Sample records for qcd hard scattering

  1. How hadron collider experiments contributed to the development of QCD: from hard-scattering to the perfect liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tannenbaum, M. J.

    A revolution in elementary particle physics occurred during the period from the ICHEP1968 to the ICHEP1982 with the advent of the parton model from discoveries in Deeply Inelastic electron-proton Scattering at SLAC, neutrino experiments, hard-scattering observed in p+p collisions at the CERN ISR, the development of QCD, the discovery of the J/Ψ at BNL and SLAC and the clear observation of high transverse momentum jets at the CERN SPSmore » $$\\bar{p}$$ + p collider. These and other discoveries in this period led to the acceptance of QCD as the theory of the strong interactions. The desire to understand nuclear physics at high density such as in neutron stars led to the application of QCD to this problem and to the prediction of a Quark-Gluon Plasma (QGP) in nuclei at high energy density and temperatures. This eventually led to the construction of the Relativistic Heavy Ion Collider (RHIC) at BNL to observe superdense nuclear matter in the laboratory. This article discusses how experimental methods and results which confirmed QCD at the first hadron collider, the CERN ISR, played an important role in experiments at the first heavy ion collider, RHIC, leading to the discovery of the QGP as a perfect liquid as well as discoveries at RHIC and the LHC which continue to the present day.« less

  2. How hadron collider experiments contributed to the development of QCD: from hard-scattering to the perfect liquid

    DOE PAGES

    Tannenbaum, M. J.

    2018-01-30

    A revolution in elementary particle physics occurred during the period from the ICHEP1968 to the ICHEP1982 with the advent of the parton model from discoveries in Deeply Inelastic electron-proton Scattering at SLAC, neutrino experiments, hard-scattering observed in p+p collisions at the CERN ISR, the development of QCD, the discovery of the J/Ψ at BNL and SLAC and the clear observation of high transverse momentum jets at the CERN SPSmore » $$\\bar{p}$$ + p collider. These and other discoveries in this period led to the acceptance of QCD as the theory of the strong interactions. The desire to understand nuclear physics at high density such as in neutron stars led to the application of QCD to this problem and to the prediction of a Quark-Gluon Plasma (QGP) in nuclei at high energy density and temperatures. This eventually led to the construction of the Relativistic Heavy Ion Collider (RHIC) at BNL to observe superdense nuclear matter in the laboratory. This article discusses how experimental methods and results which confirmed QCD at the first hadron collider, the CERN ISR, played an important role in experiments at the first heavy ion collider, RHIC, leading to the discovery of the QGP as a perfect liquid as well as discoveries at RHIC and the LHC which continue to the present day.« less

  3. How hadron collider experiments contributed to the development of QCD: from hard-scattering to the perfect liquid

    NASA Astrophysics Data System (ADS)

    Tannenbaum, M. J.

    2018-05-01

    A revolution in elementary particle physics occurred during the period from the ICHEP1968 to the ICHEP1982 with the advent of the parton model from discoveries in Deeply Inelastic electron-proton Scattering at SLAC, neutrino experiments, hard-scattering observed in p+p collisions at the CERN ISR, the development of QCD, the discovery of the J/ Ψ at BNL and SLAC and the clear observation of high transverse momentum jets at the CERN SPS p¯ + p collider. These and other discoveries in this period led to the acceptance of QCD as the theory of the strong interactions. The desire to understand nuclear physics at high density such as in neutron stars led to the application of QCD to this problem and to the prediction of a Quark-Gluon Plasma (QGP) in nuclei at high energy density and temperatures. This eventually led to the construction of the Relativistic Heavy Ion Collider (RHIC) at BNL to observe superdense nuclear matter in the laboratory. This article discusses how experimental methods and results which confirmed QCD at the first hadron collider, the CERN ISR, played an important role in experiments at the first heavy ion collider, RHIC, leading to the discovery of the QGP as a perfect liquid as well as discoveries at RHIC and the LHC which continue to the present day.

  4. Hard QCD rescattering in few nucleon systems

    NASA Astrophysics Data System (ADS)

    Maheswari, Dhiraj; Sargsian, Misak

    2017-01-01

    The theoretical framework of hard QCD rescattering mechanism (HRM) is extended to calculate the high energy γ3 He -> pd reaction at 900 center of mass angle. In HRM model , the incoming high energy photon strikes a quark from one of the nucleons in the target which subsequently undergoes hard rescattering with the quarks from the other nucleons generating hard two-body baryonic system in the final state of the reaction. Based on the HRM, a parameter free expression for the differential cross section for the reaction is derived, expressed through the 3 He -> pd transition spectral function, hard pd -> pd elastic scattering cross section and the effective charge of the quarks being interchanged in the hard rescattering process. The numerical estimates obtained from this expression for the differential cross section are in a good agreement with the data recently obtained at the Jefferson Lab experiment, showing the energy scaling of cross section with an exponent of s-17, also consistent with the quark counting rule. The angular and energy dependences of the cross section are also predicted within HRM which are in good agreement with the preliminary data of these distributions. Research is supported by the US Department of Energy.

  5. Hard diffraction in the QCD dipole picture

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Peschanski, R.

    1996-02-01

    Using the QCD dipole picture of the BFKL pomeron, the gluon contribution to the cross-section for single diffractive dissociation in deep-inelastic high-energy scattering is calculated. The resulting contribution to the proton diffractive structure function integrated over t is given in terms of relevant variables, xP, Q2, and β = {x Bj}/{x P}. It factorizes into an explicit x P-dependent Hard Pomeron flux factor and structure function. The lux factor is found to have substantial logarithmic corrections which may account for the recent measurements of the Pomeron intercept in this process. The triple Pomeron coupling is shown to be strongly enhanced by the resummation of leading logs. The obtained pattern of scaling violation at small β is similar to that for F2 at small xBj.

  6. Wilson loops and QCD/string scattering amplitudes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makeenko, Yuri; Olesen, Poul; Niels Bohr International Academy, Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen O

    2009-07-15

    We generalize modern ideas about the duality between Wilson loops and scattering amplitudes in N=4 super Yang-Mills theory to large N QCD by deriving a general relation between QCD meson scattering amplitudes and Wilson loops. We then investigate properties of the open-string disk amplitude integrated over reparametrizations. When the Wilson-loop is approximated by the area behavior, we find that the QCD scattering amplitude is a convolution of the standard Koba-Nielsen integrand and a kernel. As usual poles originate from the first factor, whereas no (momentum-dependent) poles can arise from the kernel. We show that the kernel becomes a constant whenmore » the number of external particles becomes large. The usual Veneziano amplitude then emerges in the kinematical regime, where the Wilson loop can be reliably approximated by the area behavior. In this case, we obtain a direct duality between Wilson loops and scattering amplitudes when spatial variables and momenta are interchanged, in analogy with the N=4 super Yang-Mills theory case.« less

  7. Extension of the HAL QCD approach to inelastic and multi-particle scatterings in lattice QCD

    NASA Astrophysics Data System (ADS)

    Aoki, S.

    We extend the HAL QCD approach, with which potentials between two hadrons can be obtained in QCD at energy below inelastic thresholds, to inelastic and multi-particle scatterings. We first derive asymptotic behaviors of the Nambu-Bethe-Salpeter (NBS) wave function at large space separations for systems with more than 2 particles, in terms of the one-shell $T$-matrix consrainted by the unitarity of quantum field theories. We show that its asymptotic behavior contains phase shifts and mixing angles of $n$ particle scatterings. This property is one of the essential ingredients of the HAL QCD scheme to define "potential" from the NBS wave function in quantum field theories such as QCD. We next construct energy independent but non-local potentials above inelastic thresholds, in terms of these NBS wave functions. We demonstrate an existence of energy-independent coupled channel potentials with a non-relativistic approximation, where momenta of all particles are small compared with their own masses. Combining these two results, we can employ the HAL QCD approach also to investigate inelastic and multi-particle scatterings.

  8. Scattering processes and resonances from lattice QCD

    NASA Astrophysics Data System (ADS)

    Briceño, Raúl A.; Dudek, Jozef J.; Young, Ross D.

    2018-04-01

    The vast majority of hadrons observed in nature are not stable under the strong interaction; rather they are resonances whose existence is deduced from enhancements in the energy dependence of scattering amplitudes. The study of hadron resonances offers a window into the workings of quantum chromodynamics (QCD) in the low-energy nonperturbative region, and in addition many probes of the limits of the electroweak sector of the standard model consider processes which feature hadron resonances. From a theoretical standpoint, this is a challenging field: the same dynamics that binds quarks and gluons into hadron resonances also controls their decay into lighter hadrons, so a complete approach to QCD is required. Presently, lattice QCD is the only available tool that provides the required nonperturbative evaluation of hadron observables. This article reviews progress in the study of few-hadron reactions in which resonances and bound states appear using lattice QCD techniques. The leading approach is described that takes advantage of the periodic finite spatial volume used in lattice QCD calculations to extract scattering amplitudes from the discrete spectrum of QCD eigenstates in a box. An explanation is given of how from explicit lattice QCD calculations one can rigorously garner information about a variety of resonance properties, including their masses, widths, decay couplings, and form factors. The challenges which currently limit the field are discussed along with the steps being taken to resolve them.

  9. Scattering processes and resonances from lattice QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briceno, Raul A.; Dudek, Jozef J.; Young, Ross D.

    The vast majority of hadrons observed in nature are not stable under the strong interaction; rather they are resonances whose existence is deduced from enhancements in the energy dependence of scattering amplitudes. The study of hadron resonances offers a window into the workings of quantum chromodynamics (QCD) in the low-energy nonperturbative region, and in addition many probes of the limits of the electroweak sector of the standard model consider processes which feature hadron resonances. From a theoretical standpoint, this is a challenging field: the same dynamics that binds quarks and gluons into hadron resonances also controls their decay into lightermore » hadrons, so a complete approach to QCD is required. Presently, lattice QCD is the only available tool that provides the required nonperturbative evaluation of hadron observables. This paper reviews progress in the study of few-hadron reactions in which resonances and bound states appear using lattice QCD techniques. The leading approach is described that takes advantage of the periodic finite spatial volume used in lattice QCD calculations to extract scattering amplitudes from the discrete spectrum of QCD eigenstates in a box. An explanation is given of how from explicit lattice QCD calculations one can rigorously garner information about a variety of resonance properties, including their masses, widths, decay couplings, and form factors. Finally, the challenges which currently limit the field are discussed along with the steps being taken to resolve them.« less

  10. Scattering processes and resonances from lattice QCD

    DOE PAGES

    Briceno, Raul A.; Dudek, Jozef J.; Young, Ross D.

    2018-04-18

    The vast majority of hadrons observed in nature are not stable under the strong interaction; rather they are resonances whose existence is deduced from enhancements in the energy dependence of scattering amplitudes. The study of hadron resonances offers a window into the workings of quantum chromodynamics (QCD) in the low-energy nonperturbative region, and in addition many probes of the limits of the electroweak sector of the standard model consider processes which feature hadron resonances. From a theoretical standpoint, this is a challenging field: the same dynamics that binds quarks and gluons into hadron resonances also controls their decay into lightermore » hadrons, so a complete approach to QCD is required. Presently, lattice QCD is the only available tool that provides the required nonperturbative evaluation of hadron observables. This paper reviews progress in the study of few-hadron reactions in which resonances and bound states appear using lattice QCD techniques. The leading approach is described that takes advantage of the periodic finite spatial volume used in lattice QCD calculations to extract scattering amplitudes from the discrete spectrum of QCD eigenstates in a box. An explanation is given of how from explicit lattice QCD calculations one can rigorously garner information about a variety of resonance properties, including their masses, widths, decay couplings, and form factors. Finally, the challenges which currently limit the field are discussed along with the steps being taken to resolve them.« less

  11. Hadron scattering, resonances, and QCD

    NASA Astrophysics Data System (ADS)

    Briceño, R. A.

    2016-11-01

    The non-perturbative nature of quantum chromodynamics (QCD) has historically left a gap in our understanding of the connection between the fundamental theory of the strong interactions and the rich structure of experimentally observed phenomena. For the simplest properties of stable hadrons, this is now circumvented with the use of lattice QCD (LQCD). In this talk I discuss a path towards a rigorous determination of few-hadron observables from LQCD. I illustrate the power of the methodology by presenting recently determined scattering amplitudes in the light-meson sector and their resonance content.

  12. Exclusive, hard diffraction in QCD

    NASA Astrophysics Data System (ADS)

    Freund, Andreas

    In the first chapter we give an introduction to hard diffractive scattering in QCD to introduce basic concepts and terminology, thus setting the stage for the following chapters. In the second chapter we make predictions for nondiagonal parton distributions in a proton in the LLA. We calculate the DGLAP-type evolution kernels in the LLA, solve the nondiagonal GLAP evolution equations with a modified version of the CTEQ-package and comment on the range of applicability of the LLA in the asymmetric regime. We show that the nondiagonal gluon distribution g(x1,x2,t,μ2) can be well approximated at small x by the conventional gluon density xG(x,μ2). In the third chapter, we discuss the algorithms used in the LO evolution program for nondiagonal parton distributions in the DGLAP region and discuss the stability of the code. Furthermore, we demonstrate that we can reproduce the case of the LO diagonal evolution within less than 0.5% of the original code as developed by the CTEQ-collaboration. In chapter 4, we show that factorization holds for the deeply virtual Compton scattering amplitude in QCD, up to power suppressed terms, to all orders in perturbation theory. Furthermore, we show that the virtuality of the produced photon does not influence the general theorem. In chapter 5, we demonstrate that perturbative QCD allows one to calculate the absolute cross section of diffractive exclusive production of photons at large Q2 at HERA, while the aligned jet model allows one to estimate the cross section for intermediate Q2~2GeV2. Furthermore, we find that the imaginary part of the amplitude for the production of real photons is larger than the imaginary part of the corresponding DIS amplitude, leading to predictions of a significant counting rate for the current generation of experiments at HERA. We also find a large azimuthal angle asymmetry in ep scattering for HERA kinematics which allows one to directly measure the real part of the DVCS amplitude and hence the

  13. Miracles in Scattering Amplitudes: from QCD to Gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volovich, Anastasia

    2016-10-09

    The goal of my research project "Miracles in Scattering Amplitudes: from QCD to Gravity" involves deepening our understanding of gauge and gravity theories by exploring hidden structures in scattering amplitudes and using these rich structures as much as possible to aid practical calculations.

  14. Lattice QCD Calculation of Hadronic Light-by-Light Scattering.

    PubMed

    Green, Jeremy; Gryniuk, Oleksii; von Hippel, Georg; Meyer, Harvey B; Pascalutsa, Vladimir

    2015-11-27

    We perform a lattice QCD calculation of the hadronic light-by-light scattering amplitude in a broad kinematical range. At forward kinematics, the results are compared to a phenomenological analysis based on dispersive sum rules for light-by-light scattering. The size of the pion pole contribution is investigated for momenta of typical hadronic size. The presented numerical methods can be used to compute the hadronic light-by-light contribution to the anomalous magnetic moment of the muon. Our calculations are carried out in two-flavor QCD with the pion mass in the range of 270-450 MeV and contain so far only the diagrams with fully connected quark lines.

  15. Merging weak and QCD showers with matrix elements

    DOE PAGES

    Christiansen, Jesper Roy; Prestel, Stefan

    2016-01-22

    In this study, we present a consistent way of combining associated weak boson radiation in hard dijet events with hard QCD radiation in Drell–Yan-like scatterings. This integrates multiple tree-level calculations with vastly different cross sections, QCD- and electroweak parton-shower resummation into a single framework. The new merging strategy is implemented in the P ythia event generator and predictions are confronted with LHC data. Improvements over the previous strategy are observed. Results of the new electroweak-improved merging at a future 100 TeV proton collider are also investigated.

  16. Merging weak and QCD showers with matrix elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christiansen, Jesper Roy; Prestel, Stefan

    In this study, we present a consistent way of combining associated weak boson radiation in hard dijet events with hard QCD radiation in Drell–Yan-like scatterings. This integrates multiple tree-level calculations with vastly different cross sections, QCD- and electroweak parton-shower resummation into a single framework. The new merging strategy is implemented in the P ythia event generator and predictions are confronted with LHC data. Improvements over the previous strategy are observed. Results of the new electroweak-improved merging at a future 100 TeV proton collider are also investigated.

  17. Hard quark-quark scattering with exclusive reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barton, D.S.; Bunce, G.M.; Carroll, A.S.

    1984-07-19

    We have begun a program designed to study hard quark-quark scattering with exclusive reactions, focusing on quasi-elastic two-body reactions with all possible quark flavor exchanges. Examples are ..pi../sup -/p ..-->.. ..pi../sup -/p, rho/sup -/p, ..pi../sup +/..delta../sup -/, K/sup +/..sigma../sup -/, or K..lambda... Of the two-body exclusives, only elastic scattering had been measured at such large t previous to our experiment. By comparing the relative importance of different final states, the energy dependence of the production ratios of these states, the prominence of resonances such as rho/sup -/ over background in this region, and measuring polarizations where accessible, we have collectedmore » a large body of data on hard scattering in a completely new domain. Previously, essential all short distance QCD tests have been for inclusive processes. We have taken data with both negative and positive incident beam at 10 GeV/c on a hydrogen target and will present the first results, for ..pi../sup -/p ..-->.. ..pi../sup -/p and rho/sup -/p at THETA/sub cm/ = 90/sup 0/, -t = 9 GeV/sup 2//c/sup 2/. The apparatus consists of a magnetic spectrometer, with Cerenkov particle identification, which selects stable charged particles (protons in this case) at high momentum near 90/sup 0/ in the center-of-mass. A large aperture array of PWCs observes the recoil particle or charged decay products. Cross sections are extremely low, approximately a 1 nb/(GeV/c)/sup 2/ for elastic scattering. We will report on a sample of more than 1000 ..pi../sup -/p elastic events, and on rho/sup -/p, where the rho/sup -/ decay distribution was observed. We find a surprisingly large rho/sup -/p cross section in this large momentum transfer region, with rho/sup -/p about half the elastic cross section, and a striking spin alignment of the rho/sup -/.« less

  18. Double hard scattering without double counting

    NASA Astrophysics Data System (ADS)

    Diehl, Markus; Gaunt, Jonathan R.; Schönwald, Kay

    2017-06-01

    Double parton scattering in proton-proton collisions includes kinematic regions in which two partons inside a proton originate from the perturbative splitting of a single parton. This leads to a double counting problem between single and double hard scattering. We present a solution to this problem, which allows for the definition of double parton distributions as operator matrix elements in a proton, and which can be used at higher orders in perturbation theory. We show how the evaluation of double hard scattering in this framework can provide a rough estimate for the size of the higher-order contributions to single hard scattering that are affected by double counting. In a numeric study, we identify situations in which these higher-order contributions must be explicitly calculated and included if one wants to attain an accuracy at which double hard scattering becomes relevant, and other situations where such contributions may be neglected.

  19. Virtual Compton scattering off a spinless target in AdS/QCD

    NASA Astrophysics Data System (ADS)

    Marquet, Cyrille; Roiesnel, Claude; Wallon, Samuel

    2010-04-01

    We study the doubly virtual Compton scattering off a spinless target γ* P → γ* P' within the Anti-de Sitter(AdS)/QCD formalism. We find that the general structure allowed by the Lorentz invariance and gauge invariance of the Compton amplitude is not easily reproduced with the standard recipes of the AdS/QCD correspondence. In the soft-photon regime, where the semi-classical approximation is supposed to apply best, we show that the measurements of the electric and magnetic polarizabilities of a target like the charged pion in real Compton scattering, can already serve as stringent tests.

  20. QCD as a Theory of Hadrons

    NASA Astrophysics Data System (ADS)

    Narison, Stephan

    2004-05-01

    About Stephan Narison; Outline of the book; Preface; Acknowledgements; Part I. General Introduction: 1. A short flash on particle physics; 2. The pre-QCD era; 3. The QCD story; 4. Field theory ingredients; Part II. QCD Gauge Theory: 5. Lagrangian and gauge invariance; 6. Quantization using path integral; 7. QCD and its global invariance; Part III. MS scheme for QCD and QED: Introduction; 8. Dimensional regularization; 9. The MS renormalization scheme; 10. Renormalization of operators using the background field method; 11. The renormalization group; 12. Other renormalization schemes; 13. MS scheme for QED; 14. High-precision low-energy QED tests; Part IV. Deep Inelastic Scattering at Hadron Colliders: 15. OPE for deep inelastic scattering; 16. Unpolarized lepton-hadron scattering; 17. The Altarelli-Parisi equation; 18. More on unpolarized deep inelastic scatterings; 19. Polarized deep-inelastic processes; 20. Drell-Yan process; 21. One 'prompt photon' inclusive production; Part V. Hard Processes in e+e- Collisions: Introduction; 22. One hadron inclusive production; 23. gg scatterings and the 'spin' of the photon; 24. QCD jets; 25. Total inclusive hadron productions; Part VI. Summary of QCD Tests and as Measurements; Part VII. Power Corrections in QCD: 26. Introduction; 27. The SVZ expansion; 28. Technologies for evaluating Wilson coefficients; 29. Renormalons; 30. Beyond the SVZ expansion; Part VIII. QCD Two-Point Functions: 31. References guide to original works; 32. (Pseudo)scalar correlators; 33. (Axial-)vector two-point functions; 34. Tensor-quark correlator; 35. Baryonic correlators; 36. Four-quark correlators; 37. Gluonia correlators; 38. Hybrid correlators; 39. Correlators in x-space; Part IX. QCD Non-Perturbative Methods: 40. Introduction; 41. Lattice gauge theory; 42. Chiral perturbation theory; 43. Models of the QCD effective action; 44. Heavy quark effective theory; 45. Potential approaches to quarkonia; 46. On monopole and confinement; Part X. QCD

  1. QCD as a Theory of Hadrons

    NASA Astrophysics Data System (ADS)

    Narison, Stephan

    2007-07-01

    About Stephan Narison; Outline of the book; Preface; Acknowledgements; Part I. General Introduction: 1. A short flash on particle physics; 2. The pre-QCD era; 3. The QCD story; 4. Field theory ingredients; Part II. QCD Gauge Theory: 5. Lagrangian and gauge invariance; 6. Quantization using path integral; 7. QCD and its global invariance; Part III. MS scheme for QCD and QED: Introduction; 8. Dimensional regularization; 9. The MS renormalization scheme; 10. Renormalization of operators using the background field method; 11. The renormalization group; 12. Other renormalization schemes; 13. MS scheme for QED; 14. High-precision low-energy QED tests; Part IV. Deep Inelastic Scattering at Hadron Colliders: 15. OPE for deep inelastic scattering; 16. Unpolarized lepton-hadron scattering; 17. The Altarelli-Parisi equation; 18. More on unpolarized deep inelastic scatterings; 19. Polarized deep-inelastic processes; 20. Drell-Yan process; 21. One 'prompt photon' inclusive production; Part V. Hard Processes in e+e- Collisions: Introduction; 22. One hadron inclusive production; 23. gg scatterings and the 'spin' of the photon; 24. QCD jets; 25. Total inclusive hadron productions; Part VI. Summary of QCD Tests and as Measurements; Part VII. Power Corrections in QCD: 26. Introduction; 27. The SVZ expansion; 28. Technologies for evaluating Wilson coefficients; 29. Renormalons; 30. Beyond the SVZ expansion; Part VIII. QCD Two-Point Functions: 31. References guide to original works; 32. (Pseudo)scalar correlators; 33. (Axial-)vector two-point functions; 34. Tensor-quark correlator; 35. Baryonic correlators; 36. Four-quark correlators; 37. Gluonia correlators; 38. Hybrid correlators; 39. Correlators in x-space; Part IX. QCD Non-Perturbative Methods: 40. Introduction; 41. Lattice gauge theory; 42. Chiral perturbation theory; 43. Models of the QCD effective action; 44. Heavy quark effective theory; 45. Potential approaches to quarkonia; 46. On monopole and confinement; Part X. QCD

  2. Basics of QCD perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soper, D.E.

    1997-06-01

    This is an introduction to the use of QCD perturbation theory, emphasizing generic features of the theory that enable one to separate short-time and long-time effects. The author also covers some important classes of applications: electron-positron annihilation to hadrons, deeply inelastic scattering, and hard processes in hadron-hadron collisions. 31 refs., 38 figs.

  3. Novel QCD Phenomenology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins

    2011-08-12

    I review a number of topics where conventional wisdom in hadron physics has been challenged. For example, hadrons can be produced at large transverse momentum directly within a hard higher-twist QCD subprocess, rather than from jet fragmentation. Such 'direct' processes can explain the deviations from perturbative QCD predictions in measurements of inclusive hadron cross sections at fixed x{sub T} = 2p{sub T}/{radical}s, as well as the 'baryon anomaly', the anomalously large proton-to-pion ratio seen in high centrality heavy ion collisions. Initial-state and final-state interactions of the struck quark, the soft-gluon rescattering associated with its Wilson line, lead to Bjorken-scaling single-spinmore » asymmetries, diffractive deep inelastic scattering, the breakdown of the Lam-Tung relation in Drell-Yan reactions, as well as nuclear shadowing and antishadowing. The Gribov-Glauber theory predicts that antishadowing of nuclear structure functions is not universal, but instead depends on the flavor quantum numbers of each quark and antiquark, thus explaining the anomalous nuclear dependence measured in deep-inelastic neutrino scattering. Since shadowing and antishadowing arise from the physics of leading-twist diffractive deep inelastic scattering, one cannot attribute such phenomena to the structure of the nucleus itself. It is thus important to distinguish 'static' structure functions, the probability distributions computed from the square of the target light-front wavefunctions, versus 'dynamical' structure functions which include the effects of the final-state rescattering of the struck quark. The importance of the J = 0 photon-quark QCD contact interaction in deeply virtual Compton scattering is also emphasized. The scheme-independent BLM method for setting the renormalization scale is discussed. Eliminating the renormalization scale ambiguity greatly improves the precision of QCD predictions and increases the sensitivity of searches for new physics at the

  4. Hard scattering in γp interactions

    NASA Astrophysics Data System (ADS)

    Ahmed, T.; Andreev, V.; Andrieu, B.; Arpagaus, M.; Babayev, A.; Bärwolff, H.; Ban, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Bassler, U.; Beck, G. A.; Beck, H. P.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bergstein, H.; Bernardi, G.; Bernet, R.; Berthon, U.; Bertrand-Coremans, G.; Besancon, M.; Biddulph, P.; Binder, E.; Bizot, J. C.; Blobel, V.; Borras, K.; Bosetti, P. C.; Boudry, V.; Bourdarios, C.; Brasse, F.; Braun, U.; Braunschweig, W.; Brisson, V.; Bruncko, D.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Buschhorn, G.; Campbell, A. J.; Carli, T.; Charles, F.; Clarke, D.; Clegg, A. B.; Colombo, M.; Coughlan, J. A.; Courau, A.; Coutures, C.; Cozzika, G.; Criegee, L.; Cvach, J.; Dainton, J. B.; Danilov, M.; Dann, A. W. E.; Dau, W. D.; David, M.; Deffur, E.; Delcourt, B.; DelBuono, L.; Devel, M.; DeRoeck, A.; Dingus, P.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Drescher, A.; Duboc, J.; Düllmann, D.; Dünger, O.; Duhm, H.; Eberle, M.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichenberger, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellis, N. N.; Ellison, R. J.; Elsen, E.; Erdmann, M.; Evrard, E.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Feng, Y.; Fensome, I. F.; Ference, J.; Ferrarotto, F.; Flauger, W.; Fleischer, M.; Flügge, G.; Fomenko, A.; Fominykh, B.; Forbush, M.; Formanek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Fuhrmann, P.; Gabathuler, E.; Gamerdinger, K.; Garvey, J.; Gayler, J.; Gellrich, A.; Gennis, M.; Gensch, U.; Genzel, H.; Gerhards, R.; Gillespie, D.; Godfrey, L.; Goerlach, U.; Goerlich, L.; Goldberg, M.; Goodall, A. M.; Gorelov, I.; Goritchev, P.; Grab, C.; Grässler, H.; Grässler, R.; Greenshaw, T.; Greif, H.; Grindhammer, G.; Gruber, C.; Haack, J.; Haidt, D.; Hajduk, L.; Hamon, O.; Handschuh, D.; Hanlon, E. M.; Hapke, M.; Harjes, J.; Hartz, P.; Haydar, R.; Haynes, W. J.; Heatherington, J.; Hedberg, V.; Hedgecock, R.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herma, R.; Herynek, I.; Hildesheim, W.; Hill, P.; Hilton, C. D.; Hladky, J.; Hoeger, K. C.; Huet, Ph.; Hufnagel, H.; Huot, N.; Ibbotson, M.; Jabiol, M. A.; Jacholkowska, A.; Jacobson, C.; Jaffre, M.; Jönsson, L.; Johannsen, K.; Johnson, D.; Johnson, L.; Jung, H.; Kalmus, P. I. P.; Kasarian, S.; Kaschowitz, R.; Kasselmann, P.; Kathage, U.; Kaufmann, H. H.; Kenyon, I. R.; Kermiche, S.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Köhler, T.; Kolanoski, H.; Kole, F.; Kolya, S. D.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Krüger, U.; Kubenka, J. P.; Küster, H.; Kuhlen, M.; Kurca, T.; Kurzhöfer, J.; Kuznik, B.; Lander, R.; Landon, M. P. J.; Langkau, R.; Lanius, P.; Laporte, J. F.; Lebedev, A.; Lenhardt, U.; Leuschner, A.; Leverenz, C.; Levin, D.; Levonian, S.; Ley, Ch.; Lindström, G.; Loch, P.; Lohmander, H.; Lopez, G. C.; Lüers, D.; Magnussen, N.; Malinovski, E.; Mani, S.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Masson, S.; Mavroidis, A.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Merz, T.; Meyer, C. A.; Meyer, H.; Meyer, J.; Mikocki, S.; Milone, V.; Monnier, E.; Moreau, F.; Moreels, J.; Morris, J. V.; Morton, J. M.; Müller, K.; Murin, P.; Murray, S. A.; Nagovizin, V.; Naroska, B.; Naumann, Th.; Newton, D.; Nguyen, H. K.; Niebergall, F.; Nisius, R.; Nowak, G.; Noyes, G. W.; Nyberg, M.; Oberlack, H.; Obrock, U.; Olsson, J. E.; Orenstein, S.; Ould-Saada, F.; Pascaud, C.; Patel, G. D.; Peppel, E.; Peters, S.; Phillips, H. T.; Phillips, J. P.; Pichler, Ch.; Pilgram, W.; Pitzl, D.; Prosi, R.; Raupach, F.; Rauschnabel, K.; Reimer, P.; Ribarics, P.; Riech, V.; Riedlberger, J.; Rietz, M.; Robertson, S. M.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Royon, C.; Rudowicz, M.; Ruffer, M.; Rusakov, S.; Rybicki, K.; Ryseck, E.; Sacton, J.; Sahlmann, N.; Sanchez, E.; Sankey, D. P.; Savitsky, M.; Schacht, P.; Schleper, P.; von Schlippe, W.; Schmidt, C.; Schmidt, D.; Schmitz, W.; Schröder, V.; Schulz, M.; Schwind, A.; Scobel, W.; Seehausen, U.; Sell, R.; Seman, M.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shooshtari, H.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Smith, J. R.; Smolik, L.; Soloviev, Y.; Spitzer, H.; Staroba, P.; Steenbock, M.; Steffen, P.; Steinberg, R.; Steiner, H.; Stella, B.; Stephens, K.; Strachota, J.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Taylor, R. E.; Thompson, G.; Thompson, R. J.; Tichomirov, I.; Trenkel, C.; Truöl, P.; Tchernyshov, V.; Turnau, J.; Tutas, J.; Urban, L.; Usik, A.; Valkar, S.; Valkarova, A.; Vallee, C.; VanEsch, P.; Vartapetian, A.; Vasdik, J.; Vecko, M.; Verrecchia, P.; Vick, R.; Villet, G.; Vogel, E.; Wacker, K.; Walker, I. W.; Walther, A.; Weber, G.; Wegener, D.; Wegner, A.; Wellisch, H. P.; Willard, S.; Winde, M.; Winter, G.-G.; Wolff, M. Th.; Womersley, L. A.; Wright, A. E.; Wulff, N.; Yiou, T. P.; Zacek, J.; Zavada, P.; Zeitnitz, C.; Ziaeepour, H.; Zimmer, M.; Zimmermann, W.; Zomer, F.; H1 Collaboration

    1992-12-01

    We report on the investigation of the final state in interactions of quasi-real photons with protons. The data were taken with the H1 detector at the HERA ep collider. Evidence for hard interactions is seen in both single particle spectra and jet formation. The data can best be described by inclusion of resolved photon processess as predicted by QCD.

  5. Nucleon-nucleon scattering from fully dynamical lattice QCD.

    PubMed

    Beane, S R; Bedaque, P F; Orginos, K; Savage, M J

    2006-07-07

    We present results of the first fully dynamical lattice QCD determination of nucleon-nucleon scattering lengths in the 1S0 channel and 3S1 - 3D1 coupled channels. The calculations are performed with domain-wall valence quarks on the MILC staggered configurations with a lattice spacing of b = 0.125 fm in the isospin-symmetric limit, and in the absence of electromagnetic interactions.

  6. Hard quark-quark scattering with exclusive reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barton, D.S.; Bunce, G.M.; Carroll, A.S.

    1984-01-01

    We present data from ..pi../sup -/p ..-->.. elastic and rho/sup -/p final states for scattering at 90/sup 0/ center of mass, -t = 9 GeV/sup 2//c/sup 2/. A large rho/sup -/p signal is seen and the rho/sup -/ is strongly polarized. This polarization tests a QCD prediction that quarks cannot flip helicity. The test fails dramatically. 9 references, 4 figures.

  7. Hard diffraction from quasi-elastic dipole scattering

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Peschanski, R.

    1996-02-01

    The contribution to diffraction dissociation of virtual photons due to quasi-elastic scattering of the q- overlineq component is calculated in the framework of the QCD dipole picture. Both longitudinal and transverse components of the cross-section are given. It is shown that, at fixed mass of the diffractively produced system, quantum mechanical interference plays an important rôle. Phenomenological consequences are discussed.

  8. QCD structure of nuclear interactions

    NASA Astrophysics Data System (ADS)

    Granados, Carlos G.

    The research presented in this dissertation investigated selected processes involving baryons and nuclei in hard scattering reactions. These processes are characterized by the production of particles with large energies and transverse momenta. Through these processes, this work explored both, the constituent (quark) structure of baryons (specifically nucleons and Delta-Isobars), and the mechanisms through which the interactions between these constituents ultimately control the selected reactions. The first of such reactions is the hard nucleon-nucleon elastic scattering, which was studied here considering the quark exchange between the nucleons to be the dominant mechanism of interaction in the constituent picture. In particular, it was found that an angular asymmetry exhibited by proton-neutron elastic scattering data is explained within this framework if a quark-diquark picture dominates the nucleon's structure instead of a more traditional SU(6) three quarks picture. The latter yields an asymmetry around 90o center of mass scattering with a sign opposite to what is experimentally observed. The second process is the hard breakup by a photon of a nucleon-nucleon system in light nuclei. Proton-proton (pp) and proton-neutron (pn) breakup in 3He, and DeltaDelta-isobars production in deuteron breakup were analyzed in the hard rescattering model (HRM), which in conjunction with the quark interchange mechanism provides a Quantum Chromodynamics (QCD) description of the reaction. Through the HRM, cross sections for both channels in 3He photodisintegration were computed without the need of a fitting parameter. The results presented here for pp breakup show excellent agreement with recent experimental data. In DeltaDelta-isobars production in deuteron breakup, HRM angular distributions for the two DeltaDelta channels were compared to the pn channel and to each other. An important prediction fromthis study is that the Delta++Delta- channel consistently dominates Delta+Delta0

  9. Infrared singularities of scattering amplitudes in perturbative QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becher, Thomas; Neubert, Matthias

    2013-11-01

    An exact formula is derived for the infrared singularities of dimensionally regularized scattering amplitudes in massless QCD with an arbitrary number of legs, valid at any number of loops. It is based on the conjecture that the anomalous-dimension matrix of n-jet operators in soft-collinear effective theory contains only a single non-trivial color structure, whose coefficient is the cusp anomalous dimension of Wilson loops with light-like segments. Its color-diagonal part is characterized by two anomalous dimensions, which are extracted to three-loop order from known perturbative results for the quark and gluon form factors. This allows us to predict the three-loop coefficientsmore » of all 1/epsilon^k poles for an arbitrary n-parton scattering amplitudes, generalizing existing two-loop results.« less

  10. I = 2 ππ scattering phase shift from the HAL QCD method with the LapH smearing

    NASA Astrophysics Data System (ADS)

    Kawai, Daisuke; Aoki, Sinya; Doi, Takumi; Ikeda, Yoichi; Inoue, Takashi; Iritani, Takumi; Ishii, Noriyoshi; Miyamoto, Takaya; Nemura, Hidekatsu; Sasaki, Kenji

    2018-04-01

    Physical observables, such as the scattering phase shifts and binding energy, calculated from the non-local HAL QCD potential do not depend on the sink operators used to define the potential. In practical applications, the derivative expansion of the non-local potential is employed, so that physical observables may receive some scheme dependence at a given order of the expansion. In this paper, we compare the I=2ππ scattering phase shifts obtained in the point-sink scheme (the standard scheme in the HAL QCD method) and the smeared-sink scheme (the LapH smearing newly introduced in the HAL QCD method). Although potentials in different schemes have different forms as expected, we find that, for reasonably small smearing size, the resultant scattering phase shifts agree with each other if the next-to-leading-order (NLO) term is taken into account. We also find that the HAL QCD potential in the point-sink scheme has a negligible NLO term for a wide range of energies, which implies good convergence of the derivative expansion, while the potential in the smeared-sink scheme has a non-negligible NLO contribution. The implications of this observation for future studies of resonance channels (such as the I=0 and 1ππ scatterings) with smeared all-to-all propagators are briefly discussed.

  11. Elastic and Diffractive Scattering - Proceedings of the International Conference on Vth Blois Workshop

    NASA Astrophysics Data System (ADS)

    Kang, K.; Fried, H. M.; Tan, C.-I.

    1994-02-01

    Amplitude Analysis and a QCD-Inspired Analysis * Rapidity Gaps and Multiplicity Fluctuations * Branching Processes and Multi-Particle Production * High Energy Elastic Scattering and Nucleon as a Topological Soliton * The Behavior of Cross Sections at Very High Energies * The Pomeron and QCD with Many Light Quarks * Heterotic Pomeron: High Energy Hadronic Collisions in QCD * CDF Results on Electroweak Physics * DØ Results on Electroweak Physics * Search for the Top Quark and Other New Particles at DØ * Rapidity Gaps and Forward Physics at DØ * High Energy Asymptotics of Perturbative Multi-Color QCD * Rapidity Gaps in e+e- Collisions * Large Rapidity Gap, Jet Events at HERA: a PQCD Approach * High Energy Parton-Parton Elastic Scattering in QCD * Parton-Parton Elastic Scattering and Rapidity Gaps at Tevatron Energies * Hard Elastic Scattering * Hard Diffractive Processes * Three Successful Tests of Color Transparency and Nuclear Filtering * New KNO in QCD * A Chiral Condensate Search at the Tevatron * Cosmic Ray Evidences for Aligned High Energy Jets at Supertevatron Energy and Hard DDD * "New Hadronic State" Observed in Extremely High Energy Cosmic-Ray Interactions * Meson and Nucleon Form Factors in PQCD * Elastic Charge Form Factors for Pseudoscalar Mesons * The Ultimate Experiment * Search for Coherent Charm Production in 800 GeV/c Proton-Silicon Interactions * Chiral Quark Model and Hadron Scattering * Elastic Spin Experiments at UNK, Fermilab and SSC * Spin-Flip in Elastic and Diffractive Scattering * FNAL Polarized Beams and Spin Dependence at RHIC * Particle Tracking in the Close-to-Forward Region (η > 5.5) * Blois V: Experimental Summary * Blois V: Summary Talk * List of Participants

  12. A model for pion-pion scattering in large- N QCD

    NASA Astrophysics Data System (ADS)

    Veneziano, G.; Yankielowicz, S.; Onofri, E.

    2017-04-01

    Following up on recent work by Caron-Huot et al. we consider a generalization of the old Lovelace-Shapiro model as a toy model for ππ scattering satisfying (most of) the properties expected to hold in ('t Hooft's) large- N limit of massless QCD. In particular, the model has asymptotically linear and parallel Regge trajectories at positive t, a positive leading Regge intercept α 0 < 1, and an effective bending of the trajectories in the negative- t region producing a fixed branch point at J = 0 for t < t 0 < 0. Fixed (physical) angle scattering can be tuned to match the power-like behavior (including logarithmic corrections) predicted by perturbative QCD: A( s, t) ˜ s - β log( s)-γ F ( θ). Tree-level unitarity (i.e. positivity of residues for all values of s and J ) imposes strong constraints on the allowed region in the α0- β-γ parameter space, which nicely includes a physically interesting region around α 0 = 0 .5, β = 2 and γ = 3. The full consistency of the model would require an extension to multi-pion processes, a program we do not undertake in this paper.

  13. High energy scattering in QCD and in quantum gravity

    NASA Astrophysics Data System (ADS)

    Lipatov, L. N.

    2014-06-01

    The theory of the high energy scattering in QCD is based on the BFKL equation for the Pomeron wave function and on its generalization for composite multi-gluon states in the crossing channel. At a large number of colors the equations for the gluon composite states have remarkable mathematical properties including their Möbius invariance, holomorphic separability, duality symmetry and integrability. High energy QCD interactions local in the particle rapidities are formulated in the form of the gauge invariant effective action. In the maximally extended N = 4 super-symmetry the Pomeron turns out to be dual to the reggeized graviton in the 10-dimensional anti-de-Sitter space. As a result, the Gribov calculus for the Pomeron interactions should be reformulated here as a generally covariant effective field theory for the reggeized gravitons. We construct the corresponding effective action, which gives a possibility to calculate their trajectory and couplings. The graviton trajectory in the leading order contains an ultraviolet divergency meaning the presence of the double-logarithmic (DL) terms. We sum the DL contributions in all orders of the perturbation theory in the Einstein-Hilbert gravity and in its super-symmetric generalizations. In the N = 8 super gravity the ratio of the scattering amplitude in the DL approximation to the Born expression tends to zero at large energies.

  14. Parton distributions and lattice QCD calculations: A community white paper

    NASA Astrophysics Data System (ADS)

    Lin, Huey-Wen; Nocera, Emanuele R.; Olness, Fred; Orginos, Kostas; Rojo, Juan; Accardi, Alberto; Alexandrou, Constantia; Bacchetta, Alessandro; Bozzi, Giuseppe; Chen, Jiunn-Wei; Collins, Sara; Cooper-Sarkar, Amanda; Constantinou, Martha; Del Debbio, Luigi; Engelhardt, Michael; Green, Jeremy; Gupta, Rajan; Harland-Lang, Lucian A.; Ishikawa, Tomomi; Kusina, Aleksander; Liu, Keh-Fei; Liuti, Simonetta; Monahan, Christopher; Nadolsky, Pavel; Qiu, Jian-Wei; Schienbein, Ingo; Schierholz, Gerrit; Thorne, Robert S.; Vogelsang, Werner; Wittig, Hartmut; Yuan, C.-P.; Zanotti, James

    2018-05-01

    In the framework of quantum chromodynamics (QCD), parton distribution functions (PDFs) quantify how the momentum and spin of a hadron are divided among its quark and gluon constituents. Two main approaches exist to determine PDFs. The first approach, based on QCD factorization theorems, realizes a QCD analysis of a suitable set of hard-scattering measurements, often using a variety of hadronic observables. The second approach, based on first-principle operator definitions of PDFs, uses lattice QCD to compute directly some PDF-related quantities, such as their moments. Motivated by recent progress in both approaches, in this document we present an overview of lattice-QCD and global-analysis techniques used to determine unpolarized and polarized proton PDFs and their moments. We provide benchmark numbers to validate present and future lattice-QCD calculations and we illustrate how they could be used to reduce the PDF uncertainties in current unpolarized and polarized global analyses. This document represents a first step towards establishing a common language between the two communities, to foster dialogue and to further improve our knowledge of PDFs.

  15. Exclusive QCD processes, quark-hadron duality, and the transition to perturbative QCD

    NASA Astrophysics Data System (ADS)

    Corianò, Claudio; Li, Hsiang-nan; Savkli, Cetin

    1998-07-01

    Experiments at CEBAF will scan the intermediate-energy region of the QCD dynamics for the nucleon form factors and for Compton Scattering. These experiments will definitely clarify the role of resummed perturbation theory and of quark-hadron duality (QCD sum rules) in this regime. With this perspective in mind, we review the factorization theorem of perturbative QCD for exclusive processes at intermediate energy scales, which embodies the transverse degrees of freedom of a parton and the Sudakov resummation of the corresponding large logarithms. We concentrate on the pion and proton electromagnetic form factors and on pion Compton scattering. New ingredients, such as the evolution of the pion wave function and the complete two-loop expression of the Sudakov factor, are included. The sensitivity of our predictions to the infrared cutoff for the Sudakov evolution is discussed. We also elaborate on QCD sum rule methods for Compton Scattering, which provide an alternative description of this process. We show that, by comparing the local duality analysis to resummed perturbation theory, it is possible to describe the transition of exclusive processes to perturbative QCD.

  16. Heavy-quark production in massless quark scattering at two loops in QCD

    NASA Astrophysics Data System (ADS)

    Czakon, M.; Mitov, A.; Moch, S.

    2007-07-01

    We present the two-loop virtual QCD corrections to the production of heavy quarks in the quark-anti-quark annihilation channel in the limit when all kinematical invariants are large compared to the mass of the heavy quark. Our result is exact up to terms suppressed by powers of the heavy-quark mass. The derivation is based on a simple relation between massless and massive scattering amplitudes in gauge theories proposed recently by two of the authors as well as a direct calculation of the massive amplitude at two loops. The results presented here form an important part of the next-to-next-to-leading order QCD contributions to heavy-quark production in hadron-hadron collisions.

  17. The I=2 ππ S-wave Scattering Phase Shift from Lattice QCD

    DOE PAGES

    Beane, S. R.; Chang, E.; Detmold, W.; ...

    2012-02-16

    The π +π + s-wave scattering phase-shift is determined below the inelastic threshold using Lattice QCD. Calculations were performed at a pion mass of m π ≈ 390 MeV with an anisotropic n f = 2+1 clover fermion discretization in four lattice volumes, with spatial extent L ≈ 2.0, 2.5, 3.0 and 3.9 fm, and with a lattice spacing of b s ≈ 0.123 fm in the spatial direction and b t b s/3.5 in the time direction. The phase-shift is determined from the energy-eigenvalues of π +π + systems with both zero and non-zero total momentum in the latticemore » volume using Luscher's method. Our calculations are precise enough to allow for a determination of the threshold scattering parameters, the scattering length a, the effective range r, and the shape-parameter P, in this channel and to examine the prediction of two-flavor chiral perturbation theory: m π 2 a r = 3+O(m π 2/Λ χ 2). Chiral perturbation theory is used, with the Lattice QCD results as input, to predict the scattering phase-shift (and threshold parameters) at the physical pion mass. Our results are consistent with determinations from the Roy equations and with the existing experimental phase shift data.« less

  18. From QCD-based hard-scattering to nonextensive statistical mechanical descriptions of transverse momentum spectra in high-energy p p and p p ¯ collisions

    DOE PAGES

    Wong, Cheuk-Yin; Wilk, Grzegorz; Cirto, Leonardo J. L.; ...

    2015-06-22

    Transverse spectra of both jets and hadrons obtained in high-energymore » $pp$ and $$p\\bar p $$ collisions at central rapidity exhibit power-law behavior of $$1/p_T^n$$ at high $$p_T$$. The power index $n$ is 4-5 for jet production and is slightly greater for hadron production. Furthermore, the hadron spectra spanning over 14 orders of magnitude down to the lowest $$p_T$$ region in $pp$ collisions at LHC can be adequately described by a single nonextensive statistical mechanical distribution that is widely used in other branches of science. This suggests indirectly the dominance of the hard-scattering process over essentially the whole $$p_T$$ region at central rapidity in $pp$ collisions at LHC. We show here direct evidences of such a dominance of the hard-scattering process by investigating the power index of UA1 jet spectra over an extended $$p_T$$ region and the two-particle correlation data of the STAR and PHENIX Collaborations in high-energy $pp$ and $$p \\bar p$$ collisions at central rapidity. We then study how the showering of the hard-scattering product partons alters the power index of the hadron spectra and leads to a hadron distribution that can be cast into a single-particle non-extensive statistical mechanical distribution. Lastly, because of such a connection, the non-extensive statistical mechanical distribution can be considered as a lowest-order approximation of the hard-scattering of partons followed by the subsequent process of parton showering that turns the jets into hadrons, in high energy $pp$ and $$p\\bar p$$ collisions.« less

  19. Parton distributions and lattice QCD calculations: A community white paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Huey-Wen; Nocera, Emanuele R.; Olness, Fred

    In the framework of quantum chromodynamics (QCD), parton distribution functions (PDFs) quantify how the momentum and spin of a hadron are divided among its quark and gluon constituents. Two main approaches exist to determine PDFs. The first approach, based on QCD factorization theorems, realizes a QCD analysis of a suitable set of hard-scattering measurements, often using a variety of hadronic observables. The second approach, based on first-principle operator definitions of PDFs, uses lattice QCD to compute directly some PDF-related quantities, such as their moments. Motivated by recent progress in both approaches, in this paper we present an overview of lattice-QCDmore » and global-analysis techniques used to determine unpolarized and polarized proton PDFs and their moments. We provide benchmark numbers to validate present and future lattice-QCD calculations and we illustrate how they could be used to reduce the PDF uncertainties in current unpolarized and polarized global analyses. Finally, this document represents a first step towards establishing a common language between the two communities, to foster dialogue and to further improve our knowledge of PDFs.« less

  20. Parton distributions and lattice QCD calculations: A community white paper

    DOE PAGES

    Lin, Huey-Wen; Nocera, Emanuele R.; Olness, Fred; ...

    2018-01-31

    In the framework of quantum chromodynamics (QCD), parton distribution functions (PDFs) quantify how the momentum and spin of a hadron are divided among its quark and gluon constituents. Two main approaches exist to determine PDFs. The first approach, based on QCD factorization theorems, realizes a QCD analysis of a suitable set of hard-scattering measurements, often using a variety of hadronic observables. The second approach, based on first-principle operator definitions of PDFs, uses lattice QCD to compute directly some PDF-related quantities, such as their moments. Motivated by recent progress in both approaches, in this paper we present an overview of lattice-QCDmore » and global-analysis techniques used to determine unpolarized and polarized proton PDFs and their moments. We provide benchmark numbers to validate present and future lattice-QCD calculations and we illustrate how they could be used to reduce the PDF uncertainties in current unpolarized and polarized global analyses. Finally, this document represents a first step towards establishing a common language between the two communities, to foster dialogue and to further improve our knowledge of PDFs.« less

  1. Applications of QCD factorization in multiscale Hadronic scattering

    NASA Astrophysics Data System (ADS)

    Wang, Bowen

    In this thesis I apply QCD factorization theorems to two important hadronic processes. In the first study, I treat the inclusive cross section of the production of massive quarks through neutral current deep inelasitc scattering (DIS): (n/a). In this study I work out a method to consistently organize the QCD radiative contributions up to O(alphas 3) (N3LO), with a proper inclusion of the heavy quark mass dependence at different momentum scales. The generic implementation of the mass dependence developed in this thesis can be used by calculations in both an intermediate-mass factorization scheme and a general-mass factorization scheme. The mass effect is relevant to the predictions for Higgs, and W and Z cross sections measured at the LHC. The second study examines the transverse-momentum distribution of the lepton-pair production in Drell-yan process. The theory predictions based on the Collins-Soper-Sterman (CSS) resummation formalism at NNLL accuracy are compared with the new data on the angular distribution *eta of Drell-Yan pairs measured at the Tevatron and the LHC. The main finding is that the nonperturbative component of the CSS resummed cross section plays a crucial part in explaining the data in the small transverse momentum region.

  2. ππ P-wave resonant scattering from lattice QCD

    NASA Astrophysics Data System (ADS)

    Paul, Srijit; Alexandrou, Constantia; Leskovec, Luka; Meinel, Stefan; Negele, John W.; Petschlies, Marcus; Pochinsky, Andrew; Rendon Suzuki, Jesus Gumaro; Syritsyn, Sergey

    2018-03-01

    We present a high-statistics analysis of the ρ resonance in ππ scattering, using 2 + 1 flavors of clover fermions at a pion mass of approximately 320 MeV and a lattice size of approximately 3:6 fm. The computation of the two-point functions are carried out using combinations of forward, sequential, and stochastic propagators. For the extraction of the ρ-resonance parameters, we compare different fit methods and demonstrate their consistency. For the ππ scattering phase shift, we consider different Breit-Wigner parametrizations and also investigate possible nonresonant contributions. We find that the minimal Breit-Wigner model is suffcient to describe our data, and obtain amρ = 0:4609(16)stat(14)sys and gρππ = 5:69(13)stat(16)sys. In our comparison with other lattice QCD results, we consider the dimensionless ratios amρ/amN and amπ/amN to avoid scale setting ambiguities.

  3. QCD Resummation for Single Spin Asymmetries

    NASA Astrophysics Data System (ADS)

    Kang, Zhong-Bo; Xiao, Bo-Wen; Yuan, Feng

    2011-10-01

    We study the transverse momentum dependent factorization for single spin asymmetries in Drell-Yan and semi-inclusive deep inelastic scattering processes at one-loop order. The next-to-leading order hard factors are calculated in the Ji-Ma-Yuan factorization scheme. We further derive the QCD resummation formalisms for these observables following the Collins-Soper-Sterman method. The results are expressed in terms of the collinear correlation functions from initial and/or final state hadrons coupled with the Sudakov form factor containing all order soft-gluon resummation effects. The scheme-independent coefficients are calculated up to one-loop order.

  4. QCD Resummation for Single Spin Asymmetries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang Z.; Xiao, Bo-Wen; Yuan, Feng

    We study the transverse momentum dependent factorization for single spin asymmetries in Drell-Yan and semi-inclusive deep inelastic scattering processes at one-loop order. The next-to-leading order hard factors are calculated in the Ji-Ma-Yuan factorization scheme. We further derive the QCD resummation formalisms for these observables following the Collins-Soper-Sterman method. The results are expressed in terms of the collinear correlation functions from initial and/or final state hadrons coupled with the Sudakov form factor containing all order soft-gluon resummation effects. The scheme-independent coefficients are calculated up to one-loop order.

  5. Effective actions for high energy scattering in QCD and in gravity

    NASA Astrophysics Data System (ADS)

    Lipatov, L. N.

    2017-12-01

    The scattering amplitudes in QCD and gravity at high energies are described in terms of reggeized gluons and gravitons, respectively. In particular, the BFKL Pomeron in N = 4 SUSY is dual to the reggeized graviton living in the 10-dimensional anti-de-Sitter space. The effective actions for the reggeized gluons and gravitons are local in their rapidities. The Euler-Lagrange equations for these effective theories are constructed and their solutions are used for calculations of corresponding Reggeon vertices and trajectories.

  6. Constraints on spin-dependent parton distributions at large x from global QCD analysis

    DOE PAGES

    Jimenez-Delgado, P.; Avakian, H.; Melnitchouk, W.

    2014-09-28

    This study investigate the behavior of spin-dependent parton distribution functions (PDFs) at large parton momentum fractions x in the context of global QCD analysis. We explore the constraints from existing deep-inelastic scattering data, and from theoretical expectations for the leading x → 1 behavior based on hard gluon exchange in perturbative QCD. Systematic uncertainties from the dependence of the PDFs on the choice of parametrization are studied by considering functional forms motivated by orbital angular momentum arguments. Finally, we quantify the reduction in the PDF uncertainties that may be expected from future high-x data from Jefferson Lab at 12 GeV.

  7. Hard Break-Up of Two-Nucleons and QCD Dynamics of NN Interaction

    NASA Astrophysics Data System (ADS)

    Sargsian, Misak

    2008-10-01

    We discus recent developments in theory of high energy two-body break-up of few-nucleon systems. The characteristics of these reactions are such that the hard two-body quasielastic subprocess can be clearly separated from the accompanying soft subprocesses. We discuss in details the hard rescattering model (HRM) in which hard photodisintegration develops in two stages. At first, photon knocks-out an energetic quark which rescatters subsequently with a quark of the other nucleon. The latter provides a mechanism of sharing the initial high momentum of the photon between two outgoing nucleons. This final state hard rescattering can be expressed through the hard NN scattering amplitude. Within HRM we discuss hard break-up reactions involving D and 3He targets and demonstrate how these reactions are sensitive to the dynamics of hard pn and pp interaction. Another development of HRM is the prediction of new helicity selection mechanism for hard two-body reactions, which was apparently confirmed in the recent JLab experiment.

  8. New Perspectives for Hadron Phenomenology:The Effects of Final-State Interactions and Near-Conformal Effective QCD Couplings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodsky, S

    2003-10-24

    The effective QCD charge extracted from {tau} decay is remarkably constant at small momenta, implying the near-conformal behavior of hadronic interactions at small momentum transfer. The correspondence of large-N{sub c} supergravity theory in higher-dimensional anti-de Sitter spaces with gauge theory in physical space-time also has interesting implications for hadron phenomenology in the conformal limit, such as constituent counting rules for hard exclusive processes. The utility of light-front quantization and lightfront Fock wavefunctions for analyzing such phenomena and representing the dynamics of QCD bound states is reviewed. I also discuss the novel effects of initial- and final-state interactions in hard QCDmore » inclusive processes, including Bjorken-scaling single-spin asymmetries and the leading-twist diffractive and shadowing contributions to deep inelastic lepton-proton scattering.« less

  9. An a 0 resonance in strongly coupled π η , K K ¯ scattering from lattice QCD

    DOE PAGES

    Dudek, Jozef J.; Edwards, Robert G.; Wilson, David J.

    2016-05-11

    Here, we present the first calculation of coupled-channel meson-meson scattering in the isospinmore » $=1$, $G$-parity negative sector, with channels $$\\pi \\eta$$, $$K\\overline{K}$$ and $$\\pi \\eta'$$, in a first-principles approach to QCD. From the discrete spectrum of eigenstates in three volumes extracted from lattice QCD correlation functions we determine the energy dependence of the $S$-matrix, and find that the $S$-wave features a prominent cusp-like structure in $$\\pi \\eta \\to \\pi \\eta$$ close to $$K\\overline{K}$$ threshold coupled with a rapid turn on of amplitudes leading to the $$K\\overline{K}$$ final-state. This behavior is traced to an $$a_0(980)$$-like resonance, strongly coupled to both $$\\pi \\eta$$ and $$K\\overline{K}$$, which is identified with a pole in the complex energy plane, appearing on only a single unphysical Riemann sheet. Consideration of $D$-wave scattering suggests a narrow tensor resonance at higher energy.« less

  10. An a 0 resonance in strongly coupled π η , K K ¯ scattering from lattice QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dudek, Jozef J.; Edwards, Robert G.; Wilson, David J.

    Here, we present the first calculation of coupled-channel meson-meson scattering in the isospinmore » $=1$, $G$-parity negative sector, with channels $$\\pi \\eta$$, $$K\\overline{K}$$ and $$\\pi \\eta'$$, in a first-principles approach to QCD. From the discrete spectrum of eigenstates in three volumes extracted from lattice QCD correlation functions we determine the energy dependence of the $S$-matrix, and find that the $S$-wave features a prominent cusp-like structure in $$\\pi \\eta \\to \\pi \\eta$$ close to $$K\\overline{K}$$ threshold coupled with a rapid turn on of amplitudes leading to the $$K\\overline{K}$$ final-state. This behavior is traced to an $$a_0(980)$$-like resonance, strongly coupled to both $$\\pi \\eta$$ and $$K\\overline{K}$$, which is identified with a pole in the complex energy plane, appearing on only a single unphysical Riemann sheet. Consideration of $D$-wave scattering suggests a narrow tensor resonance at higher energy.« less

  11. Hard QCD processes in the nuclear medium

    NASA Astrophysics Data System (ADS)

    Freese, Adam

    The environment inside the atomic nucleus is one of the most fascinating arenas for the study of quantum chromodynamics (QCD). The strongly-interacting nature of the nuclear medium a?ects the nature of both QCD processes and the quark-gluon structure of hadrons, allowing several unique aspects of the strong nuclear force to be investigated in reactions involving nuclear targets. The research presented in this dissertation explores two aspects of nuclear QCD: firstly, the partonic structure of the nucleus itself; and secondly, the use of the nucleus as a micro-laboratory in which QCD processes can be studied. The partonic structure of the nucleus is calculated in this work by deriving and utilizing a convolution formula. The hadronic structure of the nucleus and the quark-gluon structure of its constituent nucleons are taken together to determine the nuclear partonic structure. Light cone descriptions of short range correlations, in terms of both hadronic and partonic structure, are derived and taken into account. Medium modifications of the bound nucleons are accounted for using the color screening model, and QCD evolution is used to connect nuclear partonic structure at vastly di?erent energy scales. The formalism developed for calculating nuclear partonic structure is applied to inclusive dijet production from proton-nucleus collisions at LHC kinematics, and novel predictions are calculated and presented for the dijet cross section. The nucleus is investigated as a micro-laboratory in vector meson photoproduction reactions. In particular, the deuteron is studied in the break-up reaction gammad → Vpn, for both the φ(1020) and J/v vector mesons. The generalized eikonal approximation is utilized, allowing unambiguous separation of the impulse approximation and final state interactions (FSIs). Two peaks or valleys are seen in the angular distribution of the reaction cross section, each of which is due to an FSI between either the proton and neutron, or the

  12. Hard Break-Up of Two-Nucleons and QCD Dynamics of NN Interaction

    NASA Astrophysics Data System (ADS)

    Sargsian, Misak; Granados, Carlos

    2009-05-01

    We investigate hard photodisintegration of two nucleons from ^3He nucleus within the framework of hard rescattering model (HRM). In HRM a quark of one nucleon knocked-out by incoming photon rescatters with a quark of the other nucleon leading to the production of two nucleons with high relative momentum. HRM allows to express the amplitude of two-nucleon break-up reaction through the convolution of photon-quark scattering, NN hard scattering amplitude and nuclear spectral function which can be calculated using nonrelativistic ^3He wave function. HRM predicts several specific features for hard break-up reaction. First, the cross section will approximately scale as s-11. Also one predicts comparable or larger cross section for pp break up as compared to that of pn break-up, which is opposite to what is observed in low energy kinematics. Another result is the prediction of different spectator momentum dependencies of pp and pn break-up cross sections. This is due to the fact that same-helicity pp-component is strongly suppressed in the ground state wave function of ^3He. Due to this suppression HRM predicts significantly different asymmetries for the cross section of polarization transfer NN break-up reactions for circularly polarized photons. For the pp break-up this asymmetry is predicted to be zero while for the pn it is close to 23.

  13. Resonances in coupled πK, ηK scattering from lattice QCD

    DOE PAGES

    Wilson, David J.; Dudek, Jozef J.; Edwards, Robert G.; ...

    2015-03-10

    Coupled-channel πK and ηK scattering amplitudes are determined by studying the finite-volume energy spectra obtained from dynamical lattice QCD calculations. Using a large basis of interpolating operators, including both those resembling a qq-bar construction and those resembling a pair of mesons with relative momentum, a reliable excited-state spectrum can be obtained. Working at mπ = 391 MeV, we find a gradual increase in the JP = 0+ πK phase-shift which may be identified with a broad scalar resonance that couples strongly to πK and weakly to ηK. The low-energy behavior of this amplitude suggests a virtual bound-state that may bemore » related to the κ resonance. A bound state with JP = 1- is found very close to the πK threshold energy, whose coupling to the πK channel is compatible with that of the experimental K*(892). Evidence is found for a narrow resonance in JP = 2+. Isospin–3/2 πK scattering is also studied and non-resonant phase-shifts spanning the whole elastic scattering region are obtained.« less

  14. Tetraquark resonances computed with static lattice QCD potentials and scattering theory

    NASA Astrophysics Data System (ADS)

    Bicudo, Pedro; Cardoso, Marco; Peters, Antje; Pflaumer, Martin; Wagner, Marc

    2018-03-01

    We study tetraquark resonances with lattice QCD potentials computed for two static quarks and two dynamical quarks, the Born-Oppenheimer approximation and the emergent wave method of scattering theory. As a proof of concept we focus on systems with isospin I = 0, but consider different relative angular momenta l of the heavy b quarks. We compute the phase shifts and search for S and T matrix poles in the second Riemann sheet. We predict a new tetraquark resonance for l = 1, decaying into two B mesons, with quantum numbers I(JP) = 0(1-), mass m = 10576-4+4 MeV and decay width Γ = 112-103+90 MeV.

  15. Leading twist nuclear shadowing phenomena in hard processes with nuclei

    DOE PAGES

    L. Franfurt; Guzey, V.; Strikman, M.

    2012-01-08

    We present and discuss the theory and phenomenology of the leading twist theory of nuclear shadowing which is based on the combination of the generalization of Gribov-Glauber theory, QCD factorization theorems, and HERA QCD analysis of diffraction in lepton-proton deep inelastic scattering (DIS). We apply this technique for the analysis of a wide range of hard processes with nuclei-inclusive DIS on deuterons, medium-range and heavy nuclei, coherent and incoherent diffractive DIS with nuclei, and hard diffraction in proton-nucleus scattering - and make predictions for the effect of nuclear shadowing in the corresponding sea quark and gluon parton distributions. We alsomore » analyze the role of the leading twist nuclear shadowing in generalized parton distributions in nuclei and certain characteristics of final states in nuclear DIS. We discuss the limits of applicability of the leading twist approximation for small x scattering off nuclei and the onset of the black disk regime and methods of detecting it. It will be possible to check many of our predictions in the near future in the studies of the ultraperipheral collisions at the Large Hadron Collider (LHC). Further checks will be possible in pA collisions at the LHC and forward hadron production at Relativistic Heavy Ion Collider (RHIC). As a result, detailed tests will be possible at an Electon-Ion Collider (EIC) in USA and at the Large Hadron-Electron Collider (LHeC) at CERN.« less

  16. The current matrix elements from HAL QCD method

    NASA Astrophysics Data System (ADS)

    Watanabe, Kai; Ishii, Noriyoshi

    2018-03-01

    HAL QCD method is a method to construct a potential (HAL QCD potential) that reproduces the NN scattering phase shift faithful to the QCD. The HAL QCD potential is obtained from QCD by eliminating the degrees of freedom of quarks and gluons and leaving only two particular hadrons. Therefor, in the effective quantum mechanics of two nucleons defined by HAL QCD potential, the conserved current consists not only of the nucleon current but also an extra current originating from the potential (two-body current). Though the form of the two-body current is closely related to the potential, it is not straight forward to extract the former from the latter. In this work, we derive the the current matrix element formula in the quantum mechanics defined by the HAL QCD potential. As a first step, we focus on the non-relativistic case. To give an explicit example, we consider a second quantized non-relativistic two-channel coupling model which we refer to as the original model. From the original model, the HAL QCD potential for the open channel is constructed by eliminating the closed channel in the elastic two-particle scattering region. The current matrix element formula is derived by demanding the effective quantum mechanics defined by the HAL QCD potential to respond to the external field in the same way as the original two-channel coupling model.

  17. An effective field theory for forward scattering and factorization violation

    DOE PAGES

    Rothstein, Ira Z.; Stewart, Iain W.

    2016-08-03

    Starting with QCD, we derive an effective field theory description for forward scattering and factorization violation as part of the soft-collinear effective field theory (SCET) for high energy scattering. These phenomena are mediated by long distance Glauber gluon exchanges, which are static in time, localized in the longitudinal distance, and act as a kernel for forward scattering where |t| << s. In hard scattering, Glauber gluons can induce corrections which invalidate factorization. With SCET, Glauber exchange graphs can be calculated explicitly, and are distinct from graphs involving soft, collinear, or ultrasoft gluons. We derive a complete basis of operators whichmore » describe the leading power effects of Glauber exchange. Key ingredients include regulating light-cone rapidity singularities and subtractions which prevent double counting. Our results include a novel all orders gauge invariant pure glue soft operator which appears between two collinear rapidity sectors. The 1-gluon Feynman rule for the soft operator coincides with the Lipatov vertex, but it also contributes to emissions with ≥ 2 soft gluons. Our Glauber operator basis is derived using tree level and one-loop matching calculations from full QCD to both SCET II and SCET I. The one-loop amplitude’s rapidity renormalization involves mixing of color octet operators and yields gluon Reggeization at the amplitude level. The rapidity renormalization group equation for the leading soft and collinear functions in the forward scattering cross section are each given by the BFKL equation. Various properties of Glauber gluon exchange in the context of both forward scattering and hard scattering factorization are described. For example, we derive an explicit rule for when eikonalization is valid, and provide a direct connection to the picture of multiple Wilson lines crossing a shockwave. In hard scattering operators Glauber subtractions for soft and collinear loop diagrams ensure that we are not

  18. Pion-nucleon scattering in the Roper channel from lattice QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lang, Christian B.; Leskovec, L.; Padmanath, M.

    We present a lattice QCD study ofmore » $$N\\pi$$ scattering in the positive-parity nucleon channel, where the puzzling Roper resonance $N^*(1440)$ resides in experiment. The study is based on the PACS-CS ensemble of gauge configurations with $$N_f=2+1$$ Wilson-clover dynamical fermions, $$m_\\pi \\simeq 156~$$MeV and $$L\\simeq 2.9~$$fm. In addition to a number of $qqq$ interpolating fields, we implement operators for $$N\\pi$$ in $p$-wave and $$N\\sigma$$ in $s$-wave. In the center-of-momentum frame we find three eigenstates below 1.65 GeV. They are dominated by $N(0)$, $$N(0)\\pi(0)\\pi(0)$$ (mixed with $$N(0)\\sigma(0)$$) and $$N(p)\\pi(-p)$$ with $$p\\simeq 2\\pi/L$$, where momenta are given in parentheses. This is the first simulation where the expected multi-hadron states are found in this channel. The experimental $$N\\pi$$ phase-shift would -- in the approximation of purely elastic $$N\\pi$$ scattering -- imply an additional eigenstate near the Roper mass $$m_R\\simeq 1.43~$$GeV for our lattice size. We do not observe any such additional eigenstate, which indicates that $$N\\pi$$ elastic scattering alone does not render a low-lying Roper. Coupling with other channels, most notably with $$N\\pi\\pi$$, seems to be important for generating the Roper resonance, reinforcing the notion that this state could be a dynamically generated resonance. Our results are in line with most of previous lattice studies based just on $qqq$ interpolators, that did not find a Roper eigenstate below $1.65~$GeV. As a result, the study of the coupled-channel scattering including a three-particle decay $$N\\pi\\pi$$ remains a challenge.« less

  19. Pion-nucleon scattering in the Roper channel from lattice QCD

    DOE PAGES

    Lang, Christian B.; Leskovec, L.; Padmanath, M.; ...

    2017-01-31

    We present a lattice QCD study ofmore » $$N\\pi$$ scattering in the positive-parity nucleon channel, where the puzzling Roper resonance $N^*(1440)$ resides in experiment. The study is based on the PACS-CS ensemble of gauge configurations with $$N_f=2+1$$ Wilson-clover dynamical fermions, $$m_\\pi \\simeq 156~$$MeV and $$L\\simeq 2.9~$$fm. In addition to a number of $qqq$ interpolating fields, we implement operators for $$N\\pi$$ in $p$-wave and $$N\\sigma$$ in $s$-wave. In the center-of-momentum frame we find three eigenstates below 1.65 GeV. They are dominated by $N(0)$, $$N(0)\\pi(0)\\pi(0)$$ (mixed with $$N(0)\\sigma(0)$$) and $$N(p)\\pi(-p)$$ with $$p\\simeq 2\\pi/L$$, where momenta are given in parentheses. This is the first simulation where the expected multi-hadron states are found in this channel. The experimental $$N\\pi$$ phase-shift would -- in the approximation of purely elastic $$N\\pi$$ scattering -- imply an additional eigenstate near the Roper mass $$m_R\\simeq 1.43~$$GeV for our lattice size. We do not observe any such additional eigenstate, which indicates that $$N\\pi$$ elastic scattering alone does not render a low-lying Roper. Coupling with other channels, most notably with $$N\\pi\\pi$$, seems to be important for generating the Roper resonance, reinforcing the notion that this state could be a dynamically generated resonance. Our results are in line with most of previous lattice studies based just on $qqq$ interpolators, that did not find a Roper eigenstate below $1.65~$GeV. As a result, the study of the coupled-channel scattering including a three-particle decay $$N\\pi\\pi$$ remains a challenge.« less

  20. Continuous Advances in QCD 2008

    NASA Astrophysics Data System (ADS)

    Peloso, Marco M.

    2008-12-01

    1. High-order calculations in QCD and in general gauge theories. NLO evolution of color dipoles / I. Balitsky. Recent perturbative results on heavy quark decays / J. H. Piclum, M. Dowling, A. Pak. Leading and non-leading singularities in gauge theory hard scattering / G. Sterman. The space-cone gauge, Lorentz invariance and on-shell recursion for one-loop Yang-Mills amplitudes / D. Vaman, Y.-P. Yao -- 2. Heavy flavor physics. Exotic cc¯ mesons / E. Braaten. Search for new physics in B[symbol]-mixing / A. J. Lenz. Implications of D[symbol]-D[symbol] mixing for new physics / A. A. Petrov. Precise determinations of the charm quark mass / M. Steinhauser -- 3. Quark-gluon dynamics at high density and/or high temperature. Crystalline condensate in the chiral Gross-Neveu model / G. V. Dunne, G. Basar. The strong coupling constant at low and high energies / J. H. Kühn. Quarkyonic matter and the phase diagram of QCD / L. McLerran. Statistical QCD with non-positive measure / J. C. Osborn, K. Splittorff, J. J. M. Verbaarschot. From equilibrium to transport properties of strongly correlated fermi liquids / T. Schäfer. Lessons from random matrix theory for QCD at finite density / K. Splittorff, J. J. M. Verbaarschot -- 4. Methods and models of holographic correspondence. Soft-wall dynamics in AdS/QCD / B. Batell. Holographic QCD / N. Evans, E. Threlfall. QCD glueball sum rules and vacuum topology / H. Forkel. The pion form factor in AdS/QCD / H. J. Kwee, R. F. Lebed. The fast life of holographic mesons / R. C. Myers, A. Sinha. Properties of Baryons from D-branes and instantons / S. Sugimoto. The master space of N = 1 quiver gauge theories: counting BPS operators / A. Zaffaroni. Topological field congurations. Skyrmions in theories with massless adjoint quarks / R. Auzzi. Domain walls, localization and confinement: what binds strings inside walls / S. Bolognesi. Static interactions of non-abelian vortices / M. Eto. Vortices which do not abelianize dynamically: semi

  1. Hard diffraction and deep inelastic scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bjorken, J.D.

    1994-04-01

    Since the advent of hard-collision physics, the study of diffractive processes - shadow physics - has been less prominent than before. However, there is now a renewed interest in the subject, especially in that aspect which synthesizes the short-distance, hard-collision phenomena with the classical physics of large rapidity-gaps. This is especially stimulated by the recent data on deep-inelastic scattering from HERA, as well as the theoretical work which relates to it. The word diffraction is sometimes used by high-energy physicists in a loose way. The author defines this term to mean: A diffractive process occurs if and only if theremore » is a large rapidity gap in the produced-particle phase space which is not exponentially suppressed. Here a rapidity gap means essentially no hadrons produced into the rapidity gap (which operates in the {open_quotes}lego{close_quotes} phase-space of pseudo-rapidity and azimuthal angle). And non-exponential suppression implies that the cross-section for creating a gap with width {Delta}{eta} does not have a power-law decrease with increasing subenergy s=e{sup {Delta}{eta}}, but behaves at most like some power of pseudorapidity {Delta}{eta}{approx}log(s). The term hard diffraction shall simply refer to those diffractive process which have jets in the final-state phase-space.« less

  2. Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment from lattice QCD

    DOE PAGES

    Blum, Thomas; Chowdhury, Saumitra; Hayakawa, Masashi; ...

    2015-01-07

    The form factor that yields the light-by-light scattering contribution to the muon anomalous magnetic moment is computed in lattice QCD+QED and QED. A non-perturbative treatment of QED is used and is checked against perturbation theory. The hadronic contribution is calculated for unphysical quark and muon masses, and only the diagram with a single quark loop is computed. Statistically significant signals are obtained. Initial results appear promising, and the prospect for a complete calculation with physical masses and controlled errors is discussed.

  3. Combination and QCD analysis of charm and beauty production cross-section measurements in deep inelastic ep scattering at HERA

    NASA Astrophysics Data System (ADS)

    Abramowicz, H.; Abt, I.; Adamczyk, L.; Adamus, M.; Aggarwal, R.; Andreev, V.; Antonelli, S.; Aushev, V.; Baghdasaryan, A.; Begzsuren, K.; Behnke, O.; Behrens, U.; Belousov, A.; Bertolin, A.; Bloch, I.; Bolz, A.; Boudry, V.; Brandt, G.; Brisson, V.; Britzger, D.; Brock, I.; Brook, N. H.; Brugnera, R.; Bruni, A.; Buniatyan, A.; Bussey, P. J.; Bylinkin, A.; Bystritskaya, L.; Caldwell, A.; Campbell, A. J.; Avila, K. B. Cantun; Capua, M.; Catterall, C. D.; Cerny, K.; Chekelian, V.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Contreras, J. G.; Cooper-Sarkar, A. M.; Corradi, M.; Cvach, J.; Dainton, J. B.; Daum, K.; Dementiev, R. K.; Devenish, R. C. E.; Diaconu, C.; Dobre, M.; Dusini, S.; Eckerlin, G.; Egli, S.; Elsen, E.; Favart, L.; Fedotov, A.; Feltesse, J.; Fleischer, M.; Fomenko, A.; Foster, B.; Gallo, E.; Garfagnini, A.; Gayler, J.; Geiser, A.; Gizhko, A.; Gladilin, L. K.; Goerlich, L.; Gogitidze, N.; Golubkov, Yu. A.; Gouzevitch, M.; Grab, C.; Grebenyuk, A.; Greenshaw, T.; Grindhammer, G.; Grzelak, G.; Gwenlan, C.; Haidt, D.; Henderson, R. C. W.; Hladkỳ, J.; Hlushchenko, O.; Hochman, D.; Hoffmann, D.; Horisberger, R.; Hreus, T.; Huber, F.; Ibrahim, Z. A.; Iga, Y.; Jacquet, M.; Janssen, X.; Jomhari, N. Z.; Jung, A. W.; Jung, H.; Kadenko, I.; Kananov, S.; Kapichine, M.; Karshon, U.; Katzy, J.; Kaur, P.; Kiesling, C.; Kisielewska, D.; Klanner, R.; Klein, M.; Klein, U.; Kleinwort, C.; Kogler, R.; Korzhavina, I. A.; Kostka, P.; Kotański, A.; Kovalchuk, N.; Kowalski, H.; Kretzschmar, J.; Krücker, D.; Krüger, K.; Krupa, B.; Kuprash, O.; Kuze, M.; Landon, M. P. J.; Lange, W.; Laycock, P.; Lebedev, A.; Levchenko, B. B.; Levonian, S.; Levy, A.; Libov, V.; Lipka, K.; Lisovyi, M.; List, B.; List, J.; Lobodzinski, B.; Löhr, B.; Lohrmann, E.; Longhin, A.; Lukina, O. Yu.; Makarenko, I.; Malinovski, E.; Malka, J.; Martyn, H.-U.; Masciocchi, S.; Maxfield, S. J.; Mehta, A.; Meyer, A. B.; Meyer, H.; Meyer, J.; Mikocki, S.; Idris, F. Mohamad; Mohammad Nasir, N.; Morozov, A.; Müller, K.; Myronenko, V.; Nagano, K.; Nam, J. D.; Naumann, Th.; Newman, P. R.; Nicassio, M.; Niebuhr, C.; Nowak, G.; Olsson, J. E.; Onderwaater, J.; Onishchuk, Yu.; Ozerov, D.; Pascaud, C.; Patel, G. D.; Paul, E.; Perez, E.; Perlański, W.; Petrukhin, A.; Picuric, I.; Pirumov, H.; Pitzl, D.; Pokrovskiy, N. S.; Polifka, R.; Polini, A.; Przybycień, M.; Radescu, V.; Raicevic, N.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Ruspa, M.; Šálek, D.; Sankey, D. P. C.; Sauter, M.; Sauvan, E.; Saxon, D. H.; Schioppa, M.; Schmitt, S.; Schneekloth, U.; Schoeffel, L.; Schöning, A.; Schörner-Sadenius, T.; Sefkow, F.; Selyuzhenkov, I.; Shcheglova, L. M.; Shushkevich, S.; Shyrma, Yu.; Skillicorn, I. O.; Słomiński, W.; Solano, A.; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, A.; Stanco, L.; Steder, M.; Stefaniuk, N.; Stella, B.; Stern, A.; Stopa, P.; Straumann, U.; Surrow, B.; Sykora, T.; Sztuk-Dambietz, J.; Tassi, E.; Thompson, P. D.; Tokushuku, K.; Tomaszewska, J.; Traynor, D.; Truöl, P.; Tsakov, I.; Tseepeldorj, B.; Tsurugai, T.; Turcato, M.; Turkot, O.; Tymieniecka, T.; Valkárová, A.; Vallée, C.; Van Mechelen, P.; Vazdik, Y.; Verbytskyi, A.; Abdullah, W. A. T. Wan; Wegener, D.; Wichmann, K.; Wing, M.; Wünsch, E.; Yamada, S.; Yamazaki, Y.; Žáček, J.; Żarnecki, A. F.; Zawiejski, L.; Zenaiev, O.; Zhang, Z.; Zhautykov, B. O.; Žlebčík, R.; Zohrabyan, H.; Zomer, F.

    2018-06-01

    Measurements of open charm and beauty production cross sections in deep inelastic ep scattering at HERA from the H1 and ZEUS Collaborations are combined. Reduced cross sections are obtained in the kinematic range of negative four-momentum transfer squared of the photon 2.5 GeV^2≤Q^2 ≤2000 GeV^2 and Bjorken scaling variable 3 \\cdot 10^{-5} ≤ x_Bj ≤ 5 \\cdot 10^{-2}. The combination method accounts for the correlations of the statistical and systematic uncertainties among the different datasets. Perturbative QCD calculations are compared to the combined data. A next-to-leading order QCD analysis is performed using these data together with the combined inclusive deep inelastic scattering cross sections from HERA. The running charm- and beauty-quark masses are determined as m_c(m_c) = 1.290^{+0.046}_{-0.041} (exp/fit) {}^{+0.062}_{-0.014} (model) {}^{+0.003}_{-0.031} (parameterisation) GeV and m_b(m_b) = 4.049^{+0.104}_{-0.109} (exp/fit) {}^{+0.090}_{-0.032} (model) {}^{+0.001}_{-0.031} (parameterisation) GeV.

  4. Some New/Old Approaches to QCD

    DOE R&D Accomplishments Database

    Gross, D. J.

    1992-11-01

    In this lecture I shall discuss some recent attempts to revive some old ideas to address the problem of solving QCD. I believe that it is timely to return to this problem which has been woefully neglected for the last decade. QCD is a permanent part of the theoretical landscape and eventually we will have to develop analytic tools for dealing with the theory in the infra-red. Lattice techniques are useful but they have not yet lived up to their promise. Even if one manages to derive the hadronic spectrum numerically, to an accuracy of 10% or even 1%, we will not be truly satisfied unless we have some analytic understanding of the results. Also, lattice Monte-Carlo methods can only be used to answer a small set of questions. Many issues of great conceptual and practical interest-in particular the calculation of scattering amplitudes, are thus far beyond lattice control. Any progress in controlling QCD in an explicit analytic, fashion would be of great conceptual value. It would also be of great practical aid to experimentalists, who must use rather ad-hoc and primitive models of QCD scattering amplitudes to estimate the backgrounds to interesting new physics. I will discuss an attempt to derive a string representation of QCD and a revival of the large N approach to QCD. Both of these ideas have a long history, many theorist-years have been devoted to their pursuit-so far with little success. I believe that it is time to try again. In part this is because of the progress in the last few years in string theory. Our increased understanding of string theory should make the attempt to discover a stringy representation of QCD easier, and the methods explored in matrix models might be employed to study the large N limit of QCD.

  5. Isoscalar ππ Scattering and the σ Meson Resonance from QCD.

    PubMed

    Briceño, Raul A; Dudek, Jozef J; Edwards, Robert G; Wilson, David J

    2017-01-13

    We present for the first time a determination of the energy dependence of the isoscalar ππ elastic scattering phase shift within a first-principles numerical lattice approach to QCD. Hadronic correlation functions are computed including all required quark propagation diagrams, and from these the discrete spectrum of states in the finite volume defined by the lattice boundary is extracted. From the volume dependence of the spectrum, we obtain the S-wave phase shift up to the KK[over ¯] threshold. Calculations are performed at two values of the u, d quark mass corresponding to m_{π}=236,391  MeV, and the resulting amplitudes are described in terms of a σ meson which evolves from a bound state below the ππ threshold at the heavier quark mass to a broad resonance at the lighter quark mass.

  6. Coupled π π , K K ¯ scattering in P -wave and the ρ resonance from lattice QCD

    DOE PAGES

    Wilson, David J.; Briceño, Raúl A.; Dudek, Jozef J.; ...

    2015-11-02

    In this study, we determine elastic and coupled-channel amplitudes for isospin-1 meson-meson scattering inmore » $P$-wave, by calculating correlation functions using lattice QCD with light quark masses such that $$m_\\pi = 236$$ MeV in a cubic volume of $$\\sim (4 \\,\\mathrm{fm})^3$$. Variational analyses of large matrices of correlation functions computed using operator constructions resembling $$\\pi\\pi$$, $$K\\overline{K}$$ and $$q\\bar{q}$$, in several moving frames and several lattice irreducible representations, leads to discrete energy spectra from which scattering amplitudes are extracted. In the elastic $$\\pi\\pi$$ scattering region we obtain a detailed energy-dependence for the phase-shift, corresponding to a $$\\rho$$ resonance, and we extend the analysis into the coupled-channel $$K\\overline{K}$$ region for the first time, finding a small coupling between the channels.« less

  7. Connecting physical resonant amplitudes and lattice QCD

    DOE PAGES

    Bolton, Daniel R.; Briceno, Raul A.; Wilson, David J.

    2016-03-18

    Here, we present a determination of the isovector,more » $P$-wave $$\\pi\\pi$$ scattering phase shift obtained by extrapolating recent lattice QCD results from the Hadron Spectrum Collaboration using $$m_\\pi =236$$ MeV. The finite volume spectra are described using extensions of L\\"uscher's method to determine the infinite volume Unitarized Chiral Perturbation Theory scattering amplitude. We exploit the pion mass dependence of this effective theory to obtain the scattering amplitude at $$m_\\pi= 140$$ MeV. The scattering phase shift is found to be in good agreement with experiment up to center of mass energies of 1.2 GeV. The analytic continuation of the scattering amplitude to the complex plane yields a $$\\rho$$-resonance pole at $$E_\\rho= \\left[755(2)(1)(^{20}_{02})-\\frac{i}{2}\\,129(3)(1)(^{7}_{1})\\right]~{\\rm MeV}$$. The techniques presented illustrate a possible pathway towards connecting lattice QCD observables of few-body, strongly interacting systems to experimentally accessible quantities.« less

  8. Hard breakup of the deuteron into two Δ isobars

    NASA Astrophysics Data System (ADS)

    Granados, Carlos G.; Sargsian, Misak M.

    2011-05-01

    We study high-energy photodisintegration of the deuteron into two Δ isobars at large center of mass angles within the QCD hard rescattering model (HRM). According to the HRM, the process develops in three main steps: the photon knocks a quark from one of the nucleons in the deuteron; the struck quark rescatters off a quark from the other nucleon sharing the high energy of the photon; then the energetic quarks recombine into two outgoing baryons which have large transverse momenta. Within the HRM, the cross section is expressed through the amplitude of pn→ΔΔ scattering which we evaluated based on the quark-interchange model of hard hadronic scattering. Calculations show that the angular distribution and the strength of the photodisintegration is mainly determined by the properties of the pn→ΔΔ scattering. We predict that the cross section of the deuteron breakup to Δ++Δ- is 4-5 times larger than that of the breakup to the Δ+Δ0 channel. Also, the angular distributions for these two channels are markedly different. These can be compared with the predictions based on the assumption that two hard Δ isobars are the result of the disintegration of the preexisting ΔΔ components of the deuteron wave function. In this case, one expects the angular distributions and cross sections of the breakup in both Δ++Δ- and Δ+Δ0 channels to be similar.

  9. Isoscalar π π Scattering and the σ Meson Resonance from QCD

    DOE PAGES

    Briceño, Raul A.; Dudek, Jozef J.; Edwards, Robert G.; ...

    2017-01-09

    Here, we present for the first time a determination of the energy dependence of the isoscalar ππ elastic scattering phase-shift within a first-principles numerical lattice approach to QCD. We also compute the hadronic correlation functions including all required quark propagation diagrams. From these the discrete spectrum of states in the finite volume defined by the lattice boundary is extracted. From the volume dependence of the spectrum we obtain the S-wave phase-shift up to the Kmore » $$\\bar{K}$$ threshold. Calculations are performed at two values of the u, d quark mass corresponding to m π = 236, 391 MeV and the resulting amplitudes are described in terms of a σ meson which evolves from a bound-state below ππ threshold at the heavier quark mass, to a broad resonance at the lighter quark mass.« less

  10. Diffractive hard photoproduction at HERA and evidence for the gluon content of the pomeron

    NASA Astrophysics Data System (ADS)

    Derrick, M.; Krakauer, D.; Magill, S.; Mikunas, D.; Musgrave, B.; Repond, J.; Stanek, R.; Talaga, R. L.; Zhang, H.; Ayad, R.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruni, P.; Cara Romeo, G.; Castellini, G.; Chiarini, M.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; Gialas, I.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Nemoz, C.; Palmonari, F.; Polini, A.; Sartorelli, G.; Timellini, R.; Zamora Garcia, Y.; Zichichi, A.; Bargende, A.; Crittenden, J.; Desch, K.; Diekmann, B.; Doeker, T.; Eckert, M.; Feld, L.; Frey, A.; Geerts, M.; Grothe, M.; Hartmann, H.; Heinloth, K.; Hilger, E.; Jakob, H.-P.; Katz, U. F.; Mari, S. M.; Mengel, S.; Mollen, J.; Paul, E.; Pfeiffer, M.; Rembser, Ch; Schramm, D.; Stamm, J.; Wedemeyer, R.; Campbell-Robson, S.; Cassidy, A.; Dyce, N.; Foster, B.; George, S.; Gilmore, R.; Heath, G. P.; Heath, H. F.; Llewellyn, T. J.; Morgado, C. J. S.; Norman, D. J. P.; O'Mara, J. A.; Tapper, R. J.; Wilson, S. S.; Yoshida, R.; Rau, R. R.; Arneodo, M.; Capua, M.; Garfagnini, A.; Iannotti, L.; Schioppa, M.; Susinno, G.; Bernstein, A.; Caldwell, A.; Cartiglia, N.; Parsons, J. A.; Ritz, S.; Sciulli, F.; Straub, P. B.; Wai, L.; Yang, S.; Zhu, Q.; Borzemski, P.; Chwastowski, J.; Eskreys, A.; Piotrzkowski, K.; Zachara, M.; Zawiejski, L.; Adamczyk, L.; Bednarek, B.; Jeleń, K.; Kisielewska, D.; Kowalski, T.; Rulikowska-Zarȩbska, E.; Suszycki, L.; Zajaç, J.; Kotański, A.; Przybycień, M.; Bauerdick, L. A. T.; Behrens, U.; Beier, H.; Bienlein, J. K.; Coldewey, C.; Deppe, O.; Desler, K.; Drews, G.; Flasiński, M.; Gilkinson, D. J.; Glasman, C.; Göttlicher, P.; Große-Knetter, J.; Gutjahr, B.; Haas, T.; Hain, W.; Hasell, D.; Heßling, H.; Iga, Y.; Johnson, K.; Joos, P.; Kasemann, M.; Klanner, R.; Koch, W.; Köpke, L.; Kötz, U.; Kowalski, H.; Labs, J.; Ladage, A.; Löhr, B.; Löwe, M.; Lüke, D.; Mainusch, J.; Mańczak, O.; Monteiro, T.; Ng, J. S. T.; Nickel, S.; Notz, D.; Ohrenberg, K.; Roco, M.; Rohde, M.; Roldán, J.; Schneekloth, U.; Schulz, W.; Selonke, F.; Stiliaris, E.; Surrow, B.; Voß, T.; Westphal, D.; Wolf, G.; Youngman, C.; Zeuner, W.; Zhou, J. F.; Grabosch, H. J.; Kharchilava, A.; Leich, A.; Mattingly, M. C. K.; Meyer, A.; Schlenstedt, S.; Wulff, N.; Barbagli, G.; Pelfer, P.; Anzivino, G.; Maccarrone, G.; De Pasquale, S.; Votano, L.; Bamberger, A.; Eisenhardt, S.; Freidhof, A.; Söldner-Rembold, S.; Schroeder, J.; Trefzger, T.; Brook, N. H.; Bussey, P. J.; Doyle, A. T.; Fleck, J. I.; Saxon, D. H.; Utley, M. L.; Wilson, A. S.; Dannemann, A.; Holm, U.; Horstmann, D.; Neumann, T.; Sinkus, R.; Wick, K.; Badura, E.; Burow, B. D.; Hagge, L.; Lohrmann, E.; Milewski, J.; Nakahata, M.; Pavel, N.; Poelz, G.; Schott, W.; Zetsche, F.; Bacon, T. C.; Bruemmer, N.; Butterworth, I.; Gallo, E.; Harris, V. L.; Hung, B. Y. H.; Long, K. R.; Miller, D. B.; Morawitz, P. P. O.; Prinias, A.; Sedgbeer, J. K.; Whitfield, A. F.; Mallik, U.; McCliment, E.; Wang, M. Z.; Wang, S. M.; Wu, J. T.; Cloth, P.; Filges, D.; An, S. H.; Hong, S. M.; Nam, S. W.; Park, S. K.; Suh, M. H.; Yon, S. H.; Imlay, R.; Kartik, S.; Kim, H.-J.; McNeil, R. R.; Metcalf, W.; Nadendla, V. K.; Barreiro, F.; Cases, G.; Fernandez, J. P.; Graciani, R.; Hernández, J. M.; Hervás, L.; Labarga, L.; Martinez, M.; del Peso, J.; Puga, J.; Terron, J.; de Trocóniz, J. F.; Smith, G. R.; Corriveau, F.; Hanna, D. S.; Hartmann, J.; Hung, L. W.; Lim, J. N.; Matthews, C. G.; Patel, P. M.; Sinclair, L. E.; Stairs, D. G.; St. Laurent, M.; Ullmann, R.; Zacek, G.; Bashkirov, V.; Dolgoshein, B. A.; Stifutkin, A.; Bashindzhagyan, G. L.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Yu. A.; Kobrin, V. D.; Korzhavina, I. A.; Kuzmin, V. A.; Lukina, O. Yu; Proskuryakov, A. S.; Savin, A. A.; Shcheglova, L. M.; Solomin, A. N.; Zotov, N. P.; Botje, M.; Chlebana, F.; Dake, A.; Engelen, J.; de Kamps, M.; Kooijman, P.; Kruse, A.; Tiecke, H.; Verkerke, W.; Vreeswijk, M.; Wiggers, L.; de Wolf, E.; van Woudenberg, R.; Acosta, D.; Bylsma, B.; Durkin, L. S.; Honscheid, K.; Li, C.; Ling, T. Y.; McLean, K. W.; Murray, W. N.; Park, I. H.; Romanowski, T. A.; Seidlein, R.; Bailey, D. S.; Byrne, A.; Cashmore, R. J.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Harnew, N.; Lancaster, M.; Lindemann, L.; McFall, J. D.; Nath, C.; Noyes, V. A.; Quadt, A.; Tickner, J. R.; Uijterwaal, H.; Walczak, R.; Waters, D. S.; Wilson, F. F.; Yip, T.; Abbiendi, G.; Bertolin, A.; Brugnera, R.; Carlin, R.; Dal Corso, F.; De Giorgi, M.; Dosselli, U.; Limentani, S.; Morandin, M.; Posocco, M.; Stanco, L.; Stroili, R.; Voci, C.; Bulmahn, J.; Butterworth, J. M.; Feild, R. G.; Oh, B. Y.; Whitmore, J. J.; D'Agostini, G.; Marini, G.; Nigro, A.; Tassi, E.; Hart, J. C.; McCubbin, N. A.; Prytz, K.; Shah, T. P.; Short, T. L.; Barberis, E.; Dubbs, T.; Heusch, C.; Van Hook, M.; Lockman, W.; Rahn, J. T.; Sadrozinski, H. F.-W.; Seiden, A.; Williams, D. C.; Biltzinger, J.; Seifert, R. J.; Schwarzer, O.; Walenta, A. H.; Zech, G.; Abramowicz, H.; Briskin, G.; Dagan, S.; Levy, A.; Hasegawa, T.; Hazumi, M.; Ishii, T.; Kuze, M.; Mine, S.; Nagasawa, Y.; Nakao, M.; Suzuki, I.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; Chiba, M.; Hamatsu, R.; Hirose, T.; Homma, K.; Kitamura, S.; Nakamitsu, Y.; Yamauchi, K.; Cirio, R.; Costa, M.; Ferrero, M. I.; Lamberti, L.; Maselli, S.; Peroni, C.; Sacchi, R.; Solano, A.; Staiano, A.; Dardo, M.; Bailey, D. C.; Bandyopadhyay, D.; Benard, F.; Brkic, M.; Crombie, M. B.; Gingrich, D. M.; Hartner, G. F.; Joo, K. K.; Levman, G. M.; Martin, J. F.; Orr, R. S.; Polenz, S.; Sampson, C. R.; Teuscher, R. J.; Catterall, C. D.; Jones, T. W.; Kaziewicz, P. B.; Lane, J. B.; Saunders, R. L.; Shulman, J.; Blankenship, K.; Lu, B.; Mo, L. W.; Bogusz, W.; Charchuła, K.; Ciborowski, J.; Gajewski, J.; Grzelak, G.; Kasprazak, M.; Krzyżanowski, M.; Muchorowski, K.; Nowak, R. J.; Pawlak, J. M.; Tymieniecka, T.; Wróblewski, A. K.; Zakrzewski, J. A.; Żarnecki, A. F.; Adamus, M.; Eisenberg, Y.; Karshon, U.; Revel, D.; Zer-Zion, D.; Ali, I.; Badgett, W. F.; Behrens, B.; Dasu, S.; Fordham, C.; Foudas, C.; Goussiou, A.; Loveless, R. J.; Reeder, D. D.; Silverstein, S.; Smith, W. H.; Vaiciulis, A.; Wodarczyk, M.; Tsurugai, T.; Bhadra, S.; Cardy, M. L.; Fagerstroem, C.-P.; Frisken, W. R.; Furutani, K. M.; Khakzad, M.; Schmidke, W. B.; ZEUS Collaboration

    1995-02-01

    Inclusive jet cross sections for events with a large rapidity gap with respect to the proton direction from the reaction ep → jet + X with quasi-real photons have been measured with the ZEUS detector. The cross sections refer to jets with transverse energies ETjet > 8 GeV. The data show the characteristics of a diffractive process mediated by pomeron exchange. Assuming that the events are due to the exchange of a pomeron with partonic structure, the quark and gluon content of the pomeron is probed at a scale ˜ ( ETjet) 2. A comparison of the measurements with model predictions based on QCD plus Regge phenomenology requires a contribution of partons with a hard momentum density in the pomeron. A combined analysis of the jet cross sections and recent ZEUS measurements of the diffractive structure function in deep inelastic scattering gives the first experimental evidence for the gluon content of the pomeron in diffractive hard scattering processes. The data indicate that between 30% and 80% of the momentum of the pomeron carried by partons is due to hard gluons.

  11. QCD Precision Measurements and Structure Function Extraction at a High Statistics, High Energy Neutrino Scattering Experiment:. NuSOnG

    NASA Astrophysics Data System (ADS)

    Adams, T.; Batra, P.; Bugel, L.; Camilleri, L.; Conrad, J. M.; de Gouvêa, A.; Fisher, P. H.; Formaggio, J. A.; Jenkins, J.; Karagiorgi, G.; Kobilarcik, T. R.; Kopp, S.; Kyle, G.; Loinaz, W. A.; Mason, D. A.; Milner, R.; Moore, R.; Morfín, J. G.; Nakamura, M.; Naples, D.; Nienaber, P.; Olness, F. I.; Owens, J. F.; Pate, S. F.; Pronin, A.; Seligman, W. G.; Shaevitz, M. H.; Schellman, H.; Schienbein, I.; Syphers, M. J.; Tait, T. M. P.; Takeuchi, T.; Tan, C. Y.; van de Water, R. G.; Yamamoto, R. K.; Yu, J. Y.

    We extend the physics case for a new high-energy, ultra-high statistics neutrino scattering experiment, NuSOnG (Neutrino Scattering On Glass) to address a variety of issues including precision QCD measurements, extraction of structure functions, and the derived Parton Distribution Functions (PDF's). This experiment uses a Tevatron-based neutrino beam to obtain a sample of Deep Inelastic Scattering (DIS) events which is over two orders of magnitude larger than past samples. We outline an innovative method for fitting the structure functions using a parametrized energy shift which yields reduced systematic uncertainties. High statistics measurements, in combination with improved systematics, will enable NuSOnG to perform discerning tests of fundamental Standard Model parameters as we search for deviations which may hint of "Beyond the Standard Model" physics.

  12. Heavy-quark production in gluon fusion at two loops in QCD

    NASA Astrophysics Data System (ADS)

    Czakon, M.; Mitov, A.; Moch, S.

    2008-07-01

    We present the two-loop virtual QCD corrections to the production of heavy quarks in gluon fusion. The results are exact in the limit when all kinematical invariants are large compared to the mass of the heavy quark up to terms suppressed by powers of the heavy-quark mass. Our derivation uses a simple relation between massless and massive QCD scattering amplitudes as well as a direct calculation of the massive amplitude at two loops. The results presented here together with those obtained previously for quark-quark scattering form important parts of the next-to-next-to-leading order QCD corrections to heavy-quark production in hadron-hadron collisions.

  13. Lattice QCD results on soft and hard probes of strongly interacting matter

    NASA Astrophysics Data System (ADS)

    Kaczmarek, Olaf

    2017-11-01

    We present recent results from lattice QCD relevant for the study of strongly interacting matter as it is produced in heavy ion collision experiments. The equation of state at non-vanishing density from a Taylor expansion up to 6th order will be discussed for a strangeness neutral system and using the expansion coefficients of the series limits on the critical point are estimated. Chemical freeze-out temperatures from the STAR and ALICE Collaborations will be compared to lines of constant physics calculated from the Taylor expansion of QCD bulk thermodynamic quantities. We show that qualitative features of the √{sNN} dependence of skewness and kurtosis ratios of net proton-number fluctuations measured by the STAR Collaboration can be understood from QCD results for cumulants of conserved baryon-number fluctuations. As an example for recent progress towards the determination of spectral and transport properties of the QGP from lattice QCD, we will present constraints on the thermal photon rate determined from a spectral reconstruction of continuum extrapolated lattice correlation functions in combination with input from most recent perturbative calculations.

  14. Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment from lattice QCD.

    PubMed

    Blum, Thomas; Chowdhury, Saumitra; Hayakawa, Masashi; Izubuchi, Taku

    2015-01-09

    The most compelling possibility for a new law of nature beyond the four fundamental forces comprising the standard model of high-energy physics is the discrepancy between measurements and calculations of the muon anomalous magnetic moment. Until now a key part of the calculation, the hadronic light-by-light contribution, has only been accessible from models of QCD, the quantum description of the strong force, whose accuracy at the required level may be questioned. A first principles calculation with systematically improvable errors is needed, along with the upcoming experiments, to decisively settle the matter. For the first time, the form factor that yields the light-by-light scattering contribution to the muon anomalous magnetic moment is computed in such a framework, lattice QCD+QED and QED. A nonperturbative treatment of QED is used and checked against perturbation theory. The hadronic contribution is calculated for unphysical quark and muon masses, and only the diagram with a single quark loop is computed for which statistically significant signals are obtained. Initial results are promising, and the prospect for a complete calculation with physical masses and controlled errors is discussed.

  15. QCD studies in ep collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, W.H.

    1997-06-01

    These lectures describe QCD physics studies over the period 1992--1996 from data taken with collisions of 27 GeV electrons and positrons with 820 GeV protons at the HERA collider at DESY by the two general-purpose detectors H1 and ZEUS. The focus of these lectures is on structure functions and jet production in deep inelastic scattering, photoproduction, and diffraction. The topics covered start with a general introduction to HERA and ep scattering. Structure functions are discussed. This includes the parton model, scaling violation, and the extraction of F{sub 2}, which is used to determine the gluon momentum distribution. Both low andmore » high Q{sup 2} regimes are discussed. The low Q{sup 2} transition from perturbative QCD to soft hadronic physics is examined. Jet production in deep inelastic scattering to measure {alpha}{sub s}, and in photoproduction to study resolved and direct photoproduction, is also presented. This is followed by a discussion of diffraction that begins with a general introduction to diffraction in hadronic collisions and its relation to ep collisions, and moves on to deep inelastic scattering, where the structure of diffractive exchange is studied, and in photoproduction, where dijet production provides insights into the structure of the Pomeron. 95 refs., 39 figs.« less

  16. Hard breakup of the deuteron into two Δ -isobars

    NASA Astrophysics Data System (ADS)

    Granados, Carlos; Sargsian, Misak

    2011-04-01

    Photodisintegration of the deuteron into two Δ-isobars at large center of mass angles is studied within the QCD hard rescattering model (HRM). According to the HRM, the reaction proceeds in three main steps: the photon knocks the quark from one of the nucleons in the deuteron; the struck quark rescatters off a quark from the other nucleon sharing the high energy of the photon; then the energetic quarks recombine into two outgoing baryons emerging at large transverse momenta. Within the HRM, the cross section is expressed through the amplitude of pn --> ΔΔ scattering which we evaluated based on the quark-interchange model of hard hadronic scattering. We predict that the cross section of the deuteron breakup to Δ++Δ- is 4-5 times larger than that of the breakup to the Δ+Δ0 channel. Also, the angular distributions for these two channels are markedly different. These can be compared with the predictions based on the assumption that two hard Δ-isobars are the result of the disintegration of initial ΔΔ components of the deuteron wave function. In this case, the angular distributions and cross sections of the breakup in both Δ++Δ- and Δ+Δ0 channels are expected to be similar. This work was supported by U.S. Department of Energy Grant under contract DE-FG02-01ER41172, and by the FIU DEA program.

  17. The generalized scheme-independent Crewther relation in QCD

    NASA Astrophysics Data System (ADS)

    Shen, Jian-Ming; Wu, Xing-Gang; Ma, Yang; Brodsky, Stanley J.

    2017-07-01

    The Principle of Maximal Conformality (PMC) provides a systematic way to set the renormalization scales order-by-order for any perturbative QCD calculable processes. The resulting predictions are independent of the choice of renormalization scheme, a requirement of renormalization group invariance. The Crewther relation, which was originally derived as a consequence of conformally invariant field theory, provides a remarkable connection between two observables when the β function vanishes: one can show that the product of the Bjorken sum rule for spin-dependent deep inelastic lepton-nucleon scattering times the Adler function, defined from the cross section for electron-positron annihilation into hadrons, has no pQCD radiative corrections. The ;Generalized Crewther Relation; relates these two observables for physical QCD with nonzero β function; specifically, it connects the non-singlet Adler function (Dns) to the Bjorken sum rule coefficient for polarized deep-inelastic electron scattering (CBjp) at leading twist. A scheme-dependent ΔCSB-term appears in the analysis in order to compensate for the conformal symmetry breaking (CSB) terms from perturbative QCD. In conventional analyses, this normally leads to unphysical dependence in both the choice of the renormalization scheme and the choice of the initial scale at any finite order. However, by applying PMC scale-setting, we can fix the scales of the QCD coupling unambiguously at every order of pQCD. The result is that both Dns and the inverse coefficient CBjp-1 have identical pQCD coefficients, which also exactly match the coefficients of the corresponding conformal theory. Thus one obtains a new generalized Crewther relation for QCD which connects two effective charges, αˆd (Q) =∑i≥1 αˆg1 i (Qi), at their respective physical scales. This identity is independent of the choice of the renormalization scheme at any finite order, and the dependence on the choice of the initial scale is negligible. Similar

  18. Observation of hard scattering in photoproduction at HERA

    NASA Astrophysics Data System (ADS)

    Derrick, M.; Krakauer, D.; Magill, S.; Musgrave, B.; Repond, J.; Sugano, K.; Stanek, R.; Talaga, R. L.; Thron, J.; Arzarello, F.; Ayed, R.; Barbagli, G.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, G.; Bruni, P.; Cara Romeo, G.; Castellini, G.; Chiarini, M.; Cifarelli, L.; Cindolo, F.; Ciralli, F.; Contin, A.; D'Auria, S.; Del Papa, C.; Frasconi, F.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Lin, Q.; Lisowski, B.; Maccarrone, G.; Margotti, A.; Massam, T.; Nania, R.; Nemoz, C.; Palmonari, F.; Sartorelli, G.; Timellini, R.; Zamora Garcia, Y.; Zichichi, A.; Bargende, A.; Barreiro, F.; Crittenden, J.; Dabbous, H.; Desch, K.; Diekmann, B.; Geerts, M.; Geitz, G.; Gutjahr, B.; Hartmann, H.; Hartmann, J.; Haun, D.; Heinloth, K.; Hilger, E.; Jakob, H.-P.; Kramarczyk, S.; Kückes, M.; Mass, A.; Mengel, S.; Mollen, J.; Müsch, H.; Paul, E.; Schattevoy, R.; Schneider, B.; Schneider, J.-L.; Wedemeyer, R.; Cassidy, A.; Cussans, D. G.; Dyce, N.; Fawcett, H. F.; Foster, B.; Gilmore, R.; Heath, G. P.; Lancaster, M.; Llewellyn, T. J.; Malos, J.; Morgado, C. J. S.; Tapper, R. J.; Wilson, S. S.; Rau, R. R.; Bernstein, A.; Caldwell, A.; Gialas, I.; Parsons, J. A.; Ritz, S.; Sciulli, F.; Straub, P. B.; Wai, L.; Yang, S.; Barillari, T.; Schioppa, M.; Susinno, G.; Burkot, W.; Chwastowski, J.; Dwuraźny, A.; Eskreys, A.; Nizioł, B.; Jakubowski, Z.; Piotrzkowski, K.; Zachara, M.; Zawiejski, L.; Borzemski, P.; Eskreys, K.; Jeleń, K.; Kisielewska, D.; Kowalski, T.; Kulka, J.; Rulikowska-Zarȩbska, E.; Suszycki, L.; Zajaç, J.; Kȩdzierski, T.; Kotański, A.; Przybycień, M.; Bauerdick, L. A. T.; Behrens, U.; Bienlein, J. K.; Coldewey, C.; Dannemann, A.; Dierks, K.; Dorth, W.; Drews, G.; Erhard, P.; Flasiński, M.; Fleck, I.; Fürtjes, A.; Gläser, R.; Göttlicher, P.; Haas, T.; Hagge, L.; Hain, W.; Hasell, D.; Hultschig, H.; Jahnen, G.; Joos, P.; Kasemann, M.; Klanner, R.; Koch, W.; Kötz, U.; Kowalski, H.; Labs, J.; Ladage, A.; Löhr, B.; Löwe, M.; Lüke, D.; Mainusch, J.; Manczak, O.; Momayezi, M.; Nickel, S.; Notz, D.; Park, I.; Pösnecker, K.-U.; Rohde, M.; Ros, E.; Schneekloth, U.; Schroeder, J.; Schulz, W.; Selonke, F.; Tscheslog, E.; Tsurugai, T.; Turkot, F.; Vogel, W.; Woeniger, T.; Wolf, G.; Youngman, C.; Grabosch, H. J.; Leich, A.; Meyer, A.; Rethfeldt, C.; Schlenstedt, S.; Casalbuoni, R.; De Curtis, S.; Dominici, D.; Francescato, A.; Nuti, M.; Pelfer, P.; Anzivino, G.; Casaccia, R.; Laakso, I.; De Pasquale, S.; Qian, S.; Votano, L.; Bamberger, A.; Freidhof, A.; Poser, T.; Söldner-Rembold, S.; Theisen, G.; Trefzger, T.; Brook, N. H.; Bussey, P. J.; Doyle, A. T.; Forbes, J. R.; Jamieson, V. A.; Raine, C.; Saxon, D. H.; Gloth, G.; Holm, U.; Kammerlocher, H.; Krebs, B.; Neumann, T.; Wick, K.; Hofmann, A.; Kröger, W.; Krüger, J.; Lohrmann, E.; Milewski, J.; Nakahata, M.; Pavel, N.; Poelz, G.; Salomon, R.; Seidman, A.; Schott, W.; Wiik, B. H.; Zetsche, F.; Bacon, T. C.; Butterworth, I.; Markou, C.; McQuillan, D.; Miller, D. B.; Mobayyen, M. M.; Prinias, A.; Vorvolakos, A.; Bienz, T.; Kreutzmann, H.; Mallik, U.; McCliment, E.; Roco, M.; Wang, M. Z.; Cloth, P.; Filges, D.; Chen, L.; Imlay, R.; Kartik, S.; Kim, H.-J.; McNeil, R. R.; Metcalf, W.; Cases, G.; Hervás, L.; Labarga, L.; del Peso, J.; Roldán, J.; Terrón, J.; de Trocóniz, J. F.; Ikraiam, F.; Mayer, J. K.; Smith, G. R.; Corriveau, F.; Gilkinson, D. J.; Hanna, D. S.; Hung, L. W.; Mitchell, J. W.; Patel, P. M.; Sinclair, L. E.; Stairs, D. G.; Ullmann, R.; Bashindzhagyan, G. L.; Ermolov, P. F.; Golubkov, Y. A.; Kuzmin, V. A.; Kuznetsov, E. N.; Savin, A. A.; Voronin, A. G.; Zotov, N. P.; Bentvelsen, S.; Dake, A.; Engelen, J.; de Jong, P.; de Jong, S.; de Kamps, M.; Kooijman, P.; Kruse, A.; van der Lugt, H.; O'Dell, V.; Straver, J.; Tenner, A.; Tiecke, H.; Uijterwaal, H.; Vermeulen, J.; Wiggers, L.; de Wolf, E.; van Woudenberg, R.; Yoshida, R.; Bylsma, B.; Durkin, L. S.; Li, C.; Ling, T. Y.; McLean, K. W.; Murray, W. N.; Park, S. K.; Romanowski, T. A.; Seidlein, R.; Blair, G. A.; Butterworth, J. M.; Byrne, A.; Cashmore, R. J.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Gingrich, D. M.; Hallam-Baker, P. M.; Harnew, N.; Khatri, T.; Long, K. R.; Luffman, P.; McArthur, I.; Morawitz, P.; Nash, J.; Smith, S. J. P.; Roocroft, N. C.; Wilson, F. F.; Abbiendi, G.; Brugnera, R.; Carlin, R.; Dal Corso, F.; De Giorgi, M.; Dosselli, U.; Fanin, C.; Gasparini, F.; Limentani, S.; Morandin, M.; Posocco, M.; Stanco, L.; Stroili, R.; Voci, C.; Lim, J. N.; Oh, B. Y.; Whitmore, J.; Bonori, M.; Contino, U.; D'Agostini, G.; Guida, M.; Iori, M.; Mari, S.; Marini, G.; Mattioli, M.; Monaldi, D.; Nigro, A.; Hart, J. C.; McCubbin, N. A.; Shah, T. P.; Short, T. L.; Barberis, E.; Cartiglia, N.; Heusch, C.; Hubbard, B.; Leslie, J.; Ng, J. S. T.; O'Shaughnessy, K.; Sadrozinski, H. F.; Seiden, A.; Badura, E.; Biltzinger, J.; Chaves, H.; Rost, M.; Seifert, R. J.; Walenta, A. H.; Weihs, W.; Zech, G.; Dagan, S.; Heifetz, R.; Levy, A.; Zer-Zion, D.; Hasegawa, T.; Hazumi, M.; Ishii, T.; Kasai, S.; Kuze, M.; Nagasawa, Y.; Nakao, M.; Okuno, H.; Tokushuku, K.; Watanabe, T.; Yamada, S.; Chiba, M.; Hamatsu, R.; Hirose, T.; Kitamura, S.; Nagayama, S.; Nakamitsu, Y.; Arneodo, M.; Costa, M.; Ferrero, M. I.; Lamberti, L.; Maselli, S.; Peroni, C.; Solano, A.; Staiano, A.; Dardo, M.; Bailey, D. C.; Bandyopadhyay, D.; Benard, F.; Bhadra, S.; Brkic, M.; Burow, B. D.; Chlebana, F. S.; Crombie, M. B.; Hartner, G. F.; Levman, G. M.; Martin, J. F.; Orr, R. S.; Prentice, J. D.; Sampson, C. R.; Stairs, G. G.; Teuscher, R. J.; Yoon, T.-S.; Bullock, F. W.; Catterall, C. D.; Giddings, J. C.; Jones, T. W.; Khan, A. M.; Lane, J. B.; Makkar, P. L.; Shaw, D.; Shulman, J.; Blankenship, K.; Kochocki, J.; Lu, B.; Mo, L. W.; Charchuła, K.; Ciborowski, J.; Gajewski, J.; Grzelak, G.; Kasprzak, M.; Krzyżanowski, M.; Muchorowski, K.; Nowak, R. J.; Pawlak, J. M.; Stojda, K.; Stopczyński, A.; Szwed, R.; Tymieniecka, T.; Walczak, R.; Wróblewski, A. K.; Zakrzewski, J. A.; Żarnecki, A. F.; Adamus, M.; Abramowicz, H.; Eisenberg, Y.; Glasman, C.; Karshon, U.; Montag, A.; Revel, D.; Shapira, A.; Ali, I.; Behrens, B.; Camerini, U.; Dasu, S.; Fordham, C.; Foudas, C.; Goussiou, A.; Lomperski, M.; Loveless, R. J.; Nylander, P.; Ptacek, M.; Reeder, D. D.; Smith, W. H.; Silverstein, S.; Frisken, W. R.; Furutani, K. M.; Iga, Y.; ZEUS Collaboration

    1992-12-01

    We report a study of electron proton collisions at very low Q2, corresponding to virtual photoproduction at centre of mass energies in the range 100-295 GeV. The distribution in transverse energy of the observed hadrons is much harder than can be explained by soft processes. Some of the events show back-to-back two-jet production at the rate and with the characteristics expected from hard two-body scattering. A subset of the two-jet events have energy in the electron direction consistent with that expected from the photon remnant in resolved photon processes.

  19. Kaon-Nucleon potential from lattice QCD

    NASA Astrophysics Data System (ADS)

    Ikeda, Y.; Aoki, S.; Doi, T.; Hatsuda, T.; Inoue, T.; Ishii, N.; Murano, K.; Nemura, H.; Sasaki, K.

    2010-04-01

    We study the K N interactions in the I(Jπ) = 0(1/2-) and 1(1/2-) channels and associated exotic state Θ+ from 2+1 flavor full lattice QCD simulation for relatively heavy quark mass corresponding to mπ = 871 MeV. The s-wave K N potentials are obtained from the Bethe-Salpeter wave function by using the method recently developed by HAL QCD (Hadrons to Atomic nuclei from Lattice QCD) Collaboration. Potentials in both channels reveal short range repulsions: Strength of the repulsion is stronger in the I = 1 potential, which is consistent with the prediction of the Tomozawa-Weinberg term. The I = 0 potential is found to have attractive well at mid range. From these potentials, the K N scattering phase shifts are calculated and compared with the experimental data.

  20. QCD and Multiparticle Production - Proceedings of the XXIX International Symposium on Multiparticle Dynamics

    NASA Astrophysics Data System (ADS)

    Sarcevic, Ina; Tan, Chung-I.

    2000-07-01

    The Table of Contents for the full book PDF is as follows: * Preface * Monday morning session: Hadronic Final States - Conveners: E. de Wolf and J. W. Gary * Session Chairman: J. W. Gary * Inclusive Jets at the Tevatron * Forward Jets, Dijets, and Subjets at the Tevatron * Inclusive Hadron Production and Dijets at HERA * Recent Opal Results on Photon Structure and Interactions * Review of Two-Photon Physics at LEP * Session Chairman: E. de Wolf * An Intriguing Area-Law-Based Hadron Production Scheme in e+e- Annihilation and Its Possible Extensions * Hyperfine Splitting in Hadron Production at High Energies * Event Selection Effects on Multiplicities in Quark and Gluon Jets * Quark and Gluon Jet Properties at LEP * Rapidity Gaps in Quark and Gluon Jets -- A Perturbative Approach * Monday afternoon session: Diffractive and Small-x - Conveners: M. Derrick and A. White * Session Chairman: A. White * Structure Functions: Low x, High y, Low Q2 * The Next-to-Leading Dynamics of the BFKL Pomeron * Renormalization Group Improved BFKL Equation * Session Chairman: G. Briskin * New Experimental Results on Diffraction at HERA * Diffractive Parton Distributions in Light-Cone QCD * The Logarithmic Derivative of the F2 Structure Function and Saturation * Spin Dependence of Diffractive DIS * Monday evening session * Session Chairman: M. Braun * Tests of QCD with Particle Production at HERA: Review and Outlook * Double Parton Scattering and Hadron Structure in Transverse Space * The High Density Parton Dynamics from Eikonal and Dipole Pictures * Hints of Higher Twist Effects in the Slope of the Proton Structure Function * Tuesday morning session: Correlations and Fluctuations - Conveners: R. Hwa and M. Tannenbaum * Session Chairman: A. Giovannini -- Fluctuations and Correlations * Bose-Einstein Results from L3 * Short-Range and Long-Range Correlations in DIS at HERA * Coior Mutation Model, Intermittency, and Erraticity * QCD Queuing and Hadron Multiplicity * Soft and Semi-hard

  1. The generalized scheme-independent Crewther relation in QCD

    DOE PAGES

    Shen, Jian-Ming; Wu, Xing-Gang; Ma, Yang; ...

    2017-05-10

    The Principle of Maximal Conformality (PMC) provides a systematic way to set the renormalization scales order-by-order for any perturbative QCD calculable processes. The resulting predictions are independent of the choice of renormalization scheme, a requirement of renormalization group invariance. The Crewther relation, which was originally derived as a consequence of conformally invariant field theory, provides a remarkable connection between two observables when the β function vanishes: one can show that the product of the Bjorken sum rule for spin-dependent deep inelastic lepton–nucleon scattering times the Adler function, defined from the cross section for electron–positron annihilation into hadrons, has no pQCD radiative corrections. The “Generalized Crewther Relation” relates these two observables for physical QCD with nonzero β function; specifically, it connects the non-singlet Adler function (D ns) to the Bjorken sum rule coefficient for polarized deep-inelastic electron scattering (C Bjp) at leading twist. A scheme-dependent Δ CSB-term appears in the analysis in order to compensate for the conformal symmetry breaking (CSB) terms from perturbative QCD. In conventional analyses, this normally leads to unphysical dependence in both the choice of the renormalization scheme and the choice of the initial scale at any finite order. However, by applying PMC scale-setting, we can fix the scales of the QCD coupling unambiguously at every order of pQCD. The result is that both D ns and the inverse coefficient Cmore » $$-1\\atop{Bjp}$$ have identical pQCD coefficients, which also exactly match the coefficients of the corresponding conformal theory. Thus one obtains a new generalized Crewther relation for QCD which connects two effective charges, $$\\hat{α}$$ d(Q)=Σ i≥1$$\\hat{α}^i\\atop{g1}$$(Qi), at their respective physical scales. This identity is independent of the choice of the renormalization scheme at any finite order, and the dependence on

  2. The generalized scheme-independent Crewther relation in QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Jian-Ming; Wu, Xing-Gang; Ma, Yang

    The Principle of Maximal Conformality (PMC) provides a systematic way to set the renormalization scales order-by-order for any perturbative QCD calculable processes. The resulting predictions are independent of the choice of renormalization scheme, a requirement of renormalization group invariance. The Crewther relation, which was originally derived as a consequence of conformally invariant field theory, provides a remarkable connection between two observables when the β function vanishes: one can show that the product of the Bjorken sum rule for spin-dependent deep inelastic lepton–nucleon scattering times the Adler function, defined from the cross section for electron–positron annihilation into hadrons, has no pQCD radiative corrections. The “Generalized Crewther Relation” relates these two observables for physical QCD with nonzero β function; specifically, it connects the non-singlet Adler function (D ns) to the Bjorken sum rule coefficient for polarized deep-inelastic electron scattering (C Bjp) at leading twist. A scheme-dependent Δ CSB-term appears in the analysis in order to compensate for the conformal symmetry breaking (CSB) terms from perturbative QCD. In conventional analyses, this normally leads to unphysical dependence in both the choice of the renormalization scheme and the choice of the initial scale at any finite order. However, by applying PMC scale-setting, we can fix the scales of the QCD coupling unambiguously at every order of pQCD. The result is that both D ns and the inverse coefficient Cmore » $$-1\\atop{Bjp}$$ have identical pQCD coefficients, which also exactly match the coefficients of the corresponding conformal theory. Thus one obtains a new generalized Crewther relation for QCD which connects two effective charges, $$\\hat{α}$$ d(Q)=Σ i≥1$$\\hat{α}^i\\atop{g1}$$(Qi), at their respective physical scales. This identity is independent of the choice of the renormalization scheme at any finite order, and the dependence on

  3. Analysis of dependent scattering mechanism in hard-sphere Yukawa random media

    NASA Astrophysics Data System (ADS)

    Wang, B. X.; Zhao, C. Y.

    2018-06-01

    The structural correlations in the microscopic structures of random media can induce the dependent scattering mechanism and thus influence the optical scattering properties. Based on our recent theory on the dependent scattering mechanism in random media composed of discrete dipolar scatterers [B. X. Wang and C. Y. Zhao, Phys. Rev. A 97, 023836 (2018)], in this paper, we study the hard-sphere Yukawa random media, in order to further elucidate the role of structural correlations in the dependent scattering mechanism and hence optical scattering properties. Here, we consider charged colloidal suspensions, whose effective pair interaction between colloids is described by a screened Coulomb (Yukawa) potential. By means of adding salt ions, the pair interaction between the charged particles can be flexibly tailored and therefore the structural correlations are modified. It is shown that this strategy can affect the optical properties significantly. For colloidal TiO2 suspensions, the modification of electric and magnetic dipole excitations induced by the structural correlations can substantially influence the optical scattering properties, in addition to the far-field interference effect described by the structure factor. However, this modification is only slightly altered by different salt concentrations and is mainly because of the packing-density-dependent screening effect. On the other hand, for low refractive index colloidal polystyrene suspensions, the dependent scattering mechanism mainly involves the far-field interference effect, and the effective exciting field amplitude for the electric dipole almost remains unchanged under different structural correlations. The present study has profound implications for understanding the role of structural correlations in the dependent scattering mechanism.

  4. Massive QCD Amplitudes at Higher Orders

    NASA Astrophysics Data System (ADS)

    Moch, S.; Mitov, A.

    2007-11-01

    We consider the factorisation properties of on-shell QCD amplitudes with massive partons in the limit when all kinematical invariants are large compared to the parton mass and discuss the structure of their infrared singularities. The dimensionally regulated soft poles and the large collinear logarithms of the parton masses exponentiate to all orders. Based on this factorisation a simple relation between massless and massive scattering amplitudes in gauge theories can be established. We present recent applications of this relation for the calculation of the two-loop virtual QCD corrections to the hadro-production of heavy quarks.

  5. QCD Physics with the CMS Experiment

    NASA Astrophysics Data System (ADS)

    Cerci, S.

    2017-12-01

    Jets which are the signatures of quarks and gluons in the detector can be described by Quantum Chromodynamics (QCD) in terms of parton-parton scattering. Jets are abundantly produced at the LHC's high energy scales. Measurements of inclusive jets, dijets and multijets can be used to test perturbative QCD predictions and to constrain parton distribution functions (PDF), as well as to measure the strong coupling constant αS . The measurements use the samples of proton-proton collisions collected with the CMS detector at the LHC at various center-of-mass energies of 7, 8 and 13 TeV.

  6. Scheme Variations of the QCD Coupling and Hadronic τ Decays

    NASA Astrophysics Data System (ADS)

    Boito, Diogo; Jamin, Matthias; Miravitllas, Ramon

    2016-10-01

    The quantum chromodynamics (QCD) coupling αs is not a physical observable of the theory, since it depends on conventions related to the renormalization procedure. We introduce a definition of the QCD coupling, denoted by α^s, whose running is explicitly renormalization scheme invariant. The scheme dependence of the new coupling α^s is parametrized by a single parameter C , related to transformations of the QCD scale Λ . It is demonstrated that appropriate choices of C can lead to substantial improvements in the perturbative prediction of physical observables. As phenomenological applications, we study e+e- scattering and decays of the τ lepton into hadrons, both being governed by the QCD Adler function.

  7. I = 1 and I = 2 π-π scattering phase shifts from Nf = 2 + 1 lattice QCD

    NASA Astrophysics Data System (ADS)

    Bulava, John; Fahy, Brendan; Hörz, Ben; Juge, Keisuke J.; Morningstar, Colin; Wong, Chik Him

    2016-09-01

    The I = 1 p-wave and I = 2 s-wave elastic π-π scattering amplitudes are calculated from a first-principles lattice QCD simulation using a single ensemble of gauge field configurations with Nf = 2 + 1 dynamical flavors of anisotropic clover-improved Wilson fermions. This ensemble has a large spatial volume V =(3.7 fm)3, pion mass mπ = 230 MeV, and spatial lattice spacing as = 0.11 fm. Calculation of the necessary temporal correlation matrices is efficiently performed using the stochastic LapH method, while the large volume enables an improved energy resolution compared to previous work. For this single ensemble we obtain mρ /mπ = 3.350 (24), gρππ = 5.99 (26), and a clear signal for the I = 2 s-wave. The success of the stochastic LapH method in this proof-of-principle large-volume calculation paves the way for quantitative study of the lattice spacing effects and quark mass dependence of scattering amplitudes using state-of-the-art ensembles.

  8. Calculation of the {pi}{sup +}{Sigma}{sup +} and {pi}{sup +}{Xi}{sup 0} Scattering Lengths in Lattice QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torok, Aaron

    The {pi}{sup +}{Sigma}{sup +} and {pi}{sup +}{Xi}{sup 0} scattering lengths were calculated in mixed-action Lattice QCD with domain-wall valence quarks on the asqtad-improved coarse MILC configurations at four light-quark masses, and at two light-quark masses on the fine MILC configurations. Heavy Baryon Chiral Perturbation Theory with two and three flavors of light quarks was used to perform the chiral extrapolations. To NNLO in the three-flavor chiral expansion, the kaon-baryon processes that were investigated show no signs of convergence. Using the two-flavor chiral expansion for extrapolation, the pion-hyperon scattering lengths are found to be a{sub {pi}}{sup +}{sub {Sigma}}{sup +} = -0.197{+-}0.017more » fm, and a{sub {pi}}{sup +}{sub {Xi}}{sup 0} = -0.098{+-}0.017 fm, where the comprehensive error includes statistical and systematic uncertainties.« less

  9. Most Strange Dibaryon from Lattice QCD

    NASA Astrophysics Data System (ADS)

    Gongyo, Shinya; Sasaki, Kenji; Aoki, Sinya; Doi, Takumi; Hatsuda, Tetsuo; Ikeda, Yoichi; Inoue, Takashi; Iritani, Takumi; Ishii, Noriyoshi; Miyamoto, Takaya; Nemura, Hidekatsu; HAL QCD Collaboration

    2018-05-01

    The Ω Ω system in the 1S0 channel (the most strange dibaryon) is studied on the basis of the (2 +1 )-flavor lattice QCD simulations with a large volume (8.1 fm )3 and nearly physical pion mass mπ≃146 MeV at a lattice spacing of a ≃0.0846 fm . We show that lattice QCD data analysis by the HAL QCD method leads to the scattering length a0=4.6 (6 )(-0.5+1.2) fm , the effective range reff=1.27 (3 )(-0.03+0.06) fm , and the binding energy BΩ Ω=1.6 (6 )(-0.6+0.7) MeV . These results indicate that the Ω Ω system has an overall attraction and is located near the unitary regime. Such a system can be best searched experimentally by the pair-momentum correlation in relativistic heavy-ion collisions.

  10. Generation of first hard X-ray pulse at Tsinghua Thomson Scattering X-ray Source.

    PubMed

    Du, Yingchao; Yan, Lixin; Hua, Jianfei; Du, Qiang; Zhang, Zhen; Li, Renkai; Qian, Houjun; Huang, Wenhui; Chen, Huaibi; Tang, Chuanxiang

    2013-05-01

    Tsinghua Thomson Scattering X-ray Source (TTX) is the first-of-its-kind dedicated hard X-ray source in China based on the Thomson scattering between a terawatt ultrashort laser and relativistic electron beams. In this paper, we report the experimental generation and characterization of the first hard X-ray pulses (51.7 keV) via head-on collision of an 800 nm laser and 46.7 MeV electron beams. The measured yield is 1.0 × 10(6) per pulse with an electron bunch charge of 200 pC and laser pulse energy of 300 mJ. The angular intensity distribution and energy spectra of the X-ray pulse are measured with an electron-multiplying charge-coupled device using a CsI scintillator and silicon attenuators. These measurements agree well with theoretical and simulation predictions. An imaging test using the X-ray pulse at the TTX is also presented.

  11. Most Strange Dibaryon from Lattice QCD.

    PubMed

    Gongyo, Shinya; Sasaki, Kenji; Aoki, Sinya; Doi, Takumi; Hatsuda, Tetsuo; Ikeda, Yoichi; Inoue, Takashi; Iritani, Takumi; Ishii, Noriyoshi; Miyamoto, Takaya; Nemura, Hidekatsu

    2018-05-25

    The ΩΩ system in the ^{1}S_{0} channel (the most strange dibaryon) is studied on the basis of the (2+1)-flavor lattice QCD simulations with a large volume (8.1  fm)^{3} and nearly physical pion mass m_{π}≃146  MeV at a lattice spacing of a≃0.0846  fm. We show that lattice QCD data analysis by the HAL QCD method leads to the scattering length a_{0}=4.6(6)(_{-0.5}^{+1.2})  fm, the effective range r_{eff}=1.27(3)(_{-0.03}^{+0.06})  fm, and the binding energy B_{ΩΩ}=1.6(6)(_{-0.6}^{+0.7})  MeV. These results indicate that the ΩΩ system has an overall attraction and is located near the unitary regime. Such a system can be best searched experimentally by the pair-momentum correlation in relativistic heavy-ion collisions.

  12. Hadron electric polarizability from lattice QCD

    NASA Astrophysics Data System (ADS)

    Alexandru, Andrei; Lujan, Michael; Freeman, Walter; Lee, Frank

    2015-04-01

    Electric polarizability measures the ability of the electric field to deform a particle. Experimentally, electric and magnetic polarizabilities can be measured in Compton scattering experiments. To compute these quantities theoretically we need to understand the internal structure of the scatterer and the dynamics of its constituents. For hadrons - bound stated of quarks and gluons - this is a very difficult problem. Lattice QCD can be used to compute the polarizabilities directly in terms of quark and gluons degrees of freedom. In this talk we focus on the neutron. We present results for the electric polarizability for two different quark masses, light enough to connect to chiral perturbation theory. These are currently the lightest quark masses used in lattice QCD polarizability studies. For each pion mass we compute the polarizability at four different volumes and perform an infinite volume extrapolation. For one ensemble, we also discuss the effect of turning on the coupling between the background field and the sea quarks. We compare our results to chiral perturbation theory expectations.

  13. Extraction of hadron interactions above inelastic threshold in lattice QCD.

    PubMed

    Aoki, Sinya; Ishii, Noriyoshi; Doi, Takumi; Hatsuda, Tetsuo; Ikeda, Yoichi; Inoue, Takashi; Murano, Keiko; Nemura, Hidekatsu; Sasaki, Kenji

    2011-01-01

    We propose a new method to extract hadron interactions above inelastic threshold from the Nambu-Bethe-Salpeter amplitude in lattice QCD. We consider the scattering such as A + B → C + D, where A, B, C, D are names of different 1-particle states. An extension to cases where particle productions occur during scatterings is also discussed.

  14. Extraction of hadron interactions above inelastic threshold in lattice QCD

    PubMed Central

    AOKI, Sinya; ISHII, Noriyoshi; DOI, Takumi; HATSUDA, Tetsuo; IKEDA, Yoichi; INOUE, Takashi; MURANO, Keiko; NEMURA, Hidekatsu; SASAKI, Kenji

    2011-01-01

    We propose a new method to extract hadron interactions above inelastic threshold from the Nambu–Bethe–Salpeter amplitude in lattice QCD. We consider the scattering such as A + B → C + D, where A, B, C, D are names of different 1-particle states. An extension to cases where particle productions occur during scatterings is also discussed. PMID:21986314

  15. ρ resonance from the I = 1 ππ potential in lattice QCD

    NASA Astrophysics Data System (ADS)

    Kawai, Daisuke

    2018-03-01

    We calculate the phase shift for the I = 1 ππ scattering in 2+1 flavor lattice QCD at mπ = 410 MeV, using all-to-all propagators with the LapH smearing. We first investigate the sink operator independence of the I = 2 ππ scattering phase shift to estimate the systematics in the LapH smearing scheme in the HAL QCD method at mπ = 870 MeV. The difference in the scattering phase shift in this channel between the conventional point sink scheme and the smeared sink scheme is reasonably small as long as the next-toleading analysis is employed in the smeared sink scheme with larger smearing levels. We then extract the I = 1 ππ potential with the smeared sink operator, whose scattering phase shift shows a resonant behavior (ρ resonance). We also examine the pole of the S-matrix corresponding to the ρ resonance in the complex energy plane.

  16. Isoscalar π π , K K ¯ , η η scattering and the σ , f0, f2 mesons from QCD

    NASA Astrophysics Data System (ADS)

    Briceño, Raul A.; Dudek, Jozef J.; Edwards, Robert G.; Wilson, David J.; Hadron Spectrum Collaboration

    2018-03-01

    We present the first lattice QCD study of coupled isoscalar π π ,K K ¯ ,η η S - and D -wave scattering extracted from discrete finite-volume spectra computed on lattices which have a value of the light quark mass corresponding to mπ˜391 MeV . In the JP=0+ sector we find analogues of the experimental σ and f0(980 ) states, where the σ appears as a stable bound-state below π π threshold, and, similar to what is seen in experiment, the f0(980 ) manifests itself as a dip in the π π cross section in the vicinity of the K K ¯ threshold. For JP=2+ we find two states resembling the f2(1270 ) and f2'(1525 ), observed as narrow peaks, with the lighter state dominantly decaying to π π and the heavier state to K K ¯. The presence of all these states is determined rigorously by finding the pole singularity content of scattering amplitudes, and their couplings to decay channels are established using the residues of the poles.

  17. Observation of hard scattering in photoproduction events with a large rapidity gap at HERA

    NASA Astrophysics Data System (ADS)

    Derrick, M.; Krakauer, D.; Magill, S.; Musgrave, B.; Repond, J.; Schlereth, J.; Stanek, R.; Talaga, R. L.; Thron, J.; Arzarello, F.; Ayad, R.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruni, P.; Cara Romeo, G.; Castellini, G.; Chiarini, M.; Cifarelli, L.; Cindolo, F.; Ciralli, F.; Contin, A.; D'Auria, S.; Frasconi, F.; Gialas, I.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Nemoz, C.; Palmonari, F.; Polini, A.; Sartorelli, G.; Timellini, R.; Zamora Garcia, Y.; Zichichi, A.; Bargende, A.; Crittenden, J.; Desch, K.; Diekmann, B.; Doeker, T.; Eckert, M.; Feld, L.; Frey, A.; Geerts, M.; Geitz, G.; Grothe, M.; Hartmann, H.; Haun, D.; Heinloth, K.; Hilger, E.; Jakob, H.-P.; Katz, U. F.; Mari, S. M.; Mass, A.; Mengel, S.; Mollen, J.; Paul, E.; Rembser, Ch.; Schattevoy, R.; Schramm, D.; Stamm, J.; Wedemeyer, R.; Campbell-Robson, S.; Cassidy, A.; Dyce, N.; Foster, B.; George, S.; Gilmore, R.; Heath, G. P.; Heath, H. F.; Llewellyn, T. J.; Morgado, C. J. S.; Norman, D. J. P.; O'Mara, J. A.; Tapper, R. J.; Wilson, S. S.; Yoshida, R.; Rau, R. R.; Arneodo, M.; Iannotti, L.; Schioppa, M.; Susinno, G.; Bernstein, A.; Caldwell, A.; Parsons, J. A.; Ritz, S.; Sciulli, F.; Straub, P. B.; Wai, L.; Yang, S.; Zhu, Q.; Borzemski, P.; Chwastowski, J.; Eskreys, A.; Piotrzkowski, K.; Zachara, M.; Zawiejski, L.; Adamczyk, L.; Bednarek, B.; Eskreys, K.; Jeleń, K.; Kisielewska, D.; Kowalski, T.; Rulikowska-Zarȩbska, E.; Suszycki, L.; Zajaç, J.; Kotański, A.; Przybycień, M.; Bauerdick, L. A. T.; Behrens, U.; Bienlein, J. K.; Böttcher, S.; Coldewey, C.; Drews, G.; Flasiński, M.; Gilkinson, D. J.; Göttlicher, P.; Gutjahr, B.; Haas, T.; Hain, W.; Hasell, D.; Heßling, H.; Hultschig, H.; Iga, Y.; Joos, P.; Kasemann, M.; Klanner, R.; Koch, W.; Köpke, L.; Kötz, U.; Kowalski, H.; Kröger, W.; Krüger, J.; Labs, J.; Ladage, A.; Löhr, B.; Löwe, M.; Lüke, D.; Mańczak, O.; Ng, J. S. T.; Nickel, S.; Notz, D.; Ohrenberg, K.; Roco, M.; Rohde, M.; Roldán, J.; Schneekloth, U.; Schulz, W.; Selonke, F.; Stiliaris, E.; Voß, T.; Westphal, D.; Wolf, G.; Youngman, C.; Grabosch, H. J.; Leich, A.; Meyer, A.; Rethfeldt, C.; Schlenstedt, S.; Barbagli, G.; Pelfer, P.; Anzivino, G.; Maccarrone, G.; De Pasquale, S.; Qian, S.; Votano, L.; Bamberger, A.; Freidhof, A.; Poser, T.; Söldner-Rembold, S.; Schroeder, J.; Theisen, G.; Trefzger, T.; Brook, N. H.; Bussey, P. J.; Doyle, A. T.; Fleck, I.; Jamieson, V. A.; Saxon, D. H.; Utley, M. L.; Wilson, A. S.; Dannemann, A.; Holm, U.; Horstmann, D.; Kammerlocher, H.; Krebs, B.; Neumann, T.; Sinkus, R.; Wick, K.; Badura, E.; Burow, B. D.; Fürtjes, A.; Hagge, L.; Lohrmann, E.; Mainusch, J.; Milewski, J.; Nakahata, M.; Pavel, N.; Poelz, G.; Schott, W.; Terron, J.; Zetsche, F.; Bacon, T. C.; Beuselinck, R.; Butterworth, I.; Gallo, E.; Harris, V. L.; Hung, B. H.; Long, K. R.; Miller, D. B.; Morawitz, P. P. O.; Prinias, A.; Sedgbeer, J. K.; Whitfield, A. F.; Mallik, U.; McCliment, E.; Wang, M. Z.; Wang, S. M.; Wu, J. T.; Zhang, Y.; Cloth, P.; Filges, D.; An, S. H.; Hong, S. M.; Nam, S. W.; Park, S. K.; Suh, M. H.; Yon, S. H.; Imlay, R.; Kartik, S.; Kim, H.-J.; McNeil, R. R.; Metcalf, W.; Nadendla, V. K.; Barreiro, F.; Cases, G.; Graciani, R.; Hernández, J. M.; Hervás, L.; Labarga, L.; del Peso, J.; Puga, J.; de Trocóniz, J. F.; Smith, G. R.; Corriveau, F.; Hanna, D. S.; Hartmann, J.; Hung, L. W.; Lim, J. N.; Matthews, C. G.; Patel, P. M.; Sinclair, L. E.; Stairs, D. G.; Laurent, M. St.; Ullmann, R.; Zacek, G.; Bashkirov, V.; Dolgoshein, B. A.; Stifutkin, A.; Bashindzhagyan, G. L.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Y. A.; Kobrin, V. D.; Kuzmin, V. A.; Proskuryakov, A. S.; Savin, A. A.; Shcheglova, L. M.; Solomin, A. N.; Zotov, N. P.; Bentvelsen, S.; Botje, M.; Chlebana, F.; Dake, A.; Engelen, J.; de Jong, P.; de Kamps, M.; Kooijman, P.; Kruse, A.; O'Dell, V.; Tenner, A.; Tiecke, H.; Verkerke, W.; Vreeswijk, M.; Wiggers, L.; de Wolf, E.; van Woudenberg, R.; Acosta, D.; Bylsma, B.; Durkin, L. S.; Honscheid, K.; Li, C.; Ling, T. Y.; McLean, K. W.; Murray, W. N.; Park, I. H.; Romanowski, T. A.; Seidlein, R.; Bailey, D. S.; Blair, G. A.; Byrne, A.; Cashmore, R. J.; Cooper-Sarkar, A. M.; Daniels, D.; Devenish, R. C. E.; Harnew, N.; Lancaster, M.; Luffman, P. E.; Lindemann, L.; McFall, J.; Nath, C.; Quadt, A.; Uijterwaal, H.; Walczak, R.; Wilson, F. F.; Yip, T.; Abbiendi, G.; Bertolin, A.; Brugnera, R.; Carlin, R.; Dal Corso, F.; De Giorgi, M.; Dosselli, U.; Limentani, S.; Morandin, M.; Posocco, M.; Stanco, L.; Stroili, R.; Voci, C.; Bulmahn, J.; Butterworth, J. M.; Feild, R. G.; Oh, B. Y.; Whitmore, J. J.; D'Agostini, G.; Iori, M.; Marini, G.; Mattioli, M.; Nigro, A.; Tassi, E.; Hart, J. C.; McCubbin, N. A.; Prytz, K.; Shah, T. P.; Short, T. L.; Barberis, E.; Cartiglia, N.; Dubbs, T.; Heusch, C.; Van Hook, M.; Hubbard, B.; Lockman, W.; Rahn, J. T.; Sadrozinski, H. F.-W.; Seiden, A.; Biltzinger, J.; Seifert, R. J.; Walenta, A. H.; Zech, G.; Abramowicz, H.; Briskin, G.; Dagan, S.; Levy, A.; Hasegawa, T.; Hazumi, M.; Ishii, T.; Kuze, M.; Mine, S.; Nagasawa, Y.; Nagira, T.; Nakao, M.; Suzuki, I.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; Chiba, M.; Hamatsu, R.; Hirose, T.; Homma, K.; Kitamura, S.; Nagayama, S.; Nakamitsu, Y.; Cirio, R.; Costa, M.; Ferrero, M. I.; Lamberti, L.; Maselli, S.; Peroni, C.; Sacchi, R.; Solano, A.; Staiano, A.; Dardo, M.; Bailey, D. C.; Bandyopadhyay, D.; Benard, F.; Brkic, M.; Crombie, M. B.; Gingrich, D. M.; Hartner, G. F.; Joo, K. K.; Levman, G. M.; Martin, J. F.; Orr, R. S.; Sampson, C. R.; Teuscher, R. J.; Catterall, C. D.; Jones, T. W.; Kaziewicz, P. B.; Lane, J. B.; Saunders, R. L.; Shulman, J.; Blankenship, K.; Kochocki, J.; Lu, B.; Mo, L. W.; Bogusz, W.; Charchuła, K.; Ciborowski, J.; Gajewski, J.; Grzelak, G.; Kasprzak, M.; Krzyżanowski, M.; Muchorowski, K.; Nowak, R. J.; Pawlak, J. M.; Tymieniecka, T.; Wróblewski, A. K.; Zakrzewski, J. A.; Żarnecki, A. F.; Adamus, M.; Eisenberg, Y.; Glasman, C.; Karshon, U.; Revel, D.; Shapira, A.; Ali, I.; Behrens, B.; Dasu, S.; Fordham, C.; Foudas, C.; Goussiou, A.; Loveless, R. J.; Reeder, D. D.; Silverstein, S.; Smith, W. H.; Tsurugai, T.; Bhadra, S.; Frisken, W. R.; Furutani, K. M.; ZEUS Collaboration

    1995-02-01

    Events with a large rapidity gap and total transverse energy greater than 5 GeV have been observed in quasi-real photoproduction at HERA with the ZEUS detector. The distribution of these events as a function of the γp centre of mass energy is consistent with diffractive scattering. For total transverse energies above 12 GeV, the hadronic final states show predominantly a two-jet structure with each jet having a transverse energy greater than 4 GeV. For the two-jet events, little energy flow is found outside the jets. This observation is consistent with the hard scattering of a quasi-real photon with a colourless object in the proton.

  18. Conformal Symmetry as a Template for QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodsky, S

    2004-08-04

    Conformal symmetry is broken in physical QCD; nevertheless, one can use conformal symmetry as a template, systematically correcting for its nonzero {beta} function as well as higher-twist effects. For example, commensurate scale relations which relate QCD observables to each other, such as the generalized Crewther relation, have no renormalization scale or scheme ambiguity and retain a convergent perturbative structure which reflects the underlying conformal symmetry of the classical theory. The ''conformal correspondence principle'' also dictates the form of the expansion basis for hadronic distribution amplitudes. The AdS/CFT correspondence connecting superstring theory to superconformal gauge theory has important implications for hadronmore » phenomenology in the conformal limit, including an all-orders demonstration of counting rules for hard exclusive processes as well as determining essential aspects of hadronic light-front wavefunctions. Theoretical and phenomenological evidence is now accumulating that QCD couplings based on physical observables such as {tau} decay become constant at small virtuality; i.e., effective charges develop an infrared fixed point in contradiction to the usual assumption of singular growth in the infrared. The near-constant behavior of effective couplings also suggests that QCD can be approximated as a conformal theory even at relatively small momentum transfer. The importance of using an analytic effective charge such as the pinch scheme for unifying the electroweak and strong couplings and forces is also emphasized.« less

  19. Exclusive processes and the fundamental structure of hadrons

    DOE PAGES

    Brodsky, Stanley J.

    2015-01-20

    I review the historical development of QCD predictions for exclusive hadronic processes, beginning with constituent counting rules and the quark interchange mechanism, phenomena which gave early validation for the quark structure of hadrons. The subsequent development of pQCD factorization theorems for hard exclusive amplitudes and the development of evolution equations for the hadron distribution amplitudes provided a rigorous framework for calculating hadronic form factors and hard scattering exclusive scattering processes at high momentum transfer. I also give a brief introduction to the field of "light-front holography" and the insights it brings to quark confinement, the behavior of the QCD couplingmore » in the nonperturbative domain, as well as hadron spectroscopy and the dynamics of exclusive processes.« less

  20. Exclusive processes and the fundamental structure of hadrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodsky, Stanley J.

    I review the historical development of QCD predictions for exclusive hadronic processes, beginning with constituent counting rules and the quark interchange mechanism, phenomena which gave early validation for the quark structure of hadrons. The subsequent development of pQCD factorization theorems for hard exclusive amplitudes and the development of evolution equations for the hadron distribution amplitudes provided a rigorous framework for calculating hadronic form factors and hard scattering exclusive scattering processes at high momentum transfer. I also give a brief introduction to the field of "light-front holography" and the insights it brings to quark confinement, the behavior of the QCD couplingmore » in the nonperturbative domain, as well as hadron spectroscopy and the dynamics of exclusive processes.« less

  1. High-energy photon-hadron scattering in holographic QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishio, Ryoichi; Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwano-ha 5-1-5, 277-8583; Watari, Taizan

    2011-10-01

    This article provides an in-depth look at hadron high-energy scattering by using gravity dual descriptions of strongly coupled gauge theories. Just like deeply inelastic scattering (DIS) and deeply virtual Compton scattering (DVCS) serve as clean experimental probes into nonperturbative internal structure of hadrons, elastic scattering amplitude of a hadron and a (virtual) photon in gravity dual can be exploited as a theoretical probe. Since the scattering amplitude at sufficiently high energy (small Bjorken x) is dominated by parton contributions (=Pomeron contributions) even in strong coupling regime, there is a chance to learn a lesson for generalized parton distribution (GPD) bymore » using gravity dual models. We begin with refining derivation of the Brower-Polchinski-Strassler-Tan (BPST) Pomeron kernel in gravity dual, paying particular attention to the role played by the complex spin variable j. The BPST Pomeron on warped spacetime consists of a Kaluza-Klein tower of 4D Pomerons with nonlinear trajectories, and we clarify the relation between Pomeron couplings and the Pomeron form factor. We emphasize that the saddle-point value j* of the scattering amplitude in the complex j-plane representation is a very important concept in understanding qualitative behavior of the scattering amplitude. The total Pomeron contribution to the scattering is decomposed into the saddle-point contribution and at most a finite number of pole contributions, and when the pole contributions are absent (which we call saddle-point phase), kinematical variable (q,x,t)-dependence of ln(1/q) evolution and ln(1/x) evolution parameters {gamma}{sub eff} and {lambda}{sub eff} in DIS and t-slope parameter B of DVCS in HERA experiment are all reproduced qualitatively in gravity dual. All of these observations shed a new light on modeling of GPD. Straightforward application of those results to other hadron high-energy scattering is also discussed.« less

  2. Dissociation of heavy quarkonium in hot QCD medium in a quasiparticle model

    NASA Astrophysics Data System (ADS)

    Agotiya, Vineet Kumar; Chandra, Vinod; Jamal, M. Yousuf; Nilima, Indrani

    2016-11-01

    Following a recent work on the effective description of the equations of state for hot QCD obtained from a hard thermal loop expression for the gluon self-energy, in terms of the quasigluons and quasiquarks and antiquarks with respective effective fugacities, the dissociation process of heavy quarkonium in hot QCD medium has been investigated. This has been done by investigating the medium modification to a heavy quark potential. The medium-modified potential has a quite different form (a long-range Coulomb tail in addition to the usual Yukawa term) in contrast to the usual picture of Debye screening. The flavor dependence binding energies of the heavy quarkonia states and the dissociation temperature have been obtained by employing the Debye mass for pure gluonic and full QCD case computed employing the quasiparticle picture. Thus, estimated dissociation patterns of the charmonium and bottomonium states, considering Debye mass from different approaches in the pure gluonic case and full QCD, have shown good agreement with the other potential model studies.

  3. A computational system for lattice QCD with overlap Dirac quarks

    NASA Astrophysics Data System (ADS)

    Chiu, Ting-Wai; Hsieh, Tung-Han; Huang, Chao-Hsi; Huang, Tsung-Ren

    2003-05-01

    We outline the essential features of a Linux PC cluster which is now being developed at National Taiwan University, and discuss how to optimize its hardware and software for lattice QCD with overlap Dirac quarks. At present, the cluster constitutes of 30 nodes, with each node consisting of one Pentium 4 processor (1.6/2.0 GHz), one Gbyte of PC800 RDRAM, one 40/80 Gbyte hard disk, and a network card. The speed of this system is estimated to be 30 Gflops, and its price/performance ratio is better than $1.0/Mflops for 64-bit (double precision) computations in quenched lattice QCD with overlap Dirac quarks.

  4. QCD constituent counting rules for neutral vector mesons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodsky, Stanley J.; Lebed, Richard F.; Lyubovitskij, Valery E.

    QCD constituent counting rules define the scaling behavior of exclusive hadronic scattering and electromagnetic scattering amplitudes at high momentum transfer in terms of the total number of fundamental constituents in the initial and final states participating in the hard subprocess. The scaling laws reflect the twist of the leading Fock state for each hadron and hence the leading operator that creates the composite state from the vacuum. Thus, the constituent counting scaling laws can be used to identify the twist of exotic hadronic candidates such as tetraquarks and pentaquarks. Effective field theories must consistently implement the scaling rules in ordermore » to be consistent with the fundamental theory. Here in this paper, we examine how one can apply constituent counting rules for the exclusive production of one or two neutral vector mesons V 0 in e + e - annihilation, processes in which the V 0 can couple via intermediate photons. In the case of a (narrow) real V 0, the photon virtuality is fixed to a precise value s 1 = m2V 0, thus treating the V 0 as a single fundamental particle. Each real V 0 thus contributes to the constituent counting rules with NV0 = 1 . In effect, the leading operator underlying the V 0 has twist 1. Thus, in the specific physical case of single or double on-shell V 0 production via intermediate photons, the predicted scaling from counting rules coincides with vector-meson dominance (VMD), an effective theory that treats V 0 as an elementary field. However, the VMD prediction fails in the general case where the V 0 is not coupled through an elementary photon field, and then the leading-twist interpolating operator has twist NV 0 = 2 . Analogous effects appear in pp scattering processes.« less

  5. QCD constituent counting rules for neutral vector mesons

    NASA Astrophysics Data System (ADS)

    Brodsky, Stanley J.; Lebed, Richard F.; Lyubovitskij, Valery E.

    2018-02-01

    QCD constituent counting rules define the scaling behavior of exclusive hadronic scattering and electromagnetic scattering amplitudes at high momentum transfer in terms of the total number of fundamental constituents in the initial and final states participating in the hard subprocess. The scaling laws reflect the twist of the leading Fock state for each hadron and hence the leading operator that creates the composite state from the vacuum. Thus, the constituent counting scaling laws can be used to identify the twist of exotic hadronic candidates such as tetraquarks and pentaquarks. Effective field theories must consistently implement the scaling rules in order to be consistent with the fundamental theory. Here, we examine how one can apply constituent counting rules for the exclusive production of one or two neutral vector mesons V0 in e+e- annihilation, processes in which the V0 can couple via intermediate photons. In the case of a (narrow) real V0, the photon virtuality is fixed to a precise value s1=mV02, thus treating the V0 as a single fundamental particle. Each real V0 thus contributes to the constituent counting rules with NV0=1. In effect, the leading operator underlying the V0 has twist 1. Thus, in the specific physical case of single or double on-shell V0 production via intermediate photons, the predicted scaling from counting rules coincides with vector-meson dominance (VMD), an effective theory that treats V0 as an elementary field. However, the VMD prediction fails in the general case where the V0 is not coupled through an elementary photon field, and then the leading-twist interpolating operator has twist NV 0=2 . Analogous effects appear in p p scattering processes.

  6. QCD constituent counting rules for neutral vector mesons

    DOE PAGES

    Brodsky, Stanley J.; Lebed, Richard F.; Lyubovitskij, Valery E.

    2018-02-08

    QCD constituent counting rules define the scaling behavior of exclusive hadronic scattering and electromagnetic scattering amplitudes at high momentum transfer in terms of the total number of fundamental constituents in the initial and final states participating in the hard subprocess. The scaling laws reflect the twist of the leading Fock state for each hadron and hence the leading operator that creates the composite state from the vacuum. Thus, the constituent counting scaling laws can be used to identify the twist of exotic hadronic candidates such as tetraquarks and pentaquarks. Effective field theories must consistently implement the scaling rules in ordermore » to be consistent with the fundamental theory. Here in this paper, we examine how one can apply constituent counting rules for the exclusive production of one or two neutral vector mesons V 0 in e + e - annihilation, processes in which the V 0 can couple via intermediate photons. In the case of a (narrow) real V 0, the photon virtuality is fixed to a precise value s 1 = m2V 0, thus treating the V 0 as a single fundamental particle. Each real V 0 thus contributes to the constituent counting rules with NV0 = 1 . In effect, the leading operator underlying the V 0 has twist 1. Thus, in the specific physical case of single or double on-shell V 0 production via intermediate photons, the predicted scaling from counting rules coincides with vector-meson dominance (VMD), an effective theory that treats V 0 as an elementary field. However, the VMD prediction fails in the general case where the V 0 is not coupled through an elementary photon field, and then the leading-twist interpolating operator has twist NV 0 = 2 . Analogous effects appear in pp scattering processes.« less

  7. Isoscalar π π , K K ¯ , η η scattering and the σ , f 0 , f 2 mesons from QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briceno, Raul A.; Dudek, Jozef J.; Edwards, Robert G.

    We present the first lattice QCD study of coupled isoscalarmore » $$\\pi\\pi,K\\overline{K},\\eta\\eta$$ $S$- and $D$-wave scattering extracted from discrete finite-volume spectra computed on lattices which have a value of the quark mass corresponding to $$m_\\pi\\sim391$$ MeV. In the $J^P=0^+$ sector we find analogues of the experimental $$\\sigma$$ and $$f_0(980)$$ states, where the $$\\sigma$$ appears as a stable bound-state below $$\\pi\\pi$$ threshold, and, similar to what is seen in experiment, the $$f_0(980)$$ manifests itself as a dip in the $$\\pi\\pi$$ cross section in the vicinity of the $$K\\overline{K}$$ threshold. For $J^P=2^+$ we find two states resembling the $$f_2(1270)$$ and $$f_2'(1525)$$, observed as narrow peaks, with the lighter state dominantly decaying to $$\\pi\\pi$$ and the heavier state to $$K\\overline{K}$$. The presence of all these states is determined rigorously by finding the pole singularity content of scattering amplitudes, and their couplings to decay channels are established using the residues of the poles.« less

  8. Isoscalar π π , K K ¯ , η η scattering and the σ , f 0 , f 2 mesons from QCD

    DOE PAGES

    Briceno, Raul A.; Dudek, Jozef J.; Edwards, Robert G.; ...

    2018-03-23

    We present the first lattice QCD study of coupled isoscalarmore » $$\\pi\\pi,K\\overline{K},\\eta\\eta$$ $S$- and $D$-wave scattering extracted from discrete finite-volume spectra computed on lattices which have a value of the quark mass corresponding to $$m_\\pi\\sim391$$ MeV. In the $J^P=0^+$ sector we find analogues of the experimental $$\\sigma$$ and $$f_0(980)$$ states, where the $$\\sigma$$ appears as a stable bound-state below $$\\pi\\pi$$ threshold, and, similar to what is seen in experiment, the $$f_0(980)$$ manifests itself as a dip in the $$\\pi\\pi$$ cross section in the vicinity of the $$K\\overline{K}$$ threshold. For $J^P=2^+$ we find two states resembling the $$f_2(1270)$$ and $$f_2'(1525)$$, observed as narrow peaks, with the lighter state dominantly decaying to $$\\pi\\pi$$ and the heavier state to $$K\\overline{K}$$. The presence of all these states is determined rigorously by finding the pole singularity content of scattering amplitudes, and their couplings to decay channels are established using the residues of the poles.« less

  9. Determination of s- and p-wave I = 1/2 Kπ scattering amplitudes in Nf = 2 + 1 lattice QCD

    NASA Astrophysics Data System (ADS)

    Brett, Ruairí; Bulava, John; Fallica, Jacob; Hanlon, Andrew; Hörz, Ben; Morningstar, Colin

    2018-07-01

    The elastic I = 1 / 2, s- and p-wave kaon-pion scattering amplitudes are calculated using a single ensemble of anisotropic lattice QCD gauge field configurations with Nf = 2 + 1 flavors of dynamical Wilson-clover fermions at mπ = 230 MeV. A large spatial extent of L = 3.7 fm enables a good energy resolution while partial wave mixing due to the reduced symmetries of the finite volume is treated explicitly. The p-wave amplitude is well described by a Breit-Wigner shape with parameters mK* /mπ = 3.808 (18) and gK*Kπ BW = 5.33 (20) which are insensitive to the inclusion of d-wave mixing and variation of the s-wave parametrization. An effective range description of the near-threshold s-wave amplitude yields mπa0 = - 0.353 (25).

  10. Study of hard double-parton scattering in four-jet events in pp collisions at s = 7 $$ \\sqrt{s}=7 $$ TeV with the ATLAS experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaboud, M.; Aad, G.; Abbott, B.

    Inclusive four-jet events produced in proton-proton collisions at a centre-of-mass energy of s=7 TeV are analysed for the presence of hard double-parton scattering using data corresponding to an integrated luminosity of 37.3 pb -1 , collected with the ATLAS detector at the LHC. The contribution of hard double-parton scattering to the production of four-jet events is extracted using an artificial neural network, assuming that hard double-parton scattering can be approximated by an uncorrelated overlaying of dijet events. For events containing at least four jets with transverse momentum p T ≥ 20 GeV and pseudorapidity |η| ≤ 4.4, and at leastmore » one having p T ≥ 42.5 GeV, the contribution of hard double-parton scattering is estimated to be f DPS = 0.092 - 0.011 + 0.005 (stat.) - 0.037 + 0.033 (syst.). After combining this measurement with those of the inclusive dijet and four-jet cross-sections in the appropriate phase space regions, the effective cross-section, σ eff , was determined to be σ eff = 14. 9 - 1.0 + 1.2 (stat.) - 3.8 + 5.1 (syst.) mb. This result is consistent within the quoted uncertainties with previous measurements of σ eff , performed at centre-of-mass energies between 63 GeV and 8 TeV using various final states, and it corresponds to 21 - 6 + 7 % of the total inelastic cross-section measured at s=7 TeV. The distributions of the observables sensitive to the contribution of hard double-parton scattering, corrected for detector effects, are also provided.« less

  11. Study of hard double-parton scattering in four-jet events in pp collisions at s = 7 $$ \\sqrt{s}=7 $$ TeV with the ATLAS experiment

    DOE PAGES

    Aaboud, M.; Aad, G.; Abbott, B.; ...

    2016-11-01

    Inclusive four-jet events produced in proton-proton collisions at a centre-of-mass energy of s=7 TeV are analysed for the presence of hard double-parton scattering using data corresponding to an integrated luminosity of 37.3 pb -1 , collected with the ATLAS detector at the LHC. The contribution of hard double-parton scattering to the production of four-jet events is extracted using an artificial neural network, assuming that hard double-parton scattering can be approximated by an uncorrelated overlaying of dijet events. For events containing at least four jets with transverse momentum p T ≥ 20 GeV and pseudorapidity |η| ≤ 4.4, and at leastmore » one having p T ≥ 42.5 GeV, the contribution of hard double-parton scattering is estimated to be f DPS = 0.092 - 0.011 + 0.005 (stat.) - 0.037 + 0.033 (syst.). After combining this measurement with those of the inclusive dijet and four-jet cross-sections in the appropriate phase space regions, the effective cross-section, σ eff , was determined to be σ eff = 14. 9 - 1.0 + 1.2 (stat.) - 3.8 + 5.1 (syst.) mb. This result is consistent within the quoted uncertainties with previous measurements of σ eff , performed at centre-of-mass energies between 63 GeV and 8 TeV using various final states, and it corresponds to 21 - 6 + 7 % of the total inelastic cross-section measured at s=7 TeV. The distributions of the observables sensitive to the contribution of hard double-parton scattering, corrected for detector effects, are also provided.« less

  12. Global QCD Analysis of the Nucleon Tensor Charge with Lattice QCD Constraints

    NASA Astrophysics Data System (ADS)

    Shows, Harvey, III; Melnitchouk, Wally; Sato, Nobuo

    2017-09-01

    By studying the parton distribution functions (PDFs) of a nucleon, we probe the partonic scale of nature, exploring what it means to be a nucleon. In this study, we are interested in the transversity PDF-the least studied of the three collinear PDFs. By conducting a global analysis on experimental data from semi-inclusive deep inelastic scattering (SIDIS), as well as single-inclusive e+e- annihilation (SIA), we extract the fit parameters needed to describe the transverse moment dependent (TMD) transversity PDF, as well as the Collins fragmentation function. Once the collinear transversity PDF is obtained by integrating the extracted TMD PDF, we wish to resolve discrepancies between lattice QCD calculations and phenomenological extractions of the tensor charge from data. Here we show our results for the transversity distribution and tensor charge. Using our method of iterative Monte Carlo, we now have a more robust understanding of the transversity PDF. With these results we are able to progress in our understanding of TMD PDFs, as well as testify to the efficacy of current lattice QCD calculations. This work is made possible through support from NSF award 1659177 to Old Dominion University.

  13. Transverse Quark Spin Effects in SIDIS and Drell Yan Scattering

    NASA Astrophysics Data System (ADS)

    Gamberg, Leonard

    2006-10-01

    The connection between quark orbital angular momentum and final state interactions for transversely polarized quarks in unpolarized hadrons suggests significant azimuthal asymmetries in pion production in semi-inclusive deep inelastic scattering (SIDIS) (e p->e^'X π) as well as in di- lepton production in Drell Yan (p p->&+circ;&-circ;X and &-circ;p->&+circ;&-circ;X) scattering. When transverse momentum of the reaction, PT is on the order of or less than λqcd, that is PT˜kT where kT is intrinsic transverse quark momentum, these effects are characterized in term of naive time reversal odd (so called T-odd) transverse momentum dependent (TMD) parton distribution and fragmentation functions. At these moderate transverse momentum scales we estimate the size of the 2φ azimuthal asymmetry in SIDIS and Drell Yan scattering in the parton spectator framework. In the former case we consider this so called ``Boer-Mulders'' effect for a proposed experiment at the upgraded CLAS-12 GeV detector at Jefferson LAB. In the latter case we consider this asymmetry for proton anti-proton collider, as well as π nucleon fixed target experiments. We also consider competing contributions to these asymmetries from perturbative QCD (pQCD) contributions which emerge when PT> λqcd. Evidence of a strong dependence on transverse momentum would indicate the presence of T-odd structures in unpolarized SIDIS and Drell Yan scattering, implying that transversity properties of the nucleon can be accessed without invoking beam or target polarization.

  14. Vector and scalar charmonium resonances with lattice QCD

    DOE PAGES

    Lang, C. B.; Leskovec, Luka; Mohler, Daniel; ...

    2015-09-15

    We perform an exploratory lattice QCD simulation of DD¯ scattering, aimed at determining the masses as well as the decay widths of charmonium resonances above open charm threshold. Neglecting coupling to other channels, the resulting phase shift for DD¯ scattering in p-wave yields the well-known vector resonance ψ(3770). For m π = 156 MeV, the extracted resonance mass and the decay width agree with experiment within large statistical uncertainty. The scalar charmonium resonances present a puzzle, since only the ground state Χc0(1P) is well understood, while there is no commonly accepted candidate for its first excitation. We simulate DD¯ scatteringmore » in s-wave in order to shed light on this puzzle. The resulting phase shift supports the existence of a yet-unobserved narrow resonance with a mass slightly below 4 GeV. A scenario with this narrow resonance and a pole at Χc0(1P) agrees with the energy-dependence of our phase shift. In addition, further lattice QCD simulations and experimental efforts are needed to resolve the puzzle of the excited scalar charmonia.« less

  15. What are the low- Q and large- x boundaries of collinear QCD factorization theorems?

    DOE PAGES

    Moffat, E.; Melnitchouk, W.; Rogers, T. C.; ...

    2017-05-26

    Familiar factorized descriptions of classic QCD processes such as deeply-inelastic scattering (DIS) apply in the limit of very large hard scales, much larger than nonperturbative mass scales and other nonperturbative physical properties like intrinsic transverse momentum. Since many interesting DIS studies occur at kinematic regions where the hard scale,more » $$Q \\sim$$ 1-2 GeV, is not very much greater than the hadron masses involved, and the Bjorken scaling variable $$x_{bj}$$ is large, $$x_{bj} \\gtrsim 0.5$$, it is important to examine the boundaries of the most basic factorization assumptions and assess whether improved starting points are needed. Using an idealized field-theoretic model that contains most of the essential elements that a factorization derivation must confront, we retrace in this paper the steps of factorization approximations and compare with calculations that keep all kinematics exact. We examine the relative importance of such quantities as the target mass, light quark masses, and intrinsic parton transverse momentum, and argue that a careful accounting of parton virtuality is essential for treating power corrections to collinear factorization. Finally, we use our observations to motivate searches for new or enhanced factorization theorems specifically designed to deal with moderately low-$Q$ and large-$$x_{bj}$$ physics.« less

  16. Music algorithm for imaging of a sound-hard arc in limited-view inverse scattering problem

    NASA Astrophysics Data System (ADS)

    Park, Won-Kwang

    2017-07-01

    MUltiple SIgnal Classification (MUSIC) algorithm for a non-iterative imaging of sound-hard arc in limited-view inverse scattering problem is considered. In order to discover mathematical structure of MUSIC, we derive a relationship between MUSIC and an infinite series of Bessel functions of integer order. This structure enables us to examine some properties of MUSIC in limited-view problem. Numerical simulations are performed to support the identified structure of MUSIC.

  17. Connected and disconnected contractions in pion-pion scattering

    NASA Astrophysics Data System (ADS)

    Acharya, Neramballi Ripunjay; Guo, Feng-Kun; Meißner, Ulf-G.; Seng, Chien-Yeah

    2017-09-01

    We show that the interplay of chiral effective field theory and lattice QCD can be used in the evaluation of so-called disconnected diagrams, which appear in the study of the isoscalar and isovector channels of pion-pion scattering and have long been a major challenge for the lattice community. By means of partially-quenched chiral perturbation theory, we distinguish and analyze the effects from different types of contraction diagrams to the pion-pion scattering amplitude, including its scattering lengths and the energy-dependence of its imaginary part. Our results may be used to test the current degree of accuracy of lattice calculation in the handling of disconnected diagrams, as well as to set criteria for the future improvement of relevant lattice computational techniques that may play a critical role in the study of other interesting QCD matrix elements.

  18. Charmed tetraquarks Tcc and Tcs from dynamical lattice QCD simulations

    NASA Astrophysics Data System (ADS)

    Ikeda, Yoichi; Charron, Bruno; Aoki, Sinya; Doi, Takumi; Hatsuda, Tetsuo; Inoue, Takashi; Ishii, Noriyoshi; Murano, Keiko; Nemura, Hidekatsu; Sasaki, Kenji

    2014-02-01

    Charmed tetraquarks Tcc=(ccubardbar) and Tcs=(csubardbar) are studied through the S-wave meson-meson interactions, D-D, Kbar-D, D-D* and Kbar-D*, on the basis of the (2+1)-flavor lattice QCD simulations with the pion mass mπ≃410, 570 and 700 MeV. For the charm quark, the relativistic heavy quark action is employed to treat its dynamics on the lattice. Using the HAL QCD method, we extract the S-wave potentials in lattice QCD simulations, from which the meson-meson scattering phase shifts are calculated. The phase shifts in the isospin triplet (I=1) channels indicate repulsive interactions, while those in the I=0 channels suggest attraction, growing as mπ decreases. This is particularly prominent in the Tcc (JP=1+,I=0) channel, though neither bound state nor resonance are found in the range mπ=410-700 MeV. We make a qualitative comparison of our results with the phenomenological diquark picture.

  19. Structure of the Roper resonance from lattice QCD constraints

    NASA Astrophysics Data System (ADS)

    Wu, Jia-jun; Leinweber, Derek B.; Liu, Zhan-wei; Thomas, Anthony W.

    2018-05-01

    Two different effective field theory descriptions of the pion-nucleon scattering data are constructed to describe the region of the Roper resonance. In one, the resonance is the result of strong rescattering between coupled meson-baryon channels, while in the other the resonance has a large bare-baryon (or quark-model-like) component. The predictions of these two scenarios are compared with the latest lattice QCD simulation results in this channel. We find that the second scenario is not consistent with lattice QCD results, whereas the first agrees with those constraints. In that preferred scenario, the mass of the quark-model-like state is approximately 2 GeV, with the infinite-volume Roper resonance best described as a resonance generated dynamically through strongly coupled meson-baryon channels.

  20. The singular behavior of massive QCD amplitudes

    NASA Astrophysics Data System (ADS)

    Mitov, Alexander; Moch, Sven-Olaf

    2007-05-01

    We discuss the structure of infrared singularities in on-shell QCD amplitudes with massive partons and present a general factorization formula in the limit of small parton masses. The factorization formula gives rise to an all-order exponentiation of both, the soft poles in dimensional regularization and the large collinear logarithms of the parton masses. Moreover, it provides a universal relation between any on-shell amplitude with massive external partons and its corresponding massless amplitude. For the form factor of a heavy quark we present explicit results including the fixed-order expansion up to three loops in the small mass limit. For general scattering processes we show how our constructive method applies to the computation of all singularities as well as the constant (mass-independent) terms of a generic massive n-parton QCD amplitude up to the next-to-next-to-leading order corrections.

  1. Light-front holographic QCD and emerging confinement

    DOE PAGES

    Brodsky, Stanley J.; de Téramond, Guy F.; Dosch, Hans Günter; ...

    2015-05-21

    In this study we explore the remarkable connections between light-front dynamics, its holographic mapping to gravity in a higher-dimensional anti-de Sitter (AdS) space, and conformal quantum mechanics. This approach provides new insights into the origin of a fundamental mass scale and the physics underlying confinement dynamics in QCD in the limit of massless quarks. The result is a relativistic light-front wave equation for arbitrary spin with an effective confinement potential derived from a conformal action and its embedding in AdS space. This equation allows for the computation of essential features of hadron spectra in terms of a single scale. Themore » light-front holographic methods described here give a precise interpretation of holographic variables and quantities in AdS space in terms of light-front variables and quantum numbers. This leads to a relation between the AdS wave functions and the boost-invariant light-front wave functions describing the internal structure of hadronic bound-states in physical spacetime. The pion is massless in the chiral limit and the excitation spectra of relativistic light-quark meson and baryon bound states lie on linear Regge trajectories with identical slopes in the radial and orbital quantum numbers. In the light-front holographic approach described here currents are expressed as an infinite sum of poles, and form factors as a product of poles. At large q 2 the form factor incorporates the correct power-law fall-off for hard scattering independent of the specific dynamics and is dictated by the twist. At low q 2 the form factor leads to vector dominance. The approach is also extended to include small quark masses. We briefly review in this report other holographic approaches to QCD, in particular top-down and bottom-up models based on chiral symmetry breaking. We also include a discussion of open problems and future applications.« less

  2. Fate of the Tetraquark Candidate Z_{c}(3900) from Lattice QCD.

    PubMed

    Ikeda, Yoichi; Aoki, Sinya; Doi, Takumi; Gongyo, Shinya; Hatsuda, Tetsuo; Inoue, Takashi; Iritani, Takumi; Ishii, Noriyoshi; Murano, Keiko; Sasaki, Kenji

    2016-12-09

    The possible exotic meson Z_{c}(3900), found in e^{+}e^{-} reactions, is studied by the method of coupled-channel scattering in lattice QCD. The interactions among πJ/ψ, ρη_{c}, and D[over ¯]D^{*} channels are derived from (2+1)-flavor QCD simulations at m_{π}=410-700  MeV. The interactions are dominated by the off-diagonal πJ/ψ-D[over ¯]D^{*} and ρη_{c}-D[over ¯]D^{*} couplings, which indicates that the Z_{c}(3900) is not a usual resonance but a threshold cusp. Semiphenomenological analyses with the coupled-channel interaction are also presented to confirm this conclusion.

  3. Jet production and fragmentation properties in deep inelastic muon scattering

    NASA Astrophysics Data System (ADS)

    Arneodo, M.; Arvidson, A.; Aubert, J. J.; Badelek, B.; Beaufays, J.; Bee, C. P.; Benchouk, C.; Berghoff, G.; Bird, I.; Blum, D.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S.; Brück, H.; Calen, H.; Chima, J. S.; Ciborowski, J.; Clifft, R.; Coignet, G.; Combley, F.; Conrad, J.; Coughlan, J.; D'Agostini, G.; Dahlgren, S.; Dengler, F.; Derado, I.; Dreyer, T.; Drees, J.; Drobnitzki, M.; Düren, M.; Eckardt, V.; Edwards, A.; Edwards, M.; Ernst, T.; Eszes, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Foster, J.; Ftàčnik, J.; Gabathuler, E.; Gajewski, J.; Gamet, R.; Gayler, J.; Geddes, N.; Grafström, P.; Grard, F.; Haas, J.; Hagberg, E.; Hasert, F. J.; Hayman, P.; Heusse, P.; Jaffre, M.; Jacholkowska, A.; Janata, F.; Jancso, G.; Johnson, A. S.; Kabuss, E. M.; Kellner, G.; Korbel, V.; Krüger, A.; Krüger, J.; Kullander, S.; Landgraf, U.; Lanske, D.; Loken, J.; Long, K.; Maire, M.; Malecki, P.; Manz, A.; Maselli, S.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Nagy, E.; Nassalski, J.; Norton, P. R.; Oakham, F. G.; Osborne, A. M.; Pascaud, C.; Pawlik, B.; Payre, P.; Peroni, C.; Peschel, H.; Pessard, H.; Pettingale, J.; Pietrzyk, B.; Pietrzyk, U.; Pönsgen, B.; Pötsch, M.; Renton, P.; Ribarics, P.; Rith, K.; Rondio, E.; Sandacz, A.; Scheer, M.; Schlabböhmer, A.; Schiemann, H.; Schmitz, N.; Schneegans, M.; Scholz, M.; Schröder, T.; Schultze, K.; Sloan, T.; Stier, H. E.; Studt, M.; Taylor, G. N.; Thénard, J. M.; Thompson, J. C.; de La Torre, A.; Toth, J.; Urban, L.; Urban, L.; Wallucks, W.; Whalley, M.; Wheeler, S.; Williams, W. S. C.; Wimpenny, S. J.; Windmolders, R.; Wolf, G.; Ziemons, K.

    1987-12-01

    Results are presented from a study of deep inelastic 280 GeV muon-nucleon interactions on the transverse momenta and jet properties of the final state hadrons. The results are analysed in a way which attempts to separate the contributions of hard and soft QCD effects from those that arise from the fragmentation process. The fragmentation models with which the data are compared are the Lund string model, the independent jet model, the QCD parton shower model including soft gluon interference effects, and the firestring model. The discrimination between these models is discussed. Various methods of analysis of the data in terms of hard QCD processes are presented. From a study of the properties of the jet profiles a value of α s , to leading order, is determined using the Lund string model, namely α s =0.29±0.01 (stat.) ±0.02 (syst.), for Q 2˜20 GeV2.

  4. Perturbative corrections to B → D form factors in QCD

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Ming; Wei, Yan-Bing; Shen, Yue-Long; Lü, Cai-Dian

    2017-06-01

    We compute perturbative QCD corrections to B → D form factors at leading power in Λ/ m b , at large hadronic recoil, from the light-cone sum rules (LCSR) with B-meson distribution amplitudes in HQET. QCD factorization for the vacuum-to- B-meson correlation function with an interpolating current for the D-meson is demonstrated explicitly at one loop with the power counting scheme {m}_c˜ O(√{Λ {m}_b}) . The jet functions encoding information of the hard-collinear dynamics in the above-mentioned correlation function are complicated by the appearance of an additional hard-collinear scale m c , compared to the counterparts entering the factorization formula of the vacuum-to- B-meson correction function for the construction of B → π from factors. Inspecting the next-to-leading-logarithmic sum rules for the form factors of B → Dℓν indicates that perturbative corrections to the hard-collinear functions are more profound than that for the hard functions, with the default theory inputs, in the physical kinematic region. We further compute the subleading power correction induced by the three-particle quark-gluon distribution amplitudes of the B-meson at tree level employing the background gluon field approach. The LCSR predictions for the semileptonic B → Dℓν form factors are then extrapolated to the entire kinematic region with the z-series parametrization. Phenomenological implications of our determinations for the form factors f BD +,0 ( q 2) are explored by investigating the (differential) branching fractions and the R( D) ratio of B → Dℓν and by determining the CKM matrix element |V cb | from the total decay rate of B → Dμν μ .

  5. Physics of Hard Sphere Experiment: Scattering, Rheology and Microscopy Study of Colloidal Particles

    NASA Technical Reports Server (NTRS)

    Cheng, Z.-D.; Zhu, J.; Phan, S.-E.; Russel, W. B.; Chaikin, P. M.; Meyer, W. V.

    2002-01-01

    The Physics of Hard Sphere Experiment has two incarnations: the first as a scattering and rheology experiment on STS-83 and STS-94 and the second as a microscopy experiment to be performed in the future on LMM on the space station. Here we describe some of the quantitative and qualitative results from previous flights on the dynamics of crystallization in microgravity and especially the observed interaction of growing crystallites in the coexistance regime. To clarify rheological measurements we also present ground based experiments on the low shear rate viscosity and diffusion coefficient of several hard sphere experiments at high volume fraction. We also show how these experiments will be performed with confocal microscopy and laser tweezers in our lab and as preparation for the phAse II experiments on LMM. One of the main aims of the microscopy study will be the control of colloidal samples using an array of applied fields with an eye toward colloidal architectures. Temperature gradients, electric field gradients, laser tweezers and a variety of switchable imposed surface patterns are used toward this control.

  6. Two-gluon and trigluon glueballs from dynamical holography QCD

    NASA Astrophysics Data System (ADS)

    Chen, Yi-dian; Huang, Mei

    2016-12-01

    We study the scalar, vector and tensor two-gluon and trigluon glueball spectra in the framework of the 5-dimension dynamical holographic QCD model, where the metric structure is deformed self-consistently by the dilaton field. For comparison, the glueball spectra are also calculated in the hard-wall and soft-wall holographic QCD models. In order to distinguish glueballs with even and odd parities, we introduce a positive and negative coupling between the dilaton field and glueballs, and for higher spin glueballs, we introduce a deformed 5-dimension mass. With this set-up, there is only one free parameter from the quadratic dilaton profile in the dynamical holographic QCD model, which is fixed by the scalar glueball spectra. It is found that the two-gluon glueball spectra produced in the dynamical holographic QCD model are in good agreement with lattice data. Among six trigluon glueballs, the produced masses for 1±- and 2-- are in good agreement with lattice data, and the produced masses for 0--, 0+- and 2+- are around 1.5 GeV lighter than lattice results. This result might indicate that the three trigluon glueballs of 0--, 0+- and 2+- are dominated by the three-gluon condensate contribution. Supported by the NSFC (11175251, 11621131001), DFG and NSFC (CRC 110), CAS Key Project KJCX2-EW-N01, K.C.Wong Education Foundation, and Youth Innovation Promotion Association of CAS

  7. Present constraints on the H-dibaryon at the physical point from Lattice QCD

    DOE PAGES

    Beane, S. R.; Chang, E.; Detmold, W.; ...

    2011-11-10

    The current constraints from Lattice QCD on the existence of the H-dibaryon are discussed. With only two significant Lattice QCD calculations of the H-dibaryon binding energy at approximately the same lattice spacing, the form of the chiral and continuum extrapolations to the physical point are not determined. In this brief report, an extrapolation that is quadratic in the pion mass, motivated by low-energy effective field theory, is considered. An extrapolation that is linear in the pion mass is also considered, a form that has no basis in the effective field theory, but is found to describe the light-quark mass dependencemore » observed in Lattice QCD calculations of the octet baryon masses. In both cases, the extrapolation to the physical pion mass allows for a bound H-dibaryon or a near-threshold scattering state.« less

  8. Analysis of nucleon electromagnetic form factors from light-front holographic QCD: The spacelike region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sufian, Raza Sabbir; de Teramond, Guy F.; Brodsky, Stanley J.

    We present a comprehensive analysis of the space-like nucleon electromagnetic form factors and their flavor decomposition within the framework of light-front holographic QCD. We show that the inclusion of the higher Fock componentsmore » $$|{qqqq\\bar{q}}$$ has a significant effect on the spin-flip elastic Pauli form factor and almost zero effect on the spin-conserving Dirac form factor. We present light-front holographic QCD results for the proton and neutron form factors at any momentum transfer range, including asymptotic predictions, and show that our results agree with the available experimental data with high accuracy. In order to correctly describe the Pauli form factor we need an admixture of a five quark state of about 30$$\\%$$ in the proton and about 40$$\\%$$ in the neutron. We also extract the nucleon charge and magnetic radii and perform a flavor decomposition of the nucleon electromagnetic form factors. The free parameters needed to describe the experimental nucleon form factors are very few: two parameters for the probabilities of higher Fock states for the spin-flip form factor and a phenomenological parameter $r$, required to account for possible SU(6) spin-flavor symmetry breaking effects in the neutron, whereas the Pauli form factors are normalized to the experimental values of the anomalous magnetic moments. As a result, the covariant spin structure for the Dirac and Pauli nucleon form factors prescribed by AdS$$_5$$ semiclassical gravity incorporates the correct twist scaling behavior from hard scattering and also leads to vector dominance at low energy.« less

  9. Analysis of nucleon electromagnetic form factors from light-front holographic QCD: The spacelike region

    DOE PAGES

    Sufian, Raza Sabbir; de Teramond, Guy F.; Brodsky, Stanley J.; ...

    2017-01-10

    We present a comprehensive analysis of the space-like nucleon electromagnetic form factors and their flavor decomposition within the framework of light-front holographic QCD. We show that the inclusion of the higher Fock componentsmore » $$|{qqqq\\bar{q}}$$ has a significant effect on the spin-flip elastic Pauli form factor and almost zero effect on the spin-conserving Dirac form factor. We present light-front holographic QCD results for the proton and neutron form factors at any momentum transfer range, including asymptotic predictions, and show that our results agree with the available experimental data with high accuracy. In order to correctly describe the Pauli form factor we need an admixture of a five quark state of about 30$$\\%$$ in the proton and about 40$$\\%$$ in the neutron. We also extract the nucleon charge and magnetic radii and perform a flavor decomposition of the nucleon electromagnetic form factors. The free parameters needed to describe the experimental nucleon form factors are very few: two parameters for the probabilities of higher Fock states for the spin-flip form factor and a phenomenological parameter $r$, required to account for possible SU(6) spin-flavor symmetry breaking effects in the neutron, whereas the Pauli form factors are normalized to the experimental values of the anomalous magnetic moments. As a result, the covariant spin structure for the Dirac and Pauli nucleon form factors prescribed by AdS$$_5$$ semiclassical gravity incorporates the correct twist scaling behavior from hard scattering and also leads to vector dominance at low energy.« less

  10. a Linux PC Cluster for Lattice QCD with Exact Chiral Symmetry

    NASA Astrophysics Data System (ADS)

    Chiu, Ting-Wai; Hsieh, Tung-Han; Huang, Chao-Hsi; Huang, Tsung-Ren

    A computational system for lattice QCD with overlap Dirac quarks is described. The platform is a home-made Linux PC cluster, built with off-the-shelf components. At present the system constitutes of 64 nodes, with each node consisting of one Pentium 4 processor (1.6/2.0/2.5 GHz), one Gbyte of PC800/1066 RDRAM, one 40/80/120 Gbyte hard disk, and a network card. The computationally intensive parts of our program are written in SSE2 codes. The speed of our system is estimated to be 70 Gflops, and its price/performance ratio is better than $1.0/Mflops for 64-bit (double precision) computations in quenched QCD. We discuss how to optimize its hardware and software for computing propagators of overlap Dirac quarks.

  11. Static quark-antiquark potential in the quark-gluon plasma from lattice QCD.

    PubMed

    Burnier, Yannis; Kaczmarek, Olaf; Rothkopf, Alexander

    2015-02-27

    We present a state-of-the-art determination of the complex valued static quark-antiquark potential at phenomenologically relevant temperatures around the deconfinement phase transition. Its values are obtained from nonperturbative lattice QCD simulations using spectral functions extracted via a novel Bayesian inference prescription. We find that the real part, both in a gluonic medium, as well as in realistic QCD with light u, d, and s quarks, lies close to the color singlet free energies in Coulomb gauge and shows Debye screening above the (pseudo)critical temperature T_{c}. The imaginary part is estimated in the gluonic medium, where we find that it is of the same order of magnitude as in hard-thermal loop resummed perturbation theory in the deconfined phase.

  12. First Monte Carlo Global Analysis of Nucleon Transversity with Lattice QCD Constraints

    NASA Astrophysics Data System (ADS)

    Lin, H.-W.; Melnitchouk, W.; Prokudin, A.; Sato, N.; Shows, H.; Jefferson Lab Angular Momentum JAM Collaboration

    2018-04-01

    We report on the first global QCD analysis of the quark transversity distributions in the nucleon from semi-inclusive deep-inelastic scattering (SIDIS), using a new Monte Carlo method based on nested sampling and constraints on the isovector tensor charge gT from lattice QCD. A simultaneous fit to the available SIDIS Collins asymmetry data is compatible with gT values extracted from a comprehensive reanalysis of existing lattice simulations, in contrast to previous analyses, which found significantly smaller gT values. The contributions to the nucleon tensor charge from u and d quarks are found to be δ u =0.3 (2 ) and δ d =-0.7 (2 ) at a scale Q2=2 GeV2.

  13. QCD In Extreme Conditions

    NASA Astrophysics Data System (ADS)

    Wilczek, Frank

    Introduction Symmetry and the Phenomena of QCD Apparent and Actual Symmetries Asymptotic Freedom Confinement Chiral Symmetry Breaking Chiral Anomalies and Instantons High Temperature QCD: Asymptotic Properties Significance of High Temperature QCD Numerical Indications for Quasi-Free Behavior Ideas About Quark-Gluon Plasma Screening Versus Confinement Models of Chiral Symmetry Breaking More Refined Numerical Experiments High-Temperature QCD: Phase Transitions Yoga of Phase Transitions and Order Parameters Application to Glue Theories Application to Chiral Transitions Close Up on Two Flavors A Genuine Critical Point! (?) High-Density QCD: Methods Hopes, Doubts, and Fruition Another Renormalization Group Pairing Theory Taming the Magnetic Singularity High-Density QCD: Color-Flavor Locking and Quark-Hadron Continuity Gauge Symmetry (Non)Breaking Symmetry Accounting Elementary Excitations A Modified Photon Quark-Hadron Continuity Remembrance of Things Past More Quarks Fewer Quarks and Reality

  14. Fits of weak annihilation and hard spectator scattering corrections in B u,d \\wideoverrightarrow VV decays

    NASA Astrophysics Data System (ADS)

    Chang, Qin; Li, Xiao-Nan; Sun, Jun-Feng; Yang, Yue-Ling

    2016-10-01

    In this paper, the contributions of weak annihilation and hard spectator scattering in B\\to ρ {K}* , {K}* {\\bar{K}}* , φ {K}* , ρ ρ and φ φ decays are investigated within the framework of quantum chromodynamics factorization. Using the experimental data available, we perform {χ }2 analyses of end-point parameters in four cases based on the topology-dependent and polarization-dependent parameterization schemes. The fitted results indicate that: (i) in the topology-dependent scheme, the relation ({ρ }Ai,{φ }Ai)\

  15. Initial-state colour dipole emission associated with QCD Pomeron exchange

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Peschanski, R.

    1995-02-01

    The initial-state radiation of soft colour dipoles produced together with a single QCD Pomeron exchange (BFKL) in onium-onium scattering is calculated in the framework of Mueller's approach. The resulting dipole production grows with increasing energy and reveals an unexpected feature of a power-law tail at appreciably large transverse distances from the collision axis, this phenomenon being related to the scale-invariant structure of dipole-dipole correlations.

  16. Lattice QCD in rotating frames.

    PubMed

    Yamamoto, Arata; Hirono, Yuji

    2013-08-23

    We formulate lattice QCD in rotating frames to study the physics of QCD matter under rotation. We construct the lattice QCD action with the rotational metric and apply it to the Monte Carlo simulation. As the first application, we calculate the angular momenta of gluons and quarks in the rotating QCD vacuum. This new framework is useful to analyze various rotation-related phenomena in QCD.

  17. Role of QCD monopoles in jet quenching

    NASA Astrophysics Data System (ADS)

    Ramamurti, Adith; Shuryak, Edward

    2018-01-01

    QCD monopoles are magnetically charged quasiparticles whose Bose-Einstein condensation (BEC) at T QCD proposes that scattering on the noncondensed component of the monopole ensemble at T >Tc is responsible for the unusual kinetic properties of quark-gluon plasma. In this paper, we study the contribution of the monopoles to jet quenching phenomenon, using the Baier-Dokshitzer-Mueller-Peigne-Schiff framework and hydrodynamic backgrounds. In the lowest order for cross sections, we calculate the nuclear modification factor, RAA, and azimuthal anisotropy, v2, of jets, as well as the dijet asymmetry, Aj, and compare those to the available data. We find relatively good agreement with experiment when using realistic hydrodynamic backgrounds. In addition, we find that event-by-event fluctuations are not necessary to reproduce RAA and v2 data, but play a role in Aj. Since the monopole-induced effects are maximal at T ≈Tc, we predict that their role should be significantly larger, relative to quarks and gluons, at lower RHIC energies.

  18. Energy flow and charged particle spectra in deep inelastic scattering at HERA

    NASA Astrophysics Data System (ADS)

    Abt, I.; Ahmed, T.; Andreev, V.; Aid, S.; Andrieu, B.; Appuhn, R.-D.; Arpagaus, M.; Babaev, A.; Bärwolff, H.; Bán, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Bassler, U.; Beck, H. P.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bergstein, H.; Bernardi, G.; Bernet, R.; Bertrand-Coremans, G.; Besançon, M.; Biddulph, P.; Binder, E.; Bizot, J. C.; Blobel, V.; Borras, K.; Bosetti, P. C.; Boudry, V.; Bourdarios, C.; Braemer, A.; Brasse, F.; Braun, U.; Braunschweig, W.; Brisson, V.; Bruncko, D.; Büngener, L.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Buschhorn, G.; Campbell, A. J.; Carli, T.; Charles, F.; Chyla, J.; Clarke, D.; Clegg, A. B.; Colombo, M.; Coughlan, J. A.; Courau, A.; Coutures, Ch.; Cozzika, G.; Criegee, L.; Cvach, J.; Dagoret, S.; Dainton, J. B.; Danilov, M.; Dann, A. W. E.; Dau, W. D.; David, M.; Deffur, E.; Delcourt, B.; Del Buono, L.; Devel, M.; de Roeck, A.; di Nezza, P.; Dingus, P.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Drescher, A.; Duboc, J.; Düllmann, D.; Dünger, O.; Duhm, H.; Ebbinghaus, R.; Eberle, M.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Ehrlichmann, H.; Eichenberger, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellis, N. N.; Ellison, R. J.; Elsen, E.; Erdmann, M.; Evrard, E.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Fensome, I. F.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Flauger, W.; Fleischer, M.; Flieser, M.; Flügge, G.; Fomenko, A.; Fominykh, B.; Forbush, M.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Fuhrmann, P.; Gabathuler, E.; Gamerdinger, K.; Garvey, J.; Gayler, J.; Gebauer, M.; Gellrich, A.; Gennis, M.; Genzel, H.; Gerhards, R.; Godfrey, L.; Goerlach, U.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goldner, D.; Goodall, A. M.; Gorelov, I.; Goritchev, P.; Grab, C.; Grässler, H.; Grässler, R.; Greenshaw, T.; Greif, H.; Grindhammer, G.; Gruber, A.; Gruber, C.; Haack, J.; Haidt, D.; Hajduk, L.; Hamon, O.; Hampel, M.; Hanlon, E. M.; Hapke, M.; Harjes, J.; Haydar, R.; Haynes, W. J.; Heatherington, J.; Hedberg, V.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herma, R.; Herynek, I.; Hildesheim, W.; Hill, P.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Höppner, M.; Huet, Ph.; Hufnagel, H.; Huot, N.; Ibbotson, M.; Itterbeck, H.; Jabiol, M.-A.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Jansen, T.; Jönsson, L.; Johannsen, K.; Johnson, D. P.; Johnson, L.; Jung, H.; Kalmus, P. I. P.; Kant, D.; Kazarian, S.; Kaschowitz, R.; Kasselmann, P.; Kathage, U.; Kaufmann, H. H.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Ko, W.; Köhler, T.; Kolanoski, H.; Kole, F.; Kolya, S. D.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krasny, M. W.; Krücker, D.; Krüger, U.; Kubenka, J. P.; Küster, H.; Kuhlen, M.; Kurča, T.; Kurzhöfer, J.; Kuznik, B.; Lacour, D.; Lamarche, F.; Lander, R.; Landon, M. P. J.; Lange, W.; Langkau, R.; Lanius, P.; Laporte, J. F.; Lebedev, A.; Leuschner, A.; Leverenz, C.; Levonian, S.; Lewin, D.; Ley, Ch.; Lindner, A.; Lindström, G.; Linsel, F.; Lipinski, J.; Loch, P.; Lohmander, H.; Lopez, G. C.; Lüers, D.; Lüke, D.; Magnussen, N.; Malinovski, E.; Mani, S.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Masson, S.; Mavroidis, A.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Mercer, D.; Merz, T.; Meyer, C. A.; Meyer, H.; Meyer, J.; Mikocki, S.; Monnier, E.; Moreau, F.; Moreels, J.; Morris, J. V.; Müller, K.; Murín, P.; Murray, S. A.; Nagovizin, V.; Naroska, B.; Naumann, Th.; Newman, P. R.; Newton, D.; Neyret, D.; Nguyen, H. K.; Niebergall, F.; Niebuhr, C.; Nisius, R.; Nowak, G.; Noyes, G. W.; Nyberg, M.; Oberlack, H.; Obrock, U.; Olsson, J. E.; Orenstein, S.; Ould-Saada, F.; Pascaud, C.; Patel, G. D.; Peppel, E.; Peters, S.; Phillips, H. T.; Phillips, J. P.; Pichler, Ch.; Pilgram, W.; Pitzl, D.; Prell, S.; Prosi, R.; Rädel, G.; Raupach, F.; Rauschnabel, K.; Reimer, P.; Reinshagen, S.; Ribarics, P.; Riech, V.; Riedlberger, J.; Riess, S.; Rietz, M.; Robertson, S. M.; Robmann, P.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Royon, C.; Rudowicz, M.; Ruffer, M.; Rusakov, S.; Rybicki, K.; Sahlmann, N.; Sanchez, E.; Sankey, D. P. C.; Savitsky, M.; Schacht, P.; Schleper, P.; von Schlippe, W.; Schmidt, C.; Schmidt, D.; Schmitz, W.; Schöning, A.; Schröder, V.; Schuhmann, E.; Schulz, M.; Schwab, B.; Schwind, A.; Scobel, W.; Seehausen, U.; Sell, R.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shooshtari, H.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Smith, J. R.; Soloviev, Y.; Spitzer, H.; Steenbock, M.; Steffen, P.; Steinberg, R.; Stella, B.; Stephens, K.; Stier, J.; Stösslein, U.; Strachota, J.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Taylor, R. E.; Tchernyshov, V.; Thiebaux, C.; Thompson, G.; Tichomirov, I.; Truöl, P.; Turnau, J.; Tutas, J.; Urban, L.; Usik, A.; Valkar, S.; Valkarova, A.; Vallée, C.; van Esch, P.; Vartapetian, A.; Vazdik, Y.; Vecko, M.; Verrecchia, P.; Vick, R.; Villet, G.; Vogel, E.; Wacker, K.; Walker, I. W.; Walther, A.; Weber, G.; Wegener, D.; Wegener, A.; Wellisch, H. P.; West, L. R.; Willard, S.; Winde, M.; Winter, G.-G.; Wolff, Th.; Womersley, L. A.; Wright, A. E.; Wulff, N.; Yiou, T. P.; Žáček, J.; Zeitnitz, C.; Ziaeepour, H.; Zimmer, M.; Zimmermann, W.; Zomer, F.

    1994-09-01

    Global properties of the hadronic final state in deep inelastic scattering events at HERA are investigated. The data are corrected for detector effects and are compared directly with QCD phenomenology. Energy flows in both the laboratory frame and the hadronic centre of mass system and energy-energy correlations in the laboratory frame are presented. Comparing various QCD models, the colour dipole model provides the only satisfactory description of the data. In the hadronic centre of mass system the momentum components of charged particles longitudinal and transverse to the virtual boson direction are measured and compared with lower energy lepton-nucleon scattering data as well as with e + e - dat from LEP.

  19. Nucleon resonance structure in the finite volume of lattice QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Jia -Jun; Kamano, H.; Lee, T. -S. H.

    An approach for relating the nucleon resonances extracted from πN reaction data to lattice QCD calculations has been developed by using the finite-volume Hamiltonian method. Within models of πN reactions, bare states are introduced to parametrize the intrinsic excitations of the nucleon. We show that the resonance can be related to the probability P N*(E) of finding the bare state, N*, in the πN scattering states in infinite volume. We further demonstrate that the probability P V N*(E) of finding the same bare states in the eigenfunctions of the underlying Hamiltonian in finite volume approaches P N*(E) as the volumemore » increases. Our findings suggest that the comparison of P N*(E) and P V N*(E) can be used to examine whether the nucleon resonances extracted from the πN reaction data within the dynamical models are consistent with lattice QCD calculation. We also discuss the measurement of P V N*(E) directly from lattice QCD. Furthermore, the practical differences between our approach and the approach using the Lüscher formalism to relate LQCD calculations to the nucleon resonance poles embedded in the data are also discussed.« less

  20. Nucleon resonance structure in the finite volume of lattice QCD

    DOE PAGES

    Wu, Jia -Jun; Kamano, H.; Lee, T. -S. H.; ...

    2017-06-19

    An approach for relating the nucleon resonances extracted from πN reaction data to lattice QCD calculations has been developed by using the finite-volume Hamiltonian method. Within models of πN reactions, bare states are introduced to parametrize the intrinsic excitations of the nucleon. We show that the resonance can be related to the probability P N*(E) of finding the bare state, N*, in the πN scattering states in infinite volume. We further demonstrate that the probability P V N*(E) of finding the same bare states in the eigenfunctions of the underlying Hamiltonian in finite volume approaches P N*(E) as the volumemore » increases. Our findings suggest that the comparison of P N*(E) and P V N*(E) can be used to examine whether the nucleon resonances extracted from the πN reaction data within the dynamical models are consistent with lattice QCD calculation. We also discuss the measurement of P V N*(E) directly from lattice QCD. Furthermore, the practical differences between our approach and the approach using the Lüscher formalism to relate LQCD calculations to the nucleon resonance poles embedded in the data are also discussed.« less

  1. Lattice QCD studies on baryon interactions in the strangeness -2 sector with physical quark masses

    NASA Astrophysics Data System (ADS)

    Sasaki, Kenji; Aoki, Sinya; Doi, Takumi; Gongyo, Shinya; Hatsuda, Tetsuo; Ikeda, Yoichi; Inoue, Takashi; Iritani, Takumi; Ishii, Noriyoshi; Miyamoto, Takaya

    2018-03-01

    We investigate baryon-baryon (BB) interactions in the strangeness S = -2 sector via the coupled-channel HAL QCD method which enables us to extract the scattering observables from Nambu-Bethe-Salpeter (NBS) wave function on the lattice. The simulations are performed with (almost) physical quark masses (mπ = 146MeV) and a huge lattice volume of La = 8.1fm. We discuss the fate of H-dibaryon state through the ΛΛ and NΞ coupled-channel scatterings

  2. First Monte Carlo Global Analysis of Nucleon Transversity with Lattice QCD Constraints

    DOE PAGES

    Lin, Huey-Wen; Melnitchouk, Wally; Prokudin, Alexei; ...

    2018-04-11

    We report on the first global QCD analysis of the quark transversity distributions in the nucleon from semi-inclusive deep-inelastic scattering (SIDIS), using a new Monte Carlo method based on nested sampling and constraints on the isovector tensor chargemore » $$g_T$$ from lattice QCD. A simultaneous fit to the available SIDIS Collins asymmetry data is compatible with $$g_T$$ values extracted from a comprehensive reanalysis of existing lattice simulations, in contrast to previous analyses, which found significantly smaller $$g_T$$ values. The contributions to the nucleon tensor charge from $u$ and $d$ quarks are found to be $$\\delta u = 0.3(2)$$ and $$\\delta d = -0.7(2)$$ at a scale $Q^2 = 2$ GeV$^2$.« less

  3. First Monte Carlo Global Analysis of Nucleon Transversity with Lattice QCD Constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Huey-Wen; Melnitchouk, Wally; Prokudin, Alexei

    We report on the first global QCD analysis of the quark transversity distributions in the nucleon from semi-inclusive deep-inelastic scattering (SIDIS), using a new Monte Carlo method based on nested sampling and constraints on the isovector tensor chargemore » $$g_T$$ from lattice QCD. A simultaneous fit to the available SIDIS Collins asymmetry data is compatible with $$g_T$$ values extracted from a comprehensive reanalysis of existing lattice simulations, in contrast to previous analyses, which found significantly smaller $$g_T$$ values. The contributions to the nucleon tensor charge from $u$ and $d$ quarks are found to be $$\\delta u = 0.3(2)$$ and $$\\delta d = -0.7(2)$$ at a scale $Q^2 = 2$ GeV$^2$.« less

  4. Isolating the Λ(1405) in lattice QCD.

    PubMed

    Menadue, Benjamin J; Kamleh, Waseem; Leinweber, Derek B; Mahbub, M Selim

    2012-03-16

    The odd-parity ground state of the Λ baryon lies surprisingly low in mass. At 1405 MeV, it lies lower than the odd-parity ground-state nucleon, even though it has a valence strange quark. Using the PACS-CS (2+1)-flavor full-QCD ensembles, we employ a variational analysis using source and sink smearing to isolate this elusive state. For the first time we reproduce the correct level ordering with respect to nearby scattering thresholds. With a partially quenched strange quark to produce the appropriate kaon mass, we find a low-lying, odd-parity mass trend consistent with the experimental value.

  5. Delta-Isobar Production in the Hard Photodisintegration of a Deuteron

    NASA Astrophysics Data System (ADS)

    Granados, Carlos; Sargsian, Misak

    2010-02-01

    Hard photodisintegration of the deuteron in delta-isobar production channels is proposed as a useful process in identifying the quark structure of hadrons and of hadronic interactions at large momentum and energy transfer. The reactions are modeled using the hard re scattering model, HRM, following previous works on hard breakup of a nucleon nucleon (NN) system in light nuclei. Here,quantitative predictions through the HRM require the numerical input of fits of experimental NN hard elastic scattering cross sections. Because of the lack of data in hard NN scattering into δ-isobar channels, the cross section of the corresponding photodisintegration processes cannot be predicted in the same way. Instead, the corresponding NN scattering process is modeled through the quark interchange mechanism, QIM, leaving an unknown normalization parameter. The observables of interest are ratios of differential cross sections of δ-isobar production channels to NN breakup in deuteron photodisintegration. Both entries in these ratios are derived through the HRM and QIM so that normalization parameters cancel out and numerical predictions can be obtained. )

  6. QCD for Postgraduates (1/5)

    ScienceCinema

    Zanderighi, Giulia

    2018-04-26

    Modern QCD - Lecture 1 Starting from the QCD Lagrangian we will revisit some basic QCD concepts and derive fundamental properties like gauge invariance and isospin symmetry and will discuss the Feynman rules of the theory. We will then focus on the gauge group of QCD and derive the Casimirs CF and CA and some useful color identities.

  7. The Conformal Template and New Perspectives for Quantum Chromodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodsky, Stanley J.; /SLAC

    2007-03-06

    Conformal symmetry provides a systematic approximation to QCD in both its perturbative and nonperturbative domains. One can use the AdS/CFT correspondence between Anti-de Sitter space and conformal gauge theories to obtain an analytically tractable approximation to QCD in the regime where the QCD coupling is large and constant. For example, there is an exact correspondence between the fifth-dimensional coordinate of AdS space and a specific impact variable which measures the separation of the quark constituents within the hadron in ordinary space-time. This connection allows one to compute the analytic form of the frame-independent light-front wavefunctions of mesons and baryons, themore » fundamental entities which encode hadron properties and allow the computation of exclusive scattering amplitudes. One can also use conformal symmetry as a template for perturbative QCD predictions where the effects of the nonzero beta function can be systematically included in the scale of the QCD coupling. This leads to fixing of the renormalization scale and commensurate scale relations which relate observables without scale or scheme ambiguity. The results are consistent with the renormalization group and the analytic connection of QCD to Abelian theory at N{sub C} {yields} 0. I also discuss a number of novel phenomenological features of QCD. Initial- and .nal-state interactions from gluon-exchange, normally neglected in the parton model, have a profound effect in QCD hard-scattering reactions, leading to leading-twist single-spin asymmetries, diffractive deep inelastic scattering, di.ractive hard hadronic reactions, the breakdown of the Lam Tung relation in Drell-Yan reactions, and nuclear shadowing and non-universal antishadowing--leading-twist physics not incorporated in the light-front wavefunctions of the target computed in isolation. I also discuss tests of hidden color in nuclear wavefunctions, the use of diffraction to materialize the Fock states of a hadronic

  8. Hard two-photon contribution to elastic lepton-proton scattering determined by the OLYMPUS experiment

    NASA Astrophysics Data System (ADS)

    Hasell, D. K.; OLYMPUS Collaboration

    2018-02-01

    The OLYMPUS collaboration has recently made a precise measurement of the positron-proton to electron-proton elastic scattering cross section ratio, R 2γ, over a wide range of the virtual photon polarization, 0.456 < ɛ < 0.978. This provides a direct measure of hard two-photon exchange in elastic lepton-proton scattering widely thought to explain the discrepancy observed between unpolarized and polarized measurements of the proton form factor ratio, {μ }p{G}Ep/{G}Mp. The OLYMPUS results are small, within 1% on unity, over the range of momentum transfers measured and significantly lower than theoretical calculations that can explain part of the observed discrepancy in terms of two-photon exchange at higher momentum transfers. However, the results are in reasonable agreement with predictions based on phenomenological fits to the available form factor data. The motivation for measuring R 2γ will be presented followed by a description of the OLYMPUS experiment. The importance of radiative corrections in the analysis will be shown also. Then we will present the OLYMPUS results and compare with results from two similar experiments and theoretical calculations.

  9. Polarization observables in hard rescattering mechanism of deuteron photodisintegration

    NASA Astrophysics Data System (ADS)

    Sargsian, Misak M.

    2004-05-01

    Polarization properties of high energy photodisintegration of the deuteron are studied within the framework of the hard rescattering mechanism (HRM). In HRM, a quark of one nucleon knocked-out by the incoming photon rescatters with a quark of the other nucleon leading to the production of two nucleons with high relative momentum. Summation of all relevant quark rescattering amplitudes allows us to express the scattering amplitude of the reaction through the convolution of a hard photon-quark interaction vertex, the large angle p-n scattering amplitude and the low momentum deuteron wave function. Within HRM, it is demonstrated that the polarization observables in hard photodisintegration of the deuteron can be expressed through the five helicity amplitudes of NN scattering at high momentum transfer. At 90° CM scattering HRM predicts the dominance of the isovector channel of hard pn rescattering, and it explains the observed smallness of induced, Py and transfered, Cx polarizations without invoking the argument of helicity conservation. Namely, HRM predicts that Py and Cx are proportional to the φ5 helicity amplitude which vanishes at θcm=90° due to symmetry reasons. HRM predicts also a nonzero value for Cz in the helicity-conserving regime and a positive Σ asymmetry which is related to the dominance of the isovector channel in the hard reinteraction. We extend our calculations to the region where large polarization effects are observed in pp scattering as well as give predictions for angular dependences.

  10. First Monte Carlo Global Analysis of Nucleon Transversity with Lattice QCD Constraints.

    PubMed

    Lin, H-W; Melnitchouk, W; Prokudin, A; Sato, N; Shows, H

    2018-04-13

    We report on the first global QCD analysis of the quark transversity distributions in the nucleon from semi-inclusive deep-inelastic scattering (SIDIS), using a new Monte Carlo method based on nested sampling and constraints on the isovector tensor charge g_{T} from lattice QCD. A simultaneous fit to the available SIDIS Collins asymmetry data is compatible with g_{T} values extracted from a comprehensive reanalysis of existing lattice simulations, in contrast to previous analyses, which found significantly smaller g_{T} values. The contributions to the nucleon tensor charge from u and d quarks are found to be δu=0.3(2) and δd=-0.7(2) at a scale Q^{2}=2  GeV^{2}.

  11. The QCD running coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deur, Alexandre; Brodsky, Stanley J.; de Téramond, Guy F.

    Here, we review present knowledge onmore » $$\\alpha_{s}$$, the Quantum Chromodynamics (QCD) running coupling. The dependence of $$\\alpha_s(Q^2)$$ on momentum transfer $Q$ encodes the underlying dynamics of hadron physics --from color confinement in the infrared domain to asymptotic freedom at short distances. We will survey our present theoretical and empirical knowledge of $$\\alpha_s(Q^2)$$, including constraints at high $Q^2$ predicted by perturbative QCD, and constraints at small $Q^2$ based on models of nonperturbative dynamics. In the first, introductory, part of this review, we explain the phenomenological meaning of the coupling, the reason for its running, and the challenges facing a complete understanding of its analytic behavior in the infrared domain. In the second, more technical, part of the review, we discuss $$\\alpha_s(Q^2)$$ in the high momentum transfer domain of QCD. We review how $$\\alpha_s$$ is defined, including its renormalization scheme dependence, the definition of its renormalization scale, the utility of effective charges, as well as `` Commensurate Scale Relations" which connect the various definitions of the QCD coupling without renormalization scale ambiguity. We also report recent important experimental measurements and advanced theoretical analyses which have led to precise QCD predictions at high energy. As an example of an important optimization procedure, we discuss the ``Principle of Maximum Conformality" which enhances QCD's predictive power by removing the dependence of the predictions for physical observables on the choice of the gauge and renormalization scheme. In last part of the review, we discuss $$\\alpha_s(Q^2)$$ in the low momentum transfer domain, where there has been no consensus on how to define $$\\alpha_s(Q^2)$$ or its analytic behavior. We will discuss the various approaches used for low energy calculations. Among them, we will discuss the light-front holographic approach to QCD in the strongly coupled

  12. The QCD running coupling

    DOE PAGES

    Deur, Alexandre; Brodsky, Stanley J.; de Téramond, Guy F.

    2016-05-09

    Here, we review present knowledge onmore » $$\\alpha_{s}$$, the Quantum Chromodynamics (QCD) running coupling. The dependence of $$\\alpha_s(Q^2)$$ on momentum transfer $Q$ encodes the underlying dynamics of hadron physics --from color confinement in the infrared domain to asymptotic freedom at short distances. We will survey our present theoretical and empirical knowledge of $$\\alpha_s(Q^2)$$, including constraints at high $Q^2$ predicted by perturbative QCD, and constraints at small $Q^2$ based on models of nonperturbative dynamics. In the first, introductory, part of this review, we explain the phenomenological meaning of the coupling, the reason for its running, and the challenges facing a complete understanding of its analytic behavior in the infrared domain. In the second, more technical, part of the review, we discuss $$\\alpha_s(Q^2)$$ in the high momentum transfer domain of QCD. We review how $$\\alpha_s$$ is defined, including its renormalization scheme dependence, the definition of its renormalization scale, the utility of effective charges, as well as `` Commensurate Scale Relations" which connect the various definitions of the QCD coupling without renormalization scale ambiguity. We also report recent important experimental measurements and advanced theoretical analyses which have led to precise QCD predictions at high energy. As an example of an important optimization procedure, we discuss the ``Principle of Maximum Conformality" which enhances QCD's predictive power by removing the dependence of the predictions for physical observables on the choice of the gauge and renormalization scheme. In last part of the review, we discuss $$\\alpha_s(Q^2)$$ in the low momentum transfer domain, where there has been no consensus on how to define $$\\alpha_s(Q^2)$$ or its analytic behavior. We will discuss the various approaches used for low energy calculations. Among them, we will discuss the light-front holographic approach to QCD in the strongly coupled

  13. The QCD running coupling

    NASA Astrophysics Data System (ADS)

    Deur, Alexandre; Brodsky, Stanley J.; de Téramond, Guy F.

    2016-09-01

    We review the present theoretical and empirical knowledge for αs, the fundamental coupling underlying the interactions of quarks and gluons in Quantum Chromodynamics (QCD). The dependence of αs(Q2) on momentum transfer Q encodes the underlying dynamics of hadron physics-from color confinement in the infrared domain to asymptotic freedom at short distances. We review constraints on αs(Q2) at high Q2, as predicted by perturbative QCD, and its analytic behavior at small Q2, based on models of nonperturbative dynamics. In the introductory part of this review, we explain the phenomenological meaning of the coupling, the reason for its running, and the challenges facing a complete understanding of its analytic behavior in the infrared domain. In the second, more technical, part of the review, we discuss the behavior of αs(Q2) in the high momentum transfer domain of QCD. We review how αs is defined, including its renormalization scheme dependence, the definition of its renormalization scale, the utility of effective charges, as well as "Commensurate Scale Relations" which connect the various definitions of the QCD coupling without renormalization-scale ambiguity. We also report recent significant measurements and advanced theoretical analyses which have led to precise QCD predictions at high energy. As an example of an important optimization procedure, we discuss the "Principle of Maximum Conformality", which enhances QCD's predictive power by removing the dependence of the predictions for physical observables on the choice of theoretical conventions such as the renormalization scheme. In the last part of the review, we discuss the challenge of understanding the analytic behavior αs(Q2) in the low momentum transfer domain. We survey various theoretical models for the nonperturbative strongly coupled regime, such as the light-front holographic approach to QCD. This new framework predicts the form of the quark-confinement potential underlying hadron spectroscopy and

  14. Light meson form factors at high Q2 from lattice QCD

    NASA Astrophysics Data System (ADS)

    Koponen, Jonna; Zimermmane-Santos, André; Davies, Christine; Lepage, G. Peter; Lytle, Andrew

    2018-03-01

    Measurements and theoretical calculations of meson form factors are essential for our understanding of internal hadron structure and QCD, the dynamics that bind the quarks in hadrons. The pion electromagnetic form factor has been measured at small space-like momentum transfer |q2| < 0.3 GeV2 by pion scattering from atomic electrons and at values up to 2.5 GeV2 by scattering electrons from the pion cloud around a proton. On the other hand, in the limit of very large (or infinite) Q2 = -q2, perturbation theory is applicable. This leaves a gap in the intermediate Q2 where the form factors are not known. As a part of their 12 GeV upgrade Jefferson Lab will measure pion and kaon form factors in this intermediate region, up to Q2 of 6 GeV2. This is then an ideal opportunity for lattice QCD to make an accurate prediction ahead of the experimental results. Lattice QCD provides a from-first-principles approach to calculate form factors, and the challenge here is to control the statistical and systematic uncertainties as errors grow when going to higher Q2 values. Here we report on a calculation that tests the method using an ηs meson, a 'heavy pion' made of strange quarks, and also present preliminary results for kaon and pion form factors. We use the nf = 2 + 1 + 1 ensembles made by the MILC collaboration and Highly Improved Staggered Quarks, which allows us to obtain high statistics. The HISQ action is also designed to have small dicretisation errors. Using several light quark masses and lattice spacings allows us to control the chiral and continuum extrapolation and keep systematic errors in check. Warning, no authors found for 2018EPJWC.17506016.

  15. Examination of the relevance of hydrodynamics for data measured at the BNL relativistic heavy ion collider

    NASA Astrophysics Data System (ADS)

    Trainor, Thomas A.

    2010-08-01

    Hydrodynamic (hydro) models applied to heavy ion data from the relativistic heavy ion collider (RHIC) suggest that a dense QCD medium nearly opaque to partons—a strongly coupled quark-gluon plasma—is formed in more-central Au-Au collisions and may have a small viscosity ('perfect liquid'). Claimed evidence for radial and elliptic flows and possible coalescence of 'constituent quarks' seems to support the conclusion. But other measurements provide contradictory evidence. Unbiased angular correlations indicate that most back-to-back jets from initial-state scattered partons with energies as low as 3 GeV survive as 'minijet' hadron correlations even in central Au-Au collisions, suggesting near transparency. Two-component analysis of single-particle spectra reveals a spectrum hard component (parton fragment distribution) which can be mistaken for 'radial flow' in some forms of analysis. Based on recent results, reinterpretation of 'elliptic flow' as a QCD quadrupole scattering process including fragmentation may be possible. In this paper we review conventional analysis methods in the context of two paradigms: a hydrodynamics/hard-probes paradigm and a quadrupole/minijets paradigm. Re-examination of fiducial data suggests that hydrodynamics may not be relevant to RHIC collisions. Collision evolution may be dominated by QCD scattering and fragmentation, albeit strongly modified in more-central A-A collisions.

  16. QCD Evolution 2016

    NASA Astrophysics Data System (ADS)

    The QCD Evolution 2016 workshop was held at the National Institute for Subatomic Physics (Nikhef) in Amsterdam, May 30 - June 3, 2016. The workshop is a continuation of a series of workshops held during five consecutive years, in 2011, 2012, 2013, 2015 at Jefferson Lab, and in 2014 in Santa Fe, NM. With the rapid developments in our understanding of the evolution of parton distributions including low-x, TMDs, GPDs, higher-twist correlation functions, and the associated progress in perturbative QCD, lattice QCD and effective field theory techniques, we look forward to yet another exciting meeting in 2016. The program of QCD Evolution 2016 will pay special attention to the topics of importance for ongoing experiments, in the full range from Jefferson Lab energies to LHC energies or future experiments such as a future Electron Ion Collider, recently recommended as a highest priority in U.S. Department of Energy's 2015 Long Range Plan for Nuclear Science.

  17. Quark-mass dependence of the H dibaryon in Λ Λ scattering

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Yasuhiro; Hyodo, Tetsuo

    2016-12-01

    We study the quark mass dependence of the H dibaryon in the strangeness S =-2 baryon-baryon scattering. A low-energy effective field theory is used to describe the coupled-channel scattering, in which the quark mass dependence is incorporated so as to reproduce the lattice QCD data by the HAL QCD collaboration in the SU(3) limit. We point out the existence of the Castillejo-Dalitz-Dyson pole in the Λ Λ scattering amplitude below the threshold in the SU(3) limit, which may cause the Ramsauer-Townsend effect near the N Ξ threshold at the physical point. The H dibaryon is unbound at the physical point, and a resonance appears just below the N Ξ threshold. As a consequence of the coupled-channel dynamics, the pole associated with the resonance is not continuously connected to the bound state in the SU(3) limit. Through the extrapolation in quark masses, we show that the unitary limit of the Λ Λ scattering is achieved between the physical point and the SU(3) limit. We discuss the possible realization of the "H matter" in the unphysical quark mass region.

  18. QCD for Postgraduates (2/5)

    ScienceCinema

    Zanderighi, Giulia

    2018-05-21

    Modern QCD - Lecture 2 We will start discussing the matter content of the theory and revisit the experimental measurements that led to the discovery of quarks. We will then consider a classic QCD observable, the R-ratio, and use it to illustrate the appearance of UV divergences and the need to renormalize the coupling constant of QCD. We will then discuss asymptotic freedom and confinement. Finally, we will examine a case where soft and collinear infrared divergences appear, will discuss the soft approximation in QCD and will introduce the concept of infrared safe jets.

  19. Renormalization of Extended QCD2

    NASA Astrophysics Data System (ADS)

    Fukaya, Hidenori; Yamamura, Ryo

    2015-10-01

    Extended QCD (XQCD), proposed by Kaplan [D. B. Kaplan, arXiv:1306.5818], is an interesting reformulation of QCD with additional bosonic auxiliary fields. While its partition function is kept exactly the same as that of original QCD, XQCD naturally contains properties of low-energy hadronic models. We analyze the renormalization group flow of 2D (X)QCD, which is solvable in the limit of a large number of colors N_c, to understand what kind of roles the auxiliary degrees of freedom play and how the hadronic picture emerges in the low-energy region.

  20. Hard-thermal-loop perturbation theory to two loops

    NASA Astrophysics Data System (ADS)

    Andersen, Jens O.; Braaten, Eric; Petitgirard, Emmanuel; Strickland, Michael

    2002-10-01

    We calculate the pressure for pure-glue QCD at high temperature to two-loop order using hard-thermal-loop (HTL) perturbation theory. At this order, all the ultraviolet divergences can be absorbed into renormalizations of the vacuum energy density and the HTL mass parameter. We determine the HTL mass parameter by a variational prescription. The resulting predictions for the pressure fail to agree with results from lattice gauge theory at temperatures for which they are available.

  1. FOREWORD: Extreme QCD 2012 (xQCD)

    NASA Astrophysics Data System (ADS)

    Alexandru, Andrei; Bazavov, Alexei; Liu, Keh-Fei

    2013-04-01

    The Extreme QCD 2012 conference, held at the George Washington University in August 2012, celebrated the 10th event in the series. It has been held annually since 2003 at different locations: San Carlos (2011), Bad Honnef (2010), Seoul (2009), Raleigh (2008), Rome (2007), Brookhaven (2006), Swansea (2005), Argonne (2004), and Nara (2003). As usual, it was a very productive and inspiring meeting that brought together experts in the field of finite-temperature QCD, both theoretical and experimental. On the experimental side, we heard about recent results from major experiments, such as PHENIX and STAR at Brookhaven National Laboratory, ALICE and CMS at CERN, and also about the constraints on the QCD phase diagram coming from astronomical observations of one of the largest laboratories one can imagine, neutron stars. The theoretical contributions covered a wide range of topics, including QCD thermodynamics at zero and finite chemical potential, new ideas to overcome the sign problem in the latter case, fluctuations of conserved charges and how they allow one to connect calculations in lattice QCD with experimentally measured quantities, finite-temperature behavior of theories with many flavors of fermions, properties and the fate of heavy quarkonium states in the quark-gluon plasma, and many others. The participants took the time to write up and revise their contributions and submit them for publication in these proceedings. Thanks to their efforts, we have now a good record of the ideas presented and discussed during the workshop. We hope that this will serve both as a reminder and as a reference for the participants and for other researchers interested in the physics of nuclear matter at high temperatures and density. To preserve the atmosphere of the event the contributions are ordered in the same way as the talks at the conference. We are honored to have helped organize the 10th meeting in this series, a milestone that reflects the lasting interest in this

  2. Effects of Water Hardness on Spray Droplet Size Under Aerial Application Conditions

    DTIC Science & Technology

    2008-01-01

    Nonimaging Light‐Scattering Instruments (ASTM, 2003). Table 1. Spray formulations for water hardness levels. Hardness (ppm) Tank, L (gal) Kocide, kg (lb...characteristics in a spray using optical nonimaging light‐scattering instruments. W. Conshohocken, Pa.: ASTM Intl. ASTM. 2004. E1620‐97. Standard

  3. Two-color QCD at high density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boz, Tamer; Skullerud, Jon-Ivar; Centre for the Subatomic Structure of Matter, Adelaide University, Adelaide, SA 5005

    2016-01-22

    QCD at high chemical potential has interesting properties such as deconfinement of quarks. Two-color QCD, which enables numerical simulations on the lattice, constitutes a laboratory to study QCD at high chemical potential. Among the interesting properties of two-color QCD at high density is the diquark condensation, for which we present recent results obtained on a finer lattice compared to previous studies. The quark propagator in two-color QCD at non-zero chemical potential is referred to as the Gor’kov propagator. We express the Gor’kov propagator in terms of form factors and present recent lattice simulation results.

  4. The Emergence of Hadrons from QCD Color

    NASA Astrophysics Data System (ADS)

    Brooks, William; Color Dynamics in Cold Matter (CDCM) Collaboration

    2015-10-01

    The formation of hadrons from energetic quarks, the dynamical enforcement of QCD confinement, is not well understood at a fundamental level. In Deep Inelastic Scattering, modifications of the distributions of identified hadrons emerging from nuclei of different sizes reveal a rich variety of spatial and temporal characteristics of the hadronization process, including its dependence on spin, flavor, energy, and hadron mass and structure. The EIC will feature a wide range of kinematics, allowing a complete investigation of medium-induced gluon bremsstrahlung by the propagating quarks, leading to partonic energy loss. This fundamental process, which is also at the heart of jet quenching in heavy ion collisions, can be studied for light and heavy quarks at the EIC through observables quantifying hadron ``attenuation'' for a variety of hadron species. Transverse momentum broadening of hadrons, which is sensitive to the nuclear gluonic field, will also be accessible, and can be used to test our understanding from pQCD of how this quantity evolves with pathlength, as well as its connection to partonic energy loss. The evolution of the forming hadrons in the medium will shed new light on the dynamical origins of the forces between hadrons, and thus ultimately on the nuclear force. Supported by the Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) of Chile.

  5. Helicity amplitudes for QCD with massive quarks

    NASA Astrophysics Data System (ADS)

    Ochirov, Alexander

    2018-04-01

    The novel massive spinor-helicity formalism of Arkani-Hamed, Huang and Huang provides an elegant way to calculate scattering amplitudes in quantum chromodynamics for arbitrary quark spin projections. In this note we compute two families of tree-level QCD amplitudes with one massive quark pair and n - 2 gluons. The two cases include all gluons with identical helicity and one opposite-helicity gluon being color-adjacent to one of the quarks. Our results naturally incorporate the previously known amplitudes for both quark spins quantized along one of the gluonic momenta. In the all-multiplicity formulae presented here the spin quantization axes can be tuned at will, which includes the case of the definite-helicity quark states.

  6. Tetraquark candidate Zc(3900) from coupled-channel scattering - how to extract hadronic interactions? -

    NASA Astrophysics Data System (ADS)

    Ikeda, Yoichi

    2018-03-01

    We present recent progress of lattice QCD studies on hadronic interactions which play a crucial role to understand the properties of atomic nuclei and hadron resonances. There are two methods, the plateau method (or the direct method) and the HAL QCD method, to study the hadronic interactions. In the plateau method, the determination of a ground state energy from the temporal correlation functions of multi-hadron systems is a key to reliably extract the physical observables. It turns out that, due to the contamination of excited elastic scattering states nearby, one can easily be misled by a fake plateau into extracting the ground state energy. We introduce a consistency check (sanity check) which can rule out obviously false results obtained from a fake plateau, and find that none of the results obtained at the moment for two-baryon systems in the plateau method pass the test. On the other hand, the HAL QCD method is free from the fake-plateau problem. We investigate the systematic uncertainties of the HAL QCD method, which are found to be well controlled. On the basis of the HAL QCD method, the structure of the tetraquark candidate Zc(3900), which was experimentally reported in e+e- collisions, is studied by the s-wave two-meson coupled-channel scattering. The results show that the Zc(3900) is not a conventional resonance but a threshold cusp. A semi-phenomenological analysis with the coupled-channel interaction to the experimentally observed decay mode is also presented to confirm the conclusion.

  7. Transverse Momentum-Dependent Parton Distributions from Lattice QCD

    NASA Astrophysics Data System (ADS)

    Engelhardt, M.; Musch, B.; Hägler, P.; Negele, J.; Schäfer, A.

    Starting from a definition of transverse momentum-dependent parton distributions for semi-inclusive deep inelastic scattering and the Drell-Yan process, given in terms of matrix elements of a quark bilocal operator containing a staple-shaped Wilson connection, a scheme to determine such observables in lattice QCD is developed and explored. Parametrizing the aforementioned matrix elements in terms of invariant amplitudes permits a simple transformation of the problem to a Lorentz frame suited for the lattice calculation. Results for the Sivers and Boer-Mulders transverse momentum shifts are presented, focusing in particular on their dependence on the staple extent and the Collins-Soper evolution parameter.

  8. Transverse Momentum-Dependent Parton Distributions From Lattice QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael Engelhardt, Bernhard Musch, Philipp Haegler, Andreas Schaefer

    Starting from a definition of transverse momentum-dependent parton distributions for semi-inclusive deep inelastic scattering and the Drell-Yan process, given in terms of matrix elements of a quark bilocal operator containing a staple-shaped Wilson connection, a scheme to determine such observables in lattice QCD is developed and explored. Parametrizing the aforementioned matrix elements in terms of invariant amplitudes permits a simple transformation of the problem to a Lorentz frame suited for the lattice calculation. Results for the Sivers and Boer-Mulders transverse momentum shifts are presented, focusing in particular on their dependence on the staple extent and the Collins-Soper evolution parameter.

  9. Charmonium-nucleon interactions from the time-dependent HAL QCD method

    NASA Astrophysics Data System (ADS)

    Sugiura, Takuya; Ikeda, Yoichi; Ishii, Noriyoshi

    2018-03-01

    The charmonium-nucleon effective central interactions have been computed by the time-dependent HAL QCD method. This gives an updated result of a previous study based on the time-independent method, which is now known to be problematic because of the difficulty in achieving the ground-state saturation. We discuss that the result is consistent with the heavy quark symmetry. No bound state is observed from the analysis of the scattering phase shift; however, this shall lead to a future search of the hidden-charm pentaquarks by considering channel-coupling effects.

  10. Doubly magic nuclei from lattice QCD forces at MPS=469 MeV /c2

    NASA Astrophysics Data System (ADS)

    McIlroy, C.; Barbieri, C.; Inoue, T.; Doi, T.; Hatsuda, T.

    2018-02-01

    We perform ab initio self-consistent Green's function calculations of the closed shell nuclei 4He, 16O, and 40Ca, based on two-nucleon potentials derived from lattice QCD simulations, in the flavor SU(3) limit and at the pseudoscalar meson mass of 469 MeV/c2. The nucleon-nucleon interaction is obtained using the hadrons-to-atomic-nuclei-from-lattice (HAL) QCD method, and its short-distance repulsion is treated by means of ladder resummations outside the model space. Our results show that this approach diagonalizes ultraviolet degrees of freedom correctly. Therefore, ground-state energies can be obtained from infrared extrapolations even for the relatively hard potentials of HAL QCD. Comparing to previous Brueckner Hartree-Fock calculations, the total binding energies are sensibly improved by the full account of many-body correlations. The results suggest an interesting possible behavior in which nuclei are unbound at very large pion masses and islands of stability appear at first around the traditional doubly magic numbers when the pion mass is lowered toward its physical value. The calculated one-nucleon spectral distributions are qualitatively close to those of real nuclei even for the pseudoscalar meson mass considered here.

  11. Lattice QCD studies of s-wave meson-baryon interactions

    NASA Astrophysics Data System (ADS)

    Ikeda, Yoichi

    2011-10-01

    We study the s-wave KN interactions in the isospin I = 0, 1 channels and associated exotic state Θ+ from 2+1 flavor full lattice QCD simulation for relatively heavy quark mass corresponding to mπ = 871 MeV. The s-wave KN potentials are obtained from the Bethe-Salpeter amplitudes. Potentials in both channels reveal short range repulsions: Strength of the repulsion is stronger in the I = 1 potential. The I = 0 potential is found to have attractive well at mid range. The KN scattering phase shifts are calculated and compared with the experimental data.

  12. Running of the charm-quark mass from HERA deep-inelastic scattering data

    DOE PAGES

    Gizhko, A.; Geiser, A.; Moch, S.; ...

    2017-11-07

    Combined HERA data on charm production in deep-inelastic scattering have previously been used to determine the charm-quark running mass m c(m c) in the MS¯ renormalisation scheme. Here, the same data are used as a function of the photon virtuality Q 2 to evaluate the charm-quark running mass at different scales to one-loop order, in the context of a next-to-leading order QCD analysis. Lastly, the scale dependence of the mass is found to be consistent with QCD expectations.

  13. Running of the charm-quark mass from HERA deep-inelastic scattering data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gizhko, A.; Geiser, A.; Moch, S.

    Combined HERA data on charm production in deep-inelastic scattering have previously been used to determine the charm-quark running mass m c(m c) in the MS¯ renormalisation scheme. Here, the same data are used as a function of the photon virtuality Q 2 to evaluate the charm-quark running mass at different scales to one-loop order, in the context of a next-to-leading order QCD analysis. Lastly, the scale dependence of the mass is found to be consistent with QCD expectations.

  14. Three-loop hard-thermal-loop perturbation theory thermodynamics at finite temperature and finite baryonic and isospin chemical potential

    NASA Astrophysics Data System (ADS)

    Andersen, Jens O.; Haque, Najmul; Mustafa, Munshi G.; Strickland, Michael

    2016-03-01

    In a previous paper [N. Haque et al., J. High Energy Phys. 05 (2014) 27], we calculated the three-loop thermodynamic potential of QCD at finite temperature T and quark chemical potentials μq using the hard-thermal-loop perturbation theory (HTLpt) reorganization of finite temperature and density QCD. The result allows us to study the thermodynamics of QCD at finite temperature and finite baryon, strangeness, and isospin chemical potentials μB, μS, and μI. We calculate the pressure at nonzero μB and μI with μS=0 , and the energy density, the entropy density, the trace anomaly, and the speed of sound at nonzero μI with μB=μS=0 . The second- and fourth-order isospin susceptibilities are calculated at μB=μS=μI=0 . Our results can be directly compared to lattice QCD without Taylor expansions around μq=0 since QCD has no sign problem at μB=μS=0 and finite isospin chemical potential μI.

  15. Transverse momentum dependent evolution: Matching semi-inclusive deep inelastic scattering processes to Drell-Yan and W/Z boson production

    NASA Astrophysics Data System (ADS)

    Sun, Peng; Yuan, Feng

    2013-12-01

    We examine the QCD evolution for the transverse momentum dependent observables in hard processes of semi-inclusive hadron production in deep inelastic scattering and Drell-Yan lepton pair production in pp collisions, including the spin-average cross sections and Sivers single transverse spin asymmetries. We show that the evolution equations derived by a direct integral of the Collins-Soper-Sterman evolution kernel from low to high Q can describe well the transverse momentum distributions of the unpolarized cross sections in the Q2 range from 2 to 100GeV2. In addition, the matching is established between our evolution and the Collins-Soper-Sterman resummation with b* prescription and Konychev-Nodalsky parametrization of the nonperturbative form factors, which are formulated to describe the Drell-Yan lepton pair and W/Z boson production in hadronic collisions. With these results, we present the predictions for the Sivers single transverse spin asymmetries in Drell-Yan lepton pair production and W± boson production in polarized pp and π-p collisions for several proposed experiments. We emphasize that these experiments will not only provide crucial test of the sign change of the Sivers asymmetry but also provide important opportunities to study the QCD evolution effects.

  16. Resonances in Coupled π K - η K Scattering from Quantum Chromodynamics

    DOE PAGES

    Dudek, Jozef J.; Edwards, Robert G.; Thomas, Christopher E.; ...

    2014-10-01

    Using first-principles calculation within Quantum Chromodynamics, we are able to reproduce the pattern of experimental strange resonances which appear as complex singularities within coupled πK, ηK scattering amplitudes. We make use of numerical computation within the lattice discretized approach to QCD, extracting the energy dependence of scattering amplitudes through their relation- ship to the discrete spectrum of the theory in a finite-volume, which we map out in unprecedented detail.

  17. 2017 QCD Evolution 2017

    NASA Astrophysics Data System (ADS)

    2017-05-01

    The QCD Evolution 2017 workshop was held at Jefferson Lab, May 22-26, 2017. The workshop is a continuation of a series of workshops held during six consecutive years, in 2011, 2012, 2013, 2015 at Jefferson Lab, and in 2014 in Santa Fe, NM, and in 2016 at the National Institute for Subatomic Physics (Nikhef) in Amsterdam. With the rapid developments in our understanding of the evolution of parton distributions including TMDs, GPDs, low-x, higher-twist correlation functions, and the associated progress in perturbative QCD, lattice QCD and effective field theory techniques, we look forward to yet another exciting meeting in 2017. The program of QCD Evolution 2017 will pay special attention to the topics of importance for ongoing experiments, in the full range from Jefferson Lab energies to RHIC and LHC energies or future experiments such as a future Electron Ion Collider, recently recommended as a highest priority in U.S. Department of Energy's 2015 Long Range Plan for Nuclear Science.

  18. Color Confinement and Screening in the θ Vacuum of QCD

    DOE PAGES

    Kharzeev, Dmitri E.; Levin, Eugene M.

    2015-06-16

    QCD perturbation theory ignores the compact nature of the SU(3) gauge group that gives rise to the periodic θ vacuum of the theory. In this paper, we propose to modify the gluon propagator to reconcile perturbation theory with the anomalous Ward identities for the topological current in the θ vacuum. As a result, the gluon couples to the Veneziano ghost describing the tunneling transitions between different Chern-Simons sectors of the vacuum; we call the emerging gluon dressed by ghost loops a “glost.” We evaluate the glost propagator and find that it has the form G(p)=(p 2+χ top/p 2) -1 wheremore » χ top is the Yang-Mills topological susceptibility related to the η" mass by the Witten-Veneziano relation; this propagator describes the confinement of gluons at distances ~χ top -1/4≃1 fm. The same functional form of the propagator was originally proposed by Gribov as a solution to the gauge copies problem that plagues perturbation theory. The resulting running coupling coincides with the perturbative one at p 2>>√χtop, but in the infrared region either freezes (in pure Yang-Mills theory) or vanishes (in full QCD with light quarks), in accord with experimental evidence. In conclusion, our scenario makes explicit the connection between confinement and topology of the QCD vacuum; we discuss the implications for spin physics, high energy scattering, and the physics of quark-gluon plasma.« less

  19. Color Confinement and Screening in the θ Vacuum of QCD.

    PubMed

    Kharzeev, Dmitri E; Levin, Eugene M

    2015-06-19

    QCD perturbation theory ignores the compact nature of the SU(3) gauge group that gives rise to the periodic θ vacuum of the theory. We propose to modify the gluon propagator to reconcile perturbation theory with the anomalous Ward identities for the topological current in the θ vacuum. As a result, the gluon couples to the Veneziano ghost describing the tunneling transitions between different Chern-Simons sectors of the vacuum; we call the emerging gluon dressed by ghost loops a "glost." We evaluate the glost propagator and find that it has the form G(p)=(p(2)+χ(top)/p(2))(-1) where χ(top) is the Yang-Mills topological susceptibility related to the η' mass by the Witten-Veneziano relation; this propagator describes the confinement of gluons at distances ∼χ(top)(-1/4)≃1  fm. The same functional form of the propagator was originally proposed by Gribov as a solution to the gauge copies problem that plagues perturbation theory. The resulting running coupling coincides with the perturbative one at p(2)≫√[χ(top)], but in the infrared region either freezes (in pure Yang-Mills theory) or vanishes (in full QCD with light quarks), in accord with experimental evidence. Our scenario makes explicit the connection between confinement and topology of the QCD vacuum; we discuss the implications for spin physics, high energy scattering, and the physics of quark-gluon plasma.

  20. Nucleon-nucleon interactions via Lattice QCD: Methodology. HAL QCD approach to extract hadronic interactions in lattice QCD

    NASA Astrophysics Data System (ADS)

    Aoki, Sinya

    2013-07-01

    We review the potential method in lattice QCD, which has recently been proposed to extract nucleon-nucleon interactions via numerical simulations. We focus on the methodology of this approach by emphasizing the strategy of the potential method, the theoretical foundation behind it, and special numerical techniques. We compare the potential method with the standard finite volume method in lattice QCD, in order to make pros and cons of the approach clear. We also present several numerical results for nucleon-nucleon potentials.

  1. A new approach to analytic, non-perturbative and gauge-invariant QCD

    NASA Astrophysics Data System (ADS)

    Fried, H. M.; Grandou, T.; Sheu, Y.-M.

    2012-11-01

    Following a previous calculation of quark scattering in eikonal approximation, this paper presents a new, analytic and rigorous approach to the calculation of QCD phenomena. In this formulation a basic distinction between the conventional "idealistic" description of QCD and a more "realistic" description is brought into focus by a non-perturbative, gauge-invariant evaluation of the Schwinger solution for the QCD generating functional in terms of the exact Fradkin representations of Green's functional G(x,y|A) and the vacuum functional L[A]. Because quarks exist asymptotically only in bound states, their transverse coordinates can never be measured with arbitrary precision; the non-perturbative neglect of this statement leads to obstructions that are easily corrected by invoking in the basic Lagrangian a probability amplitude which describes such transverse imprecision. The second result of this non-perturbative analysis is the appearance of a new and simplifying output called "Effective Locality", in which the interactions between quarks by the exchange of a "gluon bundle"-which "bundle" contains an infinite number of gluons, including cubic and quartic gluon interactions-display an exact locality property that reduces the several functional integrals of the formulation down to a set of ordinary integrals. It should be emphasized that "non-perturbative" here refers to the effective summation of all gluons between a pair of quark lines-which may be the same quark line, as in a self-energy graph-but does not (yet) include a summation over all closed-quark loops which are tied by gluon-bundle exchange to the rest of the "Bundle Diagram". As an example of the power of these methods we offer as a first analytic calculation the quark-antiquark binding potential of a pion, and the corresponding three-quark binding potential of a nucleon, obtained in a simple way from relevant eikonal scattering approximations. A second calculation, analytic, non-perturbative and gauge

  2. Theory of hard diffraction and rapidity gaps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del Duca, V.

    1996-02-01

    In this talk we review the models describing the hard diffractive production of jets or more generally high-mass states in presence of rapidity gaps in hadron-hadron and lepton-hadron collisions. By rapidity gaps we mean regions on the lego plot in (pseudo)-rapidity and azimuthal angle where no hadrons are produced, between the jet(s) and an elastically scattered hadron (single hard diffraction) or between two jets (double hard diffraction). {copyright} {ital 1996 American Institute of Physics.}

  3. Hard Two-Photon Contribution to Elastic Lepton-Proton Scattering Determined by the OLYMPUS Experiment.

    PubMed

    Henderson, B S; Ice, L D; Khaneft, D; O'Connor, C; Russell, R; Schmidt, A; Bernauer, J C; Kohl, M; Akopov, N; Alarcon, R; Ates, O; Avetisyan, A; Beck, R; Belostotski, S; Bessuille, J; Brinker, F; Calarco, J R; Carassiti, V; Cisbani, E; Ciullo, G; Contalbrigo, M; De Leo, R; Diefenbach, J; Donnelly, T W; Dow, K; Elbakian, G; Eversheim, P D; Frullani, S; Funke, Ch; Gavrilov, G; Gläser, B; Görrissen, N; Hasell, D K; Hauschildt, J; Hoffmeister, Ph; Holler, Y; Ihloff, E; Izotov, A; Kaiser, R; Karyan, G; Kelsey, J; Kiselev, A; Klassen, P; Krivshich, A; Lehmann, I; Lenisa, P; Lenz, D; Lumsden, S; Ma, Y; Maas, F; Marukyan, H; Miklukho, O; Milner, R G; Movsisyan, A; Murray, M; Naryshkin, Y; Perez Benito, R; Perrino, R; Redwine, R P; Rodríguez Piñeiro, D; Rosner, G; Schneekloth, U; Seitz, B; Statera, M; Thiel, A; Vardanyan, H; Veretennikov, D; Vidal, C; Winnebeck, A; Yeganov, V

    2017-03-03

    The OLYMPUS Collaboration reports on a precision measurement of the positron-proton to electron-proton elastic cross section ratio, R_{2γ}, a direct measure of the contribution of hard two-photon exchange to the elastic cross section. In the OLYMPUS measurement, 2.01 GeV electron and positron beams were directed through a hydrogen gas target internal to the DORIS storage ring at DESY. A toroidal magnetic spectrometer instrumented with drift chambers and time-of-flight scintillators detected elastically scattered leptons in coincidence with recoiling protons over a scattering angle range of ≈20° to 80°. The relative luminosity between the two beam species was monitored using tracking telescopes of interleaved gas electron multiplier and multiwire proportional chamber detectors at 12°, as well as symmetric Møller or Bhabha calorimeters at 1.29°. A total integrated luminosity of 4.5  fb^{-1} was collected. In the extraction of R_{2γ}, radiative effects were taken into account using a Monte Carlo generator to simulate the convolutions of internal bremsstrahlung with experiment-specific conditions such as detector acceptance and reconstruction efficiency. The resulting values of R_{2γ}, presented here for a wide range of virtual photon polarization 0.456<ε<0.978, are smaller than some hadronic two-photon exchange calculations predict, but are in reasonable agreement with a subtracted dispersion model and a phenomenological fit to the form factor data.

  4. Measurement of the dependence of transverse energy production at large pseudorapidity on the hard-scattering kinematics of proton–proton collisions at √s = 2.76 TeV with ATLAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aad, G.

    2016-03-02

    The relationship between jet production in the central region and the underlying-event activity in a pseudorapidity-separated region is studied in 4.0 pb -1 of √s = 2.76 TeV pp collision data recorded with the ATLAS detector at the LHC. The underlying event is characterised through measurements of the average value of the sum of the transverse energy at large pseudorapidity downstream of one of the protons, which are reported here as a function of hard-scattering kinematic variables. The hard scattering is characterised by the average transverse momentum and pseudorapidity of the two highest transverse momentum jets in the event. Themore » dijet kinematics are used to estimate, on an event-by-event basis, the scaled longitudinal momenta of the hard-scattered partons in the target and projectile beam-protons moving toward and away from the region measuring transverse energy, respectively. Transverse energy production at large pseudorapidity is observed to decrease with a linear dependence on the longitudinal momentum fraction in the target proton and to depend only weakly on that in the projectile proton. Lastly, the results are compared to the predictions of various Monte Carlo event generators, which qualitatively reproduce the trends observed in data but generally underpredict the overall level of transverse energy at forward pseudorapidity.« less

  5. Phase shifts in I = 2 ππ-scattering from two lattice approaches

    NASA Astrophysics Data System (ADS)

    Kurth, T.; Ishii, N.; Doi, T.; Aoki, S.; Hatsuda, T.

    2013-12-01

    We present a lattice QCD study of the phase shift of I = 2 ππ scattering on the basis of two different approaches: the standard finite volume approach by Lüscher and the recently introduced HAL QCD potential method. Quenched QCD simulations are performed on lattices with extents N s = 16 , 24 , 32 , 48 and N t = 128 as well as lattice spacing a ~ 0 .115 fm and a pion mass of m π ~ 940 MeV. The phase shift and the scattering length are calculated in these two methods. In the potential method, the error is dominated by the systematic uncertainty associated with the violation of rotational symmetry due to finite lattice spacing. In Lüscher's approach, such systematic uncertainty is difficult to be evaluated and thus is not included in this work. A systematic uncertainty attributed to the quenched approximation, however, is not evaluated in both methods. In case of the potential method, the phase shift can be calculated for arbitrary energies below the inelastic threshold. The energy dependence of the phase shift is also obtained from Lüscher's method using different volumes and/or nonrest-frame extension of it. The results are found to agree well with the potential method.

  6. Baryon interactions in lattice QCD: the direct method vs. the HAL QCD potential method

    NASA Astrophysics Data System (ADS)

    Iritani, T.; HAL QCD Collaboration

    We make a detailed comparison between the direct method and the HAL QCD potential method for the baryon-baryon interactions, taking the $\\Xi\\Xi$ system at $m_\\pi= 0.51$ GeV in 2+1 flavor QCD and using both smeared and wall quark sources. The energy shift $\\Delta E_\\mathrm{eff}(t)$ in the direct method shows the strong dependence on the choice of quark source operators, which means that the results with either (or both) source are false. The time-dependent HAL QCD method, on the other hand, gives the quark source independent $\\Xi\\Xi$ potential, thanks to the derivative expansion of the potential, which absorbs the source dependence to the next leading order correction. The HAL QCD potential predicts the absence of the bound state in the $\\Xi\\Xi$($^1$S$_0$) channel at $m_\\pi= 0.51$ GeV, which is also confirmed by the volume dependence of finite volume energy from the potential. We also demonstrate that the origin of the fake plateau in the effective energy shift $\\Delta E_\\mathrm{eff}(t)$ at $t \\sim 1$ fm can be clarified by a few low-lying eigenfunctions and eigenvalues on the finite volume derived from the HAL QCD potential, which implies that the ground state saturation of $\\Xi\\Xi$($^1$S$_0$) requires $t \\sim 10$ fm in the direct method for the smeared source on $(4.3 \\ \\mathrm{fm})^3$ lattice, while the HAL QCD method does not suffer from such a problem.

  7. PEPSI — a Monte Carlo generator for polarized leptoproduction

    NASA Astrophysics Data System (ADS)

    Mankiewicz, L.; Schäfer, A.; Veltri, M.

    1992-09-01

    We describe PEPSI (Polarized Electron Proton Scattering Interactions), a Monte Carlo program for polarized deep inelastic leptoproduction mediated by electromagnetic interaction, and explain how to use it. The code is a modification of the LEPTO 4.3 Lund Monte Carlo for unpolarized scattering. The hard virtual gamma-parton scattering is generated according to the polarization-dependent QCD cross-section of the first order in α S. PEPSI requires the standard polarization-independent JETSET routines to simulate the fragmentation into final hadrons.

  8. Aspects of baryon structure in lattice QCD

    NASA Astrophysics Data System (ADS)

    Babich, Ronald

    Despite the long success of Quantum Chromodynamics (QCD) as the theory of the strong interactions, there remains much to be understood about the structure of hadrons and the consequences of QCD in the nonperturbative regime. Lattice gauge theory, a framework nearly as old as QCD itself, makes calculations in this regime possible, starting from first principles. With advances in theoretical understanding, methods, and computer technology, the lattice has found application to an ever-widening range of problems. In this dissertation, I consider two such problems having to do with the structure of baryons. The first concerns the contribution of sea quarks, and the strange quark in particular, to form factors of the nucleon. This has been a long-standing challenge for the lattice, because such contributions involve the insertion of a current on a quark loop, demanding the full inversion of the discretized Dirac operator, conceptually a large sparse matrix. I discuss methods for addressing this challenge and present a calculation of the strange scalar form factor and the related parameter fTs. The latter is of great theoretical interest, since it enters into the cross section for the scattering of dark matter off nuclei in supersymmetric extensions of the standard model. As such, it represents a major uncertainty in the interpretation of direct detection experiments. I also present results for the strange quark contribution to the nucleon's axial and electromagnetic form factors, which are themselves the subject of active experimental programs. These calculations were performed using the Wilson fermion formulation on a 243 x 64 anisotropic lattice. In the second part of the dissertation, I turn to the valence sector and address the role of diquark correlations in the observed spectrum of hadrons and their properties. A diquark is a correlated pair of quarks, thought to play an important role in certain phenomenological models of hadrons. I present results for baryon wave

  9. Hard breakup of two nucleons from the He3 nucleus

    NASA Astrophysics Data System (ADS)

    Sargsian, Misak M.; Granados, Carlos

    2009-07-01

    We investigate a large angle photodisintegration of two nucleons from the He3 nucleus within the framework of the hard rescattering model (HRM). In the HRM a quark of one nucleon knocked out by an incoming photon rescatters with a quark of the other nucleon leading to the production of two nucleons with large relative momentum. Assuming the dominance of the quark-interchange mechanism in a hard nucleon-nucleon scattering, the HRM allows the expression of the amplitude of a two-nucleon breakup reaction through the convolution of photon-quark scattering, NN hard scattering amplitude, and nuclear spectral function, which can be calculated using a nonrelativistic He3 wave function. The photon-quark scattering amplitude can be explicitly calculated in the high energy regime, whereas for NN scattering one uses the fit of the available experimental data. The HRM predicts several specific features for the hard breakup reaction. First, the cross section will approximately scale as s-11. Second, the s11 weighted cross section will have the shape of energy dependence similar to that of s10 weighted NN elastic scattering cross section. Also one predicts an enhancement of the pp breakup relative to the pn breakup cross section as compared to the results from low energy kinematics. Another result is the prediction of different spectator momentum dependencies of pp and pn breakup cross sections. This is due to the fact that the same-helicity pp-component is strongly suppressed in the ground state wave function of He3. Because of this suppression the HRM predicts significantly different asymmetries for the cross section of polarization transfer NN breakup reactions for circularly polarized photons. For the pp breakup this asymmetry is predicted to be zero while for the pn it is close to (2)/(3).

  10. Kenneth Wilson and Lattice QCD

    NASA Astrophysics Data System (ADS)

    Ukawa, Akira

    2015-09-01

    We discuss the physics and computation of lattice QCD, a space-time lattice formulation of quantum chromodynamics, and Kenneth Wilson's seminal role in its development. We start with the fundamental issue of confinement of quarks in the theory of the strong interactions, and discuss how lattice QCD provides a framework for understanding this phenomenon. A conceptual issue with lattice QCD is a conflict of space-time lattice with chiral symmetry of quarks. We discuss how this problem is resolved. Since lattice QCD is a non-linear quantum dynamical system with infinite degrees of freedom, quantities which are analytically calculable are limited. On the other hand, it provides an ideal case of massively parallel numerical computations. We review the long and distinguished history of parallel-architecture supercomputers designed and built for lattice QCD. We discuss algorithmic developments, in particular the difficulties posed by the fermionic nature of quarks, and their resolution. The triad of efforts toward better understanding of physics, better algorithms, and more powerful supercomputers have produced major breakthroughs in our understanding of the strong interactions. We review the salient results of this effort in understanding the hadron spectrum, the Cabibbo-Kobayashi-Maskawa matrix elements and CP violation, and quark-gluon plasma at high temperatures. We conclude with a brief summary and a future perspective.

  11. Conformal Aspects of QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodsky, S

    2003-11-19

    Theoretical and phenomenological evidence is now accumulating that the QCD coupling becomes constant at small virtuality; i.e., {alpha}{sub s}(Q{sup 2}) develops an infrared fixed point in contradiction to the usual assumption of singular growth in the infrared. For example, the hadronic decays of the {tau} lepton can be used to determine the effective charge {alpha}{sub {tau}}(m{sub {tau}{prime}}{sup 2}) for a hypothetical {tau}-lepton with mass in the range 0 < m{sub {tau}{prime}} < m{sub {tau}}. The {tau} decay data at low mass scales indicates that the effective charge freezes at a value of s = m{sub {tau}{prime}}{sup 2} of order 1more » GeV{sup 2} with a magnitude {alpha}{sub {tau}} {approx} 0.9 {+-} 0.1. The near-constant behavior of effective couplings suggests that QCD can be approximated as a conformal theory even at relatively small momentum transfer and why there are no significant running coupling corrections to quark counting rules for exclusive processes. The AdS/CFT correspondence of large N{sub c} supergravity theory in higher-dimensional anti-de Sitter space with supersymmetric QCD in 4-dimensional space-time also has interesting implications for hadron phenomenology in the conformal limit, including an all-orders demonstration of counting rules for exclusive processes and light-front wavefunctions. The utility of light-front quantization and light-front Fock wavefunctions for analyzing nonperturbative QCD and representing the dynamics of QCD bound states is also discussed.« less

  12. Higgs boson gluon-fusion production beyond threshold in N 3LO QCD

    DOE PAGES

    Anastasiou, Charalampos; Duhr, Claude; Dulat, Falko; ...

    2015-03-18

    In this study, we compute the gluon fusion Higgs boson cross-section at N 3LO through the second term in the threshold expansion. This calculation constitutes a major milestone towards the full N 3LO cross section. Our result has the best formal accuracy in the threshold expansion currently available, and includes contributions from collinear regions besides subleading corrections from soft and hard regions, as well as certain logarithmically enhanced contributions for general kinematics. We use our results to perform a critical appraisal of the validity of the threshold approximation at N 3LO in perturbative QCD.

  13. Hadronic and nuclear interactions in QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Despite the evidence that QCD - or something close to it - gives a correct description of the structure of hadrons and their interactions, it seems paradoxical that the theory has thus far had very little impact in nuclear physics. One reason for this is that the application of QCD to distances larger than 1 fm involves coherent, non-perturbative dynamics which is beyond present calculational techniques. For example, in QCD the nuclear force can evidently be ascribed to quark interchange and gluon exchange processes. These, however, are as complicated to analyze from a fundamental point of view as is themore » analogous covalent bond in molecular physics. Since a detailed description of quark-quark interactions and the structure of hadronic wavefunctions is not yet well-understood in QCD, it is evident that a quantitative first-principle description of the nuclear force will require a great deal of theoretical effort. Another reason for the limited impact of QCD in nuclear physics has been the conventional assumption that nuclear interactions can for the most part be analyzed in terms of an effective meson-nucleon field theory or potential model in isolation from the details of short distance quark and gluon structure of hadrons. These lectures, argue that this view is untenable: in fact, there is no correspondence principle which yields traditional nuclear physics as a rigorous large-distance or non-relativistic limit of QCD dynamics. On the other hand, the distinctions between standard nuclear physics dynamics and QCD at nuclear dimensions are extremely interesting and illuminating for both particle and nuclear physics.« less

  14. Higher Order Heavy Quark Corrections to Deep-Inelastic Scattering

    NASA Astrophysics Data System (ADS)

    Blümlein, Johannes; DeFreitas, Abilio; Schneider, Carsten

    2015-04-01

    The 3-loop heavy flavor corrections to deep-inelastic scattering are essential for consistent next-to-next-to-leading order QCD analyses. We report on the present status of the calculation of these corrections at large virtualities Q2. We also describe a series of mathematical, computer-algebraic and combinatorial methods and special function spaces, needed to perform these calculations. Finally, we briefly discuss the status of measuring αs (MZ), the charm quark mass mc, and the parton distribution functions at next-to-next-to-leading order from the world precision data on deep-inelastic scattering.

  15. QCD analysis of $W$- and $Z$-boson production at Tevatron

    DOE PAGES

    Camarda, S.; Belov, P.; Cooper-Sarkar, A. M.; ...

    2015-09-28

    Recent measurements of the W-boson charge asymmetry and of the Z-boson production cross sections, performed at the Tevatron collider in Run II by the D0 and CDF collaborations, are studied using the HERAFitter framework to assess their impact on the proton parton distribution functions (PDFs). Thus, the Tevatron measurements, together with deep-inelastic scattering data from HERA, are included in a QCD analysis performed at next-to-leading order, and compared to the predictions obtained using other PDF sets from different groups. Good agreement between measurements and theoretical predictions is observed. The Tevatron data provide significant constraints on the d-valence quark distribution.

  16. QCD analysis of $W$- and $Z$-boson production at Tevatron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camarda, S.; Belov, P.; Cooper-Sarkar, A. M.

    Recent measurements of the W-boson charge asymmetry and of the Z-boson production cross sections, performed at the Tevatron collider in Run II by the D0 and CDF collaborations, are studied using the HERAFitter framework to assess their impact on the proton parton distribution functions (PDFs). Thus, the Tevatron measurements, together with deep-inelastic scattering data from HERA, are included in a QCD analysis performed at next-to-leading order, and compared to the predictions obtained using other PDF sets from different groups. Good agreement between measurements and theoretical predictions is observed. The Tevatron data provide significant constraints on the d-valence quark distribution.

  17. Multipion systems in lattice QCD and the three-pion interaction.

    PubMed

    Beane, Silas R; Detmold, William; Luu, Thomas C; Orginos, Kostas; Savage, Martin J; Torok, Aaron

    2008-02-29

    The ground-state energies of 2, 3, 4, and 5 pi(+)'s in a spatial volume V approximately (2.5 fm)(3) are computed with lattice QCD. By eliminating the leading contribution from three-pi(+) interactions, particular combinations of these n-pi(+) ground-state energies provide precise extractions of the pi(+)pi(+) scattering length in agreement with that obtained from calculations involving only two pi(+)'s. The three-pi(+) interaction can be isolated by forming other combinations of the n-pi(+) ground-state energies. We find a result that is consistent with a repulsive three-pi(+) interaction for m_(pi) less, similar352 MeV.

  18. Lattice QCD Studies of Transverse Momentum-Dependent Parton Distribution Functions

    NASA Astrophysics Data System (ADS)

    Engelhardt, M.; Musch, B.; Hägler, P.; Negele, J.; Schäfer, A.

    2015-09-01

    Transverse momentum-dependent parton distributions (TMDs) relevant for semi-inclusive deep inelastic scattering and the Drell-Yan process can be defined in terms of matrix elements of a quark bilocal operator containing a staple-shaped gauge link. Such a definition opens the possibility of evaluating TMDs within lattice QCD. By parametrizing the aforementioned matrix elements in terms of invariant amplitudes, the problem can be cast in a Lorentz frame suited for the lattice calculation. Results for selected TMD observables are presented, including a particular focus on their dependence on a Collins-Soper-type evolution parameter, which quantifies proximity of the staple-shaped gauge links to the light cone.

  19. Scheme variations of the QCD coupling

    NASA Astrophysics Data System (ADS)

    Boito, Diogo; Jamin, Matthias; Miravitllas, Ramon

    2017-03-01

    The Quantum Chromodynamics (QCD) coupling αs is a central parameter in the Standard Model of particle physics. However, it depends on theoretical conventions related to renormalisation and hence is not an observable quantity. In order to capture this dependence in a transparent way, a novel definition of the QCD coupling, denoted by â, is introduced, whose running is explicitly renormalisation scheme invariant. The remaining renormalisation scheme dependence is related to transformations of the QCD scale Λ, and can be parametrised by a single parameter C. Hence, we call â the C-scheme coupling. The dependence on C can be exploited to study and improve perturbative predictions of physical observables. This is demonstrated for the QCD Adler function and hadronic decays of the τ lepton.

  20. On the theory and simulation of multiple Coulomb scattering of heavy-charged particles.

    PubMed

    Striganov, S I

    2005-01-01

    The Moliere theory of multiple Coulomb scattering is modified to take into account the difference between processes of scattering off atomic nuclei and electrons. A simple analytical expression for angular distribution of charged particles passing through a thick absorber is found. It does not assume any special form for a differential scattering cross section and has a wider range of applicability than a gaussian approximation. A well-known method to simulate multiple Coulomb scatterings is based on treating 'soft' and 'hard' collisions differently. An angular deflection in a large number of 'soft' collisions is sampled using the proposed distribution function, a small number of 'hard' collision are simulated directly. A boundary between 'hard' and 'soft' collisions is defined, providing a precise sampling of a scattering angle (1% level) and a small number of 'hard' collisions. A corresponding simulating module takes into account projectile and nucleus charged distributions and exact kinematics of a projectile-electron interaction.

  1. QCD and Light-Front Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodsky, Stanley J.; de Teramond, Guy F.; /SLAC /Southern Denmark U., CP3-Origins /Costa Rica U.

    2011-01-10

    AdS/QCD, the correspondence between theories in a dilaton-modified five-dimensional anti-de Sitter space and confining field theories in physical space-time, provides a remarkable semiclassical model for hadron physics. Light-front holography allows hadronic amplitudes in the AdS fifth dimension to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time. The result is a single-variable light-front Schroedinger equation which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The coordinate z in AdS space is uniquely identified with a Lorentz-invariant coordinate {zeta} which measures the separation of the constituents within a hadron at equalmore » light-front time and determines the off-shell dynamics of the bound state wavefunctions as a function of the invariant mass of the constituents. The hadron eigenstates generally have components with different orbital angular momentum; e.g., the proton eigenstate in AdS/QCD with massless quarks has L = 0 and L = 1 light-front Fock components with equal probability. Higher Fock states with extra quark-anti quark pairs also arise. The soft-wall model also predicts the form of the nonperturbative effective coupling and its {beta}-function. The AdS/QCD model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method to systematically include QCD interaction terms. Some novel features of QCD are discussed, including the consequences of confinement for quark and gluon condensates. A method for computing the hadronization of quark and gluon jets at the amplitude level is outlined.« less

  2. The Dynamics of Disorder-Order Transition in Hard Sphere Colloidal Dispersions

    NASA Technical Reports Server (NTRS)

    Chaikin, Paul M.; Zhu, Jixiang; Cheng, Zhengdong; Phan, See-Eng; Russel, William B.; Lant, Christian T.; Doherty, Michael P.; Meyer, William V.; Rogers, Richard; Cannell, D. S.; hide

    1998-01-01

    The Physics of Hard Spheres Experiment (PHaSE) seeks a complete understanding of the entropically driven disorder-order transition in hard sphere colloidal dispersions. The light scattering instrument designed for flight collects Bragg and low angle light scattering in the forward direction via a CCD camera and performs conventional static and dynamic light scattering at 10-160 deg. through fiber optic cables. Here we report on the kinetics of nucleation and growth extracted from time-resolved Bragg images and measurements of the elastic modulus of crystalline phases obtained by monitoring resonant responses to sinusoidal forcing through dynamic light scattering. Preliminary analysis of the former indicates a significant difference from measurements on the ground, while the latter confirms nicely laboratory experiments with the same instrument and predictions from computer simulations.

  3. Interpolation of hard and soft dilepton rates

    NASA Astrophysics Data System (ADS)

    Ghisoiu, I.; Laine, M.

    2014-10-01

    Strict next-to-leading order (NLO) results for the dilepton production rate from a QCD plasma at temperatures above a few hundred MeV suffer from a breakdown of the loop expansion in the regime of soft invariant masses M 2 ≪ ( πT)2. In this regime an LPM resummation is needed for obtaining the correct leading-order result. We show how to construct an interpolation between the hard NLO and the leading-order LPM expression, which is theoretically consistent in both regimes and free from double counting. The final numerical results are presented in a tabulated form, suitable for insertion into hydrodynamical codes.

  4. Hot QCD equations of state and relativistic heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Chandra, Vinod; Kumar, Ravindra; Ravishankar, V.

    2007-11-01

    We study two recently proposed equations of state obtained from high-temperature QCD and show how they can be adapted to use them for making predictions for relativistic heavy ion collisions. The method involves extracting equilibrium distribution functions for quarks and gluons from the equation of state (EOS), which in turn will allow a determination of the transport and other bulk properties of the quark gluon-plasma. Simultaneously, the method also yields a quasiparticle description of interacting quarks and gluons. The first EOS is perturbative in the QCD coupling constant and has contributions of O(g5). The second EOS is an improvement over the first, with contributions up to O[g6ln(1/g)]; it incorporates the nonperturbative hard thermal contributions. The interaction effects are shown to be captured entirely by the effective chemical potentials for the gluons and the quarks, in both cases. The chemical potential is seen to be highly sensitive to the EOS. As an application, we determine the screening lengths, which are, indeed, the most important diagnostics for QGP. The screening lengths are seen to behave drastically differently depending on the EOS considered and therefore yield a way to distinguish the two equations of state in heavy ion collisions.

  5. Resonant soft X-ray scattering on protein solutions

    NASA Astrophysics Data System (ADS)

    Ye, Dan; Le, Thinh; Wang, Cheng; Zwart, Peter; Gomez, Esther; Gomez, Enrique

    Protein structure is crucial for biological function, such that characterizing protein folding and packing is important for the design of therapeutics and enzymes. We propose resonant soft X-ray scattering (RSOXS) as an approach to study proteins and other biological assemblies in solution. Calculations of the scattering contrast suggest that soft X-ray scattering is more sensitive than hard X-ray scattering, because of contrast generated at the absorption edges of constituent elements such as carbon, nitrogen and oxygen. We have examined the structure of bovine serum albumin (BSA) in solution by RSOXS. We find that by varying incident X-ray energies, we are able to achieve higher scattering contrast near the absorption edge. From our RSOXS scattering result we are able to reconstruct the structure of BSA in 3D. These RSOXS results also agree with hard X-ray experiments, including crystallographic data. Our study demonstrates the potential of RSOXS for studying protein structure in solution.

  6. A measurement of multi-jet rates in deep-inelastic scattering at HERA

    NASA Astrophysics Data System (ADS)

    Abt, I.; Ahmed, T.; Andreev, V.; Andrieu, B.; Appuhn, R.-D.; Arpagaus, M.; Babaev, A.; Bärwolff, H.; Bán, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Bassler, U.; Beck, H. P.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bergstein, H.; Bernardi, G.; Bernet, R.; Bertrand-Coremans, G.; Besançon, M.; Biddulph, P.; Binder, E.; Bischoff, A.; Bizot, J. C.; Blobel, V.; Borras, K.; Bosetti, P. C.; Boudry, V.; Bourdarios, C.; Brasse, F.; Braun, U.; Braunschweig, W.; Brisson, V.; Bruncko, D.; Büngener, L.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Buschhorn, G.; Campbell, A. J.; Carli, T.; Charles, F.; Clarke, D.; Clegg, A. B.; Colombo, M.; Coughlan, J. A.; Courau, A.; Coutures, Ch.; Cozzika, G.; Criegee, L.; Cvach, J.; Dagoret, S.; Dainton, J. B.; Danilov, M.; Dann, A. W. E.; Dau, W. D.; David, M.; Deffur, E.; Delcourt, B.; Del Buono, L.; Devel, M.; de Roeck, A.; Dingus, P.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Drescher, A.; Duboc, J.; Düllmann, D.; Dünger, O.; Duhm, H.; Ebbinghaus, R.; Eberle, M.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichenberger, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellis, N. N.; Ellison, R. J.; Elsen, E.; Erdmann, M.; Evrard, E.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Fensome, I. F.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Flauger, W.; Fleischer, M.; Flieser, M.; Flügge, G.; Fomenko, A.; Fominykh, B.; Forbush, M.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Fuhrmann, P.; Gabathuler, E.; Gamerdinger, K.; Garvey, J.; Gayler, J.; Gellrich, A.; Gennis, M.; Genzel, H.; Gerhards, R.; Godfrey, L.; Goerlach, U.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goodall, A. M.; Gorelov, I.; Goritchev, P.; Grab, C.; Grässler, H.; Grässler, R.; Greenshaw, T.; Greif, H.; Grindhammer, G.; Gruber, C.; Haack, J.; Haidt, D.; Hajduk, L.; Hamon, O.; Handschuh, D.; Hanlon, E. M.; Hapke, M.; Harjes, J.; Haydar, R.; Haynes, W. J.; Heatherington, J.; Hedberg, V.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herma, R.; Herynek, I.; Hildesheim, W.; Hill, P.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Huet, Ph.; Hufnagel, H.; Huot, N.; Ibbotson, M.; Itterbeck, H.; Jabiol, M.-A.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Jansen, T.; Jönsson, L.; Johannsen, K.; Johnson, D. P.; Johnson, L.; Jung, H.; Kalmus, P. I. P.; Kasarian, S.; Kaschowitz, R.; Kasselmann, P.; Kathage, U.; Kaufmann, H. H.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Ko, W.; Köhler, T.; Kolanoski, H.; Kole, F.; Kolya, S. D.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Krüger, U.; Kubenka, J. P.; Küster, H.; Kuhlen, M.; Kurča, T.; Kurzhöfer, J.; Kuznik, B.; Lacour, D.; Lamarche, F.; Lander, R.; Landon, M. P. J.; Lange, W.; Langkau, R.; Lanius, P.; Laporte, J. F.; Lebedev, A.; Leuschner, A.; Leverenz, C.; Levonian, S.; Lewin, D.; Ley, Ch.; Lindner, A.; Lindström, G.; Linsel, F.; Lipinski, J.; Loch, P.; Lohmander, H.; Lopez, G. C.; Lüers, D.; Magnussen, N.; Malinovski, E.; Mani, S.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Masson, S.; Mavroidis, A.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Mercer, D.; Merz, T.; Meyer, C. A.; Meyer, H.; Meyer, J.; Mikocki, S.; Milone, V.; Monnier, E.; Moreau, F.; Moreels, J.; Morris, J. V.; Müller, K.; Murín, P.; Murray, S. A.; Nagovizin, V.; Naroska, B.; Naumann, Th.; Newman, P. R.; Newton, D.; Neyret, D.; Nguyen, H. K.; Niebergall, F.; Niebuhr, C.; Nisius, R.; Nowak, G.; Noyes, G. W.; Nyberg, M.; Oberlack, H.; Obrock, U.; Olsson, J. E.; Orenstein, S.; Ould-Saada, F.; Pascaud, C.; Patel, G. D.; Peppel, E.; Peters, S.; Phillips, H. T.; Phillips, J. P.; Pichler, Ch.; Pilgram, W.; Pitzl, D.; Prell, S.; Prosi, R.; Rädel, G.; Raupach, F.; Rauschnabel, K.; Reimer, P.; Reinshagen, S.; Ribarics, P.; Riech, V.; Riedlberger, J.; Riess, S.; Rietz, M.; Robertson, S. M.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Royon, C.; Rudowicz, M.; Ruffer, M.; Rusakov, S.; Rybicki, K.; Sahlmann, N.; Sanchez, E.; Sankey, D. P. C.; Savitsky, M.; Schacht, P.; Schleper, P.; von Schlippe, W.; Schmidt, C.; Schmidt, D.; Schmitz, W.; Schöning, A.; Schröder, V.; Schulz, M.; Schwab, B.; Schwind, A.; Scobel, W.; Seehausen, U.; Sell, R.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shooshtari, H.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Smith, J. R.; Smolik, L.; Soloviev, Y.; Spitzer, H.; Staroba, P.; Steenbock, M.; Steffen, P.; Steinberg, R.; Stella, B.; Stephens, K.; Stier, J.; Stösslein, U.; Strachota, J.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Taylor, R. E.; Tchernyshov, V.; Thiebaux, C.; Thompson, G.; Tichomirov, I.; Truöl, P.; Turnau, J.; Tutas, J.; Urban, L.; Usik, A.; Valkar, S.; Valkarova, A.; Vallée, C.; van Esch, P.; Vartapetian, A.; Vazdik, Y.; Vecko, M.; Verrecchia, P.; Vick, R.; Villet, G.; Vogel, E.; Wacker, K.; Walker, I. W.; Walther, A.; Weber, G.; Wegener, D.; Wegner, A.; Wellisch, H. P.; West, L. R.; Willard, S.; Winde, M.; Winter, G.-G.; Wolff, Th.; Womersley, L. A.; Wright, A. E.; Wulff, N.; Yiou, T. P.; Žáček, J.; Závada, P.; Zeitnitz, C.; Ziaeepour, H.; Zimmer, M.; Zimmermann, W.; Zomer, F.

    1994-03-01

    Multi-jet production is observed in deep-inelastic electron proton scattering with the H1 detector at HERA. Jet rates for momentum transfers squared up to 500 GeV2 are determined using the JADE jet clustering algorithm. They are found to be in agreement with predictions from QCD based models.

  7. Nuclear reactions from lattice QCD

    DOE PAGES

    Briceño, Raúl A.; Davoudi, Zohreh; Luu, Thomas C.

    2015-01-13

    In this study, one of the overarching goals of nuclear physics is to rigorously compute properties of hadronic systems directly from the fundamental theory of strong interactions, Quantum Chromodynamics (QCD). In particular, the hope is to perform reliable calculations of nuclear reactions which will impact our understanding of environments that occur during big bang nucleosynthesis, the evolution of stars and supernovae, and within nuclear reactors and high energy/density facilities. Such calculations, being truly ab initio, would include all two-nucleon and three- nucleon (and higher) interactions in a consistent manner. Currently, lattice QCD provides the only reliable option for performing calculationsmore » of some of the low-energy hadronic observables. With the aim of bridging the gap between lattice QCD and nuclear many-body physics, the Institute for Nuclear Theory held a workshop on Nuclear Reactions from Lattice QCD on March 2013. In this review article, we report on the topics discussed in this workshop and the path planned to move forward in the upcoming years.« less

  8. Polyakov loop modeling for hot QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukushima, Kenji; Skokov, Vladimir

    Here, we review theoretical aspects of quantum chromodynamics (QCD) at finite temperature. The most important physical variable to characterize hot QCD is the Polyakov loop, which is an approximate order parameter for quark deconfinement in a hot gluonic medium. Additionally to its role as an order parameter, the Polyakov loop has rich physical contents in both perturbative and non-perturbative sectors. This review covers a wide range of subjects associated with the Polyakov loop from topological defects in hot QCD to model building with coupling to the Polyakov loop.

  9. Polyakov loop modeling for hot QCD

    DOE PAGES

    Fukushima, Kenji; Skokov, Vladimir

    2017-06-19

    Here, we review theoretical aspects of quantum chromodynamics (QCD) at finite temperature. The most important physical variable to characterize hot QCD is the Polyakov loop, which is an approximate order parameter for quark deconfinement in a hot gluonic medium. Additionally to its role as an order parameter, the Polyakov loop has rich physical contents in both perturbative and non-perturbative sectors. This review covers a wide range of subjects associated with the Polyakov loop from topological defects in hot QCD to model building with coupling to the Polyakov loop.

  10. Dynamical scattering in coherent hard x-ray nanobeam Bragg diffraction

    NASA Astrophysics Data System (ADS)

    Pateras, A.; Park, J.; Ahn, Y.; Tilka, J. A.; Holt, M. V.; Kim, H.; Mawst, L. J.; Evans, P. G.

    2018-06-01

    Unique intensity features arising from dynamical diffraction arise in coherent x-ray nanobeam diffraction patterns of crystals having thicknesses larger than the x-ray extinction depth or exhibiting combinations of nanoscale and mesoscale features. We demonstrate that dynamical scattering effects can be accurately predicted using an optical model combined with the Darwin theory of dynamical x-ray diffraction. The model includes the highly divergent coherent x-ray nanobeams produced by Fresnel zone plate focusing optics and accounts for primary extinction, multiple scattering, and absorption. The simulation accurately reproduces the dynamical scattering features of experimental diffraction patterns acquired from a GaAs/AlGaAs epitaxial heterostructure on a GaAs (001) substrate.

  11. ΛcN interaction from lattice QCD and its application to Λc hypernuclei

    NASA Astrophysics Data System (ADS)

    Miyamoto, Takaya; Aoki, Sinya; Doi, Takumi; Gongyo, Shinya; Hatsuda, Tetsuo; Ikeda, Yoichi; Inoue, Takashi; Iritani, Takumi; Ishii, Noriyoshi; Kawai, Daisuke; Murano, Keiko; Nemura, Hidekatsu; Sasaki, Kenji

    2018-03-01

    The interaction between Λc and a nucleon (N) is investigated by employing the HAL QCD method in the (2 + 1)-flavor lattice QCD on a (2.9fm) 3 volume at mπ ≃ 410 , 570 , 700 MeV. We study the central potential in S10 channel as well as central and tensor potentials in S31-3D1 channel, and find that the tensor potential for Λc N is negligibly weak and central potentials in both S10 and S31-3D1 channels are almost identical with each other except at short distances. Phase shifts and scattering lengths calculated with these potentials show that the interaction of Λc N system is attractive and has a similar strength in S10 and S31 channels at low energies (i.e. the kinetic energy less than about 40 MeV). While the attractions are not strong enough to form two-body bound states, our results lead to a possibility to form Λc hypernuclei for sufficiently large atomic numbers (A). To demonstrate this, we derive a single-folding potential for Λc hypernuclei from the Λc-nucleon potential obtained in lattice QCD, and find that Λc hypernuclei can exist for A ≥ 12 with the binding energies of a few MeV. We also estimate the Coulomb effect for the Λc hypernuclei.

  12. Hadronic light-by-light scattering contribution to the muon g - 2 on the lattice

    NASA Astrophysics Data System (ADS)

    Asmussen, Nils; Gérardin, Antoine; Green, Jeremy; Gryniuk, Oleksii; von Hippel, Georg; Meyer, Harvey B.; Nyffeler, Andreas; Pascalutsa, Vladimir; Wittig, Hartmut

    2018-05-01

    We briefly review several activities at Mainz related to hadronic light-by-light scattering (HLbL) using lattice QCD. First we present a position-space approach to the HLbL contribution in the muon g̅2, where we focus on exploratory studies of the pion-pole contribution in a simple model and the lepton loop in QED in the continuum and in infinite volume. The second part describes a lattice calculation of the double-virtual pion transition form factor Fπ0γ*γ* (q21; q21) in the spacelike region with photon virtualities up to 1.5 GeV2 which paves the way for a lattice calculation of the pion-pole contribution to HLbL. The third topic involves HLbL forward scattering amplitudes calculated in lattice QCD which can be described, using dispersion relations (HLbL sum rules), by γ*γ* → hadrons fusion cross sections and then compared with phenomenological models.

  13. Two-loop hard-thermal-loop thermodynamics with quarks

    NASA Astrophysics Data System (ADS)

    Andersen, Jens O.; Petitgirard, Emmanuel; Strickland, Michael

    2004-08-01

    We calculate the quark contribution to the free energy of a hot quark-gluon plasma to two-loop order using hard-thermal-loop (HTL) perturbation theory. All ultraviolet divergences can be absorbed into renormalizations of the vacuum energy and the HTL quark and gluon mass parameters. The quark and gluon HTL mass parameters are determined self-consistently by a variational prescription. Combining the quark contribution with the two-loop HTL perturbation theory free energy for pure glue we obtain the total two-loop QCD free energy. Comparisons are made with lattice estimates of the free energy for Nf=2 and with exact numerical results obtained in the large-Nf limit.

  14. QCDNUM: Fast QCD evolution and convolution

    NASA Astrophysics Data System (ADS)

    Botje, M.

    2011-02-01

    The QCDNUM program numerically solves the evolution equations for parton densities and fragmentation functions in perturbative QCD. Un-polarised parton densities can be evolved up to next-to-next-to-leading order in powers of the strong coupling constant, while polarised densities or fragmentation functions can be evolved up to next-to-leading order. Other types of evolution can be accessed by feeding alternative sets of evolution kernels into the program. A versatile convolution engine provides tools to compute parton luminosities, cross-sections in hadron-hadron scattering, and deep inelastic structure functions in the zero-mass scheme or in generalised mass schemes. Input to these calculations are either the QCDNUM evolved densities, or those read in from an external parton density repository. Included in the software distribution are packages to calculate zero-mass structure functions in un-polarised deep inelastic scattering, and heavy flavour contributions to these structure functions in the fixed flavour number scheme. Program summaryProgram title: QCDNUM version: 17.00 Catalogue identifier: AEHV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU Public Licence No. of lines in distributed program, including test data, etc.: 45 736 No. of bytes in distributed program, including test data, etc.: 911 569 Distribution format: tar.gz Programming language: Fortran-77 Computer: All Operating system: All RAM: Typically 3 Mbytes Classification: 11.5 Nature of problem: Evolution of the strong coupling constant and parton densities, up to next-to-next-to-leading order in perturbative QCD. Computation of observable quantities by Mellin convolution of the evolved densities with partonic cross-sections. Solution method: Parametrisation of the parton densities as linear or quadratic splines on a discrete grid, and evolution of the spline

  15. Nucleon QCD sum rules in the instanton medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryskin, M. G.; Drukarev, E. G., E-mail: drukarev@pnpi.spb.ru; Sadovnikova, V. A.

    2015-09-15

    We try to find grounds for the standard nucleon QCD sum rules, based on a more detailed description of the QCD vacuum. We calculate the polarization operator of the nucleon current in the instanton medium. The medium (QCD vacuum) is assumed to be a composition of the small-size instantons and some long-wave gluon fluctuations. We solve the corresponding QCD sum rule equations and demonstrate that there is a solution with the value of the nucleon mass close to the physical one if the fraction of the small-size instantons contribution is w{sub s} ≈ 2/3.

  16. New Methods in Non-Perturbative QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unsal, Mithat

    2017-01-31

    In this work, we investigate the properties of quantum chromodynamics (QCD), by using newly developing mathematics and physics formalisms. Almost all of the mass in the visible universe emerges from a quantum chromodynamics (QCD), which has a completely negligible microscopic mass content. An intimately related issue in QCD is the quark confinement problem. Answers to non-perturbative questions in QCD remained largely elusive despite much effort over the years. It is also believed that the usual perturbation theory is inadequate to address these kinds of problems. Perturbation theory gives a divergent asymptotic series (even when the theory is properly renormalized), andmore » there are non-perturbative phenomena which never appear at any order in perturbation theory. Recently, a fascinating bridge between perturbation theory and non-perturbative effects has been found: a formalism called resurgence theory in mathematics tells us that perturbative data and non-perturbative data are intimately related. Translating this to the language of quantum field theory, it turns out that non-perturbative information is present in a coded form in perturbation theory and it can be decoded. We take advantage of this feature, which is particularly useful to understand some unresolved mysteries of QCD from first principles. In particular, we use: a) Circle compactifications which provide a semi-classical window to study confinement and mass gap problems, and calculable prototypes of the deconfinement phase transition; b) Resurgence theory and transseries which provide a unified framework for perturbative and non-perturbative expansion; c) Analytic continuation of path integrals and Lefschetz thimbles which may be useful to address sign problem in QCD at finite density.« less

  17. Study of dark matter and QCD-charged mediators in the quasidegenerate regime

    NASA Astrophysics Data System (ADS)

    Davidson, Andrew; Kelso, Chris; Kumar, Jason; Sandick, Pearl; Stengel, Patrick

    2017-12-01

    We study a scenario in which the only light new particles are a Majorana fermion dark matter candidate and one or more QCD-charged scalars, which couple to light quarks. This scenario has several interesting phenomenological features if the new particles are nearly degenerate in mass. In particular, LHC searches for the light scalars have reduced sensitivity, since the visible and invisible products tend to be softer. Moreover, dark matter-scalar coannihilation can allow even relatively heavy dark matter candidates to be consistent thermal relics. Finally, the dark matter nucleon scattering cross section is enhanced in the quasidegenerate limit, allowing direct detection experiments to use both spin-independent and spin-dependent scattering to probe regions of parameter space beyond those probed by the LHC. Although this scenario has a broad application, we phrase this study in terms of the minimal supersymmetric standard model, in the limit where the only light sparticles are a binolike dark matter candidate and light-flavored squarks.

  18. Remarks on the Phase Transition in QCD

    NASA Astrophysics Data System (ADS)

    Wilczek, Frank

    The significance of the question of the order of the phase transition in QCD, and recent evidence that real-world QCD is probably close to having a single second order transition as a function of temperature, is reviewed. Although this circumstance seems to remove the possibility that the QCD transition during the big bang might have had spectacular cosmological consequences, there is some good news: it allows highly non-trivial yet reliable quantitative predictions to be made for the behavior near the transition. These predictions can be tested in numerical simulations and perhaps even eventually in heavy ion collisions. The present paper is a very elementary discussion of the relevant concepts, meant to be an accessible introduction for those innocent of the renormalization group approach to critical phenomena and/or the details of QCD.

  19. Towards understanding Regge trajectories in holographic QCD

    NASA Astrophysics Data System (ADS)

    Catà, Oscar

    2007-05-01

    We reassess a work done by Migdal on the spectrum of low-energy vector mesons in QCD in the light of the anti-de Sitter (AdS)-QCD correspondence. Recently, a tantalizing parallelism was suggested between Migdal’s work and a family of holographic duals of QCD. Despite the intriguing similarities, both approaches face a major drawback: the spectrum is in conflict with well-tested Regge scaling. However, it has recently been shown that holographic duals can be modified to accommodate Regge behavior. Therefore, it is interesting to understand whether Regge behavior can also be achieved in Migdal’s approach. In this paper we investigate this issue. We find that Migdal’s approach, which is based on a modified Padé approximant, is closely related to the issue of quark-hadron duality breakdown in QCD.

  20. Deviation pattern approach for optimizing perturbative terms of QCD renormalization group invariant observables

    NASA Astrophysics Data System (ADS)

    Khellat, M. R.; Mirjalili, A.

    2017-03-01

    We first consider the idea of renormalization group-induced estimates, in the context of optimization procedures, for the Brodsky-Lepage-Mackenzie approach to generate higher-order contributions to QCD perturbative series. Secondly, we develop the deviation pattern approach (DPA) in which through a series of comparisons between lowerorder RG-induced estimates and the corresponding analytical calculations, one could modify higher-order RG-induced estimates. Finally, using the normal estimation procedure and DPA, we get estimates of αs4 corrections for the Bjorken sum rule of polarized deep-inelastic scattering and for the non-singlet contribution to the Adler function.

  1. Dyonic Flux Tube Structure of Nonperturbative QCD Vacuum

    NASA Astrophysics Data System (ADS)

    Chandola, H. C.; Pandey, H. C.

    We study the flux tube structure of the nonperturbative QCD vacuum in terms of its dyonic excitations by using an infrared effective Lagrangian and show that the dyonic condensation of QCD vacuum has a close connection with the process of color confinement. Using the fiber bundle formulation of QCD, the magnetic symmetry condition is presented in a gauge covariant form and the gauge potential has been constructed in terms of the magnetic vectors on global sections. The dynamical breaking of the magnetic symmetry has been shown to lead the dyonic condensation of QCD vacuum in the infrared energy sector. Deriving the asymptotic solutions of the field equations in the dynamically broken phase, the dyonic flux tube structure of QCD vacuum is explored which has been shown to lead the confinement parameters in terms of the vector and scalar mass modes of the condensed vacuum. Evaluating the charge quantum numbers and energy associated with the dyonic flux tube solutions, the effect of electric excitation of monopole is analyzed using the Regge slope parameter (as an input parameter) and an enhancement in the dyonic pair correlations and the confining properties of QCD vacuum in its dyonically condensed mode has been demonstrated.

  2. Ambient Scattering from Ring-Symmetric Spacecraft Exhaust Plume.

    DTIC Science & Technology

    1987-04-01

    spacecraft is shielded from ambient scattering by its own plume. Assuming hard- speres collisions, the first-collision model is given by a simple...may change upon replacing the hard- speres approximation by a more realistic collision model. A possible modification of spacecraft charging by the

  3. QCD tests in $$p\\bar{p}$$ collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huth, John E.; Mangano, Michelangelo L.

    1993-02-01

    We review the status of QCD tests in high energy p-pbar collisions. Contents: i) Introduction ii) QCD in Hadronic Collisions iii) Jet Production iv) Heavy Flavour Production v) W and Z Production vi) Direct Photons.

  4. Vortical susceptibility of finite-density QCD matter

    DOE PAGES

    Aristova, A.; Frenklakh, D.; Gorsky, A.; ...

    2016-10-07

    Here, the susceptibility of finite-density QCD matter to vorticity is introduced, as an analog of magnetic susceptibility. It describes the spin polarization of quarks and antiquarks in finite-density QCD matter induced by rotation. We estimate this quantity in the chirally broken phase using the mixed gauge-gravity anomaly at finite baryon density. It is proposed that the vortical susceptibility of QCD matter is responsible for the polarization of Λ and Λ¯ hyperons observed recently in heavy ion collisions at RHIC by the STAR collaboration.

  5. Baryon interactions from lattice QCD with physical masses — strangeness S = -1 sector —

    NASA Astrophysics Data System (ADS)

    Nemura, Hidekatsu; Aoki, Sinya; Doi, Takumi; Gongyo, Shinya; Hatsuda, Tetsuo; Ikeda, Yoichi; Inoue, Takashi; Iritani, Takumi; Ishii, Noriyoshi; Miyamoto, Takaya; Sasaki, Kenji

    2018-03-01

    We present our recent results of baryon interactions with strangeness S = -1 based on Nambu-Bethe-Salpeter (NBS) correlation functions calculated fromlattice QCD with almost physical quark masses corresponding to (mk,mk) ≈ (146, 525) MeV and large volume (La)4 ≈ (96a)4 ≈ (8.1 fm)4. In order to perform a comprehensive study of baryon interactions, a large number of NBS correlation functions from NN to ΞΞ are calculated simultaneously by using large scale computer resources. In this contribution, we focus on the strangeness S = -1 channels of the hyperon interactions by means of HAL QCD method. Four sets of three potentials (the 3S1 - 3 D1 central, 3S1 - 3 D1 tensor, and the 1S0 central potentials) are presented for the ∑N - ∑N (the isospin I = 3/2) diagonal, the ∧N - ∧N diagonal, the ∧N → ∑N transition, and the ∑N - ∑N (I = 1/2) diagonal interactions. Scattering phase shifts for ∑N (I = 3/2) system are presented.

  6. AdS/QCD and Light Front Holography: A New Approximation to QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodsky, Stanley J.; de Teramond, Guy

    2010-02-15

    The combination of Anti-de Sitter space (AdS) methods with light-front holography leads to a semi-classical first approximation to the spectrum and wavefunctions of meson and baryon light-quark bound states. Starting from the bound-state Hamiltonian equation of motion in QCD, we derive relativistic light-front wave equations in terms of an invariant impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron at equal light-front time. These equations of motion in physical space-time are equivalent to the equations of motion which describe the propagation of spin-J modes in anti-de Sitter (AdS) space. Its eigenvalues give themore » hadronic spectrum, and its eigenmodes represent the probability distribution of the hadronic constituents at a given scale. Applications to the light meson and baryon spectra are presented. The predicted meson spectrum has a string-theory Regge form M{sup 2} = 4{kappa}{sup 2}(n+L+S/2); i.e., the square of the eigenmass is linear in both L and n, where n counts the number of nodes of the wavefunction in the radial variable {zeta}. The space-like pion form factor is also well reproduced. One thus obtains a remarkable connection between the description of hadronic modes in AdS space and the Hamiltonian formulation of QCD in physical space-time quantized on the light-front at fixed light-front time {tau}. The model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method in order to systematically include the QCD interaction terms.« less

  7. Investigation of the leading and subleading high-energy behavior of hadron-hadron total cross sections using a best-fit analysis of hadronic scattering data

    NASA Astrophysics Data System (ADS)

    Giordano, M.; Meggiolaro, E.; Silva, P. V. R. G.

    2017-08-01

    In the present investigation we study the leading and subleading high-energy behavior of hadron-hadron total cross sections using a best-fit analysis of hadronic scattering data. The parametrization used for the hadron-hadron total cross sections at high energy is inspired by recent results obtained by Giordano and Meggiolaro [J. High Energy Phys. 03 (2014) 002, 10.1007/JHEP03(2014)002] using a nonperturbative approach in the framework of QCD, and it reads σtot˜B ln2s +C ln s ln ln s . We critically investigate if B and C can be obtained by means of best-fits to data for proton-proton and antiproton-proton scattering, including recent data obtained at the LHC, and also to data for other meson-baryon and baryon-baryon scattering processes. In particular, following the above-mentioned nonperturbative QCD approach, we also consider fits where the parameters B and C are set to B =κ Bth and C =κ Cth, where Bth and Cth are universal quantities related to the QCD stable spectrum, while κ (treated as an extra free parameter) is related to the asymptotic value of the ratio σel/σtot. Different possible scenarios are then considered and compared.

  8. Lattice analysis for the energy scale of QCD phenomena.

    PubMed

    Yamamoto, Arata; Suganuma, Hideo

    2008-12-12

    We formulate a new framework in lattice QCD to study the relevant energy scale of QCD phenomena. By considering the Fourier transformation of link variable, we can investigate the intrinsic energy scale of a physical quantity nonperturbatively. This framework is broadly available for all lattice QCD calculations. We apply this framework for the quark-antiquark potential and meson masses in quenched lattice QCD. The gluonic energy scale relevant for the confinement is found to be less than 1 GeV in the Landau or Coulomb gauge.

  9. θ and the η ' in large N supersymmetric QCD

    DOE PAGES

    Dine, Michael; Draper, Patrick; Stephenson-Haskins, Laurel; ...

    2017-05-22

    Here, we study the large N θ dependence and the η' potential in supersymmetric QCD with small soft SUSY-breaking terms. Known exact results in SUSY QCD are found to reflect a variety of expectations from large N perturbation theory, including the presence of branches and the behavior of theories with matter (both with N f << N and N f ~ N ). But, there are also striking departures from ordinary QCD and the conventional large N description: instanton effects, when under control, are not exponentially suppressed at large N , and branched structure in supersymmetric QCD is always associatedmore » with approximate discrete symmetries. We suggest that these differences motivate further study of large N QCD on the lattice.« less

  10. Measurement of the hadronic final state in deep inelastic scattering at HERA

    NASA Astrophysics Data System (ADS)

    Ahmed, T.; Andreev, V.; Andrieu, B.; Arpagaus, M.; Babaev, A.; Bärwolff, H.; Bán, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Bassler, U.; Beck, G. A.; Beck, H. P.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bergstein, H.; Bernardi, G.; Bernet, R.; Berthon, U.; Bertrand-Coremans, G.; Besançon, M.; Biddulph, P.; Binder, E.; Bizot, J. C.; Blobel, V.; Borras, K.; Bosetti, P. C.; Boudry, V.; Bourdarios, C.; Brasse, F.; Braun, U.; Braunschweig, W.; Brisson, V.; Bruncko, D.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Buschhorn, G.; Campbell, A. J.; Carli, T.; Charles, F.; Clarke, D.; Clegg, A. B.; Colombo, M.; Coughlan, J. A.; Courau, A.; Coutures, Ch.; Cozzika, G.; Criegee, L.; Cvach, J.; Dainton, J. B.; Danilov, M.; Dann, A. W. E.; Dau, W. D.; David, M.; Deffur, E.; Delcourt, B.; Del Buono, L.; Devel, M.; De Roeck, A.; Dingus, P.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Drescher, A.; Duboc, J.; Düllmann, D.; Dünger, O.; Duhm, H.; Eberle, M.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichenberger, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellis, N. N.; Ellison, R. J.; Elsen, E.; Erdmann, M.; Evrard, E.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Feng, Y.; Fensome, I. F.; Ferencei, J.; Ferrarotto, F.; Flauger, W.; Fleischer, M.; Flower, P. S.; Flügge, G.; Fomenko, A.; Fominykh, B.; Forbush, M.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Fuhrmann, P.; Gabathuler, E.; Gamerdinger, K.; Garvey, J.; Gayler, J.; Gellrich, A.; Gennis, M.; Gensch, U.; Genzel, H.; Gerhards, R.; Gillespie, D.; Godfrey, L.; Goerlach, U.; Goerlich, L.; Goldberg, M.; Goodall, A. M.; Gorelov, I.; Goritchev, P.; Grab, C.; Grässler, H.; Grässler, R.; Greenshaw, T.; Greif, H.; Grindhammer, G.; Gruber, C.; Haack, J.; Haidt, D.; Hajduk, L.; Hamon, O.; Handschuh, D.; Hanlon, E. M.; Hapke, M.; Haries, J.; Hartz, P.; Haydar, R.; Haynes, W. J.; Heatherington, J.; Hedberg, V.; Hedgecock, R.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herma, R.; Herynek, I.; Hildesheim, W.; Hill, P.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Huet, Ph.; Hufnagel, H.; Huot, N.; Ibbotson, M.; Jabiol, M. A.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Jöhnsson, L.; Johannsen, K.; Johnson, D. P.; Johnson, L.; Jung, H.; Kalmus, P. I. P.; Kasarian, S.; Kaschowitz, R.; Kasselmann, P.; Kathage, U.; Kaufmann, H. H.; Kenyon, I. R.; Kermiche, S.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Köhler, T.; Kolanoski, H.; Kole, F.; Kolya, S. D.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Krüger, U.; Kubenka, J. P.; Küster, H.; Kuhlen, M.; Kurça, T.; Kurzhöfer, J.; Kuznik, B.; Lander, R.; London, M. P. J.; Langkau, R.; Lanius, P.; Laporte, J. F.; Lebedev, A.; Lebedev, A.; Leuschner, A.; Leverenz, C.; Levin, D.; Levonian, S.; Ley, Ch.; Lindner, A.; Lindström, G.; Loch, P.; Lohmander, H.; Lopez, G. C.; Lüers, D.; Magnussen, N.; Malinovski, E.; Mani, S.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Masson, S.; Mavroidis, A.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Merz, T.; Meyer, C. A.; Meyer, H.; Meyer, J.; Mikocki, S.; Milone, V.; Monnier, E.; Moreau, F.; Moreels, J.; Morris, J. V.; Morton, J. M.; Müller, K.; Murín, P.; Murray, S. A.; Nagovizin, V.; Naroska, B.; Naumann, Th.; Newton, D.; Nguyen, H. K.; Niebergall, F.; Nisius, R.; Nowak, G.; Noyes, G. W.; Nyberg, M.; Oberlack, H.; Obrock, U.; Olsson, J. E.; Orenstein, S.; Ould-Saada, F.; Pascaud, C.; Patel, G. D.; Peppel, E.; Peters, S.; Phillips, H. T.; Phillips, J. P.; Pichler, Ch.; Pilgram, W.; Pitzl, D.; Prosi, R.; Raupach, F.; Rauschnabel, K.; Reimer, P.; Ribarics, P.; Riech, V.; Riedlberger, J.; Rietz, M.; Robertson, S. M.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Royon, C.; Rudowicz, M.; Ruffer, M.; Rusakov, S.; Rybicki, K.; Ryseck, E.; Sacton, J.; Sahlmann, N.; Sanchez, E.; Sankey, D. P. C.; Savitsky, M.; Schacht, P.; Schleper, P.; von Schlippe, W.; Schmidt, C.; Schmidt, D.; Schmitz, W.; Schröder, V.; Schulz, M.; Schwind, A.; Scobel, W.; Seehausen, U.; Sell, R.; Seman, M.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shooshtari, H.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Smith, J. R.; Smolik, L.; Soloviev, Y.; Spitzer, H.; Staroba, P.; Steenbock, M.; Steffen, P.; Steinberg, R.; Steiner, H.; Stella, B.; Stephens, K.; Stier, J.; Strachota, J.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Taylor, R. E.; Thompson, G.; Thompson, R. J.; Tichomirov, I.; Trenkel, C.; Truöl, P.; Tchernyshov, V.; Turnau, J.; Tutas, J.; Urban, L.; Usik, A.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Esch, P.; Vartapetian, A.; Vazdik, Y.; Vecko, M.; Verrecchia, P.; Vick, R.; Villet, G.; Vogel, E.; Wacker, K.; Walker, I. W.; Walther, A.; Weber, G.; Wegener, D.; Wegner, A.; Wellisch, H. P.; Willard, S.; Winde, M.; Winter, G.-G.; Wolff, Th.; Womersley, L. A.; Wright, A. E.; Wulff, N.; Yiou, T. P.; Ząçek, J.; Závada, P.; Zeitnitz, C.; Ziaeepour, H.; Zimmer, M.; Zimmermann, W.; Zomer, F.; H1 Collaboration

    1993-01-01

    We report on the first experimental study of the hadronic final state in deep inelastic electron-proton scattering with the H1 detector at HERA. Energy flow and transverse momentum characteristics are measured and presented both in the laboratory and in the hadronic center of mass frames. Comparison is made with QCD models distinguished by their different treatment of parton emission.

  11. Update on ɛK with lattice QCD inputs

    NASA Astrophysics Data System (ADS)

    Jang, Yong-Chull; Lee, Weonjong; Lee, Sunkyu; Leem, Jaehoon

    2018-03-01

    We report updated results for ɛK, the indirect CP violation parameter in neutral kaons, which is evaluated directly from the standard model with lattice QCD inputs. We use lattice QCD inputs to fix B\\hatk,|Vcb|,ξ0,ξ2,|Vus|, and mc(mc). Since Lattice 2016, the UTfit group has updated the Wolfenstein parameters in the angle-only-fit method, and the HFLAV group has also updated |Vcb|. Our results show that the evaluation of ɛK with exclusive |Vcb| (lattice QCD inputs) has 4.0σ tension with the experimental value, while that with inclusive |Vcb| (heavy quark expansion based on OPE and QCD sum rules) shows no tension.

  12. Recent development in lattice QCD studies for three-nucleon forces

    NASA Astrophysics Data System (ADS)

    Doi, Takumi; HAL QCD Collaboration

    2014-09-01

    The direct determination of nuclear forces from QCD has been one of the most desirable challenges in nuclear physics. Recently, a first-principles lattice QCD determination is becoming possible by a novel theoretical method, HAL QCD method, in which Nambu-Bethe-Salpeter (NBS) wave functions are utilized. In this talk, I will focus on the study of three-nucleon forces in HAL QCD method by presenting the recent theoretical/numerical development.

  13. HERAFitter: Open source QCD fit project

    DOE PAGES

    Alekhin, S.; Behnke, O.; Belov, P.; ...

    2015-07-01

    HERAFitter is an open-source package that provides a framework for the determination of the parton distribution functions (PDFs) of the proton and for many different kinds of analyses in Quantum Chromodynamics (QCD). It encodes results from a wide range of experimental measurements in lepton-proton deep inelastic scattering and proton-proton (proton-antiproton) collisions at hadron colliders. These are complemented with a variety of theoretical options for calculating PDF-dependent cross section predictions corresponding to the measurements. The framework covers a large number of the existing methods and schemes used for PDF determination. The data and theoretical predictions are brought together through numerous methodologicalmore » options for carrying out PDF fits and plotting tools to help visualise the results. While primarily based on the approach of collinear factorisation, HERAFitter also provides facilities for fits of dipole models and transverse-momentum dependent PDFs. The package can be used to study the impact of new precise measurements from hadron colliders. This paper describes the general structure of HERAFitter and its wide choice of options.« less

  14. QCD evolution of the Sivers function

    NASA Astrophysics Data System (ADS)

    Aybat, S. M.; Collins, J. C.; Qiu, J. W.; Rogers, T. C.

    2012-02-01

    We extend the Collins-Soper-Sterman (CSS) formalism to apply it to the spin dependence governed by the Sivers function. We use it to give a correct numerical QCD evolution of existing fixed-scale fits of the Sivers function. With the aid of approximations useful for the nonperturbative region, we present the results as parametrizations of a Gaussian form in transverse-momentum space, rather than in the Fourier conjugate transverse coordinate space normally used in the CSS formalism. They are specifically valid at small transverse momentum. Since evolution has been applied, our results can be used to make predictions for Drell-Yan and semi-inclusive deep inelastic scattering at energies different from those where the original fits were made. Our evolved functions are of a form that they can be used in the same parton-model factorization formulas as used in the original fits, but now with a predicted scale dependence in the fit parameters. We also present a method by which our evolved functions can be corrected to allow for twist-3 contributions at large parton transverse momentum.

  15. QCD on the BlueGene/L Supercomputer

    NASA Astrophysics Data System (ADS)

    Bhanot, G.; Chen, D.; Gara, A.; Sexton, J.; Vranas, P.

    2005-03-01

    In June 2004 QCD was simulated for the first time at sustained speed exceeding 1 TeraFlops in the BlueGene/L supercomputer at the IBM T.J. Watson Research Lab. The implementation and performance of QCD in the BlueGene/L is presented.

  16. Dimensional Transmutation by Monopole Condensation in QCD

    NASA Astrophysics Data System (ADS)

    Cho, Y. M.

    2015-01-01

    The dimensional transmutation by the monopole condensation in QCD is reviewed. Using Abelian projection of the gauge potential which projects out the monopole potential gauge independently, we we show that there are two types of gluons: the color neutral binding gluons which plays the role of the confining agent and the colored valence gluons which become confined prisoners. With this we calculate the one-loop QCD effective potential and show the monopole condensation becomes the true vacuum of QCD. We propose to test the existence of two types of gluons experimentally by re-analyzing the existing gluon jets data.

  17. Determination of baryon-baryon elastic scattering phase shift from finite volume spectra in elongated boxes

    NASA Astrophysics Data System (ADS)

    Li, Ning; Wu, Ya-Jie; Liu, Zhan-Wei

    2018-01-01

    The relations between the baryon-baryon elastic scattering phase shifts and the two-particle energy spectrum in the elongated box are established. We studied the cases with both the periodic boundary condition and twisted boundary condition in the center of mass frame. The framework is also extended to the system of nonzero total momentum with periodic boundary condition in the moving frame. Moreover, we discussed the sensitivity functions σ (q ) that represent the sensitivity of higher scattering phases. Our analytical results will be helpful to extract the baryon-baryon elastic scattering phase shifts in the continuum from lattice QCD data by using elongated boxes.

  18. Design and Tests of the Hard X-Ray Polarimeter X-Calibur

    NASA Technical Reports Server (NTRS)

    Beilicke, M.; Binns, W. R.; Buckley, J.; Cowsik, R.; Dowkontt, P.; Garson, A.; Guo, Q.; Israel, M. H.; Lee, K.; Krawczynski, H.; hide

    2011-01-01

    X-ray polarimetry promises to give new information about high-energy astrophysical sources, such as binary black hole systems, micro-quasars, active galactic nuclei, and gamma-ray bursts. We designed, built and tested a hard X-ray polarimeter X-Calibur to be used in the focal plane of the InFOC(mu)S grazing incidence hard X-ray telescope. X-Calibur combines a low-Z Compton scatterer with a CZT detector assembly to measure the polarization of 10-80 keV X-rays making use of the fact that polarized photons Compton scatter preferentially perpendicular to the electric field orientation. X-Calibur achieves a high detection efficiency of order unity.

  19. Design and Tests of the Hard X-Ray Polarimeter X-Calibur

    NASA Technical Reports Server (NTRS)

    Beilicke, M.; Baring, M. G.; Barthelmy, S.; Binns, W. R.; Buckley, J.; Cowsik, R.; Dowkontt, P.; Garson, A.; Guo, Q.; Haba, Y.; hide

    2012-01-01

    X-ray polarimetry promises to give qualitatively new information about high-energy astrophysical sources, such as binary black hole systems, micro-quasars, active galactic nuclei, and gamma-ray bursts. We designed, built and tested a hard X-ray polarimeter X-Calibur to be used in the focal plane of the InFOC(mu)S grazing incidence hard X-ray telescope. X-Calibur combines a low-Z Compton scatterer with a CZT detector assembly to measure the polarization of 10 - 80 keY X-rays making use of the fact that polarized photons Compton scatter preferentially perpendicular to the electric field orientation. X-Calibur achieves a high detection efficiency of order unity.

  20. Limits on transverse momentum dependent evolution from semi-inclusive deep inelastic scattering at moderate Q

    NASA Astrophysics Data System (ADS)

    Aidala, C. A.; Field, B.; Gamberg, L. P.; Rogers, T. C.

    2014-05-01

    In the QCD evolution of transverse momentum dependent parton distribution and fragmentation functions, the Collins-Soper evolution kernel includes both a perturbative short-distance contribution and a large-distance nonperturbative, but strongly universal, contribution. In the past, global fits, based mainly on larger Q Drell-Yan-like processes, have found substantial contributions from nonperturbative regions in the Collins-Soper evolution kernel. In this article, we investigate semi-inclusive deep inelastic scattering measurements in the region of relatively small Q, of the order of a few GeV, where sensitivity to nonperturbative transverse momentum dependence may become more important or even dominate the evolution. Using recently available deep inelastic scattering data from the COMPASS experiment, we provide estimates of the regions of coordinate space that dominate in transverse momentum dependent (TMD) processes when the hard scale is of the order of only a few GeV. We find that distance scales that are much larger than those commonly probed in large Q measurements become important, suggesting that the details of nonperturbative effects in TMD evolution are especially significant in the region of intermediate Q. We highlight the strongly universal nature of the nonperturbative component of evolution and its potential to be tightly constrained by fits from a wide variety of observables that include both large and moderate Q. On this basis, we recommend detailed treatments of the nonperturbative component of the Collins-Soper evolution kernel for future TMD studies.

  1. Hard Photodisintegration of 3He

    NASA Astrophysics Data System (ADS)

    Granados, Carlos

    2011-02-01

    Large angle photodisintegration of two nucleons from the 3He nucleus is studied within the framework of the hard rescattering model (HRM). In the HRM the incoming photon is absorbed by one nucleon's valence quark that then undergoes a hard rescattering reaction with a valence quark from the second nucleon producing two nucleons emerging at large transverse momentum . Parameter free cross sections for pp and pn break up channels are calculated through the input of experimental cross sections on pp and pn elastic scattering. The calculated cross section for pp breakup and its predicted energy dependency are in good agreement with recent experimental data. Predictions on spectator momentum distributions and helicity transfer are also presented.

  2. QCD dipole model and k T factorization

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Navelet, H.; Peschanski, R.

    2001-01-01

    It is shown that the colour dipole approach to hard scattering at high energy is fully compatible with k T factorization at the leading logarithm approximation (in - logx Bj). The relations between the dipole amplitudes and unintegrated diagonal and non-diagonal gluon distributions are given. It is also shown that including the exact gluon kinematics in the k T factorization formula destroys the conservation of transverse position vectors and thus is incompatible with the dipole model for both elastic and diffractive amplitudes.

  3. Going Beyond QCD in Lattice Gauge Theory

    NASA Astrophysics Data System (ADS)

    Fleming, G. T.

    2011-01-01

    Strongly coupled gauge theories (SCGT's) have been studied theoretically for many decades using numerous techniques. The obvious motivation for these efforts stemmed from a desire to understand the source of the strong nuclear force: Quantum Chromo-dynamics (QCD). Guided by experimental results, theorists generally consider QCD to be a well-understood SCGT. Unfortunately, it is not clear how to extend the lessons learned from QCD to other SCGT's. Particularly urgent motivators for new studies of other SCGT's are the ongoing searches for physics beyond the standard model (BSM) at the Large Hadron Collider (LHC) and the Tevatron. Lattice gauge theory (LGT) is a technique for systematically-improvable calculations in many SCGT's. It has become the standard for non-perturbative calculations in QCD and it is widely believed that it may be useful for study of other SCGT's in the realm of BSM physics. We will discuss the prospects and potential pitfalls for these LGT studies, focusing primarily on the flavor dependence of SU(3) gauge theory.

  4. The Top Quark, QCD, And New Physics.

    DOE R&D Accomplishments Database

    Dawson, S.

    2002-06-01

    The role of the top quark in completing the Standard Model quark sector is reviewed, along with a discussion of production, decay, and theoretical restrictions on the top quark properties. Particular attention is paid to the top quark as a laboratory for perturbative QCD. As examples of the relevance of QCD corrections in the top quark sector, the calculation of e{sup+}e{sup -}+ t{bar t} at next-to-leading-order QCD using the phase space slicing algorithm and the implications of a precision measurement of the top quark mass are discussed in detail. The associated production of a t{bar t} pair and a Higgs boson in either e{sup+}e{sup -} or hadronic collisions is presented at next-to-leading-order QCD and its importance for a measurement of the top quark Yulrawa coupling emphasized. Implications of the heavy top quark mass for model builders are briefly examined, with the minimal supersymmetric Standard Model and topcolor discussed as specific examples.

  5. Transverse momentum-dependent parton distribution functions from lattice QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael Engelhardt, Philipp Haegler, Bernhard Musch, John Negele, Andreas Schaefer

    Transverse momentum-dependent parton distributions (TMDs) relevant for semi-inclusive deep inelastic scattering (SIDIS) and the Drell-Yan process can be defined in terms of matrix elements of a quark bilocal operator containing a staple-shaped Wilson connection. Starting from such a definition, a scheme to determine TMDs in lattice QCD is developed and explored. Parametrizing the aforementioned matrix elements in terms of invariant amplitudes permits a simple transformation of the problem to a Lorentz frame suited for the lattice calculation. Results for the Sivers and Boer-Mulders transverse momentum shifts are obtained using ensembles at the pion masses 369MeV and 518MeV, focusing in particularmore » on the dependence of these shifts on the staple extent and a Collins-Soper-type evolution parameter quantifying proximity of the staples to the light cone.« less

  6. Measurement of hadronic azimuthal distributions in deep inelastic muon proton scattering

    NASA Astrophysics Data System (ADS)

    Aubert, J. J.; Bassompierre, G.; Becks, K. H.; Benchouk, C.; Best, C.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Broll, C.; Brown, S.; Carr, J.; Clifft, R. W.; Cobb, J. H.; Coignet, G.; Combley, F.; Court, G. R.; D'Agostini, G.; Dau, W. D.; Davies, J. K.; Déclais, Y.; Dobinson, R. W.; Dosselli, U.; Drees, J.; Edwards, A.; Edwards, M.; Favier, J.; Ferrero, M. I.; Flauger, W.; Forsbach, H.; Gabathuler, E.; Gamet, R.; Gayler, J.; Gerhardt, V.; Gössling, C.; Gregory, P.; Haas, J.; Hamacher, K.; Hayman, P.; Henckes, M.; Korbel, V.; Landgraf, U.; Leenen, M.; Maire, M.; Minssieux, H.; Mohr, W.; Montgomery, H. E.; Moser, K.; Mount, R. P.; Nagy, E.; Nassalski, J.; Norton, P. R.; McNicholas, J.; Osborne, A. M.; Pavel, N.; Payre, P.; Peroni, C.; Pessard, H.; Pietrzyk, U.; Rith, K.; Schneegans, M.; Schneider, A.; Sloan, T.; Stier, H. E.; Stockhausen, W.; Thénard, J. M.; Thompson, J. C.; Urban, L.; Villers, M.; Wahlen, H.; Whalley, M.; Williams, D.; Williams, W. S. C.; Williamson, J.; Wimpenny, S. J.; European Muon Collaboration

    1983-10-01

    Results on moments of the azimuthal angle ϕ of final state hadrons from 120 GeV and 280 GeV μp scattering are presented. A ϕ asymmetry is observed and its W2, Q2, z and pT dependences compared with model calculations which include intrinsic transverse momentum and first order QCD corrections. These studies indicate that the observed asymmetry is mainly due to intrinsic transverse momentum kT.

  7. Recent QCD Studies at the Tevatron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Group, Robert Craig

    2008-04-01

    Since the beginning of Run II at the Fermilab Tevatron the QCD physics groups of the CDF and D0 experiments have worked to reach unprecedented levels of precision for many QCD observables. Thanks to the large dataset--over 3 fb{sup -1} of integrated luminosity recorded by each experiment--important new measurements have recently been made public and will be summarized in this paper.

  8. Archeology and evolution of QCD

    NASA Astrophysics Data System (ADS)

    De Rújula, A.

    2017-03-01

    These are excerpts from the closing talk at the "XIIth Conference on Quark Confinement and the Hadron Spectrum", which took place last Summer in Thessaloniki -an excellent place to enjoy an interest in archeology. A more complete personal view of the early days of QCD and the rest of the Standard Model is given in [1]. Here I discuss a few of the points which -to my judgement- illustrate well the QCD evolution (in time), both from a scientific and a sociological point of view.

  9. Final-state interaction and B-->KK decays in perturbative QCD

    NASA Astrophysics Data System (ADS)

    Chen, Chuan-Hung; Li, Hsiang-Nan

    2001-01-01

    We predict the branching ratios and CP asymmetries of the B-->KK decays using the perturbative QCD factorization theorem, in which tree, penguin, and annihilation contributions, including both factorizable and nonfactorizable ones, are expressed as convolutions of hard six-quark amplitudes with universal meson wave functions. The unitarity angle φ3=90° and the B and K meson wave functions extracted from experimental data of the B-->Kπ and ππ decays are employed. Since the B-->KK decays are sensitive to final-state interaction effects, the comparision of our predictions with future data can test the neglect of these effects in the above formalism. The CP asymmetry in the B+/--->K+/-K0 modes and the B0d-->K+/-K-/+ branching ratios depend on annihilation and nonfactorizable amplitudes. The B-->KK data can also verify the evaluation of these contributions.

  10. The Role of Inverse Compton Scattering in Solar Coronal Hard X-Ray and γ-Ray Sources

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Bastian, T. S.

    2012-05-01

    Coronal hard X-ray (HXR) and continuum γ-ray sources associated with the impulsive phase of solar flares have been the subject of renewed interest in recent years. They have been interpreted in terms of thin-target, non-thermal bremsstrahlung emission. This interpretation has led to rather extreme physical requirements in some cases. For example, in one case, essentially all of the electrons in the source must be accelerated to non-thermal energies to account for the coronal HXR source. In other cases, the extremely hard photon spectra of the coronal continuum γ-ray emission suggest that the low-energy cutoff of the electron energy distribution lies in the MeV energy range. Here, we consider the role of inverse Compton scattering (ICS) as an alternate emission mechanism in both the ultra- and mildly relativistic regimes. It is known that relativistic electrons are produced during powerful flares; these are capable of upscattering soft photospheric photons to HXR and γ-ray energies. Previously overlooked is the fact that mildly relativistic electrons, generally produced in much greater numbers in flares of all sizes, can upscatter extreme-ultraviolet/soft X-ray photons to HXR energies. We also explore ICS on anisotropic electron distributions and show that the resulting emission can be significantly enhanced over an isotropic electron distribution for favorable viewing geometries. We briefly review results from bremsstrahlung emission and reconsider circumstances under which non-thermal bremsstrahlung or ICS would be favored. Finally, we consider a selection of coronal HXR and γ-ray events and find that in some cases the ICS is a viable alternative emission mechanism.

  11. QCD PHASE TRANSITIONS-VOLUME 15.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SCHAFER,T.

    1998-11-04

    The title of the workshop, ''The QCD Phase Transitions'', in fact happened to be too narrow for its real contents. It would be more accurate to say that it was devoted to different phases of QCD and QCD-related gauge theories, with strong emphasis on discussion of the underlying non-perturbative mechanisms which manifest themselves as all those phases. Before we go to specifics, let us emphasize one important aspect of the present status of non-perturbative Quantum Field Theory in general. It remains true that its studies do not get attention proportional to the intellectual challenge they deserve, and that the theoristsmore » working on it remain very fragmented. The efforts to create Theory of Everything including Quantum Gravity have attracted the lion share of attention and young talent. Nevertheless, in the last few years there was also a tremendous progress and even some shift of attention toward emphasis on the unity of non-perturbative phenomena. For example, we have seen some. efforts to connect the lessons from recent progress in Supersymmetric theories with that in QCD, as derived from phenomenology and lattice. Another example is Maldacena conjecture and related development, which connect three things together, string theory, super-gravity and the (N=4) supersymmetric gauge theory. Although the progress mentioned is remarkable by itself, if we would listen to each other more we may have chance to strengthen the field and reach better understanding of the spectacular non-perturbative physics.« less

  12. QCD Phase Transitions, Volume 15

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaefer, T.; Shuryak, E.

    1999-03-20

    The title of the workshop, ''The QCD Phase Transitions'', in fact happened to be too narrow for its real contents. It would be more accurate to say that it was devoted to different phases of QCD and QCD-related gauge theories, with strong emphasis on discussion of the underlying non-perturbative mechanisms which manifest themselves as all those phases. Before we go to specifics, let us emphasize one important aspect of the present status of non-perturbative Quantum Field Theory in general. It remains true that its studies do not get attention proportional to the intellectual challenge they deserve, and that the theoristsmore » working on it remain very fragmented. The efforts to create Theory of Everything including Quantum Gravity have attracted the lion share of attention and young talent. Nevertheless, in the last few years there was also a tremendous progress and even some shift of attention toward emphasis on the unity of non-perturbative phenomena. For example, we have seen some efforts to connect the lessons from recent progress in Supersymmetric theories with that in QCD, as derived from phenomenology and lattice. Another example is Maldacena conjecture and related development, which connect three things together, string theory, super-gravity and the (N=4) supersymmetric gauge theory. Although the progress mentioned is remarkable by itself, if we would listen to each other more we may have chance to strengthen the field and reach better understanding of the spectacular non-perturbative physics.« less

  13. QCD inequalities for hadron interactions.

    PubMed

    Detmold, William

    2015-06-05

    We derive generalizations of the Weingarten-Witten QCD mass inequalities for particular multihadron systems. For systems of any number of identical pseudoscalar mesons of maximal isospin, these inequalities prove that near threshold interactions between the constituent mesons must be repulsive and that no bound states can form in these channels. Similar constraints in less symmetric systems are also extracted. These results are compatible with experimental results (where known) and recent lattice QCD calculations, and also lead to a more stringent bound on the nucleon mass than previously derived, m_{N}≥3/2m_{π}.

  14. Gravitation waves from QCD and electroweak phase transitions

    NASA Astrophysics Data System (ADS)

    Chen, Yidian; Huang, Mei; Yan, Qi-Shu

    2018-05-01

    We investigate the gravitation waves produced from QCD and electroweak phase transitions in the early universe by using a 5-dimension holographic QCD model and a holographic technicolor model. The dynamical holographic QCD model is to describe the pure gluon system, where a first order confinement-deconfinement phase transition can happen at the critical temperature around 250 MeV. The minimal holographic technicolor model is introduced to model the strong dynamics of electroweak, it can give a first order electroweak phase transition at the critical temperature around 100-360 GeV. We find that for both GW signals produced from QCD and EW phase transitions, in the peak frequency region, the dominant contribution comes from the sound waves, while away from the peak frequency region the contribution from the bubble collision is dominant. The peak frequency of gravitation wave determined by the QCD phase transition is located around 10-7 Hz which is within the detectability of FAST and SKA, and the peak frequency of gravitational wave predicted by EW phase transition is located at 0.002 - 0.007 Hz, which might be detectable by BBO, DECIGO, LISA and ELISA.

  15. Disconnected Diagrams in Lattice QCD

    NASA Astrophysics Data System (ADS)

    Gambhir, Arjun Singh

    In this work, we present state-of-the-art numerical methods and their applications for computing a particular class of observables using lattice quantum chromodynamics (Lattice QCD), a discretized version of the fundamental theory of quarks and gluons. These observables require calculating so called "disconnected diagrams" and are important for understanding many aspects of hadron structure, such as the strange content of the proton. We begin by introducing the reader to the key concepts of Lattice QCD and rigorously define the meaning of disconnected diagrams through an example of the Wick contractions of the nucleon. Subsequently, the calculation of observables requiring disconnected diagrams is posed as the computationally challenging problem of finding the trace of the inverse of an incredibly large, sparse matrix. This is followed by a brief primer of numerical sparse matrix techniques that overviews broadly used methods in Lattice QCD and builds the background for the novel algorithm presented in this work. We then introduce singular value deflation as a method to improve convergence of trace estimation and analyze its effects on matrices from a variety of fields, including chemical transport modeling, magnetohydrodynamics, and QCD. Finally, we apply this method to compute observables such as the strange axial charge of the proton and strange sigma terms in light nuclei. The work in this thesis is innovative for four reasons. First, we analyze the effects of deflation with a model that makes qualitative predictions about its effectiveness, taking only the singular value spectrum as input, and compare deflated variance with different types of trace estimator noise. Second, the synergy between probing methods and deflation is investigated both experimentally and theoretically. Third, we use the synergistic combination of deflation and a graph coloring algorithm known as hierarchical probing to conduct a lattice calculation of light disconnected matrix elements

  16. First Renormalized Parton Distribution Functions from Lattice QCD

    NASA Astrophysics Data System (ADS)

    Lin, Huey-Wen; LP3 Collaboration

    2017-09-01

    We present the first lattice-QCD results on the nonperturbatively renormalized parton distribution functions (PDFs). Using X.D. Ji's large-momentum effective theory (LaMET) framework, lattice-QCD hadron structure calculations are able to overcome the longstanding problem of determining the Bjorken- x dependence of PDFs. This has led to numerous additional theoretical works and exciting progress. In this talk, we will address a recent development that implements a step missing from prior lattice-QCD calculations: renormalization, its effects on the nucleon matrix elements, and the resultant changes to the calculated distributions.

  17. The CP-PACS Project and Lattice QCD Results

    NASA Astrophysics Data System (ADS)

    Iwasaki, Y.

    The aim of the CP-PACS project was to develop a massively parallel computer for performing numerical research in computational physics with primary emphasis on lattice QCD. The CP-PACS computer with a peak speed of 614 GFLOPS with 2048 processors was completed in September 1996, and has been in full operation since October 1996. We present an overview of the CP-PACS project and describe characteristics of the CP-PACS computer. The CP-PACS has been mainly used for hadron spectroscopy studies in lattice QCD. Main results in lattice QCD simulations are given.

  18. Scattering of glue by glue on the light-cone worldsheet. II. Helicity conserving amplitudes

    NASA Astrophysics Data System (ADS)

    Chakrabarti, D.; Qiu, J.; Thorn, C. B.

    2006-08-01

    This is the second of a pair of articles on scattering of glue by glue, in which we give the light-cone gauge calculation of the one-loop on-shell helicity conserving scattering amplitudes for gluon-gluon scattering (neglecting quark loops). The 1/p+ factors in the gluon propagator are regulated by replacing p+ integrals with discretized sums omitting the p+=0 terms in each sum. We also employ a novel ultraviolet regulator that is convenient for the light-cone worldsheet description of planar Feynman diagrams. The helicity conserving scattering amplitudes are divergent in the infrared. The infrared divergences in the elastic one-loop amplitude are shown to cancel, in their contribution to cross sections, against ones in the cross section for unseen bremsstrahlung gluons. We include here the explicit calculation of the latter, because it assumes an unfamiliar form due to the peculiar way discretization of p+ regulates infrared divergences. In resolving the infrared divergences we employ a covariant definition of jets, which allows a transparent demonstration of the Lorentz invariance of our final results. Because we use an explicit cutoff of the ultraviolet divergences in exactly four spacetime dimensions, we must introduce explicit counterterms to achieve this final covariant result. These counterterms are polynomials in the external momenta of the precise order dictated by power counting. We discuss the modifications they entail for the light-cone worldsheet action that reproduces the bare planar diagrams of the gluonic sector of QCD. The simplest way to do this is to interpret the QCD string as moving in six spacetime dimensions.

  19. Observation of hard processes in rapidity gap events in γp interactions at HERA

    NASA Astrophysics Data System (ADS)

    Ahmed, T.; Aid, S.; Andreev, V.; Andrieu, B.; Appuhn, R.-D.; Arpagaus, M.; Babaev, A.; Baehr, J.; Bán, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Barth, M.; Bassler, U.; Beck, H. P.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bergstein, H.; Bernardi, G.; Bernet, R.; Bertrand-Coremans, G.; Besançon, M.; Beyer, R.; Biddulph, P.; Bizot, J. C.; Blobel, V.; Borras, K.; Botterweck, F.; Boudry, V.; Braemer, A.; Brasse, F.; Braunschweig, W.; Brisson, V.; Bruncko, D.; Brune, C.; Buchholz, R.; Büngener, L.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Buschhorn, G.; Campbell, A. J.; Carli, T.; Charles, F.; Clarke, D.; Clegg, A. B.; Clerbaux, B.; Colombo, M.; Contreras, J. G.; Coughlan, J. A.; Courau, A.; Coutures, Ch.; Cozzika, G.; Criegee, L.; Cussans, D. G.; Cvach, J.; Dagoret, S.; Dainton, J. B.; Danilov, M.; Dau, W. D.; Daum, K.; David, M.; Deffur, E.; Delcourt, B.; Del Buono, L.; De Roeck, A.; De Wolf, E. A.; Di Nezza, P.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Droutskoi, V.; Duboc, J.; Düllmann, D.; Dünger, O.; Duhm, H.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Ehrlichmann, H.; Eichenberger, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellison, R. J.; Elsen, E.; Erdmann, M.; Erdmann, W.; Evrard, E.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Fleischer, M.; Flieser, M.; Flügge, G.; Fomenko, A.; Fominykh, B.; Forbush, M.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Gabathuler, E.; Gabathuler, K.; Gamerdinger, K.; Garvey, J.; Gayler, J.; Gebauer, M.; Gellrich, A.; Genzel, H.; Gerhards, R.; Goerlach, U.; Goerlach, L.; Gogitidze, N.; Goldberg, M.; Goldner, D.; Gonzalez-Pineiro, B.; Goodall, A. M.; Gorelov, I.; Goritchev, P.; Grab, C.; Grässler, H.; Grässler, R.; Greenshaw, T.; Grindhammer, G.; Gruber, A.; Gruber, C.; Haack, J.; Haidt, D.; Hajduk, L.; Hamon, O.; Hampel, M.; Hanlon, E. M.; Hapke, M.; Haynes, W. J.; Heatherington, J.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herma, R.; Herynek, I.; Hess, M. F.; Hildesheim, W.; Hill, P.; Hiller, K. H.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Höppner, M.; Horisberger, R.; Huet, Ph.; Hufnagel, H.; Ibbotson, M.; Itterbeck, H.; Jabiol, M.-A.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Janoth, J.; Jansen, T.; Jönsson, L.; Johannsen, K.; Johnson, D. P.; Johnson, L.; Jung, H.; Kalmus, P. I. P.; Kant, D.; Kaschowitz, R.; Kasselmann, P.; Kathage, U.; Kaufmann, H. H.; Kazarian, S.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Ko, W.; Köhler, T.; Kolanoski, H.; Kole, F.; Kolya, S. D.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krämerkämper, T.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Krüger, U.; Krüner-Marquis, U.; Kubenka, J. P.; Küster, H.; Kuhlen, M.; Kurča, T.; Kurzhöfer, J.; Kuznik, B.; Lacour, D.; Lamarche, F.; Lander, R.; Landon, M. P. J.; Lange, W.; Lanius, P.; Laporte, J.-F.; Lebedev, A.; Leverenz, C.; Levonian, S.; Ley, Ch.; Lindner, A.; Lindström, G.; Linsel, F.; Lipinski, J.; List, B.; Loch, P.; Lohmander, H.; Lopez, G. C.; Lubimov, V.; Lüke, D.; Magnussen, N.; Malinovski, E.; Mani, S.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Masson, S.; Mavroidis, T.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Mercer, D.; Merz, T.; Meyer, C. A.; Meyer, H.; Meyer, J.; Mikocki, S.; Milstead, D.; Moreau, F.; Morris, J. V.; Müller, G.; Müller, K.; Murín, P.; Nagovizin, V.; Nahnhauer, R.; Naroska, B.; Naumann, Th.; Newman, P. R.; Newton, D.; Neyret, D.; Nguyen, H. K.; Niebergall, F.; Niebuhr, C.; Nisius, R.; Nowak, G.; Noyes, G. W.; Nyberg-Werther, M.; Oberlack, H.; Obrock, U.; Olsson, J. E.; Panaro, E.; Panitch, A.; Pascaud, C.; Patel, G. D.; Peppel, E.; Perez, E.; Phillips, J. P.; Pichler, Ch.; Pitzl, D.; Pope, G.; Prell, S.; Prosi, R.; Rädel, G.; Raupach, F.; Reimer, P.; Reinshagen, S.; Ribarics, P.; Rick, H.; Riech, V.; Riedlberger, J.; Riess, S.; Rietz, M.; Robertson, S. M.; Robmann, P.; Roloff, H. E.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rüter, K.; Rusakov, S.; Rybicki, K.; Rylko, R.; Sahlmann, N.; Sanchez, E.; Sankey, D. P. C.; Savitsky, M.; Schacht, P.; Schiek, S.; Schleper, P.; von Schlippe, W.; Schmidt, C.; Schmidt, D.; Schmidt, G.; Schöning, A.; Schröder, V.; Schuhmann, E.; Schwab, B.; Schwind, A.; Seehausen, U.; Sefkow, F.; Seidel, M.; Sell, R.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shooshtari, H.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorni, I. O.; Smirnov, P.; Smith, J. R.; Soloviev, Y.; Spitzer, H.; Starosta, R.; Steenbock, M.; Steffen, P.; Steinberg, R.; Stella, B.; Stephens, K.; Stier, J.; Stiewe, J.; Stösslein, U.; Strachota, J.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Tapprogge, S.; Taylor, R. E.; Tchernyshov, V.; Thiebaux, C.; Thompson, G.; Truöl, P.; Turnau, J.; Tutas, J.; Uelkes, P.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; Van Esch, P.; Van Mechelen, P.; Vartapetian, A.; Vazdik, Y.; Vecko, M.; Verrecchia, P.; Villet, G.; Wacker, K.; Wagener, A.; Wagener, M.; Walker, I. W.; Walther, A.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wellisch, H. P.; West, L. R.; Willard, S.; Winde, M.; Winter, G.-G.; Wright, A. E.; Wünsch, E.; Wulff, N.; Yiou, T. P.; Žáček, J.; Zarbock, D.; Zhang, Z.; Zhokin, A.; Zimmer, M.; Zimmermann, W.; Zomer, F.; Zuber, K.

    1995-02-01

    Events with no hadronic energy flow in a large interval of pseudo-rapidity in the proton direction are observed in photon-proton interactions at an average centre of mass energy <√s γp> of 200 GeV These events are interpreted as photon diffractive dissociation. Evidence for hard scattering in photon diffractive dissociation is demonstrated using inclusive single particle spectra, thrust as a function of transverse energy, and the observation of jet production. The data can be described by a Monte Carlo calculation including hard photon-pomeron scattering.

  20. Hard X-ray quiescent emission in magnetars via resonant Compton upscattering

    NASA Astrophysics Data System (ADS)

    Baring, M. G.; Wadiasingh, Z.; Gonthier, P. L.; Harding, A. K.

    2017-12-01

    Non-thermal quiescent X-ray emission extending between 10 keV and around 150 keV has been seen in about 10 magnetars by RXTE, INTEGRAL, Suzaku, NuSTAR and Fermi-GBM. For inner magnetospheric models of such hard X-ray signals, inverse Compton scattering is anticipated to be the most efficient process for generating the continuum radiation, because the scattering cross section is resonant at the cyclotron frequency. We present hard X-ray upscattering spectra for uncooled monoenergetic relativistic electrons injected in inner regions of pulsar magnetospheres. These model spectra are integrated over bundles of closed field lines and obtained for different observing perspectives. The spectral turnover energies are critically dependent on the observer viewing angles and electron Lorentz factor. We find that electrons with energies less than around 15 MeV will emit most of their radiation below 250 keV, consistent with the turnovers inferred in magnetar hard X-ray tails. Electrons of higher energy still emit most of the radiation below around 1 MeV, except for quasi-equatorial emission locales for select pulse phases. Our spectral computations use a new state-of-the-art, spin-dependent formalism for the QED Compton scattering cross section in strong magnetic fields.

  1. Moriond QCD 2013 Experimental Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denisov, Dmitri

    2013-06-28

    The article presents experimental highlights of Moriond 2013 QCD conference. This was fantastic conference and the first Moriond QCD since the discovery of the Higgs boson. Many new results about its properties have been presented at the conference with Higgs-like particle becoming a Higgs as it properties match expected for the Higgs boson pretty well. There were many new results presented in all experimental areas including QCD, elecroweak, studies of the top, bottom and charm quarks, searches for physics beyond Standard Model as well as studies of the heavy ion collisions. 56 experimental talks have been presented at the conferencemore » and it is impossible to cover each result in the summary, so highlights are limited to what I was able to present in my summary talk presented on March 16 2013. The proceedings of the conference cover in depth all talks presented and I urge you to get familiar with all of them. Theoretical Summary of the conference was given by Michelangelo Mangano, so theory talks are not covered in the article.« less

  2. Exploring Partonic Structure of Hadrons Using ab initio Lattice QCD Calculations.

    PubMed

    Ma, Yan-Qing; Qiu, Jian-Wei

    2018-01-12

    Following our previous proposal, we construct a class of good "lattice cross sections" (LCSs), from which we can study the partonic structure of hadrons from ab initio lattice QCD calculations. These good LCSs, on the one hand, can be calculated directly in lattice QCD, and on the other hand, can be factorized into parton distribution functions (PDFs) with calculable coefficients, in the same way as QCD factorization for factorizable hadronic cross sections. PDFs could be extracted from QCD global analysis of the lattice QCD generated data of LCSs. We also show that the proposed functions for lattice QCD calculation of PDFs in the literature are special cases of these good LCSs.

  3. Bulk viscous corrections to screening and damping in QCD at high temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Qianqian; Dumitru, Adrian; Guo, Yun

    2017-01-01

    Non-equilibrium corrections to the distribution functions of quarks and gluons in a hot and dense QCD medium modify the \\hard thermal loops" (HTL). The HTLs determine the retarded, advanced, and symmetric (time-ordered) propagators for gluons with soft momenta as well as the Debye screening and Landau damping mass scales. Here, we compute such corrections to a thermal as well as to a non-thermal fixed point. The screening and damping mass scales are sensitive to the bulk pressure and hence to (pseudo-) critical dynamical scaling of the bulk viscosity in the vicinity of a second-order critical point. This could be reectedmore » in the properties of quarkonium bound states in the deconfined phase and in the dynamics of soft gluon fields.« less

  4. Symmetric and anti-symmetric LS hyperon potentials from lattice QCD

    NASA Astrophysics Data System (ADS)

    Ishii, Noriyoshi; Murano, Keiko; Nemura, Hidekatsu; Sasaki, Kenji; Inoue, Takashi; HAL QCD Collaboration

    2014-09-01

    We present recent results of odd-parity hyperon-hyperon potentials from lattice QCD. By using HAL QCD method, we generate hyperon-hyperon potentials from Nambu-Bethe-Salpeter (NBS) wave functions generated by lattice QCD simulation in the flavor SU(3) limit. Potentials in the irreducible flavor SU(3) representations are combined to make a Lambda-N potential which has a strong symmetric LS potential and a weak anti-symmetric LS potential. We discuss a possible cancellation between symmetric and anti-symmetric LS (Lambda-N) potentials after the coupled Sigma-N sector is integrated out. We present recent results of odd-parity hyperon-hyperon potentials from lattice QCD. By using HAL QCD method, we generate hyperon-hyperon potentials from Nambu-Bethe-Salpeter (NBS) wave functions generated by lattice QCD simulation in the flavor SU(3) limit. Potentials in the irreducible flavor SU(3) representations are combined to make a Lambda-N potential which has a strong symmetric LS potential and a weak anti-symmetric LS potential. We discuss a possible cancellation between symmetric and anti-symmetric LS (Lambda-N) potentials after the coupled Sigma-N sector is integrated out. This work is supported by JSPS KAKENHI Grant Number 25400244.

  5. American Conference on Neutron Scattering 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dillen, J. Ardie

    2014-12-31

    Scientists from the around the world converged in Knoxville, TN to have share ideas, present technical information and contribute to the advancement of neutron scattering. Featuring over 400 oral/poster presentations, ACNS 2014 offered a strong program of plenary, invited and contributed talks and poster sessions covering topics in soft condensed matter, hard condensed matter, biology, chemistry, energy and engineering applications in neutron physics – confirming the great diversity of science that is enabled by neutron scattering.

  6. Disconnected Diagrams in Lattice QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gambhir, Arjun

    In this work, we present state-of-the-art numerical methods and their applications for computing a particular class of observables using lattice quantum chromodynamics (Lattice QCD), a discretized version of the fundamental theory of quarks and gluons. These observables require calculating so called \\disconnected diagrams" and are important for understanding many aspects of hadron structure, such as the strange content of the proton. We begin by introducing the reader to the key concepts of Lattice QCD and rigorously define the meaning of disconnected diagrams through an example of the Wick contractions of the nucleon. Subsequently, the calculation of observables requiring disconnected diagramsmore » is posed as the computationally challenging problem of finding the trace of the inverse of an incredibly large, sparse matrix. This is followed by a brief primer of numerical sparse matrix techniques that overviews broadly used methods in Lattice QCD and builds the background for the novel algorithm presented in this work. We then introduce singular value deflation as a method to improve convergence of trace estimation and analyze its effects on matrices from a variety of fields, including chemical transport modeling, magnetohydrodynamics, and QCD. Finally, we apply this method to compute observables such as the strange axial charge of the proton and strange sigma terms in light nuclei. The work in this thesis is innovative for four reasons. First, we analyze the effects of deflation with a model that makes qualitative predictions about its effectiveness, taking only the singular value spectrum as input, and compare deflated variance with different types of trace estimator noise. Second, the synergy between probing methods and deflation is investigated both experimentally and theoretically. Third, we use the synergistic combination of deflation and a graph coloring algorithm known as hierarchical probing to conduct a lattice calculation of light disconnected matrix

  7. On microscopic structure of the QCD vacuum

    NASA Astrophysics Data System (ADS)

    Pak, D. G.; Lee, Bum-Hoon; Kim, Youngman; Tsukioka, Takuya; Zhang, P. M.

    2018-05-01

    We propose a new class of regular stationary axially symmetric solutions in a pure QCD which correspond to monopole-antimonopole pairs at macroscopic scale. The solutions represent vacuum field configurations which are locally stable against quantum gluon fluctuations in any small space-time vicinity. This implies that the monopole-antimonopole pair can serve as a structural element in microscopic description of QCD vacuum formation.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rothstein, Ira Z.; Stewart, Iain W.

    Starting with QCD, we derive an effective field theory description for forward scattering and factorization violation as part of the soft-collinear effective field theory (SCET) for high energy scattering. These phenomena are mediated by long distance Glauber gluon exchanges, which are static in time, localized in the longitudinal distance, and act as a kernel for forward scattering where |t| << s. In hard scattering, Glauber gluons can induce corrections which invalidate factorization. With SCET, Glauber exchange graphs can be calculated explicitly, and are distinct from graphs involving soft, collinear, or ultrasoft gluons. We derive a complete basis of operators whichmore » describe the leading power effects of Glauber exchange. Key ingredients include regulating light-cone rapidity singularities and subtractions which prevent double counting. Our results include a novel all orders gauge invariant pure glue soft operator which appears between two collinear rapidity sectors. The 1-gluon Feynman rule for the soft operator coincides with the Lipatov vertex, but it also contributes to emissions with ≥ 2 soft gluons. Our Glauber operator basis is derived using tree level and one-loop matching calculations from full QCD to both SCET II and SCET I. The one-loop amplitude’s rapidity renormalization involves mixing of color octet operators and yields gluon Reggeization at the amplitude level. The rapidity renormalization group equation for the leading soft and collinear functions in the forward scattering cross section are each given by the BFKL equation. Various properties of Glauber gluon exchange in the context of both forward scattering and hard scattering factorization are described. For example, we derive an explicit rule for when eikonalization is valid, and provide a direct connection to the picture of multiple Wilson lines crossing a shockwave. In hard scattering operators Glauber subtractions for soft and collinear loop diagrams ensure that we are not

  9. Deep inelastic scattering of leptons from nuclear targets and the BFKL Pomeron

    NASA Astrophysics Data System (ADS)

    Bialas, Andrzej; Czyz, Wieslaw; Florkowski, Wojciech

    1997-06-01

    We calculate shadowing in the process of deep inelastic interactions of leptons with nuclei in the perturbative regime of QCD. We find appreciable shadowing for heavy nuclei (e.g., Pb) in the region of a small Bjorken scaling variable 10-5<=x<=10-3. This shadowing depends weakly on Q2, but it may be strongly influenced, especially at x>=10-3, by the existence of real parts of the forward scattering amplitudes.

  10. High Precision Measurement of the Neutron Polarizabilities via Compton Scattering on Deuterium at Eγ=65 MeV

    NASA Astrophysics Data System (ADS)

    Sikora, Mark; Compton@HIGS Team

    2017-01-01

    The electric (αn) and magnetic (βn) polarizabilities of the neutron are fundamental properties arising from its internal structure which describe the nucleon's response to applied electromagnetic fields. Precise measurements of the polarizabilities provide crucial constraints on models of Quantum Chromodynamics (QCD) in the low energy regime such as Chiral Effective Field Theories as well as emerging ab initio calculations from lattice-QCD. These values also contribute the most uncertainty to theoretical determinations of the proton-neutron mass difference. Historically, the experimental challenges to measuring αn and βn have been due to the difficulty in obtaining suitable targets and sufficiently intense beams, leading to significant statistical uncertainties. To address these issues, a program of Compton scattering experiments on the deuteron is underway at the High Intensity Gamma Source (HI γS) at Duke University with the aim of providing the world's most precise measurement of αn and βn. We report measurements of the Compton scattering differential cross section obtained at an incident photon energy of 65 MeV and discuss the sensitivity of these data to the polarizabilities.

  11. Segmented Liner to Control Mode Scattering

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Jones, Michael G.; Brown, Martha C.

    2013-01-01

    The acoustic performance of duct liners can be improved by segmenting the treatment. In a segmented liner treatment, one stage of liner reduces the target sound and scatters energy into other acoustic modes, which are attenuated by a subsequent stage. The Curved Duct Test Rig is an experimental facility in which sound incident on the liner can be generated in a specific mode and the scatter of energy into other modes can be quantified. A series of experiments is performed in which the baseline configuration is asymmetric, that is, a liner is on one side wall of the test duct and the wall opposite is acoustically hard. Segmented liner treatment is achieved by progressively replacing sections of the hard wall opposite with liner in the axial direction, from 25% of the wall surface to 100%. It is found that the energy scatter from the (0,0) to the (0,1) mode reduces as the percentage of opposite wall treatment increases, and the frequency of peak attenuation shifts toward higher frequency. Similar results are found when the incident mode is of order (0,1) and scatter is into the (0,0) mode. The propagation code CDUCT-LaRC is used to predict the effect of liner segmenting on liner performance. The computational results show energy scatter and the effect of liner segmentation that agrees with the experimental results. The experiments and computations both show that segmenting the liner treatment is effective to control the scatter of incident mode energy into other modes. CDUCT-LaRC is shown to be a valuable tool to predict trends of liner performance with liner configuration.

  12. Reliable semiclassical computations in QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dine, Michael; Department of Physics, Stanford University Stanford, California 94305-4060; Festuccia, Guido

    We revisit the question of whether or not one can perform reliable semiclassical QCD computations at zero temperature. We study correlation functions with no perturbative contributions, and organize the problem by means of the operator product expansion, establishing a precise criterion for the validity of a semiclassical calculation. For N{sub f}>N, a systematic computation is possible; for N{sub f}QCD lattice gauge theory computations in the chiral limit.

  13. Statistical-thermodynamic model for light scattering from eye lens protein mixtures

    NASA Astrophysics Data System (ADS)

    Bell, Michael M.; Ross, David S.; Bautista, Maurino P.; Shahmohamad, Hossein; Langner, Andreas; Hamilton, John F.; Lahnovych, Carrie N.; Thurston, George M.

    2017-02-01

    We model light-scattering cross sections of concentrated aqueous mixtures of the bovine eye lens proteins γB- and α-crystallin by adapting a statistical-thermodynamic model of mixtures of spheres with short-range attractions. The model reproduces measured static light scattering cross sections, or Rayleigh ratios, of γB-α mixtures from dilute concentrations where light scattering intensity depends on molecular weights and virial coefficients, to realistically high concentration protein mixtures like those of the lens. The model relates γB-γB and γB-α attraction strengths and the γB-α size ratio to the free energy curvatures that set light scattering efficiency in tandem with protein refractive index increments. The model includes (i) hard-sphere α-α interactions, which create short-range order and transparency at high protein concentrations, (ii) short-range attractive plus hard-core γ-γ interactions, which produce intense light scattering and liquid-liquid phase separation in aqueous γ-crystallin solutions, and (iii) short-range attractive plus hard-core γ-α interactions, which strongly influence highly non-additive light scattering and phase separation in concentrated γ-α mixtures. The model reveals a new lens transparency mechanism, that prominent equilibrium composition fluctuations can be perpendicular to the refractive index gradient. The model reproduces the concave-up dependence of the Rayleigh ratio on α/γ composition at high concentrations, its concave-down nature at intermediate concentrations, non-monotonic dependence of light scattering on γ-α attraction strength, and more intricate, temperature-dependent features. We analytically compute the mixed virial series for light scattering efficiency through third order for the sticky-sphere mixture, and find that the full model represents the available light scattering data at concentrations several times those where the second and third mixed virial contributions fail. The model

  14. Light meson gas in the QCD vacuum and oscillating universe

    NASA Astrophysics Data System (ADS)

    Prokhorov, George; Pasechnik, Roman

    2018-01-01

    We have developed a phenomenological effective quantum-field theoretical model describing the "hadron gas" of the lightest pseudoscalar mesons, scalar σ-meson and σ-vacuum, i.e. the expectation value of the σ-field, at finite temperatures. The corresponding thermodynamic approach was formulated in terms of the generating functional derived from the effective Lagrangian providing the basic thermodynamic information about the "meson plasma + QCD condensate" system. This formalism enables us to study the QCD transition from the hadron phase with direct implications for cosmological evolution. Using the hypothesis about a positively-definite QCD vacuum contribution stochastically produced in early universe, we show that the universe could undergo a series of oscillations during the QCD epoch before resuming unbounded expansion.

  15. Accurate determinations of alpha(s) from realistic lattice QCD.

    PubMed

    Mason, Q; Trottier, H D; Davies, C T H; Foley, K; Gray, A; Lepage, G P; Nobes, M; Shigemitsu, J

    2005-07-29

    We obtain a new value for the QCD coupling constant by combining lattice QCD simulations with experimental data for hadron masses. Our lattice analysis is the first to (1) include vacuum polarization effects from all three light-quark flavors (using MILC configurations), (2) include third-order terms in perturbation theory, (3) systematically estimate fourth and higher-order terms, (4) use an unambiguous lattice spacing, and (5) use an [symbol: see text](a2)-accurate QCD action. We use 28 different (but related) short-distance quantities to obtain alpha((5)/(MS))(M(Z)) = 0.1170(12).

  16. AdS Black Disk Model for Small-x Deep Inelastic Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cornalba, Lorenzo; Costa, Miguel S.; Penedones, Joao

    2010-08-13

    Using the approximate conformal invariance of QCD at high energies we consider a simple anti-de Sitter black disk model to describe saturation in deep inelastic scattering. Deep inside saturation the structure functions have the same power law scaling, F{sub T}{approx}F{sub L}{approx}x{sup -{omega}}, where {omega} is related to the expansion rate of the black disk with energy. Furthermore, the ratio F{sub L}/F{sub T} is given by the universal value (1+{omega}/3+{omega}), independently of the target. For {gamma}*-{gamma}* scattering at high energies we obtain explicit expressions and ratios for the total cross sections of transverse and longitudinal photons in terms of the singlemore » parameter {omega}.« less

  17. Aspects of QCD current algebra on a null plane

    NASA Astrophysics Data System (ADS)

    Beane, S. R.; Hobbs, T. J.

    2016-09-01

    Consequences of QCD current algebra formulated on a light-like hyperplane are derived for the forward scattering of vector and axial-vector currents on an arbitrary hadronic target. It is shown that current algebra gives rise to a special class of sum rules that are direct consequences of the independent chiral symmetry that exists at every point on the two-dimensional transverse plane orthogonal to the lightlike direction. These sum rules are obtained by exploiting the closed, infinite-dimensional algebra satisfied by the transverse moments of null-plane axial-vector and vector charge distributions. In the special case of a nucleon target, this procedure leads to the Adler-Weisberger, Gerasimov-Drell-Hearn, Cabibbo-Radicati and Fubini-Furlan-Rossetti sum rules. Matching to the dispersion-theoretic language which is usually invoked in deriving these sum rules, the moment sum rules are shown to be equivalent to algebraic constraints on forward S-matrix elements in the Regge limit.

  18. Polarization Transfer in Proton Compton Scattering at High Momentum Transfer

    NASA Astrophysics Data System (ADS)

    Hamilton, D. J.; Mamyan, V. H.; Aniol, K. A.; Annand, J. R.; Bertin, P. Y.; Bimbot, L.; Bosted, P.; Calarco, J. R.; Camsonne, A.; Chang, G. C.; Chang, T.-H.; Chen, J.-P.; Choi, Seonho; Chudakov, E.; Danagoulian, A.; Degtyarenko, P.; de Jager, C. W.; Deur, A.; Dutta, D.; Egiyan, K.; Gao, H.; Garibaldi, F.; Gayou, O.; Gilman, R.; Glamazdin, A.; Glashausser, C.; Gomez, J.; Hansen, J.-O.; Hayes, D.; Higinbotham, D.; Hinton, W.; Horn, T.; Howell, C.; Hunyady, T.; Hyde-Wright, C. E.; Jiang, X.; Jones, M. K.; Khandaker, M.; Ketikyan, A.; Kubarovsky, V.; Kramer, K.; Kumbartzki, G.; Laveissière, G.; Lerose, J.; Lindgren, R. A.; Margaziotis, D. J.; Markowitz, P.; McCormick, K.; Meziani, Z.-E.; Michaels, R.; Moussiegt, P.; Nanda, S.; Nathan, A. M.; Nikolenko, D. M.; Nelyubin, V.; Norum, B. E.; Paschke, K.; Pentchev, L.; Perdrisat, C. F.; Piasetzky, E.; Pomatsalyuk, R.; Punjabi, V. A.; Rachek, I.; Radyushkin, A.; Reitz, B.; Roche, R.; Roedelbronn, M.; Ron, G.; Sabatie, F.; Saha, A.; Savvinov, N.; Shahinyan, A.; Shestakov, Y.; Širca, S.; Slifer, K.; Solvignon, P.; Stoler, P.; Tajima, S.; Sulkosky, V.; Todor, L.; Vlahovic, B.; Weinstein, L. B.; Wang, K.; Wojtsekhowski, B.; Voskanyan, H.; Xiang, H.; Zheng, X.; Zhu, L.

    2005-06-01

    Compton scattering from the proton was investigated at s=6.9 GeV2 and t=-4.0 GeV2 via polarization transfer from circularly polarized incident photons. The longitudinal and transverse components of the recoil proton polarization were measured. The results are in disagreement with a prediction of perturbative QCD based on a two-gluon exchange mechanism, but agree well with a prediction based on a reaction mechanism in which the photon interacts with a single quark carrying the spin of the proton.

  19. Critical opalescence in baryonic QCD matter.

    PubMed

    Antoniou, N G; Diakonos, F K; Kapoyannis, A S; Kousouris, K S

    2006-07-21

    We show that critical opalescence, a clear signature of second-order phase transition in conventional matter, manifests itself as critical intermittency in QCD matter produced in experiments with nuclei. This behavior is revealed in transverse momentum spectra as a pattern of power laws in factorial moments, to all orders, associated with baryon production. This phenomenon together with a similar effect in the isoscalar sector of pions (sigma mode) provide us with a set of observables associated with the search for the QCD critical point in experiments with nuclei at high energies.

  20. Identifying QCD Transition Using Deep Learning

    NASA Astrophysics Data System (ADS)

    Zhou, Kai; Pang, Long-gang; Su, Nan; Petersen, Hannah; Stoecker, Horst; Wang, Xin-Nian

    2018-02-01

    In this proceeding we review our recent work using supervised learning with a deep convolutional neural network (CNN) to identify the QCD equation of state (EoS) employed in hydrodynamic modeling of heavy-ion collisions given only final-state particle spectra ρ(pT, V). We showed that there is a traceable encoder of the dynamical information from phase structure (EoS) that survives the evolution and exists in the final snapshot, which enables the trained CNN to act as an effective "EoS-meter" in detecting the nature of the QCD transition.

  1. Bose-Fermi degeneracies in large N adjoint QCD

    DOE PAGES

    Basar, Gokce; Cherman, Aleksey; McGady, David

    2015-07-06

    Here, we analyze the large N limit of adjoint QCD, an SU( N) gauge theory with N f flavors of massless adjoint Majorana fermions, compactified on S 3 × S 1. We focus on the weakly-coupled confining small- S 3 regime. If the fermions are given periodic boundary conditions on S 1, we show that there are large cancellations between bosonic and fermionic contributions to the twisted partition function. These cancellations follow a pattern previously seen in the context of misaligned supersymmetry, and lead to the absence of Hagedorn instabilities for any S 1 size L, even though the bosonicmore » and fermionic densities of states both have Hagedorn growth. Adjoint QCD stays in the confining phase for any L ~ N 0, explaining how it is able to enjoy large N volume independence for any L. The large N boson-fermion cancellations take place in a setting where adjoint QCD is manifestly non-supersymmetric at any finite N, and are consistent with the recent conjecture that adjoint QCD has emergent fermionic symmetries in the large N limit.« less

  2. Measurement of αs from jet rates in deep inelastic scattering at HERA

    NASA Astrophysics Data System (ADS)

    Derrick, M.; Krakauer, D.; Magill, S.; Mikunas, D.; Musgrave, B.; Repond, J.; Stanek, R.; Talaga, R. L.; Zhang, H.; Ayad, R.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruni, P.; Cara Romeo, G.; Castellini, G.; Chiarini, M.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; Gialas, I.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Nemoz, C.; Palmonari, F.; Polini, A.; Sartorelli, G.; Timellini, R.; Zamora Garcia, Y.; Zichichi, A.; Bargende, A.; Bornheim, A.; Crittenden, J.; Desch, K.; Diekmann, B.; Doeker, T.; Eckert, M.; Feld, L.; Frey, A.; Geerts, M.; Grothe, M.; Hartmann, H.; Heinloth, K.; Hilger, E.; Jakob, H.-P.; Katz, U. F.; Mengel, S.; Mollen, J.; Paul, E.; Pfeiffer, M.; Rembser, Ch.; Schramm, D.; Stamm, J.; Wedemeyer, R.; Campbell-Robson, S.; Cassidy, A.; Cottingham, W. N.; Dyce, N.; Foster, B.; George, S.; Hayes, M. E.; Heath, G. P.; Heath, H. F.; Morgado, C. J. S.; O'Mara, J. A.; Piccioni, D.; Roff, D. G.; Tapper, R. J.; Yoshida, R.; Rau, R. R.; Arneodo, M.; Capua, M.; Garfagnini, A.; Iannotti, L.; Schioppa, M.; Susinno, G.; Bernstein, A.; Caldwell, A.; Cartiglia, N.; Parsons, J. A.; Ritz, S.; Sciulli, F.; Straub, P. B.; Wai, L.; Yang, S.; Zhu, Q.; Borzemski, P.; Chwastowski, J.; Eskreys, A.; Piotrzkowski, K.; Zachara, M.; Zawiejski, L.; Adamczyk, L.; Bednarek, B.; Jeleń, K.; Kisielewska, D.; Kowalski, T.; Rulikowska-Zarȩbska, E.; Suszycki, L.; Zajaç, J.; Kotański, A.; Przybycień, M.; Bauerdick, L. A. T.; Behrens, U.; Beier, H.; Bienlein, J. K.; Coldewey, C.; Deppe, O.; Desler, K.; Drews, G.; Flasiński, M.; Gilkinson, D. J.; Glasman, C.; Göttlicher, P.; Große-Knetter, J.; Gutjahr, B.; Haas, T.; Hain, W.; Hasell, D.; Heßling, H.; Iga, Y.; Johnson, K. F.; Joos, P.; Kasemann, M.; Klanner, R.; Koch, W.; Köpke, L.; Kötz, U.; Kowalski, H.; Labs, J.; Ladage, A.; Löhr, B.; Löwe, M.; Lüke, D.; Mainusch, J.; Mańczak, O.; Monteiro, T.; Ng, J. S. T.; Nickel, S.; Notz, D.; Ohrenberg, K.; Roco, M.; Rohde, M.; Roldán, J.; Schneekloth, U.; Schulz, W.; Selonke, F.; Stiliaris, E.; Surrow, B.; Voß, T.; Westphal, D.; Wolf, G.; Youngman, C.; Zeuner, W.; Zhou, J. F.; Grabosch, H. J.; Kharchilava, A.; Leich, A.; Mattingly, M. C. K.; Mari, S. M.; Meyer, A.; Schlenstedt, S.; Wulff, N.; Barbagli, G.; Pelfer, P.; Anzivino, G.; Maccarrone, G.; De Pasquale, S.; Votano, L.; Bamberger, A.; Eisenhardt, S.; Freidhof, A.; Söldner-Rembold, S.; Schroeder, J.; Trefzger, T.; Brook, N. H.; Bussey, P. J.; Doyle, A. T.; Saxon, D. H.; Utley, M. L.; Wilson, A. S.; Dannemann, A.; Holm, U.; Horstmann, D.; Neumann, T.; Sinkus, R.; Wick, K.; Badura, E.; Burow, B. D.; Hagge, L.; Lohrmann, E.; Milewski, J.; Nakahata, M.; Pavel, N.; Poelz, G.; Schott, W.; Zetsche, F.; Bacon, T. C.; Bruemmer, N.; Butterworth, I.; Gallo, E.; Harris, V. L.; Hung, B. Y. H.; Long, K. R.; Miller, D. B.; Morawitz, P. P. O.; Prinias, A.; Sedgbeer, J. K.; Whitfield, A. F.; Mallik, U.; McCliment, E.; Wang, M. Z.; Wang, S. M.; Wu, J. T.; Cloth, P.; Filges, D.; An, S. H.; Hong, S. M.; Nam, S. W.; Park, S. K.; Suh, M. H.; Yon, S. H.; Imlay, R.; Kartik, S.; Kim, H.-J.; McNeil, R. R.; Metcalf, W.; Nadendla, V. K.; Barreiro, F.; Cases, G.; Fernandez, J. P.; Graciani, R.; Hernández, J. M.; Hervás, L.; Labarga, L.; Martinez, M.; del Peso, J.; Puga, J.; Terron, J.; de Trocóniz, J. F.; Smith, G. R.; Corriveau, F.; Hanna, D. S.; Hartmann, J.; Hung, L. W.; Lim, J. N.; Matthews, C. G.; Patel, P. M.; Sinclair, L. E.; Stairs, D. G.; St. Laurent, M.; Ullmann, R.; Zacek, G.; Bashkirov, V.; Dolgoshein, B. A.; Stifutkin, A.; Bashindzhagyan, G. L.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Yu. A.; Kobrin, V. D.; Korzhavina, I. A.; Kuzmin, V. A.; Lukina, O. Yu.; Proskuryakov, A. S.; Savin, A. A.; Shcheglova, L. M.; Solomin, A. N.; Zotov, N. P.; Botje, M.; Chlebana, F.; Dake, A.; Engelen, J.; de Kamps, M.; Kooijman, P.; Kruse, A.; Tiecke, H.; Verkerke, W.; Vreeswijk, M.; Wiggers, L.; de Wolf, E.; van Woudenberg, R.; Acosta, D.; Bylsma, B.; Durkin, L. S.; Gilmore, J.; Honscheid, K.; Li, C.; Ling, T. Y.; McLean, K. W.; Murray, W. N.; Nylander, P.; Park, I. H.; Romanowski, T. A.; Seidlein, R.; Bailey, D. S.; Byrne, A.; Cashmore, R. J.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Harnew, N.; Lancaster, M.; Lindemann, L.; McFall, J. D.; Nath, C.; Noyes, V. A.; Quadt, A.; Tickner, J. R.; Uijterwaal, H.; Walczak, R.; Waters, D. S.; Wilson, F. F.; Yip, T.; Abbiendi, G.; Bertolin, A.; Brugnera, R.; Carlin, R.; Dal Corso, F.; De Giorgi, M.; Dosselli, U.; Limentani, S.; Morandin, M.; Posocco, M.; Stanco, L.; Stroili, R.; Voci, C.; Bulmahn, J.; Butterworth, J. M.; Feild, R. G.; Oh, B. Y.; Okrasinski, J. R.; Whitmore, J. J.; D'Agostini, G.; Marini, G.; Nigro, A.; Tassi, E.; Hart, J. C.; McCubbin, N. A.; Prytz, K.; Shah, T. P.; Short, T. L.; Barberis, E.; Dubbs, T.; Heusch, C.; Van Hook, M.; Lockman, W.; Rahn, J. T.; Sadrozinski, H. F.-W.; Seiden, A.; Williams, D. C.; Biltzinger, J.; Seifert, R. J.; Schwarzer, O.; Walenta, A. H.; Zech, G.; Abramowicz, H.; Briskin, G.; Dagan, S.; Händel-Pikielny, C.; Levy, A.; Fleck, J. I.; Hasegawa, T.; Hazumi, M.; Ishii, T.; Kuze, M.; Mine, S.; Nagasawa, Y.; Nakao, M.; Suzuki, I.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; Chiba, M.; Hamatsu, R.; Hirose, T.; Homma, K.; Kitamura, S.; Nakamitsu, Y.; Yamauchi, K.; Cirio, R.; Costa, M.; Ferrero, M. I.; Lamberti, L.; Maselli, S.; Peroni, C.; Sacchi, R.; Solano, A.; Staiano, A.; Dardo, M.; Bailey, D. C.; Bandyopadhyay, D.; Benard, F.; Brkic, M.; Gingrich, D. M.; Hartner, G. F.; Joo, K. K.; Levman, G. M.; Martin, J. F.; Orr, R. S.; Polenz, S.; Sampson, C. R.; Teuscher, R. J.; Catterall, C. D.; Jones, T. W.; Kaziewicz, P. B.; Lane, J. B.; Saunders, R. L.; Shulman, J.; Blankenship, K.; Lu, B.; Mo, L. W.; Bogusz, W.; Charchuła, K.; Ciborowski, J.; Gajewski, J.; Grzelak, G.; Kasprzak, M.; Krzyżanowski, M.; Muchorowski, K.; Nowak, R. J.; Pawlak, J. M.; Tymieniecka, T.; Wróblewski, A. K.; Zakrzewski, J. A.; Żarnecki, A. F.; Adamus, M.; Eisenberg, Y.; Karshon, U.; Revel, D.; Zer-Zion, D.; Ali, I.; Badgett, W. F.; Behrens, B.; Dasu, S.; Fordham, C.; Foudas, C.; Goussiou, A.; Loveless, R. J.; Reeder, D. D.; Silverstein, S.; Smith, W. H.; Vaiciulis, A.; Wodarczyk, M.; Tsurugai, T.; Bhadra, S.; Cardy, M. L.; Fagerstroem, C.-P.; Frisken, W. R.; Furutani, K. M.; Khakzad, M.; Schmidke, W. B.; ZEUS Collaboration

    1995-02-01

    Jet production in deep inelastic scattering for 120 < Q2 < 3600 GeV 2 has been studied using data from an integrated luminosity of 3.2 pb -1 collected with the ZEUS detector at HERA. Jets are identified with the JADE algorithm. A cut on the angular distribution of parton emission in the γ ∗- parton centre-of-mass system minimises the experimental and theoretical uncertainties in the determination of the jet rates. The jet rates, when compared to O( αs2) perturbative QCD calculations, allow a precise determination of αs( Q) in three Q2-intervals. The values are consistent with a running of ifαs( Q), as expected from QCD. Extrapolating to Q = M Z 0αs( MZ0) = 0.117 ± 0.005 (stat) -0.005+0.004 (syst exp) ± 0.007 (syst theory).

  3. Classical theory of atom-surface scattering: The rainbow effect

    NASA Astrophysics Data System (ADS)

    Miret-Artés, Salvador; Pollak, Eli

    2012-07-01

    The scattering of heavy atoms and molecules from surfaces is oftentimes dominated by classical mechanics. A large body of experiments have gathered data on the angular distributions of the scattered species, their energy loss distribution, sticking probability, dependence on surface temperature and more. For many years these phenomena have been considered theoretically in the framework of the “washboard model” in which the interaction of the incident particle with the surface is described in terms of hard wall potentials. Although this class of models has helped in elucidating some of the features it left open many questions such as: true potentials are clearly not hard wall potentials, it does not provide a realistic framework for phonon scattering, and it cannot explain the incident angle and incident energy dependence of rainbow scattering, nor can it provide a consistent theory for sticking. In recent years we have been developing a classical perturbation theory approach which has provided new insight into the dynamics of atom-surface scattering. The theory includes both surface corrugation as well as interaction with surface phonons in terms of harmonic baths which are linearly coupled to the system coordinates. This model has been successful in elucidating many new features of rainbow scattering in terms of frictions and bath fluctuations or noise. It has also given new insight into the origins of asymmetry in atomic scattering from surfaces. New phenomena deduced from the theory include friction induced rainbows, energy loss rainbows, a theory of super-rainbows, and more. In this review we present the classical theory of atom-surface scattering as well as extensions and implications for semiclassical scattering and the further development of a quantum theory of surface scattering. Special emphasis is given to the inversion of scattering data into information on the particle-surface interactions.

  4. Classical theory of atom-surface scattering: The rainbow effect

    NASA Astrophysics Data System (ADS)

    Miret-Artés, Salvador; Pollak, Eli

    The scattering of heavy atoms and molecules from surfaces is oftentimes dominated by classical mechanics. A large body of experiments have gathered data on the angular distributions of the scattered species, their energy loss distribution, sticking probability, dependence on surface temperature and more. For many years these phenomena have been considered theoretically in the framework of the "washboard model" in which the interaction of the incident particle with the surface is described in terms of hard wall potentials. Although this class of models has helped in elucidating some of the features it left open many questions such as: true potentials are clearly not hard wall potentials, it does not provide a realistic framework for phonon scattering, and it cannot explain the incident angle and incident energy dependence of rainbow scattering, nor can it provide a consistent theory for sticking. In recent years we have been developing a classical perturbation theory approach which has provided new insight into the dynamics of atom-surface scattering. The theory includes both surface corrugation as well as interaction with surface phonons in terms of harmonic baths which are linearly coupled to the system coordinates. This model has been successful in elucidating many new features of rainbow scattering in terms of frictions and bath fluctuations or noise. It has also given new insight into the origins of asymmetry in atomic scattering from surfaces. New phenomena deduced from the theory include friction induced rainbows, energy loss rainbows, a theory of super-rainbows, and more. In this review we present the classical theory of atom-surface scattering as well as extensions and implications for semiclassical scattering and the further development of a quantum theory of surface scattering. Special emphasis is given to the inversion of scattering data into information on the particle-surface interactions.

  5. QCD dirac operator at nonzero chemical potential: lattice data and matrix model.

    PubMed

    Akemann, Gernot; Wettig, Tilo

    2004-03-12

    Recently, a non-Hermitian chiral random matrix model was proposed to describe the eigenvalues of the QCD Dirac operator at nonzero chemical potential. This matrix model can be constructed from QCD by mapping it to an equivalent matrix model which has the same symmetries as QCD with chemical potential. Its microscopic spectral correlations are conjectured to be identical to those of the QCD Dirac operator. We investigate this conjecture by comparing large ensembles of Dirac eigenvalues in quenched SU(3) lattice QCD at a nonzero chemical potential to the analytical predictions of the matrix model. Excellent agreement is found in the two regimes of weak and strong non-Hermiticity, for several different lattice volumes.

  6. Matrix theory for baryons: an overview of holographic QCD for nuclear physics.

    PubMed

    Aoki, Sinya; Hashimoto, Koji; Iizuka, Norihiro

    2013-10-01

    We provide, for non-experts, a brief overview of holographic QCD (quantum chromodynamics) and a review of the recent proposal (Hashimoto et al 2010 (arXiv:1003.4988[hep-th])) of a matrix-like description of multi-baryon systems in holographic QCD. Based on the matrix model, we derive the baryon interaction at short distances in multi-flavor holographic QCD. We show that there is a very universal repulsive core of inter-baryon forces for a generic number of flavors. This is consistent with a recent lattice QCD analysis for Nf = 2, 3 where the repulsive core looks universal. We also provide a comparison of our results with the lattice QCD and the operator product expansion analysis.

  7. Exploring Partonic Structure of Hadrons Using ab initio Lattice QCD Calculations

    DOE PAGES

    Ma, Yan-Qing; Qiu, Jian-Wei

    2018-01-10

    Following our previous proposal, we construct a class of good "lattice cross sections" (LCSs), from which we can study the partonic structure of hadrons from ab initio lattice QCD calculations. These good LCSs, on the one hand, can be calculated directly in lattice QCD, and on the other hand, can be factorized into parton distribution functions (PDFs) with calculable coefficients, in the same way as QCD factorization for factorizable hadronic cross sections. PDFs could be extracted from QCD global analysis of the lattice QCD generated data of LCSs. In conclusion, we also show that the proposed functions for lattice QCDmore » calculation of PDFs in the literature are special cases of these good LCSs.« less

  8. Jet production in high Q 2 deep-inelastic ep scattering at HERA

    NASA Astrophysics Data System (ADS)

    Derrick, M.; Krakauer, D.; Magill, S.; Mikunas, D.; Musgrave, B.; Repond, J.; Stanek, R.; Talaga, R. L.; Zhang, H.; Avad, R.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruni, P.; Romeo, G. Cara; Castellini, G.; Chiarini, M.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; Gialas, I.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Nemoz, C.; Palmonari, E.; Polini, A.; Sartorelli, G.; Timellini, R.; Garcia, Y. Zamora; Zichichi, A.; Bargende, A.; Crittenden, J.; Desch, K.; Diekmann, B.; Doeker, T.; Eckert, M.; Feld, L.; Frey, A.; Geerts, M.; Geitz, G.; Grothe, M.; Haas, T.; Hartmann, H.; Haun, D.; Heinloth, K.; Hilger, E.; Jakob, H.-P.; Katz, U. F.; Mari, S. M.; Mass, A.; Mengel, S.; Mollen, J.; Paul, E.; Rembser, Ch.; Schattevoy, R.; Schramm, D.; Stamm, J.; Wedemeyer, R.; Campbell-Robson, S.; Cassidy, A.; Dyce, N.; Foster, B.; George, S.; Gilmore, R.; Heath, G. P.; Heath, H. F.; Llewellyn, T. J.; Morgado, C. J. S.; Norman, D. J. P.; O'Mara, J. A.; Tapper, R. I.; Wilson, S. S.; Yoshida, R.; Rau, R. R.; Arneodo, M.; Iannotti, L.; Schioppa, M.; Susinno, G.; Bernstein, A.; Caldwell, A.; Parsons, J. A.; Ritz, S.; Sciulli, F.; Straub, P. B.; Wai, L.; Yang, S.; Zhu, Q.; Borzemski, P.; Chwastowski, J.; Eskreys, A.; Piotrzkowski, K.; Zachara, M.; Zawiejski, L.; Adamczyk, L.; Bednarek, B.; Eskreys, K.; Jeleń, K.; Kisielewska, D.; Kowalski, T.; Rulikowska-Zarębska, E.; Suszycki, L.; Zając, J.; Kotański, A.; Przybycień, M.; Bauerdick, I. A. T.; Behrens, U.; Beier, H.; Bienlein, J. K.; Coldewey, C.; Deppe, O.; Desler, K.; Drews, G.; Flasiński, M.; Gilkinson, D. J.; Glasman, C.; Göttlicher, P.; Große-Knetter, J.; Gutjahr, B.; Hain, W.; Hasell, D.; Heßling, H.; Hultschig, H.; Iga, Y.; Joos, P.; Kasemann, M.; Klanner, R.; Koch, W.; Köpke, L.; Kötz, U.; Kowalski, H.; Labs, J.; Ladage, A.; Löhr, B.; Löwe, M.; Lüke, D.; Mańczak, O.; Ng, J. S. T.; Nickel, S.; Notz, D.; Ohrenberg, K.; Roco, M.; Rohde, M.; Roldán, J.; Schneekloth, U.; Schulz, W.; Selonke, F.; Stiliaris, E.; Surrow, B.; Voß, T.; Westphal, D.; Wolf, G.; Youngman, C.; Zhou, J. F.; Grabosch, H. J.; Kharchilava, A.; Leich, A.; Mattingly, M.; Meyer, A.; Schlenstedt, S.; Wulff, N.; Barbagli, G.; Pelfer, P.; Anzivino, G.; Maccarrone, G.; de Pasquale, S.; Votano, L.; Bamberger, A.; Eisenhardt, S.; Freidhof, A.; Söldner-Rembold, S.; Schroeder, J.; Trefzger, T.; Brook, N. H.; Bussey, P. J.; Doyle, A. T.; Fleck, I.; Saxon, D. H.; Utley, M. L.; Wilson, A. S.; Dannemann, A.; Holm, U.; Horstmann, D.; Neumann, T.; Sinkus, R.; Wick, K.; Badura, E.; Burow, B. D.; Hagge, L.; Lohrmann, E.; Mainusch, J.; Milewski, J.; Nakahata, M.; Pavel, N.; Poelz, G.; Schott, W.; Zetsche, F.; Bacon, T. C.; Butterworth, I.; Gallo, E.; Harris, V. L.; Hung, B. Y. H.; Long, K. R.; Miller, D. B.; Morawitz, P. P. O.; Prinias, A.; Sedgbeer, J. K.; Whitfield, A. F.; Mallik, U.; McCliment, E.; Wang, M. Z.; Wang, S. M.; Wu, J. T.; Zhang, Y.; Cloth, P.; Filges, D.; An, S. H.; Hong, S. M.; Nam, S. W.; Park, S. K.; Suh, M. H.; Yon, S. H.; Imlay, R.; Kartik, S.; Kim, H.-J.; McNeil, R. R.; Metcalf, W.; Nadendla, V. K.; Barreiro, F.; Cases, G.; Graciani, R.; Hernández, J. M.; Hervás, L.; Labarga, L.; Del Peso, J.; Puga, J.; Terron, J.; de Trocóniz, J. F.; Smith, G. R.; Corriveau, F.; Hanna, D. S.; Hartmann, J.; Hung, L. W.; Lim, J. N.; Matthews, C. G.; Patel, P. M.; Sinclair, L. E.; Stairs, D. G.; Laurent, M. St.; Ullmann, R.; Zacek, G.; Bashkirov, V.; Dolgoshein, B. A.; Stifutkin, A.; Bashindzhagyan, G. L.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Y. A.; Kobrin, V. D.; Kuzmin, V. A.; Proskuryakov, A. S.; Savin, A. A.; Shcheglova, L. M.; Solomin, A. N.; Zotov, N. P.; Botje, M.; Chlebana, F.; Dake, A.; Engelen, J.; de Kamps, M.; Kooijman, P.; Kruse, A.; Tiecke, H.; Verkerke, W.; Vreeswijk, M.; Wiggers, L.; de Wolf, E.; van Woudenberg, R.; Acosta, D.; Bylsma, B.; Durkin, L. S.; Honscheid, K.; Li, C.; Ling, T. Y.; McLean, K. W.; Murray, W. N.; Park, I. H.; Romanowski, T. A.; Seidlein, R.; Bailey, D. S.; Blair, G. A.; Byrne, A.; Cashmore, R. J.; Cooper-Sarkar, A. M.; Daniels, D.; Devenish, R. C. E.; Harnew, N.; Lancaster, M.; Luffman, P. E.; Lindemann, L.; McFall, J. D.; Nath, C.; Noyes, V. A.; Quadt, A.; Uijterwaal, H.; Walczak, R.; Wilson, F. F.; Yip, T.; Abbiendi, G.; Bertolin, A.; Brugnera, R.; Carlin, R.; Dal Corso, F.; de Giorgi, M.; Dosselli, U.; Limentani, S.; Morandin, M.; Posocco, M.; Stanco, L.; Stroili, R.; Voci, C.; Bulmahn, J.; Butterworth, J. M.; Feild, R. G.; Oh, B. Y.; Whitmore, J. J.; D'Agostini, G.; Marini, G.; Nigro, A.; Tassi, E.; Hart, J. C.; McCubbin, N. A.; Prytz, K.; Shah, T. P.; Short, T. L.; Barberis, L.; Cartiglia, N.; Dubbs, T.; Heusch, C.; van Hook, M.; Hubbard, B.; Lockman, W.; Rahn, J. T.; Sadrozinski, H. F.-W.; Seiden, A.; Biltzinger, J.; Seifert, R. J.; Walenta, A. H.; Zech, G.; Abramowicz, H.; Briskin, G.; Dagan, S.; Levy, A.; Hasegawa, T.; Hazumi, M.; Ishii, T.; Kuze, M.; Mine, S.; Nagasawa, Y.; Nakao, M.; Suzuki, I.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; Chiba, M.; Hamatsu, R.; Hirose, T.; Homma, K.; Kitamura, S.; Nakamitsu, Y.; Yamauchi, K.; Cirio, R.; Costa, M.; Ferrero, M. I.; Lamberti, L.; Maselli, S.; Peroni, C.; Sacchi, R.; Solano, A.; Staiano, A.; Dardo, M.; Bailey, D. C.; Bandyopadhyay, D.; Benard, F.; Brkic, M.; Crombie, M. B.; Gingrich, D. M.; Hartner, G. F.; Joo, K. K.; Levman, G. M.; Martin, J. F.; Orr, R. S.; Sampson, C. R.; Teuscher, R. J.; Catterall, C. D.; Jones, T. W.; Kaziewicz, P. B.; Lane, J. B.; Saunders, R. L.; Shulman, J.; Blankenship, K.; Kochocki, J.; Lu, B.; Mo, L. W.; Bogusz, W.; Charchula, K.; Ciborowski, J.; Gajewski, J.; Grzelak, G.; Kasprzak, M.; Krzyżanowski, M.; Muchorowski, K.; Nowak, R. J.; Pawlak, J. M.; Tymieniecka, T.; Wróblewski, A. K.; Zakrzewski, J. A.; Żarnecki, A. F.; Adamus, M.; Eisenberg, Y.; Karshon, U.; Revel, D.; Zer-Zion, D.; Ali, I.; Badgett, W. F.; Behrens, B.; Dasu, S.; Fordham, C.; Foudas, C.; Goussiou, A.; Loveless, R. J.; Reeder, D. D.; Silverstein, S.; Smith, W. H.; Vaiciulis, A.; Wodarczyk, M.; Tsurugai, T.; Bhadra, S.; Cardy, M. L.; Fagerstroem, C.-P.; Frisken, W. R.; Furutani, K. M.; Khakzad, M.; Schmidke, W. B.

    1995-03-01

    Two-jet production in deep-inelastic electron-proton scattering has been studied for 160< Q 2<1280 GeV2, 0.01< x<0.1 and 0.04< y<0.95 with the ZEUS detector at HERA. The kinematic properties of the jets and the jet production rates are presented. The partonic scaling variables of the two-jet system and the rate of two-jet production are compared to perturbative next-to-leading order QCD calculations.

  9. Two-nucleon higher partial-wave scattering from lattice QCD

    DOE PAGES

    Berkowitz, Evan; Kurth, Thorsten; Nicholson, Amy; ...

    2016-12-14

    Here, we present a determination of nucleon-nucleon scattering phase shifts for L>0. The S,P,D and F phase shifts for both the spin-triplet and spin-singlet channels are computed for the first time with lattice Quantum ChromoDynamics. This required the design and implementation of novel lattice methods involving displaced sources and momentum-space cubic sinks. In order to demonstrate the utility of our approach, the calculations were performed in the SU(3)-flavor limit where the light quark masses have been tuned to the physical strange quark mass, corresponding to m π=m K≈800~MeV. Two spatial volumes of V ≈ (3.5 fm) 3 and V ≈more » (4.6 fm) 3 were used. Furthermore, the finite-volume spectrum is extracted from the exponential falloff of the correlation functions. Said spectrum is mapped onto the infinite volume phase shifts using the generalization of the Luscher formalism for two-nucleon systems.« less

  10. The Nucleon Axial Form Factor and Staggered Lattice QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Aaron Scott

    The study of neutrino oscillation physics is a major research goal of the worldwide particle physics program over the upcoming decade. Many new experiments are being built to study the properties of neutrinos and to answer questions about the phenomenon of neutrino oscillation. These experiments need precise theoretical cross sections in order to access fundamental neutrino properties. Neutrino oscillation experiments often use large atomic nuclei as scattering targets, which are challenging for theorists to model. Nuclear models rely on free-nucleon amplitudes as inputs. These amplitudes are constrained by scattering experiments with large nuclear targets that rely on the very samemore » nuclear models. The work in this dissertation is the rst step of a new initiative to isolate and compute elementary amplitudes with theoretical calculations to support the neutrino oscillation experimental program. Here, the eort focuses on computing the axial form factor, which is the largest contributor of systematic error in the primary signal measurement process for neutrino oscillation studies, quasielastic scattering. Two approaches are taken. First, neutrino scattering data on a deuterium target are reanalyzed with a model-independent parametrization of the axial form factor to quantify the present uncertainty in the free-nucleon amplitudes. The uncertainties on the free-nucleon cross section are found to be underestimated by about an order of magnitude compared to the ubiquitous dipole model parametrization. The second approach uses lattice QCD to perform a rst-principles computation of the nucleon axial form factor. The Highly Improved Staggered Quark (HISQ) action is employed for both valence and sea quarks. The results presented in this dissertation are computed at physical pion mass for one lattice spacing. This work presents a computation of the axial form factor at zero momentum transfer, and forms the basis for a computation of the axial form factor momentum

  11. Hard-X-ray dark-field imaging using a grating interferometer.

    PubMed

    Pfeiffer, F; Bech, M; Bunk, O; Kraft, P; Eikenberry, E F; Brönnimann, Ch; Grünzweig, C; David, C

    2008-02-01

    Imaging with visible light today uses numerous contrast mechanisms, including bright- and dark-field contrast, phase-contrast schemes and confocal and fluorescence-based methods. X-ray imaging, on the other hand, has only recently seen the development of an analogous variety of contrast modalities. Although X-ray phase-contrast imaging could successfully be implemented at a relatively early stage with several techniques, dark-field imaging, or more generally scattering-based imaging, with hard X-rays and good signal-to-noise ratio, in practice still remains a challenging task even at highly brilliant synchrotron sources. In this letter, we report a new approach on the basis of a grating interferometer that can efficiently yield dark-field scatter images of high quality, even with conventional X-ray tube sources. Because the image contrast is formed through the mechanism of small-angle scattering, it provides complementary and otherwise inaccessible structural information about the specimen at the micrometre and submicrometre length scale. Our approach is fully compatible with conventional transmission radiography and a recently developed hard-X-ray phase-contrast imaging scheme. Applications to X-ray medical imaging, industrial non-destructive testing and security screening are discussed.

  12. QCD and Asymptotic Freedom:. Perspectives and Prospects

    NASA Astrophysics Data System (ADS)

    Wilczek, Frank

    QCD is now a mature theory, and it is possible to begin to view its place in the conceptual universe of physics with an appropriate perspective. There is a certain irony in the achievements of QCD. For the problems which initially drove its development — specifically, the desire to understand in detail the force that holds atomic nuclei together, and later the desire to calculate the spectrum of hadrons and their interactions — only limited insight has been achieved. However, I shall argue that QCD is actually more special and important a theory than one had any right to anticipate. In many ways, the importance of the solution transcends that of the original motivating problems. After elaborating on these quasiphilosophical remarks, I discuss two current frontiers of physics that illustrate the continuing vitality of the ideas. The recent wealth of beautiful precision experiments measuring the parameters of the standard model have made it possible to consider the unification of couplings in unprecedented quantitative detail. One central result emerging from these developments is a tantalizing hint of virtual supersymmetry. The possibility of phase transitions in matter at temperatures of order ~102 MeV, governed by QCD dynamics, is of interest from several points of view. Besides having a certain intrinsic grandeur, the question “Does the nature of matter change qualitatively, as it is radically heated?” is important for cosmology, relevant to planned high-energy heavy-ion collision experiments, and provides a promising arena for numerical simulations of QCD. Recent numerical work seems to be consistent with expectations suggested by renormalization group analysis of the potential universality classes of the QCD chiral phase transition; specifically, that the transition is second-order for two species of massless quarks but first order otherwise. There is an interesting possibility of long-range correlations in heavy ion collisions due to the creation of

  13. QCD: Quantum Chromodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lincoln, Don

    The strongest force in the universe is the strong nuclear force and it governs the behavior of quarks and gluons inside protons and neutrons. The name of the theory that governs this force is quantum chromodynamics, or QCD. In this video, Fermilab’s Dr. Don Lincoln explains the intricacies of this dominant component of the Standard Model.

  14. Lepton-rich cold QCD matter in protoneutron stars

    NASA Astrophysics Data System (ADS)

    Jiménez, J. C.; Fraga, E. S.

    2018-05-01

    We investigate protoneutron star matter using the state-of-the-art perturbative equation of state for cold and dense QCD in the presence of a fixed lepton fraction in which both electrons and neutrinos are included. Besides computing the modifications in the equation of state due to the presence of trapped neutrinos, we show that stable strange quark matter has a more restricted parameter space. We also study the possibility of nucleation of unpaired quark matter in the core of protoneutron stars by matching the lepton-rich QCD pressure onto a hadronic equation of state, namely TM1 with trapped neutrinos. Using the inherent dependence of perturbative QCD on the renormalization scale parameter, we provide a measure of the uncertainty in the observables we compute.

  15. High Precision Measurement of the Neutron Polarizabilities via Compton Scattering on Deuterium at HI γS

    NASA Astrophysics Data System (ADS)

    Sikora, Mark

    2016-09-01

    The electric (αn) and magnetic (βn) polarizabilities of the neutron are fundamental properties arising from its internal structure which describe the nucleon's response to applied electromagnetic fields. Precise measurements of the polarizabilities provide crucial constraints on models of Quantum Chromodynamics (QCD) in the low energy regime such as Chiral Effective Field Theories as well as emerging ab initio calculations from lattice-QCD. These values also contribute the most uncertainty to theoretical determinations of the proton-neutron mass difference. Historically, the experimental challenges to measuring αn and βn have been due to the difficulty in obtaining suitable targets and sufficiently intense beams, leading to significant statistical uncertainties. To address these issues, a program of Compton scattering experiments on the deuteron is underway at the High Intensity Gamma Source (HI γS) at Duke University with the aim of providing the world's most precise measurement of αn and βn. We report measurements of the Compton scattering differential cross section obtained at incident photon energies of 65 and 85 MeV and discuss the sensitivity of these data to the polarizabilities.

  16. Polarization Transfer in Proton Compton Scattering at High Momentum Transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D.J. Hamilton; Vahe Mamyan

    2004-10-01

    Compton scattering from the proton was investigated at s = 6.9 GeV{sup 2} and t = -4.0 TeV{sup 2} via polarization transfer from circularly polarized incident photons. The longitudinal and transverse components of the recoil proton polarization were measured. The results are in excellent agreement with a prediction based on a reaction mechanism in which the photon interacts with a single quark carrying the spin of the proton and in disagreement with a prediction of pQCD based on a two-gluon exchange mechanism.

  17. Hadron mass spectrum from lattice QCD.

    PubMed

    Majumder, Abhijit; Müller, Berndt

    2010-12-17

    Finite temperature lattice simulations of quantum chromodynamics (QCD) are sensitive to the hadronic mass spectrum for temperatures below the "critical" temperature T(c) ≈ 160 MeV. We show that a recent precision determination of the QCD trace anomaly shows evidence for the existence of a large number of hadron states beyond those known from experiment. The lattice results are well represented by an exponentially growing mass spectrum up to a temperature T=155 MeV. Using simple parametrizations of the hadron mass spectrum we show how one may estimate the total spectral weight in these yet undermined states.

  18. First Simultaneous Extraction of Spin-Dependent Parton Distributions and Fragmentation Functions from a Global QCD Analysis.

    PubMed

    Ethier, J J; Sato, N; Melnitchouk, W

    2017-09-29

    We perform the first global QCD analysis of polarized inclusive and semi-inclusive deep-inelastic scattering and single-inclusive e^{+}e^{-} annihilation data, simultaneously fitting the parton distribution and fragmentation functions using the iterative Monte Carlo method. Without imposing SU(3) symmetry relations, we find the strange polarization to be very small, consistent with zero for both inclusive and semi-inclusive data, which provides a resolution to the strange quark polarization puzzle. The combined analysis also allows the direct extraction from data of the isovector and octet axial charges, and is consistent with a small SU(2) flavor asymmetry in the polarized sea.

  19. First Simultaneous Extraction of Spin-Dependent Parton Distributions and Fragmentation Functions from a Global QCD Analysis

    DOE PAGES

    Ethier, Jacob J.; Sato, Nobuo; Melnitchouk, Wally

    2017-09-26

    In this paper, we perform the first global QCD analysis of polarized inclusive and semi-inclusive deep-inelastic scattering and single-inclusive $e^+e^-$ annihilation data, simultaneously fitting the parton distribution and fragmentation functions using the iterative Monte Carlo method. Without imposing SU(3) symmetry relations, we find the strange polarization to be very small, consistent with zero for both inclusive and semi-inclusive data, which provides a resolution to the strange quark polarization puzzle. Finally, the combined analysis also allows the direct extraction from data of the isovector and octet axial charges, and is consistent with a small SU(2) flavor asymmetry in the polarized sea.

  20. The QCD mass gap and quark deconfinement scales as mass bounds in strong gravity

    NASA Astrophysics Data System (ADS)

    Burikham, Piyabut; Harko, Tiberiu; Lake, Matthew J.

    2017-11-01

    Though not a part of mainstream physics, Salam's theory of strong gravity remains a viable effective model for the description of strong interactions in the gauge singlet sector of QCD, capable of producing particle confinement and asymptotic freedom, but not of reproducing interactions involving SU(3) color charge. It may therefore be used to explore the stability and confinement of gauge singlet hadrons, though not to describe scattering processes that require color interactions. It is a two-tensor theory of both strong interactions and gravity, in which the strong tensor field is governed by equations formally identical to the Einstein equations, apart from the coupling parameter, which is of order 1 {GeV}^{-1}. We revisit the strong gravity theory and investigate the strong gravity field equations in the presence of a mixing term which induces an effective strong cosmological constant, Λ f. This introduces a strong de Sitter radius for strongly interacting fermions, producing a confining bubble, which allows us to identify Λ f with the `bag constant' of the MIT bag model, B ˜eq 2 × 10^{14} {g} {cm}^{-3}. Assuming a static, spherically symmetric geometry, we derive the strong gravity TOV equation, which describes the equilibrium properties of compact hadronic objects. From this, we determine the generalized Buchdahl inequalities for a strong gravity `particle', giving rise to upper and lower bounds on the mass/radius ratio of stable, compact, strongly interacting objects. We show, explicitly, that the existence of the lower mass bound is induced by the presence of Λ _f, producing a mass gap, and that the upper bound corresponds to a deconfinement phase transition. The physical implications of our results for holographic duality in the context of the AdS/QCD and dS/QCD correspondences are also discussed.

  1. Conjecture about the 2-Flavour QCD Phase Diagram

    NASA Astrophysics Data System (ADS)

    Nava Blanco, M. A.; Bietenholz, W.; Fernández Téllez, A.

    2017-10-01

    The QCD phase diagram, in particular its sector of high baryon density, is one of the most prominent outstanding mysteries within the Standard Model of particle physics. We sketch a project how to arrive at a conjecture for the case of two massless quark flavours. The pattern of spontaneous chiral symmetry breaking is isomorphic to the spontaneous magnetisation in an O(4) non-linear σ-model, which can be employed as a low-energy effective theory to study the critical behaviour. We focus on the 3d O(4) model, where the configurations are divided into topological sectors, as in QCD. A topological winding with minimal Euclidean action is denoted as a skyrmion, and the topological charge corresponds to the QCD baryon number. This effective model can be simulated on a lattice with a powerful cluster algorithm, which should allow us to identify the features of the critical temperature, as we proceed from low to high baryon density. In this sense, this projected numerical study has the potential to provide us with a conjecture about the phase diagram of QCD with two massless quark flavours.

  2. D*(s0)(2317) meson and D-meson-kaon scattering from lattice QCD.

    PubMed

    Mohler, Daniel; Lang, C B; Leskovec, Luka; Prelovsek, Sasa; Woloshyn, R M

    2013-11-27

    The scalar meson D*(s0)(2317) is found 37(17) MeV below the DK threshold in a lattice simulation of the J(P)=0(+) channel using, for the first time, both DK as well as s¯c interpolating fields. The simulation is done on N(f)=2+1 gauge configurations with m(π) is approximately equal to 156 MeV, and the resulting M(D*(s0))-1/4(M(D(s))+3M(D*(s)))=266(16) MeV is close to the experimental value 241.5(0.8) MeV. The energy level related to the scalar meson is accompanied by additional discrete levels due to DK scattering states. The levels near threshold lead to the negative DK scattering length a(0)=-1.33(20) fm that indicates the presence of a state below threshold.

  3. Higher order corrections to mixed QCD-EW contributions to Higgs boson production in gluon fusion

    NASA Astrophysics Data System (ADS)

    Bonetti, Marco; Melnikov, Kirill; Tancredi, Lorenzo

    2018-03-01

    We present an estimate of the next-to-leading-order (NLO) QCD corrections to mixed QCD-electroweak contributions to the Higgs boson production cross section in gluon fusion, combining the recently computed three-loop virtual corrections and the approximate treatment of real emission in the soft approximation. We find that the NLO QCD corrections to the mixed QCD-electroweak contributions are nearly identical to NLO QCD corrections to QCD Higgs production. Our result confirms an earlier estimate of these O (α αs2) effects by Anastasiou et al. [J. High Energy Phys. 04 (2009) 003, 10.1088/1126-6708/2009/04/003] and provides further support for the factorization approximation of QCD and electroweak corrections.

  4. Extraction of partonic transverse momentum distributions from semi-inclusive deep inelastic scattering and Drell-Yan data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pisano, Cristian; Bacchetta, Alessandro; Delcarro, Filippo

    We present a first attempt at a global fit of unpolarized quark transverse momentum dependent distribution and fragmentation functions from available data on semi-inclusive deep-inelastic scattering, Drell-Yan and $Z$ boson production processes. This analysis is performed in the low transverse momentum region, at leading order in perturbative QCD and with the inclusion of energy scale evolution effects at the next-to-leading logarithmic accuracy.

  5. Observables of QCD diffraction

    NASA Astrophysics Data System (ADS)

    Mieskolainen, Mikael; Orava, Risto

    2017-03-01

    A new combinatorial vector space measurement model is introduced for soft QCD diffraction. The model independent mathematical construction resolves experimental complications; the theoretical framework of the approach includes the Good-Walker view of diffraction, Regge phenomenology together with AGK cutting rules and random fluctuations.

  6. Charged particle multiplicities in deep inelastic scattering at HERA

    NASA Astrophysics Data System (ADS)

    Aid, S.; Anderson, M.; Andreev, V.; Andrieu, B.; Appuhn, R.-D.; Babaev, A.; Bähr, J.; Bán, J.; Ban, Y.; Baranov, P.; Barrelet, E.; Barschke, R.; Bartel, W.; Barth, M.; Bassler, U.; Beck, H. P.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bernardi, G.; Bertrand-Coremans, G.; Besançon, M.; Beyer, R.; Biddulph, P.; Bispham, P.; Bizot, J. C.; Blobel, V.; Borras, K.; Botterweck, F.; Boudry, V.; Braemer, A.; Braunschweig, W.; Brisson, V.; Bruel, P.; Bruncko, D.; Brune, C.; Buchholz, R.; Büngener, L.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Burton, M. J.; Calvet, D.; Campbell, A. J.; Carli, T.; Charlet, M.; Clarke, D.; Clegg, A. B.; Clerbaux, B.; Cocks, S.; Contreras, J. G.; Cormack, C.; Coughlan, J. A.; Courau, A.; Cousinou, M.-C.; Cozzika, G.; Criegee, L.; Cussans, D. G.; Cvach, J.; Dagoret, S.; Dainton, J. B.; Dau, W. D.; Daum, K.; David, M.; Davis, C. L.; Delcourt, B.; de Roeck, A.; de Wolf, E. A.; Dirkmann, M.; Dixon, P.; di Nezza, P.; Dlugosz, W.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Droutskoi, A.; Dünger, O.; Duhm, H.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Elsen, E.; Erdmann, M.; Erdmann, W.; Evrard, E.; Fahr, A. B.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Fleischer, M.; Flieser, M.; Flügge, G.; Fomenko, A.; Fominykh, B.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Gabathuler, E.; Gabathuler, K.; Gaede, F.; Garvey, J.; Gayler, J.; Gebauer, M.; Genzel, H.; Gerhards, R.; Glazov, A.; Goerlach, U.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goldner, D.; Golec-Biernat, K.; Gonzalez-Pineiro, B.; Gorelov, I.; Grab, C.; Grässler, H.; Greenshaw, T.; Griffiths, R. K.; Grindhammer, G.; Gruber, A.; Gruber, C.; Haack, J.; Hadig, T.; Haidt, D.; Hajduk, L.; Hampel, M.; Haynes, W. J.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herynek, I.; Hess, M. F.; Hewitt, K.; Hildesheim, W.; Hiller, K. H.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Höppner, M.; Hoffmann, D.; Holtom, T.; Horisberger, R.; Hudgson, V. L.; Hütte, M.; Ibbotson, M.; Itterbeck, H.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Janoth, J.; Jansen, T.; Jönsson, L.; Johnson, D. P.; Jung, H.; Kalmus, P. I. P.; Kander, M.; Kant, D.; Kaschowitz, R.; Kathage, U.; Katzy, J.; Kaufmann, H. H.; Kaufmann, O.; Kazarian, S.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Köhler, T.; Köhne, J. H.; Kolanoski, H.; Kole, F.; Kolya, S. D.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krämerkämper, T.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Küster, H.; Kuhlen, M.; Kurča, T.; Kurzhöfer, J.; Lacour, D.; Laforge, B.; Lander, R.; Landon, M. P. J.; Lange, W.; Langenegger, U.; Laporte, J.-F.; Lebedev, A.; Lehner, F.; Levonian, S.; Lindström, G.; Lindstroem, M.; Link, J.; Linsel, F.; Lipinski, J.; List, B.; Lobo, G.; Lomas, J. W.; Lopez, G. C.; Lubimov, V.; Lüke, D.; Magnussen, N.; Malinovski, E.; Mani, S.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, G.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Mavroidis, T.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Meyer, A.; Meyer, A.; Meyer, H.; Meyer, J.; Meyer, P.-O.; Migliori, A.; Mikocki, S.; Milstead, D.; Moeck, J.; Moreau, F.; Morris, J. V.; Mroczko, E.; Müller, D.; Müller, G.; Müller, K.; Müller, M.; Murín, P.; Nagovizin, V.; Nahnhauer, R.; Naroska, B.; Naumann, Th.; Négri, I.; Newman, P. R.; Newton, D.; Nguyen, H. K.; Nicholls, T. C.; Niebergall, F.; Niebuhr, C.; Niedzballa, Ch.; Niggli, H.; Nisius, R.; Nowak, G.; Noyes, G. W.; Nyberg-Werther, M.; Oakden, M.; Oberlack, H.; Olsson, J. E.; Ozerov, D.; Palmen, P.; Panaro, E.; Panitch, A.; Pascaud, C.; Patel, G. D.; Pawletta, H.; Peppel, E.; Perez, E.; Phillips, J. P.; Pieuchot, A.; Pitzl, D.; Pope, G.; Prell, S.; Rabbertz, K.; Rädel, G.; Reimer, P.; Reinshagen, S.; Rick, H.; Riech, V.; Riedlberger, J.; Riepenhausen, F.; Riess, S.; Rizvi, E.; Robertson, S. M.; Robmann, P.; Roloff, H. E.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rüter, K.; Rusakov, S.; Rybicki, K.; Sankey, D. P. C.; Schacht, P.; Schiek, S.; Schleif, S.; Schleper, P.; von Schlippe, W.; Schmidt, D.; Schmidt, G.; Schöning, A.; Schröder, V.; Schuhmann, E.; Schwab, B.; Sefkow, F.; Seidel, M.; Sell, R.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Smith, J. R.; Solochenko, V.; Soloviev, Y.; Specka, A.; Spiekermann, J.; Spielman, S.; Spitzer, H.; Squinabol, F.; Steenbock, M.; Steffen, P.; Steinberg, R.; Steiner, H.; Steinhart, J.; Stella, B.; Stellberger, A.; Stier, J.; Stiewe, J.; Stößlein, U.; Stolze, K.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Tapprogge, S.; Taševský, M.; Tchernyshov, V.; Tchetchelnitski, S.; Theissen, J.; Thiebaux, C.; Thompson, G.; Truöl, P.; Tsipolitis, G.; Turnau, J.; Tutas, J.; Uelkes, P.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; Vandenplas, D.; van Esch, P.; van Mechelen, P.; Vazdik, Y.; Verrecchia, P.; Villet, G.; Wacker, K.; Wagener, A.; Wagener, M.; Walther, A.; Waugh, B.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wengler, T.; Werner, M.; West, L. R.; Wilksen, T.; Willard, S.; Winde, M.; Winter, G.-G.; Wittek, C.; Wobisch, M.; Wünsch, E.; Žáček, J.; Zarbock, D.; Zhang, Z.; Zhokin, A.; Zini, P.; Zomer, F.; Zsembery, J.; Zuber, K.; Zurnedden, M.

    1996-12-01

    Using the H1 detector at HERA, charged particle multiplicity distributions in deep inelastic e + p scattering have been measured over a large kinematical region. The evolution with W and Q 2 of the multiplicity distribution and of the multiplicity moments in pseudorapidity domains of varying size is studied in the current fragmentation region of the hadronic centre-of-mass frame. The results are compared with data from fixed target lepton-nucleon interactions, e + e - annihilations and hadron-hadron collisions as well as with expectations from QCD based parton models. Fits to the Negative Binomial and Lognormal distributions are presented.

  7. Chiral extrapolations of the ρ ( 770 ) meson in N f = 2 + 1 lattice QCD simulations

    DOE PAGES

    Hu, B.; Molina, R.; Döring, M.; ...

    2017-08-24

    Recentmore » $$N_f=2+1$$ lattice data for meson-meson scattering in $p$-wave and isospin $I=1$ are analyzed using a unitarized model inspired by Chiral Perturbation Theory in the inverse-amplitude formulation for two and three flavors. We perform chiral extrapolations that postdict phase shifts extracted from experiment quite well. Additionally, the low-energy constants are compared to the ones from a recent analysis of $$N_f=2$$ lattice QCD simulations to check for the consistency of the hadronic model used here. Some inconsistencies are detected in the fits to $$N_f=2+1$$ data, in contrast to the previous analysis of $$N_f=2$$ data.« less

  8. Renormalization scheme dependence of high-order perturbative QCD predictions

    NASA Astrophysics Data System (ADS)

    Ma, Yang; Wu, Xing-Gang

    2018-02-01

    Conventionally, one adopts typical momentum flow of a physical observable as the renormalization scale for its perturbative QCD (pQCD) approximant. This simple treatment leads to renormalization scheme-and-scale ambiguities due to the renormalization scheme and scale dependence of the strong coupling and the perturbative coefficients do not exactly cancel at any fixed order. It is believed that those ambiguities will be softened by including more higher-order terms. In the paper, to show how the renormalization scheme dependence changes when more loop terms have been included, we discuss the sensitivity of pQCD prediction on the scheme parameters by using the scheme-dependent {βm ≥2}-terms. We adopt two four-loop examples, e+e-→hadrons and τ decays into hadrons, for detailed analysis. Our results show that under the conventional scale setting, by including more-and-more loop terms, the scheme dependence of the pQCD prediction cannot be reduced as efficiently as that of the scale dependence. Thus a proper scale-setting approach should be important to reduce the scheme dependence. We observe that the principle of minimum sensitivity could be such a scale-setting approach, which provides a practical way to achieve optimal scheme and scale by requiring the pQCD approximate be independent to the "unphysical" theoretical conventions.

  9. QCD: Quantum Chromodynamics

    ScienceCinema

    Lincoln, Don

    2018-01-16

    The strongest force in the universe is the strong nuclear force and it governs the behavior of quarks and gluons inside protons and neutrons. The name of the theory that governs this force is quantum chromodynamics, or QCD. In this video, Fermilab’s Dr. Don Lincoln explains the intricacies of this dominant component of the Standard Model.

  10. Hadron interactions and exotic hadrons from lattice QCD

    NASA Astrophysics Data System (ADS)

    Ikeda, Yoichi

    2014-09-01

    One of the interesting subjects in hadron physics is to look for the multiquark configurations. One of candidates is the H-dibaryon (udsuds), and the possibility of the bound H-dibaryon has been recently studied from lattice QCD. We also extend the HAL QCD method to define potentials on the lattice between baryons to meson-meson systems including charm quarks to search for the bound tetraquark Tcc (ud c c) and Tcs (ud c s). In the presentation, after reviewing the HAL QCD method, we report the results on the H-dibaryon, the tetraquark Tcc (ud c c) and Tcs (ud c s), where we have employed the relativistic heavy quark action to treat the charm quark dynamics with pion masses, mπ = 410, 570, 700 MeV.

  11. Progress in vacuum susceptibilities and their applications to the chiral phase transition of QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Zhu-Fang, E-mail: phycui@nju.edu.cn; State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, CAS, Beijing, 100190; Hou, Feng-Yao

    2015-07-15

    The QCD vacuum condensates and various vacuum susceptibilities are all important parameters which characterize the nonperturbative properties of the QCD vacuum. In the QCD sum rules external field formula, various QCD vacuum susceptibilities play important roles in determining the properties of hadrons. In this paper, we review the recent progress in studies of vacuum susceptibilities together with their applications to the chiral phase transition of QCD. The results of the tensor, the vector, the axial–vector, the scalar, and the pseudo-scalar vacuum susceptibilities are shown in detail in the framework of Dyson–Schwinger equations.

  12. J. J. Sakurai Prize for Theoretical Particle Physics Talk: Hard scattering factorization in QCD

    NASA Astrophysics Data System (ADS)

    Collins, John

    2009-05-01

    Many important cross sections in high-energy collisions are analyzed using factorization properties. I review the nature of factorization, how it arose from the parton model, and current issues in its development. This talk will be coordinated with the one by Soper.

  13. Development of a hard x-ray focal plane compton polarimeter: a compact polarimetric configuration with scintillators and Si photomultipliers

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, T.; Vadawale, S. V.; Goyal, S. K.; Mithun, N. P. S.; Patel, A. R.; Shukla, R.; Ladiya, T.; Shanmugam, M.; Patel, V. R.; Ubale, G. P.

    2016-02-01

    X-ray polarization measurement of cosmic sources provides two unique parameters namely degree and angle of polarization which can probe the emission mechanism and geometry at close vicinity of the compact objects. Specifically, the hard X-ray polarimetry is more rewarding because the sources are expected to be intrinsically highly polarized at higher energies. With the successful implementation of Hard X-ray optics in NuSTAR, it is now feasible to conceive Compton polarimeters as focal plane detectors. Such a configuration is likely to provide sensitive polarization measurements in hard X-rays with a broad energy band. We are developing a focal plane hard X-ray Compton polarimeter consisting of a plastic scintillator as active scatterer surrounded by a cylindrical array of CsI(Tl) scintillators. The scatterer is 5 mm diameter and 100 mm long plastic scintillator (BC404) viewed by normal PMT. The photons scattered by the plastic scatterer are collected by a cylindrical array of 16 CsI(Tl) scintillators (5 mm × 5 mm × 150 mm) which are read by Si Photomultiplier (SiPM). Use of the new generation SiPMs ensures the compactness of the instrument which is essential for the design of focal plane detectors. The expected sensitivity of such polarimetric configuration and complete characterization of the plastic scatterer, specially at lower energies have been discussed in [11, 13]. In this paper, we characterize the CsI(Tl) absorbers coupled to SiPM. We also present the experimental results from the fully assembled configuration of the Compton polarimeter.

  14. Evidence for X(3872) from DD* scattering on the lattice.

    PubMed

    Prelovsek, Sasa; Leskovec, Luka

    2013-11-08

    A candidate for the charmonium(like) state X(3872) is found 11±7 MeV below the DD* threshold using dynamical N(f)=2 lattice simulation with J(PC)=1(++) and I=0. This is the first lattice simulation that establishes a candidate for X(3872) in addition to the nearby scattering states DD* and J/ψω, which inevitably have to be present in dynamical QCD. We extract large and negative DD* scattering length a(0)(DD*)=-1.7±0.4 fm and the effective range r(0)(DD*)=0.5±0.1 fm, but their reliable determination will have to wait for a simulation on a larger volume. In I=1 channel, only the DD* and J/ψρ scattering states are found and no candidate for X(3872). This is in agreement with the interpretation that X(3872) is dominantly I=0, while its small I=1 component arises solely from the isospin breaking and is therefore absent in our simulation with m(u)=m(d).

  15. QCD unitarity constraints on Reggeon Field Theory

    NASA Astrophysics Data System (ADS)

    Kovner, Alex; Levin, Eugene; Lublinsky, Michael

    2016-08-01

    We point out that the s-channel unitarity of QCD imposes meaningful constraints on a possible form of the QCD Reggeon Field Theory. We show that neither the BFKL nor JIMWLK nor Braun's Hamiltonian satisfy the said constraints. In a toy, zero transverse dimensional case we construct a model that satisfies the analogous constraint and show that at infinite energy it indeed tends to a "black disk limit" as opposed to the model with triple Pomeron vertex only, routinely used as a toy model in the literature.

  16. Hybrid baryons in QCD

    DOE PAGES

    Dudek, Jozef J.; Edwards, Robert G.

    2012-03-21

    In this study, we present the first comprehensive study of hybrid baryons using lattice QCD methods. Using a large basis of composite QCD interpolating fields we extract an extensive spectrum of baryon states and isolate those of hybrid character using their relatively large overlap onto operators which sample gluonic excitations. We consider the spectrum of Nucleon and Delta states at several quark masses finding a set of positive parity hybrid baryons with quantum numbersmore » $$N_{1/2^+},\\,N_{1/2^+},\\,N_{3/2^+},\\, N_{3/2^+},\\,N_{5/2^+},\\,$$ and $$\\Delta_{1/2^+},\\, \\Delta_{3/2^+}$$ at an energy scale above the first band of `conventional' excited positive parity baryons. This pattern of states is compatible with a color octet gluonic excitation having $$J^{P}=1^{+}$$ as previously reported in the hybrid meson sector and with a comparable energy scale for the excitation, suggesting a common bound-state construction for hybrid mesons and baryons.« less

  17. Instanton liquid properties from lattice QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Athenodorou, A.; Boucaud, Philippe; De Soto, F.

    Here, we examined the instanton contribution to the QCD configurations generated from lattice QCD for N F = 0, N F = 2 + 1 and N F = 2 + 1 + 1 dynamical quark flavors from two different and complementary approaches. First via the use of Gradient flow, we computed instanton liquid properties using an algorithm to localize instantons in the gauge field configurations and studied their evolution with flow time. Then, the analysis of the running at low momenta of gluon Green's functions serves as an independent confirmation of the instanton density which can also be derivedmore » without the use of the Gradient flow.« less

  18. Instanton liquid properties from lattice QCD

    DOE PAGES

    Athenodorou, A.; Boucaud, Philippe; De Soto, F.; ...

    2018-02-22

    Here, we examined the instanton contribution to the QCD configurations generated from lattice QCD for N F = 0, N F = 2 + 1 and N F = 2 + 1 + 1 dynamical quark flavors from two different and complementary approaches. First via the use of Gradient flow, we computed instanton liquid properties using an algorithm to localize instantons in the gauge field configurations and studied their evolution with flow time. Then, the analysis of the running at low momenta of gluon Green's functions serves as an independent confirmation of the instanton density which can also be derivedmore » without the use of the Gradient flow.« less

  19. Flux tubes in the QCD vacuum

    NASA Astrophysics Data System (ADS)

    Cea, Paolo; Cosmai, Leonardo; Cuteri, Francesca; Papa, Alessandro

    2017-06-01

    The hypothesis that the QCD vacuum can be modeled as a dual superconductor is a powerful tool to describe the distribution of the color field generated by a quark-antiquark static pair and, as such, can provide useful clues for the understanding of confinement. In this work we investigate, by lattice Monte Carlo simulations of the S U (3 ) pure gauge theory and of (2 +1 )-flavor QCD with physical mass settings, some properties of the chromoelectric flux tube at zero temperature and their dependence on the physical distance between the static sources. We draw some conclusions about the validity domain of the dual superconductor picture.

  20. Visualization Tools for Lattice QCD - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massimo Di Pierro

    2012-03-15

    Our research project is about the development of visualization tools for Lattice QCD. We developed various tools by extending existing libraries, adding new algorithms, exposing new APIs, and creating web interfaces (including the new NERSC gauge connection web site). Our tools cover the full stack of operations from automating download of data, to generating VTK files (topological charge, plaquette, Polyakov lines, quark and meson propagators, currents), to turning the VTK files into images, movies, and web pages. Some of the tools have their own web interfaces. Some Lattice QCD visualization have been created in the past but, to our knowledge,more » our tools are the only ones of their kind since they are general purpose, customizable, and relatively easy to use. We believe they will be valuable to physicists working in the field. They can be used to better teach Lattice QCD concepts to new graduate students; they can be used to observe the changes in topological charge density and detect possible sources of bias in computations; they can be used to observe the convergence of the algorithms at a local level and determine possible problems; they can be used to probe heavy-light mesons with currents and determine their spatial distribution; they can be used to detect corrupted gauge configurations. There are some indirect results of this grant that will benefit a broader audience than Lattice QCD physicists.« less

  1. Lattice QCD and nucleon resonances

    NASA Astrophysics Data System (ADS)

    Edwards, R. G.; Fiebig, H. R.; Fleming, G.; Richards, D. G.; LHP Collaboration

    2004-06-01

    Lattice calculations provide an ab initio means for the study of QCD. Recent progress at understanding the spectrum and structure of nucleons from lattice QCD studies is reviewed. Measurements of the masses of the lightest particles for the lowest spin values are described and related to predictions of the quark model. Measurements of the mass of the first radial excitation of the nucleon, the so-called Roper resonance, obtained using Bayesian statistical analyses, are detailed. The need to perform calculations at realistically light values of the pion mass is emphasised, and the exciting progress at attaining such masses is outlined. The talk concludes with future prospects, emphasising the importance of constructing a basis of interpolating operators that is sensitive to three-quark states, to multi-quark states, and to excited glue.

  2. Symmetry Transition Preserving Chirality in QCD: A Versatile Random Matrix Model

    NASA Astrophysics Data System (ADS)

    Kanazawa, Takuya; Kieburg, Mario

    2018-06-01

    We consider a random matrix model which interpolates between the chiral Gaussian unitary ensemble and the Gaussian unitary ensemble while preserving chiral symmetry. This ensemble describes flavor symmetry breaking for staggered fermions in 3D QCD as well as in 4D QCD at high temperature or in 3D QCD at a finite isospin chemical potential. Our model is an Osborn-type two-matrix model which is equivalent to the elliptic ensemble but we consider the singular value statistics rather than the complex eigenvalue statistics. We report on exact results for the partition function and the microscopic level density of the Dirac operator in the ɛ regime of QCD. We compare these analytical results with Monte Carlo simulations of the matrix model.

  3. Measurement of hadron azimuthal distributions in deep inelastic muon proton scattering

    NASA Astrophysics Data System (ADS)

    Arneodo, M.; Arvidson, A.; Aubert, J. J.; Badelek, B.; Beaufays, J.; Bee, C. P.; Benchouk, C.; Berghoff, G.; Bird, I.; Blum, D.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S.; Brück, H.; Calen, H.; Chima, J. S.; Ciborowski, J.; Clifft, R.; Coignet, G.; Combley, F.; Conrad, J.; Coughlan, J.; D'Agostini, G.; Dahlgren, S.; Dengler, F.; Derado, I.; Dreyer, T.; Drees, J.; Düren, M.; Eckardt, V.; Edwards, A.; Edwards, M.; Ernst, T.; Eszes, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Foster, J.; Gabathuler, E.; Gajewski, J.; Gamet, R.; Gayler, J.; Geddes, N.; Grafström, P.; Grard, F.; Haas, J.; Hagberg, E.; Hasert, F. J.; Hayman, P.; Heusse, P.; Jaffre, M.; Jacholkowska, A.; Janata, F.; Jancso, G.; Johnson, A. S.; Kabuss, E. M.; Kellner, G.; Korbel, V.; Krüger, J.; Kullander, S.; Landgraf, U.; Lanske, D.; Loken, J.; Long, K.; Maire, M.; Malecki, P.; Manz, A.; Maselli, S.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Nagy, E.; Nassalski, J.; Norton, P. R.; Oakham, F. G.; Osborne, A. M.; Pascaud, C.; Pavel, N.; Pawlik, B.; Payre, P.; Peroni, C.; Peschel, H.; Pessard, H.; Pettingale, J.; Pietrzyk, B.; Pönsgen, B.; Pötsch, M.; Renton, P.; Ribarics, P.; Rith, K.; Rondio, E.; Scheer, M.; Sandacz, A.; Schlagböhmer, A.; Schiemann, H.; Schmitz, N.; Schneegans, M.; Scholz, M.; Schröder, T.; Schultze, K.; Sloan, T.; Stier, H. E.; Studt, M.; Taylor, G. N.; Thénard, J. M.; Thompson, J. C.; de La Torre, A.; Toth, J.; Urban, L.; Wallucks, W.; Whalley, M.; Wheeler, S.; Williams, W. S. C.; Wimpenny, S. J.; Windmolders, R.; Wolf, G.

    1987-09-01

    A study of the distribution of the azimuthal angle ϕ of charged hadrons in deep inelastic μ- p scattering is presented. The dependence of the moments of this distribution on the Feynman x variable and the momentum transverse to the virtual photon indicates that non-zero moments arise mainly from the effects of the intrinsic K T of the struck quark with < K {/T 2}>>≳(0.44 GeV)2, and to a lesser extent from QCD processes. No significant variation with Q 2 or W 2 is observed.

  4. QCD for Postgraduates (4/5)

    ScienceCinema

    Zanderighi, Giulia

    2018-05-23

    Modern QCD - Lecture 4. We will consider some processes of interest at the LHC and will discuss the main elements of their cross-section calculations. We will also summarize the current status of higher order calculations.

  5. Quark–hadron phase structure, thermodynamics, and magnetization of QCD matter

    NASA Astrophysics Data System (ADS)

    Nasser Tawfik, Abdel; Magied Diab, Abdel; Hussein, M. T.

    2018-05-01

    The SU(3) Polyakov linear-sigma model (PLSM) is systematically implemented to characterize the quark-hadron phase structure and to determine various thermodynamic quantities and the magnetization of quantum chromodynamic (QCD) matter. Using mean-field approximation, the dependence of the chiral order parameter on a finite magnetic field is also calculated. Under a wide range of temperatures and magnetic field strengths, various thermodynamic quantities including trace anomaly, speed of sound squared, entropy density, and specific heat are presented, and some magnetic properties are described as well. Where available these results are compared to recent lattice QCD calculations. The temperature dependence of these quantities confirms our previous finding that the transition temperature is reduced with the increase in the magnetic field strength, i.e. QCD matter is characterized by an inverse magnetic catalysis. Furthermore, the temperature dependence of the magnetization showing that QCD matter has paramagnetic properties slightly below and far above the pseudo-critical temperature is confirmed as well. The excellent agreement with recent lattice calculations proves that our QCD-like approach (PLSM) seems to possess the correct degrees of freedom in both the hadronic and partonic phases and describes well the dynamics deriving confined hadrons to deconfined quark-gluon plasma.

  6. Resonant Inverse Compton Scattering Spectra from Highly Magnetized Neutron Stars

    NASA Astrophysics Data System (ADS)

    Wadiasingh, Zorawar; Baring, Matthew G.; Gonthier, Peter L.; Harding, Alice K.

    2018-02-01

    Hard, nonthermal, persistent pulsed X-ray emission extending between 10 and ∼150 keV has been observed in nearly 10 magnetars. For inner-magnetospheric models of such emission, resonant inverse Compton scattering of soft thermal photons by ultrarelativistic charges is the most efficient production mechanism. We present angle-dependent upscattering spectra and pulsed intensity maps for uncooled, relativistic electrons injected in inner regions of magnetar magnetospheres, calculated using collisional integrals over field loops. Our computations employ a new formulation of the QED Compton scattering cross section in strong magnetic fields that is physically correct for treating important spin-dependent effects in the cyclotron resonance, thereby producing correct photon spectra. The spectral cutoff energies are sensitive to the choices of observer viewing geometry, electron Lorentz factor, and scattering kinematics. We find that electrons with energies ≲15 MeV will emit most of their radiation below 250 keV, consistent with inferred turnovers for magnetar hard X-ray tails. More energetic electrons still emit mostly below 1 MeV, except for viewing perspectives sampling field-line tangents. Pulse profiles may be singly or doubly peaked dependent on viewing geometry, emission locale, and observed energy band. Magnetic pair production and photon splitting will attenuate spectra to hard X-ray energies, suppressing signals in the Fermi-LAT band. The resonant Compton spectra are strongly polarized, suggesting that hard X-ray polarimetry instruments such as X-Calibur, or a future Compton telescope, can prove central to constraining model geometry and physics.

  7. Effective holographic models for QCD: Glueball spectrum and trace anomaly

    NASA Astrophysics Data System (ADS)

    Ballon-Bayona, Alfonso; Boschi-Filho, Henrique; Mamani, Luis A. H.; Miranda, Alex S.; Zanchin, Vilson T.

    2018-02-01

    We investigate effective holographic models for QCD arising from five-dimensional dilaton gravity. The models are characterized by a dilaton with a mass term in the UV, dual to a CFT deformation by a relevant operator, and quadratic in the IR. The UV constraint leads to the explicit breaking of conformal symmetry, whereas the IR constraint guarantees linear confinement. We propose semianalytic interpolations between the UV and the IR and obtain a spectrum for scalar and tensor glueballs consistent with lattice QCD data. We use the glueball spectrum as a physical constraint to find the evolution of the model parameters as the mass term goes to 0. Finally, we reproduce the universal result for the trace anomaly of deformed CFTs and propose a dictionary between this result and the QCD trace anomaly. A nontrivial consequence of this dictionary is the emergence of a β function similar to the two-loop perturbative QCD result.

  8. Resonant soft X-ray scattering for polymer materials

    DOE PAGES

    Liu, Feng; Brady, Michael A.; Wang, Cheng

    2016-04-16

    Resonant Soft X-ray Scattering (RSoXS) was developed within the last few years, and the first dedicated resonant soft X-ray scattering beamline for soft materials was constructed at the Advanced Light Source, LBNL. RSoXS combines soft X-ray spectroscopy with X-ray scattering and thus offers statistical information for 3D chemical morphology over a large length scale range from nanometers to micrometers. Using RSoXS to characterize multi-length scale soft materials with heterogeneous chemical structures, we have demonstrated that soft X-ray scattering is a unique complementary technique to conventional hard X-ray and neutron scattering. Its unique chemical sensitivity, large accessible size scale, molecular bondmore » orientation sensitivity with polarized X-rays, and high coherence have shown great potential for chemically specific structural characterization for many classes of materials.« less

  9. Electroweak Higgs production with HiggsPO at NLO QCD

    NASA Astrophysics Data System (ADS)

    Greljo, Admir; Isidori, Gino; Lindert, Jonas M.; Marzocca, David; Zhang, Hantian

    2017-12-01

    We present the HiggsPO UFO model for Monte Carlo event generation of electroweak VH and VBF Higgs production processes at NLO in QCD in the formalism of Higgs pseudo-observables (PO). We illustrate the use of this tool by studying the QCD corrections, matched to a parton shower, for several benchmark points in the Higgs PO parameter space. We find that, while being sizable and thus important to be considered in realistic experimental analyses, the QCD higher-order corrections largely factorize. As an additional finding, based on the NLO results, we advocate to consider 2D distributions of the two-jet azimuthal-angle difference and the leading jet p_T for new physics searches in VBF Higgs production. The HiggsPO UFO model is publicly available.

  10. Holographic photon production in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Iatrakis, Ioannis; Kiritsis, Elias; Shen, Chun; Yang, Di-Lun

    2017-04-01

    The thermal-photon emission from strongly coupled gauge theories at finite temperature is calculated using holographic models for QCD in the Veneziano limit (V-QCD). The emission rates are then embedded in hydrodynamic simulations combined with prompt photons from hard scattering and the thermal photons from hadron gas to analyze the spectra and anisotropic flow of direct photons at RHIC and LHC. The results from different sources responsible for the thermal photons in QGP including the weakly coupled QGP (wQGP) from perturbative calculations, strongly coupled N = 4 super Yang-Mills (SYM) plasma (as a benchmark for reference), and Gubser's phenomenological holographic model are then compared. It is found that the direct-photon spectra are enhanced in the strongly coupled scenario compared with the ones in the wQGP, especially at high momenta. Moreover, both the elliptic flow and triangular flow of direct photons are amplified at high momenta for V-QCD and the SYM plasma. The results are further compared with experimental observations.

  11. Strangeness S =-1 hyperon-nucleon interactions: Chiral effective field theory versus lattice QCD

    NASA Astrophysics Data System (ADS)

    Song, Jing; Li, Kai-Wen; Geng, Li-Sheng

    2018-06-01

    Hyperon-nucleon interactions serve as basic inputs to studies of hypernuclear physics and dense (neutron) stars. Unfortunately, a precise understanding of these important quantities has lagged far behind that of the nucleon-nucleon interaction due to lack of high-precision experimental data. Historically, hyperon-nucleon interactions are either formulated in quark models or meson exchange models. In recent years, lattice QCD simulations and chiral effective field theory approaches start to offer new insights from first principles. In the present work, we contrast the state-of-the-art lattice QCD simulations with the latest chiral hyperon-nucleon forces and show that the leading order relativistic chiral results can already describe the lattice QCD data reasonably well. Given the fact that the lattice QCD simulations are performed with pion masses ranging from the (almost) physical point to 700 MeV, such studies provide a useful check on both the chiral effective field theory approaches as well as lattice QCD simulations. Nevertheless more precise lattice QCD simulations are eagerly needed to refine our understanding of hyperon-nucleon interactions.

  12. Resonant conversions of QCD axions into hidden axions and suppressed isocurvature perturbations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kitajima, Naoya; Takahashi, Fuminobu, E-mail: kitajima@tuhep.phys.tohoku.ac.jp, E-mail: fumi@tuhep.phys.tohoku.ac.jp

    2015-01-01

    We study in detail MSW-like resonant conversions of QCD axions into hidden axions, including cases where the adiabaticity condition is only marginally satisfied, and where anharmonic effects are non-negligible. When the resonant conversion is efficient, the QCD axion abundance is suppressed by the hidden and QCD axion mass ratio. We find that, when the resonant conversion is incomplete due to a weak violation of the adiabaticity, the CDM isocurvature perturbations can be significantly suppressed, while non-Gaussianity of the isocurvature perturbations generically remain unsuppressed. The isocurvature bounds on the inflation scale can therefore be relaxed by the partial resonant conversion ofmore » the QCD axions into hidden axions.« less

  13. Hard-sphere-like dynamics in highly concentrated alpha-crystallin suspensions

    DOE PAGES

    Vodnala, Preeti; Karunaratne, Nuwan; Lurio, Laurence; ...

    2018-02-02

    The dynamics of concentrated suspensions of the eye-lens protein alpha crystallin have been measured using x-ray photon correlation spectroscopy. Measurements were made at wave vectors corresponding to the first peak in the hard-sphere structure factor and volume fractions close to the critical volume fraction for the glass transition. Langevin dynamics simulations were also performed in parallel to the experiments. The intermediate scattering function f(q,τ) could be fit using a stretched exponential decay for both experiments and numerical simulations. The measured relaxation times show good agreement with simulations for polydisperse hard-sphere colloids.

  14. Hard-sphere-like dynamics in highly concentrated alpha-crystallin suspensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vodnala, Preeti; Karunaratne, Nuwan; Lurio, Laurence

    The dynamics of concentrated suspensions of the eye-lens protein alpha crystallin have been measured using x-ray photon correlation spectroscopy. Measurements were made at wave vectors corresponding to the first peak in the hard-sphere structure factor and volume fractions close to the critical volume fraction for the glass transition. Langevin dynamics simulations were also performed in parallel to the experiments. The intermediate scattering function f(q,τ) could be fit using a stretched exponential decay for both experiments and numerical simulations. The measured relaxation times show good agreement with simulations for polydisperse hard-sphere colloids.

  15. Hard-sphere-like dynamics in highly concentrated alpha-crystallin suspensions

    NASA Astrophysics Data System (ADS)

    Vodnala, Preeti; Karunaratne, Nuwan; Lurio, Laurence; Thurston, George M.; Vega, Michael; Gaillard, Elizabeth; Narayanan, Suresh; Sandy, Alec; Zhang, Qingteng; Dufresne, Eric M.; Foffi, Giuseppe; Grybos, Pawel; Kmon, Piotr; Maj, Piotr; Szczygiel, Robert

    2018-02-01

    The dynamics of concentrated suspensions of the eye-lens protein alpha crystallin have been measured using x-ray photon correlation spectroscopy. Measurements were made at wave vectors corresponding to the first peak in the hard-sphere structure factor and volume fractions close to the critical volume fraction for the glass transition. Langevin dynamics simulations were also performed in parallel to the experiments. The intermediate scattering function f (q ,τ ) could be fit using a stretched exponential decay for both experiments and numerical simulations. The measured relaxation times show good agreement with simulations for polydisperse hard-sphere colloids.

  16. The quark condensate in multi-flavour QCD – planar equivalence confronting lattice simulations

    DOE PAGES

    Armoni, Adi; Shifman, Mikhail; Shore, Graham; ...

    2015-02-01

    Planar equivalence between the large N limits of N=1 Super Yang–Mills (SYM) theory and a variant of QCD with fermions in the antisymmetric representation is a powerful tool to obtain analytic non-perturbative results in QCD itself. In particular, it allows the quark condensate for N=3 QCD with quarks in the fundamental representation to be inferred from exact calculations of the gluino condensate in N=1 SYM. In this paper, we review and refine our earlier predictions for the quark condensate in QCD with a general number nf of flavours and confront these with lattice results.

  17. QCD analysis of neutrino charged current structure function F2 in deep inelastic scattering

    NASA Technical Reports Server (NTRS)

    Saleem, M.; Aleem, F.

    1985-01-01

    An analytic expression for the neutrino charged current structure function F sub 2 (x, Q sup 2) in deep inelastic scattering, consistent with quantum chromodynamics, is proposed. The calculated results are in good agreement with experiment.

  18. Additional strange hadrons from QCD thermodynamics and strangeness freezeout in heavy ion collisions.

    PubMed

    Bazavov, A; Ding, H-T; Hegde, P; Kaczmarek, O; Karsch, F; Laermann, E; Maezawa, Y; Mukherjee, Swagato; Ohno, H; Petreczky, P; Schmidt, C; Sharma, S; Soeldner, W; Wagner, M

    2014-08-15

    We compare lattice QCD results for appropriate combinations of net strangeness fluctuations and their correlations with net baryon number fluctuations with predictions from two hadron resonance gas (HRG) models having different strange hadron content. The conventionally used HRG model based on experimentally established strange hadrons fails to describe the lattice QCD results in the hadronic phase close to the QCD crossover. Supplementing the conventional HRG with additional, experimentally uncharted strange hadrons predicted by quark model calculations and observed in lattice QCD spectrum calculations leads to good descriptions of strange hadron thermodynamics below the QCD crossover. We show that the thermodynamic presence of these additional states gets imprinted in the yields of the ground-state strange hadrons leading to a systematic 5-8 MeV decrease of the chemical freeze-out temperatures of ground-state strange baryons.

  19. High-pT Physics in the Heavy Ion Era

    NASA Astrophysics Data System (ADS)

    Rak, Jan; Tannenbaum, Michael J.

    2013-04-01

    1. Introduction and overview; 2. Basic observables; 3. Some experimental techniques; 4. The search for structure; 5. Origins of high pT physics - the search for the W boson; 6. Discovery of hard scattering in p-p collisions; 7. Direct single lepton production and the discovery of charm; 8. J/ ψ, u and Drell-Yan pair production; 9. Two particle correlations; 10. Direct photon production; 11. The search for jets; 12. QCD in hard scattering; 13. Heavy ion physics in the high pT era; 14. RHIC and LHC; Appendix A. Probability and statistics; Appendix B. Methods of Monte Carlo calculations; Appendix C. TAB and the Glauber Monte Carlo calculation; Appendix D. Fits including systematic errors; Appendix E. The shape of the xE distribution triggered by a jet fragment, for example, π0; Appendix F. kT phenomenology and Gaussian smearing; References; Index.

  20. Scaling Phenomenology in Meson Photoproduction from CLAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biplab Dey, Curtis A. Meyer

    2010-08-01

    In the high energy limit, perturbative QCD predicts that hard scattering amplitudes should follow simple scaling laws. For hard scattering at 90°, we show that experiments support this prediction even in the “medium energy” regime of 2.3 GeV<=sqrt(s)<=2.84 GeV, as long as there are no s-channel resonances present. Our data consists of high statistics measurements for five different exclusive meson photoproduction channels (pomega, peta, peta[prime], K+Lambdaand K+[summation]0) recently obtained from CLAS at Jefferson Lab. The same power-law scaling also leads to “saturated” Regge trajectories at high energies. That is, at large -t and -u, Regge trajectories must approach constant negativemore » integers. We demonstrate the application of saturated Regge phenomenology by performing a partial wave analysis fit to the gammayp-->peta[prime]differential cross sections.« less

  1. Search for the pentaquark resonance signature in lattice QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B. G. Lasscock; J. Hedditch; Derek Leinweber

    2005-02-01

    Claims concerning the possible discovery of the {Theta}{sup +} pentaquark, with minimal quark content uudd{bar s}, have motivated our comprehensive study into possible pentaquark states using lattice QCD. We review various pentaquark interpolating fields in the literature and create a new candidate ideal for lattice QCD simulations. Using these interpolating fields we attempt to isolate a signal for a five-quark resonance. Calculations are performed using improved actions on a large 20{sup 3} x 40 lattice in the quenched approximation. The standard lattice resonance signal of increasing attraction between baryon constituents for increasing quark mass is not observed for spin-1/2 pentaquarkmore » states. We conclude that evidence supporting the existence of a spin-1/2 pentaquark resonance does not exist in quenched QCD.« less

  2. Exposing the QCD Splitting Function with CMS Open Data.

    PubMed

    Larkoski, Andrew; Marzani, Simone; Thaler, Jesse; Tripathee, Aashish; Xue, Wei

    2017-09-29

    The splitting function is a universal property of quantum chromodynamics (QCD) which describes how energy is shared between partons. Despite its ubiquitous appearance in many QCD calculations, the splitting function cannot be measured directly, since it always appears multiplied by a collinear singularity factor. Recently, however, a new jet substructure observable was introduced which asymptotes to the splitting function for sufficiently high jet energies. This provides a way to expose the splitting function through jet substructure measurements at the Large Hadron Collider. In this Letter, we use public data released by the CMS experiment to study the two-prong substructure of jets and test the 1→2 splitting function of QCD. To our knowledge, this is the first ever physics analysis based on the CMS Open Data.

  3. QCDOC: A 10-teraflops scale computer for lattice QCD

    NASA Astrophysics Data System (ADS)

    Chen, D.; Christ, N. H.; Cristian, C.; Dong, Z.; Gara, A.; Garg, K.; Joo, B.; Kim, C.; Levkova, L.; Liao, X.; Mawhinney, R. D.; Ohta, S.; Wettig, T.

    2001-03-01

    The architecture of a new class of computers, optimized for lattice QCD calculations, is described. An individual node is based on a single integrated circuit containing a PowerPC 32-bit integer processor with a 1 Gflops 64-bit IEEE floating point unit, 4 Mbyte of memory, 8 Gbit/sec nearest-neighbor communications and additional control and diagnostic circuitry. The machine's name, QCDOC, derives from "QCD On a Chip".

  4. Deep inelastic scattering as a probe of entanglement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kharzeev, Dmitri E.; Levin, Eugene M.

    Using nonlinear evolution equations of QCD, we compute the von Neumann entropy of the system of partons resolved by deep inelastic scattering at a given Bjorken x and momentum transfer q 2 = - Q 2 . We interpret the result as the entropy of entanglement between the spatial region probed by deep inelastic scattering and the rest of the proton. At small x the relation between the entanglement entropy S ( x ) and the parton distribution x G ( x ) becomes very simple: S ( x ) = ln [ x G ( x ) ] .more » In this small x , large rapidity Y regime, all partonic microstates have equal probabilities—the proton is composed by an exponentially large number exp ( Δ Y ) of microstates that occur with equal and exponentially small probabilities exp ( - Δ Y ) , where Δ is defined by x G ( x ) ~ 1 / x Δ . For this equipartitioned state, the entanglement entropy is maximal—so at small x , deep inelastic scattering probes a maximally entangled state. Here, we propose the entanglement entropy as an observable that can be studied in deep inelastic scattering. This will then require event-by-event measurements of hadronic final states, and would allow to study the transformation of entanglement entropy into the Boltzmann one. We estimate that the proton is represented by the maximally entangled state at x ≤ 10 -3 ; this kinematic region will be amenable to studies at the Electron Ion Collider.« less

  5. Deep inelastic scattering as a probe of entanglement

    DOE PAGES

    Kharzeev, Dmitri E.; Levin, Eugene M.

    2017-06-03

    Using nonlinear evolution equations of QCD, we compute the von Neumann entropy of the system of partons resolved by deep inelastic scattering at a given Bjorken x and momentum transfer q 2 = - Q 2 . We interpret the result as the entropy of entanglement between the spatial region probed by deep inelastic scattering and the rest of the proton. At small x the relation between the entanglement entropy S ( x ) and the parton distribution x G ( x ) becomes very simple: S ( x ) = ln [ x G ( x ) ] .more » In this small x , large rapidity Y regime, all partonic microstates have equal probabilities—the proton is composed by an exponentially large number exp ( Δ Y ) of microstates that occur with equal and exponentially small probabilities exp ( - Δ Y ) , where Δ is defined by x G ( x ) ~ 1 / x Δ . For this equipartitioned state, the entanglement entropy is maximal—so at small x , deep inelastic scattering probes a maximally entangled state. Here, we propose the entanglement entropy as an observable that can be studied in deep inelastic scattering. This will then require event-by-event measurements of hadronic final states, and would allow to study the transformation of entanglement entropy into the Boltzmann one. We estimate that the proton is represented by the maximally entangled state at x ≤ 10 -3 ; this kinematic region will be amenable to studies at the Electron Ion Collider.« less

  6. Nuclear physics from lattice QCD at strong coupling.

    PubMed

    de Forcrand, Ph; Fromm, M

    2010-03-19

    We study numerically the strong coupling limit of lattice QCD with one flavor of massless staggered quarks. We determine the complete phase diagram as a function of temperature and chemical potential, including a tricritical point. We clarify the nature of the low temperature dense phase, which is strongly bound "nuclear" matter. This strong binding is explained by the nuclear potential, which we measure. Finally, we determine, from this first-principles limiting case of QCD, the masses of "atomic nuclei" up to A=12 "carbon".

  7. Complete NLO corrections to W+W+ scattering and its irreducible background at the LHC

    NASA Astrophysics Data System (ADS)

    Biedermann, Benedikt; Denner, Ansgar; Pellen, Mathieu

    2017-10-01

    The process pp → μ +ν μ e+νejj receives several contributions of different orders in the strong and electroweak coupling constants. Using appropriate event selections, this process is dominated by vector-boson scattering (VBS) and has recently been measured at the LHC. It is thus of prime importance to estimate precisely each contribution. In this article we compute for the first time the full NLO QCD and electroweak corrections to VBS and its irreducible background processes with realistic experimental cuts. We do not rely on approximations but use complete amplitudes involving two different orders at tree level and three different orders at one-loop level. Since we take into account all interferences, at NLO level the corrections to the VBS process and to the QCD-induced irreducible background process contribute at the same orders. Hence the two processes cannot be unambiguously distinguished, and all contributions to the μ +ν μ e+νejj final state should be preferably measured together.

  8. QCD with Chiral Imbalance: models vs. lattice

    NASA Astrophysics Data System (ADS)

    Andrianov, Alexander; Andrianov, Vladimir; Espriu, Domenec

    2017-03-01

    In heavy ion collisions (HIC) at high energies there may appear new phases of matter which must be described by QCD. These phases may have different color and flavour symmetries associated with the constituents involved in collisions as well as various space-time symmetries of hadron matter. Properties of the QCD medium in such a matter can be approximately described, in particular, by a number of right-handed (RH) and left-handed (LH) light quarks. The chiral imbalance (ChI) is characterized by the difference between the numbers of RH and LH quarks and supposedly occurs in the fireball after HIC. Accordingly we have to introduce a quark chiral (axial) chemical potential which simulates a ChI emerging in such a phase. In this report we discuss the possibility of a phase with Local spatial Parity Breaking (LPB) in such an environment and outline conceivable signatures for the registration of LPB as well as the appearance of new states in the spectra of scalar, pseudoscalar and vector particles as a consequence of local ChI. The comparison of the results obtained in the effective QCD- motivated models with lattice data is also performed.

  9. Nonperturbative Transverse Momentum Effects in p +p and p +A Collisions at PHENIX

    NASA Astrophysics Data System (ADS)

    Skoby, Michael; Phenix Collaboration

    2017-09-01

    Due to the non-Abelian nature of QCD, there is a prediction that quarks can become correlated across colliding protons in hadron production processes sensitive to nonperturbative transverse momentum effects. Measuring the evolution of nonperturbative transverse momentum widths as a function of the hard interaction scale can help distinguish these effects from other possibilities. Collins-Soper-Sterman evolution comes directly from the proof of transverse-momentum-dependent (TMD) factorization for processes such as Drell-Yan, semi-inclusive deep-inelastic scattering, and e +e- annihilation and predicts nonperturbative momentum widths to increase with hard scale. Experimental results from proton-proton and proton-nucleus collisions, in which TMD factorization is predicted to be broken, will be presented. The results show that these widths decrease with hard scale, suggesting possible effects from TMD factorization breaking.

  10. Susceptibility of the QCD vacuum to CP-odd electromagnetic background fields.

    PubMed

    D'Elia, Massimo; Mariti, Marco; Negro, Francesco

    2013-02-22

    We investigate two flavor quantum chromodynamics (QCD) in the presence of CP-odd electromagnetic background fields and determine, by means of lattice QCD simulations, the induced effective θ term to first order in E[over →] · B[over →]. We employ a rooted staggered discretization and study lattice spacings down to 0.1 fm and Goldstone pion masses around 480 MeV. In order to deal with a positive measure, we consider purely imaginary electric fields and real magnetic fields, and then exploit the analytic continuation. Our results are relevant to a description of the effective pseudoscalar quantum electrodynamics-QCD interactions.

  11. Modal element method for scattering of sound by absorbing bodies

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.; Kreider, Kevin L.

    1992-01-01

    The modal element method for acoustic scattering from 2-D body is presented. The body may be acoustically soft (absorbing) or hard (reflecting). The infinite computational region is divided into two subdomains - the bounded finite element domain, which is characterized by complicated geometry and/or variable material properties, and the surrounding unbounded homogeneous domain. The acoustic pressure field is represented approximately in the finite element domain by a finite element solution, and is represented analytically by an eigenfunction expansion in the homogeneous domain. The two solutions are coupled by the continuity of pressure and velocity across the interface between the two subdomains. Also, for hard bodies, a compact modal ring grid system is introduced for which computing requirements are drastically reduced. Analysis for 2-D scattering from solid and coated (acoustically treated) bodies is presented, and several simple numerical examples are discussed. In addition, criteria are presented for determining the number of modes to accurately resolve the scattered pressure field from a solid cylinder as a function of the frequency of the incoming wave and the radius of the cylinder.

  12. QCD equation of state to O (μB6) from lattice QCD

    NASA Astrophysics Data System (ADS)

    Bazavov, A.; Ding, H.-T.; Hegde, P.; Kaczmarek, O.; Karsch, F.; Laermann, E.; Maezawa, Y.; Mukherjee, Swagato; Ohno, H.; Petreczky, P.; Sandmeyer, H.; Steinbrecher, P.; Schmidt, C.; Sharma, S.; Soeldner, W.; Wagner, M.

    2017-03-01

    We calculated the QCD equation of state using Taylor expansions that include contributions from up to sixth order in the baryon, strangeness and electric charge chemical potentials. Calculations have been performed with the Highly Improved Staggered Quark action in the temperature range T ∈[135 MeV ,330 MeV ] using up to four different sets of lattice cutoffs corresponding to lattices of size Nσ3×Nτ with aspect ratio Nσ/Nτ=4 and Nτ=6 - 16 . The strange quark mass is tuned to its physical value, and we use two strange to light quark mass ratios ms/ml=20 and 27, which in the continuum limit correspond to a pion mass of about 160 and 140 MeV, respectively. Sixth-order results for Taylor expansion coefficients are used to estimate truncation errors of the fourth-order expansion. We show that truncation errors are small for baryon chemical potentials less then twice the temperature (μB≤2 T ). The fourth-order equation of state thus is suitable for the modeling of dense matter created in heavy ion collisions with center-of-mass energies down to √{sN N}˜12 GeV . We provide a parametrization of basic thermodynamic quantities that can be readily used in hydrodynamic simulation codes. The results on up to sixth-order expansion coefficients of bulk thermodynamics are used for the calculation of lines of constant pressure, energy and entropy densities in the T -μB plane and are compared with the crossover line for the QCD chiral transition as well as with experimental results on freeze-out parameters in heavy ion collisions. These coefficients also provide estimates for the location of a possible critical point. We argue that results on sixth-order expansion coefficients disfavor the existence of a critical point in the QCD phase diagram for μB/T ≤2 and T /Tc(μB=0 )>0.9 .

  13. QCD equation of state to O ( μ B 6 ) from lattice QCD

    DOE PAGES

    Bazavov, A.; Ding, H. -T.; Hegde, P.; ...

    2017-03-07

    In this work, we calculated the QCD equation of state using Taylor expansions that include contributions from up to sixth order in the baryon, strangeness and electric charge chemical potentials. Calculations have been performed with the Highly Improved Staggered Quark action in the temperature range T ϵ [135 MeV, 330 MeV] using up to four different sets of lattice cut-offs corresponding to lattices of size Nmore » $$3\\atop{σ}$$ × N τ with aspect ratio N σ/N τ = 4 and N τ = 6-16. The strange quark mass is tuned to its physical value and we use two strange to light quark mass ratios m s/m l = 20 and 27, which in the continuum limit correspond to a pion mass of about 160 MeV and 140 MeV respectively. Sixth-order results for Taylor expansion coefficients are used to estimate truncation errors of the fourth-order expansion. We show that truncation errors are small for baryon chemical potentials less then twice the temperature (µ B ≤ 2T ). The fourth-order equation of state thus is suitable for √the modeling of dense matter created in heavy ion collisions with center-of-mass energies down to √sNN ~ 12 GeV. We provide a parametrization of basic thermodynamic quantities that can be readily used in hydrodynamic simulation codes. The results on up to sixth order expansion coefficients of bulk thermodynamics are used for the calculation of lines of constant pressure, energy and entropy densities in the T -µ B plane and are compared with the crossover line for the QCD chiral transition as well as with experimental results on freeze-out parameters in heavy ion collisions. These coefficients also provide estimates for the location of a possible critical point. Lastly, we argue that results on sixth order expansion coefficients disfavor the existence of a critical point in the QCD phase diagram for µ B/T ≤ 2 and T/T c(µ B = 0) > 0.9.« less

  14. η and η' mesons from lattice QCD.

    PubMed

    Christ, N H; Dawson, C; Izubuchi, T; Jung, C; Liu, Q; Mawhinney, R D; Sachrajda, C T; Soni, A; Zhou, R

    2010-12-10

    The large mass of the ninth pseudoscalar meson, the η', is believed to arise from the combined effects of the axial anomaly and the gauge field topology present in QCD. We report a realistic, 2+1-flavor, lattice QCD calculation of the η and η' masses and mixing which confirms this picture. The physical eigenstates show small octet-singlet mixing with a mixing angle of θ=-14.1(2.8)°. Extrapolation to the physical light quark mass gives, with statistical errors only, mη=573(6) MeV and mη'=947(142) MeV, consistent with the experimental values of 548 and 958 MeV.

  15. Compton-Scattering Cross Section on the Proton at High Momentum Transfer

    NASA Astrophysics Data System (ADS)

    Danagoulian, A.; Mamyan, V. H.; Roedelbronn, M.; Aniol, K. A.; Annand, J. R. M.; Bertin, P. Y.; Bimbot, L.; Bosted, P.; Calarco, J. R.; Camsonne, A.; Chang, C. C.; Chang, T.-H.; Chen, J.-P.; Choi, Seonho; Chudakov, E.; Degtyarenko, P.; de Jager, C. W.; Deur, A.; Dutta, D.; Egiyan, K.; Gao, H.; Garibaldi, F.; Gayou, O.; Gilman, R.; Glamazdin, A.; Glashausser, C.; Gomez, J.; Hamilton, D. J.; Hansen, J.-O.; Hayes, D.; Higinbotham, D. W.; Hinton, W.; Horn, T.; Howell, C.; Hunyady, T.; Hyde, C. E.; Jiang, X.; Jones, M. K.; Khandaker, M.; Ketikyan, A.; Kubarovsky, V.; Kramer, K.; Kumbartzki, G.; Laveissière, G.; Lerose, J.; Lindgren, R. A.; Margaziotis, D. J.; Markowitz, P.; McCormick, K.; Meekins, D. G.; Meziani, Z.-E.; Michaels, R.; Moussiegt, P.; Nanda, S.; Nathan, A. M.; Nikolenko, D. M.; Nelyubin, V.; Norum, B. E.; Paschke, K.; Pentchev, L.; Perdrisat, C. F.; Piasetzky, E.; Pomatsalyuk, R.; Punjabi, V. A.; Rachek, I.; Radyushkin, A.; Reitz, B.; Roche, R.; Ron, G.; Sabatié, F.; Saha, A.; Savvinov, N.; Shahinyan, A.; Shestakov, Y.; Širca, S.; Slifer, K.; Solvignon, P.; Stoler, P.; Tajima, S.; Sulkosky, V.; Todor, L.; Vlahovic, B.; Weinstein, L. B.; Wang, K.; Wojtsekhowski, B.; Voskanyan, H.; Xiang, H.; Zheng, X.; Zhu, L.

    2007-04-01

    Cross-section values for Compton scattering on the proton were measured at 25 kinematic settings over the range s=5 11 and -t=2 7GeV2 with a statistical accuracy of a few percent. The scaling power for the s dependence of the cross section at fixed center-of-mass angle was found to be 8.0±0.2, strongly inconsistent with the prediction of perturbative QCD. The observed cross-section values are in fair agreement with the calculations using the handbag mechanism, in which the external photons couple to a single quark.

  16. Depth resolved grazing incidence neutron scattering experiments from semi-infinite interfaces: a statistical analysis of the scattering contributions

    NASA Astrophysics Data System (ADS)

    Adlmann, Franz A.; Herbel, Jörg; Korolkovas, Airidas; Bliersbach, Andreas; Toperverg, Boris; Van Herck, Walter; Pálsson, Gunnar K.; Kitchen, Brian; Wolff, Max

    2018-04-01

    Grazing incidence neutron scattering experiments offer surface sensitivity by reflecting from an interface at momentum transfers close to total external reflection. Under these conditions the penetration depth is strongly non-linear and may change by many orders of magnitude. This fact imposes severe challenges for depth resolved experiments, since the brilliance of neutron beams is relatively low in comparison to e.g. synchrotron radiation. In this article we use probability density functions to calculate the contribution of scattering at different distances from an interface to the intensities registered on the detector. Our method has the particular advantage that the depth sensitivity is directly extracted from the scattering pattern itself. Hence for perfectly known samples exact resolution functions can be calculated and visa versa. We show that any tails in the resolution function, e.g. Gaussian shaped, hinders depth resolved experiments. More importantly we provide means for a descriptive statistical analysis of detector images with respect to the scattering contributions and show that even for perfect resolution near surface scattering is hardly accessible.

  17. Glue Spin and Helicity in the Proton from Lattice QCD.

    PubMed

    Yang, Yi-Bo; Sufian, Raza Sabbir; Alexandru, Andrei; Draper, Terrence; Glatzmaier, Michael J; Liu, Keh-Fei; Zhao, Yong

    2017-03-10

    We report the first lattice QCD calculation of the glue spin in the nucleon. The lattice calculation is carried out with valence overlap fermions on 2+1 flavor domain-wall fermion gauge configurations on four lattice spacings and four volumes including an ensemble with physical values for the quark masses. The glue spin S_{G} in the Coulomb gauge in the modified minimal subtraction (MS[over ¯]) scheme is obtained with one-loop perturbative matching. We find the results fairly insensitive to lattice spacing and quark masses. We also find that the proton momentum dependence of S_{G} in the range 0≤|p[over →]|<1.5  GeV is very mild, and we determine it in the large-momentum limit to be S_{G}=0.251(47)(16) at the physical pion mass in the MS[over ¯] scheme at μ^{2}=10  GeV^{2}. If the matching procedure in large-momentum effective theory is neglected, S_{G} is equal to the glue helicity measured in high-energy scattering experiments.

  18. Phenomenological consequences of enhanced bulk viscosity near the QCD critical point

    DOE PAGES

    Monnai, Akihiko; Mukherjee, Swagato; Yin, Yi

    2017-03-06

    In the proximity of the QCD critical point the bulk viscosity of quark-gluon matter is expected to be proportional to nearly the third power of the critical correlation length, and become significantly enhanced. Here, this work is the first attempt to study the phenomenological consequences of enhanced bulk viscosity near the QCD critical point. For this purpose, we implement the expected critical behavior of the bulk viscosity within a non-boost-invariant, longitudinally expanding 1 + 1 dimensional causal relativistic hydrodynamical evolution at nonzero baryon density. We demonstrate that the critically enhanced bulk viscosity induces a substantial nonequilibrium pressure, effectively softening themore » equation of state, and leads to sizable effects in the flow velocity and single-particle distributions at the freeze-out. In conclusion, the observable effects that may arise due to the enhanced bulk viscosity in the vicinity of the QCD critical point can be used as complementary information to facilitate searches for the QCD critical point.« less

  19. Hard photodisintegration of 3He into a p d pair

    NASA Astrophysics Data System (ADS)

    Maheswari, Dhiraj; Sargsian, Misak M.

    2017-02-01

    The recent measurements of high energy photodisintegration of a 3He nucleus to a p d pair at 90∘ center of mass demonstrated an energy scaling consistent with the quark counting rule with an unprecedentedly large exponent of s-17. To understand the underlying mechanism of this process, we extended the theoretical formalism of the hard rescattering mechanism (HRM) to calculate the γ 3He→p d reaction. In HRM the incoming high energy photon strikes a quark from one of the nucleons in the target which subsequently undergoes hard rescattering with the quarks from the other nucleons, generating a hard two-body system in the final state of the reaction. Within the HRM we derived the parameter-free expression for the differential cross section of the reaction, which is expressed through the 3He→p d transition spectral function, the cross section of hard p d →p d scattering, and the effective charge of the quarks being interchanged during the hard rescattering process. The numerical estimates of all these factors resulted in the magnitude of the cross section, which is surprisingly in good agreement with the data.

  20. Moving Forward to Constrain the Shear Viscosity of QCD Matter

    DOE PAGES

    Denicol, Gabriel; Monnai, Akihiko; Schenke, Björn

    2016-05-26

    In this work, we demonstrate that measurements of rapidity differential anisotropic flow in heavy-ion collisions can constrain the temperature dependence of the shear viscosity to entropy density ratio η/s of QCD matter. Comparing results from hydrodynamic calculations with experimental data from the RHIC, we find evidence for a small η/s ≈ 0.04 in the QCD crossover region and a strong temperature dependence in the hadronic phase. A temperature independent η/s is disfavored by the data. We further show that measurements of the event-by-event flow as a function of rapidity can be used to independently constrain the initial state fluctuations inmore » three dimensions and the temperature dependent transport properties of QCD matter.« less

  1. Tetraquarks in holographic QCD

    NASA Astrophysics Data System (ADS)

    Gutsche, Thomas; Lyubovitskij, Valery E.; Schmidt, Ivan

    2017-08-01

    Using a soft-wall AdS/QCD approach we derive the Schrödinger-type equation of motion for the tetraquark wave function, which is dual to the dimension-4 AdS bulk profile. The latter coincides with the number of constituents in the leading Fock state of the tetraquark. The obtained equation of motion is solved analytically, providing predictions for both the tetraquark wave function and its mass. A low mass limit for possible tetraquark states is given by M ≥2 κ =1 GeV , where κ =0.5 GeV is the typical value of the scale parameter in soft-wall AdS/QCD. We confirm results of the COMPASS Collaboration recently reported on the discovery of the a1(1414 ) state, interpreted as a tetraquark state composed of light quarks and having JP C=1++. Our prediction for the mass of this state, Ma1=√{2 } GeV ≃1.414 GeV , is in good agreement with the COMPASS result Ma1=1.41 4-0.013+0.015 GeV . Next we included finite quark mass effects, which are essential for the tetraquark states involving heavy quarks.

  2. New QCD sum rules based on canonical commutation relations

    NASA Astrophysics Data System (ADS)

    Hayata, Tomoya

    2012-04-01

    New derivation of QCD sum rules by canonical commutators is developed. It is the simple and straightforward generalization of Thomas-Reiche-Kuhn sum rule on the basis of Kugo-Ojima operator formalism of a non-abelian gauge theory and a suitable subtraction of UV divergences. By applying the method to the vector and axial vector current in QCD, the exact Weinberg’s sum rules are examined. Vector current sum rules and new fractional power sum rules are also discussed.

  3. Higgs boson couplings to bottom quarks: two-loop supersymmetry-QCD corrections.

    PubMed

    Noth, David; Spira, Michael

    2008-10-31

    We present two-loop supersymmetry (SUSY) QCD corrections to the effective bottom Yukawa couplings within the minimal supersymmetric extension of the standard model (MSSM). The effective Yukawa couplings include the resummation of the nondecoupling corrections Deltam_{b} for large values of tanbeta. We have derived the two-loop SUSY-QCD corrections to the leading SUSY-QCD and top-quark-induced SUSY-electroweak contributions to Deltam_{b}. The scale dependence of the resummed Yukawa couplings is reduced from O(10%) to the percent level. These results reduce the theoretical uncertainties of the MSSM Higgs branching ratios to the accuracy which can be achieved at a future linear e;{+}e;{-} collider.

  4. Flavor-singlet baryons in the graded symmetry approach to partially quenched QCD

    NASA Astrophysics Data System (ADS)

    Hall, Jonathan M. M.; Leinweber, Derek B.

    2016-11-01

    Progress in the calculation of the electromagnetic properties of baryon excitations in lattice QCD presents new challenges in the determination of sea-quark loop contributions to matrix elements. A reliable estimation of the sea-quark loop contributions represents a pressing issue in the accurate comparison of lattice QCD results with experiment. In this article, an extension of the graded symmetry approach to partially quenched QCD is presented, which builds on previous theory by explicitly including flavor-singlet baryons in its construction. The formalism takes into account the interactions among both octet and singlet baryons, octet mesons, and their ghost counterparts; the latter enables the isolation of the quark-flow disconnected sea-quark loop contributions. The introduction of flavor-singlet states enables systematic studies of the internal structure of Λ -baryon excitations in lattice QCD, including the topical Λ (1405 ).

  5. Three-point Green functions in the odd sector of QCD

    NASA Astrophysics Data System (ADS)

    Kadavý, T.; Kampf, K.; Novotný, J.

    2016-11-01

    A review of familiar results of the three-point Green functions of currents in the odd-intrinsic parity sector of QCD is presented. Such Green functions include very well-known examples of VVP, VAS or AAP correlators. We also shortly present some of the new results for VVA and AAA Green functions with a discussion of their high-energy behaviour and its relation to the QCD condensates.

  6. Exclusive ϱ0 production in deep inelastic muon-proton scattering

    NASA Astrophysics Data System (ADS)

    Aubert, J. J.; Bassompierre, G.; Becks, K. H.; Benchouk, C.; Best, C.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Broll, C.; Brown, S.; Carr, J.; Clifft, R.; Cobb, J. H.; Coignet, G.; Combley, F.; Court, G. R.; D'Agostini, G.; Dau, W. D.; Davies, J. K.; Déclais, Y.; Dosselli, U.; Drees, J.; Edwards, A.; Edwards, M.; Favier, J.; Ferrero, M. I.; Flauger, W.; Forsbach, H.; Gabathuler, E.; Gamet, R.; Gayler, J.; Gerhardt, V.; Gössling, C.; Haas, J.; Hamacher, K.; Hayman, P.; Henckes, M.; Korbel, V.; Korzen, B.; Landgraf, U.; Leenen, M.; Maire, M.; Mohr, W.; Montgomery, H. E.; Moser, K.; Mount, R. P.; Nagy, E.; Nassalski, J.; Norton, P. R.; McNicholas, J.; Osborne, A. M.; Payre, P.; Peroni, C.; Peschel, H.; Pessard, H.; Pietrzyk, U.; Rith, K.; Schneegans, M.; Schneider, A.; Sloan, T.; Stier, H. E.; Stockhausen, W.; Thénard, J. M.; Thompson, J. C.; Urban, L.; Villers, M.; Wahlen, H.; Whalley, M.; Williams, D.; Williams, W. S. C.; Williamson, J.; Wimpenny, S.

    1985-10-01

    Exclusive ϱ0 production has been measured in 120, 200 and 280 GeV muon-proton interactions at high Q2 (1 GeV2 < Q2 < 25 GeV2) and W (6 GeV < W < 19 GeV). The photoproduction cross section decreases as 1/Q4. A shallow t distribution, typical of a hard scattering process is observed and the ϱ0 is found to be dominantly in the helicity zero spin state. The ϱ0s are mainly produced by transverse photons and s-channel helicity conservation seems to be invalid. The data cannot be described by the vector meson dominance model. These data show that at high Q2 even exclusive ϱ0 muoproduction is a hard scattering process and that the soft hadron-like properties of the photon have disappeared.

  7. Experimenting with Langevin lattice QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gavai, R.V.; Potvin, J.; Sanielevici, S.

    1987-05-01

    We report on the status of our investigations of the effects of systematic errors upon the practical merits of Langevin updating in full lattice QCD. We formulate some rules for the safe use of this updating procedure and some observations on problems which may be common to all approximate fermion algorithms.

  8. QCD in heavy quark production and decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiss, J.

    1997-06-01

    The author discusses how QCD is used to understand the physics of heavy quark production and decay dynamics. His discussion of production dynamics primarily concentrates on charm photoproduction data which are compared to perturbative QCD calculations which incorporate fragmentation effects. He begins his discussion of heavy quark decay by reviewing data on charm and beauty lifetimes. Present data on fully leptonic and semileptonic charm decay are then reviewed. Measurements of the hadronic weak current form factors are compared to the nonperturbative QCD-based predictions of Lattice Gauge Theories. He next discusses polarization phenomena present in charmed baryon decay. Heavy Quark Effectivemore » Theory predicts that the daughter baryon will recoil from the charmed parent with nearly 100% left-handed polarization, which is in excellent agreement with present data. He concludes by discussing nonleptonic charm decay which is traditionally analyzed in a factorization framework applicable to two-body and quasi-two-body nonleptonic decays. This discussion emphasizes the important role of final state interactions in influencing both the observed decay width of various two-body final states as well as modifying the interference between interfering resonance channels which contribute to specific multibody decays. 50 refs., 77 figs.« less

  9. NΩ interaction from two approaches in lattice QCD

    NASA Astrophysics Data System (ADS)

    Etminan, Faisal; Firoozabadi, Mohammad Mehdi

    2014-10-01

    We compare the standard finite volume method by Lüscher with the potential method by HAL QCD collaboration, by calculating the ground state energy of N(nucleon)-Ω(Omega) system in 5 S2 channel. We employ 2+1 flavor full QCD configurations on a (1.9 fm)3×3.8 fm lattice at the lattice spacing a≃0.12 fm, whose ud(s) quark mass corresponds to mπ = 875(1) (mK = 916(1)) MeV. We have found that both methods give reasonably consistent results that there is one NΩ bound state at this parameter.

  10. Exploring Flavor Physics with Lattice QCD

    NASA Astrophysics Data System (ADS)

    Du, Daping; Fermilab/MILC Collaborations Collaboration

    2016-03-01

    The Standard Model has been a very good description of the subatomic particle physics. In the search for physics beyond the Standard Model in the context of flavor physics, it is important to sharpen our probes using some gold-plated processes (such as B rare decays), which requires the knowledge of the input parameters, such as the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements and other nonperturbative quantities, with sufficient precision. Lattice QCD is so far the only first-principle method which could compute these quantities with competitive and systematically improvable precision using the state of the art simulation techniques. I will discuss the recent progress of lattice QCD calculations on some of these nonpurturbative quantities and their applications in flavor physics. I will also discuss the implications and future perspectives of these calculations in flavor physics.

  11. QCD Sum Rules and Models for Generalized Parton Distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anatoly Radyushkin

    2004-10-01

    I use QCD sum rule ideas to construct models for generalized parton distributions. To this end, the perturbative parts of QCD sum rules for the pion and nucleon electromagnetic form factors are interpreted in terms of GPDs and two models are discussed. One of them takes the double Borel transform at adjusted value of the Borel parameter as a model for nonforward parton densities, and another is based on the local duality relation. Possible ways of improving these Ansaetze are briefly discussed.

  12. Anomaly inflow on QCD axial domain-walls and vortices

    NASA Astrophysics Data System (ADS)

    Fukushima, Kenji; Imaki, Shota

    2018-06-01

    We study the chiral effective theory in the presence of quantum chromodynamics (QCD) vortices. Gauge invariance requires novel terms from vortex singularities in the gauged Wess-Zumino-Witten action, which incorporate anomaly-induced currents along the vortices. We examine these terms for systems with QCD axial domain-walls bounded by vortices (vortons) under magnetic fields. We discuss how the baryon and electric charge conservations are satisfied in these systems through interplay between domain-walls and vortices, manifesting Callan-Harvey's mechanism of anomaly inflow.

  13. Acoustic scattering on spheroidal shapes near boundaries

    NASA Astrophysics Data System (ADS)

    Miloh, Touvia

    2016-11-01

    A new expression for the Lamé product of prolate spheroidal wave functions is presented in terms of a distribution of multipoles along the axis of the spheroid between its foci (generalizing a corresponding theorem for spheroidal harmonics). Such an "ultimate" singularity system can be effectively used for solving various linear boundary-value problems governed by the Helmholtz equation involving prolate spheroidal bodies near planar or other boundaries. The general methodology is formally demonstrated for the axisymmetric acoustic scattering problem of a rigid (hard) spheroid placed near a hard/soft wall or inside a cylindrical duct under an axial incidence of a plane acoustic wave.

  14. QCD-motivated description of very high energy particle interactions

    NASA Technical Reports Server (NTRS)

    Gaisser, T. K.; Halzen, F.

    1985-01-01

    Cross sections for the production of secondaries with large transverse momentum can become comparable to the total cross section in the TeV energy range. It is argued that the onset of this effect is observed at sub TeV energies via an increase of the rapidity distribution near y = 0, an increase of p sub T with energy and, most directly, via a correlation between p sub T and multiplicity. If indeed scaling violations are associated with the hard scattering of partons, then scaling violations are largely confined to the central region and have little effect on cosmic ray data which are sensitive to the forward fragmentation region.

  15. QCD corrections to ZZ production in gluon fusion at the LHC

    DOE PAGES

    Caola, Fabrizio; Melnikov, Kirill; Rontsch, Raoul; ...

    2015-11-23

    We compute the next-to-leading-order QCD corrections to the production of two Z-bosons in the annihilation of two gluons at the LHC. Being enhanced by a large gluon flux, these corrections provide a distinct and, potentially, the dominant part of the N 3LO QCD contributions to Z-pair production in proton collisions. The gg → ZZ annihilation is a loop-induced process that receives the dominant contribution from loops of five light quarks, that are included in our computation in the massless approximation. We find that QCD corrections increase the gg → ZZ production cross section by O(50%–100%) depending on the values ofmore » the renormalization and factorization scales used in the leading-order computation and the collider energy. Furthermore, the large corrections to the gg → ZZ channel increase the pp → ZZ cross section by about 6% to 8%, exceeding the estimated theoretical uncertainty of the recent next-to-next-to-leading-order QCD calculation.« less

  16. Chiral Extrapolations of the $$\\boldsymbol{ρ(770)}$$ Meson in $$\\mathbf{N_f=2+1}$$ Lattice QCD Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molina, Raquel; Hu, Bitao; Doering, Michael

    Several lattice QCD simulations of meson-meson scattering in p-wave and Isospin = 1 in Nf = 2 + 1 flavours have been carried out recently. Unitarized Chiral Perturbation Theory is used to perform extrapolations to the physical point. In contrast to previous findings on the analyses of Nf = 2 lattice data, where most of the data seems to be in agreement, some discrepancies are detected in the Nf = 2 + 1 lattice data analyses, which could be due to different masses of the strange quark, meson decay constants, initial constraints in the simulation, or other lattice artifacts. Inmore » addition, the low-energy constants are compared to the ones from a recent analysis of Nf = 2 lattice data.« less

  17. The Bayesian reconstruction of the in-medium heavy quark potential from lattice QCD and its stability

    NASA Astrophysics Data System (ADS)

    Burnier, Yannis; Kaczmarek, Olaf; Rothkopf, Alexander

    2016-01-01

    We report recent results of a non-perturbative determination of the static heavy-quark potential in quenched and dynamical lattice QCD at finite temperature. The real and imaginary part of this complex quantity are extracted from the spectral function of Wilson line correlators in Coulomb gauge. To obtain spectral information from Euclidean time numerical data, our study relies on a novel Bayesian prescription that differs from the Maximum Entropy Method. We perform simulations on quenched 323 × Nτ (β = 7.0, ξ = 3.5) lattices with Nτ = 24, …, 96, which cover 839MeV ≥ T ≥ 210MeV. To investigate the potential in a quark-gluon plasma with light u,d and s quarks we utilize Nf = 2 + 1 ASQTAD lattices with ml = ms/20 by the HotQCD collaboration, giving access to temperatures between 286MeV ≥ T ≥ 148MeV. The real part of the potential exhibits a clean transition from a linear, confining behavior in the hadronic phase to a Debye screened form above deconfinement. Interestingly its values lie close to the color singlet free energies in Coulomb gauge at all temperatures. We estimate the imaginary part on quenched lattices and find that it is of the same order of magnitude as in hard-thermal loop perturbation theory. From among all the systematic checks carried out in our study, we discuss explicitly the dependence of the result on the default model and the number of datapoints.

  18. Scattering from Colloid-Polymer Conjugates with Excluded Volume Effect

    DOE PAGES

    Li, Xin; Sanchez-Diaz, Luis E.; Smith, Gregory Scott; ...

    2015-01-13

    This work presents scattering functions of conjugates consisting of a colloid particle and a self-avoiding polymer chain as a model for protein-polymer conjugates and nanoparticle-polymer conjugates in solution. The model is directly derived from the two-point correlation function with the inclusion of excluded volume effects. The dependence of the calculated scattering function on the geometric shape of the colloid and polymer stiffness is investigated. The model is able to describe the experimental scattering signature of the solutions of suspending hard particle-polymer conjugates and provide additional conformational information. This model explicitly elucidates the link between the global conformation of a conjugatemore » and the microstructure of its constituent components.« less

  19. Hamiltonian Effective Field Theory Study of the N^{*}(1535) Resonance in Lattice QCD.

    PubMed

    Liu, Zhan-Wei; Kamleh, Waseem; Leinweber, Derek B; Stokes, Finn M; Thomas, Anthony W; Wu, Jia-Jun

    2016-02-26

    Drawing on experimental data for baryon resonances, Hamiltonian effective field theory (HEFT) is used to predict the positions of the finite-volume energy levels to be observed in lattice QCD simulations of the lowest-lying J^{P}=1/2^{-} nucleon excitation. In the initial analysis, the phenomenological parameters of the Hamiltonian model are constrained by experiment and the finite-volume eigenstate energies are a prediction of the model. The agreement between HEFT predictions and lattice QCD results obtained on volumes with spatial lengths of 2 and 3 fm is excellent. These lattice results also admit a more conventional analysis where the low-energy coefficients are constrained by lattice QCD results, enabling a determination of resonance properties from lattice QCD itself. Finally, the role and importance of various components of the Hamiltonian model are examined.

  20. Simple analysis of scattering data with the Ornstein-Zernike equation

    NASA Astrophysics Data System (ADS)

    Kats, E. I.; Muratov, A. R.

    2018-01-01

    In this paper we propose and explore a method of analysis of the scattering experimental data for uniform liquidlike systems. In our pragmatic approach we are not trying to introduce by hands an artificial small parameter to work out a perturbation theory with respect to the known results, e.g., for hard spheres or sticky hard spheres (all the more that in the agreement with the notorious Landau statement, there is no physical small parameter for liquids). Instead of it being guided by the experimental data we are solving the Ornstein-Zernike equation with a trial (variational) form of the interparticle interaction potential. To find all needed correlation functions this variational input is iterated numerically to satisfy the Ornstein-Zernike equation supplemented by a closure relation. Our method is developed for spherically symmetric scattering objects, and our numeric code is written for such a case. However, it can be extended (at the expense of more involved computations and a larger amount of required experimental input information) for nonspherical particles. What is important for our approach is that it is sufficient to know experimental data in a relatively narrow range of the scattering wave vectors (q ) to compute the static structure factor in a much broader range of q . We illustrate by a few model and real experimental examples of the x-ray and neutron scattering data how the approach works.

  1. The Physics of Hard Spheres Experiment on MSL-1: Required Measurements and Instrument Performance

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.; Lant, Christian T.; Ling, Jerri S.

    1998-01-01

    The Physics of HArd Spheres Experiment (PHaSE), one of NASA Lewis Research Center's first major light scattering experiments for microgravity research on complex fluids, flew on board the Space Shuttle's Microgravity Science Laboratory (MSL-1) in 1997. Using colloidal systems of various concentrations of micron-sized plastic spheres in a refractive index-matching fluid as test samples, illuminated by laser light during and after crystallization, investigations were conducted to measure the nucleation and growth rate of colloidal crystals as well as the structure, rheology, and dynamics of the equilibrium crystal. Together, these measurements support an enhanced understanding of the nature of the liquid-to-solid transition. Achievement of the science objectives required an accurate experimental determination of eight fundamental properties for the hard sphere colloidal samples. The instrument design met almost all of the original measurement requirements, but with compromise on the number of samples on which data were taken. The instrument performs 2-D Bragg and low angle scattering from 0.4 deg. to 60 deg., dynamic and single-channel static scattering from 10 deg. to 170 deg., rheology using fiber optics, and white light imaging of the sample. As a result, PHaSE provided a timely microgravity demonstration of critical light scattering measurement techniques and hardware concepts, while generating data already showing promise of interesting new scientific findings in the field of condensed matter physics.

  2. Nucleon PDFs and TMDs from Continuum QCD

    NASA Astrophysics Data System (ADS)

    Bednar, Kyle; Cloet, Ian; Tandy, Peter

    2017-09-01

    The parton structure of the nucleon is investigated in an approach based upon QCD's Dyson-Schwinger equations. The method accommodates a variety of QCD's dynamical outcomes including: the running mass of quark propagators and formation of non-pointlike di-quark correlations. All needed elements, including the nucleon wave function solution from a Poincaré covariant Faddeev equation, are encoded in spectral-type representations in the Nakanishi style to facilitate Feynman integral procedures and allow insight into key underlying mechanisms. Results will be presented for spin-independent PDFs and TMDs arising from a truncation to allow only scalar di-quark correlations. The influence of axial-vector di-quark correlations may be discussed if results are available. Supported by NSF Grant No. PHY-1516138.

  3. Prompt atmospheric neutrino fluxes: perturbative QCD models and nuclear effects

    DOE PAGES

    Bhattacharya, Atri; Enberg, Rikard; Jeong, Yu Seon; ...

    2016-11-28

    We evaluate the prompt atmospheric neutrino flux at high energies using three different frameworks for calculating the heavy quark production cross section in QCD: NLO perturbative QCD, k T factorization including low-x resummation, and the dipole model including parton saturation. We use QCD parameters, the value for the charm quark mass and the range for the factorization and renormalization scales that provide the best description of the total charm cross section measured at fixed target experiments, at RHIC and at LHC. Using these parameters we calculate differential cross sections for charm and bottom production and compare with the latest datamore » on forward charm meson production from LHCb at 7 TeV and at 13 TeV, finding good agreement with the data. In addition, we investigate the role of nuclear shadowing by including nuclear parton distribution functions (PDF) for the target air nucleus using two different nuclear PDF schemes. Depending on the scheme used, we find the reduction of the flux due to nuclear effects varies from 10% to 50% at the highest energies. Finally, we compare our results with the IceCube limit on the prompt neutrino flux, which is already providing valuable information about some of the QCD models.« less

  4. Nuclear Physics and Lattice QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beane, Silas

    2003-11-01

    Impressive progress is currently being made in computing properties and interac- tions of the low-lying hadrons using lattice QCD. However, cost limitations will, for the foreseeable future, necessitate the use of quark masses, Mq, that are signif- icantly larger than those of nature, lattice spacings, a, that are not significantly smaller than the physical scale of interest, and lattice sizes, L, that are not sig- nificantly larger than the physical scale of interest. Extrapolations in the quark masses, lattice spacing and lattice volume are therefore required. The hierarchy of mass scales is: L 1 j Mq j â ºC jmore » a 1 . The appropriate EFT for incorporating the light quark masses, the finite lattice spacing and the lattice size into hadronic observables is C-PT, which provides systematic expansions in the small parame- ters e m L, 1/ Lâ ºC, p/â ºC, Mq/â ºC and aâ ºC . The lattice introduces other unphysical scales as well. Lattice QCD quarks will increasingly be artificially separated« less

  5. On the interface between perturbative and nonperturbative QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deur, Alexandre; Brodsky, Stanley J.; de Teramond, Guy F.

    2016-04-04

    The QCD running couplingmore » $$\\alpha_s(Q^2)$$ sets the strength of the interactions of quarks and gluons as a function of the momentum transfer $Q$. The $Q^2$ dependence of the coupling is required to describe hadronic interactions at both large and short distances. In this article we adopt the light-front holographic approach to strongly-coupled QCD, a formalism which incorporates confinement, predicts the spectroscopy of hadrons composed of light quarks, and describes the low-$Q^2$ analytic behavior of the strong coupling $$\\alpha_s(Q^2)$$. The high-$Q^2$ dependence of the coupling $$\\alpha_s(Q^2)$$ is specified by perturbative QCD and its renormalization group equation. The matching of the high and low $Q^2$ regimes of $$\\alpha_s(Q^2)$$ then determines the scale $$Q_0$$ which sets the interface between perturbative and nonperturbative hadron dynamics. The value of $$Q_0$$ can be used to set the factorization scale for DGLAP evolution of hadronic structure functions and the ERBL evolution of distribution amplitudes. We discuss the scheme-dependence of the value of $$Q_0$$ and the infrared fixed-point of the QCD coupling. Our analysis is carried out for the $$\\bar{MS}$$, $$g_1$$, $MOM$ and $V$ renormalization schemes. Our results show that the discrepancies on the value of $$\\alpha_s$$ at large distance seen in the literature can be explained by different choices of renormalization schemes. Lastly, we also provide the formulae to compute $$\\alpha_s(Q^2)$$ over the entire range of space-like momentum transfer for the different renormalization schemes discussed in this article.« less

  6. Static Light Scattering from Concentrated Protein Solutions, I: General Theory for Protein Mixtures and Application to Self-Associating Proteins

    PubMed Central

    Minton, Allen P.

    2007-01-01

    Exact expressions for the static light scattering of a solution containing up to three species of point-scattering solutes in highly nonideal solutions at arbitrary concentration are obtained from multicomponent scattering theory. Explicit expressions for thermodynamic interaction between solute molecules, required to evaluate the scattering relations, are obtained using an equivalent hard particle approximation similar to that employed earlier to interpret scattering of a single protein species at high concentration. The dependence of scattering intensity upon total protein concentration is calculated for mixtures of nonassociating proteins and for a single self-associating protein over a range of concentrations up to 200 g/l. An approximate semiempirical analysis of the concentration dependence of scattering intensity is proposed, according to which the contribution of thermodynamic interaction to scattering intensity is modeled as that of a single average hard spherical species. Simulated data containing pseudo-noise comparable in magnitude to actual experimental uncertainty are modeled using relations obtained from the proposed semiempirical analysis. It is shown that by using these relations one can extract from the data reasonably reliable information about underlying weak associations that are manifested only at very high total protein concentration. PMID:17526566

  7. Measurement of D ∗ meson cross sections at HERA and determination of the gluon density in the proton using NLO QCD

    NASA Astrophysics Data System (ADS)

    Adloff, C.; Anderson, M.; Andreev, V.; Andrieu, B.; Arkadov, V.; Arndt, C.; Ayyaz, I.; Babaev, A.; Bähr, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Bassler, U.; Bate, P.; Beck, M.; Beglarian, A.; Behnke, O.; Behrend, H.-J.; Beier, C.; Belousov, A.; Berger, Ch.; Bernardi, G.; Bertrand-Coremans, G.; Biddulph, P.; Bizot, J. C.; Boudry, V.; Braunschweig, W.; Brisson, V.; Brown, D. P.; Brückner, W.; Bruel, P.; Bruncko, D.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Burrage, A.; Buschhorn, G.; Calvet, D.; Campbell, A. J.; Carli, T.; Chabert, E.; Charlet, M.; Clarke, D.; Clerbaux, B.; Contreras, J. G.; Cormack, C.; Coughlan, J. A.; Cousinou, M.-C.; Cox, B. E.; Cozzika, G.; Cvach, J.; Dainton, J. B.; Dau, W. D.; Daum, K.; David, M.; Davidsson, M.; De Roeck, A.; De Wolf, E. A.; Delcourt, B.; Demirchyan, R.; Diaconu, C.; Dirkmann, M.; Dixon, P.; Dlugosz, W.; Donovan, K. T.; Dowell, J. D.; Droutskoi, A.; Ebert, J.; Eckerlin, G.; Eckstein, D.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Elsen, E.; Enzenberger, M.; Erdmann, M.; Fahr, A. B.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Fleischer, M.; Flügge, G.; Fomenko, A.; Formánek, J.; Foster, J. M.; Franke, G.; Gabathuler, E.; Gabathuler, K.; Gaede, F.; Garvey, J.; Gassner, J.; Gayler, J.; Gerhards, R.; Ghazaryan, S.; Glazov, A.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Gorelov, I.; Grab, C.; Grässler, H.; Greenshaw, T.; Griffiths, R. K.; Grindhammer, G.; Hadig, T.; Haidt, D.; Hajduk, L.; Haller, T.; Hampel, M.; Haustein, V.; Haynes, W. J.; Heinemann, B.; Heinzelmann, G.; Henderson, R. C. W.; Hengstmann, S.; Henschel, H.; Heremans, R.; Herynek, I.; Hewitt, K.; Hiller, K. H.; Hilton, C. D.; Hladký, J.; Hoffmann, D.; Horisberger, R.; Hurling, S.; Ibbotson, M.; İşsever, Ç.; Jacquet, M.; Jaffre, M.; Jansen, D. M.; Jönsson, L.; Johnson, D. P.; Jones, M.; Jung, H.; Kästli, H. K.; Kander, M.; Kant, D.; Kapichine, M.; Karlsson, M.; Karschnik, O.; Katzy, J.; Kaufmann, O.; Kausch, M.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Köhne, J. H.; Kolanoski, H.; Kolya, S. D.; Korbel, V.; Kostka, P.; Kotelnikov, S. K.; Krämerkämper, T.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Krüger, K.; Küpper, A.; Küster, H.; Kuhlen, M.; Kurča, T.; Lahmann, R.; Landon, M. P. J.; Lange, W.; Langenegger, U.; Lebedev, A.; Lehner, F.; Lemaitre, V.; Lendermann, V.; Levonian, S.; Lindstroem, M.; List, B.; Lobo, G.; Lobodzinska, E.; Lubimov, V.; Lüders, S.; Lüke, D.; Lytkin, L.; Magnussen, N.; Mahlke-Krüger, H.; Malinovski, E.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martin, G.; Martyn, H.-U.; Martyniak, J.; Maxfield, S. J.; McMahon, T. R.; Mehta, A.; Meier, K.; Merkel, P.; Metlica, F.; Meyer, A.; Meyer, A.; Meyer, H.; Meyer, J.; Meyer, P.-O.; Mikocki, S.; Milstead, D.; Moeck, J.; Mohr, R.; Mohrdieck, S.; Moreau, F.; Morris, J. V.; Müller, D.; Müller, K.; Murin, P.; Nagovizin, V.; Naroska, B.; Naumann, Th.; Négri, I.; Newman, P. R.; Nguyen, H. K.; Nicholls, T. C.; Niebergall, F.; Niebuhr, C.; Niedzballa, Ch.; Niggli, H.; Nikitin, D.; Nix, O.; Nowak, G.; Nunnemann, T.; Oberlack, H.; Olsson, J. E.; Ozerov, D.; Palmen, P.; Panassik, V.; Pascaud, C.; Passaggio, S.; Patel, G. D.; Pawletta, H.; Perez, E.; Phillips, J. P.; Pieuchot, A.; Pitzl, D.; Pöschl, R.; Pope, G.; Povh, B.; Rabbertz, K.; Rauschenberger, J.; Reimer, P.; Reisert, B.; Reyna, D.; Rick, H.; Riess, S.; Rizvi, E.; Robmann, P.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rusakov, S.; Rybicki, K.; Sankey, D. P. C.; Schacht, P.; Scheins, J.; Schilling, F.-P.; Schleif, S.; Schleper, P.; Schmidt, D.; Schmidt, D.; Schoeffel, L.; Schröder, V.; Schultz-Coulon, H.-C.; Schwab, B.; Sefkow, F.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shtarkov, L. N.; Siegmon, G.; Sirois, Y.; Sloan, T.; Smirnov, P.; Smith, M.; Solochenko, V.; Soloviev, Y.; Spaskov, V.; Specka, A.; Spiekermann, J.; Spitzer, H.; Squinabol, F.; Steffen, P.; Steinberg, R.; Steinhart, J.; Stella, B.; Stellberger, A.; Stiewe, J.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Swart, M.; Tapprogge, S.; Taševský, M.; Tchernshov, V.; Tchetchelnitski, S.; Theissen, J.; Thompson, G.; Thompson, P. D.; Tobien, N.; Todenhagen, R.; Truöl, P.; Tsipolitis, G.; Turnau, J.; Tzamariudaki, E.; Udluft, S.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; Van Esch, P.; Van Haecke, A.; Van Mechelen, P.; Vazdik, Y.; Villet, G.; Wacker, K.; Wallny, R.; Walter, T.; Waugh, B.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wengler, T.; Werner, M.; West, L. R.; Wiesand, S.; Wilksen, T.; Willard, S.; Winde, M.; Winter, G.-G.; Wittek, C.; Wittmann, E.; Wobisch, M.; Wollatz, H.; Wünsch, E.; Žaček, J.; Zálešak, J.; Zhang, Z.; Zhokin, A.; Zini, P.; Zomer, F.; Zsembery, J.; zurNedden, M.; H1 Collaboration

    1999-04-01

    With the H1 detector at the ep collider HERA, D ∗ meson production cross sections have been measured in deep inelastic scattering with four-momentum transfers Q2 > 3 GeV 2 and in photoproduction at energies around Wγp ≈ 88 GeV and 194 GeV. Next-to-Leading Order QCD calculations are found to describe the differential cross sections within theoretical and experimental uncertainties. Using these calculations, the NLO gluon momentum distribution in the proton, xgg( xg), has been extracted in the momentum fraction range 7.5 × 10 -4 < xg < 4 × 10 -2 at average scales μ2 = 25 to 50 GeV 2. The gluon momentum fraction xg has been obtained from the measured kinematics of the scattered electron and the D ∗ meson in the final state. The results compare well with the gluon distribution obtained from the analysis of scaling violations of the proton structure function F2.

  8. Very hard states in neutron star low-mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Parikh, A. S.; Wijnands, R.; Degenaar, N.; Altamirano, D.; Patruno, A.; Gusinskaia, N. V.; Hessels, J. W. T.

    2017-07-01

    We report on unusually very hard spectral states in three confirmed neutron-star low-mass X-ray binaries (1RXS J180408.9-342058, EXO 1745-248 and IGR J18245-2452) at a luminosity between ˜1036 and 1037 erg s-1. When fitting the Swift X-ray spectra (0.5-10 keV) in those states with an absorbed power-law model, we found photon indices of Γ ˜ 1, significantly lower than the Γ = 1.5-2.0 typically seen when such systems are in their so called hard state. For individual sources, very hard spectra were already previously identified, but here we show for the first time that likely our sources were in a distinct spectral state (I.e. different from the hard state) when they exhibited such very hard spectra. It is unclear how such very hard spectra can be formed; if the emission mechanism is similar to that operating in their hard states (I.e. up-scattering of soft photons due to hot electrons), then the electrons should have higher temperatures or a higher optical depth in the very hard state compared to those observed in the hard state. By using our obtained Γ as a tracer for the spectral evolution with luminosity, we have compared our results with those obtained by Wijnands et al. Our sample of sources follows the same track as the other neutron star systems in Wijnands et al., confirming their general results. However, we do not find that the accreting millisecond pulsars are systematically harder than the non-pulsating systems.

  9. QCD for Postgraduates (3/5)

    ScienceCinema

    Zanderighi, Giulia

    2018-04-27

    Modern QCD - Lecture 3 We will introduce processes with initial-state hadrons and discuss parton distributions, sum rules, as well as the need for a factorization scale once radiative corrections are taken into account. We will then discuss the DGLAP equation, the evolution of parton densities, as well as ways in which parton densities are extracted from data.

  10. Equivalence of the AdS-metric and the QCD running coupling

    NASA Astrophysics Data System (ADS)

    Pirner, H. J.; Galow, B.

    2009-08-01

    We use the functional form of the QCD running coupling to modify the conformal metric in AdS/CFT mapping the fifth-dimensional z-coordinate to the energy scale in the four-dimensional QCD. The resulting type-0 string theory in five dimensions is solved with the Nambu-Goto action giving good agreement with the Coulombic and confinement QQbar potential.

  11. Structure of the Circumnuclear Region of Seyfert 2 Galaxies Revealed by RXTE Hard X-Ray Observations of NGC 4945

    NASA Technical Reports Server (NTRS)

    Madejski, G.; Zycki, P.; Done, C.; Valinia, A.; Blanco, P.; Rothschild, R.; Turek, B.

    2000-01-01

    NGC 4945 is one of the brightest Se.yfert galaxies on the sky at 100 keV, but is completely absorbed below 10 keV, implying an optical depth of the absorber to electron scattering of a few; its absorption column is probably the largest which still allows a direct view of the nucleus at hard X-ray energies. Our observations of it with the Rossi X-ray Timing Explorer (RXTE) satellite confirm the large absorption, which for a simple phenomenological fit using an absorber with Solar abundances implies a column of 4.5(sup 0.4, sub -0.4) x 10(exp 24) /sq cm. Using a a more realistic scenario (requiring Monte Carlo modeling of the scattering), we infer the optical depth to Thomson scattering of approximately 2.4. If such a scattering medium were to subtend a large solid angle from the nucleus, it should smear out any intrinsic hard X-ray variability on time scales shorter than the light travel time through it. The rapid (with a time scale of approximately a day) hard X-ray variability of NGC 4945 we observed with the RXTE implies that the bulk of the extreme absorption in this object does not originate in a parsec-size, geometrically thick molecular torus. Limits on the amount of scattered flux require that the optically thick material on parsec scales must be rather geometrically thin, subtending a half-angle < 10 deg. This is only marginally consistent with the recent determinations of the obscuring column in hard X-rays, where only a quarter of Seyfert 2s have columns which are optically thick, and presents a problem in accounting for the Cosmic X-ray Background primarily with AGN possessing the geometry as that inferred by us. The small solid angle of the obscuring material, together with the black hole mass (of approximately 1.4 x 10(exp 6) solar mass) from megamaser measurements. allows a robust determination of the source luminosity, which in turn implies that the source radiates at approximately 10% of the Eddington limit.

  12. The decay of Λ _b→ p~K^- in QCD factorization approach

    NASA Astrophysics Data System (ADS)

    Zhu, Jie; Ke, Hong-Wei; Wei, Zheng-Tao

    2016-05-01

    With only the tree-level operator, the decay of Λ _b→ pK is predicted to be one order smaller than the experimental data. The QCD penguin effects should be taken into account. In this paper, we explore the one-loop QCD corrections to the decay of Λ _b→ pK within the framework of QCD factorization approach. For the baryon system, the diquark approximation is adopted. The transition hadronic matrix elements between Λ _b and p are calculated in the light-front quark model. The branching ratio of Λ _b→ pK is predicted to be about 4.85× 10^{-6}, which is consistent with experimental data (4.9± 0.9)× 10^{-6}. The CP violation is about 5 % in theory.

  13. Determination of the strong coupling constant from jet rates in deep inelastic scattering

    NASA Astrophysics Data System (ADS)

    Ahmed, T.; Aid, S.; Andreev, V.; Andrieu, B.; Appuhn, R.-D.; Arpagaus, M.; Babaev, A.; Baehr, J.; Bán, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Barth, M.; Bassler, U.; Beck, H. P.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bergstein, H.; Bernardi, G.; Bernet, R.; Bertrand-Coremans, G.; Besançon, M.; Beyer, R.; Biddulph, P.; Bizot, J. C.; Blobel, V.; Borras, K.; Botterweck, F.; Boudry, V.; Braemer, A.; Brasse, F.; Braunschweig, W.; Brisson, V.; Bruncko, D.; Brune, C.; Buchholz, R.; Büngener, L.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Buschhorn, G.; Campbell, A. J.; Carli, T.; Charles, F.; Clarke, D.; Clegg, A. B.; Clerbaux, B.; Colombo, M.; Contreras, J. G.; Cormack, C.; Coughlan, J. A.; Courau, A.; Coutures, Ch.; Cozzika, G.; Criegee, L.; Cussans, D. G.; Cvach, J.; Dagoret, S.; Dainton, J. B.; Danilov, M.; Dau, W. D.; Daum, K.; David, M.; Deffur, E.; Delcourt, B.; Del Buono, L.; De Roeck, A.; De Wolf, E. A.; Di Nezza, P.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Droutskoi, A.; Duboc, J.; Düllmann, D.; Dünger, O.; Duhm, H.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Ehrlichmann, H.; Eichenberger, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellison, R. J.; Elsen, E.; Erdmann, M.; Erdmann, W.; Evrard, E.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Fleischer, M.; Flieser, M.; Flügge, G.; Fomenko, A.; Fominykh, B.; Forbush, M.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Gabathuler, E.; Gabathuler, K.; Gamerdinger, K.; Garvey, J.; Gayler, J.; Gebauer, M.; Gellrich, A.; Genzel, H.; Gerhards, R.; Goerlach, U.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goldner, D.; Gonzalez-Pineiro, B.; Gorelov, I.; Goritchev, P.; Grab, C.; Grässler, H.; Grässler, R.; Greenshaw, T.; Grindhammer, G.; Gruber, A.; Gruber, C.; Haack, J.; Haidt, D.; Hajduk, L.; Hamon, O.; Hampel, M.; Hanlon, E. M.; Hapke, M.; Haynes, W. J.; Heatherington, J.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herma, R.; Herynek, I.; Hess, M. F.; Hildesheim, W.; Hill, P.; Hill, K. H.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Höppner, M.; Horisberger, R.; Huet, Ph.; Hufnagel, H.; Ibbotson, M.; Itterbeck, H.; Jabiol, M.-A.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Janoth, J.; Jansen, T.; Jönsson, L.; Johannsen, K.; Johnson, D. P.; Johnson, L.; Jung, H.; Kalmus, P. I. P.; Kant, D.; Kaschowitz, R.; Kasselmann, P.; Kathage, U.; Kaufmann, H. H.; Kazarian, S.; Kenyon, I. R.; Kermiche, S.; Keuler, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Ko, W.; Köhler, T.; Köhne, J. H.; Kolanoski, H.; Kole, F.; Kolya, S. D.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krämerkämper, T.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Krüger, U.; Krüner-Marquis, U.; Kubenka, J. P.; Küster, H.; Kuhlen, M.; Kurča, T.; Kurzhöfer, J.; Kuznik, B.; Lacour, D.; Lamarche, F.; Lander, R.; Landon, M. P. J.; Lange, W.; Lanius, P.; Laporte, J.-F.; Lebedev, A.; Leverenz, C.; Levonian, S.; Ley, Ch.; Lindner, A.; Lindström, G.; Linsel, F.; Lipinski, J.; List, B.; Loch, P.; Lohmander, H.; Lopez, G. C.; Lubimov, V.; Lüke, D.; Magnussen, N.; Malinovski, E.; Mani, S.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Masson, S.; Mavroidis, T.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Mercer, D.; Merz, T.; Meyer, C. A.; Meyer, H.; Meyer, J.; Mikocki, S.; Milstead, D.; Moreau, F.; Morris, J. V.; Müller, G.; Müller, K.; Murín, P.; Nagovizin, V.; Nahnhauer, R.; Naroska, B.; Naumann, Th.; Newman, P. R.; Newton, D.; Neyret, D.; Nguyen, H. K.; Niebergall, F.; Niebuhr, C.; Nisius, R.; Nowak, G.; Noyes, G. W.; Nyberg-Werther, M.; Oakden, M.; Oberlack, H.; Obrock, U.; Olsson, J. E.; Panaro, E.; Panitch, A.; Pascaud, C.; Patel, G. D.; Peppel, E.; Perez, E.; Phillips, J. P.; Pichler, Ch.; Pitzl, D.; Pope, G.; Prell, S.; Prosi, R.; Rädel, G.; Raupach, F.; Reimer, P.; Reinshagen, S.; Ribarics, P.; Rick, H.; Riech, V.; Riedlberger, J.; Riess, S.; Rietz, M.; Robertson, S. M.; Robmann, P.; Roloff, H. E.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rüter, K.; Rusakov, S.; Rybicki, K.; Rylko, R.; Sahlmann, N.; Sanchez, E.; Sankey, D. P. C.; Savitsky, M.; Schacht, P.; Schiek, S.; Schleper, P.; von Schlippe, W.; Schmidt, C.; Schmidt, D.; Schmidt, G.; Schöning, A.; Schröder, V.; Schuhmann, E.; Schwab, B.; Schwind, A.; Seehausen, U.; Sefkow, F.; Seidel, M.; Sell, R.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shooshtari, H.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Smith, J. R.; Soloviev, Y.; Spitzer, H.; Starosta, R.; Steenbock, M.; Steffen, P.; Steinberg, R.; Stella, B.; Stephens, K.; Stier, J.; Stiewe, J.; Stösslein, U.; Strachota, J.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Tapprogge, S.; Taylor, R. E.; Tchernyshov, V.; Thiebaux, C.; Thompson, G.; Truöl, P.; Turnau, J.; Tutas, J.; Uelkes, P.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; Van Esch, P.; Van Mechelen, P.; Vartapetian, A.; Vazdik, Y.; Vecko, M.; Verrecchia, P.; Villet, G.; Wacker, K.; Wagener, A.; Wagener, M.; Walker, I. W.; Walther, A.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wellisch, H. P.; West, L. R.; Willard, S.; Winde, M.; Winter, G.-G.; Wright, A. E.; Wünsch, E.; Wulff, N.; Yiou, T. P.; Žáček, J.; Zarbock, D.; Zhang, Z.; Zhokin, A.; Zimmer, M.; Zimmermann, W.; Zomer, F.; Zuber, K.; H1 Collaboration

    1995-02-01

    Jet rates in deep inelastic electron proton scattering are studied with the H1 detector at HERA for momentum transfers squared between 10 and 4000 GeV 2. It is shown that they can be quantitatively described by perturbative QCD in next to leading order making use of the parton densities of the proton and with the strong coupling constant αs as a free parameter. The measured value, αs( MZ2) = 0.123 ± 0.018, is in agreement both with determinations from e+e- annihilation at LEP using the same observable and with the world average.

  14. Three-Dimensional Model of the Scatterer Distribution in Cirrhotic Liver

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Tadashi; Nakamura, Keigo; Hachiya, Hiroyuki

    2003-05-01

    Ultrasonic B-mode images are affected by changes in scatterer distribution. It is hard to estimate the relationship between the ultrasonic image and the tissue structure quantitatively because we cannot observe the continuous stages of liver cirrhosis tissue clinically, particularly the beginning stage. In this paper, we propose a three-dimensional modeling method of scatterer distribution for normal and cirrhotic livers to confirm the influence of the change in the form of scatterer distribution on echo information. The algorithm of the method includes parameters which determine the expansion of nodules and fibers. Using the B-mode images which are obtained from these scatterer distributions, we analyze the relationship between the changes in the form of biological tissue and the changes in the B-mode images during progressive liver cirrhosis.

  15. Two loop renormalization of the magnetic coupling in hot QCD

    NASA Astrophysics Data System (ADS)

    Giovannangeli, P.

    2004-04-01

    Well above the critical temperature hot QCD is described by 3d electrostatic QCD with gauge coupling gE and Debye mass mE. We integrate out the Debye scales to two loop accuracy and find for the gauge coupling in the resulting magnetostatic action gM2=gE21-{1}/{48}{gE2N}/{πmE}-{17}/{4608}{gE2N}/{πmE}2+O{gE2N}/{πmE}3.

  16. OPE of Green functions in the odd sector of QCD

    NASA Astrophysics Data System (ADS)

    Kadavý, T.; Kampf, K.; Novotný, J.

    2017-03-01

    A review of familiar results of the three-point Green functions of currents in the odd-intrinsic parity sector of QCD is presented. Such Green functions include very well-known examples of VVP, VAS or AAP correlators. We also present new results for VVA and AAA Green functions that have not yet been studied extensively in the literature before, more importantly with a phenomenological study and a discussion of the highenergy behaviour and its relation to the QCD condensates.

  17. Current matrix element in HAL QCD's wavefunction-equivalent potential method

    NASA Astrophysics Data System (ADS)

    Watanabe, Kai; Ishii, Noriyoshi

    2018-04-01

    We give a formula to calculate a matrix element of a conserved current in the effective quantum mechanics defined by the wavefunction-equivalent potentials proposed by the HAL QCD collaboration. As a first step, a non-relativistic field theory with two-channel coupling is considered as the original theory, with which a wavefunction-equivalent HAL QCD potential is obtained in a closed analytic form. The external field method is used to derive the formula by demanding that the result should agree with the original theory. With this formula, the matrix element is obtained by sandwiching the effective current operator between the left and right eigenfunctions of the effective Hamiltonian associated with the HAL QCD potential. In addition to the naive one-body current, the effective current operator contains an additional two-body term emerging from the degrees of freedom which has been integrated out.

  18. Bs and Ds decay constants in three-flavor lattice QCD.

    PubMed

    Wingate, Matthew; Davies, Christine T H; Gray, Alan; Lepage, G Peter; Shigemitsu, Junko

    2004-04-23

    Capitalizing on recent advances in lattice QCD, we present a calculation of the leptonic decay constants f(B(s)) and f(D(s)) that includes effects of one strange sea quark and two light sea quarks via an improved staggered action. By shedding the quenched approximation and the associated lattice scale uncertainty, lattice QCD greatly increases its predictive power. Nonrelativistic QCD is used to simulate heavy quarks with masses between 1.5m(c) and m(b). We arrive at the following results: f(B(s))=260+/-7+/-26+/-8+/-5 and f(D(s))=290+/-20+/-29+/-29+/-6 MeV. The first quoted error is the statistical uncertainty, and the rest estimate the sizes of higher order terms neglected in this calculation. All of these uncertainties are systematically improvable by including another order in the weak coupling expansion, the nonrelativistic expansion, or the Symanzik improvement program.

  19. QCD triple Pomeron coupling from string amplitudes

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Navelet, H.; Peschanski, R.

    1998-06-01

    Using the recent solution of the triple Pomeron coupling in the QCD dipole picture as a closed string amplitude with six legs, its analytical form in terms of hypergeometric functions and numerical value are derived.

  20. QCD inequalities for the nucleon mass and the free energy of baryonic matter.

    PubMed

    Cohen, Thomas D

    2003-07-18

    The positivity of the integrand of certain Euclidean space functional integrals for two flavor QCD with degenerate quark masses implies that the free energy per unit volume for QCD with a baryon chemical potential mu(B) (and zero isospin chemical potential) is greater than the free energy with an isospin chemical potential mu(I)=(2 mu(B)/N(c)) (and zero baryon chemical potential). The same result applies to QCD with any number of heavy flavors in addition to the two light flavors so long as the chemical potential is understood as applying to the light quark contributions to the baryon number. This relation implies a bound on the nucleon mass: there exists a particle X in QCD (presumably the pion) such that M(N)> or =(N(c) m(X)/2 I(X)) where m(X) is the mass of the particle and I(X) is its isospin.

  1. Importance of proper renormalization scale-setting for QCD testing at colliders

    DOE PAGES

    Wu, Xing -Gang; Wang, Sheng -Quan; Brodsky, Stanley J.

    2015-12-22

    A primary problem affecting perturbative quantum chromodynamic (pQCD) analyses is the lack of a method for setting the QCD running-coupling renormalization scale such that maximally precise fixed-order predictions for physical observables are obtained. The Principle of Maximum Conformality (PMC) eliminates the ambiguities associated with the conventional renormalization scale-setting procedure, yielding predictions that are independent of the choice of renormalization scheme. The QCD coupling scales and the effective number of quark flavors are set order-by-order in the pQCD series. The PMC has a solid theoretical foundation, satisfying the standard renormalization group invariance condition and all of the self-consistency conditions derived frommore » the renormalization group. The PMC scales at each order are obtained by shifting the arguments of the strong force coupling constant αs to eliminate all non-conformal {βi} terms in the pQCD series. The {βi} terms are determined from renormalization group equations without ambiguity. The correct behavior of the running coupling at each order and at each phase-space point can then be obtained. The PMC reduces in the N C → 0 Abelian limit to the Gell-Mann-Low method. In this brief report, we summarize the results of our recent application of the PMC to a number of collider processes, emphasizing the generality and applicability of this approach. A discussion of hadronic Z decays shows that, by applying the PMC, one can achieve accurate predictions for the total and separate decay widths at each order without scale ambiguities. We also show that, if one employs the PMC to determine the top-quark pair forward-backward asymmetry at the next-to-next-to-leading order level, one obtains a comprehensive, self-consistent pQCD explanation for the Tevatron measurements of the asymmetry. This accounts for the “increasing-decreasing” behavior observed by the D0 collaboration for increasing tt¯ invariant mass. At lower

  2. Determination of the chiral condensate from (2+1)-flavor lattice QCD.

    PubMed

    Fukaya, H; Aoki, S; Hashimoto, S; Kaneko, T; Noaki, J; Onogi, T; Yamada, N

    2010-03-26

    We perform a precise calculation of the chiral condensate in QCD using lattice QCD with 2+1 flavors of dynamical overlap quarks. Up and down quark masses cover a range between 3 and 100 MeV on a 16{3}x48 lattice at a lattice spacing approximately 0.11 fm. At the lightest sea quark mass, the finite volume system on the lattice is in the regime. By matching the low-lying eigenvalue spectrum of the Dirac operator with the prediction of chiral perturbation theory at the next-to-leading order, we determine the chiral condensate in (2+1)-flavor QCD with strange quark mass fixed at its physical value as Sigma;{MS[over ]}(2 GeV)=[242(04)(+19/-18) MeV]{3} where the errors are statistical and systematic, respectively.

  3. Hyperasymptotics and quark-hadron duality violations in QCD

    NASA Astrophysics Data System (ADS)

    Boito, Diogo; Caprini, Irinel; Golterman, Maarten; Maltman, Kim; Peris, Santiago

    2018-03-01

    We investigate the origin of the quark-hadron duality-violating terms in the expansion of the QCD two-point vector correlation function at large energies in the complex q2 plane. Starting from the dispersive representation for the associated polarization, the analytic continuation of the operator product expansion from the Euclidean to the Minkowski region is performed by means of a generalized Borel-Laplace transform, borrowing techniques from hyperasymptotics. We establish a connection between singularities in the Borel plane and quark-hadron duality-violating contributions. Starting with the assumption that for QCD at Nc=∞ the spectrum approaches a Regge trajectory at large energy, we obtain an expression for quark-hadron duality violations at large, but finite Nc.

  4. Resonant Compton Upscattering Models of Magnetar Hard X-ray Emission and Polarization

    NASA Astrophysics Data System (ADS)

    Baring, Matthew G.; Wadiasingh, Zorawar; Gonthier, Peter L.; Kust Harding, Alice

    2017-08-01

    Non-thermal quiescent X-ray emission extending between 10 keV and around 150 keV has been seen in about 10 magnetars by RXTE, INTEGRAL, Suzaku and Fermi-GBM. For inner magnetospheric models of such hard X-ray signals, resonant Compton upscattering is anticipated to be the most efficient process for generating the continuum radiation. This is because the scattering becomes resonant at the cyclotron frequency, and the effective cross section exceeds the classical Thomson value by over two orders of magnitude. We present angle-dependent hard X-ray upscattering model spectra for uncooled monoenergetic relativistic electrons injected in inner regions of pulsar magnetospheres. These spectra are integrated over closed field lines and obtained for different observing perspectives. The spectral cut-off energies are critically dependent on the observer viewing angles and electron Lorentz factor. We find that electrons with energies less than around 15 MeV will emit most of their radiation below 250 keV, consistent with the observed turnovers in magnetar hard X-ray tails. Moreover, electrons of higher energy still emit most of the radiation below around 1 MeV, except for quasi-equatorial emission locales for select pulses phases. In such cases, attenuation mechanisms such as pair creation will be prolific, thereby making it difficult to observe signals extending into the Fermi-LAT band. Our spectral computations use new state-of-the-art, spin-dependent formalism for the QED Compton scattering cross section in strong magnetic fields. The emission exhibits strong polarization above around 30 keV that is anticipated to be dependent on pulse phase, thereby defining science agendas for future hard X-ray polarimeters.

  5. Massive spin-2 scattering and asymptotic superluminality

    NASA Astrophysics Data System (ADS)

    Hinterbichler, Kurt; Joyce, Austin; Rosen, Rachel A.

    2018-03-01

    We place model-independent constraints on theories of massive spin-2 particles by considering the positivity of the phase shift in eikonal scattering. The phase shift is an asymptotic S-matrix observable, related to the time delay/advance experienced by a particle during scattering. Demanding the absence of a time advance leads to constraints on the cubic vertices present in the theory. We find that, in theories with massive spin-2 particles, requiring no time advance means that either: (i) the cubic vertices must appear as a particular linear combination of the Einstein-Hilbert cubic vertex and an h μν 3 potential term or (ii) new degrees of freedom or strong coupling must enter at parametrically the mass of the massive spin-2 field. These conclusions have implications for a variety of situations. Applied to theories of large- N QCD, this indicates that any spectrum with an isolated massive spin-2 at the bottom must have these particular cubic self-couplings. Applied to de Rham-Gabadadze-Tolley massive gravity, the constraint is in accord with results obtained from a shockwave calculation: of the two free dimensionless parameters in the theory there is a one parameter line consistent with a subluminal phase shift.

  6. pT spectra in pp and AA collisions at RHIC and LHC energies using the Tsallis-Weibull approach

    NASA Astrophysics Data System (ADS)

    Dash, Sadhana; Mahapatra, D. P.

    2018-04-01

    The Tsallis q -statistics have been incorporated in the Weibull model of particle production, in the form of q-Weibull distribution, to describe the transverse momentum (pT) distribution of charged hadrons at mid-rapidity, measured at RHIC and LHC energies. The q-Weibull distribution is found to describe the observed pT distributions over all ranges of measured pT. Below 2.2 GeV/c, while going from peripheral to central collisions, the parameter q is found to decrease systematically towards unity, indicating an evolution from a non-equilibrated system in peripheral collisions, towards a more thermalized system in central collisions. However, the trend is reversed in the all inclusive pT regime. This can be attributed to an increase in relative contribution of hard pQCD processes in central collisions. The λ-parameter is found to be associated with the mean pT or the collective expansion velocity of the produced hadrons, which shows an expected increase with centrality of collisions. The k parameter is observed to increase with the onset of hard QCD scatterings, initial fluctuations, and other processes leading to non-equilibrium conditions.

  7. Hard X-ray Emission along the Z Track in GX 17 + 2

    NASA Astrophysics Data System (ADS)

    Ding, G. Q.; Huang, C. P.

    2015-09-01

    Using the data from the Proportional Counter Array (PCA) and the High-Energy X-ray Timing Experiment (HEXTE) on board Rossi X-Ray Timing Explorer for Z source GX 17 + 2, we investigate the evolution of its PCA spectra and HEXTE spectra along a `Z' track on its hardness-intensity diagram. A hard X-ray tail is detected in the HEXTE spectra. The detected hard X-ray tails are discontinuously scattered throughout the Z track. The found hard X-ray tail hardens from the horizontal branch, through the normal branch, to the flaring branch in principle and it contributes ˜(20-50)% of the total flux in 20-200 keV. Our joint fitting results of the PCA + HEXTE spectra in 3-200 keV show that the portion of Comptonization in the Bulk-Motion Comptonization (BMC) model accounts for the hard X-ray tail, which indicates that the BMC process could be responsible for the detected hard tail. The temperature of the seed photons for BMC is ˜2.7 keV, implying that these seed photons might be emitted from the surface of the neutron star (NS) or the boundary layer between the NS and the disk and, therefore, this process could take place around the NS or in the boundary layer.

  8. Baryon interactions from lattice QCD with physical masses —S = -3 sector: Ξ∑ and Ξ∑-Λ∑—

    NASA Astrophysics Data System (ADS)

    Ishii, Noriyoshi; Aoki, Sinya; Doi, Takumi; Gongyo, Shinya; Hatsuda, Tetsuo; Ikeda, Yoichi; Inoue, Takashi; Iritani, Takumi; Miyamoto, Takaya; Nemura, Hidekatsu; Sasaki, Kenji

    2018-03-01

    Hyperon-nucleon and hyperon-hyperon interactions are important in studying the properties of hypernuclei in hypernuclear physics. However, unlike the nucleons which are quite stable, hyperons are unstable so that the direct scattering experiments are difficult, which leads to the large uncertainty in the phenomenological determination of hyperon potentials. In this talk, we use the gauge configurations generated at the (almost) physical point (mπ = 146 MeV) on a huge spatial volume (8:1fm)4 to present our latest result on the hyperon-hyperon potentials in S = -3 sector (Ξ∑ single channel and Ξ∑- ΞΛ; coupled channel) from the Nambu-Bethe-Salpeter wave functions based on the HAL QCD method with improved statistics.

  9. Spontaneous CP breaking in QCD and the axion potential: an effective Lagrangian approach

    NASA Astrophysics Data System (ADS)

    Di Vecchia, Paolo; Rossi, Giancarlo; Veneziano, Gabriele; Yankielowicz, Shimon

    2017-12-01

    Using the well-known low-energy effective Lagrangian of QCD — valid for small (non-vanishing) quark masses and a large number of colors — we study in detail the regions of parameter space where CP is spontaneously broken/unbroken for a vacuum angle θ = π. In the CP broken region there are first order phase transitions as one crosses θ = π, while on the (hyper)surface separating the two regions, there are second order phase transitions signalled by the vanishing of the mass of a pseudo Nambu-Goldstone boson and by a divergent QCD topological susceptibility. The second order point sits at the end of a first order line associated with the CP spontaneous breaking, in the appropriate complex parameter plane. When the effective Lagrangian is extended by the inclusion of an axion these features of QCD imply that standard calculations of the axion potential have to be revised if the QCD parameters fall in the above mentioned CP broken region, in spite of the fact that the axion solves the strong- CP problem. These last results could be of interest for axionic dark matter calculations if the topological susceptibility of pure Yang-Mills theory falls off sufficiently fast when temperature is increased towards the QCD deconfining transition.

  10. QCD sum rules study of meson-baryon sigma terms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erkol, Gueray; Oka, Makoto; Turan, Guersevil

    2008-11-01

    The pion-baryon sigma terms and the strange-quark condensates of the octet and the decuplet baryons are calculated by employing the method of QCD sum rules. We evaluate the vacuum-to-vacuum transition matrix elements of two baryon interpolating fields in an external isoscalar-scalar field and use a Monte Carlo-based approach to systematically analyze the sum rules and the uncertainties in the results. We extract the ratios of the sigma terms, which have rather high accuracy and minimal dependence on QCD parameters. We discuss the sources of uncertainties and comment on possible strangeness content of the nucleon and the Delta.

  11. Searching for beauty-fully bound tetraquarks using lattice nonrelativistic QCD

    NASA Astrophysics Data System (ADS)

    Hughes, Ciaran; Eichten, Estia; Davies, Christine T. H.

    2018-03-01

    Motivated by multiple phenomenological considerations, we perform the first search for the existence of a b ¯b ¯b b tetraquark bound state with a mass below the lowest noninteracting bottomonium-pair threshold using the first-principles lattice nonrelativistic QCD methodology. We use a full S -wave color/spin basis for the b ¯b ¯b b operators in the three 0++, 1+- and 2++ channels. We employ four gluon field ensembles at multiple lattice spacing values ranging from a =0.06 - 0.12 fm , all of which include u , d , s and c quarks in the sea, and one ensemble which has physical light-quark masses. Additionally, we perform novel exploratory work with the objective of highlighting any signal of a near threshold tetraquark, if it existed, by adding an auxiliary potential into the QCD interactions. With our results we find no evidence of a QCD bound tetraquark below the lowest noninteracting thresholds in the channels studied.

  12. Searching for beauty-fully bound tetraquarks using lattice nonrelativistic QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Ciaran; Eichten, Estia; Davies, Christine T. H.

    Motivated by multiple phenomenological considerations, we perform the first search for the existence of amore » $$\\bar{bb}bb$$ tetraquark bound state with a mass below the lowest noninteracting bottomonium-pair threshold using the first-principles lattice nonrelativistic QCD methodology. Here, we use a full S-wave color/spin basis for the $$\\bar{bb}bb$$ operators in the three 0 ++, 1 +- and 2 ++ channels. We employ four gluon field ensembles at multiple lattice spacing values ranging from a=0.06–0.12 fm, all of which include u, d, s and c quarks in the sea, and one ensemble which has physical light-quark masses. Additionally, we perform novel exploratory work with the objective of highlighting any signal of a near threshold tetraquark, if it existed, by adding an auxiliary potential into the QCD interactions. With our results we find no evidence of a QCD bound tetraquark below the lowest noninteracting thresholds in the channels studied.« less

  13. Searching for beauty-fully bound tetraquarks using lattice nonrelativistic QCD

    DOE PAGES

    Hughes, Ciaran; Eichten, Estia; Davies, Christine T. H.

    2018-03-14

    Motivated by multiple phenomenological considerations, we perform the first search for the existence of amore » $$\\bar{bb}bb$$ tetraquark bound state with a mass below the lowest noninteracting bottomonium-pair threshold using the first-principles lattice nonrelativistic QCD methodology. Here, we use a full S-wave color/spin basis for the $$\\bar{bb}bb$$ operators in the three 0 ++, 1 +- and 2 ++ channels. We employ four gluon field ensembles at multiple lattice spacing values ranging from a=0.06–0.12 fm, all of which include u, d, s and c quarks in the sea, and one ensemble which has physical light-quark masses. Additionally, we perform novel exploratory work with the objective of highlighting any signal of a near threshold tetraquark, if it existed, by adding an auxiliary potential into the QCD interactions. With our results we find no evidence of a QCD bound tetraquark below the lowest noninteracting thresholds in the channels studied.« less

  14. Cosmological abundance of the QCD axion coupled to hidden photons

    NASA Astrophysics Data System (ADS)

    Kitajima, Naoya; Sekiguchi, Toyokazu; Takahashi, Fuminobu

    2018-06-01

    We study the cosmological evolution of the QCD axion coupled to hidden photons. For a moderately strong coupling, the motion of the axion field leads to an explosive production of hidden photons by tachyonic instability. We use lattice simulations to evaluate the cosmological abundance of the QCD axion. In doing so, we incorporate the backreaction of the produced hidden photons on the axion dynamics, which becomes significant in the non-linear regime. We find that the axion abundance is suppressed by at most O (102) for the decay constant fa =1016GeV, compared to the case without the coupling. For a sufficiently large coupling, the motion of the QCD axion becomes strongly damped, and as a result, the axion abundance is enhanced. Our results show that the cosmological upper bound on the axion decay constant can be relaxed by a few hundred for a certain range of the coupling to hidden photons.

  15. Dynamics of hard sphere colloidal dispersions

    NASA Technical Reports Server (NTRS)

    Zhu, J. X.; Chaikin, Paul M.; Phan, S.-E.; Russel, W. B.

    1994-01-01

    Our objective is to perform on homogeneous, fully equilibrated dispersions the full set of experiments characterizing the transition from fluid to solid and the properties of the crystalline and glassy solid. These include measurements quantifying the nucleation and growth of crystallites, the structure of the initial fluid and the fully crystalline solid, and Brownian motion of particles within the crystal, and the elasticity of the crystal and the glass. Experiments are being built and tested for ideal microgravity environment. Here we describe the ground based effort, which exploits a fluidized bed to create a homogeneous, steady dispersion for the studies. The differences between the microgravity environment and the fluidized bed is gauged by the Peclet number Pe, which measures the rate of convection/sedimentation relative to Brownian motion. We have designed our experiment to accomplish three types of measurements on hard sphere suspensions in a fluidized bed: the static scattering intensity as a function of angle to determine the structure factor, the temporal autocorrelation function at all scattering angles to probe the dynamics, and the amplitude of the response to an oscillatory forcing to deduce the low frequency viscoelasticity. Thus the scattering instrument and the colloidal dispersion were chosen such as that the important features of each physical property lie within the detectable range for each measurement.

  16. Determination of $${{\\rm{\\Lambda }}}_{\\overline{{\\rm{MS}}}}$$ at five loops from holographic QCD

    DOE PAGES

    Deur, Alexandre; Brodsky, Stanley J.; de Téramond, Guy F.

    2017-08-25

    Here, the recent determination of themore » $$\\beta$$--function of the QCD running coupling $$\\alpha_{\\overline{MS}}(Q^2)$$ to five-loops, provides a verification of the convergence of a novel method for determining the fundamental QCD parameter $$\\Lambda_s$$ based on the Light-Front Holographic approach to nonperturbative QCD. The new 5-loop analysis, together with improvements in determining the holographic QCD nonperturbative scale parameter $$\\kappa$$ from hadronic spectroscopy, leads to an improved precision of the value of $$\\Lambda_s$$ in the $${\\overline{MS}}$$ scheme close to a factor of two; we find $$\\Lambda^{(3)}_{\\overline{MS}}=0.339\\pm0.019$$ GeV for $$n_{f}=3$$, in excellent agreement with the world average, $$\\Lambda_{\\overline{MS}}^{(3)}=0.332\\pm0.017$$ GeV. Lastly, we also discuss the constraints imposed on the scale dependence of the strong coupling in the nonperturbative domain by superconformal quantum mechanics and its holographic embedding in anti-de Sitter space.« less

  17. Translucent Radiosity: Efficiently Combining Diffuse Inter-Reflection and Subsurface Scattering.

    PubMed

    Sheng, Yu; Shi, Yulong; Wang, Lili; Narasimhan, Srinivasa G

    2014-07-01

    It is hard to efficiently model the light transport in scenes with translucent objects for interactive applications. The inter-reflection between objects and their environments and the subsurface scattering through the materials intertwine to produce visual effects like color bleeding, light glows, and soft shading. Monte-Carlo based approaches have demonstrated impressive results but are computationally expensive, and faster approaches model either only inter-reflection or only subsurface scattering. In this paper, we present a simple analytic model that combines diffuse inter-reflection and isotropic subsurface scattering. Our approach extends the classical work in radiosity by including a subsurface scattering matrix that operates in conjunction with the traditional form factor matrix. This subsurface scattering matrix can be constructed using analytic, measurement-based or simulation-based models and can capture both homogeneous and heterogeneous translucencies. Using a fast iterative solution to radiosity, we demonstrate scene relighting and dynamically varying object translucencies at near interactive rates.

  18. Charm-Quark Production in Deep-Inelastic Neutrino Scattering at Next-to-Next-to-Leading Order in QCD.

    PubMed

    Berger, Edmond L; Gao, Jun; Li, Chong Sheng; Liu, Ze Long; Zhu, Hua Xing

    2016-05-27

    We present a fully differential next-to-next-to-leading order calculation of charm-quark production in charged-current deep-inelastic scattering, with full charm-quark mass dependence. The next-to-next-to-leading order corrections in perturbative quantum chromodynamics are found to be comparable in size to the next-to-leading order corrections in certain kinematic regions. We compare our predictions with data on dimuon production in (anti)neutrino scattering from a heavy nucleus. Our results can be used to improve the extraction of the parton distribution function of a strange quark in the nucleon.

  19. THE GLOBAL IMPLICATIONS OF THE HARD EXCESS. II. ANALYSIS OF THE LOCAL POPULATION OF RADIO-QUIET AGNs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tatum, M. M.; Turner, T. J.; Reeves, J. N.

    2016-02-10

    Active galactic nuclei (AGNs) show evidence for reprocessing gas, outflowing from the accreting black hole. The combined effects of absorption and scattering from the circumnuclear material likely explain the “hard excess” of X-ray emission above 20 keV, compared with the extrapolation of spectra from lower X-ray energies. In a recent Suzaku study, we established that the ubiquitous hard excess in hard, X-ray-selected, radio-quiet type 1 AGNs is consistent with a reprocessing of the X-ray continuum in an ensemble of clouds, located tens to hundreds of gravitational radii from the nuclear black hole. Here we add hard X-ray-selected, type 2 AGNsmore » to extend our original study and show that the gross X-ray spectral properties of the entire local population of radio-quiet AGNs may be described by a simple unified scheme. We find a broad, continuous distribution of spectral hardness ratio and Fe Kα equivalent width across all AGN types, which can be reproduced by varying the observer's sightline through a single, simple model cloud ensemble, provided that the radiative transfer through the model cloud distribution includes not only photoelectric absorption but also three-dimensional (3D) Compton scattering. Variation in other parameters of the cloud distribution, such as column density or ionization, should be expected between AGNs, but such variation is not required to explain the gross X-ray spectral properties.« less

  20. Evolving images of the proton: Hadron physics over the past 40 years

    DOE PAGES

    Pennington, Michael R.

    2016-04-05

    Once upon a time, the world was simple: the proton contained three quarks, two ups and a down. How these give the proton its mass and its spin seemed obvious. Over the past 40 years the proton has become more complicated, and how even these most obvious of its properties is explained in a universe of quarks, antiquarks and gluons remains a challenge. That this should be so should come as no surprise. Quantum chromodynamics, the theory of the strong interaction, is seemingly simple, and its consequences are straightforward in the domain of hard scattering where perturbation theory applies. However,more » the beauty of the hadron world is its diversity. The existence of hadrons, their properties, and their binding into nuclei do not appear in the Lagrangian of QCD. They all emerge as a result of its strong coupling. Strong coupling QCD creates complex phenomena, much richer than known 40 years ago: a richness that ensures colour confinement and accounts for more than 95% of the mass of the visible Universe. How strong coupling QCD really works requires a synergy between experiment and theory. Furthermore, a very personal view of these fascinating developments in cold QCD is presented.« less

  1. Evolving images of the proton: Hadron physics over the past 40 years

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pennington, Michael R.

    Once upon a time, the world was simple: the proton contained three quarks, two ups and a down. How these give the proton its mass and its spin seemed obvious. Over the past 40 years the proton has become more complicated, and how even these most obvious of its properties is explained in a universe of quarks, antiquarks and gluons remains a challenge. That this should be so should come as no surprise. Quantum chromodynamics, the theory of the strong interaction, is seemingly simple, and its consequences are straightforward in the domain of hard scattering where perturbation theory applies. However,more » the beauty of the hadron world is its diversity. The existence of hadrons, their properties, and their binding into nuclei do not appear in the Lagrangian of QCD. They all emerge as a result of its strong coupling. Strong coupling QCD creates complex phenomena, much richer than known 40 years ago: a richness that ensures colour confinement and accounts for more than 95% of the mass of the visible Universe. How strong coupling QCD really works requires a synergy between experiment and theory. Furthermore, a very personal view of these fascinating developments in cold QCD is presented.« less

  2. The QCD corrections of the process h → ηbZ

    NASA Astrophysics Data System (ADS)

    Zhu, Rong-Fei; Feng, Tai-Fu; Zhang, Hai-Bin

    2018-05-01

    We investigate the 125 GeV Higgs boson decay to a pseudoscalar quarkonium ηb and Z boson. We calculate the quantum chromodynamics (QCD) one-loop corrections to the branching ratio of the process, Br(h → ηbZ), both in the Standard Model (SM) and in the two Higgs double models (THDM). Adding the QCD one-loop corrections, the branching ratio of h → ηbZ in the SM is Br(h → ηbZ) = (4.739‑0.244+0.276) × 10‑5. The relative correction of that QCD one-loop level relative to the tree level of Br(h → ηbZ) is around 76% in the SM. Similarly, the relative correction in the THDM also can be around 75%. The key parameter, tan β, can affect the relative correction in the THDM.

  3. Constructing a neutron star from the lattice in G2-QCD

    NASA Astrophysics Data System (ADS)

    Hajizadeh, Ouraman; Maas, Axel

    2017-10-01

    The inner structure of neutron stars is still an open question. One obstacle is the infamous sign problem of lattice QCD, which bars access to the high-density equation of state. A possibility to make progress and understand the qualitative impact of gauge interactions on the neutron star structure is to study a modified version of QCD without the sign problem. In the modification studied here the gauge group of QCD is replaced by the exceptional Lie group G_2 , which keeps neutrons in the spectrum. Using an equation of state from lattice calculations only we determine the mass-radius-relation for a neutron star using the Tolman-Oppenheimer-Volkoff equation. This allows us to understand the challenges and approximations currently necessary to use lattice data for this purpose. We discuss in detail the particular uncertainties and systematic problems of this approach.

  4. The Kinetics of Crystallization of Colloids and Proteins: A Light Scattering Study

    NASA Technical Reports Server (NTRS)

    McClymer, Jim

    2002-01-01

    Hard-sphere colloidal systems serve as model systems for aggregation, nucleation, crystallization and gelation as well as interesting systems in their own right.There is strong current interest in using colloidal systems to form photonic crystals. A major scientific thrust of NASA's microgravity research is the crystallization of proteins for structural determination. The crystallization of proteins is a complicated process that requires a great deal of trial and error experimentation. In spite of a great deal of work, "better" protein crystals cannot always be grown in microgravity and conditions for crystallization are not well understood. Crystallization of colloidal systems interacting as hard spheres and with an attractive potential induced by entropic forces have been studied in a series of static light scattering experiments. Additionally, aggregation of a protein as a function of pH has been studied using dynamic light scattering. For our experiments we used PMMA (polymethylacrylate) spherical particles interacting as hard spheres, with no attractive potential. These particles have a radius of 304 nanometers, a density of 1.22 gm/ml and an index of refraction of 1.52. A PMMA colloidal sample at a volume fraction of approximately 54% was index matched in a solution of cycloheptyl bromide (CHB) and cis-decalin. The sample is in a glass cylindrical vial that is placed in an ALV static and dynamic light scattering goniometer system. The vial is immersed in a toluene bath for index matching to minimize flair. Vigorous shaking melts any colloidal crystals initially present. The sample is illuminated with diverging laser light (632.8 nanometers) from a 4x microscope objective placed so that the beam is approximately 1 cm in diameter at the sample location. The sample is rotated about its long axis at approximately 3.5 revolutions per minute (highest speed) as the colloidal crystal system is non-ergodic. The scattered light is detected at various angles using the

  5. Topics in QCD at Nonzero Temperature and Density

    NASA Astrophysics Data System (ADS)

    Pangeni, Kamal

    Understanding the behavior of matter at ultra-high density such as neutron stars require the knowledge of ground state properties of Quantum chromodynamics (QCD) at finite chemical potential. However, this task has turned out to be very difficult because of two main reasons: 1) QCD may still be strongly coupled at those regimes making perturbative calculations unreliable and 2) QCD at finite density suffers from the sign problem that makes the use of lattice simulation problematic and it even affects phenomenological models. In the first part of this thesis, we show that the sign problem in analytical calculations of finite density models can be solved by considering the CK-symmetric, where C is charge conjugation and K is complex conjugation, complex saddle points of the effective action. We then explore the properties and consequences of such complex saddle points at non-zero temperature and density. Due to CK symmetry, the mass matrix eigenvalues in these models are not always real but can be complex, which results in damped oscillation of the density-density correlation function, a new feature of finite density models. To address the generality of such behavior, we next consider a lattice model of QCD with static quarks at strong-coupling. Computation of the mass spectrum confirms the existence of complex eigenvalues in much of temperature-chemical potential plane. This provides an independent confirmation of our results obtained using phenomenological models of QCD. The existence of regions in parameter space where density-density correlation function exhibit damped oscillation is one of the hallmarks of typical liquid-gas system. The formalism developed to tackle the sign problem in QCD models actually gives a simple understanding for the existence of such behavior in liquid-gas system. To this end, we develop a generic field theoretic model for the treatment of liquid-gas phase transition. An effective field theory at finite density derived from a

  6. Improved perturbative QCD formalism for Bc meson decays

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Li, Hsiang-nan; Xiao, Zhen-Jun

    2018-06-01

    We derive the kT resummation for doubly heavy-flavored Bc meson decays by including the charm quark mass effect into the known formula for a heavy-light system. The resultant Sudakov factor is employed in the perutrbative QCD study of the "golden channel" Bc+→J /ψ π+. With a reasonable model for the Bc meson distribution amplitude, which maintains approximate on-shell conditions of both the partonic bottom and charm quarks, it is observed that the imaginary piece of the Bc→J /ψ transition form factor appears to be power suppressed, and the Bc+→J /ψ π+ branching ratio is not lower than 10-3. The above improved perturbative QCD formalism is applicable to Bc meson decays to other charmonia and charmed mesons.

  7. openQ*D simulation code for QCD+QED

    NASA Astrophysics Data System (ADS)

    Campos, Isabel; Fritzsch, Patrick; Hansen, Martin; Krstić Marinković, Marina; Patella, Agostino; Ramos, Alberto; Tantalo, Nazario

    2018-03-01

    The openQ*D code for the simulation of QCD+QED with C* boundary conditions is presented. This code is based on openQCD-1.6, from which it inherits the core features that ensure its efficiency: the locally-deflated SAP-preconditioned GCR solver, the twisted-mass frequency splitting of the fermion action, the multilevel integrator, the 4th order OMF integrator, the SSE/AVX intrinsics, etc. The photon field is treated as fully dynamical and C* boundary conditions can be chosen in the spatial directions. We discuss the main features of openQ*D, and we show basic test results and performance analysis. An alpha version of this code is publicly available and can be downloaded from http://rcstar.web.cern.ch/.

  8. Azimuthal anisotropy and correlations in the hard scattering regime at RHIC.

    PubMed

    Adler, C; Ahammed, Z; Allgower, C; Amonett, J; Anderson, B D; Anderson, M; Averichev, G S; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bichsel, H; Billmeier, A; Bland, L C; Blyth, C O; Bonner, B E; Boucham, A; Brandin, A; Bravar, A; Cadman, R V; Caines, H; Calderón De La Barca Sánchez, M; Cardenas, A; Carroll, J; Castillo, J; Castro, M; Cebra, D; Chaloupka, P; Chattopadhyay, S; Chen, Y; Chernenko, S P; Cherney, M; Chikanian, A; Choi, B; Christie, W; Coffin, J P; Cormier, T M; Cramer, J G; Crawford, H J; Deng, W S; Derevschikov, A A; Didenko, L; Dietel, T; Draper, J E; Dunin, V B; Dunlop, J C; Eckardt, V; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Fachini, P; Faine, V; Faivre, J; Filimonov, K; Finch, E; Fisyak, Y; Flierl, D; Foley, K J; Fu, J; Gagliardi, C A; Gagunashvili, N; Gans, J; Gaudichet, L; Germain, M; Geurts, F; Ghazikhanian, V; Grachov, O; Grigoriev, V; Guedon, M; Gushin, E; Hallman, T J; Hardtke, D; Harris, J W; Henry, T W; Heppelmann, S; Herston, T; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horsley, M; Huang, H Z; Humanic, T J; Igo, G; Ishihara, A; Ivanshin, Yu I; Jacobs, P; Jacobs, W W; Janik, M; Johnson, I; Jones, P G; Judd, E G; Kaneta, M; Kaplan, M; Keane, D; Kiryluk, J; Kisiel, A; Klay, J; Klein, S R; Klyachko, A; Konstantinov, A S; Kopytine, M; Kotchenda, L; Kovalenko, A D; Kramer, M; Kravtsov, P; Krueger, K; Kuhn, C; Kulikov, A I; Kunde, G J; Kunz, C L; Kutuev, R Kh; Kuznetsov, A A; Lakehal-Ayat, L; Lamont, M A C; Landgraf, J M; Lange, S; Lansdell, C P; Lasiuk, B; Laue, F; Lauret, J; Lebedev, A; Lednický, R; Leontiev, V M; LeVine, M J; Li, Q; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, L; Liu, Z; Liu, Q J; Ljubicic, T; Llope, W J; LoCurto, G; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Ludlam, T; Lynn, D; Ma, J; Majka, R; Margetis, S; Markert, C; Martin, L; Marx, J; Matis, H S; Matulenko, Yu A; McShane, T S; Meissner, F; Melnick, Yu; Meschanin, A; Messer, M; Miller, M L; Milosevich, Z; Minaev, N G; Mitchell, J; Moiseenko, V A; Moore, C F; Morozov, V; De Moura, M M; Munhoz, M G; Nelson, J M; Nevski, P; Nikitin, V A; Nogach, L V; Norman, B; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Paic, G; Pandey, S U; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Perevoztchikov, V; Peryt, W; Petrov, V A; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potrebenikova, E; Prindle, D; Pruneau, C; Putschke, J; Rai, G; Rakness, G; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Renault, G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Rykov, V; Sakrejda, I; Salur, S; Sandweiss, J; Saulys, A C; Savin, I; Schambach, J; Scharenberg, R P; Schmitz, N; Schroeder, L S; Schüttauf, A; Schweda, K; Seger, J; Seliverstov, D; Seyboth, P; Shahaliev, E; Shestermanov, K E; Shimanskii, S S; Shvetcov, V S; Skoro, G; Smirnov, N; Snellings, R; Sorensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stephenson, E J; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Struck, C; Suaide, A A P; Sugarbaker, E; Suire, C; Sumbera, M; Surrow, B; Symons, T J M; Szanto De Toledo, A; Szarwas, P; Tai, A; Takahashi, J; Tang, A H; Thomas, J H; Thompson, M; Tikhomirov, V; Tokarev, M; Tonjes, M B; Trainor, T A; Trentalange, S; Tribble, R E; Trofimov, V; Tsai, O; Ullrich, T; Underwood, D G; Buren, G Van; VanderMolen, A M; Vasilevski, I M; Vasiliev, A N; Vigdor, S E; Voloshin, S A; Wang, F; Ward, H; Watson, J W; Wells, R; Westfall, G D; Whitten, C; Wieman, H; Willson, R; Wissink, S W; Witt, R; Wood, J; Xu, N; Xu, Z; Yakutin, A E; Yamamoto, E; Yang, J; Yepes, P; Yurevich, V I; Zanevski, Y V; Zborovský, I; Zhang, H; Zhang, W M; Zoulkarneev, R; Zubarev, A N

    2003-01-24

    Azimuthal anisotropy (v(2)) and two-particle angular correlations of high p(T) charged hadrons have been measured in Au+Au collisions at sqrt[s(NN)]=130 GeV for transverse momenta up to 6 GeV/c, where hard processes are expected to contribute significantly. The two-particle angular correlations exhibit elliptic flow and a structure suggestive of fragmentation of high p(T) partons. The monotonic rise of v(2)(p(T)) for p(T)<2 GeV/c is consistent with collective hydrodynamical flow calculations. At p(T)>3 GeV/c, a saturation of v(2) is observed which persists up to p(T)=6 GeV/c.

  9. Fluctuations in the quark-meson model for QCD with isospin chemical potential

    NASA Astrophysics Data System (ADS)

    Kamikado, Kazuhiko; Strodthoff, Nils; von Smekal, Lorenz; Wambach, Jochen

    2013-01-01

    We study the two-flavor quark-meson (QM) model with the functional renormalization group (FRG) to describe the effects of collective mesonic fluctuations on the phase diagram of QCD at finite baryon and isospin chemical potentials, μB and μI. With only isospin chemical potential there is a precise equivalence between the competing dynamics of chiral versus pion condensation and that of collective mesonic and baryonic fluctuations in the quark-meson-diquark model for two-color QCD at finite baryon chemical potential. Here, finite μB = 3 μ introduces an additional dimension to the phase diagram as compared to two-color QCD, however. At zero temperature, the (μI, μ) plane of this phase diagram is strongly constrained by the "Silver Blaze problem." In particular, the onset of pion condensation must occur at μI =mπ / 2, independent of μ as long as μ +μI stays below the constituent quark mass of the QM model or the liquid-gas transition line of nuclear matter in QCD. In order to maintain this relation beyond mean field it is crucial to compute the pion mass from its timelike correlator with the FRG in a consistent way.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dudek, Jozef

    Highlights of the research include: the determination of the form of the lowest energy gluonic excitation within QCD and the spectrum of hybrid hadrons which follows; the first calculation of the spectrum of hybrid baryons within a first-principles approach to QCD; a detailed mapping out of the phase-shift of elastic ππ scattering featuring the ρ resonance at two values of the light quark mass within lattice QCD; the first (and to date, only) determinations of coupled-channel meson-meson scattering within first-principles QCD; the first (and to date, only) determinations of the radiative coupling of a resonant state, the ρ appearing inmore » πγ→ππ; the first (and to date, only) determination of the properties of the broad σ resonance in elastic ππ scattering within QCD without unjustified approximations.« less

  11. Berry Phase in Lattice QCD.

    PubMed

    Yamamoto, Arata

    2016-07-29

    We propose the lattice QCD calculation of the Berry phase, which is defined by the ground state of a single fermion. We perform the ground-state projection of a single-fermion propagator, construct the Berry link variable on a momentum-space lattice, and calculate the Berry phase. As the first application, the first Chern number of the (2+1)-dimensional Wilson fermion is calculated by the Monte Carlo simulation.

  12. Meson effective mass in the isospin medium in hard-wall AdS/QCD model

    NASA Astrophysics Data System (ADS)

    Mamedov, Shahin

    2016-02-01

    We study a mass splitting of the light vector, axial-vector, and pseudoscalar mesons in the isospin medium in the framework of the hard-wall model. We write an effective mass definition for the interacting gauge fields and scalar field introduced in gauge field theory in the bulk of AdS space-time. Relying on holographic duality we obtain a formula for the effective mass of a boundary meson in terms of derivative operator over the extra bulk coordinate. The effective mass found in this way coincides with the one obtained from finding of poles of the two-point correlation function. In order to avoid introducing distinguished infrared boundaries in the quantization formula for the different mesons from the same isotriplet we introduce extra action terms at this boundary, which reduces distinguished values of this boundary to the same value. Profile function solutions and effective mass expressions were found for the in-medium ρ , a_1, and π mesons.

  13. Searching for the QCD Axion with Gravitational Microlensing

    NASA Astrophysics Data System (ADS)

    Fairbairn, Malcolm; Marsh, David J. E.; Quevillon, Jérémie

    2017-07-01

    The phase transition responsible for axion dark matter (DM) production can create large amplitude isocurvature perturbations, which collapse into dense objects known as axion miniclusters. We use microlensing data from the EROS survey and from recent observations with the Subaru Hyper Suprime Cam to place constraints on the minicluster scenario. We compute the microlensing event rate for miniclusters, treating them as spatially extended objects. Using the published bounds on the number of microlensing events, we bound the fraction of DM collapsed into miniclusters fMC. For an axion with temperature-dependent mass consistent with the QCD axion, we find fMC<0.083 (ma/100 μ eV )0.12 , which represents the first observational constraint on the minicluster fraction. We forecast that a high-efficiency observation of around ten nights with Subaru would be sufficient to constrain fMC≲0.004 over the entire QCD axion mass range. We make various approximations to derive these constraints, and dedicated analyses by the observing teams of EROS and Subaru are necessary to confirm our results. If accurate theoretical predictions for fMC can be made in the future, then microlensing can be used to exclude or discover the QCD axion. Further details of our computations are presented in a companion paper [M. Fairbairn, D. J. E. Marsh, J. Quevillon, and S. Rozier (to be published)].

  14. Hard X-ray spectrum of Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Nolan, P. L.; Gruber, D. E.; Knight, F. K.; Matteson, J. L.; Rothschild, R. E.; Marshall, F. E.; Levine, A. M.; Primini, F. A.

    1981-01-01

    Long-term measurements of the hard X-ray spectrum from 3 keV to 8 MeV of the black-hole candidate Cygnus X-1 in its low state are reported. Observations were made from October 26 to November 18, 1977 with the A2 (Cosmic X-ray) and A4 (Hard X-ray and Low-Energy Gamma-Ray) experiments on board HEAO 1 in the spacecraft's scanning mode. The measured spectrum below 200 keV is found to agree well with previous spectra which have been fit by a model of the Compton scattering of optical or UV photons in a very hot plasma of electron temperature 32.4 keV and optical depth 3.9 or 1.6 for spherical or disk geometry, respectively. At energies above 300 keV, however, flux excess is observed which may be accounted for by a distribution of electron temperatures from 15 to about 100 keV.

  15. Extraction of Generalized Parton Distributions from combined Deeply Virtual Compton Scattering and Timelike Compton scattering fits

    NASA Astrophysics Data System (ADS)

    Boer, Marie

    2017-09-01

    Generalized Parton Distributions (GPDs) contain the correlation between the parton's longitudinal momentum and their transverse distribution. They are accessed through hard exclusive processes, such as Deeply Virtual Compton Scattering (DVCS). DVCS has already been measured in several experiments and several models allow for extracting GPDs from these measurements. Timelike Compton Scattering (TCS) is, at leading order, the time-reversal equivalent process to DVCS and accesses GPDs at the same kinematics. Comparing GPDs extracted from DVCS and TCS is a unique way for proving GPD universality. Combining fits from the two processes will also allow for better constraining the GPDs. We will present our method for extracting GPDs from DVCS and TCS pseudo-data. We will compare fit results from the two processes in similar conditions and present what can be expected in term of contraints on GPDs from combined fits.

  16. Quenching parameter in a holographic thermal QCD

    NASA Astrophysics Data System (ADS)

    Patra, Binoy Krishna; Arya, Bhaskar

    2017-01-01

    We have calculated the quenching parameter, q ˆ in a model-independent way using the gauge-gravity duality. In earlier calculations, the geometry in the gravity side at finite temperature was usually taken as the pure AdS black hole metric for which the dual gauge theory becomes conformally invariant unlike QCD. Therefore we use a metric which incorporates the fundamental quarks by embedding the coincident D7 branes in the Klebanov-Tseytlin background and a finite temperature is switched on by inserting a black hole into the background, known as OKS-BH metric. Further inclusion of an additional UV cap to the metric prepares the dual gauge theory to run similar to thermal QCD. Moreover q ˆ is usually defined in the literature from the Glauber model perturbative QCD evaluation of the Wilson loop, which has no reasons to hold if the coupling is large and is thus against the main idea of gauge-gravity duality. Thus we use an appropriate definition of q ˆ : q ˆ L- = 1 /L2, where L is the separation for which the Wilson loop is equal to some specific value. The above two refinements cause q ˆ to vary with the temperature as T4 always and to depend linearly on the light-cone time L- with an additional (1 /L-) correction term in the short-distance limit whereas in the long-distance limit, q ˆ depends only linearly on L- with no correction term. These observations agree with other holographic calculations directly or indirectly.

  17. Two-baryon systems from HAL QCD method and the mirage in the temporal correlation of the direct method

    NASA Astrophysics Data System (ADS)

    Iritani, Takumi

    2018-03-01

    Both direct and HAL QCD methods are currently used to study the hadron interactions in lattice QCD. In the direct method, the eigen-energy of two-particle is measured from the temporal correlation. Due to the contamination of excited states, however, the direct method suffers from the fake eigen-energy problem, which we call the "mirage problem," while the HAL QCD method can extract information from all elastic states by using the spatial correlation. In this work, we further investigate systematic uncertainties of the HAL QCD method such as the quark source operator dependence, the convergence of the derivative expansion of the non-local interaction kernel, and the single baryon saturation, which are found to be well controlled. We also confirm the consistency between the HAL QCD method and the Lüscher's finite volume formula. Based on the HAL QCD potential, we quantitatively confirm that the mirage plateau in the direct method is indeed caused by the contamination of excited states.

  18. Effective model approach to the dense state of QCD matter

    NASA Astrophysics Data System (ADS)

    Fukushima, Kenji

    2011-12-01

    The first-principle approach to the dense state of QCD matter, i.e. the lattice-QCD simulation at finite baryon density, is not under theoretical control for the moment. The effective model study based on QCD symmetries is a practical alternative. However the model parameters that are fixed by hadronic properties in the vacuum may have unknown dependence on the baryon chemical potential. We propose a new prescription to constrain the effective model parameters by the matching condition with the thermal Statistical Model. In the transitional region where thermal quantities blow up in the Statistical Model, deconfined quarks and gluons should smoothly take over the relevant degrees of freedom from hadrons and resonances. We use the Polyakov-loop coupled Nambu-Jona-Lasinio (PNJL) model as an effective description in the quark side and show how the matching condition is satisfied by a simple ansäatz on the Polyakov loop potential. Our results favor a phase diagram with the chiral phase transition located at slightly higher temperature than deconfinement which stays close to the chemical freeze-out points.

  19. Freeze-out conditions in heavy ion collisions from QCD thermodynamics.

    PubMed

    Bazavov, A; Ding, H-T; Hegde, P; Kaczmarek, O; Karsch, F; Laermann, E; Mukherjee, Swagato; Petreczky, P; Schmidt, C; Smith, D; Soeldner, W; Wagner, M

    2012-11-09

    We present a determination of freeze-out conditions in heavy ion collisions based on ratios of cumulants of net electric charge fluctuations. These ratios can reliably be calculated in lattice QCD for a wide range of chemical potential values by using a next-to-leading order Taylor series expansion around the limit of vanishing baryon, electric charge and strangeness chemical potentials. From a computation of up to fourth order cumulants and charge correlations we first determine the strangeness and electric charge chemical potentials that characterize freeze-out conditions in a heavy ion collision and confirm that in the temperature range 150 MeV ≤ T ≤ 170 MeV the hadron resonance gas model provides good approximations for these parameters that agree with QCD calculations on the 5%-15% level. We then show that a comparison of lattice QCD results for ratios of up to third order cumulants of electric charge fluctuations with experimental results allows us to extract the freeze-out baryon chemical potential and the freeze-out temperature.

  20. QCD nature of dark energy at finite temperature: Cosmological implications

    NASA Astrophysics Data System (ADS)

    Azizi, K.; Katırcı, N.

    2016-05-01

    The Veneziano ghost field has been proposed as an alternative source of dark energy, whose energy density is consistent with the cosmological observations. In this model, the energy density of the QCD ghost field is expressed in terms of QCD degrees of freedom at zero temperature. We extend this model to finite temperature to search the model predictions from late time to early universe. We depict the variations of QCD parameters entering the calculations, dark energy density, equation of state, Hubble and deceleration parameters on temperature from zero to a critical temperature. We compare our results with the observations and theoretical predictions existing at different eras. It is found that this model safely defines the universe from quark condensation up to now and its predictions are not in tension with those of the standard cosmology. The EoS parameter of dark energy is dynamical and evolves from -1/3 in the presence of radiation to -1 at late time. The finite temperature ghost dark energy predictions on the Hubble parameter well fit to those of Λ CDM and observations at late time.

  1. Symmetries and mass splittings QCD 2 coupled to adjoint fermions

    NASA Astrophysics Data System (ADS)

    Boorstein, Joshua; Kutasov, David

    1994-06-01

    Two-dimensional QCD coupled to fermions in the adjoint representation of the gauge group SU( N), a useful toy model of QCD strings, is supersymmetric for a certain ratio of quark mass and gauge coupling constant. Here we study the theory in the vicinity of the supersymmetric point; in particular we exhibit the algebraic structure of the model and show that the mass splittings as one moves away from the supersymmetric point obey a universal relation of the form Mi2(B)- Mi2(F) = Miδm + O( δm3). We discuss the connection of this relation to string and quark model expectations and verify it numerically for large N. At least for low lying states the O( δm3) corrections are extremely small. We also discuss a natural generalization of QCD 2 with an infinite number of couplings, which preserves SUSY. This leads to a Landau-Ginzburg description of the theory, and may be useful for defining a scaling limit in which smooth worldsheets appear.

  2. A three-image algorithm for hard x-ray grating interferometry.

    PubMed

    Pelliccia, Daniele; Rigon, Luigi; Arfelli, Fulvia; Menk, Ralf-Hendrik; Bukreeva, Inna; Cedola, Alessia

    2013-08-12

    A three-image method to extract absorption, refraction and scattering information for hard x-ray grating interferometry is presented. The method comprises a post-processing approach alternative to the conventional phase stepping procedure and is inspired by a similar three-image technique developed for analyzer-based x-ray imaging. Results obtained with this algorithm are quantitatively comparable with phase-stepping. This method can be further extended to samples with negligible scattering, where only two images are needed to separate absorption and refraction signal. Thanks to the limited number of images required, this technique is a viable route to bio-compatible imaging with x-ray grating interferometer. In addition our method elucidates and strengthens the formal and practical analogies between grating interferometry and the (non-interferometric) diffraction enhanced imaging technique.

  3. Longitudinal-Transverse Separation of Deep-Inelastic Scattering at Low Q² on Nucleons and Nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tvaskis, Vladas

    2004-12-06

    Since the early experiments at SLAC, which discovered the nucleon substructure and led to the development of the quark parton model, deep inelastic scattering (DIS) has been the most powerful tool to investigate the partonic substructure of the nucleon. After about 30 years of experiments with electron and muon beams the nucleon structure function F 2(x,Q 2) is known with high precision over about four orders of magnitude in x and Q 2. In the region of Q 2 > 1 (GeV/c) 2 the results of the DIS measurements are interpreted in terms of partons (quarks and gluons). The theoreticalmore » framework is provided in this case by perturbative Quantum Chromo Dynamics (pQCD), which includes scaling violations, as described by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations. The description starts to fail when Q 2 becomes of the order of 1 (GeV/c) 2, where non-perturbative effects (higher-twist effects), which are still not fully understood, become important (non-pQCD). The sensitivity for order-n twist effects increases with decreasing Q 2, since they include a factor 1/(Q 2n) (n ≥ 1).« less

  4. Lattice gauge theory for QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeGrand, T.

    1997-06-01

    These lectures provide an introduction to lattice methods for nonperturbative studies of Quantum Chromodynamics. Lecture 1: Basic techniques for QCD and results for hadron spectroscopy using the simplest discretizations; lecture 2: Improved actions--what they are and how well they work; lecture 3: SLAC physics from the lattice-structure functions, the mass of the glueball, heavy quarks and {alpha}{sub s} (M{sub z}), and B-{anti B} mixing. 67 refs., 36 figs.

  5. Regge spectra of excited mesons, harmonic confinement, and QCD vacuum structure

    NASA Astrophysics Data System (ADS)

    Nedelko, Sergei N.; Voronin, Vladimir E.

    2016-05-01

    An approach to QCD vacuum as a medium describable in terms of a statistical ensemble of almost everywhere homogeneous Abelian (anti-)self-dual gluon fields is briefly reviewed. These fields play the role of the confining medium for color charged fields as well as underline the mechanism of realization of chiral S UL(Nf)×S UR(Nf) and UA(1 ) symmetries. Hadronization formalism based on this ensemble leads to manifestly defined quantum effective meson action. Strong, electromagnetic, and weak interactions of mesons are represented in the action in terms of nonlocal n -point interaction vertices given by the quark-gluon loops averaged over the background ensemble. New systematic results for the mass spectrum and decay constants of radially excited light, heavy-light mesons, and heavy quarkonia are presented. The interrelation between the present approach, models based on ideas of soft-wall anti-de Sitter/QCD, light-front holographic QCD, and the picture of harmonic confinement is outlined.

  6. K-->pipi amplitudes from lattice QCD with a light charm quark.

    PubMed

    Giusti, L; Hernández, P; Laine, M; Pena, C; Wennekers, J; Wittig, H

    2007-02-23

    We compute the leading-order low-energy constants of the DeltaS=1 effective weak Hamiltonian in the quenched approximation of QCD with up, down, strange, and charm quarks degenerate and light. They are extracted by comparing the predictions of finite-volume chiral perturbation theory with lattice QCD computations of suitable correlation functions carried out with quark masses ranging from a few MeV up to half of the physical strange mass. We observe a DeltaI=1/2 enhancement in this corner of the parameter space of the theory. Although matching with the experimental result is not observed for the DeltaI=1/2 amplitude, our computation suggests large QCD contributions to the physical DeltaI=1/2 rule in the GIM limit, and represents the first step to quantify the role of the charm-quark mass in K-->pipi amplitudes. The use of fermions with an exact chiral symmetry is an essential ingredient in our computation.

  7. Inverse magnetic catalysis from improved holographic QCD in the Veneziano limit

    NASA Astrophysics Data System (ADS)

    Gürsoy, Umut; Iatrakis, Ioannis; Järvinen, Matti; Nijs, Govert

    2017-03-01

    We study the dependence of the chiral condensate on external magnetic field in the context of holographic QCD at large number of flavors. We consider a holographic QCD model where the flavor degrees of freedom fully backreact on the color dynamics. Perturbative QCD calculations have shown that B acts constructively on the chiral condensate, a phenomenon called "magnetic catalysis". In contrast, recent lattice calculations show that, depending on the number of flavors and temperature, the magnetic field may also act destructively, which is called "inverse magnetic catalysis". Here we show that the holographic theory is capable of both behaviors depending on the choice of parameters. For reasonable choice of the potentials entering the model we find qualitative agreement with the lattice expectations. Our results provide insight for the physical reasons behind the inverse magnetic catalysis. In particular, we argue that the backreaction of the flavors to the background geometry decatalyzes the condensate.

  8. QCD and strongly coupled gauge theories: challenges and perspectives.

    PubMed

    Brambilla, N; Eidelman, S; Foka, P; Gardner, S; Kronfeld, A S; Alford, M G; Alkofer, R; Butenschoen, M; Cohen, T D; Erdmenger, J; Fabbietti, L; Faber, M; Goity, J L; Ketzer, B; Lin, H W; Llanes-Estrada, F J; Meyer, H B; Pakhlov, P; Pallante, E; Polikarpov, M I; Sazdjian, H; Schmitt, A; Snow, W M; Vairo, A; Vogt, R; Vuorinen, A; Wittig, H; Arnold, P; Christakoglou, P; Di Nezza, P; Fodor, Z; Garcia I Tormo, X; Höllwieser, R; Janik, M A; Kalweit, A; Keane, D; Kiritsis, E; Mischke, A; Mizuk, R; Odyniec, G; Papadodimas, K; Pich, A; Pittau, R; Qiu, J-W; Ricciardi, G; Salgado, C A; Schwenzer, K; Stefanis, N G; von Hippel, G M; Zakharov, V I

    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.

  9. Light composite scalar in twelve-flavor QCD on the lattice.

    PubMed

    Aoki, Yasumichi; Aoyama, Tatsumi; Kurachi, Masafumi; Maskawa, Toshihide; Nagai, Kei-ichi; Ohki, Hiroshi; Rinaldi, Enrico; Shibata, Akihiro; Yamawaki, Koichi; Yamazaki, Takeshi

    2013-10-18

    On the basis of lattice simulations using highly improved staggered quarks for twelve-flavor QCD with several bare fermion masses, we observe a flavor-singlet scalar state lighter than the pion in the correlators of fermionic interpolating operators. The same state is also investigated using correlators of gluonic interpolating operators. Combined with our previous study that showed twelve-flavor QCD to be consistent with being in the conformal window, we infer that the lightness of the scalar state is due to infrared conformality. This result shed some light on the possibility of a light composite Higgs boson ("technidilaton") in walking technicolor theories.

  10. A New Hard X-ray Wiggler for DORIS III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tischer, M.; Gumprecht, L.; Pflueger, J.

    2007-01-19

    A 4 m long hard X-ray wiggler has been built and installed in the DORIS III storage ring at DESY. The device replaces an old wiggler especially designed for angiography studies. Future use of this beamline at the HARWI straight section has been dedicated to hard X-ray scattering and diffraction experiments for material science and geological investigations. The required energy range is from 30 keV to about 200 keV with emphasis on the {approx}100 keV spectral range. The magnet configuration corresponds to a hybrid structure with additional side magnets to achieve a 2 T peak field for the specified periodmore » length of 110 mm. The wiggler position in the storage ring has been moved 8 m upstream into the next cell which allowed for reduction of the minimum magnetic wiggler gap to 14 mm.« less

  11. Light-Front Holography, Light-Front Wavefunctions, and Novel QCD Phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins; de Teramond, Guy F.

    2012-02-16

    Light-Front Holography is one of the most remarkable features of the AdS/CFT correspondence. In spite of its present limitations it provides important physical insights into the nonperturbative regime of QCD and its transition to the perturbative domain. This novel framework allows hadronic amplitudes in a higher dimensional anti-de Sitter (AdS) space to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time. The model leads to an effective confining light-front QCD Hamiltonian and a single-variable light-front Schroedinger equation which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The coordinate z inmore » AdS space is uniquely identified with a Lorentz-invariant coordinate {zeta} which measures the separation of the constituents within a hadron at equal light-front time and determines the off-shell dynamics of the bound-state wavefunctions, and thus the fall-off as a function of the invariant mass of the constituents. The soft-wall holographic model modified by a positive-sign dilaton metric, leads to a remarkable one-parameter description of nonperturbative hadron dynamics - a semi-classical frame-independent first approximation to the spectra and light-front wavefunctions of meson and baryons. The model predicts a Regge spectrum of linear trajectories with the same slope in the leading orbital angular momentum L of hadrons and the radial quantum number n. The hadron eigensolutions projected on the free Fock basis provides the complete set of valence and non-valence light-front Fock state wavefunctions {Psi}{sub n/H} (x{sub i}, k{sub {perpendicular}i}, {lambda}{sub i}) which describe the hadron's momentum and spin distributions needed to compute the direct measures of hadron structure at the quark and gluon level, such as elastic and transition form factors, distribution amplitudes, structure functions, generalized parton distributions and

  12. Charmed bottom baryon spectroscopy from lattice QCD

    DOE PAGES

    Brown, Zachary S.; Detmold, William; Meinel, Stefan; ...

    2014-11-19

    In this study, we calculate the masses of baryons containing one, two, or three heavy quarks using lattice QCD. We consider all possible combinations of charm and bottom quarks, and compute a total of 36 different states with J P = 1/2 + and J P = 3/2 +. We use domain-wall fermions for the up, down, and strange quarks, a relativistic heavy-quark action for the charm quarks, and nonrelativistic QCD for the bottom quarks. Our analysis includes results from two different lattice spacings and seven different pion masses. We perform extrapolations of the baryon masses to the continuum limitmore » and to the physical pion mass using SU(4|2) heavy-hadron chiral perturbation theory including 1/m Q and finite-volume effects. For the 14 singly heavy baryons that have already been observed, our results agree with the experimental values within the uncertainties. We compare our predictions for the hitherto unobserved states with other lattice calculations and quark-model studies.« less

  13. Relating quark confinement and chiral symmetry breaking in QCD

    NASA Astrophysics Data System (ADS)

    Suganuma, Hideo; Doi, Takahiro M.; Redlich, Krzysztof; Sasaki, Chihiro

    2017-12-01

    We study the relation between quark confinement and chiral symmetry breaking in QCD. Using lattice QCD formalism, we analytically express the various ‘confinement indicators’, such as the Polyakov loop, its fluctuations, the Wilson loop, the inter-quark potential and the string tension, in terms of the Dirac eigenmodes. In the Dirac spectral representation, there appears a power of the Dirac eigenvalue {λ }n such as {λ }n{Nt-1}, which behaves as a reduction factor for small {λ }n. Consequently, since this reduction factor cannot be cancelled, the low-lying Dirac eigenmodes give negligibly small contribution to the confinement quantities, while they are essential for chiral symmetry breaking. These relations indicate that there is no direct one-to-one correspondence between confinement and chiral symmetry breaking in QCD. In other words, there is some independence of quark confinement from chiral symmetry breaking, which can generally lead to different transition temperatures/densities for deconfinement and chiral restoration. We also investigate the Polyakov loop in terms of the eigenmodes of the Wilson, the clover and the domain-wall fermion kernels, and find similar results. The independence of quark confinement from chiral symmetry breaking seems to be natural, because confinement is realized independently of quark masses and heavy quarks are also confined even without the chiral symmetry.

  14. Second-order QCD effects in Higgs boson production through vector boson fusion

    NASA Astrophysics Data System (ADS)

    Cruz-Martinez, J.; Gehrmann, T.; Glover, E. W. N.; Huss, A.

    2018-06-01

    We compute the factorising second-order QCD corrections to the electroweak production of a Higgs boson through vector boson fusion. Our calculation is fully differential in the kinematics of the Higgs boson and of the final state jets, and uses the antenna subtraction method to handle infrared singular configurations in the different parton-level contributions. Our results allow us to reassess the impact of the next-to-leading order (NLO) QCD corrections to electroweak Higgs-plus-three-jet production and of the next-to-next-to-leading order (NNLO) QCD corrections to electroweak Higgs-plus-two-jet production. The NNLO corrections are found to be limited in magnitude to around ± 5% and are uniform in several of the kinematical variables, displaying a kinematical dependence only in the transverse momenta and rapidity separation of the two tagging jets.

  15. N3LO corrections to jet production in deep inelastic scattering using the Projection-to-Born method

    NASA Astrophysics Data System (ADS)

    Currie, J.; Gehrmann, T.; Glover, E. W. N.; Huss, A.; Niehues, J.; Vogt, A.

    2018-05-01

    Computations of higher-order QCD corrections for processes with exclusive final states require a subtraction method for real-radiation contributions. We present the first-ever generalisation of a subtraction method for third-order (N3LO) QCD corrections. The Projection-to-Born method is used to combine inclusive N3LO coefficient functions with an exclusive second-order (NNLO) calculation for a final state with an extra jet. The input requirements, advantages, and potential applications of the method are discussed, and validations at lower orders are performed. As a test case, we compute the N3LO corrections to kinematical distributions and production rates for single-jet production in deep inelastic scattering in the laboratory frame, and compare them with data from the ZEUS experiment at HERA. The corrections are small in the central rapidity region, where they stabilize the predictions to sub per-cent level. The corrections increase substantially towards forward rapidity where large logarithmic effects are expected, thereby yielding an improved description of the data in this region.

  16. High Capacity of Hard Carbon Anode in Na-Ion Batteries Unlocked by PO x Doping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhifei; Ma, Lu; Surta, Todd Wesley

    2016-08-12

    The capacity of hard carbon anodes in Na-ion batteries 2.5 rarely reaches values beyond 300 mAh/g. We report that doping POx into local structures of hard carbon increases its reversible capacity from 283 to 359 mAh/g. We confirm that the doped POx is redox inactive by X-ray adsorption near edge structure measurements, thus not contributing to the higher capacity. We observe two significant changes of hard carbon's local structures caused by doping. First, the (002) d-spacing inside the turbostratic nanodomains is increased, revealed by both laboratory and synchrotron X-ray diffraction. Second, doping turns turbostratic nanodomains more defective along ab planes,more » indicated by neutron total scattering and the associated pair distribution function studies. The local structural changes of hard carbon are correlated to the higher capacity, where both the plateau and slope regions in the potential profiles are enhanced. Our study demonstrates that Na-ion storage in hard carbon heavily depends on carbon local structures, where such structures, despite being disordered, can be tuned toward unusually high capacities.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avakian, Harut

    Studies of the 3D structure of the nucleon encoded in Transverse Momentum Dependent distribution and fragmentation functions of partons and Generalized Parton Distributions are among the key objectives of the JLab 12 GeV upgrade and the Electron Ion Collider. Main challenges in extracting 3D partonic distributions from precision measurements of hard scattering processes include clear understanding of leading twist QCD fundamentals, higher twist effects, and also correlations of hadron production in target and current fragmentation regions. In this contribution we discuss some ongoing studies and future measurements of spin-orbit correlations at Jefferson Lab.

  18. Comment on “Single-inclusive jet production in electron–nucleon collisions through next-to-next-to-leading order in perturbative QCD” [Phys. Lett. B 763 (2016) 52–59

    DOE PAGES

    Bodwin, Geoffrey T.; Braaten, Eric

    2017-03-22

    In the cross section for single-inclusive jet production in electron nucleon collisions, the distribution of a quark in an electron appears at next-to-next-to-leading order. The numerical calculations in Ref. [1] were carried out using a perturbative approximation for the distribution of a quark in an electron. We point out that that distribution receives nonperturbative QCD contributions that invalidate the perturbative approximation. Here, those nonperturbative effects enter into cross sections for hard-scattering processes through resolved-electron contributions and can be taken into account by determining the distribution of a quark in an electron phenomenologically.

  19. Comment on “Single-inclusive jet production in electron–nucleon collisions through next-to-next-to-leading order in perturbative QCD” [Phys. Lett. B 763 (2016) 52–59

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bodwin, Geoffrey T.; Braaten, Eric

    In the cross section for single-inclusive jet production in electron nucleon collisions, the distribution of a quark in an electron appears at next-to-next-to-leading order. The numerical calculations in Ref. [1] were carried out using a perturbative approximation for the distribution of a quark in an electron. We point out that that distribution receives nonperturbative QCD contributions that invalidate the perturbative approximation. Here, those nonperturbative effects enter into cross sections for hard-scattering processes through resolved-electron contributions and can be taken into account by determining the distribution of a quark in an electron phenomenologically.

  20. Better than $l/Mflops sustained: a scalable PC-based parallel computer for lattice QCD

    NASA Astrophysics Data System (ADS)

    Fodor, Zoltán; Katz, Sándor D.; Papp, Gábor

    2003-05-01

    We study the feasibility of a PC-based parallel computer for medium to large scale lattice QCD simulations. The Eötvös Univ., Inst. Theor. Phys. cluster consists of 137 Intel P4-1.7GHz nodes with 512 MB RDRAM. The 32-bit, single precision sustained performance for dynamical QCD without communication is 1510 Mflops/node with Wilson and 970 Mflops/node with staggered fermions. This gives a total performance of 208 Gflops for Wilson and 133 Gflops for staggered QCD, respectively (for 64-bit applications the performance is approximately halved). The novel feature of our system is its communication architecture. In order to have a scalable, cost-effective machine we use Gigabit Ethernet cards for nearest-neighbor communications in a two-dimensional mesh. This type of communication is cost effective (only 30% of the hardware costs is spent on the communication). According to our benchmark measurements this type of communication results in around 40% communication time fraction for lattices upto 48 3·96 in full QCD simulations. The price/sustained-performance ratio for full QCD is better than l/Mflops for Wilson (and around 1.5/Mflops for staggered) quarks for practically any lattice size, which can fit in our parallel computer. The communication software is freely available upon request for non-profit organizations.

  1. The Fast Scattering Code (FSC): Validation Studies and Program Guidelines

    NASA Technical Reports Server (NTRS)

    Tinetti, Ana F.; Dunn, Mark H.

    2011-01-01

    The Fast Scattering Code (FSC) is a frequency domain noise prediction program developed at the NASA Langley Research Center (LaRC) to simulate the acoustic field produced by the interaction of known, time harmonic incident sound with bodies of arbitrary shape and surface impedance immersed in a potential flow. The code uses the equivalent source method (ESM) to solve an exterior 3-D Helmholtz boundary value problem (BVP) by expanding the scattered acoustic pressure field into a series of point sources distributed on a fictitious surface placed inside the actual scatterer. This work provides additional code validation studies and illustrates the range of code parameters that produce accurate results with minimal computational costs. Systematic noise prediction studies are presented in which monopole generated incident sound is scattered by simple geometric shapes - spheres (acoustically hard and soft surfaces), oblate spheroids, flat disk, and flat plates with various edge topologies. Comparisons between FSC simulations and analytical results and experimental data are presented.

  2. Next-to-leading order weighted Sivers asymmetry in semi-inclusive deep inelastic scattering: three-gluon correlator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Lingyun; Prokudin, Alexei; Kang, Zhong-Bo

    2015-09-01

    We study the three-gluon correlation function contribution to the Sivers asymmetry in semi-inclusive deep inelastic scattering. We first establish the matching between the usual twist-3 collinear factorization approach and transverse momentum dependent factorization formalism for the moderate transverse momentum region. We then derive the so-called coefficient functions used in the usual TMD evolution formalism. Finally, we perform the next-to-leading order calculation for the transverse-momentum-weighted spin-dependent differential cross section, from which we identify the QCD collinear evolution of the twist-3 Qiu-Sterman function: the off-diagonal contribution from the three-gluon correlation functions.

  3. A collider observable QCD axion

    DOE PAGES

    Dimopoulos, Savas; Hook, Anson; Huang, Junwu; ...

    2016-11-09

    Here, we present a model where the QCD axion is at the TeV scale and visible at a collider via its decays. Conformal dynamics and strong CP considerations account for the axion coupling strongly enough to the standard model to be produced as well as the coincidence between the weak scale and the axion mass. The model predicts additional pseudoscalar color octets whose properties are completely determined by the axion properties rendering the theory testable.

  4. QCD at finite isospin chemical potential

    NASA Astrophysics Data System (ADS)

    Brandt, Bastian B.; Endrődi, Gergely; Schmalzbauer, Sebastian

    2018-03-01

    We investigate the properties of QCD at finite isospin chemical potential at zero and non-zero temperatures. This theory is not affected by the sign problem and can be simulated using Monte-Carlo techniques. With increasing isospin chemical potential and temperatures below the deconfinement transition the system changes into a phase where charged pions condense, accompanied by an accumulation of low modes of the Dirac operator. The simulations are enabled by the introduction of a pionic source into the action, acting as an infrared regulator for the theory, and physical results are obtained by removing the regulator via an extrapolation. We present an update of our study concerning the associated phase diagram using 2+1 flavours of staggered fermions with physical quark masses and the comparison to Taylor expansion. We also present first results for our determination of the equation of state at finite isospin chemical potential and give an example for a cosmological application. The results can also be used to gain information about QCD at small baryon chemical potentials using reweighting with respect to the pionic source parameter and the chemical potential and we present first steps in this direction.

  5. QCD, OZI, and evidence for glueballs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindenbaum, S.J.

    1981-01-01

    The characteristics expected from low Q-QCD for the behavior of glueballs and the OZI rule is discussed. The reaction ..pi../sup -/p ..-->.. phi phi n represents on OZI forbidden (hairpin) diagram. It has been observed at the Brookhaven National Laboratory multiparticle spectrometer by the Brookhaven National Laboratory/City College of New York group. The author has shown that the expected OZI suppression is essentially entirely absent and in fact the Isobar Model which does not contain OZI suppression quantitatively explains the observed results. A general evaluation of the special characteristics of the data compared to other related reactions plus the foregoingmore » facts leads the author to conclude that the intervention of glueball resonances is the likely explanation in the context of QCD. Other explanations are shown to be improbable. In particular the hypothesis that decay of a radial excitation of the eta' is responsible for lack of OZI suppression is ruled out. Planned experiments with the purpose of explicity discovering glueballs will be discussed. The OZI rule peculiarities such as violation of crossing symmetry and unitarity are attributed to color confinement.« less

  6. Study of QCD-dynamics in η and η' production and decays

    NASA Astrophysics Data System (ADS)

    Beck, Reinhard; Wiedner, Ulrich

    2017-01-01

    One aim of this project lies in studying QCD dynamics using photoproduction of η and η' mesons with the CBELSA/TAPS experiment at the accelerator facility ELSA. Hadronic decay modes of η and η' are analyzed that allow the study of symmetry breaking effects in QCD. Furthermore, excited η-states produced with a photon beam are studied within the scope of this project. Of special interest is hereby the nature of the η(1405). The high data samples for η- and η'-photoproduction off the proton allow in addition the determination of polarization observables.

  7. Lattice QCD Application Development within the US DOE Exascale Computing Project

    NASA Astrophysics Data System (ADS)

    Brower, Richard; Christ, Norman; DeTar, Carleton; Edwards, Robert; Mackenzie, Paul

    2018-03-01

    In October, 2016, the US Department of Energy launched the Exascale Computing Project, which aims to deploy exascale computing resources for science and engineering in the early 2020's. The project brings together application teams, software developers, and hardware vendors in order to realize this goal. Lattice QCD is one of the applications. Members of the US lattice gauge theory community with significant collaborators abroad are developing algorithms and software for exascale lattice QCD calculations. We give a short description of the project, our activities, and our plans.

  8. Inclusive heavy flavor hadroproduction in NLO QCD: The exact analytic result

    NASA Astrophysics Data System (ADS)

    Czakon, M.; Mitov, A.

    2010-01-01

    We present the first exact analytic result for all partonic channels contributing to the total cross section for the production of a pair of heavy flavors in hadronic collisions in NLO QCD. Our calculation is a step in the derivation of the top quark pair production cross section at NNLO in QCD, which is a cornerstone of the precision LHC program. Our results uncover the analytical structures behind observables with heavy flavors at higher orders. They also reveal surprising and non-trivial implications for kinematics close to partonic threshold.

  9. Chiral magnetic effect in lattice QCD with a chiral chemical potential.

    PubMed

    Yamamoto, Arata

    2011-07-15

    We perform a first lattice QCD simulation including a two-flavor dynamical fermion with a chiral chemical potential. Because the chiral chemical potential gives rise to no sign problem, we can exactly analyze a chirally imbalanced QCD matter by Monte Carlo simulation. By applying an external magnetic field to this system, we obtain a finite induced current along the magnetic field, which corresponds to the chiral magnetic effect. The obtained induced current is proportional to the magnetic field and to the chiral chemical potential, which is consistent with an analytical prediction.

  10. Lattice QCD Application Development within the US DOE Exascale Computing Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brower, Richard; Christ, Norman; DeTar, Carleton

    In October, 2016, the US Department of Energy launched the Exascale Computing Project, which aims to deploy exascale computing resources for science and engineering in the early 2020's. The project brings together application teams, software developers, and hardware vendors in order to realize this goal. Lattice QCD is one of the applications. Members of the US lattice gauge theory community with significant collaborators abroad are developing algorithms and software for exascale lattice QCD calculations. We give a short description of the project, our activities, and our plans.

  11. Constraining the hadronic spectrum through QCD thermodynamics on the lattice

    NASA Astrophysics Data System (ADS)

    Alba, Paolo; Bellwied, Rene; Borsányi, Szabolcs; Fodor, Zoltan; Günther, Jana; Katz, Sandor D.; Mantovani Sarti, Valentina; Noronha-Hostler, Jacquelyn; Parotto, Paolo; Pasztor, Attila; Vazquez, Israel Portillo; Ratti, Claudia

    2017-08-01

    Fluctuations of conserved charges allow us to study the chemical composition of hadronic matter. A comparison between lattice simulations and the hadron resonance gas (HRG) model suggested the existence of missing strange resonances. To clarify this issue we calculate the partial pressures of mesons and baryons with different strangeness quantum numbers using lattice simulations in the confined phase of QCD. In order to make this calculation feasible, we perform simulations at imaginary strangeness chemical potentials. We systematically study the effect of different hadronic spectra on thermodynamic observables in the HRG model and compare to lattice QCD results. We show that, for each hadronic sector, the well-established states are not enough in order to have agreement with the lattice results. Additional states, either listed in the Particle Data Group booklet (PDG) but not well established, or predicted by the quark model (QM), are necessary in order to reproduce the lattice data. For mesons, it appears that the PDG and the quark model do not list enough strange mesons, or that, in this sector, interactions beyond those included in the HRG model are needed to reproduce the lattice QCD results.

  12. Calculation of neutral weak nucleon form factors with the AdS/QCD correspondence

    NASA Astrophysics Data System (ADS)

    Lohmann, Mark

    The AdS/QCD (Anti-de Sitter/Quantum Chromodynamics) is a mathematical formalism applied to a theory based on the original AdS/CFT (Anti-de Sitter/ Conformal Field Theory) correspondence. The aim is to describe properties of the strong force in an essentially non-perturbative way. AdS/QCD theories break the conformal symmetry of the AdS metric (a sacrifice) to arrive at a boundary theory which is QCD-like (a payoff). This correspondence has been used to calculate well-known quantities in nucleon spectra and structure like Regge trajectories, form factors, and many others within an error of less than 20% from experiment. This is impressive considering that ordinary perturbation theory in QCD applied to the strongly interacting domain usually obtains an error of about 30%. In this thesis, the AdS/QCD correspondence method of light-front holography established by Brodsky and de Teramond is used in an attempt to calculate the Dirac and Pauli neutral weak form factors, FZ1 (Q2) and FZ2 (Q 2) respectively, for both the proton and the neutron. With this approach, we were able to determine the neutral weak Dirac form factor for both nucleons and the Pauli form factor for the proton, while the method did not succeed at determining the neutral weak Pauli form factor for the neutron. With these we were also able to extract the proton's strange electric and magnetic form factor, which addresses important questions in nucleon sub-structure that are currently being investigated through experiments at the Thomas Jefferson National Accelerator Facility.

  13. Glueball spectrum and hadronic processes in low-energy QCD

    NASA Astrophysics Data System (ADS)

    Frasca, Marco

    2010-10-01

    Low-energy limit of quantum chromodynamics (QCD) is obtained using a mapping theorem recently proved. This theorem states that, classically, solutions of a massless quartic scalar field theory are approximate solutions of Yang-Mills equations in the limit of the gauge coupling going to infinity. Low-energy QCD is described by a Yukawa theory further reducible to a Nambu-Jona-Lasinio model. At the leading order one can compute glue-quark interactions and one is able to calculate the properties of the σ and η-η mesons. Finally, it is seen that all the physics of strong interactions, both in the infrared and ultraviolet limit, is described by a single constant Λ arising in the ultraviolet by dimensional transmutation and in the infrared as an integration constant.

  14. QCD and strongly coupled gauge theories: Challenges and perspectives

    DOE PAGES

    Brambilla, N.; Eidelman, S.; Foka, P.; ...

    2014-10-21

    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to stongly-coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many researchmore » streams which flow into and out of QCD, as well as a vision for future developments.« less

  15. Spontaneous supersymmetry breaking in two dimensional lattice super QCD

    DOE PAGES

    Catterall, Simon; Veernala, Aarti

    2015-10-02

    We report on a non-perturbative study of two dimensional N=(2,2) super QCD. Our lattice formulation retains a single exact supersymmetry at non-zero lattice spacing, and contains N f fermions in the fundamental representation of a U(N c) gauge group. The lattice action we employ contains an additional Fayet-Iliopoulos term which is also invariant under the exact lattice supersymmetry. This work constitutes the first numerical study of this theory which serves as a toy model for understanding some of the issues that are expected to arise in four dimensional super QCD. As a result, we present evidence that the exact supersymmetrymore » breaks spontaneously when N f < N c in agreement with theoretical expectations.« less

  16. Superconformal Baryon-Meson Symmetry and Light-Front Holographic QCD

    DOE PAGES

    Dosch, Hans Guenter; de Teramond, Guy F.; Brodsky, Stanley J.

    2015-04-10

    We construct an effective QCD light-front Hamiltonian for both mesons and baryons in the chiral limit based on the generalized supercharges of a superconformal graded algebra. The superconformal construction is shown to be equivalent to a semi-classical approximation to light-front QCD and its embedding in AdS space. The specific breaking of conformal invariance inside the graded algebra uniquely determines the effective confinement potential. The generalized supercharges connect the baryon and meson spectra to each other in a remarkable manner. In particular, the π/b 1 Regge trajectory is identified as the superpartner of the nucleon trajectory. However, the lowest-lying state onmore » this trajectory, the π-meson is massless in the chiral limit and has no supersymmetric partner.« less

  17. Simulations of QCD and QED with C* boundary conditions

    NASA Astrophysics Data System (ADS)

    Hansen, Martin; Lucini, Biagio; Patella, Agostino; Tantalo, Nazario

    2018-03-01

    We present exploratory results from dynamical simulations of QCD in isolation, as well as QCD coupled to QED, with C* boundary conditions. In finite volume, the use of C* boundary conditions allows for a gauge invariant and local formulation of QED without zero modes. In particular we show that the simulations reproduce known results and that masses of charged mesons can be extracted in a completely gauge invariant way. For the simulations we use a modified version of the HiRep code. The primary features of the simulation code are presented and we discuss some details regarding the implementation of C* boundary conditions and the simulated lattice action. Preprint: CP3-Origins-2017-046 DNRF90, CERN-TH-2017-214

  18. REMARKS ON THE MAXIMUM ENTROPY METHOD APPLIED TO FINITE TEMPERATURE LATTICE QCD.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    UMEDA, T.; MATSUFURU, H.

    2005-07-25

    We make remarks on the Maximum Entropy Method (MEM) for studies of the spectral function of hadronic correlators in finite temperature lattice QCD. We discuss the virtues and subtlety of MEM in the cases that one does not have enough number of data points such as at finite temperature. Taking these points into account, we suggest several tests which one should examine to keep the reliability for the results, and also apply them using mock and lattice QCD data.

  19. Mass-improvement of the vector current in three-flavor QCD

    NASA Astrophysics Data System (ADS)

    Fritzsch, P.

    2018-06-01

    We determine two improvement coefficients which are relevant to cancel mass-dependent cutoff effects in correlation functions with operator insertions of the non-singlet local QCD vector current. This determination is based on degenerate three-flavor QCD simulations of non-perturbatively O( a) improved Wilson fermions with tree-level improved gauge action. Employing a very robust strategy that has been pioneered in the quenched approximation leads to an accurate estimate of a counterterm cancelling dynamical quark cutoff effects linear in the trace of the quark mass matrix. To our knowledge this is the first time that such an effect has been determined systematically with large significance.

  20. Cyclic Mario worlds — color-decomposition for one-loop QCD

    NASA Astrophysics Data System (ADS)

    Kälin, Gregor

    2018-04-01

    We present a new color decomposition for QCD amplitudes at one-loop level as a generalization of the Del Duca-Dixon-Maltoni and Johansson-Ochirov decomposition at tree level. Starting from a minimal basis of planar primitive amplitudes we write down a color decomposition that is free of linear dependencies among appearing primitive amplitudes or color factors. The conjectured decomposition applies to any number of quark flavors and is independent of the choice of gauge group and matter representation. The results also hold for higher-dimensional or supersymmetric extensions of QCD. We provide expressions for any number of external quark-antiquark pairs and gluons. [Figure not available: see fulltext.

  1. A 'range test' for determining scatterers with unknown physical properties

    NASA Astrophysics Data System (ADS)

    Potthast, Roland; Sylvester, John; Kusiak, Steven

    2003-06-01

    We describe a new scheme for determining the convex scattering support of an unknown scatterer when the physical properties of the scatterers are not known. The convex scattering support is a subset of the scatterer and provides information about its location and estimates for its shape. For convex polygonal scatterers the scattering support coincides with the scatterer and we obtain full shape reconstructions. The method will be formulated for the reconstruction of the scatterers from the far field pattern for one or a few incident waves. The method is non-iterative in nature and belongs to the type of recently derived generalized sampling schemes such as the 'no response test' of Luke-Potthast. The range test operates by testing whether it is possible to analytically continue a far field to the exterior of any test domain Omegatest. By intersecting the convex hulls of various test domains we can produce a minimal convex set, the convex scattering support of which must be contained in the convex hull of the support of any scatterer which produces that far field. The convex scattering support is calculated by testing the range of special integral operators for a sampling set of test domains. The numerical results can be used as an approximation for the support of the unknown scatterer. We prove convergence and regularity of the scheme and show numerical examples for sound-soft, sound-hard and medium scatterers. We can apply the range test to non-convex scatterers as well. We can conclude that an Omegatest which passes the range test has a non-empty intersection with the infinity-support (the complement of the unbounded component of the complement of the support) of the true scatterer, but cannot find a minimal set which must be contained therein.

  2. One-loop QCD thermodynamics in a strong homogeneous and static magnetic field

    NASA Astrophysics Data System (ADS)

    Rath, Shubhalaxmi; Patra, Binoy Krishna

    2017-12-01

    We have studied how the equation of state of thermal QCD with two light flavors is modified in a strong magnetic field. We calculate the thermodynamic observables of hot QCD matter up to one-loop, where the magnetic field affects mainly the quark contribution and the gluon part is largely unaffected except for the softening of the screening mass. We have first calculated the pressure of a thermal QCD medium in a strong magnetic field, where the pressure at fixed temperature increases with the magnetic field faster than the increase with the temperature at constant magnetic field. This can be understood from the dominant scale of thermal medium in the strong magnetic field, being the magnetic field, in the same way that the temperature dominates in a thermal medium in the absence of magnetic field. Thus although the presence of a strong magnetic field makes the pressure of hot QCD medium larger, the dependence of pressure on the temperature becomes less steep. Consistent with the above observations, the entropy density is found to decrease with the temperature in the presence of a strong magnetic field which is again consistent with the fact that the strong magnetic field restricts the dynamics of quarks to two dimensions, hence the phase space becomes squeezed resulting in the reduction of number of microstates. Moreover the energy density is seen to decrease and the speed of sound of thermal QCD medium increases in the presence of a strong magnetic field. These findings could have phenomenological implications in heavy ion collisions because the expansion dynamics of the medium produced in non-central ultra-relativistic heavy ion collisions is effectively controlled by both the energy density and the speed of sound.

  3. Advances in QCD sum-rule calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melikhov, Dmitri

    2016-01-22

    We review the recent progress in the applications of QCD sum rules to hadron properties with the emphasis on the following selected problems: (i) development of new algorithms for the extraction of ground-state parameters from two-point correlators; (ii) form factors at large momentum transfers from three-point vacuum correlation functions: (iii) properties of exotic tetraquark hadrons from correlation functions of four-quark currents.

  4. Quark-hadron phase structure of QCD matter from SU(4) Polyakov linear sigma model

    NASA Astrophysics Data System (ADS)

    Diab, Abdel Magied Abdel Aal; Tawfik, Abdel Nasser

    2018-04-01

    The SU(4) Polyakov linear sigma model (PLSM) is extended towards characterizing the chiral condensates, σl, σs and σc of light, strange and charm quarks, respectively and the deconfinement order-parameters φ and φ at finite temperatures and densities (chemical potentials). The PLSM is considered to study the QCD equation of state in the presence of the chiral condensate of charm for different finite chemical potentials. The PLSM results are in a good agreement with the recent lattice QCD simulations. We conclude that, the charm condensate is likely not affected by the QCD phase-transition, where the corresponding critical temperature is greater than that of the light and strange quark condensates.

  5. Generalized parton distributions and transversity from full lattice QCD

    NASA Astrophysics Data System (ADS)

    Göckeler, M.; Hägler, Ph.; Horsley, R.; Pleiter, D.; Rakow, P. E. L.; Schäfer, A.; Schierholz, G.; Zanotti, J. M.; Qcdsf Collaboration

    2005-06-01

    We present here the latest results from the QCDSF collaboration for moments of gener- alized parton distributions and transversity in two-flavour QCD, including a preliminary analysis of the pion mass dependence.

  6. Duality between QCD perturbative series and power corrections

    NASA Astrophysics Data System (ADS)

    Narison, S.; Zakharov, V. I.

    2009-08-01

    We elaborate on the relation between perturbative and power-like corrections to short-distance sensitive QCD observables. We confront theoretical expectations with explicit perturbative calculations existing in literature. As is expected, the quadratic correction is dual to a long perturbative series and one should use one of them but not both. However, this might be true only for very long perturbative series, with number of terms needed in most cases exceeding the number of terms available. What has not been foreseen, the quartic corrections might also be dual to the perturbative series. If confirmed, this would imply a crucial modification of the dogma. We confront this quadratic correction against existing phenomenology (QCD (spectral) sum rules scales, determinations of light quark masses and of αs from τ-decay). We find no contradiction and (to some extent) better agreement with the data and with recent lattice calculations.

  7. Simulation and Laboratory results of the Hard X-ray Polarimeter: X-Calibur

    NASA Astrophysics Data System (ADS)

    Guo, Qingzhen; Beilicke, M.; Kislat, F.; Krawczynski, H.

    2014-01-01

    X-ray polarimetry promises to give qualitatively new information about high-energy sources, such as binary black hole (BH) systems, Microquasars, active galactic nuclei (AGN), GRBs, etc. We designed, built and tested a hard X-ray polarimeter 'X-Calibur' to be flown in the focal plane of the InFOCuS grazing incidence hard X-ray telescope in 2014. X-Calibur combines a low-Z Compton scatterer with a CZT detector assembly to measure the polarization of 20- 80 keV X-rays making use of the fact that polarized photons Compton scatter preferentially perpendicular to the E field orientation. X-Calibur achieves a high detection efficiency of order unity. We optimized of the design of the instrument based on Monte Carlo simulations of polarized and unpolarized X-ray beams and of the most important background components. We have calibrated and tested X-Calibur extensively in the laboratory at Washington University and at the Cornell High-Energy Synchrotron Source (CHESS). Measurements using the highly polarized synchrotron beam at CHESS confirm the polarization sensitivity of the instrument. In this talk we report on the optimization of the design of the instrument based on Monte Carlo simulations, as well as results of laboratory calibration measurements characterizing the performance of the instrument.

  8. Extraction of quark transversity distribution and Collins fragmentation functions with QCD evolution

    NASA Astrophysics Data System (ADS)

    Kang, Zhong-Bo; Prokudin, Alexei; Sun, Peng; Yuan, Feng

    2016-01-01

    We study the transverse-momentum-dependent (TMD) evolution of the Collins azimuthal asymmetries in e+e- annihilations and semi-inclusive hadron production in deep inelastic scattering processes. All the relevant coefficients are calculated up to the next-to-leading-logarithmic-order accuracy. By applying the TMD evolution at the approximate next-to-leading-logarithmic order in the Collins-Soper-Sterman formalism, we extract transversity distributions for u and d quarks and Collins fragmentation functions from current experimental data by a global analysis of the Collins asymmetries in back-to-back dihadron productions in e+e- annihilations measured by BELLE and BABAR collaborations and semi-inclusive hadron production in deep inelastic scattering data from HERMES, COMPASS, and JLab HALL A experiments. The impact of the evolution effects and the relevant theoretical uncertainties are discussed. We further discuss the TMD interpretation for our results and illustrate the unpolarized quark distribution, transversity distribution, unpolarized quark fragmentation, and Collins fragmentation functions depending on the transverse momentum and the hard momentum scale. We make detailed predictions for future experiments and discuss their impact.

  9. Use of a running coupling in the NLO calculation of forward hadron production

    NASA Astrophysics Data System (ADS)

    Ducloué, B.; Iancu, E.; Lappi, T.; Mueller, A. H.; Soyez, G.; Triantafyllopoulos, D. N.; Zhu, Y.

    2018-03-01

    We address and solve a puzzle raised by a recent calculation [1] of the cross section for particle production in proton-nucleus collisions to next-to-leading order: the numerical results show an unreasonably large dependence upon the choice of a prescription for the QCD running coupling, which spoils the predictive power of the calculation. Specifically, the results obtained with a prescription formulated in the transverse coordinate space differ by 1 to 2 orders of magnitude from those obtained with a prescription in momentum space. We show that this discrepancy is an artifact of the interplay between the asymptotic freedom of QCD and the Fourier transform from coordinate space to momentum space. When used in coordinate space, the running coupling can act as a fictitious potential which mimics hard scattering and thus introduces a spurious contribution to the cross section. We identify a new coordinate-space prescription, which avoids this problem, and leads to results consistent with those obtained with the momentum-space prescription.

  10. Lattice QCD spectroscopy for hadronic CP violation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Vries, Jordy; Mereghetti, Emanuele; Seng, Chien -Yeah

    Here, the interpretation of nuclear electric dipole moment (EDM) experiments is clouded by large theoretical uncertainties associated with nonperturbative matrix elements. In various beyond-the-Standard Model scenarios nuclear and diamagnetic atomic EDMs are expected to be dominated by CP-violating pion–nucleon interactions that arise from quark chromo-electric dipole moments. The corresponding CP-violating pion–nucleon coupling strengths are, however, poorly known. In this work we propose a strategy to calculate these couplings by using spectroscopic lattice QCD techniques. Instead of directly calculating the pion–nucleon coupling constants, a challenging task, we use chiral symmetry relations that link the pion–nucleon couplings to nucleon sigma terms andmore » mass splittings that are significantly easier to calculate. In this work, we show that these relations are reliable up to next-to-next-to-leading order in the chiral expansion in both SU(2) and SU(3) chiral perturbation theory. We conclude with a brief discussion about practical details regarding the required lattice QCD calculations and the phenomenological impact of an improved understanding of CP-violating matrix elements.« less

  11. Lattice QCD spectroscopy for hadronic CP violation

    DOE PAGES

    de Vries, Jordy; Mereghetti, Emanuele; Seng, Chien -Yeah; ...

    2017-01-16

    Here, the interpretation of nuclear electric dipole moment (EDM) experiments is clouded by large theoretical uncertainties associated with nonperturbative matrix elements. In various beyond-the-Standard Model scenarios nuclear and diamagnetic atomic EDMs are expected to be dominated by CP-violating pion–nucleon interactions that arise from quark chromo-electric dipole moments. The corresponding CP-violating pion–nucleon coupling strengths are, however, poorly known. In this work we propose a strategy to calculate these couplings by using spectroscopic lattice QCD techniques. Instead of directly calculating the pion–nucleon coupling constants, a challenging task, we use chiral symmetry relations that link the pion–nucleon couplings to nucleon sigma terms andmore » mass splittings that are significantly easier to calculate. In this work, we show that these relations are reliable up to next-to-next-to-leading order in the chiral expansion in both SU(2) and SU(3) chiral perturbation theory. We conclude with a brief discussion about practical details regarding the required lattice QCD calculations and the phenomenological impact of an improved understanding of CP-violating matrix elements.« less

  12. A Semiclassical Derivation of the QCD Coupling

    NASA Technical Reports Server (NTRS)

    Batchelor, David

    2009-01-01

    The measured value of the QCD coupling alpha(sub s) at the energy M(sub Zo), the variation of alpha(sub s) as a function of energy in QCD, and classical relativistic dynamics are used to investigate virtual pairs of quarks and antiquarks in vacuum fluctuations. For virtual pairs of bottom quarks and antiquarks, the pair lifetime in the classical model agrees with the lifetime from quantum mechanics to good approximation, and the action integral in the classical model agrees as well with the action that follows from the Uncertainty Principle. This suggests that the particles might have small de Broglie wavelengths and behave with well-localized pointlike dynamics. It also permits alpha(sub s) at the mass energy twice the bottom quark mass to be expressed as a simple fraction: 3/16. This is accurate to approximately 10%. The model in this paper predicts the measured value of alpha(sub s)(M(sub Zo)) to be 0.121, which is in agreement with recent measurements within statistical uncertainties.

  13. Implications of the principle of maximum conformality for the QCD strong coupling

    DOE PAGES

    Deur, Alexandre; Shen, Jian -Ming; Wu, Xing -Gang; ...

    2017-08-14

    The Principle of Maximum Conformality (PMC) provides scale-fixed perturbative QCD predictions which are independent of the choice of the renormalization scheme, as well as the choice of the initial renormalization scale. In this article, we will test the PMC by comparing its predictions for the strong couplingmore » $$\\alpha^s_{g_1}(Q)$$, defined from the Bjorken sum rule, with predictions using conventional pQCD scale-setting. The two results are found to be compatible with each other and with the available experimental data. However, the PMC provides a significantly more precise determination, although its domain of applicability ($$Q \\gtrsim 1.5$$ GeV) does not extend to as small values of momentum transfer as that of a conventional pQCD analysis ($$Q \\gtrsim 1$$ GeV). In conclusion, we suggest that the PMC range of applicability could be improved by a modified intermediate scheme choice or using a single effective PMC scale.« less

  14. Baryogenesis from strong CP violation and the QCD axion.

    PubMed

    Servant, Géraldine

    2014-10-24

    We show that strong CP violation from the QCD axion can be responsible for the matter antimatter asymmetry of the Universe in the context of cold electroweak baryogenesis if the electroweak phase transition is delayed below the GeV scale. This can occur naturally if the Higgs couples to a O(100)  GeV dilaton, as expected in some models where the Higgs is a pseudo-Nambu-Goldstone boson of a new strongly interacting sector at the TeV scale. The existence of such a second scalar resonance with a mass and properties similar to the Higgs boson will soon be tested at the LHC. In this context, the QCD axion would not only solve the strong CP problem, but also the matter antimatter asymmetry and dark matter.

  15. Discovery of a Kiloparsec Extended Hard X-Ray Continuum and Fe-Kα from the Compton Thick AGN ESO 428-G014

    NASA Astrophysics Data System (ADS)

    Fabbiano, G.; Elvis, M.; Paggi, A.; Karovska, M.; Maksym, W. P.; Raymond, J.; Risaliti, G.; Wang, Junfeng

    2017-06-01

    We report the discovery of kiloparsec-scale diffuse emission in both the hard continuum (3-6 keV) and in the Fe-Kα line in the Compton thick (CT) Seyfert galaxy ESO 428-G014. This extended hard component contains at least ˜24% of the observed 3-8 keV emission, and follows the direction of the extended optical line emission (ionization cone) and radio jet. The extended hard component has ˜0.5% of the intrinsic 2-10 keV luminosity within the bi-cones. A uniform scattering medium of density 1 {{cm}}-3 would produce this luminosity in a 1 kpc path length in the bi-cones. Alternatively, higher column density molecular clouds in the disk of ESO 428-G014 may be responsible for these components. The continuum may also be enhanced by the acceleration of charged particles in the radio jet. The steeper spectrum (Γ ˜ 1.7 ± 0.4) of the hard continuum outside of the central 1.″5 radius nuclear region suggests a contribution of scattered/fluorescent intrinsic Seyfert emission. Ultrafast nuclear outflows cannot explain the extended Fe-Kα emission. This discovery suggests that we may need to revise the picture at the base of our interpretation of CT AGN spectra.

  16. Hadron production in diffractive deep-inelastic scattering

    NASA Astrophysics Data System (ADS)

    H1 Collaboration; Adloff, C.; Aid, S.; Anderson, M.; Andreev, V.; Andrieu, B.; Arkadov, V.; Arndt, C.; Ayyaz, I.; Babaev, A.; Bähr, J.; Bán, J.; Baranov, P.; Barrelet, E.; Barschke, R.; Bartel, W.; Bassler, U.; Bate, P.; Beck, M.; Beglarian, A.; Behrend, H.-J.; Beier, C.; Belousov, A.; Berger, Ch.; Bernardi, G.; Bertrand-Coremans, G.; Beyer, R.; Biddulph, P.; Bizot, J. C.; Borras, K.; Boudry, V.; Braemer, A.; Braunschweig, W.; Brisson, V.; Brown, D. P.; Brückner, W.; Bruel, P.; Bruncko, D.; Brune, C.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Buschhorn, G.; Calvet, D.; Campbell, A. J.; Carli, T.; Chabert, E.; Charlet, M.; Clarke, D.; Clerbaux, B.; Cocks, S.; Contreras, J. G.; Cormack, C.; Coughlan, J. A.; Cousinou, M.-C.; Cox, B. E.; Cozzika, G.; Cvach, J.; Dainton, J. B.; Dau, W. D.; Daum, K.; David, M.; de Roeck, A.; de Wolf, E. A.; Delcourt, B.; Diaconu, C.; Dirkmann, M.; Dixon, P.; Dlugosz, W.; Donovan, K. T.; Dowell, J. D.; Droutskoi, A.; Ebert, J.; Eckerlin, G.; Eckstein, D.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Elsen, E.; Enzenberger, M.; Erdmann, M.; Fahr, A. B.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Fleischer, M.; Flügge, G.; Fomenko, A.; Formánek, J.; Foster, J. M.; Franke, G.; Gabathuler, E.; Gabathuler, K.; Gaede, F.; Garvey, J.; Gayler, J.; Gebauer, M.; Gerhards, R.; Glazov, A.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Gorelov, I.; Grab, C.; Grässler, H.; Greenshaw, T.; Griffiths, R. K.; Grindhammer, G.; Gruber, C.; Hadig, T.; Haidt, D.; Hajduk, L.; Haller, T.; Hampel, M.; Haustein, V.; Haynes, W. J.; Heinemann, B.; Heinzelmann, G.; Henderson, R. C. W.; Hengstmann, S.; Henschel, H.; Heremans, R.; Herynek, I.; Hewitt, K.; Hiller, K. H.; Hilton, C. D.; Hladký, J.; Höppner, M.; Hoffmann, D.; Holtom, T.; Horisberger, R.; Hudgson, V. L.; Hütte, M.; Ibbotson, M.; Isolarş Sever, Ç.; Itterbeck, H.; Jacquet, M.; Jaffre, M.; Janoth, J.; Jansen, D. M.; Jönsson, L.; Johnson, D. P.; Jung, H.; Kander, M.; Kant, D.; Kathage, U.; Katzy, J.; Kaufmann, H. H.; Kaufmann, O.; Kausch, M.; Kazarian, S.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Köhne, J. H.; Kolanoski, H.; Kolya, S. D.; Korbel, V.; Kostka, P.; Kotelnikov, S. K.; Krämerkämper, T.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Küpper, A.; Küster, H.; Kuhlen, M.; Kurča, T.; Laforge, B.; Lahmann, R.; Landon, M. P. J.; Lange, W.; Langenegger, U.; Lebedev, A.; Lehmann, M.; Lehner, F.; Lemaitre, V.; Levonian, S.; Lindstroem, M.; Lipinski, J.; List, B.; Lobo, G.; Lubimov, V.; Lüke, D.; Lytkin, L.; Magnussen, N.; Mahlke-Krüger, H.; Malinovski, E.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martin, G.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Maxfield, S. J.; McMahon, S. J.; McMahon, T. R.; Mehta, A.; Meier, K.; Merkel, P.; Metlica, F.; Meyer, A.; Meyer, A.; Meyer, H.; Meyer, J.; Meyer, P.-O.; Migliori, A.; Mikocki, S.; Milstead, D.; Moeck, J.; Mohr, R.; Mohrdieck, S.; Moreau, F.; Morris, J. V.; Mroczko, E.; Müller, D.; Müller, K.; Murín, P.; Nagovizin, V.; Nahnhauer, R.; Naroska, B.; Naumann, Th.; Négri, I.; Newman, P. R.; Newton, D.; Nguyen, H. K.; Nicholls, T. C.; Niebergall, F.; Niebuhr, C.; Niedzballa, Ch.; Niggli, H.; Nix, O.; Nowak, G.; Nunnemann, T.; Oberlack, H.; Olsson, J. E.; Ozerov, D.; Palmen, P.; Panaro, E.; Panitch, A.; Pascaud, C.; Passaggio, S.; Patel, G. D.; Pawletta, H.; Peppel, E.; Perez, E.; Phillips, J. P.; Pieuchot, A.; Pitzl, D.; Pöschl, R.; Pope, G.; Povh, B.; Rabbertz, K.; Reimer, P.; Reisert, B.; Rick, H.; Riess, S.; Rizvi, E.; Robmann, P.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rusakov, S.; Rybicki, K.; Sankey, D. P. C.; Schacht, P.; Scheins, J.; Schiek, S.; Schleif, S.; Schleper, P.; von Schlippe, W.; Schmidt, D.; Schmidt, G.; Schoeffel, L.; Schöning, A.; Schröder, V.; Schultz-Coulon, H.-C.; Schwab, B.; Sefkow, F.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Sloan, T.; Smirnov, P.; Smith, M.; Solochenko, V.; Soloviev, Y.; Specka, A.; Spiekermann, J.; Spitzer, H.; Squinabol, F.; Steffen, P.; Steinberg, R.; Steinhart, J.; Stella, B.; Stellberger, A.; Stiewe, J.; Stolze, K.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Swart, M.; Tapprogge, S.; Taševský, M.; Tchernyshov, V.; Tchetchelnitski, S.; Theissen, J.; Thompson, G.; Thompson, P. D.; Tobien, N.; Todenhagen, R.; Truöl, P.; Tsipolitis, G.; Turnau, J.; Tzamariudaki, E.; Udluft, S.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; van Esch, P.; van Mechelen, P.; Vazdik, Y.; Villet, G.; Wacker, K.; Wallny, R.; Walter, T.; Waugh, B.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wengler, T.; Werner, M.; West, L. R.; Wiesand, S.; Wilksen, T.; Willard, S.; Winde, M.; Winter, G.-G.; Wittek, C.; Wittmann, E.; Wobisch, M.; Wollatz, H.; Wünsch, E.; Žáček, J.; Zálešák, J.; Zhang, Z.; Zhokin, A.; Zini, P.; Zomer, F.; Zsembery, J.; Zurnedden, M.

    1998-05-01

    Characteristics of hadron production in diffractive deep-inelastic positron-proton scattering are studied using data collected in 1994 by the H1 experiment at HERA. The following distributions are measured in the centre-of-mass frame of the photon dissociation system: the hadronic energy flow, the Feynman-x (xF) variable for charged particles, the squared transverse momentum of charged particles (pT*2), and the mean pT*2 as a function of xF. These distributions are compared with results in the γ*p centre-of-mass frame from inclusive deep-inelastic scattering in the fixed-target experiment EMC, and also with the predictions of several Monte Carlo calculations. The data are consistent with a picture in which the partonic structure of the diffractive exchange is dominated at low Q2 by hard gluons.

  17. The Symmetries of QCD

    ScienceCinema

    Chivukula, Sekhar

    2017-12-22

    The symmetries of a quantum field theory can be realized in a variety of ways. Symmetries can be realized explicitly, approximately, through spontaneous symmetry breaking or, via an anomaly, quantum effects can dynamically eliminate a symmetry of the theory that was present at the classical level.  Quantum Chromodynamics (QCD), the modern theory of the strong interactions, exemplify each of these possibilities. The interplay of these effects determine the spectrum of particles that we observe and, ultimately, account for 99% of the mass of ordinary matter. 

  18. Incomplete Thermalization from Trap-Induced Integrability Breaking: Lessons from Classical Hard Rods

    NASA Astrophysics Data System (ADS)

    Cao, Xiangyu; Bulchandani, Vir B.; Moore, Joel E.

    2018-04-01

    We study a one-dimensional gas of hard rods trapped in a harmonic potential, which breaks integrability of the hard-rod interaction in a nonuniform way. We explore the consequences of such broken integrability for the dynamics of a large number of particles and find three distinct regimes: initial, chaotic, and stationary. The initial regime is captured by an evolution equation for the phase-space distribution function. For any finite number of particles, this hydrodynamics breaks down and the dynamics becomes chaotic after a characteristic timescale determined by the interparticle distance and scattering length. The system fails to thermalize over the timescale studied (1 04 natural units), but the time-averaged ensemble is a stationary state of the hydrodynamic evolution. We close by discussing logical extensions of the results to similar systems of quantum particles.

  19. Domain walls and the C P anomaly in softly broken supersymmetric QCD

    NASA Astrophysics Data System (ADS)

    Draper, Patrick

    2018-04-01

    In ordinary QCD with light, degenerate, fundamental flavors, C P symmetry is spontaneously broken at θ =π , and domain wall solutions connecting the vacua can be constructed in chiral perturbation theory. In some cases the breaking of C P saturates a 't Hooft anomaly, and anomaly inflow requires nontrivial massless excitations on the domain walls. Analogously, C P can be spontaneously broken in supersymmetric QCD (SQCD) with light flavors and small soft breaking parameters. We study C P breaking and domain walls in softly broken SQCD with NfQCD, the supersymmetric case contains an extra light field, the η', which has interesting effects on the structure of the walls. Vanishing of the C P anomaly is associated with the existence of multiple domain wall trajectories through field space, including walls which support no nontrivial massless excitations. In cases with an anomaly such walls are forbidden, and their absence in the relevant SQCD theories can be seen directly from the geometry of the low energy field space. In the case Nf=N -1 , multiple approximately Bogomol'nyi-Prasad-Sommerfield walls connect the vacua. Corrections to their tensions can be computed at leading order in the soft breaking parameters, producing a phase diagram for the stable wall trajectory. We also comment on domain walls in the similar case of QCD with an adjoint and fundamental flavors, and on the impact of adding an axion in this theory.

  20. MC generator HARDPING: Nuclear effects in hard interactions of leptons and hadrons with nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berdnikov, Ya. A.; Ivanov, A. E.; Kim, V. T.

    2016-01-22

    Hadron and lepton production in hard interaction of high-energy particles with nuclei are considered in context of developing of Monte Carlo generator HARDPING (Hard Probe Interaction Generator). Such effects as energy losses and multiple re-scattering initial and produced hadrons and their constituents are taken into account. These effects are implemented in current version of generator HARDPING. Data of experiments HERMES on hadron production in lepton-nuclei collisions and E866 on muon pair production in proton-nuclei collisions were described with current version of generator HARDPING. Predictions from recent version HARPING 3.0 for lepton pairs production at proton beam energy I20 GeV aremore » presented.« less