of Pulsed Nd:YAG Laser Light With Iodine Absorption Cells for Filtered Rayleigh Scattering Measurements

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard G.; Buggele, Alvin E

    1997-01-01

    Filtered Rayleigh scattering using iodine absorption cells is an effective technique for obtaining density, temperature, and velocity measurements in high speed confined flows. By tuning a single frequency laser to a strong iodine absorption line, stray scattered laser light can be greatly suppressed. For example, the minimum transmission predicted by an iodine absorption model calculation is less than 10(exp -5) at the 18788.44/cm line using a 200 mm absorption cell containing iodine vapor at 0.46 T. Measurements obtained by other researches using a CW Nd:YAG laser agree with the model calculations. However, measurements made by us and by others using Q-switched, injection-seeded, frequency doubled Nd:YAG lasers only show minimum transmission of about 3 x 10(exp -3). This greatly reduces the applicability of the filtered Rayleigh scattering technique using these lasers in experiments having large amounts of stray scattered laser light. The purposes of the present study are to characterize the spectrum of the excess light transmitted by the iodine cell and to make changes to the laser to reduce the transmitted laser light. Transmission data as a function of laser frequency for the iodine absorption line at 18788.44/cm are presented. A planar mirror Fabry-Perot interferometer was used to characterize the frequency spectrum of the light passed through the cell. Measurements taken with the laser tuned to the center of the iodine absorption line show the light transmitted through the iodine cell to have a component with a bandwidth of about 40 GHz. This is probably caused by other modes in the laser that exist in spite of the single frequency injection beam. A second broadband component was also observed, possibly caused by the laser flash lamps or by fluorescence. An intracavity etalon was installed in the laser oscillator cavity to suppress the 40 GHz component. Measurements taken with the etalon tuned to the injection frequency showed a reduction in the transmitted

  5. Severe unexpected adverse effects after permanent eye makeup and their management by Q-switched Nd:YAG laser

    PubMed Central

    Goldman, Alberto; Wollina, Uwe

    2014-01-01

    Permanent makeup is a cosmetic tattoo that is used to enhance one’s appearance, and which has become more popular among middle-aged and elderly women. A couple of benefits seem to be associated with permanent tattoos in the elderly: saving time (wake up with makeup); poor eyesight (difficult to apply makeup); and saving money. On the other hand, cosmetic tattoos bear the same risks as other tattoo procedures. We report on fading and unintended hyperpigmentation after tattooing on eyebrows and eyelids, and discuss the scientific and anatomical background behind the possible cause. Dermatochalasis may be a possible risk factor for excessive unwanted discolorations. Q-switched neodymium-doped yttrium aluminum garnet laser is an appropriate and safe therapeutic tool that can manage such adverse effects. Consumer protection warrants better information and education of the risks of cosmetic tattoos – in particular, for elderly women. PMID:25143716

  6. A Visualization Method for Corrosion Damage on Aluminum Plates Using an Nd:YAG Pulsed Laser Scanning System

    PubMed Central

    Lee, Inbok; Zhang, Aoqi; Lee, Changgil; Park, Seunghee

    2016-01-01

    This paper proposes a non-contact nondestructive evaluation (NDE) technique that uses laser-induced ultrasonic waves to visualize corrosion damage in aluminum alloy plate structures. The non-contact, pulsed-laser ultrasonic measurement system generates ultrasonic waves using a galvanometer-based Q-switched Nd:YAG laser and measures the ultrasonic waves using a piezoelectric (PZT) sensor. During scanning, a wavefield can be acquired by changing the excitation location of the laser point and measuring waves using the PZT sensor. The corrosion damage can be detected in the wavefield snapshots using the scattering characteristics of the waves that encounter corrosion. The structural damage is visualized by calculating the logarithmic values of the root mean square (RMS), with a weighting parameter to compensate for the attenuation caused by geometrical spreading and dispersion of the waves. An intact specimen is used to conduct a comparison with corrosion at different depths and sizes in other specimens. Both sides of the plate are scanned with the same scanning area to observe the effect of the location where corrosion has formed. The results show that the damage can be successfully visualized for almost all cases using the RMS-based functions, whether it formed on the front or back side. Also, the system is confirmed to have distinguished corroded areas at different depths. PMID:27999252

  7. Antibacterial effects of Nd:YAG laser irradiation within root canal dentin.

    PubMed

    Klinke, T; Klimm, W; Gutknecht, N

    1997-02-01

    The microbial flora of the root canal dentin can cause failures in the conventional treatment of infected root canals if it cannot be sufficiently removed by preparation and chemical disinfection of the root canal. The aim of this study is to examine the bactericidal effects of neodymium:yttriumaluminum garnet (Nd:YAG) laser irradiation in the depth of the root canal dentin. Following sterilization, longitudinal section dentin slices of different thicknesses (100-1000 microns) were inoculated on one side with 4 microliters of a Streptococcus mutans suspension. The opposite sides of the dentin slices were then irradiated four times for 10-20 sec (according to the sample area) using the Nd:YAG laser at a setting of 1.5 W, 15 pps with a 200 microns glass fiber from an angle of about 5 degrees. The bacteria were then removed from the dentin using vibration and plated out on culture dishes that were selective for Streptococcus mutans. When compared with untreated control slices, counting of the colonies revealed a highly significant elimination of bacteria for all thicknesses following laser irradiation. Although the intensity of the laser irradiation decreased after penetration of a 1000-micron dentin slice, the bactericidal mode of action was still effective.

  8. Infrared thermal measurements of laser soft tissue ablation as a function of air/water coolant for Nd:YAG and diode lasers

    NASA Astrophysics Data System (ADS)

    Gekelman, Diana; Yamamoto, Andrew; Oto, Marvin G.; White, Joel M.

    2003-06-01

    The purpose of this investigation was to measure the maximum temperature at the Nd:YAG and Diode lasers fiberoptic tips as a function of air/water coolant, during soft tissue ablation in pig jaws. A pulsed Nd:YAG laser (1064nm) and a Diode laser (800-830 nm) were used varying parameters of power, conditioning or not of the fiber tip, under 4 settings of air/water coolant. The maximum temperature at the fiber tip was measured using an infra-red camera and the interaction of the fiber with the porcine soft tissue was evaluated. A two-factor ANOVA was used for statistical analysis (p<=0.05). Nd:YAG laser interaction with soft tissues produced temperatures levels directly proportional to power increase, but the conditioning of the fiber tip did not influence the temperature rise. On the other hand, conditioning of the fiber tip did influence the temperature rise for Diode laser. The addition of air/water coolant, for both lasers, did not promote temperature rise consistent with cutting and coagulation of porcine soft tissue. Laser parameters affect the fiberoptic surface temperature, and the addition of air/water coolant significantly lowered surface temperature on the fiberoptic tip for all lasers and parameters tested.

  9. Possibilities of Nd: YAG laser utilization in medicine

    NASA Astrophysics Data System (ADS)

    Frank, Frank

    The thermic effect caused by the shrinkage and the drying of the tissues is used for cutting, denaturation, and coagulation of tissues with simultaneous filling of the blood and lymphatic vessels. The surgical Nd:YAG lasers, whose utilization is based on photothermic effects, have 120 W power and are used in neurosurgery, dermatology, gastroenterology, gynecology, urology, lung sickness, and jaw and vessel surgery. The treatment of tumors is particularly interesting because of the total destruction of the ill tissue, the homogeneity of the necrose and the obturation of the blood and lymphatic vessels. In all cases, the laser is a better solution for the patients and allows a shorter stay in hospital.

  10. Inner structure detection by optical tomography technology based on feedback of microchip Nd:YAG lasers.

    PubMed

    Xu, Chunxin; Zhang, Shulian; Tan, Yidong; Zhao, Shijie

    2013-05-20

    We describe a new optical tomography technology based on feedback of microchip Nd:YAG lasers. In the case of feedback light frequency-shifted, light can be magnified by a fact of 10(6) in the Nd:YAG microchip lasers, which makes it possible to realize optical tomography with a greater depth than current optical tomography. The results of the measuring and imaging of kinds of samples are presented, which demonstrate the feasibility and potential of this approach in the inner structure detection. The system has a lateral resolution of ~1 μm, a vertical resolution of 15 μm and a longitudinal scanning range of over 10mm.

  11. An expanded study of long-pulsed 1064 nm Nd:YAG laser treatment of basal cell carcinoma.

    PubMed

    Ortiz, Arisa E; Anderson, R Rox; DiGiorgio, Catherine; Jiang, Shang I Brian; Shafiq, Faiza; Avram, Mathew M

    2018-02-13

    Basal cell carcinoma (BCC) is an indolent form of skin cancer that is rarely life threatening, but can cause significant cosmetic and functional morbidity. Surgical treatments often result in disfiguring scars, while topical therapies frequently result in recurrence. The need for a more effective nonsurgical alternative has led to the investigation of laser treatment of BCC. We have previously conducted a pilot study which showed 100% histologic clearance at high fluences. Treatments were well tolerated with no significant adverse events. The objective of this larger study was to confirm preliminary results that the 1064 nm Nd:YAG laser is a safe and effective method for treating non-facial BCC. This is an IRB-approved, prospective, multi-center study evaluating the safety and efficacy of the 1064 nm Nd:YAG laser for the treatment of BCC on the trunk and extremities. Thirty-three subjects seeking treatment for biopsy-proven BCC that did not meet the criteria for Mohs surgery were recruited. Subjects on current anticoagulation therapy, or with a history of immunosuppression were excluded. Subjects received one treatment with the 1064 nm Nd:YAG laser as follows: 5-6 mm spot, fluence of 125-140 J/cm 2 and a pulse duration of 7-10 ms. Standard excision with 5 mm clinical margins was performed at 30 days after laser treatment to evaluate clinical and histologic clearance of BCC. Standardized photographs and adverse assessments were taken at the baseline visit, immediately after laser treatment and on the day of excision. Thirty-one subjects completed the study. BCC tumors had a 90% (28 of 31 BCC tumors) histologic clearance rate after one treatment with the long-pulsed 1064 nm Nd:YAG laser. Treatments were generally well tolerated without any anesthesia. Immediate side effects included edema and erythema. At 1-month follow-up, some patients had residual crusting. No significant adverse events occurred. The 1064 nm long-pulsed Nd:YAG laser is an

  12. Surface temperature and thermal penetration depth of Nd:YAG laser applied to enamel and dentin

    NASA Astrophysics Data System (ADS)

    White, Joel M.; Neev, Joseph; Goodis, Harold E.; Berns, Michael W.

    1992-06-01

    The determination of the thermal effects of Nd:YAG laser energy on enamel and dentin is critical in understanding the clinical applications of caries removal and surface modification. Recently extracted non-carious third molars were sterilized with gamma irradiation. Calculus and cementum were removed using scaling instruments and 600 grit sand paper. The smear layer produced by sanding was removed with a solution of 0.5 M EDTA (pH 7.4) for two minutes. Enamel and dentin surfaces were exposed to a pulsed Nd:YAG laser with 150 microsecond(s) pulse duration. Laser energy was delivered to the teeth with a 320 micrometers diameter fiberoptic delivery system, for exposure times of 1, 10 and 30 seconds. Laser parameters varied from 0.3 to 3.0 W, 10 to 30 Hz and 30 to 150 mJ/pulse. Other conditions included applications of hot coffee, carbide bur in a dental air-cooled turbine drill and soldering iron. Infrared thermography was used to measure the maximum surface temperature on, and thermal penetration distance into enamel and dentin. Thermographic data were analyzed with a video image processor to determine the diameter of maximum surface temperature and thermal penetration distance of each treatment. Between/within statistical analysis of variance (p Nd:YAG laser. Enamel had lower maximum surface temperatures than dentin for all laser powers and times. The surface temperature ranged from 34 +/- 1 degree(s)C to 110 +/- 4 degree(s)C on enamel and 62 +/- 5 degree(s)C to 392 +/- 82 degree(s)C on dentin. As power and time of exposure increased, both the maximum surface temperature and thermal penetration distance increased. The greatest length of thermal effect on the surface (11.0 +/- 0.9 mm) and thermal penetration distance (4.7 +/- 0.4 mm) recorded were caused by the air-cooled turbine drill on dentin. Surface temperatures were much higher for the Nd:YAG laser applied to enamel

  13. Characteristics of Nd:YAG sculptured contact probes after prolonged laser application.

    PubMed

    Barroso, E G; Haklin, M F; Staren, E D

    1995-01-01

    This study analyzed the functional and structural characteristics of cone, hemisphere, and modified sculptured contact fibers (1,000 microns) after 1 hour of continuous Nd:YAG laser application. Continuous laser application was performed on live porcine tissue using 20 watts of power. The fiber's appearance under a microscope as well as the power output was recorded after 0, 5, 10, 20, 30, 45, and 60 minutes of continuous laser application. (N = 3 for each fiber). At time 0, all fibers transmitted from 49 to 56% of the initial 20 watts (W); power transmission decreased to less than 9% relative power transmission after 20 minutes and then plateaued. The fibers exhibited severe distortion and carbonization of the surface where laser had been applied with evidence of quartz melting and shattering after only 10 minutes. By 30 minutes of laser application, all three fibers were fractured and essentially indistinguishable from one another; moreover, the fibers exhibited similar power transmission, and cutting and coagulation activity, as determined by a panel of independent, double-blinded surgeons. These data lead us to conclude that 1) Nd:YAG contact laser effects result from thermal heating of the fiber tip with subsequent tissue injury, 2) the unique structural configuration of the fiber's sculptured tip are lost after several minutes of laser application without appreciable change in functional integrity, and 3) fibers may be manually fractured allowing for multiple uses without significant sacrifice of power transmission or surgical utility.

  14. Femtosecond-laser inscribed double-cladding waveguides in Nd:YAG crystal: a promising prototype for integrated lasers.

    PubMed

    Liu, Hongliang; Chen, Feng; Vázquez de Aldana, Javier R; Jaque, D

    2013-09-01

    We report on the design and implementation of a prototype of optical waveguides fabricated in Nd:YAG crystals by using femtosecond-laser irradiation. In this prototype, two concentric tubular structures with nearly circular cross sections of different diameters have been inscribed in the Nd:YAG crystals, generating double-cladding waveguides. Under 808 nm optical pumping, waveguide lasers have been realized in the double-cladding structures. Compared with single-cladding waveguides, the concentric tubular structures, benefiting from the large pump area of the outermost cladding, possess both superior laser performance and nearly single-mode beam profile in the inner cladding. Double-cladding waveguides of the same size were fabricated and coated by a thin optical film, and a maximum output power of 384 mW and a slope efficiency of 46.1% were obtained. Since the large diameters of the outer claddings are comparable with those of the optical fibers, this prototype paves a way to construct an integrated single-mode laser system with a direct fiber-waveguide configuration.

  15. Single-mode, All-Solid-State Nd:YAG Laser Pumped UV Converter

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Armstrong, Darrell, J.; Edwards, William C.; Singh, Upendra N.

    2008-01-01

    In this paper, the status of a high-energy, all solid-state Nd:YAG laser pumped nonlinear optics based UV converter development is discussed. The high-energy UV transmitter technology is being developed for ozone sensing applications from space based platforms using differential lidar technique. The goal is to generate greater than 200 mJ/pulse with 10-50 Hz PRF at wavelengths of 308 nm and 320 nm. A diode-pumped, all-solid-state and single longitudinal mode Nd:YAG laser designed to provide conductively cooled operation at 1064 nm has been built and tested. Currently, this pump laser provides an output pulse energy of >1 J/pulse at 50 Hz PRF and a pulsewidth of 22 ns with an electrical-to-optical system efficiency of greater than 7% and a M(sup 2) value of <2. The single frequency UV converter arrangement basically consists of an IR Optical Parametric Oscillator (OPO) and a Sum Frequency Generator (SFG) setups that are pumped by 532 nm wavelength obtained via Second Harmonic Generation (SHG). In this paper, the operation of an inter cavity SFG with CW laser seeding scheme generating 320 nm wavelength is presented. Efforts are underway to improve conversion efficiency of this mJ class UV converter by modifying the spatial beam profile of the pump laser.

  16. Mode-locked Nd:YAG laser with output at 1052, 1061, 1064, and 1074 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badalian, A.A.; Sapondzhian, S.O.; Sarkisian, D.G.

    The picosecond Nd:YAG laser with an output radiation at 1064 nm is currently widely used. However, in connection with many applications, picosecond pulses at other wavelengths are also needed. The present study is, therefore, concerned with the development of a picosecond laser which provides pulses at 1052, 1061.5, and 1073.7 nm. Lasing at 1052, 1061.5, 1064, and 1073.7 nm was achieved by varying the angle between the resonator axis and the normal to the etalon by four degrees. Attention is given to the measurement of the lengths of the ultrashort pulses, and the transverse distribution of the energy in themore » second harmonic for the wavelength 1052 nm. The discretely tunable picosecond Nd:YAG laser described appears to be a promising tool for many research applications. 9 references.« less

  17. Comparison of treatment with an Alexandrite picosecond laser and Nd:YAG nanosecond laser for removing blue-black Chinese eyeliner tattoos.

    PubMed

    Zhang, Mengli; Huang, Yuqing; Lin, Tong; Wu, Qiuju

    2018-02-28

    To retrospectively evaluate the efficacy of an Alexandrite picosecond laser versus Nd:YAG nanosecond laser for removing blue-black eyeliner tattoos which have existed more than 10 years. A total of 40 patients were treated with an Alexandrite picosecond laser in our department from August 2015 to July 2017, with a fluence of 1.96-6.37J/cm 2 , spot size of 2.0-3.6 mm, and pulse width of 750 ps. Another 32 patients were treated with an Nd:YAG nanosecond laser, with a fluence of 2.80-7.00 J/cm 2 , spot size of 3 mm, and pulse width of 5-20 ns. All analysed patients completed at least one treatment and follow-up. The median number of treatment for all the patients was 1 (range, 1-4). After a single session, no difference was found between the two lasers for the eyeliner removal (p > 0.05). For the people who achieved an excellent response of tattoo clearance, there was still no difference between the two groups (p > 0.05). Transient side effects were observed in two groups, but neither group had significant adverse reactions. To treat blue-black Chinese eyeliner tattoos over 10 years, Alexandrite picosecond laser does not provide better clearance than the Nd:YAG nanosecond laser.

  18. Association of Er:YAG and Nd:YAG irradiation for apicoectomy and retrofilling cavity preparation compared to conventional technique: a permeability study

    NASA Astrophysics Data System (ADS)

    Camargo, Selma C. C.; Gavini, Giulio; Eduardo, Carlos d. P.; Aun, Carlos E.; Ribeiro, Luciano W.; Coil, Jeffrey M.

    1999-05-01

    The aim of this research was to evaluate dentin permeability effects at the apical cut surface prepared with Er:YAG laser and irradiated with Nd:YAG laser compared to conventional techniques. 62 extracted human teeth were divided into four groups of 7 teeth each. For Group 1 apicoectomy was performed using high speed handpiece and diamond burs. Group 2 was prepared as group 1 and lased with Nd:YAG (1W,15Hz of energy before retrograde cavity filling). For group 3 Er:YAG* laser irradiation (wavelength of 2.94μm, pulse width of 250-500μs)was used in 400mJ of energy, frequency of 6Hz, on focus mode under distilled water refrigeration and group 4 was performed as group 3 and lased with Nd:YAG (1W, 15Hz of energy before retrograde cavity filling). Permeability was evaluated by the extent of methylene blue dye penetration into the tubules. There were statistically significant differences in permeability between groups. Nd:YAG laser irradiation significantly reduced apical dentin permeability when compared to unlased groups. Er:YAG laser by itself showed higher percentage of dye penetration.

  19. Efficacy and safety of fractional Q-switched 1064-nm neodymium-doped yttrium aluminum garnet laser in the treatment of melasma in Chinese patients.

    PubMed

    Yue, Baishuang; Yang, Qianli; Xu, Jinhua; Lu, Zhong

    2016-11-01

    Melasma is an acquired disorder of symmetrical hyperpigmentation commonly seen in patients with Fitzpatrick skin types III and IV. Various novel therapeutic modalities have emerged to treat melasma. The large-spot low-fluence QS Nd:YAG laser has been widely used in Asia; however, the modality needs to be optimized because of the high recurrence rate. The objective of this study is to explore the clinical efficacy and safety of fractional-mode (Pixel) Q-switched neodymium-doped yttrium aluminum garnet (Nd:YAG) 1064-nm laser for treatment of melasma in Chinese patients. Twenty-seven patients were enrolled and completed all the treatment sessions and the 12-week follow-up. All were treated using the fractional-mode Pixel QS Nd:YAG (1064 nm) laser for eight sessions at a 2-3-week interval. Clinical photographs were taken using the Visia skin analysis imaging system. Two blinded assessors evaluated melasma area and severity index (MASI) scores before and 4 weeks after the final session. Melanin index (MI) and erythema index (EI) was measured before each treatment visit and after the final treatment. The degree of pigmentation and erythema was assessed using a tristimulus color analyzer. Physicians' global assessment (PGA) and patients' self-assessment were taken as the subjective assessments. Wilcoxon signed-rank test was performed to evaluate clinical response. Recurrence rate were also evaluated. Mean MASI scores decreased from 12.84 ± 6.89 to 7.29 ± 4.15 after treatment (p = 0.000). Seventy percent of patients got moderate to good improvements after all the treatment. Mean MI decreased significantly from 56.52 ± 23.35 to 32.75 ± 12.91 (p = 0.000). L value increased from 59.21 ± 2.22 before treatment to 61.60 ± 2.40 (p = 0.000) after therapy. The mean score of PGA was 3.76 ± 0.71, indicating a "moderate" clearance of the lesion. In patients' self-evaluations, 70 % of the patients rated the result as "good" to

  20. Femtosecond laser irradiation on Nd:YAG crystal: Surface ablation and high-spatial-frequency nanograting

    NASA Astrophysics Data System (ADS)

    Ren, Yingying; Zhang, Limu; Romero, Carolina; Vázquez de Aldana, Javier R.; Chen, Feng

    2018-05-01

    In this work, we systematically study the surface modifications of femtosecond (fs) laser irradiated Nd:YAG crystal in stationary focusing case (i.e., the beam focused on the target in the steady focusing geometry) or dynamic scanning case (i.e., focused fs-laser beam scanning over the target material). Micro-sized structures (e.g. micro-craters or lines) are experimentally produced in a large scale of parameters in terms of pulse energy as well as (effective) pulse number. Surface ablation of Nd:YAG surface under both processing cases are investigated, involving the morphological evolution, parameter dependence, the ablation threshold fluences and the incubation factors. Meanwhile, under specific irradiation conditions, periodic surface structures with high-spatial-frequency (<λ/2) can be generated. The obtained period is as short as 157 nm in this work. Investigations on the evolution of nanograting formation and fluence dependence of period are performed. The experimental results obtained under different cases and the comparison between them reveal that incubation effect plays an important role not only in the ablation of Nd:YAG surface but also in the processes of nanograting formation.

  1. Injection seeded, diode pumped regenerative ring Nd:YAG amplifier for spaceborne laser ranging technology development

    NASA Technical Reports Server (NTRS)

    Coyle, D. Barry; Kay, Richard B.; Degnan, John J.; Krebs, Danny J.; Seery, Bernard D.

    1992-01-01

    A small, all solid state, regenerative ring amplifier designed as a prototype for space application is discussed. Novel features include dual side pumping of the Nd:YAG crystal and a triangular ring cavity design which minimizes the number of optical components and losses. The amplifier is relatively small (3 ns round trip time) even though standard optical elements are employed. The ring regeneratively amplifies a 100 ps single pulse by approximately 10(exp 5) at a repetition rate of 10 to 100 Hz. The amplifier is designed to be injection seeded with a pulsed, 100 ps laser diode at 1.06 microns, but another Nd:YAG laser system supplying higher pulse energies was employed for laboratory experiment. This system is a prototype laser oscillator for the Geoscience Laser Ranging System (GLRS) platform. Results on measurements of beam quality, astigmatism, and gain are given.

  2. The efficacy of facial skin cancer treatment with high-energy pulsed neodymium and Nd:YAG lasers.

    PubMed

    Moskalik, Konstantin; Kozlov, Alexander; Demin, Eugeny; Boiko, Ernest

    2009-04-01

    The aim of this study was to assess the curative and cosmetic efficacy of treatment for facial skin cancer using neodymium laser irradiation. Due to the complex anatomy of the area, therapy for facial skin cancer is difficult. Laser irradiation was used for the treatment of 3461 patients with 3624 facial skin cancer lesions of stages T(1-2)N(0)M(0:) 3346 basal cell skin cancers, 188 limited basal cell skin cancer recurrences, and 90 squamous cell skin cancers. Pulsed neodymium (Nd) and Nd:YAG lasers were used as the energy sources. The patients were followed-up from 3 mo to 5 y or more. Patients with basal cell skin cancer treated by irradiation with the Nd laser developed recurrences in 1.8% of cases, and patients treated with the Nd:YAG laser had a recurrence rate of 2.5%. Recurrences following treatment for basal cell skin cancer, and those of squamous cell skin cancer, after irradiation with the Nd laser appeared in 3.7% and 4.4% of patients, respectively. Overall, the frequency of facial skin cancer recurrences after treatment with laser irradiation was 2.1% of all the irradiated tumors. Neodymium laser irradiation is an effective method to treat facial skin cancer of stages T(1-2)N(0)M(0), and results in acceptable cosmetic results.

  3. Comparison of two Nd:YAG laser posterior capsulotomy: cruciate pattern vs circular pattern with vitreous strand cutting

    PubMed Central

    Kim, Jin-Soo; Choi, Jung Yeol; Kwon, Ji-Won; Wee, Won Ryang; Han, Young Keun

    2018-01-01

    AIM To investigate the effects and safety of neodymium: yttrium-aluminium-garnet (Nd:YAG) laser posterior capsulotomy with vitreous strand cutting METHODS A total of 40 eyes of 37 patients with symptomatic posterior capsular opacity (PCO) were included in this prospective randomized study and were randomly subjected to either cruciate pattern or round pattern Nd:YAG posterior capsulotomy with vitreous strand cutting (modified round pattern). The best corrected visual acuity (BCVA), intraocular pressure (IOP), refractive error, endothelial cell count (ECC), anterior segment parameters, including anterior chamber depth (ACD) and anterior chamber angle (ACA) were measured before and 1mo after the laser posterior capsulotomy. RESULTS In both groups, the BCVA improved significantly (P<0.001 for the modified round pattern group, P=0.001 for the cruciate pattern group); the IOP and ECC did not significantly change. The ACD significantly decreased (P<0.001 for both) and the ACA significantly increased (P=0.001 for the modified round pattern group and P=0.034 for the cruciate group). The extent of changes in these parameters was not significantly different between the groups. CONCLUSION Modified round pattern Nd:YAG laser posterior capsulotomy is an effective and safe method for the treatment of PCO. This method significantly changes the ACD and ACA, but the change in refraction is not significant. Modified round pattern Nd:YAG laser posterior capsulotomy can be considered a good alternative procedure in patients with symptomatic PCO. PMID:29487812

  4. Comparison of two Nd:YAG laser posterior capsulotomy: cruciate pattern vs circular pattern with vitreous strand cutting.

    PubMed

    Kim, Jin-Soo; Choi, Jung Yeol; Kwon, Ji-Won; Wee, Won Ryang; Han, Young Keun

    2018-01-01

    To investigate the effects and safety of neodymium: yttrium-aluminium-garnet (Nd:YAG) laser posterior capsulotomy with vitreous strand cutting. A total of 40 eyes of 37 patients with symptomatic posterior capsular opacity (PCO) were included in this prospective randomized study and were randomly subjected to either cruciate pattern or round pattern Nd:YAG posterior capsulotomy with vitreous strand cutting (modified round pattern). The best corrected visual acuity (BCVA), intraocular pressure (IOP), refractive error, endothelial cell count (ECC), anterior segment parameters, including anterior chamber depth (ACD) and anterior chamber angle (ACA) were measured before and 1mo after the laser posterior capsulotomy. In both groups, the BCVA improved significantly ( P <0.001 for the modified round pattern group, P =0.001 for the cruciate pattern group); the IOP and ECC did not significantly change. The ACD significantly decreased ( P <0.001 for both) and the ACA significantly increased ( P =0.001 for the modified round pattern group and P =0.034 for the cruciate group). The extent of changes in these parameters was not significantly different between the groups. Modified round pattern Nd:YAG laser posterior capsulotomy is an effective and safe method for the treatment of PCO. This method significantly changes the ACD and ACA, but the change in refraction is not significant. Modified round pattern Nd:YAG laser posterior capsulotomy can be considered a good alternative procedure in patients with symptomatic PCO.

  5. Intrapulpal temperatures during pulsed Nd:YAG laser treatment of dentin, in vitro.

    PubMed

    White, J M; Fagan, M C; Goodis, H E

    1994-03-01

    Lasers are being used for soft tissue removal, caries removal, and treatment of root surface sensitivity. One concern for laser safety is that the heat produced at the irradiated root surface may diffuse to the pulp causing irreversible pulpal damage. To test this heat diffusion, copper-constantan thermocouples were inserted into the radicular pulp canals of extracted teeth. Simulating direct exposure which might occur during gingival excision, superficial caries removal, and modification of the dentin surface for treatment of root surface sensitivity, a 2 mm2 area of the external root surface was uniformly irradiated with a pulsed Nd:YAG laser using a 320 microns diameter fiber optic contact probe. Power was varied from 0.3 to 3.0 W with frequencies of 10 and 20 Hz. Temperature changes during cavity preparations using a high speed handpiece with air coolant were also recorded. Repeated measures ANOVA (P < or = 0.05) indicated that intrapulpal temperatures increased as a function of power, frequency, and time. Intrapulpal temperatures decreased as remaining dentin thickness (0.2 to 2.0 mm) increased for each laser parameter. Irradiation of dentin using a Nd:YAG pulsed laser, within the treatment times, powers, and frequencies with adequate remaining dentin thickness, as outlined in this paper, should not cause devitalizing intrapulpal temperature rises.

  6. High-brightness-solar-pumped Nd:YAG laser design

    NASA Astrophysics Data System (ADS)

    Lando, Mordechai; Jenkins, David G.; Bernstein, Hana; O'Gallagher, Joseph J.; Winston, Roland; Lewandowski, Allan

    1995-06-01

    We have designed a Nd:YAG laser to be pumped by the High-Flux Solar Furnace (HFSF) at the National Renewable Energy Laboratory. Based on the unique features of the HFSF, the design objectives are high brightness and superior efficiency in primary mirror area utilization. The HFSF has a primary mirror of 11.5 m2 and a 1.85 f-number. With such a high f-number, the target is set off-axis and does not block incoming solar flux. Moreover, large f-number enables concentration which approaches the theoretical limit, and a two- dimensional non-imaging concentrator deposits the solar flux onto the internal part of a 10 mm diameter laser rod. For high brightness, we plan a wide low-loss fundamental mode and a laser rod aperture that suppresses high order modes. To get a fundamental mode, of up to a 2.5 mm waist, we have designed a convex-concave resonator, following well-known g1g2 equals 0.5 design for resonators with internal beam focusing. We have used the edge ray principle to design the concentrator, and ray traced the deposited power inside the laser rod. A 1.3% Nd doping level supports a maximal power deposition inside a 5 mm diameter.

  7. Effects of carbon dioxide, Nd:YAG and carbon dioxide-Nd:YAG combination lasers at high energy densities on synthetic hydroxyaptite.

    PubMed

    Meurman, J H; Voegel, J C; Rauhamaa-Mäkinen, R; Gasser, P; Thomann, J M; Hemmerle, J; Luomanen, M; Paunio, I; Frank, R M

    1992-01-01

    The aim of this study was to determine the crystalline structure and chemical alterations of synthetic hydroxyapatite after irradiation with either CO2, Nd:YAG or CO2-Nd:YAG combination lasers at high energy densities of 500-3,230 J.cm2. Further, dissolution kinetics of the lased material were analysed and compared with those of unlased apatite. Electron microscopy showed that the lased material consisted of two kinds of crystals. From the micrographs their diameters varied from 600 to 1,200 A and from 3,000 to 6,000 A, respectively. The larger crystals showed 6.9-Angström periodic lattice fringes in the transmission electron microscope. alpha-Tricalcium phosphate (TCP) was identified by X-ray diffraction. Selective-area electron diffraction identified the large crystals to consist of tricalcium phosphate while the smaller crystals were probably hydroxyapatite. Assays of dissolution kinetics showed that at these high energy densities lased material dissolved more rapidly than unlased synthetic hydroxyapatite due to the higher solubility of TCP.

  8. Characterization of caries progression on dentin after irradiation with Nd:YAG laser by FTIR spectroscopy and fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Ana, P. A.; Brito, A. M. M.; Zezell, D. M.; Lins, E. C. C. C.

    2015-06-01

    Considering the use of high intensity lasers for preventing dental caries, this blind in vitro study evaluated the compositional and fluorescence effects promoted by Nd:YAG laser (λ=1064 nm) when applied for prevention of progression of dentin caries, in association or not with topical application of acidulated phosphate fluoride (APF). Sixty bovine root dentin slabs were prepared and demineralized by 32h in order to create early caries lesions. After, the slabs were distributed into six experimental groups: G1- untreated and not submitted to a pH-cycling model; G2- untreated and submitted to a pH-cycling model; G3- acidulated phosphate fluoride application (APF); G4- Nd:YAG irradiation (84.9 J/cm2, 60 mJ/pulse); G5- treated with Nd:YAG+APF; G6- treated with APF+Nd:YAG. After treatments, the samples of groups G2 to G6 were submitted to a 4-day pH-cycling model in order to simulate the progression of early caries lesions. All samples were characterized by the micro-attenuated total reflection technique of Fourier transformed infrared spectroscopy (μATR-FTIR), using a diamond crystal, and by a fluorescence imaging system (FIS), in which it was used an illuminating system at λ= 405±30 nm. Demineralization promoted reduction in carbonate and phosphate contents, exposing the organic matter; as well, it was observed a significant reduction of fluorescence intensity. Nd:YAG laser promoted additional chemical changes, and increased the fluorescence intensity even with the development of caries lesions. It was concluded that the compositional changes promoted by Nd:YAG, when associated to APF, are responsible for the reduction of demineralization progression observed on root dentin.

  9. Single session of Nd:YAG laser intracanal irradiation neutralizes endotoxin in dental root dentin

    NASA Astrophysics Data System (ADS)

    Archilla, José R. F.; Moreira, Maria S. N. A.; Miyagi, Sueli P. H.; Bombana, Antônio C.; Gutknecht, Norbert; Marques, Márcia M.

    2012-11-01

    Endotoxins released in the dental root by Gram-negative microorganisms can be neutralized by calcium hydroxide, when this medication is applied inside the root canal for at least seven days. However, several clinical situations demand faster root canal decontamination. Thus, for faster endotoxin neutralization, endodontists are seeking additional treatments. The in vitro study tested whether or not intracanal Nd:YAG laser irradiation would be able to neutralize endotoxin within the human dental root canal in a single session. Twenty-four human teeth with one root were mounted between two chambers. After conventional endodontic treatment, root canals were contaminated with Escherichia coli endotoxin. Then they were irradiated or not (controls) in contact mode with an Nd:YAG laser (1.5 W, 15 Hz, 100 mJ and pulse fluency of 124 J/cm2). The endotoxin activity was measured using the limulus lysate technique and data were statistically compared (p≤0.05). The concentration of active endotoxin measured in the negative control group was significantly lower than that of the positive control group (p=0.04). The concentrations of endotoxin in both irradiated groups were significantly lower than that of the positive control group (p=0.027) and similar to that of negative control group (p=0.20). A single session of intracanal Nd:YAG laser irradiation is able to neutralize endotoxin in the dental root tissues.

  10. Single session of Nd:YAG laser intracanal irradiation neutralizes endotoxin in dental root dentin.

    PubMed

    Archilla, José R F; Moreira, Maria S N A; Miyagi, Sueli P H; Bombana, Antônio C; Gutknecht, Norbert; Marques, Márcia M

    2012-11-01

    Endotoxins released in the dental root by Gram-negative microorganisms can be neutralized by calcium hydroxide, when this medication is applied inside the root canal for at least seven days. However, several clinical situations demand faster root canal decontamination. Thus, for faster endotoxin neutralization, endodontists are seeking additional treatments. The in vitro study tested whether or not intracanal Nd:YAG laser irradiation would be able to neutralize endotoxin within the human dental root canal in a single session. Twenty-four human teeth with one root were mounted between two chambers. After conventional endodontic treatment, root canals were contaminated with Escherichia coli endotoxin. Then they were irradiated or not (controls) in contact mode with an Nd:YAG laser (1.5 W, 15 Hz, 100 mJ and pulse fluency of 124  J/cm2). The endotoxin activity was measured using the limulus lysate technique and data were statistically compared (p≤0.05). The concentration of active endotoxin measured in the negative control group was significantly lower than that of the positive control group (p=0.04). The concentrations of endotoxin in both irradiated groups were significantly lower than that of the positive control group (p=0.027) and similar to that of negative control group (p=0.20). A single session of intracanal Nd:YAG laser irradiation is able to neutralize endotoxin in the dental root tissues.

  11. Are lasers superior to lights in the photoepilation of Fitzpatrick V and VI skin types? - A comparison between Nd:YAG laser and intense pulsed light.

    PubMed

    Bs, Bibilash; Chittoria, Ravi Kumar; Thappa, Devinder Mohan; Mohapatra, Devi Prasad; Mt, Friji; S, Dineshkumar; Pandey, Sandhya

    2017-10-01

    There are no large volume comparative studies available to compare the efficacy of lasers over lights for hair removal in Fitzpatrick V and VI skin types. This study is designed to compare the efficacy of Nd:YAG laser versus IPL in the darker skin types. Thirty-nine patients included in Group-1 were treated with Nd:YAG and 31 in Group-2 with IPL. Both groups received 5 sessions of treatment. The hair counts were assessed using digital photography and manual counting method before and after treatment and the results were analysed. Patient satisfaction scores and pain scores were recorded in each session and compared. Mean hair reduction in the IPL group was 25.70 and Nd:YAG group was 24.12 (95% CI). In the Nd:YAG group, 59% of subjects had burning sensation while the figure was 32.3% in IPL group. Burning was less in IPL group (p < 0.023). There were no statistically significant differences noticed regarding hyperpigmentation in both the groups (p < 0.115). Both Nd:YAG and IPL are equally effective for epilation of the darker skin types. Nd:YAG is associated with mild burning sensation in a significant number of patients. Patient satisfaction scores were comparable in both the groups.

  12. Millijoule-level 20 ps Nd:YAG oscillator-amplifier laser system for investigation of stimulated Raman scattering and optical parametric generation

    NASA Astrophysics Data System (ADS)

    Jelínek, Michal; Kubecek, Vàclav

    2012-06-01

    We report on quasi-continuously pumped oscillator-amplifier laser system. The laser oscillator was based on highly 2.4 at.% doped crystalline Nd:YAG in a bounce geometry and passively mode locked by a semiconductor saturable absorber mirror. Using the cavity dumping technique, 19 ps pulses with the energy of 20 μJ and Gaussian spatial beam profile were generated directly from the oscillator at the repetition rate up to 50 Hz. For applications requiring more energetic pulses the amplification was studied using either an identical highly doped Nd:YAG module in bounce geometry or flashlamp pumped Nd:YAG laser rod. Using compact all diode pumped oscillator-amplifier system, 130 μJ pulses were generated. The flashlamp pumped amplifier with 100 mm long Nd:YAG enabled to obtain higher energy. In the single pass configuration the pulse was amplified to 4.5 mJ, using the double pass configuration the pulse energy was further increased up to 20 mJ with the duration of 25 ps at 10 Hz. The developed laser system was used for investigation of stimulated Raman scattering in Strontium Barium Niobate and optical parametric generation in CdSiP2.

  13. The threshold effects of Nd and Ho: YAG laser-induced surface modification on demineralization of dentin surfaces.

    PubMed

    Kinney, J H; Haupt, D L; Balooch, M; White, J M; Bell, W L; Marshall, S J; Marshall, G W

    1996-06-01

    Laser irradiation alters the structure of dentin and produces surface layers that give the appearance of being more enamel-like. The laser-modified surface may be more resistant to demineralization; hence, many investigators are proposing continued development of the laser as a possible preventive treatment for caries. The purpose of this study was to explore the morphological changes that occur in dentin when treated at threshold illuminance with two clinically interesting laser wavelengths, and to evaluate the effectiveness of the laser-treated surface at resisting demineralization in an acid-gel solution. The Nd: YAG laser (wavelength 1060 nm) produced significant recrystallization and grain growth of the apatite, without the formation of second phases such as beta-tricalcium phosphate. This recrystallized surface layer showed resistance to demineralization; however, the layer did not provide protection of the underlying dentin from demineralization because of cracks and macroscopic voids that allowed for penetration of the demineralizing gel. The Ho: YAG laser-treated surface (wavelength 2100 nm) did not show significant evidence of recrystallization and grain growth, and only a trace amount of an acid-resistant layer was observed with demineralization. It is speculated that the Ho:YAG laser is coupling with absorbed water, and that the heat transfer from the water to the mineral phase is inefficient. For the purposes of creating a demineralization-resistant layer, threshold illuminance with both Nd: YAG and Ho: YAG was ineffective.

  14. Freeze frame analysis on high speed cinematography of Nd/YAG laser explosions in ocular tissues.

    PubMed

    Vernon, S A; Cheng, H

    1986-05-01

    High speed colour cinematography at 400 frames per second was used to photograph both single and train burst Nd/YAG laser applications in ox eyes at threshold energy levels. Measurements of the extent and speed of particle scatter and tissue distortion from the acoustic transient were made from a sequential freeze frame analysis of the films. Particles were observed to travel over 8 mm from the site of Nd/YAG application 20 milliseconds after a single pulse at initial speeds in excess of 20 km/h. The use of train bursts of pulses was seen to increase the number of particles scattered and project the wavefront of particles further from the point of laser application.

  15. Freeze frame analysis on high speed cinematography of Nd/YAG laser explosions in ocular tissues.

    PubMed Central

    Vernon, S A; Cheng, H

    1986-01-01

    High speed colour cinematography at 400 frames per second was used to photograph both single and train burst Nd/YAG laser applications in ox eyes at threshold energy levels. Measurements of the extent and speed of particle scatter and tissue distortion from the acoustic transient were made from a sequential freeze frame analysis of the films. Particles were observed to travel over 8 mm from the site of Nd/YAG application 20 milliseconds after a single pulse at initial speeds in excess of 20 km/h. The use of train bursts of pulses was seen to increase the number of particles scattered and project the wavefront of particles further from the point of laser application. Images PMID:3754458

  16. Effect of frequency-doubling pulse Nd:YAG laser on microbial mutation

    NASA Astrophysics Data System (ADS)

    Zhao, Yansheng; Wang, Luyan; Zheng, Heng; Yin, Hongping; Chen, Xiangdong; Tan, Zheng; Wu, Wutong

    1999-09-01

    We are going to report the mutagenic effect of frequency-doubling pulse Nd:YAG laser (532 nm) on microbe. After irradiation with pulse laser, mutants of abscisic acid producing strains and erythromycin producing strains were obtained, one of which could produce 62.1% and 57% more products than control, respectively. In the study of mutagenization of Spirulina platensis caused by pulse laser, we selected a high photosynthetic strains, with improved productivity of protein and exocellular ploysaccharides of 12% and 246%, respectively. The experimental results indicate that frequency-doubling pulse laser (532 nm) is a potential new type of physical mutagenic factor.

  17. Highly-efficient, frequency-tripled Nd:YAG laser for spaceborne LIDARs

    NASA Astrophysics Data System (ADS)

    Treichel, R.; Hoffmann, H.-D.; Luttmann, J.; Morasch, V.; Nicklaus, K.; Wührer, C.

    2017-11-01

    For a spaceborne lidar a highly reliable, long living and efficient laser source is absolutely essential. Within the frame of the development of a laser source for the backscatter lidar ATLID, which will be flown on EarthCare mission, we setup and tested a predevelopment model of an injection-seeded, diode pumped, frequency tripled, pulsed high power Nd:YAG MOPA laser operating nominally at 100 Hz pulse repetition frequency. We also tested the burst operation mode. The excellent measured performance parameter will be introduced. The oscillator rod is longitudinally pumped from both sides. The oscillator has been operated with three cavity control methods: "Cavity Dither", "Pound-Drever-Hall" and "Adaptive Ramp & Fire". Especially the latter method is very suitable to operate the laser in harsh vibrating environment such in airplanes. The amplifier bases on the InnoSlab design concept. The constant keeping of a moderate fluence in the InnoSlab crystal permits excellent possibilities to scale the pulse energy to several 100 mJ. An innovative pump unit and optics makes the laser performance insensitive to inhomogeneous diode degradation and allows switching of additional redundant diodes. Further key features have been implemented in a FM design concept. The operational lifetime is extended by the implementation of internal redundancies for the most critical parts. The reliability is increased due to the higher margin onto the laser induced damage threshold by a pressurized housing. Additionally air-to-vacuum effects becomes obsolete. A high efficient heat removal concept has been implemented.

  18. Variation on Molecular Structure, Crystallinity, and Optical Properties of Dentin Due to Nd:YAG Laser and Fluoride Aimed at Tooth Erosion Prevention

    PubMed Central

    Freitas, Anderson Z.; Bachmann, Luciano; Benetti, Carolina; Ana, Patricia A.

    2018-01-01

    This in vitro study evaluated the compositional, crystalline, and morphological effects promoted by Nd:YAG laser on root dentin, and verified the effects of laser and topical acidulated phosphate fluoride application (APF-gel) on dentin erosion. 180 bovine dentin slabs were randomized into 4 groups (n = 45): G1–untreated, G2–APF-gel (1.23% F−, 4 min), G3–Nd:YAG (1064 nm, 84.9 J/cm2, 10 Hz), and G4–APF-gel application followed by Nd:YAG laser irradiation. The compositional, crystalline, and morphological effects promoted by treatments were investigated on five samples of each experimental group. The other samples were submitted to a 5-day, 10-day, or 15-day erosive and abrasive demineralization and remineralization cycling in order to create erosion lesions. The area and depth of lesions, as well as the optical attenuation coefficient, were assessed, and all data were statistically analysed (p < 0.05). Nd:YAG laser promoted the reduction of carbonate, the formation of tetracalcium phosphate, as well as the melting and recrystallization of the dentin surface. Laser significantly decreased the area and depth of erosion lesions and altered the optical attenuation coefficient when compared to untreated and APF-gel groups, but the association of APF-gel and laser did not promote an additional effect. Nd:YAG laser irradiation can be a promissory treatment to prevent dentin erosion and the abrasion process. PMID:29389868

  19. Evaluation of Nd:YAG laser on partial oxygen saturation of pulpal blood in anterior hypersensitive teeth.

    PubMed

    Birang, Reza; Kaviani, Naser; Mohammadpour, Mehdi; Abed, Ahmad Moghareh; Gutknecht, Norbert; Mir, Maziar

    2008-07-01

    Dentine hypersensitivity has of long been known to be a common clinical problem in dental practices. Lasers have recently come to play a prominent role in the treatment of this disorder. They might, however, cause dental pulp damage. This study was conducted to evaluate the effect of Nd:yttrium-aluminum-garnet (YAG) laser on partial oxygen saturation of pulpal blood in sensitive anterior teeth. In this clinical trial, 65 hypersensitive teeth were selected and randomly allocated to two groups. The study group involved Nd:YAG laser treatment, while no treatment was employed for the control group. Using a pulse oximetry system, evaluations were preformed of the partial oxygen saturation in the pulpal blood before, immediately after, 1 week after, and 1 month after the treatment. The results were analyzed using the SPSS software and repeated-measures analysis of variance and paired-samples t tests. The mean partial oxygen saturation of the blood was found to be 85.4% in the study group, which was not significantly different from that of the control group. No significant differences were observed in the control group between the means obtained from pretreatment and post-treatment intervals (P > 0.05). The Post-treatment partial oxygen saturation mean rose to 89.3% (P = 0.001) and remained constant throughout the following week after it. However, no significant differences were found between the pretreatment partial oxygen saturation mean and the same measurement 1 month after treatment (P = 0.702). Nd:YAG laser therapy for dentine desensitization of anterior teeth caused no persistent changes in the partial oxygen saturation of pulpal blood. It may, therefore, be concluded that the diffusion of heat induced by the Nd:YAG laser into the pulp within the limit of the desensitization parameters cause no irreversible damages in the dental pulp.

  20. 1.5  kW efficient CW Nd:YAG planar waveguide MOPA laser.

    PubMed

    Wang, Juntao; Wu, Zhenhai; Su, Hua; Zhou, Tangjian; Lei, Jun; Lv, Wenqiang; He, Jing; Xu, Liu; Chen, Yuejian; Wang, Dan; Tong, Lixin; Hu, Hao; Gao, Qingsong; Tang, Chun

    2017-08-15

    In this Letter, we report a 1064 nm continuous wave Nd:YAG planar waveguide laser with an output power of 1544 W based on the structure of the master oscillator power amplification. A fiber laser is used as the master oscillator, and diode laser arrays are used as the pump source of the waveguide laser amplifier. The dimension of the waveguide is 1  mm (T)×10  mm (W)×60  mm (L), and the dual end oblique pumping is adopted with different angles. After a single-pass amplification, the power is scaled from 323 to 1544 W with the pump power of 2480 W, leading to an optical-to-optical efficiency of 49%. At the maximum output, the beam quality M 2 are measured to be 2.8 and 7.0 in the guided direction and the unguided direction, respectively. To the best of our knowledge, this is the highest output power of a Nd:YAG planar waveguide laser to date.

  1. Plasmonic nanoparticles embedded in single crystals synthesized by gold ion implantation for enhanced optical nonlinearity and efficient Q-switched lasing.

    PubMed

    Nie, W J; Zhang, Y X; Yu, H H; Li, R; He, R Y; Dong, N N; Wang, J; Hübner, R; Böttger, R; Zhou, S Q; Amekura, H; Chen, F

    2018-03-01

    We report on the synthesis of embedded gold (Au) nanoparticles (NPs) in Nd:YAG single crystals using ion implantation and subsequent thermal annealing. Both linear and nonlinear absorption of the Nd:YAG crystals have been enhanced significantly due to the embedded Au NPs, which is induced by the surface plasmon resonance (SPR) effect in the visible light wavelength band. Particularly, through a typical Z-scan system excited by a femtosecond laser at 515 nm within the SPR band, the nonlinear absorption coefficients of crystals with Au NPs have been observed to be nearly 5 orders of magnitude larger than that without Au NPs. This giant enhancement of nonlinear absorption properties is correlated with the saturable absorption (SA) effect, which is the basis of passive Q-switching or mode-locking for pulsed laser generation. In addition, the linear and nonlinear absorption enhancement could be tailored by varying the fluence of implanted Au + ions, corresponding to the NP size and concentration modulation. Finally, the Nd:YAG wafer with embedded Au NPs has been applied as a saturable absorber in a Pr:LuLiF 4 crystal laser cavity, and efficient pulsed laser generation at 639 nm has been realized, which presents superior performance to the MoS 2 saturable absorber based system. This work opens an avenue to enhance and modulate the nonlinearities of dielectrics by embedding plasmonic Au NPs for efficient pulsed laser operation.

  2. Plate-shaped Yb:LuPO4 crystal for efficient CW and passively Q-switched microchip lasers

    NASA Astrophysics Data System (ADS)

    Liu, Junhai; Wang, Lisha; Han, Wenjuan; Xu, Honghao; Zhong, Degao; Teng, Bing

    2016-10-01

    It is demonstrated that plate-shaped crystals of Yb:LuPO4, which are grown from spontaneous nucleation by high-temperature solution method, can be utilized to make microchip lasers operating in continuous-wave (CW) or passively Q-switched mode. Efficient operation of such a microchip laser, which is built with a 0.3 mm thick crystal plate in a 2 mm long plane-parallel cavity, is realized at room temperature. With 2.37 W of pump power absorbed, 1.45 W of CW output power is generated with a slope efficiency of 73%. When passively Q-switched with a Cr4+:YAG crystal plate as saturable absorber, the laser produces a maximum pulsed output power of 0.53 W at 1013.3 nm, at a pulse repetition rate of 23.8 kHz, the resulting pulse energy, duration, and peak power are 22.3 μJ, 4.0 ns, and 5.6 kW, respectively.

  3. Effect of pulsed Nd:YAG on dentin morphological changes

    NASA Astrophysics Data System (ADS)

    Moriyama, Eduardo H.; Zangaro, Renato A.; Villaverde, Antonio G. J. B.; Watanabe-Sei, Ii; Munin, Egberto; Sasaki, Luis H.; Otsuka, Daniel K.; Lobo, Paulo D. d. C.; Pacheco, Marcos T. T.; Junior, Durval R.

    2002-06-01

    Infrared lasers have been used for several clinical applications in dentistry, including laser ablation, oral surgeries and dentin hypersensitivity treatment. Despite of dentin low absorption coefficient in the near infrared spectrum, Nd:YAG laser radiation ((lambda) = 1064 nm) is able to melt the human dentin surface resulting in dentin tubules closure that can suppress the symptoms of dentin hypersensitivity pathology. Objectives: This study aims to analyze, through SEM technique, the morphological changes in dentin surface after Nd:YAG laser irradiation using different parameters in energy distribution. Materials and Methods: In this study sixteen human dentin samples were submitted to Nd:YAG laser radiation using a total energy of 900mJ distributed in one, two, three or six laser pulses with energy for each pulse of 900, 450, 300 or 150 mJ respectively. All the samples were irradiated with laser pulse width of 90ms, pulse intervals of 300 ms and spot size area of 0,005 cm2. Results: SEM analysis suggests that differences in energy distribution results in morphological differences even though the same energy is used for all the samples.

  4. A Passively Q-Switched, CW-Pumped Fe:ZnSe Laser

    DTIC Science & Technology

    2014-03-01

    passively Q-switched microchip lasers using semiconductor saturable absorbers,” J. Opt. Soc. Amer. B, Opt. Phys., vol. 16, no. 3, pp. 376–388, Mar. 1999...204 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 50, NO. 3, MARCH 2014 A Passively Q-Switched, CW-Pumped Fe:ZnSe Laser Jonathan W. Evans, Patrick A...Berry, and Kenneth L. Schepler Abstract— We report the demonstration of high-average-power passively Q-switched laser oscillation from Fe2+ ions in zinc

  5. Clinical and bacteriological study of the effect of Nd:YAG laser in gingivitis therapy

    NASA Astrophysics Data System (ADS)

    Colojoara, Carmen; Mavrantoni, Androniki; Miron, Mariana I.

    2000-06-01

    The relationship between dental plaque and gingivitis was verified. Nonspecific gingivitis is an inflammatory process, frequently caused by enzymes and toxins liberate by bacteria form dental plaque. Loose plaque has come under a great deal of investigation because of its role in attachment loss. The current methods used in the treatment of non specific gingivitis encompass the use of antibiotics and conventional surgical techniques. Treating gingivitis with laser energy may further reduce the gingival inflammation and decrease the wound healing time. The lack of correlation between the quantity of dental plaque and the intensity of gingivitis determined us to study the effect of Nd:YAG pulsed laser in reduction of gingival inflammation and wound healing. The aim of this work is to evaluate clinically the anti- inflammatory and wound healing effect of pulsed Nd:YAG laser and to compare the appearance and the levels of the bacteria in the supergingival and subgingival plaque in adolescents with tooth crowding after Nd:YAG laser. The experimental procedure consisted of a clinical and bacteriological study which was undertaken in 20 patients presenting moderate gingivitis. A group of 10 patients was the subject of a bacteriological study and the other group of 10 was used for clinical and histological examination. For each group the clinical criteria of evaluation were: the gingival index, papillary bleeding index, spontaneous aches. Each patient was tested before and after laser exposure or conventional therapy for bacteriological analyses. The results prove that early gingivitis exposure to laser registers a decrease of bacterial colony number and absence of loss of attachment as compared to the application of the conventional treatment. Clinical study has shown that the combination of scaling and root planning with laser therapy is enough to provide improvement in clinical indices and reduction in the number of bacterial colonies.

  6. Clinical development of holmium:YAG laser prostatectomy

    NASA Astrophysics Data System (ADS)

    Kabalin, John N.

    1996-05-01

    Holmium:YAG (Ho:YAG) laser vaporization and resection of the prostate offers advantages in immediate tissue removal compared to the Neodymium:YAG (Nd:YAG) laser. Ongoing development of appropriate operative techniques and Ho:YAG laser delivery systems suitable for endoscopic prostate surgery, including side-firing optical delivery fibers, have facilitated this approach. We performed Ho:YAG laser prostatectomy in 20 human subjects, including 2 men treated immediately prior to radical prostatectomy to assess Ho:YAG laser effects in the prostate. A total of 18 men were treated in an initial clinical trial of Ho:YAG prostatectomy. Estimated excess hyperplastic prostate tissue averaged 24 g (range 5 - 50 g). A mean of 129 kj Ho:YAG laser energy was delivered, combined with a mean of 11 kj Nd:YAG energy to provide supplemental coagulation for hemostasis. We have observed no significant perioperative or late complications. No significant intraoperative changes in hematocrit or serum electrolytes were documented. In addition to providing acute removal of obstructing prostate tissue, Ho:YAG laser resection allowed tissue specimen to be obtained for histologic examination. A total of 16 of 18 patients (90%) underwent successful removal of their urinary catheter and voiding trial within 24 hours following surgery. Immediate improvement in voiding, comparable to classic transurethral electrocautery resection of the prostate (TURP), was reported by all patients. Ho:YAG laser resection of the prostate appears to be a viable surgical technique associated with minimal morbidity and immediate improvement in voiding.

  7. Electro-optic control of a PPLN-unpoled LiNbO3 boundary for low-voltage Q switching of an intracavity frequency-doubled Nd3+:YVO4 laser.

    PubMed

    Torregrosa, A J; Maestre, H; Fernández-Pousa, C R; Pereda, J A; Capmany, J

    2009-08-01

    We present a simple technique to integrate an electro-optic Q switch in a periodically poled bulk lithium niobate crystal bounded by two unpoled (monodomain) regions. The technique exploits the high sensitivity to low applied electric fields of the total internal reflection condition in the periodic poled-unpoled boundary for the small grazing incidence angles associated with the diffraction of a focused Gaussian beam that propagates in the periodically poled region with its axis parallel to the boundary. When the arrangement is placed intracavity to a 1064 nm diode-pumped Nd(3+):YVO(4) laser, it performs simultaneously as a Q switch and as a second-harmonic generator, with Q switching starting at applied voltages as low as 1 V over a 500 microm thickness and with no additional optical elements.

  8. Investigation of continuous wave and pulsed laser performance based on Nd3+:Gd0.6Y1.4SiO5 crystal

    NASA Astrophysics Data System (ADS)

    Feng, Chao; Liu, Zhaojun; Cong, Zhenhua; Shen, Hongbin; Li, Yongfu; Wang, Qingpu; Fang, Jiaxiong; Xu, Xiaodong; Xu, Jun; Zhang, Xingyu

    2015-12-01

    We systematically investigated a laser diode (LD) pumped Nd:GYSO (Nd3+:Gd0.6Y1.4SiO5) laser. The output power of the continuous wave laser was as high as 3.5 W with a slope efficiency of 31.8%. In the Q-switched operation; the laser exhibited dual-wavelengths output (1073.6 nm and 1074.7 nm) synchronously with a Cr4+:YAG as the saturable absorber (SA). Additionally, a passively mode-locked laser was demonstrated using a semiconductor SA mirror with a maximum average output power of 510 mW at a central wavelength of 1074 nm, while the pulse width of the laser was as short as 5 ps. Our experiment proved that the Nd:GYSO mixed crystal was a promising material for a solid-state laser.

  9. Dentin bond strength of an adhesive system irradiated with an Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Ruschel, V. C.; Malta, D. A. M. P.; Monteiro, S., Jr.

    2016-11-01

    The objective of this study was to evaluate the microtensile bond strength of an adhesive system applied to dentin, followed by Nd:YAG laser irradiation. Twenty-two recently extracted third molars were divided into four groups (n  =  5). In the G1 and G2 groups, the adhesive system was applied conventionally, and in groups G3 and G4, the adhesive system was irradiated with an Nd:YAG laser (100 J cm-2). The specimens were stored in distilled water at 37 °C, those in groups G1 and G3 for 24 h, and those in groups G2 and G4 for 3 months. Two teeth from groups G1 and G3 were used for observation of the hybrid layer, using a confocal microscope (n  =  1). The teeth were submitted to a microtensile bond strength test. Analysis of the type of fracture was performed using a stereoscope (40×). The results for microtensile bond strength (MPa) and standard deviation (±SD) were: G1—31.68 (5.14); G2—37.88 (±5.04) G3—35.32 (±8.79) G4—31.53 (±9.01). There were no significant differences among the groups (p  >  0.05). Adhesive failure was predominant in all the groups. The Nd:YAG laser irradiation of the adhesives did not influence dentin bond strength during the periods of 24 h or 3 months of storage in distilled water.

  10. Compressed 6 ps pulse in nonlinear amplification of a Q-switched microchip laser

    NASA Astrophysics Data System (ADS)

    Diao, Ruxin; Liu, Zuosheng; Niu, Fuzeng; Wang, Aimin; Taira, Takunori; Zhang, Zhigang

    2017-02-01

    We present a passively Q-switched Nd:YVO4 crystal microchip laser with a 6 ps pulse width, which is based on SPM-induced spectral broadening and pulse compression. The passive Q-switching is obtained by a semiconductor saturable absorber mirror. The laser’s seed source centered at 1064 nm pulses with a duration of 80 ps, at a repetition rate of 600 kHz corresponding to an average output power of 10 mW. After amplification and compression, the pulses were compressed to 6 ps with a maximum pulse energy of 0.5 µJ.

  11. Short-term clinical results of knee arthroscopy utilizing the 1.44-um Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Maes, Kirk E.; Cummings, Robert S.; Mooar, Pekka A.; Sherk, Henry H.

    1994-09-01

    Two orthopedic surgeons performed 27 knee arthroscopies on 26 patients using the 1.44 micrometers Nd:YAG. Mean patient age was 52.6 years. Six patients had their entire procedure done using the Nd:YAG alone and 20 had their procedures done using both the laser and a conventional arthroscopic side-shaver. Three patients had an additional knee procedure done immediately following their arthroscopy. The mean operative procedure time was 47.25 minutes (SD equals 14.75). The mean energy setting used was 2.2 Joules/Pulse (SD equals 0.89), mean frequency 16.6 Hz (SD equals 6.4), and mean total energy delivered was 9418.7 Joules (SD equals 6032.5). There were 15 patients with a minimum follow-up of at least 4 weeks (mean 8.26 weeks). The final results showed 35% returned to normal baseline, 43% improved from pre-op condition, and 21% were the same as pre-op. None of the patients were worse. The 1.44 micrometers Nd:YAG has a water absorption coefficient nearly identical to the 2.1 micrometers Ho:YAG, which is currently a popular arthroscopic tool. We conclude that the 1.44 micrometers Nd:YAG is an effective alternative for arthroscopic procedures of the knee.

  12. 15 mJ single-frequency Ho:YAG laser resonantly pumped by a 1.9 µm laser diode

    NASA Astrophysics Data System (ADS)

    Na, Q. X.; Gao, C. Q.; Wang, Q.; Zhang, Y. X.; Gao, M. W.; Ye, Q.; Li, Y.

    2016-09-01

    A 2.09 µm injection-seeded single-frequency Ho:YAG laser resonantly pumped by a 1.91 µm laser diode is demonstrated for the first time. The seed laser is a continuous wave (CW) Ho:YAG non-planar ring oscillator. 15.15 mJ single-frequency output energy is obtained from the injection-seeded Q-switched Ho:YAG laser, with a pulse repetition rate of 200 Hz and a pulse width of 109 ns. The half-width of the pulse spectrum is measured to be 4.19 MHz by using the heterodyne technique. The fluctuation of the center frequency of the single-frequency pulses is 1.52 MHz (root mean square (RMS)) in 1 h.

  13. Nd:YAG laser in endodontics: filling-material edge bordering on a root channel laser cavity

    NASA Astrophysics Data System (ADS)

    Belikov, Andrei V.; Sinelnik, Yuri A.; Moroz, Boris T.; Pavlovskaya, Irina V.

    1997-12-01

    For the very first time it is represented a study of filling material edge bordering upon root channel cavity modified with a laser. As a filling material it is used a glass ionomer cement. It is demonstrated that Nd:YAG laser radiation effects on increase of grade of edge bordering on the average of 20 - 30% at temperature rise of no more than 2 - 3 degrees in periodontium area in a period of operation.

  14. Effects of pulsed Nd:YAG laser on tensile bond strength and caries resistance of human enamel.

    PubMed

    Wen, X; Zhang, L; Liu, R; Deng, M; Wang, Y; Liu, L; Nie, X

    2014-01-01

    This study aims to evaluate the effects of pulsed Nd:YAG laser on the tensile bond strength (TBS) of resin to human enamel and caries resistance of human enamel. A total of 201 human premolars were used in this in vitro study. A flat enamel surface greater than 4 × 4 mm in area was prepared on each specimen using a low-speed cutting machine under a water coolant. Twenty-one specimens were divided into seven groups for morphology observations with no treatment, 35% phosphoric acid etching (30 seconds), and laser irradiation (30 seconds) of pulsed Nd:YAG laser with five different laser-parameter combinations. Another 100 specimens were used for TBS testing. They were embedded in self-cured acrylic resin and randomly divided into 10 groups. After enamel surface pretreatments according to the group design, resin was applied. The TBS values were tested using a universal testing machine. The other 80 specimens were randomly divided into eight groups for acid resistance evaluation. Scanning electron microscope (SEM) results showed that the enamel surfaces treated with 1.5 W/20 Hz and 2.0 W/20 Hz showed more etching-like appearance than those with other laser-parameter combinations. The laser-parameter combinations of 1.5 W/15 Hz and 1.5 W/20 Hz were found to be efficient for the TBS test. The mean TBS value of 14.45 ± 1.67 MPa in the laser irradiated group was significantly higher than that in the untreated group (3.48 ± 0.35 MPa) but lower than that in the 35% phosphoric acid group (21.50 ± 3.02 MPa). The highest mean TBS value of 26.64 ± 5.22 MPa was identified in the combination group (laser irradiation and then acid etching). Acid resistance evaluation showed that the pulsed Nd:YAG laser was efficient in preventing enamel demineralization. The SEM results of the fractured enamel surfaces, resin/enamel interfaces, and demineralization depths were consistent with those of the TBS test and the acid resistance evaluation. Pulsed Nd:YAG laser as an enamel surface

  15. Radially polarized and passively Q-switched Yb-doped fiber laser based on intracavity birefringent mode discrimination

    NASA Astrophysics Data System (ADS)

    Sun, Xuehuan; Wu, Yongxiao; Chen, Sanbin; Li, Jianlang

    2018-05-01

    In this paper, we demonstrated a passive Q-switched ytterbium-doped fiber laser with radially polarized beam emission by using a c-cut YVO4 birefringent crystal as the intracavity polarization discriminator, and a Cr4+:YAG crystal as the saturable absorber and output coupler. The maximum averaged laser power reached 3.89 W with a high slope efficiency of 66.5%. The laser pulse had a peak power of 161 W, 160 ns duration, and 151 kHz repetition rate at the absorbed pump power of 6.48 W. Such a radially polarized pulse would facilitate numerous applications.

  16. High Energy, Single-Mode, All-Solid-State Nd:YAG Laser

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Singh, Upendra N.; Hovis, Floyd

    2006-01-01

    In this paper, recent progress made in the design and development of an all-solid-state, single longitudinal mode, conductively cooled Nd:YAG laser operating at 1064 nm wavelength for UV lidar for ozone sensing applications is presented. Currently, this pump laser provides an output pulse energy of greater than 1.1 J/pulse at 50 Hz PRF and a pulsewidth of 22 ns. The spatial profile of the output beam is a rectangular super Gaussian. Electrical-to-optical system efficiency of greater than 7% and a minimum M(sup 2) value of less than 2 have been achieved.

  17. A 1J LD pumped Nd:YAG pulsed laser system

    NASA Astrophysics Data System (ADS)

    Yi, Xue-bin; Wang, Bin; Yang, Feng; Li, Jing; Liu, Ya-Ping; Li, Hui-Jun; Wang, Yu; Chen, Ren

    2017-11-01

    A 1J LD pumped Nd;YAG pulsed laser was designed. The laser uses an oscillation and two-staged amplification structure, and applies diode bar integrated array as side-pump. The TEC temperature control device combing liquid cooling system is organized to control the temperature of the laser system. This study also analyzed the theoretical threshold of working material, the effect of thermal lens and the basic principle of laser amplification. The results showed that the laser system can achieve 1J, 25Hz pulse laser output, and the laser pulse can be output at two width: 6-7ns and 10ns, respectively, and the original beam angle is 1.2mrad. The laser system is characterized by small size, light weight, as well as good stability, which make it being applied in varied fields such as photovoltaic radar platform and etc

  18. Effect of Nd: YAG laser irradiation on surface properties and bond strength of zirconia ceramics.

    PubMed

    Liu, Li; Liu, Suogang; Song, Xiaomeng; Zhu, Qingping; Zhang, Wei

    2015-02-01

    This study investigated the effect of neodymium-doped yttrium aluminum garnet (Nd: YAG) laser irradiation on surface properties and bond strength of zirconia ceramics. Specimens of zirconia ceramic pieces were divided into 11 groups according to surface treatments as follows: one control group (no treatment), one air abrasion group, and nine laser groups (Nd: YAG irradiation). The laser groups were divided by applying with different output power (1, 2, or 3 W) and irradiation time (30, 60, or 90 s). Following surface treatments, the morphological characteristics of ceramic pieces was observed, and the surface roughness was measured. All specimens were bonded to resin cement. After, stored in water for 24 h and additionally aged by thermocycling, the shear bond strength was measured. Dunnett's t test and one-way ANOVA were performed as the statistical analyses for the surface roughness and the shear bond strength, respectively, with α = .05. Rougher surface of the ceramics could be obtained by laser irradiation with higher output power (2 and 3 W). However, cracks and defects were also found on material surface. The shear bond strength of laser groups was not obviously increased, and it was significantly lower than that of air abrasion group. No significant differences of the shear bond strength were found among laser groups treated with different output power or irradiation time. Nd: YAG laser irradiation cannot improve the surface properties of zirconia ceramics and cannot increase the bond strength of the ceramics. Enhancing irradiation power and extending irradiation time cannot induce higher bond strength of the ceramics and may cause material defect.

  19. Healing process of vascular cutting edge using an Nd:YAG laser bipolar dissector.

    PubMed

    Morita, T; Ishida, K; Ookubo, K; Tanaka, K; Nakamura, H; Daikuzono, N

    1995-08-01

    The wound healing process was histopathologically investigated in a rabbit femoral artery (n = 48) after transection using a laser bipolar dissector (LBD, 1064nm the Nd:YAG bipolar contact laser) with laser power of 13W in 0.5-sec pulses. The cutting edges were harvested immediately (n = 6) and at 1 (n = 6), 4 (n = 6), and 7 (n = 6) days, 2 (n = 6), 3 (n = 6), and 4 (n = 6) weeks, and 6 months (n = 6), and evaluated by light microscopy. During the postoperative period, no perforation was seen in the 48 transected sites with the LBD. The healing process after LBD transection was accomplished within 2 weeks by organization of the intraluminal thrombus and by the formation of granulation tissue outside the adventitia of vessels. Characteristic morphological changes after LBD transection were recognized in the tapering area, i.e., cartilage and bone formation. Cartilaginous foci (n = 6) were observed in the media at 4 weeks after transection, and osseous foci (n = 3) in subendothelial space at 6 months. These observations may suggest that the heterotopic cartilaginous and osseous metaplasia of a vessel wall may be a result of the biostimulative effects of the Nd:YAG laser.

  20. Continuous-wave operation of a room-temperature, diode-laser-pumped, 946-nm Nd:YAG laser

    NASA Technical Reports Server (NTRS)

    Fan, T. Y.; Byer, Robert L.

    1987-01-01

    Single-stripe diode-laser-pumped operation of a continuous-wave 946-nm Nd:YAG laser with less than 10-mW threshold has been demonstrated. A slope efficiency of 16 percent near threshold was shown with a projected slope efficiency well above a threshold of 34 percent based on results under Rhodamine 6G dye-laser pumping. Nonlinear crystals for second-harmonic generation of this source were evaluated. KNbO3 and periodically poled LiNbO3 appear to be the most promising.

  1. FT-Raman spectroscopic analysis of Nd:YAG and Er,Cr:YSGG laser irradiated enamel for preventive purposes

    NASA Astrophysics Data System (ADS)

    Ana, P. A.; Kauffmann, C. M. F.; Bachmann, L.; Soares, L. E. S.; Martin, A. A.; Gomes, A. S. L.; Zezell, D. M.

    2014-03-01

    This study evaluated the effect of combining laser irradiation with fluoride on an enamel microstructure and demineralization by FT-Raman spectroscopy (FTRS). Eighty human enamel slabs were divided into eight groups: (G1) untreated; (G2) acidulated phosphate fluoride application (APF—1.23% F- for 4 min) (G3) Nd:YAG irradiation (84.9 J cm-2, 60 mJ/pulse) (G4) Nd:YAG + APF; (G5) APF + Nd:YAG; (G6) Er,Cr:YSGG irradiation (2.8 J cm-2, 12.5 mJ/pulse) (G7) Er,Cr:YSGG + APF; and (G8) APF + Er,Cr:YSGG. After treatment, the samples were submitted to a ten-day pH-cycling model. Chemical changes were determined on the slabs before and after treatment, and also after pH-cycling, by FTRS in the range 400-4000 cm-1. The inorganic bands at 440, 590, 870, 960, 1100 cm-1, and the organic bands at 1270, 1450, 1670, 2945 cm-1 were considered. Demineralization promoted reduction in organic contents; Nd:YAG laser irradiation promoted loss of carbonate and organic content, while Er,Cr:YSGG did not produce significant changes in the relative band intensities of organic and inorganic contents of the enamel. In lased samples, no effects caused by pH-cycling on enamel were observed. In conclusion, laser treatment and its association with fluoride can somehow interfere with the demineralization dynamics, reducing its effects over the enamel.

  2. Experimental investigation of a diode-pumped powerful continuous-wave dual-wavelength Nd:YAG laser at 946 and 938.6 nm

    NASA Astrophysics Data System (ADS)

    Chen, F.; Yu, X.; Yan, R. P.; Li, X. D.; Li, D. J.; Yang, G. L.; Xie, J. J.; Guo, J.

    2013-05-01

    In this paper, a diode-pumped high-power continuous-wave (cw) dual-wavelength Nd:YAG laser at 946 and 938.6 nm is reported. By using an end-pumped structure, comparative experiments indicate that a 5 mm-length Nd:YAG crystal with a Nd3+-doping concentration of 0.3 at.% is favorable for high-power laser operation, and the optimal transmissivity of the output coupler is 9%. As a result, a maximum output power of 17.2 W for a dual-wavelength laser at 946 and 938.6 nm is obtained at an incident pump power of 75.9 W, corresponding to a slope efficiency of 26.5%. To the best of our knowledge, this is the highest output power of a quasi-three-level dual-wavelength laser using a conventional Nd:YAG crystal achieved to date. By using a traveling knife-edge method, the beam quality factor and far-field divergence angle at 17 W power level are estimated to be 4.0 and 6.13 mrad, respectively.

  3. Development of lasers optimized for pumping Ti:Al2O3 lasers

    NASA Technical Reports Server (NTRS)

    Rines, Glen A.; Schwarz, Richard A.

    1994-01-01

    Laboratory demonstrations that were completed included: (1) an all-solid-state, broadly tunable, single-frequency, Ti:Al2O3 master oscillator, and (2) a technique for obtaining 'long' (nominally 100- to 200-ns FWHM) laser pulses from a Q-switched, Nd oscillator at energy levels commensurate with straightforward amplification to the joule level. A diode-laser-pumped, Nd:YLF laser with intracavity SHG was designed, constructed, and evaluated. With this laser greater than 0.9 W of CW, output power at 523.5 nm with 10 W of diode-laser pump power delivered to the Nd:YLF crystal was obtained. With this laser as a pump source, for the first time, to our knowledge, an all solid-state, single frequency, Ti:Al203 laser with sufficient output power to injection seed a high-energy oscillator over a 20-nm bandwidth was demonstrated. The pulsed laser work succeeded in demonstrating pulse-stretching in a Q-switched Nd:YAG oscillator. Pulse energies greater than 50-mJ were obtained in pulses with 100- to 200-ns pulsewidths (FWHM).

  4. High-frequency ultrasound evaluation of cellulite treated with the 1064 nm Nd:YAG laser.

    PubMed

    Bousquet-Rouaud, Regine; Bazan, Marie; Chaintreuil, Jean; Echague, Agustina Vila

    2009-03-01

    To investigate non-invasive laser treatment for cellulite using the 1064 nm Nd:YAG laser and to correlate clinical results with high-frequency skin ultrasound images. Twelve individuals of normal weight were treated on either the left or right posterior side of the thigh with the following parameters: fluence 30 J/cm, 18 mm spot size and dynamic cooling device pulse duration of 30 ms. Three treatments were performed at intervals of 3-4 weeks, and followed-up 1 and 3 months after the last session. Photographs and ultrasound imaging were assessed before each session. The 1064 nm Nd:YAG laser resulted in a tightening of the skin and an improvement in cellulite. No side effects were reported. High-resolution ultrasound imaging showed a significant improvement in dermis density and a reduction of dermis thickness. The method is described in detail in Appendix 1. Infra-red lasers may constitute a safe and effective treatment for cellulite and high-frequency ultrasound imaging provides a quantitative and objective measurement of the treatment efficacy.

  5. Bacterial reduction and dentin microhardness after treatment by a pulsed fiber optic delivered Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Goodis, Harold E.; White, Joel M.; Marshall, Sally J.; Marshall, Grayson W.

    1994-09-01

    The purpose of this study was to determine the microhardness and extent of bacterial reduction of contaminated dentin following pulsed fiber optic delivered Nd:YAG laser exposure. Knoop hardness was determined before and after laser exposures from 0.3 to 3.0 W and repetition rates of 10 to 30 Hz. Half the sections were covered with an organic black pigment before laser exposure to evaluate the use of the pigment as an initiator to increase laser absorbance on the surface. Repeated measures design was employed to determine the microhardness of cut and polished dentin sections. Additional dentin sections were sterilized by gamma irradiation and then inoculated with B. subtilis, E. coli or B. stearothermophilus. The contaminated sections were exposed to contact delivered Nd:YAG laser. Cultures were obtained from the dentin surfaces and the colony forming units counted. Increased microhardness was found for all laser treatments above the physical modification. Bacterial reduction was obtained but complete sterilization was not.

  6. Laser wound: (two) mixed-beam (cw Nd:YAG-PW XeCl) lasing results in mixed injuries

    NASA Astrophysics Data System (ADS)

    Kull, Mart M.; Kruuv, H.; Zeltzer, Gregory L.; Nevorotin, Alexey J.

    1992-08-01

    The POLYCON system has been developed for simultaneous passage of different laser beams to a target. In this study, CW Nd:YAG (9 W/cm2) and XeCl excimer (30 mJ/pulse, 80 nsec, 10 Hz) laser beams were directed via individual fibers to a cone-shaped optical mixer continuously connected at the site of its outlet aperture with a common flexible cable destined for surgery. Contact mode cuts were made on rat liver and biopsy samples taken for electron microscopy. Injuries of mixed type have been found within the same cells, e.g., mitochondrial ballooning detected recently after Nd:YAG and vesiculation of the endoplasmic reticulum which is a feature characteristic of XeCl excimer laser. Taking into consideration satisfactory cutting properties, good hemostatic effect and favorable prognosis for recovery as evidenced by active phagocytosis along with proteolytic digestibility of debris in the wound, mixed beam lasing with the parameters tested can be approved as a perspective kind of surgery. In one study, a low potential for healing after CW mode Nd:YAG lasing has been revealed by specially devised tests. Contrary to that, the PW mode XeCl laser has been shown to provide better conditions for local recovery not incompatible with the impression of other workers. The excimers are also believed to be good cutters but they are mainly utilized in the experiments on tissues with low blood supply, due presumably to inherent poor hemostatic capacity of these tools. The lasers of that kind would undoubtedly be tried for tissues with high levels of blood supply provided hemostasis could be secured at the site of surgery by some means. In this paper, such a means is offered, and it is a mixed beam system in which XeCl excimer laser is used in the capacity of a cutter while Nd:YAG one is operating to stop bleeding with minimal side effects on healing in the post-operation period.

  7. Laser-Tissue Interaction in Tattoo Removal by Q-Switched Lasers

    PubMed Central

    Barua, Shyamanta

    2015-01-01

    Q-switched (QS) lasers are widely considered the gold standard for tattoo removal, with excellent clinical results, impressive predictability, and a good safety profile. The generation of giant pulses by the method of Q-switching is responsible for the unique laser-tissue interaction that is seen in tattoo removal by QS lasers. The QS lasers work by impaction and dissolution of the tattoo pigments. Mechanical fragmentation of the tattoo pigments encased in intracellular lamellated organelles followed by their phagocytosis by macrophages is thought to be the major event in the clearance of pigments by QS lasers. A few novel techniques have been tried in recent times to hasten the clearance of tattoo pigments. PMID:25949016

  8. Laser-tissue interaction in tattoo removal by q-switched lasers.

    PubMed

    Barua, Shyamanta

    2015-01-01

    Q-switched (QS) lasers are widely considered the gold standard for tattoo removal, with excellent clinical results, impressive predictability, and a good safety profile. The generation of giant pulses by the method of Q-switching is responsible for the unique laser-tissue interaction that is seen in tattoo removal by QS lasers. The QS lasers work by impaction and dissolution of the tattoo pigments. Mechanical fragmentation of the tattoo pigments encased in intracellular lamellated organelles followed by their phagocytosis by macrophages is thought to be the major event in the clearance of pigments by QS lasers. A few novel techniques have been tried in recent times to hasten the clearance of tattoo pigments.

  9. Generation of double giant pulses in actively Q-switched lasers

    NASA Astrophysics Data System (ADS)

    Korobeynikova, A. P.; Shaikin, I. A.; Shaykin, A. A.; Koryukin, I. V.; Khazanov, E. A.

    2018-04-01

    Generation of a second giant pulse in a longitudinal mode neighbouring to the longitudinal mode possessing minimal losses is theoretically and experimentally studied in actively Q-switched lasers. A mathematical model is suggested for explaining the giant pulse generation in a laser with multiple longitudinal modes. The model makes allowance for not only a standing, but also a running wave for each cavity mode. Results of numerical simulation and data of experiments with a Nd : YLF laser explain the effect of second giant pulse generation in a neighbouring longitudinal mode. After a giant pulse in the mode with minimal losses is generated, the threshold for the neighbouring longitudinal mode is still exceeded due to the effect of burning holes in the population inversion spatial distribution.

  10. CdS thin films prepared by continuous wave Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Wang, H.; Tenpas, Eric W.; Vuong, Khanh D.; Williams, James A.; Schuesselbauer, E.; Bernstein, R.; Fagan, J. G.; Wang, Xing W.

    1995-08-01

    We report new results on continuous wave Nd:YAG laser deposition of cadmium sulfide thin films. Substrates were soda-lime silicate glass, silica glass, silicon, and copper coated formvar sheets. As deposited films were mixtures of cubic and hexagonal phases, with two different grain sizes. As revealed by SEM micrographs, films had smooth surface morphology. As revealed by TEM analysis, grain sizes were extremely small.

  11. High power high repetition rate VCSEL array side-pumped pulsed blue laser

    NASA Astrophysics Data System (ADS)

    van Leeuwen, Robert; Zhao, Pu; Chen, Tong; Xu, Bing; Watkins, Laurence; Seurin, Jean-Francois; Xu, Guoyang; Miglo, Alexander; Wang, Qing; Ghosh, Chuni

    2013-03-01

    High power, kW-class, 808 nm pump modules based on the vertical-cavity surface-emitting laser (VCSEL) technology were developed for side-pumping of solid-state lasers. Two 1.2 kW VCSEL pump modules were implemented in a dual side-pumped Q-switched Nd:YAG laser operating at 946 nm. The laser output was frequency doubled in a BBO crystal to produce pulsed blue light. With 125 μs pump pulses at a 300 Hz repetition rate 6.1 W QCW 946 nm laser power was produced. The laser power was limited by thermal lensing in the Nd:YAG rod.

  12. Diode-pumped quasi-three-level Nd:GdV O4-Nd:YAG sum-frequency laser at 464 nm

    NASA Astrophysics Data System (ADS)

    Lu, Jie

    2014-04-01

    We report a laser architecture to obtain continuous-wave (cw) blue radiation at 464 nm. A 808 nm diode pumped a Nd:GdV O4 crystal emitting at 912 nm. A part of the pump power was then absorbed by the Nd:GdV O4 crystal. The remainder was used to pump a Nd:YAG crystal emitting at 946 nm. Intracavity sum-frequency mixing at 912 and 946 nm was then realized in a LiB3O5 (LBO) crystal to produce blue radiation. We obtained a cw output power of 1.52 W at 464 nm with a pump laser diode emitting 18.4 W at 808 nm.

  13. CTE:YAG laser applications in dentistry

    NASA Astrophysics Data System (ADS)

    Shori, Ramesh K.; Fried, Daniel; Featherstone, John D. B.; Kokta, Milan R.; Duhn, Clifford W.

    1998-04-01

    The suitability of CTE:YAG laser radiation was investigated for caries preventive laser treatments and caries ablation. Although, CTE:YAG laser radiation at 2.69 micrometer is less highly absorbed by dental hard tissues than other erbium laser wavelengths, namely 2.79 and 2.94 micrometer, it can readily be transmitted through a conventional low hydroxyl fiber with minimal loss. These studies show that reasonable ablation rates and efficiencies are obtainable with both free running (200 microseconds) and Q-switched (100 ns) laser pulses on both dentin and enamel with the application of a relatively thick layer of water to the tissue surface. The water served to remove tissue char and debris from the ablation site leaving a clean crater. However, mechanical forces produced during the energetic ablative process resulted in peripheral mechanical damage to the tissue. Surface dissolution studies on enamel indicated that CTE:YAG radiation inhibited surface dissolution by organic acid by 60 - 70% compared to unirradiated controls, albeit, at fluences an order of magnitude higher than those required for CO2 laser radiation. This layer system may be suitable for dental hard tissue applications if mechanical damage can be mitigated. This work was supported by NIH/NIDR Grants R29DE12091 and R01DE09958.

  14. FIBERTOM Nd:YAG laser in treatment of post-inflammatory structures of lower airways

    NASA Astrophysics Data System (ADS)

    Pirozynski, Michal; Polubiec-Kownacka, Malgorzata; Strojecki, Krzysztof; Blachnio, Antoni; Pawlak, Wieslaw; Krusiewicz, Jan

    1996-03-01

    Introduction of the first laser by Maiman in 1960 led to a rapid increase in the biological application of this device. The first application of laser energy in the treatment of airway pathology was by Strong et al. In 1981 Toty et al described the first use of a neodymium:yttrium-aluminum garnet (Nd:YAG) laser for resection of a bronchial tumor. Subglottic and tracheal stenosis have been treated endoscopically for many years with electrocautery, cryosurgery, by mechanical dilatation, and more recently since the mid 1970s with the carbon-dioxide laser. Early series demonstrated a moderate success rate in about 60% of the cases. Recently a new modification of the Nd:YAG laser was made available by Dornier (formerly MBB - Germany). The FIBERTOMTM is a unique method of controlling the temperature at the tip of the light guide allowing precise, direct contact cutting. Eleven patients (age 35.1 plus or minus 20.7 years) with post inflammatory airway stenoses were treated. Thirty-six procedures were carried out. An immediate dilatation of the narrowed airway was produced in 86%. Endoscopic control carried out 52 weeks after the initial procedure confirmed restoration of the airway lumen in 82%. Clinical improvement was seen in all.

  15. Q-Switching in a Neodymium Laser

    ERIC Educational Resources Information Center

    Holgado, Warein; Sola, Inigo J.; Jarque, Enrique Conejero; Jarabo, Sebastian; Roso, Luis

    2012-01-01

    We present a laboratory experiment for advanced undergraduate or graduate laser-related classes to study the performance of a neodymium laser. In the experiment, the student has to build the neodymium laser using an open cavity. After that, the cavity losses are modulated with an optical chopper located inside, so the Q-switching regime is…

  16. Nd:YAG laser treatment of herpes and aphthous ulcers: a preliminary study

    NASA Astrophysics Data System (ADS)

    Parkins, Frederick M.; O'Toole, Thomas J.; Yancey, John M.

    2000-06-01

    Previously herpes labialis and recurrent aphthous ulcers have not been successfully treated. A preliminary study with a pulsed Nd:YAG laser evaluated the results with a protocol of four minute non-contact exposures for both types of lesions. Most patients experienced relief of symptoms. The progress of herpes lesion was halted and aphthous lesions became desensitized.

  17. Experimental Results from a Laser-Triggered, Gas-Insulated, Spark-Gap Switch

    NASA Astrophysics Data System (ADS)

    Camacho, J. F.; Ruden, E. L.; Domonkos, M. T.

    2017-10-01

    We are performing experiments on a laser-triggered spark-gap switch with the goal of studying the transition from photoionization to current conduction. The discharge of current through the switch is triggered by a focused 532-nm wavelength beam from a Q-switched Nd:YAG laser with a pulse duration of about 10 ns. The trigger pulse is delivered along the longitudinal axis of the switch, and the focal spot can be placed anywhere along the axis of the 5-mm, gas-insulated gap between the switch electrodes. The switch test bed is designed to support a variety of working gases (e.g., Ar, N2) over a range of pressures. Electrical and optical diagnostics are used to measure switch performance as a function of parameters such as charge voltage, trigger pulse energy, insulating gas pressure, and gas species. A Mach-Zehnder imaging interferometer system operating at 532 nm is being used to obtain interferograms of the discharge plasma in the switch. We are also developing a 1064-nm interferometry diagnostic in an attempt to measure plasma free electron and neutral gas density profiles simultaneously within the switch gap. Results from our most recent experiments will be presented.

  18. A comparative clinical and mycological study of Nd-YAG laser versus topical terbinafine in the treatment of onychomycosis.

    PubMed

    El-Tatawy, Rania A; Abd El-Naby, Naeim M; El-Hawary, Esraa E; Talaat, Raghda A Z

    2015-10-01

    Topical treatment of onychomycoses is time consuming, cost-intensive and subject to relatively high failure rates. Light-based devices may be effective treatment modalities. Aim of this work: To compare the clinical and mycological efficacy of Nd-YAG laser versus topical terbinafine in the treatment of onychomycosis. This study included 40 patients with onychomycosis randomized to receive four sessions of Nd-YAG laser (group A) or topical terbinafine twice daily for six months (group B). Follow-up was performed monthly. Mycological examination was done at third and sixth months following the start of treatment. After six months, all patients in group A showed marked improvement, while in group B only 50% of patients showed mild to moderate improvement. In addition, by the end of six months, 80% of the patients in group A showed mycological clearance, while all patients in group B still had positive cultures. Long pulse Nd-YAG laser therapy of onychomycosis is a safe and efficient method for treating onychomycosis. It is especially beneficial in elderly, compromised and hepatopathic patients for whom other alternative treatments could present some risks.

  19. Three-frequency Nd:YAG laser for dental treatment

    NASA Astrophysics Data System (ADS)

    Kadlecová, Martina; Dostálová, Tat'jana; Jelínková, Helena; Němec, Michal; Å ulc, Jan; Fibrich, Martin; Bradna, Pavel; Nejezchleb, Karel; Kapitch, Nickalai; Å koda, Václav

    2018-02-01

    In the last decade, lasers found a number of indications in dentistry. However, there is still one problem: the narrow spectrum of usefulness for individual radiation wavelengths. The aim of our study is to demonstrate the use of a compact three-frequency pulsed Nd-YAG laser for more than one treatment, namely disinfection, coagulation, selective ablation, and soft tissue removal. The laser wavelengths and the maximal energies achieved were the following: 1.06 um, 1.32 um, 1.44 um and 830 mJ, 425 mJ, and 200 mJ, respectively. It has been found that all of the investigated wavelengths exhibit disinfection properties. Moreover, radiation of 1.06 um wavelength removes soft tissue and exhibits also coagulation properties. Radiation of 1.44 um is most useful for selective ablation of initial caries and disinfection, and 1.32 um radiation can be used for precise ablation when higher energy is applied.

  20. Laser-Assisted Liposuction Using the Novel 1,444-nm Nd:YAG Laser for the Treatment of Gynecomastia: A Pilot Study.

    PubMed

    Yoo, Kwang Ho; Bae, Jung Min; Won, Chae Young; Chung, Yu Seok; Goo, Boncheol; Rho, Yong Kwan; Kim, Gyong Moon; Lee, Jongwon; Ahn, Byeong Heon; Kim, Beom Joon

    2015-01-01

    Laser-assisted liposuction (LAL) is currently widely used to reduce localized fat. A novel Nd:YAG laser that uses a wavelength of 1,444 nm, which is better absorbed by fat, has recently been introduced. In this study, we investigated the efficacy of 1,444-nm Nd:YAG LAL for the treatment of gynecomastia. Thirteen Korean male patients (20-28 years, mean age 23 years) diagnosed with gynecomastia were enrolled in this study. All patients were treated by LAL with 1,444-nm Nd:YAG laser (100 µs pulse width, 40 Hz frequency, 300 mJ pulse energy and 12 W power with continuous emission) after tumescent anesthetic infiltration and were then evaluated. Outcome was assessed using the following 4 methods: (1) clinical assessment with photographs obtained before and 12 weeks after LAL treatment, (2) comparison of pre- and postoperative patient chest circumferences, (3) computed tomography (CT) scans to evaluate changes in breast thickness and (4) a patient satisfaction survey at the end of the study. After 12 weeks, most patients (84.5%) showed an improvement greater than 50%. Mean chest circumference was significantly reduced from 109.6 ± 8.2 to 101.2 ± 4.4 cm 12 weeks after LAL (p < 0.001). CT scans showed a significant reduction in mean breast thickness from 22.7 ± 3.2 to 15.6 ± 2.4 mm (p = 0.016). Side effects (pain, edema, numbness and ecchymosis) were minimal and disappeared shortly after the first manifestation. Gynecomastia can be safely treated with 1,444-nm Nd:YAG LAL to reduce fatty tissue and total breast volume. © 2015 S. Karger AG, Basel.

  1. Fractional 532-nm Q-switched Nd:YAG laser: One of the safest novel treatment modality to treat café-au-lait macules.

    PubMed

    Won, Kwang Hee; Lee, Ye Jin; Rhee, Do Young; Chang, Sung Eun

    2016-10-01

    Café-au-lait macules (CALMs) are benign epidermal basilar hyperpigmentations that can be found in an isolated form or in association with neurocutaneous syndromes. Frequency-doubled Q-switched neodymium-doped yttrium aluminum garnet laser (532-nm QSNYL) does not penetrate deeply into the skin and is therefore suitable for epidermal pigmented lesion. Fractional photothermolysis (FP) targets only very small areas of the skin, without injuring adjacent areas of healthy, normal skin. Herein, we report a case of CALMs successfully treated with fractional 532-nm QSNYL. By applying FP to 532-nm QSNYL, we could treat CALMs safely with less downtime as compared to conventional laser treatments and expect more energy delivery for each microscopic hole, thereby allowing higher response rate.

  2. Successful Treatment of Congenital Lymphangioma Circumscriptum of the Vulva with CO2 and Long-Pulsed Nd:YAG Lasers.

    PubMed

    Sasaki, Ryosuke; Negishi, Kei; Akita, Hirotaka; Suzuki, Kayoko; Matsunaga, Kayoko

    2014-01-01

    A 16-year-old girl presented with a 9-year history of vesicles on the vulva. She had initially taken a wait-and-see approach, but required treatment because of bleeding. Histological examination of a biopsied vesicle revealed dilated lymph channels in the upper dermis, suggesting lymphangioma circumscriptum (LC). The challenge for this pathology has been to find a conservative treatment with low morbidity and better results than those reported for surgical excision, which has been the mainstay of therapy. In this case, LC of the vulva was successfully treated using a 10,600-nm CO2 laser and long-pulsed Nd:YAG laser. Use of the 10,600-nm CO2 laser and long-pulsed Nd:YAG laser appeared effective for treating LC.

  3. Effect of CO2 and Nd:YAG Lasers on Shear Bond Strength of Resin Cement to Zirconia Ceramic

    PubMed Central

    Kasraei, Shahin; Yarmohamadi, Ebrahim; Shabani, Amanj

    2015-01-01

    Objectives: Because of poor bond between resin cement and zirconia ceramics, laser surface treatments have been suggested to improve adhesion. The present study evaluated the effect of CO2 and Nd:YAG lasers on the shear bond strength (SBS) of resin cement to zirconia ceramic. Materials and Methods: Ninety zirconia disks (6×2 mm) were randomly divided into six groups of 15. In the control group, no surface treatment was used. In the test groups, laser surface treatment was accomplished using CO2 and Nd:YAG lasers, respectively (groups two and three). Composite resin disks (3×2 mm) were fabricated and cemented to zirconia disks with self-etch resin cement and stored in distilled water for 24 hours. In the test groups four-six, the samples were prepared as in groups one-three and then thermocycled and stored in distilled water for six months. The SBS tests were performed (strain rate of 0.5 mm/min). The fracture modes were observed via stereomicroscopy. Data were analyzed with one and two-way ANOVA, independent t and Tukey’s tests. Results: The SBS values of Nd:YAG group (18.95±3.46MPa) was significantly higher than that of the CO2 group (14.00±1.96MPa), but lower than that of controls (23.35±3.12MPa). After thermocycling and six months of water storage, the SBS of the untreated group (1.80±1.23 MPa) was significantly lower than that of the laser groups. In groups stored for 24 hours, 60% of the failures were adhesive; however, after thermocycling and six months of water storage, 100% of failures were adhesive. Conclusion: Bonding durability of resin cement to zirconia improved with CO2 and Nd:YAG laser surface treatment of zirconia ceramic. PMID:27148380

  4. Effect of CO2 and Nd:YAG Lasers on Shear Bond Strength of Resin Cement to Zirconia Ceramic.

    PubMed

    Kasraei, Shahin; Rezaei-Soufi, Loghman; Yarmohamadi, Ebrahim; Shabani, Amanj

    2015-09-01

    Because of poor bond between resin cement and zirconia ceramics, laser surface treatments have been suggested to improve adhesion. The present study evaluated the effect of CO2 and Nd:YAG lasers on the shear bond strength (SBS) of resin cement to zirconia ceramic. Ninety zirconia disks (6×2 mm) were randomly divided into six groups of 15. In the control group, no surface treatment was used. In the test groups, laser surface treatment was accomplished using CO2 and Nd:YAG lasers, respectively (groups two and three). Composite resin disks (3×2 mm) were fabricated and cemented to zirconia disks with self-etch resin cement and stored in distilled water for 24 hours. In the test groups four-six, the samples were prepared as in groups one-three and then thermocycled and stored in distilled water for six months. The SBS tests were performed (strain rate of 0.5 mm/min). The fracture modes were observed via stereomicroscopy. Data were analyzed with one and two-way ANOVA, independent t and Tukey's tests. The SBS values of Nd:YAG group (18.95±3.46MPa) was significantly higher than that of the CO2 group (14.00±1.96MPa), but lower than that of controls (23.35±3.12MPa). After thermocycling and six months of water storage, the SBS of the untreated group (1.80±1.23 MPa) was significantly lower than that of the laser groups. In groups stored for 24 hours, 60% of the failures were adhesive; however, after thermocycling and six months of water storage, 100% of failures were adhesive. Bonding durability of resin cement to zirconia improved with CO2 and Nd:YAG laser surface treatment of zirconia ceramic.

  5. Development of a 100-W, single-frequency Nd:YAG laser for large-scale cryogenic gravitational wave telescope

    NASA Astrophysics Data System (ADS)

    Takeno, K.; Ozeki, T.; Moriwaki, S.; Mio, N.

    2006-03-01

    We have built a 100-W injection-locked Nd:YAG laser for a Japanese next generation gravitational wave detector. A 2-W master laser was directly injected to a high-power slave laser, which led to coherent radiation of 100 W at 1064 nm.

  6. Energy scaling of passively Q-switched lasers In the Mj-range

    NASA Astrophysics Data System (ADS)

    Neumann, J.; Huss, R.; Kolleck, C.; Kracht, Dietmar

    2017-11-01

    Q-switched lasers systems with ns pulse duration and energies ranging from 1 to more than 100mJ are utilized for many spaceborne applications such as altimetry of planets and moons. Furthermore, Q-switched lasers can be used for distance measurements during docking and landing manoeuvres. To keep the diameter of the beam small over a large distance and to consequently achieve a good lateral resolution, a good beam propagation factor M² is required. Moreover, Q-switched lasers can be used directly on the planetary surface for exploration by laser-induced breakdown spectroscopy or laser desorption mass spectrometry.

  7. Efficient and compact Q-switched green laser using graphene oxide as saturable absorber

    NASA Astrophysics Data System (ADS)

    Chang, Jianhua; Li, Hanhan; Yang, Zhenbo; Yan, Na

    2018-01-01

    A new type of graphene oxide (GO) is successfully prepared using an improved modified Hummers method. The Raman shift, X-ray diffraction (XRD), and scanning electron microscope (SEM) measurement techniques are used to characterize the GO. An efficient and compact Q-switched green laser based on Nd:YVO4/PPLN is demonstrated with a few-layered GO as the saturable absorber. Our experimental results show that such a few-layered GO saturable absorber allows for the generation of a stable Q-switched laser pulse centered at 532.1 nm with a 3 dB spectral bandwidth of 2.78 nm, a repetition rate of 71.4 kHz, and a pulse duration of 98 ns. The maximum average output power of 536 mW is obtained at the absorbed pump power of 5.16 W, corresponding to an optical conversion efficiency of 10.3%.

  8. Sub-20-ps pulses from a passively Q-switched microchip laser at 1  MHz repetition rate.

    PubMed

    Mehner, Eva; Bernard, Benjamin; Giessen, Harald; Kopf, Daniel; Braun, Bernd

    2014-05-15

    We present a 50 μm Nd3+:YVO4 microchip laser that is passively Q-switched by a semiconductor saturable absorber mirror. To reduce handling problems caused by the small crystal dimensions, the 50 μm Nd3+:YVO4 crystal is optically bonded to an undoped YVO4 crystal of a length of about 500 μm. By using a saturable absorber mirror with an effective modulation depth of >10% the system is able to deliver 16 ps pulses at a repetition rate of up to 1.0 MHz. The average laser power is 16 mW at 1064 nm. To our knowledge these are the shortest Q-switched pulses ever reported from a solid-state laser. The limits in terms of pulse width, repetition rate, output power, and system stability are discussed. Additionally, continuous-wave behavior is analyzed. Experimental data is compared with the simulation results of the coupled rate equations.

  9. First demonstration of green and amber LED-pumped Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Tarkashvand, M.; Farahbod, A. H.; Hashemizadeh, S. A.

    2018-05-01

    For the first time, to the best of our knowledge, a green (520 nm) and amber (592 nm) light emitting diode-pumped Nd:YAG laser is reported. The laser oscillator is a stable semi-planar resonator with a total length of 140 mm. The green (amber) light emitting diode-pumped laser produced a 107 (52) µJ laser energy, at 2.6 (0.7) J electrical pump energy. The oscillator operated at a low repetition rate (about 0.1 Hz) in free-running mode, where the laser spikes were initiated about 210–280 µs after the leading edge of the pump pulse. Moreover, the transverse mode profiles of the resonator, pump absorption efficiency, and optical gain have been studied in some detail.

  10. Nonlinear Optical Effects in Liquid Crystals.

    DTIC Science & Technology

    1980-12-10

    susceptibilities Lasers , Nematic, Cholesteric, Flexoelectric, Second-harmonic generation 20M AV*--YRAc rR-r, m, revere i It nf le4U7 siad Idsiully byr...samples are irradiated with laser beam at the fundamental frequency. The laser used in a Q-switched Nd-YAG laser . Sample alignment is achieved either...irradiated with laser beam at the fundamental frequency. The laser used is a Q-switched Nd-YAG laser . Sample alignment is achieved either with rubbing

  11. A compact Nd:YAG DPSSL using diamond-cooled technology

    NASA Astrophysics Data System (ADS)

    Chou, Hsian P.; Wang, Yu-Lin; Hasson, Victor H.; Trainor, Daniel W.

    2005-03-01

    In our diamond-cooled approach, thin disks of laser gain material, e.g., Nd:YAG, are alternated between thin disks of single crystal synthetic diamond whose heat conductivity is over 2000 W/m-°K. The gain medium is face-pumped (along the optical axis) by the output of laser diode arrays. This optical configuration produces heat transfer from Nd:YAG to the diamond, in the direction of the optical axis, and then heat is rapidly conducted radially outward through the diamond to the cooling fluid circulating at the circumference of the diamond/YAG assembly. This geometry effectively removes the heat from the gain material in a manner that permits the attainment of high power output with excellent beam quality.

  12. Modelling of graphene Q-switched Tm lasers

    NASA Astrophysics Data System (ADS)

    Yasukevich, A. S.; Loiko, P.; Gusakova, N. V.; Serres, J. M.; Mateos, X.; Yumashev, K. V.; Kuleshov, N. V.; Petrov, V.; Griebner, U.; Aguiló, M.; Díaz, F.

    2017-04-01

    We report on a model of diode-pumped Thulium lasers passively Q-switched by a graphene saturable absorber applicable also for any other "fast" saturable absorber. It reasonably predicts the dependence of the pulse duration, pulse energy and pulse repetition frequency on the absorbed power. The model is applied in the present work for a Tm: KLuW microchip laser passively Q-switched with a multi-layer graphene saturable absorber. The laser generates 1 W at 1926 nm with a slope efficiency of 39%. Stable 190 ns /4.1 μJ pulses are achieved at a pulse repetition frequency of 260 kHz. The potential of graphene for the generation of few-ns pulses at 2 μm is discussed.

  13. Nd:YAG laser therapy in bronchogenic tumors

    NASA Astrophysics Data System (ADS)

    Benov, Emil; Kostadinov, D.; Mitchev, K.; Vlasov, V.

    1993-03-01

    In 2 years 53 patients with tumors of the tracheobronchial tree have been treated by photocoagulation therapy. Forty cases of them were with different types of cancer and 13 cases with benign lesions of the trachea or bronchi. As a laser source we used an Nd:YAG laser, MBB, Germany. At first the tumor was irradiated with a power of 25 - 30 W, following power up to 90 W. The median energy dose was 3,500 J/sq cm for each patient. The treatment was executed under local anesthesia with a rigid or flexible bronchoscope. In all of the cases with benign tumors we obtained a stable positive effect. In 15 cases of carcinoma we attained a recanalization and restoration of the ventilation to the treated area -- 37.5%. The only complication due to the procedure was the death of one patient with a tracheal cancer and myasthenia gravis. Photocoagulation therapy is an effective method for benign tumors. In cases with carcinoma this therapy is used with palliative purpose -- recanalization of the bronchus. Laser endobronchial therapy shows an immediate positive effect in the treatment of airway obstruction.

  14. Study and development of 22 kW peak power fiber coupled short pulse Nd:YAG laser for cleaning applications

    NASA Astrophysics Data System (ADS)

    Choubey, Ambar; Vishwakarma, S. C.; Vachhani, D. M.; Singh, Ravindra; Misra, Pushkar; Jain, R. K.; Arya, R.; Upadhyaya, B. N.; Oak, S. M.

    2014-11-01

    Free running short pulse Nd:YAG laser of microsecond pulse duration and high peak power has a unique capability to ablate material from the surface without heat propagation into the bulk. Applications of short pulse Nd:YAG lasers include cleaning and restoration of marble, stones, and a variety of metals for conservation. A study on the development of high peak power short pulses from Nd:YAG laser along with its cleaning and conservation applications has been performed. A pulse energy of 1.25 J with 55 μs pulse duration and a maximum peak power of 22 kW has been achieved. Laser beam has an M2 value of ~28 and a pulse-to-pulse stability of ±2.5%. A lower value of M2 means a better beam quality of the laser in multimode operation. A top hat spatial profile of the laser beam was achieved at the exit end of 200 μm core diameter optical fiber, which is desirable for uniform cleaning. This laser system has been evaluated for efficient cleaning of surface contaminations on marble, zircaloy, and inconel materials for conservation with cleaning efficiency as high as 98%. Laser's cleaning quality and efficiency have been analysed by using a microscope, a scanning electron microscope (SEM), and X-ray photon spectroscopy (XPS) measurements.

  15. Comparison of three different laser systems for application in dentistry

    NASA Astrophysics Data System (ADS)

    Mindermann, Anja; Niemz, M. H.; Eisenmann, L.; Loesel, Frieder H.; Bille, Josef F.

    1993-12-01

    Three different laser systems have been investigated according to their possible application in dentistry: a free running and a Q-switched microsecond Ho:YAG laser, a free running microsecond Er:YAG laser and picosecond Nd:YLF laser system consisting of an actively mode locked oscillator and a regenerative amplifier. The experiments focused on the question if lasers can support or maybe replace ordinary drilling machines. For this purpose several cavities were generated with the lasers mentioned above. Their depth and quality were judged by light and electron microscopy. The results of the experiments showed that the picosecond Nd:YLF laser system has advantages compared to other lasers regarding their application in dentistry.

  16. Effect of CO2, Nd:YAG, and Er:YAG lasers on dentin and pulp tissues in dogs

    NASA Astrophysics Data System (ADS)

    Abt, Elliot; Wigdor, Harvey A.; Walsh, Joseph T., Jr.; Brown, Joseph D.

    1992-06-01

    Although there has been interest in lasers in dentistry since lasers were first developed in the early 1960's, this interest was limited until recently. Over the past five years there has been a flurry of interest to find the most effective wavelength and parameters of treatment. With this interest has come clinical and experimental reports. This project is a pilot study to investigate laser effects on dogs teeth. Multiple teeth from 2 dogs (n equals 40) were treated using either a CO2, Nd:YAG, or an Er:YAG laser, or slow-speed rotary instrumentation. One dog died after treatment and was not used in this study. The second dog was sacrificed four days after treatment with the lasers and the teeth were decalcified and processed for light microscopy. The dentin and pulpal tissues were then evaluated for changes from their normal histologic patterns. The purpose of this study was to first determine if the dog would be a good model for in-vivo histologic testing of lasers and second to evaluate the histologic effects of different lasers on dog's teeth. Our findings suggest that each laser causes a different degree of effect to the treated teeth. The specifics of these effects are discussed herein.

  17. Reduction of timing fluctuations in a mode-locked Nd:YAG laser by electronic feedback

    NASA Astrophysics Data System (ADS)

    Rodwell, M. J. W.; Weingarten, K. J.; Bloom, D. M.; Baer, T.; Kolner, B. H.

    1986-10-01

    The timing fluctuations of a mode-locked Nd:YAG laser are reduced by electronic feedback. Timing fluctuations at rates of 50 to 250 Hz are reduced by more than 20 dB, the total timing fluctuations are reduced from 2.9 to 0.9 psec rms, and long-term drift is reduced to 0.5 psec/min. Applications include time-resolved probing experiments and synchronization of lasers.

  18. Dynamical modeling and experiment for an intra-cavity optical parametric oscillator pumped by a Q-switched self-mode-locking laser

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Liu, Nianqiao; Song, Peng; Zhang, Haikun

    2016-11-01

    The rate-equation-based model for the Q-switched mode-locking (QML) intra-cavity OPO (IOPO) is developed, which includes the behavior of the fundamental laser. The intensity fluctuation mechanism of the fundamental laser is first introduced into the dynamics of a mode-locking OPO. In the derived model, the OPO nonlinear conversion is considered as a loss for the fundamental laser and thus the QML signal profile originates from the QML fundamental laser. The rate equations are solved by a digital computer for the case of an IOPO pumped by an electro-optic (EO) Q-switched self-mode-locking fundamental laser. The simulated results for the temporal shape with 20 kHz EO repetition and 11.25 W pump power, the signal average power, the Q-switched pulsewidth and the Q-switched pulse energy are obtained from the rate equations. The signal trace and output power from an EO QML Nd3+: GdVO4/KTA IOPO are experimentally measured. The theoretical values from the rate equations agree with the experimental results well. The developed model explains the behavior, which is helpful to system optimization.

  19. Investigation of the laser pumping power impact on the operating regimes of a laser passively Q-switched by a saturated absorber

    NASA Astrophysics Data System (ADS)

    Benarab, Mustapha; Mokdad, Rabah; Djellout, Hocine; Benfdila, Arezki; Lamrous, Omar; Meyrueis, Patrick

    2011-09-01

    We have adapted the point model for the study of an all-fiber laser doped with Nd3+ and Q-switched by a saturable fiber absorber doped with Cr4+. Calculations of the output power of the 1084 nm laser are considered as a function of the pump power supplied by a 790 nm laser diode. The analysis of the simulation results reveals the existence of pulsed, sinusoidal, and dc operating regimes.

  20. Histologic effects of different technologies for dissection in endoscopic surgery: Nd:YAG laser, high frequency and water-jet.

    PubMed

    Schurr, M O; Wehrmann, M; Kunert, W; Melzer, A; Lirici, M M; Trapp, R; Kanehira, E; Buess, G

    1994-01-01

    Precise cutting combined with reliable coagulation of the margins of the lesion is an important requirement for dissection techniques in endoscopic surgery. These requirements are met by the two most common ancillary energy sources applied for endoscopic dissection today, electrosurgery and "thermal lasers", mostly the Nd:YAG. For the comparison of the histological effects of monopolar and bipolar high frequency with the Nd:YAG laser an experimental in vitro and in vivo study has been performed. In order to evaluate the advantages of non thermal dissection for endoscopic procedures, a water jet cutting system was included in the in vitro study. In parenchymatous tissue the water jet was found to be the least traumatic technique, followed by bipolar high frequency, laser and monopolar high frequency. The water jet was not applicable for intestinal dissection since uncontrolled bloating of the rectal wall with uncontrolled disruption of the tissue layers occurred. A general disadvantage is that secure haemostasis in the line of incision is hard to achieve. In the microscopic comparison of the shape of the incision, the Nd:YAG laser produced the smoothest lesions with well-defined margins. The monopolar technique was more often associated with irregular and sometimes fissured margins. These results were confirmed in the in vivo part of the study (Transanal Endoscopic Microsurgery).

  1. Single-treatment skin tightening by radiofrequency and long-pulsed, 1064-nm Nd: YAG laser compared.

    PubMed

    Key, Douglas J

    2007-02-01

    To compare single-treatment facial skin tightening achieved with the current radiofrequency (RF) protocol with single-treatment tightening achieved with the long-pulsed, 1064-nm Nd:YAG laser. A total of 12 patients were treated with RF energy on one side of the face and laser energy on the other. Results were evaluated on a numerical scale (0-12 with 12 = greatest enhancement) from pre- and posttreatment photographs by a blinded panel. Upper face improvement (posttreatment score minus pretreatment score) was essentially the same on both sides (30.2 and 31.3% improvement for laser and RF, respectively, P=0.89). Lower face improvement was greater in the laser-treated side (35.7 and 23.8% improvement for laser and RF, respectively), but the difference was not significant (P=0.074). Overall face improvement was significantly greater on the laser-treated side (47.5 and 29.8% improvement for laser and RF, respectively, P=0.028). A single high-fluence treatment with the long-pulse 1064-nm Nd:YAG laser may improve skin laxity more than a single treatment with the RF device. Further controlled split-face or very large non-self controlled studies are needed to conclusively determine the relative efficacies of the two technologies. (c) 2007 Wiley-Liss, Inc.

  2. Nd:YAG 1.44 laser ablation of human cartilage

    NASA Astrophysics Data System (ADS)

    Cummings, Robert S.; Prodoehl, John A.; Rhodes, Anthony L.; Black, Johnathan D.; Sherk, Henry H.

    1993-07-01

    This study determined the effectiveness of a Neodymium:YAG 1.44 micrometers wavelength laser on human cartilage. This wavelength is strongly absorbed by water. Cadaveric meniscal fibrocartilage and articular hyaline cartilage were harvested and placed in normal saline during the study. A 600 micrometers quartz fiber was applied perpendicularly to the tissues with a force of 0.098 N. Quantitative measurements were then made of the ablation rate as a function of fluence. The laser energy was delivered at a constant repetition rate of 5 Hz., 650 microsecond(s) pulsewidth, and energy levels ranging from 0.5 joules to 2.0 joules. Following the ablation of the tissue, the specimens were fixed in formalin for histologic evaluation. The results of the study indicate that the ablation rate is 0.03 mm/mj/mm2 for hyaline cartilage and fibrocartilage. Fibrocartilage was cut at approximately the same rate as hyaline cartilage. There was a threshold fluence projected to be 987 mj/mm2 for hyaline cartilage and fibrocartilage. Our results indicate that the pulsed Nd:YAG laser operating at 1.44 micrometers has a threshold fluence above which it will ablate human cartilage, and that its ablation rate is directly proportional to fluence over the range of parameters tested. Fibrocartilage and hyaline cartilage demonstrated similar threshold fluence and ablation rates which is related to the high water content of these tissues.

  3. Wavelength-tunable Q-switched Raman fiber laser

    NASA Astrophysics Data System (ADS)

    Ye, Jun; Xu, Jiangming; Zhang, Hanwei; Wu, Jian; Zhou, Pu

    2018-03-01

    In this presentation, a wavelength-tunable Q-switched Raman fiber laser is presented for the first time, which has a backward pumped configuration, including a section of 3 km passive fiber, a homemade tunable pump source and a highly reflective fiber loop mirror. The output wavelength of the Raman fiber laser can be tuned continuously with ~44 nm range via adjusting the pump wavelength. By inserting an acoustic-optical modulator, the Q-value of the cavity can be switched between high and low level. As a result, pulsed output with a repetition rate of 500 kHz and duration time of 60-80 ns is achieved.

  4. Effects of different black mediators on the shear strength of orthodontic bracket to the enamel treated with Nd-Yag laser

    NASA Astrophysics Data System (ADS)

    Huang, Shun-Te; Lin, I.-Shueng; Tsai, Chi-Cheng

    1995-04-01

    The Nd:YAG laser has ablation, crack, and crater effects on the dental enamel through black mediators which are very similar to the acid etching effects of phosphoric acid. This study was designed for searching how the different black mediators influence the shear strengths of the brackets bound to the enamel surfaces which were treated with the Nd:YAG laser. 90 bovine enamels divided into 5 groups were painted with 5 kinds of black mediators including Chinese ink, oil ink, black ball pen, water ink and black transfer paper. The enamel surfaces painted with black mediators were then radiated by Nd:YAG laser (ADL; American Dental Laser 300dl, power: 20 pps, 87.5 mj). Orthodontic brackets were bonded to the radiated surfaces. Then the shear strengths of the brackets to the enamels were measured by Instron. The results showed that the Chinese ink group and oil ink group has the strongest shear strength, ball pen group and water ink group showed the second strength, and the transfer paper group has the lowest shear strength. In addition, scanning electronic microscope also was used to observe the topographic changes of the enamel surfaces induced by the laser ablation.

  5. LD-pumped actively Q-switched c-cut Nd:GdVO4 self-Raman laser operating at 1166 and 1176 nm

    NASA Astrophysics Data System (ADS)

    Sun, Xinzhi; Zhang, Xihe; Li, Shutao; Dong, Yuan

    2017-12-01

    A laser diode pumped actively Q-switched c-cut Nd:GdVO4 self-Raman laser is experimentally investigated. Simultaneous pulse outputs at 1166 nm and 1176 nm corresponding to the Raman shifts of 807 and 882 cm-1 are acquired. At the pulse repetition frequency (PRF) of 20 kHz, the maximum output power is 103 mW at 1166 nm with the incident pump power of 2.31 W, while 1176 nm output power reaches 530 mW with the incident pump power of 4.11 W. The maximum output power of Raman laser is 570 mW with the incident pump power of 4.11 W and the PRF of 30 kHz. With the incident pump power of 3.67 W and the PRF of 30 kHz, the highest diode-to-Stokes optical conversion efficiency of 14.9% is obtained with the corresponding average output power of 547 mW.

  6. [Maculopathy caused by Nd:YAG laser accident].

    PubMed

    Blümel, C; Brosig, J

    1999-02-01

    Since the construction of the first laser in the sixties and the extended use in medicine, technology and hobby the number of accidents has increased. Appreciated to therapy concepts are missing at the time. A 19 year-old-man was hit by the impulse of an military hand-held rangefinder (Nd:YAG with a wavelength of 1064 nm) on the right eye. The visual acuity dropped to 1/35 and a central scotoma with metamorphopsia occurred immediatly after the accident. The ophthalmological findings showed a distinct submacular hemorrhage. The therapy with Prednisolon intravenous and daily parabulbar, vitamin C, indomethacin systemical and lokal application resulted in an increase of visual acuity up to 0.4 and a reduction of central scotoma from 8 degrees to 2 degrees. Systemical and local use of antiphlogistic and antiinflamatoric substances may partially reduce the vision limitating scar formation. Application of antioxidants to neutralize the toxic radicals that arise by tissue decay should be given additionally to the cyclopegic medication. Special attention should be payed to the prevention of such laser accidents.

  7. Study on mechanism of amplitude fluctuation of dual-frequency beat in microchip Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Tan, Yidong; Zhang, Shulian; Sun, Liqun

    2017-01-01

    In the laser heterodyne interferometry based on the microchip Nd:YAG dual-frequency laser, the amplitude of the beat note periodically fluctuates in time domain, which leads to the instability of the measurement. On the frequency spectrums of the two mono-frequency components of the laser and their beat note, several weak sideband signals are observed on both sides of the beat note. It is proved that the sideband frequencies are associated with the relaxation oscillation frequencies of the laser. The mechanism for the relaxation oscillations inducing the occurrence of the sideband signals is theoretically analyzed, and the quantitative relationship between the intensity ratio of the beat note to the sideband signal and the level of the amplitude fluctuation is simulated with the derived mathematical model. The results demonstrate that the periodical amplitude fluctuation of the beat note is actually induced by the relaxation oscillation. And the level of the amplitude fluctuation is lower than 10% when the intensity ratio is greater than 32 dB. These conclusions are beneficial to reduce the amplitude fluctuation of the microchip Nd:YAG dual-frequency laser and improve the stability of the heterodyne interferometry.

  8. Quantum fluctuations of radiation in a ring Nd : YAG chip laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lariontsev, E G; Firsov, V V

    2015-07-31

    We report theoretical and experimental investigation of intensity fluctuations in a travelling-wave ring Nd : YAG chip laser, caused by the noise of spontaneous emission. In accordance with theory and experiment, quantum intensity fluctuations in the laser under study decrease dramatically with increasing pump over the threshold. As a result of the research performed, the factor β is found, which determines the ratio of the rate of spontaneous emission into the generated mode to the total rate of spontaneous emission into all modes. The effect of the relaxation rate from the lower laser level on quantum fluctuations of the radiationmore » intensity is found. (control of radiation parameters)« less

  9. Q-switched oscillation in thulium-doped fiber lasers using preloaded dynamic microbending technique

    NASA Astrophysics Data System (ADS)

    Sakata, H.; Takahashi, N.; Ushiro, Y.

    2018-01-01

    We demonstrate Q-switched pulse generation in thulium-doped fiber lasers by introducing piezoelectric-driven microbend with preloaded stress. We employed a pair of corrugated chips each attached on piezoelectric actuators (PAs) to clamp the fiber in a ring laser resonator. The thulium-doped fiber is pumped by a laser diode emitting at 1.63 μm and generates the Q-switched laser pulses at around 1.9 μm by switching off the PAs. The laser pulse performance is improved by optimizing the preload and switch-off period for the PAs. The Q-switched pulses with a peak power of 2.8 W and a pulsewidth of 900 ns are observed for a launched pump power of 161 mW. We expect that the in-fiber Q-switching technique will provide efficient laser systems for environmental sensing and medical applications.

  10. Adjunctive clinical effect of a water-cooled Nd:YAG laser in a periodontal maintenance care programme: a randomized controlled trial.

    PubMed

    Slot, Dagmar E; Timmerman, Mark F; Versteeg, Paula A; van der Velden, Ubele; van der Weijden, Fridus A

    2012-12-01

    Various laser systems are currently available for intra-oral use. Neodymium:Yttrium-Aluminium Garnet lasers(Nd:YAG) have been approved by the US Food and Drug Administration for soft tissue treatment in the oral cavity. The aim of this study was to test whether the use of a water-cooled Nd:YAG laser during a maintenance care programme as an adjunct to supragingival and subgingival debridement (scaling and root planing, SRP) with hand and ultrasonic instruments results in clinical improvement compared with SRP alone. This study was an examiner-blind, randomized and controlled clinical trial using a split-mouth design. Thirty subjects were selected, originally diagnosed with moderate to severe generalized periodontitis, following a periodontal maintenance care programme (PMC). Immediately after SRP in two randomly assigned contra-lateral quadrants, all pockets ≥5 mm were additionally treated with a Nd:YAG laser (1064 nm, 4W, 250-μsec pulse). Clinical assessments [probing pocket depth PPD, bleeding on pocket probing (BOPP)] were performed pre-treatment and at 6 months. Based on these assessments, the periodontal inflamed surface area (PISA) was calculated. At 6 months, the clinical parameters had significantly improved for both regimens. No statistically significant differences between treatment modalities were observed for PPD and BOPP scores at any time. PISA scores supported these findings. In residual pockets ≥5 mm, treated in a PMC, the adjunctive use of an Nd:YAG laser does not provide a clinically significant additional advantage. © 2012 John Wiley & Sons A/S.

  11. Efficient 10 kW diode-pumped Nd:YAG rod laser

    NASA Astrophysics Data System (ADS)

    Akiyama, Yasuhiro; Takada, Hiroyuki; Sasaki, Mitsuo; Yuasa, Hiroshi; Nishida, Naoto

    2003-03-01

    As a tool for high speed and high precision material processing such as cutting and welding, we developed a rod-type all-solid-state laser with an average power of more than 10 kW, an electrical-optical efficiency of more than 20%, and a laser head volume of less than 0.05 m3. We developed a highly efficient diode pumped module, and successfully obtained electrical-optical efficiencies of 22% in CW operation and 26% in QCW operation at multi-kW output powers. We also succeeded to reduce the laser head volume, and obtained the output power of 12 kW with an efficiency of 23%, and laser head volume of 0.045 m3. We transferred the technology to SHIBAURA mechatronics corp., who started to provide the LD pumped Nd:YAG laser system with output power up to 4.5 kW. We are now continuing development for further high power laser equipment.

  12. Nd-YAG laser with a fibertom system in the treatment of intrauterine lesions

    NASA Astrophysics Data System (ADS)

    Wilczak, Maciej; Wozniak, Jakub; Sajdak, Stefan; Dydowicz, Piotr; Opala, Tomasz; Cwojdzinski, Marek; Pisarski, Tadeusz

    1997-10-01

    The results of 31 Nd:YAG hysteroscopic laser surgeries done in the Department of Reproduction, Institute of Gynecology and obstetrics, Karon Marcinkowski School of Medical Sciences, Poznan, Poland were describe. In nine patients the uterine septa and in 22 women the intrauterine adhesion were recognized. Hysteroscopy is a very useful and reliable method in diagnosis and treatment of intrauterine lesions reducing fertility. The laser resection of intrauterine lesions in women with malreproduction is an efficient and safe method. The fertility and parity after laser surgery are highly improved.

  13. Urological applications of Ho/Nd:Yag laser

    NASA Astrophysics Data System (ADS)

    Grifoni, Riccardo; Pierangeli, Tiziana; Gioacchini, Andrea; Muraro, Giovanni B.

    2001-10-01

    The introduction of Ho:Yag laser has brought many advantages in urology. By this work we want show you our experience with this technology. Between April 1998 and May 2000 we treated 137 patients. Of these 28 had urinary lithiasis (18 bladder and 10 ureteral stones 3 in the upper, 2 in the middle and 5 in the distal tract), 40 were affected by enlargement of prostatic gland: 32 had B.P.H., 8 P.C.; 36 had T.C.C. and 33 strictures of urethra (27) or bladder neck (6). For ureteral lithiasis we used 200 micrometer fiber, energy of 0.5 - 1.4 J with 10 Hz of frequency. In case of bladder stones a 550 or 1000 micrometer using a power of 80 W. The prostatic gland were resected by a 550 micrometer fiber, 2.2 - 2.8 J, 25 - 30 Hz and 70 -80 W. The superficial bladder tumors were removed by 1.4 J with 10 - 15 Hz and 10 - 14 W. In the large tumors we completed the procedure by Nd:YAG at the base of the tumor. Urethra and bladder neck strictures were treated by 1.2 - 1.8 J and 10 - 30 Hz. We successful treated 26 patients with urinary lithiasis obtained the complete vaporization of the stones, 2 had endoscopic ancillary procedures. Out of 32 patients with B.P.H. 41% had the complete resection of the gland the others the resection of the 3d lobe. We removed 114 superficial bladder tumors and only 4 patients had a local recurrence. Of the patients with the strictures 4 had more than one treatment and about 87% had good result. From our experience the use of Holmium:Yag laser has been very efficacy to treat different urological diseases, also in patients with important comorbid disorders and its use reduce the stay in hospital and so the costs.

  14. Successful Nd:Yag Laser Photocoagulation Of Arrhythmogenic Myocardium: Potential Limitations Of Current Optical Delivery Systems.

    NASA Astrophysics Data System (ADS)

    Svenson, Robert H.; Marroum, Marie-Claire; Frank, Frank; Selle, Jay G.; Gallagher, John J.; Bou-Saba, George; Seifert, Kathleen T.; Linder, Kathy; Tatsis, George P.

    1987-04-01

    Canine myocardial lesions of predictable dimensions can be achieved with Nd:YAG laser photocoagulation. These lesions are well demarcated from surrounding normal tissue and heal with homogeneous scar formation. Intraoperative Nd:YAG laser photocoagulation successfully ablated 52 of 55 ventricular tachycardias in 17 patients. Histologic examination of tissues from these arrhythmogenic areas showed differences from lesions produced on canine epicardium. Lesions from the human cases were less predictable and not well circumscribed. These differences are felt to be due to optical inhomogeneities present in diseased, scarred human myocardium, geometric irregularities of the endocardial surface, anatomical constraints on tissue-fiber distance, and the angle of incidence of the beam with the tissue. Modifications of current delivery systems may overcome some of these limitations. Ablation of ventricular tachycardia arising deeper than 4.0 to 6.0 mm. from the irradiated surface may require interstitial probes coupled to the fiberoptic.

  15. Indocyanine green-augmented diode laser therapy vs. long-pulsed Nd:YAG (1064 nm) laser treatment of telangiectatic leg veins: a randomized controlled trial.

    PubMed

    Klein, A; Buschmann, M; Babilas, P; Landthaler, M; Bäumler, W

    2013-08-01

    Telangiectatic leg veins (TLV) represent a common cosmetic problem. Near infrared lasers have been widely used in treatment because of their deeper penetration into the dermis, but with varying degrees of success, particularly because of different vessel diameters. Indocyanine green (ICG)-augmented diode laser treatment (ICG+DL) may present an alternative treatment option. This trial evaluates the efficacy of ICG+DL in the treatment of TLV and compares the safety and efficacy of therapy with the standard treatment, the long-pulsed neodymium-doped yttrium aluminium garnet (Nd:YAG) laser. In a prospective randomized controlled clinical trial, 29 study participants with TLV were treated with a Nd:YAG laser (λem = 1064 nm, 160-240 J cm(-2) , 65-ms pulse duration, 5-mm spot size) and ICG+DL (λem = 810 nm, 60-110 J cm(-2) , 48-87-ms pulse duration, 6-mm spot size; total ICG dose 4 mg kg(-1) ) in a side-by-side comparison in one single treatment setting that included histological examination in four participants. Two blinded investigators and the participants assessed clearance rate, cosmetic appearance and adverse events up to 3 months after treatment. According to both the investigators' and participants' assessment, clearance rates were significantly better after ICG+DL therapy than after Nd:YAG laser treatment (P < 0·05). On a 10-point scale indicating pain during treatment, participants rated ICG+DL therapy to be more painful (6·1 ± 2·0) than Nd:YAG laser (5·4 ± 2·0). ICG+DL therapy represents a new and promising treatment modality for TLV, with high clearance rates and a very good cosmetic outcome after one single treatment session. © 2013 British Association of Dermatologists.

  16. Linearly Polarized Single-Frequency Oscillations of Laser-Diode-Pumped Microchip Ceramic Nd:YAG Lasers with Forced Ince-Gaussian Mode Operations

    NASA Astrophysics Data System (ADS)

    Otsuka, Kenju; Nemoto, Kana; Kamikariya, Koji; Miyasaka, Yoshihiko; Chu, Shu-Chun

    2007-09-01

    Detailed oscillation spectra and polarization properties have been examined in laser-diode-pumped (LD-pumped) microchip ceramic (i.e., polycrystalline) Nd:YAG lasers and the inherent segregation of lasing patterns into local modes possessing different polarization states was observed. Single-frequency linearly-polarized stable oscillations were realized by forcing the laser to Ince-Gaussian mode operations by adjusting azimuthal cavity symmetry.

  17. Eye-Safe KGd(WO4)2:Nd Laser: Nano- and Subnanosecond Pulse Generation in Self-Frequency Raman Conversion Mode with Active Q-Switching

    NASA Astrophysics Data System (ADS)

    Dashkevich, V. I.; Orlovich, V. A.

    2017-03-01

    The shape of the multimode Stokes pulse generated by an eye-safe KGd(WO4)2:Nd laser with self-frequency Raman conversion and active Q-switching was shown to depend on the inhomogeneity of the active-medium pump. The laser generated a short and undistorted Stokes pulse of length 2.5 ns that increased with increasing laser cavity length for a moderately inhomogeneous pump characterized by a higher population inversion in the center of the active element. The energy of the Stokes pulse ( 11.5 mJ) varied little as the output-mirror reflectivity varied in the range 5-45%. The Raman pulse became distorted if the inhomogeneity of the pump was increased considerably. The degree of pump inhomogeneity was negligible with fundamental TEM00 mode selection. The laser generated subnanosecond Stokes pulses with peak power in the MW range.

  18. Nd:YAG-CO2 double-pulse laser induced breakdown spectroscopy of organic films

    DTIC Science & Technology

    2010-01-05

    Thermodynamic and spectroscopic properties of Nd:YAG-CO2 Double-Pulse Laser-Induced Iron Plasma,” Spectrochimica Acta Part B: Atomic Spectroscopy (2009...absorption in the plume of an aluminum alloy,” Anal. Chem. 41(6), 700–707 (1969). 15. D. N. Stratis, K. L. Eland, and S. M. Angel, “Dual-pulse LIBS using a...and S. Pershin, “A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminum samples,” Spectrochim. Acta, B At

  19. Raman Shifted Nd:YAG Class I Eye-Safe Laser Development 21 January 1986

    NASA Astrophysics Data System (ADS)

    Nichols, R. W.; Ng, W. K.

    1986-07-01

    Hughes Aircraft has been developing a hand-held eye-safe laser rangefinder fo1r the Army utilizing Stimulated Raman Scattering technology. The device uses the 2915 cm-1 vibrational mode of methane (CH4) to wavelength shift the Nd:YAG pump laser's 1.064 micron to an eye-safe 1.543 micron. The result is a lightweight BRH Class I eye-safe tactical device. A brief description of Raman wavelength shifting basics is followed by description of the Hughes system.

  20. Randomized controlled trial comparing Nd:YAG laser photocoagulation and bipolar electrocautery in the management of epistaxis.

    PubMed

    Zhang, Jing; Cao, Luhong; Wei, Chunsheng

    2017-09-01

    The objective of this study is to evaluate the efficacy and degree of comfort of Nd:YAG laser photocoagulation compared to bipolar electrocautery in the management of epistaxis. Seventy-two consecutive patients with a history of epistaxis were randomly assigned to receive treatment in an outpatient setting consisting of either bipolar electrocautery (group 1) or Nd:YAG laser photocoagulation (group 2). The study was conducted in university-affiliated teaching hospital. Seventy-two consecutive patients who suffered from anterior epistaxis and presented to the Otolaryngology Department at the Eye, Ear, Nose and Throat Hospital, Fudan University, between June 2015 and August 2015. The following outcome measures were assessed: bleeding intensity, bleeding frequency 4 and 16 weeks after treatment (0 = no bleeding, 1 = reduced bleeding, 2 = the same, and 3 = worse), participant perception of discomfort during treatment (grade 0-10, where 10 is the worst pain), and therapy duration and complications. At 16 weeks, 91% of the laser patients versus 91% of the bipolar electrocautery patients had no reported bleeding. The outcome scores at 4 and 16 weeks after treatment showed no significant difference between the two groups (P = 0.5 and P = 0.98, respectively; P > 0.05). The median pain levels experienced during the office laser and bipolar electrocautery procedures were 3.0 and 4.0, respectively, and the median durations of the laser and electrocautery therapies were 3.0 and 4.0, respectively. Neither groups had complications. It can be concluded that Nd:YAG laser photocoagulation and bipolar electrocautery are both effective in the treatment of epistaxis. These two therapies are recommended. As a whole, these two therapies, performed in an office setting, are timely, efficacious, and well tolerated in the treatment of epistaxis.