Langevin simulation of the full QCD hadron mass spectrum on a lattice
Fukugita, M.; Oyanagi, Y.; Ukawa, A.
1987-08-01
Langevin simulation of quantum chromodynamics (QCD) on a lattice is carried out fully taking into account the effect of the quark vacuum polarization. It is shown that the Langevin method works well for full QCD and that simulation on a large lattice is practically feasible. A careful study is made of systematic errors arising from a finite Langevin time-step size. The magnitude of the error is found to be significant for light quarks, but the well-controlled extrapolation allows a separation of the values at the vanishing time-step size. As another important ingredient for the feasibility of Langevin simulation the advantage of the matrix inversion algorithm of the preconditioned conjugate residual method is described, as compared with various other algorithms. The results of a hadron-mass-spectrum calculation on a 9/sup 3/ x 18 lattice at ..beta.. = 5.5 with the Wilson quark action having two flavors are presented. It is shown that the contribution of vacuum quark loops significantly modifies the hadron masses in lattice units, but that the dominant part can be absorbed into a shift of the gauge coupling constant at least for the ground-state hadrons. Some suggestion is also presented for the physical effect of vacuum quark loops for excited hadrons.
Quenched hadron spectrum of QCD
Kim, Seyong.
1992-12-01
We calculate hadron spectrum of quantum chromodynamics without dynamical fermions on a 32[sup 3] [times] 64 lattice volume at [beta] = 6.5. Using two different wall sources of staggered fermion whose mass is 0.01, 0.005 and 0.0025 under the background gauge configurations, we extract local light hadron masses and the [triangle] masses and compare these hadron masses with those from experiments. The numerical simulation is executed on the Intel Touchstone Delta computer. We employ multihit metropolis algorithm with over-relaxation method steps to update gauge field configuration and gauge field configuration are collected at every 1000 sweeps. After the gauge field configuration is fixed to Coulomb gauge, the conjugate gradient method is used for Dirac matrix inversion.
Quenched hadron spectrum of QCD
Kim, Seyong
1992-12-01
We calculate hadron spectrum of quantum chromodynamics without dynamical fermions on a 32{sup 3} {times} 64 lattice volume at {beta} = 6.5. Using two different wall sources of staggered fermion whose mass is 0.01, 0.005 and 0.0025 under the background gauge configurations, we extract local light hadron masses and the {triangle} masses and compare these hadron masses with those from experiments. The numerical simulation is executed on the Intel Touchstone Delta computer. We employ multihit metropolis algorithm with over-relaxation method steps to update gauge field configuration and gauge field configuration are collected at every 1000 sweeps. After the gauge field configuration is fixed to Coulomb gauge, the conjugate gradient method is used for Dirac matrix inversion.
Recent results on the meson and baryon spectrum from lattice QCD
NASA Astrophysics Data System (ADS)
Mohler, Daniel
2017-03-01
Recent lattice results on the meson and baryon spectrum with a focus on the determination of hadronic resonance masses and widths using a combined basis of single-hadron and hadron-hadron interpolating fields are reviewed. These mostly exploratory calculations differ from traditional lattice QCD spectrum calculations for states stable under QCD, where calculations with a full uncertainty estimate are already routinely performed. Progress and challenges in these calculations are highlighted.
Finite size effects on the QCD spectrum revisited
Gottlieb, S. . Dept. of Physics Brookhaven National Lab., Upton, NY )
1992-01-01
We have continued our study of finite size effects in the QCD spectrum on lattices ranging in size from 8[sup 3][times]24 to 16[sup 3][times]24. We have increased our statistics for quark mass am[sub q]=0.025 for the smallest lattice size. In addition, we have studied quark mass 0.01225 for lattice sizes 12[sup 3][times]24. These lattice sizes correspond to a box 1.8-3.6 fm on a side when the rho mass at zero quark mass is used to set the scale. We discuss the nucleon to rho mass ratio at a smaller value of m[pi]/m[rho] than previously studied with two dynamical flavors.
Finite size effects on the QCD spectrum revisited
Gottlieb, S. |; MIMD Lattice Calculation Collaboration
1992-12-31
We have continued our study of finite size effects in the QCD spectrum on lattices ranging in size from 8{sup 3}{times}24 to 16{sup 3}{times}24. We have increased our statistics for quark mass am{sub q}=0.025 for the smallest lattice size. In addition, we have studied quark mass 0.01225 for lattice sizes 12{sup 3}{times}24. These lattice sizes correspond to a box 1.8-3.6 fm on a side when the rho mass at zero quark mass is used to set the scale. We discuss the nucleon to rho mass ratio at a smaller value of m{pi}/m{rho} than previously studied with two dynamical flavors.
D. J. Antonio; T. Blum; K. C. Bowler; P. A. Boyle; N. H. Christ; S. D. Cohen; M. A. Clark; C. Dawson; A. Hart; K. Hashimoto; T. Izubuchi; B. Joó; C. Jung; A. D. Kennedy; R. D. Kenway; S. Li; H. W. Lin; M.F. Lin; R. D. Mawhinney; C.M. Maynard; J. Noaki; S. Ohta; S. Sasaki; A. Soni; R. J. Tweedie; A. Yamaguchi
2007-06-01
We present results for the static interquark potential, light meson and baryon masses, and light pseudoscalar meson decay constants obtained from simulations of domain wall QCD with one dynamical flavour approximating the $s$ quark, and two degenerate dynamical flavours with input bare masses ranging from $m_s$ to $m_s/4$ approximating the $u$ and $d$ quarks. We compare these quantities obtained using the Iwasaki and DBW2 improved gauge actions, and actions with larger rectangle coefficients, on $16^3\\times32$ lattices. We seek parameter values at which both the chiral symmetry breaking residual mass due to the finite lattice extent in the fifth dimension and the Monte Carlo time history for topological charge are acceptable for this set of quark masses at lattice spacings above 0.1 fm. We find that the Iwasaki gauge action is best, demonstrating the feasibility of using QCDOC to generate ensembles which are good representations of the QCD path integral on lattices of up to 3 fm in spatial extent with lattice spacings in the range 0.09-0.13 fm. Despite large residual masses and a limited number of sea quark mass values with which to perform chiral extrapolations, our results for light hadronic physics scale and agree with experimental measurements within our statistical uncertainties.
Toward the excited isoscalar meson spectrum from lattice QCD
Dudek, Jozef J.; Edwards, Robert G.; Guo, Peng; ...
2013-11-18
We report on the extraction of an excited spectrum of isoscalar mesons using lattice QCD. Calculations on several lattice volumes are performed with a range of light quark masses corresponding to pion masses down to about ~400 MeV. The distillation method enables us to evaluate the required disconnected contributions with high statistical precision for a large number of meson interpolating fields. We find relatively little mixing between light and strange in most JPC channels; one notable exception is the pseudoscalar sector where the approximate SU(3)F octet, singlet structure of the η, η' is reproduced. We extract exotic JPC states, identifiedmore » as hybrid mesons in which an excited gluonic field is coupled to a color-octet qqbar pair, along with non-exotic hybrid mesons embedded in a qq¯-like spectrum.« less
Toward the excited isoscalar meson spectrum from lattice QCD
Dudek, Jozef J.; Edwards, Robert G.; Guo, Peng; Thomas, Christopher E.
2013-11-18
We report on the extraction of an excited spectrum of isoscalar mesons using lattice QCD. Calculations on several lattice volumes are performed with a range of light quark masses corresponding to pion masses down to about ~400 MeV. The distillation method enables us to evaluate the required disconnected contributions with high statistical precision for a large number of meson interpolating fields. We find relatively little mixing between light and strange in most J^{PC} channels; one notable exception is the pseudoscalar sector where the approximate SU(3)_{F} octet, singlet structure of the η, η' is reproduced. We extract exotic J^{PC} states, identified as hybrid mesons in which an excited gluonic field is coupled to a color-octet qqbar pair, along with non-exotic hybrid mesons embedded in a qq¯-like spectrum.
Toward the excited isoscalar meson spectrum from lattice QCD
NASA Astrophysics Data System (ADS)
Dudek, Jozef J.; Edwards, Robert G.; Guo, Peng; Thomas, Christopher E.
2013-11-01
We report on the extraction of an excited spectrum of isoscalar mesons using lattice QCD. Calculations on several lattice volumes are performed with a range of light quark masses corresponding to pion masses down to ˜400MeV. The distillation method enables us to evaluate the required disconnected contributions with high statistical precision for a large number of meson interpolating fields. We find relatively little mixing between (1)/(2)(uu¯+dd¯) and ss¯ in most JPC channels; one notable exception is the pseudoscalar sector where the approximate SU(3)F octet, singlet structure of the η, η' is reproduced. We extract exotic JPC states, identified as hybrid mesons in which an excited gluonic field is coupled to a color-octet qq¯ pair, along with nonexotic hybrid mesons embedded in a qq¯-like spectrum.
Aoki, S.; Umemura, T.; Fukugita, M.; Ishizuka, N.; Mino, H.; Okawa, M.; Ukawa, A. Yukawa Institute, Kyoto University, Kyoto 606 Faculty of Engineering, Yamanashi University, Kofu 404 National Laboratory for High Energy Physics , Tsukuba, Ibaraki 305 )
1994-07-01
A study of finite-size effects is carried out for hadron masses in the quenched simulation of lattice QCD using the Kogut-Susskind quark action. It is found that finite-size effects for quenched QCD are much smaller than those for full QCD, when hadron masses for the two cases are compared at the same physical lattice size and lattice spacing. Based on an extensive study of the boundary condition dependence of hadron masses we ascribe the origin of the difference to a partial cancellation of the finite-size effects among the [ital Z](3)-related gauge configurations in quenched QCD; such a cancellation does not take place in full QCD due to [ital Z](3) breaking effects of dynamical quarks. However, this does not mean finite-size errors are negligible in quenched QCD for lattice sizes of 2 to 3 fm used in current simulations; a still significant finite-size shift of hadron masses, especially of the nucleon mass, would pose a serious hindrance to obtaining the hadron mass spectrum at the few percent level aimed at in current quenched QCD simulations.
Toward the excited meson spectrum of dynamical QCD
Dudek, Jozef J.; Edwards, Robert G.; Peardon, Michael J.; Richards, David G.; Thomas, Christopher E.
2010-08-01
We present a detailed description of the extraction of the highly excited isovector meson spectrum on dynamical anisotropic lattices using a new quark-field construction algorithm and a large variational basis of operators. With careful operator construction, the combination of these techniques is used to identify the continuum spin of extracted states reliably, overcoming the reduced rotational symmetry of the cubic lattice. Excited states, states with exotic quantum numbers (0+-, 1-+ and 2+-) and states of high spin are resolved, including, for the first time in a lattice QCD calculation, spin-four states. The determinations of the spectrum of isovector mesons and kaons are performed on dynamical lattices with two volumes and with pion masses down to ~ 400 MeV, with statistical precision typically at or below 1% even for highly excited states.
Dijet invariant mass spectrum at CDF
Incagli, M. )
1992-11-01
A summary of QCD results obtained using the dijet invariant mass spectrum d[sigma]/dM[sub jj] is presented. The spectrum is compared with QCD Leader Order and with the recently published Next to Leading Order calculations. A limit on the scale of an eventual quark compositness can be set at [Lambda]=1300 GeV. Limits on the production of new particles, decaying hadronically, are presented, too. Axigluons are ruled out in the mass range [240, 640] GeV, for a theory with N=10 strong interacting fermions, and in the two windows [260, 280] GeV and [450, 550] GeV, for N=20.
Anomalous mass dimension in multiflavor QCD
NASA Astrophysics Data System (ADS)
Doff, A.; Natale, A. A.
2016-10-01
Models of strongly interacting theories with a large mass anomalous dimension (γm) provide an interesting possibility for the dynamical origin of the electroweak symmetry breaking. A laboratory for these models is QCD with many flavors, which may present a nontrivial fixed point associated to a conformal region. Studies based on conformal field theories and on Schwinger-Dyson equations have suggested the existence of bounds on the mass anomalous dimension at the fixed points of these models. In this note we discuss γm values of multiflavor QCD exhibiting a nontrivial fixed point and affected by relevant four-fermion interactions.
Alexandru, Andrei; Horváth, Ivan
2016-01-22
The validity of recently proposed equivalence between valence spontaneous chiral symmetry breaking (vSChSB) and chiral polarization of low energy Dirac spectrum (ChP) in SU(3) gauge theory, is examined for the case of twelve mass–degenerate fundamental quark flavors. We find that the vSChSB–ChP correspondence holds for regularized systems studied. Moreover, our results suggest that vSChSB occurs in two qualitatively different circumstances: there is a quark mass m{sub c} such that for m > m{sub c} the mode condensing Dirac spectrum exhibits standard monotonically increasing density, while for m{sub ch} < m < m{sub c} the peak around zero separates from the bulk of the spectrum, with density showing a pronounced depletion at intermediate scales. Valence chiral symmetry restoration may occur at yet smaller masses m < m{sub ch}, but this has not yet been seen by overlap valence probe, leaving the m{sub ch} = 0 possibility open. The latter option could place massless N{sub f}=12 theory outside of conformal window. Anomalous behavior of overlap Dirac spectrum for m{sub ch} < m < m{sub c} is qualitatively similar to one observed previously in zero and few–flavor theories as an effect of thermal agitation.
On the low energy end of the QCD spectrum
NASA Astrophysics Data System (ADS)
Leutwyler, H.
2009-01-01
The experimental results on the K and K3π decays, those on pionic atoms and recent work on the lattice confirm the predictions obtained on the basis of χPT. As a result, the energy gap of QCD is now understood very well and there is no doubt that the expansion in powers of the two lightest quark masses does represent a very useful tool for the analysis of the low energy structure. Concerning the expansion in powers of m, however, the current situation leaves much to be desired. While some of the lattice results indicate, for instance, that the violations of the Okubo-Iizuka-Zweig rule in the quark condensate and in the decay constants are rather modest, others point in the opposite direction. In view of the remarkable progress being made with the numerical simulation of light quarks, I am confident that the dust will settle soon, so that the effective coupling constants that govern the dependence of the various quantities of physical interest on m can reliably be determined, to next-to-next-to-leading order of the chiral expansion. The range of validity of χPT can be extended by means of dispersive methods. The properties of the physical states occurring in the spectrum of QCD below KK¯ threshold can reliably be investigated on this basis. In particular, as shown only rather recently, general principles of quantum field theory lead to an exact formula that expresses the mass and width of resonances in terms of observable quantities. The formula removes the ambiguities inherent in the analytic continuation from the real axis into the complex plane, which plagued previous determinations of the pole positions of broad resonances. The application to the ππ partial wave amplitude with I=ℓ=0 shows that there is a resonance in this channel, at M-i/2Γ≃441-i272 MeV: the lowest resonance of QCD carries the quantum numbers of the vacuum.
Nonperturbative Quark Mass and Coupling Renormalization in Two Flavor QCD
NASA Astrophysics Data System (ADS)
Blum, Thomas Charles
1995-01-01
Nonperturbative bare quark mass and coupling renormalization is studied for two flavor quantum chromodynamics (QCD). In particular, the beta function for the case of Kogut-Susskind quarks is determined over the parameter space of existing lattice (spectrum) simulations from the existing spectrum data. This beta function is combined with a series of finite temperature lattice simulations (N_{t} = 4 ) to calculate the interaction measure, varepsilon-3p, which together with the pressure yields the thermal equation of state. A method of computing the asymmetry, or Karsch, coefficients, is also given. These coefficients give the parameter renormalizations for anisotropic lattices. However, for the three points in parameter space that we studied (one using Wilson fermions and two using Kogut-Susskind fermions), a clear determination of the asymmetry coefficients could not be made because of the remarkable fact that ratios of masses measured in different directions on lattices with anisotropic couplings were Euclidean invariant.
Determination of the chiral condensate from QCD Dirac spectrum on the lattice
Fukaya, H.; Onogi, T.; Aoki, S.; Chiu, T. W.; Hashimoto, S.; Kaneko, T.; Yamada, N.; Noaki, J.
2011-04-01
We calculate the chiral condensate of QCD with 2, 2+1, and 3 flavors of sea quarks. Lattice QCD simulations are performed employing dynamical overlap fermions with up- and down-quark masses covering a range between 3 and 100 MeV. On L{approx}1.8-1.9 fm lattices at a lattice spacing {approx}0.11 fm, we calculate the eigenvalue spectrum of the overlap-Dirac operator. By matching the lattice data with the analytical prediction from chiral perturbation theory at the next-to-leading order, the chiral condensate in the massless limit of up and down quarks is determined.
The Hadronic Spectrum of a Holographic Dual of QCD
de T'eramond, G.
2005-01-04
We compute the spectrum of light hadrons in a holographic dual of QCD defined on AdS{sub 5} x S{sup 5} which has conformal behavior at short distances and confinement at large interquark separation. Specific hadrons are identified by the correspondence of string modes with the dimension of the interpolating operator of the hadron's valence Fock state. Higher orbital excitations are matched quanta to quanta with fluctuations about the AdS background. Since only one parameter, the QCD scale {Lambda}{sub QCD}, is used, the agreement with the pattern of physical states is remarkable. In particular, the ratio of Delta to nucleon trajectories is determined by the ratio of zeroes of Bessel functions.
Hadronic Spectrum of a Holographic Dual of QCD
Teramond, Guy F. de; Brodsky, Stanley J.
2005-05-27
We compute the spectrum of light hadrons in a holographic dual of QCD defined on AdS{sub 5}xS{sup 5} which has conformal behavior at short distances and confinement at large interquark separation. Specific hadrons are identified by the correspondence of string modes with the dimension of the interpolating operator of the hadron's valence Fock state. Higher orbital excitations are matched quanta to quanta with fluctuations about the AdS background. Since only one parameter, the QCD scale {lambda}{sub QCD}, is used, the agreement with the pattern of physical states is remarkable. In particular, the ratio of delta to nucleon trajectories is determined by the ratio of zeros of Bessel functions.
Twisted mass QCD for weak matrix elements
NASA Astrophysics Data System (ADS)
Pena, Carlos
2006-12-01
I report on the application of tmQCD techniques to the computation of hadronic matrix elements of four-fermion operators. Emphasis is put on the computation of BK in quenched QCD performed by the ALPHA Collaboration. The extension of tmQCD strategies to the study of neutral B- meson mixing is briefly discussed. Finally, some remarks are made concerning proposals to apply tmQCD to the computation of K → ππ amplitudes.
Domain wall QCD with physical quark masses
NASA Astrophysics Data System (ADS)
Blum, T.; Boyle, P. A.; Christ, N. H.; Frison, J.; Garron, N.; Hudspith, R. J.; Izubuchi, T.; Janowski, T.; Jung, C.; Jüttner, A.; Kelly, C.; Kenway, R. D.; Lehner, C.; Marinkovic, M.; Mawhinney, R. D.; McGlynn, G.; Murphy, D. J.; Ohta, S.; Portelli, A.; Sachrajda, C. T.; Soni, A.; Rbc; Ukqcd Collaborations
2016-04-01
We present results for several light hadronic quantities (fπ , fK, BK, mu d, ms, t01 /2, w0) obtained from simulations of 2 +1 flavor domain wall lattice QCD with large physical volumes and nearly physical pion masses at two lattice spacings. We perform a short, O (3 )%, extrapolation in pion mass to the physical values by combining our new data in a simultaneous chiral/continuum "global fit" with a number of other ensembles with heavier pion masses. We use the physical values of mπ, mK and mΩ to determine the two quark masses and the scale—all other quantities are outputs from our simulations. We obtain results with subpercent statistical errors and negligible chiral and finite-volume systematics for these light hadronic quantities, including fπ=130.2 (9 ) MeV ; fK=155.5 (8 ) MeV ; the average up/down quark mass and strange quark mass in the MS ¯ scheme at 3 GeV, 2.997(49) and 81.64(1.17) MeV respectively; and the neutral kaon mixing parameter, BK, in the renormalization group invariant scheme, 0.750(15) and the MS ¯ scheme at 3 GeV, 0.530(11).
Charmonium excited state spectrum in lattice QCD
Jozef Dudek; Robert Edwards; Nilmani Mathur; David Richards
2008-02-01
Working with a large basis of covariant derivative-based meson interpolating fields we demonstrate the feasibility of reliably extracting multiple excited states using a variational method. The study is performed on quenched anisotropic lattices with clover quarks at the charm mass. We demonstrate how a knowledge of the continuum limit of a lattice interpolating field can give additional spin-assignment information, even at a single lattice spacing, via the overlap factors of interpolating field and state. Excited state masses are systematically high with respect to quark potential model predictions and, where they exist, experimental states. We conclude that this is most likely a result of the quenched approximation.
Instanton contributions to the low-lying hadron mass spectrum
NASA Astrophysics Data System (ADS)
Thomas, Samuel D.; Kamleh, Waseem; Leinweber, Derek B.
2015-11-01
The role of instanton-like objects in the QCD vacuum on the mass spectrum of low-lying light hadrons is explored in lattice QCD. Using overimproved stout-link smearing, tuned to preserve instanton-like objects in the QCD vacuum, the evolution of the mass spectrum under smearing is examined. The calculation is performed using a 203×40 dynamical fat-link-irrelevant-clover (FLIC) fermion action ensemble with lattice spacing 0.126 fm. Through the consideration of a range of pion masses, the effect of the vacuum instanton content is compared at a common pion mass. While the qualitative features of ground-state hadrons are preserved on instanton-dominated configurations, the excitation spectrum experiences significant changes. The underlying physics revealed shows little similarity to the direct-instanton-interaction predictions of the instanton liquid model.
[eta][prime] meson mass in lattice QCD
Kuramashi, Y.; Fukugita, M.; Mino, H.; Okawa, M.; Ukawa, A. , Tsukuba, Ibaraki 305 Yukawa Institute, Kyoto University, Kyoto 606 Faculty of Engineering, Yamanashi University, Kofu 404 Institute of Physics, University of Tsukuba, Tsukuba, Ibaraki 305 )
1994-05-30
It is shown that the mass difference between [eta][prime] and pseudoscalar octet mesons can be calculated in quenched lattice QCD with the aid of a variant wall source technique. The estimated mass difference increases as the quark mass decreases, and its value extrapolated to the zero-quark-mass limit, [ital m][sub [eta][prime
Light-quark masses from unquenched lattice QCD
Ishikawa, T.; Aoki, S.; Fukugita, M.; Hashimoto, S.; Kaneko, T.; Yamada, N.; Ishikawa, K-I.; Okawa, M.; Ishizuka, N.; Kuramashi, Y.; Taniguchi, Y.; Ukawa, A.; Yoshie, T.; Iwasaki, Y.; Kanaya, K.; Tsutsui, N.
2008-07-01
We calculate the light meson spectrum and the light quark masses by lattice QCD simulation, treating all light quarks dynamically and employing the Iwasaki gluon action and the nonperturbatively O(a)-improved Wilson quark action. The calculations are made at the squared lattice spacings at an equal distance a{sup 2}{approx_equal}0.005, 0.01, and 0.015 fm{sup 2}, and the continuum limit is taken assuming an O(a{sup 2}) discretization error. The light meson spectrum is consistent with experiment. The up, down, and strange quark masses in the MS scheme at 2 GeV are m=(m{sub u}+m{sub d})/2=3.55{sub -0.28}{sup +0.65} MeV and m{sub s}=90.1{sub -6.1}{sup +17.2} MeV where the error includes statistical and all systematic errors added in quadrature. These values contain the previous estimates obtained with the dynamical u and d quarks within the error.
{upsilon} spectrum and m{sub b} from full lattice QCD
Gray, A.; Gulez, E.; Shigemitsu, J.; Allison, I.; Davies, C.T.H.; Lepage, G.P.; Wingate, M.
2005-11-01
We show results for the {upsilon} spectrum calculated in lattice QCD including for the first time vacuum polarization effects for light u and d quarks as well as s quarks. We use gluon field configurations generated by the MILC collaboration. The calculations compare the results for a variety of u and d quark masses, as well as making a comparison to quenched results (in which quark vacuum polarization is ignored) and results with only u and d quarks. The b quarks in the {upsilon} are treated in lattice Nonrelativistic QCD through NLO in an expansion in the velocity of the b quark. We concentrate on accurate results for orbital and radial splittings where we see clear agreement with experiment once u, d and s quark vacuum polarization effects are included. This now allows a consistent determination of the parameters of QCD. We demonstrate this consistency through the agreement of the {upsilon} and B spectrum using the same lattice bare b quark mass. A one-loop matching to continuum QCD gives a value for the b quark mass in full lattice QCD for the first time. We obtain m{sub b}{sup MS}(m{sub b}{sup MS})=4.4(3) GeV. We are able to give physical results for the heavy quark potential parameters, r{sub 0}=0.469(7) fm and r{sub 1}=0.321(5) fm. Results for the fine structure in the spectrum and the {upsilon} leptonic width are also presented. We predict the {upsilon}-{eta}{sub b} splitting to be 61(14) MeV, the {upsilon}{sup '}-{eta}{sub b}{sup '} splitting as 30(19) MeV and the splitting between the h{sub b} and the spin-average of the {chi}{sub b} states to be less than 6 MeV. Improvements to these calculations that will be made in the near future are discussed.
Diquark mass differences from unquenched lattice QCD
NASA Astrophysics Data System (ADS)
Bi, Yujiang; Cai, Hao; Chen, Ying; Gong, Ming; Liu, Zhaofeng; Qiao, Hao-Xue; Yang, Yi-Bo
2016-07-01
We calculate diquark correlation functions in the Landau gauge on the lattice using overlap valence quarks and 2+1-flavor domain wall fermion configurations. Quark masses are extracted from the scalar part of quark propagators in the Landau gauge. The scalar diquark quark mass difference and axial vector scalar diquark mass difference are obtained for diquarks composed of two light quarks and of a strange and a light quark. The light sea quark mass dependence of the results is examined. Two lattice spacings are used to check the discretization effects. The coarse and fine lattices are of sizes 243 × 64 and 323 × 64 with inverse spacings 1/a = 1.75(4) GeV and 2.33(5) GeV, respectively. Supported by National Science Foundation of China (11575197, 10835002, 11405178, 11335001), joint funds of NSFC (U1232109), MG and ZL are partially supported by the Youth Innovation Promotion Association of CAS (2015013, 2011013), YC and ZL acknowledge support of NSFC and DFG (CRC110)
Excited-state hadron masses from lattice QCD
NASA Astrophysics Data System (ADS)
Morningstar, C.; Bulava, J.; Foley, J.; Jhang, Y. C.; J, K. J.; Lenkner, D.; Wong, C. H.
2012-09-01
Progress in computing the spectrum of excited baryons and mesons in lattice QCD is described. Large sets of spatially-extended hadron operators are used. The need for multi-hadron operators in addition to single-hadron operators is emphasized, necessitating the use of a new stochastic method of treating the low-lying modes of quark propagation which exploits Laplacian Heaviside quark-field smearing. A new glueball operator is tested and computing the mixing of this glueball operator with a quark-antiquark operator and multiple two-pion operators is shown to be feasible.
Fundamental Interactions, Nuclear Masses, Astrophysics, and QCD
Gagliardi, C. A.
2008-01-24
During his long and varied career, Robert Tribble has made important contributions in many areas of nuclear physics. He has set new limits on the existence of second-class currents, lepton-flavor violation, and right-handed interactions. He optimized the use of the ({sup 4}He,{sup 8}He) reaction to determine nuclear masses and study charge-dependent effects in nuclei. He has developed a new indirect procedure to determine astrophysical reaction rates and applied it to study important nuclear reactions that occur in our sun, in massive stars, and in novae. He has explored anti-quark distributions in nucleons and nuclei, and the polarization of gluons in the nucleon. A brief overview of Bob Tribble's many accomplishments is presented.
KL-KS Mass Difference from Lattice QCD
NASA Astrophysics Data System (ADS)
Bai, Z.; Christ, N. H.; Izubuchi, T.; Sachrajda, C. T.; Soni, A.; Yu, J.
2014-09-01
We report on the first complete calculation of the KL-KS mass difference, ΔMK, using lattice QCD. The calculation is performed on a 2+1 flavor, domain wall fermion ensemble with a 330 MeV pion mass and a 575 MeV kaon mass. We use a quenched charm quark with a 949 MeV mass to implement Glashow-Iliopoulos-Maiani cancellation. For these heavier-than-physical particle masses, we obtain ΔMK=3.19(41)(96)×10-12 MeV, quite similar to the experimental value. Here the first error is statistical, and the second is an estimate of the systematic discretization error. An interesting aspect of this calculation is the importance of the disconnected diagrams, a dramatic failure of the Okubo-Zweig-Iizuka rule.
Interquark potential with finite quark mass from lattice QCD.
Kawanai, Taichi; Sasaki, Shoichi
2011-08-26
We present an investigation of the interquark potential determined from the q ̄q Bethe-Salpeter (BS) amplitude for heavy quarkonia in lattice QCD. The q ̄q potential at finite quark mass m(q) can be calculated from the equal-time and Coulomb gauge BS amplitude through the effective Schrödinger equation. The definition of the potential itself requires information about a kinetic mass of the quark. We then propose a self-consistent determination of the quark kinetic mass on the same footing. To verify the proposed method, we perform quenched lattice QCD simulations with a relativistic heavy-quark action at a lattice cutoff of 1/a≈2.1 GeV in a range 1.0≤m(q)≤3.6 GeV. Our numerical results show that the q ̄q potential in the m(q)→∞ limit is fairly consistent with the conventional one obtained from Wilson loops. The quark-mass dependence of the q ̄q potential and the spin-spin potential are also examined.
Interquark Potential with Finite Quark Mass from Lattice QCD
Kawanai, Taichi; Sasaki, Shoichi
2011-08-26
We present an investigation of the interquark potential determined from the qq Bethe-Salpeter (BS) amplitude for heavy quarkonia in lattice QCD. The qq potential at finite quark mass m{sub q} can be calculated from the equal-time and Coulomb gauge BS amplitude through the effective Schroedinger equation. The definition of the potential itself requires information about a kinetic mass of the quark. We then propose a self-consistent determination of the quark kinetic mass on the same footing. To verify the proposed method, we perform quenched lattice QCD simulations with a relativistic heavy-quark action at a lattice cutoff of 1/a{approx_equal}2.1 GeV in a range 1.0{<=}m{sub q}{<=}3.6 GeV. Our numerical results show that the qq potential in the m{sub q}{yields}{infinity} limit is fairly consistent with the conventional one obtained from Wilson loops. The quark-mass dependence of the qq potential and the spin-spin potential are also examined.
Light hadron spectroscopy in two-flavor QCD with small sea quark masses
Namekawa, Y.; Aoki, S.; Iwasaki, Y.; Kanaya, K.; Fukugita, M.; Ishikawa, K.-I.; Ishizuka, N.; Ukawa, A.; Yoshie, T.; Kaneko, T.; Kuramashi, Y.; Lesk, V. I.; Umeda, T.; Okawa, M.
2004-10-01
We extend the study of the light hadron spectrum and the quark mass in two-flavor QCD to smaller sea quark mass, corresponding to m{sub PS}/m{sub V}=0.60-0.35. Numerical simulations are carried out using the RG-improved gauge action and the meanfield-improved clover quark action at {beta}=1.8 (a=0.2 fm from {rho} meson mass). We observe that the light hadron spectrum for small sea quark mass does not follow the expectation from chiral extrapolations with quadratic functions made from the region of m{sub PS}/m{sub V}=0.80-0.55. Whereas fits with either polynomial or continuum chiral perturbation theory (ChPT) fail, the Wilson ChPT (WChPT) that includes a{sup 2} effects associated with explicit chiral symmetry breaking successfully fits the whole data: In particular, WChPT correctly predicts the light quark mass spectrum from simulations for medium heavy quark mass, such as m{sub PS}/m{sub V} > or approx. 0.5. Reanalyzing the previous data with the use of WChPT, we find the mean up and down quark mass being smaller than the previous result from quadratic chiral extrapolation by approximately 10%, m{sub ud}{sup MS-bar}({mu}=2 GeV)=3.11(17) [MeV] in the continuum limit.
Singly and Doubly Charmed $J=1/2$ Baryon Spectrum from Lattice QCD
Liuming Liu; Lin, Huey-Wen; Orginos, Kostas; Walker-Loud, Andre
2010-05-01
We compute the masses of the singly and doubly charmed baryons in full QCD using the relativistic Fermilab action for the charm quark. For the light quarks we use domain-wall fermions in the valence sector and improved Kogut-Susskind sea quarks. We use the low-lying charmonium spectrum to tune our heavy-quark action and as a guide to understanding the discretization errors associated with the heavy quark. Our results are in good agreement with experiment within our systematicss, except for the spin-1/2 $\\Xi_{cc}$, for which we predict the isospin averaged mass to be $M_{\\Xi_{cc}} = 3665 \\pm17 \\pm14\\, {}^{+0}_{-35}$~{MeV} (here the first uncertainty is statistical, the second systematic and the third an estimate of lattice discretization errors). In addition, we predict the splitting of the (isospin averaged) spin-1/2 $\\O_{cc}$ with the $\\Xi_{cc}$ to be $M_{\\O_{cc}} - M_{\\Xi_{cc}} = 98 \\pm9 \\pm22$~{MeV} (in this mass splitting, the leading discretization errors cancel). This corresponds to a prediction of $M_{\\O_{cc}} = 3763\\pm9\\pm44\\, {}^{+0}_{-35}$~{MeV}.
QCD phase transition with chiral quarks and physical quark masses.
Bhattacharya, Tanmoy; Buchoff, Michael I; Christ, Norman H; Ding, H-T; Gupta, Rajan; Jung, Chulwoo; Karsch, F; Lin, Zhongjie; Mawhinney, R D; McGlynn, Greg; Mukherjee, Swagato; Murphy, David; Petreczky, P; Renfrew, Dwight; Schroeder, Chris; Soltz, R A; Vranas, P M; Yin, Hantao
2014-08-22
We report on the first lattice calculation of the QCD phase transition using chiral fermions with physical quark masses. This calculation uses 2+1 quark flavors, spatial volumes between (4 fm)(3) and (11 fm)(3) and temperatures between 139 and 196 MeV. Each temperature is calculated at a single lattice spacing corresponding to a temporal Euclidean extent of N(t) = 8. The disconnected chiral susceptibility, χ(disc) shows a pronounced peak whose position and height depend sensitively on the quark mass. We find no metastability near the peak and a peak height which does not change when a 5 fm spatial extent is increased to 10 fm. Each result is strong evidence that the QCD "phase transition" is not first order but a continuous crossover for m(π) = 135 MeV. The peak location determines a pseudocritical temperature T(c) = 155(1)(8) MeV, in agreement with earlier staggered fermion results. However, the peak height is 50% greater than that suggested by previous staggered results. Chiral SU(2)(L) × SU(2)(R) symmetry is fully restored above 164 MeV, but anomalous U(1)(A) symmetry breaking is nonzero above T(c) and vanishes as T is increased to 196 MeV.
Pion masses in two-flavor QCD with η condensation.
Aoki, Sinya; Creutz, Michael
2014-04-11
We investigate some aspects of two-flavor QCD with mu≠md at low energy, using the leading order chiral perturbation theory including anomaly effects. While nothing special happens at mu=0 for the fixed md≠0, the neutral pion mass becomes zero at two critical values of mu, between which the neutral pion field condenses, leading to a spontaneously CP broken phase, the so-called Dashen phase. We also show that the "topological susceptibility" in the chiral perturbation theory diverges at these two critical points. We briefly discuss a possibility that mu=0 can be defined by the vanishing the "topological susceptibility. We finally analyze the case of mu=md=m with θ=π, which is equivalent to mu=-md=-m with θ=0 by the chiral rotation. In this case, the η condensation occurs at small m, violating the CP symmetry spontaneously. Deep in the η condensation phase, three pions become Nambu-Goldstone bosons, but they show unorthodox behavior at small m that mπ2=O(m2), which, however, is shown to be consistent with the chiral Ward-Takahashi identities.
Prediction of the bottomonium D-wave spectrum from full lattice QCD.
Daldrop, J O; Davies, C T H; Dowdall, R J
2012-03-09
We calculate the full spectrum of D-wave states in the Υ system in lattice QCD for the first time, by using an improved version of nonrelativistic QCD on coarse and fine "second-generation" gluon field configurations from the MILC Collaboration that include the effect of up, down, strange, and charm quarks in the sea. By taking the 2S-1S splitting to set the lattice spacing, we determine the (3)D2-1S splitting to 2.3% and find agreement with experiment. Our prediction of the fine structure relative to the (3)D2 gives the (3)D3 at 10.181(5) GeV and the (3)D1 at 10.147(6) GeV. We also discuss the overlap of (3)D1 operators with (3)S1 states.
Top quark mass determination from the energy peaks of b-jets and B-hadrons at NLO QCD
NASA Astrophysics Data System (ADS)
Agashe, Kaustubh; Franceschini, Roberto; Kim, Doojin; Schulze, Markus
2016-11-01
We analyze the energy spectra of single b-jets and B-hadrons resulting from the production and decay of top quarks within the SM at the LHC at the NLO QCD. For both hadrons and jets, we calculate the correlation of the peak of the spectrum with the top quark mass, considering the "energy peak" as an observable to determine the top quark mass. Such a method is motivated by our previous work where we argued that this approach can have reduced sensitivity to the details of the production mechanism of the top quark, whether it concerns higher-order QCD effects or new physics contributions. For a 1% jet energy scale uncertainty, the top quark mass can then be extracted using the energy peak of b-jets with an error ± (1.2 ({exp}) + 0.6({th})) { GeV}. In view of the dominant jet energy scale uncertainty in the measurement using b-jets, we also investigate the extraction of the top quark mass from the energy peak of the corresponding B-hadrons which, in principle, can be measured without this uncertainty. The calculation of the B-hadron energy spectrum is carried out using fragmentation functions at NLO. The dependence on the fragmentation scale turns out to be the largest theoretical uncertainty in this extraction of top quark mass.
D K scattering and the D$_s$ spectrum from lattice QCD
Mohler, Daniel; Lang, C. B.; Leskovec, Luka; Prelovsek, Sasa; Woloshyn, R. M.
2013-01-01
We present results from Lattice QCD calculations of the low-lying charmed-strange meson spectrum using two types of Clover-Wilson lattices. In addition to quark-antiquark interpolating fields we also consider meson-meson interpolators corresponding to D-meson kaon scattering states. To calculate the all-to-all propagation necessary for the backtracking loops we use the (stochastic) distillation technique. For the charm quark we use the Fermilab method. Results for the $J^P=0^+$ $D_{s0}^*(2317)$ charmed-strange meson are presented.
An inspection on the Borel masses relation used in QCD sum rules
Osorio Rodrigues, B.; Chiapparini, M.; Bracco, M. E.
2010-11-12
In this work, we studied the Borel masses relation used in QCD Sum Rules (QCDSR) calculations. These masses are the parameters of the Borel transform used when the three point function is calculated. We analised an usual and a more general linear relations. We concluded that a general linear relation between these masses provides the best results regarding the standard deviation.
Baryon spin-flavor structure from an analysis of lattice QCD results of the baryon spectrum
Fernando, I. P.; Goity, J. L.
2015-02-01
The excited baryon masses are analyzed in the framework of the 1/Nc expansion using the available physical masses and also the masses obtained in lattice QCD for different quark masses. The baryon states are organized into irreducible representations of SU(6) x O(3), where the [56,l^{P}=0⁺] ground state and excited baryons, and the [56,2^{+}] and [70}},1^{-}] excited states are analyzed. The analyses are carried out to order O(1/N_{c}) and first order in the quark masses. The issue of state identifications is discussed. Numerous parameter independent mass relations result at those orders, among them the well known Gell-Mann-Okubo and Equal Spacing relations, as well as additional relations involving baryons with different spins. It is observed that such relations are satisfied at the expected level of precision. The main conclusion of the analysis is that qualitatively the dominant physical effects are similar for the physical and the lattice QCD baryons.
Baryon spin-flavor structure from an analysis of lattice QCD results of the baryon spectrum
Fernando, I. P.; Goity, J. L.
2015-02-01
The excited baryon masses are analyzed in the framework of the 1/Nc expansion using the available physical masses and also the masses obtained in lattice QCD for different quark masses. The baryon states are organized into irreducible representations of SU(6) x O(3), where the [56,lP=0⁺] ground state and excited baryons, and the [56,2+] and [70}},1-] excited states are analyzed. The analyses are carried out to order O(1/Nc) and first order in the quark masses. The issue of state identifications is discussed. Numerous parameter independent mass relations result at those orders, among them the well known Gell-Mann-Okubo and Equal Spacing relations,more » as well as additional relations involving baryons with different spins. It is observed that such relations are satisfied at the expected level of precision. The main conclusion of the analysis is that qualitatively the dominant physical effects are similar for the physical and the lattice QCD baryons.« less
Inverse meson mass ordering in the color-flavor-locking phase of high-density QCD
Son, D. T.; Stephanov, M. A. [Department of Physics, University of Illinois, Chicago, Illinois 60607-7059
2000-04-01
We derive the effective Lagrangian for the low-energy massive meson excitations of the color-flavor-locking (CFL) phase of QCD with three flavors of light quarks. We compute the decay constants, the maximum velocities, and the masses of the mesons at large baryon chemical potential {mu}. The decay constants are linear in {mu}. The meson maximum velocities are close to that of sound. The meson masses in the CFL phase are significantly smaller than in the normal QCD vacuum and depend only on bare quark masses. The order of the meson masses is, to some extent, reversed compared to that in the QCD vacuum. In particular, the lightest particle is {eta}'. (c) 2000 The American Physical Society.
Controlling quark mass determinations non-perturbatively in three-flavour QCD
NASA Astrophysics Data System (ADS)
Campos, Isabel; Fritzsch, Patrick; Pena, Carlos; Preti, David; Ramos, Alberto; Vladikas, Anastassios
2017-03-01
The determination of quark masses from lattice QCD simulations requires a non-perturbative renormalization procedure and subsequent scale evolution to high energies, where a conversion to the commonly used \\overline {{{MS}}} scheme can be safely established. We present our results for the non-perturbative running of renormalized quark masses in Nf = 3 QCD between the electroweak and a hadronic energy scale, where lattice simulations are at our disposal. Recent theoretical advances in combination with well-established techniques allows to follow the scale evolution to very high statistical accuracy, and full control of systematic effects.
Quenched QCD spectrum on a 32{sup 3} {times} 64 lattice
Kim, S.; Sinclair, D.K.
1993-11-01
We present light hadron masses calculated from quenched QCD on a 32{sup 3} {times} 64 lattice, using staggered quark sources of masses, m{sub q}a = 0.01,0.005 and 0.0025. Results from {beta} = 6. 0(preliminary) and those from {beta} = 6.5 are compared. Using m{sub p}(m{sub q} = 0) and f{sub {pi}}, we suggest that {beta} = 6.5 is in the asymptotic scaling region and {beta} = 6.0 result shows {approximately} 20% (bare coupling) or {approximately} 10% (improved coupling) scaling violation. Flavor symmetry appears to be restored at {beta} = 6.5. The estimated pion decay constant, f{sub {pi}}, is 93(4) MeV at {beta} = 6.5, where the experimental value is 93 MeV.
The finite temperature behaviour of lattice QCD with moderate to large quark masses
Sinclair, D.K.
1988-01-01
Simulations of lattice QCD with 4 flavours of staggered quarks were performed using the Hybrid algorithm on a 12/sup 3/ /times/ 4 lattice. For quark masses greater than or equal to.1 (lattice units) the finite temperature transition did not appear to be first order. 6 refs., 3 figs.
Determination of the temperature dependence of the up- and down-quark masses in QCD
NASA Astrophysics Data System (ADS)
Dominguez, C. A.; Hernandez, L. A.
2016-10-01
The temperature dependence of the sum of the QCD up- and down-quark masses, (mu+md) and the pion decay constant, fπ, are determined from two thermal finite energy QCD sum rules for the pseudoscalar-current correlator. This quark mass remains mostly constant for temperatures well below the critical temperature for deconfinement/chiral-symmetry restoration. As this critical temperature is approached, the quark mass increases sharply with increasing temperature. This increase is far more pronounced if the temperature dependence of the pion mass (determined independently from other methods) is taken into account. The behavior of fπ(T) is consistent with the expectation from chiral symmetry, i.e. that it should follow the thermal dependence of the quark condensate, independently of the quark mass.
Blossier, B.; Boucaud, Ph.; Gravina, M.; Pene, O.; De soto, F.; Morenas, V.
2010-08-01
We present results concerning the nonperturbative evaluation of the ghost-gluon running QCD coupling constant from N{sub f}=2 twisted-mass lattice calculations. A novel method for calibrating the lattice spacing, independent of the string tension and hadron spectrum, is presented with results in agreement with previous estimates. The value of {Lambda}{sub MS} is computed from the running of the QCD coupling only after extrapolating to zero dynamical quark mass and after removing a nonperturbative operator-product expansion contribution that is assumed to be dominated by the dimension-two gluon condensate. The effect due to the dynamical quark mass in the determination of {Lambda}{sub MS} is discussed.
QCD THERMODYNAMICS WITH NF=2+1 NEAR THE CONTINUUM LIMIT AT REALISTIC QUARK MASSES.
UMEDA, T.
2006-07-23
We report on our study of QCD thermodynamics with 2 + 1 flavors of dynamical quarks. In this proceeding we present several thermodynamic quantities and our recent calculation of the critical temperature. In order to investigate the thermodynamic properties of QCD near the continuum limit we adopt improved staggered (p4) quarks coupled with tree-level Symanzik improved glue on N{sub t} = 4 and 6 lattices. The simulations are performed with a physical value of the strange quark mass and light quark masses which are in the range of m{sub q}/m{sub s} = 0.05 - 0.4. The lightest quark mass corresponds to a pion mass of about 150 MeV.
The mass spectrum of interstellar clouds
NASA Technical Reports Server (NTRS)
Dickey, John M.; Garwood, Robert W.
1989-01-01
The abundances of diffuse clouds and molecular clouds in the inner Galaxy and at the solar circle are compared. Using results of recent low-latitude 21 cm absorption studies, the number of diffuse clouds per kiloparsec along the line of sight is derived as a function of the cloud column density, under two assumptions relating cloud densities and temperatures. The density of clouds is derived as a function of cloud mass. The results are consistent with a single, continuous mass spectrum for interstellar clouds from less than 1 solar mass to 1,000,000 solar masses, with perhaps a change of slope at masses where the atomic and molecular mass fractions are roughly equal.
QCD fixed points: Banks-Zaks scenario or dynamical gluon mass generation?
NASA Astrophysics Data System (ADS)
Gomez, J. D.; Natale, A. A.
2017-01-01
Fixed points in QCD can appear when the number of quark flavors (Nf) is increased above a certain critical value as proposed by Banks and Zaks (BZ). There is also the possibility that QCD possess an effective charge indicating an infrared frozen coupling constant. In particular, an infrared frozen coupling associated to dynamical gluon mass (DGM) generation does lead to a fixed point even for a small number of quarks. We compare the BZ and DGM mechanisms, their β functions and fixed points, and within the approximations of this work, which rely basically on extrapolations of the dynamical gluon masses at large Nf, we verify that between Nf = 8 and Nf = 12 both cases exhibit fixed points at similar coupling constant values (g∗). We argue that the states of minimum vacuum energy, as a function of the coupling constant up to g∗ and for several Nf values, are related to the dynamical gluon mass generation mechanism.
Minkowski space pion model inspired by lattice QCD running quark mass
NASA Astrophysics Data System (ADS)
Mello, Clayton S.; de Melo, J. P. B. C.; Frederico, T.
2017-03-01
The pion structure in Minkowski space is described in terms of an analytic model of the Bethe-Salpeter amplitude combined with Euclidean Lattice QCD results. The model is physically motivated to take into account the running quark mass, which is fitted to Lattice QCD data. The pion pseudoscalar vertex is associated to the quark mass function, as dictated by dynamical chiral symmetry breaking requirements in the limit of vanishing current quark mass. The quark propagator is analyzed in terms of a spectral representation, and it shows a violation of the positivity constraints. The integral representation of the pion Bethe-Salpeter amplitude is also built. The pion space-like electromagnetic form factor is calculated with a quark electromagnetic current, which satisfies the Ward-Takahashi identity to ensure current conservation. The results for the form factor and weak decay constant are found to be consistent with the experimental data.
Light meson masses and non-perturbative renormalisation in 2+1 flavour domain wall QCD
NASA Astrophysics Data System (ADS)
Tweedie, Robert
2006-12-01
We present results for the light meson masses, the bare strange quark mass and preliminary non- perturbative renormalisation of BK in 2+1 flavour domain wall QCD. The ensembles used were generated with the Iwasaki gauge action and have a volume of 163 × 32 with a fifth dimension size of 16 and an inverse lattice spacing of 1.6 GeV. These ensembles have u and d masses as low as one quarter of the strange quark mass. All data were generated jointly by the UKQCD and RBC collaborations on QCDOC machines.
Non-degenerate light quark masses from 2+1f lattice QCD+QED
Drury, Shane; Blum, Thomas; Hayakawa, Masashi; Izubuchi, Taku; Sachrajda, Chris; Zhou, Ran
2014-01-01
We report on a calculation of the effects of isospin breaking in Lattice QCD+QED. This involves using Chiral Perturbation Theory with Electromagnetic corrections to find the renormalized, non-degenerate, light quark masses. The calculations are carried out on QCD ensembles generated by the RBC and UKQCD collaborations using Domain Wall Fermions and the Iwasaki and Iwasaki+DSDR Gauge Actions with unitary pion masses down to 170 MeV. Non-compact QED is treated in the quenched approximation. The simulations use a $32^3$ lattice size with $a^{-1}=2.28(3)$ GeV (Iwasaki) and 1.37(1) (Iwasaki+DSDR). This builds on previous work from the RBC/UKQCD collaboration with lattice spacing $a^{-1}=1.78(4)$ GeV.
Excited-State Effective Masses in Lattice QCD
George Fleming, Saul Cohen, Huey-Wen Lin
2009-10-01
We apply black-box methods, i.e. where the performance of the method does not depend upon initial guesses, to extract excited-state energies from Euclidean-time hadron correlation functions. In particular, we extend the widely used effective-mass method to incorporate multiple correlation functions and produce effective mass estimates for multiple excited states. In general, these excited-state effective masses will be determined by finding the roots of some polynomial. We demonstrate the method using sample lattice data to determine excited-state energies of the nucleon and compare the results to other energy-level finding techniques.
Excited-State Effective Masses in Lattice QCD
Fleming, George; Cohen, Saul; Lin, Huey-Wen
2009-01-01
We apply black-box methods, i.e. where the performance of the method does not depend upon initial guesses, to extract excited-state energies from Euclidean-time hadron correlation functions. In particular, we extend the widely used effective-mass method to incorporate multiple correlation functions and produce effective mass estimates for multiple excited states. In general, these excited-state effective masses will be determined by finding the roots of some polynomial. We demonstrate the method using sample lattice data to determine excited-state energies of the nucleon and compare the results to other energy-level finding techniques.
Inoue, Takashi; Aoki, Sinya; Doi, Takumi; Hatsuda, Tetsuo; Ikeda, Yoichi; Ishii, Noriyoshi; Murano, Keiko; Nemura, Hidekatsu; Sasaki, Kenji
2013-09-13
Quark mass dependence of the equation of state (EOS) for nucleonic matter is investigated, on the basis of the Brueckner-Hartree-Fock method with the nucleon-nucleon interaction extracted from lattice QCD simulations. We observe saturation of nuclear matter at the lightest available quark mass corresponding to the pseudoscalar meson mass ≃469 MeV. Mass-radius relation of the neutron stars is also studied with the EOS for neutron-star matter from the same nuclear force in lattice QCD. We observe that the EOS becomes stiffer and thus the maximum mass of neutron star increases as the quark mass decreases toward the physical point.
The dijet mass spectrum at D-Zero
Abbott, B.; D0 Collaboration
1997-11-01
We present preliminary results from an analysis of jet data collected during the 1994-95 Tevatron Collider run with an integrated luminosity of 93 pb{sup -1}. Measurements of dijet mass spectra in {anti p}p collisions at {radical}s = 1.8 TeV are compared to next-to-leading order QCD calculations.
Masses of Open-Flavour Heavy-Light Hybrids from QCD Sum Rules
NASA Astrophysics Data System (ADS)
Ho, Jason; Harnett, Derek; Steele, Tom
2017-01-01
Our current understanding of the strong interaction (QCD) permits the construction of colour singlet states with novel structures that do not fit within the traditional quark model, including hybrid mesons. To date, though other exotic structures such as pentaquark and tetraquark states have been confirmed, no unambiguous hybrid meson signals have been observed. However, with data collection at the GlueX experiment ongoing and with the construction of the PANDA experiment at FAIR, the opportunity to observe hybrid states has never been better. As theoretical calculations are a necessary piece for the identification of any observed experimental resonance, we present our mass predictions of heavy-light open-flavour hybrid mesons using QCD Laplace sum-rules for all scalar and vector JP channels, and including non-perturbative condensate contributions up to six-dimensions.
Heavy-light diquark masses from QCD sum rules and constituent diquark models of tetraquarks
NASA Astrophysics Data System (ADS)
Kleiv, R. T.; Steele, T. G.; Zhang, Ailin; Blokland, Ian
2013-06-01
Diquarks with JP=0±, 1± containing a heavy (charm or bottom) quark and a light quark are investigated using QCD Laplace sum rules. Masses are determined using appropriately constructed gauge invariant correlation functions, including for the first time next-to-leading order perturbative contributions. The JP=0+ and 1+ charm-light diquark masses are, respectively, found to be 1.86±0.05 and 1.87±0.10GeV, while those of the 0+ and 1+ bottom-light diquarks are both determined to be 5.08±0.04GeV. The sum rules derived for heavy-light diquarks with negative parity are poorly behaved and do not permit unambiguous mass predictions, in agreement with previous results for negative parity light diquarks. The scalar and axial vector heavy-light diquark masses are degenerate within uncertainty, as expected by heavy quark symmetry considerations. Furthermore, these mass predictions are in good agreement with masses extracted in constituent diquark models of the tetraquark candidates X(3872) and Yb(10890). Thus these results provide QCD support for the interpretation of the X(3872) and Yb(10890) as JPC=1++ tetraquark states composed of diquark clusters. Further implications for tetraquarks among the heavy quarkoniumlike XYZ states are discussed.
Renormalization constants for 2-twist operators in twisted mass QCD
Alexandrou, C.; Constantinou, M.; Panagopoulos, H.; Stylianou, F.; Korzec, T.
2011-01-01
Perturbative and nonperturbative results on the renormalization constants of the fermion field and the twist-2 fermion bilinears are presented with emphasis on the nonperturbative evaluation of the one-derivative twist-2 vector and axial-vector operators. Nonperturbative results are obtained using the twisted mass Wilson fermion formulation employing two degenerate dynamical quarks and the tree-level Symanzik improved gluon action. The simulations have been performed for pion masses in the range of about 450-260 MeV and at three values of the lattice spacing a corresponding to {beta}=3.9, 4.05, 4.20. Subtraction of O(a{sup 2}) terms is carried out by performing the perturbative evaluation of these operators at 1-loop and up to O(a{sup 2}). The renormalization conditions are defined in the RI{sup '}-MOM scheme, for both perturbative and nonperturbative results. The renormalization factors, obtained for different values of the renormalization scale, are evolved perturbatively to a reference scale set by the inverse of the lattice spacing. In addition, they are translated to MS at 2 GeV using 3-loop perturbative results for the conversion factors.
Automated mass spectrum generation for new physics
NASA Astrophysics Data System (ADS)
Alloul, Adam; D'Hondt, Jorgen; De Causmaecker, Karen; Fuks, Benjamin; Rausch de Traubenberg, Michel
2013-02-01
We describe an extension of the FeynRules package dedicated to the automatic generation of the mass spectrum associated with any Lagrangian-based quantum field theory. After introducing a simplified way to implement particle mixings, we present a new class of FeynRules functions allowing both for the analytical computation of all the model mass matrices and for the generation of a C++ package, dubbed ASperGe. This program can then be further employed for a numerical evaluation of the rotation matrices necessary to diagonalize the field basis. We illustrate these features in the context of the Two-Higgs-Doublet Model, the Minimal Left-Right Symmetric Standard Model and the Minimal Supersymmetric Standard Model.
K(L) - K(S) mass difference from lattice QCD.
Bai, Z; Christ, N H; Izubuchi, T; Sachrajda, C T; Soni, A; Yu, J
2014-09-12
We report on the first complete calculation of the K_{L}-K_{S} mass difference, ΔM_{K}, using lattice QCD. The calculation is performed on a 2+1 flavor, domain wall fermion ensemble with a 330 MeV pion mass and a 575 MeV kaon mass. We use a quenched charm quark with a 949 MeV mass to implement Glashow-Iliopoulos-Maiani cancellation. For these heavier-than-physical particle masses, we obtain ΔM_{K}=3.19(41)(96)×10^{-12} MeV, quite similar to the experimental value. Here the first error is statistical, and the second is an estimate of the systematic discretization error. An interesting aspect of this calculation is the importance of the disconnected diagrams, a dramatic failure of the Okubo-Zweig-Iizuka rule.
Large mass expansion in two-loop QCD corrections of paracharmonium decay
Hasegawa, K.; Pak, Alexey
2008-01-01
We calculate the two-loop QCD corrections to paracharmonium decays {eta}{sub c}{yields}{gamma}{gamma} and {eta}{sub c}{yields}gg involving light-by-light scattering diagrams with light quark loops. Artificial large mass expansion and convergence improvement techniques are used to evaluate these corrections. The obtained corrections to the decays {eta}{sub c}{yields}{gamma}{gamma} and {eta}{sub c}{yields}gg account for -1.25% and -0.73% of the leading order contribution, respectively.
Mass of the B(c) meson in three-flavor lattice QCD
Allison, Ian F.; Davies, Christine T.H.; Gray, Alan; Kronfeld, Andreas S.; Mackenzie, Paul B.; Simone, James N.; /Fermilab
2004-11-01
The authors use lattice QCD to predict the mass of the B{sub c} meson. They use the MILC Collaborations publicly available ensembles of lattice gauge fields, which have a quark sea with two flavors (up and down) much lighter than a third (strange). The final result is m{sub B{sub c}} = 6304 {+-} 12{sub -0}{sup +18} MeV. The first error bar is a sum in quadrature of statistical and systematic uncertainties, and the second is an estimate of heavy-quark discretization effects.
The mass spectrum of the first stars
Susa, Hajime; Tominaga, Nozomu; Hasegawa, Kenji
2014-09-01
We perform cosmological hydrodynamics simulations with non-equilibrium primordial chemistry to obtain 59 minihalos that host first stars. The obtained minihalos are used as the initial conditions of local three-dimensional radiation hydrodynamics simulations to investigate the formation of the first stars. We find that two-thirds of the minihalos host multiple stars, while the other third has single stars. The mass of the stars found in our simulations are in the range of 1 M {sub ☉} ≲ M ≲ 300 M {sub ☉}, peaking at several× 10 M {sub ☉}. Most of the very massive stars of ≳ 140 M {sub ☉} are born as single stars, although not all of the single stars are very massive. We also find a few stars of ≲ 1 M {sub ☉} that are kicked by the gravitational three body interactions to the position distant from the center of mass. The frequency that a star forming minihalo contains a binary system is ∼50%. We also investigate the abundance pattern of the stellar remnants by summing up the contributions from the first stars in the simulations. Consequently, the pattern is compatible with that of the low metallicity damped Lyα systems or the extremely metal-poor (EMP) stars, if the mass spectrum obtained in our experiment is shifted to the low mass side by 0.2 dex. If we consider the case that an EMP star is born in the remnant of the individual minihalo without mixing with others, the chemical signature of the pair instability supernova is more prominent, because most of them are born as single stars.
Dudek, Jozef J.; Edwards, Robert G.
2012-03-21
In this study, we present the first comprehensive study of hybrid baryons using lattice QCD methods. Using a large basis of composite QCD interpolating fields we extract an extensive spectrum of baryon states and isolate those of hybrid character using their relatively large overlap onto operators which sample gluonic excitations. We consider the spectrum of Nucleon and Delta states at several quark masses finding a set of positive parity hybrid baryons with quantum numbers $N_{1/2^+},\\,N_{1/2^+},\\,N_{3/2^+},\\, N_{3/2^+},\\,N_{5/2^+},\\,$ and $\\Delta_{1/2^+},\\, \\Delta_{3/2^+}$ at an energy scale above the first band of `conventional' excited positive parity baryons. This pattern of states is compatible with a color octet gluonic excitation having $J^{P}=1^{+}$ as previously reported in the hybrid meson sector and with a comparable energy scale for the excitation, suggesting a common bound-state construction for hybrid mesons and baryons.
QCD thermodynamics and missing hadron states
NASA Astrophysics Data System (ADS)
Petreczky, Peter
2016-03-01
Equation of State and fluctuations of conserved charges in hot strongly interacting matter are being calculated with increasing accuracy in lattice QCD, and continuum results at physical quark masses become available. At sufficiently low temperature the thermodynamic quantities can be understood in terms of hadron resonance gas model that includes known hadrons and hadronic resonances from Particle Data Book. However, for some quantities it is necessary to include undiscovered hadronic resonances (missing states) that are, however, predicted by quark model and lattice QCD study of hadron spectrum. Thus, QCD thermodynamics can provide indications for the existence of yet undiscovered hadron states.
New Physics Search in Dijet Mass Spectrum with Compact Muon Solenoid
Jeong, Chiyoung
2011-01-01
Many extensions of the SM predict the existence of new massive objects that couple to quarks and gluons and result in resonances in the dijet mass spectrum. In this thesis we present a search for narrow resonances in the dijet mass spectrum using data corresponding to an integrated luminosity of 1 fb$^{-1}$ collected by the CMS experiment at the LHC, at a proton-proton collision energy of $\\sqrt{s}=7$ $TeV$. %This dijet analysis is searching for new particles in the dijet mass spectrum decaying to dijets. These new particles are predicted by new physics beyond Standard Model. This thesis presents a dijet analysis performed at the Compact Muon Solenoid (CMS) in pp collisions at $\\sqrt{s}=7$ $TeV$ for an integrated luminosities of 1.0 fb$^{-1}$. The dijet mass distribution of two leading jets is measured and compared to QCD predictions, simulated by PYTHIA with the CMS detector simulation. We select events which have two leading jets with $\\mid \\Delta\\eta \\mid < 1.3$ and $\\mid \\eta \\mid < 2.5$. We fit the dijet mass spectrum with QCD parameters. Since no evidence of new physics was found, we set upper limits at 95\\% CL on the resonance cross section and compare to the theoretical prediction for several models of new particles: string resonances, axigluons, colorons, excited quarks, $E_{6}$ diquarks, Randall-Sundrum gravitons, W' and Z'. We exclude at 95\\% CL string resonances in the mass range $1.0 < M(S) < 4.00$ TeV, excited quarks in the mass range $1.0
Quark masses and strong coupling constant in 2+1 flavor QCD
Maezawa, Y.; Petreczky, P.
2016-08-30
We present a determination of the strange, charm and bottom quark masses as well as the strong coupling constant in 2+1 flavor lattice QCD simulations using highly improved staggered quark action. The ratios of the charm quark mass to the strange quark mass and the bottom quark mass to the charm quark mass are obtained from the meson masses calculated on the lattice and found to be mc/ms = 11.877(91) and mb/mc = 4.528(57) in the continuum limit. We also determine the strong coupling constant and the charm quark mass using the moments of pseudoscalar charmonium correlators: αs(μ = mc)more » = 0.3697(85) and mc(μ = mc) = 1.267(12) GeV. Our result for αs corresponds to the determination of the strong coupling constant at the lowest energy scale so far and is translated to the value αs(μ = MZ, nf = 5) = 0.11622(84).« less
Quark masses and strong coupling constant in 2+1 flavor QCD
Maezawa, Y.; Petreczky, P.
2016-08-30
We present a determination of the strange, charm and bottom quark masses as well as the strong coupling constant in 2+1 flavor lattice QCD simulations using highly improved staggered quark action. The ratios of the charm quark mass to the strange quark mass and the bottom quark mass to the charm quark mass are obtained from the meson masses calculated on the lattice and found to be mc/ms = 11.877(91) and mb/mc = 4.528(57) in the continuum limit. We also determine the strong coupling constant and the charm quark mass using the moments of pseudoscalar charmonium correlators: α_{s}(μ = m_{c}) = 0.3697(85) and mc(μ = mc) = 1.267(12) GeV. Our result for αs corresponds to the determination of the strong coupling constant at the lowest energy scale so far and is translated to the value α_{s}(μ = M_{Z}, n_{f} = 5) = 0.11622(84).
Electron Ionization Mass Spectrum of Tellurium Hexafluoride
Clark, Richard A.; McNamara, Bruce K.; Barinaga, Charles J.; Peterson, James M.; Govind, Niranjan; Andersen, Amity; Abrecht, David G.; Schwantes, Jon M.; Ballou, Nathan E.
2015-05-18
The first electron ionization mass spectrum of tellurium hexafluoride (TeF6) is reported. The starting material was produced by direct fluorination of Te metal or TeO2 with nitrogen trifluoride. Formation of TeF6 was confirmed through cryogenic capture of the tellurium fluorination product and analysis through Raman spectroscopy. The eight natural abundance isotopes were observed for each of the set of fragment ions: TeF5+, TeF4+ TeF3+, TeF2+, TeF1+, and Te+, Te2+. A trend in increasing abundance was observed for the even fluoride bearing ions: TeF1+ < TeF3+ < TeF5+, and a decreasing abundance was observed for the even fragment series: Te(0)+ > TeF2+ > TeF4+ > TeF6+, with the molecular ion TeF6+ not observed at all. Density functional theory based electronic structure calculations were used to calculate optimized ground state geometries of these gas phase species and their relative stabilities explain the trends in the data and the lack of observed signal for TeF6+.
Lattice QCD: Status and Prospect
Ukawa, Akira
2006-02-08
A brief review is given of the current status and near-future prospect of lattice QCD studies of the Standard Model. After summarizing a bit of history, we describe current attempts toward inclusion of dynamical up, down and strange quarks. Recent results on the light hadron mass spectrum as well as those on the heavy quark quantities are described. Recent work on lattice pentaquark search is summarized. We touch upon the PACS-CS Project for building our next machine for lattice QCD, and conclude with a summary of computer situation and the physics possibilities over the next several years.
PDF and QCD effects in the precision measurement of the W boson mass at CDF
Beecher, Daniel
2011-01-01
A sample of W → ev (W → μν) and Z^{0} → e^{+}e^{-} (Z^{0} → μ^{+}μ^{-}) events recorded by the CDF detector for p$\\bar{p}$ collisions at √s = 1.96 TeV are used to evaluate the systematic uncertainty in the determination of the W boson mass arising from uncertainties in the parton distribution functions and higher-order QCD effects. The systematic contribution of PDFs is determined to be 10 MeV/c^{2} for MSTW2008 NLO and 12 MeV/c^{2} for CTEQ6.6. The total systematic contribution arising from higher-order QCD effects in 9 MeV/c^{2}. The Z^{0} events are used to extract improved estimates of the phenomenological parameters in the BLNY model that describes low transverse momentum.
Up and Down Quark Masses and Corrections to Dashen's Theorem from Lattice QCD and Quenched QED.
Fodor, Z; Hoelbling, C; Krieg, S; Lellouch, L; Lippert, Th; Portelli, A; Sastre, A; Szabo, K K; Varnhorst, L
2016-08-19
In a previous Letter [Borsanyi et al., Phys. Rev. Lett. 111, 252001 (2013)] we determined the isospin mass splittings of the baryon octet from a lattice calculation based on N_{f}=2+1 QCD simulations to which QED effects have been added in a partially quenched setup. Using the same data we determine here the corrections to Dashen's theorem and the individual up and down quark masses. Our ensembles include 5 lattice spacings down to 0.054 fm, lattice sizes up to 6 fm, and average up-down quark masses all the way down to their physical value. For the parameter which quantifies violations to Dashen's theorem, we obtain ϵ=0.73(2)(5)(17), where the first error is statistical, the second is systematic, and the third is an estimate of the QED quenching error. For the light quark masses we obtain, m_{u}=2.27(6)(5)(4) and m_{d}=4.67(6)(5)(4) MeV in the modified minimal subtraction scheme at 2 GeV and the isospin breaking ratios m_{u}/m_{d}=0.485(11)(8)(14), R=38.2(1.1)(0.8)(1.4), and Q=23.4(0.4)(0.3)(0.4). Our results exclude the m_{u}=0 solution to the strong CP problem by more than 24 standard deviations.
On the b-quark running mass in QCD and the SM
NASA Astrophysics Data System (ADS)
Bednyakov, A. V.; Kniehl, B. A.; Pikelner, A. F.; Veretin, O. L.
2017-03-01
We consider electroweak corrections to the relation between the running MS ‾ mass mb of the b quark in the five-flavor QCD×QED effective theory and its counterpart in the Standard Model (SM). As a bridge between the two parameters, we use the pole mass Mb of the b quark, which can be calculated in both models. The running mass is not a fundamental parameter of the SM Lagrangian, but the product of the running Yukawa coupling yb and the Higgs vacuum expectation value. Since there exist different prescriptions to define the latter, the relations considered in the paper involve a certain amount of freedom. All the definitions can be related to each other in perturbation theory. Nevertheless, we argue in favour of a certain gauge-independent prescription and provide a relation which can be directly used to deduce the value of the Yukawa coupling of the b quark at the electroweak scale from its effective QCD running mass. This approach allows one to resum large logarithms ln (mb /Mt) systematically. Numerical analysis shows that, indeed, the corrections to the proposed relation are much smaller than those between yb and Mb.
Two-loop QCD corrections to the MSSM Higgs masses beyond the effective-potential approximation.
Degrassi, G; Di Vita, S; Slavich, P
We compute the two-loop QCD corrections to the neutral Higgs-boson masses in the Minimal Supersymmetric Standard Model, including the effect of non-vanishing external momenta in the self-energies. We obtain corrections of [Formula: see text] and [Formula: see text], i.e., all two-loop corrections that involve the strong gauge coupling when the only non-vanishing Yukawa coupling is the top one. We adopt either the [Formula: see text] renormalization scheme or a mixed on-shell (OS)-[Formula: see text] scheme where the top/stop parameters are renormalized on-shell. We compare our results with those of earlier calculations, pointing out an inconsistency in a recent result obtained in the mixed OS-[Formula: see text] scheme. The numerical impact of the new corrections on the prediction for the lightest-scalar mass is moderate, but already comparable to the accuracy of the Higgs-mass measurement at the Large Hadron Collider.
The Gell-Mann - Okubo Mass Relation among Baryons from Fully-Dynamical, Mixed-Action Lattice QCD
Konstantinos Orginos; Silas Beane; Martin Savage
2007-10-01
We explore the Gell-Mann - Okubo mass relation among the octet baryons using fully-dynamical, mixed-action (domain-wall on rooted-staggered) lattice QCD calculations at a lattice spacing of b {approx} 0.125 fm and pion masses of m{sub pi} {approx} 290 MeV, 350 MeV, 490 MeV and 590 MeV. Deviations from the Gell-Mann - Okubo mass relation are found to be small at each quark mass.
Tandem Mass Spectrum Identification via Cascaded Search
2016-01-01
Accurate assignment of peptide sequences to observed fragmentation spectra is hindered by the large number of hypotheses that must be considered for each observed spectrum. A high score assigned to a particular peptide–spectrum match (PSM) may not end up being statistically significant after multiple testing correction. Researchers can mitigate this problem by controlling the hypothesis space in various ways: considering only peptides resulting from enzymatic cleavages, ignoring possible post-translational modifications or single nucleotide variants, etc. However, these strategies sacrifice identifications of spectra generated by rarer types of peptides. In this work, we introduce a statistical testing framework, cascade search, that directly addresses this problem. The method requires that the user specify a priori a statistical confidence threshold as well as a series of peptide databases. For instance, such a cascade of databases could include fully tryptic, semitryptic, and nonenzymatic peptides or peptides with increasing numbers of modifications. Cascaded search then gradually expands the list of candidate peptides from more likely peptides toward rare peptides, sequestering at each stage any spectrum that is identified with a specified statistical confidence. We compare cascade search to a standard procedure that lumps all of the peptides into a single database, as well as to a previously described group FDR procedure that computes the FDR separately within each database. We demonstrate, using simulated and real data, that cascade search identifies more spectra at a fixed FDR threshold than with either the ungrouped or grouped approach. Cascade search thus provides a general method for maximizing the number of identified spectra in a statistically rigorous fashion. PMID:26084232
NASA Astrophysics Data System (ADS)
Bai, Yang; Schwaller, Pedro
2014-03-01
Most of the mass of ordinary matter has its origin from quantum chromodynamics (QCD). A similar strong dynamics, dark QCD, could exist to explain the mass origin of dark matter. Using infrared fixed points of the two gauge couplings, we provide a dynamical mechanism that relates the dark QCD confinement scale to our QCD scale, and hence provides an explanation for comparable dark baryon and proton masses. Together with a mechanism that generates equal amounts of dark baryon and ordinary baryon asymmetries in the early Universe, the similarity of dark matter and ordinary matter energy densities can be naturally explained. For a large class of gauge group representations, the particles charged under both QCD and dark QCD, necessary ingredients for generating the infrared fixed points, are found to have masses at 1-2 TeV, which sets the scale for dark matter direct detection and novel collider signatures involving visible and dark jets.
tmLQCD: A program suite to simulate Wilson twisted mass lattice QCD
NASA Astrophysics Data System (ADS)
Jansen, Karl; Urbach, Carsten
2009-12-01
We discuss a program suite for simulating Quantum Chromodynamics on a 4-dimensional space-time lattice. The basic Hybrid Monte Carlo algorithm is introduced and a number of algorithmic improvements are explained. We then discuss the implementations of these concepts as well as our parallelisation strategy in the actual simulation code. Finally, we provide a user guide to compile and run the program. Program summaryProgram title: tmLQCD Catalogue identifier: AEEH_v1_0 Program summary URL::http://cpc.cs.qub.ac.uk/summaries/AEEH_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public Licence (GPL) No. of lines in distributed program, including test data, etc.: 122 768 No. of bytes in distributed program, including test data, etc.: 931 042 Distribution format: tar.gz Programming language: C and MPI Computer: any Operating system: any with a standard C compiler Has the code been vectorised or parallelised?: Yes. One or optionally any even number of processors may be used. Tested with up to 32 768 processors RAM: no typical values available Classification: 11.5 External routines: LAPACK [1] and LIME [2] library Nature of problem: Quantum Chromodynamics Solution method: Markov Chain Monte Carlo using the Hybrid Monte Carlo algorithm with mass preconditioning and multiple time scales [3]. Iterative solver for large systems of linear equations. Restrictions: Restricted to an even number of (not necessarily mass degenerate) quark flavours in the Wilson or Wilson twisted mass formulation of lattice QCD. Running time: Depending on the problem size, the architecture and the input parameters from a few minutes to weeks. References:http://www.netlib.org/lapack/. USQCD, http://usqcd.jlab.org/usqcd-docs/c-lime/. C. Urbach, K. Jansen, A. Shindler, U. Wenger, Comput. Phys. Commun. 174 (2006) 87, hep-lat/0506011.
MASSIS: a mass spectrum simulation system 1. Principle and method.
Chen, HaiFeng; Fan, BoTao; Xia, HaiRong; Petitjean, Michael; Yuan, ShenGang; Panaye, Annick; Doucet, Jean-Pierre
2003-01-01
A mass spectrum simulation system was developed. The simulated spectrum for a given target structure is computed based on the cleavage knowledge and statistical rules established and stocked in pivot databases: cleavage rule knowledge, function groups, small fragments and fragment-intensity relationships. These databases were constructed from correlation charts and statistical analysis of large population of organic mass spectra using data mining techniques. Since 1980, several systems were proposed for mass spectrum simulation, but in present there is no any commercial software available. This shows the complexity and difficulties in the development of a such system. The reported mass spectral simulation system in this paper could be the first general software for organic chemistry use
Duality, mass spectrum and vacuum expectation values
NASA Astrophysics Data System (ADS)
Köberle, R.; Marino, E. C.
1983-07-01
We give a general proof that for an arbitrary two-dimensional theory containing order and disorder fields φ(x) and μ(x), defined so as to satisfy a dual algebra, then, the mass gap is zero, whenever <φ>=0 and <μ>=0. It is also shown that the dual algebra imposes certain restrictions on the mixed vacuum expectation values of the fields. In particular, the product <φ><μ> and the two-point functions <μφ> vanish. On leave of absence from and address after July 1, 1983, Departamento de Fisica, Universidade Federal de Sa~o Carlos, Cx.P. 676, 13560, Sa~o Carlos - SP Brazil.
On the consistency of recent QCD lattice data of the baryon ground-state masses
NASA Astrophysics Data System (ADS)
Lutz, M. F. M.; Semke, A.
2012-11-01
In our recent analysis of lattice data of the BMW, LHPC and PACS-CS groups we determined a parameter set of the chiral Lagrangian that allows a simultaneous description of the baryon octet and decuplet masses as measured by those lattice groups. The results on the baryon spectrum of the HSC group were recovered accurately without their inclusion into our six parameter fit. We show that the same parameter set provides an accurate reproduction of the recent results of the QCDSF-UKQCD group probing the baryon masses at quite different quark masses. This shows a remarkable consistency amongst the different lattice simulations. With even more accurate lattice data in the near future it will become feasible to determine all low-energy parameters relevant at N3LO.
Silas Beane; Konstantinos Orginos; Martin Savage
2007-04-01
We determine the strong-isospin violating component of the neutron-proton mass difference from fully-dynamical lattice QCD and partially-quenched QCD calculations of the nucleon mass, constrained by partially-quenched chiral perturbation theory at one-loop level. The lattice calculations were performed with domain-wall valence quarks on MILC lattices with rooted staggered sea-quarks at a lattice spacing of b = 0.125 fm, lattice spatial size of L = 2.5 fm and pion masses ranging from m{sub {pi}} {approx} 290 MeV to {approx} 350 MeV. At the physical value of the pion mass, we predict M{sub n}-M{sub p}|{sup d-u} = 2.26 {+-} 0.57 {+-} 0.42 {+-} 0.10 MeV where the first error is statistical, the second error is due to the uncertainty in the ratio of light-quark masses, {eta} = m{sub u}/m{sub d}, determined by MILC, and the third error is an estimate of the systematic due to chiral extrapolation.
SU(2) and SU(3) chiral perturbation theory analyses on baryon masses in 2+1 flavor lattice QCD
Ishikawa, K.-I.; Okawa, M.; Ishizuka, N.; Kuramashi, Y.; Taniguchi, Y.; Ukawa, A.; Yoshie, T.; Izubuchi, T.; Kadoh, D.; Namekawa, Y.; Ukita, N.; Kanaya, K.
2009-09-01
We investigate the quark mass dependence of baryon masses in 2+1 flavor lattice QCD using SU(3) heavy baryon chiral perturbation theory up to one-loop order. The baryon mass data used for the analyses are obtained for the degenerate up-down quark mass of 3 to 24 MeV and two choices of the strange quark mass around the physical value. We find that the SU(3) chiral expansion fails to describe both the octet and the decuplet baryon data if phenomenological values are employed for the meson-baryon couplings. The SU(2) case is also examined for the nucleon. We observe that higher order terms are controlled only around the physical point. We also evaluate finite size effects using SU(3) heavy baryon chiral perturbation theory, finding small values of order 1% even at the physical point.
The quark masses and meson spectrum: A holographic approach
Afonin, S. S. Pusenkov, I. V.
2016-01-22
The spectrum of radially excited unflavored vector mesons is relatively well measured, especially in the heavy-quark sector. This provides a unique opportunity to observe the behavior of the hadron spectrum at fixed quantum numbers as a function of the quark mass. The experimental data suggests the approximately Regge form for the radial spectrum, Mn2 = An + B, where A and B are growing functions of the quark mass. We use the bottom-up holographic approach to find the functions A and B. The obtained result shows a good agreement with the phenomenology and consistency with some predictions of the Veneziano-like dual amplitudes. This proceedings and oral talk based on work: Phys. Lett. B726 (2013) 283–289.
Spectrum and Bethe-Salpeter amplitudes of Ω baryons from lattice QCD
NASA Astrophysics Data System (ADS)
Liang, Jian; Sun, Wei; Chen, Ying; Qiu, Wei-Feng; Gong, Ming; Liu, Chuan; Liu, Yu-Bin; Liu, Zhao-Feng; Ma, Jian-Ping; Zhang, Jian-Bo; CLQCD Collaboration
2016-04-01
The Ω baryons with J P = 3/2±, 1/2± are studied on the lattice in the quenched approximation. Their mass levels are ordered as M 3/2+ < M 3/2- ≈ M 1/2- < M 1/2+ , as is expected from the constituent quark model. The mass values are also close to those of the four Ω states observed in experiments. We calculate the Bethe-Salpeter amplitudes of Ω(3/2+) and Ω(1/2+) and find there is a radial node for the Ω(1/2+) Bethe-Salpeter amplitude, which may imply that Ω(1/2+) is an orbital excitation of Ω baryons as a member of the supermultiplet in the SU(6) ⊗ O(3) quark model description. Our results are helpful for identifying the quantum numbers of experimentally observed Ω states. The numerical calculations were carried out on Tianhe-1A at the National Supercomputer Center (NSCC) in Tianjin. Supported by National Science Foundation of China (NSFC) (11105153, 11335001, 11405053), Youth Innovation Promotion Association of CAS, NSFC (11261130311) (CRC 110 by DFG and NSFC)
Dudek, Jozef J.; Edwards, Robert G.
2012-03-21
In this study, we present the first comprehensive study of hybrid baryons using lattice QCD methods. Using a large basis of composite QCD interpolating fields we extract an extensive spectrum of baryon states and isolate those of hybrid character using their relatively large overlap onto operators which sample gluonic excitations. We consider the spectrum of Nucleon and Delta states at several quark masses finding a set of positive parity hybrid baryons with quantum numbersmore » $$N_{1/2^+},\\,N_{1/2^+},\\,N_{3/2^+},\\, N_{3/2^+},\\,N_{5/2^+},\\,$$ and $$\\Delta_{1/2^+},\\, \\Delta_{3/2^+}$$ at an energy scale above the first band of `conventional' excited positive parity baryons. This pattern of states is compatible with a color octet gluonic excitation having $$J^{P}=1^{+}$$ as previously reported in the hybrid meson sector and with a comparable energy scale for the excitation, suggesting a common bound-state construction for hybrid mesons and baryons.« less
Universal seesaw mechanisms for quark-lepton mass spectrum
NASA Astrophysics Data System (ADS)
Sogami, Ikuo S.; Shinohara, Tadatomi
1993-04-01
Problems of fermion mass hierarchies and generation mixings are investigated through universal seesaw mechanisms (USM's) in an extension of the standard model with a left-right-symmetric gauge group SU(3)c×SU(2)L×SU(2)R×U(1)y. Electroweak Higgs doublets and singlets induce USM's between ordinary fermion multiplets and exotic electroweak singlets of fermions. The USM's work singly in the charged-fermion sectors to suppress their masses below the electroweak mass scale, and doubly in the neutral-fermion sector to make neutrinos superlight. The wide gap between vanishingly small neutrino masses and the 100 GeV scale of the top-quark mass is explained by multiple USM suppressions without presuming a huge Majorana mass. A global chiral U(1)A symmetry is introduced so as to circumvent the strong CP violation, to distinguish generations, and to restrict the pattern of the Yukawa interactions. Three kinds of electroweak Higgs singlets bring about USM's and cause the generation mixing leading to a realistic variety in each charge sector of the fermion mass spectrum. A fourth Higgs singlet with the largest vacuum expectation value is introduced to make the neutrino masses tiny and to make the axion invisible. By assigning chiral charges to make effective mass matrices of all fermion sectors of the extended Fritzsch type, characteristics of the mass spectra of charged fermions and the quark mixing matrix are described without introducing unnatural hierarchies in the Yukawa coupling constants. Neutrinos have a spectrum comprising doubly degenerate states with a smaller mass and a singlet state with a larger mass. The vacuum mixing angle takes a small value which is favorable for explaining both the new results of the GALLEX Collaboration and the data of the Homestake and Kamiokande experiments.
Neutrino mass spectrum and future beta decay experiments
NASA Astrophysics Data System (ADS)
Farzan, Y.; Peres, O. L. G.; Smirnov, A. Yu.
2001-09-01
We study the discovery potential of future beta decay experiments on searches for the neutrino mass in the sub-eV range, and, in particular, KATRIN experiment with sensitivity m>0.3 eV. Effects of neutrino mass and mixing on the beta decay spectrum in the neutrino schemes which explain the solar and atmospheric neutrino data are discussed. The schemes which lead to observable effects contain one or two sets of quasi-degenerate states. Future beta decay measurements will allow to check the three-neutrino scheme with mass degeneracy, moreover, the possibility appears to measure the CP-violating Majorana phase. Effects in the four-neutrino schemes which can also explain the LSND data are strongly restricted by the results of Bugey and CHOOZ oscillation experiments: apart from bending of the spectrum and the shift of the end point one expects appearance of small kink of (<2%) size or suppressed tail after bending of the spectrum with rate below 2% of the expected rate for zero neutrino mass. We consider possible implications of future beta decay experiments for the neutrino mass spectrum, the determination of the absolute scale of neutrino mass and for establishing the nature of neutrinos. We show that beta decay measurements in combination with data from the oscillation and double beta decay experiments will allow to establish the structure of the scheme (hierarchical or non-hierarchical), the type of the hierarchy or ordering of states (normal or inverted) and to measure the relative CP-violating phase in the solar pair of states.
Color-flavor locked phase of high density QCD at nonzero strange quark mass
Kryjevski, Andrei; Yamada, Daisuke
2005-01-01
We compute free energy of quark matter at asymptotically high baryon number density in the presence of nonzero strange quark mass including dynamics of pseudo Nambu-Goldstone bosons due to chiral symmetry breaking, extending previously existing analysis based on perturbative expansion in m{sub s}{sup 2}/4{mu}{delta}. We demonstrate that the CFLK{sup 0} state has lower free energy than the symmetric CFL state for 0
NASA Astrophysics Data System (ADS)
Ma, Bailing; Ji, Chueng-Ryong
2017-01-01
Due to the simplicity and the inherent characteristics of confinement, the 1+1 dimensional QCD known as 't Hooft model has attracted a lot of interest for many yers. In the large Nc limit, the contribution from non-planar diagrams are negligible, hence an iterative equation can be simplified and solved numerically for the quark propagator dressed by gluons. While 't Hooft model was originally solved using the Light Front Dynamics (LFD), people have also done similar work afterwards in the Instant Form Dynamics (IFD). We attempt to interpolate the 1+1 dimensional QCD between IFD and LFD by introducing an angle called the interpolation angle. Using this interpolation method, we analyze the formulation of the single quark mass gap equation in dynamical forms between IFD and LFD. Examining that our interpolating results reproduce the IFD and LFD results previously obtained by others, we discuss the fate of the vacuum condensation, the chiral angle, and the effective mass in the limit to the IFD and the LFD. This work was supported by the U.S. Department of Energy (Grant No. DE-FG02-03ER41260).
Sekhar Chivukula
2016-07-12
The symmetries of a quantum field theory can be realized in a variety of ways. Symmetries can be realized explicitly, approximately, through spontaneous symmetry breaking or, via an anomaly, quantum effects can dynamically eliminate a symmetry of the theory that was presentÂ at the classical level. Â Quantum Chromodynamics (QCD),Â the modern theoryÂ of the strong interactions, exemplify each ofÂ these possibilities.Â The interplayÂ of these effects determine theÂ spectrum of particles that we observeÂ and, ultimately, account forÂ 99% of the mass of ordinary matter.Â
OPE, charm-quark mass, and decay constants of D and Ds mesons from QCD sum rules.
Lucha, Wolfgang; Melikhov, Dmitri; Simula, Silvano
2011-06-27
We present a sum-rule extraction of the decay constants of the charmed mesons D and Ds from the two-point correlator of pseudoscalar currents. First, we compare the perturbative expansion for the correlator and the decay constant performed in terms of the pole and the running MS¯ masses of the charm quark. The perturbative expansion in terms of the pole mass shows no signs of convergence whereas reorganizing this very expansion in terms of the MS¯ mass leads to a distinct hierarchy of the perturbative expansion. Furthermore, the decay constants extracted from the pole-mass correlator turn out to be considerably smaller than those obtained by means of the MS¯-mass correlator. Second, making use of the OPE in terms of the MS¯ mass, we determine the decay constants of both D and Ds mesons with an emphasis on the uncertainties in these quantities related both to the input QCD parameters and to the limited accuracy of the method of sum rules.
OPE, charm-quark mass, and decay constants of D and Ds mesons from QCD sum rules
Lucha, Wolfgang; Melikhov, Dmitri; Simula, Silvano
2011-01-01
We present a sum-rule extraction of the decay constants of the charmed mesons D and Ds from the two-point correlator of pseudoscalar currents. First, we compare the perturbative expansion for the correlator and the decay constant performed in terms of the pole and the running MS¯ masses of the charm quark. The perturbative expansion in terms of the pole mass shows no signs of convergence whereas reorganizing this very expansion in terms of the MS¯ mass leads to a distinct hierarchy of the perturbative expansion. Furthermore, the decay constants extracted from the pole-mass correlator turn out to be considerably smaller than those obtained by means of the MS¯-mass correlator. Second, making use of the OPE in terms of the MS¯ mass, we determine the decay constants of both D and Ds mesons with an emphasis on the uncertainties in these quantities related both to the input QCD parameters and to the limited accuracy of the method of sum rules. PMID:21949465
Hadronic Resonances from Lattice QCD
John Bulava; Robert Edwards; George Fleming; K. Jimmy Juge; Adam C. Lichtl; Nilmani Mathur; Colin Morningstar; David Richards; Stephen J. Wallace
2007-06-16
The determination of the pattern of hadronic resonances as predicted by Quantum Chromodynamics requires the use of non-perturbative techniques. Lattice QCD has emerged as the dominant tool for such calculations, and has produced many QCD predictions which can be directly compared to experiment. The concepts underlying lattice QCD are outlined, methods for calculating excited states are discussed, and results from an exploratory Nucleon and Delta baryon spectrum study are presented.
Hadronic Resonances from Lattice QCD
Lichtl, Adam C.; Bulava, John; Morningstar, Colin; Edwards, Robert; Mathur, Nilmani; Richards, David; Fleming, George; Juge, K. Jimmy; Wallace, Stephen J.
2007-10-26
The determination of the pattern of hadronic resonances as predicted by Quantum Chromodynamics requires the use of non-perturbative techniques. Lattice QCD has emerged as the dominant tool for such calculations, and has produced many QCD predictions which can be directly compared to experiment. The concepts underlying lattice QCD are outlined, methods for calculating excited states are discussed, and results from an exploratory Nucleon and Delta baryon spectrum study are presented.
Excited and exotic charmonium, D s and D meson spectra for two light quark masses from lattice QCD
NASA Astrophysics Data System (ADS)
Cheung, Gavin K. C.; O'Hara, Cian; Moir, Graham; Peardon, Michael; Ryan, Sinéad M.; Thomas, Christopher E.; Tims, David
2016-12-01
We present highly-excited charmonium, D s and D meson spectra from dynamical lattice QCD calculations with light quarks corresponding to M π ˜ 240 MeV and compare these to previous results with M π ˜ 400 MeV. Utilising the distillation framework, large bases of carefully constructed interpolating operators and a variational procedure, we extract and reliably identify the continuum spin of an extensive set of excited mesons. These include states with exotic quantum numbers which, along with a number with non-exotic quantum numbers, we identify as having excited gluonic degrees of freedom and interpret as hybrid mesons. Comparing the spectra at the two different M π , we find only a mild light-quark mass dependence and no change in the overall pattern of states.
Bottom hadrons from lattice QCD with domain wall and NRQCD fermions
Stefan Meinel, William Detmold, C.-J. David Lin, Matthew Wingate
2009-07-01
Dynamical 2+1 flavor lattice QCD is used to calculate the masses of bottom hadrons, including B mesons, singly and doubly bottom baryons, and for the first time also the triply-bottom baryon Omega{sub bbb}. The domain wall action is used for the up-, down-, and strange quarks (both valence and sea), while the bottom quark is implemented with non-relativistic QCD. A calculation of the bottomonium spectrum is also presented.
RECENT LATTICE RESULTS ON FINITE TEMPERATURE AND DENSITY QCD, PART 1.
KARSCH,F.
2007-07-09
We discuss recent progress made studies of bulk thermodynamics of strongly interacting matter through lattice simulations of QCD with an almost physical light and strange quark mass spectrum. We present results on the QCD equation of state at vanishing and non-vanishing quark chemical potential and show first results on baryon number and strangeness fluctuations, which might be measured in event-by-event fluctuations in low energy runs at RHIC as well as at FAIR.
Gorbahn, Martin; Jaeger, Sebastian
2010-12-01
We compute the conversion factors needed to obtain the MS and renormalization-group-invariant (RGI) up, down, and strange quark masses at next-to-next-to-leading order from the corresponding parameters renormalized in the recently proposed RI/SMOM and RI/SMOM{sub {gamma}{sub {mu}} }renormalization schemes. This is important for obtaining the MS masses with the best possible precision from numerical lattice QCD simulations, because the customary RI{sup (')}/MOM scheme is afflicted with large irreducible uncertainties both on the lattice and in perturbation theory. We find that the smallness of the known one-loop matching coefficients is accompanied by even smaller two-loop contributions. From a study of residual scale dependences, we estimate the resulting perturbative uncertainty on the light-quark masses to be about 2% in the RI/SMOM scheme and about 3% in the RI/SMOM{sub {gamma}{sub {mu}} }scheme. Our conversion factors are given in fully analytic form, for general covariant gauge and renormalization point. We provide expressions for the associated anomalous dimensions.
Borowka, S; Hahn, T; Heinemeyer, S; Heinrich, G; Hollik, W
Reaching a theoretical accuracy in the prediction of the lightest MSSM Higgs-boson mass, [Formula: see text], at the level of the current experimental precision requires the inclusion of momentum-dependent contributions at the two-loop level. Recently two groups presented the two-loop QCD momentum-dependent corrections to [Formula: see text] (Borowka et al., Eur Phys J C 74(8):2994, 2014; Degrassi et al., Eur Phys J C 75(2):61, 2015), using a hybrid on-shell-[Formula: see text] scheme, with apparently different results. We show that the differences can be traced back to a different renormalization of the top-quark mass, and that the claim in Ref. Degrassi et al. (Eur Phys J C 75(2):61, 2015) of an inconsistency in Ref. Borowka et al. (Eur Phys J C 74(8):2994, 2014) is incorrect. We furthermore compare consistently the results for [Formula: see text] obtained with the top-quark mass renormalized on-shell and [Formula: see text]. The latter calculation has been added to the FeynHiggs package and can be used to estimate missing higher-order corrections beyond the two-loop level.
Measurement of the dipion mass spectrum in decays.
Abulencia, A; Acosta, D; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arguin, J-F; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Bachacou, H; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Belloni, A; Ben Haim, E; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bishai, M; Blair, R E; Blocker, C; Bloom, K; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Bourov, S; Boveia, A; Brau, B; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carron, S; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chapman, J; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Chu, P H; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciljak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Connolly, A; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Cruz, A; Cuevas, J; Culbertson, R; Cyr, D; Daronco, S; D'Auria, S; D'onofrio, M; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; Dell'orso, M; Demers, S; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Dionisi, C; Dittmann, J R; DiTuro, P; Dörr, C; Dominguez, A; Donati, S; Donega, M; Dong, P; Donini, J; Dorigo, T; Dube, S; Ebina, K; Efron, J; Ehlers, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Flores-Castillo, L R; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Fujii, Y; Furic, I; Gajjar, A; Gallinaro, M; Galyardt, J; Garcia, J E; Garcia Sciveres, M; Garfinkel, A F; Gay, C; Gerberich, H; Gerchtein, E; Gerdes, D; Giagu, S; di Giovanni, G P; Giannetti, P; Gibson, A; Gibson, K; Ginsburg, C; Giokaris, N; Giolo, K; Giordani, M; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Gotra, Y; Goulianos, K; Gresele, A; Griffiths, M; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Haber, C; Hahn, S R; Hahn, K; Halkiadakis, E; Hamilton, A; Han, B-Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harper, S; Harr, R F; Harris, R M; Hatakeyama, K; Hauser, J; Hays, C; Hayward, H; Heijboer, A; Heinemann, B; Heinrich, J; Hennecke, M; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Huston, J; Ikado, K; Incandela, J; Introzzi, G; Iori, M; Ishizawa, Y; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jensen, H; Jeon, E J; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kamon, T; Kang, J; Karagoz-Unel, M; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, M S; Kim, S B; Kim, S H; Kim, Y K; Kirby, M; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kobayashi, H; Kondo, K; Kong, D J; Konigsberg, J; Kordas, K; Korytov, A; Kotwal, A V; Kovalev, A; Kraus, J; Kravchenko, I; Kreps, M; Kreymer, A; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecci, C; Lecompte, T; Lee, J; Lee, J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Li, K; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Liss, T M; Lister, A; Litvintsev, D O; Liu, T; Liu, Y; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Maksimovic, P; Manca, G; Margaroli, F; Marginean, R; Marino, C; Martin, A; Martin, M; Martin, V; Martínez, M; Maruyama, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McGivern, D; McIntyre, P; McNamara, P; McNulty, R; Mehta, A; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; von der Mey, M; Miao, T; Miladinovic, N; Miles, J; Miller, R; Miller, J S; Mills, C; Milnik, M; Miquel, R; Miscetti, S; Mitselmakher, G; Miyamoto, A; Moggi, N; Mohr, B; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Mulhearn, M; Muller, Th; Mumford, R; Murat, P; Nachtman, J; Nahn, S; Nakano, I; Napier, A; Naumov, D; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nigmanov, T; Nodulman, L; Norniella, O; Ogawa, T; Oh, S H; Oh, Y D; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Paoletti, R; Papadimitriou, V; Papikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pitts, K; Plager, C; Pondrom, L; Pope, G; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Rakitin, A; Rappoccio, S; Ratnikov, F; Reisert, B; Rekovic, V; van Remortel, N; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Rinnert, K; Ristori, L; Robertson, W J; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Rott, C; Ruiz, A; Russ, J; Rusu, V; Ryan, D; Saarikko, H; Sabik, S; Safonov, A; Sakumoto, W K; Salamanna, G; Salto, O; Saltzberg, D; Sanchez, C; Santi, L; Sarkar, S; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Semeria, F; Sexton-Kennedy, L; Sfiligoi, I; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sill, A; Sinervo, P; Sisakyan, A; Sjolin, J; Skiba, A; Slaughter, A J; Sliwa, K; Smirnov, D; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sumorok, K; Sun, H; Suzuki, T; Taffard, A; Tafirout, R; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Tether, S; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Tönnesmann, M; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuchiya, R; Tsuno, S; Turini, N; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vacavant, L; Vaiciulis, A; Vallecorsa, S; Varganov, A; Vataga, E; Velev, G; Veramendi, G; Veszpremi, V; Vickey, T; Vidal, R; Vila, I; Vilar, R; Vollrath, I; Volobouev, I; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wallny, R; Walter, T; Wan, Z; Wang, M J; Wang, S M; Warburton, A; Ward, B; Waschke, S; Waters, D; Watts, T; Weber, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Worm, S; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zetti, F; Zhang, X; Zhou, J; Zucchelli, S
2006-03-17
We measure the dipion mass spectrum in X(3872)--> J/psipi(+) pi(-) decays using 360 pb(-1) of pp collisions at square root s= 1.96 TeV collected with the CDF II detector. The spectrum is fit with predictions for odd C-parity ((3)S(1), (1)P(1), and (3)D(J)) charmonia decaying to J/psipi(+) pi(-), as well as even C-parity states in which the pions are from rho(0) decay. The latter case also encompasses exotic interpretations, such as a D(0)D(*0) molecule. Only the (3)S(1) and J/psirho hypotheses are compatible with our data. Since (3)S(1) is untenable on other grounds, decay via J/psirho is favored, which implies C= +1 for the X(3872). Models for J/psi - rho different angular momenta L are considered. Flexibility in the models, especially the introduction of rho - omega interference, enables good descriptions of our data for both L = 0 and 1.
The Higgs mass and natural supersymmetric spectrum from the landscape
NASA Astrophysics Data System (ADS)
Baer, Howard; Barger, Vernon; Savoy, Michael; Serce, Hasan
2016-07-01
In supersymmetric models where the superpotential μ term is generated with μ ≪msoft (e.g. from radiative Peccei-Quinn symmetry breaking or compactified string models with sequestration and stabilized moduli), and where the string landscape 1. favors soft supersymmetry (SUSY) breaking terms as large as possible and 2. where the anthropic condition that electroweak symmetry is properly broken with a weak scale m W , Z , h ∼ 100 GeV (i.e. not too weak of weak interactions), then these combined landscape/anthropic requirements act as an attractor pulling the soft SUSY breaking terms towards values required by models with radiatively-driven naturalness: near the line of criticality where electroweak symmetry is barely broken and the Higgs mass is ∼ 125 GeV. The pull on the soft terms serves to ameliorate the SUSY flavor and CP problems. The resulting sparticle mass spectrum may barely be accessible at high-luminosity LHC while the required light higgsinos should be visible at a linear e+e- collider with √{ s} > 2 m (higgsino).
Quark mass relations to four-loop order in perturbative QCD.
Marquard, Peter; Smirnov, Alexander V; Smirnov, Vladimir A; Steinhauser, Matthias
2015-04-10
We present results for the relation between a heavy quark mass defined in the on-shell and minimal subtraction (MS[over ¯]) scheme to four-loop order. The method to compute the four-loop on-shell integral is briefly described and the new results are used to establish relations between various short-distance masses and the MS[over ¯] quark mass to next-to-next-to-next-to-leading order accuracy. These relations play an important role in the accurate determination of the MS[over ¯] heavy quark masses.
General Exact Solutions for the Full Gluon Propagator in QCD with the Mass Gap
NASA Astrophysics Data System (ADS)
Gogokhia, V.; Barnaföldi, G. G.
We have explicitly shown that Quantum Chromodynamics is a color gauge invariant theory with non-zero mass gap, which has been defined as the value of the regularized full gluon self-energy at a finite scale point. The mass gap itself is mainly generated by the nonlinear interaction of massless gluon modes. All this allows one to establish the structure of the full gluon propagator in the explicit presence of the mass gap. In this case, the two independent general types of formal solutions for the full gluon propagator as a function of the regularized mass gap have been found: (i) The nonlinear iteration solution at which the gluons remain massless is explicitly present. (ii) Existence of the solution with an effective gluon mass is also demonstrated.
Λ_{c}→Λl^{+}ν_{l} Form Factors and Decay Rates from Lattice QCD with Physical Quark Masses.
Meinel, Stefan
2017-02-24
The first lattice QCD calculation of the form factors governing Λ_{c}→Λℓ^{+}ν_{ℓ} decays is reported. The calculation was performed with two different lattice spacings and includes one ensemble with a pion mass of 139(2) MeV. The resulting predictions for the Λ_{c}→Λe^{+}ν_{e} and Λ_{c}→Λμ^{+}ν_{μ} decay rates divided by |V_{cs}|^{2} are 0.2007(71)(74) and 0.1945(69)(72) ps^{-1}, respectively, where the two uncertainties are statistical and systematic. Taking the Cabibbo-Kobayashi-Maskawa (CKM) matrix element |V_{cs}| from a global fit and the Λ_{c} lifetime from experiments, this translates to branching fractions of B(Λ_{c}→Λe^{+}ν_{e})=0.0380(19)_{LQCD}(11)_{τ_{Λ_{c}}} and B(Λ_{c}→Λμ^{+}ν_{μ})=0.0369(19)_{LQCD}(11)_{τ_{Λ_{c}}}. These results are consistent with, and two times more precise than, the measurements performed recently by the BESIII Collaboration. Using instead the measured branching fractions together with the lattice calculation to determine the CKM matrix element gives |V_{cs}|=0.949(24)_{LQCD}(14)_{τ_{Λ_{c}}}(49)_{B}.
Λc→Λ l+νl Form Factors and Decay Rates from Lattice QCD with Physical Quark Masses
NASA Astrophysics Data System (ADS)
Meinel, Stefan
2017-02-01
The first lattice QCD calculation of the form factors governing Λc→Λ ℓ+νℓdecays is reported. The calculation was performed with two different lattice spacings and includes one ensemble with a pion mass of 139(2) MeV. The resulting predictions for the Λc→Λe +νe and Λc→Λ μ+νμ decay rates divided by |Vc s|2 are 0.2007(71)(74) and 0.1945 (69 )(72 ) ps-1 , respectively, where the two uncertainties are statistical and systematic. Taking the Cabibbo-Kobayashi-Maskawa (CKM) matrix element |Vc s| from a global fit and the Λc lifetime from experiments, this translates to branching fractions of B (Λc→Λ e+νe)=0.0380 (19 )LQCD(11 )τ Λ c and B (Λc→Λ μ+νμ)=0.0369 (19 )LQCD(11 )τΛc . These results are consistent with, and two times more precise than, the measurements performed recently by the BESIII Collaboration. Using instead the measured branching fractions together with the lattice calculation to determine the CKM matrix element gives |Vc s|=0.949 (24 )LQCD(14 )τΛc(49 )B .
CHIRAL LIMIT AND LIGHT QUARK MASSES IN 2+1 FLAVOR DOMAIN WALL QCD.
SCHOLZ,E.; LIN, M.
2007-07-30
We present results for meson masses and decay constants measured on 24{sup 3} x 64 lattices using the domain wall fermion formulation with an extension of the fifth dimension of L{sub s} = 16 for N{sub f} 2 + 1 dynamical quark flavors. The lightest dynamical meson mass in our set-up is around 331MeV. while partially quenched mesons reach masses as low as 250MeV. The applicability of SU(3) x SU(3) and SU(2) x SU(2) (partially quenched) chiral perturbation theory will be compared and we quote values for the low-energy constants from both approaches. We will extract the average light quark and strange quark masses and use a non-perturbative renormalization technique (RI/MOM) to quote their physical values. The pion and kaon decay constants are determined at those values from our chiral fits and their ratio is used to obtain the CKM-matrix element |V{sub us}|. The results presented here include statistical errors only.
Black Holes across the Mass Spectrum-from Stellar Mass BH to ULXs and AGN
NASA Technical Reports Server (NTRS)
Mushotzky, Richard
2006-01-01
I will discuss the observational characteristics of black holes and how they compare across the 10^8 range in mass and as a function of luminosity and apparent Eddington ratio. I will concentrate on the broad band spectrum, the timing signatures and the energy budget of these objects. In particular I will stress the similarities and differences in the x-ray spectra and power density spectra of AGN, ultraluminous x-ray sources and galactic black holes as a function of 'state'. I will also discuss the nature of the Fe K line and other diagnostics of the regions near the event horizon.
Theta angle in holographic QCD
NASA Astrophysics Data System (ADS)
Järvinen, Matti
2017-03-01
V-QCD is a class of effective holographic models for QCD which fully includes the backreaction of quarks to gluon dynamics. The physics of the θ-angle and the axial anomaly can be consistently included in these models. We analyze their phase diagrams over ranges of values of the quark mass, Nf/Nc, and θ, computing observables such as the topological susceptibility and the meson masses. At small quark mass, where effective chiral Lagrangians are reliable, they agree with the predictions of V-QCD.
NASA Astrophysics Data System (ADS)
Deur, Alexandre; Brodsky, Stanley J.; de Téramond, Guy F.
2016-09-01
dynamics, and it gives a remarkable connection between the perturbative QCD scale Λ and hadron masses. One can also identify a specific scale Q0 which demarcates the division between perturbative and nonperturbative QCD. We also review other important methods for computing the QCD coupling, including lattice QCD, the Schwinger-Dyson equations and the Gribov-Zwanziger analysis. After describing these approaches and enumerating their conflicting predictions, we discuss the origin of these discrepancies and how to remedy them. Our aim is not only to review the advances in this difficult area, but also to suggest what could be an optimal definition of αs(Q2) in order to bring better unity to the subject.
Fukugita, M. ); Mino, H. ); Okawa, M. , Ibaraki 305 ); Ukawa, A. )
1990-10-15
A previous finite-size study for the chiral phase transition of two-flavor QCD is extended to a smaller quark mass of {ital m}{sub {ital q}}=0.0125 in lattice units. The characteristics of the system for lattice sizes (6{sup 3}--12{sup 3}){times}4 are found to be quite similar to those for {ital m}{sub {ital q}}=0.025. The increase of susceptibilities over this range of the spatial size is still too mild to discriminate among the order of the transition also at this small quark mass.
Radiative transitions in charm-strange meson from Nf = 2 twisted mass lattice QCD
NASA Astrophysics Data System (ADS)
Li, Ning; Wu, Ya-Jie
2016-07-01
We present an exploratory study on the radiative transition for the charm-strange meson: Ds∗→ D sγ using Nf = 2 twisted mass lattice quantum chromodynamics gauge configurations. The form factor for Ds meson is also determined. The simulation is performed on lattices with lattice spacings a = 0.067 fm and lattice size 323 × 64, and a = 0.085 fm and lattice size 243 × 48, respectively. Our numerical results for radiative decay width and the experimental data overlap within the margin of error.
B{sub K}-parameter from N{sub f}=2 twisted mass lattice QCD
Constantinou, M.; Panagopoulos, H.; Skouroupathis, A.; Stylianou, F.; Dimopoulos, P.; Frezzotti, R.; Rossi, G. C.; Gimenez, V.; Lubicz, V.; Papinutto, M.
2011-01-01
We present an unquenched N{sub f}=2 lattice computation of the B{sub K} parameter which controls K{sup 0}-K{sup 0} oscillations. A partially quenched setup is employed with two maximally twisted dynamical (sea) light Wilson quarks, and valence quarks of both the maximally twisted and the Osterwalder-Seiler variety. Suitable combinations of these two kinds of valence quarks lead to a lattice definition of the B{sub K} parameter which is both multiplicatively renormalizable and O(a) improved. Employing the nonperturbative RI-MOM scheme, in the continuum limit and at the physical value of the pion mass we get B{sub K}{sup RGI}=0.729{+-}0.030, a number well in line with the existing quenched and unquenched determinations.
Isoscalar meson spectroscopy from lattice QCD
Jozef Dudek, Robert Edwards, David Richards, Christopher Thomas, Balint Joo, Michael Peardon
2011-06-01
We extract to high statistical precision an excited spectrum of single-particle isoscalar mesons using lattice QCD, including states of high spin and, for the first time, light exotic JPC isoscalars. The use of a novel quark field construction has enabled us to overcome the long-standing challenge of efficiently including quark-annihilation contributions. Hidden-flavor mixing angles are extracted and while most states are found to be close to ideally flavor mixed, there are examples of large mixing in the pseudoscalar and axial sectors in line with experiment. The exotic JPC isoscalar states appear at a mass scale comparable to the exotic isovector states.
QCD factorization for B → ππℓν decays at large dipion masses
NASA Astrophysics Data System (ADS)
Böer, Philipp; Feldmann, Thorsten; van Dyk, Danny
2017-02-01
We introduce a factorization formula for semi-leptonic b → u transitions in the exclusive decay mode {B}-to {π}+{π}-{ℓ}-{overline{ν}}_{ℓ } in the limit of large pion energies and large dipion invariant mass. One contribution can be described in terms of a universal B → π form factor and the convolution of a short-distance kernel T I with the respective light-cone distribution amplitudes (LCDAs) of the positively charged pion. The second contribution, at leading power, completely factorizes, with a short-distance kernel T II convoluted with the leading-twist LCDAs for both pions and the B-meson. We calculate the leading contributions to the short-distance kernels T I and T II in fixed-order perturbation theory, and discuss the approximate relations among the resulting B → ππ partial-wave form factors. Our results provide useful theoretical constraints for phenomenological models that aim to analyze the complete B → ππℓν phase space.
Devlin, T.; CDF Collaboration
1996-10-01
The CDF collaboration is engaged in a broad program of QCD measurements at the Fermilab Tevatron Collider. I will discuss inclusive jet production at center-of-mass energies of 1800 GeV and 630 GeV, properties of events with very high total transverse energy and dijet angular distributions.
Phenomenology Using Lattice QCD
NASA Astrophysics Data System (ADS)
Gupta, R.
2005-08-01
This talk provides a brief summary of the status of lattice QCD calculations of the light quark masses and the kaon bag parameter BK. Precise estimates of these four fundamental parameters of the standard model, i.e., mu, md, ms and the CP violating parameter η, help constrain grand unified models and could provide a window to new physics.
Phenomenology Using Lattice QCD
NASA Astrophysics Data System (ADS)
Gupta, R.
This talk provides a brief summary of the status of lattice QCD calculations of the light quark masses and the kaon bag parameter BK. Precise estimates of these four fundamental parameters of the standard model, i.e., mu, md, ms and the CP violating parameter η, help constrain grand unified models and could provide a window to new physics.
Theta dependence in holographic QCD
NASA Astrophysics Data System (ADS)
Bartolini, Lorenzo; Bigazzi, Francesco; Bolognesi, Stefano; Cotrone, Aldo L.; Manenti, Andrea
2017-02-01
We study the effects of the CP-breaking topological θ-term in the large N c QCD model by Witten, Sakai and Sugimoto with N f degenerate light flavors. We first compute the ground state energy density, the topological susceptibility and the masses of the lowest lying mesons, finding agreement with expectations from the QCD chiral effective action. Then, focusing on the N f = 2 case, we consider the baryonic sector and determine, to leading order in the small θ regime, the related holographic instantonic soliton solutions. We find that while the baryon spectrum does not receive O(θ ) corrections, this is not the case for observables like the electromagnetic form factor of the nucleons. In particular, it exhibits a dipole term, which turns out to be vector-meson dominated. The resulting neutron electric dipole moment, which is exactly the opposite as that of the proton, is of the same order of magnitude of previous estimates in the literature. Finally, we compute the CP-violating pion-nucleon coupling constant {overline{g}}_{π NN} , finding that it is zero to leading order in the large N c limit.
Renormalization of quark propagators from twisted-mass lattice QCD at N{sub f}=2
Blossier, B.; Boucaud, Ph.; Pene, O.; Petrov, K.; Brinet, M.; Liu, Z.; Morenas, V.
2011-04-01
We present results concerning the nonperturbative evaluation of the renormalization constant for the quark field, Z{sub q}, from lattice simulations with twisted-mass quarks and three values of the lattice spacing. We use the regularization-invariant momentum-subtraction (RI'-MOM) scheme. Z{sub q} has very large lattice spacing artefacts; it is considered here as a test bed to elaborate accurate methods which will be used for other renormalization constants. We recall and develop the nonperturbative correction methods and propose tools to test the quality of the correction. These tests are also applied to the perturbative correction method. We check that the lattice-spacing artefacts indeed scale as a{sup 2}p{sup 2}. We then study the running of Z{sub q} with particular attention to the nonperturbative effects, presumably dominated by the dimension-two gluon condensate in Landau gauge. We show indeed that this effect is present, and not small. We check its scaling in physical units, confirming that it is a continuum effect. It gives a {approx}4% contribution at 2 GeV. Different variants are used in order to test the reliability of our result and estimate the systematic uncertainties. Finally, combining all our results and using the known Wilson coefficient of , we find g{sup 2}({mu}{sup 2}){sub {mu}}{sup 2}{sub CM}=2.01(11)({sub -0.73}{sup +0.61})GeV{sup 2} at {mu}=10 GeV, the local operator A{sup 2} being renormalized in the MS scheme. This last result is in fair agreement within uncertainties with the value independently extracted from the strong coupling constant. We convert the nonperturbative part of Z{sub q} from the regularization-invariant momentum-subtraction (RI'-MOM) scheme to MS. Our result for the quark field renormalization constant in the MS scheme is Z{sub q} {sup MS} {sup pert}((2 GeV){sup 2},g{sub bare}{sup 2})=0.750(3)(7)-0.313(20)(g{sub bare}{sup 2}-1.5) for the perturbative contribution and Z{sub q
NASA Astrophysics Data System (ADS)
Dudek, Jozef J.
2016-03-01
I describe how hadron-hadron scattering amplitudes are related to the eigenstates of QCD in a finite cubic volume. The discrete spectrum of such eigenstates can be determined from correlation functions computed using lattice QCD, and the corresponding scattering amplitudes extracted. I review results from the Hadron Spectrum Collaboration who have used these finite volume methods to study ππ elastic scattering, including the ρ resonance, as well as coupled-channel πK, ηK scattering. The very recent extension to the case where an external current acts is also presented, considering the reaction πγ* → ππ, from which the unstable ρ → πγ transition form factor is extracted. Ongoing calculations are advertised and the outlook for finite volume approaches is presented.
THE PARITY PARTNER OF THE NUCLEON IN QUENCHED QCD WITH DOMAIN WALL FERMIONS
SASAKI,S.
2000-07-12
The authors present preliminary results for the mass spectrum of the nucleon and its low-lying excited states from quenched lattice QCD using the domain wall fermion method which preserves the chiral symmetry at finite lattice cutoff. Definite mass splitting is observed between the nucleon and its parity partner. This splitting grows with decreasing valence quark mass. They also present preliminary data regarding the first positive-parity excited state.
Jozef Dudek
2007-08-05
Charmonium is an attractive system for the application of lattice QCD methods. While the sub-threshold spectrum has been considered in some detail in previous works, it is only very recently that excited and higher-spin states and further properties such as radiative transitions and two-photon decays have come to be calculated. I report on this recent progress with reference to work done at Jefferson Lab.
Determination of the chiral condensate from (2+1)-flavor lattice QCD.
Fukaya, H; Aoki, S; Hashimoto, S; Kaneko, T; Noaki, J; Onogi, T; Yamada, N
2010-03-26
We perform a precise calculation of the chiral condensate in QCD using lattice QCD with 2+1 flavors of dynamical overlap quarks. Up and down quark masses cover a range between 3 and 100 MeV on a 16{3}x48 lattice at a lattice spacing approximately 0.11 fm. At the lightest sea quark mass, the finite volume system on the lattice is in the regime. By matching the low-lying eigenvalue spectrum of the Dirac operator with the prediction of chiral perturbation theory at the next-to-leading order, we determine the chiral condensate in (2+1)-flavor QCD with strange quark mass fixed at its physical value as Sigma;{MS[over ]}(2 GeV)=[242(04)(+19/-18) MeV]{3} where the errors are statistical and systematic, respectively.
Lattice QCD sprectrum of excited states of the nucleon
NASA Astrophysics Data System (ADS)
Wallace, Stephen
2012-03-01
Lattice QCD results are presented for the spectrum of excited states of the nucleon. Matrices of correlation functions are calculated using lattice operators that incorporate up to two covariant derivatives in combinations that transform according to SU(2) symmetry restricted to the lattice. Although the lattice has cubic symmetry, identification of continuum SU(2) spins is straightforward using such operators. Overlaps of the operators with the lattice QCD states obtained by diagonalizing matrices of correlation functions provide the link of continuum spins to lattice states. Spins up to 7/2 are identified clearly. Evidence for an approximate realization of rotational symmetry in the spectrum is presented, which helps to explain why the continuum spins can be identified. In lattice simulations with pion mass equal to 392 MeV, the low-lying excited states of lattice QCD are found to have the same spin quantum numbers as the states of SU(6)xO(3) symmetry. The lattice QCD spectra are inconsistent with either a quark-diquark model or parity doubling of states. They suggest that the Roper resonance may have a complex structure consisting of contributions from L=0, 1 and 2.
MS overline -on-shell quark mass relation up to four loops in QCD and a general SU (N ) gauge group
NASA Astrophysics Data System (ADS)
Marquard, Peter; Smirnov, Alexander V.; Smirnov, Vladimir A.; Steinhauser, Matthias; Wellmann, David
2016-10-01
We compute the relation between heavy quark masses defined in the modified minimal subtraction and the on-shell schemes. Detailed results are presented for all coefficients of the SU (Nc) color factors. The reduction of the four-loop on-shell integrals is performed for a general QCD gauge parameter. Altogether there are about 380 master integrals. Some of them are computed analytically, others with high numerical precision using Mellin-Barnes representations, and the rest numerically with the help of FIESTA. We discuss in detail the precise numerical evaluation of the four-loop master integrals. Updated relations between various short-distance masses and the MS ¯ quark mass to next-to-next-to-next-to-leading order accuracy are provided for the charm, bottom and top quarks. We discuss the dependence on the renormalization and factorization scale.
On numerical solutions to the QCD ’t Hooft equation in the limit of large quark mass
Zubov, Roman; Prokhvatilov, Evgeni
2016-01-22
First we give a short informal introduction to the theory behind the ’t Hooft equation. Then we consider numerical solutions to this equation in the limit of large fermion masses. It turns out that the spectrum of eigenvalues coincides with that of the Airy differential equation. Moreover when we take the Fourier transform of eigenfunctions, they look like the corresponding Airy functions with appropriate symmetry. It is known that these functions correspond to solutions of a one dimensional Schrodinger equation for a particle in a triangular potential well. So we find the analogy between this problem and the ’t Hooft equation. We also present a simple intuition behind these results.
Kovacs, E.; CDF Collaboration
1996-02-01
We present results for the inclusive jet cross section and the dijet mass distribution. The inclusive cross section and dijet mass both exhibit significant deviations from the predictions of NLO QCD for jets with E{sub T}>200 GeV, or dijet masses > 400 GeV/c{sup 2}. We show that it is possible, within a global QCD analysis that includes the CDF inclusive jet data, to modify the gluon distribution at high x. The resulting increase in the jet cross-section predictions is 25-35%. Owing to the presence of k{sub T} smearing effects, the direct photon data does not provide as strong a constraint on the gluon distribution as previously thought. A comparison of the CDF and UA2 jet data, which have a common range in x, is plagued by theoretical and experimental uncertainties, and cannot at present confirm the CDF excess or the modified gluon distribution.
Spectroscopy of triply charmed baryons from lattice QCD
Padmanath, M.; Edwards, Robert G.; Mathur, Nilmani; ...
2014-10-14
The spectrum of excitations of triply-charmed baryons is computed using lattice QCD including dynamical light quark fields. The spectrum obtained has baryonic states with well-defined total spin up to 7/2 and the low-lying states closely resemble the expectation from models with an SU(6) x O(3) symmetry. As a result, energy splittings between extracted states, including those due to spin-orbit coupling in the heavy quark limit are computed and compared against data at other quark masses.
Deur, Alexandre; Brodsky, Stanley J.; de Téramond, Guy F.
2016-05-09
regime and its prediction for the analytic form of $$\\alpha_s(Q^2)$$. The AdS/QCD light-front holographic analysis predicts the color confinement potential underlying hadron spectroscopy and dynamics, and it gives a remarkable connection between the perturbative QCD scale $$\\Lambda$$ and hadron masses. One can also identify a specific scale $$Q_0$$ which demarcates the division between perturbative and nonperturbative QCD. We also review other important methods for computing the QCD coupling, including Lattice QCD, Schwinger-Dyson equations and the Gribov-Zwanziger analysis. After describing these approaches and enumerating conflicting results, we provide a partial discussion on the origin of these discrepancies and how to remedy them. Our aim is not only to review the advances on this difficult subject, but also to suggest what could be the best definition of $$\\alpha_s(Q^2)$$ in order to bring better unity to the subject.« less
Deur, Alexandre; Brodsky, Stanley J.; de Téramond, Guy F.
2016-05-09
for the analytic form of $\\alpha_s(Q^2)$. The AdS/QCD light-front holographic analysis predicts the color confinement potential underlying hadron spectroscopy and dynamics, and it gives a remarkable connection between the perturbative QCD scale $\\Lambda$ and hadron masses. One can also identify a specific scale $Q_0$ which demarcates the division between perturbative and nonperturbative QCD. We also review other important methods for computing the QCD coupling, including Lattice QCD, Schwinger-Dyson equations and the Gribov-Zwanziger analysis. After describing these approaches and enumerating conflicting results, we provide a partial discussion on the origin of these discrepancies and how to remedy them. Our aim is not only to review the advances on this difficult subject, but also to suggest what could be the best definition of $\\alpha_s(Q^2)$ in order to bring better unity to the subject.
A study of Θ+(ududs¯) in lattice QCD
NASA Astrophysics Data System (ADS)
Chiu, Ting-Wai; Hsieh, Tung-Han
2005-03-01
We investigate the mass spectrum of the pentaquark baryon ( ududs¯) in quenched lattice QCD with exact chiral symmetry. Using 3 different interpolating operators, we measure the 3×3 correlation matrix and obtain the eigenvalues A(t) with ± parity. For odd parity states, A(t) deviates from pure exponential decay even at large t, which implies that it cannot be a resonance with narrow decay width, thus is ruled out as a candidate of Θ(1540). For even parity states, they behave like usual resonances seen in quenched lattice QCD, and the mass of the lowest lying J=1/2 state is determined to be 1583 ± 121 MeV.
Baryon Spectroscopy and Operator Construction in Lattice QCD
S. Basak; I. Sato; S. Wallace; R. Edwards; D. Richards; R. Fiebig; G. Fleming; U. Heller; C. Morningstar
2004-07-01
This talk describes progress at understanding the properties of the nucleon and its excitations from lattice QCD. I begin with a review of recent lattice results for the lowest-lying states of the excited baryon spectrum. The need to approach physical values of the light quark masses is emphasized, enabling the effects of the pion cloud to be revealed. I then outline the development of techniques that will enable the extraction of the masses of the higher resonances. I will describe how such calculations provide insight into the structure of the hadrons, and enable comparison both with experiment, and with QCD-inspired pictures of hadron structure, such as calculations in the limit of large N{sub c}.
NASA Astrophysics Data System (ADS)
Carrasco, N.; Dimopoulos, P.; Frezzotti, R.; Lubicz, V.; Rossi, G. C.; Simula, S.; Tarantino, C.; ETM Collaboration
2015-08-01
We present unquenched lattice QCD results for the matrix elements of four-fermion operators relevant to the description of the neutral K and D mixing in the standard model and its extensions. We have employed simulations with Nf=2 +1 +1 dynamical sea quarks at three values of the lattice spacings in the interval 0.06-0.09 fm and pseudoscalar meson masses in the range 210-450 MeV. Our results are extrapolated to the continuum limit and to the physical pion mass. Renormalization constants have been determined nonperturbatively in the RI-MOM scheme. In particular, for the kaon bag parameter, which is relevant for the K¯ 0-K0 mixing in the standard model, we obtain BKRGI=0.717 (24 ) .
Alternative model of the Antonov problem: Generalization with the presence of a mass spectrum
NASA Astrophysics Data System (ADS)
Velazquez, L.; García, S. Gómez; Guzmán, F.
2009-01-01
We extend the quasiergodic model proposed as an alternative version of the Antonov isothermal model [L. Velazquez and F. Guzman, Phys. Rev. E 68, 066116 (2003)] by including the incidence of a mass spectrum. We propose an iterative procedure inspired by the Newton-Raphson method to solve the resulting nonlinear structure equations. As an example of application, we assume the existence of a mass spectrum with a standard Salpeter form, dN=Cdm/mα . We analyze consequences of this realistic ingredient on the system thermodynamical behavior and perform a quantitative description of the mass segregation effect.
Measuring peptide mass spectrum correlation using the quantum Grover algorithm.
Choo, Keng Wah
2007-03-01
We investigated the use of the quantum Grover algorithm in the mass-spectrometry-based protein identification process. The approach coded the mass spectra on a quantum register and uses the Grover search algorithm for searching multiple solutions to find matches from a database. Measurement of the fidelity between the input and final states was used to quantify the similarity between the experimental and theoretical spectra. The optimal number of iteration is proven to be pi/4sqrt[N/k] , where k refers to the number of marked states. We found that one iteration is sufficient for the search if we let more that 62% of the N states be marked states. By measuring the fidelity after only one iteration of Grover search, we discovered that it resembles that of the correlation-based measurement used in the existing protein identification software. We concluded that the quantum Grover algorithm can be adapted for a correlation-based mass spectra database search, provided that decoherence can be kept to a minimum.
NASA Astrophysics Data System (ADS)
Cahill, R. T.
1992-06-01
A review is given of progress in deriving the effective action for hadronic physics, S[π, ϱ, ω,.., overlineN, N,..] , from the fundamental defining action of QCD, S[ overlineq, q, A μa] . This is a problem in quantum field theory and the most success so far has been achieved using functional integral calculus (FIC) techniques. This formulates the problem as an exercise in changing the variables of integration in the functional integrals, from those of the quark and gluon fields to those of the (bare) meson and baryon fields. The appropriate variables are determined by the dynamics of QCD, and the final hadronic variables (essentially the 'normal modes' of QCD) are local fields describing the 'centre-of-mass' motion of extended bound states of quarks. The quarks are extensively dressed by the gluons, and the detailed aspects of the hidden chiral symmetry emerge naturally from the formalism. Particular attention is given to covariant integral equations which determine bare nucleon structure (i.e. in the quenched approximation). These equations, which arise from the closed double-helix diagrams of the FIC analysis, describe the baryons in terms of quark-diquark structure, in the form of Faddeev equations. This hadronisation of QCD also generates the dressing of these baryons by the pions, and the non-local πNN coupling.
Compound identification in GC-MS by simultaneously evaluating mass spectrum and retention index
Wei, Xiaoli; Koo, Imhoi; Kim, Seongho
2014-01-01
We report a compound identification method (SimMR), which simultaneously evaluates the mass spectrum similarity and the retention index distance using an empirical mixture score function, for the analysis of GC-MS data. The performance of the developed SimMR method was compared to that of two existing compound identification strategies. One is mass spectrum matching method without incorporation of retention index information (SM). The other is the method that sequentially evaluates the mass spectrum similarity and retention index distance (SeqMR). For the comparison purpose, we used the NIST/EPA/NIH Mass Spectral Library 2005. Our study demonstrates that SimMR performs the best among the three compound identification methods, by improving the overall identification accuracy up to 1.53% and 4.81% compared to SeqMR and SM, respectively. PMID:24665464
Excited light isoscalar mesons from lattice QCD
Christopher Thomas
2011-07-01
I report a recent lattice QCD calculation of an excited spectrum of light isoscalar mesons, something that has up to now proved challenging for lattice QCD. With novel techniques we extract an extensive spectrum with high statistical precision, including spin-four states and, for the first time, light isoscalars with exotic quantum numbers. In addition, the hidden flavour content of these mesons is determined, providing a window on annihilation dynamics in QCD. I comment on future prospects including applications to the study of resonances.
Recent progress in lattice QCD
Sharpe, S.R.
1992-12-01
A brief overview of the status of lattice QCD is given, with emphasis on topics relevant to phenomenology. The calculation of the light quark spectrum, the lattice prediction of {alpha} {sub {ovr MS}} (M {sub Z}), and the calculation of f{sub B} are discussed. 3 figs., 3 tabs., 40 refs.
Meson Resonances from Lattice QCD
Edwards, Robert G.
2016-06-01
There has been recent, significant, advances in the determination of the meson spectrum of QCD. Current efforts have focused on the development and application of finite-volume formalisms that allow for the determination of scattering amplitudes as well as resonance behavior in coupled channel systems. I will review some of these recent developments, and demonstrate the viability of the method in meson systems.
The mass spectrum of compact remnants from the PARSEC stellar evolution tracks
NASA Astrophysics Data System (ADS)
Spera, Mario; Mapelli, Michela; Bressan, Alessandro
2015-08-01
The mass spectrum of stellar mass black holes (BHs) is highly uncertain. Dynamical mass measurements are available only for few (˜10) BHs in X-ray binaries, while theoretical models strongly depend on the hydrodynamics of supernova (SN) explosions and on the evolution of massive stars. In this paper, we present and discuss the mass spectrum of compact remnants that we obtained with SEVN, a new public population-synthesis code, which couples the PARSEC stellar evolution tracks with up-to-date recipes for SN explosion (depending on the carbon-oxygen mass of the progenitor, on the compactness of the stellar core at pre-SN stage and on a recent two-parameter criterion based on the dimensionless entropy per nucleon at pre-SN stage). SEVN can be used both as a stand-alone code and in combination with direct-summation N-body codes (STARLAB, HIGPUS). The PARSEC stellar evolution tracks currently implemented in SEVN predict significantly larger values of the carbon-oxygen core mass with respect to previous models. For most of the SN recipes we adopt, this implies substantially larger BH masses at low metallicity (≤2 × 10-3), than other population synthesis codes. The maximum BH mass found with SEVN is ˜25, 60 and 130 M⊙ at metallicity Z = 2 × 10-2, 2 × 10-3 and 2 × 10-4, respectively. Mass loss by stellar winds plays a major role in determining the mass of BHs for very massive stars (≥90 M⊙), while the remnant mass spectrum depends mostly on the adopted SN recipe for lower progenitor masses. We discuss the implications of our results for the transition between neutron star and BH mass, and for the expected number of massive BHs (with mass >25 M⊙) as a function of metallicity.
QCD and Light-Front Holography
Brodsky, Stanley J.; de Teramond, Guy F.; /Costa Rica U.
2010-10-27
The soft-wall AdS/QCD model, modified by a positive-sign dilaton metric, leads to a remarkable one-parameter description of nonperturbative hadron dynamics. The model predicts a zero-mass pion for zero-mass quarks and a Regge spectrum of linear trajectories with the same slope in the leading orbital angular momentum L of hadrons and the radial quantum number N. Light-Front Holography maps the amplitudes which are functions of the fifth dimension variable z of anti-de Sitter space to a corresponding hadron theory quantized on the light front. The resulting Lorentz-invariant relativistic light-front wave equations are functions of an invariant impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron at equal light-front time. The result is to a semi-classical frame-independent first approximation to the spectra and light-front wavefunctions of meson and baryon light-quark bound states, which in turn predict the behavior of the pion and nucleon form factors. The theory implements chiral symmetry in a novel way: the effects of chiral symmetry breaking increase as one goes toward large interquark separation, consistent with spectroscopic data, and the the hadron eigenstates generally have components with different orbital angular momentum; e.g., the proton eigenstate in AdS/QCD with massless quarks has L = 0 and L = 1 light-front Fock components with equal probability. The soft-wall model also predicts the form of the non-perturbative effective coupling {alpha}{sub s}{sup AdS} (Q) and its {beta}-function which agrees with the effective coupling {alpha}{sub g1} extracted from the Bjorken sum rule. The AdS/QCD model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method in order to systematically include the QCD interaction terms. A new perspective on quark and gluon condensates is also reviewed.
Analysis of the p p-bar mass spectrum in J/Psi
J. Haidenbauer; S. Krewald; U.-G. Meissner; A. Sibirtsev; A. W. Thomas
2005-05-16
The near-threshold enhancement in the p p-bar invariant mass spectrum of the reaction J/Psi --> gamma p p-bar, observed in an experiment by the BES Collaboration, is analysed. It is shown, within the Watson-Migdal approach to final state interactions, that the mass dependence of the p p-bar spectrum close to the threshold can be reproduced by the S-wave p p-bar interaction of the Jülich N N-bar model in the isospin I=1 state. Difficulties in the consistent interpretation of the p invariant mass spectrum of the reaction J/Psi --> pi^0 p p-bar, where there are no obvious signs for a final state interaction, are discussed.
Calculation of the Mass Spectrum and Deconfining Temperature in Non-Abelian Gauge Theory.
NASA Astrophysics Data System (ADS)
Vohwinkel, Claus
1989-03-01
Using a small volume expansion the mass spectrum and deconfining temperature of SU(2) and SU(3) gauge theory are evaluated. Including non-perturbative features by restoring symmetries which were broken in perturbation theory we obtain results which are valid up to intermediate volumes. The mass spectrum obtained is in good agreement with Luscher's small volume expansion in the small-volume limit and with Monte Carlo Data in medium sized volumes. Using asymmetric volumes we are able to derive the deconfining temperature and find a reasonable agreement with Monte Carlo calculations.
Archeology and evolution of QCD
NASA Astrophysics Data System (ADS)
De Rújula, A.
2017-03-01
These are excerpts from the closing talk at the "XIIth Conference on Quark Confinement and the Hadron Spectrum", which took place last Summer in Thessaloniki -an excellent place to enjoy an interest in archeology. A more complete personal view of the early days of QCD and the rest of the Standard Model is given in [1]. Here I discuss a few of the points which -to my judgement- illustrate well the QCD evolution (in time), both from a scientific and a sociological point of view.
Holographic QCD for H-dibaryon (uuddss)
NASA Astrophysics Data System (ADS)
Suganuma, Hideo; Matsumoto, Kohei
2017-03-01
The H-dibaryon (uuddss) is studied in holographic QCD for the first time. In holographic QCD, four-dimensional QCD, i.e., SU(Nc) gauge theory with chiral quarks, can be formulated with S1-compactified D4/D8/\\overline {{{D8}}} -brane system. In holographic QCD with large (Nc, all the baryons appear as topological chiral solitons of Nambu-Goldstone bosons and (axial) vector mesons, and the H-dibaryon can be described as an SO(3)-type topological soliton with B = 2. We derive the low-energy effective theory to describe the H-dibaryon in holographic QCD. The H-dibaryon mass is found to be twice of the B = 1 hedgehog-baryon mass, MH ≃ 2.00MB=1HH, and is estimated about 1.7GeV, which is smaller than mass of two nucleons (flavor-octet baryons), in the chiral limit.
Feng, Chenghong; Bi, Zhe; Tang, Hongxiao
2015-01-06
Electrospray mass spectrometry has been reported as a novel technique for Al species identification, but to date, the working mechanism is not clear and no unanimous method exists for spectrum analysis of traditional Al salt flocculants, let alone for analysis of polyaluminum chloride (PAC) flocculants. Therefore, this paper introduces a novel theoretical calculation method to identify Al species from a mass spectrum, based on deducing changes in m/z (mass-to-charge ratio) and molecular formulas of oligomers in five typical PAC flocculants. The use of reference chemical species was specially proposed in the method to guarantee the uniqueness of the assigned species. The charge and mass reduction of the Al cluster was found to proceed by hydrolysis, gasification, and change of hydroxyl on the oxy bridge. The novel method was validated both qualitatively and quantitatively by comparing the results to those obtained with the (27)Al NMR spectrometry.
QCD inequalities for hadron interactions.
Detmold, William
2015-06-05
We derive generalizations of the Weingarten-Witten QCD mass inequalities for particular multihadron systems. For systems of any number of identical pseudoscalar mesons of maximal isospin, these inequalities prove that near threshold interactions between the constituent mesons must be repulsive and that no bound states can form in these channels. Similar constraints in less symmetric systems are also extracted. These results are compatible with experimental results (where known) and recent lattice QCD calculations, and also lead to a more stringent bound on the nucleon mass than previously derived, m_{N}≥3/2m_{π}.
Gu, Renliang E-mail: ald@iastate.edu; Dogandžić, Aleksandar E-mail: ald@iastate.edu
2015-03-31
We develop a sparse image reconstruction method for polychromatic computed tomography (CT) measurements under the blind scenario where the material of the inspected object and the incident energy spectrum are unknown. To obtain a parsimonious measurement model parameterization, we first rewrite the measurement equation using our mass-attenuation parameterization, which has the Laplace integral form. The unknown mass-attenuation spectrum is expanded into basis functions using a B-spline basis of order one. We develop a block coordinate-descent algorithm for constrained minimization of a penalized negative log-likelihood function, where constraints and penalty terms ensure nonnegativity of the spline coefficients and sparsity of the density map image in the wavelet domain. This algorithm alternates between a Nesterov’s proximal-gradient step for estimating the density map image and an active-set step for estimating the incident spectrum parameters. Numerical simulations demonstrate the performance of the proposed scheme.
Unification and mass spectrum in a B-L extended MSSM
Hernandez-Pinto, R. J.; Perez-Lorenzana, A.
2009-04-20
The simplest B-L extension of the minimum supersymmetric standard model (MSSM) may change some of the conceptions about the path for gauge unification as well as to affect the predicted spectrum of the supersymmetric particles at low energy. We present our results for the running of gauge coupling constants and mass parameter in this context.
Applications of AdS/QCD and Light-Front Holography to Baryon Physics
Brodsky, Stanley J.; de Teramond, Guy F.; /Costa Rica U.
2011-08-22
The correspondence between theories in anti-de Sitter space and field theories in physical space-time leads to an analytic, semiclassical model for strongly-coupled QCD which has scale invariance at short distances and color confinement at large distances. These equations, for both mesons and baryons, give a very good representation of the observed hadronic spectrum, including a zero mass pion. Light-front holography allows hadronic amplitudes in the AdS fifth dimension to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time, thus providing a relativistic description of hadrons at the amplitude level. The meson and baryon wavefunctions derived from light-front holography and AdS/QCD also have remarkable phenomenological features, including predictions for the electromagnetic form factors and decay constants. The approach can be systematically improved using light-front Hamiltonian methods. Some novel features of QCD for baryon physics are also discussed.
Neutrino mass limits: Robust information from the power spectrum of galaxy surveys
NASA Astrophysics Data System (ADS)
Cuesta, Antonio J.; Niro, Viviana; Verde, Licia
2016-09-01
We present cosmological upper limits on the sum of active neutrino masses using large-scale power spectrum data from the WiggleZ Dark Energy Survey and from the Sloan Digital Sky Survey - Data Release 7 (SDSS-DR7) sample of Luminous Red Galaxies (LRG). Combining measurements on the Cosmic Microwave Background temperature and polarisation anisotropies by the Planck satellite together with WiggleZ power spectrum results in a neutrino mass bound of 0.37 eV at 95% C.L., while replacing WiggleZ by the SDSS-DR7 LRG power spectrum, the 95% C.L. bound on the sum of neutrino masses is 0.38 eV. Adding Baryon Acoustic Oscillation (BAO) distance scale measurements, the neutrino mass upper limits greatly improve, since BAO data break degeneracies in parameter space. Within a ΛCDM model, we find an upper limit of 0.13 eV (0.14 eV) at 95% C.L., when using SDSS-DR7 LRG (WiggleZ) together with BAO and Planck. The addition of BAO data makes the neutrino mass upper limit robust, showing only a weak dependence on the power spectrum used. We also quantify the dependence of neutrino mass limit reported here on the CMB lensing information. The tighter upper limit (0.13 eV) obtained with SDSS-DR7 LRG is very close to that recently obtained using Lyman-alpha clustering data, yet uses a completely different probe and redshift range, further supporting the robustness of the constraint. This constraint puts under some pressure the inverted mass hierarchy and favours the normal hierarchy.
Measurement of the electron antineutrino mass from the beta spectrum of gaseous tritium
Knapp, D.A.
1986-12-01
A measurement has been made of the mass of the electron antineutrino using the beta spectrum from a source of gaseous molecular tritium, and an upper limit of 36 eV/c/sup 2/ has been set on this mass. This measurement is the first upper limit on neutrino mass that does not rely on assumptions about the atomic configuration after the beta decay, and it has significantly smaller systematic errors associated with it than do previous measurements. 130 refs., 83 figs., 8 tabs.
Tandem Mass Spectrum Sequencing: An Alternative to Database Search Engines in Shotgun Proteomics.
Muth, Thilo; Rapp, Erdmann; Berven, Frode S; Barsnes, Harald; Vaudel, Marc
2016-01-01
Protein identification via database searches has become the gold standard in mass spectrometry based shotgun proteomics. However, as the quality of tandem mass spectra improves, direct mass spectrum sequencing gains interest as a database-independent alternative. In this chapter, the general principle of this so-called de novo sequencing is introduced along with pitfalls and challenges of the technique. The main tools available are presented with a focus on user friendly open source software which can be directly applied in everyday proteomic workflows.
Absorption line profiles in a companion spectrum of a mass losing cool supergiant
NASA Technical Reports Server (NTRS)
Rodrigues, Liliya L.; Boehm-Vitense, Erika
1990-01-01
Cool star winds can best be observed in resonance absorption lines seen in the spectrum of a hot companion, due to the wind passing in front of the blue star. We calculated absorption line profiles that would be seen in the ultraviolet part of the blue companion spectrum. Line profiles are derived for different radial dependences of the cool star wind and for different orbital phases of the binary. Bowen and Wilson find theoretically that stellar pulsations drive mass loss. We therefore apply our calculations to the Cepheid binary S Muscae which has a B5V companion. We find an upper limit for the Cepheid mass loss of M less than or equal to 7 x 10(exp -10) solar mass per year provided that the stellar wind of the companion does not influence the Cepheid wind at large distances.
Studies of QCD at the Tevatron with the D0 detector
Stephens, R.W.; D0 Collaboration
1996-12-01
QCD studies at Fermilab`s Tevatron encompass a rich variety of topics. We present some of the latest results from the D0 experiment including probes of the standard model given by the inclusive jet cross section, the dijet invariant mass spectrum and several studies with direct photons. To complement these probes, we also present new results from precision examinations of the color interactions including studies of color coherence and jet azimuthal decorrelation. 22 refs., 14 figs.
Hybrid exotic mesons in soft-wall AdS/QCD
NASA Astrophysics Data System (ADS)
Bellantuono, Loredana
2014-11-01
Hybrid mesons with exotic quantum numbers JPC = 1-+ are examined in soft-wall AdS/QCD. The predicted mass spectrum is compared to the measured values of the candidates π1(1400), π1(1600) and π1(2015). Thermal effects are analysed through the spectral function in the AdS-Black Hole model, and the differences with the Hawking-Page description are discussed.
Mass spectra of the heavy baryons {lambda}{sub Q} and {sigma}{sub Q}{sup (*)} from QCD sum rules
Zhang Jianrong; Huang Mingqiu
2008-05-01
We use QCD sum rule approach to calculate the masses of the ground-state {lambda}{sub Q} and {sigma}{sub Q}{sup (*)} baryons. Contributions of the operators up to dimension six are included in operator product expansion. The resulting heavy baryonic masses from the calculations are m{sub {lambda}{sub b}}=5.69{+-}0.13 GeV, and m{sub {lambda}{sub c}}=2.31{+-}0.19 GeV for {lambda}{sub Q}; m{sub {sigma}{sub b}}=5.73{+-}0.21 GeV, m{sub {sigma}{sub b}}{sub *}=5.81{+-}0.19 GeV, m{sub {sigma}{sub c}}=2.40{+-}0.31 GeV and m{sub {sigma}{sub c}}{sub *}=2.56{+-}0.24 GeV for {sigma}{sub Q}{sup (*)}, respectively, which are in good agreement with the experimental values.
Soft walls in dynamic AdS /QCD and the technidilaton
NASA Astrophysics Data System (ADS)
Evans, Nick; Jones, Peter; Scott, Marc
2015-11-01
Dynamic AdS /QCD is a modification of AdS /QCD that includes the running of the anomalous dimension of the q ¯q quark bilinear and in which the generation of the constituent quark mass plays the role of an IR wall. The model allows one to move away smoothly from the controlled spectrum of the N =2 super Yang-Mills theory of the D3/probe-D7 system to more QCD-like theories with chiral symmetry breaking. We investigate soft wall behavior in the model that gives Regge trajectories with Mn,s 2˜n ,s . To achieve these behaviors requires the quark's constituent mass to fall peculiarly sharply in the IR so that meson physics is sensitive to renormalization group (RG) scales well below the quark's on-shell mass. Including soft wall behavior in models of walking gauge dynamics breaks the near conformal symmetry which is present above the quark on-shell mass which can generate a large mass for the technidilaton like state. We conclude that the meson spectrum is rather sensitive to the IR decoupling.
Rakitin, Alexander Y.
2005-06-01
The author presents a measurement of the dipion mass spectrum in the decay X(3872) → J/Ψπ^{+} π^{-} using a 360 pb^{-1} sample of p$\\bar{p}$ collisions at √s = 1.96 TeV collected with the CDF II detector at the Fermilab Tevatron Collider. As a benchmark, they also extract the dipion mass distribution for Ψ(2S) → J/Ψπ^{+} π^{-} decay. The X(3872) dipion mass spectrum is compared to QCD multipole expansion predictions for various charmonium states, as well as to the hypothesis X(3872) → J/Ψρ^{0}. They find that the measured spectrum is compatible with ^{3}S_{1} charmonium decaying to J/Ψπ^{+} π^{-} and with the X(3872) → J/Ψρ^{0} hypothesis. There is, however, no ^{3}S_{1} charmonium state available for assignment to the X(3872). The multipole expansion calculations for ^{1}P_{1} and ^{3}D_{J} states are in clear disagreement with the X(3872) data. For the Ψ(2S) the data agrees well with previously published results and to multipole expansion calculations for ^{3}S_{1} charmonium. Other, non-charmonium, models for the X(3872) are described too. They conclude that since the dipion mass spectrum for X(3872) is compatible with J/Ψρ^{0} hypothesis, the X(3872) should be C-positive. This conclusion is supported by recent results from Belle Collaboration which observed X(3872) → J/Ψγ decay. They argue that if X(3872) is a charmonium, then it should be either ^{1}D_{2±} or 2^{3}P_{1++} state, decaying into J/Ψπ^{+} π^{-} in violation of isospin conservation. A non-charmonium assignment, such as D$\\bar{D}$* molecule, is also quite possible.
Neutron star structure from QCD
NASA Astrophysics Data System (ADS)
Fraga, Eduardo S.; Kurkela, Aleksi; Vuorinen, Aleksi
2016-03-01
In this review article, we argue that our current understanding of the thermodynamic properties of cold QCD matter, originating from first principles calculations at high and low densities, can be used to efficiently constrain the macroscopic properties of neutron stars. In particular, we demonstrate that combining state-of-the-art results from Chiral Effective Theory and perturbative QCD with the current bounds on neutron star masses, the Equation of State of neutron star matter can be obtained to an accuracy better than 30% at all densities.
Yun, J.C.
1990-10-10
In this paper we report recent QCD analysis with the new data taken from CDF detector. CDF recorded an integrated luminosity of 4.4 nb{sup {minus}1} during the 1988--1989 run at center of mass system (CMS) energy of 1.8 TeV. The major topics of this report are inclusive jet, dijet, trijet and direct photon analysis. These measurements are compared of QCD predictions. For the inclusive jet an dijet analysis, tests of quark compositeness are emphasized. 11 refs., 6 figs.
QCD on the Light-Front. A Systematic Approach to Hadron Physics
NASA Astrophysics Data System (ADS)
Brodsky, Stanley J.; de Téramond, Guy F.; Dosch, Hans Günter
2014-06-01
Light-front Hamiltonian theory, derived from the quantization of the QCD Lagrangian at fixed light-front time x + = x 0 + x 3, provides a rigorous frame-independent framework for solving nonperturbative QCD. The eigenvalues of the light-front QCD Hamiltonian H LF predict the hadronic mass spectrum, and the corresponding eigensolutions provide the light-front wavefunctions which describe hadron structure, providing a direct connection to the QCD Lagrangian. In the semiclassical approximation the valence Fock-state wavefunctions of the light-front QCD Hamiltonian satisfy a single-variable relativistic equation of motion, analogous to the nonrelativistic radial Schrödinger equation, with an effective confining potential U which systematically incorporates the effects of higher quark and gluon Fock states. Remarkably, the potential U has a unique form of a harmonic oscillator potential if one requires that the chiral QCD action remains conformally invariant. A mass gap and the color confinement scale also arises when one extends the formalism of de Alfaro, Fubini and Furlan to light-front Hamiltonian theory. In the case of mesons, the valence Fock-state wavefunctions of H LF for zero quark mass satisfy a single-variable relativistic equation of motion in the invariant variable , which is conjugate to the invariant mass squared . The result is a nonperturbative relativistic light-front quantum mechanical wave equation which incorporates color confinement and other essential spectroscopic and dynamical features of hadron physics, including a massless pion for zero quark mass and linear Regge trajectories with the same slope in the radial quantum number n and orbital angular momentum L. Only one mass parameter appears. The corresponding light-front Dirac equation provides a dynamical and spectroscopic model of nucleons. The same light-front equations arise from the holographic mapping of the soft-wall model modification of AdS5 space with a unique dilaton profile to QCD
Mass spectrum and decay properties of heavy-light mesons: D, Ds, B and Bs mesons
NASA Astrophysics Data System (ADS)
Yazarloo, B. H.; Mehraban, H.
2017-02-01
We present a study of mass spectrum and decay properties of heavy-light mesons in the non-relativistic potential model. We consider a new type of potential for the mesonic system, the combination of harmonic and Yukawa-type potentials. To obtain the wave function of the system, we use the perturbation method. We take the harmonic term as parent and the Yukawa term as perturbation for the generation of wave function for the meson. For calculating the parent wave function, the Nikiforov-Uvarov (NU) approach is used and thereby we obtained a series solution for the perturbative wave function and then reported the total wave function. With this wave function, we then study the mass spectrum, the decay constant, the leptonic and semileptonic decay widths of heavy-light mesons.
Near threshold enhancement of the p p-bar mass spectrum in J/Psi decay
A. Sibirtsev; J. Haidenbauer; S. Krewald; Ulf-G. Meissner; A.W. Thomas
2004-12-01
We investigate the nature of the near-threshold enhancement in the p {bar p} invariant mass spectrum of the reaction J/{Psi} {yields} {gamma} p {bar p} reported recently by the BES Collaboration. Using the Juelich N {bar N} model we show that the mass dependence of the p {bar p} spectrum close to the threshold can be reproduced by the S-wave p {bar p} final state interaction in the isospin I=1 state within the Watson-Migdal approach. However, because of our poor knowledge of the N {bar N} interaction near threshold and of the J/{Psi} {yields} {gamma} p {bar p} reaction mechanism and in view of the controversial situation in the decay J/{Psi} {yields} {pi}{sup 0} p {bar p}, where no obvious signs of a p {bar p} final state interaction are seen, explanations other than final state interactions cannot be ruled out at the present stage.
[Study on spectrum analysis of X-ray based on rotational mass effect in special relativity].
Yu, Zhi-Qiang; Xie, Quan; Xiao, Qing-Quan
2010-04-01
Based on special relativity, the formation mechanism of characteristic X-ray has been studied, and the influence of rotational mass effect on X-ray spectrum has been given. A calculation formula of the X-ray wavelength based upon special relativity was derived. Error analysis was carried out systematically for the calculation values of characteristic wavelength, and the rules of relative error were obtained. It is shown that the values of the calculation are very close to the experimental values, and the effect of rotational mass effect on the characteristic wavelength becomes more evident as the atomic number increases. The result of the study has some reference meaning for the spectrum analysis of characteristic X-ray in application.
Excited and exotic charmonium spectroscopy from lattice QCD
Liuming Liu, Graham Moir, Michael Peardon, Sinead Ryan, Christopher Thomas, Pol Vilaseca, Jozef Dudek, Robert Edwards, Balint Joo, David Richards
2012-07-01
We present a spectrum of highly excited charmonium mesons up to around 4.5 GeV calculated using dynamical lattice QCD. Employing novel computational techniques and the variational method with a large basis of carefully constructed operators, we extract and reliably identify the continuum spin of an extensive set of excited states, states with exotic quantum numbers (0+-, 1-+, 2+-) and states with high spin. Calculations are performed on two lattice volumes with pion mass ? 400 MeV and the mass determinations have high statistical precision even for excited states. We discuss the results in light of experimental observations, identify the lightest 'supermultiplet' of hybrid mesons and comment on the phenomenological implications of the spectrum of exotic mesons.
NASA Astrophysics Data System (ADS)
Blossier, BenoÃ®t.; Brinet, Mariane; Guichon, Pierre; Morénas, Vincent; Pène, Olivier; Rodríguez-Quintero, Jose; Zafeiropoulos, Savvas
2015-06-01
We present a precise nonperturbative determination of the renormalization constants in the mass independent RI'-MOM scheme. The lattice implementation uses the Iwasaki gauge action and four degenerate dynamical twisted-mass fermions. The gauge configurations are provided by the ETM Collaboration. Renormalization constants for scalar, pseudoscalar, vector and axial operators, as well as the quark propagator renormalization, are computed at three different values of the lattice spacing, two volumes and several twisted-mass parameters. The method we developed allows for a precise cross-check of the running, thanks to the particular proper treatment of hypercubic artifacts. Results for the twist-2 operator O44 are also presented.
NASA Astrophysics Data System (ADS)
Barnes, T.
2005-12-01
In this contribution we briefly summarize aspects of the physics of QCD which are relevant to the supernova problem. The topic of greatest importance is the equation of state (EOS) of nuclear and strongly-interacting matter, which is required to describe the physics of the proto-neutron star (PNS) and the neutron star remnant (NSR) formed during a supernova event. Evaluation of the EOS in the regime of relevance for these systems, especially the NSR, requires detailed knowledge of the spectrum and strong interactions of hadrons of the accessible hadronic species, as well as other possible phases of strongly interacting matter, such as the quark-gluon plasma (QGP). The forces between pairs of baryons (both nonstrange and strange) are especially important in determining the EOS at NSR densities. Predictions for these forces are unfortunately rather model dependent where not constrained by data, and there are several suggestions for the QCD mechanism underlying these short-range hadronic interactions. The models most often employed for determining these strong interactions are broadly of two types, 1) meson exchange models (usually assumed in the existing neutron star and supernova literature), and 2) quark-gluon models (mainly encountered in the hadron, nuclear and heavy-ion literature). Here we will discuss the assumptions made in these models, and discuss how they are applied to the determination of hadronic forces that are relevant to the supernova problem.
Lattice QCD Calculation of Nucleon Structure
Liu, Keh-Fei; Draper, Terrence
2016-08-30
It is emphasized in the 2015 NSAC Long Range Plan that "understanding the structure of hadrons in terms of QCD's quarks and gluons is one of the central goals of modern nuclear physics." Over the last three decades, lattice QCD has developed into a powerful tool for ab initio calculations of strong-interaction physics. Up until now, it is the only theoretical approach to solving QCD with controlled statistical and systematic errors. Since 1985, we have proposed and carried out first-principles calculations of nucleon structure and hadron spectroscopy using lattice QCD which entails both algorithmic development and large-scale computer simulation. We started out by calculating the nucleon form factors -- electromagnetic, axial-vector, πNN, and scalar form factors, the quark spin contribution to the proton spin, the strangeness magnetic moment, the quark orbital angular momentum, the quark momentum fraction, and the quark and glue decomposition of the proton momentum and angular momentum. The first round of calculations were done with Wilson fermions in the `quenched' approximation where the dynamical effects of the quarks in the sea are not taken into account in the Monte Carlo simulation to generate the background gauge configurations. Beginning in 2000, we have started implementing the overlap fermion formulation into the spectroscopy and structure calculations. This is mainly because the overlap fermion honors chiral symmetry as in the continuum. It is going to be more and more important to take the symmetry into account as the simulations move closer to the physical point where the u and d quark masses are as light as a few MeV only. We began with lattices which have quark masses in the sea corresponding to a pion mass at ~ 300 MeV and obtained the strange form factors, charm and strange quark masses, the charmonium spectrum and the D_{s} meson decay constant f_{Ds}, the strangeness and charmness, the meson mass decomposition and the
Bazavov, A; Bernard, C; Bouchard, C M; Detar, C; Du, Daping; El-Khadra, A X; Foley, J; Freeland, E D; Gámiz, E; Gottlieb, Steven; Heller, U M; Kim, Jongjeong; Kronfeld, A S; Laiho, J; Levkova, L; Mackenzie, P B; Neil, E T; Oktay, M B; Qiu, Si-Wei; Simone, J N; Sugar, R; Toussaint, D; Van de Water, R S; Zhou, Ran
2014-03-21
We calculate the kaon semileptonic form factor f+(0) from lattice QCD, working, for the first time, at the physical light-quark masses. We use gauge configurations generated by the MILC Collaboration with Nf = 2 + 1 + 1 flavors of sea quarks, which incorporate the effects of dynamical charm quarks as well as those of up, down, and strange. We employ data at three lattice spacings to extrapolate to the continuum limit. Our result, f+(0) = 0.9704(32), where the error is the total statistical plus systematic uncertainty added in quadrature, is the most precise determination to date. Combining our result with the latest experimental measurements of K semileptonic decays, one obtains the Cabibbo-Kobayashi-Maskawa matrix element |V(us)| = 0.22290(74)(52), where the first error is from f+(0) and the second one is from experiment. In the first-row test of Cabibbo-Kobayashi-Maskawa unitarity, the error stemming from |V(us)| is now comparable to that from |V(ud)|.
A featureless transmission spectrum for the Neptune-mass exoplanet GJ 436b.
Knutson, Heather A; Benneke, Björn; Deming, Drake; Homeier, Derek
2014-01-02
GJ 436b is a warm--approximately 800 kelvin--exoplanet that periodically eclipses its low-mass (half the mass of the Sun) host star, and is one of the few Neptune-mass planets that is amenable to detailed characterization. Previous observations have indicated that its atmosphere has a ratio of methane to carbon monoxide that is 10(5) times smaller than predicted by models for hydrogen-dominated atmospheres at these temperatures. A recent study proposed that this unusual chemistry could be explained if the planet's atmosphere is significantly enhanced in elements heavier than hydrogen and helium. Here we report observations of GJ 436b's atmosphere obtained during transit. The data indicate that the planet's transmission spectrum is featureless, ruling out cloud-free, hydrogen-dominated atmosphere models with an extremely high significance of 48σ. The measured spectrum is consistent with either a layer of high cloud located at a pressure level of approximately one millibar or with a relatively hydrogen-poor (three per cent hydrogen and helium mass fraction) atmospheric composition.
Predictions for diphoton production at the LHC through NNLO in QCD
Campbell, John M.; Ellis, R. Keith; Li, Ye; Williams, Ciaran
2016-07-29
In this paper we present a next-to-next-to-leading order (NNLO) calculation of the process $pp\\rightarrow \\gamma\\gamma$ that we have implemented into the parton level Monte Carlo code MCFM. We do not find agreement with the previous calculation of this process in the literature. In addition to the $\\mathcal{O}(\\alpha_s^2)$ corrections present at NNLO, we include some effects arising at $\\mathcal{O}(\\alpha_s^3)$, namely those associated with gluon-initiated closed fermion loops. We investigate the role of this process in the context of studies of QCD at colliders and as a background for searches for new physics, paying particular attention to the diphoton invariant mass spectrum. We demonstrate that the NNLO QCD prediction for the shape of this spectrum agrees well with functional forms used in recent data-driven fits.
Predictions for diphoton production at the LHC through NNLO in QCD
Campbell, John M.; Ellis, R. Keith; Li, Ye; ...
2016-07-29
In this paper we present a next-to-next-to-leading order (NNLO) calculation of the processmore » $$pp\\rightarrow \\gamma\\gamma$$ that we have implemented into the parton level Monte Carlo code MCFM. We do not find agreement with the previous calculation of this process in the literature. In addition to the $$\\mathcal{O}(\\alpha_s^2)$$ corrections present at NNLO, we include some effects arising at $$\\mathcal{O}(\\alpha_s^3)$$, namely those associated with gluon-initiated closed fermion loops. We investigate the role of this process in the context of studies of QCD at colliders and as a background for searches for new physics, paying particular attention to the diphoton invariant mass spectrum. We demonstrate that the NNLO QCD prediction for the shape of this spectrum agrees well with functional forms used in recent data-driven fits.« less
Klose, Verena
2011-08-12
This thesis presents first measurements of moments of the hadronic n_{X}^{2} distribution measured in inclusive semileptonic decays of B mesons to final states containing a charm quark, B → X_{c}ℓν. The variable n_{X}^{2} is a combination of the invariant mass of the charmed meson m_{X}, its energy in the B-meson rest-frame E_{X;BRF}, and a constant ~Λ = 0.65 GeV, n_{X}^{2} = m_{X}^{2}c^{4}-2~ΛE_{X,BRF} + ~Λ^{2}. The moments
Measurement of the top-quark mass from the b jet energy spectrum
NASA Astrophysics Data System (ADS)
Guerrero, Daniel; Compact Muon Solenoid (CMS) Collaboration
2016-03-01
A first measurement of the top-quark mass using only two body decay kinematics is presented. Based on a recent theoretical proposal, the mass extraction is carried out using the peak position of the energy distribution of b jets produced from top-quark decays. This analysis is performed selecting top-antitop events with electron-muon final states in proton-proton collision data at √{ s} = 8TeV with the CMS detector, corresponding to an integrated luminosity of 19.7 fb-1 . The energy peak position is obtained by fitting the observed energy spectrum. Consequently, this observable is calibrated using simulated events, and translated to a top-quark mass estimation using relativistic kinematics. The measurement yields a value of mt = 172 . 29 +/- 1 . 17 (stat .) +/- 2 . 66 (syst .) GeV .
Mass exponent spectrum analysis of human ECG signals and its application to complexity detection
NASA Astrophysics Data System (ADS)
Yang, Xiaodong; Du, Sidan; Ning, Xinbao; Bian, Chunhua
2008-06-01
The complexity of electrocardiogram (ECG) signal may reflect the physiological function and healthy status of the heart. In this paper, we introduced two novel intermediate parameters of multifractality, the mass exponent spectrum curvature and area, to characterize the nonlinear complexity of ECG signal. These indicators express the nonlinear superposition of the discrepancies of singularity strengths from all the adjacent points of the spectrum curve and thus overall subsets of original fractal structure. The evaluation of binomial multifractal sets validated these two variables were entirely effective in exploring the complexity of this time series. We then studied the ECG mass exponent spectra taken from the cohorts of healthy, ischemia and myocardial infarction (MI) sufferer based on a large sets of 12 leads’ recordings, and took the statistical averages among each crowd. Experimental results suggest the two values from healthy ECG are apparently larger than those from the heart diseased. While the values from ECG of MI sufferer are much smaller than those from the other two groups. As for the ischemia sufferer, they are almost of moderate magnitude. Afterward, we compared these new indicators with the nonlinear parameters of singularity spectrum. The classification indexes and results of total separating ratios (TSR, defined in the paper) both indicated that our method could achieve a better effect. These conclusions may be of some values in early diagnoses and clinical applications.
Hadron scattering and resonances in QCD
Dudek, Jozef J.
2016-05-01
I describe how hadron-hadron scattering amplitudes are related to the eigenstates of QCD in a finite cubic volume. The discrete spectrum of such eigenstates can be determined from correlation functions computed using lattice QCD, and the corresponding scattering amplitudes extracted. I review results from the Hadron Spectrum Collaboration who have used these finite volume methods to study pi pi elastic scattering, including the rho resonance, as well as coupled-channel pi K, eta K scattering. Ongoing calculations are advertised and the outlook for finite volume approaches is presented.
Hadron scattering and resonances in QCD
NASA Astrophysics Data System (ADS)
Dudek, Jozef J.
2016-05-01
I describe how hadron-hadron scattering amplitudes are related to the eigenstates of QCD in a finite cubic volume. The discrete spectrum of such eigenstates can be determined from correlation functions computed using lattice QCD, and the corresponding scattering amplitudes extracted. I review results from the Hadron Spectrum Collaboration who have used these finite volume methods to study ππ elastic scattering, including the ρ resonance, as well as coupled-channel π >K, ηK scattering. Ongoing calculations are advertised and the outlook for finite volume approaches is presented.
Excited light meson spectroscopy from lattice QCD
Christopher Thomas, Hadron Spectrum Collaboration
2012-04-01
I report on recent progress in calculating excited meson spectra using lattice QCD, emphasizing results and phenomenology. With novel techniques we can now extract extensive spectra of excited mesons with high statistical precision, including spin-four states and those with exotic quantum numbers. As well as isovector meson spectra, I will present new calculations of the spectrum of excited light isoscalar mesons, something that has up to now been a challenge for lattice QCD. I show determinations of the flavor content of these mesons, including the eta-eta' mixing angle, providing a window on annihilation dynamics in QCD. I will also discuss recent work on using lattice QCD to map out the energy-dependent phase shift in pi-pi scattering and future applications of the methodology to the study of resonances and decays.
NASA Astrophysics Data System (ADS)
Trott, Michael
2004-10-01
We calculate the hadronic tensor for inclusive semileptonic B→Xcℓν¯ decay to O(αs). This allows O(αsΛQCD/mb) corrections to hadronic invariant mass observables to be directly evaluated with experimentally required cuts on phase space. Several moments of phenomenological interest are presented to order O(αsΛQCD/mb) and O(Λ3QCD/m3b), allowing a consistent extraction of the heavy quark effective theory parameters up to O(Λ3QCD/m3b) and the b quark mass with theoretical error ˜50 MeV. The hadronic invariant mass spectrum is examined with a general moment to obtain observables that test the theoretical error estimate assigned to these parameters; in particular, fractional moments that directly test the operator product expansion for inconsistencies in the hadronic invariant mass spectrum are reported. The mbΛQCD/m2c expansion present for fractional moments of the hadronic invariant mass spectrum is discussed and shown to introduce a numerically suppressed uncertainty of O(m4bΛ4QCD/m8c).
Steep-Spectrum Radio Emission from the Low-Mass Active Galactic Nucleus GH 10
NASA Astrophysics Data System (ADS)
Wrobel, J. M.; Greene, J. E.; Ho, L. C.; Ulvestad, J. S.
2008-10-01
GH 10 is a broad-lined active galactic nucleus (AGN) energized by a black hole of mass 800,000 M⊙. It was the only object detected by Greene et al. in their Very Large Array (VLA) survey of 19 low-mass AGNs discovered by Greene & Ho. New VLA imaging at 1.4, 4.9, and 8.5 GHz reveals that GH 10's emission has an extent of less than 320 pc, has an optically thin synchrotron spectrum with a spectral index α = - 0.76 +/- 0.05 (Sν propto ν+ α), is less than 11% linearly polarized, and is steady—although poorly sampled—on timescales of weeks and years. Circumnuclear star formation cannot dominate the radio emission, because the high inferred star formation rate, 18 M⊙ yr-1, is inconsistent with the rate of less than 2 M⊙ yr-1 derived from narrow Hα and [O II] λ3727 emission. Instead, the radio emission must be mainly energized by the low-mass black hole. GH 10's radio properties match those of the steep-spectrum cores of Palomar Seyfert galaxies, suggesting that, like those galaxies, the emission is outflow-driven. Because GH 10 is radiating close to its Eddington limit, it may be a local analog of the starting conditions, or seeds, for supermassive black holes. Future imaging of GH 10 at higher linear resolution thus offers an opportunity to study the relative roles of radiative versus kinetic feedback during black hole growth.
Physical Point Simulation in 2+1 Flavor Lattice QCD
Aoki, S.; Ishikawa, K.; Ishizuka, N.; Izubuchi, T.; Kadoh, D.; Kanaya, K.; Kuramashi, Y.; Namekawa, Y.; Okawa, M.; Taniguchi, Y.; Ukawa, A.; Ukita, N.; Yamazaki, T.; Yoshie, T.
2010-04-14
We present the results of the physical point simulation in 2+1 flavor lattice QCD with the nonperturbatively O(a)-improved Wilson quark action and the Iwasaki gauge action at {beta} = 1.9 on a 32{sup 3} x 64 lattice. The physical quark masses together with the lattice spacing is determined with m{sub {pi}}, m{sub K} and m{sub {Omega}} as physical inputs. There are two key algorithmic ingredients to make possible the direct simulation at the physical point: One is the mass-preconditioned domain-decomposed HMC algorithm to reduce the computational cost. The other is the reweighting technique to adjust the hopping parameters exactly to the physical point. The physics results include the hadron spectrum, the quark masses and the pseudoscalar meson decay constants. The renormalization factors are nonperturbatively evaluated with the Schroedinger functional method. The results are compared with the previous ones obtained by the chiral extrapolation method.
QCD and hard diffraction at the LHC
Albrow, Michael G.; /Fermilab
2005-09-01
As an introduction to QCD at the LHC the author gives an overview of QCD at the Tevatron, emphasizing the high Q{sup 2} frontier which will be taken over by the LHC. After describing briefly the LHC detectors the author discusses high mass diffraction, in particular central exclusive production of Higgs and vector boson pairs. The author introduces the FP420 project to measure the scattered protons 420m downstream of ATLAS and CMS.
NASA Astrophysics Data System (ADS)
Delcourt, D.; Saito, Y.; Illiano, J.-M.; Krupp, N.; Berthelier, J.-J.; Fontaine, D.; Fraenz, M.; Leblanc, F.; Fischer, H.; Yokota, S.; Michalik, H.; Godefroy, M.; Saint-Jacques, E.; Techer, J.-D.; Fiethe, B.; Covinhes, J.; Gastou, J.; Attia, D.
2009-03-01
BEPI COLOMBO is a joint mission between ESA and JAXA that is scheduled for launch in 2014 and arrival at Mercury in 2020. A comprehensive set of ion sensors will be flown onboard the two probes that form BEPI COLOMBO. These ion sensors combined with electron analyzers will allow a detailed investigation of the structure and dynamics of the charged particle environment at Mercury. Among the ion sensors, the Mass Spectrum Analyzer (MSA) is the experiment dedicated to composition analysis onboard the Mercury Magnetospheric Orbiter (MMO). It consists of a top-hat for energy analysis followed by a Time-Of-Flight (TOF) section to derive the ion mass. A notable feature of MSA is that the TOF section is polarized with a linear electric field that provides an enhanced mass resolution, a capability that is of importance at Mercury since a variety of species originating from the planet surface and exosphere is expected. MSA exhibits two detection planes: (i) one with moderate mass resolution but a high count rate making MSA appropriate for plasma analysis, (ii) another with a high (above 40) mass resolution though a low count rate making it appropriate for planetology science. Taking advantage of the spacecraft rotation, MSA will provide three-dimensional distribution functions of magnetospheric ions, from energies characteristic of exospheric populations (a few eVs or a few tens of eVs) up to the plasma sheet energy range (up to ˜40 keV/q) in one spin (4 s).
QCD on the Massively Parallel Computer AP1000
NASA Astrophysics Data System (ADS)
Akemi, K.; Fujisaki, M.; Okuda, M.; Tago, Y.; Hashimoto, T.; Hioki, S.; Miyamura, O.; Takaishi, T.; Nakamura, A.; de Forcrand, Ph.; Hege, C.; Stamatescu, I. O.
We present the QCD-TARO program of calculations which uses the parallel computer AP1000 of Fujitsu. We discuss the results on scaling, correlation times and hadronic spectrum, some aspects of the implementation and the future prospects.
Energy spectrum and effective mass of carriers in the InSe/GaSe superlattice
NASA Astrophysics Data System (ADS)
Gashimzade, F. M.; Mustafaev, N. B.
1995-03-01
Within an effective mass approximation the energy spectrum and mass of carriers in the InSe/GaSe superlattice have been calculated. The superlattice belongs to type II: electrons are primarily confined to the InSe layers whereas the holes are mosfly confined to the GaSe layers. The characteristic feature of electronic structure of the superlattice is the existence of minibands of light carriers at the θ point of the Brillouin zone and minibands of heavy carriers at the M point. The dependence of the miniband structure on thickness of layers has been computed. It is shown that the minibands of light and heavy carriers compete with one another in energy. A general conclusion is made concerning the influence of the competition between the minibands on optic and kinetic properties of the superlattice.
Absorption spectrum, mass spectrometric properties, and electronic structure of 1,2-benzoquinone.
Albarran, Guadalupe; Boggess, William; Rassolov, Vitaly; Schuler, Robert H
2010-07-22
Absorption spectrophotometric and mass spectrometric properties of 1,2-benzoquinone, prepared in aqueous solution by the hexachloroiridate(IV) oxidation of catechol and isolated by HPLC, are reported. Its absorption spectrum has a broad moderately intense band in the near UV with an extinction coefficient of 1370 M(-1)cm(-1) at its 389 nm maximum. The oscillator strength of this band contrasts with those of the order-of-magnitude stronger approximately 250 nm bands of most 1,4-benzoquinones. Gaussian analysis of its absorption spectrum indicates that it also has modestly intense higher energy bands in the 250-320 nm region. In atmospheric pressure mass spectrometric studies 1,2-benzoquinone exhibits very strong positive and negative mass 109 signals that result from the addition of protons and hydride ions in APCI and ESI ion sources. It is suggested that the hydride adduct is formed as the result of the highly polar character of ortho-quinone. On energetic collision the hydride adduct loses an H atom to produce the 1,2-benzosemiquinone radical anion. The present studies also show that atmospheric pressure mass spectral patterns observed for catechol are dominated by signals of 1,2-benzoquinone resulting from oxidation of catechol in the ion sources. Computational studies of the electronic structures of 1,2-benzoquinone, its proton and hydride ion adducts, and 1,2-benzosemiquinone radical anion are reported. These computational studies show that the structures of the proton and hydride adducts are similar and indicate that the hydride adduct is the proton adduct of a doubly negatively charged 1,2-benzoquinone. The contrast between the properties of 1,2- and 1,4-benzoquinone provides the basis for considerations on the effects of conjugation in aromatic systems.
Dynamical QCD+QED simulation with staggered quarks
Zhou, Ran; Gottlieb, Steven
2014-11-15
Electromagnetic effects play an important role in many phenomena such as isospin-symmetry breaking in the hadron spectrum and the hadronic contributions to g-2. We have generalized the MILC QCD code to include the electromagnetic field. In this work, we focus on simulations including charged sea quarks using the RHMC algorithm. We show details of the dynamical QCD+QED simulation algorithm with compact QED. We analyze the code performance and results for hadron-spectrum observables.
Dru Renner
2012-04-01
Precision computation of hadronic physics with lattice QCD is becoming feasible. The last decade has seen precent-level calculations of many simple properties of mesons, and the last few years have seen calculations of baryon masses, including the nucleon mass, accurate to a few percent. As computational power increases and algorithms advance, the precise calculation of a variety of more demanding hadronic properties will become realistic. With this in mind, I discuss the current lattice QCD calculations of generalized parton distributions with an emphasis on the prospects for well-controlled calculations for these observables as well. I will do this by way of several examples: the pion and nucleon form factors and moments of the nucleon parton and generalized-parton distributions.
Hadron physics from lattice QCD
NASA Astrophysics Data System (ADS)
Bietenholz, Wolfgang
2016-07-01
We sketch the basic ideas of the lattice regularization in Quantum Field Theory, the corresponding Monte Carlo simulations, and applications to Quantum Chromodynamics (QCD). This approach enables the numerical measurement of observables at the non-perturbative level. We comment on selected results, with a focus on hadron masses and the link to Chiral Perturbation Theory. At last, we address two outstanding issues: topological freezing and the sign problem.
DeGrand, T.
1997-06-01
These lectures provide an introduction to lattice methods for nonperturbative studies of Quantum Chromodynamics. Lecture 1: Basic techniques for QCD and results for hadron spectroscopy using the simplest discretizations; lecture 2: Improved actions--what they are and how well they work; lecture 3: SLAC physics from the lattice-structure functions, the mass of the glueball, heavy quarks and {alpha}{sub s} (M{sub z}), and B-{anti B} mixing. 67 refs., 36 figs.
Some new/old approaches to QCD
Gross, D.J.
1992-11-01
In this lecture I shall discuss some recent attempts to revive some old ideas to address the problem of solving QCD. I believe that it is timely to return to this problem which has been woefully neglected for the last decade. QCD is a permanent part of the theoretical landscape and eventually we will have to develop analytic tools for dealing with the theory in the infra-red. Lattice techniques are useful but they have not yet lived up to their promise. Even if one manages to derive the hadronic spectrum numerically, to an accuracy of 10% or even 1%, we will not be truly satisfied unless we have some analytic understanding of the results. Also, lattice Monte-Carlo methods can only be used to answer a small set of questions. Many issues of great conceptual and practical interest-in particular the calculation of scattering amplitudes, are thus far beyond lattice control. Any progress in controlling QCD in an explicit analytic, fashion would be of great conceptual value. It would also be of great practical aid to experimentalists, who must use rather ad-hoc and primitive models of QCD scattering amplitudes to estimate the backgrounds to interesting new physics. I will discuss an attempt to derive a string representation of QCD and a revival of the large N approach to QCD. Both of these ideas have a long history, many theorist-years have been devoted to their pursuit-so far with little success. I believe that it is time to try again. In part this is because of the progress in the last few years in string theory. Our increased understanding of string theory should make the attempt to discover a stringy representation of QCD easier, and the methods explored in matrix models might be employed to study the large N limit of QCD.
Some New/Old Approaches to QCD
DOE R&D Accomplishments Database
Gross, D. J.
1992-11-01
In this lecture I shall discuss some recent attempts to revive some old ideas to address the problem of solving QCD. I believe that it is timely to return to this problem which has been woefully neglected for the last decade. QCD is a permanent part of the theoretical landscape and eventually we will have to develop analytic tools for dealing with the theory in the infra-red. Lattice techniques are useful but they have not yet lived up to their promise. Even if one manages to derive the hadronic spectrum numerically, to an accuracy of 10% or even 1%, we will not be truly satisfied unless we have some analytic understanding of the results. Also, lattice Monte-Carlo methods can only be used to answer a small set of questions. Many issues of great conceptual and practical interest-in particular the calculation of scattering amplitudes, are thus far beyond lattice control. Any progress in controlling QCD in an explicit analytic, fashion would be of great conceptual value. It would also be of great practical aid to experimentalists, who must use rather ad-hoc and primitive models of QCD scattering amplitudes to estimate the backgrounds to interesting new physics. I will discuss an attempt to derive a string representation of QCD and a revival of the large N approach to QCD. Both of these ideas have a long history, many theorist-years have been devoted to their pursuit-so far with little success. I believe that it is time to try again. In part this is because of the progress in the last few years in string theory. Our increased understanding of string theory should make the attempt to discover a stringy representation of QCD easier, and the methods explored in matrix models might be employed to study the large N limit of QCD.
Vector meson electroproduction in QCD
NASA Astrophysics Data System (ADS)
Lu, Juan; Cai, Xian-Hao; Zhou, Li-Juan
2012-08-01
Based on the generalized QCD vector meson dominance model, we study the electroproduction of a vector meson off a proton in the QCD inspired eikonalized model. Numerical calculations for the total cross section σtot and differential cross section dσ/dt are performed for ρ, ω and varphi meson electroproduction in this paper. Since gluons interact among themselves (self-interaction), two gluons can form a glueball with quantum numbers IG, JPC = 0+,2++, decay width Γt ≈ 100 MeV, and mass of mG = 2.23 GeV. The three gluons can form a three-gluon colorless bound state with charge conjugation quantum number C = -1, called the Odderon. The mediators of interactions between projectiles (the quark and antiquark pair fluctuated from the virtual photon) and the proton target (a three-quark system) are the tensor glueball and the Odderon. Our calculated results in the tensor glueball and Odderon exchange model fit to the existing data successfully, which evidently shows that our present QCD mechanism is a good description of meson electroproduction off a proton. It should be emphasized that our mechanism is different from the theoretical framework of Block et al. We also believe that the present study and its success are important for the investigation of other vector meson electro- and photoproduction at high energies, as well as for searching for new particles such as tensor glueballs and Odderons, which have been predicted by QCD and the color glass condensate model (CGC). Therefore, in return, it can test the validity of QCD and the CGC model.
Tom Bonner Prize Lecture: The Beta Spectrum of Tritium and the Problem of Neutrino Mass
NASA Astrophysics Data System (ADS)
Robertson, R. G. Hamish
1997-04-01
Enrico Fermi showed more than 60 years ago that the shape of beta spectra was sensitive to the mass of the unobserved particle, the neutrino, proposed by Wolfgang Pauli. With the discovery of tritium and its small decay energy, increasingly stringent limits were placed on the electron antineutrino mass. A roadblock at about 50 eV, namely the atomic and molecular structure of tritium-containing substances, was surmounted in the 1980s with the development at Los Alamos of methods for high-resolution beta spectroscopy with gases, together with worldwide theoretical work on the structure of diatomic T2 and T^3He^+. It was then possible to reach the very interesting region of cosmological relevance below 20 eV. An unexpected and strange new roadblock has now been encountered in all experiments on T_2. The spectrum near the endpoint is not consistent with theory either with or without neutrino mass. The questions now are, do the experiments all report the same phenomenon, and (if so) is it atomic theory, particle theory, or perhaps cosmology that needs repair?
Flavor symmetry breaking in lattice QCD with a mixed action
Baer, Oliver; Golterman, Maarten; Shamir, Yigal
2011-03-01
We study the phase structure of mixed-action QCD with two Wilson sea quarks and any number of chiral valence quarks (and ghosts), starting from the chiral Lagrangian. A priori the effective theory allows for a rich phase structure, including a phase with a condensate made of sea and valence quarks. In such a phase, mass eigenstates would become admixtures of sea and valence fields, and pure-sea correlation functions would depend on the parameters of the valence sector, in contradiction with the actual setup of mixed-action simulations. Using that the spectrum of the chiral Dirac operator has a gap for nonzero quark mass we prove that spontaneous symmetry breaking of the flavor symmetries can only occur within the sea sector. This rules out a mixed condensate and implies restrictions on the low-energy constants of the effective theory.
NASA Astrophysics Data System (ADS)
Wilczek, Frank
Introduction Symmetry and the Phenomena of QCD Apparent and Actual Symmetries Asymptotic Freedom Confinement Chiral Symmetry Breaking Chiral Anomalies and Instantons High Temperature QCD: Asymptotic Properties Significance of High Temperature QCD Numerical Indications for Quasi-Free Behavior Ideas About Quark-Gluon Plasma Screening Versus Confinement Models of Chiral Symmetry Breaking More Refined Numerical Experiments High-Temperature QCD: Phase Transitions Yoga of Phase Transitions and Order Parameters Application to Glue Theories Application to Chiral Transitions Close Up on Two Flavors A Genuine Critical Point! (?) High-Density QCD: Methods Hopes, Doubts, and Fruition Another Renormalization Group Pairing Theory Taming the Magnetic Singularity High-Density QCD: Color-Flavor Locking and Quark-Hadron Continuity Gauge Symmetry (Non)Breaking Symmetry Accounting Elementary Excitations A Modified Photon Quark-Hadron Continuity Remembrance of Things Past More Quarks Fewer Quarks and Reality
Dependence of the non-linear mass power spectrum on the equationof state of dark energy
NASA Astrophysics Data System (ADS)
McDonald, Patrick; Trac, Hy; Contaldi, Carlo
2006-02-01
We present N-body simulation calculations of the dependence of the power spectrum of non-linear cosmological mass density fluctuations on the equation of state of the dark energy, w=p/ρ. At fixed linear theory power, increasing w leads to an increase in non-linear power, with the effect increasing with k. By k= 10hMpc-1, a model with w=-0.75 has ~12 per cent more power than a standard cosmological constant model (w=-1), while a model with w=-0.5 has ~33 per cent extra power (at z= 0). The size of the effect increases with increasing dark energy fraction, and to a lesser extent increasing power spectrum normalization, but is insensitive to the power spectrum shape (the numbers above are for Ωm= 0.281 and σ8= 0.897). A code quantifying the non-linear effect of varying w, as a function of k, z and other cosmological parameters, which should be accurate to a few per cent for k<~ 10hMpc-1 for models that fit the current observations, is available at http://www.cita.utoronto.ca/~pmcdonal/code.html. This paper also serves as an example of a detailed exploration of the numerical convergence properties of ratios of power spectra for different models, which can be useful because some kinds of numerical error cancel in a ratio. When precision calculations based on numerical simulations are needed for many different models, efficiency may be gained by breaking the problem into a calculation of the absolute prediction at a central point, and calculations of the relative change in the prediction with model parameters.
Measurement of the dipion mass spectrum in X(3872) ---> J/psi pi+ pi- decays
Abulencia, A.; Acosta, D.; Adelman, Jahred A.; Affolder, Anthony A.; Akimoto, T.; Albrow, M.G.; Ambrose, D.; Amerio, S.; Amidei, D.; Anastassov, A.; Anikeev, K.; /Taiwan, Inst. Phys. /Argonne /Barcelona, IFAE /Baylor U. /INFN, Bologna /Bologna U. /Brandeis U. /UC, Davis /UCLA /UC, San Diego /UC, Santa Barbara
2005-12-01
The authors measure the dipion mass spectrum in X(3872) {yields} J/{psi}{pi}{sup +}{pi}{sup -} decays using 360 pb{sup -1} of {bar p}p collisions at {radical}s = 1.96 TeV collected with the CDF II detector. The spectrum is fit with predictions for odd C-parity ({sup 3}S{sub 1}, {sup 1}P{sub 1}, and {sup 3}D{sub J}) charmonia decaying to J/{psi}{pi}{sup +}{pi}{sup -}, as well as event C-parity states in which the pions are from {rho}{sup 0} decay. The latter case also encompasses exotic interpretations, such as a D{sup 0}{bar D}*{sup 0} molecule. Only the {sup 3}S{sub 1} and J/{psi} {rho} hypotheses are compatible with the data. Since {sup 3}S{sub 1} is untenable on other grounds, decay via J/{psi} {rho} is favored, which implies C = +1 for the X(3872). Models for different J/{psi}-{rho} angular momenta L are considered. Flexibility in the models, especially the introduction of {rho}-{omega} interference, enable good descriptions of the data for both L = 0 and 1.
Neutrino masses and cosmology with Lyman-alpha forest power spectrum
NASA Astrophysics Data System (ADS)
Palanque-Delabrouille, Nathalie; Yèche, Christophe; Baur, Julien; Magneville, Christophe; Rossi, Graziano; Lesgourgues, Julien; Borde, Arnaud; Burtin, Etienne; LeGoff, Jean-Marc; Rich, James; Viel, Matteo; Weinberg, David
2015-11-01
We present constraints on neutrino masses, the primordial fluctuation spectrum from inflation, and other parameters of the ΛCDM model, using the one-dimensional Lyα-forest power spectrum measured by [1] from the Baryon Oscillation Spectroscopic Survey (BOSS) of the Sloan Digital Sky Survey (SDSS-III), complemented by Planck 2015 cosmic microwave background (CMB) data and other cosmological probes. This paper improves on the previous analysis by [2] by using a more powerful set of calibrating hydrodynamical simulations that reduces uncertainties associated with resolution and box size, by adopting a more flexible set of nuisance parameters for describing the evolution of the intergalactic medium, by including additional freedom to account for systematic uncertainties, and by using Planck 2015 constraints in place of Planck 2013. Fitting Lyα data alone leads to cosmological parameters in excellent agreement with the values derived independently from CMB data, except for a weak tension on the scalar index ns. Combining BOSS Lyα with Planck CMB constrains the sum of neutrino masses to ∑ mν < 0.12 eV (95% C.L.) including all identified systematic uncertainties, tighter than our previous limit (0.15 eV) and more robust. Adding Lyα data to CMB data reduces the uncertainties on the optical depth to reionization τ, through the correlation of τ with σ8. Similarly, correlations between cosmological parameters help in constraining the tensor-to-scalar ratio of primordial fluctuations r. The tension on ns can be accommodated by allowing for a running dns/d ln k. Allowing running as a free parameter in the fits does not change the limit on ∑ mν. We discuss possible interpretations of these results in the context of slow-roll inflation.
Neutrino masses and cosmology with Lyman-alpha forest power spectrum
Palanque-Delabrouille, Nathalie; Yèche, Christophe; Baur, Julien; Magneville, Christophe; Borde, Arnaud; Burtin, Etienne; LeGoff, Jean-Marc; Rich, James; Lesgourgues, Julien; Viel, Matteo; Weinberg, David E-mail: christophe.yeche@cea.fr E-mail: christophe.magneville@cea.fr E-mail: Julien.Lesgourgues@cern.ch
2015-11-01
We present constraints on neutrino masses, the primordial fluctuation spectrum from inflation, and other parameters of the ΛCDM model, using the one-dimensional Lyα-forest power spectrum measured by [1] from the Baryon Oscillation Spectroscopic Survey (BOSS) of the Sloan Digital Sky Survey (SDSS-III), complemented by Planck 2015 cosmic microwave background (CMB) data and other cosmological probes. This paper improves on the previous analysis by [2] by using a more powerful set of calibrating hydrodynamical simulations that reduces uncertainties associated with resolution and box size, by adopting a more flexible set of nuisance parameters for describing the evolution of the intergalactic medium, by including additional freedom to account for systematic uncertainties, and by using Planck 2015 constraints in place of Planck 2013. Fitting Lyα data alone leads to cosmological parameters in excellent agreement with the values derived independently from CMB data, except for a weak tension on the scalar index n{sub s}. Combining BOSS Lyα with Planck CMB constrains the sum of neutrino masses to ∑ m{sub ν} < 0.12 eV (95% C.L.) including all identified systematic uncertainties, tighter than our previous limit (0.15 eV) and more robust. Adding Lyα data to CMB data reduces the uncertainties on the optical depth to reionization τ, through the correlation of τ with σ{sub 8}. Similarly, correlations between cosmological parameters help in constraining the tensor-to-scalar ratio of primordial fluctuations r. The tension on n{sub s} can be accommodated by allowing for a running dn{sub s}/d ln k. Allowing running as a free parameter in the fits does not change the limit on ∑ m{sub ν}. We discuss possible interpretations of these results in the context of slow-roll inflation.
Lattice analysis for the energy scale of QCD phenomena.
Yamamoto, Arata; Suganuma, Hideo
2008-12-12
We formulate a new framework in lattice QCD to study the relevant energy scale of QCD phenomena. By considering the Fourier transformation of link variable, we can investigate the intrinsic energy scale of a physical quantity nonperturbatively. This framework is broadly available for all lattice QCD calculations. We apply this framework for the quark-antiquark potential and meson masses in quenched lattice QCD. The gluonic energy scale relevant for the confinement is found to be less than 1 GeV in the Landau or Coulomb gauge.
Nucleon QCD sum rules in the instanton medium
Ryskin, M. G.; Drukarev, E. G. Sadovnikova, V. A.
2015-09-15
We try to find grounds for the standard nucleon QCD sum rules, based on a more detailed description of the QCD vacuum. We calculate the polarization operator of the nucleon current in the instanton medium. The medium (QCD vacuum) is assumed to be a composition of the small-size instantons and some long-wave gluon fluctuations. We solve the corresponding QCD sum rule equations and demonstrate that there is a solution with the value of the nucleon mass close to the physical one if the fraction of the small-size instantons contribution is w{sub s} ≈ 2/3.
Gupta, R.
1994-12-31
This talk contains an analysis of quenched chiral perturbation theory and its consequences. The chiral behavior of a number of quantities such as the pion mass m{sub pi}{sup 2}, the Bernard-Golterman ratios R and {sub X}, the masses of nucleons, and the kaon B-parameter are examined to see if the singular terms induced by the additional Goldstone boson, {eta}{prime}, are visible in present data. The overall conclusion (different from that presented at the lattice meeting) of this analysis is that even though there are some caveats attached to the indications of the extra terms induced by {eta}{prime} loops, the standard expressions break down when extrapolating the quenched data with m{sub q} < m{sub s}/2 to physical light quarks. I then show that due to the single and double poles in the quenched {eta}{prime}, the axial charge of the proton cannot be calculated using the Adler-Bell-Jackiw anomaly condition. I conclude with a review of the status of the calculation of light quark masses from lattice QCD.
Confinining properties of QCD in strong magnetic backgrounds
NASA Astrophysics Data System (ADS)
Bonati, Claudio; D'Elia, Massimo; Mariti, Marco; Mesiti, Michele; Negro, Francesco; Rucci, Andrea; Sanfilippo, Francesco
2017-03-01
Strong magnetic backgrounds are known to modify QCD properties at a nonperturbative level. We discuss recent lattice results, obtained for Nf = 2 + 1 QCD with physical quark masses, concerning in particular the modifications and the anisotropies induced at the level of the static quark-antiquark potential, both at zero and finite temperature.
The AdS/QCD Correspondence and Exclusive Processes
Brodsky, Stanley J.; de Teramond, Guy F.; Deur, Alexandre; /Jefferson Lab
2010-08-25
The AdS/CFT correspondence between theories in AdS space and conformal field theories in physical space-time provides an analytic, semi-classical, color-confining model for strongly-coupled QCD. The soft-wall AdS/QCD model modified by a positive-sign dilaton metric leads to a remarkable one-parameter description of nonperturbative hadron dynamics at zero quark mass, including a zero-mass pion and a Regge spectrum of linear trajectories with the same slope in orbital angular momentum L and radial quantum number n for both mesons and baryons. One also predicts the form of the non-perturbative effective coupling {alpha}{sub s}{sup AdS}(q) and its {beta}-function which agrees with the effective coupling {alpha}{sub ga} extracted from the Bjorken sum rule. Light-front holography, which connects the fifth-dimensional coordinate of AdS space z to an invariant impact separation variable {zeta}, allows one to compute the analytic form of the frame-independent light-front wavefunctions, the fundamental entities which encode hadron properties as well as decay constants, form factors, deeply virtual Compton scattering, exclusive heavy hadron decays and other exclusive scattering amplitudes. One thus obtains a relativistic description of hadrons in QCD at the amplitude level with dimensional counting for hard exclusive reactions at high momentum transfer. As specific examples we discuss the behavior of the pion and nucleon form factors in the space-like and time-like regions. We also review the phenomenology of exclusive processes including some anomalous empirical results.
Chatrchyan, S; Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Bergauer, T; Dragicevic, M; Erö, J; Fabjan, C; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kiesenhofer, W; Knapitsch, A; Krammer, M; Liko, D; Mikulec, I; Pernicka, M; Rahbaran, B; Rohringer, H; Schöfbeck, R; Strauss, J; Taurok, A; Teischinger, F; Trauner, C; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C-E; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Bansal, S; Benucci, L; De Wolf, E A; Janssen, X; Luyckx, S; Maes, T; Mucibello, L; Ochesanu, S; Roland, B; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Van Spilbeeck, A; Blekman, F; Blyweert, S; D'Hondt, J; Gonzalez Suarez, R; Kalogeropoulos, A; Maes, M; Olbrechts, A; Van Doninck, W; Van Mulders, P; Van Onsem, G P; Villella, I; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Gay, A P R; Hammad, G H; Hreus, T; Léonard, A; Marage, P E; Thomas, L; Vander Velde, C; Vanlaer, P; Wickens, J; Adler, V; Beernaert, K; Cimmino, A; Costantini, S; Grunewald, M; Klein, B; Lellouch, J; Marinov, A; Mccartin, J; Ryckbosch, D; Strobbe, N; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Walsh, S; Zaganidis, N; Basegmez, S; Bruno, G; Caudron, J; Ceard, L; De Favereau De Jeneret, J; Delaere, C; Favart, D; Forthomme, L; Giammanco, A; Grégoire, G; Hollar, J; Lemaitre, V; Liao, J; Militaru, O; Nuttens, C; Pagano, D; Pin, A; Piotrzkowski, K; Schul, N; Beliy, N; Caebergs, T; Daubie, E; Alves, G A; De Jesus Damiao, D; Pol, M E; Souza, M H G; Aldá Júnior, W L; Carvalho, W; Custódio, A; Da Costa, E M; De Oliveira Martins, C; Fonseca De Souza, S; Matos Figueiredo, D; Mundim, L; Nogima, H; Oguri, V; Prado Da Silva, W L; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Anjos, T S; Bernardes, C A; Dias, F A; Tomei, T R Fernandez Perez; Gregores, E M; Lagana, C; Marinho, F; Mercadante, P G; Novaes, S F; Padula, Sandra S; Darmenov, N; Genchev, V; Iaydjiev, P; Piperov, S; Rodozov, M; Stoykova, S; Sultanov, G; Tcholakov, V; Trayanov, R; Vutova, M; Dimitrov, A; Hadjiiska, R; Karadzhinova, A; Kozhuharov, V; Litov, L; Pavlov, B; Petkov, P; Bian, J G; Chen, G M; Chen, H S; Jiang, C H; Liang, D; Liang, S; Meng, X; Tao, J; Wang, J; Wang, J; Wang, X; Wang, Z; Xiao, H; Xu, M; Zang, J; Zhang, Z; Ban, Y; Guo, S; Guo, Y; Li, W; Liu, S; Mao, Y; Qian, S J; Teng, H; Wang, S; Zhu, B; Zou, W; Cabrera, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Sanabria, J C; Godinovic, N; Lelas, D; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Kovac, M; Brigljevic, V; Duric, S; Kadija, K; Luetic, J; Morovic, S; Attikis, A; Galanti, M; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Finger, M; Finger, M; Assran, Y; Ellithi Kamel, A; Khalil, S; Mahmoud, M A; Radi, A; Hektor, A; Kadastik, M; Müntel, M; Raidal, M; Rebane, L; Tiko, A; Azzolini, V; Eerola, P; Fedi, G; Voutilainen, M; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Tuominen, E; Tuominiemi, J; Tuovinen, E; Ungaro, D; Wendland, L; Banzuzi, K; Karjalainen, A; Korpela, A; Tuuva, T; Sillou, D; Besancon, M; Choudhury, S; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Shreyber, I; Titov, M; Baffioni, S; Beaudette, F; Benhabib, L; Bianchini, L; Bluj, M; Broutin, C; Busson, P; Charlot, C; Daci, N; Dahms, T; Dobrzynski, L; Elgammal, S; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Mironov, C; Ochando, C; Paganini, P; Sabes, D; Salerno, R; Sirois, Y; Thiebaux, C; Veelken, C; Zabi, A; Agram, J-L; Andrea, J; Bloch, D; Bodin, D; Brom, J-M; Cardaci, M; Chabert, E C; Collard, C; Conte, E; Drouhin, F; Ferro, C; Fontaine, J-C; Gelé, D; Goerlach, U; Greder, S; Juillot, P; Karim, M; Le Bihan, A-C; Van Hove, P; Fassi, F; Mercier, D; Baty, C; Beauceron, S; Beaupere, N; Bedjidian, M; Bondu, O; Boudoul, G; Boumediene, D; Brun, H; Chasserat, J; Chierici, R; Contardo, D; Depasse, P; El Mamouni, H; Falkiewicz, A; Fay, J; Gascon, S; Gouzevitch, M; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Mirabito, L; Perries, S; Sordini, V; Tosi, S; Tschudi, Y; Verdier, P; Viret, S; Lomidze, D; Anagnostou, G; Beranek, S; Edelhoff, M; Feld, L; Heracleous, N; Hindrichs, O; Jussen, R; Klein, K; Merz, J; Ostapchuk, A; Perieanu, A; Raupach, F; Sammet, J; Schael, S; Sprenger, D; Weber, H; Wittmer, B; Zhukov, V; Ata, M; Dietz-Laursonn, E; Erdmann, M; Hebbeker, T; Heidemann, C; Hinzmann, A; Hoepfner, K; Klimkovich, T; Klingebiel, D; Kreuzer, P; Lanske, D; Lingemann, J; Magass, C; Merschmeyer, M; Meyer, A; Papacz, P; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Steggemann, J; Teyssier, D; Weber, M; Bontenackels, M; Cherepanov, V; Davids, M; Flügge, G; Geenen, H; Haj Ahmad, W; Hoehle, F; Kargoll, B; Kress, T; Kuessel, Y; Linn, A; Nowack, A; Perchalla, L; Pooth, O; Rennefeld, J; Sauerland, P; Stahl, A; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrenhoff, W; Behrens, U; Bergholz, M; Bethani, A; Borras, K; Cakir, A; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Eckstein, D; Flossdorf, A; Flucke, G; Geiser, A; Hauk, J; Jung, H; Kasemann, M; Katsas, P; Kleinwort, C; Kluge, H; Knutsson, A; Krämer, M; Krücker, D; Kuznetsova, E; Lange, W; Lohmann, W; Lutz, B; Mankel, R; Marfin, I; Marienfeld, M; Melzer-Pellmann, I-A; Meyer, A B; Mnich, J; Mussgiller, A; Naumann-Emme, S; Olzem, J; Petrukhin, A; Pitzl, D; Raspereza, A; Rosin, M; Salfeld-Nebgen, J; Schmidt, R; Schoerner-Sadenius, T; Sen, N; Spiridonov, A; Stein, M; Tomaszewska, J; Walsh, R; Wissing, C; Autermann, C; Blobel, V; Bobrovskyi, S; Draeger, J; Enderle, H; Gebbert, U; Görner, M; Hermanns, T; Kaschube, K; Kaussen, G; Kirschenmann, H; Klanner, R; Lange, J; Mura, B; Nowak, F; Pietsch, N; Sander, C; Schettler, H; Schleper, P; Schlieckau, E; Schröder, M; Schum, T; Stadie, H; Steinbrück, G; Thomsen, J; Barth, C; Berger, J; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Gruschke, J; Guthoff, M; Hackstein, C; Hartmann, F; Heinrich, M; Held, H; Hoffmann, K H; Honc, S; Katkov, I; Komaragiri, J R; Kuhr, T; Martschei, D; Mueller, S; Müller, Th; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Röcker, S; Saout, C; Scheurer, A; Schieferdecker, P; Schilling, F-P; Schmanau, M; Schott, G; Simonis, H J; Stober, F M; Troendle, D; Wagner-Kuhr, J; Weiler, T; Zeise, M; Ziebarth, E B; Daskalakis, G; Geralis, T; Kesisoglou, S; Kyriakis, A; Loukas, D; Manolakos, I; Markou, A; Markou, C; Mavrommatis, C; Ntomari, E; Petrakou, E; Gouskos, L; Mertzimekis, T J; Panagiotou, A; Saoulidou, N; Stiliaris, E; Evangelou, I; Foudas, C; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Aranyi, A; Bencze, G; Boldizsar, L; Hajdu, C; Hidas, P; Horvath, D; Kapusi, A; Krajczar, K; Sikler, F; Veres, G I; Vesztergombi, G; Beni, N; Molnar, J; Palinkas, J; Szillasi, Z; Veszpremi, V; Karancsi, J; Raics, P; Trocsanyi, Z L; Ujvari, B; Beri, S B; Bhatnagar, V; Dhingra, N; Gupta, R; Jindal, M; Kaur, M; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A P; Singh, J; Singh, S P; Ahuja, S; Choudhary, B C; Kumar, A; Kumar, A; Malhotra, S; Naimuddin, M; Ranjan, K; Shivpuri, R K; Banerjee, S; Bhattacharya, S; Dutta, S; Gomber, B; Jain, S; Jain, S; Khurana, R; Sarkar, S; Choudhury, R K; Dutta, D; Kailas, S; Kumar, V; Mohanty, A K; Pant, L M; Shukla, P; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Mohanty, G B; Parida, B; Saha, A; Sudhakar, K; Wickramage, N; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Etesami, S M; Fahim, A; Hashemi, M; Hesari, H; Jafari, A; Khakzad, M; Mohammadi, A; Mohammadi Najafabadi, M; Paktinat Mehdiabadi, S; Safarzadeh, B; Zeinali, M; Abbrescia, M; Barbone, L; Calabria, C; Colaleo, A; Creanza, D; De Filippis, N; De Palma, M; Fiore, L; Iaselli, G; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Nuzzo, S; Pacifico, N; Pompili, A; Pugliese, G; Romano, F; Selvaggi, G; Silvestris, L; Tupputi, S; Zito, G; Abbiendi, G; Benvenuti, A C; Bonacorsi, D; Braibant-Giacomelli, S; Brigliadori, L; Capiluppi, P; Castro, A; Cavallo, F R; Cuffiani, M; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Grandi, C; Marcellini, S; Masetti, G; Meneghelli, M; Montanari, A; Navarria, F L; Odorici, F; Perrotta, A; Primavera, F; Rossi, A M; Rovelli, T; Siroli, G; Travaglini, R; Albergo, S; Cappello, G; Chiorboli, M; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Gonzi, S; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bianco, S; Colafranceschi, S; Fabbri, F; Piccolo, D; Fabbricatore, P; Musenich, R; Benaglia, A; De Guio, F; Di Matteo, L; Gennai, S; Ghezzi, A; Malvezzi, S; Martelli, A; Massironi, A; Menasce, D; Moroni, L; Paganoni, M; Pedrini, D; Ragazzi, S; Redaelli, N; Sala, S; Tabarelli de Fatis, T; Buontempo, S; Carrillo Montoya, C A; Cavallo, N; De Cosa, A; Dogangun, O; Fabozzi, F; Iorio, A O M; Lista, L; Merola, M; Paolucci, P; Azzi, P; Bacchetta, N; Bellan, P; Bisello, D; Branca, A; Carlin, R; Checchia, P; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Gozzelino, A; Lacaprara, S; Lazzizzera, I; Margoni, M; Mazzucato, M; Meneguzzo, A T; Nespolo, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Torassa, E; Tosi, M; Vanini, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Ratti, S P; Riccardi, C; Torre, P; Vitulo, P; Viviani, C; Biasini, M; Bilei, G M; Caponeri, B; Fanò, L; Lariccia, P; Lucaroni, A; Mantovani, G; Menichelli, M; Nappi, A; Romeo, F; Santocchia, A; Taroni, S; Valdata, M; Azzurri, P; Bagliesi, G; Boccali, T; Broccolo, G; Castaldi, R; D'Agnolo, R T; Dell'Orso, R; Fiori, F; Foà, L; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Martini, L; Messineo, A; Palla, F; Palmonari, F; Rizzi, A; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, P G; Barone, L; Cavallari, F; Del Re, D; Diemoz, M; Franci, D; Grassi, M; Longo, E; Meridiani, P; Nourbakhsh, S; Organtini, G; Pandolfi, F; Paramatti, R; Rahatlou, S; Sigamani, M; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Botta, C; Cartiglia, N; Castello, R; Costa, M; Demaria, N; Graziano, A; Mariotti, C; Maselli, S; Migliore, E; Monaco, V; Musich, M; Obertino, M M; Pastrone, N; Pelliccioni, M; Potenza, A; Romero, A; Ruspa, M; Sacchi, R; Sola, V; Solano, A; Staiano, A; Vilela Pereira, A; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Marone, M; Montanino, D; Penzo, A; Heo, S G; Nam, S K; Chang, S; Chung, J; Kim, D H; Kim, G N; Kim, J E; Kong, D J; Park, H; Ro, S R; Son, D C; Son, T; Kim, J Y; Kim, Zero J; Song, S; Jo, H Y; Choi, S; Gyun, D; Hong, B; Jo, M; Kim, H; Kim, T J; Lee, K S; Moon, D H; Park, S K; Seo, E; Sim, K S; Choi, M; Kang, S; Kim, H; Kim, J H; Park, C; Park, I C; Park, S; Ryu, G; Cho, Y; Choi, Y; Choi, Y K; Goh, J; Kim, M S; Lee, B; Lee, J; Lee, S; Seo, H; Yu, I; Bilinskas, M J; Grigelionis, I; Janulis, M; Martisiute, D; Petrov, P; Polujanskas, M; Sabonis, T; Castilla-Valdez, H; De La Cruz-Burelo, E; Heredia-de La Cruz, I; Lopez-Fernandez, R; Magaña Villalba, R; Martínez-Ortega, J; Sánchez-Hernández, A; Villasenor-Cendejas, L M; Carrillo Moreno, S; Vazquez Valencia, F; Salazar Ibarguen, H A; Casimiro Linares, E; Morelos Pineda, A; Reyes-Santos, M A; Krofcheck, D; Bell, A J; Butler, P H; Doesburg, R; Reucroft, S; Silverwood, H; Ahmad, M; Asghar, M I; Hoorani, H R; Khalid, S; Khan, W A; Khurshid, T; Qazi, S; Shah, M A; Shoaib, M; Brona, G; Cwiok, M; Dominik, W; Doroba, K; Kalinowski, A; Konecki, M; Krolikowski, J; Bialkowska, H; Boimska, B; Frueboes, T; Gokieli, R; Górski, M; Kazana, M; Nawrocki, K; Romanowska-Rybinska, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Gallinaro, M; Musella, P; Nayak, A; Pela, J; Ribeiro, P Q; Seixas, J; Varela, J; Afanasiev, S; Belotelov, I; Bunin, P; Gavrilenko, M; Golutvin, I; Gorbunov, I; Kamenev, A; Karjavin, V; Kozlov, G; Lanev, A; Moisenz, P; Palichik, V; Perelygin, V; Shmatov, S; Smirnov, V; Volodko, A; Zarubin, A; Evstyukhin, S; Golovtsov, V; Ivanov, Y; Kim, V; Levchenko, P; Murzin, V; Oreshkin, V; Smirnov, I; Sulimov, V; Uvarov, L; Vavilov, S; Vorobyev, A; Vorobyev, An; Andreev, Yu; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Toropin, A; Troitsky, S; Epshteyn, V; Erofeeva, M; Gavrilov, V; Kossov, M; Krokhotin, A; Lychkovskaya, N; Popov, V; Safronov, G; Semenov, S; Stolin, V; Vlasov, E; Zhokin, A; Belyaev, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Kodolova, O; Lokhtin, I; Markina, A; Obraztsov, S; Perfilov, M; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Andreev, V; Azarkin, M; Dremin, I; Kirakosyan, M; Leonidov, A; Mesyats, G; Rusakov, S V; Vinogradov, A; Azhgirey, I; Bayshev, I; Bitioukov, S; Grishin, V; Kachanov, V; Konstantinov, D; Korablev, A; Krychkine, V; Petrov, V; Ryutin, R; Sobol, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Ekmedzic, M; Krpic, D; Milosevic, J; Aguilar-Benitez, M; Alcaraz Maestre, J; Arce, P; Battilana, C; Calvo, E; Cerrada, M; Chamizo Llatas, M; Colino, N; De La Cruz, B; Delgado Peris, A; Diez Pardos, C; Domínguez Vázquez, D; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Merino, G; Puerta Pelayo, J; Redondo, I; Romero, L; Santaolalla, J; Soares, M S; Willmott, C; Albajar, C; Codispoti, G; de Trocóniz, J F; Cuevas, J; Fernandez Menendez, J; Folgueras, S; Gonzalez Caballero, I; Lloret Iglesias, L; Vizan Garcia, J M; Brochero Cifuentes, J A; Cabrillo, I J; Calderon, A; Chuang, S H; Duarte Campderros, J; Felcini, M; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Matorras, F; Munoz Sanchez, F J; Piedra Gomez, J; Rodrigo, T; Rodríguez-Marrero, A Y; Ruiz-Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Auffray, E; Auzinger, G; Baillon, P; Ball, A H; Barney, D; Bernet, C; Bialas, W; Bloch, P; Bocci, A; Breuker, H; Bunkowski, K; Camporesi, T; Cerminara, G; Christiansen, T; Coarasa Perez, J A; Curé, B; D'Enterria, D; De Roeck, A; Di Guida, S; Dobson, M; Dupont-Sagorin, N; Elliott-Peisert, A; Frisch, B; Funk, W; Gaddi, A; Georgiou, G; Gerwig, H; Giffels, M; Gigi, D; Gill, K; Giordano, D; Giunta, M; Glege, F; Gomez-Reino Garrido, R; Govoni, P; Gowdy, S; Guida, R; Guiducci, L; Gundacker, S; Hansen, M; Hartl, C; Harvey, J; Hegeman, J; Hegner, B; Hoffmann, H F; Innocente, V; Janot, P; Kaadze, K; Karavakis, E; Lecoq, P; Lenzi, P; Lourenço, C; Mäki, T; Malberti, M; Malgeri, L; Mannelli, M; Masetti, L; Mavromanolakis, G; Meijers, F; Mersi, S; Meschi, E; Moser, R; Mozer, M U; Mulders, M; Nesvold, E; Nguyen, M; Orimoto, T; Orsini, L; Palencia Cortezon, E; Perez, E; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Piparo, D; Polese, G; Quertenmont, L; Racz, A; Reece, W; Rodrigues Antunes, J; Rolandi, G; Rommerskirchen, T; Rovelli, C; Rovere, M; Sakulin, H; Santanastasio, F; Schäfer, C; Schwick, C; Segoni, I; Sharma, A; Siegrist, P; Silva, P; Simon, M; Sphicas, P; Spiga, D; Spiropulu, M; Stoye, M; Tsirou, A; Vichoudis, P; Wöhri, H K; Worm, S D; Zeuner, W D; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Bäni, L; Bortignon, P; Casal, B; Chanon, N; Chen, Z; Cittolin, S; Deisher, A; Dissertori, G; Dittmar, M; Eugster, J; Freudenreich, K; Grab, C; Lecomte, P; Lustermann, W; Martinez Ruiz del Arbol, P; Milenovic, P; Mohr, N; Moortgat, F; Nägeli, C; Nef, P; Nessi-Tedaldi, F; Pape, L; Pauss, F; Peruzzi, M; Ronga, F J; Rossini, M; Sala, L; Sanchez, A K; Sawley, M-C; Starodumov, A; Stieger, B; Takahashi, M; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Urscheler, C; Wallny, R; Weber, H A; Wehrli, L; Weng, J; Aguilo, E; Amsler, C; Chiochia, V; De Visscher, S; Favaro, C; Ivova Rikova, M; Millan Mejias, B; Otiougova, P; Robmann, P; Schmidt, A; Snoek, H; Verzetti, M; Chang, Y H; Chen, K H; Kuo, C M; Li, S W; Lin, W; Liu, Z K; Lu, Y J; Mekterovic, D; Volpe, R; Yu, S S; Bartalini, P; Chang, P; Chang, Y H; Chang, Y W; Chao, Y; Chen, K F; Dietz, C; Grundler, U; Hou, W-S; Hsiung, Y; Kao, K Y; Lei, Y J; Lu, R-S; Shiu, J G; Tzeng, Y M; Wan, X; Wang, M; Adiguzel, A; Bakirci, M N; Cerci, S; Dozen, C; Dumanoglu, I; Eskut, E; Girgis, S; Gokbulut, G; Hos, I; Kangal, E E; Karapinar, G; Kayis Topaksu, A; Onengut, G; Ozdemir, K; Ozturk, S; Polatoz, A; Sogut, K; Sunar Cerci, D; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Akin, I V; Aliev, T; Bilin, B; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Ocalan, K; Ozpineci, A; Serin, M; Sever, R; Surat, U E; Yalvac, M; Yildirim, E; Zeyrek, M; Deliomeroglu, M; Gülmez, E; Isildak, B; Kaya, M; Kaya, O; Ozbek, M; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Bostock, F; Brooke, J J; Clement, E; Cussans, D; Frazier, R; Goldstein, J; Grimes, M; Heath, G P; Heath, H F; Kreczko, L; Metson, S; Newbold, D M; Nirunpong, K; Poll, A; Senkin, S; Smith, V J; Williams, T; Basso, L; Bell, K W; Belyaev, A; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Harder, K; Harper, S; Jackson, J; Kennedy, B W; Olaiya, E; Petyt, D; Radburn-Smith, B C; Shepherd-Themistocleous, C H; Tomalin, I R; Womersley, W J; Bainbridge, R; Ball, G; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Cutajar, M; Dauncey, P; Davies, G; Della Negra, M; Ferguson, W; Fulcher, J; Futyan, D; Gilbert, A; Guneratne Bryer, A; Hall, G; Hatherell, Z; Hays, J; Iles, G; Jarvis, M; Karapostoli, G; Lyons, L; Magnan, A-M; Marrouche, J; Mathias, B; Nandi, R; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rogerson, S; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sparrow, A; Tapper, A; Tourneur, S; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardle, N; Wardrope, D; Whyntie, T; Barrett, M; Chadwick, M; Cole, J E; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Martin, W; Reid, I D; Teodorescu, L; Turner, M; Hatakeyama, K; Liu, H; Scarborough, T; Henderson, C; Avetisyan, A; Bose, T; Carrera Jarrin, E; Fantasia, C; Heister, A; St John, J; Lawson, P; Lazic, D; Rohlf, J; Sperka, D; Sulak, L; Bhattacharya, S; Cutts, D; Ferapontov, A; Heintz, U; Jabeen, S; Kukartsev, G; Landsberg, G; Luk, M; Narain, M; Nguyen, D; Segala, M; Sinthuprasith, T; Speer, T; Tsang, K V; Breedon, R; Breto, G; Calderon De La Barca Sanchez, M; Chauhan, S; Chertok, M; Conway, J; Conway, R; Cox, P T; Dolen, J; Erbacher, R; Houtz, R; Ko, W; Kopecky, A; Lander, R; Mall, O; Miceli, T; Pellett, D; Robles, J; Rutherford, B; Searle, M; Smith, J; Squires, M; Tripathi, M; Vasquez Sierra, R; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Duris, J; Erhan, S; Everaerts, P; Farrell, C; Hauser, J; Ignatenko, M; Jarvis, C; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Weber, M; Babb, J; Clare, R; Ellison, J; Gary, J W; Giordano, F; Hanson, G; Jeng, G Y; Kao, S C; Liu, H; Long, O R; Luthra, A; Nguyen, H; Paramesvaran, S; Sturdy, J; Sumowidagdo, S; Wilken, R; Wimpenny, S; Andrews, W; Branson, J G; Cerati, G B; Evans, D; Golf, F; Holzner, A; Kelley, R; Lebourgeois, M; Letts, J; Macneill, I; Mangano, B; Padhi, S; Palmer, C; Petrucciani, G; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sfiligoi, I; Sharma, V; Simon, S; Sudano, E; Tadel, M; Tu, Y; Vartak, A; Wasserbaech, S; Würthwein, F; Yagil, A; Yoo, J; Barge, D; Bellan, R; Campagnari, C; D'Alfonso, M; Danielson, T; Flowers, K; Geffert, P; George, C; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lowette, S; Mccoll, N; Mullin, S D; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; West, C; Apresyan, A; Bornheim, A; Bunn, J; Chen, Y; Di Marco, E; Duarte, J; Gataullin, M; Ma, Y; Mott, A; Newman, H B; Rogan, C; Timciuc, V; Traczyk, P; Veverka, J; Wilkinson, R; Yang, Y; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Iiyama, Y; Jang, D W; Jun, S Y; Liu, Y F; Paulini, M; Russ, J; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Edelmaier, C J; Ford, W T; Gaz, A; Heyburn, B; Luiggi Lopez, E; Nauenberg, U; Smith, J G; Stenson, K; Ulmer, K A; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Chatterjee, A; Eggert, N; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kaufman, G Nicolas; Patterson, J R; Puigh, D; Ryd, A; Salvati, E; Shi, X; Sun, W; Teo, W D; Thom, J; Thompson, J; Vaughan, J; Weng, Y; Winstrom, L; Wittich, P; Biselli, A; Cirino, G; Winn, D; Abdullin, S; Albrow, M; Anderson, J; Apollinari, G; Atac, M; Bakken, J A; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Bloch, I; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Cihangir, S; Cooper, W; Eartly, D P; Elvira, V D; Esen, S; Fisk, I; Freeman, J; Gao, Y; Gottschalk, E; Green, D; Gutsche, O; Hanlon, J; Harris, R M; Hirschauer, J; Hooberman, B; Jensen, H; Jindariani, S; Johnson, M; Joshi, U; Klima, B; Kousouris, K; Kunori, S; Kwan, S; Leonidopoulos, C; Lincoln, D; Lipton, R; Lykken, J; Maeshima, K; Marraffino, J M; Maruyama, S; Mason, D; McBride, P; Miao, T; Mishra, K; Mrenna, S; Musienko, Y; Newman-Holmes, C; O'Dell, V; Pivarski, J; Pordes, R; Prokofyev, O; Schwarz, T; Sexton-Kennedy, E; Sharma, S; Spalding, W J; Spiegel, L; Tan, P; Taylor, L; Tkaczyk, S; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wu, W; Yang, F; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Bourilkov, D; Chen, M; Das, S; De Gruttola, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fisher, M; Fu, Y; Furic, I K; Gartner, J; Goldberg, S; Hugon, J; Kim, B; Konigsberg, J; Korytov, A; Kropivnitskaya, A; Kypreos, T; Low, J F; Matchev, K; Mitselmakher, G; Muniz, L; Park, M; Remington, R; Rinkevicius, A; Schmitt, M; Scurlock, B; Sellers, P; Skhirtladze, N; Snowball, M; Wang, D; Yelton, J; Zakaria, M; Gaultney, V; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Bochenek, J; Chen, J; Diamond, B; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prosper, H; Sekmen, S; Veeraraghavan, V; Baarmand, M M; Dorney, B; Hohlmann, M; Kalakhety, H; Vodopiyanov, I; Adams, M R; Anghel, I M; Apanasevich, L; Bai, Y; Bazterra, V E; Betts, R R; Callner, J; Cavanaugh, R; Dragoiu, C; Gauthier, L; Gerber, C E; Hofman, D J; Khalatyan, S; Kunde, G J; Lacroix, F; Malek, M; O'Brien, C; Silkworth, C; Silvestre, C; Strom, D; Varelas, N; Akgun, U; Albayrak, E A; Bilki, B; Clarida, W; Duru, F; Griffiths, S; Lae, C K; McCliment, E; Merlo, J-P; Mermerkaya, H; Mestvirishvili, A; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Sen, S; Tiras, E; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bolognesi, S; Bonato, A; Eskew, C; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Hu, G; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Whitbeck, A; Baringer, P; Bean, A; Benelli, G; Grachov, O; Kenny Iii, R P; Murray, M; Noonan, D; Sanders, S; Stringer, R; Tinti, G; Wood, J S; Zhukova, V; Barfuss, A F; Bolton, T; Chakaberia, I; Ivanov, A; Khalil, S; Makouski, M; Maravin, Y; Shrestha, S; Svintradze, I; Gronberg, J; Lange, D; Wright, D; Baden, A; Boutemeur, M; Calvert, B; Eno, S C; Gomez, J A; Hadley, N J; Kellogg, R G; Kirn, M; Lu, Y; Mignerey, A C; Peterman, A; Rossato, K; Rumerio, P; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; Dutta, V; Gomez Ceballos, G; Goncharov, M; Hahn, K A; Harris, P; Kim, Y; Klute, M; Lee, Y-J; Li, W; Luckey, P D; Ma, T; Nahn, S; Paus, C; Ralph, D; Roland, C; Roland, G; Rudolph, M; Stephans, G S F; Stöckli, F; Sumorok, K; Sung, K; Velicanu, D; Wenger, E A; Wolf, R; Wyslouch, B; Xie, S; Yang, M; Yilmaz, Y; Yoon, A S; Zanetti, M; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Franzoni, G; Gude, A; Haupt, J; Klapoetke, K; Kubota, Y; Mans, J; Pastika, N; Rekovic, V; Rusack, R; Sasseville, M; Singovsky, A; Tambe, N; Turkewitz, J; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Summers, D; Avdeeva, E; Bloom, K; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Jindal, P; Keller, J; Kravchenko, I; Lazo-Flores, J; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Godshalk, A; Iashvili, I; Jain, S; Kharchilava, A; Kumar, A; Smith, K; Wan, Z; Alverson, G; Barberis, E; Baumgartel, D; Chasco, M; Trocino, D; Wood, D; Zhang, J; Anastassov, A; Kubik, A; Mucia, N; Odell, N; Ofierzynski, R A; Pollack, B; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Brinkerhoff, A; Hildreth, M; Jessop, C; Karmgard, D J; Kolb, J; Kolberg, T; Lannon, K; Luo, W; Lynch, S; Marinelli, N; Morse, D M; Pearson, T; Ruchti, R; Slaunwhite, J; Valls, N; Wayne, M; Ziegler, J; Bylsma, B; Durkin, L S; Hill, C; Killewald, P; Kotov, K; Ling, T Y; Rodenburg, M; Vuosalo, C; Williams, G; Adam, N; Berry, E; Elmer, P; Gerbaudo, D; Halyo, V; Hebda, P; Hunt, A; Laird, E; Lopes Pegna, D; Lujan, P; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Quan, X; Raval, A; Saka, H; Stickland, D; Tully, C; Werner, J S; Zuranski, A; Acosta, J G; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Zatserklyaniy, A; Alagoz, E; Barnes, V E; Benedetti, D; Bolla, G; Borrello, L; Bortoletto, D; De Mattia, M; Everett, A; Gutay, L; Hu, Z; Jones, M; Koybasi, O; Kress, M; Laasanen, A T; Leonardo, N; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Shipsey, I; Silvers, D; Svyatkovskiy, A; Vidal Marono, M; Yoo, H D; Zablocki, J; Zheng, Y; Guragain, S; Parashar, N; Adair, A; Boulahouache, C; Cuplov, V; Ecklund, K M; Geurts, F J M; Padley, B P; Redjimi, R; Roberts, J; Zabel, J; Betchart, B; Bodek, A; Chung, Y S; Covarelli, R; de Barbaro, P; Demina, R; Eshaq, Y; Flacher, H; Garcia-Bellido, A; Goldenzweig, P; Gotra, Y; Han, J; Harel, A; Miner, D C; Petrillo, G; Sakumoto, W; Vishnevskiy, D; Zielinski, M; Bhatti, A; Ciesielski, R; Demortier, L; Goulianos, K; Lungu, G; Malik, S; Mesropian, C; Arora, S; Atramentov, O; Barker, A; Chou, J P; Contreras-Campana, C; Contreras-Campana, E; Duggan, D; Ferencek, D; Gershtein, Y; Gray, R; Halkiadakis, E; Hidas, D; Hits, D; Lath, A; Panwalkar, S; Park, M; Patel, R; Richards, A; Rose, K; Salur, S; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Eusebi, R; Flanagan, W; Gilmore, J; Kamon, T; Khotilovich, V; Montalvo, R; Osipenkov, I; Pakhotin, Y; Perloff, A; Roe, J; Safonov, A; Sengupta, S; Suarez, I; Tatarinov, A; Toback, D; Akchurin, N; Bardak, C; Damgov, J; Dudero, P R; Jeong, C; Kovitanggoon, K; Lee, S W; Libeiro, T; Mane, P; Roh, Y; Sill, A; Volobouev, I; Wigmans, R; Yazgan, E; Appelt, E; Brownson, E; Engh, D; Florez, C; Gabella, W; Gurrola, A; Issah, M; Johns, W; Johnston, C; Kurt, P; Maguire, C; Melo, A; Sheldon, P; Snook, B; Tuo, S; Velkovska, J; Arenton, M W; Balazs, M; Boutle, S; Conetti, S; Cox, B; Francis, B; Goadhouse, S; Goodell, J; Hirosky, R; Ledovskoy, A; Lin, C; Neu, C; Wood, J; Yohay, R; Gollapinni, S; Harr, R; Karchin, P E; Kottachchi Kankanamge Don, C; Lamichhane, P; Mattson, M; Milstène, C; Sakharov, A; Anderson, M; Bachtis, M; Belknap, D; Bellinger, J N; Bernardini, J; Carlsmith, D; Cepeda, M; Dasu, S; Efron, J; Friis, E; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Herndon, M; Hervé, A; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Mohapatra, A; Ojalvo, I; Pierro, G A; Ross, I; Savin, A; Smith, W H; Swanson, J; Weinberg, M
2012-03-16
A search for signatures of extra spatial dimensions in the diphoton invariant-mass spectrum has been performed with the CMS detector at the LHC. No excess of events above the standard model expectation is observed using a data sample collected in proton-proton collisions at √s=7 TeV corresponding to an integrated luminosity of 2.2 fb(-1). In the context of the large-extra-dimensions model, lower limits are set on the effective Planck scale in the range of 2.3-3.8 TeV at the 95% confidence level. These limits are the most restrictive bounds on virtual-graviton exchange to date. The most restrictive lower limits to date are also set on the mass of the first graviton excitation in the Randall-Sundrum model in the range of 0.86-1.84 TeV, for values of the associated coupling parameter between 0.01 and 0.10.
Search for signatures of extra dimensions in the diphoton mass spectrum at the Large Hadron Collider
Chatrchyan, Serguei; Khachatryan, Vardan; Sirunyan, Albert M.; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; ErÃ¶, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; /Yerevan Phys. Inst. /Vienna, OAW /Minsk, High Energy Phys. Ctr. /Antwerp U., WISINF /Vrije U., Brussels /Brussels U. /Gent U. /Louvain U. /UMH, Mons /Rio de Janeiro, CBPF /Rio de Janeiro State U.
2011-12-01
A search for signatures of extra dimensions in the diphoton invariant-mass spectrum has been performed with the CMS detector at the LHC. No excess of events above the standard model expectation is observed using a data sample collected in proton-proton collisions at {radical}s = 7 TeV corresponding to an integrated luminosity of 2.2 fb{sup -1}. In the context of the large-extra-dimensions model, lower limits are set on the effective Planck scale in the range of 2.3-3.8 TeV at the 95% confidence level. These limits are the most restrictive bounds on virtual-graviton exchange to date. The most restrictive lower limits to date are also set on the mass of the first graviton excitation in the Randall-Sundrum model in the range of 0.86-1.84 TeV, for values of the associated coupling parameter between 0.01 and 0.10.
NICMOS Imaging Survey of Dusty Debris Around Nearby Stars Across the Stellar Mass Spectrum
NASA Astrophysics Data System (ADS)
Rhee, Joseph
2007-07-01
Association of planetary systems with dusty debris disks is now quite secure, and advances in our understanding of planet formation and evolution can be achieved by the identification and characterization of an ensemble of debris disks orbiting a range of central stars with different masses and ages. Imaging debris disks in starlight scattered by dust grains remains technically challenging so that only about a dozen systems have thus far been imaged. A further advance in this field needs an increased number of imaged debris disks. However, the technical challege of such observations, even with the superb combination of HST and NICMOS, requires the best targets. Recent HST imaging investigations of debris disks were sample-limited not limited by the technology used. We performed a search for debris disks from a IRAS/Hipparcos cross correlation which involved an exhaustive background contamination check to weed out false excess stars. Out of ~140 identified debris disks, we selected 22 best targets in terms of dust optical depth and disk angular size. Our target sample represents the best currently available target set in terms of both disk brightness and resolvability. For example, our targets have higher dust optical depth, in general, than newly identified Spitzer disks. Also, our targets cover a wider range of central star ages and masses than previous debris disk surveys. This will help us to investigate planetary system formation and evolution across the stellar mass spectrum.The technical feasibility of this program in two-gyro mode guiding has been proven with on-orbit calibration and science observations during HST cycles 13, 14, and 15.
The Mass Spectrum Analyzer (MSA) on board the BepiColombo MMO
NASA Astrophysics Data System (ADS)
Delcourt, D.; Saito, Y.; Leblanc, F.; Verdeil, C.; Yokota, S.; Fraenz, M.; Fischer, H.; Fiethe, B.; Katra, B.; Fontaine, D.; Illiano, J.-M.; Berthelier, J.-J.; Krupp, N.; Buhrke, U.; Bubenhagen, F.; Michalik, H.
2016-07-01
Observations from the MESSENGER spacecraft have considerably enhanced our understanding of the plasma environment at Mercury. In particular, measurements from the Fast Imaging Plasma Spectrometer provide evidences of a variety of ion species of planetary origin (He+, O+, and Na+) in the northern dayside cusp and in the nightside plasma sheet. A more comprehensive view of Mercury's plasma environment will be provided by the BepiColombo mission that will be launched in 2018. On board the BepiColombo MMO spacecraft, the Mercury Plasma/Particle Experiment consortium gathers different sensors dedicated to particle measurements. Among these sensors, the Mass Spectrum Analyzer (MSA) is the instrument dedicated to plasma composition analysis. It consists of a top hat for energy analysis followed by a time-of-flight (TOF) chamber to derive the ion mass. Taking advantage of the spacecraft rotation, MSA will measure three-dimensional distribution functions in one spin (4 s), from energies characteristic of exospheric populations (in the eV range) up to plasma sheet energies (up to ~38 keV/q). A notable feature of the MSA instrument is that the TOF chamber is polarized with a linear electric field that leads to isochronous TOFs and enhanced mass resolution (typically, m/∆m ≈ 40 for ions with energies up to 13 keV/q). At Mercury, this capability is of paramount importance to thoroughly characterize the wide variety of ion species originating from the planet surface. It is thus anticipated that MSA will provide unprecedented information on ion populations in the Hermean environment and hence improve our understanding of the coupling processes at work.
Isoscalar ππ Scattering and the σ Meson Resonance from QCD
Briceño, Raul A.; Dudek, Jozef J.; Edwards, Robert G.; ...
2017-01-09
Here, we present for the first time a determination of the energy dependence of the isoscalar ππ elastic scattering phase-shift within a first-principles numerical lattice approach to QCD. We also compute the hadronic correlation functions including all required quark propagation diagrams. From these the discrete spectrum of states in the finite volume defined by the lattice boundary is extracted. From the volume dependence of the spectrum we obtain the S-wave phase-shift up to the Kmore » $$\\bar{K}$$ threshold. Calculations are performed at two values of the u, d quark mass corresponding to mπ = 236, 391 MeV and the resulting amplitudes are described in terms of a σ meson which evolves from a bound-state below ππ threshold at the heavier quark mass, to a broad resonance at the lighter quark mass.« less
Isoscalar ππ Scattering and the σ Meson Resonance from QCD.
Briceño, Raul A; Dudek, Jozef J; Edwards, Robert G; Wilson, David J
2017-01-13
We present for the first time a determination of the energy dependence of the isoscalar ππ elastic scattering phase shift within a first-principles numerical lattice approach to QCD. Hadronic correlation functions are computed including all required quark propagation diagrams, and from these the discrete spectrum of states in the finite volume defined by the lattice boundary is extracted. From the volume dependence of the spectrum, we obtain the S-wave phase shift up to the KK[over ¯] threshold. Calculations are performed at two values of the u, d quark mass corresponding to m_{π}=236,391 MeV, and the resulting amplitudes are described in terms of a σ meson which evolves from a bound state below the ππ threshold at the heavier quark mass to a broad resonance at the lighter quark mass.
Isoscalar π π Scattering and the σ Meson Resonance from QCD
NASA Astrophysics Data System (ADS)
Briceño, Raul A.; Dudek, Jozef J.; Edwards, Robert G.; Wilson, David J.; Hadron Spectrum Collaboration
2017-01-01
We present for the first time a determination of the energy dependence of the isoscalar π π elastic scattering phase shift within a first-principles numerical lattice approach to QCD. Hadronic correlation functions are computed including all required quark propagation diagrams, and from these the discrete spectrum of states in the finite volume defined by the lattice boundary is extracted. From the volume dependence of the spectrum, we obtain the S -wave phase shift up to the K K ¯ threshold. Calculations are performed at two values of the u , d quark mass corresponding to mπ=236 ,391 MeV , and the resulting amplitudes are described in terms of a σ meson which evolves from a bound state below the π π threshold at the heavier quark mass to a broad resonance at the lighter quark mass.
Continuous Advances in QCD 2008
NASA Astrophysics Data System (ADS)
Peloso, Marco M.
2008-12-01
1. High-order calculations in QCD and in general gauge theories. NLO evolution of color dipoles / I. Balitsky. Recent perturbative results on heavy quark decays / J. H. Piclum, M. Dowling, A. Pak. Leading and non-leading singularities in gauge theory hard scattering / G. Sterman. The space-cone gauge, Lorentz invariance and on-shell recursion for one-loop Yang-Mills amplitudes / D. Vaman, Y.-P. Yao -- 2. Heavy flavor physics. Exotic cc¯ mesons / E. Braaten. Search for new physics in B[symbol]-mixing / A. J. Lenz. Implications of D[symbol]-D[symbol] mixing for new physics / A. A. Petrov. Precise determinations of the charm quark mass / M. Steinhauser -- 3. Quark-gluon dynamics at high density and/or high temperature. Crystalline condensate in the chiral Gross-Neveu model / G. V. Dunne, G. Basar. The strong coupling constant at low and high energies / J. H. Kühn. Quarkyonic matter and the phase diagram of QCD / L. McLerran. Statistical QCD with non-positive measure / J. C. Osborn, K. Splittorff, J. J. M. Verbaarschot. From equilibrium to transport properties of strongly correlated fermi liquids / T. Schäfer. Lessons from random matrix theory for QCD at finite density / K. Splittorff, J. J. M. Verbaarschot -- 4. Methods and models of holographic correspondence. Soft-wall dynamics in AdS/QCD / B. Batell. Holographic QCD / N. Evans, E. Threlfall. QCD glueball sum rules and vacuum topology / H. Forkel. The pion form factor in AdS/QCD / H. J. Kwee, R. F. Lebed. The fast life of holographic mesons / R. C. Myers, A. Sinha. Properties of Baryons from D-branes and instantons / S. Sugimoto. The master space of N = 1 quiver gauge theories: counting BPS operators / A. Zaffaroni. Topological field congurations. Skyrmions in theories with massless adjoint quarks / R. Auzzi. Domain walls, localization and confinement: what binds strings inside walls / S. Bolognesi. Static interactions of non-abelian vortices / M. Eto. Vortices which do not abelianize dynamically: semi
Norniella, Olga; /Barcelona, IFAE
2005-01-01
Recent QCD measurements from the CDF collaboration at the Tevatron are presented, together with future prospects as the luminosity increases. The measured inclusive jet cross section is compared to pQCD NLO predictions. Precise measurements on jet shapes and hadronic energy flows are compared to different phenomenological models that describe gluon emissions and the underlying event in hadron-hadron interactions.
Excited-state spectroscopy of triply bottom baryons from lattice QCD
Meinel, Stefan
2012-06-25
Here, the spectrum of baryons containing three b quarks is calculated in nonperturbative QCD, using the lattice regularization. The energies of ten excited bbb states with JP = 1/2+, 3/2+, 5/2+, 7/2+, 1/2–, and 3/2– are determined with high precision. A domain-wall action is used for the up, down, and strange quarks, and the bottom quarks are implemented with nonrelativistic QCD. The computations are done at lattice spacings of a ≈ 0.11 fm and a ≈ 0.08 fm, and the results demonstrate the improvement of rotational symmetry as a is reduced. A large lattice volume of (2.7 fm)3 is used,more » and extrapolations of the bbb spectrum to realistic values of the light sea-quark masses are performed. All spin-dependent energy splittings are resolved with total uncertainties of order 1 MeV, and the dependence of these splittings on the couplings in the nonrelativistic QCD action is analyzed.« less
Excited-state spectroscopy of triply bottom baryons from lattice QCD
Meinel, Stefan
2012-06-25
Here, the spectrum of baryons containing three b quarks is calculated in nonperturbative QCD, using the lattice regularization. The energies of ten excited bbb states with J^{P} = 1/2^{+}, 3/2^{+}, 5/2^{+}, 7/2^{+}, 1/2^{–}, and 3/2^{–} are determined with high precision. A domain-wall action is used for the up, down, and strange quarks, and the bottom quarks are implemented with nonrelativistic QCD. The computations are done at lattice spacings of a ≈ 0.11 fm and a ≈ 0.08 fm, and the results demonstrate the improvement of rotational symmetry as a is reduced. A large lattice volume of (2.7 fm)^{3} is used, and extrapolations of the bbb spectrum to realistic values of the light sea-quark masses are performed. All spin-dependent energy splittings are resolved with total uncertainties of order 1 MeV, and the dependence of these splittings on the couplings in the nonrelativistic QCD action is analyzed.
QCD thermodynamics on a lattice
NASA Astrophysics Data System (ADS)
Levkova, Ludmila A.
Numerical simulations of full QCD on anisotropic lattices provide a convenient way to study QCD thermodynamics with fixed physics scales and reduced lattice spacing errors. We report results from calculations with two flavors of dynamical staggered fermions, where all bare parameters and the renormalized anisotropy are kept constant and the temperature is changed in small steps by varying only the number of time slices. Including results from zero-temperature scale setting simulations, which determine the Karsch coefficients, allows for the calculation of the Equation of State at finite temperatures. We also report on studies of the chiral properties of dynamical domain-wall fermions combined with the DBW2 gauge action for different gauge couplings and fermion masses. For quenched theories, the DBW2 action gives a residual chiral symmetry breaking much smaller than what was found with more traditional choices for the gauge action. Our goal is to investigate the possibilities which this and further improvements provide for the study of QCD thermodynamics and other simulations at stronger couplings.
NASA Astrophysics Data System (ADS)
Robertson, R. G. H.
2015-03-01
Background: The standard kinematic method for determining neutrino mass from the β decay of tritium or other isotope is to measure the shape of the electron spectrum near the endpoint. A similar distortion of the "visible energy" remaining after electron capture is caused by neutrino mass. There has been a resurgence of interest in using this method with 163Ho, driven by technological advances in microcalorimetry. Recent theoretical analyses offer reassurance that there are no significant theoretical uncertainties. Purpose: The theoretical analyses consider only single vacancy states in the daughter 163Dy atom. It is necessary to consider configurations with more than one vacancy that can be populated owing to the change in nuclear charge. Method: The shakeup and shake-off theory of Carlson and Nestor is used as a basis for estimating the population of double-vacancy states. Results: A spectrum of satellites associated with each primary vacancy created by electron capture is presented. Conclusions: The theory of the calorimetric spectrum is more complicated than has been described heretofore. There are numerous shakeup and shake-off satellites present across the spectrum, and some may be very near the endpoint. The spectrum shape is presently not understood well enough to permit a sensitive determination of the neutrino mass in this way.
Missing baryonic resonances in the Hagedorn spectrum
NASA Astrophysics Data System (ADS)
Man Lo, Pok; Marczenko, Michał; Redlich, Krzysztof; Sasaki, Chihiro
2016-08-01
The hadronic medium of QCD is modeled as a gas of point-like hadrons, with its composition determined by the Hagedorn mass spectrum. The spectrum consists of a discrete and a continuous part. The former is determined by the experimentally confirmed resonances tabulated by the Particle Data Group (PDG), while the latter can be extracted from the existing lattice data. This formulation of the hadron resonance gas (HRG) provides a transparent framework to relate the fluctuation of conserved charges as calculated in the lattice QCD approach to the particle content of the medium. A comparison of the two approaches shows that the equation of state is well described by the standard HRG model, which includes only a discrete spectrum of known hadrons. The corresponding description in the strange sector, however, shows clear discrepancies, thus a continuous spectrum is added to incorporate the effect of missing resonances. We propose a method to extract the strange-baryon spectrum from the lattice data. The result is consistent with the trend set by the unconfirmed strange baryons resonances listed by the PDG, suggesting that most of the missing interaction strength for the strange baryons reside in the | S| = 1 sector. This scenario is also supported by recent lattice calculations, and might be important in the energy region covered by the NICA accelerator in Dubna, where in the heavy-ion collisions, baryons are the dominating degrees of freedom in the final state.
Kumozaki, Shotaro; Sato, Kengo; Sakakibara, Yasubumi
2015-01-01
Recently, glycomics has been actively studied and various technologies for glycomics have been rapidly developed. Currently, tandem mass spectrometry (MS/MS) is one of the key experimental tools for identification of structures of oligosaccharides. MS/MS can observe MS/MS peaks of fragmented glycan ions including cross-ring ions resulting from internal cleavages, which provide valuable information to infer glycan structures. Thus, the aim of de novo sequencing of glycans is to find the most probable assignments of observed MS/MS peaks to glycan substructures without databases. However, there are few satisfiable algorithms for glycan de novo sequencing from MS/MS spectra. We present a machine learning based approach to de novo sequencing of glycans from MS/MS spectrum. First, we build a suitable model for the fragmentation of glycans including cross-ring ions, and implement a solver that employs Lagrangian relaxation with a dynamic programming technique. Then, to optimize scores for the algorithm, we introduce a machine learning technique called structured support vector machines that enable us to learn parameters including scores for cross-ring ions from training data, i.e., known glycan mass spectra. Furthermore, we implement additional constraints for core structures of well-known glycan types including N-linked glycans and O-linked glycans. This enables us to predict more accurate glycan structures if the glycan type of given spectra is known. Computational experiments show that our algorithm performs accurate de novo sequencing of glycans. The implementation of our algorithm and the datasets are available at http://glyfon.dna.bio.keio.ac.jp/.
Mass spectrum analysis of serum biomarker proteins from patients with schizophrenia.
Zhou, Na; Wang, Jie; Yu, Yaqin; Shi, Jieping; Li, Xiaokun; Xu, Bin; Yu, Qiong
2014-05-01
Diagnosis of schizophrenia does not have a clear objective test at present, so we aimed to identify the potential biomarkers for the diagnosis of schizophrenia by comparison of serum protein profiling between first-episode schizophrenia patients and healthy controls. The combination of a magnetic bead separation system with matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF/TOF-MS) was used to analyze the serum protein spectra of 286 first-episode patients with schizophrenia, 41 chronic disease patients and 304 healthy controls. FlexAnlysis 3.0 and ClinProTools(TM) 2.1 software was used to establish a diagnostic model for schizophrenia. The results demonstrated that 10 fragmented peptides demonstrated an optimal discriminatory performance. Among these fragmented peptides, the peptide with m/z 1206.58 was identified as a fragment of fibrinopeptide A. Receiver operating characteristic analysis for m/z 1206.58 showed that the area under the curve was 0.981 for schizophrenia vs healthy controls, and 0.999 for schizophrenia vs other chronic disease controls. From our result, we consider that the analysis of serum protein spectrum using the magnetic bead separation system and MALDI-TOF/TOF-MS is an objective diagnostic tool. We conclude that fibrinopeptide A has the potential to be a biomarker for diagnosis of schizophrenia. This protein may also help to elucidate schizophrenia disease pathogenesis.
Domain wall network as QCD vacuum: confinement, chiral symmetry, hadronization
NASA Astrophysics Data System (ADS)
Nedelko, Sergei N.; Voronin, Vladimir V.
2017-03-01
An approach to QCD vacuum as a medium describable in terms of statistical ensemble of almost everywhere homogeneous Abelian (anti-)self-dual gluon fields is reviewed. These fields play the role of the confining medium for color charged fields as well as underline the mechanism of realization of chiral SUL(Nf) × SUR(Nf) and UA(1) symmetries. Hadronization formalism based on this ensemble leads to manifestly defined quantum effective meson action. Strong, electromagnetic and weak interactions of mesons are represented in the action in terms of nonlocal n-point interaction vertices given by the quark-gluon loops averaged over the background ensemble. Systematic results for the mass spectrum and decay constants of radially excited light, heavy-light mesons and heavy quarkonia are presented. Relationship of this approach to the results of functional renormalization group and Dyson-Schwinger equations, and the picture of harmonic confinement is briefly outlined.
Lattice QCD in rotating frames.
Yamamoto, Arata; Hirono, Yuji
2013-08-23
We formulate lattice QCD in rotating frames to study the physics of QCD matter under rotation. We construct the lattice QCD action with the rotational metric and apply it to the Monte Carlo simulation. As the first application, we calculate the angular momenta of gluons and quarks in the rotating QCD vacuum. This new framework is useful to analyze various rotation-related phenomena in QCD.
NASA Astrophysics Data System (ADS)
Beane, Silas
2016-09-01
Over the last several decades, theoretical nuclear physics has been evolving from a very-successful phenomenology of the properties of nuclei, to a first-principles derivation of the properties of visible matter in the Universe from the known underlying theories of Quantum Chromodynamics (QCD) and Electrodynamics. Many nuclear properties have now been calculated using lattice QCD, a method for treating QCD numerically with large computers. In this talk, some of the most recent results in this frontier area of nuclear theory will be reviewed.
Brodsky, Stanley J.; de Teramond, Guy F.; /Costa Rica U.
2012-02-16
The relation between the hadronic short-distance constituent quark and gluon particle limit and the long-range confining domain is yet one of the most challenging aspects of particle physics due to the strong coupling nature of Quantum Chromodynamics, the fundamental theory of the strong interactions. The central question is how one can compute hadronic properties from first principles; i.e., directly from the QCD Lagrangian. The most successful theoretical approach thus far has been to quantize QCD on discrete lattices in Euclidean space-time. Lattice numerical results follow from computation of frame-dependent moments of distributions in Euclidean space and dynamical observables in Minkowski spacetime, such as the time-like hadronic form factors, are not amenable to Euclidean lattice computations. The Dyson-Schwinger methods have led to many important insights, such as the infrared fixed point behavior of the strong coupling constant, but in practice, the analyses are limited to ladder approximation in Landau gauge. Baryon spectroscopy and the excitation dynamics of nucleon resonances encoded in the nucleon transition form factors can provide fundamental insight into the strong-coupling dynamics of QCD. New theoretical tools are thus of primary interest for the interpretation of the results expected at the new mass scale and kinematic regions accessible to the JLab 12 GeV Upgrade Project. The AdS/CFT correspondence between gravity or string theory on a higher-dimensional anti-de Sitter (AdS) space and conformal field theories in physical space-time has led to a semiclassical approximation for strongly-coupled QCD, which provides physical insights into its nonperturbative dynamics. The correspondence is holographic in the sense that it determines a duality between theories in different number of space-time dimensions. This geometric approach leads in fact to a simple analytical and phenomenologically compelling nonperturbative approximation to the full light
QCD as a topologically ordered system
Zhitnitsky, Ariel R.
2013-09-15
We argue that QCD belongs to a topologically ordered phase similar to many well-known condensed matter systems with a gap such as topological insulators or superconductors. Our arguments are based on an analysis of the so-called “deformed QCD” which is a weakly coupled gauge theory, but nevertheless preserves all the crucial elements of strongly interacting QCD, including confinement, nontrivial θ dependence, degeneracy of the topological sectors, etc. Specifically, we construct the so-called topological “BF” action which reproduces the well known infrared features of the theory such as non-dispersive contribution to the topological susceptibility which cannot be associated with any propagating degrees of freedom. Furthermore, we interpret the well known resolution of the celebrated U(1){sub A} problem where the would be η{sup ′} Goldstone boson generates its mass as a result of mixing of the Goldstone field with a topological auxiliary field characterizing the system. We then identify the non-propagating auxiliary topological field of the BF formulation in deformed QCD with the Veneziano ghost (which plays the crucial role in resolution of the U(1){sub A} problem). Finally, we elaborate on relation between “string-net” condensation in topologically ordered condensed matter systems and long range coherent configurations, the “skeletons”, studied in QCD lattice simulations. -- Highlights: •QCD may belong to a topologically ordered phase similar to condensed matter (CM) systems. •We identify the non-propagating topological field in deformed QCD with the Veneziano ghost. •Relation between “string-net” condensates in CM systems and the “skeletons” in QCD lattice simulations is studied.
String breaking in four dimensional lattice QCD
Duncan, A.; Eichten, E.; Thacker, H.
2001-06-01
Virtual quark pair screening leads to breaking of the string between fundamental representation quarks in QCD. For unquenched four dimensional lattice QCD, this (so far elusive) phenomenon is studied using the recently developed truncated determinant algorithm (TDA). The dynamical configurations were generated on a 650 MHz PC. Quark eigenmodes up to 420 MeV are included exactly in these TDA studies performed at low quark mass on large coarse [but O(a{sup 2}) improved] lattices. A study of Wilson line correlators in Coulomb gauge extracted from an ensemble of 1000 two-flavor dynamical configurations reveals evidence for flattening of the string tension at distances R{approx}>1 fm.
Is Fractional Electric Charge Problematic for QCD?
NASA Astrophysics Data System (ADS)
Slansky, R.
1982-11-01
A model of broken QCD is described here; SU3c is broken to SO3g (``g'' for ``glow'') such that color triplets become glow triplets. With this breaking pattern, there should exist low-mass, fractionally-charged diquark states that are not strongly bound to nuclei, but are rarely produced at present accelerator facilities. The breaking of QCD can be done with a 27c, in which case, this strong interaction theory is easily embedded in unified models such as those based on SU5, SO10, or E6. This work was done in collaboration with Terry Goldman of Los Alamos and Gordon Shaw of U.C., Irvine.
Chiral Imbalance in QCD and its consequences
NASA Astrophysics Data System (ADS)
Andrianov, Alexander; Andrianov, Vladimir; Espriu, Domenec
2016-10-01
Under extreme conditions of high temperature and/or large quark (baryon) density, the vacuum of QCD changes its properties, and deconfinement, chiral symmetry restoration as well as chiral symmetry breaking take place. These transitions (phases) are accompanied by the rapid change in the rate and nature of topological transitions connecting different topological sectors. The heavy ion collisions (HIC) program opens a possibility to study these phenomena in so-called non-Abelian Quark-gluon plasma (QGP). In these phases the currents of light quarks (vector and axial-vector) can be independently examined for right-handed (RH) and left-handed (LH) quarks. To describe such a quark matter chiral chemical potential can be introduced to quantify the presence of chirality imbalance (ChI) i.e. the difference between the average numbers of RH and LH quarks in the fireball after HIC. In this review talk we will focus our attention on the discussion of the ChI related developments in heavy ion physics at central collisions and the plans for the future experiments aimed at establishing (or falsifying) the presence of Local spacial Parity Breaking (LPB) in heavy ion data. We describe some of experimental observables in detecting the signal of LPB. A number of measurements is proposed that allow to reach a definite conclusion on the occurrence of LPB effects in non-Abelian QGP produced in central heavy ion collisions and its simulation within a number of QCD-inspired models is outlined. Based on the effective meson theory in the presence of Chern-Simons interaction it is found that the spectrum of massive vector mesons splits into three polarization components with different effective masses. Moreover a resonance broadening occurs that leads to an increase of spectral contribution to the dilepton production as compared to the vacuum state. The asymmetry in production of longitudinally and transversely polarized states of ρ and ω mesons for various values of the dilepton
Nucleon, $$\\Delta$$ and $$\\Omega$$ excited states in $$N_f=2+1$$ lattice QCD
John Bulava; Edwards, Robert G.; Engelson, Eric; ...
2010-07-22
The energies of the excited states of the Nucleon,more » $$\\Delta$$ and $$\\Omega$$ are computed in lattice QCD, using two light quarks and one strange quark on anisotropic lattices. The calculation is performed at three values of the light quark mass, corresponding to pion masses $$m_{\\pi}$$ = 392(4), 438(3) and 521(3) MeV. We employ the variational method with a large basis of interpolating operators enabling six energies in each irreducible representation of the lattice to be distinguished clearly. We compare our calculation with the low-lying experimental spectrum, with which we find reasonable agreement in the pattern of states. In addition, the need to include operators that couple to the expected multi-hadron states in the spectrum is clearly identified.« less
Lutz, Matthias F. M.; Lange, Jens Sören; Pennington, Michael; Bettoni, Diego; Brambilla, Nora; Crede, Volker; Eidelman, Simon; Gillitzer, Albrecht; Gradl, Wolfgang; Lang, Christian B.; Metag, Volker; Nakano, Takashi; Nieves, Juan; Neubert, Sebastian; Oka, Makoto; Olsen, Stephen L.; Pappagallo, Marco; Paul, Stephan; Pelizäus, Marc; Pilloni, Alessandro; Prencipe, Elisabetta; Ritman, Jim; Ryan, Sinead; Thoma, Ulrike; Uwer, Ulrich; Weise, Wolfram
2016-04-01
We report on the EMMI Rapid Reaction Task Force meeting 'Resonances in QCD', which took place at GSI October 12-14, 2015 (Fig.~1). A group of 26 people met to discuss the physics of resonances in QCD. The aim of the meeting was defined by the following three key questions; what is needed to understand the physics of resonances in QCD?; where does QCD lead us to expect resonances with exotic quantum numbers?; and what experimental efforts are required to arrive at a coherent picture? For light mesons and baryons only those with up, down and strange quark content were considered. For heavy-light and heavy-heavy meson systems, those with charm quarks were the focus.This document summarizes the discussions by the participants, which in turn led to the coherent conclusions we present here.
Rangel, Murilo; /Orsay, LAL
2010-06-01
Experimental studies of soft Quantum Chromodynamics (QCD) at Tevatron are reported in this note. Results on inclusive inelastic interactions, underlying events, double parton interaction and exclusive diffractive production and their implications to the Large Hadron Collider (LHC) physics are discussed.
Calderoni, Sara; Retico, Alessandra; Biagi, Laura; Tancredi, Raffaella; Muratori, Filippo; Tosetti, Michela
2012-01-16
Several studies on structural MRI in children with autism spectrum disorders (ASD) have mainly focused on samples prevailingly consisting of males. Sex differences in brain structure are observable since infancy and therefore caution is required in transferring to females the results obtained for males. The neuroanatomical phenotype of female children with ASD (ASDf) represents indeed a neglected area of research. In this study, we investigated for the first time the anatomic brain structures of a sample entirely composed of ASDf (n=38; 2-7 years of age; mean=53 months; SD=18) with respect to 38 female age and non verbal IQ matched controls, using both mass-univariate and pattern classification approaches. The whole brain volumes of each group were compared using voxel-based morphometry (VBM) with diffeomorphic anatomical registration through exponentiated lie algebra (DARTEL) procedure, allowing us to build a study-specific template. Significantly more gray matter (GM) was found in the left superior frontal gyrus (SFG) in ASDf subjects compared to controls. The GM segments obtained in the VBM-DARTEL preprocessing are also classified with a support vector machine (SVM), using the leave-pair-out cross-validation protocol. Then, the recursive feature elimination (SVM-RFE) approach allows for the identification of the most discriminating voxels in the GM segments and these prove extremely consistent with the SFG region identified by the VBM analysis. Furthermore, the SVM-RFE map obtained with the most discriminating set of voxels corresponding to the maximum Area Under the Receiver Operating Characteristic Curve (AUC(max)=0.80) highlighted a more complex circuitry of increased cortical volume in ASDf, involving bilaterally the SFG and the right temporo-parietal junction (TPJ). The SFG and TPJ abnormalities may be relevant to the pathophysiology of ASDf, since these structures participate in some core atypical features of autism.
Precision QCD measurements in DIS at HERA
NASA Astrophysics Data System (ADS)
Britzger, Daniel
2016-08-01
New and recent results on QCD measurements from the H1 and ZEUS experiments at the HERA ep collider are reviewed. The final results on the combined deep-inelastic neutral and charged current cross-sections are presented and their role in the extractions of parton distribution functions (PDFs) is studied. The PDF fits give insight into the compatibility of QCD evolution and heavy flavor schemes with the data as a function of kinematic variables such as the scale Q2. Measurements of jet production cross-sections in ep collisions provide direct proves of QCD and extractions of the strong coupling constants are performed. Charm and beauty cross-section measurements are used for the determination of the heavy quark masses. Their role in PDF fits is investigated. In the regime of diffractive DIS and photoproduction, dijet and prompt photon production cross-sections provide insights into the process of factorization and the nature of the diffractive exchange.
QCD sign problem for small chemical potential
Splittorff, K.; Verbaarschot, J. J. M.
2007-06-01
The expectation value of the complex phase factor of the fermion determinant is computed in the microscopic domain of QCD at nonzero chemical potential. We find that the average phase factor is nonvanishing below a critical value of the chemical potential equal to half the pion mass and vanishes exponentially in the volume for larger values of the chemical potential. This holds for QCD with dynamical quarks as well as for quenched and phase quenched QCD. The average phase factor has an essential singularity for zero chemical potential and cannot be obtained by analytic continuation from imaginary chemical potential or by means of a Taylor expansion. The leading order correction in the p-expansion of the chiral Lagrangian is calculated as well.
NASA Astrophysics Data System (ADS)
Roy, A.; André, Ph.; Arzoumanian, D.; Peretto, N.; Palmeirim, P.; Könyves, V.; Schneider, N.; Benedettini, M.; Di Francesco, J.; Elia, D.; Hill, T.; Ladjelate, B.; Louvet, F.; Motte, F.; Pezzuto, S.; Schisano, E.; Shimajiri, Y.; Spinoglio, L.; Ward-Thompson, D.; White, G.
2015-12-01
A complete understanding of the origin of the prestellar core mass function (CMF) is crucial. Two major features of the prestellar CMF are 1) a broad peak below 1 M⊙, presumably corresponding to a mean gravitational fragmentation scale, and 2) a characteristic power-law slope, very similar to the Salpeter slope of the stellar initial mass function (IMF) at the high-mass end. While recent Herschel observations have shown that the peak of the prestellar CMF is close to the thermal Jeans mass in marginally supercritical filaments, the origin of the power-law tail of the CMF/IMF at the high-mass end is less clear. In 2001, Inutsuka proposed a theoretical scenario in which the origin of the power-law tail can be understood as resulting from the growth of an initial spectrum of density perturbations seeded along the long axis of star-forming filaments by interstellar turbulence. Here, we report the statistical properties of the line-mass fluctuations of filaments in the Pipe, Taurus, and IC 5146 molecular clouds observed with Herschel for a sample of subcritical or marginally supercritical filaments using a 1D power spectrum analysis. The observed filament power spectra were fitted by a power-law function (Ptrue(s) ∝ sα) after removing the effect of beam convolution at small scales. A Gaussian-like distribution of power-spectrum slopes was found, centered at α̅corr = -1.6 ± 0.3. The characteristic index of the observed power spectra is close to that of the 1D velocity power spectrum generated by subsonic Kolomogorov turbulence (-1.67). Given the errors, the measured power-spectrum slope is also marginally consistent with the power spectrum index of -2 expected for supersonic compressible turbulence. With such a power spectrum of initial line-mass fluctuations, Inutsuka's model would yield a mass function of collapsed objects along filaments approaching dN/dM ∝ M- 2.3 ± 0.1 at the high-mass end (very close to the Salpeter power law) after a few free-fall times
Skands, Peter Z.; /Fermilab
2005-07-01
Recent developments in QCD phenomenology have spurred on several improved approaches to Monte Carlo event generation, relative to the post-LEP state of the art. In this brief review, the emphasis is placed on approaches for (1) consistently merging fixed-order matrix element calculations with parton shower descriptions of QCD radiation, (2) improving the parton shower algorithms themselves, and (3) improving the description of the underlying event in hadron collisions.
Gary S. Groenewold; Christopher M. Leavitt; Ryan P. Dain; Jos Oomens; Jeff Steill; van Stipdonk, Michael J.
2009-09-01
Tandem mass spectrometry and wavelength selective infrared photodissociation was used to generate an infrared spectrum of gas-phase triethylphosphate cationized by attachment of K+. Prominent absorptions were observed in the region of 900 to 1300 cm-1 that are characteristic of phosphate P=O and P-O-R stretches. The relative positions and intensities of the IR absorptions were reproduced well by density functional theory (DFT) calculations performed using the B3LYP functional and the 6-31+g(d), 6-311+g(d,p) and 6-311++G(3df,2pd) basis sets. Because of good correspondence between experiment and theory for the cation, DFT was then used to generate a theoretical spectrum for neutral triethylphosphate, which in turn accurately reproduces the IR spectrum of the neat liquid when solvent effects are included in the calculations.
Groenewold, Gary S; Leavitt, Christopher M; Dain, Ryan P; Oomens, Jos; Steill, Jeffrey D; van Stipdonk, Michael J
2009-09-01
Tandem mass spectrometry and wavelength-selective infrared photodissociation were used to generate an infrared spectrum of gas-phase triethylphosphate cationized by attachment of K(+). Prominent absorptions were observed in the region of 900 to 1300 cm(-1) that are characteristic of phosphate P=O and P-O-R stretches. The relative positions and intensities of the IR absorptions were reproduced well by density functional theory (DFT) calculations performed using the B3LYP functional and the 6-31+G(d), 6-311+G(d,p) and 6-311++G(3df,2pd) basis sets. Because of good correspondence between experiment and theory for the cation, DFT was then used to generate a theoretical spectrum for neutral triethylphosphate, which in turn accurately reproduces the IR spectrum of the neat liquid when solvent effects are included in the calculations.
Zhang, Fang; Wang, Haoyang; Zhang, Li; Zhang, Jing; Fan, Ruojing; Yu, Chongtian; Wang, Wenwen; Guo, Yinlong
2014-10-01
A strategy for suspected-target screening of pesticide residues in complicated matrices was exploited using gas chromatography in combination with hybrid quadrupole time-of-flight mass spectrometry (GC-QTOF MS). The screening workflow followed three key steps of, initial detection, preliminary identification, and final confirmation. The initial detection of components in a matrix was done by a high resolution mass spectrum deconvolution; the preliminary identification of suspected pesticides was based on a special retention index/mass spectrum (RI/MS) library that contained both the first-stage mass spectra (MS(1) spectra) and retention indices; and the final confirmation was accomplished by accurate mass measurements of representative ions with their response ratios from the MS(1) spectra or representative product ions from the second-stage mass spectra (MS(2) spectra). To evaluate the applicability of the workflow in real samples, three matrices of apple, spinach, and scallion, each spiked with 165 test pesticides in a set of concentrations, were selected as the models. The results showed that the use of high-resolution TOF enabled effective extractions of spectra from noisy chromatograms, which was based on a narrow mass window (5 mDa) and suspected-target compounds identified by the similarity match of deconvoluted full mass spectra and filtering of linear RIs. On average, over 74% of pesticides at 50 ng/mL could be identified using deconvolution and the RI/MS library. Over 80% of pesticides at 5 ng/mL or lower concentrations could be confirmed in each matrix using at least two representative ions with their response ratios from the MS(1) spectra. In addition, the application of product ion spectra was capable of confirming suspected pesticides with specificity for some pesticides in complicated matrices. In conclusion, GC-QTOF MS combined with the RI/MS library seems to be one of the most efficient tools for the analysis of suspected-target pesticide residues
NASA Astrophysics Data System (ADS)
Martirosov, Romen
The energy spectrum of the primary cosmic radiation in the energy range 1 - 100 PeV and the extensive air shower (EAS) characteristics obtained on the basis of the expanded data bank of the GAMMA experiment (Mt. Aragats, Armenia) are presented. With increased statistics we confirm our previous results on the energy spectrum. The spectral index above the knee is about -3.1, but at energies beyond 20 PeV a flattening of the spectrum is observed. The existence of the 'bump' at about 70 PeV is confirmed with a significance of more than 4{\\sigma}. In the energy range of 10 - 100 PeV the shower age becomes energy independent and we observe a direct proportionality of the EAS size to the primary energy. This suggests an approximately constant depth of the EAS maximum in this energy range. This is evidence in favour of an increasing average mass of primary particles at energies above 20 PeV. The additional source scenario, which is a possible explanation of the 'bump' in the spectrum, also leads to the conclusion of increasing mass of the primary cosmic rays. A comparison with the data of other experiments is presented.
NASA Astrophysics Data System (ADS)
Graham, R. L.; Lone, M. A.; Andrews, H. R.; Geiger, J. S.; Gallant, J. L.; Knowles, J. W.; Lee, H. C.; Lee-Whiting, G. E.
1983-06-01
The Chalk River π ≫2 iron-free beta spectrometer is being recommissioned and upgraded for a precise meaurement of the shape of the tritium spectrum near the end point. With a multiple strip source and 60—element detector array an overall energy resolution of σ 19 eV FWHM is expected. Computer simulation of the expected experimental Kurie plots are presented for various and anti-neutrino mass assumptions.
Graham, R.L.; Lone, M.A.; Andrews, H.R.; Geiger, J.S.; Gallant, J.L.; Knowles, J.W.; Lee, H.C.; Lee-Whiting, G.E.
1983-01-01
The Chalk River ..pi.. ..sqrt..2 iron-free ..beta.. spectrometer is being recommissioned and upgraded for a precise measurement of the shape of the tritium spectrum near the end point. With a multiple strip source and 60-element detector array an overall energy resolution of less than or equal to 19 eV FWHM is expected. Computer simulations of the expected experimental Kurie plots are presented for various anti-neutrino mass assumptions.
High-resolution mass-analyzed threshold ion spectrum of Argon obtained on beamline 9.0.2.2
Hsu, C.W.; Lu, K.T.; Evans, M.
1997-04-01
The first mass analyzed threshold ion (MATI) spectrum using dc electric fields and a continuous wave light source has been obtained on End Station 2 of the Chemical Dynamics Beamline (9.0.2.2) at the Advanced Light Source. MATI provides researchers with fundamental spectroscopic information about atomic and molecular ions with the added advantage of mass analysis. The MATI technique involves the detection of ions formed by field ionization of long-lived high-n Rydberg states approaching an ionization threshold. The MATI apparatus consists of a differentially pumped supersonic molecular beam source, a photoionization region followed by a series of electrostatic lenses, a quadrupole mass spectrometer, and a Daly-type detector. The MATI technique can be used to probe the Rydberg states approaching an ionization continuum and yield information about the lifetimes of these states. In addition, MATI could be used to obtain the spectrum of a single species present in a sample mixture due to the mass selective nature of the experiment. MATI could also be used to form mass selected and state specific ions for use in ion molecule reaction experiments.
FOREWORD: Extreme QCD 2012 (xQCD)
NASA Astrophysics Data System (ADS)
Alexandru, Andrei; Bazavov, Alexei; Liu, Keh-Fei
2013-04-01
The Extreme QCD 2012 conference, held at the George Washington University in August 2012, celebrated the 10th event in the series. It has been held annually since 2003 at different locations: San Carlos (2011), Bad Honnef (2010), Seoul (2009), Raleigh (2008), Rome (2007), Brookhaven (2006), Swansea (2005), Argonne (2004), and Nara (2003). As usual, it was a very productive and inspiring meeting that brought together experts in the field of finite-temperature QCD, both theoretical and experimental. On the experimental side, we heard about recent results from major experiments, such as PHENIX and STAR at Brookhaven National Laboratory, ALICE and CMS at CERN, and also about the constraints on the QCD phase diagram coming from astronomical observations of one of the largest laboratories one can imagine, neutron stars. The theoretical contributions covered a wide range of topics, including QCD thermodynamics at zero and finite chemical potential, new ideas to overcome the sign problem in the latter case, fluctuations of conserved charges and how they allow one to connect calculations in lattice QCD with experimentally measured quantities, finite-temperature behavior of theories with many flavors of fermions, properties and the fate of heavy quarkonium states in the quark-gluon plasma, and many others. The participants took the time to write up and revise their contributions and submit them for publication in these proceedings. Thanks to their efforts, we have now a good record of the ideas presented and discussed during the workshop. We hope that this will serve both as a reminder and as a reference for the participants and for other researchers interested in the physics of nuclear matter at high temperatures and density. To preserve the atmosphere of the event the contributions are ordered in the same way as the talks at the conference. We are honored to have helped organize the 10th meeting in this series, a milestone that reflects the lasting interest in this
Saito, Shun; Takada, Masahiro; Taruya, Atsushi
2011-02-15
We compare the model power spectrum, computed based on perturbation theory, with the power spectrum of luminous red galaxies (LRG) measured from the Sloan Digital Sky Survey Data Release 7 catalog, assuming a flat, cold dark matter-dominated cosmology. The model includes the effects of massive neutrinos, nonlinear matter clustering and nonlinear, scale-dependent galaxy bias in a self-consistent manner. We first test the accuracy of the perturbation theory model by comparing the model predictions with the halo power spectrum in real- and redshift-space, measured from 70 simulation realizations for a cold dark matter model without massive neutrinos. We show that the perturbation theory model with bias parameters being properly adjusted can fairly well reproduce the simulation results. As a result, the best-fit parameters obtained from the hypothetical parameter fitting recover, within statistical uncertainties, the input cosmological parameters in simulations, including an upper bound on neutrino mass, if the power spectrum information up to k{approx_equal}0.15 hMpc{sup -1} is used. However, for the redshift-space power spectrum, the best-fit cosmological parameters show a sizable bias from the input values if using the information up to k{approx_equal}0.2 hMpc{sup -1}, probably due to nonlinear redshift distortion effect. Given these tests, we decided, as a conservative choice, to use the LRG power spectrum up to k=0.1 hMpc{sup -1} in order to minimize possible unknown nonlinearity effects. In combination with the recent results from Wilkinson Microwave Background Anisotropy Probe (WMAP), we derive a robust upper bound on the sum of neutrino masses, given as (95% C.L.), marginalized over other parameters including nonlinear bias parameters and dark energy equation of state parameter. The upper bound is only slightly improved to if including the LRG spectrum up to k=0.2 hMpc{sup -1}, due to severe parameter degeneracies, although the constraint may be biased as
Baryonic States in QCD From Gauge/String Duality at Large N{sub C}
De Teramond, G.
2004-09-08
We have computed the baryon spectrum in the framework of {Nu} = 4 super-conformal Yang-Mills theory using AdS/CFT duality. Baryons are included in the theory by adding an open string sector, corresponding to quarks in the fundamental representation of {Nu} = 4. The hadron mass scale is introduced by imposing boundary conditions at the AdS{sub 5} coordinate r{sub 0} = {Lambda}{sub QCD} R{sup 2}, which is the only parameter. The quantum numbers of each baryon, are identified by matching the fall-off of the string wavefunction {Psi}(x,r) at the asymptotic 3+1 boundary to the operator dimension of the lowest three-quark Fock state, subject to appropriate boundary conditions. Higher Fock states are matched quanta to quanta with quantum fluctuations of the bulk geometry about the AdS background. We limit our discussion to massless quarks. The resulting four-dimensional spectrum displays a remarkable resemblance to the physical baryon spectrum of QCD, including the suppression of spin-orbit interactions.
Completing the framework of AdS/QCD: New operators and interactions
NASA Astrophysics Data System (ADS)
Domokos, Sophia Kovesi
This thesis explores the inclusion of new interaction terms and tensor operators in AdS/QCD models. We first study the Chern-Simons term of the bulk gauge fields, generated in top-down frameworks by interactions of Ramond-Ramond excitations with flavor brane fields. This supergravity interaction term translates to natural-parity-violating couplings among QCD mesons. We catalog these couplings, and use them to make predictions for the photoproduction of axial-vector and vector mesons. We also find that the Chern-Simons term generates an anomalous dispersion relation that mixes transverse vector and axial-vector meson mass eigenstates. We predict the formation of a Lorentz-symmetry-violating condensate of mesons at baryon densities comparable to those found in neutron stars. We then include an antisymmetric two-tensor field in the dual model, which may arise in top-down models from dimensional reduction of ten-dimensional string theory. This field is dual to the operator q¯sigma munuq; its real part gives rise to a tower of JPC = 1+-- states, whose lowest modes we identify with h1/b 1 mesons. The imaginary part gives rise to a second tower of (heavier) rho-like (JPC = 1--) states. We fix the undetermined coupling of the two-tensor field by comparison to high- q2 QCD correlators, and find that the spectrum and decay constants of the resulting modes agrees favorably with experimental data and lattice simulations.
The Top Quark, QCD, And New Physics.
DOE R&D Accomplishments Database
Dawson, S.
2002-06-01
The role of the top quark in completing the Standard Model quark sector is reviewed, along with a discussion of production, decay, and theoretical restrictions on the top quark properties. Particular attention is paid to the top quark as a laboratory for perturbative QCD. As examples of the relevance of QCD corrections in the top quark sector, the calculation of e{sup+}e{sup -}+ t{bar t} at next-to-leading-order QCD using the phase space slicing algorithm and the implications of a precision measurement of the top quark mass are discussed in detail. The associated production of a t{bar t} pair and a Higgs boson in either e{sup+}e{sup -} or hadronic collisions is presented at next-to-leading-order QCD and its importance for a measurement of the top quark Yulrawa coupling emphasized. Implications of the heavy top quark mass for model builders are briefly examined, with the minimal supersymmetric Standard Model and topcolor discussed as specific examples.
Brodsky, Stanley J.; de Teramond, Guy F.; /SLAC /Southern Denmark U., CP3-Origins /Costa Rica U.
2011-01-10
AdS/QCD, the correspondence between theories in a dilaton-modified five-dimensional anti-de Sitter space and confining field theories in physical space-time, provides a remarkable semiclassical model for hadron physics. Light-front holography allows hadronic amplitudes in the AdS fifth dimension to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time. The result is a single-variable light-front Schroedinger equation which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The coordinate z in AdS space is uniquely identified with a Lorentz-invariant coordinate {zeta} which measures the separation of the constituents within a hadron at equal light-front time and determines the off-shell dynamics of the bound state wavefunctions as a function of the invariant mass of the constituents. The hadron eigenstates generally have components with different orbital angular momentum; e.g., the proton eigenstate in AdS/QCD with massless quarks has L = 0 and L = 1 light-front Fock components with equal probability. Higher Fock states with extra quark-anti quark pairs also arise. The soft-wall model also predicts the form of the nonperturbative effective coupling and its {beta}-function. The AdS/QCD model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method to systematically include QCD interaction terms. Some novel features of QCD are discussed, including the consequences of confinement for quark and gluon condensates. A method for computing the hadronization of quark and gluon jets at the amplitude level is outlined.
η and η' mesons from lattice QCD.
Christ, N H; Dawson, C; Izubuchi, T; Jung, C; Liu, Q; Mawhinney, R D; Sachrajda, C T; Soni, A; Zhou, R
2010-12-10
The large mass of the ninth pseudoscalar meson, the η', is believed to arise from the combined effects of the axial anomaly and the gauge field topology present in QCD. We report a realistic, 2+1-flavor, lattice QCD calculation of the η and η' masses and mixing which confirms this picture. The physical eigenstates show small octet-singlet mixing with a mixing angle of θ=-14.1(2.8)°. Extrapolation to the physical light quark mass gives, with statistical errors only, mη=573(6) MeV and mη'=947(142) MeV, consistent with the experimental values of 548 and 958 MeV.
Recent progress on QCD inputs for axion phenomenology
NASA Astrophysics Data System (ADS)
Bonati, Claudio; D'Elia, Massimo; Mariti, Marco; Martinelli, Guido; Mesiti, Michele; Negro, Francesco; Sanfilippo, Francesco; Villadoro, Giovanni
2017-03-01
The properties of the QCD axion are strictly related to the dependence of strong interactions on the topological parameter theta. We present a determination of the topological properties of QCD for temperatures up to around 600 MeV, obtained by lattice QCD simulations with 2+1 flavors and physical quark masses. Numerical results for the topological susceptibility, when compared to instanton gas computations, differ both in size and in the temperature dependence. We discuss the implications of such findings for axion phenomenology, also in comparison to similar studies in the literature, and the prospects for future investigations.
Search for Resonances in the Dijet Mass Spectrum from 7 TeV pp Collisions at CMS
Chatrchyan, Serguei; et al.
2011-10-01
A search for narrow resonances with a mass of at least 1 TeV in the dijet mass spectrum is performed using pp collisions at sqrt(s)=7 TeV corresponding to an integrated luminosity of 1 inverse femtobarn, collected by the CMS experiment at the LHC. No resonances are observed. Upper limits at the 95% confidence level are presented on the product of the resonance cross section, branching fraction into dijets, and acceptance, separately for decays into quark-quark, quark-gluon, and gluon-gluon pairs. The data exclude new particles predicted in the following models at the 95% confidence level: string resonances with mass less than 4.00 TeV, E6 diquarks with mass less than 3.52 TeV, excited quarks with mass less than 2.49 TeV, axigluons and colorons with mass less than 2.47 TeV, and W' bosons with mass less than 1.51 TeV.
Sadygov, Rovshan G; Zhao, Yingxin; Haidacher, Sigmund J; Starkey, Jonathan M; Tilton, Ronald G; Denner, Larry
2010-08-06
We describe a method for ratio estimations in (18)O-water labeling experiments acquired from low resolution isotopically resolved data. The method is implemented in a software package specifically designed for use in experiments making use of zoom-scan mode data acquisition. Zoom-scan mode data allow commonly used ion trap mass spectrometers to attain isotopic resolution, which makes them amenable to use in labeling schemes such as (18)O-water labeling, but algorithms and software developed for high resolution instruments may not be appropriate for the lower resolution data acquired in zoom-scan mode. The use of power spectrum analysis is proposed as a general approach that may be uniquely suited to these data types. The software implementation uses a power spectrum to remove high-frequency noise and band-filter contributions from coeluting species of differing charge states. From the elemental composition of a peptide sequence, we generate theoretical isotope envelopes of heavy-light peptide pairs in five different ratios; these theoretical envelopes are correlated with the filtered experimental zoom scans. To automate peptide quantification in high-throughput experiments, we have implemented our approach in a computer program, MassXplorer. We demonstrate the application of MassXplorer to two model mixtures of known proteins and to a complex mixture of mouse kidney cortical extract. Comparison with another algorithm for ratio estimations demonstrates the increased precision and automation of MassXplorer.
NASA Astrophysics Data System (ADS)
These are the proceedings of the QCD Evolution 2015 Workshop which was held 26-30 May, 2015 at Jefferson Lab, Newport News, Virginia, USA. The workshop is a continuation of a series of workshops held during four consecutive years 2011, 2012, 2013 at Jefferson Lab, and in 2014 in Santa Fe, NM. With the rapid developments in our understanding of the evolution of parton distributions including low-x, TMDs, GPDs, higher-twist correlation functions, and the associated progress in perturbative QCD, lattice QCD and effective field theory techniques we look forward with great enthusiasm to the 2015 meeting. A special attention was also paid to participation of experimentalists as the topics discussed are of immediate importance for the JLab 12 experimental program and a future Electron Ion Collider.
Gravitational waves from the cosmological QCD transition
NASA Astrophysics Data System (ADS)
Mourão Roque, V. R. C.; Roque, G. Lugones o.; Lugones, G.
2014-09-01
We determine the minimum fluctuations in the cosmological QCD phase transition that could be detectable by the eLISA/NGO gravitational wave observatory. To this end, we performed several hydrodynamical simulations using a state-of-the-art equation of state derived from lattice QCD simulations. Based on the fact that the viscosity per entropy density of the quark gluon plasma obtained from heavy-ion collision experiments at the RHIC and the LHC is extremely small, we considered a non-viscous fluid in our simulations. Several previous works about this transition considered a first order transition that generates turbulence which follows a Kolmogorov power law. We show that for the QCD crossover transition the turbulent spectrum must be very different because there is no viscosity and no source of continuous energy injection. As a consequence, a large amount of kinetic energy accumulates at the smallest scales. From the hydrodynamic simulations, we have obtained the spectrum of the gravitational radiation emitted by the motion of the fluid, finding that, if typical velocity and temperature fluctuations have an amplitude Δ v /c ≳ 10-2 and/or Δ T/T_c ≳ 10-3, they would be detected by eLISA/NGO at frequencies larger than ˜ 10-4 Hz.
Brodsky, Stanley J.; /SLAC
2007-07-06
I discuss a number of novel topics in QCD, including the use of the AdS/CFT correspondence between Anti-de Sitter space and conformal gauge theories to obtain an analytically tractable approximation to QCD in the regime where the QCD coupling is large and constant. In particular, there is an exact correspondence between the fifth-dimension coordinate z of AdS space and a specific impact variable {zeta} which measures the separation of the quark constituents within the hadron in ordinary space-time. This connection allows one to compute the analytic form of the frame-independent light-front wavefunctions of mesons and baryons, the fundamental entities which encode hadron properties and allow the computation of exclusive scattering amplitudes. I also discuss a number of novel phenomenological features of QCD. Initial- and final-state interactions from gluon-exchange, normally neglected in the parton model, have a profound effect in QCD hard-scattering reactions, leading to leading-twist single-spin asymmetries, diffractive deep inelastic scattering, diffractive hard hadronic reactions, the breakdown of the Lam Tung relation in Drell-Yan reactions, and nuclear shadowing and non-universal antishadowing--leading-twist physics not incorporated in the light-front wavefunctions of the target computed in isolation. I also discuss tests of hidden color in nuclear wavefunctions, the use of diffraction to materialize the Fock states of a hadronic projectile and test QCD color transparency, and anomalous heavy quark effects. The presence of direct higher-twist processes where a proton is produced in the hard subprocess can explain the large proton-to-pion ratio seen in high centrality heavy ion collisions.
Stone, Judy
2016-01-01
Urine is processed with a simple C18 solid-phase extraction (SPE) and reconstituted in mobile phase. The liquid chromatography system (LC) injects 10 μL of extracted sample onto a reverse-phase LC column for gradient analysis with ammonium formate/acetonitrile mobile phases. Drugs in the column eluent become charged in the ion source using positive electrospray ionization (ESI). Pseudomolecular ions (M + H) are analyzed by a hybrid triple-quadrupole linear ion trap (QqQ and QqLIT) mass spectrometer using an SRM-IDA-EPI acquisition. An initial 125 compound selected ion monitoring (SRM) survey scan (triple quadrupole or QqQ mode) is processed by the information-dependent acquisition (IDA) algorithm. The IDA algorithm selects SRM signals from the survey scan with a peak height above the threshold (the three most abundant SRM signals above 1000 cps) to define precursor ions for subsequent dependent scanning. In the dependent QqLIT scan(s), selected precursor ion(s) are passed through the first quadrupole (Q1), fragmented with three different collision energies in the collision cell (Q2 or q), and product ions are collected in the third quadrupole (Q3), now operating as a linear ion trap (LIT). The ions are scanned out of the LIT in a mass dependent manner to produce a full-scan product ion spectrum (m/z 50-700) defined as an Enhanced (meaning acquired in LIT mode) Product Ion (EPI) spectrum (Mueller et al., Rapid Commun Mass Spectrom 19:1332-1338, 2005). Each EPI spectrum is linked to its precursor ion and to the associated SRM peak from the survey scan. EPI spectra are automatically searched against a 125 drug library of reference EPI spectra for identification. When the duty cycle is complete (one survey scan of 125 SRMs plus 0-3 dependent IDA-EPI scans) the mass spectrometer begins another survey scan of the 125 SRMs.
Kong, Lingyao; Li, Zilong; Bambi, Cosimo
2014-12-20
In a previous paper, one of us (C. Bambi) described a code to compute the thermal spectrum of geometrically thin and optically thick accretion disks around generic stationary and axisymmetric black holes, which are not necessarily of the Kerr type. As the structure of the accretion disk and the propagation of electromagnetic radiation from the disk to the distant observer depend on the background metric, the analysis of the thermal spectrum of thin disks can be used to test the actual nature of black hole candidates. In this paper, we consider the 10 stellar-mass black hole candidates for which the spin parameter has already been estimated from the analysis of the disk's thermal spectrum under the assumption of the Kerr background, and we translate the measurements reported in the literature into constraints on the spin parameter-deformation parameter plane. The analysis of the disk's thermal spectrum can be used to estimate only one parameter of the geometry close to the compact object; therefore, it is not possible to get independent measurements of both the spin and the deformation parameters. The constraints obtained here will be used in combination with other measurements in future work with the final goal of breaking the degeneracy between the spin and possible deviations from the Kerr solution and thus test the Kerr black hole hypothesis.
Full QED+QCD low-energy constants through reweighting.
Ishikawa, Tomomi; Blum, Thomas; Hayakawa, Masashi; Izubuchi, Taku; Jung, Chulwoo; Zhou, Ran
2012-08-17
The effect of sea quark electromagnetic charge on meson masses is investigated, and first results for full QED+QCD low-energy constants are presented. The electromagnetic charge for sea quarks is incorporated in quenched QED+full QCD lattice simulations by a reweighting method. The reweighting factor, which connects quenched and unquenched QED, is estimated using a stochastic method on 2+1 flavor dynamical domain-wall quark ensembles.
2+1 flavor lattice QCD toward the physical point
Aoki, S.; Ishikawa, K.-I.; Okawa, M.; Ishizuka, N.; Kuramashi, Y.; Taniguchi, Y.; Ukawa, A.; Yoshie, T.; Izubuchi, T.; Kadoh, D.; Namekawa, Y.; Ukita, N.; Kanaya, K.
2009-02-01
We present the first results of the PACS-CS project which aims to simulate 2+1 flavor lattice QCD on the physical point with the nonperturbatively O(a)-improved Wilson quark action and the Iwasaki gauge action. Numerical simulations are carried out at {beta}=1.9, corresponding to the lattice spacing of a=0.0907(13) fm, on a 32{sup 3}x64 lattice with the use of the domain-decomposed HMC algorithm to reduce the up-down quark mass. Further algorithmic improvements make possible the simulation whose up-down quark mass is as light as the physical value. The resulting pseudoscalar meson masses range from 702 MeV down to 156 MeV, which clearly exhibit the presence of chiral logarithms. An analysis of the pseudoscalar meson sector with SU(3) chiral perturbation theory reveals that the next-to-leading order corrections are large at the physical strange quark mass. In order to estimate the physical up-down quark mass, we employ the SU(2) chiral analysis expanding the strange quark contributions analytically around the physical strange quark mass. The SU(2) low energy constants l{sub 3} and l{sub 4} are comparable with the recent estimates by other lattice QCD calculations. We determine the physical point together with the lattice spacing employing m{sub {pi}}, m{sub K} and m{sub {omega}} as input. The hadron spectrum extrapolated to the physical point shows an agreement with the experimental values at a few % level of statistical errors, albeit there remain possible cutoff effects. We also find that our results of f{sub {pi}}, f{sub K} and their ratio, where renormalization is carries out perturbatively at one loop, are compatible with the experimental values. For the physical quark masses we obtain m{sub ud}{sup MS} and m{sub s}{sup MS} extracted from the axial-vector Ward-Takahashi identity with the perturbative renormalization factors. We also briefly discuss the results for the static quark potential.
Nathan Isgur
1997-03-01
The author presents an idiosyncratic view of baryons which calls for a marriage between quark-based and hadronic models of QCD. He advocates a treatment based on valence quark plus glue dominance of hadron structure, with the sea of q pairs (in the form of virtual hadron pairs) as important corrections.
Lincoln, Don
2016-07-12
The strongest force in the universe is the strong nuclear force and it governs the behavior of quarks and gluons inside protons and neutrons. The name of the theory that governs this force is quantum chromodynamics, or QCD. In this video, Fermilabâs Dr. Don Lincoln explains the intricacies of this dominant component of the Standard Model.
Radyushkin, Anatoly V.; Efremov, Anatoly Vasilievich; Ginzburg, Ilya F.
2013-04-01
We discuss some problems concerning the application of perturbative QCD to high energy soft processes. We show that summing the contributions of the lowest twist operators for non-singlet $t$-channel leads to a Regge-like amplitude. Singlet case is also discussed.
Lincoln, Don
2016-06-17
The strongest force in the universe is the strong nuclear force and it governs the behavior of quarks and gluons inside protons and neutrons. The name of the theory that governs this force is quantum chromodynamics, or QCD. In this video, Fermilab’s Dr. Don Lincoln explains the intricacies of this dominant component of the Standard Model.
Brodsky, Stanley J.; Deshpande, Abhay L.; Gao, Haiyan; McKeown, Robert D.; Meyer, Curtis A.; Meziani, Zein-Eddine; Milner, Richard G.; Qiu, Jianwei; Richards, David G.; Roberts, Craig D.
2015-02-26
This White Paper presents the recommendations and scientific conclusions from the Town Meeting on QCD and Hadronic Physics that took place in the period 13-15 September 2014 at Temple University as part of the NSAC 2014 Long Range Planning process. The meeting was held in coordination with the Town Meeting on Phases of QCD and included a full day of joint plenary sessions of the two meetings. The goals of the meeting were to report and highlight progress in hadron physics in the seven years since the 2007 Long Range Plan (LRP07), and present a vision for the future by identifying the key questions and plausible paths to solutions which should define the next decade. The introductory summary details the recommendations and their supporting rationales, as determined at the Town Meeting on QCD and Hadron Physics, and the endorsements that were voted upon. The larger document is organized as follows. Section 2 highlights major progress since the 2007 LRP. It is followed, in Section 3, by a brief overview of the physics program planned for the immediate future. Finally, Section 4 provides an overview of the physics motivations and goals associated with the next QCD frontier: the Electron-Ion-Collider.
Plunkett, R.; The CDF Collaboration
1991-10-01
Results are presented for hadronic jet and direct photon production at {radical}{bar s} = 1800 GeV. The data are compared with next-to-leading QCD calculations. A new limit on the scale of possible composite structure of the quarks is also reported. 12 refs., 4 figs.
Andreas S. Kronfeld
2002-09-30
After reviewing some of the mathematical foundations and numerical difficulties facing lattice QCD, I review the status of several calculations relevant to experimental high-energy physics. The topics considered are moments of structure functions, which may prove relevant to search for new phenomena at the LHC, and several aspects of flavor physics, which are relevant to understanding CP and flavor violation.
Nucleon Structure from Dynamical Lattice QCD
Huey-Wen Lin
2007-06-01
We present lattice QCD numerical calculations of hadronic structure functions and form factors from full-QCD lattices, with a chirally symmetric fermion action, domain-wall fermions, for the sea and valence quarks. The lattice spacing is about 0.12 fm with physical volume approximately (2 fm)3 for RBC 2-flavor ensembles and (3 fm)3 for RBC/UKQCD 2+1-flavor dynamical ones. The lightest sea quark mass is about 1/2 the strange quark mass for the former ensembles and 1/4 for the latter ones. Our calculations include: isovector vector- and axial-charge form factors and the first few moments of the polarized and unpolarized structure functions of the nucleon. Nonperturbative renormalization in RI/MOM scheme is applied.
Nucleon Structure from Dynamical Lattice QCD
Lin, H.-W.
2007-06-13
We present lattice QCD numerical calculations of hadronic structure functions and form factors from full-QCD lattices, with a chirally symmetric fermion action, domain-wall fermions, for the sea and valence quarks. The lattice spacing is about 0.12 fm with physical volume approximately (2 fm)3 for RBC 2-flavor ensembles and (3 fm)3 for RBC/UKQCD 2+1-flavor dynamical ones. The lightest sea quark mass is about 1/2 the strange quark mass for the former ensembles and 1/4 for the latter ones. Our calculations include: isovector vector- and axial-charge form factors and the first few moments of the polarized and unpolarized structure functions of the nucleon. Nonperturbative renormalization in RI/MOM scheme is applied.
NASA Astrophysics Data System (ADS)
Nawa, Kanabu; Suganuma, Hideo; Kojo, Toru
2007-04-01
We study baryons in holographic QCD with D4/D8/D8¯ multi-D-brane system. In holographic QCD, the baryon appears as a topologically nontrivial chiral soliton in a four-dimensional effective theory of mesons. We call this topological soliton brane-induced Skyrmion. Some review of D4/D8/D8¯ holographic QCD is presented from the viewpoints of recent hadron physics and QCD phenomenologies. A four-dimensional effective theory with pions and ρ mesons is uniquely derived from the non-Abelian Dirac-Born-Infeld (DBI) action of D8 brane with D4 supergravity background at the leading order of large Nc, without small amplitude expansion of meson fields to discuss chiral solitons. For the hedgehog configuration of pion and ρ-meson fields, we derive the energy functional and the Euler-Lagrange equation of brane-induced Skyrmion from the meson effective action induced by holographic QCD. Performing the numerical calculation, we obtain the soliton solution and figure out the pion profile F(r) and the ρ-meson profile G˜(r) of the brane-induced Skyrmion with its total energy, energy density distribution, and root-mean-square radius. These results are compared with the experimental quantities of baryons and also with the profiles of standard Skyrmion without ρ mesons. We analyze interaction terms of pions and ρ mesons in brane-induced Skyrmion, and find a significant ρ-meson component appearing in the core region of a baryon.
Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins
2011-08-12
I review a number of topics where conventional wisdom in hadron physics has been challenged. For example, hadrons can be produced at large transverse momentum directly within a hard higher-twist QCD subprocess, rather than from jet fragmentation. Such 'direct' processes can explain the deviations from perturbative QCD predictions in measurements of inclusive hadron cross sections at fixed x{sub T} = 2p{sub T}/{radical}s, as well as the 'baryon anomaly', the anomalously large proton-to-pion ratio seen in high centrality heavy ion collisions. Initial-state and final-state interactions of the struck quark, the soft-gluon rescattering associated with its Wilson line, lead to Bjorken-scaling single-spin asymmetries, diffractive deep inelastic scattering, the breakdown of the Lam-Tung relation in Drell-Yan reactions, as well as nuclear shadowing and antishadowing. The Gribov-Glauber theory predicts that antishadowing of nuclear structure functions is not universal, but instead depends on the flavor quantum numbers of each quark and antiquark, thus explaining the anomalous nuclear dependence measured in deep-inelastic neutrino scattering. Since shadowing and antishadowing arise from the physics of leading-twist diffractive deep inelastic scattering, one cannot attribute such phenomena to the structure of the nucleus itself. It is thus important to distinguish 'static' structure functions, the probability distributions computed from the square of the target light-front wavefunctions, versus 'dynamical' structure functions which include the effects of the final-state rescattering of the struck quark. The importance of the J = 0 photon-quark QCD contact interaction in deeply virtual Compton scattering is also emphasized. The scheme-independent BLM method for setting the renormalization scale is discussed. Eliminating the renormalization scale ambiguity greatly improves the precision of QCD predictions and increases the sensitivity of searches for new physics at the LHC
NASA Astrophysics Data System (ADS)
Brodsky, Stanley J.
2011-04-01
I review a number of topics where conventional wisdom in hadron physics has been challenged. For example, hadrons can be produced at large transverse momentum directly within a hard QCD subprocess, rather than from jet fragmentation. Such "direct" higher-twist processes can explain the deviations from perturbative QCD predictions in measurements of inclusive hadron cross sections at fixed {xT} = 2{pT}/√ s , as well as the "baryon anomaly, the anomalously large proton-to-pion ratio seen in high centrality heavy ion collisions. Initial-state and final-state interactions of the struck quark, soft-gluon rescattering associated with its Wilson line lead to Bjorken-scaling single-spin asymmetries, diffractive deep inelastic scattering, the breakdown of the Lam-Tung relation in Drell-Yan reactions, as well as nuclear shadowing and antishadowing. The Gribov-Glauber theory predicts that antishadowing of nuclear structure functions is not universal, but instead depends on the flavor quantum numbers of each quark and antiquark, thus explaining the anomalous nuclear dependence measured in deep-inelastic neutrino scattering. Since shadowing and antishadowing arise from the physics of leading-twist diffractive deep inelastic scattering, one cannot attribute such phenomena to the structure of the nucleus itself. It is thus important to distinguish "static" structure functions, the probability distributions computed from the square of the target light-front wavefunctions, versus "dynamical" structure functions which include the effects of the final-state rescattering of the struck quark. The importance of the J = 0 photon-quark QCD contact interaction in deeply virtual Compton scattering is also emphasized. The scheme-independent BLM method for setting the renormalization scale is discussed. The elimination of the renormalization scale ambiguity would greatly improve the precision of QCD predictions and increase the sensitivity of searches for new physics at the LHC. Other novel
Nawa, Kanabu; Suganuma, Hideo; Kojo, Toru
2007-04-15
We study baryons in holographic QCD with D4/D8/D8 multi-D-brane system. In holographic QCD, the baryon appears as a topologically nontrivial chiral soliton in a four-dimensional effective theory of mesons. We call this topological soliton brane-induced Skyrmion. Some review of D4/D8/D8 holographic QCD is presented from the viewpoints of recent hadron physics and QCD phenomenologies. A four-dimensional effective theory with pions and {rho} mesons is uniquely derived from the non-Abelian Dirac-Born-Infeld (DBI) action of D8 brane with D4 supergravity background at the leading order of large N{sub c}, without small amplitude expansion of meson fields to discuss chiral solitons. For the hedgehog configuration of pion and {rho}-meson fields, we derive the energy functional and the Euler-Lagrange equation of brane-induced Skyrmion from the meson effective action induced by holographic QCD. Performing the numerical calculation, we obtain the soliton solution and figure out the pion profile F(r) and the {rho}-meson profile G-tilde(r) of the brane-induced Skyrmion with its total energy, energy density distribution, and root-mean-square radius. These results are compared with the experimental quantities of baryons and also with the profiles of standard Skyrmion without {rho} mesons. We analyze interaction terms of pions and {rho} mesons in brane-induced Skyrmion, and find a significant {rho}-meson component appearing in the core region of a baryon.
Continuous Advances in QCD 1996 - Proceedings of the ConfernceE
NASA Astrophysics Data System (ADS)
Polikarpov, M. I.
1996-11-01
Table of Contents for the full book PDF is as follows: * Foreword * SECTION 1. HEAVY QUARKS * Higher Moments of Heavy Quark Vacuum Polarization * Signatures of Color-Octet Quarkonium Production * Treating the Lifetimes of Charm and Beauty Hadrons with QCD Plus a Bit More! * Hadronic Spectral Moments in Inclusive B and D Decays * Measuring αs(Q2) in τ Decays * On Infrared Cancellations in Inclusive Heavy Particles Decays * Calculation of the B → π Transition Matrix Element in QCD * SECTION 2. HIGH ENERGY SCATTERING AND RENORMALONS * Leading 1/Q Power Corrections in QCD: Universality and KLN Cancellations * Effective Action for High-Energy Scattering in QCD * The Generalized Crewther Relation: The Peculiar Aspects of Analytical Perturbative QCD Calculations * Global QCD Analysis, the Gluon Distribution, αs, and New DIS & Inclusive Jet Data * Resummation of Threshold Corrections in QCD to Power Accuracy: The Drell-Yan Cross Section as a Case Study * SECTION 3. FINITE TEMPERATURE * Lifetime of Quasiparticle Excitations in Hot Gauge Theories * News About Instantons in QCD * The Intrinsic Glue Distribution at Very Small x and High Densities * Interfaces in Hot Gauge Theory * Cool Pions Move at Less Than the Speed of Light * Squeezed Gluons and Gauge Invariant Variational Wave Functional * SECTION 4. LATTICE * Evidence for the Observation of a Glueball * Testing Improved Actions * Perfect Lattice Actions for Quarks and Gluons * Dual Lattice Blockspin Transformation and Monopole Condensation in QCD * Properties of QCD Vacuum from Lattice * Dispersive Theory of Charmonium on the Lattice * SECTION 5. DYNAMICS OF GAUGE FIELDS * Higher Loops and Consistency Conditions in SUSY Gauge Theories * One-Loop QCD Amplitudes from Cutkosky Rules * On the Spectrum of the QCD Dirac Operator * Deep Inelastic Scattering and Light-Cone Wave Functions * Constituent Quark Model Versus Nonperturbative QCD * Phase Transitions in Non-Abelian Coulomb Gases at Large N * Non
Electroweak symmetry breaking via QCD.
Kubo, Jisuke; Lim, Kher Sham; Lindner, Manfred
2014-08-29
We propose a new mechanism to generate the electroweak scale within the framework of QCD, which is extended to include conformally invariant scalar degrees of freedom belonging to a larger irreducible representation of SU(3)c. The electroweak symmetry breaking is triggered dynamically via the Higgs portal by the condensation of the colored scalar field around 1 TeV. The mass of the colored boson is restricted to be 350 GeV≲mS≲3 TeV, with the upper bound obtained from perturbative renormalization group evolution. This implies that the colored boson can be produced at the LHC. If the colored boson is electrically charged, the branching fraction of the Higgs boson decaying into two photons can slightly increase, and moreover, it can be produced at future linear colliders. Our idea of nonperturbative electroweak scale generation can serve as a new starting point for more realistic model building in solving the hierarchy problem.
NASA Astrophysics Data System (ADS)
Lebed, Richard F.
1999-09-01
These lectures are designed to introduce the methods and results of large N c QCD in a presentation intended for nuclear and particle physicists alike. Beginning with definitions and motivations of the approach, we demonstrate that all quark and gluon Feynman diagrams are organized into classes based on powers of 1/N c. We then show that this result can be translated into definite statements about mesons and baryons containing arbitrary numbers of constituents. In the mesons, numerous well-known phenomenological properties follow as immediate consequences of simply counting powers of N c, while for the baryons, quantitative large N c analyses of masses and other properties are seen to agree with experiment, even when large” N c is set equal to its observed value of 3. Large N c reasoning is also used to explain some simple features of nuclear interactions.
Hadron spectrum, quark masses, and decay constants from light overlap fermions on large lattices
Galletly, D.; Horsley, R.; Guertler, M.; Perlt, H.; Schiller, A.; Rakow, P. E. L.; Schierholz, G.; Streuer, T.
2007-04-01
We present results from a simulation of quenched overlap fermions with Luescher-Weisz gauge field action on lattices up to 24{sup 3}48 and for pion masses down to {approx_equal}250 MeV. Among the quantities we study are the pion, rho, and nucleon masses; the light and strange quark masses; and the pion decay constant. The renormalization of the scalar and axial vector currents is done nonperturbatively in the RI-MOM scheme. The simulations are performed at two different lattice spacings, a{approx_equal}0.1 fm and {approx_equal}0.15 fm, and on two different physical volumes, to test the scaling properties of our action and to study finite volume effects. We compare our results with the predictions of chiral perturbation theory and compute several of its low-energy constants. The pion mass is computed in sectors of fixed topology as well.
Study of the Dijet Mass Spectrum in pp→W+jets Events at s=7TeV
NASA Astrophysics Data System (ADS)
Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Aguilo, E.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hammer, J.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Pernicka, M.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Staykova, Z.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Gonzalez Suarez, R.; Kalogeropoulos, A.; Maes, M.; Olbrechts, A.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hreus, T.; Léonard, A.; Marage, P. E.; Reis, T.; Thomas, L.; Vander Marcken, G.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Cimmino, A.; Costantini, S.; Garcia, G.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Verwilligen, P.; Walsh, S.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Bruno, G.; Castello, R.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Schul, N.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Alves, G. A.; Correa Martins Junior, M.; De Jesus Damiao, D.; Martins, T.; Pol, M. E.; Souza, M. H. G.; Aldá Júnior, W. L.; Carvalho, W.; Custódio, A.; Da Costa, E. M.; De Oliveira Martins, C.; Fonseca De Souza, S.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Oguri, V.; Prado Da Silva, W. L.; Santoro, A.; Soares Jorge, L.; Sznajder, A.; Anjos, T. S.; Bernardes, C. A.; Dias, F. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Lagana, C.; Marinho, F.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.; Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Guo, S.; Guo, Y.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Teng, H.; Wang, D.; Zhang, L.; Zhu, B.; Zou, W.; Avila, C.; Gomez, J. P.; Gomez Moreno, B.; Osorio Oliveros, A. F.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Morovic, S.; Attikis, A.; Galanti, M.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Finger, M.; Finger, M., Jr.; Assran, Y.; Elgammal, S.; Ellithi Kamel, A.; Khalil, S.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Müntel, M.; Raidal, M.; Rebane, L.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Heikkinen, A.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.; Banzuzi, K.; Karjalainen, A.; Korpela, A.; Tuuva, T.; Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Shreyber, I.; Titov, M.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dobrzynski, L.; Granier de Cassagnac, R.; Haguenauer, M.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J.-M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Juillot, P.; Le Bihan, A.-C.; Van Hove, P.; Fassi, F.; Mercier, D.; Beauceron, S.; Beaupere, N.; Bondu, O.; Boudoul, G.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sordini, V.; Tschudi, Y.; Verdier, P.; Viret, S.; Tsamalaidze, Z.; Anagnostou, G.; Beranek, S.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.
2012-12-01
We report an investigation of the invariant mass spectrum of the two jets with highest transverse momentum in pp→W+2-jet and W+3-jet events to look for resonant enhancement. The data sample corresponds to an integrated luminosity of 5.0fb-1 collected with the CMS detector at s=7TeV. We find no evidence for the anomalous structure reported by the CDF Collaboration, and establish an upper limit of 5.0 pb at 95% confidence level on the production cross section for a generic Gaussian signal with mass near 150 GeV. Additionally, we exclude two theoretical models that predict a CDF-like dijet resonance near 150 GeV.
Glueball and meson propagators of any spin in large-N QCD
NASA Astrophysics Data System (ADS)
Bochicchio, Marco
2013-10-01
We prove an asymptotic structure theorem for glueball and meson propagators of any spin in large-N QCD and in N=1SUSY QCD with massless quarks, that determines asymptotically the residues of the poles of the propagators in terms of their anomalous dimensions and of the spectral density of the masses. The asymptotic theorem follows by the severe constraints on the propagators in large-N QCD with massless quarks, or in any large-N confining asymptotically-free gauge theory massless in perturbation theory, that arise by perturbation theory in conjunction with the renormalization group and by the OPE on the ultraviolet side. The asymptotic theorem is inspired by a recently proposed Topological Field Theory (TFT) underlying large-N pure YM, that computes sums of the scalar and of the pseudoscalar correlators satisfying the asymptotic theorem and that implies for the large-N joint scalar and pseudoscalar glueball spectrum exact linearity in the masses squared. On the infrared side we test the prediction of the exact linearity in the TFT by Meyer-Teper lattice numerical computation of the masses of the low-lying glueballs in SU(8)YM, finding accurate agreement. Besides, we employ the aforementioned ultraviolet and infrared constraints in order to compare critically the scalar or pseudoscalar glueball propagators computed in the framework of the AdS String/large-N Gauge Theory correspondence with those of the TFT underlying large-N YM. We find that only the TFT satisfies the ultraviolet and infrared constraints.
A SEYFERT-2-LIKE SPECTRUM IN THE HIGH-MASS X-RAY BINARY MICROQUASAR V4641 SGR
Morningstar, Warren R.; Miller, Jon M.; Reynolds, M. T.; Maitra, Dipankar E-mail: jonmm@umich.edu
2014-05-10
We present an analysis of three archival Chandra observations of the black hole V4641 Sgr, performed during a decline into quiescence. The last two observations in the sequence can be modeled with a simple power law. The first spectrum, however, is remarkably similar to spectra observed in Seyfert-2 active galactic nuclei, which arise through a combination of obscuration and reflection from distant material. This spectrum of V4641 Sgr can be fit extremely well with a model including partial-covering absorption and distant reflection. This model recovers a Γ ≅ 2.0 power-law incident spectrum, typical of black holes at low Eddington fractions. The implied geometry is plausible in a high-mass X-ray binary like V4641 Sgr, and may be as compelling as explanations invoking Doppler-split line pairs in a jet, and/or unusual Comptonization. We discuss potential implications and means of testing these models.
Mass flow analysis of the ultraviolet spectrum of UW Canis Majoris
NASA Technical Reports Server (NTRS)
Drechsel, H.; Kondo, Y.; Mccluskey, G. E., Jr.; Rahe, J.
1980-01-01
The ultraviolet spectrum of the close binary UW CMa, obtained with the Copernicus (OAO-3) and IUE satellites in the wavelength region from 1010 to 1510 A and from 1200 to 3000 A, respectively, is analyzed. The observed P Cygni line profiles are compared with theoretically predicted profiles formed by isotropic and coherent scattering in a spherically symmetric expanding circumstellar envelope. Tables illustrate the identified stellar lines, laboratory wavelengths, and line strengths in terms of peak height for emission or central depth for absorption components, normalized to the local stellar continuum.
Aspects of Chiral Symmetry Breaking in Lattice QCD
NASA Astrophysics Data System (ADS)
Horkel, Derek P.
In this thesis we describe two studies concerting lattice quantum chromodynamics (LQCD): first, an analysis of the phase structure of Wilson and twisted-mass fermions with isospin breaking effects, second a computational study measuring non-perturbative Greens functions. We open with a brief overview of the formalism of QCD and LQCD, focusing on the aspects necessary for understanding how a lattice computation is performed and how discretization effects can be understood. Our work in Wilson and twisted-mass fermions investigates an increasingly relevant regime where lattice simulations are performed with quarks at or near their physical masses and both the mass difference of the up and down quarks and their differing electric charges are included. Our computation of a non-perturbative Greens functions on the lattice serves as a first attempt to validate recent work by Dine et. al. [24] in which they calculate Greens functions which vanish in perturbation theory, yet have a contribution from the one instanton background. In chapter 2, we determine the phase diagram and pion spectrum for Wilson and twisted-mass fermions in the presence of non-degeneracy between the up and down quark and discretization errors, using Wilson and twisted-mass chiral perturbation theory. We find that the CP-violating phase of the continuum theory (which occurs for sufficiently large non-degeneracy) is continuously connected to the Aoki phase of the lattice theory with degenerate quarks. We show that discretization effects can, in some cases, push simulations with physical masses closer to either the CP-violating phase or another phase not present in the continuum, so that at sufficiently large lattice spacings physical-point simulations could lie in one of these phases. In chapter 3, we extend the work in chapter 2 to include the effects of electromagnetism, so that it is applicable to recent simulations incorporating all sources of isospin breaking. For Wilson fermions, we find that the
The quark propagator in QCD and G2 QCD
NASA Astrophysics Data System (ADS)
Contant, Romain; Huber, Markus Q.
2017-03-01
QCD-like theories provide testing grounds for truncations of functional equations at non-zero density, since comparisons with lattice results are possible due to the absence of the sign problem. As a first step towards such a comparison, we determine for QCD and G2 QCD the chiral and confinement/deconfinement transitions from the quark propagator Dyson-Schwinger equation at zero chemical potential by calculating the chiral and dual chiral condensates, respectively.
AdS/QCD and Light Front Holography: A New Approximation to QCD
Brodsky, Stanley J.; de Teramond, Guy
2010-02-15
The combination of Anti-de Sitter space (AdS) methods with light-front holography leads to a semi-classical first approximation to the spectrum and wavefunctions of meson and baryon light-quark bound states. Starting from the bound-state Hamiltonian equation of motion in QCD, we derive relativistic light-front wave equations in terms of an invariant impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron at equal light-front time. These equations of motion in physical space-time are equivalent to the equations of motion which describe the propagation of spin-J modes in anti-de Sitter (AdS) space. Its eigenvalues give the hadronic spectrum, and its eigenmodes represent the probability distribution of the hadronic constituents at a given scale. Applications to the light meson and baryon spectra are presented. The predicted meson spectrum has a string-theory Regge form M{sup 2} = 4{kappa}{sup 2}(n+L+S/2); i.e., the square of the eigenmass is linear in both L and n, where n counts the number of nodes of the wavefunction in the radial variable {zeta}. The space-like pion form factor is also well reproduced. One thus obtains a remarkable connection between the description of hadronic modes in AdS space and the Hamiltonian formulation of QCD in physical space-time quantized on the light-front at fixed light-front time {tau}. The model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method in order to systematically include the QCD interaction terms.
NASA Astrophysics Data System (ADS)
Ford, Mark S.; Mackenzie, Stuart R.
2005-08-01
The first results are presented of a new experiment designed both to generate and characterize spectroscopically individual isomers of transition-metal cluster cations. As a proof of concept the one-photon mass-analyzed threshold ionization (MATI) spectrum of V3 has been recorded in the region of 44000-45000cm-1. This study extends the range of a previous zero-kinetic-energy (ZEKE) photoelectron study of Yang et al. [Chem. Phys. Lett. 231, 177 (1994)] with which the current results are compared. The MATI spectra reported here exhibit surprisingly high resolution (0.2cm-1) for this technique despite the use of large discrimination and extraction fields. Analysis of the rotational profile of the origin band allows assignment of the V3 ground state as A1'2 and the V3+ ground state as A2'3, both with D3h geometry, in agreement with the density-functional theory study of the V3 ZEKE spectrum by Calaminici et al. [J. Chem. Phys. 114, 4036 (2001)]. There is also some evidence in the spectrum of transitions to the low-lying A1'1 excited state of the ion. The vibrational structure observed in the MATI spectrum is, however, significantly different to and less extensive than that predicted in the density-functional theory study. Possible reasons for the discrepancies are discussed and an alternative assignment is proposed which results in revised values for the vibrational wave numbers of both the neutral and ionic states. These studies demonstrate the efficient generation of cluster ions in known structural (isomeric) forms and pave the way for the study of cluster reactivity as a function of geometrical structure.
Properties of flavour-singlet pseudoscalar mesons from lattice QCD
NASA Astrophysics Data System (ADS)
Urbach, Carsten
2017-01-01
We report on the status of the determination of properties of flavour-singlet pseudoscalar mesons using Wilson twisted mass lattice QCD at maximal twist. As part of project C7, a large number of phenomenologically relevant quantities could be extracted from first principle, from η and η' masses to decay widths of pseudoscalar mesons to two photons.
Flaugher, B.
1992-09-01
Measurement of scaling violations, the inclusive photon and diphoton cross sections as well as the photon-jet and jet-jet angular distributions are discussed and compared to leading order and next-to-leading order QCD. A study of four-jet events is described, with a limit on the cross section for double parton scattering. The multiplicity of jets in W boson events is compared to theoretical predictions.
C. Mesropian
2002-07-12
The Tevatron hadron collider provides the unique opportunity to study Quantum Chromodynamics, QCD, at the highest energies. The results summarized in this talk, although representing different experimental objects, as hadronic jets and electromagnetic clusters, serve to determine the fundamental input ingredients of QCD as well as to search for new physics. The authors present results from QCD studies at the Tevatron from Run 1 data, including jet and direct photon production, and a measurement of the strong coupling constant.
QCD THERMODYNAMICS AT ZERO AND NON-ZERO DENSITY.
SCHMIDT, C.
2007-07-03
We present recent results on thermodynamics of QCD with almost physical light quark masses and a physical strange quark mass value. These calculations have been performed with an improved staggered action especially designed for finite temperature lattice QCD. In detail we present a calculation of the transition temperature, using a combined chiral and continuum extrapolation. Furthermore we present preliminary results on the interaction measure and energy density at almost realistic quark masses. Finally we discuss the response of the pressure to a finite quark chemical potential. Within the Taylor expansion formalism we calculate quark number susceptibilities and leading order corrections to finite chemical potential. This is particularly useful for mapping out the critical region in the QCD phase diagram.
Resonant conversions of QCD axions into hidden axions and suppressed isocurvature perturbations
Kitajima, Naoya; Takahashi, Fuminobu E-mail: fumi@tuhep.phys.tohoku.ac.jp
2015-01-01
We study in detail MSW-like resonant conversions of QCD axions into hidden axions, including cases where the adiabaticity condition is only marginally satisfied, and where anharmonic effects are non-negligible. When the resonant conversion is efficient, the QCD axion abundance is suppressed by the hidden and QCD axion mass ratio. We find that, when the resonant conversion is incomplete due to a weak violation of the adiabaticity, the CDM isocurvature perturbations can be significantly suppressed, while non-Gaussianity of the isocurvature perturbations generically remain unsuppressed. The isocurvature bounds on the inflation scale can therefore be relaxed by the partial resonant conversion of the QCD axions into hidden axions.
Observation of a broad structure in the pi+ pi- J/psi mass spectrum around 4.26 GeV/c2.
Aubert, B; Barate, R; Boutigny, D; Couderc, F; Karyotakis, Y; Lees, J P; Poireau, V; Tisserand, V; Zghiche, A; Grauges, E; Palano, A; Pappagallo, M; Pompili, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Battaglia, M; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Gritsan, A V; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Wenzel, W A; Barrett, M; Ford, K E; Harrison, T J; Hart, A J; Hawkes, C M; Morgan, S E; Watson, A T; Fritsch, M; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schroeder, T; Steinke, M; Boyd, J T; Burke, J P; Chevalier, N; Cottingham, W N; Cuhadar-Donszelmann, T; Fulsom, B G; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Khan, A; Kyberd, P; Saleem, M; Teodorescu, L; Blinov, A E; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Yushkov, A N; Best, D; Bondioli, M; Bruinsma, M; Chao, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M; Mommsen, R K; Roethel, W; Stoker, D P; Buchanan, C; Hartfiel, B L; Weinstein, A J R; Foulkes, S D; Gary, J W; Long, O; Shen, B C; Wang, K; Zhang, L; del Re, D; Hadavand, H K; Hill, E J; MacFarlane, D B; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Mazur, M A; Richman, J D; Verkerke, W; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Nesom, G; Schalk, T; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Andreassen, R; Jayatilleke, S; Mancinelli, G; Meadows, B T; Sokoloff, M D; Blanc, F; Bloom, P; Chen, S; Ford, W T; Hirschauer, J F; Kreisel, A; Nauenberg, U; Olivas, A; Rankin, P; Ruddick, W O; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Chen, A; Eckhart, E A; Soffer, A; Toki, W H; Wilson, R J; Zeng, Q; Altenburg, D; Feltresi, E; Hauke, A; Spaan, B; Brandt, T; Brose, J; Dickopp, M; Klose, V; Lacker, H M; Nogowski, R; Otto, S; Petzold, A; Schott, G; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Bernard, D; Bonneaud, G R; Grenier, P; Schrenk, S; Thiebaux, Ch; Vasileiadis, G; Verderi, M; Bard, D J; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Xie, Y; Andreotti, M; Azzolini, V; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Piemontese, L; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Patteri, P; Peruzzi, I M; Piccolo, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Lo Vetere, M; Macri, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Brandenburg, G; Chaisanguanthum, K S; Morii, M; Won, E; Wu, J; Dubitzky, R S; Langenegger, U; Marks, J; Schenk, S; Uwer, U; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Flack, R L; Gaillard, J R; Morton, G W; Nash, J A; Nikolich, M B; Taylor, G P; Vazquez, W P; Charles, M J; Mader, W F; Mallik, U; Mohapatra, A K; Cochran, J; Crawley, H B; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Yi, J; Arnaud, N; Davier, M; Giroux, X; Grosdidier, G; Höcker, A; Le Diberder, F; Lepeltier, V; Lutz, A M; Oyanguren, A; Petersen, T C; Pierini, M; Plaszczynski, S; Rodier, S; Roudeau, P; Schune, M H; Stocchi, A; Wormser, G; Cheng, C H; Lange, D J; Simani, M C; Wright, D M; Bevan, A J; Chavez, C A; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; George, K A; Hutchcroft, D E; Parry, R J; Payne, D J; Schofield, K C; Touramanis, C; Cormack, C M; Di Lodovico, F; Menges, W; Sacco, R; Brown, C L; Cowan, G; Flaecher, H U; Green, M G; Hopkins, D A; Jackson, P S; McMahon, T R; Ricciardi, S; Salvatore, F; Brown, D; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Edgar, C L; Hodgkinson, M C; Kelly, M P; Lafferty, G D; Naisbit, M T; Williams, J C; Chen, C; Hulsbergen, W D; Jawahery, A; Kovalskyi, D; Lae, C K; Roberts, D A; Simi, G; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Kofler, R; Koptchev, V B; Li, X; Moore, T B; Saremi, S; Staengle, H; Willocq, S; Cowan, R; Koeneke, K; Sciolla, G; Sekula, S J; Spitznagel, M; Taylor, F; Yamamoto, R K; Kim, H; Patel, P M; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Taras, P; Viaud, B; Nicholson, H; Cavallo, N; De Nardo, G; Fabozzi, F; Gatto, C; Lista, L; Monorchio, D; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M; Bulten, H; Raven, G; Snoek, H L; Wilden, L; Jessop, C P; LoSecco, J M; Allmendinger, T; Benelli, G; Gan, K K; Honscheid, K; Hufnagel, D; Jackson, P D; Kagan, H; Kass, R; Pulliam, T; Rahimi, A M; Ter-Antonyan, R; Wong, Q K; Brau, J; Frey, R; Igonkina, O; Lu, M; Potter, C T; Sinev, N B; Strom, D; Strube, J; Torrence, E; Galeazzi, F; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; Del Buono, L; de la Vaissière, Ch; Hamon, O; John, M J J; Leruste, Ph; Malclès, J; Ocariz, J; Roos, L; Therin, G; Behera, P K; Gladney, L; Guo, Q H; Panetta, J; Biasini, M; Covarelli, R; Pacetti, S; Pioppi, M; Angelini, C; Batignani, G; Bettarini, S; Bucci, F; Calderini, G; Carpinelli, M; Cenci, R; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Walsh, J; Haire, M; Judd, D; Wagoner, D E; Biesiada, J; Danielson, N; Elmer, P; Lau, Y P; Lu, C; Olsen, J; Smith, A J S; Telnov, A V; Bellini, F; Cavoto, G; D'Orazio, A; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Safai Tehrani, F; Voena, C; Schröder, H; Wagner, G; Waldi, R; Adye, T; De Groot, N; Franek, B; Gopal, G P; Olaiya, E O; Wilson, F F; Aleksan, R; Emery, S; Gaidot, A; Ganzhur, S F; Giraud, P-F; Graziani, G; Hamel de Monchenault, G; Kozanecki, W; Legendre, M; London, G W; Mayer, B; Vasseur, G; Yèche, Ch; Zito, M; Purohit, M V; Weidemann, A W; Wilson, J R; Yumiceva, F X; Abe, T; Allen, M T; Aston, D; van Bakel, N; Bartoldus, R; Berger, N; Boyarski, A M; Buchmueller, O L; Claus, R; Coleman, J P; Convery, M R; Cristinziani, M; Dingfelder, J C; Dong, D; Dorfan, J; Dujmic, D; Dunwoodie, W; Fan, S; Field, R C; Glanzman, T; Gowdy, S J; Hadig, T; Halyo, V; Hast, C; Hryn'ova, T; Innes, W R; Kelsey, M H; Kim, P; Kocian, M L; Leith, D W G S; Libby, J; Luitz, S; Luth, V; Lynch, H L; Marsiske, H; Messner, R; Muller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Stelzer, J; Su, D; Sullivan, M K; Suzuki, K; Swain, S; Thompson, J M; Va'vra, J; Weaver, M; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Yi, K; Young, C C; Burchat, P R; Edwards, A J; Majewski, S A; Petersen, B A; Roat, C; Ahmed, M; Ahmed, S; Alam, M S; Ernst, J A; Saeed, M A; Wappler, F R; Zain, S B; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Ritchie, J L; Satpathy, A; Schwitters, R F; Izen, J M; Kitayama, I; Lou, X C; Williams, G; Ye, S; Bianchi, F; Bona, M; Gallo, F; Gamba, D; Bomben, M; Bosisio, L; Cartaro, C; Cossutti, F; Della Ricca, G; Dittongo, S; Grancagnolo, S; Lanceri, L; Vitale, L; Martinez-Vidal, F; Panvini, R S; Banerjee, Sw; Bhuyan, B; Brown, C M; Fortin, D; Hamano, K; Kowalewski, R; Roney, J M; Sobie, R J; Back, J J; Harrison, P F; Latham, T E; Mohanty, G B; Band, H R; Chen, X; Cheng, B; Dasu, S; Datta, M; Eichenbaum, A M; Flood, K T; Graham, M; Hollar, J J; Johnson, J R; Kutter, P E; Li, H; Liu, R; Mellado, B; Mihalyi, A; Pan, Y; Prepost, R; Tan, P; von Wimmersperg-Toeller, J H; Wu, S L; Yu, Z; Neal, H
2005-09-30
We study initial-state radiation events, e+ e- --> gammaISR pi+ pi- J/psi, with data collected with the BABAR detector. We observe an accumulation of events near 4.26 GeV/c2 in the invariant-mass spectrum of pi+ pi- J/psi. Fits to the mass spectrum indicate that a broad resonance with a mass of about 4.26 GeV/c2 is required to describe the observed structure. The presence of additional narrow resonances cannot be excluded. The fitted width of the broad resonance is 50 to 90 MeV/c2, depending on the fit hypothesis.
Search for Structure in the B_{s}^{0}π^{±} Invariant Mass Spectrum.
Aaij, R; Adeva, B; Adinolfi, M; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Andreassi, G; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; d'Argent, P; Arnau Romeu, J; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Babuschkin, I; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baker, S; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Batsukh, B; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Bel, L J; Bellee, V; Belloli, N; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bertolin, A; Betti, F; Bettler, M-O; van Beuzekom, M; Bezshyiko, I; Bifani, S; Billoir, P; Bird, T; Birnkraut, A; Bitadze, A; Bizzeti, A; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Boettcher, T; Bondar, A; Bondar, N; Bonivento, W; Borgheresi, A; Borghi, S; Borisyak, M; Borsato, M; Bossu, F; Boubdir, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Britsch, M; Britton, T; Brodzicka, J; Buchanan, E; Burr, C; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Campora Perez, D H; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cavallero, G; Cenci, R; Charles, M; Charpentier, Ph; Chatzikonstantinidis, G; Chefdeville, M; Chen, S; Cheung, S-F; Chobanova, V; Chrzaszcz, M; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collazuol, G; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coquereau, S; Corti, G; Corvo, M; Costa Sobral, C M; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Da Cunha Marinho, F; Dall'Occo, E; Dalseno, J; David, P N Y; Davis, A; De Aguiar Francisco, O; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Serio, M; De Simone, P; Dean, C-T; Decamp, D; Deckenhoff, M; Del Buono, L; Demmer, M; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Dijkstra, H; Dordei, F; Dorigo, M; Dosil Suárez, A; Dovbnya, A; Dreimanis, K; Dufour, L; Dujany, G; Dungs, K; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Déléage, N; Easo, S; Ebert, M; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; Elsasser, Ch; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Farley, N; Farry, S; Fay, R; Fazzini, D; Ferguson, D; Fernandez Albor, V; Fernandez Prieto, A; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fini, R A; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fleuret, F; Fohl, K; Fontana, M; Fontanelli, F; Forshaw, D C; Forty, R; Franco Lima, V; Frank, M; Frei, C; Fu, J; Furfaro, E; Färber, C; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; Garcia Martin, L M; García Pardiñas, J; Garra Tico, J; Garrido, L; Garsed, P J; Gascon, D; Gaspar, C; Gavardi, L; Gazzoni, G; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianì, S; Gibson, V; Girard, O G; Giubega, L; Gizdov, K; Gligorov, V V; Golubkov, D; Golutvin, A; Gomes, A; Gorelov, I V; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Griffith, P; Grillo, L; Gruberg Cazon, B R; Grünberg, O; Gushchin, E; Guz, Yu; Gys, T; Göbel, C; Hadavizadeh, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hatch, M; He, J; Head, T; Heister, A; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hombach, C; Hulsbergen, W; Humair, T; Hushchyn, M; Hussain, N; Hutchcroft, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jawahery, A; Jiang, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Kanso, W; Karacson, M; Kariuki, J M; Karodia, S; Kecke, M; Kelsey, M; Kenyon, I R; Kenzie, M; Ketel, T; Khairullin, E; Khanji, B; Khurewathanakul, C; Kirn, T; Klaver, S; Klimaszewski, K; Koliiev, S; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Kozachuk, A; Kozeiha, M; Kravchuk, L; Kreplin, K; Kreps, M; Krokovny, P; Kruse, F; Krzemien, W; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kuonen, A K; Kurek, K; Kvaratskheliya, T; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Leflat, A; Lefrançois, J; Lefèvre, R; Lemaitre, F; Lemos Cid, E; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Lindner, R; Linn, C; Lionetto, F; Liu, B; Liu, X; Loh, D; Longstaff, I; Lopes, J H; Lucchesi, D; Lucio Martinez, M; Luo, H; Lupato, A; Luppi, E; Lupton, O; Lusiani, A; Lyu, X; Machefert, F; Maciuc, F; Maev, O; Maguire, K; Malde, S; Malinin, A; Maltsev, T; Manca, G; Mancinelli, G; Manning, P; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Marks, J; Martellotti, G; Martin, M; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massacrier, L M; Massafferri, A; Matev, R; Mathad, A; Mathe, Z; Matteuzzi, C; Mauri, A; Maurin, B; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; Meadows, B; Meier, F; Meissner, M; Melnychuk, D; Merk, M; Merli, A; Michielin, E; Milanes, D A; Minard, M-N; Mitzel, D S; Mogini, A; Molina Rodriguez, J; Monroy, I A; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A B; Mountain, R; Muheim, F; Mulder, M; Mussini, M; Müller, D; Müller, J; Müller, K; Müller, V; Naik, P; Nakada, T; Nandakumar, R; Nandi, A; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen-Mau, C; Nieswand, S; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Oldeman, R; Onderwater, C J G; Otalora Goicochea, J M; Otto, A; Owen, P; Oyanguren, A; Pais, P R; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parker, W; Parkes, C; Passaleva, G; Pastore, A; Patel, G D; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Petridis, K; Petrolini, A; Petrov, A; Petruzzo, M; Picatoste Olloqui, E; Pietrzyk, B; Pikies, M; Pinci, D; Pistone, A; Piucci, A; Playfer, S; Plo Casasus, M; Poikela, T; Polci, F; Poluektov, A; Polyakov, I; Polycarpo, E; Pomery, G J; Popov, A; Popov, D; Popovici, B; Poslavskii, S; Potterat, C; Price, E; Price, J D; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Quagliani, R; Rachwal, B; Rademacker, J H; Rama, M; Ramos Pernas, M; Rangel, M S; Raniuk, I; Raven, G; Redi, F; Reichert, S; Dos Reis, A C; Remon Alepuz, C; Renaudin, V; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Lopez, J A; Rodriguez Perez, P; Rogozhnikov, A; Roiser, S; Romanovskiy, V; Romero Vidal, A; Ronayne, J W; Rotondo, M; Rudolph, M S; Ruf, T; Ruiz Valls, P; Saborido Silva, J J; Sadykhov, E; Sagidova, N; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santimaria, M; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schael, S; Schellenberg, M; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmelzer, T; Schmidt, B; Schneider, O; Schopper, A; Schubert, K; Schubiger, M; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sergi, A; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Shires, A; Siddi, B G; Silva Coutinho, R; Silva de Oliveira, L; Simi, G; Simone, S; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, E; Smith, I T; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Stefko, P; Stefkova, S; Steinkamp, O; Stemmle, S; Stenyakin, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Sun, L; Sutcliffe, W; Swientek, K; Syropoulos, V; Szczekowski, M; Szumlak, T; T'Jampens, S; Tayduganov, A; Tekampe, T; Tellarini, G; Teubert, F; Thomas, E; van Tilburg, J; Tilley, M J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Toriello, F; Tournefier, E; Tourneur, S; Trabelsi, K; Traill, M; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tully, A; Tuning, N; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagnoni, V; Valat, S; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; van Veghel, M; Velthuis, J J; Veltri, M; Veneziano, G; Venkateswaran, A; Vernet, M; Vesterinen, M; Viaud, B; Vieira, D; Vieites Diaz, M; Vilasis-Cardona, X; Volkov, V; Vollhardt, A; Voneki, B; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Vázquez Sierra, C; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wang, J; Ward, D R; Wark, H M; Watson, N K; Websdale, D; Weiden, A; Whitehead, M; Wicht, J; Wilkinson, G; Wilkinson, M; Williams, M; Williams, M P; Williams, M; Williams, T; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wraight, K; Wright, S; Wyllie, K; Xie, Y; Xing, Z; Xu, Z; Yang, Z; Yin, H; Yu, J; Yuan, X; Yushchenko, O; Zarebski, K A; Zavertyaev, M; Zhang, L; Zhang, Y; Zhang, Y; Zhelezov, A; Zheng, Y; Zhokhov, A; Zhu, X; Zhukov, V; Zucchelli, S
2016-10-07
The B_{s}^{0}π^{±} invariant mass distribution is investigated in order to search for possible exotic meson states. The analysis is based on a data sample recorded with the LHCb detector corresponding to 3 fb^{-1} of pp collision data at sqrt[s]=7 and 8 TeV. No significant excess is found, and upper limits are set on the production rate of the claimed X(5568) state within the LHCb acceptance. Upper limits are also set as a function of the mass and width of a possible exotic meson decaying to the B_{s}^{0}π^{±} final state. The same limits also apply to a possible exotic meson decaying through the chain B_{s}^{*0}π^{±}, B_{s}^{*0}→B_{s}^{0}γ where the photon is excluded from the reconstructed decays.
Search for Structure in the Bs0π± Invariant Mass Spectrum
NASA Astrophysics Data System (ADS)
Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; d'Argent, P.; Arnau Romeu, J.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Babuschkin, I.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baker, S.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Batsukh, B.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Bellee, V.; Belloli, N.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Betti, F.; Bettler, M.-O.; van Beuzekom, M.; Bezshyiko, I.; Bifani, S.; Billoir, P.; Bird, T.; Birnkraut, A.; Bitadze, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Boettcher, T.; Bondar, A.; Bondar, N.; Bonivento, W.; Borgheresi, A.; Borghi, S.; Borisyak, M.; Borsato, M.; Bossu, F.; Boubdir, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britsch, M.; Britton, T.; Brodzicka, J.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Campora Perez, D.; Campora Perez, D. H.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chatzikonstantinidis, G.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chobanova, V.; Chrzaszcz, M.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coquereau, S.; Corti, G.; Corvo, M.; Costa Sobral, C. M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Da Cunha Marinho, F.; Dall'Occo, E.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Aguiar Francisco, O.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Serio, M.; De Simone, P.; Dean, C.-T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Demmer, M.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Dijkstra, H.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Dungs, K.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Déléage, N.; Easo, S.; Ebert, M.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Farley, N.; Farry, S.; Fay, R.; Fazzini, D.; Ferguson, D.; Fernandez Albor, V.; Fernandez Prieto, A.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fini, R. A.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fleuret, F.; Fohl, K.; Fontana, M.; Fontanelli, F.; Forshaw, D. C.; Forty, R.; Franco Lima, V.; Frank, M.; Frei, C.; Fu, J.; Furfaro, E.; Färber, C.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garcia Martin, L. M.; García Pardiñas, J.; Garra Tico, J.; Garrido, L.; Garsed, P. J.; Gascon, D.; Gaspar, C.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianı, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gizdov, K.; Gligorov, V. V.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gorelov, I. V.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Griffith, P.; Grillo, L.; Gruberg Cazon, B. R.; Grünberg, O.; Gushchin, E.; Guz, Yu.; Gys, T.; Göbel, C.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; Hatch, M.; He, J.; Head, T.; Heister, A.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hombach, C.; Hulsbergen, W.; Humair, T.; Hushchyn, M.; Hussain, N.; Hutchcroft, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; Jiang, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Kariuki, J. M.; Karodia, S.; Kecke, M.; Kelsey, M.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Kirn, T.; Klaver, S.; Klimaszewski, K.; Koliiev, S.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Kozachuk, A.; Kozeiha, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krokovny, P.; Kruse, F.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kurek, K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lanfranchi, G.; Langenbruch, C.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Leflat, A.; Lefrançois, J.; Lefèvre, R.; Lemaitre, F.; Lemos Cid, E.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Liu, X.; Loh, D.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusiani, A.; Lyu, X.; Machefert, F.; Maciuc, F.; Maev, O.; Maguire, K.; Malde, S.; Malinin, A.; Maltsev, T.; Manca, G.; Mancinelli, G.; Manning, P.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massacrier, L. M.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurin, B.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; Meadows, B.; Meier, F.; Meissner, M.; Melnychuk, D.; Merk, M.; Merli, A.; Michielin, E.; Milanes, D. A.; Minard, M.-N.; Mitzel, D. S.; Mogini, A.; Molina Rodriguez, J.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Mulder, M.; Mussini, M.; Müller, D.; Müller, J.; Müller, K.; Müller, V.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen-Mau, C.; Nieswand, S.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Oldeman, R.; Onderwater, C. J. G.; Otalora Goicochea, J. M.; Otto, A.; Owen, P.; Oyanguren, A.; Pais, P. R.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parker, W.; Parkes, C.; Passaleva, G.; Pastore, A.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petrov, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pikies, M.; Pinci, D.; Pistone, A.; Piucci, A.; Playfer, S.; Plo Casasus, M.; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Pomery, G. J.; Popov, A.; Popov, D.; Popovici, B.; Poslavskii, S.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Ramos Pernas, M.; Rangel, M. S.; Raniuk, I.; Raven, G.; Redi, F.; Reichert, S.; dos Reis, A. C.; Remon Alepuz, C.; Renaudin, V.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rodriguez Perez, P.; Rogozhnikov, A.; Roiser, S.; Romanovskiy, V.; Romero Vidal, A.; Ronayne, J. W.; Rotondo, M.; Rudolph, M. S.; Ruf, T.; Ruiz Valls, P.; Saborido Silva, J. J.; Sadykhov, E.; Sagidova, N.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schael, S.; Schellenberg, M.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schubert, K.; Schubiger, M.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sergi, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Siddi, B. G.; Silva Coutinho, R.; Silva de Oliveira, L.; Simi, G.; Simone, S.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, E.; Smith, I. T.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefko, P.; Stefkova, S.; Steinkamp, O.; Stemmle, S.; Stenyakin, O.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Sun, L.; Sutcliffe, W.; Swientek, K.; Syropoulos, V.; Szczekowski, M.; Szumlak, T.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Tellarini, G.; Teubert, F.; Thomas, E.; van Tilburg, J.; Tilley, M. J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Toriello, F.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Traill, M.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tully, A.; Tuning, N.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valat, S.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vecchi, S.; van Veghel, M.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Venkateswaran, A.; Vernet, M.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Volkov, V.; Vollhardt, A.; Voneki, B.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Vázquez Sierra, C.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wang, J.; Ward, D. R.; Wark, H. M.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wicht, J.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Williams, T.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wraight, K.; Wright, S.; Wyllie, K.; Xie, Y.; Xing, Z.; Xu, Z.; Yang, Z.; Yin, H.; Yu, J.; Yuan, X.; Yushchenko, O.; Zarebski, K. A.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhang, Y.; Zhelezov, A.; Zheng, Y.; Zhokhov, A.; Zhu, X.; Zhukov, V.; Zucchelli, S.; LHCb Collaboration
2016-10-01
The Bs0π± invariant mass distribution is investigated in order to search for possible exotic meson states. The analysis is based on a data sample recorded with the LHCb detector corresponding to 3 fb-1 of p p collision data at √{s }=7 and 8 TeV. No significant excess is found, and upper limits are set on the production rate of the claimed X (5568 ) state within the LHCb acceptance. Upper limits are also set as a function of the mass and width of a possible exotic meson decaying to the Bs0π± final state. The same limits also apply to a possible exotic meson decaying through the chain Bs*0π±, Bs*0→Bs0γ where the photon is excluded from the reconstructed decays.
Mass spectrum and correlation functions of non-Abelian quantum magnetic monopoles
NASA Astrophysics Data System (ADS)
Marino, E. C.; Ramos, Rudnei O.
1994-01-01
The method of quantization of magnetic monopoles based on the order-disorder duality existing between the monopole operator and the Lagrangian fields is applied to the description of the quantum magnetic monopoles of 't Hooft and Polyakov in the SO(3) Georgi-Glashow model. The commutator of the monopole operator with the magnetic charge is computed explicitly, indicating that indeed the quantum monopole carries 4π/g units of magnetic charge. An explicit expression for the asymptotic behavior of the monopole correlation function is derived. From this, the mass of the quantum monopole is obtained. The tree-level result for the quantum monopole mass is shown to satisfy the Bogomol'nyi bound (Mmon>=4πM/g2) and to be within the range of values found for the energy of the classical monopole solution.
Uncertainty quantification in lattice QCD calculations for nuclear physics
Beane, Silas R.; Detmold, William; Orginos, Kostas; Savage, Martin J.
2015-02-05
The numerical technique of Lattice QCD holds the promise of connecting the nuclear forces, nuclei, the spectrum and structure of hadrons, and the properties of matter under extreme conditions with the underlying theory of the strong interactions, quantum chromodynamics. A distinguishing, and thus far unique, feature of this formulation is that all of the associated uncertainties, both statistical and systematic can, in principle, be systematically reduced to any desired precision with sufficient computational and human resources. As a result, we review the sources of uncertainty inherent in Lattice QCD calculations for nuclear physics, and discuss how each is quantified in current efforts.
I. Gorelov
2001-12-28
Experimental results on QCD measurements obtained in recent analyses and based on data collected with CDF Detector from the Run 1b Tevatron running cycle are presented. The scope of the talk includes major QCD topics: a measurement of the strong coupling constant {alpha}{sub s}, extracted from inclusive jet spectra and the underlying event energy contribution to a jet cone. Another experimental object of QCD interest, prompt photon production, is also discussed and the updated measurements by CDF of the inclusive photon cross section at 630 GeV and 1800 GeV, and the comparison with NLO QCD predictions is presented.
No-go theorem for critical phenomena in large-N(c) QCD.
Hidaka, Yoshimasa; Yamamoto, Naoki
2012-03-23
We derive some rigorous results on the chiral phase transition in QCD and QCD-like theories with a large number of colors, N(c), based on the QCD inequalities and the large-N(c) orbifold equivalence. We show that critical phenomena and associated soft modes are forbidden in flavor-symmetric QCD at finite temperature T and finite but not so large quark chemical potential μ for any nonzero quark mass. In particular, the critical point in QCD at a finite baryon chemical potential μ(B)=N(c)μ is ruled out, if the coordinate (T, μ) is outside the pion condensed phase in the corresponding phase diagram of QCD at a finite isospin chemical potential μ(I)=2μ.
Evidence for a mixed mass composition at the 'ankle' in the cosmic-ray spectrum
NASA Astrophysics Data System (ADS)
Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Anastasi, G. A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Badescu, A. M.; Balaceanu, A.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Biteau, J.; Blaess, S. G.; Blanco, A.; Blazek, J.; Bleve, C.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Cancio, A.; Canfora, F.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Clay, R. W.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Cronin, J.; Dallier, R.; D'Amico, S.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; Debatin, J.; del Peral, L.; Deligny, O.; Di Giulio, C.; Di Matteo, A.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; D'Olivo, J. C.; Dorofeev, A.; dos Anjos, R. C.; Dova, M. T.; Dundovic, A.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fratu, O.; Freire, M. M.; Fujii, T.; Fuster, A.; García, B.; Garcia-Pinto, D.; Gaté, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Glass, H.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Hasankiadeh, Q.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Hulsman, J.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Johnsen, J. A.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Keilhauer, B.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A.; LaHurd, D.; Latronico, L.; Lauscher, M.; Lautridou, P.; Lebrun, P.; Legumina, R.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; López, R.; López Casado, A.; Luce, Q.; Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martínez Bravo, O.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melo, D.; Menshikov, A.; Messina, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Mockler, D.; Molina-Bueno, L.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Müller, G.; Muller, M. A.; Müller, S.; Naranjo, I.; Navas, S.; Nellen, L.; Neuser, J.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, H.; Núñez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pedreira, F.; Pȩkala, J.; Pelayo, R.; Peña-Rodriguez, J.; Pereira, L. A. S.; Perrone, L.; Peters, C.; Petrera, S.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Ramos-Pollant, R.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Reinert, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Rogozin, D.; Rosado, J.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sanabria Gomez, J. D.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sarmiento-Cano, C.; Sato, R.; Scarso, C.; Schauer, M.; Scherini, V.; Schieler, H.; Schmidt, D.; Scholten, O.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Silli, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Stanca, D.; Stanič, S.; Stasielak, J.; Strafella, F.; Suarez, F.; Suarez Durán, M.; Sudholz, T.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Taborda, O. A.; Tapia, A.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Torri, M.; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Valbuena-Delgado, A.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Villaseñor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weindl, A.; Wiencke, L.; Wilczyński, H.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yang, L.; Yelos, D.; Younk, P.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Zuccarello, F.
2016-11-01
We report a first measurement for ultrahigh energy cosmic rays of the correlation between the depth of shower maximum and the signal in the water Cherenkov stations of air-showers registered simultaneously by the fluorescence and the surface detectors of the Pierre Auger Observatory. Such a correlation measurement is a unique feature of a hybrid air-shower observatory with sensitivity to both the electromagnetic and muonic components. It allows an accurate determination of the spread of primary masses in the cosmic-ray flux. Up till now, constraints on the spread of primary masses have been dominated by systematic uncertainties. The present correlation measurement is not affected by systematics in the measurement of the depth of shower maximum or the signal in the water Cherenkov stations. The analysis relies on general characteristics of air showers and is thus robust also with respect to uncertainties in hadronic event generators. The observed correlation in the energy range around the 'ankle' at lg (E /eV) = 18.5- 19.0 differs significantly from expectations for pure primary cosmic-ray compositions. A light composition made up of proton and helium only is equally inconsistent with observations. The data are explained well by a mixed composition including nuclei with mass A > 4. Scenarios such as the proton dip model, with almost pure compositions, are thus disfavored as the sole explanation of the ultrahigh-energy cosmic-ray flux at Earth.
Lattice QCD study of mixed systems of pions and kaons
William Detmold, Brian Smigielski
2011-07-01
The O(100) different ground state energies of N-pion and M-kaon systems for N+M <= 12 are studied in lattice QCD. These energies are then used to extract the various two- and three- body interactions that occur in these systems. These calculations are performed using one ensemble of 2+1 flavor anisotropic lattices with a spatial lattice spacing $a_s$ ~ 0.125 fm, an anisotropy factor $\\xi=a_s/a_t=3.5$, and a spatial volume $L^3\\sim (2.5\\ {\\rm fm})^3$. Particular attention is paid to additional thermal states present in the spectrum because of the finite temporal extent. The quark masses used correspond to pion and kaon masses of $m_\\pi$ ~ 383 MeV and $m_K$ ~ 537 MeV, respectively. The isospin and strangeness chemical potentials of these systems are found to be in the region where chiral perturbation theory and hadronic models predict a phase transition between a pion condensed phase and a kaon condensed phase.
Phase transitions in QCD and string theory
NASA Astrophysics Data System (ADS)
Campell, Bruce A.; Ellis, John; Kalara, S.; Nanopoulos, D. V.; Olive, Keith A.
1991-02-01
We develop a unified effective field theory approach to the high-temperature phase transitions in QCD and string theory, incorporating winding modes (time-like Polyakov loops, vortices) as well as low-mass states (pseudoscalar mesons and glueballs, matter and dilaton supermultiplets). Anomalous scale invariance and the Z3 structure of the centre of SU(3) decree a first-order phase transition with simultaneous deconfinement and Polyakov loop condensation in QCD, whereas string vortex condensation is a second-order phase transition breaking a Z2 symmetry. We argue that vortex condensation is accompanied by a dilaton phase transition to a strong coupling regime, and comment on the possible role of soliton degrees of freedom in the high-temperature string phase. On leave of absence from the School of Physics & Astronomy, University of Minnesota, Minneapolis, Minnesota, USA.
Pion electric polarizability from lattice QCD
Alexandru, Andrei; Lujan, Michael; Freeman, Walter; Lee, Frank
2016-01-22
Electromagnetic polarizabilities are important parameters for understanding the interaction between photons and hadrons. For pions these quantities are poorly constrained experimentally since they can only be measured indirectly. New experiments at CERN and Jefferson Lab are planned that will measure the polarizabilities more precisely. Lattice QCD can be used to compute these quantities directly in terms of quark and gluons degrees of freedom, using the background field method. We present results for the electric polarizability for two different quark masses, light enough to connect to chiral perturbation theory. These are currently the lightest quark masses used in polarizability studies.
Localization and mass spectrum of q-form fields on branes
NASA Astrophysics Data System (ADS)
Fu, Chun-E.; Zhong, Yuan; Xie, Qun-Ying; Liu, Yu-Xiao
2016-06-01
In this paper, we investigate localization of a bulk massless q-form field on codimension-one branes by using a new Kaluza-Klein (KK) decomposition, for which there are two types of KK modes for the bulk q-form field, the q-form and (q - 1)-form modes. The first modes may be massive or massless while the second ones are all massless. These two types of KK modes satisfy two Schrödinger-like equations. For a five-dimensional brane model with a finite extra dimension, the spectrum of a bulk 3-form field on the brane consists of some massive bound 3-form KK modes as well as some massless bound 2-form ones with different configuration along the extra dimension. These 2-form modes are different from those obtained from a bulk 2-form field. For a five-dimensional degenerated Bloch brane model with an infinite extra dimension, some massive 3-form resonant KK modes and corresponding massless 2-form resonant ones are obtained for a bulk 3-form field.
DSP-Based dual-polarity mass spectrum pattern recognition for bio-detection
Riot, V; Coffee, K; Gard, E; Fergenson, D; Ramani, S; Steele, P
2006-04-21
The Bio-Aerosol Mass Spectrometry (BAMS) instrument analyzes single aerosol particles using a dual-polarity time-of-flight mass spectrometer recording simultaneously spectra of thirty to a hundred thousand points on each polarity. We describe here a real-time pattern recognition algorithm developed at Lawrence Livermore National Laboratory that has been implemented on a nine Digital Signal Processor (DSP) system from Signatec Incorporated. The algorithm first preprocesses independently the raw time-of-flight data through an adaptive baseline removal routine. The next step consists of a polarity dependent calibration to a mass-to-charge representation, reducing the data to about five hundred to a thousand channels per polarity. The last step is the identification step using a pattern recognition algorithm based on a library of known particle signatures including threat agents and background particles. The identification step includes integrating the two polarities for a final identification determination using a score-based rule tree. This algorithm, operating on multiple channels per-polarity and multiple polarities, is well suited for parallel real-time processing. It has been implemented on the PMP8A from Signatec Incorporated, which is a computer based board that can interface directly to the two one-Giga-Sample digitizers (PDA1000 from Signatec Incorporated) used to record the two polarities of time-of-flight data. By using optimized data separation, pipelining, and parallel processing across the nine DSPs it is possible to achieve a processing speed of up to a thousand particles per seconds, while maintaining the recognition rate observed on a non-real time implementation. This embedded system has allowed the BAMS technology to improve its throughput and therefore its sensitivity while maintaining a large dynamic range (number of channels and two polarities) thus maintaining the systems specificity for bio-detection.
QCD bulk thermodynamics and conserved charge fluctuations with HISQ fermions
NASA Astrophysics Data System (ADS)
Schmidt, Christian; pre="(for" post="" affil="1,
2013-04-01
After briefly reviewing recent progress by the HotQCD collaboration in studying the 2+1 flavor QCD equation of state, we will focus on results on fluctuations of conserved charges by the BNL-Bielefeld and HotQCD collaborations. Higher order cumulants of the net-charge distributions are increasingly dominated by a universal scaling behavior, which arises due to a critical point of QCD in the chiral limit. Considering cumulants up to the 6th order, we observe that they generically behave as expected from universal scaling laws, which is quite different from cumulants calculated within the hadron resonance gas model. Taking ratios of these cumulants, we obtain volume independent results that can be compared to the experimental measurements. We will argue that the freeze-out chemical potentials and the freeze-out temperature, usually obtained by a HRG model fit to the measured hadronic yields, can also be obtained in a model independent way from ab-initio lattice QCD calculations by utilizing observables related to conserved charge fluctuations. Further, we will show that the freeze-out strangeness and electric charge chemical potentials can be fixed by imposing strangeness neutrality and isospin asymmetry constraints in the lattice QCD calculations, in order to accommodate conditions met in heavy ion collisions. All results have been obtained with the highly improved staggered quark action (HISQ) and almost physical quark masses on lattices with temporal extent of Nτ = 6, 8, 10, 12.
Electric polarizability of neutral hadrons from lattice QCD
NASA Astrophysics Data System (ADS)
Lee, Frank; Alexandru, Andrei; Lujan, Michael; Freeman, Walter
2017-01-01
We report on the electric polarizability for the neutron, neutral pion, and neutral kaon from lattice QCD. The results are based on dynamical QCD ensembles at two different pion masses: 306 and 227 MeV. An infinite volume extrapolation is performed for each hadron at both pion masses. The resulting polarizabilities are compared with other lattice calculations, ChPT, and experiment. This work is supported in part by the NSF CAREER grant PHY-1151648, the U.S. Department of Energy grant DE-FG02-95ER40907, and the ARCS foundation.
Ablakulov, Kh. Narzikulov, Z.
2015-01-15
A phenomenological model is developed in terms of bilocal meson fields in order to describe a vector meson and its leptonic decays. A new Salpeter equation for this particle and the Schwinger-Dyson equation allowing for the presence of an arbitrary potential and for a modification associated with the renormalization of the quark (antiquark ) wave function within the meson are given. An expression for the constant of the leptonic decay of the charged rho meson is obtained from an analysis of the decay process τ → ρν via parametrizing in it the hadronization of intermediate charged weak W bosons into a bilocal vector meson. The potential is chosen in the form of the sum of harmonic-oscillator and Coulomb potentials, and the respective boundary-value problem is formulated. It is shown that the solutions to this problem describe both the mass spectrum of vector mesons and their leptonic-decay constants.
Allen, Felicity; Pon, Allison; Wilson, Michael; Greiner, Russ; Wishart, David
2014-01-01
CFM-ID is a web server supporting three tasks associated with the interpretation of tandem mass spectra (MS/MS) for the purpose of automated metabolite identification: annotation of the peaks in a spectrum for a known chemical structure; prediction of spectra for a given chemical structure and putative metabolite identification—a predicted ranking of possible candidate structures for a target spectrum. The algorithms used for these tasks are based on Competitive Fragmentation Modeling (CFM), a recently introduced probabilistic generative model for the MS/MS fragmentation process that uses machine learning techniques to learn its parameters from data. These algorithms have been extensively tested on multiple datasets and have been shown to out-perform existing methods such as MetFrag and FingerId. This web server provides a simple interface for using these algorithms and a graphical display of the resulting annotations, spectra and structures. CFM-ID is made freely available at http://cfmid.wishartlab.com. PMID:24895432
Wilkerson Jr., Charles W.
2000-12-31
The goal of this project was to expand the range of chemical species that may be detected by membrane introduction mass spectrometry (MIMS) in environmental, and specifically in Mixed Waste, monitoring and characterization applications. Membrane introduction mass spectrometry (MIMS) functions as a near real-time monitor: there is little to no sample preparation and t analysis time is seconds to minutes. MIMS can be implemented as a flow injection technique, where samples, standards, and method blanks can be sequentially analyzed in a continuous fashion. The membrane acts as an interface between the sample (air or water) and the vacuum of the mass spectrometer. Transport of the analyte through the membrane occurs by the process of pervaporation. This process is described by adsorption to the outer surface of the membrane, diffusion through the membrane, and desorption from the inner membrane surface into a helium gas flow or into vacuum. The driving force for this work is the need for a rapid, sensitive, and broadly applicable tool for characterizing organic and metal-containing contaminants in a variety of DOE (and other) waste streams. In all characterization scenarios, a balance must be struck between evaluation of the hazards and their extent at a waste site, and the resources available for the overall mitigation of that risk. In the case of chemically, physically, and geometrically homogeneous waste, the situation is aided by the ability to reasonably assume that any sample collected is representative of the overall site constituents. However, few real environmental challenges are homogeneous. As a result, detailed sampling plans must be prepared, and chemical analyses must be performed on a number of samples in order to identify areas of contamination and assess further options. For many years, the chemical analysis part of this process has been accomplished by delivering the samples to a (typically) physically remote laboratory, where very detailed, and
Mass spectrum of the butadiynyl radical (C4H; X2[summation operator]+)
NASA Astrophysics Data System (ADS)
Gu, Xibin; Guo, Ying; Kaiser, Ralf I.
2005-11-01
We utilized the crossed molecular beams method to synthesize the butadiynyl radical, C4H(X2[summation operator]+), via the reaction of dicarbon molecules with acetylene, under single collision conditions. Time-of-flight spectra of the radical were recorded at the center-of-mass angle (31°) of the parent ion (m/z = 49; C4H+) and of the fragments at m/z = 48 (C4+), m/z = 37 (C3H+), and m/z = 36 (C3+) This yields relative intensity ratios of I(m/z = 49):I(m/z = 48):I(m/z = 37):I(m/z = 36):I(m/z = 25):I(m/z = 24) = 1.0:0.67 +/- 0.07:0.47 +/- 0.06:0.2 +/- 0.02:0.08 +/- 0.02:0.04 +/- 0.02 at 70 eV electron impact energy. Signal at m/z = 13 (CH+) and 12 (C+) contribute less than 0.04 relative to the parent peak; the intensity of the 13C isotopic peak of the butadiynyl radical at m/z = 50 (13C12C3H+) depicts an intensity of 0.04 +/- 0.01 relative to m/z = 49. Employing linear scaling methods, the absolute ionization cross section of the butadiynyl radical was computed to be 8.8 +/- 1.8 × 10-16 cm2. These data can be employed in future space missions to detect the butadiynyl radical in oxygen-poor combustion flames and in the atmospheres of planets (Jupiter, Saturn, Uranus, Neptune and Pluto) and their moons (Titan, Triton and Oberon) in situ via matrix interval arithmetic assisted mass spectrometry.
Bazavov, A; Ding, H-T; Hegde, P; Kaczmarek, O; Karsch, F; Laermann, E; Maezawa, Y; Mukherjee, Swagato; Ohno, H; Petreczky, P; Schmidt, C; Sharma, S; Soeldner, W; Wagner, M
2014-08-15
We compare lattice QCD results for appropriate combinations of net strangeness fluctuations and their correlations with net baryon number fluctuations with predictions from two hadron resonance gas (HRG) models having different strange hadron content. The conventionally used HRG model based on experimentally established strange hadrons fails to describe the lattice QCD results in the hadronic phase close to the QCD crossover. Supplementing the conventional HRG with additional, experimentally uncharted strange hadrons predicted by quark model calculations and observed in lattice QCD spectrum calculations leads to good descriptions of strange hadron thermodynamics below the QCD crossover. We show that the thermodynamic presence of these additional states gets imprinted in the yields of the ground-state strange hadrons leading to a systematic 5-8 MeV decrease of the chemical freeze-out temperatures of ground-state strange baryons.
Effects of QCD equation of state on the stochastic gravitational wave background
NASA Astrophysics Data System (ADS)
Anand, Sampurn; Dey, Ujjal Kumar; Mohanty, Subhendra
2017-03-01
Cosmological phase transitions can be a source of Stochastic Gravitational Wave (SGW) background. Apart from the dynamics of the phase transition, the characteristic frequency and the fractional energy density Ωgw of the SGW depends upon the temperature of the transition. In this article, we compute the SGW spectrum in the light of QCD equation of state provided by the lattice results. We find that the inclusion of trace anomaly from lattice QCD, enhances the SGW signal generated during QCD phase transition by ~ 50% and the peak frequency of the QCD era SGW are shifted higher by ~ 25% as compared to the earlier estimates without trace anomaly. This result is extremely significant for testing the phase transition dynamics near QCD epoch.
The dijet invariant mass at the Tevatron Collider
Giannetti, P. )
1990-05-09
The differential cross section of the process p + pbar {yields} jet + jet + X as a function of the dijet invariant mass has been measured with the CDF detector at a center of mass energy of 1.8 TeV at the Tevatron Collider in Fermilab. The present analysis is based on the sample of events collected in the 1988/89 run, amounting to a total integrated luminosity of 4.2 pb{sup {minus}1}. A comparison to leading order QCD and quark compositeness predictions is presented as well as a study of the sensitivity of the mass spectrum to the gluon radiation. 10 refs., 6 figs.
QCD coupling constants and VDM
Erkol, G.; Ozpineci, A.; Zamiralov, V. S.
2012-10-23
QCD sum rules for coupling constants of vector mesons with baryons are constructed. The corresponding QCD sum rules for electric charges and magnetic moments are also derived and with the use of vector-meson-dominance model related to the coupling constants. The VDM role as the criterium of reciprocal validity of the sum rules is considered.
Recent Developments in Perturbative QCD
Dixon, Lance J.; /SLAC
2005-07-11
I review recent progress in perturbative QCD on two fronts: extending next-to-next-to-leading order QCD corrections to a broader range of collider processes, and applying twistor-space methods (and related spinoffs) to computations of multi-parton scattering amplitudes.
QCD: Questions, challenges, and dilemmas
Bjorken, J.
1996-11-01
An introduction to some outstanding issues in QCD is presented, with emphasis on work by Diakonov and co-workers on the influence of the instanton vacuum on low-energy QCD observables. This includes the calculation of input valence-parton distributions for deep-inelastic scattering. 35 refs., 3 figs.
Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; ...
2017-01-12
A first search for pair production of dark matter candidates through vector boson fusion in proton-proton collisions atmore » $$\\sqrt{s}$$=8 TeV is performed with the CMS detector. The vector boson fusion topology enhances missing transverse momentum, providing a way to probe supersymmetry, even in the case of a compressed mass spectrum. The data sample corresponds to an integrated luminosity of 18.5 fb$-$1, recorded by the CMS experiment. The observed dijet mass spectrum is consistent with the standard model expectation. In an effective field theory, dark matter masses are explored as a function of contact interaction strength. Lastly, the most stringent limit on bottom squark production with mass below 315 GeV is also reported, assuming a 5 GeV mass difference with respect to the lightest neutralino.« less
NASA Astrophysics Data System (ADS)
Güijosa, Alberto
2016-10-01
In the nearly 20 years that have elapsed since its discovery, the gauge-gravity correspondence has become established as an efficient tool to explore the physics of a large class of strongly-coupled field theories. A brief overview is given here of its formulation and a few of its applications, emphasizing attempts to emulate aspects of the strong-coupling regime of quantum chromodynamics (QCD). To the extent possible, the presentation is self-contained, and does not presuppose knowledge of string theory.
Sakai, Tadakatsu; Sugimoto, Shigeki
2005-12-02
We propose a holographic dual of QCD with massless flavors on the basis of a D4/D8-brane configuration within a probe approximation. We are led to a five-dimensional Yang-Mills theory on a curved space-time along with a Chern-Simons five-form on it, both of which provide us with a unifying framework to study the massless pion and an infinite number of massive vector mesons. We make sample computations of the physical quantities that involve the mesons and compare them with the experimental data. It is found that most of the results of this model are compatible with the experiments.
QCD, Tevatron results and LHC prospects
Elvira, V.Daniel; /Fermilab
2008-08-01
We present a summary of the most recent measurements relevant to Quantum Chromodynamics (QCD) delivered by the D0 and CDF Tevatron experiments by May 2008. CDF and D0 are moving toward precision measurements of QCD based on data samples in excess of 1 fb-1. The inclusive jet cross sections have been extended to forward rapidity regions and measured with unprecedented precision following improvements in the jet energy calibration. Results on dijet mass distributions, bbbar dijet production using tracker based triggers, underlying event in dijet and Drell-Yan samples, inclusive photon and diphoton cross sections complete the list of measurements included in this paper. Good agreement with pQCD within errors is observed for jet production measurements. An improved and consistent theoretical description is needed for photon+jets processes. Collisions at the LHC are scheduled for early fall 2008, opening an era of discoveries at the new energy frontier, 5-7 times higher than that of the Tevatron.
Chiral logarithms in quenched QCD
Y. Chen; S. J. Dong; T. Draper; I. Horvath; F. X. Lee; K. F. Liu; N. Mathur; and J. B. Zhang
2004-08-01
The quenched chiral logarithms are examined on a 163x28 lattice with Iwasaki gauge action and overlap fermions. The pion decay constant fpi is used to set the lattice spacing, a = 0.200(3) fm. With pion mass as low as {approx}180 MeV, we see the quenched chiral logarithms clearly in mpi2/m and fP, the pseudoscalar decay constant. The authors analyze the data to determine how low the pion mass needs to be in order for the quenched one-loop chiral perturbation theory (chiPT) to apply. With the constrained curve-fitting method, they are able to extract the quenched chiral logarithmic parameter delta together with other low-energy parameters. Only for mpi<=300 MeV do we obtain a consistent and stable fit with a constant delta which they determine to be 0.24(3)(4) (at the chiral scale Lambdachi = 0.8 GeV). By comparing to the 123x28 lattice, they estimate the finite volume effect to be about 2.7% for the smallest pion mass. They also fitted the pion mass to the form for the re-summed cactus diagrams and found that its applicable region is extended farther than the range for the one-loop formula, perhaps up to mpi {approx}500-600 MeV. The scale independent delta is determined to be 0.20(3) in this case. The authors study the quenched non-analytic terms in the nucleon mass and find that the coefficient C1/2 in the nucleon mass is consistent with the prediction of one-loop chiPT. They also obtain the low energy constant L5 from fpi. They conclude from this study that it is imperative to cover only the range of data with the pion mass less than {approx}300 MeV in order to examine the chiral behavior of the hadron masses and decay constants in quenched QCD and match them with quenched one-loop chiPT.
First-principles Calculation of Excited State Spectra in QCD
Jozef Dudek,Robert Edwards,Michael Peardon,David Richards,Christopher Thomas
2011-05-01
Recent progress at understanding the excited state spectra of mesons and baryons is described. I begin by outlining the application of the variational method to compute the spectrum of QCD, and then present results for the excited meson spectrum, with continuum quantum numbers of the states clearly delineated. I emphasise the need to extend the calculation to encompass multi-hadron contributions, and describe a recent calculation of the I=2 pion-pion energy-dependent phase shifts as a precursor to the study of channels with resonant behavior. I conclude with recent results for the low lying baryon spectrum, and the prospects for future calculations.
None
2016-07-12
Modern QCD - Lecture 1 Starting from the QCD Lagrangian we will revisit some basic QCD concepts and derive fundamental properties like gauge invariance and isospin symmetry and will discuss the Feynman rules of the theory. We will then focus on the gauge group of QCD and derive the Casimirs CF and CA and some useful color identities.
Hamiltonian effective field theory study of the N*(1440 ) resonance in lattice QCD
NASA Astrophysics Data System (ADS)
Liu, Zhan-Wei; Kamleh, Waseem; Leinweber, Derek B.; Stokes, Finn M.; Thomas, Anthony W.; Wu, Jia-Jun
2017-02-01
We examine the phase shifts and inelasticities associated with the N*(1440 ) Roper resonance, and we connect these infinite-volume observables to the finite-volume spectrum of lattice QCD using Hamiltonian effective field theory. We explore three hypotheses for the structure of the Roper resonance. All three hypotheses are able to describe the scattering data well. In the third hypothesis the Roper resonance couples the low-lying bare basis-state component associated with the ground-state nucleon with the virtual meson-baryon contributions. Here the nontrivial superpositions of the meson-baryon scattering states are complemented by bare basis-state components, explaining their observation in contemporary lattice QCD calculations. The merit of this scenario lies in its ability to not only describe the observed nucleon energy levels in large-volume lattice QCD simulations but also explain why other low-lying states have been missed in today's lattice QCD results for the nucleon spectrum.
Charmed bottom baryon spectroscopy from lattice QCD
Brown, Zachary S.; Detmold, William; Meinel, Stefan; ...
2014-11-19
In this study, we calculate the masses of baryons containing one, two, or three heavy quarks using lattice QCD. We consider all possible combinations of charm and bottom quarks, and compute a total of 36 different states with JP = 1/2+ and JP = 3/2+. We use domain-wall fermions for the up, down, and strange quarks, a relativistic heavy-quark action for the charm quarks, and nonrelativistic QCD for the bottom quarks. Our analysis includes results from two different lattice spacings and seven different pion masses. We perform extrapolations of the baryon masses to the continuum limit and to the physicalmore » pion mass using SU(4|2) heavy-hadron chiral perturbation theory including 1/mQ and finite-volume effects. For the 14 singly heavy baryons that have already been observed, our results agree with the experimental values within the uncertainties. We compare our predictions for the hitherto unobserved states with other lattice calculations and quark-model studies.« less
Charmed bottom baryon spectroscopy from lattice QCD
Brown, Zachary S.; Detmold, William; Meinel, Stefan; Orginos, Kostas
2014-11-19
In this study, we calculate the masses of baryons containing one, two, or three heavy quarks using lattice QCD. We consider all possible combinations of charm and bottom quarks, and compute a total of 36 different states with J^{P} = 1/2^{+} and J^{P} = 3/2^{+}. We use domain-wall fermions for the up, down, and strange quarks, a relativistic heavy-quark action for the charm quarks, and nonrelativistic QCD for the bottom quarks. Our analysis includes results from two different lattice spacings and seven different pion masses. We perform extrapolations of the baryon masses to the continuum limit and to the physical pion mass using SU(4|2) heavy-hadron chiral perturbation theory including 1/m_{Q} and finite-volume effects. For the 14 singly heavy baryons that have already been observed, our results agree with the experimental values within the uncertainties. We compare our predictions for the hitherto unobserved states with other lattice calculations and quark-model studies.
Hadron spectroscopy in lattice QCD with dynamical quark loops
Fukugita, M.; Oyanagi, Y.; Ukawa, A.
1986-08-25
Hadron mass calculations are carried out in lattice QCD on a 9/sup 3/ x 18 lattice for flavor-nonsinglet mesons and baryons. Dynamical quark loops are fully incorporated with the Langevin technique. The contribution of dynamical quark loops significantly modifies the hadron masses in lattice units, but its dominant part can be absorbed into a shift of the coupling constant for the quark mass range we explored.
Improved methods for the study of hadronic physics from lattice QCD
Orginos, Konstantinos; Richards, David G.
2015-03-01
The solution of quantum chromodynamics (QCD) on a lattice provides a first-principles method for understanding QCD in the low-energy regime, and is thus an essential tool for nuclear physics. The generation of gauge configurations, the starting point for lattice calculations, requires the most powerful leadership-class computers available. However, to fully exploit such leadership-class computing requires increasingly sophisticated methods for obtaining physics observables from the underlying gauge ensembles. In this paper, we describe a variety of recent methods that have been used to advance our understanding of the spectrum and structure of hadrons through lattice QCD.
Improved methods for the study of hadronic physics from lattice QCD
Orginos, Kostas; Richards, David
2015-02-05
The solution of QCD on a lattice provides a first-principles method for understanding QCD in the low-energy regime, and is thus an essential tool for nuclear physics. The generation of gauge configurations, the starting point for lattice calculations, requires the most powerful leadership-class computers available. However, to fully exploit such leadership-class computing requires increasingly sophisticated methods for obtaining physics observables from the underlying gauge ensembles. In this study, we describe a variety of recent methods that have been used to advance our understanding of the spectrum and structure of hadrons through lattice QCD.
Tackmann, Kerstin
2008-06-26
I present preliminary results of the measurement of the hadronic mass spectrum and its first three spectral moments in inclusive charmless semileptonic B-meson decays. The truncated hadronic mass moments are used for the first determination of the b-quark mass and the nonperturbative parameters μ_{π}^{2} and ρ_{D}^{3} in this B-meson decay channel. The study is based on 383 x 10^{6} B$\\bar{B}$ decays collected with the BABAR experiment at the PEP-II e^{+}e^{-} storage rings, located at the Stanford Linear Accelerator Center. The first, second central, and third central hadronic mass moment with a cut on the hadronic mass m_{X}^{2} < 6.4GeV^{2} and the lepton momentum p* > 1 GeV are measured to be: M_{1} = (1.96 ± 0.34_{stat} ± 0.53_{syst}) GeV^{2}; U_{2} = (1.92 ± 0.59_{stat} ± 0.87_{syst}) GeV^{4}; and U_{3} = (1.79 ± 0.62_{stat} ± 0.78_{syst}) GeV^{6}; with correlation coefficients ρ_{12} = 0.99, ρ_{23} = 0.94, and ρ_{13} = 0.88, respectively. Using Heavy Quark Effective Theory-based predictions in the kinetic scheme we extract: m_{b} = (4.60 ± 0.13_{stat} ± 0.19_{syst} ± 0.10_{theo} GeV); μ_{π}^{2} = (0.40 ± 0.14_{stat} ± 0.20_{syst} ± 0.04_{theo}) GeV^{2}; ρ_{D}^{3} = (0.10 ± 0.02_{stat} ± 0.02_{syst} ± 0.07_{theo}) GeV^{3}; at μ = 1 GeV, with correlation coefficients ρ_{m}_{b}μ_{π}^{2} = -0.99, ρ _{μπ2ρD3} = 0.57, and ρ_{m}b_{ρ}D_{3} = -0.59. The results are in good agreement with earlier determinations in inclusive charmed semileptonic and radiative penguin B-meson decays and have a
Novel Perspectives from Light-Front QCD, Super-Conformal Algebra, and Light-Front Holography
Brodsky, Stanley J.
2015-12-01
Light-Front Quantization – Dirac’s “Front Form” – provides a physical, frame-independent formalism for hadron dynamics and structure. Observables such as structure functions, transverse momentum distributions, and distribution amplitudes are defined from the hadronic LFWFs. One obtains new insights into the hadronic mass scale, the hadronic spectrum, and the functional form of the QCD running coupling in the nonperturbative domain using light-front holography. In addition, superconformal algebra leads to remarkable supersymmetric relations between mesons and baryons. I also discuss evidence that the antishadowing of nuclear structure functions is nonuniversal; i.e., flavor dependent, and why shadowing and antishadowing phenomena may be incompatible with the momentum and other sum rules for the nuclear parton distribution functions.
Link, J.M.; Yager, P.M.; Anjos, J.C.; Bediaga, I.; Gobel, C.; Machado, A.A.; Magnin, J.; Massafferri, A.; de Miranda, J.M.; Pepe, I.M.; Polycarpo, E.; dos Reis, A.C.; Carrillo, S.; Casimiro, E.; Cuautle, E.; Sanchez-Hernandez, A.; Uribe, C.; Vazquez, F.; Agostino, L.; Cinquini, L.; Cumalat, J.P. /Colorado U. /Fermilab /Frascati /Guanajuato U. /Illinois U., Urbana /Indiana U. /Korea U. /Kyungpook Natl. U. /INFN, Milan /Milan U. /North Carolina U. /Pavia U. /INFN, Pavia /Puerto Rico U., Mayaguez /South Carolina U. /Tennessee U. /Vanderbilt U. /Wisconsin U., Madison
2005-03-01
We present a K{pi} mass spectrum analysis of the four-body semileptonic charm decay D{sup +} {yields} K{sup -}{pi}{sup +}{mu}{sup +}{nu} in the range of 0.65 GeV/c{sup 2} < m{sub K{pi}} < 1.5 GeV/c{sup 2}. We observe a non-resonant contribution of 5.30 {+-} 0.74{sub -0.51}{sup +0.99}% with respect to the total D{sup +} {yields} K{sup -} {pi}{sup +}{mu}{sup +}{nu} decay. For the K*(892){sup 0} resonance, we obtain a mass of 895.41 {+-} 0.32{sub -0.36}{sup +0.35} NeV/c{sup 2}, a width of 47.79 {+-} 0.86{sub -1.1}{sup +1.3} MeV/c{sup 2}, and a Blatt-Weisskopf damping factor parameter of 3.96 {+-} 0.54{sub -0.90}{sup +0.72} GeV{sup -1}. We also report 90% CL upper limits of 1.60% and 1.90% for the branching ratios {Lambda}(D{sup +} {yields} {bar K}*(1680){sup 0} {mu}{sup +}{nu})/{Lambda}(D{sup +} {yields} K{sup -} {pi}{sup +}{mu}{sup +}{nu}) and {Lambda}(D{sup +} {yields} {bar K}*{sub 0}(1430){sup 0}) {mu}{sup +}{nu}/{Lambda}(D{sup +} {yields} K{sup -}{pi}{sup +}) {mu}{sup +}{nu}, respectively.
NASA Astrophysics Data System (ADS)
Negash, Hluf; Bhatnagar, Shashank
2015-04-01
In this paper, we study the mass spectrum and decay constants of ground state (1S) and radially excited states (2S and 3S) of heavy equal mass pseudoscalar mesons, ηc and ηb. We have employed the framework of Bethe-Salpeter equation (BSE) under Covariant Instantaneous Ansatz (CIA). Our predictions are in reasonable agreement with the data on available states and results of other models.
Topics in lattice QCD and effective field theory
NASA Astrophysics Data System (ADS)
Buchoff, Michael I.
Quantum Chromodynamics (QCD) is the fundamental theory that governs hadronic physics. However, due to its non-perturbative nature at low-energy/long distances, QCD calculations are difficult. The only method for performing these calculations is through lattice QCD. These computationally intensive calculations approximate continuum physics with a discretized lattice in order to extract hadronic phenomena from first principles. However, as in any approximation, there are multiple systematic errors between lattice QCD calculation and actual hardronic phenomena. Developing analytic formulae describing the systematic errors due to the discrete lattice spacings is the main focus of this work. To account for these systematic effects in terms of hadronic interactions, effective field theory proves to be useful. Effective field theory (EFT) provides a formalism for categorizing low-energy effects of a high-energy fundamental theory as long as there is a significant separation in scales. An example of this is in chiral perturbation theory (chiPT), where the low-energy effects of QCD are contained in a mesonic theory whose applicability is a result of a pion mass smaller than the chiral breaking scale. In a similar way, lattice chiPT accounts for the low-energy effects of lattice QCD, where a small lattice spacing acts the same way as the quark mass. In this work, the basics of this process are outlined, and multiple original calculations are presented: effective field theory for anisotropic lattices, I=2 pipi scattering for isotropic, anisotropic, and twisted mass lattices. Additionally, a combination of effective field theory and an isospin chemical potential on the lattice is proposed to extract several computationally difficult scattering parameters. Lastly, recently proposed local, chiral lattice actions are analyzed in the framework of effective field theory, which illuminates various challenges in simulating such actions.
Lattice QCD and Nuclear Physics
Konstantinos Orginos
2007-03-01
A steady stream of developments in Lattice QCD have made it possible today to begin to address the question of how nuclear physics emerges from the underlying theory of strong interactions. Central role in this understanding play both the effective field theory description of nuclear forces and the ability to perform accurate non-perturbative calculations in lo w energy QCD. Here I present some recent results that attempt to extract important low energy constants of the effective field theory of nuclear forces from lattice QCD.
Nucleon Generalized Parton Distributions from Full Lattice QCD
Robert Edwards; Philipp Haegler; David Richards; John Negele; Konstantinos Orginos; Wolfram Schroers; Jonathan Bratt; Andrew Pochinsky; Michael Engelhardt; George Fleming; Bernhard Musch; Dru Renner
2007-07-03
We present a comprehensive study of the lowest moments of nucleon generalized parton distributions in N_f=2+1 lattice QCD using domain wall valence quarks and improved staggered sea quarks. Our investigation includes helicity dependent and independent generalized parton distributions for pion masses as low as 350 MeV and volumes as large as (3.5 fm)^3.
R evolution: Improving perturbative QCD
Hoang, Andre H.; Jain, Ambar; Stewart, Iain W.; Scimemi, Ignazio
2010-07-01
Perturbative QCD results in the MS scheme can be dramatically improved by switching to a scheme that accounts for the dominant power law dependence on the factorization scale in the operator product expansion. We introduce the ''MSR scheme'' which achieves this in a Lorentz and gauge invariant way and has a very simple relation to MS. Results in MSR depend on a cutoff parameter R, in addition to the {mu} of MS. R variations can be used to independently estimate (i.) the size of power corrections, and (ii.) higher-order perturbative corrections (much like {mu} in MS). We give two examples at three-loop order, the ratio of mass splittings in the B*-B and D*-D systems, and the Ellis-Jaffe sum rule as a function of momentum transfer Q in deep inelastic scattering. Comparing to data, the perturbative MSR results work well even for Q{approx}1 GeV, and power corrections are reduced compared to MS.
QCD corrections to [Formula: see text] in FDR.
Pittau, Roberto
I apply FDR-a recently introduced four-dimensional approach to quantum field theories (QFTs)-to the computation of the NLO QCD corrections to [Formula: see text] in the large top mass limit. The calculation involves all key ingredients of QCD-namely ultraviolet, infrared, and collinear divergences, besides [Formula: see text] renormalization-and paves the way for successful use of FDR in massless one-loop QFT computations. I show in detail how the correct result emerges in FDR, and discuss the translation rules to dimensional regularization.
Nuclear physics from lattice QCD at strong coupling.
de Forcrand, Ph; Fromm, M
2010-03-19
We study numerically the strong coupling limit of lattice QCD with one flavor of massless staggered quarks. We determine the complete phase diagram as a function of temperature and chemical potential, including a tricritical point. We clarify the nature of the low temperature dense phase, which is strongly bound "nuclear" matter. This strong binding is explained by the nuclear potential, which we measure. Finally, we determine, from this first-principles limiting case of QCD, the masses of "atomic nuclei" up to A=12 "carbon".
Analysis of the dilepton invariant mass spectrum in C + C collisions at 2A and 1A GeV
Thomere, M.; Hartnack, C.; Aichelin, J.
2007-06-15
Recently the HADES Collaboration has published the invariant mass spectrum of e{sup +}e{sup -} pairs, dN/dM{sub e{sup +}}{sub e{sup -}}, produced in C + C collisions at 2A GeV. Using electromagnetic probes, one hopes to get information from this experiment on hadron properties at high density and temperature. Simulations show that firm conclusions on possible in-medium modifications of meson properties will only be possible when the elementary meson production cross sections, especially in the pn channel, as well as production cross sections of baryonic resonances are better known. Presently one can conclude that (i) simulations overpredict by far the cross section at M{sub e{sup +}}{sub e{sup -}}{approx_equal}M{sub {omega}}{sup 0} if free production cross sections are used and that (ii) the upper limit of the {eta} decay into e{sup +}e{sup -} is smaller than the present upper limit of the Particle Data Group. This is the result of simulations using the isospin quantum molecular dynamics approach.
LATTICE QCD AT FINITE TEMPERATURE.
PETRECZKY, P.
2005-03-12
I review recent progress in lattice QCD at finite temperature. Results on the transition temperature will be summarized. Recent progress in understanding in-medium modifications of interquark forces and quarkonia spectral functions at finite temperatures is discussed.
Parton Distributions in the pion from lattice QCD
W. Detmold; Wally Melnitchouk; Anthony Thomas
2003-03-01
We analyze the moments of parton distribution functions in the pion calculated in lattice QCD, paying particular attention to their chiral extrapolation. Using the lowest three non-trivial moments calculated on the lattice, we assess the accuracy with which the x-dependence of both the valence and sea quark distributions in the pion can be extracted. The resulting valence quark distributions at the physical pion mass are in fair agreement with existing Drell-Yan data, but the statistical errors are such that one cannot yet confirm (or rule out) the large-x behavior expected from hadron helicity conservation in perturbative QCD. One can expect, however, that the next generation of calculations in lattice QCD will allow one to extract parton distributions with a level of accuracy comparable with current experiments.
Search for the pentaquark resonance signature in lattice QCD
B. G. Lasscock; J. Hedditch; D. B. Leinweber; W. Melnitchouk; A. W. Thomas; A. G. Williams; R. D. Young; J. M. Zanotti
2005-03-01
Claims concerning the possible discovery of the $\\Theta^+$ pentaquark, with minimal quark content $uudd\\bar{s}$, have motivated our comprehensive study into possible pentaquark states using lattice QCD. We review various pentaquark interpolating fields in the literature and create a new candidate ideal for lattice QCD simulations. Using these interpolating fields we attempt to isolate a signal for a five-quark resonance. Calculations are performed using improved actions on a large $20^{3} \\times 40$ lattice in the quenched approximation. The standard lattice resonance signal of increasing attraction between baryon constituents for increasing quark mass is not observed for spin-1/2 pentaquark states. We conclude that evidence supporting the existence of a spin-1/2 pentaquark resonance does not exist in quenched QCD.
QCD Predictions for Charm and Bottom Production at RHIC
Cacciari, Matteo; Nason, Paolo; Vogt, Ramona
2005-09-01
We make up-to-date QCD predictions for open charm and bottom production at RHIC in nucleon-nucleon collisions at {radical}S = 200 GeV. We also calculate the electron spectrum resulting from heavy flavor decays to allow direct comparison to the data. A rigorous benchmark, including the theoretical uncertainties, is established against which nuclear collision data can be compared to obtain evidence for nuclear effects.
Physical Nucleon Form Factors from Lattice QCD
Hrayr Matevosyan; Anthony W. Thomas; Gerald A. Miller
2005-10-25
We explore the possibility of extrapolating state of the art lattice QCD calculations of nucleon form factors to the physical regime. We find that the lattice results can be reproduced using the Light Front Cloudy Bag Model and the Extended Gari-Krmpelmann Model by letting their parameters be analytic functions of the quark mass. We then use the models to extend the lattice calculations to large values of Q{sup 2} of interest to current and planned experiments. These functions for the first model are also used to define extrapolations to the physical value of the pion mass, thereby allowing us to study how the predicted zero in G{sub E}(Q{sup 2})/G{sub M}(Q{sup 2}) varies as a function of quark mass.
Observation of a Broad Structure in the $\\pi^+\\pi^-J/\\psi$ Mass Spectrum around 4.26~GeV/$c^2$
Aubert, B.; Barate, R.; Boutigny, D.; Couderc, F.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Tisserand, V.; Zghiche, A.; Grauges, E.; Palano, A.; Pappagallo, M.; Pompili, A.; Chen, J.C.; Qi, N.D.; Rong, G.; Wang, P.; Zhu, Y.S.; Eigen, G.; Ofte, I.; Stugu, B. /Bergen U. /LBL, Berkeley /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /Bristol U. /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UCLA /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /Ferrara U. /INFN, Ferrara /Frascati /Genoa U. /INFN, Genoa /Harvard U. /Heidelberg U. /Imperial Coll., London /Iowa U. /Iowa State U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT, LNS /McGill U. /Milan U. /INFN, Milan /Mississippi U. /Montreal U. /Mt. Holyoke Coll. /Naples U. /INFN, Naples /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /Padua U. /INFN, Padua /Paris U., VI-VII /Pennsylvania U. /Perugia U. /INFN, Perugia /Pisa U. /INFN, Pisa /Prairie View A-M /Princeton U. /Rome U. /INFN, Rome /Rostock U. /Rutherford /DAPNIA, Saclay /South Carolina U. /SLAC /Stanford U., Phys. Dept. /SUNY, Stony Brook /Tennessee U. /Texas U. /Texas U., Dallas /Turin U. /INFN, Turin /Trieste U. /INFN, Trieste /Valencia U., IFIC /Vanderbilt U. /Victoria U. /Warwick U. /Wisconsin U., Madison /Yale U.
2005-07-06
The authors study initial-state radiation events, e{sup +}e{sup -} {yields} {gamma}{sub ISR} {pi}{sup +}{pi}{sup -} J/{psi}, with data collected with the BABAR detector. They observe an accumulation of events near 4.26 GeV/c{sup 2} in the invariant-mass spectrum of {pi}{sup +}{pi}{sup -} J/{psi}. Fits of the mass spectrum indicate that a broad resonance with a mass of about 4.26 GeV/c{sup 2} is required to describe the observed structure. The presence of additional narrow resonances cannot be excluded. The fitted width of the broad resonance is 50 to 90 MeV/c{sup 2}, depending on the fit hypothesis.
Search for heavy resonances in the W/Z-tagged dijet mass spectrum in pp collisions at 7 TeV
NASA Astrophysics Data System (ADS)
Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Aguilo, E.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hammer, J.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Pernicka, M.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Staykova, Z.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Gonzalez Suarez, R.; Kalogeropoulos, A.; Maes, M.; Olbrechts, A.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hreus, T.; Léonard, A.; Marage, P. E.; Mohammadi, A.; Reis, T.; Thomas, L.; Vander Marcken, G.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Cimmino, A.; Costantini, S.; Garcia, G.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Verwilligen, P.; Walsh, S.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Bruno, G.; Castello, R.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Schul, N.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Alves, G. A.; Correa Martins Junior, M.; Martins, T.; Pol, M. E.; Souza, M. H. G.; Aldá Júnior, W. L.; Carvalho, W.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Oguri, V.; Prado Da Silva, W. L.; Santoro, A.; Soares Jorge, L.; Sznajder, A.; Anjos, T. S.; Bernardes, C. A.; Dias, F. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Lagana, C.; Marinho, F.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.; Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Teng, H.; Wang, D.; Zhang, L.; Zou, W.; Avila, C.; Gomez, J. P.; Gomez Moreno, B.; Osorio Oliveros, A. F.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Morovic, S.; Attikis, A.; Galanti, M.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Finger, M.; Finger, M.; Assran, Y.; Elgammal, S.; Ellithi Kamel, A.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Müntel, M.; Raidal, M.; Rebane, L.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Heikkinen, A.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.; Banzuzi, K.; Karjalainen, A.; Korpela, A.; Tuuva, T.; Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Shreyber, I.; Titov, M.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Granier de Cassagnac, R.; Haguenauer, M.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J.-M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Juillot, P.; Le Bihan, A.-C.; Van Hove, P.; Fassi, F.; Mercier, D.; Beauceron, S.; Beaupere, N.; Bondu, O.; Boudoul, G.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sgandurra, L.; Sordini, V.; Tschudi, Y.; Verdier, P.; Viret, S.; Tsamalaidze, Z.; Anagnostou, G.; Autermann, C.; Beranek, S.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.
2013-06-01
A search has been made for massive resonances decaying into a quark and a vector boson, qW or qZ, or a pair of vector bosons, WW, WZ, or ZZ, where each vector boson decays to hadronic final states. This search is based on a data sample corresponding to an integrated luminosity of 5.0fb-1 of proton-proton collisions collected in the CMS experiment at the LHC in 2011 at a center-of-mass energy of 7 TeV. For sufficiently heavy resonances the decay products of each vector boson are merged into a single jet, and the event effectively has a dijet topology. The background from QCD dijet events is reduced using recently developed techniques that resolve jet substructure. A 95% CL lower limit is set on the mass of excited quark resonances decaying into qW (qZ) at 2.38 TeV (2.15 TeV) and upper limits are set on the cross section for resonances decaying to qW, qZ, WW, WZ, or ZZ final states.
Two-gluon and trigluon glueballs from dynamical holography QCD
NASA Astrophysics Data System (ADS)
Chen, Yi-dian; Huang, Mei
2016-12-01
We study the scalar, vector and tensor two-gluon and trigluon glueball spectra in the framework of the 5-dimension dynamical holographic QCD model, where the metric structure is deformed self-consistently by the dilaton field. For comparison, the glueball spectra are also calculated in the hard-wall and soft-wall holographic QCD models. In order to distinguish glueballs with even and odd parities, we introduce a positive and negative coupling between the dilaton field and glueballs, and for higher spin glueballs, we introduce a deformed 5-dimension mass. With this set-up, there is only one free parameter from the quadratic dilaton profile in the dynamical holographic QCD model, which is fixed by the scalar glueball spectra. It is found that the two-gluon glueball spectra produced in the dynamical holographic QCD model are in good agreement with lattice data. Among six trigluon glueballs, the produced masses for 1±- and 2-- are in good agreement with lattice data, and the produced masses for 0--, 0+- and 2+- are around 1.5 GeV lighter than lattice results. This result might indicate that the three trigluon glueballs of 0--, 0+- and 2+- are dominated by the three-gluon condensate contribution. Supported by the NSFC (11175251, 11621131001), DFG and NSFC (CRC 110), CAS Key Project KJCX2-EW-N01, K.C.Wong Education Foundation, and Youth Innovation Promotion Association of CAS
Radiative Transitions in Charmonium from Lattice QCD
Jozef Dudek; Robert Edwards; David Richards
2006-01-17
Radiative transitions between charmonium states offer an insight into the internal structure of heavy-quark bound states within QCD. We compute, for the first time within lattice QCD, the transition form-factors of various multipolarities between the lightest few charmonium states. In addition, we compute the experimentally unobservable, but physically interesting vector form-factors of the {eta}{sub c}, J/{psi} and {chi}{sub c0}. To this end we apply an ambitious combination of lattice techniques, computing three-point functions with heavy domain wall fermions on an anisotropic lattice within the quenched approximation. With an anisotropy {xi} = 3 at a{sub s} {approx} 0.1 fm we find a reasonable gross spectrum and a hyperfine splitting {approx}90 MeV, which compares favorably with other improved actions. In general, after extrapolation of lattice data at non-zero Q{sup 2} to the photopoint, our results agree within errors with all well measured experimental values. Furthermore, results are compared with the expectations of simple quark models where we find that many features are in agreement; beyond this we propose the possibility of constraining such models using our extracted values of physically unobservable quantities such as the J/{psi} quadrupole moment. We conclude that our methods are successful and propose to apply them to the problem of radiative transitions involving hybrid mesons, with the eventual goal of predicting hybrid meson photoproduction rates at the GlueX experiment.
Ristimaa, Johanna; Gergov, Merja; Pelander, Anna; Halmesmäki, Erja; Ojanperä, Ilkka
2010-09-01
Analysis of the major drugs of abuse in meconium has been established in clinical practice for detecting fetal exposure to illicit drugs, particularly for the ready availability of the sample and ease of collection from diapers, compared with neonatal hair and urine. Very little is known about the occurrence and detection possibilities of therapeutic and licit drugs in meconium. Meconium specimens (n = 209) were collected in delivery hospitals, from infants of mothers who were suspected to be drug abusers. A targeted analysis method by liquid chromatography-triple quadrupole mass spectrometry (LC-MS/MS) was developed for abused drugs: amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine, 3,4-methylenedioxymethamphetamine, morphine, codeine, 6-monoacetylmorphine, oxycodone, methadone, tramadol, buprenorphine, and norbuprenorphine. A separate LC-MS/MS method was developed for 11-nor-∆(9)-tetrahydrocannabinol-9-carboxylic acid. A screening method based on LC coupled to time-of-flight MS was applied to a broad spectrum of drugs. As a result, a total of 77 different compounds were found. The main drug findings in meconium were as follows: local anesthetics 82.5% (n = 172), nicotine or its metabolites 61.5% (n = 129), opioids 48.5% (n = 101), stimulants 21.0% (n = 44), hypnotics and sedatives 19.0% (n = 40), antidepressants 18.0% (n = 38), antipsychotics 5.5% (n = 11), and cannabis 3.0% (n = 5). By revealing drugs and metabolites beyond the ordinary scope, the present procedure helps the pediatrician in cases where maternal denial is strong but the infant seems to suffer from typical drug-withdrawal symptoms. Intrapartum drug administration cannot be differentiated from gestational drug use by meconium analysis, which affects the interpretation of oxycodone, tramadol, fentanyl, pethidine, and ephedrine findings.
The dijet invariant mass at the Tevatron Collider
Not Available
1990-01-01
The differential cross section as a function of the dijet invariant mass has been measured in 1.8 TeV ppbar collisions. A comparison to leading order QCD predictions is presented as well as a study of the sensitivity of the mass spectrum to the gluon radiation. The need to take radiation into account requires the study of its spatial distribution and the comparison of the data to the predictions of shower Monte Carlo programs like Isajet and Herwig. 12 refs., 10 figs.
The QCD equation of state with charm quarks from lattice QCD
NASA Astrophysics Data System (ADS)
Cheng, Michael
Recently, there have been several calculations of the QCD equation of state (EoS) on the lattice. These calculations take into account the two light quarks and the strange quark, but have ignored the effects of the charm quark, assuming that the charm mass (mc ≈ 1300 MeV) is exponentially suppressed at the temperatures which are explored. However, future heavy ion collisions, such as those planned at the LHC, may well probe temperature regimes where the charm quarks play an important role in the dynamics of the QGP. We present a calculation of the charm quark contribution to the QCD EoS using p4-improved staggered fermions at Nt = 4, 6, 8. This calculation is done with a quenched charm quark, i.e. the relevant operators are measured using a valence charm quark mass on a 2+1 flavor gauge field background. The charm quark masses are determined by calculating charmonium masses (metac and mJ/Psi) and fixing these mesons to their physical masses. The interaction measure, pressure, energy density, and entropy density are calculated. We find that the charm contribution makes a significant contribution, even down to temperatures as low as the pseudo-critical temperature, Tc. However, there are significant scaling corrections at the lattice spacings that we use, preventing a reliable continuum extrapolation.
Exotic and excited-state meson spectroscopy and radiative transitions from lattice QCD
Christopher Thomas
2010-09-01
We discuss recent progress in extracting the excited meson spectrum and radiative transition form factors using lattice QCD. We mention results in the charmonium sector, including the first lattice QCD calculation of radiative transition rates involving excited charmonium states, highlighting results for high spin and exotic states. We present recent results on a highly excited isovector meson spectrum from dynamical anisotropic lattices. Using carefully constructed operators we show how the continuum spin of extracted states can be reliably identified and confidently extract excited states, states with exotic quantum numbers and states of high spin. This spectrum includes the first spin-four state extracted from lattice QCD. We conclude with some comments on future prospects.
Lattice QCD input for axion cosmology
NASA Astrophysics Data System (ADS)
Berkowitz, Evan; Buchoff, Michael I.; Rinaldi, Enrico
2015-08-01
One intriguing beyond-the-Standard-Model particle is the QCD axion, which could simultaneously provide a solution to the Strong C P Problem and account for some, if not all, of the dark matter density in the Universe. This particle is a pseudo-Nambu-Goldstone boson of the conjectured Peccei-Quinn symmetry of the Standard Model. Its mass and interactions are suppressed by a heavy symmetry-breaking scale, fa, the value of which is roughly greater than 109 GeV (or, conversely, the axion mass, ma, is roughly less than 104 μ eV ). The density of axions in the Universe, which cannot exceed the relic dark matter density and is a quantity of great interest in axion experiments like ADMX, is a result of the early Universe interplay between cosmological evolution and the axion mass as a function of temperature. The latter quantity is proportional to the second derivative of the temperature-dependent QCD free energy with respect to the C P -violating phase, θ . However, this quantity is generically nonperturbative, and previous calculations have only employed instanton models at the high temperatures of interest (roughly 1 GeV). In this and future works, we aim to calculate the temperature-dependent axion mass at small θ from first-principle lattice calculations, with controlled statistical and systematic errors. Once calculated, this temperature-dependent axion mass is input for the classical evolution equations of the axion density of the Universe, which is required to be less than or equal to the dark matter density. Due to a variety of lattice systematic effects at the very high temperatures required, we perform a calculation of the leading small-θ cumulant of the theta vacua on large volume lattices for SU(3) Yang-Mills with high statistics as a first proof of concept, before attempting a full QCD calculation in the future. From these pure glue results, the misalignment mechanism yields the axion mass bound ma≥(14.6 ±0.1 ) μ eV when Peccei-Quinn breaking occurs
A Semiclassical Derivation of the QCD Coupling
NASA Technical Reports Server (NTRS)
Batchelor, David
2009-01-01
The measured value of the QCD coupling alpha(sub s) at the energy M(sub Zo), the variation of alpha(sub s) as a function of energy in QCD, and classical relativistic dynamics are used to investigate virtual pairs of quarks and antiquarks in vacuum fluctuations. For virtual pairs of bottom quarks and antiquarks, the pair lifetime in the classical model agrees with the lifetime from quantum mechanics to good approximation, and the action integral in the classical model agrees as well with the action that follows from the Uncertainty Principle. This suggests that the particles might have small de Broglie wavelengths and behave with well-localized pointlike dynamics. It also permits alpha(sub s) at the mass energy twice the bottom quark mass to be expressed as a simple fraction: 3/16. This is accurate to approximately 10%. The model in this paper predicts the measured value of alpha(sub s)(M(sub Zo)) to be 0.121, which is in agreement with recent measurements within statistical uncertainties.
Strings, quarkonium and nuclear physics in lattice QCD
NASA Astrophysics Data System (ADS)
Stewart, Christopher Robert
2000-11-01
Quantum Chromodynamics, QCD, is currently accepted as the correct theory of quark and gluon interactions, a theory that embodies many of our modern notions about the links between mathematical symmetry and physical reality. It is also, for many interesting phenomena, a strongly-coupled theory. Traditional perturbation theory can not be applied to low-energy QCD; new, non-perturbative methods are required. Lattice QCD is the most successful non-perturbative, first-principles approach to investigations of QCD physics. The QCD field equations are discretised on a space-time grid, making them well-suited to numerical simulation. We have performed lattice simulations to investigate three separate problems in low-energy QCD. First, the nature of the strong nuclear force was examined through the simpler system of two interacting heavy-light mesons. The inter-meson binding potential was extracted from lattice simulations, and was in quantitative agreement with the Yukawa model of pion exchange. Next we investigated the phenomenon of string-breaking. The QCD static-quark potential is confining-the gluon field between spatially separated quarks forms a narrow flux `string', with energy that increases linearly with the quark separation. For large separations, the field energy is sufficient for the system to decay into a static-light meson pair. To date, evidence for this `string-breaking' effect has been elusive. We presented a lattice operator that produces the desired effect, even in the absence of light sea-quarks. This has implications for current string- breaking investigations. Finally, we attempted precision simulations of the charmonium ( cc¯) meson family using a non-relativistic effective theory of heavy-quark interactions known as NRQCD. The charm quark is a challenge for lattice simulations-large discrepancies exist between experimental measurements and lattice results for the charmonium spectrum. We performed NRQCD simulations of the charmonium system to examine
Subcritical string and large N QCD
Thorn, Charles B.
2008-10-15
We pursue the possibility of using subcritical string theory in 4 spacetime dimensions to establish a string dual for large N QCD. In particular we study the even G-parity sector of the 4 dimensional Neveu-Schwarz dual resonance model as the natural candidate for this string theory. Our point of view is that the open string dynamics given by this model will determine the appropriate subcritical closed string theory, a tree level background of which should describe the sum of planar multiloop open string diagrams. We examine the one-loop open string diagram, which contains information about the closed string spectrum at weak coupling. Higher loop open string diagrams will be needed to determine closed string interactions. We also analyze the field theory limit of the one-loop open string diagram and recover the correct running coupling behavior of the limiting gauge theory.
Curvaton and QCD axion in supersymmetric theories
NASA Astrophysics Data System (ADS)
Chun, Eung Jin; Dimopoulos, Konstantinos; Lyth, David H.
2004-11-01
A pseudo-Nambu-Goldstone boson as curvaton avoids the η problem of inflation which plagues most curvaton candidates. We point out that a concrete realization of the curvaton mechanism with a pseudo-Nambu-Goldstone boson can be found in the supersymmetric Peccei-Quinn mechanism resolving the strong CP problem. In the flaton models of Peccei-Quinn symmetry breaking, the angular degree of freedom associated with the QCD axion can naturally be a flat direction during inflation and provides successful curvature perturbations. In this scheme, the preferred values of the axion scale and the Hubble parameter during inflation turn out to be about 1010 and 1012 GeV, respectively. Moreover, it is found that a significant isocurvature component, (anti)correlated to the overall curvature perturbation, can be generated, which is a smoking gun for the curvaton scenario. Finally, non-Gaussianity in the perturbation spectrum at a potentially observable level is also possible.
The lightest hybrid meson supermultiplet in QCD
Dudek, Jozef J
2011-10-01
We interpret the spectrum of meson states recently obtained in non-perturbative lattice QCD calculations in terms of constituent quark-antiquark bound states and states, called 'hybrids', in which the q{bar q} pair is supplemented by an excitation of the gluonic field. We identify a lightest supermultiplet of hybrid mesons with J{sup PC} = (0,1,2){sup {-+}}, 1{sup -} built from a gluonic excitation of chromomagnetic character coupled to q{bar q} in an S-wave. The next lightest hybrids are suggested to be quark orbital excitations with the same gluonic excitation, while the next distinct gluonic excitation is significantly heavier. Existing models of gluonic excitations are compared to these findings and possible phenomenological consequences explored.
Dyson-Schwinger equations : density, temperature and continuum strong QCD.
Roberts, C. D.; Schmidt, S. M.; Physics
2000-01-01
Continuum strong QCD is the application of models and continuum quantum field theory to the study of phenomena in hadronic physics, which includes; e.g., the spectrum of QCD bound states and their interactions; and the transition to, and properties of, a quark gluon plasma. We provide a contemporary perspective, couched primarily in terms of the Dyson-Schwinger equations but also making comparisons with other approaches and models. Our discourse provides a practitioners' guide to features of the Dyson-Schwinger equations [such as confinement and dynamical chiral symmetry breaking] and canvasses phenomenological applications to light meson and baryon properties in cold, sparse QCD. These provide the foundation for an extension to hot, dense QCD, which is probed via the introduction of the intensive thermodynamic variables: chemical potential and temperature. We describe order parameters whose evolution signals deconfinement and chiral symmetry restoration, and chronicle their use in demarcating the quark gluon plasma phase boundary and characterizing the plasma's properties. Hadron traits change in an equilibrated plasma. We exemplify this and discuss putative signals of the effects. Finally, since plasma formation is not an equilibrium process, we discuss recent developments in kinetic theory and its application to describing the evolution from a relativistic heavy ion collision to an equilibrated quark gluon plasma.
LATTICE QCD AT FINITE TEMPERATURE AND DENSITY.
BLUM,T.; CREUTZ,M.; PETRECZKY,P.
2004-02-24
With the operation of the RHIC heavy ion program, the theoretical understanding of QCD at finite temperature and density has become increasingly important. Though QCD at finite temperature has been extensively studied using lattice Monte-Carlo simulations over the past twenty years, most physical questions relevant for RHIC (and future) heavy ion experiments remain open. In lattice QCD at finite temperature and density there have been at least two major advances in recent years. First, for the first time calculations of real time quantities, like meson spectral functions have become available. Second, the lattice study of the QCD phase diagram and equation of state have been extended to finite baryon density by several groups. Both issues were extensively discussed in the course of the workshop. A real highlight was the study of the QCD phase diagram in (T, {mu})-plane by Z. Fodor and S. Katz and the determination of the critical end-point for the physical value of the pion mass. This was the first time such lattice calculations at, the physical pion mass have been performed. Results by Z Fodor and S. Katz were obtained using a multi-parameter re-weighting method. Other determinations of the critical end point were also presented, in particular using a Taylor expansion around {mu} = 0 (Bielefeld group, Ejiri et al.) and using analytic continuation from imaginary chemical potential (Ph. de Forcrand and O. Philipsen). The result based on Taylor expansion agrees within errors with the new prediction of Z. Fodor and S. Katz, while methods based on analytic continuation still predict a higher value for the critical baryon density. Most of the thermodynamics studies in full QCD (including those presented at this workshop) have been performed using quite coarse lattices, a = 0.2-0.3 fm. Therefore one may worry about cutoff effects in different thermodynamic quantities, like the transition temperature T{sub tr}. At the workshop U. Heller presented a study of the transition
NASA Astrophysics Data System (ADS)
Nicolaidis, A.; Bordes, G.
1986-05-01
We examine available experimental distributions of transverse energy and transverse momentum, obtained at the CERN pp¯ collider, in the context of quantum chromodynamics. We consider the following. (i) The hadronic transverse energy released during W+/- production. This hadronic transverse energy is made out of two components: a soft component which we parametrize using minimum-bias events and a semihard component which we calculate from QCD. (ii) The transverse momentum of the produced W+/-. If the transverse momentum (or the transverse energy) results from a single gluon jet we use the formalism of Dokshitzer, Dyakonov, and Troyan, while if it results from multiple-gluon emission we use the formalism of Parisi and Petronzio. (iii) The relative transverse momentum of jets. While for W+/- production quarks play an essential role, jet production at moderate pT and present energies is dominated by gluon-gluon scattering and therefore we can study the Sudakov form factor of the gluon. We suggest also how through a Hankel transform of experimental data we can have direct access to the Sudakov form factors of quarks and gluons.
NASA Astrophysics Data System (ADS)
Brandt, Bastian B.; Lohmayer, Robert; Wettig, Tilo
2016-11-01
We explore an alternative discretization of continuum SU( N c ) Yang-Mills theory on a Euclidean spacetime lattice, originally introduced by Budzcies and Zirnbauer. In this discretization the self-interactions of the gauge field are induced by a path integral over N b auxiliary boson fields, which are coupled linearly to the gauge field. The main progress compared to earlier approaches is that N b can be as small as N c . In the present paper we (i) extend the proof that the continuum limit of the new discretization reproduces Yang-Mills theory in two dimensions from gauge group U( N c ) to SU( N c ), (ii) derive refined bounds on N b for non-integer values, and (iii) perform a perturbative calculation to match the bare parameter of the induced gauge theory to the standard lattice coupling. In follow-up papers we will present numerical evidence in support of the conjecture that the induced gauge theory reproduces Yang-Mills theory also in three and four dimensions, and explore the possibility to integrate out the gauge fields to arrive at a dual formulation of lattice QCD.
Light-Front Holography and Non-Perturbative QCD
Brodsky, Stanley J.; de Teramond, Guy F.; /Costa Rica U.
2009-12-09
The combination of Anti-de Sitter space (AdS) methods with light-front holography leads to a semi-classical first approximation to the spectrum and wavefunctions of meson and baryon light-quark bound states. Starting from the bound-state Hamiltonian equation of motion in QCD, we derive relativistic light-front wave equations in terms of an invariant impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron at equal light-front time. These equations of motion in physical space-time are equivalent to the equations of motion which describe the propagation of spin-J modes in anti-de Sitter (AdS) space. Its eigenvalues give the hadronic spectrum, and its eigenmodes represent the probability distribution of the hadronic constituents at a given scale. Applications to the light meson and baryon spectra are presented. The predicted meson spectrum has a string-theory Regge form M{sup 2} = 4{kappa}{sup 2}(n + L + S = 2); i.e., the square of the eigenmass is linear in both L and n, where n counts the number of nodes of the wavefunction in the radial variable {zeta}. The space-like pion form factor is also well reproduced. One thus obtains a remarkable connection between the description of hadronic modes in AdS space and the Hamiltonian formulation of QCD in physical space-time quantized on the light-front at fixed light-front time {tau}. The model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method in order to systematically include the QCD interaction terms.
Two-nucleon higher partial-wave scattering from lattice QCD
NASA Astrophysics Data System (ADS)
Berkowitz, Evan; Kurth, Thorsten; Nicholson, Amy; Joó, Bálint; Rinaldi, Enrico; Strother, Mark; Vranas, Pavlos M.; Walker-Loud, André
2017-02-01
We present a determination of nucleon-nucleon scattering phase shifts for ℓ ≥ 0. The S, P, D and F phase shifts for both the spin-triplet and spin-singlet channels are computed with lattice Quantum ChromoDynamics. For ℓ > 0, this is the first lattice QCD calculation using the Lüscher finite-volume formalism. This required the design and implementation of novel lattice methods involving displaced sources and momentum-space cubic sinks. To demonstrate the utility of our approach, the calculations were performed in the SU (3)-flavor limit where the light quark masses have been tuned to the physical strange quark mass, corresponding to mπ =mK ≈ 800 MeV. In this work, we have assumed that only the lowest partial waves contribute to each channel, ignoring the unphysical partial wave mixing that arises within the finite-volume formalism. This assumption is only valid for sufficiently low energies; we present evidence that it holds for our study using two different channels. Two spatial volumes of V ≈(3.5 fm) 3 and V ≈(4.6 fm) 3 were used. The finite-volume spectrum is extracted from the exponential falloff of the correlation functions. Said spectrum is mapped onto the infinite volume phase shifts using the generalization of the Lüscher formalism for two-nucleon systems.
Decay Constants of Beauty Mesons from QCD Sum Rules
NASA Astrophysics Data System (ADS)
Lucha, Wolfgang; Melikhov, Dmitri; Simula, Silvano
2014-11-01
Our recently completed analysis of the decay constants of both pseudoscalar and vector beauty mesons reveals that in the bottom-quark sector two specific features of the sum-rule predictions show up: (i) For the input value of the bottom-quark mass in the M̅S̅ scheme m̅b(m̅b) ≈ 4:18 GeV; the sum-rule result fB ≈ 210-220 MeV for the B meson decay constant is substantially larger than the recent lattice-QCD finding fB ≈ 190 MeV: Requiring QCD sum rules to reproduce the lattice-QCD value of fB yields a significantly larger b-quark mass: m̅b(m̅b) = 4:247 GeV: (ii) Whereas QCD sum-rule predictions for the charmed-meson decay constants fD; fDs, fD* and fDs* are practically independent of the choice of renormalization scale, in the beauty sector the results for the decay constants—and especially for the ratio fB* / fB—prove to be very sensitive to the specific scale setting.
Recent QCD results from the Tevatron
Pickarz, Henryk; CDF and DO collaboration
1997-02-01
Recent QCD results from the CDF and D0 detectors at the Tevatron proton-antiproton collider are presented. An outlook for future QCD tests at the Tevatron collider is also breifly discussed. 27 refs., 11 figs.
QCD Sum Rules Study of X(4350)
NASA Astrophysics Data System (ADS)
Mo, Zeng; Cui, Chun-Yu; Liu, Yong-Lu; Huang, Ming-Qiu
2014-04-01
The QCD sum rule approach is used to analyze the nature of the recently observed new resonance X(4350), which is assumed to be a diquark-antidiquark state [cs][bar cbar s] with JPC = 1-+. The interpolating current representing this state is proposed. In the calculation, contributions of operators up to dimension six are included in the operator product expansion (OPE), as well as terms which are linear in the strange quark mass ms. We find m1-+ = (4.82 ± 0.19) GeV, which is not compatible with the X(4350) structure as a 1-+ tetraquark state. Finally, we also discuss the difference of a four-quark state's mass whether the state's interpolating current has a definite charge conjugation.
Higher derivative corrections in holographic QCD
Basu, Anirban
2007-12-15
We consider the effect of the R{sup 4} term in type IIA string theory on the supergravity background dual to N{sub c} D4-branes compactified on a circle with supersymmetry breaking boundary conditions. We study the dynamics of D8-branes in this perturbed geometry in the probe approximation. This leads to an analysis of higher derivative corrections in holographic QCD beyond the supergravity approximation. We make a rough estimate of the corrections to the masses of some of the lightest (axial) vector mesons. The corrections are suppressed by a factor of (g{sub YM}{sup 2}N{sub c}){sup -3} compared to their supergravity values. We find that the masses of these mesons increase from their supergravity values.
Lattice QCD calculation of the {rho} meson decay width
Aoki, S.; Fukugita, M.; Ishikawa, K-I.; Okawa, M.; Ishizuka, N.; Kuramashi, Y.; Ukawa, A.; Yoshie, T.; Kanaya, K.; Namekawa, Y.; Sasaki, K.
2007-11-01
We present a lattice QCD calculation of the {rho} meson decay width via the P-wave scattering phase shift for the I=1 two-pion system. Our calculation uses full QCD gauge configurations for N{sub f}=2 flavors generated using a renormalization group improved gauge action and an improved Wilson fermion action on a 12{sup 3}x24 lattice at m{sub {pi}}/m{sub {rho}}=0.41 and the lattice spacing 1/a=0.92 GeV. The phase shift calculated with the use of the finite size formula for the two-pion system in the moving frame shows a behavior consistent with the existence of a resonance at a mass close to the vector meson mass obtained in spectroscopy. The decay width estimated from the phase shift is consistent with the experiment, when the quark mass is scaled to the realistic value.
More on the renormalization group limit cycle in QCD
Evgeny Epelbaum; Hans-Werner Hammer; Ulf-G. Meissner; Andreas Nogga
2006-02-26
We present a detailed study of the recently conjectured infrared renormalization group limit cycle in QCD using chiral effective field theory. We show that small increases in the up and down quark masses, corresponding to a pion mass around 200 MeV, can move QCD to the critical renormalization group trajectory for an infrared limit cycle in the three-nucleon system. At the critical values of the quark masses, the binding energies of the deuteron and its spin-singlet partner are tuned to zero and the triton has infinitely many excited states with an accumulation point at the three-nucleon threshold. At next-to-leading order in the chiral counting, we find three parameter sets where this effect occurs. For one of them, we study the structure of the three-nucleon system using both chiral and contact effective field theories in detail. Furthermore, we calculate the influence of the limit cycle on scattering observables.
Susceptibility of the QCD vacuum to CP-odd electromagnetic background fields.
D'Elia, Massimo; Mariti, Marco; Negro, Francesco
2013-02-22
We investigate two flavor quantum chromodynamics (QCD) in the presence of CP-odd electromagnetic background fields and determine, by means of lattice QCD simulations, the induced effective θ term to first order in E[over →] · B[over →]. We employ a rooted staggered discretization and study lattice spacings down to 0.1 fm and Goldstone pion masses around 480 MeV. In order to deal with a positive measure, we consider purely imaginary electric fields and real magnetic fields, and then exploit the analytic continuation. Our results are relevant to a description of the effective pseudoscalar quantum electrodynamics-QCD interactions.
Quantum chromodynamics (QCD) and collider physics
Ellis, R.K. ); Stirling, W.J. )
1990-08-14
This report discusses: fundamentals of perturbative QCD; QCD in e{sup +}e{sup {minus}} {yields} hadrons; deep inelastic scattering and parton distributions; the QCD parton model in hadron-hadron collisions; large p{sub T} jet production in hadron-hadron collisions; the production of vector bosons in hadronic collisions; and the production of heavy quarks.
LATTICE QCD THERMODYNAMICS WITH WILSON QUARKS.
EJIRI,S.
2007-11-20
We review studies of QCD thermodynamics by lattice QCD simulations with dynamical Wilson quarks. After explaining the basic properties of QCD with Wilson quarks at finite temperature including the phase structure and the scaling properties around the chiral phase transition, we discuss the critical temperature, the equation of state and heavy-quark free energies.
NASA Astrophysics Data System (ADS)
Nardulli, G.
2005-04-01
I give a summary of Section E of the sixth edition of the Conference Quark confinement and the hadron spectrum. Papers were presented on different subjects, from spectroscopy, including pentaquarks and hadron structure, to new physics effects (non commutative field theories, supersymmetry and extra dimensions) and the problem of color confinement, both in ordinary Yang-Mills models and in supersymmetric Yang-Mills.
Wang, Bing; Fang, Aiqin; Heim, John; Bogdanov, Bogdan; Pugh, Scott; Libardoni, Mark; Zhang, Xiang
2010-01-01
A novel peak alignment algorithm using a distance and spectrum correlation optimization (DISCO) method has been developed for two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC/TOF-MS) based metabolomics. This algorithm uses the output of the instrument control software, ChromaTOF, as its input data. It detects and merges multiple peak entries of the same metabolite into one peak entry in each input peak list. After a z-score transformation of metabolite retention times, DISCO selects landmark peaks from all samples based on both two-dimensional retention times and mass spectrum similarity of fragment ions measured by Pearson’s correlation coefficient. A local linear fitting method is employed in the original two-dimensional retention time space to correct retention time shifts. A progressive retention time map searching method is used to align metabolite peaks in all samples together based on optimization of the Euclidean distance and mass spectrum similarity. The effectiveness of the DISCO algorithm is demonstrated using data sets acquired under different experiment conditions and a spiked-in experiment. PMID:20476746
The Emergence of Hadrons from QCD Color
NASA Astrophysics Data System (ADS)
Brooks, William; Color Dynamics in Cold Matter (CDCM) Collaboration
2015-10-01
The formation of hadrons from energetic quarks, the dynamical enforcement of QCD confinement, is not well understood at a fundamental level. In Deep Inelastic Scattering, modifications of the distributions of identified hadrons emerging from nuclei of different sizes reveal a rich variety of spatial and temporal characteristics of the hadronization process, including its dependence on spin, flavor, energy, and hadron mass and structure. The EIC will feature a wide range of kinematics, allowing a complete investigation of medium-induced gluon bremsstrahlung by the propagating quarks, leading to partonic energy loss. This fundamental process, which is also at the heart of jet quenching in heavy ion collisions, can be studied for light and heavy quarks at the EIC through observables quantifying hadron ``attenuation'' for a variety of hadron species. Transverse momentum broadening of hadrons, which is sensitive to the nuclear gluonic field, will also be accessible, and can be used to test our understanding from pQCD of how this quantity evolves with pathlength, as well as its connection to partonic energy loss. The evolution of the forming hadrons in the medium will shed new light on the dynamical origins of the forces between hadrons, and thus ultimately on the nuclear force. Supported by the Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) of Chile.
Lattice QCD spectroscopy for hadronic CP violation
NASA Astrophysics Data System (ADS)
de Vries, Jordy; Mereghetti, Emanuele; Seng, Chien-Yeah; Walker-Loud, André
2017-03-01
The interpretation of nuclear electric dipole moment (EDM) experiments is clouded by large theoretical uncertainties associated with nonperturbative matrix elements. In various beyond-the-Standard Model scenarios nuclear and diamagnetic atomic EDMs are expected to be dominated by CP-violating pion-nucleon interactions that arise from quark chromo-electric dipole moments. The corresponding CP-violating pion-nucleon coupling strengths are, however, poorly known. In this work we propose a strategy to calculate these couplings by using spectroscopic lattice QCD techniques. Instead of directly calculating the pion-nucleon coupling constants, a challenging task, we use chiral symmetry relations that link the pion-nucleon couplings to nucleon sigma terms and mass splittings that are significantly easier to calculate. In this work, we show that these relations are reliable up to next-to-next-to-leading order in the chiral expansion in both SU (2) and SU (3) chiral perturbation theory. We conclude with a brief discussion about practical details regarding the required lattice QCD calculations and the phenomenological impact of an improved understanding of CP-violating matrix elements.
Searching for X (3872) using lattice QCD
NASA Astrophysics Data System (ADS)
Lee, Song-Haeng; Detar, Carleton; MILC / Fermilab Collaboration
2016-03-01
For decades, many excited charmonium states have been discovered that cannot be explained within the conventional quark model. Among the those mesons, the narrow charmonium-like state X (3872) has been examined using various phenomenological models, however, the question for its constituent still remains open. One of the strong candidates is a DD* molecular state because its mass is within 1MeV of the DD* threshold, however, such a molecular state can't be directly studied by perturbative QCD in such a low energy regime where the interaction of the colored quarks and gluons is very strong. Numerical simulation with lattice QCD provides a nonperturbative, ab initio method for studying this mysterious meson state. In this talk, I present preliminary simulation results for this charmonium-like states with quantum numbers JPC =1++ in both the isospin 0 and 1 channels. We use interpolating operators including both the conventional excited P-wave charmonium state (χc 1) and the DD* open charm state for the isospin 0 channel, but only DD* for the isospin 1 channel. We extract large negative S-wave scattering length and find an X (3872) candidate 13 +/- 6 MeV below the DD* threshold in the isospin 0 channel.
Advances in hadronic structure from Lattice QCD
NASA Astrophysics Data System (ADS)
Constantinou, Martha
2017-01-01
Understanding nucleon structure is considered a milestone of hadronic physics and new facilities are planned devoted to its study. A future Electron-Ion-Collider proposed by the scientific community will greatly deepen our knowledge on the fundamental constituents of the visible world. To achieve this goal, a synergy between the experimental and theoretical sectors is imperative, and Lattice QCD is in a unique position to provide input from first principle calculations. In this talk we will discuss recent progress in nucleon structure from Lattice QCD, focusing on the evaluation of matrix elements using state-of-the-art simulations with pion masses at their physical value. The axial form factors, electromagnetic radii, the quark momentum fraction and the spin content of the nucleon will be discussed. We will also highlight quantities that may guide New Physics searches, such as the scalar and tensor charges. Finally, we will give updates on a new direct approach to compute quark parton distributions functions on the lattice.
Hadron scattering, resonances, and QCD
Briceno, Raul
2016-12-01
The non-perturbative nature of quantum chromodynamics (QCD) has historically left a gap in our understanding of the connection between the fundamental theory of the strong interactions and the rich structure of experimentally observed phenomena. For the simplest properties of stable hadrons, this is now circumvented with the use of lattice QCD (LQCD). In this talk I discuss a path towards a rigorous determination of few-hadron observables from LQCD. I illustrate the power of the methodology by presenting recently determined scattering amplitudes in the light-meson sector and their resonance content.
The supercritical pomeron in QCD.
White, A. R.
1998-06-29
Deep-inelastic diffractive scaling violations have provided fundamental insight into the QCD pomeron, suggesting a single gluon inner structure rather than that of a perturbative two-gluon bound state. This talk outlines a derivation of a high-energy, transverse momentum cut-off, confining solution of QCD. The pomeron, in first approximation, is a single reggeized gluon plus a ''wee parton'' component that compensates for the color and particle properties of the gluon. This solution corresponds to a super-critical phase of Reggeon Field Theory.
Glueball decay in holographic QCD
Hashimoto, Koji; Tan, C.-I; Terashima, Seiji
2008-04-15
Using holographic QCD based on D4-branes and D8-anti-D8-branes, we have computed couplings of glueballs to light mesons. We describe glueball decay by explicitly calculating its decay widths and branching ratios. Interestingly, while glueballs remain less well understood both theoretically and experimentally, our results are found to be consistent with the experimental data for the scalar glueball candidate f{sub 0}(1500). More generally, holographic QCD predicts that decay of any glueball to 4{pi}{sup 0} is suppressed, and that mixing of the lightest glueball with qq mesons is small.
Light-Front Holography, Light-Front Wavefunctions, and Novel QCD Phenomena
Brodsky, Stanley J.; de Teramond, Guy F.; /Costa Rica U.
2012-02-16
Light-Front Holography is one of the most remarkable features of the AdS/CFT correspondence. In spite of its present limitations it provides important physical insights into the nonperturbative regime of QCD and its transition to the perturbative domain. This novel framework allows hadronic amplitudes in a higher dimensional anti-de Sitter (AdS) space to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time. The model leads to an effective confining light-front QCD Hamiltonian and a single-variable light-front Schroedinger equation which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The coordinate z in AdS space is uniquely identified with a Lorentz-invariant coordinate {zeta} which measures the separation of the constituents within a hadron at equal light-front time and determines the off-shell dynamics of the bound-state wavefunctions, and thus the fall-off as a function of the invariant mass of the constituents. The soft-wall holographic model modified by a positive-sign dilaton metric, leads to a remarkable one-parameter description of nonperturbative hadron dynamics - a semi-classical frame-independent first approximation to the spectra and light-front wavefunctions of meson and baryons. The model predicts a Regge spectrum of linear trajectories with the same slope in the leading orbital angular momentum L of hadrons and the radial quantum number n. The hadron eigensolutions projected on the free Fock basis provides the complete set of valence and non-valence light-front Fock state wavefunctions {Psi}{sub n/H} (x{sub i}, k{sub {perpendicular}i}, {lambda}{sub i}) which describe the hadron's momentum and spin distributions needed to compute the direct measures of hadron structure at the quark and gluon level, such as elastic and transition form factors, distribution amplitudes, structure functions, generalized parton distributions and transverse
Present constraints on the H-dibaryon at the physical point from Lattice QCD
Beane, S. R.; Chang, E.; Detmold, W.; Joo, B.; Lin, H. -W.; Luu, T. C.; Orginos, K.; Parreno, A.; Savage, M. J.; Torok, A.; Walker-Loud, A.
2011-11-10
The current constraints from Lattice QCD on the existence of the H-dibaryon are discussed. With only two significant Lattice QCD calculations of the H-dibaryon binding energy at approximately the same lattice spacing, the form of the chiral and continuum extrapolations to the physical point are not determined. In this brief report, an extrapolation that is quadratic in the pion mass, motivated by low-energy effective field theory, is considered. An extrapolation that is linear in the pion mass is also considered, a form that has no basis in the effective field theory, but is found to describe the light-quark mass dependence observed in Lattice QCD calculations of the octet baryon masses. In both cases, the extrapolation to the physical pion mass allows for a bound H-dibaryon or a near-threshold scattering state.
Present constraints on the H-dibaryon at the physical point from Lattice QCD
Beane, S. R.; Chang, E.; Detmold, W.; ...
2011-11-10
The current constraints from Lattice QCD on the existence of the H-dibaryon are discussed. With only two significant Lattice QCD calculations of the H-dibaryon binding energy at approximately the same lattice spacing, the form of the chiral and continuum extrapolations to the physical point are not determined. In this brief report, an extrapolation that is quadratic in the pion mass, motivated by low-energy effective field theory, is considered. An extrapolation that is linear in the pion mass is also considered, a form that has no basis in the effective field theory, but is found to describe the light-quark mass dependencemore » observed in Lattice QCD calculations of the octet baryon masses. In both cases, the extrapolation to the physical pion mass allows for a bound H-dibaryon or a near-threshold scattering state.« less
Boz, Tamer; Skullerud, Jon-Ivar; Giudice, Pietro; Hands, Simon; Williams, Anthony G.
2016-01-22
QCD at high chemical potential has interesting properties such as deconfinement of quarks. Two-color QCD, which enables numerical simulations on the lattice, constitutes a laboratory to study QCD at high chemical potential. Among the interesting properties of two-color QCD at high density is the diquark condensation, for which we present recent results obtained on a finer lattice compared to previous studies. The quark propagator in two-color QCD at non-zero chemical potential is referred to as the Gor’kov propagator. We express the Gor’kov propagator in terms of form factors and present recent lattice simulation results.
High-precision scale setting in lattice QCD
NASA Astrophysics Data System (ADS)
Borsányi, Szabolcs; Dürr, Stephan; Fodor, Zoltán; Hoelbling, Christian; Katz, Sándor D.; Krieg, Stefan; Kurth, Thorsten; Lellouch, Laurent; Lippert, Thomas; McNeile, Craig; Szabó, Kálmán K.
2012-09-01
Scale setting is of central importance in lattice QCD. It is required to predict dimensional quantities in physical units. Moreover, it determines the relative lattice spacings of computations performed at different values of the bare coupling, and this is needed for extrapolating results into the continuum. Thus, we calculate a new quantity, w 0, for setting the scale in lattice QCD, which is based on the Wilson flow like the scale t 0 (M. Luscher, JHEP 08 (2010) 071). It is cheap and straightforward to implement and compute. In particular, it does not involve the delicate fitting of correlation functions at asymptotic times. It typically can be determined on the few per-mil level. We compute its continuum extrapolated value in 2 + 1-flavor QCD for physical and non-physical pion and kaon masses, to allow for mass-independent scale setting even away from the physical mass point. We demonstrate its robustness by computing it with two very different actions (one of them with staggered, the other with Wilson fermions) and by showing that the results agree for physical quark masses in the continuum limit.
Heavy-Baryon Spectroscopy from Lattice QCD
Huey-Wen Lin, Saul D. Cohen, Liuming Liu, Nilmani Mathur, Konstantinos Orginos, Andre Walker-Loud
2011-01-01
We use a four-dimensional lattice calculation of the full-QCD (quantum chromodynamics, the non-abliean gauge theory of the strong interactions of quarks and gluons) path integrals needed to determine the masses of the charmed and bottom baryons. In the charm sector, our results are in good agreement with experiment within our systematics, except for the spin-1/2 $\\Xi_{cc}$, for which we found the isospin-averaged mass to be $\\Xi_{cc}$ to be $3665\\pm17\\pm14^{+0}_{-78}$ MeV. We predict the mass of the (isospin-averaged) spin-1/2 $\\Omega_{cc}$ to be $3763\\pm19\\pm26^{+13}_{-79}$ {MeV}. In the bottom sector, our results are also in agreement with experimental observations and other lattice calculations within our statistical and systematic errors. In particular, we find the mass of the $\\Omega_b$ to be consistent with the recent CDF measurement. We also predict the mass for the as yet unobserved $\\Xi^\\prime_b$ to be 5955(27) MeV.
Testing QCD in the non-perturbative regime
A.W. Thomas
2007-01-01
This is an exciting time for strong interaction physics. We have a candidate for a fundamental theory, namely QCD, which has passed all the tests thrown at it in the perturbative regime. In the non-perturbative regime it has also produced some promising results and recently a few triumphs but the next decade will see enormous progress in our ability to unambiguously calculate the consequences of non-perturbative QCD and to test those predictions experimentally. Amongst the new experimental facilities being constructed, the hadronic machines at JPARC and GSI-FAIR and the 12 GeV Upgrade at Jefferson Lab, the major new electromagnetic facility worldwide, present a beautifully complementary network aimed at producing precise new measurements which will advance our knowledge of nuclear systems and push our ability to calculate the consequences of QCD to the limit. We will first outline the plans at Jefferson Lab for doubling the energy of CEBAF. The new facility presents some wonderful opportunities for discovery in strong interaction physics, as well as beyond the standard model. Then we turn to the theoretical developments aimed at extracting precise results for physical hadron properties from lattice QCD simulations. This discussion will begin with classical examples, such as the mass of the nucleon and ?, before dealing with a very recent and spectacular success involving information extracted from modern parity violating electron scattering.
Quigg, Chris
2007-12-05
In the classical physics we inherited from Isaac Newton, mass does not arise, it simply is. The mass of a classical object is the sum of the masses of its parts. Albert Einstein showed that the mass of a body is a measure of its energy content, inviting us to consider the origins of mass. The protons we accelerate at Fermilab are prime examples of Einsteinian matter: nearly all of their mass arises from stored energy. Missing mass led to the discovery of the noble gases, and a new form of missing mass leads us to the notion of dark matter. Starting with a brief guided tour of the meanings of mass, the colloquium will explore the multiple origins of mass. We will see how far we have come toward understanding mass, and survey the issues that guide our research today.
Lattice QCD in Background Fields
William Detmold, Brian Tiburzi, Andre Walker-Loud
2009-06-01
Electromagnetic properties of hadrons can be computed by lattice simulations of QCD in background fields. We demonstrate new techniques for the investigation of charged hadron properties in electric fields. Our current calculations employ large electric fields, motivating us to analyze chiral dynamics in strong QED backgrounds, and subsequently uncover surprising non-perturbative effects present at finite volume.
Basics of QCD perturbation theory
Soper, D.E.
1997-06-01
This is an introduction to the use of QCD perturbation theory, emphasizing generic features of the theory that enable one to separate short-time and long-time effects. The author also covers some important classes of applications: electron-positron annihilation to hadrons, deeply inelastic scattering, and hard processes in hadron-hadron collisions. 31 refs., 38 figs.
QCD Phase Transitions, Volume 15
Schaefer, T.; Shuryak, E.
1999-03-20
The title of the workshop, ''The QCD Phase Transitions'', in fact happened to be too narrow for its real contents. It would be more accurate to say that it was devoted to different phases of QCD and QCD-related gauge theories, with strong emphasis on discussion of the underlying non-perturbative mechanisms which manifest themselves as all those phases. Before we go to specifics, let us emphasize one important aspect of the present status of non-perturbative Quantum Field Theory in general. It remains true that its studies do not get attention proportional to the intellectual challenge they deserve, and that the theorists working on it remain very fragmented. The efforts to create Theory of Everything including Quantum Gravity have attracted the lion share of attention and young talent. Nevertheless, in the last few years there was also a tremendous progress and even some shift of attention toward emphasis on the unity of non-perturbative phenomena. For example, we have seen some efforts to connect the lessons from recent progress in Supersymmetric theories with that in QCD, as derived from phenomenology and lattice. Another example is Maldacena conjecture and related development, which connect three things together, string theory, super-gravity and the (N=4) supersymmetric gauge theory. Although the progress mentioned is remarkable by itself, if we would listen to each other more we may have chance to strengthen the field and reach better understanding of the spectacular non-perturbative physics.
Heavy quark production and QCD
Purohit, M.V.
1988-12-01
Recent results on charm and beauty production in fixed target experiments are reviewed. Particular emphasis is placed on the recent results, on the trend favored by the data, on companies with the recently improved QCD predictions and on what may be expected in the near future. 35 refs., 5 figs.
New results in perturbative QCD
Ellis, R.K.
1985-11-01
Three topics in perturbative QCD important for Super-collider physics are reviewed. The topics are: (2 2) jet phenomena calculated in O( sT); new techniques for the calculation of tree graphs; and colour coherence in jet phenomena. 31 refs., 6 figs.
Nuclear reactions from lattice QCD
Briceño, Raúl A.; Davoudi, Zohreh; Luu, Thomas C.
2015-01-13
In this study, one of the overarching goals of nuclear physics is to rigorously compute properties of hadronic systems directly from the fundamental theory of strong interactions, Quantum Chromodynamics (QCD). In particular, the hope is to perform reliable calculations of nuclear reactions which will impact our understanding of environments that occur during big bang nucleosynthesis, the evolution of stars and supernovae, and within nuclear reactors and high energy/density facilities. Such calculations, being truly ab initio, would include all two-nucleon and three- nucleon (and higher) interactions in a consistent manner. Currently, lattice QCD provides the only reliable option for performing calculationsmore » of some of the low-energy hadronic observables. With the aim of bridging the gap between lattice QCD and nuclear many-body physics, the Institute for Nuclear Theory held a workshop on Nuclear Reactions from Lattice QCD on March 2013. In this review article, we report on the topics discussed in this workshop and the path planned to move forward in the upcoming years.« less
Nuclear reactions from lattice QCD
Briceño, Raúl A.; Davoudi, Zohreh; Luu, Thomas C.
2015-01-13
In this study, one of the overarching goals of nuclear physics is to rigorously compute properties of hadronic systems directly from the fundamental theory of strong interactions, Quantum Chromodynamics (QCD). In particular, the hope is to perform reliable calculations of nuclear reactions which will impact our understanding of environments that occur during big bang nucleosynthesis, the evolution of stars and supernovae, and within nuclear reactors and high energy/density facilities. Such calculations, being truly ab initio, would include all two-nucleon and three- nucleon (and higher) interactions in a consistent manner. Currently, lattice QCD provides the only reliable option for performing calculations of some of the low-energy hadronic observables. With the aim of bridging the gap between lattice QCD and nuclear many-body physics, the Institute for Nuclear Theory held a workshop on Nuclear Reactions from Lattice QCD on March 2013. In this review article, we report on the topics discussed in this workshop and the path planned to move forward in the upcoming years.
Lattice QCD at finite temperature and density from Taylor expansion
NASA Astrophysics Data System (ADS)
Steinbrecher, Patrick
2017-01-01
In the first part, I present an overview of recent Lattice QCD simulations at finite temperature and density. In particular, we discuss fluctuations of conserved charges: baryon number, electric charge and strangeness. These can be obtained from Taylor expanding the QCD pressure as a function of corresponding chemical potentials. Our simulations were performed using quark masses corresponding to physical pion mass of about 140 MeV and allow a direct comparison to experimental data from ultra-relativistic heavy ion beams at hadron colliders such as the Relativistic Heavy Ion Collider at Brookhaven National Laboratory and the Large Hadron Collider at CERN. In the second part, we discuss computational challenges for current and future exascale Lattice simulations with a focus on new silicon developments from Intel and NVIDIA.
NASA Astrophysics Data System (ADS)
Omukai, Kazuyuki; Yoshii, Yuzuru
2003-12-01
The initial mass function (IMF) of metal-free stars that form in the initial starburst of massive (virial temperatures >~104 K) metal-free protogalaxies is studied. In particular, we focus on the effect of H2 photodissociation by preexisting stars on the fragmentation mass scale, presumedly determined by the Jeans mass at the end of the initial free-fall phase, i.e., at the so-called loitering phase, characterized by the temporary temperature minimum. Photodissociation diminishes the Jeans mass at the loitering phase, thereby reducing the fragmentation mass scale of primordial clouds. Thus, in a given cloud, far-ultraviolet (FUV) radiation from the first star, which is supposedly very massive (~103Msolar), reduces the mass scale for subsequent fragmentation. Through a series of similar processes the IMF for metal-free stars is established. If FUV radiation exceeds a threshold level, the star-forming clumps collapse solely through atomic cooling. Correspondingly, the fragmentation scale drops discontinuously from a few × 10Msolar to subsolar scales. In compact clouds (<~1.6 kpc for clouds of gas mass 108Msolar), this level of radiation field is attained and subsolar-mass stars are formed, even in a metal-free environment. Consequently, the IMF becomes bimodal, with peaks at a few tenths Msolar and a few × 10 Msolar. The high-mass portion of the IMF, ξhigh(m*), is found to be a very steep function of the stellar mass m*, ξhigh(m*)~m-5*. Therefore, the typical mass scale of metal-free stars is significantly smaller than that of the very first stars. In an appendix we study the thermal instability in collapsing primordial prestellar cores and discuss why the thermal instability occurring during the three-body H2 formation does not appear to manifest itself in causing further fragmentation of such cores.
Momentum dependences of charmonium properties from lattice QCD
NASA Astrophysics Data System (ADS)
Ding, Heng-Tong
2013-05-01
Charmonia produced in initial hard parton scatterings during heavy ion collisions move with respect to the medium rather than flow with the medium. Lattice studies suggest that charmonium bound states at the rest are dissociated at T≳1.5Tc. We present results on momentum dependences of charmonium properties in a hot medium from lattice QCD Monte Carlo simulations. The dispersion relation of the screening mass and the change of correlation and spectral functions at various temperatures and momenta are discussed.
Evidence for a bound H-dibaryon using lattice QCD
Will Detmold
2012-04-01
The H-dibaryon, a J = 0 state with the valence quark content udsuds, has long been hypothesized to exist because of the attractive nature of color magnetic gluon exchange in the flavor- singlet channel. Using lattice QCD the NPLQCD collaboration have investigated this system and evidence is presented for the existence of a stable H-dibaryon, albeit at a quark mass somewhat larger than that in nature. This calculation is reviewed and combined with subsequent calculations by the HALQCD collaboration at the SU(3) flavor symmetric point to identify bounds on the H-dibaryon mass at the physical quark masses.
Spectroscopy of charmed baryons from lattice QCD
Padmanath, M.; Edwards, Robert G.; Mathur, Nilmani; Peardon, Michael
2015-01-01
We present the ground and excited state spectra of singly, doubly and triply charmed baryons by using dynamical lattice QCD. A large set of baryonic operators that respect the symmetries of the lattice and are obtained after subduction from their continuum analogues are utilized. Using novel computational techniques correlation functions of these operators are generated and the variational method is exploited to extract excited states. The lattice spectra that we obtain have baryonic states with well-defined total spins up to 7/2 and the low lying states remarkably resemble the expectations of quantum numbers from SU(6) x O(3) symmetry. Various energy splittings between the extracted states, including splittings due to hyperfine as well as spin-orbit coupling, are considered and those are also compared against similar energy splittings at other quark masses.
Cut-constructible part of QCD amplitudes
Britto, Ruth; Feng Bo; Mastrolia, Pierpaolo
2006-05-15
Unitarity cuts are widely used in analytic computation of loop amplitudes in gauge theories such as QCD. We expand upon the technique introduced in hep-ph/0503132 to carry out any finite unitarity cut integral. This technique naturally separates the contributions of bubble, triangle and box integrals in one-loop amplitudes and is not constrained to any particular helicity configurations. Loop momentum integration is reduced to a sequence of algebraic operations. We discuss the extraction of the residues at higher-order poles. Additionally, we offer concise algebraic formulas for expressing coefficients of three-mass triangle integrals. As an application, we compute all remaining coefficients of bubble and triangle integrals for nonsupersymmetric six-gluon amplitudes.
Threefold Complementary Approach to Holographic QCD
Brodsky, Stanley J.; de Teramond, Guy F.; Dosch, Hans Gunter
2013-12-27
A complementary approach, derived from (a) higher-dimensional anti-de Sitter (AdS) space, (b) light-front quantization and (c) the invariance properties of the full conformal group in one dimension leads to a nonperturbative relativistic light-front wave equation which incorporates essential spectroscopic and dynamical features of hadron physics. The fundamental conformal symmetry of the classical QCD Lagrangian in the limit of massless quarks is encoded in the resulting effective theory. The mass scale for confinement emerges from the isomorphism between the conformal group andSO(2,1). This scale appears in the light-front Hamiltonian by mapping to the evolution operator in the formalism of de Alfaro, Fubini and Furlan, which retains the conformal invariance of the action. Remarkably, the specific form of the confinement interaction and the corresponding modification of AdS space are uniquely determined in this procedure.
NASA Astrophysics Data System (ADS)
Keith-Hynes, Patrick
2006-12-01
Recent work by Armoni, Shifman, and Veneziano suggests a large-N equivalence between super- symmetric Yang-Mills Theory and one-flavor QCD. One consequence of this "orientifold projec- tion" is that scalar and pseudoscalar mesons in one-flavor QCD should have degenerate mass since they lie within the same Wess-Zumino supermultiplet. We use lattice calculations to investigate the mass shifts caused by "double-hairpin" annihilation diagrams in quenched QCD to test for this degeneracy. Similar quark-antiquark annihilation processes are studied in the 2-dimensional CP´N1µ model with quenched fermions.
Dark-matter QCD-axion searches.
Rosenberg, Leslie J
2015-10-06
In the late 20th century, cosmology became a precision science. Now, at the beginning of the next century, the parameters describing how our universe evolved from the Big Bang are generally known to a few percent. One key parameter is the total mass density of the universe. Normal matter constitutes only a small fraction of the total mass density. Observations suggest this additional mass, the dark matter, is cold (that is, moving nonrelativistically in the early universe) and interacts feebly if at all with normal matter and radiation. There's no known such elementary particle, so the strong presumption is the dark matter consists of particle relics of a new kind left over from the Big Bang. One of the most important questions in science is the nature of this dark matter. One attractive particle dark-matter candidate is the axion. The axion is a hypothetical elementary particle arising in a simple and elegant extension to the standard model of particle physics that nulls otherwise observable CP-violating effects (where CP is the product of charge reversal C and parity inversion P) in quantum chromo dynamics (QCD). A light axion of mass 10(-(6-3)) eV (the invisible axion) would couple extraordinarily weakly to normal matter and radiation and would therefore be extremely difficult to detect in the laboratory. However, such an axion is a compelling dark-matter candidate and is therefore a target of a number of searches. Compared with other particle dark-matter candidates, the plausible range of axion dark-matter couplings and masses is narrowly constrained. This focused search range allows for definitive searches, where a nonobservation would seriously impugn the dark-matter QCD-axion hypothesis. Axion searches use a wide range of technologies, and the experiment sensitivities are now reaching likely dark-matter axion couplings and masses. This article is a selective overview of the current generation of sensitive axion searches. Not all techniques and experiments
Dark-matter QCD-axion searches
Rosenberg, Leslie J
2015-01-01
In the late 20th century, cosmology became a precision science. Now, at the beginning of the next century, the parameters describing how our universe evolved from the Big Bang are generally known to a few percent. One key parameter is the total mass density of the universe. Normal matter constitutes only a small fraction of the total mass density. Observations suggest this additional mass, the dark matter, is cold (that is, moving nonrelativistically in the early universe) and interacts feebly if at all with normal matter and radiation. There’s no known such elementary particle, so the strong presumption is the dark matter consists of particle relics of a new kind left over from the Big Bang. One of the most important questions in science is the nature of this dark matter. One attractive particle dark-matter candidate is the axion. The axion is a hypothetical elementary particle arising in a simple and elegant extension to the standard model of particle physics that nulls otherwise observable CP-violating effects (where CP is the product of charge reversal C and parity inversion P) in quantum chromo dynamics (QCD). A light axion of mass 10−(6–3) eV (the invisible axion) would couple extraordinarily weakly to normal matter and radiation and would therefore be extremely difficult to detect in the laboratory. However, such an axion is a compelling dark-matter candidate and is therefore a target of a number of searches. Compared with other particle dark-matter candidates, the plausible range of axion dark-matter couplings and masses is narrowly constrained. This focused search range allows for definitive searches, where a nonobservation would seriously impugn the dark-matter QCD-axion hypothesis. Axion searches use a wide range of technologies, and the experiment sensitivities are now reaching likely dark-matter axion couplings and masses. This article is a selective overview of the current generation of sensitive axion searches. Not all techniques and
{rho} meson decay in 2+1 flavor lattice QCD
Aoki, S.; Ishizuka, N.; Taniguchi, Y.; Ukawa, A.; Yoshie, T.; Ishikawa, K-I.; Okawa, M.; Kanaya, K.; Kuramashi, Y.; Namekawa, Y.; Ukita, N.; Yamazaki, T.
2011-11-01
We perform a lattice QCD study of the {rho} meson decay from the N{sub f}=2+1 full QCD configurations generated with a renormalization group improved gauge action and a nonperturbatively O(a)-improved Wilson fermion action. The resonance parameters, the effective {rho}{yields}{pi}{pi} coupling constant and the resonance mass, are estimated from the P-wave scattering phase shift for the isospin I=1 two-pion system. The finite size formulas are employed to calculate the phase shift from the energy on the lattice. Our calculations are carried out at two quark masses, m{sub {pi}=}410 MeV (m{sub {pi}/}m{sub {rho}=}0.46) and m{sub {pi}=}300 MeV (m{sub {pi}/}m{sub {rho}=}0.35), on a 32{sup 3}x64 (La=2.9 fm) lattice at the lattice spacing a=0.091 fm. We compare our results at these two quark masses with those given in the previous works using N{sub f}=2 full QCD configurations and the experiment.
Twenty-first Century Lattice Gauge Theory: Results from the QCD Lagrangian
Kronfeld, Andreas S.; /Fermilab
2012-03-01
Quantum chromodynamics (QCD) reduces the strong interactions, in all their variety, to an elegant nonabelian gauge theory. It clearly and elegantly explains hadrons at short distances, which has led to its universal acceptance. Since its advent, however, many of its long-distance, emergent properties have been believed to be true, without having been demonstrated to be true. This paper reviews a variety of results in this regime that have been established with lattice gauge theory, directly from the QCD Lagrangian. This body of work sheds light on the origin of hadron masses, its interplay with dynamical symmetry breaking, as well as on other intriguing features such as the phase structure of QCD. In addition, nonperturbative QCD is quantitatively important to many aspects of particle physics (especially the quark flavor sector), nuclear physics, and astrophysics. This review also surveys some of the most interesting connections to those subjects.
NASA Astrophysics Data System (ADS)
Gladilin, L. K.
2015-06-01
Recent measurements of proton structure, jet production cross sections, the strong coupling constant value, prompt photon production cross sections, charmed hadron production cross sections and the charm and beauty quark mass values, performed by the H1 and ZEUS collaborations at the e±p collider HERA, are presented.
anQCD: Fortran programs for couplings at complex momenta in various analytic QCD models
NASA Astrophysics Data System (ADS)
Ayala, César; Cvetič, Gorazd
2016-02-01
We provide three Fortran programs which evaluate the QCD analytic (holomorphic) couplings Aν(Q2) for complex or real squared momenta Q2. These couplings are holomorphic analogs of the powers a(Q2)ν of the underlying perturbative QCD (pQCD) coupling a(Q2) ≡αs(Q2) / π, in three analytic QCD models (anQCD): Fractional Analytic Perturbation Theory (FAPT), Two-delta analytic QCD (2 δanQCD), and Massive Perturbation Theory (MPT). The index ν can be noninteger. The provided programs do basically the same job as the Mathematica package anQCD.m published by us previously (Ayala and Cvetič, 2015), but are now written in Fortran.
Lattice QCD and physics beyond the Standar Model: an experimentalist perspective
NASA Astrophysics Data System (ADS)
Artuso, Marina
2017-01-01
The new frontier in elementary particle physics is to find evidence for new physics that may lead to a deeper understanding of observations such as the baryon-antibaryon asymmetry of the universe, mass hierarchy, dark matter, or dark energy to name a few. Flavor physics provides a wealth of opportunities to find such signatures, and a vast body of data taken at e+e- b-factories and at hadron machines has provided valuable information, and a few tantalizing ``tensions'' with respect to the Standard Model predictions. While the window for new physics is still open, the chance that its manifestations will be subtle is very real. A vibrant experimental program is ongoing, and significant upgrades, such as the upgraded LHCb experiment at LHC and Belle 2 at KEKb, are imminent. One of the challenges in extracting new physics from flavor physics data is the need to relate observed hadron decays to fundamental particles and interactions. The continuous improvement of Lattice QCD predictions is a key element to achieve success in this quest. Improvements in algorithms and hardware have led to predictions of increasing precision on several fundamental matrix elements, and the continuous breaking of new grounds, thus allowing a broader spectrum of measurements to become relevant to this quest. An important aspect of the experiment-lattice synergy is a comparison between lattice predictions with experiment for a variety of hadronic quantities. This talk summarizes current synergies between lattice QCD theory and flavor physics experiments, and gives some highlights of expectations from future upgrades. this work was supported by NSF.
Measurement of the W Boson Mass with the D0 Run II Detector using the Electron P(T) Spectrum
Andeen, Jr., Timothy R.
2008-06-01
This thesis is a description of the measurement of the W boson mass using the D0 Run II detector with 770 pb^{-1} of p$\\bar{p}$ collision data. These collisions were produced by the Tevatron at √s = 1.96 TeV between 2002 and 2006. We use a sample of W → ev and Z → ee decays to determine the W boson mass with the transverse momentum distribution of the electron and the transverse mass distribution of the boson. We measure M_{W} = 80340 ± 37 (stat.) ± 26 (sys. theo.) ± 51 (sys. exp.) MeV = 80340 ± 68 MeV with the transverse momentum distribution of the electron and M_{W} = 80361 ± 28 (stat.) ± 17 (sys. theo.) ± 51 (sys. exp.) MeV = 80361 ± 61 MeV with the transverse mass distribution.
An Anderson-like model of the QCD chiral transition
NASA Astrophysics Data System (ADS)
Giordano, Matteo; Kovács, Tamás G.; Pittler, Ferenc
2016-06-01
We study the problems of chiral symmetry breaking and eigenmode localisation in finite-temperature QCD by looking at the lattice Dirac operator as a random Hamiltonian. We recast the staggered Dirac operator into an unconventional three-dimensional Anderson Hamiltonian ("Dirac-Anderson Hamiltonian") carrying internal degrees of freedom, with disorder provided by the fluctuations of the gauge links. In this framework, we identify the features relevant to chiral symmetry restoration and localisation of the low-lying Dirac eigenmodes in the ordering of the local Polyakov lines, and in the related correlation between spatial links across time slices, thus tying the two phenomena to the deconfinement transition. We then build a toy model based on QCD and on the Dirac-Anderson approach, replacing the Polyakov lines with spin variables and simplifying the dynamics of the spatial gauge links, but preserving the above-mentioned relevant dynamical features. Our toy model successfully reproduces the main features of the QCD spectrum and of the Dirac eigenmodes concerning chiral symmetry breaking and localisation, both in the ordered (deconfined) and disordered (confined) phases. Moreover, it allows us to study separately the roles played in the two phenomena by the diagonal and the off-diagonal terms of the Dirac-Anderson Hamiltonian. Our results support our expectation that chiral symmetry restoration and localisation of the low modes are closely related, and that both are triggered by the deconfinement transition.
N* Spectroscopy from Lattice QCD: The Roper Explained
NASA Astrophysics Data System (ADS)
Leinweber, Derek; Kamleh, Waseem; Kiratidis, Adrian; Liu, Zhan-Wei; Mahbub, Selim; Roberts, Dale; Stokes, Finn; Thomas, Anthony W.; Wu, Jiajun
This brief review focuses on the low-lying even- and odd-parity excitations of the nucleon obtained in recent lattice QCD calculations. Commencing with a survey of the 2014-15 literature we'll see that results for the first even-parity excitation energy can differ by as much as 1 GeV, a rather unsatisfactory situation. Following a brief review of the methods used to isolate excitations of the nucleon in lattice QCD, and drawing on recent advances, we'll see how a consensus on the low-lying spectrum has emerged among many different lattice groups. To provide insight into the nature of these states we'll review the wave functions and electromagnetic form factors that are available for a few of these states. Consistent with the Luscher formalism for extracting phase shifts from finite volume spectra, the Hamiltonian approach to effective field theory in finite volume can provide guidance on the manner in which physical quantities manifest themselves in the finite volume of the lattice. With this insight, we will address the question; Have we seen the Roper in lattice QCD?
LATTICE QCD AT FINITE DENSITY.
SCHMIDT, C.
2006-07-23
I discuss different approaches to finite density lattice QCD. In particular, I focus on the structure of the phase diagram and discuss attempts to determine the location of the critical end-point. Recent results on the transition line as function of the chemical potential (T{sub c}({mu}{sub q})) are reviewed. Along the transition line, hadronic fluctuations have been calculated; which can be used to characterize properties of the Quark Gluon plasma and eventually can also help to identify the location of the critical end-point in the QCD phase diagram on the lattice and in heavy ion experiments. Furthermore, I comment on the structure of the phase diagram at large {mu}{sub q}.
Precision QCD measurements at HERA
NASA Astrophysics Data System (ADS)
Pirumov, Hayk
2014-11-01
A review of recent experimental results on perturbative QCD from the HERA experiments H1 and ZEUS is presented. All inclusive deep inelastic cross sections measured by the H1 and ZEUS collaborations in neutral and charged current unpolarised ep scattering are combined. They span six orders of magnitude in negative four-momentum-transfer squared, Q2, and in Bjorken x. This data set is used as the sole input to NLO and NNLO QCD analyses to determine new sets of parton distributions, HERAPDF2.0, with small experimental uncertainties and an estimate of model and parametrisation uncertainties. Also shown are new results on inclusive jet, dijet and trijet differential cross sections measured in neutral current deep inelastic scattering. The precision jet data is used to extract the strong coupling αs at NLO with small experimental errors.
Nuclear forces from lattice QCD
Ishii, Noriyoshi
2011-05-06
Lattice QCD construction of nuclear forces is reviewed. In this method, the nuclear potentials are constructed by solving the Schroedinger equation, where equal-time Nambu-Bethe-Salpeter (NBS) wave functions are regarded as quantum mechanical wave functions. Since the long distance behavior of equal-time NBS wave functions is controlled by the scattering phase, which is in exactly the same way as scattering wave functions in quantum mechanics, the resulting potentials are faithful to the NN scattering data. The derivative expansion of this potential leads to the central and the tensor potentials at the leading order. Some of numerical results of these two potentials are shown based on the quenched QCD.
Innovations in Lattice QCD Algorithms
Konstantinos Orginos
2006-06-25
Lattice QCD calculations demand a substantial amount of computing power in order to achieve the high precision results needed to better understand the nature of strong interactions, assist experiment to discover new physics, and predict the behavior of a diverse set of physical systems ranging from the proton itself to astrophysical objects such as neutron stars. However, computer power alone is clearly not enough to tackle the calculations we need to be doing today. A steady stream of recent algorithmic developments has made an important impact on the kinds of calculations we can currently perform. In this talk I am reviewing these algorithms and their impact on the nature of lattice QCD calculations performed today.
Group theoretical construction of extended baryon operators in lattice QCD
Subhasish Basak; Robert Edwards; George Fleming; Urs Heller; Colin Morningstar; David Richards; Ikuro Sato; Stephen Wallace
2005-06-01
The design and implementation of large sets of spatially-extended, gauge-invariant operators for use in determining the spectrum of baryons in lattice QCD computations are described. Group theoretical projections onto the irreducible representations of the symmetry group of a cubic spatial lattice are used in all isospin channels. The operators are constructed to maximize overlaps with the low-lying states of interest, while minimizing the number of sources needed in computing the required quark propagators. Issues related to the identification of the spin quantum numbers of the states in the continuum limit are addressed.
Dijet Mass Spectrum and a Search for Quark Compositeness in p¯p Collisions at √s = 1.8 TeV
NASA Astrophysics Data System (ADS)
Abbott, B.; Abolins, M.; Abramov, V.; Acharya, B. S.; Adam, I.; Adams, D. L.; Adams, M.; Ahn, S.; Aihara, H.; Alves, G. A.; Amos, N.; Anderson, E. W.; Astur, R.; Baarmand, M. M.; Babintsev, V. V.; Babukhadia, L.; Baden, A.; Balamurali, V.; Baldin, B.; Banerjee, S.; Bantly, J.; Barberis, E.; Baringer, P.; Bartlett, J. F.; Belyaev, A.; Beri, S. B.; Bertram, I.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Bhattacharjee, M.; Biswas, N.; Blazey, G.; Blessing, S.; Bloom, P.; Boehnlein, A.; Bojko, N. I.; Borcherding, F.; Boswell, C.; Brandt, A.; Breedon, R.; Brock, R.; Bross, A.; Buchholz, D.; Burtovoi, V. S.; Butler, J. M.; Carvalho, W.; Casey, D.; Casilum, Z.; Castilla-Valdez, H.; Chakraborty, D.; Chang, S.-M.; Chekulaev, S. V.; Chen, L.-P.; Chen, W.; Choi, S.; Chopra, S.; Choudhary, B. C.; Christenson, J. H.; Chung, M.; Claes, D.; Clark, A. R.; Cobau, W. G.; Cochran, J.; Coney, L.; Cooper, W. E.; Cretsinger, C.; Cullen-Vidal, D.; Cummings, M. A.; Cutts, D.; Dahl, O. I.; Davis, K.; de, K.; del Signore, K.; Demarteau, M.; Denisov, D.; Denisov, S. P.; Diehl, H. T.; Diesburg, M.; di Loreto, G.; Draper, P.; Ducros, Y.; Dudko, L. V.; Dugad, S. R.; Dyshkant, A.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Engelmann, R.; Eno, S.; Eppley, G.; Ermolov, P.; Eroshin, O. V.; Evdokimov, V. N.; Fahland, T.; Fatyga, M. K.; Feher, S.; Fein, D.; Ferbel, T.; Finocchiaro, G.; Fisk, H. E.; Fisyak, Y.; Flattum, E.; Forden, G. E.; Fortner, M.; Frame, K. C.; Fuess, S.; Gallas, E.; Galyaev, A. N.; Gartung, P.; Gavrilov, V.; Geld, T. L.; Genik, R. J.; Genser, K.; Gerber, C. E.; Gershtein, Y.; Gibbard, B.; Gobbi, B.; Gómez, B.; Gómez, G.; Goncharov, P. I.; González Solís, J. L.; Gordon, H.; Goss, L. T.; Gounder, K.; Goussiou, A.; Graf, N.; Grannis, P. D.; Green, D. R.; Greenlee, H.; Grinstein, S.; Grudberg, P.; Grünendahl, S.; Guglielmo, G.; Guida, J. A.; Guida, J. M.; Gupta, A.; Gurzhiev, S. N.; Gutierrez, G.; Gutierrez, P.; Hadley, N. J.; Haggerty, H.; Hagopian, S.; Hagopian, V.; Hahn, K. S.; Hall, R. E.; Hanlet, P.; Hansen, S.; Hauptman, J. M.; Hedin, D.; Heinson, A. P.; Heintz, U.; Hernández-Montoya, R.; Heuring, T.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Hoftun, J. S.; Hsieh, F.; Hu, Ting; Hu, Tong; Huehn, T.; Ito, A. S.; James, E.; Jaques, J.; Jerger, S. A.; Jesik, R.; Joffe-Minor, T.; Johns, K.; Johnson, M.; Jonckheere, A.; Jones, M.; Jöstlein, H.; Jun, S. Y.; Jung, C. K.; Kahn, S.; Kalbfleisch, G.; Karmanov, D.; Karmgard, D.; Kehoe, R.; Kelly, M. L.; Kim, S. K.; Klima, B.; Klopfenstein, C.; Ko, W.; Kohli, J. M.; Koltick, D.; Kostritskiy, A. V.; Kotcher, J.; Kotwal, A. V.; Kozelov, A. V.; Kozlovsky, E. A.; Krane, J.; Krishnaswamy, M. R.; Krzywdzinski, S.; Kuleshov, S.; Kunori, S.; Landry, F.; Landsberg, G.; Lauer, B.; Leflat, A.; Li, J.; Li-Demarteau, Q. Z.; Lima, J. G.; Lincoln, D.; Linn, S. L.; Linnemann, J.; Lipton, R.; Lobkowicz, F.; Loken, S. C.; Lucotte, A.; Lueking, L.; Lyon, A. L.; Maciel, A. K.; Madaras, R. J.; Madden, R.; Magaña-Mendoza, L.; Manankov, V.; Mani, S.; Mao, H. S.; Markeloff, R.; Marshall, T.; Martin, M. I.; Mauritz, K. M.; May, B.; Mayorov, A. A.; McCarthy, R.; McDonald, J.; McKibben, T.; McKinley, J.; McMahon, T.; Melanson, H. L.; Merkin, M.; Merritt, K. W.; Miao, C.; Miettinen, H.; Mincer, A.; Mishra, C. S.; Mokhov, N.; Mondal, N. K.; Montgomery, H. E.; Mooney, P.; Mostafa, M.; da Motta, H.; Murphy, C.; Nang, F.; Narain, M.; Narasimham, V. S.; Narayanan, A.; Neal, H. A.; Negret, J. P.; Nemethy, P.; Norman, D.; Oesch, L.; Oguri, V.; Oliveira, E.; Oltman, E.; Oshima, N.; Owen, D.; Padley, P.; Para, A.; Park, Y. M.; Partridge, R.; Parua, N.; Paterno, M.; Pawlik, B.; Perkins, J.; Peters, M.; Piegaia, R.; Piekarz, H.; Pischalnikov, Y.; Pope, B. G.; Prosper, H. B.; Protopopescu, S.; Qian, J.; Quintas, P. Z.; Raja, R.; Rajagopalan, S.; Ramirez, O.; Reucroft, S.; Rijssenbeek, M.; Rockwell, T.; Roco, M.; Rubinov, P.; Ruchti, R.; Rutherfoord, J.; Sánchez-Hernández, A.; Santoro, A.; Sawyer, L.; Schamberger, R. D.; Schellman, H.; Sculli, J.; Shabalina, E.; Shaffer, C.; Shankar, H. C.; Shivpuri, R. K.; Shupe, M.; Singh, H.; Singh, J. B.; Sirotenko, V.; Smith, E.; Smith, R. P.; Snihur, R.; Snow, G. R.; Snow, J.; Snyder, S.; Solomon, J.; Sosebee, M.; Sotnikova, N.; Souza, M.; Spadafora, A. L.; Steinbrück, G.; Stephens, R. W.; Stevenson, M. L.; Stewart, D.; Stichelbaut, F.; Stoker, D.; Stolin, V.; Stoyanova, D. A.; Strauss, M.; Streets, K.; Strovink, M.; Sznajder, A.; Tamburello, P.; Tarazi, J.; Tartaglia, M.; Thomas, T. L.; Thompson, J.; Trippe, T. G.; Tuts, P. M.; Vaniev, V.; Varelas, N.; Varnes, E. W.; Vititoe, D.; Volkov, A. A.; Vorobiev, A. P.; Wahl, H. D.; Wang, G.; Warchol, J.; Watts, G.; Wayne, M.; Weerts, H.; White, A.; White, J. T.; Wightman, J. A.; Willis, S.; Wimpenny, S. J.; Wirjawan, J. V.
1999-03-01
Using the D0 detector at the 1.8 TeV p¯p Fermilab Tevatron collider, we have measured the inclusive dijet mass spectrum in the central pseudorapidity region \\|ηjet\\|<1.0 for dijet masses greater than 200 GeV/c2. We have also measured the ratio of spectra σ\\(\\|ηjet\\|<0.5\\)/σ\\(0.5<\\|ηjet\\|<1.0\\). The order α3s quantum chromodynamics predictions are in good agreement with the data and we rule out models of quark compositeness with a contact interaction scale <2.4 TeV at the 95% confidence level.
Vollrath, Ian Eberhard
2007-01-01
This thesis describes a measurement of the W boson mass from a fit to the transverse momentum spectrum of the muon in W decay. In past measurements this technique was used as a cross-check, however, now presents the best method in terms of systematic uncertainty. We discuss all sources of systematic uncertainty with emphasis on those to which the muon p_{T} measurement is particularly sensitive, specifically, those associated with modeling the production and decay of W bosons. The data were collected with the CDF II detector between March 2002 and September 2003 and correspond to an integrated luminosity of (191 ± 11) pb^{-1}. We measure the W mass to be (80.316 ± 0.066_{stat.} ± 0.051_{syst.}) GeV/c^{2} = (80.316 ± 0.083) GeV/c^{2}.
NASA Astrophysics Data System (ADS)
Ablikim, M.; Bai, J. Z.; Ban, Y.; Bian, J. G.; Cai, X.; Chen, H. F.; Chen, H. S.; Chen, H. X.; Chen, J. C.; Chen, Jin; Chen, Y. B.; Chi, S. P.; Chu, Y. P.; Cui, X. Z.; Dai, Y. S.; Diao, L. Y.; Deng, Z. Y.; Dong, Q. F.; Du, S. X.; Fang, J.; Fang, S. S.; Fu, C. D.; Gao, C. S.; Gao, Y. N.; Gu, S. D.; Gu, Y. T.; Guo, Y. N.; Guo, Y. Q.; Guo, Z. J.; Harris, F. A.; He, K. L.; He, M.; Heng, Y. K.; Hu, H. M.; Hu, T.; Huang, G. S.; Huang, X. T.; Ji, X. B.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jin, D. P.; Jin, S.; Jin, Yi; Lai, Y. F.; Li, G.; Li, H. B.; Li, H. H.; Li, J.; Li, R. Y.; Li, S. M.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, Y. L.; Liang, Y. F.; Liao, H. B.; Liu, B. J.; Liu, C. X.; Liu, F.; Liu, Fang; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. B.; Liu, J. P.; Liu, Q.; Liu, R. G.; Liu, Z. A.; Lou, Y. C.; Lu, F.; Lu, G. R.; Lu, J. G.; Luo, C. L.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, Q. M.; Ma, X. B.; Mao, Z. P.; Mo, X. H.; Nie, J.; Olsen, S. L.; Peng, H. P.; Ping, R. G.; Qi, N. D.; Qin, H.; Qiu, J. F.; Ren, Z. Y.; Rong, G.; Shan, L. Y.; Shang, L.; Shen, C. P.; Shen, D. L.; Shen, X. Y.; Sheng, H. Y.; Sun, H. S.; Sun, J. F.; Sun, S. S.; Sun, Y. Z.; Sun, Z. J.; Tan, Z. Q.; Tang, X.; Tong, G. L.; Varner, G. S.; Wang, D. Y.; Wang, L.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, W. F.; Wang, Y. F.; Wang, Z.; Wang, Z. Y.; Wang, Zhe; Wang, Zheng; Wei, C. L.; Wei, D. H.; Wu, N.; Xia, X. M.; Xie, X. X.; Xu, G. F.; Xu, X. P.; Xu, Y.; Yan, M. L.; Yang, H. X.; Yang, Y. X.; Ye, M. H.; Ye, Y. X.; Yi, Z. Y.; Yu, G. W.; Yuan, C. Z.; Yuan, J. M.; Yuan, Y.; Zang, S. L.; Zeng, Y.; Zeng, Yu; Zhang, B. X.; Zhang, B. Y.; Zhang, C. C.; Zhang, D. H.; Zhang, H. Q.; Zhang, H. Y.; Zhang, J. W.; Zhang, J. Y.; Zhang, S. H.; Zhang, X. M.; Zhang, X. Y.; Zhang, Yiyun; Zhang, Z. P.; Zhao, D. X.; Zhao, J. W.; Zhao, M. G.; Zhao, P. P.; Zhao, W. R.; Zhao, Z. G.; Zheng, H. Q.; Zheng, J. P.; Zheng, Z. P.; Zhou, L.; Zhou, N. F.; Zhu, K. J.; Zhu, Q. M.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Yingchun; Zhu, Z. A.; Zhuang, B. A.; Zhuang, X. A.; Zou, B. S.
2006-04-01
An enhancement near threshold is observed in the ωϕ invariant mass spectrum from the doubly Okubo-Zweig-Iizuka suppressed decays of J/ψ→γωϕ, based on a sample of 5.8×107 J/ψ events collected with the BESII detector. A partial wave analysis shows that this enhancement favors JP=0+, and its mass and width are M=1812-26+19(stat)±18(syst)MeV/c2 and Γ=105±20(stat)±28(syst)MeV/c2. The product branching fraction is determined to be B(J/ψ→γX)B(X→ωϕ)=[2.61±0.27(stat)±0.65(syst)]×10-4.
Study of the Dijet mass spectrum in pp → W+jets events at sqrt[s] = 7 TeV.
Chatrchyan, S; Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Aguilo, E; Bergauer, T; Dragicevic, M; Erö, J; Fabjan, C; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hörmann, N; Hrubec, J; Jeitler, M; Kiesenhofer, W; Knünz, V; Krammer, M; Krätschmer, I; Liko, D; Mikulec, I; Pernicka, M; Rahbaran, B; Rohringer, C; Rohringer, H; Schöfbeck, R; Strauss, J; Taurok, A; Waltenberger, W; Walzel, G; Widl, E; Wulz, C-E; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Bansal, M; Bansal, S; Cornelis, T; De Wolf, E A; Janssen, X; Luyckx, S; Mucibello, L; Ochesanu, S; Roland, B; Rougny, R; Selvaggi, M; Staykova, Z; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Van Spilbeeck, A; Blekman, F; Blyweert, S; D'Hondt, J; Gonzalez Suarez, R; Kalogeropoulos, A; Maes, M; Olbrechts, A; Van Doninck, W; Van Mulders, P; Van Onsem, G P; Villella, I; Clerbaux, B; De Lentdecker, G; Dero, V; Gay, A P R; Hreus, T; Léonard, A; Marage, P E; Reis, T; Thomas, L; Vander Marcken, G; Vander Velde, C; Vanlaer, P; Wang, J; Adler, V; Beernaert, K; Cimmino, A; Costantini, S; Garcia, G; Grunewald, M; Klein, B; Lellouch, J; Marinov, A; McCartin, J; Ocampo Rios, A A; Ryckbosch, D; Strobbe, N; Thyssen, F; Tytgat, M; Verwilligen, P; Walsh, S; Yazgan, E; Zaganidis, N; Basegmez, S; Bruno, G; Castello, R; Ceard, L; Delaere, C; du Pree, T; Favart, D; Forthomme, L; Giammanco, A; Hollar, J; Lemaitre, V; Liao, J; Militaru, O; Nuttens, C; Pagano, D; Pin, A; Piotrzkowski, K; Schul, N; Vizan Garcia, J M; Beliy, N; Caebergs, T; Daubie, E; Hammad, G H; Alves, G A; Correa Martins Junior, M; De Jesus Damiao, D; Martins, T; Pol, M E; Souza, M H G; Aldá Júnior, W L; Carvalho, W; Custódio, A; Da Costa, E M; De Oliveira Martins, C; Fonseca De Souza, S; Matos Figueiredo, D; Mundim, L; Nogima, H; Oguri, V; Prado Da Silva, W L; Santoro, A; Soares Jorge, L; Sznajder, A; Anjos, T S; Bernardes, C A; Dias, F A; Fernandez Perez Tomei, T R; Gregores, E M; Lagana, C; Marinho, F; Mercadante, P G; Novaes, S F; Padula, Sandra S; Genchev, V; Iaydjiev, P; Piperov, S; Rodozov, M; Stoykova, S; Sultanov, G; Tcholakov, V; Trayanov, R; Vutova, M; Dimitrov, A; Hadjiiska, R; Kozhuharov, V; Litov, L; Pavlov, B; Petkov, P; Bian, J G; Chen, G M; Chen, H S; Jiang, C H; Liang, D; Liang, S; Meng, X; Tao, J; Wang, J; Wang, X; Wang, Z; Xiao, H; Xu, M; Zang, J; Zhang, Z; Asawatangtrakuldee, C; Ban, Y; Guo, S; Guo, Y; Li, W; Liu, S; Mao, Y; Qian, S J; Teng, H; Wang, D; Zhang, L; Zhu, B; Zou, W; Avila, C; Gomez, J P; Gomez Moreno, B; Osorio Oliveros, A F; Sanabria, J C; Godinovic, N; Lelas, D; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Kovac, M; Brigljevic, V; Duric, S; Kadija, K; Luetic, J; Morovic, S; Attikis, A; Galanti, M; Mavromanolakis, G; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Finger, M; Finger, M; Assran, Y; Elgammal, S; Ellithi Kamel, A; Khalil, S; Mahmoud, M A; Radi, A; Kadastik, M; Müntel, M; Raidal, M; Rebane, L; Tiko, A; Eerola, P; Fedi, G; Voutilainen, M; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Peltola, T; Tuominen, E; Tuominiemi, J; Tuovinen, E; Ungaro, D; Wendland, L; Banzuzi, K; Karjalainen, A; Korpela, A; Tuuva, T; Besancon, M; Choudhury, S; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Locci, E; Malcles, J; Millischer, L; Nayak, A; Rander, J; Rosowsky, A; Shreyber, I; Titov, M; Baffioni, S; Beaudette, F; Benhabib, L; Bianchini, L; Bluj, M; Broutin, C; Busson, P; Charlot, C; Daci, N; Dahms, T; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Mironov, C; Naranjo, I N; Nguyen, M; Ochando, C; Paganini, P; Sabes, D; Salerno, R; Sirois, Y; Veelken, C; Zabi, A; Agram, J-L; Andrea, J; Bloch, D; Bodin, D; Brom, J-M; Cardaci, M; Chabert, E C; Collard, C; Conte, E; Drouhin, F; Ferro, C; Fontaine, J-C; Gelé, D; Goerlach, U; Juillot, P; Le Bihan, A-C; Van Hove, P; Fassi, F; Mercier, D; Beauceron, S; Beaupere, N; Bondu, O; Boudoul, G; Chasserat, J; Chierici, R; Contardo, D; Depasse, P; El Mamouni, H; Fay, J; Gascon, S; Gouzevitch, M; Ille, B; Kurca, T; Lethuillier, M; Mirabito, L; Perries, S; Sordini, V; Tschudi, Y; Verdier, P; Viret, S; Tsamalaidze, Z; Anagnostou, G; Beranek, S; Edelhoff, M; Feld, L; Heracleous, N; Hindrichs, O; Jussen, R; Klein, K; Merz, J; Ostapchuk, A; Perieanu, A; Raupach, F; Sammet, J; Schael, S; Sprenger, D; Weber, H; Wittmer, B; Zhukov, V; Ata, M; Caudron, J; Dietz-Laursonn, E; Duchardt, D; Erdmann, M; Fischer, R; Güth, A; Hebbeker, T; Heidemann, C; Hoepfner, K; Klingebiel, D; Kreuzer, P; Magass, C; Merschmeyer, M; Meyer, A; Olschewski, M; Papacz, P; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Steggemann, J; Teyssier, D; Weber, M; Bontenackels, M; Cherepanov, V; Erdogan, Y; Flügge, G; Geenen, H; Geisler, M; Haj Ahmad, W; Hoehle, F; Kargoll, B; Kress, T; Kuessel, Y; Nowack, A; Perchalla, L; Pooth, O; Sauerland, P; Stahl, A; Aldaya Martin, M; Behr, J; Behrenhoff, W; Behrens, U; Bergholz, M; Bethani, A; Borras, K; Burgmeier, A; Cakir, A; Calligaris, L; Campbell, A; Castro, E; Costanza, F; Dammann, D; Diez Pardos, C; Eckerlin, G; Eckstein, D; Flucke, G; Geiser, A; Glushkov, I; Gunnellini, P; Habib, S; Hauk, J; Hellwig, G; Jung, H; Kasemann, M; Katsas, P; Kleinwort, C; Kluge, H; Knutsson, A; Krämer, M; Krücker, D; Kuznetsova, E; Lange, W; Lohmann, W; Lutz, B; Mankel, R; Marfin, I; Marienfeld, M; Melzer-Pellmann, I-A; Meyer, A B; Mnich, J; Mussgiller, A; Naumann-Emme, S; Olzem, J; Perrey, H; Petrukhin, A; Pitzl, D; Raspereza, A; Ribeiro Cipriano, P M; Riedl, C; Ron, E; Rosin, M; Salfeld-Nebgen, J; Schmidt, R; Schoerner-Sadenius, T; Sen, N; Spiridonov, A; Stein, M; Walsh, R; Wissing, C; Autermann, C; Blobel, V; Draeger, J; Enderle, H; Erfle, J; Gebbert, U; Görner, M; Hermanns, T; Höing, R S; Kaschube, K; Kaussen, G; Kirschenmann, H; Klanner, R; Lange, J; Mura, B; Nowak, F; Peiffer, T; Pietsch, N; Rathjens, D; Sander, C; Schettler, H; Schleper, P; Schlieckau, E; Schmidt, A; Schröder, M; Schum, T; Seidel, M; Sola, V; Stadie, H; Steinbrück, G; Thomsen, J; Vanelderen, L; Barth, C; Berger, J; Böser, C; Chwalek, T; De Boer, W; Descroix, A; Dierlamm, A; Feindt, M; Guthoff, M; Hackstein, C; Hartmann, F; Hauth, T; Heinrich, M; Held, H; Hoffmann, K H; Honc, S; Katkov, I; Komaragiri, J R; Lobelle Pardo, P; Martschei, D; Mueller, S; Müller, Th; Niegel, M; Nürnberg, A; Oberst, O; Oehler, A; Ott, J; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Röcker, S; Scheurer, A; Schilling, F-P; Schott, G; Simonis, H J; Stober, F M; Troendle, D; Ulrich, R; Wagner-Kuhr, J; Wayand, S; Weiler, T; Zeise, M; Daskalakis, G; Geralis, T; Kesisoglou, S; Kyriakis, A; Loukas, D; Manolakos, I; Markou, A; Markou, C; Mavrommatis, C; Ntomari, E; Gouskos, L; Mertzimekis, T J; Panagiotou, A; Saoulidou, N; Evangelou, I; Foudas, C; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Bencze, G; Hajdu, C; Hidas, P; Horvath, D; Sikler, F; Veszpremi, V; Vesztergombi, G; Beni, N; Czellar, S; Molnar, J; Palinkas, J; Szillasi, Z; Karancsi, J; Raics, P; Trocsanyi, Z L; Ujvari, B; Beri, S B; Bhatnagar, V; Dhingra, N; Gupta, R; Kaur, M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, J; Kumar, Ashok; Kumar, Arun; Ahuja, S; Bhardwaj, A; Choudhary, B C; Malhotra, S; Naimuddin, M; Ranjan, K; Sharma, V; Shivpuri, R K; Banerjee, S; Bhattacharya, S; Dutta, S; Gomber, B; Jain, Sa; Jain, Sh; Khurana, R; Sarkar, S; Sharan, M; Abdulsalam, A; Choudhury, R K; Dutta, D; Kailas, S; Kumar, V; Mehta, P; Mohanty, A K; Pant, L M; Shukla, P; Aziz, T; Ganguly, S; Guchait, M; Maity, M; Majumder, G; Mazumdar, K; Mohanty, G B; Parida, B; Sudhakar, K; Wickramage, N; Banerjee, S; Dugad, S; Arfaei, H; Bakhshiansohi, H; Etesami, S M; Fahim, A; Hashemi, M; Hesari, H; Jafari, A; Khakzad, M; Mohammadi Najafabadi, M; Paktinat Mehdiabadi, S; Safarzadeh, B; Zeinali, M; Abbrescia, M; Barbone, L; Calabria, C; Chhibra, S S; Colaleo, A; Creanza, D; De Filippis, N; De Palma, M; Fiore, L; Iaselli, G; Lusito, L; Maggi, G; Maggi, M; Marangelli, B; My, S; Nuzzo, S; Pacifico, N; Pompili, A; Pugliese, G; Selvaggi, G; Silvestris, L; Singh, G; Venditti, R; Zito, G; Abbiendi, G; Benvenuti, A C; Bonacorsi, D; Braibant-Giacomelli, S; Brigliadori, L; Capiluppi, P; Castro, A; Cavallo, F R; Cuffiani, M; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Grandi, C; Guiducci, L; Marcellini, S; Masetti, G; Meneghelli, M; Montanari, A; Navarria, F L; Odorici, F; Perrotta, A; Primavera, F; Rossi, A M; Rovelli, T; Siroli, G; Travaglini, R; Albergo, S; Cappello, G; Chiorboli, M; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Gonzi, S; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bianco, S; Colafranceschi, S; Fabbri, F; Piccolo, D; Fabbricatore, P; Musenich, R; Tosi, S; Benaglia, A; De Guio, F; Di Matteo, L; Fiorendi, S; Gennai, S; Ghezzi, A; Malvezzi, S; Manzoni, R A; Martelli, A; Massironi, A; Menasce, D; Moroni, L; Paganoni, M; Pedrini, D; Ragazzi, S; Redaelli, N; Sala, S; Tabarelli de Fatis, T; Buontempo, S; Carrillo Montoya, C A; Cavallo, N; De Cosa, A; Dogangun, O; Fabozzi, F; Iorio, A O M; Lista, L; Meola, S; Merola, M; Paolucci, P; Azzi, P; Bacchetta, N; Bisello, D; Branca, A; Carlin, R; Checchia, P; Dorigo, T; Dosselli, U; Gasparini, F; Gasparini, U; Gozzelino, A; Kanishchev, K; Lacaprara, S; Lazzizzera, I; Margoni, M; Meneguzzo, A T; Pazzini, J; Pozzobon, N; Ronchese, P; Simonetto, F; Torassa, E; Tosi, M; Vanini, S; Zotto, P; Zumerle, G; Gabusi, M; Ratti, S P; Riccardi, C; Torre, P; Vitulo, P; Biasini, M; Bilei, G M; Fanò, L; Lariccia, P; Lucaroni, A; Mantovani, G; Menichelli, M; Nappi, A; Romeo, F; Saha, A; Santocchia, A; Spiezia, A; Taroni, S; Azzurri, P; Bagliesi, G; Boccali, T; Broccolo, G; Castaldi, R; D'Agnolo, R T; Dell'orso, R; Fiori, F; Foà, L; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Martini, L; Messineo, A; Palla, F; Rizzi, A; Serban, A T; Spagnolo, P; Squillacioti, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, P G; Barone, L; Cavallari, F; Del Re, D; Diemoz, M; Fanelli, C; Grassi, M; Longo, E; Meridiani, P; Micheli, F; Nourbakhsh, S; Organtini, G; Paramatti, R; Rahatlou, S; Sigamani, M; Soffi, L; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Cartiglia, N; Costa, M; Demaria, N; Mariotti, C; Maselli, S; Migliore, E; Monaco, V; Musich, M; Obertino, M M; Pastrone, N; Pelliccioni, M; Potenza, A; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Vilela Pereira, A; Belforte, S; Candelise, V; Cossutti, F; Della Ricca, G; Gobbo, B; Marone, M; Montanino, D; Penzo, A; Schizzi, A; Heo, S G; Kim, T Y; Nam, S K; Chang, S; Kim, D H; Kim, G N; Kong, D J; Park, H; Ro, S R; Son, D C; Son, T; Kim, J Y; Kim, Zero J; Song, S; Choi, S; Gyun, D; Hong, B; Jo, M; Kim, H; Kim, T J; Lee, K S; Moon, D H; Park, S K; Choi, M; Kim, J H; Park, C; Park, I C; Park, S; Ryu, G; Cho, Y; Choi, Y; Choi, Y K; Goh, J; Kim, M S; Kwon, E; Lee, B; Lee, J; Lee, S; Seo, H; Yu, I; Bilinskas, M J; Grigelionis, I; Janulis, M; Juodagalvis, A; Castilla-Valdez, H; De La Cruz-Burelo, E; Heredia-de La Cruz, I; Lopez-Fernandez, R; Magaña Villalba, R; Martínez-Ortega, J; Sánchez-Hernández, A; Villasenor-Cendejas, L M; Carrillo Moreno, S; Vazquez Valencia, F; Salazar Ibarguen, H A; Casimiro Linares, E; Morelos Pineda, A; Reyes-Santos, M A; Krofcheck, D; Bell, A J; Butler, P H; Doesburg, R; Reucroft, S; Silverwood, H; Ahmad, M; Ansari, M H; Asghar, M I; Hoorani, H R; Khalid, S; Khan, W A; Khurshid, T; Qazi, S; Shah, M A; Shoaib, M; Bialkowska, H; Boimska, B; Frueboes, T; Gokieli, R; Górski, M; Kazana, M; Nawrocki, K; Romanowska-Rybinska, K; Szleper, M; Wrochna, G; Zalewski, P; Brona, G; Bunkowski, K; Cwiok, M; Dominik, W; Doroba, K; Kalinowski, A; Konecki, M; Krolikowski, J; Almeida, N; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Gallinaro, M; Seixas, J; Varela, J; Vischia, P; Belotelov, I; Bunin, P; Gavrilenko, M; Golutvin, I; Gorbunov, I; Karjavin, V; Konoplyanikov, V; Kozlov, G; Lanev, A; Malakhov, A; Moisenz, P; Palichik, V; Perelygin, V; Shmatov, S; Smirnov, V; Volodko, A; Zarubin, A; Evstyukhin, S; Golovtsov, V; Ivanov, Y; Kim, V; Levchenko, P; Murzin, V; Oreshkin, V; Smirnov, I; Sulimov, V; Uvarov, L; Vavilov, S; Vorobyev, A; Vorobyev, An; Andreev, Yu; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Tlisov, D; Toropin, A; Epshteyn, V; Erofeeva, M; Gavrilov, V; Kossov, M; Lychkovskaya, N; Popov, V; Safronov, G; Semenov, S; Stolin, V; Vlasov, E; Zhokin, A; Belyaev, A; Boos, E; Bunichev, V; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Markina, A; Obraztsov, S; Perfilov, M; Popov, A; Sarycheva, L; Savrin, V; Snigirev, A; Andreev, V; Azarkin, M; Dremin, I; Kirakosyan, M; Leonidov, A; Mesyats, G; Rusakov, S V; Vinogradov, A; Azhgirey, I; Bayshev, I; Bitioukov, S; Grishin, V; Kachanov, V; Konstantinov, D; Korablev, A; Krychkine, V; Petrov, V; Ryutin, R; Sobol, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Ekmedzic, M; Krpic, D; Milosevic, J; Aguilar-Benitez, M; Alcaraz Maestre, J; Arce, P; Battilana, C; Calvo, E; Cerrada, M; Chamizo Llatas, M; Colino, N; De La Cruz, B; Delgado Peris, A; Domínguez Vázquez, D; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Merino, G; Puerta Pelayo, J; Quintario Olmeda, A; Redondo, I; Romero, L; Santaolalla, J; Soares, M S; Willmott, C; Albajar, C; Codispoti, G; de Trocóniz, J F; Brun, H; Cuevas, J; Fernandez Menendez, J; Folgueras, S; Gonzalez Caballero, I; Lloret Iglesias, L; Piedra Gomez, J; Brochero Cifuentes, J A; Cabrillo, I J; Calderon, A; Chuang, S H; Duarte Campderros, J; Felcini, M; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Graziano, A; Jorda, C; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Matorras, F; Munoz Sanchez, F J; Rodrigo, T; Rodríguez-Marrero, A Y; Ruiz-Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Auffray, E; Auzinger, G; Baillon, P; Ball, A H; Barney, D; Benitez, J F; Bernet, C; Bianchi, G; Bloch, P; Bocci, A; Bonato, A; Botta, C; Breuker, H; Camporesi, T; Cerminara, G; Christiansen, T; Coarasa Perez, J A; D'Enterria, D; Dabrowski, A; De Roeck, A; Di Guida, S; Dobson, M; Dupont-Sagorin, N; Elliott-Peisert, A; Frisch, B; Funk, W; Georgiou, G; Giffels, M; Gigi, D; Gill, K; Giordano, D; Giunta, M; Glege, F; Gomez-Reino Garrido, R; Govoni, P; Gowdy, S; Guida, R; Hansen, M; Harris, P; Hartl, C; Harvey, J; Hegner, B; Hinzmann, A; Innocente, V; Janot, P; Kaadze, K; Karavakis, E; Kousouris, K; Lecoq, P; Lee, Y-J; Lenzi, P; Lourenço, C; Magini, N; Mäki, T; Malberti, M; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Mersi, S; Meschi, E; Moser, R; Mozer, M U; Mulders, M; Musella, P; Nesvold, E; Orimoto, T; Orsini, L; Palencia Cortezon, E; Perez, E; Perrozzi, L; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Piparo, D; Polese, G; Quertenmont, L; Racz, A; Reece, W; Rodrigues Antunes, J; Rolandi, G; Rovelli, C; Rovere, M; Sakulin, H; Santanastasio, F; Schäfer, C; Schwick, C; Segoni, I; Sekmen, S; Sharma, A; Siegrist, P; Silva, P; Simon, M; Sphicas, P; Spiga, D; Tsirou, A; Veres, G I; Vlimant, J R; Wöhri, H K; Worm, S D; Zeuner, W D; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Bäni, L; Bortignon, P; Buchmann, M A; Casal, B; Chanon, N; Deisher, A; Dissertori, G; Dittmar, M; Donegà, M; Dünser, M; Eugster, J; Freudenreich, K; Grab, C; Hits, D; Lecomte, P; Lustermann, W; Marini, A C; Martinez Ruiz Del Arbol, P; Mohr, N; Moortgat, F; Nägeli, C; Nef, P; Nessi-Tedaldi, F; Pandolfi, F; Pape, L; Pauss, F; Peruzzi, M; Ronga, F J; Rossini, M; Sala, L; Sanchez, A K; Starodumov, A; Stieger, B; Takahashi, M; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Urscheler, C; Wallny, R; Weber, H A; Wehrli, L; Amsler, C; Chiochia, V; De Visscher, S; Favaro, C; Ivova Rikova, M; Millan Mejias, B; Otiougova, P; Robmann, P; Snoek, H; Tupputi, S; Verzetti, M; Chang, Y H; Chen, K H; Kuo, C M; Li, S W; Lin, W; Liu, Z K; Lu, Y J; Mekterovic, D; Singh, A P; Volpe, R; Yu, S S; Bartalini, P; Chang, P; Chang, Y H; Chang, Y W; Chao, Y; Chen, K F; Dietz, C; Grundler, U; Hou, W-S; Hsiung, Y; Kao, K Y; Lei, Y J; Lu, R-S; Majumder, D; Petrakou, E; Shi, X; Shiu, J G; Tzeng, Y M; Wan, X; Wang, M; Adiguzel, A; Bakirci, M N; Cerci, S; Dozen, C; Dumanoglu, I; Eskut, E; Girgis, S; Gokbulut, G; Gurpinar, E; Hos, I; Kangal, E E; Karaman, T; Karapinar, G; Kayis Topaksu, A; Onengut, G; Ozdemir, K; Ozturk, S; Polatoz, A; Sogut, K; Sunar Cerci, D; Tali, B; Topakli, H; Vergili, L N; Vergili, M; Akin, I V; Aliev, T; Bilin, B; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Ocalan, K; Ozpineci, A; Serin, M; Sever, R; Surat, U E; Yalvac, M; Yildirim, E; Zeyrek, M; Gülmez, E; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Cankocak, K; Levchuk, L; Bostock, F; Brooke, J J; Clement, E; Cussans, D; Flacher, H; Frazier, R; Goldstein, J; Grimes, M; Heath, G P; Heath, H F; Kreczko, L; Metson, S; Newbold, D M; Nirunpong, K; Poll, A; Senkin, S; Smith, V J; Williams, T; Basso, L; Bell, K W; Belyaev, A; Brew, C; Brown, R M; Cockerill, D J A; Coughlan, J A; Harder, K; Harper, S; Jackson, J; Kennedy, B W; Olaiya, E; Petyt, D; Radburn-Smith, B C; Shepherd-Themistocleous, C H; Tomalin, I R; Womersley, W J; Bainbridge, R; Ball, G; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Cutajar, M; Dauncey, P; Davies, G; Della Negra, M; Ferguson, W; Fulcher, J; Futyan, D; Gilbert, A; Guneratne Bryer, A; Hall, G; Hatherell, Z; Hays, J; Iles, G; Jarvis, M; Karapostoli, G; Lyons, L; Magnan, A-M; Marrouche, J; Mathias, B; Nandi, R; Nash, J; Nikitenko, A; Papageorgiou, A; Pela, J; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rogerson, S; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sparrow, A; Stoye, M; Tapper, A; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardle, N; Whyntie, T; Chadwick, M; Cole, J E; Hobson, P R; Khan, A; Kyberd, P; Leggat, D; Leslie, D; Martin, W; Reid, I D; Symonds, P; Teodorescu, L; Turner, M; Hatakeyama, K; Liu, H; Scarborough, T; Charaf, O; Henderson, C; Rumerio, P; Avetisyan, A; Bose, T; Fantasia, C; Heister, A; St John, J; Lawson, P; Lazic, D; Rohlf, J; Sperka, D; Sulak, L; Alimena, J; Bhattacharya, S; Cutts, D; Ferapontov, A; Heintz, U; Jabeen, S; Kukartsev, G; Laird, E; Landsberg, G; Luk, M; Narain, M; Nguyen, D; Segala, M; Sinthuprasith, T; Speer, T; Tsang, K V; Breedon, R; Breto, G; Calderon De La Barca Sanchez, M; Chauhan, S; Chertok, M; Conway, J; Conway, R; Cox, P T; Dolen, J; Erbacher, R; Gardner, M; Houtz, R; Ko, W; Kopecky, A; Lander, R; Miceli, T; Pellett, D; Ricci-Tam, F; Rutherford, B; Searle, M; Smith, J; Squires, M; Tripathi, M; Vasquez Sierra, R; Andreev, V; Cline, D; Cousins, R; Duris, J; Erhan, S; Everaerts, P; Farrell, C; Hauser, J; Ignatenko, M; Jarvis, C; Plager, C; Rakness, G; Schlein, P; Traczyk, P; Valuev, V; Weber, M; Babb, J; Clare, R; Dinardo, M E; Ellison, J; Gary, J W; Giordano, F; Hanson, G; Jeng, G Y; Liu, H; Long, O R; Luthra, A; Nguyen, H; Paramesvaran, S; Sturdy, J; Sumowidagdo, S; Wilken, R; Wimpenny, S; Andrews, W; Branson, J G; Cerati, G B; Cittolin, S; Evans, D; Golf, F; Holzner, A; Kelley, R; Lebourgeois, M; Letts, J; Macneill, I; Mangano, B; Padhi, S; Palmer, C; Petrucciani, G; Pieri, M; Sani, M; Sharma, V; Simon, S; Sudano, E; Tadel, M; Tu, Y; Vartak, A; Wasserbaech, S; Würthwein, F; Yagil, A; Yoo, J; Barge, D; Bellan, R; Campagnari, C; D'Alfonso, M; Danielson, T; Flowers, K; Geffert, P; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lowette, S; McColl, N; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; West, C; Apresyan, A; Bornheim, A; Chen, Y; Di Marco, E; Duarte, J; Gataullin, M; Ma, Y; Mott, A; Newman, H B; Rogan, C; Spiropulu, M; Timciuc, V; Veverka, J; Wilkinson, R; Xie, S; Yang, Y; Zhu, R Y; Akgun, B; Azzolini, V; Calamba, A; Carroll, R; Ferguson, T; Iiyama, Y; Jang, D W; Liu, Y F; Paulini, M; Vogel, H; Vorobiev, I; Cumalat, J P; Drell, B R; Edelmaier, C J; Ford, W T; Gaz, A; Heyburn, B; Luiggi Lopez, E; Smith, J G; Stenson, K; Ulmer, K A; Wagner, S R; Alexander, J; Chatterjee, A; Eggert, N; Gibbons, L K; Heltsley, B; Khukhunaishvili, A; Kreis, B; Mirman, N; Nicolas Kaufman, G; Patterson, J R; Ryd, A; Salvati, E; Sun, W; Teo, W D; Thom, J; Thompson, J; Tucker, J; Vaughan, J; Weng, Y; Winstrom, L; Wittich, P; Winn, D; Abdullin, S; Albrow, M; Anderson, J; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Bloch, I; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Elvira, V D; Fisk, I; Freeman, J; Gao, Y; Green, D; Gutsche, O; Hanlon, J; Harris, R M; Hirschauer, J; Hooberman, B; Jindariani, S; Johnson, M; Joshi, U; Kilminster, B; Klima, B; Kunori, S; Kwan, S; Leonidopoulos, C; Linacre, J; Lincoln, D; Lipton, R; Lykken, J; Maeshima, K; Marraffino, J M; Maruyama, S; Mason, D; McBride, P; Mishra, K; Mrenna, S; Musienko, Y; Newman-Holmes, C; O'Dell, V; Prokofyev, O; Sexton-Kennedy, E; Sharma, S; Spalding, W J; Spiegel, L; Tan, P; Taylor, L; Tkaczyk, S; Tran, N V; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wu, W; Yang, F; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Bourilkov, D; Chen, M; Cheng, T; Das, S; De Gruttola, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fisher, M; Fu, Y; Furic, I K; Gartner, J; Hugon, J; Kim, B; Konigsberg, J; Korytov, A; Kropivnitskaya, A; Kypreos, T; Low, J F; Matchev, K; Milenovic, P; Mitselmakher, G; Muniz, L; Remington, R; Rinkevicius, A; Sellers, P; Skhirtladze, N; Snowball, M; Yelton, J; Zakaria, M; Gaultney, V; Hewamanage, S; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Bochenek, J; Chen, J; Diamond, B; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prosper, H; Veeraraghavan, V; Weinberg, M; Baarmand, M M; Dorney, B; Hohlmann, M; Kalakhety, H; Vodopiyanov, I; Adams, M R; Anghel, I M; Apanasevich, L; Bai, Y; Bazterra, V E; Betts, R R; Bucinskaite, I; Callner, J; Cavanaugh, R; Evdokimov, O; Gauthier, L; Gerber, C E; Hofman, D J; Khalatyan, S; Lacroix, F; Malek, M; O'Brien, C; Silkworth, C; Strom, D; Varelas, N; Akgun, U; Albayrak, E A; Bilki, B; Clarida, W; Duru, F; Griffiths, S; Merlo, J-P; Mermerkaya, H; Mestvirishvili, A; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Onel, Y; Ozok, F; Sen, S; Tiras, E; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bolognesi, S; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Hu, G; Maksimovic, P; Rappoccio, S; Swartz, M; Whitbeck, A; Baringer, P; Bean, A; Benelli, G; Grachov, O; Kenny Iii, R P; Murray, M; Noonan, D; Sanders, S; Stringer, R; Tinti, G; Wood, J S; Zhukova, V; Barfuss, A F; Bolton, T; Chakaberia, I; Ivanov, A; Khalil, S; Makouski, M; Maravin, Y; Shrestha, S; Svintradze, I; Gronberg, J; Lange, D; Wright, D; Baden, A; Boutemeur, M; Calvert, B; Eno, S C; Gomez, J A; Hadley, N J; Kellogg, R G; Kirn, M; Kolberg, T; Lu, Y; Marionneau, M; Mignerey, A C; Pedro, K; Peterman, A; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Twedt, E; Apyan, A; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; Dutta, V; Gomez Ceballos, G; Goncharov, M; Hahn, K A; Kim, Y; Klute, M; Krajczar, K; Li, W; Luckey, P D; Ma, T; Nahn, S; Paus, C; Ralph, D; Roland, C; Roland, G; Rudolph, M; Stephans, G S F; Stöckli, F; Sumorok, K; Sung, K; Velicanu, D; Wenger, E A; Wolf, R; Wyslouch, B; Yang, M; Yilmaz, Y; Yoon, A S; Zanetti, M; Cooper, S I; Dahmes, B; De Benedetti, A; Franzoni, G; Gude, A; Kao, S C; Klapoetke, K; Kubota, Y; Mans, J; Pastika, N; Rusack, R; Sasseville, M; Singovsky, A; Tambe, N; Turkewitz, J; Cremaldi, L M; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Avdeeva, E; Bloom, K; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kravchenko, I; Lazo-Flores, J; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Godshalk, A; Iashvili, I; Jain, S; Kharchilava, A; Kumar, A; Shipkowski, S P; Smith, K; Alverson, G; Barberis, E; Baumgartel, D; Chasco, M; Haley, J; Nash, D; Trocino, D; Wood, D; Zhang, J; Anastassov, A; Kubik, A; Mucia, N; Odell, N; Ofierzynski, R A; Pollack, B; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Brinkerhoff, A; Hildreth, M; Jessop, C; Karmgard, D J; Kolb, J; Lannon, K; Luo, W; Lynch, S; Marinelli, N; Morse, D M; Pearson, T; Planer, M; Ruchti, R; Slaunwhite, J; Valls, N; Wayne, M; Wolf, M; Bylsma, B; Durkin, L S; Hill, C; Hughes, R; Hughes, R; Kotov, K; Ling, T Y; Puigh, D; Rodenburg, M; Vuosalo, C; Williams, G; Winer, B L; Adam, N; Berry, E; Elmer, P; Gerbaudo, D; Halyo, V; Hebda, P; Hegeman, J; Hunt, A; Jindal, P; Lopes Pegna, D; Lujan, P; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Quan, X; Raval, A; Safdi, B; Saka, H; Stickland, D; Tully, C; Werner, J S; Zuranski, A; Acosta, J G; Brownson, E; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Zatserklyaniy, A; Alagoz, E; Barnes, V E; Benedetti, D; Bolla, G; Bortoletto, D; De Mattia, M; Everett, A; Hu, Z; Jones, M; Koybasi, O; Kress, M; Laasanen, A T; Leonardo, N; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Shipsey, I; Silvers, D; Svyatkovskiy, A; Vidal Marono, M; Yoo, H D; Zablocki, J; Zheng, Y; Guragain, S; Parashar, N; Adair, A; Boulahouache, C; Ecklund, K M; Geurts, F J M; Padley, B P; Redjimi, R; Roberts, J; Zabel, J; Betchart, B; Bodek, A; Chung, Y S; Covarelli, R; de Barbaro, P; Demina, R; Eshaq, Y; Garcia-Bellido, A; Goldenzweig, P; Han, J; Harel, A; Miner, D C; Vishnevskiy, D; Zielinski, M; Bhatti, A; Ciesielski, R; Demortier, L; Goulianos, K; Lungu, G; Malik, S; Mesropian, C; Arora, S; Barker, A; Chou, J P; Contreras-Campana, C; Contreras-Campana, E; Duggan, D; Ferencek, D; Gershtein, Y; Gray, R; Halkiadakis, E; Hidas, D; Lath, A; Panwalkar, S; Park, M; Patel, R; Rekovic, V; Robles, J; Rose, K; Salur, S; Schnetzer, S; Seitz, C; Somalwar, S; Stone, R; Thomas, S; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Eusebi, R; Flanagan, W; Gilmore, J; Kamon, T; Khotilovich, V; Montalvo, R; Osipenkov, I; Pakhotin, Y; Perloff, A; Roe, J; Safonov, A; Sakuma, T; Sengupta, S; Suarez, I; Tatarinov, A; Toback, D; Akchurin, N; Damgov, J; Dragoiu, C; Dudero, P R; Jeong, C; Kovitanggoon, K; Lee, S W; Libeiro, T; Roh, Y; Volobouev, I; Appelt, E; Delannoy, A G; Florez, C; Greene, S; Gurrola, A; Johns, W; Johnston, C; Kurt, P; Maguire, C; Melo, A; Sharma, M; Sheldon, P; Snook, B; Tuo, S; Velkovska, J; Arenton, M W; Balazs, M; Boutle, S; Cox, B; Francis, B; Goodell, J; Hirosky, R; Ledovskoy, A; Lin, C; Neu, C; Wood, J; Yohay, R; Gollapinni, S; Harr, R; Karchin, P E; Kottachchi Kankanamge Don, C; Lamichhane, P; Sakharov, A; Anderson, M; Bachtis, M; Belknap, D; Borrello, L; Carlsmith, D; Cepeda, M; Dasu, S; Friis, E; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Herndon, M; Hervé, A; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Mohapatra, A; Ojalvo, I; Palmonari, F; Pierro, G A; Ross, I; Savin, A; Smith, W H; Swanson, J
2012-12-21
We report an investigation of the invariant mass spectrum of the two jets with highest transverse momentum in pp → W+2-jet and W+3-jet events to look for resonant enhancement. The data sample corresponds to an integrated luminosity of 5.0 fb(-1) collected with the CMS detector at sqrt[s] = 7 TeV. We find no evidence for the anomalous structure reported by the CDF Collaboration, and establish an upper limit of 5.0 pb at 95% confidence level on the production cross section for a generic Gaussian signal with mass near 150 GeV. Additionally, we exclude two theoretical models that predict a CDF-like dijet resonance near 150 GeV.
Yamamoto, Arata
2016-07-29
We propose the lattice QCD calculation of the Berry phase, which is defined by the ground state of a single fermion. We perform the ground-state projection of a single-fermion propagator, construct the Berry link variable on a momentum-space lattice, and calculate the Berry phase. As the first application, the first Chern number of the (2+1)-dimensional Wilson fermion is calculated by the Monte Carlo simulation.
Lattice QCD: A Brief Introduction
NASA Astrophysics Data System (ADS)
Meyer, H. B.
A general introduction to lattice QCD is given. The reader is assumed to have some basic familiarity with the path integral representation of quantum field theory. Emphasis is placed on showing that the lattice regularization provides a robust conceptual and computational framework within quantum field theory. The goal is to provide a useful overview, with many references pointing to the following chapters and to freely available lecture series for more in-depth treatments of specifics topics.
QCD equation of state to O (μB6) from lattice QCD
NASA Astrophysics Data System (ADS)
Bazavov, A.; Ding, H.-T.; Hegde, P.; Kaczmarek, O.; Karsch, F.; Laermann, E.; Maezawa, Y.; Mukherjee, Swagato; Ohno, H.; Petreczky, P.; Sandmeyer, H.; Steinbrecher, P.; Schmidt, C.; Sharma, S.; Soeldner, W.; Wagner, M.
2017-03-01
We calculated the QCD equation of state using Taylor expansions that include contributions from up to sixth order in the baryon, strangeness and electric charge chemical potentials. Calculations have been performed with the Highly Improved Staggered Quark action in the temperature range T ∈[135 MeV ,330 MeV ] using up to four different sets of lattice cutoffs corresponding to lattices of size Nσ3×Nτ with aspect ratio Nσ/Nτ=4 and Nτ=6 - 16 . The strange quark mass is tuned to its physical value, and we use two strange to light quark mass ratios ms/ml=20 and 27, which in the continuum limit correspond to a pion mass of about 160 and 140 MeV, respectively. Sixth-order results for Taylor expansion coefficients are used to estimate truncation errors of the fourth-order expansion. We show that truncation errors are small for baryon chemical potentials less then twice the temperature (μB≤2 T ). The fourth-order equation of state thus is suitable for the modeling of dense matter created in heavy ion collisions with center-of-mass energies down to √{sN N}˜12 GeV . We provide a parametrization of basic thermodynamic quantities that can be readily used in hydrodynamic simulation codes. The results on up to sixth-order expansion coefficients of bulk thermodynamics are used for the calculation of lines of constant pressure, energy and entropy densities in the T -μB plane and are compared with the crossover line for the QCD chiral transition as well as with experimental results on freeze-out parameters in heavy ion collisions. These coefficients also provide estimates for the location of a possible critical point. We argue that results on sixth-order expansion coefficients disfavor the existence of a critical point in the QCD phase diagram for μB/T ≤2 and T /Tc(μB=0 )>0.9 .
Exact Mesonic Eightfold Way From Dynamics and Confinement in Strongly Coupled Lattice QCD
NASA Astrophysics Data System (ADS)
Neto, A. Francisco; O'Carroll, M.; Faria da Veiga, P. A.
2009-01-01
We review our results on the exact determination of the mesonic eightfold way from first principles, directly from the quark-gluon dynamics. For this, we consider an imaginary-time functional integral formulation of 3 + 1 dimensional lattice QCD with Wilson action, three flavors, SU(3) f flavor symmetry and SU(3) c local gauge symmetry. We work in the strong coupling regime: a small hopping parameter κ>0 and a much smaller plaquette coupling β>0. By establishing a Feynman-Kac formula and a spectral representation to the two-meson correlation, we provide a rigorous connection between this correlation and the one-meson energy-momentum spectrum. The particle states can be labeled by the usual SU(3) f quantum numbers of total isospin I and its third-component I3, the quadratic Casimir C2 and, by a partial restoration of the continuous rotational symmetry on the lattice, as well as by the total spin J and its z-component Jz. We show that, up to near the two-meson energy threshold of ≈-4lnκ, the spectrum in the meson sector is given only by isolated dispersion curves of the eightfold way mesons. The mesons have all asymptotic mass of -2lnκ and, by deriving convergent expansions for the masses both in κ and β, we also show a κ mass splitting between the J=0,1 states. The splitting persists for β≠0. Our approach employs the decoupling of hyperplane method to uncover the basic excitations, complex analysis to determine the dispersion curves and a correlation subtraction method to show the curves are isolated. Using the latter and recalling our similar results for baryons, we also show confinement up to near the two-meson threshold.
Shaposhnikov, Nikolai
2010-11-10
We report on the discovery and monitoring observations of a new galactic black hole (BH) candidate XTE J1752-223 by Rossi X-ray Timing Explorer (RXTE). The new source appeared on the X-ray sky on 2009 October 21 and was active for almost 8 months. Phenomenologically, the source exhibited the low-hard/high-soft spectral state bi-modality and the variability evolution during the state transition that matches standard behavior expected from a stellar mass BH binary. We model the energy spectrum throughout the outburst using a generic Comptonization model assuming that part of the input soft radiation in the form of a blackbody spectrum gets reprocessed in the Comptonizing medium. We follow the evolution of fractional root-mean-square (rms) variability in the RXTE/PCA energy band with the source spectral state and conclude that broadband variability is strongly correlated with the source hardness (or Comptonized fraction). We follow changes in the energy distribution of rms variability during the low-hard state and the state transition, and find further evidence that variable emission is strongly concentrated in the power-law spectral component. We discuss the implication of our results to the Comptonization regimes during different spectral states. Correlations of spectral and variability properties provide measurements of the BH mass and distance to the source. The spectral-timing correlation scaling technique applied to the RXTE observations during the hard-to-soft state transition indicates a mass of the BH in XTE J1752-223 between 8 and 11 solar masses and a distance to the source of about 3.5 kpc.
NASA Technical Reports Server (NTRS)
Shaposhinikov, Nikolai; Markwardt, Craig; Swank, Jean; Krimm, Hans
2010-01-01
We report on the discovery and monitoring observations of a new galactic black hole candidate XTE J1752-223 by Rossi X-ray Timing Explorer (RXTE). The new source appeared on the X-ray sky on October 21 2009 and was active for almost 8 months. Phenomenologically, the source exhibited the low-hard/highsoft spectral state bi-modality and the variability evolution during the state transition that matches standard behavior expected from a stellar mass black hole binary. We model the energy spectrum throughout the outburst using a generic Comptonization model assuming that part of the input soft radiation in the form of a black body spectrum gets reprocessed in the Comptonizing medium. We follow the evolution of fractional root-mean-square (RMS) variability in the RXTE/PCA energy band with the source spectral state and conclude that broad band variability is strongly correlated with the source hardness (or Comptonized fraction). We follow changes in the energy distribution of rms variability during the low-hard state and the state transition and find further evidence that variable emission is strongly concentrated in the power-law spectral component. We discuss the implication of our results to the Comptonization regimes during different spectral states. Correlations of spectral and variability properties provide measurements of the BH mass and distance to the source. The spectral-timing correlation scaling technique applied to the RXTE observations during the hardto- soft state transition indicates a mass of the BH in XTE J1752-223 between 8 and 11 solar masses and a distance to the source about 3.5 kiloparsec.
Evidence from Lattice Data for a New Particle on the Worldsheet of the QCD Flux Tube
NASA Astrophysics Data System (ADS)
Dubovsky, Sergei; Flauger, Raphael; Gorbenko, Victor
2013-08-01
We propose a new approach for the calculation of the spectrum of excitations of QCD flux tubes. It relies on the fact that the worldsheet theory is integrable at low energies. With this approach, energy levels can be calculated for much shorter flux tubes than was previously possible, allowing for a quantitative comparison with existing lattice data. The improved theoretical control makes it manifest that existing lattice data provides strong evidence for a new pseudoscalar particle localized on the QCD flux tube—the worldsheet axion.
Evidence from lattice data for a new particle on the worldsheet of the QCD flux tube.
Dubovsky, Sergei; Flauger, Raphael; Gorbenko, Victor
2013-08-09
We propose a new approach for the calculation of the spectrum of excitations of QCD flux tubes. It relies on the fact that the worldsheet theory is integrable at low energies. With this approach, energy levels can be calculated for much shorter flux tubes than was previously possible, allowing for a quantitative comparison with existing lattice data. The improved theoretical control makes it manifest that existing lattice data provides strong evidence for a new pseudoscalar particle localized on the QCD flux tube--the worldsheet axion.
None
2016-07-12
Modern QCD - Lecture 2 We will start discussing the matter content of the theory and revisit the experimental measurements that led to the discovery of quarks. We will then consider a classic QCD observable, the R-ratio, and use it to illustrate the appearance of UV divergences and the need to renormalize the coupling constant of QCD. We will then discuss asymptotic freedom and confinement. Finally, we will examine a case where soft and collinear infrared divergences appear, will discuss the soft approximation in QCD and will introduce the concept of infrared safe jets.
Localization and chiral symmetry in three flavor domain wall QCD
Antonio, David J.; Bowler, Kenneth C.; Boyle, Peter A.; Hart, Alistair; Kenway, Richard D.; Tweedie, Robert J.; Christ, Norman H.; Cohen, Saul D.; Li, Shu; Lin, Meifeng; Mawhinney, Robert D.; Clark, Michael A.; Dawson, Chris; Joo, Balint; Jung, Chulwoo; Maynard, Christopher M.; Ohta, Shigemi; Yamaguchi, Azusa
2008-01-01
We present results for the dependence of the residual mass of domain wall fermions on the size of the fifth dimension and its relation to the density and localization properties of low-lying eigenvectors of the corresponding Hermitian Wilson Dirac operator in three flavor domain wall QCD. Using the DBW2 and Iwasaki gauge actions, we generate ensembles of configurations with a 16{sup 3}x32 space-time volume and an extent of 8 in the fifth dimension for the sea quarks. We demonstrate the existence of a regime where the degree of locality, the size of chiral symmetry breaking, and the rate of topology change can be acceptable for inverse lattice spacings a{sup -1}{>=}1.6 GeV, enabling a programme of simulations of 2+1 flavor QCD to be conducted safely in this region of parameter space.
Lattice QCD Calculation of Hadronic Light-by-Light Scattering.
Green, Jeremy; Gryniuk, Oleksii; von Hippel, Georg; Meyer, Harvey B; Pascalutsa, Vladimir
2015-11-27
We perform a lattice QCD calculation of the hadronic light-by-light scattering amplitude in a broad kinematical range. At forward kinematics, the results are compared to a phenomenological analysis based on dispersive sum rules for light-by-light scattering. The size of the pion pole contribution is investigated for momenta of typical hadronic size. The presented numerical methods can be used to compute the hadronic light-by-light contribution to the anomalous magnetic moment of the muon. Our calculations are carried out in two-flavor QCD with the pion mass in the range of 270-450 MeV and contain so far only the diagrams with fully connected quark lines.
Baryogenesis from strong CP violation and the QCD axion.
Servant, Géraldine
2014-10-24
We show that strong CP violation from the QCD axion can be responsible for the matter antimatter asymmetry of the Universe in the context of cold electroweak baryogenesis if the electroweak phase transition is delayed below the GeV scale. This can occur naturally if the Higgs couples to a O(100) GeV dilaton, as expected in some models where the Higgs is a pseudo-Nambu-Goldstone boson of a new strongly interacting sector at the TeV scale. The existence of such a second scalar resonance with a mass and properties similar to the Higgs boson will soon be tested at the LHC. In this context, the QCD axion would not only solve the strong CP problem, but also the matter antimatter asymmetry and dark matter.
Leading infrared logarithms and vacuum structure of QCD sub 3
Guendelman, E.I. )
1990-11-20
QCD{sub 3} is a superrenormalizable, massless theory; therefore off-mass-shell infrared divergences appear in the loop expansion. This paper shows how certain infrared divergences can be subtracted by changing the boundary conditions in the functional integral, letting the vector potentials approach non-zero constant values at infinity. Infrared divergences, in the Green's functions, come together with powers of logarithms of the external momenta, and among the infrared divergences we deal with, there are those that give rise to the leading and first subleading logarithms. The authors show how for two-point functions it is possible to sum the leading and first subleading logarithms to all orders. This procedure defines a nonperturbative approximation for QCD{sub 3}. The authors find that in the ultraviolet region these summations are well defined, while in the infrared region, some additional prescription is needed to make sense out of them.
Smidt, Joseph; Cooray, Asantha; Amblard, Alexandre; Joudaki, Shahab; Serra, Paolo; Munshi, Dipak; Santos, Mario G.
2011-02-10
The temperature fluctuations and polarization of the cosmic microwave background (CMB) are now a well-known probe of the universe at an infant age of 400,000 years. During the transit to us from the surface of last scattering, the CMB photons are expected to undergo modifications induced by the intervening large-scale structure. Among the expected secondary effects is the weak gravitational lensing of the CMB by the foreground dark matter distribution. We derive a quadratic estimator that uses the non-Gaussianities generated by the lensing effect at the four-point function level to extract the power spectrum of lensing potential fluctuations integrated out to z {approx} 1100 with peak contributions from potential fluctuations at z of 2-3. Using Wilkinson Microwave Anisotropy Probe seven-year temperature maps, we report the first direct constraints of this lensing potential power spectrum and find that it has an amplitude of A{sub L} = 0.96 {+-} 0.60, 1.06 {+-} 0.69, and 0.97 {+-} 0.47 using the W, V, and W + V bands, respectively.
Mohanty, Subhanjoy; Stassun, Keivan G. E-mail: keivan.stassun@vanderbilt.edu
2012-10-10
We present high-resolution optical spectra of the young brown dwarf eclipsing binary 2M0535-05, obtained during eclipse of the higher-mass (primary) brown dwarf. Combined with our previous spectrum of the primary alone (Paper I), the new observations yield the spectrum of the secondary alone. We investigate, through a differential analysis of the two binary components, whether cool surface spots are responsible for suppressing the temperature of the primary. In Paper I, we found a significant discrepancy between the empirical surface gravity of the primary and that inferred via fine analysis of its spectrum. Here we find precisely the same discrepancy in surface gravity, both qualitatively and quantitatively. While this may again be ascribed to either cool spots or model opacity errors, it implies that cool spots cannot be responsible for preferentially lowering the temperature of the primary: if they were, spot effects on the primary spectrum should be preferentially larger, and they are not. The T{sub eff}'s we infer for the primary and secondary, from the TiO-{epsilon} bands alone, show the same reversal, in the same ratio, as is empirically observed, bolstering the validity of our analysis. In turn, this implies that if suppression of convection by magnetic fields on the primary is the fundamental cause of the T{sub eff} reversal, then it cannot be a local suppression yielding spots mainly on the primary (though both components may be equally spotted), but a global suppression in the interior of the primary. We briefly discuss current theories of how this might work.
Quarkonium-nucleus bound states from lattice QCD
Beane, S. R.; Chang, E.; Cohen, S. D.; Detmold, W.; Lin, H. -W.; Orginos, K.; Parreño, A.; Savage, M. J.
2015-06-11
Quarkonium-nucleus systems are composed of two interacting hadronic states without common valence quarks, which interact primarily through multi-gluon exchanges, realizing a color van der Waals force. We present lattice QCD calculations of the interactions of strange and charm quarkonia with light nuclei. Both the strangeonium-nucleus and charmonium-nucleus systems are found to be relatively deeply bound when the masses of the three light quarks are set equal to that of the physical strange quark. Extrapolation of these results to the physical light-quark masses suggests that the binding energy of charmonium to nuclear matter is B < 40 MeV.
Non-perturbative QCD Modeling and Meson Physics
Nguyen, T.; Souchlas, N. A.; Tandy, P. C.
2009-04-20
Using a ladder-rainbow kernel previously established for light quark hadron physics, we explore the extension to masses and electroweak decay constants of ground state pseudoscalar and vector quarkonia and heavy-light mesons in the c- and b-quark regions. We make a systematic study of the effectiveness of a constituent mass concept as a replacement for a heavy quark dressed propagator for such states. The difference between vector and axial vector current correlators is explored within the same model to provide an estimate of the four quark chiral condensate and the leading distance scale for the onset of non-perturbative phenomena in QCD.
Hyperon-Nulceon Scattering from Fully-Dynamical Lattice QCD
Silas Beane; Paulo Bedaque; Thomas Luu; Konstantinos Orginos; Elizabetta Pallante; Assumpta Parreno; Martin Savage
2007-10-01
We present results of the first fully-dynamical lattice QCD determination of hyperon-nucleon scattering. One s-wave phase shift was determined for n{Lambda} scattering in both spin-channels at pion masses of 350, 490, and 590 MeV, and for n{Sigma}^- scattering in both spin channels at pion masses of 490, and 590 MeV. The calculations were performed with domain-wall valence quarks on dynamical, staggered gauge configurations with a lattice spacing of b ~0.125 fm.
Lattice QCD solution to the U(1) problem
Fukugita, M. ); Kuramashi, Y.; Okawa, M. , Tsukuba, Ibaraki 305 ); Ukawa, A. )
1995-04-01
It is shown in quenched lattice QCD that the mass splitting between [eta][prime] and a pion arises from gauge configurations with a nonzero topological charge [ital Q], its magnitude increasing for larger values of [vert bar][ital Q][vert bar]; the contribution from the disconnected quark loop is strongly hindered unless the topological charge is excited. This demonstrates the explicit relation between the large [eta][prime] meson mass and gauge field topology, which is in the line of the argument in the continuum of instantons and the 1/[ital N] expansion.
FORS2 observes a multi-epoch transmission spectrum of the hot Saturn-mass exoplanet WASP-49b
NASA Astrophysics Data System (ADS)
Lendl, M.; Delrez, L.; Gillon, M.; Madhusudhan, N.; Jehin, E.; Queloz, D.; Anderson, D. R.; Demory, B.-O.; Hellier, C.
2016-03-01
Context. Transmission spectroscopy has proven to be a useful tool for the study of exoplanet atmospheres, because the absorption and scattering signatures of the atmosphere manifest themselves as variations in the planetary transit depth. Several planets have been studied with this technique, leading to the detection of a small number of elements and molecules (Na, K, H2O), but also revealing that many planets show flat transmission spectra consistent with the presence of opaque high-altitude clouds. Aims: We apply this technique to the MP = 0.40MJ, Rp = 1.20RJ, P = 2.78 d planet WASP-49b, aiming to characterize its transmission spectrum between 0.73 and 1 ¯m and search for the features of K and H2O. Owing to its density and temperature, the planet is predicted to possess an extended atmosphere and is thus a good target for transmission spectroscopy. Methods: Three transits of WASP-49b have been observed with the FORS2 instrument installed at the VLT/UT1 telescope at the ESO Paranal site. We used FORS2 in MXU mode with grism GRIS_600z, producing simultaneous multiwavelength transit light curves throughout the i' and z' bands. We combined these data with independent broadband photometry from the Euler and TRAPPIST telescopes to obtain a good measurement of the transit shape. Strong correlated noise structures are present in the FORS2 light curves, which are due to rotating flat-field structures that are introduced by inhomogeneities of the linear atmospheric dispersion corrector's transparency. We accounted for these structures by constructing common noise models from the residuals of light curves bearing the same noise structures and used them together with simple parametric models to infer the transmission spectrum. Results: We present three independent transmission spectra of WASP-49b between 0.73 and 1.02 ¯m, as well as a transmission spectrum between 0.65 and 1.02 ¯m from the combined analysis of FORS2 and broadband data. The results obtained from the three
Supersymmetry across the light and heavy-light hadronic spectrum. II.
NASA Astrophysics Data System (ADS)
Dosch, Hans Günter; de Téramond, Guy F.; Brodsky, Stanley J.
2017-02-01
We extend our analysis of the implications of hadronic supersymmetry for heavy-light hadrons in light-front holographic QCD. Although conformal symmetry is strongly broken by the heavy quark mass, supersymmetry and the holographic embedding of semiclassical light-front dynamics derived from five-dimensional anti-de Sitter space nevertheless determine the form of the confining potential in the light-front Hamiltonian to be harmonic. The resulting light-front bound-state equations lead to a heavy-light Regge-like spectrum for both mesons and baryons. The confinement hadron mass scale and their Regge slopes depend, however, on the mass of the heavy quark in the meson or baryon as expected from heavy quark effective theory. This procedure reproduces the observed spectra of heavy-light hadrons with good precision and makes predictions for yet unobserved states.
QCDNUM: Fast QCD evolution and convolution
NASA Astrophysics Data System (ADS)
Botje, M.
2011-02-01
The QCDNUM program numerically solves the evolution equations for parton densities and fragmentation functions in perturbative QCD. Un-polarised parton densities can be evolved up to next-to-next-to-leading order in powers of the strong coupling constant, while polarised densities or fragmentation functions can be evolved up to next-to-leading order. Other types of evolution can be accessed by feeding alternative sets of evolution kernels into the program. A versatile convolution engine provides tools to compute parton luminosities, cross-sections in hadron-hadron scattering, and deep inelastic structure functions in the zero-mass scheme or in generalised mass schemes. Input to these calculations are either the QCDNUM evolved densities, or those read in from an external parton density repository. Included in the software distribution are packages to calculate zero-mass structure functions in un-polarised deep inelastic scattering, and heavy flavour contributions to these structure functions in the fixed flavour number scheme. Program summaryProgram title: QCDNUM version: 17.00 Catalogue identifier: AEHV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU Public Licence No. of lines in distributed program, including test data, etc.: 45 736 No. of bytes in distributed program, including test data, etc.: 911 569 Distribution format: tar.gz Programming language: Fortran-77 Computer: All Operating system: All RAM: Typically 3 Mbytes Classification: 11.5 Nature of problem: Evolution of the strong coupling constant and parton densities, up to next-to-next-to-leading order in perturbative QCD. Computation of observable quantities by Mellin convolution of the evolved densities with partonic cross-sections. Solution method: Parametrisation of the parton densities as linear or quadratic splines on a discrete grid, and evolution of the spline
Evidence for a mixed mass composition at the ‘ankle’ in the cosmic-ray spectrum
Aab, Alexander
2016-09-28
Here, we report a first measurement for ultra-high energy cosmic rays of the correlation between the depth of shower maximum and the signal in the water Cherenkov stations of air-showers registered simultaneously by the fluorescence and the surface detectors of the Pierre Auger Observatory. Such a correlation measurement is a unique feature of a hybrid air-shower observatory with sensitivity to both the electromagnetic and muonic components. It allows an accurate determination of the spread of primary masses in the cosmic-ray flux. Up till now, constraints on the spread of primary masses have been dominated by systematic uncertainties. The present correlation measurement is not affected by systematics in the measurement of the depth of shower maximum or the signal in the water Cherenkov stations. The analysis relies on general characteristics of air showers and is thus robust also with respect to uncertainties in hadronic event generators. The observed correlation in the energy range around the `ankle' atmore » $$\\lg(E/{\\rm eV})=18.5-19.0$$ differs significantly from expectations for pure primary cosmic-ray compositions. A light composition made up of proton and helium only is equally inconsistent with observations. The data are explained well by a mixed composition including nuclei with mass $A > 4$. Scenarios such as the proton dip model, with almost pure compositions, are thus disfavoured as the sole explanation of the ultrahigh-energy cosmic-ray flux at Earth.« less
Evidence for a mixed mass composition at the ‘ankle’ in the cosmic-ray spectrum
Aab, Alexander
2016-09-28
Here, we report a first measurement for ultra-high energy cosmic rays of the correlation between the depth of shower maximum and the signal in the water Cherenkov stations of air-showers registered simultaneously by the fluorescence and the surface detectors of the Pierre Auger Observatory. Such a correlation measurement is a unique feature of a hybrid air-shower observatory with sensitivity to both the electromagnetic and muonic components. It allows an accurate determination of the spread of primary masses in the cosmic-ray flux. Up till now, constraints on the spread of primary masses have been dominated by systematic uncertainties. The present correlation measurement is not affected by systematics in the measurement of the depth of shower maximum or the signal in the water Cherenkov stations. The analysis relies on general characteristics of air showers and is thus robust also with respect to uncertainties in hadronic event generators. The observed correlation in the energy range around the `ankle' at $\\lg(E/{\\rm eV})=18.5-19.0$ differs significantly from expectations for pure primary cosmic-ray compositions. A light composition made up of proton and helium only is equally inconsistent with observations. The data are explained well by a mixed composition including nuclei with mass $A > 4$. Scenarios such as the proton dip model, with almost pure compositions, are thus disfavoured as the sole explanation of the ultrahigh-energy cosmic-ray flux at Earth.
Gunion, J.F.
1980-05-01
A critical review of the applications of QCD to low- and high-p/sub T/ interactions of two photons is presented. The advantages of the two-photon high-p/sub T/ tests over corresponding hadronic beam and/or target tests of QCD are given particular emphasis.
Lattice QCD and High Baryon Density State
Nagata, Keitaro; Nakamura, Atsushi; Motoki, Shinji; Nakagawa, Yoshiyuki; Saito, Takuya
2011-10-21
We report our recent studies on the finite density QCD obtained from lattice QCD simulation with clover-improved Wilson fermions of two flavor and RG-improved gauge action. We approach the subject from two paths, i.e., the imaginary and chemical potentials.
Solvable models and hidden symmetries in QCD
Yepez-Martinez, Tochtli; Hess, P. O.; Civitarese, O.; Lerma H., S.
2010-12-23
We show that QCD Hamiltonians at low energy exhibit an SU(2) structure, when only few orbital levels are considered. In case many orbital levels are taken into account we also find a semi-analytic solution for the energy levels of the dominant part of the QCD Hamiltonian. The findings are important to propose the structure of phenomenological models.
Consistent Perturbative Fixed Point Calculations in QCD and Supersymmetric QCD.
Ryttov, Thomas A
2016-08-12
We suggest how to consistently calculate the anomalous dimension γ_{*} of the ψ[over ¯]ψ operator in finite order perturbation theory at an infrared fixed point for asymptotically free theories. If the n+1 loop beta function and n loop anomalous dimension are known, then γ_{*} can be calculated exactly and fully scheme independently in a Banks-Zaks expansion through O(Δ_{f}^{n}), where Δ_{f}=N[over ¯]_{f}-N_{f}, N_{f} is the number of flavors, and N[over ¯]_{f} is the number of flavors above which asymptotic freedom is lost. For a supersymmetric theory, the calculation preserves supersymmetry order by order in Δ_{f}. We then compute γ_{*} through O(Δ_{f}^{2}) for supersymmetric QCD in the dimensional reduction scheme and find that it matches the exact known result. We find that γ_{*} is astonishingly well described in perturbation theory already at the few loops level throughout the entire conformal window. We finally compute γ_{*} through O(Δ_{f}^{3}) for QCD and a variety of other nonsupersymmetric fermionic gauge theories. Small values of γ_{*} are observed for a large range of flavors.
From QCD Flux Tubes to Gravitational S-matrix and Back
NASA Astrophysics Data System (ADS)
Gorbenko, Victor
We study the effective field theory of long relativistic strings such as confining flux tubes in QCD. Our main focus is on the scattering matrix of massless exci- tations propagating on the string’s worldsheet. The Lorentz invariance of QCD manifests itself in certain soft theorems satisfied by the amplitudes. We find that critical dimension appears as a condition that allows this scattering to be inte- grable and consequently flux tubes in four-dimensional QCD do not fall into this category. In case of the critical dimension equal to 26, however, we are able to find a full integrable S-matrix that exhibits many features expected from gravi- tational models. Moreover, it gives rise to a family of not necessarily integrable two-dimensional theories that inherit very peculiar UV-properties. We discuss im- plication of this construction for the hierarchy problem. We then return to the QCD flux tubes and find that integrability-inspired techniques can be applied to them in an approximate way that allows us to calculate their spectrum in the regime inaccessible for standard perturbation theory. In particular, analysis of the lattice data allows us to identify the first massive particle present on the world sheet of the QCD flux tube.
NASA Astrophysics Data System (ADS)
Ablikim, M.; Achasov, M. N.; Ahmed, S.; Ai, X. C.; Albayrak, O.; Albrecht, M.; Ambrose, D. J.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Baldini Ferroli, R.; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Berger, N.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, H. Y.; Chen, J. C.; Chen, M. L.; Chen, S.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Cheng, H. P.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; de Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Dou, Z. L.; Du, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Farinelli, R.; Fava, L.; Fedorov, O.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, X. Y.; Gao, Y.; Gao, Z.; Garzia, I.; Goetzen, K.; Gong, L.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, R. P.; Guo, Y.; Guo, Y. P.; Haddadi, Z.; Hafner, A.; Han, S.; Hao, X. Q.; Harris, F. A.; He, K. L.; Heinsius, F. H.; Held, T.; Heng, Y. K.; Holtmann, T.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. S.; Huang, Y. P.; Huang, J. S.; Huang, X. T.; Huang, X. Z.; Huang, Y.; Huang, Z. L.; Hussain, T.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. W.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Kiese, P.; Kliemt, R.; Kloss, B.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kupsc, A.; Kühn, W.; Lange, J. S.; Lara, M.; Larin, P.; Leithoff, H.; Leng, C.; Li, C.; Li, Cheng; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, H. J.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, Lei; Li, P. R.; Li, Q. Y.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, Y. B.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. B.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Y. Y.; Liu, Z. A.; Liu, Zhiqing; Loehner, H.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, M. M.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Ma, Y. M.; Maas, F. E.; Maggiora, M.; Malik, Q. A.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Messchendorp, J. G.; Mezzadri, G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales Morales, C.; Muchnoi, N. Yu.; Muramatsu, H.; Musiol, P.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Poling, R.; Prasad, V.; Qi, H. R.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Ripka, M.; Rong, G.; Rosner, Ch.; Ruan, X. D.; Sarantsev, A.; Savrié, M.; Schnier, C.; Schoenning, K.; Schumann, S.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Shi, M.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, X. H.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Tiemens, M.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, S. G.; Wang, W.; Wang, W. P.; Wang, X. F.; Wang, Y.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Wei, J. B.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, L. J.; Wu, Z.; Xia, L.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, J. J.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yin, J. H.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. Q.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. N.; Zhang, Y. T.; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, S. H.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zotti, L.; Zou, B. S.; Zou, J. H.; Besiii Collaboration
2016-07-01
Using 1.09 ×109 J /ψ events collected by the BESIII experiment in 2012, we study the J /ψ →γ η'π+π- process and observe a significant abrupt change in the slope of the η'π+π- invariant mass distribution at the proton-antiproton (p p ¯) mass threshold. We use two models to characterize the η'π+π- line shape around 1.85 GeV /c2: one that explicitly incorporates the opening of a decay threshold in the mass spectrum (Flatté formula), and another that is the coherent sum of two resonant amplitudes. Both fits show almost equally good agreement with data, and suggest the existence of either a broad state around 1.85 GeV /c2 with strong couplings to the p p ¯ final states or a narrow state just below the p p ¯ mass threshold. Although we cannot distinguish between the fits, either one supports the existence of a p p ¯ moleculelike state or bound state with greater than 7 σ significance.
Ablikim, M; Achasov, M N; Ahmed, S; Ai, X C; Albayrak, O; Albrecht, M; Ambrose, D J; Amoroso, A; An, F F; An, Q; Bai, J Z; Baldini Ferroli, R; Ban, Y; Bennett, D W; Bennett, J V; Berger, N; Bertani, M; Bettoni, D; Bian, J M; Bianchi, F; Boger, E; Boyko, I; Briere, R A; Cai, H; Cai, X; Cakir, O; Calcaterra, A; Cao, G F; Cetin, S A; Chang, J F; Chelkov, G; Chen, G; Chen, H S; Chen, H Y; Chen, J C; Chen, M L; Chen, S; Chen, S J; Chen, X; Chen, X R; Chen, Y B; Cheng, H P; Chu, X K; Cibinetto, G; Dai, H L; Dai, J P; Dbeyssi, A; Dedovich, D; Deng, Z Y; Denig, A; Denysenko, I; Destefanis, M; De Mori, F; Ding, Y; Dong, C; Dong, J; Dong, L Y; Dong, M Y; Dou, Z L; Du, S X; Duan, P F; Fan, J Z; Fang, J; Fang, S S; Fang, X; Fang, Y; Farinelli, R; Fava, L; Fedorov, O; Feldbauer, F; Felici, G; Feng, C Q; Fioravanti, E; Fritsch, M; Fu, C D; Gao, Q; Gao, X L; Gao, X Y; Gao, Y; Gao, Z; Garzia, I; Goetzen, K; Gong, L; Gong, W X; Gradl, W; Greco, M; Gu, M H; Gu, Y T; Guan, Y H; Guo, A Q; Guo, L B; Guo, R P; Guo, Y; Guo, Y P; Haddadi, Z; Hafner, A; Han, S; Hao, X Q; Harris, F A; He, K L; Heinsius, F H; Held, T; Heng, Y K; Holtmann, T; Hou, Z L; Hu, C; Hu, H M; Hu, J F; Hu, T; Hu, Y; Huang, G S; Huang, Y P; Huang, J S; Huang, X T; Huang, X Z; Huang, Y; Huang, Z L; Hussain, T; Ji, Q; Ji, Q P; Ji, X B; Ji, X L; Jiang, L W; Jiang, X S; Jiang, X Y; Jiao, J B; Jiao, Z; Jin, D P; Jin, S; Johansson, T; Julin, A; Kalantar-Nayestanaki, N; Kang, X L; Kang, X S; Kavatsyuk, M; Ke, B C; Kiese, P; Kliemt, R; Kloss, B; Kolcu, O B; Kopf, B; Kornicer, M; Kupsc, A; Kühn, W; Lange, J S; Lara, M; Larin, P; Leithoff, H; Leng, C; Li, C; Li, Cheng; Li, D M; Li, F; Li, F Y; Li, G; Li, H B; Li, H J; Li, J C; Li, Jin; Li, K; Li, K; Li, Lei; Li, P R; Li, Q Y; Li, T; Li, W D; Li, W G; Li, X L; Li, X N; Li, X Q; Li, Y B; Li, Z B; Liang, H; Liang, Y F; Liang, Y T; Liao, G R; Lin, D X; Liu, B; Liu, B J; Liu, C X; Liu, D; Liu, F H; Liu, Fang; Liu, Feng; Liu, H B; Liu, H H; Liu, H H; Liu, H M; Liu, J; Liu, J B; Liu, J P; Liu, J Y; Liu, K; Liu, K Y; Liu, L D; Liu, P L; Liu, Q; Liu, S B; Liu, X; Liu, Y B; Liu, Y Y; Liu, Z A; Liu, Zhiqing; Loehner, H; Lou, X C; Lu, H J; Lu, J G; Lu, Y; Lu, Y P; Luo, C L; Luo, M X; Luo, T; Luo, X L; Lyu, X R; Ma, F C; Ma, H L; Ma, L L; Ma, M M; Ma, Q M; Ma, T; Ma, X N; Ma, X Y; Ma, Y M; Maas, F E; Maggiora, M; Malik, Q A; Mao, Y J; Mao, Z P; Marcello, S; Messchendorp, J G; Mezzadri, G; Min, J; Min, T J; Mitchell, R E; Mo, X H; Mo, Y J; Morales Morales, C; Muchnoi, N Yu; Muramatsu, H; Musiol, P; Nefedov, Y; Nerling, F; Nikolaev, I B; Ning, Z; Nisar, S; Niu, S L; Niu, X Y; Olsen, S L; Ouyang, Q; Pacetti, S; Pan, Y; Patteri, P; Pelizaeus, M; Peng, H P; Peters, K; Pettersson, J; Ping, J L; Ping, R G; Poling, R; Prasad, V; Qi, H R; Qi, M; Qian, S; Qiao, C F; Qin, L Q; Qin, N; Qin, X S; Qin, Z H; Qiu, J F; Rashid, K H; Redmer, C F; Ripka, M; Rong, G; Rosner, Ch; Ruan, X D; Sarantsev, A; Savrié, M; Schnier, C; Schoenning, K; Schumann, S; Shan, W; Shao, M; Shen, C P; Shen, P X; Shen, X Y; Sheng, H Y; Shi, M; Song, W M; Song, X Y; Sosio, S; Spataro, S; Sun, G X; Sun, J F; Sun, S S; Sun, X H; Sun, Y J; Sun, Y Z; Sun, Z J; Sun, Z T; Tang, C J; Tang, X; Tapan, I; Thorndike, E H; Tiemens, M; Uman, I; Varner, G S; Wang, B; Wang, B L; Wang, D; Wang, D Y; Wang, K; Wang, L L; Wang, L S; Wang, M; Wang, P; Wang, P L; Wang, S G; Wang, W; Wang, W P; Wang, X F; Wang, Y; Wang, Y D; Wang, Y F; Wang, Y Q; Wang, Z; Wang, Z G; Wang, Z H; Wang, Z Y; Wang, Z Y; Weber, T; Wei, D H; Wei, J B; Weidenkaff, P; Wen, S P; Wiedner, U; Wolke, M; Wu, L H; Wu, L J; Wu, Z; Xia, L; Xia, L G; Xia, Y; Xiao, D; Xiao, H; Xiao, Z J; Xie, Y G; Xiu, Q L; Xu, G F; Xu, J J; Xu, L; Xu, Q J; Xu, Q N; Xu, X P; Yan, L; Yan, W B; Yan, W C; Yan, Y H; Yang, H J; Yang, H X; Yang, L; Yang, Y X; Ye, M; Ye, M H; Yin, J H; Yu, B X; Yu, C X; Yu, J S; Yuan, C Z; Yuan, W L; Yuan, Y; Yuncu, A; Zafar, A A; Zallo, A; Zeng, Y; Zeng, Z; Zhang, B X; Zhang, B Y; Zhang, C; Zhang, C C; Zhang, D H; Zhang, H H; Zhang, H Y; Zhang, J; Zhang, J J; Zhang, J L; Zhang, J Q; Zhang, J W; Zhang, J Y; Zhang, J Z; Zhang, K; Zhang, L; Zhang, S Q; Zhang, X Y; Zhang, Y; Zhang, Y H; Zhang, Y N; Zhang, Y T; Zhang, Yu; Zhang, Z H; Zhang, Z P; Zhang, Z Y; Zhao, G; Zhao, J W; Zhao, J Y; Zhao, J Z; Zhao, Lei; Zhao, Ling; Zhao, M G; Zhao, Q; Zhao, Q W; Zhao, S J; Zhao, T C; Zhao, Y B; Zhao, Z G; Zhemchugov, A; Zheng, B; Zheng, J P; Zheng, W J; Zheng, Y H; Zhong, B; Zhou, L; Zhou, X; Zhou, X K; Zhou, X R; Zhou, X Y; Zhu, K; Zhu, K J; Zhu, S; Zhu, S H; Zhu, X L; Zhu, Y C; Zhu, Y S; Zhu, Z A; Zhuang, J; Zotti, L; Zou, B S; Zou, J H
2016-07-22
Using 1.09×10^{9} J/ψ events collected by the BESIII experiment in 2012, we study the J/ψ→γη^{'}π^{+}π^{-} process and observe a significant abrupt change in the slope of the η^{'}π^{+}π^{-} invariant mass distribution at the proton-antiproton (pp[over ¯]) mass threshold. We use two models to characterize the η^{'}π^{+}π^{-} line shape around 1.85 GeV/c^{2}: one that explicitly incorporates the opening of a decay threshold in the mass spectrum (Flatté formula), and another that is the coherent sum of two resonant amplitudes. Both fits show almost equally good agreement with data, and suggest the existence of either a broad state around 1.85 GeV/c^{2} with strong couplings to the pp[over ¯] final states or a narrow state just below the pp[over ¯] mass threshold. Although we cannot distinguish between the fits, either one supports the existence of a pp[over ¯] moleculelike state or bound state with greater than 7σ significance.
Nucleon Structure from Lattice QCD
Haegler, Philipp
2011-10-24
Hadron structure calculations in lattice QCD have seen substantial progress during recent years. We illustrate the achievements that have been made by discussing latest lattice results for a limited number of important observables related to nucleon form factors and generalized parton distributions. A particular focus is placed on the decomposition of the nucleon spin 1/2 in terms of quark spin and orbital angular momentum contributions. Results and limitations of the necessary chiral extrapolations based on ChPT will be briefly discussed.
Tetraquark states from lattice QCD
Mathur, Nilmani
2011-10-24
Recently there have been considerable interests in studying hadronic states beyond the usual two and three quark configurations. With the renewed experimental interests in {sigma}(600) and the inability of quark model to incorporate too many light scalar mesons, it is quite appropriate to study hadronic states with four quark configurations. Moreover, some of the newly observed charmed hadrons may well be described by four quark configurations. Lattice QCD is perhaps the most desirable tool to adjudicate the theoretical controversy of the scalar mesons and to interpret the structures of the newly observed charmed states. Here we briefly reviewed the lattice studies of four-quark hadrons.
Nuclear Physics from Lattice QCD
William Detmold, Silas Beane, Konstantinos Orginos, Martin Savage
2011-01-01
We review recent progress toward establishing lattice Quantum Chromodynamics as a predictive calculational framework for nuclear physics. A survey of the current techniques that are used to extract low-energy hadronic scattering amplitudes and interactions is followed by a review of recent two-body and few-body calculations by the NPLQCD collaboration and others. An outline of the nuclear physics that is expected to be accomplished with Lattice QCD in the next decade, along with estimates of the required computational resources, is presented.
"Quantum Field Theory and QCD"
Jaffe, Arthur M.
2006-02-25
This grant partially funded a meeting, "QFT & QCD: Past, Present and Future" held at Harvard University, Cambridge, MA on March 18-19, 2005. The participants ranged from senior scientists (including at least 9 Nobel Prize winners, and 1 Fields medalist) to graduate students and undergraduates. There were several hundred persons in attendance at each lecture. The lectures ranged from superlative reviews of past progress, lists of important, unsolved questions, to provocative hypotheses for future discovery. The project generated a great deal of interest on the internet, raising awareness and interest in the open questions of theoretical physics.
Baryon Spectroscopy and the Origin of Mass
Klempt, Eberhard
2010-08-05
The proton mass arises from spontaneous breaking of chiral symmetry and the formation of constituent quarks. Their dynamics cannot be tested by proton tomography but only by studying excited baryons. However, the number of excited baryons is much smaller than expected within quark models; even worse, the existence of many known states has been challenged in a recent analysis which includes - compared to older analyses - high-precision data from meson factories. Hence {pi}N elastic scattering data do not provide a well-founded starting point of any phenomenological analysis of the baryon excitation spectrum. Photoproduction experiments now start to fill in this hole. Often, they confirm the old findings and even suggest a few new states. These results encourage attempts to compare the pattern of observed baryon resonances with predictions from quark models, from models generating baryons dynamically from meson-nucleon scattering amplitudes, from models based on gravitational theories, and with the conjecture that chiral symmetry may be restored at high excitation energies. Best agreement is found with a simple mass formula derived within AdS/QCD. Consequences for our understanding of QCD are discussed as well as experiments which may help to decide on the validity of models.
Windows on the axion. [quantum chromodynamics (QCD)
NASA Technical Reports Server (NTRS)
Turner, Michael S.
1989-01-01
Peccei-Quinn symmetry with attendant axion is a most compelling, and perhaps the most minimal, extension of the standard model, as it provides a very elegant solution to the nagging strong CP-problem associated with the theta vacuum structure of QCD. However, particle physics gives little guidance as to the axion mass; a priori, the plausible values span the range: 10(-12)eV is approx. less than m(a) which is approx. less than 10(6)eV, some 18 orders-of-magnitude. Laboratory experiments have excluded masses greater than 10(4)eV, leaving unprobed some 16 orders-of-magnitude. Axions have a host of interesting astrophysical and cosmological effects, including, modifying the evolution of stars of all types (our sun, red giants, white dwarfs, and neutron stars), contributing significantly to the mass density of the Universe today, and producting detectable line radiation through the decays of relic axions. Consideration of these effects has probed 14 orders-of-magnitude in axion mass, and has left open only two windows for further exploration: 10(-6)eV is approx. less than m(a) is approx. less than 10(-3)eV and 1eV is approx. less than m(a) is approx. less than 5eV (hadronic axions only). Both these windows are accessible to experiment, and a variety of very interesting experiments, all of which involve heavenly axions, are being planned or are underway.
Color Confinement and Screening in the θ Vacuum of QCD.
Kharzeev, Dmitri E; Levin, Eugene M
2015-06-19
QCD perturbation theory ignores the compact nature of the SU(3) gauge group that gives rise to the periodic θ vacuum of the theory. We propose to modify the gluon propagator to reconcile perturbation theory with the anomalous Ward identities for the topological current in the θ vacuum. As a result, the gluon couples to the Veneziano ghost describing the tunneling transitions between different Chern-Simons sectors of the vacuum; we call the emerging gluon dressed by ghost loops a "glost." We evaluate the glost propagator and find that it has the form G(p)=(p(2)+χ(top)/p(2))(-1) where χ(top) is the Yang-Mills topological susceptibility related to the η' mass by the Witten-Veneziano relation; this propagator describes the confinement of gluons at distances ∼χ(top)(-1/4)≃1 fm. The same functional form of the propagator was originally proposed by Gribov as a solution to the gauge copies problem that plagues perturbation theory. The resulting running coupling coincides with the perturbative one at p(2)≫√[χ(top)], but in the infrared region either freezes (in pure Yang-Mills theory) or vanishes (in full QCD with light quarks), in accord with experimental evidence. Our scenario makes explicit the connection between confinement and topology of the QCD vacuum; we discuss the implications for spin physics, high energy scattering, and the physics of quark-gluon plasma.
Quest for More Information from Lattice QCD Simulations
NASA Astrophysics Data System (ADS)
de Forcrand, P.; García Pérez, M.; Hashimoto, T.; Hioki, S.; Matsufuru, H.; Miyamura, O.; Umeda, T.; Nakamura, A.; Stamatescu, I.-O.; Tago, Y.; Takaishi, T.
Lattice QCD is one of the most powerful tools to study the non-perturbative nature of the strong interaction. Although much information has been obtained so far to understand QCD, the computational cost becomes higher and higher as we calculate on finer lattices; simulations near the continuum are still far beyond. We report the progress on (1) renormalization group (RG) improved actions and (2) anisotropic lattice, which QCD-TARO group has developed and studied in order to get more information from the simulations on the present computers. RG improved actions were proposed and studied by Wilson and Iwasaki to remove discretization effects for long distance observables. We have studied 1× 1 + 1× 2 type actions, which includes Wilson, Symanzik and Iwasaki ones, by the strong and weak coupling expansions and Monte Carlo RG method. We have calculated RG flow and obtained a new effective β-function. Anisotropic lattice, where the temporal lattice spacing is smaller than that along the spatial one, makes us possible to perform finer resolution measurements in the temporal direction. This is especially useful at the finite temperature, where the temporal lattice size is limited. We have calculated meson pole and screening masses. We have found they behave in a different manner as a function of T.
Phenomenological QCD equations of state for neutron stars
NASA Astrophysics Data System (ADS)
Kojo, Toru; Powell, Philip D.; Song, Yifan; Baym, Gordon
2016-12-01
We delineate the properties of QCD matter at baryon density nB = 1 - 10n0 (n0: nuclear saturation density), through the construction of neutron star equations of state that satisfy the neutron star mass-radius constraints as well as physical conditions on the speed of sound. The QCD matter is described in the 3-window modeling: at nB ≲ 2n0 purely nuclear matter; at nB ≳ 5n0 percolated quark matter; and at 2n0 ≲nB ≲ 5n0 matter intermediate between these two which are constructed by interpolation. Using a schematic quark model with effective interactions inspired from hadron and nuclear physics, we analyze the strength of interactions necessary to describe observed neutron star properties. Our finding is that the interactions should remain as strong as in the QCD vacuum, indicating that gluons at nB = 1 - 10n0 remain non-perturbative even after quark matter formation.
Scalar susceptibility in QCD and the multiflavor Schwinger model
NASA Astrophysics Data System (ADS)
Smilga, A.; Verbaarschot, J. J. M.
1996-07-01
We evaluate the leading infrared behavior of the scalar susceptibility in QCD and in the multiflavor Schwinger model for a small nonzero quark mass m and/or small nonzero temperature as well as the scalar susceptibility for the finite-volume QCD partition function. In QCD, it is determined by one-loop chiral perturbation theory, with the result that the leading infrared singularity behaves as ~ln m at zero temperature and as ~T/m at finite temperature. In the Schwinger model with several flavors we use exact results for the scalar correlation function. We find that the Schwinger model has a phase transition at T=0 with critical exponents that satisfy the standard scaling relations. The singular behavior of this model depends on the number of flavors with a scalar susceptibility that behaves as ~m-2/(Nf+1). At finite volumes V we show that the scalar susceptibility is proportional to 1/m2V. Recent lattice calculations of this quantity by Karsch and Laermann are discussed.
Colour particle states behaviour in the QCD vacuum
NASA Astrophysics Data System (ADS)
Kuvshinov, V. I.; Bagashov, E. G.
2016-11-01
The results of an interaction of a quantum state of quark with QCD vacuum, where the latter plays a role of environment, could be treated as decoherence. This may have direct implications for the confinement of quarks phenomenon. The general description and discussion of this process is given. Characteristics from quantum optics and information theory (purity, fidelity, von Neumann entropy) are proposed as means for numerical analysis of the process of interaction of quark colour state with stochastic vacuum. Problems of stability of colour particles motion and order-chaos transitions are briefly discussed. It is shown that there should be a connection between the properties of QCD stochastic vacuum and Higgs boson mass and self interaction coupling constant. The behaviour of squeezed and entangled quantum states, the interaction of colour superpositions and multiparticle states with stochastic QCD vacuum is described. It is shown that it leads to a fully mixed quantum state with equal probabilities for different colours. Decoherence rate is found to be proportional to the product of the distance between colour charges and the time during which this interaction has taken place. I.e. such an interaction seems to lead naturally to confinement of quarks.
Tao, W.; Klemm, R.B.; Nesbitt, F.L.; Stief, L.J.
1992-01-09
The photoionization spectrum of H{sub 2}COH was measured over the wavelength range 140-170 nm by using a discharge flow-photoionization mass spectrometer apparatus with synchrotron radiation. Hydroxymethyl radicals (H{sub 2}COH and H{sub 2}COD) were generated in a flow tube by the reaction of F atoms with CH{sub 3}OH(D). Ionization energies (IE) were determined directly from photoion thresholds. The IE values, 7.56 {plus_minus} 0.02 and 7.55 {plus_minus} 0.02 eV for H{sub 2}COH and H{sub 2}COD, respectively, are consistent with previous measurements. Also, the dissociative ionization process, presumed to be H{sub 3}CO* {yields} HCO{sup +} + H{sub 2}, was observed with a threshold at 8.61 {plus_minus} 0.06 eV. 44 refs., 5 figs.
Neutron electric dipole moment from lattice QCD
Shintani, E.; Kanaya, K.; Aoki, S.; Ishizuka, N.; Kuramashi, Y.; Taniguchi, Y.; Ukawa, A.; Yoshie, T.; Kikukawa, Y.; Okawa, M.
2005-07-01
We carry out a feasibility study for the lattice QCD calculation of the neutron electric dipole moment (NEDM) in the presence of the {theta} term. We develop the strategy to obtain the nucleon EDM from the CP-odd electromagnetic form factor F{sub 3} at small {theta}, in which NEDM is given by lim{sub q{sup 2}}{sub {yields}}{sub 0}{theta}F{sub 3}(q{sup 2})/(2m{sub N}), where q is the momentum transfer and m{sub N} is the nucleon mass. We first derive a formula which relates F{sub 3}, a matrix element of the electromagnetic current between nucleon states, with vacuum expectation values of nucleons and/or the current. In the expansion of {theta}, the parity-odd part of the nucleon-current-nucleon three-point function contains contributions not only from the parity-odd form factors but also from the parity-even form factors multiplied by the parity-odd part of the nucleon two-point function, and, therefore, the latter contribution must be subtracted to extract F{sub 3}. We then perform an explicit lattice calculation employing the domain-wall quark action with the renormalization group improved gauge action in quenched QCD at a{sup -1}{approx_equal}2 GeV on a 16{sup 3}x32x16 lattice. At the quark mass m{sub f}a=0.03, corresponding to m{sub {pi}}/m{sub {rho}}{approx_equal}0.63, we accumulate 730 configurations, which allow us to extract the parity-odd part in both two- and three-point functions. Employing two different Dirac {gamma} matrix projections, we show that a consistent value for F{sub 3} cannot be obtained without the subtraction described above. We obtain F{sub 3}(q{sup 2}{approx_equal}0.58 GeV{sup 2})/(2m{sub N})=-0.024(5)e{center_dot}fm for the neutron and F{sub 3}(q{sup 2}{approx_equal}0.58 GeV{sup 2})/(2m{sub N})=0.021(6)e{center_dot}fm for the proton.
Mass spectrum of the 1-butene-3-yne-2-yl radical (i-C4H3; X2A')
NASA Astrophysics Data System (ADS)
Guo, Ying; Gu, Xibin; Kaiser, Ralf I.
2006-03-01
The crossed molecular beams method has been applied to produce the 1-butene-3-yne-2-yl radical, i-C4H3(X2A') under single collision conditions via the reaction of dicarbon molecules with ethylene. We recorded time-of-flight spectra of the radical at the center-of-mass angle (28.0°) of the parent ion (m/z = 51; C4H3+) and of the fragments at m/z = 50 (C4H2+), m/z = 49 (C4H+), m/z = 48 (C4+), m/z = 39 (C3H3+), m/z = 38 (C3H2+), m/z = 37 (C3H+), and m/z = 36 (C3+). This yielded relative intensity ratios of I(m/z = 51):I(m/z = 50):I(m/z = 49):I(m/z = 48):I(m/z = 39):I(m/z = 38):I(m/z = 37):I(m/z = 36) = 0.47 +/- 0.01:0.94 +/- 0.01:1.0:0.07 +/- 0.02:0.31 +/- 0.01:0.23 +/- 0.02:0.24 +/- 0.01:0.12 +/- 0.01 at 70 eV electron impact energy. Upper limits at mass-to-charge ratios between 27 and m/z = 24 and m/z = 14-12 were derived to be 0.02 +/- 0.01. Note that the intensity of the 13C isotopic peak of the 1-butene-3-yne-2-yl radical at m/z = 52 (13C12C3H3+) is about 0.04 +/- 0.01 relative to m/z = 51. Employing linear scaling methods, the absolute electron impact ionization cross section of the 1-butene-3-yne-2-yl radical was computed to be 7.8 +/- 1.6 × 10-16 cm2. These data can be employed to monitor the 1-butene-3-yne-2-yl radical in oxygen-poor combustion flames and in the framework of prospective explorations of planetary atmospheres (Jupiter, Saturn, Uranus, Neptune, Pluto) and of their moons (Titan, Triton, Oberon) in situ via matrix interval arithmetic assisted mass spectrometry.
Smith, W.H.
1997-06-01
These lectures describe QCD physics studies over the period 1992--1996 from data taken with collisions of 27 GeV electrons and positrons with 820 GeV protons at the HERA collider at DESY by the two general-purpose detectors H1 and ZEUS. The focus of these lectures is on structure functions and jet production in deep inelastic scattering, photoproduction, and diffraction. The topics covered start with a general introduction to HERA and ep scattering. Structure functions are discussed. This includes the parton model, scaling violation, and the extraction of F{sub 2}, which is used to determine the gluon momentum distribution. Both low and high Q{sup 2} regimes are discussed. The low Q{sup 2} transition from perturbative QCD to soft hadronic physics is examined. Jet production in deep inelastic scattering to measure {alpha}{sub s}, and in photoproduction to study resolved and direct photoproduction, is also presented. This is followed by a discussion of diffraction that begins with a general introduction to diffraction in hadronic collisions and its relation to ep collisions, and moves on to deep inelastic scattering, where the structure of diffractive exchange is studied, and in photoproduction, where dijet production provides insights into the structure of the Pomeron. 95 refs., 39 figs.
NASA Astrophysics Data System (ADS)
Gelman, Boris A.
The forces between quarks, which produce hadrons, and the forces between nucleons, which bind them into nuclei, are determined by the nonpertubative regime of the quantum chromodynamics (QCD). Nonperturbative methods are needed to connect the hadronic and nuclear physics to QCD. In this dissertation, methods based on large Nc QCD (N c is the number of colors) and the heavy quark expansion---an expansion in inverse powers of masses of the heavy quarks, 1/m Q---are used to describe two aspects of the strong interaction physics. In the first instance, a combined large Nc and heavy quark expansion is used to study the properties of the isoscalar baryons containing one heavy quark---the heavy baryons---and their low-energy excited states. The combined large Nc and heavy quark limit is useful due to the existence of a symmetry in the heavy baryon spectrum in the combined limit. This symmetry connects the low-energy excited states of the heavy baryons to the ground state. The symmetry is described by a contracted O(8) group. In addition, an energy gap appears in the excitation spectrum of the heavy baryons near the combined limit. This scale separation is used to obtain an effective Hamiltonian that describes the low-energy degrees of freedom. In addition, the combined large Nc and heavy quark expansion for electroweak operators and their matrix elements is obtained. The effective Hamiltonian is used to determine the masses of the spin-doublet of the first excited state of Λc and Λb baryons. The effective electroweak operators are used to determine the heavy baryon semileptonic decay form factors and the total electromagnetic decay rates of the excited heavy baryons. At leading order in the combined limit all observables depend on a single unknown parameter which can be eliminated using the (spin-averaged) excitation energy of the first excited state of Λc. At next-to-leading order an additional parameter is required to predict the heavy baryon observables. The
Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Asilar, E; Bergauer, T; Brandstetter, J; Brondolin, E; Dragicevic, M; Erö, J; Flechl, M; Friedl, M; Frühwirth, R; Ghete, V M; Hartl, C; Hörmann, N; Hrubec, J; Jeitler, M; König, A; Krätschmer, I; Liko, D; Matsushita, T; Mikulec, I; Rabady, D; Rad, N; Rahbaran, B; Rohringer, H; Schieck, J; Strauss, J; Treberer-Treberspurg, W; Waltenberger, W; Wulz, C-E; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Alderweireldt, S; Cornelis, T; De Wolf, E A; Janssen, X; Knutsson, A; Lauwers, J; Luyckx, S; Van De Klundert, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Van Spilbeeck, A; Abu Zeid, S; Blekman, F; D'Hondt, J; Daci, N; De Bruyn, I; Deroover, K; Heracleous, N; Lowette, S; Moortgat, S; Moreels, L; Olbrechts, A; Python, Q; Tavernier, S; Van Doninck, W; Van Mulders, P; Van Parijs, I; Brun, H; Caillol, C; Clerbaux, B; De Lentdecker, G; Delannoy, H; Fasanella, G; Favart, L; Goldouzian, R; Grebenyuk, A; Karapostoli, G; Lenzi, T; Léonard, A; Maerschalk, T; Marinov, A; Randle-Conde, A; Seva, T; Vander Velde, C; Vanlaer, P; Yonamine, R; Zenoni, F; Zhang, F; Cimmino, A; Dobur, D; Fagot, A; Garcia, G; Gul, M; Mccartin, J; Poyraz, D; Salva, S; Schöfbeck, R; Tytgat, M; Van Driessche, W; Yazgan, E; Zaganidis, N; Beluffi, C; Bondu, O; Brochet, S; Bruno, G; Caudron, A; Ceard, L; De Visscher, S; Delaere, C; Delcourt, M; Forthomme, L; Francois, B; Giammanco, A; Jafari, A; Jez, P; Komm, M; Lemaitre, V; Magitteri, A; Mertens, A; Musich, M; Nuttens, C; Piotrzkowski, K; Quertenmont, L; Selvaggi, M; Vidal Marono, M; Wertz, S; Beliy, N; Aldá Júnior, W L; Alves, F L; Alves, G A; Brito, L; Correa Martins Junior, M; Hensel, C; Moraes, A; Pol, M E; Rebello Teles, P; Belchior Batista Das Chagas, E; Carvalho, W; Chinellato, J; Custódio, A; Da Costa, E M; Da Silveira, G G; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Huertas Guativa, L M; Malbouisson, H; Matos Figueiredo, D; Mora Herrera, C; Mundim, L; Nogima, H; Prado Da Silva, W L; Santoro, A; Sznajder, A; Tonelli Manganote, E J; Vilela Pereira, A; Ahuja, S; Bernardes, C A; Dogra, S; Fernandez Perez Tomei, T R; Gregores, E M; Mercadante, P G; Moon, C S; Novaes, S F; Padula, Sandra S; Romero Abad, D; Ruiz Vargas, J C; Aleksandrov, A; Hadjiiska, R; Iaydjiev, P; Rodozov, M; Stoykova, S; Sultanov, G; Vutova, M; Dimitrov, A; Glushkov, I; Litov, L; Pavlov, B; Petkov, P; Fang, W; Ahmad, M; Bian, J G; Chen, G M; Chen, H S; Chen, M; Chen, Y; Cheng, T; Du, R; Jiang, C H; Leggat, D; Liu, Z; Romeo, F; Shaheen, S M; Spiezia, A; Tao, J; Wang, C; Wang, Z; Zhang, H; Zhao, J; Asawatangtrakuldee, C; Ban, Y; Li, Q; Liu, S; Mao, Y; Qian, S J; Wang, D; Xu, Z; Avila, C; Cabrera, A; Chaparro Sierra, L F; Florez, C; Gomez, J P; Ruiz Alvarez, J D; Sanabria, J C; Godinovic, N; Lelas, D; Puljak, I; Ribeiro Cipriano, P M; Antunovic, Z; Kovac, M; Brigljevic, V; Ferencek, D; Kadija, K; Luetic, J; Micanovic, S; Sudic, L; Attikis, A; Mavromanolakis, G; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Rykaczewski, H; Finger, M; Finger, M; Carrera Jarrin, E; Awad, A; Elgammal, S; Mohamed, A; Salama, E; Calpas, B; Kadastik, M; Murumaa, M; Perrini, L; Raidal, M; Tiko, A; Veelken, C; Eerola, P; Pekkanen, J; Voutilainen, M; Härkönen, J; Karimäki, V; Kinnunen, R; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Peltola, T; Tuominiemi, J; Tuovinen, E; Wendland, L; Talvitie, J; Tuuva, T; Besancon, M; Couderc, F; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Favaro, C; Ferri, F; Ganjour, S; Ghosh, S; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Locci, E; Machet, M; Malcles, J; Rander, J; Rosowsky, A; Titov, M; Zghiche, A; Abdulsalam, A; Antropov, I; Baffioni, S; Beaudette, F; Busson, P; Cadamuro, L; Chapon, E; Charlot, C; Davignon, O; Granier de Cassagnac, R; Jo, M; Lisniak, S; Miné, P; Naranjo, I N; Nguyen, M; Ochando, C; Ortona, G; Paganini, P; Pigard, P; Regnard, S; Salerno, R; Sirois, Y; Strebler, T; Yilmaz, Y; Zabi, A; Agram, J-L; Andrea, J; Aubin, A; Bloch, D; Brom, J-M; Buttignol, M; Chabert, E C; Chanon, N; Collard, C; Conte, E; Coubez, X; Fontaine, J-C; Gelé, D; Goerlach, U; Le Bihan, A-C; Merlin, J A; Skovpen, K; Van Hove, P; Gadrat, S; Beauceron, S; Bernet, C; Boudoul, G; Bouvier, E; Carrillo Montoya, C A; Chierici, R; Contardo, D; Courbon, B; Depasse, P; El Mamouni, H; Fan, J; Fay, J; Gascon, S; Gouzevitch, M; Grenier, G; Ille, B; Lagarde, F; Laktineh, I B; Lethuillier, M; Mirabito, L; Pequegnot, A L; Perries, S; Popov, A; Sabes, D; Sordini, V; Vander Donckt, M; Verdier, P; Viret, S; Toriashvili, T; Tsamalaidze, Z; Autermann, C; Beranek, S; Feld, L; Heister, A; Kiesel, M K; Klein, K; Lipinski, M; Ostapchuk, A; Preuten, M; Raupach, F; Schael, S; Schomakers, C; Schulte, J F; Schulz, J; Verlage, T; Weber, H; Zhukov, V; Ata, M; Brodski, M; Dietz-Laursonn, E; Duchardt, D; Endres, M; Erdmann, M; Erdweg, S; Esch, T; Fischer, R; Güth, A; Hebbeker, T; Heidemann, C; Hoepfner, K; Knutzen, S; Merschmeyer, M; Meyer, A; Millet, P; Mukherjee, S; Olschewski, M; Padeken, K; Papacz, P; Pook, T; Radziej, M; Reithler, H; Rieger, M; Scheuch, F; Sonnenschein, L; Teyssier, D; Thüer, S; Cherepanov, V; Erdogan, Y; Flügge, G; Geenen, H; Geisler, M; Hoehle, F; Kargoll, B; Kress, T; Künsken, A; Lingemann, J; Nehrkorn, A; Nowack, A; Nugent, I M; Pistone, C; Pooth, O; Stahl, A; Aldaya Martin, M; Asin, I; Beernaert, K; Behnke, O; Behrens, U; Bin Anuar, A A; Borras, K; Campbell, A; Connor, P; Contreras-Campana, C; Costanza, F; Diez Pardos, C; Dolinska, G; Eckerlin, G; Eckstein, D; Eichhorn, T; Gallo, E; Garay Garcia, J; Geiser, A; Gizhko, A; Grados Luyando, J M; Gunnellini, P; Harb, A; Hauk, J; Hempel, M; Jung, H; Kalogeropoulos, A; Karacheban, O; Kasemann, M; Kieseler, J; Kleinwort, C; Korol, I; Lange, W; Lelek, A; Leonard, J; Lipka, K; Lobanov, A; Lohmann, W; Mankel, R; Melzer-Pellmann, I-A; Meyer, A B; Mittag, G; Mnich, J; Mussgiller, A; Ntomari, E; Pitzl, D; Placakyte, R; Raspereza, A; Roland, B; Sahin, M Ö; Saxena, P; Schoerner-Sadenius, T; Seitz, C; Spannagel, S; Stefaniuk, N; Trippkewitz, K D; Van Onsem, G P; Walsh, R; Wissing, C; Blobel, V; Centis Vignali, M; Draeger, A R; Dreyer, T; Erfle, J; Garutti, E; Goebel, K; Gonzalez, D; Görner, M; Haller, J; Hoffmann, M; Höing, R S; Junkes, A; Klanner, R; Kogler, R; Kovalchuk, N; Lapsien, T; Lenz, T; Marchesini, I; Marconi, D; Meyer, M; Niedziela, M; Nowatschin, D; Ott, J; Pantaleo, F; Peiffer, T; Perieanu, A; Pietsch, N; Poehlsen, J; Sander, C; Scharf, C; Schleper, P; Schlieckau, E; Schmidt, A; Schumann, S; Schwandt, J; Stadie, H; Steinbrück, G; Stober, F M; Stöver, M; Tholen, H; Troendle, D; Usai, E; Vanelderen, L; Vanhoefer, A; Vormwald, B; Barth, C; Baus, C; Berger, J; Butz, E; Chwalek, T; Colombo, F; De Boer, W; Dierlamm, A; Fink, S; Friese, R; Giffels, M; Gilbert, A; Haitz, D; Hartmann, F; Heindl, S M; Husemann, U; Katkov, I; Kornmayer, A; Lobelle Pardo, P; Maier, B; Mildner, H; Mozer, M U; Müller, T; Müller, Th; Plagge, M; Quast, G; Rabbertz, K; Röcker, S; Roscher, F; Schröder, M; Sieber, G; Simonis, H J; Ulrich, R; Wagner-Kuhr, J; Wayand, S; Weber, M; Weiler, T; Williamson, S; Wöhrmann, C; Wolf, R; Anagnostou, G; Daskalakis, G; Geralis, T; Giakoumopoulou, V A; Kyriakis, A; Loukas, D; Topsis-Giotis, I; Agapitos, A; Kesisoglou, S; Panagiotou, A; Saoulidou, N; Tziaferi, E; Evangelou, I; Flouris, G; Foudas, C; Kokkas, P; Loukas, N; Manthos, N; Papadopoulos, I; Paradas, E; Filipovic, N; Bencze, G; Hajdu, C; Hidas, P; Horvath, D; Sikler, F; Veszpremi, V; Vesztergombi, G; Zsigmond, A J; Beni, N; Czellar, S; Karancsi, J; Molnar, J; Szillasi, Z; Bartók, M; Makovec, A; Raics, P; Trocsanyi, Z L; Ujvari, B; Bahinipati, S; Choudhury, S; Mal, P; Mandal, K; Nayak, A; Sahoo, D K; Sahoo, N; Swain, S K; Bansal, S; Beri, S B; Bhatnagar, V; Chawla, R; Gupta, R; Bhawandeep, U; Kalsi, A K; Kaur, A; Kaur, M; Kumar, R; Mehta, A; Mittal, M; Singh, J B; Walia, G; Kumar, Ashok; Bhardwaj, A; Choudhary, B C; Garg, R B; Keshri, S; Kumar, A; Malhotra, S; Naimuddin, M; Nishu, N; Ranjan, K; Sharma, R; Sharma, V; Bhattacharya, R; Bhattacharya, S; Chatterjee, K; Dey, S; Dutt, S; Dutta, S; Ghosh, S; Majumdar, N; Modak, A; Mondal, K; Mukhopadhyay, S; Nandan, S; Purohit, A; Roy, A; Roy, D; Roy Chowdhury, S; Sarkar, S; Sharan, M; Thakur, S; Behera, P K; Chudasama, R; Dutta, D; Jha, V; Kumar, V; Mohanty, A K; Netrakanti, P K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Banerjee, S; Bhowmik, S; Chatterjee, R M; Dewanjee, R K; Dugad, S; Ganguly, S; Guchait, M; Gurtu, A; Jain, Sa; Kole, G; Kumar, S; Mahakud, B; Maity, M; Majumder, G; Mazumdar, K; Mitra, S; Mohanty, G B; Parida, B; Sarkar, T; Sur, N; Sutar, B; Wickramage, N; Chauhan, S; Dube, S; Kapoor, A; Kothekar, K; Rane, A; Sharma, S; Bakhshiansohi, H; Behnamian, H; Chenarani, S; Eskandari Tadavani, E; Etesami, S M; Fahim, A; Khakzad, M; Mohammadi Najafabadi, M; Naseri, M; Paktinat Mehdiabadi, S; Rezaei Hosseinabadi, F; Safarzadeh, B; Zeinali, M; Felcini, M; Grunewald, M; Abbrescia, M; Calabria, C; Caputo, C; Colaleo, A; Creanza, D; Cristella, L; De Filippis, N; De Palma, M; Fiore, L; Iaselli, G; Maggi, G; Maggi, M; Miniello, G; My, S; Nuzzo, S; Pompili, A; Pugliese, G; Radogna, R; Ranieri, A; Selvaggi, G; Silvestris, L; Venditti, R; Abbiendi, G; Battilana, C; Bonacorsi, D; Braibant-Giacomelli, S; Brigliadori, L; Campanini, R; Capiluppi, P; Castro, A; Cavallo, F R; Chhibra, S S; Codispoti, G; Cuffiani, M; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Grandi, C; Guiducci, L; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G P; Tosi, N; Albergo, S; Chiorboli, M; Costa, S; Di Mattia, A; Giordano, F; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Gori, V; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Viliani, L; Benussi, L; Bianco, S; Fabbri, F; Piccolo, D; Primavera, F; Calvelli, V; Ferro, F; Lo Vetere, M; Monge, M R; Robutti, E; Tosi, S; Brianza, L; Brivio, F; Dinardo, M E; Fiorendi, S; Gennai, S; Ghezzi, A; Govoni, P; Malvezzi, S; Manzoni, R A; Marzocchi, B; Menasce, D; Moroni, L; Paganoni, M; Pedrini, D; Pigazzini, S; Ragazzi, S; Tabarelli de Fatis, T; Buontempo, S; Cavallo, N; De Nardo, G; Di Guida, S; Esposito, M; Fabozzi, F; Iorio, A O M; Lanza, G; Lista, L; Meola, S; Merola, M; Paolucci, P; Sciacca, C; Thyssen, F; Azzi, P; Bacchetta, N; Benato, L; Bisello, D; Boletti, A; Carlin, R; Carvalho Antunes De Oliveira, A; Checchia, P; Dall'Osso, M; De Castro Manzano, P; Dorigo, T; Dosselli, U; Gasparini, F; Gasparini, U; Gozzelino, A; Lacaprara, S; Margoni, M; Meneguzzo, A T; Pazzini, J; Pozzobon, N; Ronchese, P; Simonetto, F; Torassa, E; Tosi, M; Zanetti, M; Zotto, P; Zucchetta, A; Zumerle, G; Braghieri, A; Magnani, A; Montagna, P; Ratti, S P; Re, V; Riccardi, C; Salvini, P; Vai, I; Vitulo, P; Alunni Solestizi, L; Bilei, G M; Ciangottini, D; Fanò, L; Lariccia, P; Leonardi, R; Mantovani, G; Menichelli, M; Saha, A; Santocchia, A; Androsov, K; Azzurri, P; Bagliesi, G; Bernardini, J; Boccali, T; Castaldi, R; Ciocci, M A; Dell'Orso, R; Donato, S; Fedi, G; Giassi, A; Grippo, M T; Ligabue, F; Lomtadze, T; Martini, L; Messineo, A; Palla, F; Rizzi, A; Savoy-Navarro, A; Spagnolo, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, P G; Barone, L; Cavallari, F; Cipriani, M; D'imperio, G; Del Re, D; Diemoz, M; Gelli, S; Jorda, C; Longo, E; Margaroli, F; Meridiani, P; Organtini, G; Paramatti, R; Preiato, F; Rahatlou, S; Rovelli, C; Santanastasio, F; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Bartosik, N; Bellan, R; Biino, C; Cartiglia, N; Costa, M; Covarelli, R; Degano, A; Demaria, N; Finco, L; Kiani, B; Mariotti, C; Maselli, S; Migliore, E; Monaco, V; Monteil, E; Obertino, M M; Pacher, L; Pastrone, N; Pelliccioni, M; Pinna Angioni, G L; Ravera, F; Romero, A; Ruspa, M; Sacchi, R; Sola, V; Solano, A; Staiano, A; Traczyk, P; Belforte, S; Candelise, V; Casarsa, M; Cossutti, F; Della Ricca, G; La Licata, C; Schizzi, A; Zanetti, A; Kim, D H; Kim, G N; Kim, M S; Lee, S; Lee, S W; Oh, Y D; Sekmen, S; Son, D C; Yang, Y C; Kim, H; Brochero Cifuentes, J A; Kim, T J; Cho, S; Choi, S; Go, Y; Gyun, D; Ha, S; Hong, B; Jo, Y; Kim, Y; Lee, B; Lee, K; Lee, K S; Lee, S; Lim, J; Park, S K; Roh, Y; Almond, J; Kim, J; Seo, S H; Yang, U K; Yoo, H D; Yu, G B; Choi, M; Kim, H; Kim, H; Kim, J H; Lee, J S H; Park, I C; Ryu, G; Ryu, M S; Choi, Y; Goh, J; Kim, D; Kwon, E; Lee, J; Yu, I; Dudenas, V; Juodagalvis, A; Vaitkus, J; Ahmed, I; Ibrahim, Z A; Komaragiri, J R; Md Ali, M A B; Mohamad Idris, F; Wan Abdullah, W A T; Yusli, M N; Zolkapli, Z; Casimiro Linares, E; Castilla-Valdez, H; De La Cruz-Burelo, E; Heredia-De La Cruz, I; Hernandez-Almada, A; Lopez-Fernandez, R; Mejia Guisao, J; Sanchez-Hernandez, A; Carrillo Moreno, S; Vazquez Valencia, F; Pedraza, I; Salazar Ibarguen, H A; Uribe Estrada, C; Morelos Pineda, A; Krofcheck, D; Butler, P H; Ahmad, A; Ahmad, M; Hassan, Q; Hoorani, H R; Khan, W A; Khurshid, T; Shoaib, M; Waqas, M; Bialkowska, H; Bluj, M; Boimska, B; Frueboes, T; Górski, M; Kazana, M; Nawrocki, K; Romanowska-Rybinska, K; Szleper, M; Zalewski, P; Bunkowski, K; Byszuk, A; Doroba, K; Kalinowski, A; Konecki, M; Krolikowski, J; Misiura, M; Olszewski, M; Walczak, M; Bargassa, P; Beirão Da Cruz E Silva, C; Di Francesco, A; Faccioli, P; Ferreira Parracho, P G; Gallinaro, M; Hollar, J; Leonardo, N; Lloret Iglesias, L; Nemallapudi, M V; Nguyen, F; Rodrigues Antunes, J; Seixas, J; Toldaiev, O; Vadruccio, D; Varela, J; Vischia, P; Bunin, P; Golutvin, I; Gorbounov, N; Gorbunov, I; Kamenev, A; Karjavin, V; Lanev, A; Malakhov, A; Matveev, V; Moisenz, P; Palichik, V; Perelygin, V; Savina, M; Shmatov, S; Shulha, S; Skatchkov, N; Smirnov, V; Voytishin, N; Zarubin, A; Chtchipounov, L; Golovtsov, V; Ivanov, Y; Kim, V; Kuznetsova, E; Murzin, V; Oreshkin, V; Sulimov, V; Vorobyev, A; Andreev, Yu; Dermenev, A; Gninenko, S; Golubev, N; Karneyeu, A; Kirsanov, M; Krasnikov, N; Pashenkov, A; Tlisov, D; Toropin, A; Epshteyn, V; Gavrilov, V; Lychkovskaya, N; Popov, V; Pozdnyakov, I; Safronov, G; Spiridonov, A; Toms, M; Vlasov, E; Zhokin, A; Chistov, R; Danilov, M; Rusinov, V; Andreev, V; Azarkin, M; Dremin, I; Kirakosyan, M; Leonidov, A; Rusakov, S V; Terkulov, A; Baskakov, A; Belyaev, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Miagkov, I; Obraztsov, S; Petrushanko, S; Savrin, V; Snigirev, A; Azhgirey, I; Bayshev, I; Bitioukov, S; Elumakhov, D; Kachanov, V; Kalinin, A; Konstantinov, D; Krychkine, V; Petrov, V; Ryutin, R; Sobol, A; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Cirkovic, P; Devetak, D; Milosevic, J; Rekovic, V; Alcaraz Maestre, J; Calvo, E; Cerrada, M; Chamizo Llatas, M; Colino, N; De La Cruz, B; Delgado Peris, A; Escalante Del Valle, A; Fernandez Bedoya, C; Fernández Ramos, J P; Flix, J; Fouz, M C; Garcia-Abia, P; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Navarro De Martino, E; Pérez-Calero Yzquierdo, A; Puerta Pelayo, J; Quintario Olmeda, A; Redondo, I; Romero, L; Soares, M S; de Trocóniz, J F; Missiroli, M; Moran, D; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; Palencia Cortezon, E; Sanchez Cruz, S; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Castiñeiras De Saa, J R; Curras, E; Fernandez, M; Garcia-Ferrero, J; Gomez, G; Lopez Virto, A; Marco, J; Martinez Rivero, C; Matorras, F; Piedra Gomez, J; Rodrigo, T; Ruiz-Jimeno, A; Scodellaro, L; Trevisani, N; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Auffray, E; Auzinger, G; Bachtis, M; Baillon, P; Ball, A H; Barney, D; Bloch, P; Bocci, A; Bonato, A; Botta, C; Camporesi, T; Castello, R; Cepeda, M; Cerminara, G; D'Alfonso, M; d'Enterria, D; Dabrowski, A; Daponte, V; David, A; De Gruttola, M; De Guio, F; De Roeck, A; Di Marco, E; Dobson, M; Dordevic, M; Dorney, B; du Pree, T; Duggan, D; Dünser, M; Dupont, N; Elliott-Peisert, A; Fartoukh, S; Franzoni, G; Fulcher, J; Funk, W; Gigi, D; Gill, K; Girone, M; Glege, F; Gundacker, S; Guthoff, M; Hammer, J; Harris, P; Hegeman, J; Innocente, V; Janot, P; Kirschenmann, H; Knünz, V; Kortelainen, M J; Kousouris, K; Krammer, M; Lecoq, P; Lourenço, C; Lucchini, M T; Magini, N; Malgeri, L; Mannelli, M; Martelli, A; Meijers, F; Mersi, S; Meschi, E; Moortgat, F; Morovic, S; Mulders, M; Neugebauer, H; Orfanelli, S; Orsini, L; Pape, L; Perez, E; Peruzzi, M; Petrilli, A; Petrucciani, G; Pfeiffer, A; Pierini, M; Racz, A; Reis, T; Rolandi, G; Rovere, M; Ruan, M; Sakulin, H; Sauvan, J B; Schäfer, C; Schwick, C; Seidel, M; Sharma, A; Silva, P; Simon, M; Sphicas, P; Steggemann, J; Stoye, M; Takahashi, Y; Treille, D; Triossi, A; Tsirou, A; Veckalns, V; Veres, G I; Wardle, N; Zagozdzinska, A; Zeuner, W D; Bertl, W; Deiters, K; Erdmann, W; Horisberger, R; Ingram, Q; Kaestli, H C; Kotlinski, D; Langenegger, U; Rohe, T; Bachmair, F; Bäni, L; Bianchini, L; Casal, B; Dissertori, G; Dittmar, M; Donegà, M; Eller, P; Grab, C; Heidegger, C; Hits, D; Hoss, J; Kasieczka, G; Lecomte, P; Lustermann, W; Mangano, B; Marionneau, M; Martinez Ruiz Del Arbol, P; Masciovecchio, M; Meinhard, M T; Meister, D; Micheli, F; Musella, P; Nessi-Tedaldi, F; Pandolfi, F; Pata, J; Pauss, F; Perrin, G; Perrozzi, L; Quittnat, M; Rossini, M; Schönenberger, M; Starodumov, A; Takahashi, M; Tavolaro, V R; Theofilatos, K; Wallny, R; Aarrestad, T K; Amsler, C; Caminada, L; Canelli, M F; Chiochia, V; De Cosa, A; Galloni, C; Hinzmann, A; Hreus, T; Kilminster, B; Lange, C; Ngadiuba, J; Pinna, D; Rauco, G; Robmann, P; Salerno, D; Yang, Y; Chen, K H; Doan, T H; Jain, Sh; Khurana, R; Konyushikhin, M; Kuo, C M; Lin, W; Lu, Y J; Pozdnyakov, A; Yu, S S; Kumar, Arun; Chang, P; Chang, Y H; Chang, Y W; Chao, Y; Chen, K F; Chen, P H; Dietz, C; Fiori, F; Hou, W-S; Hsiung, Y; Liu, Y F; Lu, R-S; Miñano Moya, M; Paganis, E; Tsai, J F; Tzeng, Y M; Asavapibhop, B; Singh, G; Srimanobhas, N; Suwonjandee, N; Adiguzel, A; Bakirci, M N; Damarseckin, S; Demiroglu, Z S; Dozen, C; Dumanoglu, I; Girgis, S; Gokbulut, G; Guler, Y; Gurpinar, E; Hos, I; Kangal, E E; Kayis Topaksu, A; Onengut, G; Ozdemir, K; Sunar Cerci, D; Tali, B; Zorbilmez, C; Bilin, B; Bilmis, S; Isildak, B; Karapinar, G; Yalvac, M; Zeyrek, M; Gülmez, E; Kaya, M; Kaya, O; Yetkin, E A; Yetkin, T; Cakir, A; Cankocak, K; Sen, S; Vardarlı, F I; Grynyov, B; Levchuk, L; Sorokin, P; Aggleton, R; Ball, F; Beck, L; Brooke, J J; Burns, D; Clement, E; Cussans, D; Flacher, H; Goldstein, J; Grimes, M; Heath, G P; Heath, H F; Jacob, J; Kreczko, L; Lucas, C; Meng, Z; Newbold, D M; Paramesvaran, S; Poll, A; Sakuma, T; Seif El Nasr-Storey, S; Senkin, S; Smith, D; Smith, V J; Bell, K W; Belyaev, A; Brew, C; Brown, R M; Calligaris, L; Cieri, D; Cockerill, D J A; Coughlan, J A; Harder, K; Harper, S; Olaiya, E; Petyt, D; Shepherd-Themistocleous, C H; Thea, A; Tomalin, I R; Williams, T; Baber, M; Bainbridge, R; Buchmuller, O; Bundock, A; Burton, D; Casasso, S; Citron, M; Colling, D; Corpe, L; Dauncey, P; Davies, G; De Wit, A; Della Negra, M; Dunne, P; Elwood, A; Futyan, D; Haddad, Y; Hall, G; Iles, G; Lane, R; Laner, C; Lucas, R; Lyons, L; Magnan, A-M; Malik, S; Mastrolorenzo, L; Nash, J; Nikitenko, A; Pela, J; Penning, B; Pesaresi, M; Raymond, D M; Richards, A; Rose, A; Seez, C; Tapper, A; Uchida, K; Vazquez Acosta, M; Virdee, T; Zenz, S C; Cole, J E; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Reid, I D; Symonds, P; Teodorescu, L; Turner, M; Borzou, A; Call, K; Dittmann, J; Hatakeyama, K; Liu, H; Pastika, N; Charaf, O; Cooper, S I; Henderson, C; Rumerio, P; Arcaro, D; Avetisyan, A; Bose, T; Gastler, D; Rankin, D; Richardson, C; Rohlf, J; Sulak, L; Zou, D; Benelli, G; Berry, E; Cutts, D; Ferapontov, A; Garabedian, A; Hakala, J; Heintz, U; Jesus, O; Laird, E; Landsberg, G; Mao, Z; Narain, M; Piperov, S; Sagir, S; Spencer, E; Syarif, R; Breedon, R; Breto, G; Burns, D; Calderon De La Barca Sanchez, M; Chauhan, S; Chertok, M; Conway, J; Conway, R; Cox, P T; Erbacher, R; Flores, C; Funk, G; Gardner, M; Ko, W; Lander, R; Mclean, C; Mulhearn, M; Pellett, D; Pilot, J; Ricci-Tam, F; Shalhout, S; Smith, J; Squires, M; Stolp, D; Tripathi, M; Wilbur, S; Yohay, R; Cousins, R; Everaerts, P; Florent, A; Hauser, J; Ignatenko, M; Saltzberg, D; Takasugi, E; Valuev, V; Weber, M; Burt, K; Clare, R; Ellison, J; Gary, J W; Hanson, G; Heilman, J; Jandir, P; Kennedy, E; Lacroix, F; Long, O R; Malberti, M; Olmedo Negrete, M; Paneva, M I; Shrinivas, A; Wei, H; Wimpenny, S; Yates, B R; Branson, J G; Cerati, G B; Cittolin, S; D'Agnolo, R T; Derdzinski, M; Gerosa, R; Holzner, A; Kelley, R; Klein, D; Letts, J; Macneill, I; Olivito, D; Padhi, S; Pieri, M; Sani, M; Sharma, V; Simon, S; Tadel, M; Vartak, A; Wasserbaech, S; Welke, C; Wood, J; Würthwein, F; Yagil, A; Zevi Della Porta, G; Bhandari, R; Bradmiller-Feld, J; Campagnari, C; Dishaw, A; Dutta, V; Flowers, K; Franco Sevilla, M; Geffert, P; George, C; Golf, F; Gouskos, L; Gran, J; Heller, R; Incandela, J; Mccoll, N; Mullin, S D; Ovcharova, A; Richman, J; Stuart, D; Suarez, I; West, C; Yoo, J; Anderson, D; Apresyan, A; Bendavid, J; Bornheim, A; Bunn, J; Chen, Y; Duarte, J; Mott, A; Newman, H B; Pena, C; Spiropulu, M; Vlimant, J R; Xie, S; Zhu, R Y; Andrews, M B; Azzolini, V; Calamba, A; Carlson, B; Ferguson, T; Paulini, M; Russ, J; Sun, M; Vogel, H; Vorobiev, I; Cumalat, J P; Ford, W T; Jensen, F; Johnson, A; Krohn, M; Mulholland, T; Stenson, K; Wagner, S R; Alexander, J; Chatterjee, A; Chaves, J; Chu, J; Dittmer, S; Eggert, N; Mirman, N; Nicolas Kaufman, G; Patterson, J R; Rinkevicius, A; Ryd, A; Skinnari, L; Sun, W; Tan, S M; Tao, Z; Teo, W D; Thom, J; Thompson, J; Tucker, J; Weng, Y; Wittich, P; Winn, D; Abdullin, S; Albrow, M; Apollinari, G; Banerjee, S; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Bolla, G; Burkett, K; Butler, J N; Cheung, H W K; Chlebana, F; Cihangir, S; Cremonesi, M; Elvira, V D; Fisk, I; Freeman, J; Gottschalk, E; Gray, L; Green, D; Grünendahl, S; Gutsche, O; Hare, D; Harris, R M; Hasegawa, S; Hirschauer, J; Hu, Z; Jayatilaka, B; Jindariani, S; Johnson, M; Joshi, U; Klima, B; Kreis, B; Lammel, S; Linacre, J; Lincoln, D; Lipton, R; Liu, T; Lopes De Sá, R; Lykken, J; Maeshima, K; Marraffino, J M; Maruyama, S; Mason, D; McBride, P; Merkel, P; Mrenna, S; Nahn, S; Newman-Holmes, C; O'Dell, V; Pedro, K; Prokofyev, O; Rakness, G; Ristori, L; Sexton-Kennedy, E; Soha, A; Spalding, W J; Spiegel, L; Stoynev, S; Strobbe, N; Taylor, L; Tkaczyk, S; Tran, N V; Uplegger, L; Vaandering, E W; Vernieri, C; Verzocchi, M; Vidal, R; Wang, M; Weber, H A; Whitbeck, A; Acosta, D; Avery, P; Bortignon, P; Bourilkov, D; Brinkerhoff, A; Carnes, A; Carver, M; Curry, D; Das, S; Field, R D; Furic, I K; Konigsberg, J; Korytov, A; Ma, P; Matchev, K; Mei, H; Milenovic, P; Mitselmakher, G; Rank, D; Shchutska, L; Sperka, D; Thomas, L; Wang, J; Wang, S; Yelton, J; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Ackert, A; Adams, J R; Adams, T; Askew, A; Bein, S; Diamond, B; Hagopian, S; Hagopian, V; Johnson, K F; Khatiwada, A; Prosper, H; Santra, A; Weinberg, M; Baarmand, M M; Bhopatkar, V; Colafranceschi, S; Hohlmann, M; Kalakhety, H; Noonan, D; Roy, T; Yumiceva, F; Adams, M R; Apanasevich, L; Berry, D; Betts, R R; Bucinskaite, I; Cavanaugh, R; Evdokimov, O; Gauthier, L; Gerber, C E; Hofman, D J; Kurt, P; O'Brien, C; Sandoval Gonzalez, I D; Turner, P; Varelas, N; Wu, Z; Zakaria, M; Zhang, J; Bilki, B; Clarida, W; Dilsiz, K; Durgut, S; Gandrajula, R P; Haytmyradov, M; Khristenko, V; Merlo, J-P; Mermerkaya, H; Mestvirishvili, A; Moeller, A; Nachtman, J; Ogul, H; Onel, Y; Ozok, F; Penzo, A; Snyder, C; Tiras, E; Wetzel, J; Yi, K; Anderson, I; Blumenfeld, B; Cocoros, A; Eminizer, N; Fehling, D; Feng, L; Gritsan, A V; Maksimovic, P; Osherson, M; Roskes, J; Sarica, U; Swartz, M; Xiao, M; Xin, Y; You, C; Al-Bataineh, A; Baringer, P; Bean, A; Bruner, C; Castle, J; Kenny, R P; Kropivnitskaya, A; Majumder, D; Malek, M; Mcbrayer, W; Murray, M; Sanders, S; Stringer, R; Wang, Q; Ivanov, A; Kaadze, K; Khalil, S; Makouski, M; Maravin, Y; Mohammadi, A; Saini, L K; Skhirtladze, N; Toda, S; Lange, D; Rebassoo, F; Wright, D; Anelli, C; Baden, A; Baron, O; Belloni, A; Calvert, B; Eno, S C; Ferraioli, C; Gomez, J A; Hadley, N J; Jabeen, S; Kellogg, R G; Kolberg, T; Kunkle, J; Lu, Y; Mignerey, A C; Shin, Y H; Skuja, A; Tonjes, M B; Tonwar, S C; Apyan, A; Barbieri, R; Baty, A; Bi, R; Bierwagen, K; Brandt, S; Busza, W; Cali, I A; Demiragli, Z; Di Matteo, L; Gomez Ceballos, G; Goncharov, M; Gulhan, D; Hsu, D; Iiyama, Y; Innocenti, G M; Klute, M; Kovalskyi, D; Krajczar, K; Lai, Y S; Lee, Y-J; Levin, A; Luckey, P D; Marini, A C; Mcginn, C; Mironov, C; Narayanan, S; Niu, X; Paus, C; Roland, C; Roland, G; Salfeld-Nebgen, J; Stephans, G S F; Sumorok, K; Tatar, K; Varma, M; Velicanu, D; Veverka, J; Wang, J; Wang, T W; Wyslouch, B; Yang, M; Zhukova, V; Benvenuti, A C; Dahmes, B; Evans, A; Finkel, A; Gude, A; Hansen, P; Kalafut, S; Kao, S C; Klapoetke, K; Kubota, Y; Lesko, Z; Mans, J; Nourbakhsh, S; Ruckstuhl, N; Rusack, R; Tambe, N; Turkewitz, J; Acosta, J G; Oliveros, S; Avdeeva, E; Bartek, R; Bloom, K; Bose, S; Claes, D R; Dominguez, A; Fangmeier, C; Gonzalez Suarez, R; Kamalieddin, R; Knowlton, D; Kravchenko, I; Meier, F; Monroy, J; Siado, J E; Snow, G R; Stieger, B; Alyari, M; Dolen, J; George, J; Godshalk, A; Harrington, C; Iashvili, I; Kaisen, J; Kharchilava, A; Kumar, A; Parker, A; Rappoccio, S; Roozbahani, B; Alverson, G; Barberis, E; Baumgartel, D; Chasco, M; Hortiangtham, A; Massironi, A; Morse, D M; Nash, D; Orimoto, T; Teixeira De Lima, R; Trocino, D; Wang, R-J; Wood, D; Bhattacharya, S; Hahn, K A; Kubik, A; Low, J F; Mucia, N; Odell, N; Pollack, B; Schmitt, M H; Sung, K; Trovato, M; Velasco, M; Dev, N; Hildreth, M; Hurtado Anampa, K; Jessop, C; Karmgard, D J; Kellams, N; Lannon, K; Marinelli, N; Meng, F; Mueller, C; Musienko, Y; Planer, M; Reinsvold, A; Ruchti, R; Rupprecht, N; Smith, G; Taroni, S; Valls, N; Wayne, M; Wolf, M; Woodard, A; Alimena, J; Antonelli, L; Brinson, J; Bylsma, B; Durkin, L S; Flowers, S; Francis, B; Hart, A; Hill, C; Hughes, R; Ji, W; Liu, B; Luo, W; Puigh, D; Rodenburg, M; Winer, B L; Wulsin, H W; Driga, O; Elmer, P; Hardenbrook, J; Hebda, P; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Palmer, C; Piroué, P; Stickland, D; Tully, C; Zuranski, A; Malik, S; Barker, A; Barnes, V E; Benedetti, D; Folgueras, S; Gutay, L; Jha, M K; Jones, M; Jung, A W; Jung, K; Miller, D H; Neumeister, N; Radburn-Smith, B C; Shi, X; Sun, J; Svyatkovskiy, A; Wang, F; Xie, W; Xu, L; Parashar, N; Stupak, J; Adair, A; Akgun, B; Chen, Z; Ecklund, K M; Geurts, F J M; Guilbaud, M; Li, W; Michlin, B; Northup, M; Padley, B P; Redjimi, R; Roberts, J; Rorie, J; Tu, Z; Zabel, J; Betchart, B; Bodek, A; de Barbaro, P; Demina, R; Duh, Y T; Eshaq, Y; Ferbel, T; Galanti, M; Garcia-Bellido, A; Han, J; Hindrichs, O; Khukhunaishvili, A; Lo, K H; Tan, P; Verzetti, M; Chou, J P; Contreras-Campana, E; Gershtein, Y; Gómez Espinosa, T A; Halkiadakis, E; Heindl, M; Hidas, D; Hughes, E; Kaplan, S; Kunnawalkam Elayavalli, R; Kyriacou, S; Lath, A; Nash, K; Saka, H; Salur, S; Schnetzer, S; Sheffield, D; Somalwar, S; Stone, R; Thomas, S; Thomassen, P; Walker, M; Foerster, M; Heideman, J; Riley, G; Rose, K; Spanier, S; Thapa, K; Bouhali, O; Castaneda Hernandez, A; Celik, A; Dalchenko, M; De Mattia, M; Delgado, A; Dildick, S; Eusebi, R; Flanagan, W; Gilmore, J; Huang, T; Juska, E; Kamon, T; Krutelyov, V; Mueller, R; Pakhotin, Y; Patel, R; Perloff, A; Perniè, L; Rathjens, D; Rose, A; Safonov, A; Tatarinov, A; Ulmer, K A; Akchurin, N; Cowden, C; Damgov, J; Dragoiu, C; Dudero, P R; Faulkner, J; Kunori, S; Lamichhane, K; Lee, S W; Libeiro, T; Undleeb, S; Volobouev, I; Wang, Z; Delannoy, A G; Greene, S; Gurrola, A; Janjam, R; Johns, W; Maguire, C; Melo, A; Ni, H; Sheldon, P; Tuo, S; Velkovska, J; Xu, Q; Arenton, M W; Barria, P; Cox, B; Goodell, J; Hirosky, R; Ledovskoy, A; Li, H; Neu, C; Sinthuprasith, T; Sun, X; Wang, Y; Wolfe, E; Xia, F; Clarke, C; Harr, R; Karchin, P E; Kottachchi Kankanamge Don, C; Lamichhane, P; Sturdy, J; Belknap, D A; Dasu, S; Dodd, L; Duric, S; Gomber, B; Grothe, M; Herndon, M; Hervé, A; Klabbers, P; Lanaro, A; Levine, A; Long, K; Loveless, R; Ojalvo, I; Perry, T; Pierro, G A; Polese, G; Ruggles, T; Savin, A; Sharma, A; Smith, N; Smith, W H; Taylor, D; Verwilligen, P; Woods, N
2017-01-13
A first search for pair production of dark matter candidates through vector boson fusion in proton-proton collisions at sqrt[s]=8 TeV is performed with the CMS detector. The vector boson fusion topology enhances missing transverse momentum, providing a way to probe supersymmetry, even in the case of a compressed mass spectrum. The data sample corresponds to an integrated luminosity of 18.5 fb^{-1}, recorded by the CMS experiment. The observed dijet mass spectrum is consistent with the standard model expectation. In an effective field theory, dark matter masses are explored as a function of contact interaction strength. The most stringent limit on bottom squark production with mass below 315 GeV is also reported, assuming a 5 GeV mass difference with respect to the lightest neutralino.
NASA Astrophysics Data System (ADS)
Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; König, A.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rad, N.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Heracleous, N.; Lowette, S.; Moortgat, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Brun, H.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Marinov, A.; Randle-conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Cimmino, A.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; Mccartin, J.; Poyraz, D.; Salva, S.; Schöfbeck, R.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Ceard, L.; De Visscher, S.; Delaere, C.; Delcourt, M.; Forthomme, L.; Francois, B.; Giammanco, A.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Nuttens, C.; Piotrzkowski, K.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Wertz, S.; Beliy, N.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Cheng, T.; Du, R.; Jiang, C. H.; Leggat, D.; Liu, Z.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Zhao, J.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Ruiz Alvarez, J. D.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M.; Carrera Jarrin, E.; Awad, A.; Elgammal, S.; Mohamed, A.; Salama, E.; Calpas, B.; Kadastik, M.; Murumaa, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Peltola, T.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Abdulsalam, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Davignon, O.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Le Bihan, A.-C.; Merlin, J. A.; Skovpen, K.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sabes, D.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Toriashvili, T.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schomakers, C.; Schulte, J. F.; Schulz, J.; Verlage, T.; Weber, H.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Hoehle, F.; Kargoll, B.; Kress, T.; Künsken, A.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Beernaert, K.; Behnke, O.; Behrens, U.; Bin Anuar, A. A.; Borras, K.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Grados Luyando, J. M.; Gunnellini, P.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Kieseler, J.; Kleinwort, C.; Korol, I.; Lange, W.; Lelek, A.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Ntomari, E.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Seitz, C.; Spannagel, S.; Stefaniuk, N.; Trippkewitz, K. D.; Van Onsem, G. P.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Dreyer, T.; Erfle, J.; Garutti, E.; Goebel, K.; Gonzalez, D.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Ott, J.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Sander, C.; Scharf, C.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schumann, S.; Schwandt, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Barth, C.; Baus, C.; Berger, J.; Butz, E.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Fink, S.; Friese, R.; Giffels, M.; Gilbert, A.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Kornmayer, A.; Lobelle Pardo, P.; Maier, B.; Mildner, H.; Mozer, M. U.; Müller, T.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Schröder, M.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Filipovic, N.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Szillasi, Z.; Bartók, M.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Bahinipati, S.; Choudhury, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhattacharya, R.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Guchait, M.; Gurtu, A.; Jain, Sa.; Kole, G.; Kumar, S.; Mahakud, B.; Maity, M.; Majumder, G.; Mazumdar, K.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sarkar, T.; Sur, N.; Sutar, B.; Wickramage, N.; Chauhan, S.; Dube, S.; Kapoor, A.; Kothekar, K.; Rane, A.; Sharma, S.; Bakhshiansohi, H.; Behnamian, H.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Fahim, A.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Chiorboli, M.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Brivio, F.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; De Nardo, G.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Carvalho Antunes De Oliveira, A.; Checchia, P.; Dall'Osso, M.; De Castro Manzano, P.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; D'imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; La Licata, C.; Schizzi, A.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, S.; Lee, S. W.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Kim, H.; Brochero Cifuentes, J. A.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Seo, S. H.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Choi, M.; Kim, H.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Casimiro Linares, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Bunin, P.; Golutvin, I.; Gorbounov, N.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Savina, M.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Voytishin, N.; Zarubin, A.; Chtchipounov, L.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Murzin, V.; Oreshkin, V.; Sulimov, V.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Chistov, R.; Danilov, M.; Rusinov, V.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Rusakov, S. V.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Fernandez Menendez, J.; Gonzalez Caballero, I.; Palencia Cortezon, E.; Sanchez Cruz, S.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Castiñeiras De Saa, J. R.; Curras, E.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Guio, F.; De Roeck, A.; Di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; du Pree, T.; Duggan, D.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Fartoukh, S.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Girone, M.; Glege, F.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Knünz, V.; Kortelainen, M. J.; Kousouris, K.; Krammer, M.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Magini, N.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Sauvan, J. B.; Schäfer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Steggemann, J.; Stoye, M.; Takahashi, Y.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Veres, G. I.; Wardle, N.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lecomte, P.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Schönenberger, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Yang, Y.; Chen, K. H.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Paganis, E.; Tsai, J. f.; Tzeng, Y. M.; Asavapibhop, B.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Sunar Cerci, D.; Tali, B.; Zorbilmez, C.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cakir, A.; Cankocak, K.; Sen, S.; Vardarlı, F. I.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Senkin, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Futyan, D.; Haddad, Y.; Hall, G.; Iles, G.; Lane, R.; Laner, C.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Nash, J.; Nikitenko, A.; Pela, J.; Penning, B.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Berry, E.; Cutts, D.; Ferapontov, A.; Garabedian, A.; Hakala, J.; Heintz, U.; Jesus, O.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Spencer, E.; Syarif, R.; Breedon, R.; Breto, G.; Burns, D.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Florent, A.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Malberti, M.; Olmedo Negrete, M.; Paneva, M. I.; Shrinivas, A.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Derdzinski, M.; Gerosa, R.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Heller, R.; Incandela, J.; Mccoll, N.; Mullin, S. D.; Ovcharova, A.; Richman, J.; Stuart, D.; Suarez, I.; West, C.; Yoo, J.; Anderson, D.; Apresyan, A.; Bendavid, J.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Sun, W.; Tan, S. M.; Tao, Z.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Wittich, P.; Winn, D.; Abdullin, S.; Albrow, M.; Apollinari, G.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Cremonesi, M.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Rank, D.; Shchutska, L.; Sperka, D.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bein, S.; Diamond, B.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Santra, A.; Weinberg, M.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Kalakhety, H.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Turner, P.; Varelas, N.; Wu, Z.; Zakaria, M.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Osherson, M.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Bruner, C.; Castle, J.; Kenny, R. P.; Kropivnitskaya, A.; Majumder, D.; Malek, M.; Mcbrayer, W.; Murray, M.; Sanders, S.; Stringer, R.; Wang, Q.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Lange, D.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Baty, A.; Bi, R.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Hsu, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Krajczar, K.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Tatar, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.; Benvenuti, A. C.; Dahmes, B.; Evans, A.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bartek, R.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Knowlton, D.; Kravchenko, I.; Meier, F.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Bhattacharya, S.; Hahn, K. A.; Kubik, A.; Low, J. F.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Rupprecht, N.; Smith, G.; Taroni, S.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Liu, B.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Tully, C.; Zuranski, A.; Malik, S.; Barker, A.; Barnes, V. E.; Benedetti, D.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Jung, K.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Chou, J. P.; Contreras-Campana, E.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Nash, K.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Castaneda Hernandez, A.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Huang, T.; Juska, E.; Kamon, T.; Krutelyov, V.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Rose, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Savin, A.; Sharma, A.; Smith, N.; Smith, W. H.; Taylor, D.; Verwilligen, P.; Woods, N.; CMS Collaboration
2017-01-01
A first search for pair production of dark matter candidates through vector boson fusion in proton-proton collisions at √{s }=8 TeV is performed with the CMS detector. The vector boson fusion topology enhances missing transverse momentum, providing a way to probe supersymmetry, even in the case of a compressed mass spectrum. The data sample corresponds to an integrated luminosity of 18.5 fb-1 , recorded by the CMS experiment. The observed dijet mass spectrum is consistent with the standard model expectation. In an effective field theory, dark matter masses are explored as a function of contact interaction strength. The most stringent limit on bottom squark production with mass below 315 GeV is also reported, assuming a 5 GeV mass difference with respect to the lightest neutralino.
Vranas, P
2007-06-18
Quantum Chromodynamics is the theory of nuclear and sub-nuclear physics. It is a celebrated theory and one of its inventors, F. Wilczek, has termed it as '... our most perfect physical theory'. Part of this is related to the fact that QCD can be numerically simulated from first principles using the methods of lattice gauge theory. The computational demands of QCD are enormous and have not only played a role in the history of supercomputers but are also helping define their future. Here I will discuss the intimate relation of QCD and massively parallel supercomputers with focus on the Blue Gene supercomputer and QCD thermodynamics. I will present results on the performance of QCD on the Blue Gene as well as physics simulation results of QCD at temperatures high enough that sub-nuclear matter transitions to a plasma state of elementary particles, the quark gluon plasma. This state of matter is thought to have existed at around 10 microseconds after the big bang. Current heavy ion experiments are in the quest of reproducing it for the first time since then. And numerical simulations of QCD on the Blue Gene systems are calculating the theoretical values of fundamental parameters so that comparisons of experiment and theory can be made.