Sample records for qcd shock waves

  1. Gravitation waves from QCD and electroweak phase transitions

    NASA Astrophysics Data System (ADS)

    Chen, Yidian; Huang, Mei; Yan, Qi-Shu

    2018-05-01

    We investigate the gravitation waves produced from QCD and electroweak phase transitions in the early universe by using a 5-dimension holographic QCD model and a holographic technicolor model. The dynamical holographic QCD model is to describe the pure gluon system, where a first order confinement-deconfinement phase transition can happen at the critical temperature around 250 MeV. The minimal holographic technicolor model is introduced to model the strong dynamics of electroweak, it can give a first order electroweak phase transition at the critical temperature around 100-360 GeV. We find that for both GW signals produced from QCD and EW phase transitions, in the peak frequency region, the dominant contribution comes from the sound waves, while away from the peak frequency region the contribution from the bubble collision is dominant. The peak frequency of gravitation wave determined by the QCD phase transition is located around 10-7 Hz which is within the detectability of FAST and SKA, and the peak frequency of gravitational wave predicted by EW phase transition is located at 0.002 - 0.007 Hz, which might be detectable by BBO, DECIGO, LISA and ELISA.

  2. Shock wave treatment in medicine.

    PubMed

    Shrivastava, S K; Kailash

    2005-03-01

    Extracorporeal shock wave therapy in orthopedics and traumatology is still a young therapy method. Since the last few years the development of shock wave therapy has progressed rapidly. Shock waves have changed the treatment of urolithiasis substantially. Today shock waves are the first choice to treat kidney and urethral stones. Urology has long been the only medical field for shock waves in medicine. Meanwhile shock waves have been used in orthopedics and traumatology to treat insertion tendinitis, avascular necrosis of the head of femur and other necrotic bone alterations. Another field of shock wave application is the treatment of tendons, ligaments and bones on horses in veterinary medicine. In the present paper we discuss the basic theory and application of shock waves and its history in medicine. The idea behind using shock wave therapy for orthopedic diseases is the stimulation of healing in tendons, surrounding tissue and bones.

  3. Focusing of Shear Shock Waves

    NASA Astrophysics Data System (ADS)

    Giammarinaro, Bruno; Espíndola, David; Coulouvrat, François; Pinton, Gianmarco

    2018-01-01

    Focusing is a ubiquitous way to transform waves. Recently, a new type of shock wave has been observed experimentally with high-frame-rate ultrasound: shear shock waves in soft solids. These strongly nonlinear waves are characterized by a high Mach number, because the shear wave velocity is much slower, by 3 orders of magnitude, than the longitudinal wave velocity. Furthermore, these waves have a unique cubic nonlinearity which generates only odd harmonics. Unlike longitudinal waves for which only compressional shocks are possible, shear waves exhibit cubic nonlinearities which can generate positive and negative shocks. Here we present the experimental observation of shear shock wave focusing, generated by the vertical motion of a solid cylinder section embedded in a soft gelatin-graphite phantom to induce linearly vertically polarized motion. Raw ultrasound data from high-frame-rate (7692 images per second) acquisitions in combination with algorithms that are tuned to detect small displacements (approximately 1 μ m ) are used to generate quantitative movies of gel motion. The features of shear shock wave focusing are analyzed by comparing experimental observations with numerical simulations of a retarded-time elastodynamic equation with cubic nonlinearities and empirical attenuation laws for soft solids.

  4. Underwater electrical wire explosion: Shock wave from melting being overtaken by shock wave from vaporization

    NASA Astrophysics Data System (ADS)

    Li, Liuxia; Qian, Dun; Zou, Xiaobing; Wang, Xinxin

    2018-05-01

    The shock waves generated by an underwater electrical wire explosion were investigated. A microsecond time-scale pulsed current source was used to trigger the electrical explosion of copper wires with a length of 5 cm and a diameter of 200 μm. The energy-storage capacitor was charged to a relatively low energy so that the energy deposited onto the wire was not large enough to fully vaporize the whole wire. Two shock waves were recorded with a piezoelectric gauge that was located at a position of 100 mm from the exploding wire. The first and weak shock wave was confirmed to be the contribution from wire melting, while the second and stronger shock wave was the contribution from wire vaporization. The phenomenon whereby the first shock wave generated by melting being overtaken by the shock wave due to vaporization was observed.

  5. Shock wave-droplet interaction

    NASA Astrophysics Data System (ADS)

    Habibi Khoshmehr, Hamed; Krechetnikov, Rouslan

    2016-11-01

    Disintegration of a liquid droplet under the action of a shock wave is experimentally investigated. The shock wave-pulse is electromagnetically generated by discharging a high voltage capacitor into a flat spiral coil, above which an isolated circular metal membrane is placed in a close proximity. The Lorentz force arising due to the eddy current induced in the membrane abruptly accelerates it away from the spiral coil thus generating a shock wave. The liquid droplet placed at the center of the membrane, where the maximum deflection occurs, is disintegrated in the process of interaction with the shock wave. The effects of droplet viscosity and surface tension on the droplet destruction are studied with high-speed photography. Water-glycerol solution at different concentrations is used for investigating the effect of viscosity and various concentrations of water-sugar and water-ethanol solution are used for studying the effect of surface tension. Here we report on how the metamorphoses, which a liquid drop undergoes in the process of interaction with a shock wave, are affected by varied viscosity and surface tension.

  6. Diaphragmless shock wave generators for industrial applications of shock waves

    NASA Astrophysics Data System (ADS)

    Hariharan, M. S.; Janardhanraj, S.; Saravanan, S.; Jagadeesh, G.

    2011-06-01

    The prime focus of this study is to design a 50 mm internal diameter diaphragmless shock tube that can be used in an industrial facility for repeated loading of shock waves. The instantaneous rise in pressure and temperature of a medium can be used in a variety of industrial applications. We designed, fabricated and tested three different shock wave generators of which one system employs a highly elastic rubber membrane and the other systems use a fast acting pneumatic valve instead of conventional metal diaphragms. The valve opening speed is obtained with the help of a high speed camera. For shock generation systems with a pneumatic cylinder, it ranges from 0.325 to 1.15 m/s while it is around 8.3 m/s for the rubber membrane. Experiments are conducted using the three diaphragmless systems and the results obtained are analyzed carefully to obtain a relation between the opening speed of the valve and the amount of gas that is actually utilized in the generation of the shock wave for each system. The rubber membrane is not suitable for industrial applications because it needs to be replaced regularly and cannot withstand high driver pressures. The maximum shock Mach number obtained using the new diaphragmless system that uses the pneumatic valve is 2.125 ± 0.2%. This system shows much promise for automation in an industrial environment.

  7. Shock wave interactions between slender bodies. Some aspects of three-dimensional shock wave diffraction

    NASA Astrophysics Data System (ADS)

    Hooseria, S. J.; Skews, B. W.

    2017-01-01

    A complex interference flowfield consisting of multiple shocks and expansion waves is produced when high-speed slender bodies are placed in close proximity. The disturbances originating from a generator body impinge onto the adjacent receiver body, modifying the local flow conditions over the receiver. This paper aims to uncover the basic gas dynamics produced by two closely spaced slender bodies in a supersonic freestream. Experiments and numerical simulations were used to interpret the flowfield, where good agreement between the predictions and measurements was observed. The numerical data were then used to characterise the attenuation associated with shock wave diffraction, which was found to be interdependent with the bow shock contact perimeter over the receiver bodies. Shock-induced boundary layer separation was observed over the conical and hemispherical receiver bodies. These strong viscous-shock interactions result in double-reflected, as well as double-diffracted shock wave geometries in the interference region, and the diffracting waves progress over the conical and hemispherical receivers' surfaces in "lambda" type configurations. This gives evidence that viscous effects can have a substantial influence on the local bow shock structure surrounding high-speed slender bodies in close proximity.

  8. Shock waves data for minerals

    NASA Technical Reports Server (NTRS)

    Ahrens, Thomas J.; Johnson, Mary L.

    1994-01-01

    Shock compression of the materials of planetary interiors yields data which upon comparison with density-pressure and density-sound velocity profiles constrain internal composition and temperature. Other important applications of shock wave data and related properties are found in the impact mechanics of terrestrial planets and solid satellites. Shock wave equation of state, shock-induced dynamic yielding and phase transitions, and shock temperature are discussed. In regions where a substantial phase change in the material does not occur, the relationship between the particle velocity, U(sub p), and the shock velocity, U(sub s), is given by U(sub s) = C(sub 0) + S U(sub p), where C(sub 0) is the shock velocity at infinitesimally small particle velocity, or the ambient pressure bulk sound velocity. Numerical values for the shock wave equation of state for minerals and related materials of the solar system are provided.

  9. A midsummer-night's shock wave

    NASA Astrophysics Data System (ADS)

    Hargather, Michael; Liebner, Thomas; Settles, Gary

    2007-11-01

    The aerial pyrotechnic shells used in professional display fireworks explode a bursting charge at altitude in order to disperse the ``stars'' of the display. The shock wave from the bursting charge is heard on the ground as a loud report, though it has by then typically decayed to a mere sound wave. However, viewers seated near the standard safety borders can still be subjected to weak shock waves. These have been visualized using a large, portable, retro-reflective ``Edgerton'' shadowgraph technique and a high-speed digital video camera. Images recorded at 10,000 frames per second show essentially-planar shock waves from 10- and 15-cm firework shells impinging on viewers during the 2007 Central Pennsylvania July 4th Festival. The shock speed is not measurably above Mach 1, but we nonetheless conclude that, if one can sense a shock-like overpressure, then the wave motion is strong enough to be observed by density-sensitive optics.

  10. Shock Wave Technology and Application: An Update☆

    PubMed Central

    Rassweiler, Jens J.; Knoll, Thomas; Köhrmann, Kai-Uwe; McAteer, James A.; Lingeman, James E.; Cleveland, Robin O.; Bailey, Michael R.; Chaussy, Christian

    2012-01-01

    Context The introduction of new lithotripters has increased problems associated with shock wave application. Recent studies concerning mechanisms of stone disintegration, shock wave focusing, coupling, and application have appeared that may address some of these problems. Objective To present a consensus with respect to the physics and techniques used by urologists, physicists, and representatives of European lithotripter companies. Evidence acquisition We reviewed recent literature (PubMed, Embase, Medline) that focused on the physics of shock waves, theories of stone disintegration, and studies on optimising shock wave application. In addition, we used relevant information from a consensus meeting of the German Society of Shock Wave Lithotripsy. Evidence synthesis Besides established mechanisms describing initial fragmentation (tear and shear forces, spallation, cavitation, quasi-static squeezing), the model of dynamic squeezing offers new insight in stone comminution. Manufacturers have modified sources to either enlarge the focal zone or offer different focal sizes. The efficacy of extracorporeal shock wave lithotripsy (ESWL) can be increased by lowering the pulse rate to 60–80 shock waves/min and by ramping the shock wave energy. With the water cushion, the quality of coupling has become a critical factor that depends on the amount, viscosity, and temperature of the gel. Fluoroscopy time can be reduced by automated localisation or the use of optical and acoustic tracking systems. There is a trend towards larger focal zones and lower shock wave pressures. Conclusions New theories for stone disintegration favour the use of shock wave sources with larger focal zones. Use of slower pulse rates, ramping strategies, and adequate coupling of the shock wave head can significantly increase the efficacy and safety of ESWL. PMID:21354696

  11. Overview of shock waves in medicine

    NASA Astrophysics Data System (ADS)

    Cleveland, Robin O.

    2003-10-01

    A brief overview of three applications of shock waves is presented. Shock wave lithotripsy (SWL) has been in clinical use for more than 20 years. In the United States it is used to treat more than 80% of kidney stone cases and has wide acceptance with patients because it is a noninvasive procedure. Despite SWLs enormous success there is no agreement on how shock waves comminute stones. There is also a general acceptance that shock waves lead to trauma to the soft tissue of the kidney. Yet there has been little forward progress in developing lithotripters which provide comminution with less side-effects, indeed the original machine is still considered the gold standard. The last decade has seen the advent of new shock wave devices for treating principally musculoskeletal indications, such as plantar fasciitis, tennis elbow, and bone fractures that do not heal. This is referred to as shock wave therapy (SWT). The mechanisms by which SWT works are even less well understood than SWL and the consequences of bioeffects have also not been studied in detail. Shock waves have also been shown to be effective at enhancing drug delivery into cells and assisting with gene transfection. [Work partially supported by NIH.

  12. Detonation onset following shock wave focusing

    NASA Astrophysics Data System (ADS)

    Smirnov, N. N.; Penyazkov, O. G.; Sevrouk, K. L.; Nikitin, V. F.; Stamov, L. I.; Tyurenkova, V. V.

    2017-06-01

    The aim of the present paper is to study detonation initiation due to focusing of a shock wave reflected inside a cone. Both numerical and experimental investigations were conducted. Comparison of results made it possible to validate the developed 3-d transient mathematical model of chemically reacting gas mixture flows incorporating hydrogen - air mixtures. The results of theoretical and numerical experiments made it possible improving kinetic schemes and turbulence models. Several different flow scenarios were detected in reflection of shock waves all being dependent on incident shock wave intensity: reflecting of shock wave with lagging behind combustion zone, formation of detonation wave in reflection and focusing, and intermediate transient regimes.

  13. Dry and wet granular shock waves.

    PubMed

    Zaburdaev, V Yu; Herminghaus, S

    2007-03-01

    The formation of a shock wave in one-dimensional granular gases is considered, for both the dry and the wet cases, and the results are compared with the analytical shock wave solution in a sticky gas. Numerical simulations show that the behavior of the shock wave in both cases tends asymptotically to the sticky limit. In the inelastic gas (dry case) there is a very close correspondence to the sticky gas, with one big cluster growing in the center of the shock wave, and a step-like stationary velocity profile. In the wet case, the shock wave has a nonzero width which is marked by two symmetric heavy clusters performing breathing oscillations with slowly increasing amplitude. All three models have the same asymptotic energy dissipation law, which is important in the context of the free cooling scenario. For the early stage of the shock formation and asymptotic oscillations we provide analytical results as well.

  14. Whistler Waves Associated with Weak Interplanetary Shocks

    NASA Technical Reports Server (NTRS)

    Velez, J. C. Ramirez; Blanco-Cano, X.; Aguilar-Rodriguez, E.; Russell, C. T.; Kajdic, P.; Jian,, L. K.; Luhmann, J. G.

    2012-01-01

    We analyze the properties of 98 weak interplanetary shocks measured by the dual STEREO spacecraft over approximately 3 years during the past solar minimum. We study the occurrence of whistler waves associated with these shocks, which on average are high beta shocks (0.2 < Beta < 10). We have compared the waves properties upstream and downstream of the shocks. In the upstream region the waves are mainly circularly polarized, and in most of the cases (approx. 75%) they propagate almost parallel to the ambient magnetic field (<30 deg.). In contrast, the propagation angle with respect to the shock normal varies in a broad range of values (20 deg. to 90 deg.), suggesting that they are not phase standing. We find that the whistler waves can extend up to 100,000 km in the upstream region but in most cases (88%) are contained in a distance within 30,000 km from the shock. This corresponds to a larger region with upstream whistlers associated with IP shocks than previously reported in the literature. The maximum amplitudes of the waves are observed next to the shock interface, and they decrease as the distance to the shock increases. In most cases the wave propagation direction becomes more aligned with the magnetic field as the distance to the shock increases. These two facts suggest that most of the waves in the upstream region are Landau damping as they move away from the shock. From the analysis we also conclude that it is likely that the generation mechanism of the upstream whistler waves is taking place at the shock interface. In the downstream region, the waves are irregularly polarized, and the fluctuations are very compressive; that is, the compressive component of the wave clearly dominates over the transverse one. The majority of waves in the downstream region (95%) propagate at oblique angles with respect to the ambient magnetic field (>60 deg.). The wave propagation with respect to the shock-normal direction has no preferred direction and varies similarly to

  15. Proceedings of the 15th International Symposium on Shock Waves and Shock Tubes

    NASA Astrophysics Data System (ADS)

    Bershader, Daniel; Hanson, Ronald

    1986-09-01

    One hundred ten papers were presented in 32 sessions. Topics included: The application of Hook-method spectroscopy to the diagnosis of shock-heated gases. The nonintrusive destruction of kidney stones by underwater focused shock waves. Several of the papers reflect the recent and continuing interest in shock wave phenomena in dusty gases and other multiphase and heterogeneous systems, including chemically reactive configurations. The major subject areas were: shock propagation and interactions; shock-general chemical kinetics; shock computation, modeling, and stability problems; shock wave aerodynamics; experimental methods; shocks in multiphase and heterogeneous media; high energy gas excitation and wave phenomena; and technical applications and shocks in condensed matter.

  16. Shock waves in weakly compressed granular media.

    PubMed

    van den Wildenberg, Siet; van Loo, Rogier; van Hecke, Martin

    2013-11-22

    We experimentally probe nonlinear wave propagation in weakly compressed granular media and observe a crossover from quasilinear sound waves at low impact to shock waves at high impact. We show that this crossover impact grows with the confining pressure P0, whereas the shock wave speed is independent of P0-two hallmarks of granular shocks predicted recently. The shocks exhibit surprising power law attenuation, which we model with a logarithmic law implying that shock dissipation is weak and qualitatively different from other granular dissipation mechanisms. We show that elastic and potential energy balance in the leading part of the shocks.

  17. Spherical shock waves in general relativity

    NASA Astrophysics Data System (ADS)

    Nutku, Y.

    1991-11-01

    We present the metric appropriate to a spherical shock wave in the framework of general relativity. This is a Petrov type-N vacuum solution of the Einstein field equations where the metric is continuous across the shock and the Riemann tensor suffers a step-function discontinuity. Spherical gravitational waves are described by type-N Robinson-Trautman metrics. However, for shock waves the Robinson-Trautman solutions are unacceptable because the metric becomes discontinuous in the Robinson-Trautman coordinate system. Other coordinate systems that have so far been introduced for describing Robinson-Trautman solutions also suffer from the same defect. We shall present the C0-form of the metric appropriate to spherical shock waves using Penrose's approach of identification with warp. Further extensions of Penrose's method yield accelerating, as well as coupled electromagnetic-gravitational shock-wave solutions.

  18. D-Wave Heavy Baryons from QCD Sum Rules

    NASA Astrophysics Data System (ADS)

    Mao, Qiang; Chen, Hua-Xing; Hosaka, Atsushi; Liu, Xiang; Zhu, Shi-Lin

    We study the D-wave heavy baryons using the method of QCD sum rules in the framework of heavy quark effective theory. Our results suggest that the Λc(2860), Λc(2880), Ξc(3055) and Ξc(3080) complete two D-wave SU(3) flavor 3¯F charmed baryon doublets of JP = 3/2+ and 5/2+.

  19. Spherical shock waves in general relativity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nutku, Y.

    1991-11-15

    We present the metric appropriate to a spherical shock wave in the framework of general relativity. This is a Petrov type-{ital N} vacuum solution of the Einstein field equations where the metric is continuous across the shock and the Riemann tensor suffers a step-function discontinuity. Spherical gravitational waves are described by type-{ital N} Robinson-Trautman metrics. However, for shock waves the Robinson-Trautman solutions are unacceptable because the metric becomes discontinuous in the Robinson-Trautman coordinate system. Other coordinate systems that have so far been introduced for describing Robinson-Trautman solutions also suffer from the same defect. We shall present the {ital C}{sup 0}-formmore » of the metric appropriate to spherical shock waves using Penrose's approach of identification with warp. Further extensions of Penrose's method yield accelerating, as well as coupled electromagnetic-gravitational shock-wave solutions.« less

  20. 21 CFR 876.5990 - Extracorporeal shock wave lithotripter.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Extracorporeal shock wave lithotripter. 876.5990... shock wave lithotripter. (a) Identification. An extracorporeal shock wave lithotripter is a device that focuses ultrasonic shock waves into the body to noninvasively fragment urinary calculi within the kidney...

  1. 21 CFR 876.5990 - Extracorporeal shock wave lithotripter.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Extracorporeal shock wave lithotripter. 876.5990... shock wave lithotripter. (a) Identification. An extracorporeal shock wave lithotripter is a device that focuses ultrasonic shock waves into the body to noninvasively fragment urinary calculi within the kidney...

  2. 21 CFR 876.5990 - Extracorporeal shock wave lithotripter.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Extracorporeal shock wave lithotripter. 876.5990... shock wave lithotripter. (a) Identification. An extracorporeal shock wave lithotripter is a device that focuses ultrasonic shock waves into the body to noninvasively fragment urinary calculi within the kidney...

  3. Shock wave attenuation by grids and orifice plates

    NASA Astrophysics Data System (ADS)

    Britan, A.; Igra, O.; Ben-Dor, G.; Shapiro, H.

    2006-11-01

    The interaction of weak shock waves with porous barriers of different geometries and porosities is examined. Installing a barrier inside the shock tube test section will cause the development of the following wave pattern upon a head-on collision between the incident shock wave and the barrier: a reflected shock from the barrier and a transmitted shock propagating towards the shock tube end wall. Once the transmitted shock wave reaches the end wall it is reflected back towards the barrier. This is the beginning of multiple reflections between the barrier and the end wall. This full cycle of shock reflections/interactions resulting from the incident shock wave collision with the barrier can be studied in a single shock tube test. A one-dimensional (1D), inviscid flow model was proposed for simulating the flow resulting from the initial collision of the incident shock wave with the barrier. Fairly good agreement is found between experimental findings and simulations based on a 1D flow model. Based on obtained numerical and experimental findings an optimal design procedure for shock wave attenuator is suggested. The suggested attenuator may ensure the safety of the shelter’s ventilation systems.

  4. Gravitational-Wave and Neutrino Signals from Core-Collapse Supernovae with QCD Phase Transition

    NASA Astrophysics Data System (ADS)

    Zha, Shuai; Leung, Shing Chi; Lin, Lap Ming; Chu, Ming-Chung

    Core-collapse supernovae (CCSNe) mark the catastrophic death of massive stars. We simulate CCSNe with a hybrid equations of state (EOS) containing a QCD (quantum chromodynamics) phase transition. The hybrid EOS incorporates the pure hadronic HShen EOS and the MIT Bag Model, with a Gibbs construction. Our two-dimensional hydrodynamics code includes a fifth-order shock capturing scheme WENO and models neutrino transport with the isotropic diffusion source approximation (IDSA). As the proto-neutron-star accretes matter and the core enters the mixed phase, a second collapse takes place due to softening of the EOS. We calculate the gravitational-wave (GW) and neutrino signals for this kind of CCSNe model. Future detection of these signals from CCSNe may help to constrain this scenario and the hybrid EOS.

  5. Shock wave attenuation in a micro-channel

    NASA Astrophysics Data System (ADS)

    Giordano, J.; Perrier, P.; Meister, L.; Brouillette, M.

    2018-05-01

    This work presents optical measurements of shock wave attenuation in a glass micro-channel. This transparent facility, with a cross section ranging from 1 mm× 150 μm to 1 mm× 500 μm, allowed for the use of high-speed schlieren videography to visualize the propagation of a shock wave within the entire micro-channel and to quantify velocity attenuation of the wave due to wall effects. In this paper, we present the experimental technique and the relevant data treatment we have used to increase the sensitivity of shock wave detection. Then, we compared our experimental results for different channel widths, lengths, and shock wave velocities with the analytical model for shock attenuation proposed by Russell (J Fluid Mech 27(2):305-314, 1967), which assumes laminar flow, and by Mirels (Attenuation in a shock tube due to unsteady-boundary-layer action, NACA Report 1333, 1957) for turbulent flow. We found that these models are inadequate to predict the observed data, owing to the presence of fully developed flow which violates the basic assumption of these models. The data are also compared with the empirical shock attenuation models proposed by Zeitoun (Phys Fluids 27(1):011701, 2015) and Deshpande and Puranik (Shock Waves 26(4):465-475, 2016), where better agreement is observed. Finally, we presented experimental data for the flow field behind the shock wave from measurements of the Mach wave angle which shows globally decreasing flow Mach numbers due to viscous wall effects.

  6. Shock Waves in a Bose-Einstein Condensate

    NASA Technical Reports Server (NTRS)

    Kulikov, Igor; Zak, Michail

    2005-01-01

    A paper presents a theoretical study of shock waves in a trapped Bose-Einstein condensate (BEC). The mathematical model of the BEC in this study is a nonlinear Schroedinger equation (NLSE) in which (1) the role of the wave function of a single particle in the traditional Schroedinger equation is played by a space- and time-dependent complex order parameter (x,t) proportional to the square root of the density of atoms and (2) the atoms engage in a repulsive interaction characterized by a potential proportional to | (x,t)|2. Equations that describe macroscopic perturbations of the BEC at zero temperature are derived from the NLSE and simplifying assumptions are made, leading to equations for the propagation of sound waves and the transformation of sound waves into shock waves. Equations for the speeds of shock waves and the relationships between jumps of velocity and density across shock fronts are derived. Similarities and differences between this theory and the classical theory of sound waves and shocks in ordinary gases are noted. The present theory is illustrated by solving the equations for the example of a shock wave propagating in a cigar-shaped BEC.

  7. Shock wave interaction with L-shaped structures

    NASA Astrophysics Data System (ADS)

    Miller, Richard C.

    1993-12-01

    This study investigated the interaction of shock waves with L-shaped structures using the CTH hydrodynamics code developed by Sandia National Laboratories. Computer models of shock waves traveling through air were developed using techniques similar to shock tube experiments. Models of L-shaped buildings were used to determine overpressures achieved by the reflecting shock versus angle of incidence of the shock front. An L-shaped building model rotated 45 degrees to the planar shock front produced the highest reflected overpressure of 9.73 atmospheres in the corner joining the two wings, a value 9.5 times the incident overpressure of 1.02 atmospheres. The same L-shaped building was modeled with the two wings separated by 4.24 meters to simulate an open courtyard. This open area provided a relief path for the incident shock wave, creating a peak overpressure of only 4.86 atmospheres on the building's wall surfaces from the same 1.02 atmosphere overpressure incident shock wave.

  8. Shock waves: The Maxwell-Cattaneo case.

    PubMed

    Uribe, F J

    2016-03-01

    Several continuum theories for shock waves give rise to a set of differential equations in which the analysis of the underlying vector field can be done using the tools of the theory of dynamical systems. We illustrate the importance of the divergences associated with the vector field by considering the ideas by Maxwell and Cattaneo and apply them to study shock waves in dilute gases. By comparing the predictions of the Maxwell-Cattaneo equations with shock wave experiments we are lead to the following conclusions: (a) For low compressions (low Mach numbers: M) the results from the Maxwell-Cattaneo equations provide profiles that are in fair agreement with the experiments, (b) as the Mach number is increased we find a range of Mach numbers (1.27 ≈ M(1) < M < M(2) ≈ 1.90) such that numerical shock wave solutions to the Maxwell-Cattaneo equations cannot be found, and (c) for greater Mach numbers (M>M_{2}) shock wave solutions can be found though they differ significantly from experiments.

  9. International Shock-Wave Database: Current Status

    NASA Astrophysics Data System (ADS)

    Levashov, Pavel

    2013-06-01

    Shock-wave and related dynamic material response data serve for calibrating, validating, and improving material models over very broad regions of the pressure-temperature-density phase space. Since the middle of the 20th century vast amount of shock-wave experimental information has been obtained. To systemize it a number of compendiums of shock-wave data has been issued by LLNL, LANL (USA), CEA (France), IPCP and VNIIEF (Russia). In mid-90th the drawbacks of the paper handbooks became obvious, so the first version of the online shock-wave database appeared in 1997 (http://www.ficp.ac.ru/rusbank). It includes approximately 20000 experimental points on shock compression, adiabatic expansion, measurements of sound velocity behind the shock front and free-surface-velocity for more than 650 substances. This is still a useful tool for the shock-wave community, but it has a number of serious disadvantages which can't be easily eliminated: (i) very simple data format for points and references; (ii) minimalistic user interface for data addition; (iii) absence of history of changes; (iv) bad feedback from users. The new International Shock-Wave database (ISWdb) is intended to solve these and some other problems. The ISWdb project objectives are: (i) to develop a database on thermodynamic and mechanical properties of materials under conditions of shock-wave and other dynamic loadings, selected related quantities of interest, and the meta-data that describes the provenance of the measurements and material models; and (ii) to make this database available internationally through the Internet, in an interactive form. The development and operation of the ISWdb is guided by an advisory committee. The database will be installed on two mirrored web-servers, one in Russia and the other in USA (currently only one server is available). The database provides access to original experimental data on shock compression, non-shock dynamic loadings, isentropic expansion, measurements of sound

  10. Computation of shock wave/target interaction

    NASA Technical Reports Server (NTRS)

    Mark, A.; Kutler, P.

    1983-01-01

    Computational results of shock waves impinging on targets and the ensuing diffraction flowfield are presented. A number of two-dimensional cases are computed with finite difference techniques. The classical case of a shock wave/cylinder interaction is compared with shock tube data and shows the quality of the computations on a pressure-time plot. Similar results are obtained for a shock wave/rectangular body interaction. Here resolution becomes important and the use of grid clustering techniques tend to show good agreement with experimental data. Computational results are also compared with pressure data resulting from shock impingement experiments for a complicated truck-like geometry. Here of significance are the grid generation and clustering techniques used. For these very complicated bodies, grids are generated by numerically solving a set of elliptic partial differential equations.

  11. Refraction of dispersive shock waves

    NASA Astrophysics Data System (ADS)

    El, G. A.; Khodorovskii, V. V.; Leszczyszyn, A. M.

    2012-09-01

    We study a dispersive counterpart of the classical gas dynamics problem of the interaction of a shock wave with a counter-propagating simple rarefaction wave, often referred to as the shock wave refraction. The refraction of a one-dimensional dispersive shock wave (DSW) due to its head-on collision with the centred rarefaction wave (RW) is considered in the framework of the defocusing nonlinear Schrödinger (NLS) equation. For the integrable cubic nonlinearity case we present a full asymptotic description of the DSW refraction by constructing appropriate exact solutions of the Whitham modulation equations in Riemann invariants. For the NLS equation with saturable nonlinearity, whose modulation system does not possess Riemann invariants, we take advantage of the recently developed method for the DSW description in non-integrable dispersive systems to obtain main physical parameters of the DSW refraction. The key features of the DSW-RW interaction predicted by our modulation theory analysis are confirmed by direct numerical solutions of the full dispersive problem.

  12. Focusing of noncircular self-similar shock waves.

    PubMed

    Betelu, S I; Aronson, D G

    2001-08-13

    We study the focusing of noncircular shock waves in a perfect gas. We construct an explicit self-similar solution by combining three convergent plane waves with regular shock reflections between them. We then show, with a numerical Riemann solver, that there are initial conditions with smooth shocks whose intermediate asymptotic stage is described by the exact solution. Unlike the focusing of circular shocks, our self-similar shocks have bounded energy density.

  13. History of shock wave lithotripsy

    NASA Astrophysics Data System (ADS)

    Delius, Michael

    2000-07-01

    The first reports on the fragmentation of human calculi with ultrasound appeared in the fifties. Initial positive results with an extracorporeal approach with continuous wave ultrasound could, however, not be reproduced. A more promising result was found by generating the acoustic energy either in pulsed or continuous form directly at the stone surface. The method was applied clinically with success. Extracorporeal shock-wave generators unite the principle of using single ultrasonic pulses with the principle of generating the acoustic energy outside the body and focusing it through the skin and body wall onto the stone. Häusler and Kiefer reported the first successful contact-free kidney stone destruction by shock waves. They had put the stone in a water filled cylinder and generated a shock wave with a high speed water drop which was fired onto the water surface. To apply the new principle in medicine, both Häusler and Hoff's group at Dornier company constructed different shock wave generators for the stone destruction; the former used a torus-shaped reflector around an explosion wire, the latter the electrode-ellipsoid system. The former required open surgery to access the kidney stone, the latter did not. It was introduced into clinical practice after a series of experiments in Munich.

  14. TIMING OF SHOCK WAVES

    DOEpatents

    Tuck, J.L.

    1955-03-01

    This patent relates to means for ascertaining the instant of arrival of a shock wave in an exploslve charge and apparatus utilizing this means to coordinate the timing of two operations involving a short lnterval of time. A pair of spaced electrodes are inserted along the line of an explosive train with a voltage applied there-across which is insufficient to cause discharge. When it is desired to initiate operation of a device at the time the explosive shock wave reaches a particular point on the explosive line, the device having an inherent time delay, the electrodes are located ahead of the point such that the ionization of the area between the electrodes caused by the traveling explosive shock wave sends a signal to initiate operation of the device to cause it to operate at the proper time. The operated device may be photographic equipment consisting of an x-ray illuminating tube.

  15. Shock wave experiments on gallium

    NASA Astrophysics Data System (ADS)

    Jensen, Brian; Branch, Brittany; Cherne, Frank

    2017-06-01

    Gallium exhibits a complex phase diagram with multiple solid phases, an anomalous melt boundary, and a low-temperature melt transition making it a suitable material for shock wave studies focused on multiphase properties including kinetics and strength. Apart from high-pressure shock wave data that exists for the liquid phase, there is a clear lack of data in the low-pressure regime where much of the complexity in the phase diagram exists. In this work, a series of shock wave experiments were performed to begin examining the low-pressure region of the phase diagram. Additional data on a gallium alloy, which remains liquid at room temperature, will be presented and compared to data available for pure gallium (LA-UR-17-21449).

  16. WHEN SHOCK WAVES COLLIDE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartigan, P.; Liao, A. S.; Foster, J.

    2016-06-01

    Supersonic outflows from objects as varied as stellar jets, massive stars, and novae often exhibit multiple shock waves that overlap one another. When the intersection angle between two shock waves exceeds a critical value, the system reconfigures its geometry to create a normal shock known as a Mach stem where the shocks meet. Mach stems are important for interpreting emission-line images of shocked gas because a normal shock produces higher postshock temperatures, and therefore a higher-excitation spectrum than does an oblique shock. In this paper, we summarize the results of a series of numerical simulations and laboratory experiments designed tomore » quantify how Mach stems behave in supersonic plasmas that are the norm in astrophysical flows. The experiments test analytical predictions for critical angles where Mach stems should form, and quantify how Mach stems grow and decay as intersection angles between the incident shock and a surface change. While small Mach stems are destroyed by surface irregularities and subcritical angles, larger ones persist in these situations and can regrow if the intersection angle changes to become more favorable. The experimental and numerical results show that although Mach stems occur only over a limited range of intersection angles and size scales, within these ranges they are relatively robust, and hence are a viable explanation for variable bright knots observed in Hubble Space Telescope images at the intersections of some bow shocks in stellar jets.« less

  17. When shock waves collide

    DOE PAGES

    Martinez, D.; Hartigan, P.; Frank, A.; ...

    2016-06-01

    Supersonic outflows from objects as varied as stellar jets, massive stars, and novae often exhibit multiple shock waves that overlap one another. When the intersection angle between two shock waves exceeds a critical value, the system reconfigures its geometry to create a normal shock known as a Mach stem where the shocks meet. Mach stems are important for interpreting emission-line images of shocked gas because a normal shock produces higher postshock temperatures, and therefore a higher-excitation spectrum than does an oblique shock. In this paper, we summarize the results of a series of numerical simulations and laboratory experiments designed tomore » quantify how Mach stems behave in supersonic plasmas that are the norm in astrophysical flows. The experiments test analytical predictions for critical angles where Mach stems should form, and quantify how Mach stems grow and decay as intersection angles between the incident shock and a surface change. While small Mach stems are destroyed by surface irregularities and subcritical angles, larger ones persist in these situations and can regrow if the intersection angle changes to become more favorable. Furthermore, the experimental and numerical results show that although Mach stems occur only over a limited range of intersection angles and size scales, within these ranges they are relatively robust, and hence are a viable explanation for variable bright knots observed in Hubble Space Telescope images at the intersections of some bow shocks in stellar jets.« less

  18. Burnett-Cattaneo continuum theory for shock waves.

    PubMed

    Holian, Brad Lee; Mareschal, Michel; Ravelo, Ramon

    2011-02-01

    We model strong shock-wave propagation, both in the ideal gas and in the dense Lennard-Jones fluid, using a refinement of earlier work, which accounts for the cold compression in the early stages of the shock rise by a nonlinear, Burnett-like, strain-rate dependence of the thermal conductivity, and relaxation of kinetic-temperature components on the hot, compressed side of the shock front. The relaxation of the disequilibrium among the three components of the kinetic temperature, namely, the difference between the component in the direction of a planar shock wave and those in the transverse directions, particularly in the region near the shock front, is accomplished at a much more quantitative level by a rigorous application of the Cattaneo-Maxwell relaxation equation to a reference solution, namely, the steady shock-wave solution of linear Navier-Stokes-Fourier theory, along with the nonlinear Burnett heat-flux term. Our new continuum theory is in nearly quantitative agreement with nonequilibrium molecular-dynamics simulations under strong shock-wave conditions, using relaxation parameters obtained from the reference solution. ©2011 American Physical Society

  19. Extracorporeal shock waves in the treatment of nonunions.

    PubMed

    Biedermann, Rainer; Martin, Arho; Handle, Gerhart; Auckenthaler, Thomas; Bach, Christian; Krismer, Martin

    2003-05-01

    Nonunion remains a major complication after skeletal trauma. In the last decade, extracorporeal shock wave therapy has become a common tool for the treatment of nonunions. To date, no prospective, randomized trial has been conducted to show the efficacy of this form of treatment. This study was performed to determine the value of extracorporeal shock wave therapy for nonunions. Previous published results in the literature and our own clinical results were analyzed and related to the natural history of bony union. No study has proven that extracorporeal shock wave therapy improves bone healing. Clinical studies reporting the acceleration of union after application of shock waves instead seem to misinterpret the natural history of bony union. No evidence supports the treatment of pseudarthroses with extracorporeal shock waves. A randomized, prospective, clinical trial with a control group has to be performed before a final decision can be made regarding this indication for extracorporeal shock wave therapy.

  20. Current topics in shock waves; Proceedings of the International Symposium on Shock Waves and Shock Tubes, 17th, Lehigh University, Bethlehem, PA, July 17-21, 1989

    NASA Astrophysics Data System (ADS)

    Kim, Yong W.

    Various papers on shock waves are presented. The general topics addressed include: shock formation, focusing, and implosion; shock reflection and diffraction; turbulence; laser-produced plasmas and waves; ionization and shock-plasma interaction; chemical kinetics, pyrolysis, and soot formation; experimental facilities, techniques, and applications; ignition of detonation and combustion; particle entrainment and shock propagation through particle suspension; boundary layers and blast simulation; computational methods and numerical simulation.

  1. Interplanetary shocks, Plasma waves and turbulence, Kinetic waves and instabilities, STEREO spacecraft

    NASA Astrophysics Data System (ADS)

    Cohen, Z.; Breneman, A. W.; Cattell, C. A.; Davis, L.; Grul, P.; Kersten, K.; Wilson, L. B., III

    2017-12-01

    Determining the role of plasma waves in providing energy dissipation at shock waves is of long-standing interest. Interplanetary (IP) shocks serve as a large database of low Mach number shocks. We examine electric field waveforms captured by the Time Domain Sampler (TDS) on the STEREO spacecraft during the ramps of IP shocks, with emphasis on captures lasting 2.1 seconds. Previous work has used captures of shorter duration (66 and 131 ms on STEREO, and 17 ms on WIND), which allowed for observation of waves with maximum (minimum) frequencies of 125 kHz (15 Hz), 62.5 kHz (8 Hz), and 60 kHz (59 Hz), respectively. The maximum frequencies are comparable to 2-8 times the plasma frequency in the solar wind, enabling observation of Langmuir waves, ion acoustic, and some whistler-mode waves. The 2 second captures resolve lower frequencies ( few Hz), which allows us to analyze packet structure of the whistler-mode waves and some ion acoustic waves. The longer capture time also improves the resolvability of simultaneous wave modes and of waves with frequencies on the order of 10s of Hz. Langmuir waves, however, cannot be identified at this sampling rate, since the plasma frequency is usually higher than 3.9 kHz. IP shocks are identified from multiple databases (Helsinki heliospheric shock database at http://ipshocks.fi, and the STEREO level 3 shock database at ftp://stereoftp.nascom.nasa.gov/pub/ins_data/impact/level3/). Our analysis focuses on TDS captures in shock ramp regions, with ramp durations determined from magnetic field data taken at 8 Hz. Software is used to identify multiple wave modes in any given capture and classify waves as Langmuir, ion acoustic, whistler, lower hybrid, electron cyclotron drift instability, or electrostatic solitary waves. Relevant frequencies are determined from density and magnetic field data collected in situ. Preliminary results suggest that large amplitude (∼ 5 mV/m) ion acoustic waves are most prevalent in the ramp, in agreement with

  2. Potential applications of low-energy shock waves in functional urology.

    PubMed

    Wang, Hung-Jen; Cheng, Jai-Hong; Chuang, Yao-Chi

    2017-08-01

    A shock wave, which carries energy and can propagate through a medium, is a type of continuous transmitted sonic wave with a frequency of 16 Hz-20 MHz. It is accompanied by processes involving rapid energy transformations. The energy associated with shock waves has been harnessed and used for various applications in medical science. High-energy extracorporeal shock wave therapy is the most successful application of shock waves, and has been used to disintegrate urolithiasis for 30 years. At lower energy levels, however, shock waves have enhanced expression of vascular endothelial growth factor, endothelial nitric oxide synthase, proliferating cell nuclear antigen, chemoattractant factors and recruitment of progenitor cells; shock waves have also improved tissue regeneration. Low-energy shock wave therapy has been used clinically with musculoskeletal disorders, ischemic cardiovascular disorders and erectile dysfunction, through the mechanisms of neovascularization, anti-inflammation and tissue regeneration. Furthermore, low-energy shock waves have been proposed to temporarily increase tissue permeability and facilitate intravesical drug delivery. The present review article provides information on the basics of shock wave physics, mechanisms of action on the biological system and potential applications in functional urology. © 2017 The Japanese Urological Association.

  3. Wave and particle evolution downstream of quasi-perpendicular shocks

    NASA Technical Reports Server (NTRS)

    Mckean, M. E.; Omidi, N.; Krauss-Varban, D.; Karimabadi, H.

    1995-01-01

    Distributions of ions heated in quasi-perpendicular bow shocks have large perpendicular temperature anisotropies that provide free energy for the growth of Alfven ion cyclotron (AIC) and mirror waves. These modes are often obsreved in the Earth's magnetosheath. Using two-dimensional hybrid simulations, we show that these waves are produced near the shock front and convected downstream rather than being produced locally downstream. The wave activity reduces the proton anisotropy to magnetosheath levels within a few tens of gyroradii of the shock but takes significantly longer to reduce the anisotropy of He(++) ions. The waves are primarily driven by proton anisotropy and the dynamics of the helium ions is controlled by the proton waves. Downstream of high Mach number shocks, mirror waves compete effectively with AIC waves. Downstream of low Mach number shocks, AIC waves dominate.

  4. Magnetosonic shock wave in collisional pair-ion plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adak, Ashish, E-mail: ashish-adak@yahoo.com; Khan, Manoranjan, E-mail: mkhan.ju@gmail.com; Sikdar, Arnab, E-mail: arnabs.ju@gmail.com

    2016-06-15

    Nonlinear propagation of magnetosonic shock wave has been studied in collisional magnetized pair-ion plasma. The masses of both ions are same but the temperatures are slightly different. Two fluid model has been taken to describe the model. Two different modes of the magnetosonic wave have been obtained. The dynamics of the nonlinear magnetosonic wave is governed by the Korteweg-de Vries Burgers' equation. It has been shown that the ion-ion collision is the source of dissipation that causes the Burgers' term which is responsible for the shock structures in equal mass pair-ion plasma. The numerical investigations reveal that the magnetosonic wavemore » exhibits both oscillatory and monotonic shock structures depending on the strength of the dissipation. The nonlinear wave exhibited the oscillatory shock wave for strong magnetic field (weak dissipation) and monotonic shock wave for weak magnetic field (strong dissipation). The results have been discussed in the context of the fullerene pair-ion plasma experiments.« less

  5. Microgravity Experiment: The Fate of Confined Shock Waves

    NASA Astrophysics Data System (ADS)

    Kobel, P.; Obreschkow, D.; Dorsaz, N.; de Bosset, A.; Farhat, M.

    2007-11-01

    Shockwave induced cavitation is a form of hydrodynamic cavitation generated by the interaction of shock waves with vapor nuclei and microscopic impurities. Both the shock waves and the induced cavitation are known as sources of erosion damage in hydraulic industrial systems and hence represent an important research topic in fluid dynamics. Here we present the first investigation of shock wave induced cavitation inside closed and isolated liquid volumes, which confine the shock wave by reflections and thereby promise a particularly strong coupling with cavitation. A microgravity platform (ESA, 42^nd parabolic flight campaign) was used to produce stable water drops with centimetric diameters. Inside these drops, a fast electrical discharge was generated to release a strong shock wave. This setting results in an amplified form of shockwave induced cavitation, visible in high-speed images as a transient haze of sub-millimetric bubbles synchronized with the shockwave radiation. A comparison between high-speed visualizations and 3D simulations of a shock front inside a liquid sphere reveals that focus zones within the drop lead to a significantly increased density of induced cavitation. Considering shock wave crossing and focusing may hence prove crucially useful to understand the important process of cavitation erosion.

  6. Laser shock wave and its applications

    NASA Astrophysics Data System (ADS)

    Yang, Chaojun; Zhang, Yongkang; Zhou, Jianzhong; Zhang, Fang; Feng, Aixin

    2007-12-01

    The technology of laser shock wave is used to not only surface modification but also metal forming. It can be divided into three parts: laser shock processing, laser shock forming (LSF) and laser peenforming(LPF). Laser shock processing as a surface treatment to metals can make engineering components have a residual compressive stress so that it obviously improves their fatigue strength and stress corrosion performances, while laser shock forming (LSF) is a novel technique that is used in plastic deformation of sheet metal recently and Laser peen forming (LPF) is another new sheet metal forming process presented in recent years. They all can be carried out by a high-power and repetition pulse Nd:Glass laser device made by Jiangsu University. Laser shock technology has characterized of ultrahigh pressure and high strain rate (10 6 - 10 7s -1). Now, for different materials, we are able to form different metals to contours and shapes and simultaneity leave their surfaces in crack-resistant compressive stress state. The results show that the technology of laser shock wave can strengthen surface property and prolong fatigue life and especially can deform metals to shapes that could not be adequately made using conventional methods. With the development of the technology of laser shock wave, the applied fields of laser will become greater and greater.

  7. Expansion shock waves in regularized shallow-water theory

    NASA Astrophysics Data System (ADS)

    El, Gennady A.; Hoefer, Mark A.; Shearer, Michael

    2016-05-01

    We identify a new type of shock wave by constructing a stationary expansion shock solution of a class of regularized shallow-water equations that include the Benjamin-Bona-Mahony and Boussinesq equations. An expansion shock exhibits divergent characteristics, thereby contravening the classical Lax entropy condition. The persistence of the expansion shock in initial value problems is analysed and justified using matched asymptotic expansions and numerical simulations. The expansion shock's existence is traced to the presence of a non-local dispersive term in the governing equation. We establish the algebraic decay of the shock as it is gradually eroded by a simple wave on either side. More generally, we observe a robustness of the expansion shock in the presence of weak dissipation and in simulations of asymmetric initial conditions where a train of solitary waves is shed from one side of the shock.

  8. Shock wave lithotripsy: advances in technology and technique

    PubMed Central

    Lingeman, James E.; McAteer, James A.; Gnessin, Ehud; Evan, Andrew P.

    2010-01-01

    Shock wave lithotripsy (SWL) is the only noninvasive method for stone removal. Once considered as a primary option for the treatment of virtually all stones, SWL is now recognized to have important limitations that restrict its use. In particular, the effectiveness of SWL is severely limited by stone burden, and treatment with shock waves carries the risk of acute injury with the potential for long-term adverse effects. Research aiming to characterize the renal response to shock waves and to determine the mechanisms of shock wave action in stone breakage and renal injury has begun to suggest new treatment strategies to improve success rates and safety. Urologists can achieve better outcomes by treating at slower shock wave rate using a step-wise protocol. The aim is to achieve stone comminution using as few shock waves and at as low a power level as possible. Important challenges remain, including the need to improve acoustic coupling, enhance stone targeting, better determine when stone breakage is complete, and minimize the occurrence of residual stone fragments. New technologies have begun to address many of these issues, and hold considerable promise for the future. PMID:19956196

  9. Augmented shock wave fracture/severance of materials

    NASA Technical Reports Server (NTRS)

    Schimmel, Morry L. (Inventor); Bement, Laurence J. (Inventor)

    1995-01-01

    The present invention related generally to severing materials, and more particularly to severing or weakening materials through explosively induced, augmented shock waves. Explosive cords are placed in grooves on the upper surface of the material to be severed or weakened. The explosive cords are initiated simultaneously to introduce explosive shock waves into the material. These shock waves progress toward the centerline between the explosive cords and the lower surface of the material. Intersecting and reflected waves produce a rarefaction zone on the centerline to fail the material in tension. A groove may also be cut in the lower surface of the material to aid in severing or weakening the material.

  10. Shock-Wave Boundary Layer Interactions

    DTIC Science & Technology

    1986-02-01

    Security Classification of Document UNCLASSIFIED 6. Title TURBULENT SHOCK-WAVE/BOUNDARY-LAYER INTERACTION 7. Presented at 8. Author(s)/Editor(s...contrary effects. The above demonstration puts an emphasis on inertia forces in the sense that the "fullness" for the Incoming boundary-layer profile is...expression "quasi-normal" means that in most transonic streams, the shocks are strong oblique shock, in the sense of the strong solution of the oblique shock

  11. Cytoplasmic molecular delivery with shock waves: importance of impulse.

    PubMed Central

    Kodama, T; Hamblin, M R; Doukas, A G

    2000-01-01

    Cell permeabilization using shock waves may be a way of introducing macromolecules and small polar molecules into the cytoplasm, and may have applications in gene therapy and anticancer drug delivery. The pressure profile of a shock wave indicates its energy content, and shock-wave propagation in tissue is associated with cellular displacement, leading to the development of cell deformation. In the present study, three different shock-wave sources were investigated; argon fluoride excimer laser, ruby laser, and shock tube. The duration of the pressure pulse of the shock tube was 100 times longer than the lasers. The uptake of two fluorophores, calcein (molecular weight: 622) and fluorescein isothiocyanate-dextran (molecular weight: 71,600), into HL-60 human promyelocytic leukemia cells was investigated. The intracellular fluorescence was measured by a spectrofluorometer, and the cells were examined by confocal fluorescence microscopy. A single shock wave generated by the shock tube delivered both fluorophores into approximately 50% of the cells (p < 0.01), whereas shock waves from the lasers did not. The cell survival fraction was >0.95. Confocal microscopy showed that, in the case of calcein, there was a uniform fluorescence throughout the cell, whereas, in the case of FITC-dextran, the fluorescence was sometimes in the nucleus and at other times not. We conclude that the impulse of the shock wave (i.e., the pressure integrated over time), rather than the peak pressure, was a dominant factor for causing fluorophore uptake into living cells, and that shock waves might have changed the permeability of the nuclear membrane and transferred molecules directly into the nucleus. PMID:11023888

  12. A new shock wave assisted sandalwood oil extraction technique

    NASA Astrophysics Data System (ADS)

    Arunkumar, A. N.; Srinivasa, Y. B.; Ravikumar, G.; Shankaranarayana, K. H.; Rao, K. S.; Jagadeesh, G.

    A new shock wave assisted oil extraction technique from sandalwood has been developed in the Shock Waves Lab, IISc, Bangalore. The fragrant oil extracted from sandalwood finds variety of applications in medicine and perfumery industries. In the present method sandal wood specimens (2.5mm diameter and 25mm in length)are subjected to shock wave loading (over pressure 15 bar)in a constant area shock tube, before extracting the sandal oil using non-destructive oil extraction technique. The results from the study indicates that both the rate of extraction as well as the quantity of oil obtained from sandal wood samples exposed to shock waves are higher (15-40 percent) compared to non-destructive oil extraction technique. The compressive squeezing of the interior oil pockets in the sandalwood specimen due to shock wave loading appears to be the main reason for enhancement in the oil extraction rate. This is confirmed by the presence of warty structures in the cross-section and micro-fissures in the radial direction of the wood samples exposed to shock waves in the scanning electron microscopic investigation. In addition the gas chromatographic studies do not show any change in the q uality of sandal oil extracted from samples exposed to shock waves.

  13. Shock wave interactions in hypervelocity flow

    NASA Astrophysics Data System (ADS)

    Sanderson, S. R.; Sturtevant, B.

    1994-08-01

    The impingement of shock waves on blunt bodies in steady supersonic flow is known to cause extremely high local heat transfer rates and surface pressures. Although these problems have been studied in cold hypersonic flow, the effects of dissociative relaxation processes are unknown. In this paper we report a model aimed at determining the boundaries of the possible interaction regimes for an ideal dissociating gas. Local analysis about shock wave intersection points in the pressure-flow deflection angle plane with continuation of singular solutions is the fundamental tool employed. Further, we discuss an experimental investigation of the nominally two-dimensional mean flow that results from the impingement of an oblique shock wave on the leading edge of a cylinder. The effects of variations in shock impingement geometry were visualized using differential interferometry. Generally, real gas effects are seen to increase the range of shock impingement points for which enhanced heating occurs. They also reduce the type 4 interaction supersonic jet width and influence the type 2-3 transition process.

  14. Shock wave attenuation by water droplets

    NASA Astrophysics Data System (ADS)

    Eliasson, Veronica; Wan, Qian; Deiterding, Ralf

    2017-11-01

    The ongoing research on shock wave attenuation is fueled by the desire to predict and avoid damage caused by shock and blast waves. For example, during an explosion in an underground mine or subway tunnel, the shock front is forced to propagate in the direction of the channel. In this work, numerical simulations using water droplets in a 2D channel are conducted to study shock wave attenuation. Four different droplet configurations (1x1, 2x2, 3x3, and 4x4) are considered, where the total volume of water is kept constant throughout all the cases. Meanwhile, the incident shock Mach number was varied from 1.1 to 1.4 with increments of 0.1. The physical motion of the water droplets, such as the center-of-mass drift and velocity, and the energy exchange between air and water are quantitatively studied. Results for center-of-mass velocity, maximum peak pressure and impulse will be presented for all different cases that were studied. NSF CBET-1437412.

  15. Shock Waves in Supernova Ejecta

    NASA Astrophysics Data System (ADS)

    Raymond, J. C.

    2018-02-01

    Astrophysical shock waves are a major mechanism for dissipating energy, and by heating and ionizing the gas they produce emission spectra that provide valuable diagnostics for the shock parameters, for the physics of collisionless shocks, and for the composition of the shocked material. Shocks in SN ejecta in which H and He have been burned to heavier elements behave differently than shocks in ordinary astrophysical gas because of their very large radiative cooling rates. In particular, extreme departures from thermal equilibrium among ions and electrons and from ionization equilibrium may arise. This paper discusses the consequences of the enhanced metal abundances for the structure and emission spectra of those shocks.

  16. Shock Wave Dynamics in Weakly Ionized Plasmas

    NASA Technical Reports Server (NTRS)

    Johnson, Joseph A., III

    1999-01-01

    An investigation of the dynamics of shock waves in weakly ionized argon plasmas has been performed using a pressure ruptured shock tube. The velocity of the shock is observed to increase when the shock traverses the plasma. The observed increases cannot be accounted for by thermal effects alone. Possible mechanisms that could explain the anomalous behavior include a vibrational/translational relaxation in the nonequilibrium plasma, electron diffusion across the shock front resulting from high electron mobility, and the propagation of ion-acoustic waves generated at the shock front. Using a turbulence model based on reduced kinetic theory, analysis of the observed results suggest a role for turbulence in anomalous shock dynamics in weakly ionized media and plasma-induced hypersonic drag reduction.

  17. Expansion shock waves in regularized shallow-water theory

    PubMed Central

    El, Gennady A.; Shearer, Michael

    2016-01-01

    We identify a new type of shock wave by constructing a stationary expansion shock solution of a class of regularized shallow-water equations that include the Benjamin–Bona–Mahony and Boussinesq equations. An expansion shock exhibits divergent characteristics, thereby contravening the classical Lax entropy condition. The persistence of the expansion shock in initial value problems is analysed and justified using matched asymptotic expansions and numerical simulations. The expansion shock's existence is traced to the presence of a non-local dispersive term in the governing equation. We establish the algebraic decay of the shock as it is gradually eroded by a simple wave on either side. More generally, we observe a robustness of the expansion shock in the presence of weak dissipation and in simulations of asymmetric initial conditions where a train of solitary waves is shed from one side of the shock. PMID:27279780

  18. On the interplay between cosmological shock waves and their environment

    NASA Astrophysics Data System (ADS)

    Martin-Alvarez, Sergio; Planelles, Susana; Quilis, Vicent

    2017-05-01

    Cosmological shock waves are tracers of the thermal history of the structures in the Universe. They play a crucial role in redistributing the energy within the cosmic structures and are also amongst the main ingredients of galaxy and galaxy cluster formation. Understanding this important function requires a proper description of the interplay between shocks and the different environments where they can be found. In this paper, an Adaptive Mesh Refinement (AMR) Eulerian cosmological simulation is analysed by means of a shock-finding algorithm that allows to generate shock wave maps. Based on the population of dark matter halos and on the distribution of density contrast in the simulation, we classify the shocks in five different environments. These range from galaxy clusters to voids. The shock distribution function and the shocks power spectrum are studied for these environments dynamics. We find that shock waves on different environments undergo different formation and evolution processes, showing as well different characteristics. We identify three different phases of formation, evolution and dissipation of these shock waves, and an intricate migration between distinct environments and scales. Shock waves initially form at external, low density regions and are merged and amplified through the collapse of structures. Shock waves and cosmic structures follow a parallel evolution. Later on, shocks start to detach from them and dissipate. We also find that most of the power that shock waves dissipate is found at scales of k ˜0.5 Mpc^{-1}, with a secondary peak at k ˜8 Mpc^{-1}. The evolution of the shocks power spectrum confirms that shock waves evolution is coupled and conditioned by their environment.

  19. Hydraulic shock waves in an inclined chute contraction

    NASA Astrophysics Data System (ADS)

    Jan, C.-D.; Chang, C.-J.

    2009-04-01

    A chute contraction is a common structure used in hydraulic engineering for typical reasons such as increase of bottom slope, transition from side channel intakes to tunnel spillways, reduction of chute width due to bridges, transition structures in flood diversion works, among others. One of the significant chute contractions in Taiwan is that used in the Yuanshantzu Flood Diversion Project of Keelung River. The diversion project is designed to divert flood water from upper Keelung River into East Sea with a capasity of 1,310 cubic meters per second for mitigating the flood damage of lower part of Keelung River basin in Northern Taiwan. An inclined chute contraction is used to connect Keelung River and a diversion turnel. The inlet and outlet works of the diversion project is located at Ruifang in the Taipei County of north Taiwan. The diameter of diversion tunnel is 12 meters and the total length of tunnel is 2,484 meters. The diversion project has been completed and successfully executed many times since 2004 to lower the water level of Keelung River in typhoon seasons for avioding flooding problems in the lower part of Keelung River basin. Flow in a chute contraction has complicated flow pattern due to the existence of shock waves in it. A simple and useful calculation procedure for the maximum height and its position of shock waves is essentially needed for the preliminary design stage of a chute contraction. Hydraulic shock waves in an inclined chute contraction were experimentally and numerically investigated in this study with the consideration of the effects of sidewall deflection angle, bottom inclination angle and Froude number of approaching flow. The flow pattern of hydraulic shock waves in a chute contraction was observed. The main issue of designing chute contraction is to estimate the height and position of maximum shock wave for the consideration of freeboards. Achieving this aim, the experimental data are adopted and analyzed for the shock angle

  20. Optical distortion in the field of a lithotripter shock wave

    NASA Astrophysics Data System (ADS)

    Carnell, M. T.; Emmony, D. C.

    1995-10-01

    The schlieren observation of cavitation phenomena produced in the tail of a lithotripter shock wave has indicated the presence of some interesting features. The images produced appear to indicate that cavitation transients in the field of a shock wave propagate nonsymmetrically; this is not the case. The apparent lack of symmetry exhibited by the primary cavitation transients is due to a complex optical lensing effect, which is brought about by the change in refractive index associated with the pressure profile of the shock wave. Objects seen through or immersed in the shock-wave field of an electromagnetic acoustic transducer, such as cavitation, appear highly distorted because of the strong positive and negative lensing effects of the compression and rarefaction cycles of the shock wave. A modification of the schlieren technique called the scale method has been used to model the distortion introduced by the shock wave and consequently explain the cavitation distortion. The technique has also been used to quantitatively analyze and partially reconstruct the lithotripter shock wave. The combination of schlieren and scale imaging gives more information about the refractive index field and therefore the shock-wave structure itself.

  1. Density Shock Waves in Confined Microswimmers

    NASA Astrophysics Data System (ADS)

    Tsang, Alan Cheng Hou; Kanso, Eva

    2016-01-01

    Motile and driven particles confined in microfluidic channels exhibit interesting emergent behavior, from propagating density bands to density shock waves. A deeper understanding of the physical mechanisms responsible for these emergent structures is relevant to a number of physical and biomedical applications. Here, we study the formation of density shock waves in the context of an idealized model of microswimmers confined in a narrow channel and subject to a uniform external flow. Interestingly, these density shock waves exhibit a transition from "subsonic" with compression at the back to "supersonic" with compression at the front of the population as the intensity of the external flow increases. This behavior is the result of a nontrivial interplay between hydrodynamic interactions and geometric confinement, and it is confirmed by a novel quasilinear wave model that properly captures the dependence of the shock formation on the external flow. These findings can be used to guide the development of novel mechanisms for controlling the emergent density distribution and the average population speed, with potentially profound implications on various processes in industry and biotechnology, such as the transport and sorting of cells in flow channels.

  2. The Observational Consequences of Proton-Generated Waves at Shocks

    NASA Technical Reports Server (NTRS)

    Reames, Donald V.

    2000-01-01

    In the largest solar energetic particle (SEP) events, acceleration takes place at shock waves driven out from the Sun by fast coronal mass ejections. Protons streaming away from strong shocks generate Alfven waves that trap particles in the acceleration region, limiting outflowing intensities but increasing the efficiency of acceleration to higher energies. Early in the events, with the shock still near the Sun, intensities at 1 AU are bounded and spectra are flattened at low energies. Elements with different charge-to-mass ratios, Q/A, differentially probe the wave spectra near shocks, producing abundance ratios that vary in space and time. An initial rise in He/H, while Fe/O declines, is a typical symptom of the non-Kolmogorov wave spectra in the largest events. Strong wave generation can cause cross-field scattering near the shock and unusually rapid reduction in anisotropies even far from the shock. At the highest energies, shock spectra steepen to form a "knee." For protons, this spectral knee can vary from approx. 10 MeV to approx. 1 GeV depending on shock conditions for wave growth. In one case, the location of the knee scales approximately as Q/A in the energy/nucleon spectra of other species.

  3. 21 CFR 876.5990 - Extracorporeal shock wave lithotripter.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... focuses ultrasonic shock waves into the body to noninvasively fragment urinary calculi within the kidney... Notifications (510(k)'s) for Extracorporeal Shock Wave Lithotripters Indicated for the Fragmentation of Kidney...

  4. 21 CFR 876.5990 - Extracorporeal shock wave lithotripter.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... focuses ultrasonic shock waves into the body to noninvasively fragment urinary calculi within the kidney... Notifications (510(k)'s) for Extracorporeal Shock Wave Lithotripters Indicated for the Fragmentation of Kidney...

  5. Normal shock wave reflection on porous compressible material

    NASA Astrophysics Data System (ADS)

    Gvozdeva, L. G.; Faresov, Iu. M.; Brossard, J.; Charpentier, N.

    The present experimental investigation of the interaction of plane shock waves in air and a rigid wall coated with flat layers of expanded polymers was conducted in a standard shock tube and a diaphragm with an initial test section pressure of 100,000 Pa. The Mach number of the incident shock wave was varied from 1.1 to 2.7; the peak pressures measured on the wall behind polyurethane at various incident wave Mach numbers are compared with calculated values, with the ideal model of propagation, and with the reflection of shock waves in a porous material that is understood as a homogeneous mixture. The effect of elasticity and permeability of the porous material structure on the rigid wall's pressure pulse parameters is qualitatively studied.

  6. Computation of Thermally Perfect Properties of Oblique Shock Waves

    NASA Technical Reports Server (NTRS)

    Tatum, Kenneth E.

    1996-01-01

    A set of compressible flow relations describing flow properties across oblique shock waves, derived for a thermally perfect, calorically imperfect gas, is applied within the existing thermally perfect gas (TPG) computer code. The relations are based upon a value of cp expressed as a polynomial function of temperature. The updated code produces tables of compressible flow properties of oblique shock waves, as well as the original properties of normal shock waves and basic isentropic flow, in a format similar to the tables for normal shock waves found in NACA Rep. 1135. The code results are validated in both the calorically perfect and the calorically imperfect, thermally perfect temperature regimes through comparisons with the theoretical methods of NACA Rep. 1135, and with a state-of-the-art computational fluid dynamics code. The advantages of the TPG code for oblique shock wave calculations, as well as for the properties of isentropic flow and normal shock waves, are its ease of use, and its applicability to any type of gas (monatomic, diatomic, triatomic, polyatomic, or any specified mixture thereof).

  7. Interaction of rippled shock wave with flat fast-slow interface

    NASA Astrophysics Data System (ADS)

    Zhai, Zhigang; Liang, Yu; Liu, Lili; Ding, Juchun; Luo, Xisheng; Zou, Liyong

    2018-04-01

    The evolution of a flat air/sulfur-hexafluoride interface subjected to a rippled shock wave is investigated. Experimentally, the rippled shock wave is produced by diffracting a planar shock wave around solid cylinder(s), and the effects of the cylinder number and the spacing between cylinders on the interface evolution are considered. The flat interface is created by a soap film technique. The postshock flow and the evolution of the shocked interface are captured by a schlieren technique combined with a high-speed video camera. Numerical simulations are performed to provide more details of flows. The wave patterns of a planar shock wave diffracting around one cylinder or two cylinders are studied. The shock stability problem is analytically discussed, and the effects of the spacing between cylinders on shock stability are highlighted. The relationship between the amplitudes of the rippled shock wave and the shocked interface is determined in the single cylinder case. Subsequently, the interface morphologies and growth rates under different cases are obtained. The results show that the shock-shock interactions caused by multiple cylinders have significant influence on the interface evolution. Finally, a modified impulsive theory is proposed to predict the perturbation growth when multiple solid cylinders are present.

  8. Transonic Shock-Wave/Boundary-Layer Interactions on an Oscillating Airfoil

    NASA Technical Reports Server (NTRS)

    Davis, Sanford S.; Malcolm, Gerald N.

    1980-01-01

    Unsteady aerodynamic loads were measured on an oscillating NACA 64A010 airfoil In the NASA Ames 11 by 11 ft Transonic Wind Tunnel. Data are presented to show the effect of the unsteady shock-wave/boundary-layer interaction on the fundamental frequency lift, moment, and pressure distributions. The data show that weak shock waves induce an unsteady pressure distribution that can be predicted quite well, while stronger shock waves cause complex frequency-dependent distributions due to flow separation. An experimental test of the principles of linearity and superposition showed that they hold for weak shock waves while flows with stronger shock waves cannot be superimposed.

  9. Reflection and Refraction of Acoustic Waves by a Shock Wave

    NASA Technical Reports Server (NTRS)

    Brillouin, J.

    1957-01-01

    The presence of sound waves in one or the other of the fluid regions on either side of a shock wave is made apparent, in the region under superpressure, by acoustic waves (reflected or refracted according to whether the incident waves lie in the region of superpressure or of subpressure) and by thermal waves. The characteristics of these waves are calculated for a plane, progressive, and uniform incident wave. In the case of refraction, the refracted acoustic wave can, according to the incidence, be plane, progressive, and uniform or take the form of an 'accompanying wave' which remains attached to the front of the shock while sliding parallel to it. In all cases, geometrical constructions permit determination of the kinematic characteristics of the reflected or refractive acoustic waves. The dynamic relationships show that the amplitude of the reflected wave is always less than that of the incident wave. The amplitude of the refracted wave, whatever its type, may in certain cases be greater than that of the incident wave.

  10. Shock wave treatment improves nerve regeneration in the rat.

    PubMed

    Mense, Siegfried; Hoheisel, Ulrich

    2013-05-01

    The aims of the experiments were to: (1) determine whether low-energy shock wave treatment accelerates the recovery of muscle sensitivity and functionality after a nerve lesion; and (2) assess the effect of shock waves on the regeneration of injured nerve fibers. After compression of a muscle nerve in rats the effects of shock wave treatment on the sequelae of the lesion were tested. In non-anesthetized animals, pressure pain thresholds and exploratory activity were determined. The influence of the treatment on the distance of nerve regeneration was studied in immunohistochemical experiments. Both behavioral and immunohistochemical data show that shock wave treatment accelerates the recovery of muscle sensitivity and functionality and promotes regeneration of injured nerve fibers. Treatment with focused shock waves induces an improvement of nerve regeneration in a rodent model of nerve compression. Copyright © 2012 Wiley Periodicals, Inc.

  11. Shock wave equation of state of muscovite

    NASA Technical Reports Server (NTRS)

    Sekine, Toshimori; Rubin, Allan M.; Ahrens, Thomas J.

    1991-01-01

    Shock wave data were obtained between 20 and 140 GPa for natural muscovite obtained from Methuen Township (Ontario), in order to provide a shock-wave equation of state for this crustal hydrous mineral. The shock equation of state data could be fit by a linear shock velocity (Us) versus particle velocity (Up) relation Us = 4.62 + 1.27 Up (km/s). Third-order Birch-Murnaghan equation of state parameters were found to be K(OS) = 52 +/-4 GPa and K-prime(OS) = 3.2 +/-0.3 GPa. These parameters are comparable to those of other hydrous minerals such as brucite, serpentine, and tremolite.

  12. The anatomy of floating shock fitting. [shock waves computation for flow field

    NASA Technical Reports Server (NTRS)

    Salas, M. D.

    1975-01-01

    The floating shock fitting technique is examined. Second-order difference formulas are developed for the computation of discontinuities. A procedure is developed to compute mesh points that are crossed by discontinuities. The technique is applied to the calculation of internal two-dimensional flows with arbitrary number of shock waves and contact surfaces. A new procedure, based on the coalescence of characteristics, is developed to detect the formation of shock waves. Results are presented to validate and demonstrate the versatility of the technique.

  13. The microphysics of collisionless shock waves.

    PubMed

    Marcowith, A; Bret, A; Bykov, A; Dieckman, M E; Drury, L O'C; Lembège, B; Lemoine, M; Morlino, G; Murphy, G; Pelletier, G; Plotnikov, I; Reville, B; Riquelme, M; Sironi, L; Novo, A Stockem

    2016-04-01

    Collisionless shocks, that is shocks mediated by electromagnetic processes, are customary in space physics and in astrophysics. They are to be found in a great variety of objects and environments: magnetospheric and heliospheric shocks, supernova remnants, pulsar winds and their nebulæ, active galactic nuclei, gamma-ray bursts and clusters of galaxies shock waves. Collisionless shock microphysics enters at different stages of shock formation, shock dynamics and particle energization and/or acceleration. It turns out that the shock phenomenon is a multi-scale non-linear problem in time and space. It is complexified by the impact due to high-energy cosmic rays in astrophysical environments. This review adresses the physics of shock formation, shock dynamics and particle acceleration based on a close examination of available multi-wavelength or in situ observations, analytical and numerical developments. A particular emphasis is made on the different instabilities triggered during the shock formation and in association with particle acceleration processes with regards to the properties of the background upstream medium. It appears that among the most important parameters the background magnetic field through the magnetization and its obliquity is the dominant one. The shock velocity that can reach relativistic speeds has also a strong impact over the development of the micro-instabilities and the fate of particle acceleration. Recent developments of laboratory shock experiments has started to bring some new insights in the physics of space plasma and astrophysical shock waves. A special section is dedicated to new laser plasma experiments probing shock physics.

  14. The microphysics of collisionless shock waves

    NASA Astrophysics Data System (ADS)

    Marcowith, A.; Bret, A.; Bykov, A.; Dieckman, M. E.; O'C Drury, L.; Lembège, B.; Lemoine, M.; Morlino, G.; Murphy, G.; Pelletier, G.; Plotnikov, I.; Reville, B.; Riquelme, M.; Sironi, L.; Stockem Novo, A.

    2016-04-01

    Collisionless shocks, that is shocks mediated by electromagnetic processes, are customary in space physics and in astrophysics. They are to be found in a great variety of objects and environments: magnetospheric and heliospheric shocks, supernova remnants, pulsar winds and their nebulæ, active galactic nuclei, gamma-ray bursts and clusters of galaxies shock waves. Collisionless shock microphysics enters at different stages of shock formation, shock dynamics and particle energization and/or acceleration. It turns out that the shock phenomenon is a multi-scale non-linear problem in time and space. It is complexified by the impact due to high-energy cosmic rays in astrophysical environments. This review adresses the physics of shock formation, shock dynamics and particle acceleration based on a close examination of available multi-wavelength or in situ observations, analytical and numerical developments. A particular emphasis is made on the different instabilities triggered during the shock formation and in association with particle acceleration processes with regards to the properties of the background upstream medium. It appears that among the most important parameters the background magnetic field through the magnetization and its obliquity is the dominant one. The shock velocity that can reach relativistic speeds has also a strong impact over the development of the micro-instabilities and the fate of particle acceleration. Recent developments of laboratory shock experiments has started to bring some new insights in the physics of space plasma and astrophysical shock waves. A special section is dedicated to new laser plasma experiments probing shock physics.

  15. Biological Effects of Shock Waves on Infection

    NASA Astrophysics Data System (ADS)

    Gnanadhas, Divya Prakash; Janardhanraj, S.; Chakravortty, Dipshikha; Gopalan, Jagadeesh

    Shock waves have been successfully used for disintegrating kidney stones[1], noninvasive angiogenic approach[2] and for the treatment of osteoporosis[3]. Recently shock waves have been used to treat different medical conditions including intestinal anastomosis[4], wound healing[5], Kienböck's disease[6] and articular cartilage defects[7].

  16. Propagation and dispersion of shock waves in magnetoelastic materials

    NASA Astrophysics Data System (ADS)

    Crum, R. S.; Domann, J. P.; Carman, G. P.; Gupta, V.

    2017-12-01

    Previous studies examining the response of magnetoelastic materials to shock waves have predominantly focused on applications involving pulsed power generation, with limited attention given to the actual wave propagation characteristics. This study provides detailed magnetic and mechanical measurements of magnetoelastic shock wave propagation and dispersion. Laser generated rarefacted shock waves exceeding 3 GPa with rise times of 10 ns were introduced to samples of the magnetoelastic material Galfenol. The resulting mechanical measurements reveal the evolution of the shock into a compressive acoustic front with lateral release waves. Importantly, the wave continues to disperse even after it has decayed into an acoustic wave, due in large part to magnetoelastic coupling. The magnetic data reveal predominantly shear wave mediated magnetoelastic coupling, and were also used to noninvasively measure the wave speed. The external magnetic field controlled a 30% increase in wave propagation speed, attributed to a 70% increase in average stiffness. Finally, magnetic signals propagating along the sample over 20× faster than the mechanical wave were measured, indicating these materials can act as passive antennas that transmit information in response to mechanical stimuli.

  17. Turbulent Water Coupling in Shock Wave Lithotripsy

    PubMed Central

    Lautz, Jaclyn; Sankin, Georgy; Zhong, Pei

    2013-01-01

    Previous studies have demonstrated that stone comminution decreases with increased pulse repetition frequency as a result of bubble proliferation in the cavitation field of a shock wave lithotripter (Pishchalnikov et al., 2011). If cavitation nuclei remain in the propagation path of successive lithotripter pulses, especially in the acoustic coupling cushion of the shock wave source, they will consume part of the incident wave energy, leading to reduced tensile pressure in the focal region and thus lower stone comminution efficiency. We introduce a method to remove cavitation nuclei from the coupling cushion between successive shock exposures using a jet of degassed water. As a result, pre-focal bubble nuclei lifetime quantified by B-mode ultrasound imaging was reduced from 7 s to 0.3 s by a jet with an exit velocity of 62 cm/s. Stone fragmentation (percent mass < 2 mm) after 250 shocks delivered at 1 Hz was enhanced from 22 ± 6% to 33 ± 5% (p = 0.007) in water without interposing tissue mimicking materials. Stone fragmentation after 500 shocks delivered at 2 Hz was increased from 18 ± 6% to 28 ± 8% (p = 0.04) with an interposing tissue phantom of 8 cm thick. These results demonstrate the critical influence of cavitation bubbles in the coupling cushion on stone comminution and suggest a potential strategy to improve the efficacy of contemporary shock wave lithotripters. PMID:23322027

  18. Wave and ion evolution downstream of quasi-perpendicular bow shocks

    NASA Technical Reports Server (NTRS)

    Mckean, M. E.; Omidi, N.; Krauss-Varban, D.

    1995-01-01

    Distribution functions of ions heated in quasi-perpendicular bow shocks have a large perpendicular temperature anisotropy that provides free energy for the growth of Alfven ion cyclotron (AIC) waves and mirror waves. Both types of waves have been observed in the Earth's magnetosheath downstream of quasi-perpendicular shocks. We use a two-dimensional hybrid simulations to give a self-consistent description of the evolution of the wave spectra downstream of quasi-perpendicular shocks. Both mirror and AIC waves are identified in the simulated magnetosheath. They are generated at or near the shock front and convected away from it by the sheath plasma. Near the shock, the waves have a broad spectrum, but downstream of the shock, shorter-wavelength modes are heavily damped and only longer-wavelength modes persist. The characteristics of these surviving modes can be predicted with reasonable accuracy by linear kinetic theory appropriate for downstream conditions. We also follow the evolution of the ion distribution function. The shocked ions that provide the free energy for wave growth have a two-component distribution function. The halo is initially gyrophase-bunched and extremely anisotropic. Within a relatively short distance downstream of the shock (of the order of 10 ion inertial lengths), wave-particle interactions remove these features from the halo and reduce the anisotropy of the distribution to near-threshold levels for the mirror and AIC instabilities. A similar evolution has been observed for ions at the Earth's bow shock.

  19. Shock Wave-Induced Damage and Poration in Eukaryotic Cell Membranes.

    PubMed

    López-Marín, Luz M; Millán-Chiu, Blanca E; Castaño-González, Karen; Aceves, Carmen; Fernández, Francisco; Varela-Echavarría, Alfredo; Loske, Achim M

    2017-02-01

    Shock waves are known to permeabilize eukaryotic cell membranes, which may be a powerful tool for a variety of drug delivery applications. However, the mechanisms involved in shock wave-mediated membrane permeabilization are still poorly understood. In this study, the effects on both the permeability and the ultrastructural features of two human cell lineages were investigated after the application of underwater shock waves in vitro. Scanning Electron Microscopy of cells derived from a human embryo kidney (HEK)-293 and Michigan Cancer Foundation (MCF)-7 cells, an immortalized culture derived from human breast adenocarcinoma, showed a small amount of microvilli (as compared to control cells), the presence of hole-like structures, and a decrease in cell size after shock wave exposure. Interestingly, these effects were accompanied by the permeabilization of acid and macromolecular dyes and gene transfection. Trypan blue exclusion assays indicated that cell membranes were porated during shock wave treatment but resealed after a few seconds. Deformations of the cell membrane lasted for at least 5 min, allowing their observation in fixed cells. For each cell line, different shock wave parameters were needed to achieve cell membrane poration. This difference was correlated to successful gene transfection by shock waves. Our results demonstrate, for the first time, that shock waves induce transient micro- and submicrosized deformations at the cell membrane, leading to cell transfection and cell survival. They also indicate that ultrastructural analyses of cell surfaces may constitute a useful way to match the use of shock waves to different cells and settings.

  20. Shock wave propagation in a magnetic flux tube

    NASA Astrophysics Data System (ADS)

    Ferriz-Mas, A.; Moreno-Insertis, F.

    1992-12-01

    The propagation of a shock wave in a magnetic flux tube is studied within the framework of the Brinkley-Kirkwood theory adapted to a radiating gas. Simplified thermodynamic paths along which the compressed plasma returns to its initial state are considered. It is assumed that the undisturbed medium is uniform and that the flux tube is optically thin. The shock waves investigated, which are described with the aid of the thin flux-tube approximation, are essentially slow magnetohydrodynamic shocks modified by the constraint of lateral pressure balance between the flux tube and the surrounding field-free fluid; the confining external pressure must be balanced by the internal gas plus magnetic pressures. Exact analytical solutions giving the evolution of the shock wave are obtained for the case of weak shocks.

  1. Biodamage via shock waves initiated by irradiation with ions.

    PubMed

    Surdutovich, Eugene; Yakubovich, Alexander V; Solov'yov, Andrey V

    2013-01-01

    Radiation damage following the ionising radiation of tissue has different scenarios and mechanisms depending on the projectiles or radiation modality. We investigate the radiation damage effects due to shock waves produced by ions. We analyse the strength of the shock wave capable of directly producing DNA strand breaks and, depending on the ion's linear energy transfer, estimate the radius from the ion's path, within which DNA damage by the shock wave mechanism is dominant. At much smaller values of linear energy transfer, the shock waves turn out to be instrumental in propagating reactive species formed close to the ion's path to large distances, successfully competing with diffusion.

  2. Waves and Instabilities in Collisionless Shocks

    DTIC Science & Technology

    1984-04-01

    occur in the electron foreshock and are driven by suprathermal electrons escaping into the region upstream of the shock. Both the ion-acoustic and...ULF waves occur in the ion foreshock and are associated with ions streaming into the region upstream of 11 the shock. The region downstream of the...the discussion of these waves it is useful to distinguish two regions, called the electron foreshock and the ion foreshock . Because the particles

  3. Parallel implementation of geometrical shock dynamics for two dimensional converging shock waves

    NASA Astrophysics Data System (ADS)

    Qiu, Shi; Liu, Kuang; Eliasson, Veronica

    2016-10-01

    Geometrical shock dynamics (GSD) theory is an appealing method to predict the shock motion in the sense that it is more computationally efficient than solving the traditional Euler equations, especially for converging shock waves. However, to solve and optimize large scale configurations, the main bottleneck is the computational cost. Among the existing numerical GSD schemes, there is only one that has been implemented on parallel computers, with the purpose to analyze detonation waves. To extend the computational advantage of the GSD theory to more general applications such as converging shock waves, a numerical implementation using a spatial decomposition method has been coupled with a front tracking approach on parallel computers. In addition, an efficient tridiagonal system solver for massively parallel computers has been applied to resolve the most expensive function in this implementation, resulting in an efficiency of 0.93 while using 32 HPCC cores. Moreover, symmetric boundary conditions have been developed to further reduce the computational cost, achieving a speedup of 19.26 for a 12-sided polygonal converging shock.

  4. Subcritical collisionless shock waves. [in earth space plasma

    NASA Technical Reports Server (NTRS)

    Mellott, M. M.

    1985-01-01

    The development history of theoretical accounts of low Mach number collisionless shock waves is related to recent observational advancements, with attention to weaker shocks in which shock steepening is limited by dispersion and/or anomalous resistivity and whose character is primarily determined by the dispersive properties of the ambient plasma. Attention has focused on nearly perpendicular shocks where dispersive scale lengths become small and the associated cross-field currents become strong enough to generate significant plasma wave turbulence. A number of oblique, low Mach number bow shocks have been studied on the basis of data from the ISEE dual spacecraft pair, allowing an accurate determination of shock scale lengths.

  5. Shock waves in strongly coupled plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khlebnikov, Sergei; Kruczenski, Martin; Michalogiorgakis, Georgios

    2010-12-15

    Shock waves are supersonic disturbances propagating in a fluid and giving rise to dissipation and drag. Weak shocks, i.e., those of small amplitude, can be well described within the hydrodynamic approximation. On the other hand, strong shocks are discontinuous within hydrodynamics and therefore probe the microscopics of the theory. In this paper, we consider the case of the strongly coupled N=4 plasma whose microscopic description, applicable for scales smaller than the inverse temperature, is given in terms of gravity in an asymptotically AdS{sub 5} space. In the gravity approximation, weak and strong shocks should be described by smooth metrics withmore » no discontinuities. For weak shocks, we find the dual metric in a derivative expansion, and for strong shocks we use linearized gravity to find the exponential tail that determines the width of the shock. In particular, we find that, when the velocity of the fluid relative to the shock approaches the speed of light v{yields}1 the penetration depth l scales as l{approx}(1-v{sup 2}){sup 1/4}. We compare the results with second-order hydrodynamics and the Israel-Stewart approximation. Although they all agree in the hydrodynamic regime of weak shocks, we show that there is not even qualitative agreement for strong shocks. For the gravity side, the existence of shock waves implies that there are disturbances of constant shape propagating on the horizon of the dual black holes.« less

  6. Effect of Shock Waves on Dielectric Properties of KDP Crystal

    NASA Astrophysics Data System (ADS)

    Sivakumar, A.; Suresh, S.; Pradeep, J. Anto; Balachandar, S.; Martin Britto Dhas, S. A.

    2018-05-01

    An alternative non-destructive approach is proposed and demonstrated for modifying electrical properties of crystal using shock-waves. The method alters dielectric properties of a potassium dihydrogen phosphate (KDP) crystal by loading shock-waves generated by a table-top shock tube. The experiment involves launching the shock-waves perpendicular to the (100) plane of the crystal using a pressure driven table-top shock tube with Mach number 1.9. Electrical properties of dielectric constant, dielectric loss, permittivity, impedance, AC conductivity, DC conductivity and capacitance as a function of spectrum of frequency from 1 Hz to 1 MHz are reported for both pre- and post-shock wave loaded conditions of the KDP crystal. The experimental results reveal that dielectric constant of KDP crystal is sensitive to the shock waves such that the value decreases for the shock-loaded KDP sample from 158 to 147. The advantage of the proposed approach is that it is an alternative to the conventional doping process for tailoring dielectric properties of this type of crystal.

  7. Propagation and dispersion of shock waves in magnetoelastic materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crum, R. S.; Domann, J. P.; Carman, G. P.

    Previous studies examining the response of magnetoelastic materials to shock waves have predominantly focused on applications involving pulsed power generation, with limited attention given to the actual wave propagation characteristics. This study provides detailed magnetic and mechanical measurements of magnetoelastic shock wave propagation and dispersion. Laser generated rarefacted shock waves exceeding 3 GPa with rise times of 10 ns were introduced to samples of the magnetoelastic material Galfenol. The resulting mechanical measurements reveal the evolution of the shock into a compressive acoustic front with lateral release waves. Importantly, the wave continues to disperse even after it has decayed into anmore » acoustic wave, due in large part to magnetoelastic coupling. The magnetic data reveal predominantly shear wave mediated magnetoelastic coupling, and were also used to noninvasively measure the wave speed. The external magnetic field controlled a 30% increase in wave propagation speed, attributed to a 70% increase in average stiffness. Lastly, magnetic signals propagating along the sample over 20× faster than the mechanical wave were measured, indicating these materials can act as passive antennas that transmit information in response to mechanical stimuli.« less

  8. Propagation and dispersion of shock waves in magnetoelastic materials

    DOE PAGES

    Crum, R. S.; Domann, J. P.; Carman, G. P.; ...

    2017-11-15

    Previous studies examining the response of magnetoelastic materials to shock waves have predominantly focused on applications involving pulsed power generation, with limited attention given to the actual wave propagation characteristics. This study provides detailed magnetic and mechanical measurements of magnetoelastic shock wave propagation and dispersion. Laser generated rarefacted shock waves exceeding 3 GPa with rise times of 10 ns were introduced to samples of the magnetoelastic material Galfenol. The resulting mechanical measurements reveal the evolution of the shock into a compressive acoustic front with lateral release waves. Importantly, the wave continues to disperse even after it has decayed into anmore » acoustic wave, due in large part to magnetoelastic coupling. The magnetic data reveal predominantly shear wave mediated magnetoelastic coupling, and were also used to noninvasively measure the wave speed. The external magnetic field controlled a 30% increase in wave propagation speed, attributed to a 70% increase in average stiffness. Lastly, magnetic signals propagating along the sample over 20× faster than the mechanical wave were measured, indicating these materials can act as passive antennas that transmit information in response to mechanical stimuli.« less

  9. Extracorporeal shock wave therapy in treatment of delayed bone-tendon healing.

    PubMed

    Wang, Lin; Qin, Ling; Lu, Hong-bin; Cheung, Wing-hoi; Yang, Hu; Wong, Wan-nar; Chan, Kai-ming; Leung, Kwok-sui

    2008-02-01

    Extracorporeal shock wave therapy is indicated for treatment of chronic injuries of soft tissues and delayed fracture healing and nonunion. No investigation has been conducted to study the effect of shock wave on delayed healing at the bone-tendon junction. Shock wave promotes osteogenesis, regeneration of fibrocartilage zone, and remodeling of healing tissue in delayed healing of bone-tendon junction surgical repair. Controlled laboratory study. Twenty-eight mature rabbits were used for establishing a delayed healing model at the patella-patellar tendon complex after partial patellectomy and then divided into control and shock wave groups. In the shock wave group, a single shock wave treatment was given at week 6 postoperatively to the patella-patellar tendon healing complex. Seven samples were harvested at week 8 and 7 samples at week 12 for radiologic, densitometric, histologic, and mechanical evaluations. Radiographic measurements showed 293.4% and 185.8% more new bone formation at the patella-patellar tendon healing junction in the shock wave group at weeks 8 and 12, respectively. Significantly better bone mineral status was found in the week 12 shock wave group. Histologically, the shock wave group showed more advanced remodeling in terms of better alignment of collagen fibers and thicker and more mature regenerated fibrocartilage zone at both weeks 8 and 12. Mechanical testing showed 167.7% and 145.1% higher tensile load and strength in the shock wave group at week 8 and week 12, respectively, compared with controls. Extracorporeal shock wave promotes osteogenesis, regeneration of fibrocartilage zone, and remodeling in the delayed bone-to-tendon healing junction in rabbits. These results provide a foundation for future clinical studies toward establishment of clinical indication for treatment of delayed bone-to-tendon junction healing.

  10. The structure of steady shock waves in porous metals

    NASA Astrophysics Data System (ADS)

    Czarnota, Christophe; Molinari, Alain; Mercier, Sébastien

    2017-10-01

    The paper aims at developing an understanding of steady shock wave propagation in a ductile metallic material containing voids. Porosity is assumed to be less than 0.3 and voids are not connected (foams are not considered). As the shock wave is traveling in the porous medium, the voids are facing a rapid collapse. During this dynamic compaction process, material particles are subjected to very high acceleration in the vicinity of voids, thus generating acceleration forces at the microscale that influence the overall response of the porous material. Analyzing how stationary shocks are influenced by these micro-inertia effects is the main goal of this work. The focus is essentially on the shock structure, ignoring oscillatory motion of pores prevailing at the tail of the shock wave. Following the constitutive framework developed by Molinari and Ravichandran (2004) for the analysis of steady shock waves in dense metals, an analytical approach of steady state propagation of plastic shocks in porous metals is proposed. The initial void size appears as a characteristic internal length that scales the overall dynamic response, thereby contributing to the structuring of the shock front. This key feature is not captured by standard damage models where the porosity stands for the single damage parameter with no contribution of the void size. The results obtained in this work provide a new insight in the fundamental understanding of shock waves in porous media. In particular, a new scaling law relating the shock width to the initial void radius is obtained when micro-inertia effects are significant.

  11. Amplification and attenuation of shock wave strength caused by homogeneous isotropic turbulence

    NASA Astrophysics Data System (ADS)

    Tanaka, K.; Watanabe, T.; Nagata, K.; Sasoh, A.; Sakai, Y.; Hayase, T.

    2018-03-01

    We study the pressure increase across a planar shock wave with shock Mach numbers Ms of 1.1, 1.3, and 1.5 propagating through homogeneous isotropic turbulence at a low turbulent Mach number (Mt ˜ 10-4) based on direct numerical simulations (DNSs). Fluctuation in the pressure increase, Δp', on a given shock ray is induced by turbulence around the ray. A local amplification of the shock wave strength, measured with the pressure increase, is caused by the velocity fluctuation opposed to the shock wave propagating direction with a time delay, while the velocity in the opposite direction attenuates the shock wave strength. The turbulence effects on the shock wave are explained based on shock wave deformation due to turbulent shearing motions. The spatial distribution of Δp' on the shock wave has a characteristic length of the order of the integral scale of turbulence. The influence of turbulent velocity fluctuation at a given location on Δp' becomes most significant after the shock wave propagates from the location for a distance close to the integral length scale for all shock Mach numbers, demonstrating that the shock wave properties possess strong memory even during the propagation in turbulence. A lower shock Mach number Ms results in a smaller rms value of Δp', stronger influences on Δp' by turbulence far away from the shock ray, and a larger length scale in the spatial profile of Δp' on the shock wave. Relative intensity of Δp' increases with [Mt/(Ms-1 ) ] α, where DNS and experimental results yield α ≈ 0.73.

  12. On the local time dependence of the bow shock wave structure

    NASA Technical Reports Server (NTRS)

    Olson, J. V.; Holzer, R. E.

    1974-01-01

    In the first 6 months after its launch, Ogo 3 crossed the earth's bow shock over 500 times. From this group, a set of 494 shock crossings were chosen for analysis. These crossings, as they were recorded by the UCLA/JPL search coil magnetometer, were scanned and classified according to the nature of the plasma waves detected near the shock. More than 85% of the shocks detected fell into a single category showing the predominance of two independent wave trains near the shock, the higher frequency appearing upstream and the lower downstream. The other 15%, which constitute an upper limit, appear to be composed of shocks dominated by a single wave pattern and of chaotic shocks showing no orderly progression of wave frequencies as the shock was penetrated. This division of wave pattern was found to occur at all local times, that is, in all regions where the satellite penetrated the shock.

  13. Shock Waves for Possible Application in Regenerative Medicine

    NASA Astrophysics Data System (ADS)

    Hosseini, S. H. R.; Nejad, S. Moosavi; Akiyama, H.

    The paper reports experimental study of underwater shock waves effects in modification and possible control of embryonic stem cell differentiation and proliferation. The study is motivated by its application in regenerativemedicine. Underwater shock waves have been of interest for various scientific, industrial, and medical applications.

  14. In vitro study of the mechanical effects of shock-wave lithotripsy.

    PubMed

    Howard, D; Sturtevant, B

    1997-01-01

    Impulsive stress in repeated shock waves administered during extracorporeal shock-wave lithotripsy (ESWL) causes injury to kidney tissue. In a study of the mechanical input of ESWL, the effects of focused shock waves on thin planar polymeric membranes immersed in a variety of tissue-mimicking fluids have been examined. A direct mechanism of failure by shock compression and an indirect mechanism by bubble collapse have been observed. Thin membranes are easily damaged by bubble collapse. After propagating through cavitation-free acoustically heterogeneous media (liquids mixed with hollow glass spheres, and tissue) shock waves cause membranes to fail in fatigue by a shearing mechanism. As is characteristic of dynamic fatigue, the failure stress increases with strain rate, determined by the amplitude and rise time of the attenuated shock wave. Shocks with large amplitude and short rise time (i.e., in uniform media) cause no damage. Thus the inhomogeneity of tissue is likely to contribute to injury in ESWL. A definition of dose is proposed which yields a criterion for damage based on measurable shock wave properties.

  15. Myocardial effects of local shock wave therapy in a Langendorff model.

    PubMed

    Becker, M; Goetzenich, A; Roehl, A B; Huebel, C; de la Fuente, M; Dietz-Laursonn, K; Radermacher, K; Rossaint, R; Hein, M

    2014-01-01

    Applying shock waves to the heart has been reported to stimulate the heart and alter cardiac function. We hypothesized that shock waves could be used to diagnose regional viability. We used a Langendorff model to investigate the acute effects of shock waves at different energy levels and times related to systole, cycle duration and myocardial function. We found only a small time window to use shock waves. Myocardial fibrillation or extrasystolic beats will occur if the shock wave is placed more than 15 ms before or 30 ms after the onset of systole. Increased contractility and augmented relaxation were observed after the second beat, and these effects decreased after prolonging the shock wave delay from 15 ms before to 30 ms after the onset of systole. An energy dependency could be found only after short delays (-15 ms). The involved processes might include post-extrasystolic potentiation and simultaneous pacing. In summary, we found that low-energy shock waves can be a useful tool to stimulate the myocardium at a distance and influence function. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Optical observation of shock waves and cavitation bubbles in high intensity laser-induced shock processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marti-Lopez, L.; Ocana, R.; Porro, J. A.

    2009-07-01

    We report an experimental study of the temporal and spatial dynamics of shock waves, cavitation bubbles, and sound waves generated in water during laser shock processing by single Nd:YAG laser pulses of nanosecond duration. A fast ICCD camera (2 ns gate time) was employed to record false schlieren photographs, schlieren photographs, and Mach-Zehnder interferograms of the zone surrounding the laser spot site on the target, an aluminum alloy sample. We recorded hemispherical shock fronts, cylindrical shock fronts, plane shock fronts, cavitation bubbles, and phase disturbance tracks.

  17. Plasma waves downstream of weak collisionless shocks

    NASA Technical Reports Server (NTRS)

    Coroniti, F. V.; Greenstadt, E. W.; Moses, S. L.; Smith, E. J.; Tsurutani, B. T.

    1993-01-01

    In September 1983 the International Sun Earth Explorer 3 (ISEE 3) International Cometary Explorer (ICE) spacecraft made a long traversal of the distant dawnside flank region of the Earth's magnetosphere and had many encounters with the low Mach number bow shock. These weak shocks excite plasma wave electric field turbulence with amplitudes comparable to those detected in the much stronger bow shock near the nose region. Downstream of quasi-perpendicular (quasi-parallel) shocks, the E field spectra exhibit a strong peak (plateau) at midfrequencies (1 - 3 kHz); the plateau shape is produced by a low-frequency (100 - 300 Hz) emission which is more intense behind downstream of two quasi-perpendicular shocks show that the low frequency signals are polarized parallel to the magnetic field, whereas the midfrequency emissions are unpolarized or only weakly polarized. A new high frequency (10 - 30 kHz) emission which is above the maximum Doppler shift exhibit a distinct peak at high frequencies; this peak is often blurred by the large amplitude fluctuations of the midfrequency waves. The high-frequency component is strongly polarized along the magnetic field and varies independently of the lower-frequency waves.

  18. Lattice QCD studies of s-wave meson-baryon interactions

    NASA Astrophysics Data System (ADS)

    Ikeda, Yoichi

    2011-10-01

    We study the s-wave KN interactions in the isospin I = 0, 1 channels and associated exotic state Θ+ from 2+1 flavor full lattice QCD simulation for relatively heavy quark mass corresponding to mπ = 871 MeV. The s-wave KN potentials are obtained from the Bethe-Salpeter amplitudes. Potentials in both channels reveal short range repulsions: Strength of the repulsion is stronger in the I = 1 potential. The I = 0 potential is found to have attractive well at mid range. The KN scattering phase shifts are calculated and compared with the experimental data.

  19. Pseudo-shock waves and their interactions in high-speed intakes

    NASA Astrophysics Data System (ADS)

    Gnani, F.; Zare-Behtash, H.; Kontis, K.

    2016-04-01

    In an air-breathing engine the flow deceleration from supersonic to subsonic conditions takes places inside the isolator through a gradual compression consisting of a series of shock waves. The wave system, referred to as a pseudo-shock wave or shock train, establishes the combustion chamber entrance conditions, and therefore influences the performance of the entire propulsion system. The characteristics of the pseudo-shock depend on a number of variables which make this flow phenomenon particularly challenging to be analysed. Difficulties in experimentally obtaining accurate flow quantities at high speeds and discrepancies of numerical approaches with measured data have been readily reported. Understanding the flow physics in the presence of the interaction of numerous shock waves with the boundary layer in internal flows is essential to developing methods and control strategies. To counteract the negative effects of shock wave/boundary layer interactions, which are responsible for the engine unstart process, multiple flow control methodologies have been proposed. Improved analytical models, advanced experimental methodologies and numerical simulations have allowed a more in-depth analysis of the flow physics. The present paper aims to bring together the main results, on the shock train structure and its associated phenomena inside isolators, studied using the aforementioned tools. Several promising flow control techniques that have more recently been applied to manipulate the shock wave/boundary layer interaction are also examined in this review.

  20. Particle Acceleration by Cme-driven Shock Waves

    NASA Technical Reports Server (NTRS)

    Reames, Donald V.

    1999-01-01

    In the largest solar energetic particle (SEP) events, acceleration occurs at shock waves driven out from the Sun by coronal mass ejections (CMEs). Peak particle intensities are a strong function of CME speed, although the intensities, spectra, and angular distributions of particles escaping the shock are highly modified by scattering on Alfven waves produced by the streaming particles themselves. Element abundances vary in complex ways because ions with different values of Q/A resonate with different parts of the wave spectrum, which varies with space and time. Just recently, we have begun to model these systematic variations theoretically and to explore other consequences of proton-generated waves.

  1. Laser measurements of bacterial endospore destruction from shock waves

    NASA Astrophysics Data System (ADS)

    Lappas, Petros P.; McCartt, A. Daniel; Gates, Sean D.; Jeffries, Jay B.; Hanson, Ronald K.

    2013-12-01

    The effects of shock waves on bioaerosols containing endospores were measured by combined laser absorption and scattering. Experiments were conducted in the Stanford aerosol shock tube for post-shock temperatures ranging from 400 K to 1100 K. Laser intensity measurements through the test section of the shock tube at wavelengths of 266 and 665 nm provided real-time monitoring of the morphological changes (includes changes in shape, structure and optical properties) in the endospores. Scatter of the visible light measured the integrity of endospore structure, while absorption of the UV light provided a measure of biochemicals released when endospores ruptured. For post-shock temperatures above 750 K the structural breakdown of Bacillus atrophaeus (BA) endospores was observed. A simple theoretical model using laser extinction is presented for determining the fraction of endospores that are ruptured by the shock waves. In addition, mechanisms of endospore mortality preceding their disintegration due to shock waves are discussed.

  2. Development of relativistic shock waves in viscous gluon matter

    NASA Astrophysics Data System (ADS)

    Bouras, I.; Molnár, E.; Niemi, H.; Xu, Z.; El, A.; Fochler, O.; Greiner, C.; Rischke, D. H.

    2009-11-01

    To investigate the formation and the propagation of relativistic shock waves in viscous gluon matter we solve the relativistic Riemann problem using a microscopic parton cascade. We demonstrate the transition from ideal to viscous shock waves by varying the shear viscosity to entropy density ratio η/s. We show that an η/s ratio larger than 0.2 prevents the development of well-defined shock waves on time scales typical for ultrarelativistic heavy-ion collisions. These findings are confirmed by viscous hydrodynamic calculations.

  3. Tracking kidney stones with sound during shock wave lithotripsy

    NASA Astrophysics Data System (ADS)

    Kracht, Jonathan M.

    The prevalence of kidney stones has increased significantly over the past decades. One of the primary treatments for kidney stones is shock wave lithotripsy which focuses acoustic shock waves onto the stone in order to fragment it into pieces that are small enough to pass naturally. This typically requires a few thousand shock waves delivered at a rate of about 2 Hz. Although lithotripsy is the only non-invasive treatment option for kidney stories, both acute and chronic complications have been identified which could be reduced if fewer shock waves were used. One factor that could be used to reduce the number of shock waves is accounting for the motion of the stone which causes a portion of the delivered shock waves to miss the stone, yielding no therapeutic benefit. Therefore identifying when the stone is not in focus would allow tissue to be spared without affecting fragmentation. The goal of this thesis is to investigate acoustic methods to track the stone in real-time during lithotripsy in order to minimize poorly-targeted shock waves. A relatively small number of low frequency ultrasound transducers were used in pulse-echo mode and a novel optimization routine based on time-of-flight triangulation is used to determine stone location. It was shown that the accuracy of the localization may be estimated without knowing the true stone location. This method performed well in preliminary experiments but the inclusion of tissue-like aberrating layers reduced the accuracy of the localization. Therefore a hybrid imaging technique employing DORT (Decomposition of the Time Reversal Operator) and the MUSIC (Multiple Signal Classification) algorithm was developed. This method was able to localize kidney stories to within a few millimeters even in the presence of an aberrating layer. This would be sufficient accuracy for targeting lithotripter shock waves. The conclusion of this work is that tracking kidney stones with low frequency ultrasound should be effective clinically.

  4. Symmetry of spherically converging shock waves through reflection, relating to the shock ignition fusion energy scheme.

    PubMed

    Davie, C J; Evans, R G

    2013-05-03

    We examine the properties of perturbed spherically imploding shock waves in an ideal fluid through the collapse, bounce, and development into an outgoing shock wave. We find broad conservation of the size and shape of ingoing and outgoing perturbations when viewed at the same radius. The outgoing shock recovers the velocity of the unperturbed shock outside the strongly distorted core. The results are presented in the context of the robustness of the shock ignition approach to inertial fusion energy.

  5. Implications of pressure diffusion for shock waves

    NASA Technical Reports Server (NTRS)

    Ram, Ram Bachan

    1989-01-01

    The report deals with the possible implications of pressure diffusion for shocks in one dimensional traveling waves in an ideal gas. From this new hypothesis all aspects of such shocks can be calculated except shock thickness. Unlike conventional shock theory, the concept of entropy is not needed or used. Our analysis shows that temperature rises near a shock, which is of course an experimental fact; however, it also predicts that very close to a shock, density increases faster than pressure. In other words, a shock itself is cold.

  6. Experimental research on crossing shock wave boundary layer interactions

    NASA Astrophysics Data System (ADS)

    Settles, G. S.; Garrison, T. J.

    1994-10-01

    An experimental research effort of the Penn State Gas Dynamics Laboratory on the subject of crossing shock wave boundary layer interactions is reported. This three year study was supported by AFOSR Grant 89-0315. A variety of experimental techniques were employed to study the above phenomena including planar laser scattering flowfield visualization, kerosene lampblack surface flow visualization, laser-interferometer skin friction surveys, wall static pressure measurements, and flowfield five-hole probe surveys. For a model configuration producing two intersecting shock waves, measurements were made for a range of oblique shock strengths at freestream Mach numbers of 3.0 and 3.85. Additionally, measurements were made at Mach 3.85 for a configuration producing three intersecting waves. The combined experimental dataset was used to formulate the first detailed flowfield models of the crossing-shock and triple-shock wave/boundary layer interactions. The structure of these interactions was found to be similar over a broad range of interaction strengths and is dominated by a large, separated, viscous flow region.

  7. Dynamics of Laser-Driven Shock Waves in Solid Targets

    NASA Astrophysics Data System (ADS)

    Aglitskiy, Y.; Karasik, M.; Velikovich, A. L.; Serlin, V.; Weaver, J.; Schmitt, A. J.; Obenschain, S. P.; Grun, J.; Metzler, N.; Zalesak, S. T.; Gardner, J. H.; Oh, J.; Harding, E. C.

    2009-11-01

    Accurate shock timing is a key issue of both indirect- and direct-drive laser fusions. The experiments on the Nike laser at NRL presented here were made possible by improvements in the imaging capability of our monochromatic x-ray diagnostics based on Bragg reflection from spherically curved crystals. Side-on imaging implemented on Nike makes it possible to observe dynamics of the shock wave and ablation front in laser-driven solid targets. We can choose to observe a sequence of 2D images or a continuous time evolution of an image resolved in one spatial dimension. A sequence of 300 ps snapshots taken using vanadium backlighter at 5.2 keV reveals propagation of a shock wave in a solid plastic target. The shape of the shock wave reflects the intensity distribution in the Nike beam. The streak records with continuous time resolution show the x-t trajectory of a laser-driven shock wave in a 10% solid density DVB foam.

  8. Shock wave-free interface interaction

    NASA Astrophysics Data System (ADS)

    Frolov, Roman; Minev, Peter; Krechetnikov, Rouslan

    2016-11-01

    The problem of shock wave-free interface interaction has been widely studied in the context of compressible two-fluid flows using analytical, experimental, and numerical techniques. While various physical effects and possible interaction patterns for various geometries have been identified in the literature, the effects of viscosity and surface tension are usually neglected in such models. In our study, we apply a novel numerical algorithm for simulation of viscous compressible two-fluid flows with surface tension to investigate the influence of these effects on the shock-interface interaction. The method combines together the ideas from Finite Volume adaptation of invariant domains preserving algorithm for systems of hyperbolic conservation laws by Guermond and Popov and ADI parallel solver for viscous incompressible NSEs by Guermond and Minev. This combination has been further extended to a two-fluid flow case, including surface tension effects. Here we report on a quantitative study of how surface tension and viscosity affect the structure of the shock wave-free interface interaction region.

  9. Interaction of strong converging shock wave with SF6 gas bubble

    NASA Astrophysics Data System (ADS)

    Liang, Yu; Zhai, ZhiGang; Luo, XiSheng

    2018-06-01

    Interaction of a strong converging shock wave with an SF6 gas bubble is studied, focusing on the effects of shock intensity and shock shape on interface evolution. Experimentally, the converging shock wave is generated by shock dynamics theory and the gas bubble is created by soap film technique. The post-shock flow field is captured by a schlieren photography combined with a high-speed video camera. Besides, a three-dimensional program is adopted to provide more details of flow field. After the strong converging shock wave impact, a wide and pronged outward jet, which differs from that in planar shock or weak converging shock condition, is derived from the downstream interface pole. This specific phenomenon is considered to be closely associated with shock intensity and shock curvature. Disturbed by the gas bubble, the converging shocks approaching the convergence center have polygonal shapes, and the relationship between shock intensity and shock radius verifies the applicability of polygonal converging shock theory. Subsequently, the motion of upstream point is discussed, and a modified nonlinear theory considering rarefaction wave and high amplitude effects is proposed. In addition, the effects of shock shape on interface morphology and interface scales are elucidated. These results indicate that the shape as well as shock strength plays an important role in interface evolution.

  10. Photoacoustic shock wave emission and cavitation from structured optical fiber tips

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohammadzadeh, M.; Gonzalez-Avila, S. R.; Ohl, C. D., E-mail: cdohl@ntu.edu.sg

    Photoacoustic waves generated at the tip of an optical fiber consist of a compressive shock wave followed by tensile diffraction waves. These tensile waves overlap along the fiber axis and form a cloud of cavitation bubbles. We demonstrate that shaping the fiber tip through micromachining alters the number and direction of the emitted waves and cavitation clouds. Shock wave emission and cavitation patterns from five distinctively shaped fiber tips have been studied experimentally and compared to a linear wave propagation model. In particular, multiple shock wave emission and generation of strong tension away from the fiber axis have been realizedmore » using modified fiber tips. These altered waveforms may be applied for novel microsurgery protocols, such as fiber-based histotripsy, by utilizing bubble-shock wave interaction.« less

  11. Focusing of shock waves induced by optical breakdown in water

    PubMed Central

    Sankin, Georgy N.; Zhou, Yufeng; Zhong, Pei

    2008-01-01

    The focusing of laser-generated shock waves by a truncated ellipsoidal reflector was experimentally and numerically investigated. Pressure waveform and distribution around the first (F1) and second foci (F2) of the ellipsoidal reflector were measured. A neodymium doped yttrium aluminum garnet laser of 1046 nm wavelength and 5 ns pulse duration was used to create an optical breakdown at F1, which generates a spherically diverging shock wave with a peak pressure of 2.1–5.9 MPa at 1.1 mm stand-off distance and a pulse width at half maximum of 36–65 ns. Upon reflection, a converging shock wave is produced which, upon arriving at F2, has a leading compressive wave with a peak pressure of 26 MPa and a zero-crossing pulse duration of 0.1 μs, followed by a trailing tensile wave of −3.3 MPa peak pressure and 0.2 μs pulse duration. The −6 dB beam size of the focused shock wave field is 1.6×0.2 mm2 along and transverse to the shock wave propagation direction. Formation of elongated plasmas at high laser energy levels limits the increase in the peak pressure at F2. General features in the waveform profile of the converging shock wave are in qualitative agreement with numerical simulations based on the Hamilton model. PMID:18537359

  12. [Renal hematomas after extracorporeal shock-wave lithotripsy (ESWL)].

    PubMed

    Pastor Navarro, Héctor; Carrión López, Pedro; Martínez Ruiz, Jesús; Pastor Guzmán, José Ma; Martínez Martín, Mariano; Virseda Rodríguez, Julio A

    2009-03-01

    The use of fragmentation due to shock- waves as a treatment of urinary stone was one of the most important therapeutics findings in the history of urology. It's the first election treatment for most of the calculus at renal and urethral location due to the fact that it is a low invasive treatment and it has a few number of complications, but this method also has a few negative side effects, it can caused a more or less important traumatic lesion at the organs which crosses the shock-waves, including the kidney where it can caused a small contusion or renal hematoma with different resolution and treatment. We reviewed 4815 extracorporeal shock-wave lithotripsy that we performed in our department in which we found six cases with subcapsular and perirenal hematoma which we followed up and treated. After the urological complications (pain, obstruction and infection) the renal and perirenal hematic collections are the most frequent adverse effects of shock-waves used in lithotripsy, these are related to the power of energy used and patient age. Between the years 1992-2007 we performed 4.815 extracorporeal shock-wave lithotripsy finding seven cases of severe hematoma, less then 1%. Treatment of these complications is usually not aggressive though sometimes it is necessary to perform surgical drainage and even nephrectomy.

  13. Shock waves and shock tubes; Proceedings of the Fifteenth International Symposium, Berkeley, CA, July 28-August 2, 1985

    NASA Technical Reports Server (NTRS)

    Bershader, D. (Editor); Hanson, R. (Editor)

    1986-01-01

    A detailed survey is presented of shock tube experiments, theoretical developments, and applications being carried out worldwide. The discussions explore shock tube physics and the related chemical, physical and biological science and technology. Extensive attention is devoted to shock wave phenomena in dusty gases and other multiphase and heterogeneous systems, including chemically reactive mixtures. Consideration is given to techniques for measuring, visualizing and theoretically modeling flowfield, shock wave and rarefaction wave characteristics. Numerical modeling is explored in terms of the application of computational fluid dynamics techniques to describing flowfields in shock tubes. Shock interactions and propagation, in both solids, fluids, gases and mixed media are investigated, along with the behavior of shocks in condensed matter. Finally, chemical reactions that are initiated as the result of passage of a shock wave are discussed, together with methods of controlling the evolution of laminar separated flows at concave corners on advanced reentry vehicles.

  14. Shock waves and shock tubes; Proceedings of the Fifteenth International Symposium, Berkeley, CA, July 28-August 2, 1985

    NASA Astrophysics Data System (ADS)

    Bershader, D.; Hanson, R.

    A detailed survey is presented of shock tube experiments, theoretical developments, and applications being carried out worldwide. The discussions explore shock tube physics and the related chemical, physical and biological science and technology. Extensive attention is devoted to shock wave phenomena in dusty gases and other multiphase and heterogeneous systems, including chemically reactive mixtures. Consideration is given to techniques for measuring, visualizing and theoretically modeling flowfield, shock wave and rarefaction wave characteristics. Numerical modeling is explored in terms of the application of computational fluid dynamics techniques to describing flowfields in shock tubes. Shock interactions and propagation, in both solids, fluids, gases and mixed media are investigated, along with the behavior of shocks in condensed matter. Finally, chemical reactions that are initiated as the result of passage of a shock wave are discussed, together with methods of controlling the evolution of laminar separated flows at concave corners on advanced reentry vehicles.

  15. The reflection of an ionized shock wave

    NASA Astrophysics Data System (ADS)

    Asakura, Fumioki; Corli, Andrea

    2018-03-01

    In a previous paper, we studied the thermodynamic and kinetic theory for an ionized gas, in one space dimension; in this paper, we provide an application of those results to the reflection of a shock wave in an electromagnetic shock tube. Under some reasonable limitations, which fully agree with experimental data, we prove that both the incident and the reflected shock waves satisfy the Lax entropy conditions; this result holds even outside genuinely nonlinear regions, which are present in the model. We show that the temperature increases in a significant way behind the incident shock front but the degree of ionization does not undergo a similar growth. On the contrary, the degree of ionization increases substantially behind the reflected shock front. We explain these phenomena by means of the concavity of the Hugoniot loci. Therefore, our results not only fit perfectly but explain what was remarked in experiments.

  16. Large-Amplitude Electrostatic Waves Observed at a Supercritical Interplanetary Shock

    NASA Technical Reports Server (NTRS)

    Wilson, L. B., III; Cattell, C. A.; Kellogg, P. J.; Goetz, K.; Kersten, K.; Kasper, J. C.; Szabo, A.; Wilber, M.

    2010-01-01

    We present the first observations at an interplanetary shock of large-amplitude (> 100 mV/m pk-pk) solitary waves and large-amplitude (approx.30 mV/m pk-pk) waves exhibiting characteristics consistent with electron Bernstein waves. The Bernstein-like waves show enhanced power at integer and half-integer harmonics of the cyclotron frequency with a broadened power spectrum at higher frequencies, consistent with the electron cyclotron drift instability. The Bernstein-like waves are obliquely polarized with respect to the magnetic field but parallel to the shock normal direction. Strong particle heating is observed in both the electrons and ions. The observed heating and waveforms are likely due to instabilities driven by the free energy provided by reflected ions at this supercritical interplanetary shock. These results offer new insights into collisionless shock dissipation and wave-particle interactions in the solar wind.

  17. Shock wave absorber having a deformable liner

    DOEpatents

    Youngdahl, C.K.; Wiedermann, A.H.; Shin, Y.W.; Kot, C.A.; Ockert, C.E.

    1983-08-26

    This invention discloses a shock wave absorber for a piping system carrying liquid. The absorber has a plastically deformable liner defining the normal flow boundary for an axial segment of the piping system, and a nondeformable housing is spaced outwardly from the liner so as to define a gas-tight space therebetween. The flow capacity of the liner generally corresponds to the flow capacity of the piping system line, but the liner has a noncircular cross section and extends axially of the piping system line a distance between one and twenty times the diameter thereof. Gas pressurizes the gas-tight space equal to the normal liquid pressure in the piping system. The liner has sufficient structural capacity to withstand between one and one-half and two times this normal liquid pressures; but at greater pressures it begins to plastically deform initially with respect to shape to a more circular cross section, and then with respect to material extension by circumferentially stretching the wall of the liner. A high energy shock wave passing through the liner thus plastically deforms the liner radially into the gas space and progressively also as needed in the axial direction of the shock wave to minimize transmission of the shock wave beyond the absorber.

  18. Numerical Simulations of Shock Wave Refraction at Inclined Gas Contact Discontinuity

    ERIC Educational Resources Information Center

    Bulat, Pavel V.; Volkov, Konstantin N.

    2016-01-01

    When a shock wave interacts with a contact discontinuity, there may appear a reflected rarefaction wave, a deflected contact discontinuity and a refracted supersonic shock. The numerical simulation of shock wave refraction at a plane contact discontinuity separating gases with different densities is performed. Euler equations describing inviscid…

  19. Converging shock wave focusing and interaction with a target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nitishinskiy, M.; Efimov, S.; Antonov, O.

    2016-04-15

    Converging shock waves in liquids can be used efficiently in the research of the extreme state of matter and in various applications. In this paper, the recent results related to the interaction of a shock wave with plasma preliminarily formed in the vicinity of the shock wave convergence are presented. The shock wave is produced by the underwater electrical explosion of a spherical wire array. The plasma is generated prior to the shock wave's arrival by a low-pressure gas discharge inside a quartz capillary placed at the equatorial plane of the array. Analysis of the Stark broadening of H{sub α}more » and H{sub β} spectral lines and line-to-continuum ratio, combined with the ratio of the relative intensities of carbon C III/C II and silicon Si III/Si II lines, were used to determine the plasma density and temperature evolution. It was found that during the first ∼200 ns with respect to the beginning of the plasma compression by the shock wave and when the spectral lines are resolved, the plasma density increases from 2 × 10{sup 17 }cm{sup −3} to 5 × 10{sup 17 }cm{sup −3}, while the temperature remains at the same value of 3–4 eV. Further, following the model of an adiabatically imploding capillary, the plasma density increases >10{sup 19 }cm{sup −3}, leading to the continuum spectra obtained experimentally, and the plasma temperature >30 eV at radii of compression of ≤20 μm. The data obtained indicate that the shock wave generated by the underwater electrical explosion of a spherical wire array retains its uniformity during the main part of its convergence.« less

  20. Various continuum approaches for studying shock wave structure in carbon dioxide

    NASA Astrophysics Data System (ADS)

    Alekseev, I. V.; Kosareva, A. A.; Kustova, E. V.; Nagnibeda, E. A.

    2018-05-01

    Shock wave structure in carbon dioxide is studied using different continuum models within the framework of one-temperature thermal equilibrium flow description. Navier-Stokes and Euler equations as well as commonly used Rankine-Hugoniot equations with different specific heat ratios are used to find the gas-dynamic parameters behind the shock wave. The accuracy of the Rankine-Hugoniot relations in polyatomic gases is assessed, and it is shown that they give a considerable error in the predicted values of fluid-dynamic variables. The effect of bulk viscosity on the shock wave structure in CO2 is evaluated. Taking into account bulk viscosity yields a significant increase in the shock wave width; for the complete model, the shock wave thickness varies non-monotonically with the Mach number.

  1. Two-zone elastic-plastic single shock waves in solids.

    PubMed

    Zhakhovsky, Vasily V; Budzevich, Mikalai M; Inogamov, Nail A; Oleynik, Ivan I; White, Carter T

    2011-09-23

    By decoupling time and length scales in moving window molecular dynamics shock-wave simulations, a new regime of shock-wave propagation is uncovered characterized by a two-zone elastic-plastic shock-wave structure consisting of a leading elastic front followed by a plastic front, both moving with the same average speed and having a fixed net thickness that can extend to microns. The material in the elastic zone is in a metastable state that supports a pressure that can substantially exceed the critical pressure characteristic of the onset of the well-known split-elastic-plastic, two-wave propagation. The two-zone elastic-plastic wave is a general phenomenon observed in simulations of a broad class of crystalline materials and is within the reach of current experimental techniques.

  2. The physics of interstellar shock waves

    NASA Technical Reports Server (NTRS)

    Shull, J. Michael; Draine, Bruce T.

    1987-01-01

    This review discusses the observations and theoretical models of interstellar shock waves, in both diffuse cloud and molecular cloud environments. It summarizes the relevant gas dynamics, atomic, molecular and grain processes, radiative transfer, and physics of radiative and magnetic precursors in shock models. It then describes the importance of shocks for observations, diagnostics, and global interstellar dynamics. It concludes with current research problems and data needs for atomic, molecular and grain physics.

  3. Nonplanar dust-ion acoustic shock waves with transverse perturbation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue Jukui

    2005-01-01

    The nonlinear dust-ion acoustic shock waves in dusty plasmas with the combined effects of bounded cylindrical/spherical geometry, the transverse perturbation, the dust charge fluctuation, and the nonthermal electrons are studied. Using the perturbation method, a cylindrical/spherical Kadomtsev-Petviashvili Burgers equation that describes the dust-ion acoustic shock waves is deduced. A particular solution of the cylindrical/spherical Kadomtsev-Petviashvili Burgers equation is also obtained. It is shown that the dust-ion acoustic shock wave propagating in cylindrical/spherical geometry with transverse perturbation will be slightly deformed as time goes on.

  4. A numerical study of shock wave reflections on low density foam

    NASA Astrophysics Data System (ADS)

    Baer, M. R.

    1992-06-01

    A continuum mixture theory is used to describe shock wave reflections on low density open-cell polyurethane foam. Numerical simulations are compared to the shock tube experiments of Skews (1991) and detailed wave fields are shown of a shock wave interacting with a layer of foam adjacent to a rigid wall boundary. These comparisons demonstrate that a continuum mixture theory describes well the shock interactions with low density foam.

  5. Upstream waves and particles /Tutorial Lecture/. [from shocks in interplanetary space

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Hoppe, M. M.

    1983-01-01

    The plasma waves, MHD waves, energetic electrons and ions associated with the proximity of the region upstream from terrestrial, planetary and interplanetary shocks are discussed in view of observations and current theories concerning their origin. These waves cannot be separated from the study of shock structure. Since the shocks are supersonic, they continually overtake any ULF waves created in the plasma in front of the shock. The upstream particles and waves are also of intrinsic interest because they provide a plasma laboratory for the study of wave-particle interactions in a plasma which, at least at the earth, is accessible to sophisticated probing. Insight may be gained into interstellar medium cosmic ray acceleration through the study of these phenomena.

  6. Does extracorporeal shock wave lithotripsy cause hearing impairment in children?

    PubMed

    Tuncer, Murat; Sahin, Cahit; Yazici, Ozgur; Kafkasli, Alper; Turk, Akif; Erdogan, Banu A; Faydaci, Gokhan; Sarica, Kemal

    2015-03-01

    We evaluated the possible effects of noise created by high energy shock waves on the hearing function of children treated with extracorporeal shock wave lithotripsy. A total of 65 children with normal hearing function were included in the study. Patients were divided into 3 groups, ie those becoming stone-free after 1 session of shock wave lithotripsy (group 1, 22 children), those requiring 3 sessions to achieve stone-free status (group 2, 21) and healthy children/controls (group 3, 22). Extracorporeal shock wave lithotripsy was applied with patients in the supine position with a 90-minute frequency and a total of 2,000 shock waves in each session (Compact Sigma, Dornier MedTech, Wessling, Germany). Second energy level was used with a maximum energy value of 58 joules per session in all patients. Hearing function and possible cochlear impairment were evaluated by transient evoked otoacoustic emissions test at 1.0, 1.4, 2.0, 2.8 and 4.0 kHz frequencies before the procedure, 2 hours later, and 1 month after completion of the first shock wave lithotripsy session in groups 1 and 2. In controls the same evaluation procedures were performed at the beginning of the study and 7 weeks later. Regarding transient evoked otoacoustic emissions data, in groups 1 and 2 there was no significant alteration in values obtained after shock wave lithotripsy compared to values obtained at the beginning of the study, similar to controls. A well planned shock wave lithotripsy procedure is a safe and effective treatment in children with urinary stones and causes no detectable harmful effect on hearing function. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  7. Bubbles with shock waves and ultrasound: a review.

    PubMed

    Ohl, Siew-Wan; Klaseboer, Evert; Khoo, Boo Cheong

    2015-10-06

    The study of the interaction of bubbles with shock waves and ultrasound is sometimes termed 'acoustic cavitation'. It is of importance in many biomedical applications where sound waves are applied. The use of shock waves and ultrasound in medical treatments is appealing because of their non-invasiveness. In this review, we present a variety of acoustics-bubble interactions, with a focus on shock wave-bubble interaction and bubble cloud phenomena. The dynamics of a single spherically oscillating bubble is rather well understood. However, when there is a nearby surface, the bubble often collapses non-spherically with a high-speed jet. The direction of the jet depends on the 'resistance' of the boundary: the bubble jets towards a rigid boundary, splits up near an elastic boundary, and jets away from a free surface. The presence of a shock wave complicates the bubble dynamics further. We shall discuss both experimental studies using high-speed photography and numerical simulations involving shock wave-bubble interaction. In biomedical applications, instead of a single bubble, often clouds of bubbles appear (consisting of many individual bubbles). The dynamics of such a bubble cloud is even more complex. We shall show some of the phenomena observed in a high-intensity focused ultrasound (HIFU) field. The nonlinear nature of the sound field and the complex inter-bubble interaction in a cloud present challenges to a comprehensive understanding of the physics of the bubble cloud in HIFU. We conclude the article with some comments on the challenges ahead.

  8. Jet formation of SF6 bubble induced by incident and reflected shock waves

    NASA Astrophysics Data System (ADS)

    Zhu, Yuejin; Yu, Lei; Pan, Jianfeng; Pan, Zhenhua; Zhang, Penggang

    2017-12-01

    The computational results of two different cases on the evolution of the shock-SF6 heavy bubble interaction are presented. The shock focusing processes and jet formation mechanisms are analyzed by using the high resolution of computation schemes, and the influence of reflected shock waves is also investigated. It is concluded that there are two steps in the shock focusing process behind the incident shock wave, and the density and pressure values increase distinctly when the shock focusing process is completed. The local high pressure and vorticities in the vicinity of the downstream pole can propel the formation of the jet behind the incident shock wave. In addition, the gas is with the rightward velocity before the reflected shock wave impinges on the bubble; therefore, the evolutions of the waves and the bubble are more complicated when the reflected shock wave impinges on the SF6 bubble. Furthermore, the different end wall distances would affect the deformation degree of the bubble before the interaction of the reflected shock wave; therefore, the different left jet formation processes are found after the impingement of reflected shock waves when L = 27 mm. The local high pressure zones in the vicinity of the left bubble interface and the impingement of different shock waves can induce the local gas to shift the rightward velocity to the leftward velocity, which can further promote the formation of jets.

  9. Plasma wave phenomena at interplanetary shocks observed by the Ulysses URAP experiment. [Unified Radio and Plasma Waves

    NASA Technical Reports Server (NTRS)

    Lengyel-Frey, D.; Macdowall, R. J.; Stone, R. G.; Hoang, S.; Pantellini, F.; Harvey, C.; Mangeney, A.; Kellogg, P.; Thiessen, J.; Canu, P.

    1992-01-01

    We present Ulysses URAP observations of plasma waves at seven interplanetary shocks detected between approximately 1 and 3 AU. The URAP data allows ready correlation of wave phenomena from .1 Hz to 1 MHz. Wave phenomena observed in the shock vicinity include abrupt changes in the quasi-thermal noise continuum, Langmuir wave activity, ion acoustic noise, whistler waves and low frequency electrostatic waves. We focus on the forward/reverse shock pair of May 27, 1991 to demonstrate the characteristics of the URAP data.

  10. An electromagnetic railgun accelerator: a generator of strong shock waves in channels

    NASA Astrophysics Data System (ADS)

    Bobashev, S. V.; Zhukov, B. G.; Kurakin, R. O.; Ponyaev, S. A.; Reznikov, B. I.

    2014-11-01

    Processes that accompany the generation of strong shock waves during the acceleration of a free plasma piston (PP) in the electromagnetic railgun channel have been experimentally studied. The formation of shock waves in the railgun channel and the motion of a shock-wave-compressed layer proceed (in contrast to the case of a classical shock tube) in a rather strong electric field (up to 300 V/cm). The experiments were performed at the initial gas pressures in the channel ranging from 25 to 500 Torr. At 25 Torr, the shock-wave Mach numbers reached 32 in argon and 16 in helium. At high concentrations of charged particles behind the shock wave, the electric field causes the passage of a part of the discharge current through the volume of the shock-wave-compressed layer, which induces intense glow comparable with that of the PP glow.

  11. Extracorporeal shock wave therapy in orthopedics, basic research, and clinical implications

    NASA Astrophysics Data System (ADS)

    Hausdorf, Joerg; Jansson, Volkmar; Maier, Markus; Delius, Michael

    2005-04-01

    The molecular events following shock wave treatment of bone are widely unknown. Nevertheless patients with osteonecrosis and non unions are already treated partly successful with shock waves. Concerning the first indication, the question of the permeation of the shock wave into the bone was addressed. Therefore shockwaves were applied to porcine femoral heads and the intraosseous pressure was measured. A linear correlation of the pressure to the intraosseous distance was found. Approximately 50% of the pressure are still measurable 10 mm inside the femoral head. These findings should encourage continued shock wave research on this indication. Concerning the second indication (non union), osteoblasts were subjected to 250 or 500 shock waves at 25 kV. After 24, 48, and 72 h the levels of the bone and vascular growth factors bFGF, TGFbeta1, and VEGF were examined. After 24 h there was a significant increase in bFGF levels (p<0.05) with significant correlation (p<0.05) to the number of impulses. TGFbeta1, and VEGF showed no significant changes. This may be one piece in the cascade of new bone formation following shock wave treatment and may lead to a more specific application of shock waves in orthopedic surgery.

  12. Wave Phenomena Associated with Interplanetary Shocks

    NASA Astrophysics Data System (ADS)

    Golla, T.; MacDowall, R. J.

    2016-12-01

    Although laboratory and space-based experiments were used for the last several decades to study the collisionless shocks, several questions remain less than fully understood. These include: (1) what type of wave-particle energy dissipation is responsible for the shock formation, (2) what type of in-situ waves occur in the upstream, transition and downstream regions, and (3) which physical processes are responsible for the excitation of the fundamental and second harmonic solar type II radio emissions. In this study, we will address these issues using (1) the in situ and radio wave data obtained by the WAVES experiments of the STEREO A and B, and WIND spacecraft, especially the high time resolution data from the time domain samplers (TDS) of these WAVES experiments and (2) the Fourier, wavelet and higher order spectral analysis techniques. Using the in situ wave data, especially the high time resolution data observed during the local type II bursts, we will identify the nonlinear processes associated with these solar radio emissions. Comparing the estimated radio intensities by the known emission mechanisms for the observed peak Langmuir wave intensities with the observed peak radio intensities of type II bursts, we will identify the emission mechanisms.

  13. Intense plasma waves at and near the solar wind termination shock.

    PubMed

    Gurnett, D A; Kurth, W S

    2008-07-03

    Plasma waves are a characteristic feature of shocks in plasmas, and are produced by non-thermal particle distributions that develop in the shock transition layer. The electric fields of these waves have a key role in dissipating energy in the shock and driving the particle distributions back towards thermal equilibrium. Here we report the detection of intense plasma-wave electric fields at the solar wind termination shock. The observations were obtained from the plasma-wave instrument on the Voyager 2 spacecraft. The first evidence of the approach to the shock was the detection of upstream electron plasma oscillations on 1 August 2007 at a heliocentric radial distance of 83.4 au (1 au is the Earth-Sun distance). These narrowband oscillations continued intermittently for about a month until, starting on 31 August 2007 and ending on 1 September 2007, a series of intense bursts of broadband electrostatic waves signalled a series of crossings of the termination shock at a heliocentric radial distance of 83.7 au. The spectrum of these waves is quantitatively similar to those observed at bow shocks upstream of Jupiter, Saturn, Uranus and Neptune.

  14. Endoscopically-controlled electrohydraulic intracorporeal shock wave lithotripsy (EISL) of salivary stones.

    PubMed

    Königsberger, R; Feyh, J; Goetz, A; Kastenbauer, E

    1993-02-01

    Twenty-nine patients with salivary stones were treated with the endoscopically-controlled electrohydraulic shock wave lithotripsy (EISL). This new minimally invasive treatment of sialolithiasis is performed under local anesthesia on an outpatient basis with little inconvenience to the patient. For endoscopy, a flexible fibroscope with an additional probe to generate shock waves is placed into the submandibular duct and advanced until the stone is identified. For shock wave-induced stone disintegration, the probe electrode must be placed 1 mm in front of the concrement. The shock waves are generated by a sparkover at the tip of the probe. By means of the endoscopically-controlled shock wave lithotripsy it was possible to achieve complete stone fragmentation in 20 out of 29 patients without serious side effects. In three patients, only partial stone fragmentation could be achieved due to the stone quality. Endoscopically-controlled electrohydraulic intracorporeal shock wave lithotripsy represents a novel minimally invasive therapy for endoscopically accessible salivary gland stones. The advantage in comparison to the endoscopically-controlled laser lithotripsy will be discussed.

  15. Relativistic Shock Waves in Viscous Gluon Matter

    NASA Astrophysics Data System (ADS)

    Bouras, I.; Molnár, E.; Niemi, H.; Xu, Z.; El, A.; Fochler, O.; Greiner, C.; Rischke, D. H.

    2009-07-01

    We solve the relativistic Riemann problem in viscous gluon matter employing a microscopic parton cascade. We demonstrate the transition from ideal to viscous shock waves by varying the shear viscosity to entropy density ratio η/s from zero to infinity. We show that an η/s ratio larger than 0.2 prevents the development of well-defined shock waves on time scales typical for ultrarelativistic heavy-ion collisions. Comparisons with viscous hydrodynamic calculations confirm our findings.

  16. Shock-wave studies of anomalous compressibility of glassy carbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molodets, A. M., E-mail: molodets@icp.ac.ru; Golyshev, A. A.; Savinykh, A. S.

    2016-02-15

    The physico-mechanical properties of amorphous glassy carbon are investigated under shock compression up to 10 GPa. Experiments are carried out on the continuous recording of the mass velocity of compression pulses propagating in glassy carbon samples with initial densities of 1.502(5) g/cm{sup 3} and 1.55(2) g/cm{sup 3}. It is shown that, in both cases, a compression wave in glassy carbon contains a leading precursor with amplitude of 0.135(5) GPa. It is established that, in the range of pressures up to 2 GPa, a shock discontinuity in glassy carbon is transformed into a broadened compression wave, and shock waves are formedmore » in the release wave, which generally means the anomalous compressibility of the material in both the compression and release waves. It is shown that, at pressure higher than 3 GPa, anomalous behavior turns into normal behavior, accompanied by the formation of a shock compression wave. In the investigated area of pressure, possible structural changes in glassy carbon under shock compression have a reversible character. A physico-mechanical model of glassy carbon is proposed that involves the equation of state and a constitutive relation for Poisson’s ratio and allows the numerical simulation of physico-mechanical and thermophysical properties of glassy carbon of different densities in the region of its anomalous compressibility.« less

  17. Jet oscillations caused by vorticity interactions with shock waves

    NASA Technical Reports Server (NTRS)

    Parthasarathy, S. P.; Harstad, K.; Massier, P. F.

    1981-01-01

    A linear theory is developed for the amplification of disturbances along a jet containing shock waves. The theory indicates that near grazing angles (i.e., wave angles near 90 deg) horizontal vorticity is greatly amplified after passing through the two shock waves that exist in a shock cell. The cumulative amplification and the mode that is amplified most can be obtained if the changes in shock parameters from cell to cell are known. Rapid rates of growth of disturbances are exhibited by shadowgraphs and rates of angular displacement of about 10 are observed. The linear two-dimensional theory also indicates that such rates of amplification occur, and that the behavior of a two-dimensional jet is qualitatively similar to that of a round jet.

  18. Generalized Sagdeev potential theory for shock waves modeling

    NASA Astrophysics Data System (ADS)

    Akbari-Moghanjoughi, M.

    2017-05-01

    In this paper, we develop an innovative approach to study the shock wave propagation using the Sagdeev potential method. We also present an analytical solution for Korteweg de Vries Burgers (KdVB) and modified KdVB equation families with a generalized form of the nonlinearity term which agrees well with the numerical one. The novelty of the current approach is that it is based on a simple analogy of the particle in a classical potential with the variable particle energy providing one with a deeper physical insight into the problem and can easily be extended to more complex physical situations. We find that the current method well describes both monotonic and oscillatory natures of the dispersive-diffusive shock structures in different viscous fluid configurations. It is particularly important that all essential parameters of the shock structure can be deduced directly from the Sagdeev potential in small and large potential approximation regimes. Using the new method, we find that supercnoidal waves can decay into either compressive or rarefactive shock waves depending on the initial wave amplitude. Current investigation provides a general platform to study a wide range of phenomena related to nonlinear wave damping and interactions in diverse fluids including plasmas.

  19. Investigation of shock-acoustic-wave interaction in transonic flow

    NASA Astrophysics Data System (ADS)

    Feldhusen-Hoffmann, Antje; Statnikov, Vladimir; Klaas, Michael; Schröder, Wolfgang

    2018-01-01

    The buffet flow field around supercritical airfoils is dominated by self-sustained shock wave oscillations on the suction side of the wing. Theories assume that this unsteadiness is driven by an acoustic feedback loop of disturbances in the flow field downstream of the shock wave whose upstream propagating part is generated by acoustic waves. Therefore, in this study, first variations in the sound pressure level of the airfoil's trailing-edge noise during a buffet cycle, which force the shock wave to move upstream and downstream, are detected, and then, the sensitivity of the shock wave oscillation during buffet to external acoustic forcing is analyzed. Time-resolved standard and tomographic particle-image velocimetry (PIV) measurements are applied to investigate the transonic buffet flow field over a supercritical DRA 2303 airfoil. The freestream Mach number is M_{∞} = 0.73, the angle of attack is α = {3.5}°, and the chord-based Reynolds number is Re_c = 1.9× 10^6. The perturbed Lamb vector field, which describes the major acoustic source term of trailing-edge noise, is determined from the tomographic PIV data. Subsequently, the buffet flow field is disturbed by an artificially generated acoustic field, the acoustic intensity of which is comparable to the Lamb vector that is determined from the PIV data. The results confirm the hypothesis that buffet is driven by an acoustic feedback loop and show the shock wave oscillation to directly respond to external acoustic forcing. That is, the amplitude modulation frequency of the artificial acoustic perturbation determines the shock oscillation.

  20. Fundamental structure of steady plastic shock waves in metals

    NASA Astrophysics Data System (ADS)

    Molinari, A.; Ravichandran, G.

    2004-02-01

    The propagation of steady plane shock waves in metallic materials is considered. Following the constitutive framework adopted by R. J. Clifton [Shock Waves and the Mechanical Properties of Solids, edited by J. J. Burke and V. Weiss (Syracuse University Press, Syracuse, N.Y., 1971), p. 73] for analyzing elastic-plastic transient waves, an analytical solution of the steady state propagation of plastic shocks is proposed. The problem is formulated in a Lagrangian setting appropriate for large deformations. The material response is characterized by a quasistatic tensile (compression) test (providing the isothermal strain hardening law). In addition the elastic response is determined up to second order elastic constants by ultrasonic measurements. Based on this simple information, it is shown that the shock kinetics can be quite well described for moderate shocks in aluminum with stress amplitude up to 10 GPa. Under the later assumption, the elastic response is assumed to be isentropic, and thermomechanical coupling is neglected. The model material considered here is aluminum, but the analysis is general and can be applied to any viscoplastic material subjected to moderate amplitude shocks. Comparisons with experimental data are made for the shock velocity, the particle velocity and the shock structure. The shock structure is obtained by quadrature of a first order differential equation, which provides analytical results under certain simplifying assumptions. The effects of material parameters and loading conditions on the shock kinetics and shock structure are discussed. The shock width is characterized by assuming an overstress formulation for the viscoplastic response. The effects on the shock structure of strain rate sensitivity are analyzed and the rationale for the J. W. Swegle and D. E. Grady [J. Appl. Phys. 58, 692 (1985)] universal scaling law for homogeneous materials is explored. Finally, the ability to deduce information on the viscoplastic response of

  1. Laser Light Scattering by Shock Waves

    NASA Technical Reports Server (NTRS)

    Panda, J.; Adamovsky, G.

    1995-01-01

    Scattering of coherent light as it propagates parallel to a shock wave, formed in front of a bluff cylindrical body placed in a supersonic stream, is studied experimentally and numerically. Two incident optical fields are considered. First, a large diameter collimated beam is allowed to pass through the shock containing flow. The light intensity distribution in the resultant shadowgraph image, measured by a low light CCD camera, shows well-defined fringes upstream and downstream of the shadow cast by the shock. In the second situation, a narrow laser beam is brought to a grazing incidence on the shock and the scattered light, which appears as a diverging sheet from the point of interaction, is visualized and measured on a screen placed normal to the laser path. Experiments are conducted on shocks formed at various free-stream Mach numbers, M, and total pressures, P(sub 0). It is found that the widths of the shock shadows in a shadowgraph image become independent of M and P(sub 0) when plotted against the jump in the refractive index, (Delta)n, created across the shock. The total scattered light measured from the narrow laser beam and shock interaction also follows the same trend. In the numerical part of the study, the shock is assumed to be a 'phase object', which introduces phase difference between the upstream and downstream propagating parts of the light disturbances. For a given shape and (Delta)n of the bow shock the phase and amplitude modulations are first calculated by ray tracing. The wave front is then propagated to the screen using the Fresnet diffraction equation. The calculated intensity distribution, for both of the incident optical fields, shows good agreement with the experimental data.

  2. Radial extracorporeal shock wave treatment harms developing chicken embryos

    PubMed Central

    Kiessling, Maren C.; Milz, Stefan; Frank, Hans-Georg; Korbel, Rüdiger; Schmitz, Christoph

    2015-01-01

    Radial extracorporeal shock wave treatment (rESWT) has became one of the best investigated treatment modalities for cellulite, including the abdomen as a treatment site. Notably, pregnancy is considered a contraindication for rESWT, and concerns have been raised about possible harm to the embryo when a woman treated with rESWT for cellulite is not aware of her pregnancy. Here we tested the hypothesis that rESWT may cause serious physical harm to embryos. To this end, chicken embryos were exposed in ovo to various doses of radial shock waves on either day 3 or day 4 of development, resembling the developmental stage of four- to six-week-old human embryos. We found a dose-dependent increase in the number of embryos that died after radial shock wave exposure on either day 3 or day 4 of development. Among the embryos that survived the shock wave exposure a few showed severe congenital defects such as missing eyes. Evidently, our data cannot directly be used to draw conclusions about potential harm to the embryo of a pregnant woman treated for cellulite with rESWT. However, to avoid any risks we strongly recommend applying radial shock waves in the treatment of cellulite only if a pregnancy is ruled out. PMID:25655309

  3. The Characteristic Response of Whistler Mode Waves to Interplanetary Shocks

    DOE PAGES

    Yue, Chao; Chen, Lunjin; Bortnik, Jacob; ...

    2017-09-29

    Magnetospheric whistler mode waves play a key role in regulating the dynamics of the electron radiation belts. Recent satellite observations indicate a significant influence of interplanetary (IP) shocks on whistler mode wave power in the inner magnetosphere. In this study, we statistically investigate the response of whistler mode chorus and plasmaspheric hiss to IP shocks based on Van Allen Probes and THEMIS satellite observations. Immediately after the IP shock arrival, chorus wave power is usually intensified, often at postmidnight to prenoon sector, while plasmaspheric hiss wave power predominantly decreases near the dayside but intensifies near the nightside. We conclude thatmore » chorus wave intensification outside the plasmasphere is probably associated with the suprathermal electron flux enhancement caused by the IP shock. Through a simple ray tracing modeling assuming the scenario that plasmaspheric hiss is originated from chorus, we find that the solar wind dynamic pressure increase changes the magnetic field configuration to favor ray penetration in the nightside and promote ray refraction away from the dayside, potentially explaining the magnetic local time–dependent responses of plasmaspheric hiss waves following IP shock arrivals.« less

  4. The Characteristic Response of Whistler Mode Waves to Interplanetary Shocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, Chao; Chen, Lunjin; Bortnik, Jacob

    Magnetospheric whistler mode waves play a key role in regulating the dynamics of the electron radiation belts. Recent satellite observations indicate a significant influence of interplanetary (IP) shocks on whistler mode wave power in the inner magnetosphere. In this study, we statistically investigate the response of whistler mode chorus and plasmaspheric hiss to IP shocks based on Van Allen Probes and THEMIS satellite observations. Immediately after the IP shock arrival, chorus wave power is usually intensified, often at postmidnight to prenoon sector, while plasmaspheric hiss wave power predominantly decreases near the dayside but intensifies near the nightside. We conclude thatmore » chorus wave intensification outside the plasmasphere is probably associated with the suprathermal electron flux enhancement caused by the IP shock. Through a simple ray tracing modeling assuming the scenario that plasmaspheric hiss is originated from chorus, we find that the solar wind dynamic pressure increase changes the magnetic field configuration to favor ray penetration in the nightside and promote ray refraction away from the dayside, potentially explaining the magnetic local time–dependent responses of plasmaspheric hiss waves following IP shock arrivals.« less

  5. Kidney damage in extracorporeal shock wave lithotripsy: a numerical approach for different shock profiles.

    PubMed

    Weinberg, Kerstin; Ortiz, Michael

    2009-08-01

    In shock-wave lithotripsy--a medical procedure to fragment kidney stones--the patient is subjected to hypersonic waves focused at the kidney stone. Although this procedure is widely applied, the physics behind this medical treatment, in particular the question of how the injuries to the surrounding kidney tissue arise, is still under investigation. To contribute to the solution of this problem, two- and three-dimensional numerical simulations of a human kidney under shock-wave loading are presented. For this purpose a constitutive model of the bio-mechanical system kidney is introduced, which is able to map large visco-elastic deformations and, in particular, material damage. The specific phenomena of cavitation induced oscillating bubbles is modeled here as an evolution of spherical pores within the soft kidney tissue. By means of large scale finite element simulations, we study the shock-wave propagation into the kidney tissue, adapt unknown material parameters and analyze the resulting stress states. The simulations predict localized damage in the human kidney in the same regions as observed in animal experiments. Furthermore, the numerical results suggest that in first instance the pressure amplitude of the shock wave impulse (and not so much its exact time-pressure profile) is responsible for damaging the kidney tissue.

  6. Shock wave oscillation driven by turbulent boundary layer fluctuations

    NASA Technical Reports Server (NTRS)

    Plotkin, K. J.

    1972-01-01

    Pressure fluctuations due to the interaction of a shock wave with a turbulent boundary layer were investigated. A simple model is proposed in which the shock wave is convected from its mean position by velocity fluctuations in the turbulent boundary layer. Displacement of the shock is assumed limited by a linear restoring mechanism. Predictions of peak root mean square pressure fluctuation and spectral density are in excellent agreement with available experimental data.

  7. Arrhythmia during extracorporeal shock wave lithotripsy.

    PubMed

    Zeng, Z R; Lindstedt, E; Roijer, A; Olsson, S B

    1993-01-01

    A prospective study of arrhythmia during extracorporeal shock wave lithotripsy (ESWL) was performed in 50 patients, using an EDAP LT01 piezoelectric lithotriptor. The 12-lead standard ECG was recorded continuously for 10 min before and during treatment. One or more atrial and/or ventricular ectopic beats occurred during ESWL in 15 cases (30%). The occurrence of arrhythmia was similar during right-sided and left-sided treatment. One patient developed multifocal ventricular premature beats and ventricular bigeminy; another had cardiac arrest for 13.5 s. It was found that various irregularities of the heart rhythm can be caused even by treatment with a lithotriptor using piezoelectric energy to create the shock wave. No evidence was found, however, that the shock wave itself rather than vagal activation and the action of sedo-analgesia was the cause of the arrhythmia. For patients with severe underlying heart disease and a history of complex arrhythmia, we suggest that the ECG be monitored during treatment. In other cases, we have found continuous monitoring of oxygen saturation and pulse rate with a pulse oximeter to be perfectly reliable for raising the alarm when depression of respiration and vaso-vagal reactions occur.

  8. Shock wave and flame front induced detonation in a rapid compression machine

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Qi, Y.; Xiang, S.; Mével, R.; Wang, Z.

    2018-05-01

    The present study focuses on one mode of detonation initiation observed in a rapid compression machine (RCM). This mode is referred to as shock wave and flame front-induced detonation (SWFID). Experimental high-speed imaging and two-dimensional numerical simulations with skeletal chemistry are combined to unravel the dominant steps of detonation initiation under SWFID conditions. It is shown that the interaction between the shock wave generated by the end-gas auto-ignition and the spherical flame creates a region of high pressure and temperature which enables the acceleration of the flame front and the detonation onset. The experimental observation lacks adequate spatial and temporal resolution despite good reproducibility of the detonation onset. Based on the numerical results, phenomenological interpretation of the event within the framework of shock wave refraction indicates that the formation of a free-precursor shock wave at the transition between regular and irregular refraction may be responsible for detonation onset. The present results along with previous findings on shock wave reflection-induced detonation in the RCM indicate that super-knock occurs after the interaction of the shock wave generated by end-gas auto-ignition with the RCM walls, preignition flame, or another shock wave.

  9. The dose-effect relationship in extracorporeal shock wave therapy: the optimal parameter for extracorporeal shock wave therapy.

    PubMed

    Zhang, Xiongliang; Yan, Xiaoyu; Wang, Chunyang; Tang, Tingting; Chai, Yimin

    2014-01-01

    Extracorporeal shock wave therapy (ESWT) has been demonstrated to have the angiogenic effect on ischemic tissue. We hypothesize that ESWT exerts the proangiogenesis effect with an energy density-dependent mode on the target cells. Endothelial progenitor cells (EPCs) of rats were obtained by cultivation of bone marrow-derived mononuclear cells. EPCs were divided into five groups of different energy densities, and each group was furthermore subdivided into four groups of different shock numbers. Thus, there were 20 subgroups in total. The expressions of angiogenic factors, apoptotic factors, inflammation mediators, and chemotactic factors were examined, and the proliferation activity was measured after ESWT. When EPCs were treated with low-energy (0.04-0.13 mJ/mm(2)) shock wave, the expressions of endothelial nitric oxide synthase, angiopoietin (Ang) 1, Ang-2, and B-cell lymphoma 2 increased and those of interleukin 6, fibroblast growth factor 2, C-X-C chemokine receptor type 4, vascular endothelial growth factor a, Bcl-2-associated X protein, and caspase 3 decreased. stromal cell-derived factor 1 changed without statistical significance. When cells were treated with high-energy (0.16 mJ/mm(2)) shock wave, most of the expressions of cytokines declined except the apoptotic factors and fibroblast growth factor 2, and cells lead to apoptosis. The proliferation activity and the ratio of Ang-1/Ang-2 reached their peak values, when cells were treated with ESWT with the intensity ranging from 0.10-0.13 mJ/mm(2) and shock number ranging from 200-300 impulses. Meanwhile, a minimal value of the ratio of Bax/Bcl-2 was observed. There is a dose-effect relationship in ESWT. The shock intensity ranging from 0.10-0.13 mJ/mm(2) and shock number ranging from 200-300 impulses were the optimal parameters for ESWT to treat cells in vitro. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  10. Hydrodynamic growth and decay of planar shock waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piriz, A. R., E-mail: roberto.piriz@uclm.es; Sun, Y. B.; Tahir, N. A.

    2016-03-15

    A model for the hydrodynamic attenuation (growth and decay) of planar shocks is presented. The model is based on the approximate integration of the fluid conservation equations, and it does not require the heuristic assumptions used in some previous works. A key issue of the model is that the boundary condition on the piston surface is given by the retarded pressure, which takes into account the transit time of the sound waves between the piston and any position at the bulk of the shocked fluid. The model yields the shock pressure evolution for any given pressure pulse on the piston,more » as well as the evolution of the trajectories, velocities, and accelerations on the shock and piston surfaces. An asymptotic analytical solution is also found for the decay of the shock wave.« less

  11. STEREO Observations of Waves in the Ramp Regions of Interplanetary Shocks

    NASA Astrophysics Data System (ADS)

    Cohen, Z.; Breneman, A. W.; Cattell, C. A.; Davis, L.; Grul, P.; Kersten, K.; Wilson, L. B., III

    2017-12-01

    Determining the role of plasma waves in providing energy dissipation at shock waves is of long-standing interest. Interplanetary (IP) shocks serve as a large database of low Mach number shocks. We examine electric field waveforms captured by the Time Domain Sampler (TDS) on the STEREO spacecraft during the ramps of IP shocks, with emphasis on captures lasting 2.1 seconds. Previous work has used captures of shorter duration (66 and 131 ms on STEREO, and 17 ms on WIND), which allowed for observation of waves with maximum (minimum) frequencies of 125 kHz (15 Hz), 62.5 kHz (8 Hz), and 60 kHz (59 Hz), respectively. The maximum frequencies are comparable to 2-8 times the plasma frequency in the solar wind, enabling observation of Langmuir waves, ion acoustic, and some whistler-mode waves. The 2 second captures resolve lower frequencies ( few Hz), which allows us to analyze packet structure of the whistler-mode waves and some ion acoustic waves. The longer capture time also improves the resolvability of simultaneous wave modes and of waves with frequencies on the order of 10s of Hz. Langmuir waves, however, cannot be identified at this sampling rate, since the plasma frequency is usually higher than 3.9 kHz. IP shocks are identified from multiple databases (Helsinki heliospheric shock database at http://ipshocks.fi, and the STEREO level 3 shock database at ftp://stereoftp.nascom.nasa.gov/pub/ins_data/impact/level3/). Our analysis focuses on TDS captures in shock ramp regions, with ramp durations determined from magnetic field data taken at 8 Hz. Software is used to identify multiple wave modes in any given capture and classify waves as Langmuir, ion acoustic, whistler, lower hybrid, electron cyclotron drift instability, or electrostatic solitary waves. Relevant frequencies are determined from density and magnetic field data collected in situ. Preliminary results suggest that large amplitude (≥ 5 mV/m) ion acoustic waves are most prevalent in the ramp, in agreement with

  12. Characteristics of coronal shock waves and solar type 2 radio bursts

    NASA Technical Reports Server (NTRS)

    Mann, G.; Classen, H.-T.

    1995-01-01

    In the solar corona shock waves generated by flares and/or coronal mass ejections can be observed by radio astronomical methods in terms of solar type 2 radio bursts. In dynamic radio spectra they appear as emission stripes slowly drifting from high to low frequencies. A sample of 25 solar type 2 radio bursts observed in the range of 40 - 170 MHz with a time resolution of 0.1 s by the new radiospectrograph of the Astrophvsikalisches Institut Potsdam in Tremsdorf is statistically investigated concerning their spectral features, i.e, drift rate, instantaneous bandwidth, and fundamental harmonic ratio. In-situ plasma wave measurements at interplanetary shocks provide the assumption that type 2 radio radiation is emitted in the vicinity of the transition region of shock waves. Thus, the instantaneous bandwidth of a solar type 2 radio burst would reflect the density jump across the associated shock wave. Comparing the inspection of the Rankine-Hugoniot relations of shock waves under coronal circumstances with those obtained from the observational study, solar type 2 radio bursts should be regarded to be generated by weak supercritical, quasi-parallel, fast magnetosonic shock waves in the corona.

  13. Observation of Dispersive Shock Waves, Solitons, and Their Interactions in Viscous Fluid Conduits.

    PubMed

    Maiden, Michelle D; Lowman, Nicholas K; Anderson, Dalton V; Schubert, Marika E; Hoefer, Mark A

    2016-04-29

    Dispersive shock waves and solitons are fundamental nonlinear excitations in dispersive media, but dispersive shock wave studies to date have been severely constrained. Here, we report on a novel dispersive hydrodynamic test bed: the effectively frictionless dynamics of interfacial waves between two high viscosity contrast, miscible, low Reynolds number Stokes fluids. This scenario is realized by injecting from below a lighter, viscous fluid into a column filled with high viscosity fluid. The injected fluid forms a deformable pipe whose diameter is proportional to the injection rate, enabling precise control over the generation of symmetric interfacial waves. Buoyancy drives nonlinear interfacial self-steepening, while normal stresses give rise to the dispersion of interfacial waves. Extremely slow mass diffusion and mass conservation imply that the interfacial waves are effectively dissipationless. This enables high fidelity observations of large amplitude dispersive shock waves in this spatially extended system, found to agree quantitatively with a nonlinear wave averaging theory. Furthermore, several highly coherent phenomena are investigated including dispersive shock wave backflow, the refraction or absorption of solitons by dispersive shock waves, and the multiphase merging of two dispersive shock waves. The complex, coherent, nonlinear mixing of dispersive shock waves and solitons observed here are universal features of dissipationless, dispersive hydrodynamic flows.

  14. Potential of shock waves to remove calculus and biofilm.

    PubMed

    Müller, Philipp; Guggenheim, Bernhard; Attin, Thomas; Marlinghaus, Ernst; Schmidlin, Patrick R

    2011-12-01

    Effective calculus and biofilm removal is essential to treat periodontitis. Sonic and ultrasonic technologies are used in several scaler applications. This was the first feasibility study to assess the potential of a shock wave device to remove calculus and biofilms and to kill bacteria. Ten extracted teeth with visible subgingival calculus were treated with either shock waves for 1 min at an energy output of 0.4 mJ/mm(2) at 3 Hz or a magnetostrictive ultrasonic scaler at medium power setting for 1 min, which served as a control. Calculus was determined before and after treatment planimetrically using a custom-made software using a grey scale threshold. In a second experiment, multispecies biofilms were formed on saliva-preconditioned bovine enamel discs during 64.5 h. They were subsequently treated with shock waves or the ultrasonic scaler (N = 6/group) using identical settings. Biofilm detachment and bactericidal effects were then assessed. Limited efficiency of the shock wave therapy in terms of calculus removal was observed: only 5% of the calculus was removed as compared to 100% when ultrasound was used (P ≤ 0.0001). However, shock waves were able to significantly reduce adherent bacteria by three orders of magnitude (P ≤ 0.0001). The extent of biofilm removal by the ultrasonic device was statistically similar. Only limited bactericidal effects were observed using both methods. Within the limitations of this preliminary study, the shock wave device was not able to reliably remove calculus but had the potential to remove biofilms by three log steps. To increase the efficacy, technical improvements are still required. This novel noninvasive intervention, however, merits further investigation.

  15. Nonlinear reflection of shock shear waves in soft elastic media.

    PubMed

    Pinton, Gianmarco; Coulouvrat, François; Gennisson, Jean-Luc; Tanter, Mickaël

    2010-02-01

    For fluids, the theoretical investigation of shock wave reflection has a good agreement with experiments when the incident shock Mach number is large. But when it is small, theory predicts that Mach reflections are physically unrealistic, which contradicts experimental evidence. This von Neumann paradox is investigated for shear shock waves in soft elastic solids with theory and simulations. The nonlinear elastic wave equation is approximated by a paraxial wave equation with a cubic nonlinear term. This equation is solved numerically with finite differences and the Godunov scheme. Three reflection regimes are observed. Theory is developed for shock propagation by applying the Rankine-Hugoniot relations and entropic constraints. A characteristic parameter relating diffraction and non-linearity is introduced and its theoretical values are shown to match numerical observations. The numerical solution is then applied to von Neumann reflection, where curved reflected and Mach shocks are observed. Finally, the case of weak von Neumann reflection, where there is no reflected shock, is examined. The smooth but non-monotonic transition between these three reflection regimes, from linear Snell-Descartes to perfect grazing case, provides a solution to the acoustical von Neumann paradox for the shear wave equation. This transition is similar to the quadratic non-linearity in fluids.

  16. The variety of MHD shock waves interactions in the solar wind flow

    NASA Technical Reports Server (NTRS)

    Grib, S. A.

    1995-01-01

    Different types of nonlinear shock wave interactions in some regions of the solar wind flow are considered. It is shown, that the solar flare or nonflare CME fast shock wave may disappear as the result of the collision with the rotational discontinuity. By the way the appearance of the slow shock waves as the consequence of the collision with other directional discontinuity namely tangential is indicated. Thus the nonlinear oblique and normal MHD shock waves interactions with different solar wind discontinuities (tangential, rotational, contact, shock and plasmoidal) both in the free flow and close to the gradient regions like the terrestrial magnetopause and the heliopause are described. The change of the plasma pressure across the solar wind fast shock waves is also evaluated. The sketch of the classification of the MHD discontinuities interactions, connected with the solar wind evolution is given.

  17. Shear Shock Waves Observed in the Brain

    NASA Astrophysics Data System (ADS)

    Espíndola, David; Lee, Stephen; Pinton, Gianmarco

    2017-10-01

    The internal deformation of the brain is far more complex than the rigid motion of the skull. An ultrasound imaging technique that we have developed has a combination of penetration, frame-rate, and motion-detection accuracy required to directly observe the formation and evolution of shear shock waves in the brain. Experiments at low impacts on the traumatic-brain-injury scale demonstrate that they are spontaneously generated and propagate within the porcine brain. Compared to the initially smooth impact, the acceleration at the shock front is amplified up to a factor of 8.5. This highly localized increase in acceleration suggests that shear shock waves are a previously unappreciated mechanism that could play a significant role in traumatic brain injury.

  18. Observation of dust acoustic shock wave in a strongly coupled dusty plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Sumita K., E-mail: sumita-sharma82@yahoo.com; Boruah, A.; Nakamura, Y.

    2016-05-15

    Dust acoustic shock wave is observed in a strongly coupled laboratory dusty plasma. A supersonic flow of charged microparticles is allowed to perturb a stationary dust fluid to excite dust acoustic shock wave. The evolution process beginning with steepening of initial wave front and then formation of a stable shock structure is similar to the numerical results of the Korteweg-de Vries-Burgers equation. The measured Mach number of the observed shock wave agrees with the theoretical results. Reduction of shock amplitude at large distances is also observed due to the dust neutral collision and viscosity effects. The dispersion relation and themore » spatial damping of a linear dust acoustic wave are also measured and compared with the relevant theory.« less

  19. [Research on Energy Distribution During Osteoarthritis Treatment Using Shock Wave Lithotripsy].

    PubMed

    Zhang, Shinian; Wang, Xiaofeng; Zhang, Dong

    2015-04-01

    Extracorporeal shock wave treatment is capable of providing a non-surgical and effective treatment modality for patients suffering from osteoarthritis. The major objective of current works is to investigate how the shock wave (SW) field would change if a bony structure exists in the path of the acoustic wave. Firstly, a model of finite element method (FEM) was developed based on Comsol software in the present study. Then, high-speed photography experiments were performed to record cavitation bubbles with the presence of mimic bone. On the basis of comparing experimental with simulated results, the effectiveness of FEM model could be verified. Finally, the energy distribution during extracorporeal shock wave treatment was predicted. The results showed that the shock wave field was deflected with the presence of bony structure and varying deflection angles could be observed as the bone shifted up in the z-direction relative to shock wave geometric focus. Combining MRI/CT scans to FEM modeling is helpful for better standardizing the treatment dosage and optimizing treatment protocols in the clinic.

  20. Temperature maxima in stable two-dimensional shock waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kum, O.; Hoover, W.G.; Hoover, C.G.

    1997-07-01

    We use molecular dynamics to study the structure of moderately strong shock waves in dense two-dimensional fluids, using Lucy{close_quote}s pair potential. The stationary profiles show relatively broad temperature maxima, for both the longitudinal and the average kinetic temperatures, just as does Mott-Smith{close_quote}s model for strong shock waves in dilute three-dimensional gases. {copyright} {ital 1997} {ital The American Physical Society}

  1. Experimental investigation on aero-optical aberration of shock wave/boundary layer interactions

    NASA Astrophysics Data System (ADS)

    Ding, Haolin; Yi, Shihe; Fu, Jia; He, Lin

    2016-10-01

    After streaming through the flow field which including the expansion, shock wave, boundary, etc., the optical wave would be distorted by fluctuations in the density field. Interactions between laminar/turbulent boundary layer and shock wave contain large number complex flow structures, which offer a condition for studying the influences that different flow structures of the complex flow field have on the aero-optical aberrations. Interactions between laminar/turbulent boundary layer and shock wave are investigated in a Mach 3.0 supersonic wind tunnel, based on nanoparticle-tracer planar laser scattering (NPLS) system. Boundary layer separation/attachment, induced suppression waves, induced shock wave, expansion fan and boundary layer are presented by NPLS images. Its spatial resolution is 44.15 μm/pixel. Time resolution is 6ns. Based on the NPLS images, the density fields with high spatial-temporal resolution are obtained by the flow image calibration, and then the optical path difference (OPD) fluctuations of the original 532nm planar wavefront are calculated using Ray-tracing theory. According to the different flow structures in the flow field, four parts are selected, (1) Y=692 600pixel; (2) Y=600 400pixel; (3) Y=400 268pixel; (4) Y=268 0pixel. The aerooptical effects of different flow structures are quantitatively analyzed, the results indicate that: the compressive waves such as incident shock wave, induced shock wave, etc. rise the density, and then uplift the OPD curve, but this kind of shock are fixed in space position and intensity, the aero-optics induced by it can be regarded as constant; The induced shock waves are induced by the coherent structure of large size vortex in the interaction between turbulent boundary layer, its unsteady characteristic decides the induced waves unsteady characteristic; The space position and intensity of the induced shock wave are fixed in the interaction between turbulent boundary layer; The boundary layer aero-optics are

  2. Relativistic shock waves in an electron-positron plasma

    NASA Astrophysics Data System (ADS)

    Tsintsadze, Levan N.

    1995-12-01

    The equations describing the detailed structure of radiation electromagnetic hydrodynamics for a relativistically hot electron-positron plasma are derived. Various discontinuities are studied by these equations. It is shown that the dependence of the electron (positron) mass on the temperature changes the structure of discontinuities, including shock waves, both qualitatively and quantitatively. Steady radiative shocks are considered, which can arise in steady flows, and which also can be used to describe the propagation of shocks when the shock thickness is very small as compared to the characteristic length over which the ambient medium changes significantly. First, the magnetohydrodynamic shock wave is treated as a discontinuity and jump relations, which relate the equilibrium states of the upstream and downstream plasma far from the front, are derived. Then the structure of the front itself is considered and tangential, contact (or entropy) and rotational discontinuities are investigated.

  3. TRIGGERING COLLAPSE OF THE PRESOLAR DENSE CLOUD CORE AND INJECTING SHORT-LIVED RADIOISOTOPES WITH A SHOCK WAVE. II. VARIED SHOCK WAVE AND CLOUD CORE PARAMETERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boss, Alan P.; Keiser, Sandra A., E-mail: boss@dtm.ciw.edu, E-mail: keiser@dtm.ciw.edu

    2013-06-10

    A variety of stellar sources have been proposed for the origin of the short-lived radioisotopes that existed at the time of the formation of the earliest solar system solids, including Type II supernovae (SNe), asymptotic giant branch (AGB) and super-AGB stars, and Wolf-Rayet star winds. Our previous adaptive mesh hydrodynamics models with the FLASH2.5 code have shown which combinations of shock wave parameters are able to simultaneously trigger the gravitational collapse of a target dense cloud core and inject significant amounts of shock wave gas and dust, showing that thin SN shocks may be uniquely suited for the task. However,more » recent meteoritical studies have weakened the case for a direct SN injection to the presolar cloud, motivating us to re-examine a wider range of shock wave and cloud core parameters, including rotation, in order to better estimate the injection efficiencies for a variety of stellar sources. We find that SN shocks remain as the most promising stellar source, though planetary nebulae resulting from AGB star evolution cannot be conclusively ruled out. Wolf-Rayet (WR) star winds, however, are likely to lead to cloud core shredding, rather than to collapse. Injection efficiencies can be increased when the cloud is rotating about an axis aligned with the direction of the shock wave, by as much as a factor of {approx}10. The amount of gas and dust accreted from the post-shock wind can exceed that injected from the shock wave, with implications for the isotopic abundances expected for a SN source.« less

  4. Shock waves in aviation security and safety

    NASA Astrophysics Data System (ADS)

    Settles, G. S.; Keane, B. T.; Anderson, B. W.; Gatto, J. A.

    Accident investigations such as of Pan Am 103 and TWA 800 reveal the key role of shock-wave propagation in destroying the aircraft when an on-board explosion occurs. This paper surveys shock wave propagation inside an aircraft fuselage, caused either by a terrorist device or by accident, and provides some new experimental results. While aircraft-hardening research has been under way for more than a decade, no such experiments to date have used the crucial tool of high-speed optical imaging to visualize shock motion. Here, Penn State's Full-Scale Schlieren flow visualization facility yields the first shock-motion images in aviation security scenarios: 1) Explosions beneath full-size aircraft seats occupied by mannequins, 2) Explosions inside partially-filled luggage containers, and 3) Luggage-container explosions resulting in hull-holing. Both single-frame images and drum-camera movies are obtained. The implications of these results are discussed, though the overall topic must still be considered in its infancy.

  5. Bifurcation parameters of a reflected shock wave in cylindrical channels of different roughnesses

    NASA Astrophysics Data System (ADS)

    Penyazkov, O.; Skilandz, A.

    2018-03-01

    To investigate the effect of bifurcation on the induction time in cylindrical shock tubes used for chemical kinetic experiments, one should know the parameters of the bifurcation structure of a reflected shock wave. The dynamics and parameters of the shock wave bifurcation, which are caused by reflected shock wave-boundary layer interactions, are studied experimentally in argon, in air, and in a hydrogen-nitrogen mixture for Mach numbers M = 1.3-3.5 in a 76-mm-diameter shock tube without any ramp. Measurements were taken at a constant gas density behind the reflected shock wave. Over a wide range of experimental conditions, we studied the axial projection of the oblique shock wave and the pressure distribution in the vicinity of the triple Mach configuration at 50, 150, and 250 mm from the endwall, using side-wall schlieren and pressure measurements. Experiments on a polished shock tube and a shock tube with a surface roughness of 20 {μ }m Ra were carried out. The surface roughness was used for initiating small-scale turbulence in the boundary layer behind the incident shock wave. The effect of small-scale turbulence on the homogenization of the transition zone from the laminar to turbulent boundary layer along the shock tube perimeter was assessed, assuming its influence on a subsequent stabilization of the bifurcation structure size versus incident shock wave Mach number, as well as local flow parameters behind the reflected shock wave. The influence of surface roughness on the bifurcation development and pressure fluctuations near the wall, as well as on the Mach number, at which the bifurcation first develops, was analyzed. It was found that even small additional surface roughness can lead to an overshoot in pressure growth by a factor of two, but it can stabilize the bifurcation structure along the shock tube perimeter.

  6. Head-on collision of normal shock waves with rigid porous materials

    NASA Astrophysics Data System (ADS)

    Levy, A.; Ben-Dor, G.; Skews, B. W.; Sorek, S.

    1993-08-01

    The head-on collision of a planar shock wave with a rigid porous material has been investigated experimentally in a 75 mm × 75 mm shock tube. The experimental study indicated that unlike the reflection from a flexible porous material (e.g., polyurethane foam) where the transmitted compression waves do not converge to a sharp shock wave, in the case of a rigid porous material (e.g., alumina) the transmitted compression waves do converge to a sharp shock wave, which decays as it propagates along the porous material. In addition to this major difference, many other differences were observed. They are outlined in the following sections. Based on these observations a suggestion modifying the phenomenology of the reflection/interaction process in the case a porous material with large permeability is proposed.

  7. Reduction of high-energy shock-wave-induced renal tubular injury by selenium.

    PubMed

    Strohmaier, W L; Lahme, S; Weidenbach, P M; Bichler, K H

    1999-10-01

    In shock-wave-induced renal injury cavitation-generated free radicals play an important role. Using an in vitro model with Madin-Darby canine kidney (MDCK) cells, we investigated the influence of selenium, a free radical scavenger, in shock-wave-induced tubular cell injury. Suspensions of MDCK cells (33 x 10(6) cells/ml) were placed in small containers (volume 1.1 ml) for shock wave exposure. Two groups of 12 containers each were examined: (1) control (no medication), (2) selenium (0.4 microg/ml nutrient medium). Six containers in each group were exposed to shock waves (impulse rate 256, frequency 60 Hz, generator voltage 18 kV), while the other six containers in each group served as a control. After shock wave exposure, the concentration of cellular enzymes such as lactate dehydrogenase (LDH), N-acetyl-beta-glucosaminidase (NAG), glutamate oxaloacetate transaminase (GOT) and glutamate lactate dehydrogenase (GLDH) in the nutrient medium was examined. Following shock wave exposure there was a significant rise in LDH, NAG, GOT and GLDH concentrations. Selenium reduced this enzyme leakage significantly. Thus we conclude that selenium protects renal tubular cells against shock-wave-induced injury. Since selenium is an essential part of glutathione peroxidase, this effect seems to be mediated by a reduction in reactive oxygen species.

  8. Pressure threshold for shock wave induced renal hemorrhage.

    PubMed

    Mayer, R; Schenk, E; Child, S; Norton, S; Cox, C; Hartman, C; Cox, C; Carstensen, E

    1990-12-01

    Studies were performed with an interest in determining a pressure threshold for extracorporeal shock wave induced renal damage. Histological evidence of intraparenchymal hemorrhage was used as an indicator of tissue trauma. Depilated C3H mice were anesthetized and placed on a special frame to enhance visualization and treatment of the kidneys in situ. A Wolf electrohydraulic generator and 9 French probe designed for endoscopic use were utilized to expose the kidneys to 10 double spherically divergent shock waves. Measurements of the shock waves revealed two positive pressure peaks of similar magnitude for each spark discharge. The kidneys were exposed to different peak pressures by choice of distance from the spark source and were removed immediately after treatment for histologic processing. A dose response was noted with severe corticomedullary damage apparent following 15 to 20 MPa shocks. Hemorrhage was more apparent in the medulla where evidence of damage could be seen following pressures as low as three to five MPa. When a latex membrane was interposed to prevent possible collapse of the initial bubble from the spark source against the skin surface, histological evaluation revealed substantial reduction of severe tissue damage associated with the highest pressures tested, 20 MPa. However, the threshold level for evidence of hemorrhage remained about three to five MPa. Hydrophonic measurements indicated that the membrane allowed transmission of the acoustic shock waves and suggested that collapse of the bubble generated by electrohydraulic probes may have local effects due to a cavitation-like mechanism.

  9. Oscillations of a standing shock wave generated by the Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Mikaelian, Karnig O.

    2016-07-01

    In a typical Richtmyer-Meshkov experiment a fast moving flat shock strikes a stationary perturbed interface between fluids A and B creating a transmitted and a reflected shock, both of which are perturbed. We propose shock tube experiments in which the reflected shock is stationary in the laboratory. Such a standing perturbed shock undergoes well-known damped oscillations. We present the conditions required for producing such a standing shock wave, which greatly facilitates the measurement of the oscillations and their rate of damping. We define a critical density ratio Rcritical, in terms of the adiabatic indices of the two fluids, and a critical Mach number Mscritical of the incident shock wave, which produces a standing reflected wave. If the initial density ratio R of the two fluids is less than Rcritical then a standing shock wave is possible at Ms=Mscritical . Otherwise a standing shock is not possible and the reflected wave always moves in the direction opposite the incident shock. Examples are given for present-day operating shock tubes with sinusoidal or inclined interfaces. We consider the effect of viscosity, which affects the damping rate of the oscillations. We point out that nonlinear bubble and spike amplitudes depend relatively weakly on the viscosity of the fluids and that the interface area is a better diagnostic.

  10. Oscillations of a standing shock wave generated by the Richtmyer-Meshkov instability

    DOE PAGES

    Mikaelian, Karnig O.

    2016-07-13

    In a typical Richtmyer-Meshkov experiment a fast moving flat shock strikes a stationary perturbed interface between fluids A and B creating a transmitted and a reflected shock, both of which are perturbed. We propose shock tube experiments in which the reflected shock is stationary in the laboratory. Such a standing perturbed shock undergoes well-known damped oscillations. We present the conditions required for producing such a standing shock wave, which greatly facilitates the measurement of the oscillations and their rate of damping. We define a critical density ratio R critical, in terms of the adiabatic indices of the two fluids, andmore » a critical Mach number M critical s of the incident shock wave, which produces a standing reflected wave. If the initial density ratio R of the two fluids is less than R critical then a standing shock wave is possible at M s=M critical s. Otherwise a standing shock is not possible and the reflected wave always moves in the direction opposite the incident shock. Examples are given for present-day operating shock tubes with sinusoidal or inclined interfaces. We consider the effect of viscosity, which affects the damping rate of the oscillations. Furthermore, we point out that nonlinear bubble and spike amplitudes depend relatively weakly on the viscosity of the fluids and that the interface area is a better diagnostic.« less

  11. Chromospheric heating by acoustic shock waves

    NASA Technical Reports Server (NTRS)

    Jordan, Stuart D.

    1993-01-01

    Work by Anderson & Athay (1989) suggests that the mechanical energy required to heat the quiet solar chromosphere might be due to the dissipation of weak acoustic shocks. The calculations reported here demonstrate that a simple picture of chromospheric shock heating by acoustic waves propagating upward through a model solar atmosphere, free of both magnetic fields and local inhomogeneities, cannot reproduce their chromospheric model. The primary reason is the tendency for vertically propagating acoustic waves in the range of allowed periods to dissipate too low in the atmosphere, providing insufficient residual energy for the middle chromosphere. The effect of diverging magnetic fields and the corresponding expanding acoustic wavefronts on the mechanical dissipation length is then discussed as a means of preserving a quasi-acoustic heating hypothesis. It is argued that this effect, in a canopy that overlies the low chromosphere, might preserve the acoustic shock hypothesis consistent with the chromospheric radiation losses computed by Anderson & Athay.

  12. Assessment of renal injury with a clinical dual head lithotriptor delivering 240 shock waves per minute.

    PubMed

    Handa, Rajash K; McAteer, James A; Evan, Andrew P; Connors, Bret A; Pishchalnikov, Yuri A; Gao, Sujuan

    2009-02-01

    Lithotriptors with 2 treatment heads deliver shock waves along separate paths. Firing 1 head and then the other in alternating mode has been suggested as a strategy to treat stones twice as rapidly as with conventional shock wave lithotripsy. Because the shock wave rate is known to have a role in shock wave lithotripsy induced injury, and given that treatment using 2 separate shock wave sources exposes more renal tissue to shock wave energy than treatment with a conventional lithotriptor, we assessed renal trauma in pigs following treatment at rapid rate (240 shock waves per minute and 120 shock waves per minute per head) using a Duet lithotriptor (Direx Medical Systems, Petach Tikva, Israel) fired in alternating mode. Eight adult female pigs (Hardin Farms, Danville, Indiana) each were treated with sham shock wave lithotripsy or 2,400 shock waves delivered in alternating mode (1,200 shock waves per head, 120 shock waves per minute per head and 240 shock waves per minute overall at a power level of 10) to the lower renal pole. Renal functional parameters, including glomerular filtration rate and effective renal plasma flow, were determined before and 1 hour after shock wave lithotripsy. The kidneys were perfusion fixed in situ and the hemorrhagic lesion was quantified as a percent of functional renal volume. Shock wave treatment resulted in no significant change in renal function and the response was similar to the functional response seen in sham shock wave treated animals. In 6 pigs treated with alternating mode the renal lesion was small at a mean +/- SEM of 0.22% +/- 0.09% of functional renal volume. Kidney tissue and function were minimally affected by a clinical dose of shock waves delivered in alternating mode (120 shock waves per minute per head and 240 shock waves per minute overall) with a Duet lithotriptor. These observations decrease concern that dual head lithotripsy at a rapid rate is inherently dangerous.

  13. The big bang as a higher-dimensional shock wave

    NASA Astrophysics Data System (ADS)

    Wesson, P. S.; Liu, H.; Seahra, S. S.

    2000-06-01

    We give an exact solution of the five-dimensional field equations which describes a shock wave moving in time and the extra (Kaluza-Klein) coordinate. The matter in four-dimensional spacetime is a cosmology with good physical properties. The solution suggests to us that the 4D big bang was a 5D shock wave.

  14. Detonation-to-shock wave transmission at a contact discontinuity

    NASA Astrophysics Data System (ADS)

    Peace, J. T.; Lu, F. K.

    2018-02-01

    The one-dimensional interaction of a detonation wave with a contact discontinuity was investigated analytically and experimentally for oxyhydrogen detonations. The analytical and experimental results showed that the transmitted shock through the contact surface and into a non-combustible gas can either be amplified or attenuated depending on the reflection type at the contact surface and on the ratio of acoustic impedance across it. Experiments were performed with a detonation-driven shock tube facility to determine the transmitted shock velocity into a non-combustible He/air mixture. The oxyhydrogen equivalence ratio in the detonation section was varied from 0.5 to 1.5, and the driven section He mole fraction was varied from 0.0 to 1.0 to test a broad range of acoustic impedance ratios ranging from approximately 0.36 to 1.69. The analytical results were shown to have acceptable agreement with the measured transmitted shock wave velocity in the case of a reflected rarefaction from the contact surface. Additionally, the results indicated that the detonation wave reaction zone properties could have an important role that influences the transmitted shock properties in the case of a reflected shock from the contact surface.

  15. Molecular dynamics simulation of shock-wave loading of copper and titanium

    NASA Astrophysics Data System (ADS)

    Bolesta, A. V.; Fomin, V. M.

    2017-10-01

    At extreme pressures and temperatures common materials form new dense phases with compacted atomic arrangements. By classical molecular dynamics simulation we observe that FCC copper undergo phase transformation to BCC structure. The transition occurs under shock wave loading at the pressures above 80 GPa and corresponding temperatures above 2000 K. We calculate phase diagram, show that at these pressures and low temperature FCC phase of copper is still stable and discuss the thermodynamic reason for phase transformation at high temperature shock wave regime. Titanium forms new hexagonal phase at high pressure as well. We calculate the structure of shock wave in titanium and observe that shock front splits in three parts: elastic, plastic and phase transformation. The possibility of using a phase transition behind a shock wave with further unloading for designing nanocrystalline materials with a reduced grain size is also shown.

  16. Well-defined EUV wave associated with a CME-driven shock

    NASA Astrophysics Data System (ADS)

    Cunha-Silva, R. D.; Selhorst, C. L.; Fernandes, F. C. R.; Oliveira e Silva, A. J.

    2018-05-01

    Aims: We report on a well-defined EUV wave observed by the Extreme Ultraviolet Imager (EUVI) on board the Solar Terrestrial Relations Observatory (STEREO) and the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). The event was accompanied by a shock wave driven by a halo CME observed by the Large Angle and Spectrometric Coronagraph (LASCO-C2/C3) on board the Solar and Heliospheric Observatory (SOHO), as evidenced by the occurrence of type II bursts in the metric and dekameter-hectometric wavelength ranges. We investigated the kinematics of the EUV wave front and the radio source with the purpose of verifying the association between the EUV wave and the shock wave. Methods: The EUV wave fronts were determined from the SDO/AIA images by means of two appropriate directions (slices). The heights (radial propagation) of the EUV wave observed by STEREO/EUVI and of the radio source associated with the shock wave were compared considering the whole bandwidth of the harmonic lane of the radio emission, whereas the speed of the shock was estimated using the lowest frequencies of the harmonic lane associated with the undisturbed corona, using an appropriate multiple of the Newkirk (1961, ApJ, 133, 983) density model and taking into account the H/F frequency ratio fH/fF = 2. The speed of the radio source associated with the interplanetary shock was determined using the Mann et al. (1999, A&A, 348, 614) density model. Results: The EUV wave fronts determined from the SDO/AIA images revealed the coexistence of two types of EUV waves, a fast one with a speed of 560 km s-1, and a slower one with a speed of 250 km s-1, which corresponds approximately to one-third of the average speed of the radio source ( 680 km s-1). The radio signature of the interplanetary shock revealed an almost constant speed of 930 km s-1, consistent with the linear speed of the halo CME (950 km s-1) and with the values found for the accelerating coronal shock ( 535-823 km s-1

  17. Chemical kinetic modeling of propane oxidation behind shock waves

    NASA Technical Reports Server (NTRS)

    Mclain, A. G.; Jachimowski, C. J.

    1977-01-01

    The stoichiometric combustion of propane behind incident shock waves was studied experimentally and analytically over a temperature range from 1700 K to 2600 K and a pressure range from 1.2 to 1.9 atm. Measurements of the concentrations of carbon monoxide (CO) and carbon dioxide (CO2) and the product of the oxygen atom and carbon dioxide concentrations (O)(CO) were made after passage of the incident shock wave. A kinetic mechanism was developed which, when used in a computer program for a flowing, reacting gas behind an incident shock wave predicted experimentally measured results quite well. Ignition delay times from the literature were also predicted quite well. The kinetic mechanism consisted of 59 individual kinetic steps.

  18. Fluid dynamics of the shock wave reactor

    NASA Astrophysics Data System (ADS)

    Masse, Robert Kenneth

    2000-10-01

    High commercial incentives have driven conventional olefin production technologies to near their material limits, leaving the possibility of further efficiency improvements only in the development of entirely new techniques. One strategy known as the Shock Wave Reactor, which employs gas dynamic processes to circumvent limitations of conventional reactors, has been demonstrated effective at the University of Washington. Preheated hydrocarbon feedstock and a high enthalpy carrier gas (steam) are supersonically mixed at a temperature below that required for thermal cracking. Temperature recovery is then effected via shock recompression to initiate pyrolysis. The evolution to proof-of-concept and analysis of experiments employing ethane and propane feedstocks are presented. The Shock Wave Reactor's high enthalpy steam and ethane flows severely limit diagnostic capability in the proof-of-concept experiment. Thus, a preliminary blow down supersonic air tunnel of similar geometry has been constructed to investigate recompression stability and (especially) rapid supersonic mixing necessary for successful operation of the Shock Wave Reactor. The mixing capabilities of blade nozzle arrays are therefore studied in the air experiment and compared with analytical models. Mixing is visualized through Schlieren imaging and direct photography of condensation in carbon dioxide injection, and interpretation of visual data is supported by pressure measurement and flow sampling. The influence of convective Mach number is addressed. Additionally, thermal behavior of a blade nozzle array is analyzed for comparison to data obtained in the course of succeeding proof-of-concept experiments. Proof-of-concept is naturally succeeded by interest in industrial adaptation of the Shock Wave Reactor, particularly with regard to issues involving the scaling and refinement of the shock recompression. Hence, an additional, variable geometry air tunnel has been constructed to study the parameter

  19. Finite element modelling of radial shock wave therapy for chronic plantar fasciitis.

    PubMed

    Alkhamaali, Zaied K; Crocombe, Andrew D; Solan, Matthew C; Cirovic, Srdjan

    2016-01-01

    Therapeutic use of high-amplitude pressure waves, or shock wave therapy (SWT), is emerging as a popular method for treating musculoskeletal disorders. However, the mechanism(s) through which this technique promotes healing are unclear. Finite element models of a shock wave source and the foot were constructed to gain a better understanding of the mechanical stimuli that SWT produces in the context of plantar fasciitis treatment. The model of the shock wave source was based on the geometry of an actual radial shock wave device, in which pressure waves are generated through the collision of two metallic objects: a projectile and an applicator. The foot model was based on the geometry reconstructed from magnetic resonance images of a volunteer and it comprised bones, cartilage, soft tissue, plantar fascia, and Achilles tendon. Dynamic simulations were conducted of a single and of two successive shock wave pulses administered to the foot. The collision between the projectile and the applicator resulted in a stress wave in the applicator. This wave was transmitted into the soft tissue in the form of compression-rarefaction pressure waves with an amplitude of the order of several MPa. The negative pressure at the plantar fascia reached values of over 1.5 MPa, which could be sufficient to generate cavitation in the tissue. The results also show that multiple shock wave pulses may have a cumulative effect in terms of strain energy accumulation in the foot.

  20. Mechanochemistry for shock wave energy dissipation

    NASA Astrophysics Data System (ADS)

    Shaw, William L.; Ren, Yi; Moore, Jeffrey S.; Dlott, Dana D.

    2017-01-01

    Using a laser-driven flyer-plate apparatus to launch 75 μm thick Al flyers up to 2.8 km/s, we developed a technique for detecting the attenuation of shock waves by mechanically-driven chemical reactions. The attenuating sample was spread on an ultrathin Au mirror deposited onto a glass window having a known Hugoniot. As shock energy exited the sample and passed through the mirror, into the glass, photonic Doppler velocimetry monitored the velocity profile of the ultrathin mirror. Knowing the window Hugoniot, the velocity profile could be quantitatively converted into a shock energy flux or fluence. The flux gave the temporal profile of the shock front, and showed how the shock front was reshaped by passing through the dissipative medium. The fluence, the time-integrated flux, showed how much shock energy was transmitted through the sample. Samples consisted of microgram quantities of carefully engineered organic compounds selected for their potential to undergo negative-volume chemistry. Post mortem analytical methods were used to confirm that shock dissipation was associated with shock-induced chemical reactions.

  1. Shock Waves in the Treatment of Muscle Hypertonia and Dystonia

    PubMed Central

    Mori, Laura; Currà, Antonio; Molfetta, Luigi; Abbruzzese, Giovanni

    2014-01-01

    Since 1997, focused shock waves therapy (FSWT) has been reported to be useful in the treatment of muscle hypertonia and dystonia. More recently, also radial shock wave therapy (RSWT) has been successfully used to treat muscle hypertonia. The studies where FSWT and RSWT have been used to treat muscle hypertonia and dystonia are reviewed in this paper. The more consistent and long lasting results were obtained in the lower limb muscles of patients affected by cerebral palsy with both FSWT and RSWT and in the distal upper limb muscles of adult stroke patients using FSWT. The most probable mechanism of action is a direct effect of shock waves on muscle fibrosis and other nonreflex components of muscle hypertonia. However, we believe that up to now the biological effects of shock waves on muscle hypertonia and dystonia cannot be clearly separated from a placebo effect. PMID:25309915

  2. Rigid polyurethane foam as an efficient material for shock wave attenuation

    NASA Astrophysics Data System (ADS)

    Komissarov, P. V.; Borisov, A. A.; Sokolov, G. N.; Lavrov, V. V.

    2016-09-01

    A new method for reducing parameters of blast waves generated by explosions of HE charges on ground is presented. Most of the traditional techniques reduce the wave parameters at a certain distance from the charge, i.e. as a matter of fact the damping device interacts with a completely formed shock wave. The proposed approach is to use rigid polyurethane foam coating immediately the explosive charge. A distributed structure of such a foam block that provides most efficient shock wave attenuation is suggested. Results of experimental shock wave investigations recorded in tests in which HE charges have been exploded with damping devices and without it are compared.

  3. Visualization of interaction of Mach waves with a bow shock

    NASA Astrophysics Data System (ADS)

    Pavlov, Al.; Golubev, M.; Kosinov, A.; Pavlov, A.

    2017-10-01

    The work presents results of investigation of couple weak waves with a bow shock at Mach number M = 2. The waves produced by a small 2D roughness installed on the nozzle inset or side wall of working section. Hot-wire measurements revealed profile of the waves to be similar to N-wave. The visualization was done by means of schlieren technique and interferential AVT SA method. The inclination angle change of the Mach waves at free-stream section and bow shock section was found.

  4. High-energy extracorporeal shock wave therapy as a treatment for chronic noninsertional Achilles tendinopathy.

    PubMed

    Furia, John P

    2008-03-01

    High-energy extracorporeal shock wave therapy has been shown to be an effective treatment for chronic insertional Achilles tendinopathy. The results of high-energy shock wave therapy for chronic noninsertional Achilles tendinopathy have not been determined. Shock wave therapy is an effective treatment for noninsertional Achilles tendinopathy. Case control study; Level of evidence, 3. Thirty-four patients with chronic noninsertional Achilles tendinopathy were treated with a single dose of high-energy shock wave therapy (shock wave therapy group; 3000 shocks; 0.21 mJ/mm(2); total energy flux density, 604 mJ/mm(2)). Thirty-four patients with chronic noninsertional Achilles tendinopathy were treated not with shock wave therapy but with additional forms of nonoperative therapy (control group). All shock wave therapy procedures were performed using regional anesthesia. Evaluation was by change in visual analog score and by Roles and Maudsley score. One month, 3 months, and 12 months after treatment, the mean visual analog scores for the control and shock wave therapy groups were 8.4 and 4.4 (P < .001), 6.5 and 2.9 (P < .001), and 5.6 and 2.2 (P < .001), respectively. At final follow-up, the number of excellent, good, fair, and poor results for the shock wave therapy and control groups were 12 and 0 (P < .001), 17 and 9 (P < .001), 5 and 17 (P < .001), and 0 and 8 (P < .001), respectively. A chi(2) analysis revealed that the percentage of patients with excellent ("1") or good ("2") Roles and Maudsley scores, that is, successful results, 12 months after treatment was statistically greater in the shock wave therapy group than in the control group (P < .001). Shock wave therapy is an effective treatment for chronic noninsertional Achilles tendinopathy.

  5. Shock waves; Proceedings of the 18th International Symposium, Sendai, Japan, July 21-26, 1991. Vols. 1 & 2

    NASA Astrophysics Data System (ADS)

    Takayama, Kazuyoshi

    Various papers on shock waves are presented. The general topics addressed include: shock wave structure, propagation, and interaction; shock wave reflection, diffraction, refraction, and focusing; shock waves in condensed matter; shock waves in dusty gases and multiphase media; hypersonic flows and shock waves; chemical processes and related combustion phenomena; explosions, blast waves, and laser initiation of shock waves; shock tube technology and instrumentation; CFD of shock wave phenomena; medical applications and biological effects; industrial applications.

  6. Room temperature impact deposition of ceramic by laser shock wave

    NASA Astrophysics Data System (ADS)

    Jinno, Kengo; Tsumori, Fujio

    2018-06-01

    In this paper, a direct fine patterning of ceramics at room temperature combining 2 kinds of laser microfabrication methods is proposed. The first method is called laser-induced forward transfer and the other is called laser shock imprinting. In the proposed method, a powder material is deposited by a laser shock wave; therefore, the process is applicable to a low-melting-point material, such as a polymer substrate. In the process, a carbon layer plays an important role in the ablation by laser irradiation to generate a shock wave. This shock wave gives high shock energy to the ceramic particles, and the particles would be deposited and solidified by high-speed collision with the substrate. In this study, we performed deposition experiments by changing the thickness of the carbon layer, laser energy, thickness of the alumina layer, and gap substrates. We compared the ceramic deposits after each experiment.

  7. Interaction of a shock wave with an array of particles and effect of particles on the shock wave weakening

    NASA Astrophysics Data System (ADS)

    Bulat, P. V.; Ilyina, T. E.; Volkov, K. N.; Silnikov, M. V.; Chernyshov, M. V.

    2017-06-01

    Two-phase systems that involve gas-particle or gas-droplet flows are widely used in aerospace and power engineering. The problems of weakening and suppression of detonation during saturation of a gas or liquid flow with the array of solid particles are considered. The tasks, associated with the formation of particles arrays, dust lifting behind a travelling shock wave, ignition of particles in high-speed and high-temperature gas flows are adjoined to safety of space flight. The mathematical models of shock wave interaction with the array of solid particles are discussed, and numerical methods are briefly described. The numerical simulations of interaction between sub- and supersonic flows and an array of particles being in motionless state at the initial time are performed. Calculations are carried out taking into account the influence that the particles cause on the flow of carrier gas. The results obtained show that inert particles significantly weaken the shock waves up to their suppression, which can be used to enhance the explosion safety of spacecrafts.

  8. Comparison of geometrical shock dynamics and kinematic models for shock-wave propagation

    NASA Astrophysics Data System (ADS)

    Ridoux, J.; Lardjane, N.; Monasse, L.; Coulouvrat, F.

    2018-03-01

    Geometrical shock dynamics (GSD) is a simplified model for nonlinear shock-wave propagation, based on the decomposition of the shock front into elementary ray tubes. Assuming small changes in the ray tube area, and neglecting the effect of the post-shock flow, a simple relation linking the local curvature and velocity of the front, known as the A{-}M rule, is obtained. More recently, a new simplified model, referred to as the kinematic model, was proposed. This model is obtained by combining the three-dimensional Euler equations and the Rankine-Hugoniot relations at the front, which leads to an equation for the normal variation of the shock Mach number at the wave front. In the same way as GSD, the kinematic model is closed by neglecting the post-shock flow effects. Although each model's approach is different, we prove their structural equivalence: the kinematic model can be rewritten under the form of GSD with a specific A{-}M relation. Both models are then compared through a wide variety of examples including experimental data or Eulerian simulation results when available. Attention is drawn to the simple cases of compression ramps and diffraction over convex corners. The analysis is completed by the more complex cases of the diffraction over a cylinder, a sphere, a mound, and a trough.

  9. Shock tube and shock wave research; Proceedings of the Eleventh International Symposium, University of Washington, Seattle, Wash., July 11-14, 1977

    NASA Technical Reports Server (NTRS)

    Ahlborn, B. (Editor); Hertzberg, A.; Russell, D.

    1978-01-01

    Papers are presented on the applications of shock-wave technology to the study of hydrodynamics, the use of the pressure-wave machine for charging diesel engines, and measurements of the heat-transfer rate in gas-turbine components. Consideration is given to shock propagation along 90-degree bends, the explosive dissemination of liquids, and rotational and vibrational relaxation behind weak shock waves in water vapor. Shock phenomena associated with expansion flows are described and stratospheric-related research using the shock tube is outlined. Attention is given to shock-wave ignition of magnesium powders, Mach reflection and boundary layers, and transition in the shock-induced unsteady boundary layer on a flat plate. Shock-tube measurements of induction and post-induction rates for low-Btu gas mixtures are presented and shock-initiated ignition in COS-N2O-Ar mixtures is described. Cluster growth rates in supersaturated lead vapor are presented and a study of laser-induced plasma motion in a solenoidal magnetic field is reviewed.

  10. Oxy-acetylene driven laboratory scale shock tubes for studying blast wave effects

    NASA Astrophysics Data System (ADS)

    Courtney, Amy C.; Andrusiv, Lubov P.; Courtney, Michael W.

    2012-04-01

    This paper describes the development and characterization of modular, oxy-acetylene driven laboratory scale shock tubes. Such tools are needed to produce realistic blast waves in a laboratory setting. The pressure-time profiles measured at 1 MHz using high-speed piezoelectric pressure sensors have relevant durations and show a true shock front and exponential decay characteristic of free-field blast waves. Descriptions are included for shock tube diameters of 27-79 mm. A range of peak pressures from 204 kPa to 1187 kPa (with 0.5-5.6% standard error of the mean) were produced by selection of the driver section diameter and distance from the shock tube opening. The peak pressures varied predictably with distance from the shock tube opening while maintaining both a true blast wave profile and relevant pulse duration for distances up to about one diameter from the shock tube opening. This shock tube design provides a more realistic blast profile than current compression-driven shock tubes, and it does not have a large jet effect. In addition, operation does not require specialized personnel or facilities like most blast-driven shock tubes, which reduces operating costs and effort and permits greater throughput and accessibility. It is expected to be useful in assessing the response of various sensors to shock wave loading; assessing the reflection, transmission, and absorption properties of candidate armor materials; assessing material properties at high rates of loading; assessing the response of biological materials to shock wave exposure; and providing a means to validate numerical models of the interaction of shock waves with structures. All of these activities have been difficult to pursue in a laboratory setting due in part to lack of appropriate means to produce a realistic blast loading profile.

  11. Bubbles with shock waves and ultrasound: a review

    PubMed Central

    Ohl, Siew-Wan; Klaseboer, Evert; Khoo, Boo Cheong

    2015-01-01

    The study of the interaction of bubbles with shock waves and ultrasound is sometimes termed ‘acoustic cavitation'. It is of importance in many biomedical applications where sound waves are applied. The use of shock waves and ultrasound in medical treatments is appealing because of their non-invasiveness. In this review, we present a variety of acoustics–bubble interactions, with a focus on shock wave–bubble interaction and bubble cloud phenomena. The dynamics of a single spherically oscillating bubble is rather well understood. However, when there is a nearby surface, the bubble often collapses non-spherically with a high-speed jet. The direction of the jet depends on the ‘resistance' of the boundary: the bubble jets towards a rigid boundary, splits up near an elastic boundary, and jets away from a free surface. The presence of a shock wave complicates the bubble dynamics further. We shall discuss both experimental studies using high-speed photography and numerical simulations involving shock wave–bubble interaction. In biomedical applications, instead of a single bubble, often clouds of bubbles appear (consisting of many individual bubbles). The dynamics of such a bubble cloud is even more complex. We shall show some of the phenomena observed in a high-intensity focused ultrasound (HIFU) field. The nonlinear nature of the sound field and the complex inter-bubble interaction in a cloud present challenges to a comprehensive understanding of the physics of the bubble cloud in HIFU. We conclude the article with some comments on the challenges ahead. PMID:26442143

  12. Hybrid simulation of the shock wave trailing the Moon

    NASA Astrophysics Data System (ADS)

    Israelevich, P.; Ofman, L.

    2012-08-01

    A standing shock wave behind the Moon was predicted by Michel (1967) but never observed nor simulated. We use 1D hybrid code in order to simulate the collapse of the plasma-free cavity behind the Moon and for the first time to model the formation of this shock. Starting immediately downstream of the obstacle we consider the evolution of plasma expansion into the cavity in the frame of reference moving along with the solar wind. Well-known effects as electric charging of the cavity affecting the plasma flow and counterstreaming ion beams in the wake are reproduced. Near the apex of the inner Mach cone where the plasma flows from the opposite sides of the obstacle meet, a shock wave arises. We expect the shock to be produced at periods of high electron temperature solar wind streams (Ti ≪ Te ˜ 100 eV). The shock is produced by the interaction of oppositely directed proton beams in the plane containing solar wind velocity and interplanetary magnetic field vectors. In the direction across the magnetic field and the solar wind velocity, the shock results from the interaction of the plasma flow with the region of the enhanced magnetic field inside the cavity that plays the role of the magnetic barrier. The appearance of the standing shock wave is expected at the distance of ˜7RM downstream of the Moon.

  13. Supersonic shock wave/vortex interaction

    NASA Technical Reports Server (NTRS)

    Settles, G. S.; Cattafesta, L.

    1993-01-01

    Although shock wave/vortex interaction is a basic and important fluid dynamics problem, very little research has been conducted on this topic. Therefore, a detailed experimental study of the interaction between a supersonic streamwise turbulent vortex and a shock wave was carried out at the Penn State Gas Dynamics Laboratory. A vortex is produced by replaceable swirl vanes located upstream of the throat of various converging-diverging nozzles. The supersonic vortex is then injected into either a coflowing supersonic stream or ambient air. The structure of the isolated vortex is investigated in a supersonic wind tunnel using miniature, fast-response, five-hole and total temperature probes and in a free jet using laser Doppler velocimetry. The cases tested have unit Reynolds numbers in excess of 25 million per meter, axial Mach numbers ranging from 2.5 to 4.0, and peak tangential Mach numbers from 0 (i.e., a pure jet) to about 0.7. The results show that the typical supersonic wake-like vortex consists of a non-isentropic, rotational core, where the reduced circulation distribution is self similar, and an outer isentropic, irrotational region. The vortex core is also a region of significant turbulent fluctuations. Radial profiles of turbulent kinetic energy and axial-tangential Reynolds stress are presented. The interactions between the vortex and both oblique and normal shock waves are investigated using nonintrusive optical diagnostics (i.e. schlieren, planar laser scattering, and laser Doppler velocimetry). Of the various types, two Mach 2.5 overexpanded-nozzle Mach disc interactions are examined in detail. Below a certain vortex strength, a 'weak' interaction exists in which the normal shock is perturbed locally into an unsteady 'bubble' shock near the vortex axis, but vortex breakdown (i.e., a stagnation point) does not occur. For stronger vortices, a random unsteady 'strong' interaction results that causes vortex breakdown. The vortex core reforms downstream of

  14. Persistence of Precursor Waves in Two-dimensional Relativistic Shocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwamoto, Masanori; Amano, Takanobu; Hoshino, Masahiro

    2017-05-01

    We investigated the efficiency of coherent upstream large-amplitude electromagnetic wave emission via synchrotron maser instability in relativistic magnetized shocks using two-dimensional particle-in-cell simulations. We considered a purely perpendicular shock in an electron–positron plasma. The coherent wave emission efficiency was measured as a function of the magnetization parameter σ , which is defined as the ratio of the Poynting flux to the kinetic energy flux. The wave amplitude was systematically smaller than that observed in one-dimensional simulations. However, it continued to persist, even at a considerably low magnetization rate, where the Weibel instability dominated the shock transition. The emitted electromagnetic wavesmore » were sufficiently strong to disturb the upstream medium, and transverse filamentary density structures of substantial amplitude were produced. Based on this result, we discuss the possibility of the wakefield acceleration model to produce nonthermal electrons in a relativistic magnetized ion–electron shock.« less

  15. Shock wave propagation within a confined multi-chamber system

    NASA Astrophysics Data System (ADS)

    Julien, B.; Sochet, I.; Tadini, P.; Vaillant, T.

    2018-07-01

    The influence of a variation of the opening ratios of rooms and side walls on the propagation of a shock wave within a confined multi-chamber system is analyzed through the evolution of some of the shock parameters (maximum overpressure and positive impulse). The shock wave is generated by the detonation of a hemispherical gaseous charge in one of the rooms. Several small-scale experiments have been carried out using an adjustable model representative of a pyrotechnic workshop. Using the same approach as for a previous article dealing with the impact of the volume of the rooms, we were able to link the evolution of the arrival time of the shock wave within the building with the reference obtained in the free field. Moreover, using a new parameter taking into account the opening ratios of the rooms and side walls, a predictive law was developed to model the maximal overpressure in the rooms.

  16. Hybrid simulation of the shock wave trailing the Moon

    NASA Astrophysics Data System (ADS)

    Israelevich, P.; Ofman, L.

    2012-04-01

    Standing shock wave behind the Moon was predicted be Michel (1967) but never observed nor simulated. We use 1D hybrid code in order to simulate the collapse of the plasma-free cavity behind the Moon and for the first time to model the formation of this shock. Starting immediately downstream of the obstacle we consider the evolution of plasma expansion into the cavity in the frame of reference moving along with the solar wind. Well-known effects as electric charging of the cavity affecting the plasma flow and counter streaming ion beams in the wake are reproduced. Near the apex of the inner Mach cone where the plasma flows from the opposite sides of the obstacle meet, a shock wave arises. The shock is produced by the interaction of oppositely directed proton beams in the plane containing solar wind velocity and interplanetary magnetic field vectors. In the direction across the magnetic field and the solar wind velocity, the shock results from the interaction of the plasma flow with the region of the enhanced magnetic field inside the cavity that plays the role of magnetic barrier. The appearance of the standing shock wave is expected at the distance of ~ 7RM downstream of the Moon.

  17. Study on miss distance based on projectile shock wave sensor

    NASA Astrophysics Data System (ADS)

    Gu, Guohua; Cheng, Gang; Zhang, Chenjun; Zhou, Lei

    2017-05-01

    The paper establishes miss distance models based on physical characteristic of shock-wave. The aerodynamic theory shows that the shock-wave of flying super-sonic projectile is generated for the projectile compressing and expending its ambient atmosphere. It advances getting miss distance according to interval of the first sensors, which first catches shock-wave, to solve the problem such as noise filtering on severe background, and signals of amplifier vibration dynamic disposal and electromagnetism compatibility, in order to improves the precision and reliability of gathering wave N signals. For the first time, it can identify the kinds of pills and firing units automatically, measure miss distance and azimuth when pills are firing. Application shows that the tactics and technique index is advanced all of the world.

  18. Principles and application of extracorporeal shock wave lithotripsy.

    PubMed

    Robinson, S N; Crane, V S; Jones, D G; Cochran, J S; Williams, O B

    1987-04-01

    The physics, instrumentation, and patient-care aspects of extracorporeal shock wave lithotripsy (ESWL) in the treatment of kidney stone disease are described. The kidney stone is located through the use of two integrated roentgenographic imaging systems. The x-ray tubes, fixed on either side of a tub of water in which the patient is partially immersed, are directed upward. The patient is maneuvered until the imaging systems indicate the kidney stone is within the second focus of the reflector and within the 1.5-cu cm target area. Once within this alignment, the stone is ready for shock wave treatment; general or regional anesthesia is used to immobilize the patient so that the position of the stone can be maintained within the focus of the shock wave. When the stone is repeatedly subjected to this high-energy force, it begins to disintegrate until fragments of less than 1 mm are left. ESWL can (1) disintegrate kidney stones of all types, (2) be efficiently transmitted over distances that allow the shock wave source to be outside the body, (3) safely pass through living tissue, and (4) be precisely controlled and focused into a small target area. ESWL is a safe, effective, and cost-saving treatment that can be used for 90% of all kidney stone disease that previously required surgery.

  19. Existence Regions of Shock Wave Triple Configurations

    ERIC Educational Resources Information Center

    Bulat, Pavel V.; Chernyshev, Mikhail V.

    2016-01-01

    The aim of the research is to create the classification for shock wave triple configurations and their existence regions of various types: type 1, type 2, type 3. Analytical solutions for limit Mach numbers and passing shock intensity that define existence region of every type of triple configuration have been acquired. The ratios that conjugate…

  20. Introduction to Shock Waves and Shock Wave Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, William Wyatt

    2017-02-02

    M-9 and a number of other organizations at LANL and elsewhere study materials in dynamic processes. Often, this is described as “shock wave research,” but in reality is broader than is implied by that term. Most of our work is focused on dynamic compression and associated phenomena, but you will find a wide variety of things we do that, while related, are not simple compression of materials, but involve a much richer variety of phenomena. This tutorial will introduce some of the underlying physics involved in this work, some of the more common types of phenomena we study, and commonmore » techniques. However, the list will not be exhaustive by any means.« less

  1. Effect of target-fixture geometry on shock-wave compacted copper powders

    NASA Astrophysics Data System (ADS)

    Kim, Wooyeol; Ahn, Dong-Hyun; Yoon, Jae Ik; Park, Lee Ju; Kim, Hyoung Seop

    2018-01-01

    In shock compaction with a single gas gun system, a target fixture is used to safely recover a powder compact processed by shock-wave dynamic impact. However, no standard fixture geometry exists, and its effect on the processed compact is not well studied. In this study, two types of fixture are used for the dynamic compaction of hydrogen-reduced copper powders, and the mechanical properties and microstructures are investigated using the Vickers microhardness test and electron backscatter diffraction, respectively. With the assistance of finite element method simulations, we analyze several shock parameters that are experimentally hard to control. The results of the simulations indicate that the target geometry clearly affects the characteristics of incident and reflected shock waves. The hardness distribution and the microstructure of the compacts also show their dependence on the geometry. With the results of the simulations and the experiment, it is concluded that the target geometry affects the shock wave propagation and wave interaction in the specimen.

  2. Internal structure of shock waves in disparate mass mixtures

    NASA Technical Reports Server (NTRS)

    Chung, Chan-Hong; De Witt, Kenneth J.; Jeng, Duen-Ren; Penko, Paul F.

    1992-01-01

    The detailed flow structure of a normal shock wave for a gas mixture is investigated using the direct-simulation Monte Carlo method. A variable diameter hard-sphere (VDHS) model is employed to investigate the effect of different viscosity temperature exponents (VTE) for each species in a gas mixture. Special attention is paid to the irregular behavior in the density profiles which was previously observed in a helium-xenon experiment. It is shown that the VTE can have substantial effects in the prediction of the structure of shock waves. The variable hard-sphere model of Bird shows good agreement, but with some limitations, with the experimental data if a common VTE is chosen properly for each case. The VDHS model shows better agreement with the experimental data without adjusting the VTE. The irregular behavior of the light-gas component in shock waves of disparate mass mixtures is observed not only in the density profile, but also in the parallel temperature profile. The strength of the shock wave, the type of molecular interactions, and the mole fraction of heavy species have substantial effects on the existence and structure of the irregularities.

  3. In vivo effect of shock-waves on the healing of fractured bone.

    PubMed

    Augat, P; Claes, L; Suger, G

    1995-10-01

    In a controlled animal experiment we attempted to clarify the question of whether there is a stimulating effect of extracorporeal shock-waves on the repair process of fractured long bones. As a fracture model we used an osteotomy in the diaphysis of the ovine tibia and an external fixation device. Shock-wave treatment at two levels of intensity and with four different numbers of applied shocks was performed with an electromagnetic acoustic source. Healing of the osteotomized bone was evaluated by biomechanical and radiological investigations on the whole bone as well as on bone sections from areas of the fracture gap and the periosteal fracture callus. We found a non-significant tendency to deterioration of the fracture healing with increasing shock-wave intensities. The study of treatment parameters led neither to significantly different biomechanical outcomes nor to altered radiological results in comparison to the untreated control group. RELEVANCE:--While we cannot comment upon the effectiveness of extracorporeal shock-waves in the delayed treatment of fractures or pseudarthrosis, our results suggest that shock-waves have no beneficial effect in acute fracture repair.

  4. A new facility for studying shock-wave passage over dust layers

    NASA Astrophysics Data System (ADS)

    Chowdhury, A. Y.; Marks, B. D.; Johnston, H. Greg; Mannan, M. Sam; Petersen, E. L.

    2016-03-01

    Dust explosion hazards in areas where coal and other flammable materials are found have caused unnecessary loss of life and halted business operations in some instances. The elimination of secondary dust explosion hazards, i.e., reducing dust dispersion, can be characterized in shock tubes to understand shock-dust interactions. For this reason, a new shock-tube test section was developed and integrated into an existing shock-tube facility. The test section has large windows to allow for the use of the shadowgraph technique to track dust-layer growth behind a passing normal shock wave, and it is designed to handle an initial pressure of 1 atm with an incident shock wave Mach number as high as 2 to mimic real-world conditions. The test section features an easily removable dust pan with inserts to allow for adjustment of the dust-layer thickness. The design also allows for changing the experimental variables such as initial pressure, shock Mach number (Ms), dust-layer thickness, and the characteristics of the dust itself. The characterization experiments presented herein demonstrate the advantages of the authors' test techniques toward providing new physical insights over a wider range of data than what have been available heretofore in the literature. Limestone dust with a layer thickness of 3.2 mm was subjected to Ms = 1.23, 1.32, and 1.6 shock waves, and dust-layer rise height was mapped with respect to time after shock passage. Dust particles subjected to a Ms = 1.6 shock wave rose more rapidly and to a greater height with respect to shock wave propagation than particles subjected to Ms = 1.23 and 1.32 shock waves. Although these results are in general agreement with the literature, the new data also highlight physical trends for dust-layer growth that have not been recorded previously, to the best of the authors' knowledge. For example, the dust-layer height rises linearly until a certain time where the growth rate is dramatically reduced, and in this second

  5. Shock tubes and waves; Proceedings of the Thirteenth International Symposium, Niagara Falls, NY, July 6-9, 1981

    NASA Astrophysics Data System (ADS)

    Treanor, C. E.; Hall, J. G.

    1982-10-01

    The present conference on shock tubes and waves considers shock tube drivers, luminous shock tubes, shock tube temperature and pressure measurement, shock front distortion in real gases, nonlinear standing waves, transonic flow shock wave turbulent boundary interactions, wall roughness effects on reflected shock bifurcation, argon thermal conductivity, pattern generation in gaseous detonations, cylindrical resonators, shock tunnel-produced high gain lasers, fluid dynamic aspects of laser-metal interaction, and the ionization of argon gas behind reflected shock waves. Also discussed are the ionization relaxation of shock-heated plasmas and gases, discharge flow/shock tube studies of singlet oxygen, rotational and vibrational relaxation, chemiluminescence thermal and shock wave decomposition of hydrogen cyanide and hydrogen azide, shock wave structure in gas-particle mixtures at low Mach numbers, binary nucleation in a Ludwieg tube, shock liquefaction experiments, pipeline explosions, the shock wave ignition of pulverized coal, and shock-initiated methane combustion.

  6. No regularity singularities exist at points of general relativistic shock wave interaction between shocks from different characteristic families.

    PubMed

    Reintjes, Moritz; Temple, Blake

    2015-05-08

    We give a constructive proof that coordinate transformations exist which raise the regularity of the gravitational metric tensor from C 0,1 to C 1,1 in a neighbourhood of points of shock wave collision in general relativity. The proof applies to collisions between shock waves coming from different characteristic families, in spherically symmetric spacetimes. Our result here implies that spacetime is locally inertial and corrects an error in our earlier Proc. R. Soc. A publication, which led us to the false conclusion that such coordinate transformations, which smooth the metric to C 1,1 , cannot exist. Thus, our result implies that regularity singularities (a type of mild singularity introduced in our Proc. R. Soc. A paper) do not exist at points of interacting shock waves from different families in spherically symmetric spacetimes. Our result generalizes Israel's celebrated 1966 paper to the case of such shock wave interactions but our proof strategy differs fundamentally from that used by Israel and is an extension of the strategy outlined in our original Proc. R. Soc. A publication. Whether regularity singularities exist in more complicated shock wave solutions of the Einstein-Euler equations remains open.

  7. No regularity singularities exist at points of general relativistic shock wave interaction between shocks from different characteristic families

    PubMed Central

    Reintjes, Moritz; Temple, Blake

    2015-01-01

    We give a constructive proof that coordinate transformations exist which raise the regularity of the gravitational metric tensor from C0,1 to C1,1 in a neighbourhood of points of shock wave collision in general relativity. The proof applies to collisions between shock waves coming from different characteristic families, in spherically symmetric spacetimes. Our result here implies that spacetime is locally inertial and corrects an error in our earlier Proc. R. Soc. A publication, which led us to the false conclusion that such coordinate transformations, which smooth the metric to C1,1, cannot exist. Thus, our result implies that regularity singularities (a type of mild singularity introduced in our Proc. R. Soc. A paper) do not exist at points of interacting shock waves from different families in spherically symmetric spacetimes. Our result generalizes Israel's celebrated 1966 paper to the case of such shock wave interactions but our proof strategy differs fundamentally from that used by Israel and is an extension of the strategy outlined in our original Proc. R. Soc. A publication. Whether regularity singularities exist in more complicated shock wave solutions of the Einstein–Euler equations remains open. PMID:27547092

  8. Calibration of a shock wave position sensor using artificial neural networks

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Weiland, Kenneth E.

    1993-01-01

    This report discusses the calibration of a shock wave position sensor. The position sensor works by using artificial neural networks to map cropped CCD frames of the shadows of the shock wave into the value of the shock wave position. This project was done as a tutorial demonstration of method and feasibility. It used a laboratory shadowgraph, nozzle, and commercial neural network package. The results were quite good, indicating that artificial neural networks can be used efficiently to automate the semi-quantitative applications of flow visualization.

  9. Modeling of Shock Waves with Multiple Phase Transitions in Condensed Materials

    NASA Astrophysics Data System (ADS)

    Missonnier, Marc; Heuzé, Olivier

    2006-07-01

    When a shock wave crosses a solid material and subjects it to solid-solid or solid-liquid phase transition, related phenomena occur: shock splitting, and the corresponding released shock wave after reflection. Modelling of these phenomena raises physical and numerical issues. After shock loading, such materials can reach different kinds of states: single-phase states, binary-phase states, and triple points. The thermodynamic path can be studied and easily understood in the (V,E) or (V,S) planes. In the case of 3 phase tin (β,γ, and liquid) submitted to shock waves, seven states can occur: β,γ, liquid, β-γ, β-liquid, γ-liquid, and β-γ-liquid. After studying the thermodynamic properties with a complete 3-phase Equation of State, we show the existence of these seven states with a hydrodynamic simulation.

  10. Shock waves: a new physical principle in medicine.

    PubMed

    Brendel, W

    1986-01-01

    Shock wave therapy of kidney- and gallstones, i.e. extracorporeal shock wave lithotripsy (ESWL), is a new, noninvasive technique to destroy concrements in the kidney, the gallbladder and in the ductus choledochus. This method was developed by the Dornier Company, Friedrichshafen, FRG, and tested in animal experiments at the Institute for Surgical Research of the University of Munich. In the meantime, kidney lithotripsy has gained world-wide acceptance. More than 60,000 patients suffering from urolithiasis have been treated successfully, what made surgical removal of their kidney stones obsolete. Gallstone lithotripsy is, however, still at the very beginning of clinical trial. Lithotripsy of gallbladder stones will have to be applied in combination with urso- or chenodesoxycholic acid in order to obtain complete dissolution of the fragments. Potential hazards to living tissues are briefly mentioned. Since the lung is particularly susceptible, shock waves must enter the body at an angle which ensures that lung tissue is not affected.

  11. How the Term "Shock Waves" Came Into Being

    NASA Astrophysics Data System (ADS)

    Fomin, N. A.

    2016-07-01

    The present paper considers the history of works on shock waves beginning from S. D. Poisson's publication in 1808. It expounds on the establishment of the Polytechnic School in Paris and its fellows and teachers — Gaspard Monge, Lazare Carnot, Joseph Louis Gay-Lussac, Simeon Denis Poisson, Henri Navier, Augustin Louis Cauchy, Joseph Liouville, Ademar de Saint-Venant, Henri Regnault, Pierre Dulong, Emile Jouguet, Pierre Duhem, and others. It also describes the participation in the development of the shock wave theory of young scientists from the universities of Cambridge, among which were George Airy, James Challis, Samuel Earnshaw, George Stokes, Lord Rayleigh, Lord Kelvin, and James Maxwell, as well as of scientists from the Göttingen University, Germany — Bernhard Riemann and Ernst Heinrich Weber. The pioneer works on shock waves of the Scottish engineer William Renkin, the French artillerist Pierre-Henri Hugoniot, German scientists August Toepler and Ernst Mach, and a Hungarian scientist Gyözö Zemplén are also considered.

  12. Local shock-wave lithotripsy of distal ureteral calculi.

    PubMed

    Voges, G E; Wilbert, D M; Stöckle, M; Hohenfellner, R

    1988-01-01

    Since the initiation of the clinical trial utilizing a second-generation lithotripor (Lithostar, Siemens, Erlangen, FRG), 96 patients with distal ureteral calculi (i.e. calculi below the pelvic brim) underwent local shock-wave lithotripsy. Routine treatment was conducted under intravenous sedation and light analgesia only. Complete stone disintegration was achieved in 84 patients (87.5%), 11 requiring two sessions and 1 patient, three. In 7 patients ureteroscopy became necessary after unsuccessful local shock-wave treatment. In 2 of these patients a 9-french flexible ureteroscope and the Storz Q-switched neodymium-YAG laser was used for stone disintegration. In 3 cases loop extraction and in 2 cases open surgery had to be performed for definitive stone removal. All pre- and postoperative manipulations (except open surgery) were done on the Lithostar. Local shock-wave lithotripsy is a highly successful, noninvasive, time-saving and easily applicable technique. It has become our primary approach in the treatment of distal ureteral calculi.

  13. Prediction of the bottomonium D-wave spectrum from full lattice QCD.

    PubMed

    Daldrop, J O; Davies, C T H; Dowdall, R J

    2012-03-09

    We calculate the full spectrum of D-wave states in the Υ system in lattice QCD for the first time, by using an improved version of nonrelativistic QCD on coarse and fine "second-generation" gluon field configurations from the MILC Collaboration that include the effect of up, down, strange, and charm quarks in the sea. By taking the 2S-1S splitting to set the lattice spacing, we determine the (3)D2-1S splitting to 2.3% and find agreement with experiment. Our prediction of the fine structure relative to the (3)D2 gives the (3)D3 at 10.181(5) GeV and the (3)D1 at 10.147(6) GeV. We also discuss the overlap of (3)D1 operators with (3)S1 states.

  14. Interaction of a weak shock wave with a discontinuous heavy-gas cylinder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiansheng; Yang, Dangguo; Wu, Junqiang

    2015-06-15

    The interaction between a cylindrical inhomogeneity and a weak planar shock wave is investigated experimentally and numerically, and special attention is given to the wave patterns and vortex dynamics in this scenario. A soap-film technique is realized to generate a well-controlled discontinuous cylinder (SF{sub 6} surrounded by air) with no supports or wires in the shock-tube experiment. The symmetric evolving interfaces and few disturbance waves are observed in a high-speed schlieren photography. Numerical simulations are also carried out for a detailed analysis. The refracted shock wave inside the cylinder is perturbed by the diffracted shock waves and divided into threemore » branches. When these shock branches collide, the shock focusing occurs. A nonlinear model is then proposed to elucidate effects of the wave patterns on the evolution of the cylinder. A distinct vortex pair is gradually developing during the shock-cylinder interaction. The numerical results show that a low pressure region appears at the vortex core. Subsequently, the ambient fluid is entrained into the vortices which are expanding at the same time. Based on the relation between the vortex motion and the circulation, several theoretical models of circulation in the literature are then checked by the experimental and numerical results. Most of these theoretical circulation models provide a reasonably good prediction of the vortex motion in the present configuration.« less

  15. Multiscale modeling of shock wave localization in porous energetic material

    NASA Astrophysics Data System (ADS)

    Wood, M. A.; Kittell, D. E.; Yarrington, C. D.; Thompson, A. P.

    2018-01-01

    Shock wave interactions with defects, such as pores, are known to play a key role in the chemical initiation of energetic materials. The shock response of hexanitrostilbene is studied through a combination of large-scale reactive molecular dynamics and mesoscale hydrodynamic simulations. In order to extend our simulation capability at the mesoscale to include weak shock conditions (<6 GPa), atomistic simulations of pore collapse are used to define a strain-rate-dependent strength model. Comparing these simulation methods allows us to impose physically reasonable constraints on the mesoscale model parameters. In doing so, we have been able to study shock waves interacting with pores as a function of this viscoplastic material response. We find that the pore collapse behavior of weak shocks is characteristically different than that of strong shocks.

  16. Shock waves from non-spherically collapsing cavitation bubbles

    NASA Astrophysics Data System (ADS)

    Supponen, Outi; Obreschkow, Danail; Farhat, Mohamed

    2017-11-01

    Combining simultaneous high-speed imaging and hydrophone measurements, we uncover details of the multiple shock wave emission from laser-induced cavitation bubbles collapsing in a non-spherical way. For strongly deformed bubbles collapsing near a free surface, we identify the distinct shock waves caused by the jet impact onto the opposite bubble wall and by the individual collapses of the remaining bubble segments. The energy carried by each of these shocks depends on the level of bubble deformation, quantified by the anisotropy parameter ζ, the dimensionless equivalent of the Kelvin impulse. For jetting bubbles, at ζ < 0.01 , the jet impact hammer pressure is found to be the most energetic shock. Through statistical analysis of the experimental data and theoretical derivations, and by comparing bubbles deformed by different sources (variable gravity achieved on parabolic flights, and neighboring free and rigid surfaces), we find that the shock peak pressure may be approximated as the jet impact-induced water hammer as ph = 0.45 (ρc2 Δp) 1 / 2ζ-1 .

  17. Electron injection by whistler waves in non-relativistic shocks

    NASA Astrophysics Data System (ADS)

    Riquelme, Mario A.; Spitkovsky, Anatoly

    2012-04-01

    Radio and X-ray observations of shocks in young supernova remnants (SNRs) reveal electron acceleration to non-thermal, ultra-relativistic energies (~ 10-100 TeV). This acceleration is usually assumed to happen via the diffusive shock acceleration (DSA) mechanism. However, the way in which electrons are initially energized or 'injected' into this acceleration process is an open question and the main focus of this work. We present our study of electron acceleration in nonrelativistic shocks using 2D and 3D particle-in-cell (PIC) plasma simulations. Our simulations show that significant non-thermal acceleration happens due to the growth of oblique whistler waves in the foot of quasi-perpendicular shocks. The obtained electron energy distributions show power law tails with spectral indices up to α ~ 3-4. Also, the maximum energies of the accelerated particles are consistent with the electron Larmor radii being comparable to that of the ions, indicating potential injection into the subsequent DSA process. This injection mechanism requires the shock waves to have fairly low Alfvénic Mach numbers, MA <20, which is consistent with the theoretical conditions for the growth of whistler waves in the shock foot (MA <(mi/me)1/2). Thus, if this mechanism is the only robust electron injection process at work in SNR shocks, then SNRs that display non-thermal emission must have significantly amplified upstream magnetic fields. Such field amplification is likely achieved by accelerated ions in these environments, so electron and ion acceleration in SNR shocks must be interconnected.

  18. Piezoresistive method for a laser induced shock wave detection on solids

    NASA Astrophysics Data System (ADS)

    Gonzalez-Romero, R.; Garcia-Torales, G.; Gomez Rosas, G.; Strojnik, M.

    2017-08-01

    A laser shock wave is a mechanical high-pressure impulse with a duration of a few nanoseconds induced by a high power laser pulse. We performed wave pressure measurements in order to build and check mathematical models. They are used for wave applications in material science, health, and defense, to list a few. Piezoresistive methods have been shown to be highly sensitive, linear, and highly appropriate for practical implementation, compared with piezoelectric methods employed in shock wave pressure measurements. In this work, we develop a novel method to obtain the sensitivity of a piezoresistive measurement system. The results shows that it is possible to use a mechanical method to measure pressure of a laser induced shock wave in nanosecond range. Experimental pressure measurements are presented.

  19. Shock Formation and Energy Dissipation of Slow Magnetosonic Waves in Coronal Plumes

    NASA Technical Reports Server (NTRS)

    Cuntz, M.; Suess, S. T.

    2003-01-01

    We study the shock formation and energy dissipation of slow magnetosonic waves in coronal plumes. The wave parameters and the spreading function of the plumes as well as the base magnetic field strength are given by empirical constraints mostly from SOHO/UVCS. Our models show that shock formation occurs at low coronal heights, i.e., within 1.3 bun, depending on the model parameters. In addition, following analytical estimates, we show that scale height of energy dissipation by the shocks ranges between 0.15 and 0.45 Rsun. This implies that shock heating by slow magnetosonic waves is relevant at most heights, even though this type of waves is apparently not a solely operating energy supply mechanism.

  20. Shock wave interaction with laser-generated single bubbles.

    PubMed

    Sankin, G N; Simmons, W N; Zhu, S L; Zhong, P

    2005-07-15

    The interaction of a lithotripter shock wave (LSW) with laser-generated single vapor bubbles in water is investigated using high-speed photography and pressure measurement via a fiber-optic probe hydrophone. The interaction leads to nonspherical collapse of the bubble with secondary shock wave emission and microjet formation along the LSW propagation direction. The maximum pressure amplification is produced during the collapse phase of the bubble oscillation when the compressive pulse duration of the LSW matches with the forced collapse time of the bubble.

  1. Reversible electron heating vs. wave-particle interactions in quasi-perpendicular shocks

    NASA Technical Reports Server (NTRS)

    Veltri, P.; Mangeney, A.; Scudder, J. D.

    1992-01-01

    The energy necessary to explain the electron heating in quasi-perpendicular collisionless shocks can be derived either from the electron acceleration in the d.c. cross shock electric potential, or by the interactions between the electrons and the waves existing in the shock. A Monte Carlo simulation has been performed to study the electron distribution function evolution through the shock structure, with and without particle diffusion on waves. This simulation has allowed us to clarify the relative importance of the two possible energy sources; in particular it has been shown that the electron parallel temperature is determined by the d.c. electromagnetic field and not by any wave-particle-induced heating. Wave particle interactions are effective in smoothing out the large gradients in phase space produced by the 'reversible' motion of the electrons, thus producing a 'cooling' of the electrons.

  2. Hybrid Simulation of the Shock Wave Trailing the Moon

    NASA Technical Reports Server (NTRS)

    Israelevich, P.; Ofman, Leon

    2012-01-01

    A standing shock wave behind the Moon was predicted by Michel (1967) but never observed nor simulated. We use 1D hybrid code in order to simulate the collapse of the plasma-free cavity behind the Moon and for the first time to model the formation of this shock. Starting immediately downstream of the obstacle we consider the evolution of plasma expansion into the cavity in the frame of reference moving along with the solar wind. Well-known effects as electric charging of the cavity affecting the plasma flow and counterstreaming ion beams in the wake are reproduced. Near the apex of the inner Mach cone where the plasma flows from the opposite sides of the obstacle meet, a shock wave arises. We expect the shock to be produced at periods of high electron temperature solar wind streams (T(sub i) much less than T(sub e) approximately 100 eV). The shock is produced by the interaction of oppositely directed proton beams in the plane containing solar wind velocity and interplanetary magnetic field vectors. In the direction across the magnetic field and the solar wind velocity, the shock results from the interaction of the plasma flow with the region of the enhanced magnetic field inside the cavity that plays the role of the magnetic barrier. The appearance of the standing shock wave is expected at the distance of approximately 7R(sub M) downstream of the Moon.

  3. [Therapeutic effect of extracorporeal shock wave combined with orthopaedic insole on plantar fasciitis].

    PubMed

    Yan, Wenguang; Sun, Shaodan; Li, Xuhong

    2014-12-01

    To observe the therapeutic effect of extracorporeal shock wave combined with orthopaedic insole on plantar fasciitis. A total of 153 plantar with plantar fasciitis were randomly divided into a combined group (n=51), an extracorporeal shock wave group (n=53) and an orthopaedic group (n=49). The combined group received treatment of both extracorporeal shock wave and orthopaedic insole while the extracorporeal shock wave or the orthopaedic group only received the treatment of extracorporeal shock wave or orthopaedic insole. The therapeutic parameters such as visual analogue scale (VAS) scores, continued walking time and thickness of the plantar fascia were monitored before and aft er the treatment for 2 weeks, 1 month and 3 months, respectively. The VAS scores in the 3 groups were all reduced after the treatment compared with the corresponding scores before the therapy (P< 0.05). The VAS score in the extracorporeal shock wave group was greater than that in the orthopedic group after the treatment for 2 weeks. The VAS score in the combined group was smaller than that in the orthopedic group after the treatment for 2 weeks and 3 months (P< 0.05). The VAS scores in the orthopedic group and the combined group were smaller than those in the extracorporeal shock wave group after the treatment for 1 month or 3 months (P< 0.05). The continued walking time and thickness of the plantar fascia was improved after the treatment (P< 0.05). The cure rate and total effective rate in the combination group were obviously greater than those in the two other groups. The cure rate in the orthopedic group was greater than that in the extracorporeal shock wave group (P< 0.05). Extracorporeal shock wave combined with orthopaedic insole therapy is an effective method to treat plantar fasciitis. It is recommended to spread in clinic.

  4. Extension of the HAL QCD approach to inelastic and multi-particle scatterings in lattice QCD

    NASA Astrophysics Data System (ADS)

    Aoki, S.

    We extend the HAL QCD approach, with which potentials between two hadrons can be obtained in QCD at energy below inelastic thresholds, to inelastic and multi-particle scatterings. We first derive asymptotic behaviors of the Nambu-Bethe-Salpeter (NBS) wave function at large space separations for systems with more than 2 particles, in terms of the one-shell $T$-matrix consrainted by the unitarity of quantum field theories. We show that its asymptotic behavior contains phase shifts and mixing angles of $n$ particle scatterings. This property is one of the essential ingredients of the HAL QCD scheme to define "potential" from the NBS wave function in quantum field theories such as QCD. We next construct energy independent but non-local potentials above inelastic thresholds, in terms of these NBS wave functions. We demonstrate an existence of energy-independent coupled channel potentials with a non-relativistic approximation, where momenta of all particles are small compared with their own masses. Combining these two results, we can employ the HAL QCD approach also to investigate inelastic and multi-particle scatterings.

  5. On the formation of Friedlander waves in a compressed-gas-driven shock tube

    PubMed Central

    Tasissa, Abiy F.; Hautefeuille, Martin; Fitek, John H.; Radovitzky, Raúl A.

    2016-01-01

    Compressed-gas-driven shock tubes have become popular as a laboratory-scale replacement for field blast tests. The well-known initial structure of the Riemann problem eventually evolves into a shock structure thought to resemble a Friedlander wave, although this remains to be demonstrated theoretically. In this paper, we develop a semi-analytical model to predict the key characteristics of pseudo blast waves forming in a shock tube: location where the wave first forms, peak over-pressure, decay time and impulse. The approach is based on combining the solutions of the two different types of wave interactions that arise in the shock tube after the family of rarefaction waves in the Riemann solution interacts with the closed end of the tube. The results of the analytical model are verified against numerical simulations obtained with a finite volume method. The model furnishes a rational approach to relate shock tube parameters to desired blast wave characteristics, and thus constitutes a useful tool for the design of shock tubes for blast testing. PMID:27118888

  6. Shock wave propagation in layered planetary embryos

    NASA Astrophysics Data System (ADS)

    Arkani-Hamed, Jafar; Ivanov, Boris A.

    2014-05-01

    The propagation of impact-induced shock wave inside a planetary embryo is investigated using the Hugoniot equations and a new scaling law, governing the particle velocity variations along a shock ray inside a spherical body. The scaling law is adopted to determine the impact heating of a growing embryo in its early stage when it is an undifferentiated and uniform body. The new scaling law, similar to other existing scaling laws, is not suitable for a large differentiated embryo consisting of a silicate mantle overlying an iron core. An algorithm is developed in this study on the basis of the ray theory in a spherically symmetric body which relates the shock parameters at the top of the core to those at the base of the mantle, thus enabling the adoption of scaling laws to estimate the impact heating of both the mantle and the core. The algorithm is applied to two embryo models: a simple two-layered model with a uniform mantle overlying a uniform core, and a model where the pre-shock density and acoustic velocity of the embryo are radially dependent. The former illustrates details of the particle velocity, shock pressure, and temperature increase behind the shock front in a 2D axisymmetric geometry. The latter provides a means to compare the results with those obtained by a hydrocode simulation. The agreement between the results of the two techniques in revealing the effects of the core-mantle boundary on the shock wave transmission across the boundary is encouraging.

  7. Observation and Control of Shock Waves in Individual Nanoplasmas

    DTIC Science & Technology

    2014-03-18

    Observation and Control of Shock Waves in Individual Nanoplasmas Daniel D. Hickstein,1 Franklin Dollar,1 Jim A. Gaffney,2 Mark E. Foord,2 George M...distribution of individual, isolated 100-nm-scale plasmas, we make the first experimental observation of shock waves in nanoplasmas . We demonstrate that...i Nanoscale plasmas ( nanoplasmas ) offer enhanced laser absorption compared to solid or gas targets [1], enabling high-energy physics with tabletop

  8. Shock Wave Structure Mediated by Energetic Particles

    NASA Astrophysics Data System (ADS)

    Mostafavi, P.; Zank, G. P.; Webb, G. M.

    2016-12-01

    Energetic particles such as cosmic rays, Pick Up Ions (PUIs), and solar energetic particles can affect all facets of plasma physics and astrophysical plasma. Energetic particles play an especially significant role in the dissipative process at shocks and in determining their structure. The very interesting recent observations of shocks in the inner heliosphere found that many shocks appear to be significantly mediated by solar energetic particles which have a pressure that exceeds considerably both the thermal gas pressure and the magnetic field pressure. Energetic particles contribute an isotropic scalar pressure to the plasma system at the leading order, as well as introducing dissipation via a collisionless heat flux (diffusion) at the next order and a collisionless stress tensor (viscosity) at the second order. Cosmic-ray modified shocks were discussed by Axford et al. (1982), Drury (1983), and Webb (1983). Zank et al. (2014) investigated the incorporation of PUIs in the supersonic solar wind beyond 10AU, in the inner Heliosheath and in the Very Local Interstellar Medium. PUIs do not equilibrate collisionally with the background plasma in these regimes. In the absence of equilibration between plasma components, a separate coupled plasma description for the energetic particles is necessary. This model is used to investigate the structure of shock waves assuming that we can neglect the magnetic field. Specifically, we consider the dissipative role that both the energetic particle collisionless heat flux and viscosity play in determining the structure of collisionless shock waves. We show that the incorporation of both energetic particle collisionless heat flux and viscosity is sufficient to completely determine the structure of a shock. Moreover, shocks with three sub-shocks converge to the weak sub-shocks. This work differs from the investigation of Jokipii and Williams (1992) who restricted their attention to a cold thermal gas. For a cold thermal non

  9. Note: A contraction channel design for planar shock wave enhancement

    NASA Astrophysics Data System (ADS)

    Zhan, Dongwen; Li, Zhufei; Yang, Jianting; Zhu, Yujian; Yang, Jiming

    2018-05-01

    A two-dimensional contraction channel with a theoretically designed concave-oblique-convex wall profile is proposed to obtain a smooth planar-to-planar shock transition with shock intensity amplification that can easily overcome the limitations of a conventional shock tube. The concave segment of the wall profile, which is carefully determined based on shock dynamics theory, transforms the shock shape from an initial plane into a cylindrical arc. Then the level of shock enhancement is mainly contributed by the cylindrical shock convergence within the following oblique segment, after which the cylindrical shock is again "bent" back into a planar shape through the third section of the shock dynamically designed convex segment. A typical example is presented with a combination of experimental and numerical methods, where the shape of transmitted shock is almost planar and the post-shock flow has no obvious reflected waves. A quantitative investigation shows that the difference between the designed and experimental transmitted shock intensities is merely 1.4%. Thanks to its advantage that the wall profile design is insensitive to initial shock strength variations and high-temperature gas effects, this method exhibits attractive potential as an efficient approach to a certain, controllable, extreme condition of a strong shock wave with relatively uniform flow behind.

  10. Evolution of wave patterns and temperature field in shock-tube flow

    NASA Astrophysics Data System (ADS)

    Kiverin, A. D.; Yakovenko, I. S.

    2018-05-01

    The paper is devoted to the numerical analysis of wave patterns behind a shock wave propagating in a tube filled with a gaseous mixture. It is shown that the flow inside the boundary layer behind the shock wave is unstable, and the way the instability develops fully corresponds to the solution obtained for the boundary layer over a flat plate. Vortical perturbations inside the boundary layer determine the nonuniformity of the temperature field. In turn, exactly these nonuniformities define the way the ignition kernels arise in the combustible mixture after the reflected shock interaction with the boundary layer. In particular, the temperature nonuniformity determines the spatial limitations of probable ignition kernel position relative to the end wall and side walls of the tube. In the case of low-intensity incident shocks the ignition could start not farther than the point of first interaction between the reflected shock wave and roller vortices formed in the process of boundary layer development. Proposed physical mechanisms are formulated in general terms and can be used for interpretation of the experimental data in any systems with a delayed exothermal reaction start. It is also shown that contact surface thickening occurs due to its interaction with Tollmien-Schlichting waves. This conclusion is of importance for understanding the features of ignition in shock tubes operating in the over-tailored regime.

  11. Enhanced kidney stone fragmentation by short delay tandem conventional and modified lithotriptor shock waves: a numerical analysis.

    PubMed

    Tham, Leung-Mun; Lee, Heow Pueh; Lu, Chun

    2007-07-01

    We evaluated the effectiveness of modified lithotriptor shock waves using computer models. Finite element models were used to simulate the propagation of lithotriptor shock waves in human renal calculi in vivo. Kidney stones were assumed to be spherical, homogeneous, isotropic and linearly elastic, and immersed in a continuum fluid. Single and tandem shock wave pulses modified to intensify the collapse of cavitation bubbles near the stone surface to increase fragmentation efficiency and suppress the expansion of intraluminal bubbles for decreased vascular injury were analyzed. The effectiveness of the modified shock waves was assessed by comparing the states of loading in the renal calculi induced by these shock waves to those produced by conventional shock waves. Our numerical simulations revealed that modified shock waves produced marginally lower stresses in spherical renal calculi than those produced by conventional shock waves. Tandem pulses of conventional or modified shock waves produced peak stresses in the front and back halves of the renal calculi. However, the single shock wave pulses generated significant peak stresses in only the back halves of the renal calculi. Our numerical simulations suggest that for direct stress wave induced fragmentation modified shock waves should be as effective as conventional shock waves for fragmenting kidney stones. Also, with a small interval of 20 microseconds between the pulses tandem pulse lithotripsy using modified or conventional shock waves could be considerably more effective than single pulse lithotripsy for fragmenting kidney stones.

  12. The measurement of shock waves following heel strike while running.

    PubMed

    Dickinson, J A; Cook, S D; Leinhardt, T M

    1985-01-01

    A non-invasive method for demonstrating the shock wave which propagates through the skeletal system following heel strike is described. This wave was not seen in force plate studies where adequate shock absorption was provided by running shoes. In the present study six subjects ran across a force plate without shoes before and after they were fatigued on a treadmill to demonstrate possible changes in the heel strike transient. Most of the parameters measured were not altered by fatigue, and a relationship between the shock wave and height, but not the weight of the runner was demonstrated. The different mechanisms leading to this phenomenon, and its implication in the areas of osteoarthritic degeneration and running mechanics are discussed.

  13. Survey of shock-wave structures of smooth-particle granular flows.

    PubMed

    Padgett, D A; Mazzoleni, A P; Faw, S D

    2015-12-01

    We show the effects of simulated supersonic granular flow made up of smooth particles passing over two prototypical bodies: a wedge and a disk. We describe a way of computationally identifying shock wave locations in granular flows and tabulate the shock wave locations for flow over wedges and disks. We quantify the shock structure in terms of oblique shock angle for wedge impediments and shock standoff distance for disk impediments. We vary granular flow parameters including upstream volume fraction, average upstream velocity, granular temperature, and the collision coefficient of restitution. Both wedges and disks have been used in the aerospace community as prototypical impediments to flowing air in order to investigate the fundamentally different shock structures emanating from sharp and blunt bodies, and we present these results in order to increase the understanding of the fundamental behavior of supersonic granular flow.

  14. Shock wave-induced phase transition in RDX single crystals.

    PubMed

    Patterson, James E; Dreger, Zbigniew A; Gupta, Yogendra M

    2007-09-20

    The real-time, molecular-level response of oriented single crystals of hexahydro-1,3,5-trinitro-s-triazine (RDX) to shock compression was examined using Raman spectroscopy. Single crystals of [111], [210], or [100] orientation were shocked under stepwise loading to peak stresses from 3.0 to 5.5 GPa. Two types of measurements were performed: (i) high-resolution Raman spectroscopy to probe the material at peak stress and (ii) time-resolved Raman spectroscopy to monitor the evolution of molecular changes as the shock wave reverberated through the material. The frequency shift of the CH stretching modes under shock loading appeared to be similar for all three crystal orientations below 3.5 GPa. Significant spectral changes were observed in crystals shocked above 4.5 GPa. These changes were similar to those observed in static pressure measurements, indicating the occurrence of the alpha-gamma phase transition in shocked RDX crystals. No apparent orientation dependence in the molecular response of RDX to shock compression up to 5.5 GPa was observed. The phase transition had an incubation time of approximately 100 ns when RDX was shocked to 5.5 GPa peak stress. The observation of the alpha-gamma phase transition under shock wave loading is briefly discussed in connection with the onset of chemical decomposition in shocked RDX.

  15. Shock-induced bubble jetting into a viscous fluid with application to tissue injury in shock-wave lithotripsy.

    PubMed

    Freund, J B; Shukla, R K; Evan, A P

    2009-11-01

    Shock waves in liquids are known to cause spherical gas bubbles to rapidly collapse and form strong re-entrant jets in the direction of the propagating shock. The interaction of these jets with an adjacent viscous liquid is investigated using finite-volume simulation methods. This configuration serves as a model for tissue injury during shock-wave lithotripsy, a medical procedure to remove kidney stones. In this case, the viscous fluid provides a crude model for the tissue. It is found that for viscosities comparable to what might be expected in tissue, the jet that forms upon collapse of a small bubble fails to penetrate deeply into the viscous fluid "tissue." A simple model reproduces the penetration distance versus viscosity observed in the simulations and leads to a phenomenological model for the spreading of injury with multiple shocks. For a reasonable selection of a single efficiency parameter, this model is able to reproduce in vivo observations of an apparent 1000-shock threshold before wide-spread tissue injury occurs in targeted kidneys and the approximate extent of this injury after a typical clinical dose of 2000 shock waves.

  16. Shock-induced bubble jetting into a viscous fluid with application to tissue injury in shock-wave lithotripsy

    PubMed Central

    Freund, J. B.; Shukla, R. K.; Evan, A. P.

    2009-01-01

    Shock waves in liquids are known to cause spherical gas bubbles to rapidly collapse and form strong re-entrant jets in the direction of the propagating shock. The interaction of these jets with an adjacent viscous liquid is investigated using finite-volume simulation methods. This configuration serves as a model for tissue injury during shock-wave lithotripsy, a medical procedure to remove kidney stones. In this case, the viscous fluid provides a crude model for the tissue. It is found that for viscosities comparable to what might be expected in tissue, the jet that forms upon collapse of a small bubble fails to penetrate deeply into the viscous fluid “tissue.” A simple model reproduces the penetration distance versus viscosity observed in the simulations and leads to a phenomenological model for the spreading of injury with multiple shocks. For a reasonable selection of a single efficiency parameter, this model is able to reproduce in vivo observations of an apparent 1000-shock threshold before wide-spread tissue injury occurs in targeted kidneys and the approximate extent of this injury after a typical clinical dose of 2000 shock waves. PMID:19894850

  17. 1D GAS-DYNAMIC SIMULATION OF SHOCK-WAVE PROCESSES VIA INTERNET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khishchenko, K. V.; Levashov, P. R.; Povarnitsyn, M. E.

    2009-12-28

    We present a Web-interface for 1D simulation of different shock-wave experiments. The choosing of initial parameters, the modeling itself and output data treatment can be made directly via the Internet. The interface is based upon the expert system on shock-wave data and equations of state and contains both the Eulerian and Lagrangian Godunov hydrocodes. The availability of equations of state for a broad set of substances makes this system a useful tool for planning and interpretation of shock-wave experiments. As an example of simulation with the system, results of modeling of multistep shock loading of potassium between polytetrafluoroethylene and stainlessmore » steel plates are presented in comparison with experimental data from Shakhray et al.(2005).« less

  18. Radial shock wave treatment alone is less efficient than radial shock wave treatment combined with tissue-specific plantar fascia-stretching in patients with chronic plantar heel pain.

    PubMed

    Rompe, Jan D; Furia, John; Cacchio, Angelo; Schmitz, Christoph; Maffulli, Nicola

    2015-12-01

    Whether shock wave therapy or shock wave therapy combined with plantar fascia-specific stretching is more efficient in treating chronic plantar heel pain remains unclear. The aim of the study was to test the null hypothesis of no difference of these two forms of management for patients who had unilateral plantar fasciopathy for a minimum duration of twelve months and which had failed at least three other forms of treatment. One hundred and fifty-two patients with chronic plantar fasciopathy were assigned to receive repetitive low-energy radial shock-wave therapy without local anesthesia, administered weekly for three weeks (Group 1, n = 73) or to receive the identical shock wave treatment and to perform an eight-week plantar fascia-specific stretching program (Group 2, n = 79). All patients completed the nine-item pain subscale of the validated Foot Function Index and a subject-relevant outcome questionnaire. Patients were evaluated at baseline, and at two, four, and twenty-four months after baseline. The primary outcome measures were a mean change in the Foot Function Index sum score at two months after baseline, a mean change in item 2 (pain during the first steps of walking in the morning) on this Index, and satisfaction with treatment. No difference in mean age, sex, weight or duration of symptoms was found between the groups at baseline. At two months after baseline, the Foot Function Index sum score showed significantly greater changes for the patients managed with shock-wave therapy plus plantar fascia-specific stretching than those managed with shock-wave therapy alone (p < 0.001), as well as individually for item 2 (p < 0.001). Twenty-four patients in Group 1 (32%) versus forty-seven patients in Group 2 (59%) were satisfied with the treatment (p < 0.001). Significant differences persisted at four months, but not at twenty-four months. A program of manual stretching exercises specific to the plantar fascia in combination with repetitive low-energy radial

  19. Shock-induced solitary waves in granular crystals.

    PubMed

    Hasan, M Arif; Nemat-Nasser, Sia

    2018-02-01

    Solitary waves (SWs) are generated in monoatomic (homogeneous) lightly contacting spherical granules by an applied input force of any time-variation and intensity. We consider finite duration shock loads on one-dimensional arrays of granules and focus on the transition regime that leads to the formation of SWs. Based on geometrical and material properties of the granules and the properties of the input shock, we provide explicit analytic expressions to calculate the peak value of the compressive contact force at each contact point in the transition regime that precedes the formation of a primary solitary wave. We also provide explicit expressions to estimate the number of granules involved in the transition regime and show its dependence on the characteristics of the input shock and material/geometrical properties of the interacting granules. Finally, we assess the accuracy of our theoretical results by comparing them with those obtained through numerical integration of the equations of motion.

  20. Ion acoustic shock wave in collisional equal mass plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adak, Ashish, E-mail: ashish-adak@yahoo.com; Ghosh, Samiran, E-mail: sran-g@yahoo.com; Chakrabarti, Nikhil, E-mail: nikhil.chakrabarti@saha.ac.in

    The effect of ion-ion collision on the dynamics of nonlinear ion acoustic wave in an unmagnetized pair-ion plasma has been investigated. The two-fluid model has been used to describe the dynamics of both positive and negative ions with equal masses. It is well known that in the dynamics of the weakly nonlinear wave, the viscosity mediates wave dissipation in presence of weak nonlinearity and dispersion. This dissipation is responsible for the shock structures in pair-ion plasma. Here, it has been shown that the ion-ion collision in presence of collective phenomena mediated by the plasma current is the source of dissipationmore » that causes the Burgers' term which is responsible for the shock structures in equal mass pair-ion plasma. The dynamics of the weakly nonlinear wave is governed by the Korteweg-de Vries Burgers equation. The analytical and numerical investigations revealed that the ion acoustic wave exhibits both oscillatory and monotonic shock structures depending on the frequency of ion-ion collision parameter. The results have been discussed in the context of the fullerene pair-ion plasma experiments.« less

  1. Interactive navigation system for shock wave applications.

    PubMed

    Hagelauer, U; Russo, S; Gigliotti, S; de Durante, C; Corrado, E M

    2001-01-01

    The latest generation of shock wave lithotripters, with therapy heads mounted on articulated arms, have found widespread application in the treatment of orthopedic diseases. Currently, integration of an ultrasound probe in the therapy head is the dominant modality for positioning the shock wave focus on the treatment area. For orthopedic applications, however, X-ray imaging is often preferred. This article describes a new method to locate the therapy head of a lithotripter. In the first step, the surgeon positions the tissue to be treated at the isocenter of a C-arc. This is achieved using AP and 30-degree lateral projections, with corresponding horizontal and vertical movements of the patient under fluoroscopic guidance. These movements register the anatomic location in the coordinate system of the C-arc. In the second step, the therapy head is navigated to align the shock wave focus with the isocenter. Position data are reported from an optical tracker mounted on the X-ray system, which tracks an array of infrared LEDs on the therapy head. The accuracy of the tracking system was determined on a test bench, and was calculated to be 1.55 mm (RMS) for an angular movement of +/-15 degrees around a calibrated position. Free-hand navigation and precise alignment are performed with a single virtual reality display. The display is calculated by a computer system in real time, and uses graphical symbols to represent the shock wave path and isocenter. In an interactive process, the physician observes the display while navigating the therapy head towards the isocenter. Precise alignment is achieved by displaying an enlarged view of the intersecting graphical symbols. Results from the first tests on 100 patients demonstrate the feasibility of this approach in a clinical environment. Copyright 2001 Wiley-Liss, Inc.

  2. Shock conditions and shock wave structures in a steady flow in a dissipative fluid

    NASA Technical Reports Server (NTRS)

    Germain, P.; Guiraud, J. P.

    1983-01-01

    More precisely, calling xi the reciprocal of the Reynolds number based on the shock wave curvature radius, the xi terms of the first order are systematically taken into account. The most important result is a system of formulas giving a correction of order xi for the various RANKINE-HUGONIOT conditions. The suggested formulas may for instance have to be used instead of the conventional ones to evaluate the loss of the total pressure across the detached shock wave which is found at the nose of a very small probe in supersonic flow.

  3. Exhaust Nozzle Plume and Shock Wave Interaction

    NASA Technical Reports Server (NTRS)

    Castner, Raymond S.; Elmiligui, Alaa; Cliff, Susan

    2013-01-01

    Fundamental research for sonic boom reduction is needed to quantify the interaction of shock waves generated from the aircraft wing or tail surfaces with the exhaust plume. Both the nozzle exhaust plume shape and the tail shock shape may be affected by an interaction that may alter the vehicle sonic boom signature. The plume and shock interaction was studied using Computational Fluid Dynamics simulation on two types of convergent-divergent nozzles and a simple wedge shock generator. The nozzle plume effects on the lower wedge compression region are evaluated for two- and three-dimensional nozzle plumes. Results show that the compression from the wedge deflects the nozzle plume and shocks form on the deflected lower plume boundary. The sonic boom pressure signature of the wedge is modified by the presence of the plume, and the computational predictions show significant (8 to 15 percent) changes in shock amplitude.

  4. Quantified Energy Dissipation Rates in the Terrestrial Bow Shock. 2; Waves and Dissipation

    NASA Technical Reports Server (NTRS)

    Wilson, L. B., III; Sibeck, D. G.; Breneman, A. W.; Le Contel, O.; Cully, C.; Turner, D. L.; Angelopoulos, V.; Malaspina, D. M.

    2014-01-01

    We present the first quantified measure of the energy dissipation rates, due to wave-particle interactions, in the transition region of the Earth's collision-less bow shock using data from the Time History of Events and Macro-Scale Interactions during Sub-Storms spacecraft. Our results show that wave-particle interactions can regulate the global structure and dominate the energy dissipation of collision-less shocks. In every bow shock crossing examined, we observed both low-frequency (less than 10 hertz) and high-frequency (approximately or greater than10 hertz) electromagnetic waves throughout the entire transition region and into the magnetosheath. The low-frequency waves were consistent with magnetosonic-whistler waves. The high-frequency waves were combinations of ion-acoustic waves, electron cyclotron drift instability driven waves, electrostatic solitary waves, and whistler mode waves. The high-frequency waves had the following: (1) peak amplitudes exceeding delta B approximately equal to 10 nanoteslas and delta E approximately equal to 300 millivolts per meter, though more typical values were delta B approximately equal to 0.1-1.0 nanoteslas and delta E approximately equal to 10-50 millivolts per meter (2) Poynting fluxes in excess of 2000 microWm(sup -2) (micro-waves per square meter) (typical values were approximately 1-10 microWm(sup -2) (micro-waves per square meter); (3) resistivities greater than 9000 omega meters; and (4) associated energy dissipation rates greater than 10 microWm(sup -3) (micro-waves per cubic meter). The dissipation rates due to wave-particle interactions exceeded rates necessary to explain the increase in entropy across the shock ramps for approximately 90 percent of the wave burst durations. For approximately 22 percent of these times, the wave-particle interactions needed to only be less than or equal to 0.1 percent efficient to balance the nonlinear wave steepening that produced the shock waves. These results show that wave

  5. Structural changes in a heterogeneous solid (granite) under shock wave action

    NASA Astrophysics Data System (ADS)

    Vettegren, V. I.; Shcherbakov, I. P.; Mamalimov, R. I.; Kulik, V. B.

    2016-04-01

    The structure of two granite types (plagiogranite and alaskite) before and after shock wave action has been studied by infrared, Raman, and photoluminescence spectroscopy methods. It has been found that the shock wave caused transformation of quartz and feldspar crystals composing these granites into diaplectic glasses.

  6. Generation and Micro-scale Effects of Electrostatic Waves in an Oblique Shock

    NASA Astrophysics Data System (ADS)

    Goodrich, K.; Ergun, R.; Schwartz, S. J.; Newman, D.; Johlander, A.; Argall, M. R.; Wilder, F. D.; Torbert, R. B.; Khotyaintsev, Y. V.; Lindqvist, P. A.; Strangeway, R. J.; Russell, C. T.; Giles, B. L.; Gershman, D. J.; Burch, J. L.

    2017-12-01

    We present an analysis of large amplitude (>100 mV/m), high frequency (≤1 kHz), electrostatic waves observed by MMS during an oblique bow shock crossing event. The observed waves primarily consist of electrostatic solitary waves (ESWs) and oblique ion plasma waves (IPWs). ESWs typically include nonlinear structures such as double layers, ion phase-space holes, and electron phase-space holes. Oblique IPWs are observed to be similar to ion acoustic waves, but can propagate up to 70° from the ambient magnetic field direction. Both wave-modes, particularly IPWs, are observed to have very short wavelengths ( 100 m) and are highly localized. While such wave-modes have been previously observed in the terrestrial bow shock, instrumental constraints have limited detailed insight into their generation and their effect on their plasma shock environment. Analysis of this oblique shock event shows evidence that ESWs and oblique IPWs can be generated through field-aligned currents associated with magnetic turbulence and through a counterstreaming ion instability respectively. We also present evidence that this wave activity can facilitate momentum exchange between ion populations, resulting in deceleration of incoming solar wind, and localized electron heating.

  7. Tailoring the Blast Exposure Conditions in the Shock Tube for Generating Pure, Primary Shock Waves: The End Plate Facilitates Elimination of Secondary Loading of the Specimen

    PubMed Central

    Misistia, Anthony; Kahali, Sudeepto; Sundaramurthy, Aravind; Chandra, Namas

    2016-01-01

    The end plate mounted at the mouth of the shock tube is a versatile and effective implement to control and mitigate the end effects. We have performed a series of measurements of incident shock wave velocities and overpressures followed by quantification of impulse values (integral of pressure in time domain) for four different end plate configurations (0.625, 2, 4 inches, and an open end). Shock wave characteristics were monitored by high response rate pressure sensors allocated in six positions along the length of 6 meters long 229 mm square cross section shock tube. Tests were performed at three shock wave intensities, which was controlled by varying the Mylar membrane thickness (0.02, 0.04 and 0.06 inch). The end reflector plate installed at the exit of the shock tube allows precise control over the intensity of reflected waves penetrating into the shock tube. At the optimized distance of the tube to end plate gap the secondary waves were entirely eliminated from the test section, which was confirmed by pressure sensor at T4 location. This is pronounced finding for implementation of pure primary blast wave animal model. These data also suggest only deep in the shock tube experimental conditions allow exposure to a single shock wave free of artifacts. Our results provide detailed insight into spatiotemporal dynamics of shock waves with Friedlander waveform generated using helium as a driver gas and propagating in the air inside medium sized tube. Diffusion of driver gas (helium) inside the shock tube was responsible for velocity increase of reflected shock waves. Numerical simulations combined with experimental data suggest the shock wave attenuation mechanism is simply the expansion of the internal pressure. In the absence of any other postulated shock wave decay mechanisms, which were not implemented in the model the agreement between theory and experimental data is excellent. PMID:27603017

  8. Tailoring the Blast Exposure Conditions in the Shock Tube for Generating Pure, Primary Shock Waves: The End Plate Facilitates Elimination of Secondary Loading of the Specimen.

    PubMed

    Kuriakose, Matthew; Skotak, Maciej; Misistia, Anthony; Kahali, Sudeepto; Sundaramurthy, Aravind; Chandra, Namas

    2016-01-01

    The end plate mounted at the mouth of the shock tube is a versatile and effective implement to control and mitigate the end effects. We have performed a series of measurements of incident shock wave velocities and overpressures followed by quantification of impulse values (integral of pressure in time domain) for four different end plate configurations (0.625, 2, 4 inches, and an open end). Shock wave characteristics were monitored by high response rate pressure sensors allocated in six positions along the length of 6 meters long 229 mm square cross section shock tube. Tests were performed at three shock wave intensities, which was controlled by varying the Mylar membrane thickness (0.02, 0.04 and 0.06 inch). The end reflector plate installed at the exit of the shock tube allows precise control over the intensity of reflected waves penetrating into the shock tube. At the optimized distance of the tube to end plate gap the secondary waves were entirely eliminated from the test section, which was confirmed by pressure sensor at T4 location. This is pronounced finding for implementation of pure primary blast wave animal model. These data also suggest only deep in the shock tube experimental conditions allow exposure to a single shock wave free of artifacts. Our results provide detailed insight into spatiotemporal dynamics of shock waves with Friedlander waveform generated using helium as a driver gas and propagating in the air inside medium sized tube. Diffusion of driver gas (helium) inside the shock tube was responsible for velocity increase of reflected shock waves. Numerical simulations combined with experimental data suggest the shock wave attenuation mechanism is simply the expansion of the internal pressure. In the absence of any other postulated shock wave decay mechanisms, which were not implemented in the model the agreement between theory and experimental data is excellent.

  9. Optical shock waves in silica aerogel.

    PubMed

    Gentilini, S; Ghajeri, F; Ghofraniha, N; Di Falco, A; Conti, C

    2014-01-27

    Silica aerogels are materials well suited for high power nonlinear optical applications. In such regime, the non-trivial thermal properties may give rise to the generation of optical shock waves, which are also affected by the structural disorder due to the porous solid-state gel. Here we report on an experimental investigation in terms of beam waist and input power, and identify various regimes of the generation of wave-breaking phenomena in silica aerogels.

  10. Innovations in shock wave lithotripsy technology: updates in experimental studies.

    PubMed

    Zhou, Yufeng; Cocks, Franklin H; Preminger, Glenn M; Zhong, Pei

    2004-11-01

    We developed innovations in shock wave lithotripsy (SWL) technology. Two technical upgrades were implemented in an original unmodified HM-3 lithotriptor (Dornier Medical Systems, Inc., Kennesaw, Georgia). First, a single unit ellipsoidal reflector insert was used to modify the profile of lithotriptor shock wave (LSW) to decrease the propensity of tissue injury in SWL. Second, a piezoelectric annular array (PEAA) generator (f = 230 kHz and F = 150 mm) was used to produce an auxiliary shock wave of approximately 13 MPa in peak pressure (at 4 kV output voltage) to intensify the collapse of LSW induced bubbles near the target stone for improved comminution efficiency. Consistent rupture of a vessel phantom made of single cellulose hollow fiber (i.d. = 0.2 mm) was produced after 30 shocks by the original HM-3 reflector at 20 kV. In comparison no vessel rupture could be produced after 200 shocks using the upgraded reflector at 22 kV or the PEAA generator at 4 kV. Using cylindrical BegoStone phantoms (Bego USA, Smithfield, Rhode Island) stone comminution efficiencies (mean +/- sd) after 1,500 shocks produced by the original and upgraded HM-3 reflectors, and the combined PEAA/upgraded HM-3 system, were 81.3% +/- 3.5%, 90.1% +/- 4.3% and 95.2% +/- 3.3%, respectively (p<0.05). Optimization of the pulse profile and sequence of LSW can significantly improve stone comminution while simultaneously decreasing the propensity of tissue injury during in vitro SWL. This novel concept and associated technologies may be used to upgrade other existing lithotriptors and to design new shock wave lithotriptors for improved performance and safety.

  11. Observation of interaction of shock wave with gas bubble by image converter camera

    NASA Astrophysics Data System (ADS)

    Yoshii, M.; Tada, M.; Tsuji, T.; Isuzugawa, Kohji

    1995-05-01

    When a spark discharge occurs at the first focal point of a semiellipsoid or a reflector located in water, a spherical shock wave is produced. A part of the wave spreads without reflecting on the reflector and is called direct wave in this paper. Another part reflects on the semiellipsoid and converges near the second focal point, that is named the focusing wave, and locally produces a high pressure. This phenomenon is applied to disintegrators of kidney stone. But it is concerned that cavitation bubbles induced in the body by the expansion wave following the focusing wave will injure human tissue around kidney stone. In this paper, in order to examine what happens when shock waves strike bubbles on human tissue, the aspect that an air bubble is truck by the spherical shock wave or its behavior is visualized by the schlieren system and its photographs are taken using an image converter camera. Besides,the variation of the pressure amplitude caused by the shock wave and the flow of water around the bubble is measured with a pressure probe.

  12. Propagation of shock waves in elastic solids caused by cavitation microjet impact. II: Application in extracorporeal shock wave lithotripsy.

    PubMed

    Zhong, P; Chuong, C J; Preminger, G M

    1993-07-01

    To better understand the mechanism of stone fragmentation during extracorporeal shock wave lithotripsy (ESWL), the model developed in Part I [P. Zhong and C.J. Chuong, J. Acoust. Soc. Am. 94, 19-28 (1993)] is applied to study cavitation microjet impingement and its resultant shock wave propagation in renal calculi. Impact pressure at the stone boundary and stress, strain at the propagating shock fronts in the stone were calculated for typical ESWL loading conditions. At the anterior surface of the stone, the jet induced compressive stress can vary from 0.82 approximately 4 times that of the water hammer pressure depending on the contact angles; whereas the jet-induced shear stress can achieve its maximum, with a magnitude of 30% approximately 54% of the water hammer pressure, near the detachment of the longitudinal (or P) wave in the solid. Comparison of model predictions with material failure strengths of renal calculi suggests that jet impact can lead to stone surface erosion by combined compressive and shear loadings at the jet impacting surface, and spalling failure by tensile forces at the distal surface of the stone. Comparing responses from four different stone types suggests that cystine is the most difficult stone to fragment in ESWL, as observed from clinical experience.

  13. Nonstandard Analysis and Jump Conditions for Converging Shock Waves

    NASA Technical Reports Server (NTRS)

    Baty, Roy S.; Farassat, Fereidoun; Tucker, Don H.

    2008-01-01

    Nonstandard analysis is an area of modern mathematics which studies abstract number systems containing both infinitesimal and infinite numbers. This article applies nonstandard analysis to derive jump conditions for one-dimensional, converging shock waves in a compressible, inviscid, perfect gas. It is assumed that the shock thickness occurs on an infinitesimal interval and the jump functions in the thermodynamic and fluid dynamic parameters occur smoothly across this interval. Predistributions of the Heaviside function and the Dirac delta measure are introduced to model the flow parameters across a shock wave. The equations of motion expressed in nonconservative form are then applied to derive unambiguous relationships between the jump functions for the flow parameters.

  14. Numerical study of the Kadomtsev-Petviashvili equation and dispersive shock waves

    NASA Astrophysics Data System (ADS)

    Grava, T.; Klein, C.; Pitton, G.

    2018-02-01

    A detailed numerical study of the long time behaviour of dispersive shock waves in solutions to the Kadomtsev-Petviashvili (KP) I equation is presented. It is shown that modulated lump solutions emerge from the dispersive shock waves. For the description of dispersive shock waves, Whitham modulation equations for KP are obtained. It is shown that the modulation equations near the soliton line are hyperbolic for the KPII equation while they are elliptic for the KPI equation leading to a focusing effect and the formation of lumps. Such a behaviour is similar to the appearance of breathers for the focusing nonlinear Schrödinger equation in the semiclassical limit.

  15. Optodynamic characterization of shock waves after laser-induced breakdown in water.

    PubMed

    Petkovsek, Rok; Mozina, Janez; Mocnik, Grisa

    2005-05-30

    Plasma and a cavitation bubble develop at the site of laser-induced breakdown in water. Their formation and the propagation of the shock wave were monitored by a beam-deflection probe and an arm-compensated interferometer. The interferometer part of the setup was used to determine the relative position of the laser-induced breakdown. The time-of-flight data from the breakdown site to the probe beam yielded the velocity, and from the velocity the shock-wave pressure amplitudes were calculated. Two regions were found where the pressure decays with different exponents, pointing to a strong attenuation mechanism in the initial phase of the shock-wave propagation.

  16. Drift ion acoustic shock waves in an inhomogeneous two-dimensional quantum magnetoplasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masood, W.; Siddiq, M.; Karim, S.

    2009-04-15

    Linear and nonlinear propagation characteristics of drift ion acoustic waves are investigated in an inhomogeneous quantum plasma with neutrals in the background employing the quantum hydrodynamics (QHD) model. In this regard, a quantum Kadomtsev-Petviashvili-Burgers (KPB) equation is derived for the first time. It is shown that the ion acoustic wave couples with the drift wave if the parallel motion of ions is taken into account. Discrepancies in the earlier works on drift solitons and shocks in inhomogeneous plasmas are also pointed out and a correct theoretical framework is presented to study the one-dimensional as well as the two-dimensional propagation ofmore » shock waves in an inhomogeneous quantum plasma. Furthermore, the solution of KPB equation is presented using the tangent hyperbolic (tanh) method. The variation of the shock profile with the quantum Bohm potential, collision frequency, and ratio of drift to shock velocity in the comoving frame, v{sub *}/u, are also investigated. It is found that increasing the number density and collision frequency enhances the strength of the shock. It is also shown that the fast drift shock (i.e., v{sub *}/u>0) increases, whereas the slow drift shock (i.e., v{sub *}/u<0) decreases the strength of the shock. The relevance of the present investigation with regard to dense astrophysical environments is also pointed out.« less

  17. Interaction of a shock wave with multiple spheres suspended in different arrangements

    NASA Astrophysics Data System (ADS)

    Zhang, Li-Te; Sui, Zhen-Zhen; Shi, Hong-Hui

    2018-03-01

    In this study, the unsteady drag force, Fd, drag coefficient, Cd, and the relevant dynamic behaviors of waves caused by the interaction between a planar incident shock wave and a multi-sphere model are investigated by using imbedded accelerometers and a high-speed Schlieren system. The shock wave is produced in a horizontal 200 mm inner diameter circular shock tube with a 2000 mm × 200 mm × 200 mm transparent test section. The time history of Cd is obtained based on band-block and low-pass Fast Fourier Transformation filtering combined with Savitzky-Golay polynomial smoothing for the measured acceleration. The effects of shock Mach number, Ms, geometry of multi-sphere model, nondimensional distance between sphere centers, H, and channel blockage are analyzed. We find that all time histories of Cd have a similar double-peak shaped main structure. It is due to wave reflection, diffraction, interference, and convergence at different positions of the spheres. The peak Fd increases, whereas the peak Cd decreases monotonically with increasing Ms. The increase of shock strength due to shock focusing by upstream spheres increases the peak Fd of downstream spheres. Both the increase in sphere number and the decrease in distance between spheres promote wave interference between neighboring spheres. As long as the wave interference times are shorter than the peak times, the peak Fd and Cd are higher compared to a single sphere.

  18. Biological effects of two successive shock waves focused on liver tissues and melanoma cells.

    PubMed

    Benes, J; Sunka, P; Králová, J; Kaspar, J; Poucková, P

    2007-01-01

    A new generator of two successive shock waves focused to a common focal point has been developed. Cylindrical pressure waves created by multichannel electrical discharges on two cylindrical composite anodes are focused by a metallic parabolic reflector - cathode, and near the focus they are transformed to strong shock waves. Schlieren photos of the focal region have demonstrated that mutual interaction of the two waves results in generation of a large number of secondary short-wavelength shocks. Interaction of the focused shockwaves with liver tissues and cancer cell suspensions was investigated. Localized injury of rabbit liver induced by the shock waves was demonstrated by magnetic resonance imaging. Histological analysis of liver samples taken from the injured region revealed that the transition between the injured and the healthy tissues is sharp. Suspension of melanoma B16 cells was exposed and the number of the surviving cells rapidly decreased with increasing number of shocks and only 8 % of cells survived 350 shocks. Photographs of cells demonstrate that even small number of shocks results in perforation of cell membranes.

  19. Shock waves in binary oxides memristors

    NASA Astrophysics Data System (ADS)

    Tesler, Federico; Tang, Shao; Dobrosavljević, Vladimir; Rozenberg, Marcelo

    2017-09-01

    Progress of silicon based technology is nearing its physical limit, as minimum feature size of components is reaching a mere 5 nm. The resistive switching behavior of transition metal oxides and the associated memristor device is emerging as a competitive technology for next generation electronics. Significant progress has already been made in the past decade and devices are beginning to hit the market; however, it has been mainly the result of empirical trial and error. Hence, gaining theoretical insight is of essence. In the present work we report a new connection between the resistive switching and shock wave formation, a classic topic of non-linear dynamics. We argue that the profile of oxygen ions that migrate during the commutation in insulating binary oxides may form a shock wave, which propagates through a poorly conductive region of the device. We validate the scenario by means of model simulations.

  20. Increased Risk of New-Onset Hypertension After Shock Wave Lithotripsy in Urolithiasis: A Nationwide Cohort Study.

    PubMed

    Huang, Shi-Wei; Tsai, Chung-You; Wang, Jui; Pu, Yeong-Shiau; Chen, Pei-Chun; Huang, Chao-Yuan; Chien, Kuo-Liong

    2017-10-01

    Although shock wave lithotripsy is minimally invasive, earlier studies argued that it may increase patients' subsequent risk of hypertension and diabetes mellitus. This study evaluated the association between shock wave lithotripsy and new-onset hypertension or diabetes mellitus. The Taiwanese National Health Insurance Research Database was used to identify 20 219 patients aged 18 to 65 years who underwent the first stone surgical treatment (shock wave lithotripsy or ureterorenoscopic lithotripsy) between January 1999 and December 2011. A Cox proportional model was applied to evaluate associations. Time-varying Cox models were applied to evaluate the association between the number of shock wave lithotripsy sessions and the incidence of hypertension or diabetes mellitus. After a median follow-up of 74.9 and 82.6 months, 2028 and 688 patients developed hypertension in the shock wave lithotripsy and ureterorenoscopic lithotripsy groups, respectively. Patients who underwent shock wave lithotripsy had a higher probability of developing hypertension than patients who underwent ureterorenoscopic lithotripsy, with a hazard ratio of 1.20 (95% confidence interval, 1.10-1.31) after adjusting for covariates. The risk increased as the number of shock wave lithotripsy sessions increased. However, the diabetes mellitus risk was similar in the shock wave lithotripsy and ureterorenoscopic lithotripsy groups. Furthermore, the hazard ratio did not increase as the number of shock wave lithotripsy sessions increased. Shock wave lithotripsy consistently increased the incidence of hypertension on long-term follow-up. Therefore, alternatives to urolithiasis treatment (eg, endoscopic surgery or medical expulsion therapy) could avoid the hypertension risk. Furthermore, avoiding multiple sessions of shock wave lithotripsy could also evade the hypertension risk. © 2017 American Heart Association, Inc.

  1. Shock drift acceleration in the presence of waves

    NASA Technical Reports Server (NTRS)

    Decker, R. B.; Vlahos, L.

    1985-01-01

    Attention is given to the initial results of a model designed to study the modification of the scatter-free, shock drift acceleration of energetic test particles by wave activity in the vicinity of a quasi-perpendicular, fast-mode MHD shock. It is emphasized that the concept of magnetic moment conservation is a valid approximation only in the perpendicular and nearly perpendicular regimes, when the angle theta-Bn between the shock normal and the upstream magnetic field vector is in the range from 70 deg to 90 deg. The present investigation is concerned with one step in a program which is being developed to combine the shock drift and diffusive processes at a shock of arbitrary theta-Bn.

  2. Revisiting the thermal effect on shock wave propagation in weakly ionized plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Qianhong, E-mail: zhou-qianhong@iapcm.ac.cn; Dong, Zhiwei; Yang, Wei

    2016-07-15

    Many researchers have investigated shock propagation in weakly ionized plasmas and observed the following anomalous effects: shock acceleration, shock recovery, shock weakening, shock spreading, and splitting. It was generally accepted that the thermal effect can explain most of the experimental results. However, little attention was paid to the shock recovery. In this paper, the shock wave propagation in weakly ionized plasmas is studied by fluid simulation. It is found that the shock acceleration, weakening, and splitting appear after it enters the plasma (thermal) region. The shock splits into two parts right after it leaves the thermal region. The distance betweenmore » the splitted shocks keeps decreasing until they recover to one. This paper can explain a whole set of features of the shock wave propagation in weakly ionized plasmas. It is also found that both the shock curvature and the splitting present the same photoacoustic deflection (PAD) signals, so they cannot be distinguished by the PAD experiments.« less

  3. Excimer-laser-induced shock wave and its dependence on atmospheric environment

    NASA Astrophysics Data System (ADS)

    Krueger, Ronald R.; Krasinski, Jerzy S.; Radzewicz, Czeslaw

    1993-06-01

    High speed shadow photography is performed on excimer laser ablated porcine corneas and rubber stoppers to capture the excimer laser induced shock waves at various time delays between 40 and 320 nanoseconds. The shock waves in air, nitrogen, and helium are recorded by tangentially illuminating the ablated surface with a tunable dye laser, the XeCl excimer laser pulse. The excimer laser ablates the specimen and excites the dye laser, which is then passed through an optical delay line before illuminating the specimen. The shadow of the shock wave produced during ablation is then cast on a screen and photographed with a CCD video camera. The system is pulsed at 30 times per second to allow a video recording of the shock wave at a fixed time delay. We conclude that high energy acoustic waves and gaseous particles are liberated during excimer laser corneal ablation, and dissipate on a submicrosecond time scale. The velocity of their dissipation is dependent on the atmospheric environment and can be increased two-fold when the ablation is performed in a helium atmosphere. Therefore, local temperature increases due to the liberation of high energy gases may be reduced by using helium during corneal photoablation.

  4. Magnitude of parallel pseudo potential in a magnetosonic shock wave

    NASA Astrophysics Data System (ADS)

    Ohsawa, Yukiharu

    2018-05-01

    The parallel pseudo potential F, which is the integral of the parallel electric field along the magnetic field, in a large-amplitude magnetosonic pulse (shock wave) is theoretically studied. Particle simulations revealed in the late 1990's that the product of the elementary charge and F can be much larger than the electron temperature in shock waves, i.e., the parallel electric field can be quite strong. However, no theory was presented for this unexpected result. This paper first revisits the small-amplitude theory for F and then investigates the parallel pseudo potential F in large-amplitude pulses based on the two-fluid model with finite thermal pressures. It is found that the magnitude of F in a shock wave is determined by the wave amplitude, the electron temperature, and the kinetic energy of an ion moving with the Alfvén speed. This theoretically obtained expression for F is nearly identical to the empirical relation for F discovered in the previous simulation work.

  5. Application of shock wave data to earth and planetary science

    NASA Technical Reports Server (NTRS)

    Ahrens, T. J.

    1985-01-01

    It is pointed out that shock wave data for: (1) low temperature condensable gases H2 and He, (2) H2O, CH4, NH3, CO, CO2, and N2 ices, and (3) silicates, metals, oxides and sulfides have many applications in geophysics and planetary science. The present paper is concerned with such applications. The composition of planetary interiors is discussed, taking into account the division of the major constituent of the planets in three groups on the basis of 'cosmic abundance' arguments, the H-He mixtures in the case of Jupiter and Saturn, shock wave data for hydrogen, and constraints on the internal structure of Uranus and Neptune. Attention is also given to the earth's mantle, shock wave data for mantle materials, the earth's core, impacts on planetary surfaces, elastic wave velocities as a function of pressure along the Hugoniot of iron, and reactions which yield the CO2 bearing atmospheres for Venus, earth, and Mars.

  6. Lithotripter shock wave interaction with a bubble near various biomaterials.

    PubMed

    Ohl, S W; Klaseboer, E; Szeri, A J; Khoo, B C

    2016-10-07

    Following previous work on the dynamics of an oscillating bubble near a bio-material (Ohl et al 2009 Phys. Med. Biol. 54 6313-36) and the interaction of a bubble with a shockwave (Klaseboer et al 2007 J. Fluid Mech. 593 33-56), the present work concerns the interaction of a gas bubble with a traveling shock wave (such as from a lithotripter) in the vicinity of bio-materials such as fat, skin, muscle, cornea, cartilage, and bone. The bubble is situated in water (to represent a water-like biofluid). The bubble collapses are not spherically symmetric, but tend to feature a high speed jet. A few simulations are performed and compared with available experimental observations from Sankin and Zhong (2006 Phys. Rev. E 74 046304). The collapses of cavitation bubbles (created by laser in the experiment) near an elastic membrane when hit by a lithotripter shock wave are correctly captured by the simulation. This is followed by a more systematic study of the effects involved concerning shockwave bubble biomaterial interactions. If a subsequent rarefaction wave hits the collapsed bubble, it will re-expand to a very large size straining the bio-materials nearby before collapsing once again. It is noted that, for hard bio-material like bone, reflection of the shock wave at the bone-water interface can affect the bubble dynamics. Also the initial size of the bubble has a significant effect. Large bubbles (∼1 mm) will split into smaller bubbles, while small bubbles collapse with a high speed jet in the travel direction of the shock wave. The numerical model offers a computationally efficient way of understanding the complex phenomena involving the interplay of a bubble, a shock wave, and a nearby bio-material.

  7. Lithotripter shock wave interaction with a bubble near various biomaterials

    NASA Astrophysics Data System (ADS)

    Ohl, S. W.; Klaseboer, E.; Szeri, A. J.; Khoo, B. C.

    2016-10-01

    Following previous work on the dynamics of an oscillating bubble near a bio-material (Ohl et al 2009 Phys. Med. Biol. 54 6313-36) and the interaction of a bubble with a shockwave (Klaseboer et al 2007 J. Fluid Mech. 593 33-56), the present work concerns the interaction of a gas bubble with a traveling shock wave (such as from a lithotripter) in the vicinity of bio-materials such as fat, skin, muscle, cornea, cartilage, and bone. The bubble is situated in water (to represent a water-like biofluid). The bubble collapses are not spherically symmetric, but tend to feature a high speed jet. A few simulations are performed and compared with available experimental observations from Sankin and Zhong (2006 Phys. Rev. E 74 046304). The collapses of cavitation bubbles (created by laser in the experiment) near an elastic membrane when hit by a lithotripter shock wave are correctly captured by the simulation. This is followed by a more systematic study of the effects involved concerning shockwave bubble biomaterial interactions. If a subsequent rarefaction wave hits the collapsed bubble, it will re-expand to a very large size straining the bio-materials nearby before collapsing once again. It is noted that, for hard bio-material like bone, reflection of the shock wave at the bone—water interface can affect the bubble dynamics. Also the initial size of the bubble has a significant effect. Large bubbles (˜1 mm) will split into smaller bubbles, while small bubbles collapse with a high speed jet in the travel direction of the shock wave. The numerical model offers a computationally efficient way of understanding the complex phenomena involving the interplay of a bubble, a shock wave, and a nearby bio-material.

  8. Role of helmet in the mechanics of shock wave propagation under blast loading conditions.

    PubMed

    Ganpule, S; Gu, L; Alai, A; Chandra, N

    2012-01-01

    The effectiveness of helmets in extenuating the primary shock waves generated by the explosions of improvised explosive devices is not clearly understood. In this work, the role of helmet on the overpressurisation and impulse experienced by the head were examined. The shock wave-head interactions were studied under three different cases: (i) unprotected head, (ii) head with helmet but with varying head-helmet gaps and (iii) head covered with helmet and tightly fitting foam pads. The intensification effect was discussed by examining the shock wave flow pattern and verified with experiments. A helmet with a better protection against shock wave is suggested.

  9. Hybrid simulation of the shock wave formation behind the Moon

    NASA Astrophysics Data System (ADS)

    Israelevich, P.; Ofman, L.

    2012-09-01

    A standing shock wave behind the Moon was predicted by Michel (1967) but never observed nor simulated. We use 1D hybrid code in order to simulate the collapse of the plasma-free cavity behind the Moon and for the first time to model the formation of this shock. Starting immediately downstream of the obstacle we consider the evolution of plasma expansion into the cavity in the frame of reference moving along with the solar wind. Wellknown effects as electric charging of the cavity affecting the plasma flow and counter streaming ion beams in the wake are reproduced. Near the apex of the inner Mach cone where the plasma flows from the opposite sides of the obstacle meet, a shock wave arises. The shock is produced by the interaction of oppositely directed proton beams in the plane containing solar wind velocity and interplanetary magnetic field vectors. In the direction across the magnetic field and the solar wind velocity, the shock results from the interaction of the plasma flow with the region of the enhanced magnetic field inside the cavity that plays the role of the magnetic barrier. Simulations with lower electron temperatures (Te~20eV) show weakened shock formation behind the moon at much greater distances. The shock disappears for typical solar wind conditions (Ti ~ Te) Therefore, in order to observe the trailing shock, a satellite should have a trajectory passing very close to the wake axis during the period of hot solar wind streams. We expect the shock to be produced at periods of high electron temperature solar wind streams (Ti<shock wave is expected at the distance of ~ 7RM downstream of the Moon.

  10. Second sound shock waves and critical velocities in liquid helium 2. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Turner, T. N.

    1979-01-01

    Large amplitude second-sound shock waves were generated and the experimental results compared to the theory of nonlinear second-sound. The structure and thickness of second-sound shock fronts are calculated and compared to experimental data. Theoretically it is shown that at T = 1.88 K, where the nonlinear wave steepening vanishes, the thickness of a very weak shock must diverge. In a region near this temperature, a finite-amplitude shock pulse evolves into an unusual double-shock configuration consisting of a front steepened, temperature raising shock followed by a temperature lowering shock. Double-shocks are experimentally verified. It is experimentally shown that very large second-sound shock waves initiate a breakdown in the superfluidity of helium 2, which is dramatically displayed as a limit to the maximum attainable shock strength. The value of the maximum shock-induced relative velocity represents a significant lower bound to the intrinsic critical velocity of helium 2.

  11. Assessment of shock wave lithotripters via cavitation potential

    PubMed Central

    Iloreta, Jonathan I.; Zhou, Yufeng; Sankin, Georgy N.; Zhong, Pei; Szeri, Andrew J.

    2008-01-01

    A method to characterize shock wave lithotripters by examining the potential for cavitation associated with the lithotripter shock wave (LSW) has been developed. The method uses the maximum radius achieved by a bubble subjected to a LSW as a representation of the cavitation potential for that region in the lithotripter. It is found that the maximum radius is determined by the work done on a bubble by the LSW. The method is used to characterize two reflectors: an ellipsoidal reflector and an ellipsoidal reflector with an insert. The results show that the use of an insert reduced the −6 dB volume (with respect to peak positive pressure) from 1.6 to 0.4 cm3, the −6 dB volume (with respect to peak negative pressure) from 14.5 to 8.3 cm3, and reduced the volume characterized by high cavitation potential (i.e., regions characterized by bubbles with radii larger than 429 µm) from 103 to 26 cm3. Thus, the insert is an effective way to localize the potentially damaging effects of shock wave lithotripsy, and suggests an approach to optimize the shape of the reflector. PMID:19865493

  12. Shock wave structure in a strongly nonlinear lattice with viscous dissipation.

    PubMed

    Herbold, E B; Nesterenko, V F

    2007-02-01

    The shock wave structure in a one-dimensional lattice (e.g., granular chain of elastic particles) with a power law dependence of force on displacement between particles (F proportional to delta(n)) with viscous dissipation is considered and compared to the corresponding long wave approximation. A dissipative term depending on the relative velocity between neighboring particles is included to investigate its influence on the shape of a steady shock. The critical viscosity coefficient p(c), defining the transition from an oscillatory to a monotonic shock profile in strongly nonlinear systems, is obtained from the long-wave approximation for arbitrary values of the exponent n. The expression for the critical viscosity is comparable to the value obtained in the numerical analysis of a discrete system with a Hertzian contact interaction (n=3/2) . The expression for p(c) in the weakly nonlinear case converges to the known equation for the critical viscosity. An initial disturbance in a discrete system approaches a stationary shock profile after traveling a short distance that is comparable to the width of the leading pulse of a stationary shock front. The shock front width is minimized when the viscosity is equal to its critical value.

  13. Experimental investigation of door dynamic opening caused by impinging shock wave

    NASA Astrophysics Data System (ADS)

    Biamino, L.; Jourdan, G.; Mariani, C.; Igra, O.; Massol, A.; Houas, L.

    2011-02-01

    To prevent damage caused by accidental overpressure inside a closed duct (e.g. jet engine) safety valves are introduced. The present study experimentally investigates the dynamic opening of such valves by employing a door at the end of a shock tube driven section. The door is hung on an axis and is free to rotate, thereby opening the tube. The evolved flow and wave pattern due to a collision of an incident shock wave with the door, causing the door opening, is studied by employing a high speed schlieren system and recording pressures at different places inside the tube as well as on the rotating door. Analyzing this data sheds light on the air flow evolution and the behavior of the opening door. In the present work, emphasis is given to understanding the complex, unsteady flow developed behind the transmitted shock wave as it diffracts over the opening door. It is shown that both the door inertia and the shock wave strength influence the opening dynamic evolution, but not in the proportions that might be expected.

  14. Stationary Shock Waves with Oscillating Front in Dislocation Systems of Semiconductors

    NASA Astrophysics Data System (ADS)

    Gestrin, S. G.; Shchukina, E. V.

    2018-05-01

    The paper presents a study of weakly nonlinear wave processes in the cylindrical region of a hole gas surrounding a negatively charged dislocation in an n-type semiconductor crystal. It is shown that shock waves propagating along the dislocation are the solutions of the Korteweg-de Vries-Burgers equation when the dispersion and dissipation of medium are taken into account. Estimates are obtained for the basic physical parameters characterizing the shock wave and the region inside the Reed cylinder.

  15. Experimental and numerical investigations of shock wave propagation through a bifurcation

    NASA Astrophysics Data System (ADS)

    Marty, A.; Daniel, E.; Massoni, J.; Biamino, L.; Houas, L.; Leriche, D.; Jourdan, G.

    2018-02-01

    The propagation of a planar shock wave through a split channel is both experimentally and numerically studied. Experiments were conducted in a square cross-sectional shock tube having a main channel which splits into two symmetric secondary channels, for three different shock wave Mach numbers ranging from about 1.1 to 1.7. High-speed schlieren visualizations were used along with pressure measurements to analyze the main physical mechanisms that govern shock wave diffraction. It is shown that the flow behind the transmitted shock wave through the bifurcation resulted in a highly two-dimensional unsteady and non-uniform flow accompanied with significant pressure loss. In parallel, numerical simulations based on the solution of the Euler equations with a second-order Godunov scheme confirmed the experimental results with good agreement. Finally, a parametric study was carried out using numerical analysis where the angular displacement of the two channels that define the bifurcation was changed from 90° , 45° , 20° , and 0° . We found that the angular displacement does not significantly affect the overpressure experience in either of the two channels and that the area of the expansion region is the important variable affecting overpressure, the effect being, in the present case, a decrease of almost one half.

  16. Treatment of chronic plantar fasciopathy with extracorporeal shock waves (review)

    PubMed Central

    2013-01-01

    There is an increasing interest by doctors and patients in extracorporeal shock wave therapy (ESWT) for chronic plantar fasciopathy (PF), particularly in second generation radial extracorporeal shock wave therapy (RSWT). The present review aims at serving this interest by providing a comprehensive overview on physical and medical definitions of shock waves and a detailed assessment of the quality and significance of the randomized clinical trials published on ESWT and RSWT as it is used to treat chronic PF. Both ESWT and RSWT are safe, effective, and technically easy treatments for chronic PF. The main advantages of RSWT over ESWT are the lack of need for any anesthesia during the treatment and the demonstrated long-term treatment success (demonstrated at both 6 and 12 months after the first treatment using RSWT, compared to follow-up intervals of no more than 12 weeks after the first treatment using ESWT). In recent years, a greater understanding of the clinical outcomes in ESWT and RSWT for chronic PF has arisen in relationship not only in the design of studies, but also in procedure, energy level, and shock wave propagation. Either procedure should be considered for patients 18 years of age or older with chronic PF prior to surgical intervention. PMID:24004715

  17. The shock waves in decaying supersonic turbulence

    NASA Astrophysics Data System (ADS)

    Smith, M. D.; Mac Low, M.-M.; Zuev, J. M.

    2000-04-01

    We here analyse numerical simulations of supersonic, hypersonic and magnetohydrodynamic turbulence that is free to decay. Our goals are to understand the dynamics of the decay and the characteristic properties of the shock waves produced. This will be useful for interpretation of observations of both motions in molecular clouds and sources of non-thermal radiation. We find that decaying hypersonic turbulence possesses an exponential tail of fast shocks and an exponential decay in time, i.e. the number of shocks is proportional to t exp (-ktv) for shock velocity jump v and mean initial wavenumber k. In contrast to the velocity gradients, the velocity Probability Distribution Function remains Gaussian with a more complex decay law. The energy is dissipated not by fast shocks but by a large number of low Mach number shocks. The power loss peaks near a low-speed turn-over in an exponential distribution. An analytical extension of the mapping closure technique is able to predict the basic decay features. Our analytic description of the distribution of shock strengths should prove useful for direct modeling of observable emission. We note that an exponential distribution of shocks such as we find will, in general, generate very low excitation shock signatures.

  18. Targeting Taxanes to Castration-Resistant Prostate Cancer Cells by Nanobubbles and Extracorporeal Shock Waves.

    PubMed

    Marano, Francesca; Rinella, Letizia; Argenziano, Monica; Cavalli, Roberta; Sassi, Francesca; D'Amelio, Patrizia; Battaglia, Antonino; Gontero, Paolo; Bosco, Ornella; Peluso, Rossella; Fortunati, Nicoletta; Frairia, Roberto; Catalano, Maria Graziella

    2016-01-01

    To target taxanes to castration-resistant prostate cancer cells, glycol-chitosan nanobubbles loaded with paclitaxel and docetaxel were constructed. The loaded nanobubbles were then combined with Extracorporeal Shock Waves, acoustic waves widely used in urology and orthopedics, with no side effects. Nanobubbles, with an average diameter of 353.3 ± 15.5 nm, entered two different castration-resistant prostate cancer cells (PC3 and DU145) as demonstrated by flow cytometry and immunofluorescence. The shock waves applied increased the amount of intracellular nanobubbles. Loading nanobubbles with paclitaxel and docetaxel and combining them with shock waves generated the highest cytotoxic effects, resulting in a paclitaxel GI50 reduction of about 55% and in a docetaxel GI50 reduction of about 45% respectively. Combined treatment also affected cell migration. Paclitaxel-loaded nanobubbles and shock waves reduced cell migration by more than 85% with respect to paclitaxel alone; whereas docetaxel-loaded nanobubbles and shock waves reduced cell migration by more than 82% with respect to docetaxel alone. The present data suggest that nanobubbles can act as a stable taxane reservoir in castration-resistant prostate cancer cells and shock waves can further increase drug release from nanobubbles leading to higher cytotoxic and anti-migration effect.

  19. Targeting Taxanes to Castration-Resistant Prostate Cancer Cells by Nanobubbles and Extracorporeal Shock Waves

    PubMed Central

    Argenziano, Monica; Cavalli, Roberta; Sassi, Francesca; D’Amelio, Patrizia; Battaglia, Antonino; Gontero, Paolo; Bosco, Ornella; Peluso, Rossella; Fortunati, Nicoletta; Frairia, Roberto; Catalano, Maria Graziella

    2016-01-01

    To target taxanes to castration-resistant prostate cancer cells, glycol-chitosan nanobubbles loaded with paclitaxel and docetaxel were constructed. The loaded nanobubbles were then combined with Extracorporeal Shock Waves, acoustic waves widely used in urology and orthopedics, with no side effects. Nanobubbles, with an average diameter of 353.3 ± 15.5 nm, entered two different castration-resistant prostate cancer cells (PC3 and DU145) as demonstrated by flow cytometry and immunofluorescence. The shock waves applied increased the amount of intracellular nanobubbles. Loading nanobubbles with paclitaxel and docetaxel and combining them with shock waves generated the highest cytotoxic effects, resulting in a paclitaxel GI50 reduction of about 55% and in a docetaxel GI50 reduction of about 45% respectively. Combined treatment also affected cell migration. Paclitaxel-loaded nanobubbles and shock waves reduced cell migration by more than 85% with respect to paclitaxel alone; whereas docetaxel-loaded nanobubbles and shock waves reduced cell migration by more than 82% with respect to docetaxel alone. The present data suggest that nanobubbles can act as a stable taxane reservoir in castration-resistant prostate cancer cells and shock waves can further increase drug release from nanobubbles leading to higher cytotoxic and anti-migration effect. PMID:28002459

  20. Time-resolved spectroscopic measurements behind incident and reflected shock waves in air and xenon

    NASA Technical Reports Server (NTRS)

    Yoshinaga, T.

    1973-01-01

    Time-resolved spectra have been obtained behind incident and reflected shock waves in air and xenon at initial pressures of 0.1 and 1.0 torr using a rotating drum spectrograph and the OSU (The Ohio State University) arc-driven shock tube. These spectra were used to determine the qualitative nature of the flow as well as for making estimates of the available test time. The (n+1,n) and (n,n) band spectra of N2(+) (1st negative) were observed in the test gas behind incident shock waves in air at p1=1.0 torr and Us=9-10 km/sec. Behind reflected shock waves in air, the continuum of spectra appeared to cover almost the entire wavelength of 2,500-7,000 A for the shock-heated test gas. For xenon, the spectra for the incident shock wave cases for p1=0.1 torr show an interesting structure in which two intensely bright regions are witnessed in the time direction. The spectra obtained behind reflected shock waves in xenon were also dominated by continuum radiation but included strong absorption spectra due to FeI and FeII from the moment the reflected shock passed and on.

  1. Piecewise parabolic method for simulating one-dimensional shear shock wave propagation in tissue-mimicking phantoms

    NASA Astrophysics Data System (ADS)

    Tripathi, B. B.; Espíndola, D.; Pinton, G. F.

    2017-11-01

    The recent discovery of shear shock wave generation and propagation in the porcine brain suggests that this new shock phenomenology may be responsible for a broad range of traumatic injuries. Blast-induced head movement can indirectly lead to shear wave generation in the brain, which could be a primary mechanism for injury. Shear shock waves amplify the local acceleration deep in the brain by up to a factor of 8.5, which may tear and damage neurons. Currently, there are numerical methods that can model compressional shock waves, such as comparatively well-studied blast waves, but there are no numerical full-wave solvers that can simulate nonlinear shear shock waves in soft solids. Unlike simplified representations, e.g., retarded time, full-wave representations describe fundamental physical behavior such as reflection and heterogeneities. Here we present a piecewise parabolic method-based solver for one-dimensional linearly polarized nonlinear shear wave in a homogeneous medium and with empirical frequency-dependent attenuation. This method has the advantage of being higher order and more directly extendable to multiple dimensions and heterogeneous media. The proposed numerical scheme is validated analytically and experimentally and compared to other shock capturing methods. A Riemann step-shock problem is used to characterize the numerical dissipation. This dissipation is then tuned to be negligible with respect to the physical attenuation by choosing an appropriate grid spacing. The numerical results are compared to ultrasound-based experiments that measure planar polarized shear shock wave propagation in a tissue-mimicking gelatin phantom. Good agreement is found between numerical results and experiment across a 40 mm propagation distance. We anticipate that the proposed method will be a starting point for the development of a two- and three-dimensional full-wave code for the propagation of nonlinear shear waves in heterogeneous media.

  2. Co-evolution of upstream waves and accelerated ions at parallel shocks

    NASA Astrophysics Data System (ADS)

    Fujimoto, M.; Sugiyama, T.

    2016-12-01

    Shock waves in space plasmas have been considered as the agents for various particle acceleration phenomena. The basic idea behind shock acceleration is that particles are accelerated as they move back-and-forth across a shock front. Detailed studies of ion acceleration at the terrestrial bow shock have been performed, however, the restricted maximum energies attained prevent a straight-forward application of obtained knowledge to more energetic astrophysical situations. Here we show by a large-scale self-consistent particle simulation that the co-evolution of magnetic turbulence and accelerated ion population is the foundation for continuous operation of shock acceleration to ever higher energies. Magnetic turbulence is created by ions reflected back upstream of a parallel shock front. The co-evolution arises because more energetic ions excite waves of longer wavelengths, and because longer wavelength modes are capable of scattering (in the upstream) and reflecting (at the shock front) more energetic ions. Via carefully designed numerical experiments, we show very clearly that this picture is true.

  3. On the interaction between the shock wave attached to a wedge and freestream disturbances

    NASA Technical Reports Server (NTRS)

    Duck, Peter W.; Lasseigne, D. Glenn; Hussaini, M. Y.

    1993-01-01

    A study of the interaction of small amplitude, unsteady, freestream disturbances with a shock wave induced by a wedge in supersonic flow is presented. These disturbances may be acoustic waves, vorticity waves, or entropy waves (or indeed a combination of all three). Their interactions then generate behind the shock disturbances of all three classes, an aspect that is investigated in some detail, our motivation being to investigate possible mechanisms for boundary-layer receptivity, caused through the amplification and modification of freestream turbulence through the shock-body coupling. Also, the possibility of enhanced mixing owing to additional vorticity produced by the shock-body coupling is investigated.

  4. Shock wave-enhanced neovascularization at the tendon-bone junction: an experiment in dogs.

    PubMed

    Wang, Ching-Jen; Huang, Hsuan-Ying; Pai, Chun-Hwan

    2002-01-01

    The purpose of the research was to study the phenomenon of neovascularization at the Achilles tendon-bone junction after low-energy shock wave application. The study was performed on eight mongrel dogs. The control specimens were obtained from the medial one-third of the right Achilles tendon-bone unit before shock wave application. Low-energy shock waves of 1000 impulses at 14 kV (equivalent to 0.18 mJ/mm2 energy flux density) were applied to the right Achilles bone-tendon junction. Biopsies were taken from the middle one-third of the Achilles tendon-bone junction at 4 weeks and from the lateral one-third at 8 weeks, respectively, after shock wave application. The features of microscopic examination included the number of new capillaries and muscularized vessels, the presence and arrangements of myofibroblasts, and the changes in bone. New capillary and muscularized vessels were seen in the study specimens which were obtained in 4 weeks and in 8 weeks after shock wave application, but none were seen in the control specimens before shock wave application. There was a considerable geographic variation in the number of new vessels within the same specimen. Myofibroblasts were not seen in the control specimens. Myofibroblasts with haphazard appearance and intermediate orientation fibers were seen in all study specimens obtained at 4 weeks and predominantly intermediate orientation myofibroblast fibers at 8 weeks. There were no changes in bone matrix, osteocyte activity, and vascularization within the bone. Two pathologists reviewed each specimen and concurrence was achieved in all cases. The results of the study suggested that low-energy shock wave enhanced the phenomenon of neovascularization at the bone-tendon junction in dogs.

  5. Modeling elastic wave propagation in kidney stones with application to shock wave lithotripsy.

    PubMed

    Cleveland, Robin O; Sapozhnikov, Oleg A

    2005-10-01

    A time-domain finite-difference solution to the equations of linear elasticity was used to model the propagation of lithotripsy waves in kidney stones. The model was used to determine the loading on the stone (principal stresses and strains and maximum shear stresses and strains) due to the impact of lithotripsy shock waves. The simulations show that the peak loading induced in kidney stones is generated by constructive interference from shear waves launched from the outer edge of the stone with other waves in the stone. Notably the shear wave induced loads were significantly larger than the loads generated by the classic Hopkinson or spall effect. For simulations where the diameter of the focal spot of the lithotripter was smaller than that of the stone the loading decreased by more than 50%. The constructive interference was also sensitive to shock rise time and it was found that the peak tensile stress reduced by 30% as rise time increased from 25 to 150 ns. These results demonstrate that shear waves likely play a critical role in stone comminution and that lithotripters with large focal widths and short rise times should be effective at generating high stresses inside kidney stones.

  6. Experimental Insights into the Mechanisms of Particle Acceleration by Shock Waves

    NASA Astrophysics Data System (ADS)

    Scolamacchia, T.; Scheu, B.; Dingwell, D. B.

    2011-12-01

    The generation of shock waves is common during explosive volcanic eruptions. Particles acceleration following shock wave propagation has been experimentally observed suggesting the potential hazard related to this phenomenon. Experiments and numerical models focused on the dynamics of formation and propagation of different types of shock waves when overpressurized eruptive mixtures are suddenly released in the atmosphere, using a pseudo-gas approximation to model those mixtures. Nevertheless, the results of several studies indicated that the mechanism of coupling between a gas and solid particles is valid for a limited grain-size range, which at present is not well defined. We are investigating particle acceleration mechanisms using a vertical shock tube consisting of a high-pressure steel autoclave (450 mm long, 28 mm in diameter), pressurized with argon, and a low-pressure 140 mm long acrylic glass autoclave, with the same internal diameter of the HP reservoir. Shock waves are generated by Ar decompression at atmospheric pressures at Pres/Pamb 100:1 to 150:1, through the failure of a diaphragm. Experiments were performed either with empty autoclave or suspending solid analogue particles 150 μm in size inside the LP autoclave. Incident Mach number varied from 1.7 to 2.1. Absolute and relative pressure sensors monitored P histories during the entire process, and a high-speed camera recorded particles movement at 20,000 to 30,000 fps. Preliminary results indicate pressure multiplication at the contact between shock waves and the particles in a time lapse of 100s μs, suggesting a possible different mechanism with respect to gas-particle coupling for particle acceleration.

  7. Viscoelastic shock wave in ballistic gelatin behind soft body armor.

    PubMed

    Liu, Li; Fan, Yurun; Li, Wei

    2014-06-01

    Ballistic gelatins are widely used as a surrogate of biological tissue in blunt trauma tests. Non-penetration impact tests of handgun bullets on the 10wt% ballistic gelatin block behind soft armor were carried out in which a high-speed camera recorded the crater׳s movement and pressure sensors imbedded in the gelatin block recorded the pressure waves at different locations. The observed shock wave attenuation indicates the necessity of considering the gelatin׳s viscoelasticity. A three-element viscoelastic constitutive model was adopted, in which the relevant parameters were obtained via fitting the damping free oscillations at the beginning of the creep-mode of rheological measurement, and by examining the data of published split Hopkinson pressure bar (SHPB) experiments. The viscoelastic model is determined by a retardation time of 5.5×10(-5)s for high oscillation frequencies and a stress relaxation time of 2.0-4.5×10(-7)s for shock wave attenuation. Using the characteristic-line method and the spherical wave assumption, the propagation of impact pressure wave front and the subsequent unloading profile can be simulated using the experimental velocity boundary condition. The established viscoelastic model considerably improves the prediction of shock wave attenuation in the ballistic gelatin. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Numerical study of heterogeneous mean temperature and shock wave in a resonator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yano, Takeru

    2015-10-28

    When a frequency of gas oscillation in an acoustic resonator is sufficiently close to one of resonant frequencies of the resonator, the amplitude of gas oscillation becomes large and hence the nonlinear effect manifests itself. Then, if the dissipation effects due to viscosity and thermal conductivity of the gas are sufficiently small, the gas oscillation may evolve into the acoustic shock wave, in the so-called consonant resonators. At the shock front, the kinetic energy of gas oscillation is converted into heat by the dissipation process inside the shock layer, and therefore the temperature of the gas in the resonator rises.more » Since the acoustic shock wave travels in the resonator repeatedly over and over again, the temperature rise becomes noticeable in due course of time even if the shock wave is weak. We numerically study the gas oscillation with shock wave in a resonator of square cross section by solving the initial and boundary value problem of the system of three-dimensional Navier-Stokes equations with a finite difference method. In this case, the heat conduction across the boundary layer on the wall of resonator causes a spatially heterogeneous distribution of mean (time-averaged) gas temperature.« less

  9. 3D multicellular model of shock wave-cell interaction.

    PubMed

    Li, Dongli; Hallack, Andre; Cleveland, Robin O; Jérusalem, Antoine

    2018-05-01

    Understanding the interaction between shock waves and tissue is critical for ad- vancing the use of shock waves for medical applications, such as cancer therapy. This work aims to study shock wave-cell interaction in a more realistic environment, relevant to in vitro and in vivo studies, by using 3D computational models of healthy and cancerous cells. The results indicate that for a single cell embedded in an extracellular environment, the cellular geometry does not influence significantly the membrane strain but does influence the von Mises stress. On the contrary, the presence of neighbouring cells has a strong effect on the cell response, by increasing fourfold both quantities. The membrane strain response of a cell converges with more than three neighbouring cell layers, indicating that a cluster of four layers of cells is sufficient to model the membrane strain in a large domain of tissue. However, a full 3D tissue model is needed if the stress evaluation is of main interest. A tumour mimicking multicellular spheroid model is also proposed to study mutual interaction between healthy and cancer cells and shows that cancer cells can be specifically targeted in an early stage tumour-mimicking environment. This work presents 3D computational models of shock-wave/cell interaction in a biophysically realistic environment using real cell morphology in tissue-mimicking phantom and multicellular spheroid. Results show that cell morphology does not strongly influence the membrane strain but influences the von Mises stress. While the presence of neighbouring cells significantly increases the cell response, four cell layers are enough to capture the membrane strain change in tissue. However, a full tissue model is necessary if accurate stress analysis is needed. The work also shows that cancer cells can be specifically targetted in early stage tumourmimicking environment. This work is a step towards realistic modelling of shock-wave/cell interactions in tissues and

  10. Direct Visualization of Shock Waves in Supersonic Space Shuttle Flight

    NASA Technical Reports Server (NTRS)

    OFarrell, J. M.; Rieckhoff, T. J.

    2011-01-01

    Direct observation of shock boundaries is rare. This Technical Memorandum describes direct observation of shock waves produced by the space shuttle vehicle during STS-114 and STS-110 in imagery provided by NASA s tracking cameras.

  11. Experimental Study of Shock Wave Interference Heating on a Cylindrical Leading Edge. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Wieting, Allan R.

    1987-01-01

    An experimental study of shock wave interference heating on a cylindrical leading edge representative of the cowl of a rectangular hypersonic engine inlet at Mach numbers of 6.3, 6.5, and 8.0 is presented. Stream Reynolds numbers ranged from 0.5 x 106 to 4.9 x 106 per ft. and stream total temperature ranged from 2100 to 3400 R. The model consisted of a 3" dia. cylinder and a shock generation wedge articulated to angles of 10, 12.5, and 15 deg. A fundamental understanding was obtained of the fluid mechanics of shock wave interference induced flow impingement on a cylindrical leading edge and the attendant surface pressure and heat flux distributions. The first detailed heat transfer rate and pressure distributions for two dimensional shock wave interference on a cylinder was provided along with insight into the effects of specific heat variation with temperature on the phenomena. Results show that the flow around a body in hypersonic flow is altered significantly by the shock wave interference pattern that is created by an oblique shock wave from an external source intersecting the bow shock wave produced in front of the body.

  12. Precise optical observation of 0.5-GPa shock waves in condensed materials

    NASA Astrophysics Data System (ADS)

    Nagayama, Kunihito; Mori, Yasuhito

    1999-06-01

    Precision optical observation method was developed to study impact-generated high-pressure shock waves in condensed materials. The present method makes it possible to sensitively detect the shock waves of the relatively low shock stress around 0.5 GPa. The principle of the present method is based on the use of total internal reflection by triangular prisms placed on the free surface of a target assembly. When a plane shock wave arrives at the free surface, the light reflected from the prisms extinguishes instantaneously. The reason is that the total internal reflection changes to the reflection depending on micron roughness of the free surface after the shock arrival. The shock arrival at the bottom face of the prisms can be detected here by two kinds of methods, i.e., a photographic method and a gauge method. The photographic method is an inclined prism method of using a high-speed streak camera. The shock velocity and the shock tilt angle can be estimated accurately from an obtained streak photograph. While in the gauge method, an in-material PVDF stress gauge is combined with an optical prism-pin. The PVDF gauge records electrically the stress profile behind the shockwave front, and the Hugoniot data can be precisely measured by combining the prism pin with the PVDF gauge.

  13. Shock wave therapy for chronic proximal plantar fasciitis.

    PubMed

    Ogden, J A; Alvarez, R; Levitt, R; Cross, G L; Marlow, M

    2001-06-01

    Three hundred two patients with chronic heel pain caused by proximal plantar fasciitis were enrolled in a study to assess the treatment effects consequent to administration of electrohydraulicall-generated extracorporeal shock waves. Symptoms had been present from 6 months to 18 years. Each treated patient satisfied numerous inclusion and exclusion criteria before he or she was accepted into this study, which was approved by the Food and Drug Administration as a randomized, double-blind evaluation of the efficacy of shock wave therapy for this disorder. Overall, at the predetermined evaluation period 3 months after one treatment, 56% more of the treated patients had a successful result by all four of the evaluation criteria when compared with the patients treated with a placebo. This difference was significant and corroborated the fact that this difference in the results was specifically attributable to the shock wave treatment, rather than any natural improvement caused by the natural history of the condition. The current study showed that the directed application of electrohydraulic-generated shock waves to the insertion of the plantar fascia onto the calcaneus is a safe and effective nonsurgical method for treating chronic, recalcitrant heel pain syndrome that has been present for at least 6 months and has been refractory to other commonly used nonoperative therapies. This technology, when delivered using the OssaTron (High Medical Technology, Kreuz-lingen, Switzerland), has been approved by the Food and Drug Administration specifically for the treatment of chronic proximal plantar fasciitis. The results suggest that this therapeutic modality should be considered before any surgical options, and even may be preferable to cortisone injection, which has a recognized risk of rupture of the plantar fascia and recurrence of symptoms.

  14. Grain Destruction in a Supernova Remnant Shock Wave

    NASA Technical Reports Server (NTRS)

    Raymond, John C.; Ghavamian, Parviz; Williams, Brian J.; Blair, William P.; Borkowski, Kazimierz J.; Gaetz, Terrance J.; Sankrit, Ravi

    2014-01-01

    Dust grains are sputtered away in the hot gas behind shock fronts in supernova remnants, gradually enriching the gas phase with refractory elements. We have measured emission in C IV (lambda)1550 from C atoms sputtered from dust in the gas behind a non-radiative shock wave in the northern Cygnus Loop. Overall, the intensity observed behind the shock agrees approximately with predictions from model calculations that match the Spitzer 24 micron and the X-ray intensity profiles. Thus these observations confirm the overall picture of dust destruction in SNR shocks and the sputtering rates used in models. However, there is a discrepancy in that the CIV intensity 10'' behind the shock is too high compared to the intensities at the shock and 25'' behind it. Variations in the density, hydrogen neutral fraction and the dust properties over parsec scales in the pre- shock medium limit our ability to test dust destruction models in detail.

  15. The ignition of carbon detonations via converging shock waves in white dwarfs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Ken J.; Bildsten, Lars, E-mail: kenshen@astro.berkeley.edu, E-mail: bildsten@kitp.ucsb.edu

    2014-04-10

    The progenitor channel responsible for the majority of Type Ia supernovae is still uncertain. One emergent scenario involves the detonation of a He-rich layer surrounding a C/O white dwarf, which sends a shock wave into the core. The quasi-spherical shock wave converges and strengthens at an off-center location, forming a second, C-burning, detonation that disrupts the whole star. In this paper, we examine this second detonation of the double detonation scenario using a combination of analytic and numeric techniques. We perform a spatially resolved study of the imploding shock wave and outgoing detonation and calculate the critical imploding shock strengthsmore » needed to achieve a core C detonation. We find that He detonations in recent two-dimensional simulations yield converging shock waves that are strong enough to ignite C detonations in high-mass C/O cores, with the caveat that a truly robust answer requires multi-dimensional detonation initiation calculations. We also find that convergence-driven detonations in low-mass C/O cores and in O/Ne cores are harder to achieve and are perhaps unrealized in standard binary evolution.« less

  16. Simulations of Shock Wave Interaction with a Particle Cloud

    NASA Astrophysics Data System (ADS)

    Koneru, Rahul; Rollin, Bertrand; Ouellet, Frederick; Annamalai, Subramanian; Balachandar, S.'Bala'

    2016-11-01

    Simulations of a shock wave interacting with a cloud of particles are performed in an attempt to understand similar phenomena observed in dispersal of solid particles under such extreme environment as an explosion. We conduct numerical experiments in which a particle curtain fills only 87% of the shock tube from bottom to top. As such, the particle curtain upon interaction with the shock wave is expected to experience Kelvin-Helmholtz (KH) and Richtmyer-Meshkov (RM) instabilities. In this study, the initial volume fraction profile matches with that of Sandia Multiphase Shock Tube experiments, and the shock Mach number is limited to M =1.66. In these simulations we use a Eulerian-Lagrangian approach along with state-of-the-art point-particle force and heat transfer models. Measurements of particle dispersion are made at different initial volume fractions of the particle cloud. A detailed analysis of the evolution of the particle curtain with respect to the initial conditions is presented. This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, Contract No. DE-NA0002378.

  17. Cavitation cluster dynamics in shock-wave lithotripsy: part 1. Free field.

    PubMed

    Arora, M; Junge, L; Ohl, C D

    2005-06-01

    The spatiotemporal dynamics of cavitation bubble growth and collapse in shock-wave lithotripsy in a free field was studied experimentally. The lithotripter was equipped with two independently triggerable layers of piezoceramics. The front and back layers generated positive pressure amplitudes of 30 MPa and 15 MPa, respectively, and -10 MPa negative amplitude. The time interval between the launch of the shock waves was varied from 0 and 0.1 s, covering the regimens of pulse-modification (regimen A, delay 0 to 4 micros), shock wave-cavitation cluster interaction (B, 4 micros to 64 micros) and shock wave-gas bubble interaction (C, 256 micros to 0.1 s). The time-integrated cavitation activity was most strongly influenced in regimen A and, in regimen B, the spatial distribution of bubbles was altered, whereas enhancement of cavitation activity was observed in regimen C. Quantitative measurements of the spatial- and time-integrated void fractions were obtained with a photographic and light-scattering technique. The preconditions for a reproducible experiment are explained, with the existence of two distinct types of cavitation nuclei, small particles suspended in the liquid and residuals of bubbles from prior cavitation clusters.

  18. Microdialysis assessment of shock wave lithotripsy-induced renal injury.

    PubMed

    Brown, S A; Munver, R; Delvecchio, F C; Kuo, R L; Zhong, P; Preminger, G M

    2000-09-01

    Shock wave lithotripsy (SWL) is the primary treatment modality for managing the majority of symptomatic renal calculi. However, the fundamental mechanisms for stone fragmentation and the resultant morphologic changes that occur are not fully understood. Furthermore, a thorough understanding of the complex biologic pathways involved in SWL-induced renal injury does not exist at present. To elucidate the biologic processes involved in tissue injury after SWL, an animal model was designed to mimic the pathogenesis of high-energy SWL in humans. Juvenile female swine were anesthetized, and a midline laparotomy incision was performed to expose the right kidney. Using an introducer apparatus, a microdialysis probe was placed into the renal parenchyma of the right kidney lower pole and a tunnel was generated to exit the distal ends of the inlet and outlet tubing outside the body. After a 72-hour postoperative recovery period, SWL was performed to the lower pole renal region of the kidney, as a microdialysis pump continuously infused dialysate through the inlet tubing. Microdialysis fluids were collected during SWL, and lipid peroxidation, as measured by conjugated diene concentrations, was monitored. All microdialysis probes remained patent for a total of 2000 shock waves. A significant elevation in conjugated diene levels was observed in the SWL versus untreated kidneys after 1000 shock waves were administered (P <0.02). This animal model is unique in that it represents the first system for the real-time collection of renal interstitial fluids during SWL. Analysis of this fluid may provide insight into the physiologic mechanisms responsible for shock wave-induced renal injury.

  19. Modeling Propagation of Shock Waves in Metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard, W M; Molitoris, J D

    2005-08-19

    We present modeling results for the propagation of strong shock waves in metals. In particular, we use an arbitrary Lagrange Eulerian (ALE3D) code to model the propagation of strong pressure waves (P {approx} 300 to 400 kbars) generated with high explosives in contact with aluminum cylinders. The aluminum cylinders are assumed to be both flat-topped and have large-amplitude curved surfaces. We use 3D Lagrange mechanics. For the aluminum we use a rate-independent Steinberg-Guinan model, where the yield strength and shear modulus depend on pressure, density and temperature. The calculation of the melt temperature is based on the Lindermann law. Atmore » melt the yield strength and shear modulus is set to zero. The pressure is represented as a seven-term polynomial as a function of density. For the HMX-based high explosive, we use a JWL, with a program burn model that give the correct detonation velocity and C-J pressure (P {approx} 390 kbars). For the case of the large-amplitude curved surface, we discuss the evolving shock structure in terms of the early shock propagation experiments by Sakharov.« less

  20. Modeling Propagation of Shock Waves in Metals

    NASA Astrophysics Data System (ADS)

    Howard, W. M.; Molitoris, J. D.

    2006-07-01

    We present modeling results for the propagation of strong shock waves in metals. In particular, we use an arbitrary Lagrange Eulerian (ALE3D) code to model the propagation of strong pressure waves (P ˜ 300 to 400 kbars) generated with high explosives in contact with aluminum cylinders. The aluminum cylinders are assumed to be both flat-topped and have large-amplitude curved surfaces. We use 3D Lagrange mechanics. For the aluminum we use a rate-independent Steinberg-Guinan model, where the yield strength and shear modulus depend on pressure, density and temperature. The calculation of the melt temperature is based on the Lindermann law. At melt the yield strength and shear modulus is set to zero. The pressure is represented as a seven-term polynomial as a function of density. For the HMX-based high explosive, we use a JWL, with a program burn model that give the correct detonation velocity and C-J pressure (P ˜ 390 kbars). For the case of the large-amplitude curved surface, we discuss the evolving shock structure in terms of the early shock propagation experiments by Sakharov.

  1. Computation of three-dimensional shock wave and boundary-layer interactions

    NASA Technical Reports Server (NTRS)

    Hung, C. M.

    1985-01-01

    Computations of the impingement of an oblique shock wave on a cylinder and a supersonic flow past a blunt fin mounted on a plate are used to study three dimensional shock wave and boundary layer interaction. In the impingement case, the problem of imposing a planar impinging shock as an outer boundary condition is discussed and the details of particle traces in windward and leeward symmetry planes and near the body surface are presented. In the blunt fin case, differences between two dimensional and three dimensional separation are discussed, and the existence of an unique high speed, low pressure region under the separated spiral vortex core is demonstrated. The accessibility of three dimensional separation is discussed.

  2. On ionizing shock waves

    NASA Astrophysics Data System (ADS)

    Kaniel, A.; Igra, O.; Ben-Dor, G.; Mond, M.

    The flow field in the ionizing relaxation zone developed behind a normal shock wave in an electrically neutral, homogeneous, two temperature mixture of thermally ideal gases (molecules, atoms, ions, electrons) was numerically solved. The heat transfer between the electron gas and the other components was taken into account while all the other transport phenomena (molecular, turbulent and radiative) were neglected in the relaxation zone, since it is dominated by inelastic collisions. The threshold cross sections measured by Specht (1981), for excitation of argon by electron collisions, were used. The calculated results show good agreement with the results of the shock tube experiments presented by Glass and Liu (1978), especially in the electron avalanche region. A critical examination was made of the common assumptions regarding the average energy with which electrons are produced by atom-atom collisions and the relative effectiveness of atom-atom collisions (versus electron-atom collisions) in ionizing excited argon.

  3. Nuclear reactions in shock wave front during supernova events

    NASA Technical Reports Server (NTRS)

    Lavrukhina, A. K.

    1985-01-01

    The new unique isotopic anomalous coponent of Xe(XeX) was found in the carbonaceous chondrites. It is enriched in light shielded isotopes (124Xe and 126Xe) and in heavy nonshielded isotopes (134Xe and 136Xe. All characteristics of Xe-X can be explained by a model of nucleosynthesis of the Xe isotopes in shock wave front passed through the He envelope during supernova events. The light isotopes are created by p process and the heavy isotopes are created by n process (slow r process). They were captured with high temperature carbon grains condensing by supernova shock waves.

  4. Studies of Shock Wave Interaction with a Curtain of Massive Particles

    NASA Astrophysics Data System (ADS)

    Lingampally, Sumanth Reddy; Wayne, Patrick; Cooper, Sean; Izard, Ricardo Gonzalez; Jacobs, Gustaaf; Vorobieff, Peter

    2017-11-01

    Interaction of a shock wave with planar and perturbed curtain of massive particles is studied experimentally. To form the curtain, solid soda lime particles (30-50 micron diameter) are dropped from a hopper fitted with mesh sieves and vibrated with a motor. The curtain forms when the particles move through a rectangular slot in the top of the test section of the shock tube used in experiment. The curtain can be either planar or perturbed in the horizontal plane (parallel to the shock direction) based on the shape of the slot. This setup generates a particle curtain with a volume fraction varying between 2 and 8 percent along its vertical height. A laser illuminates the curtain in vertical and horizontal planes. When the diaphragm separating the driver and the driven section is ruptured, shock waves with Mach numbers ranging from 1 to 2, depending on the pressure, propagate down the driven section and into test section. The phenomena following the shock wave impingement on the particle curtain are captured using an Apogee Alta U42 camera. This work is supported by the National Science Foundation Grant 1603915/1603326.

  5. Temperature measurement using ultraviolet laser absorption of carbon dioxide behind shock waves.

    PubMed

    Oehlschlaeger, Matthew A; Davidson, David F; Jeffries, Jay B

    2005-11-01

    A diagnostic for microsecond time-resolved temperature measurements behind shock waves, using ultraviolet laser absorption of vibrationally hot carbon dioxide, is demonstrated. Continuous-wave laser radiation at 244 and 266 nm was employed to probe the spectrally smooth CO2 ultraviolet absorption, and an absorbance ratio technique was used to determine temperature. Measurements behind shock waves in both nonreacting and reacting (ignition) systems were made, and comparisons with isentropic and constant-volume calculations are reported.

  6. Wind Observations of Wave Heating and/or Particle Energization at Supercritical Interplanetary Shocks

    NASA Technical Reports Server (NTRS)

    Wilson, Lynn Bruce, III; Szabo, Adam; Koval, Andriy; Cattell, Cynthia A.; Kellogg, Paul J.; Goetz, Keith; Breneman, Aaron; Kersten, Kris; Kasper, Justin C.; Pulupa, Marc

    2011-01-01

    We present the first observations at supercritical interplanetary shocks of large amplitude (> 100 mV/m pk-pk) solitary waves, approx.30 mV/m pk-pk waves exhibiting characteristics consistent with electron Bernstein waves, and > 20 nT pk-pk electromagnetic lower hybrid-like waves, with simultaneous evidence for wave heating and particle energization. The solitary waves and the Bernstein-like waves were likely due to instabilities driven by the free energy provided by reflected ions [Wilson III et al., 2010]. They were associated with strong particle heating in both the electrons and ions. We also show a case example of parallel electron energization and perpendicular ion heating due to a electromagnetic lower hybrid-like wave. Both studies provide the first experimental evidence of wave heating and/or particle energization at interplanetary shocks. Our experimental results, together with the results of recent Vlasov [Petkaki and Freeman, 2008] and PIC [Matsukyo and Scholer, 2006] simulations using realistic mass ratios provide new evidence to suggest that the importance of wave-particle dissipation at shocks may be greater than previously thought.

  7. Accuracy Study of the Space-Time CE/SE Method for Computational Aeroacoustics Problems Involving Shock Waves

    NASA Technical Reports Server (NTRS)

    Wang, Xiao Yen; Chang, Sin-Chung; Jorgenson, Philip C. E.

    1999-01-01

    The space-time conservation element and solution element(CE/SE) method is used to study the sound-shock interaction problem. The order of accuracy of numerical schemes is investigated. The linear model problem.govemed by the 1-D scalar convection equation, sound-shock interaction problem governed by the 1-D Euler equations, and the 1-D shock-tube problem which involves moving shock waves and contact surfaces are solved to investigate the order of accuracy of numerical schemes. It is concluded that the accuracy of the CE/SE numerical scheme with designed 2nd-order accuracy becomes 1st order when a moving shock wave exists. However, the absolute error in the CE/SE solution downstream of the shock wave is on the same order as that obtained using a fourth-order accurate essentially nonoscillatory (ENO) scheme. No special techniques are used for either high-frequency low-amplitude waves or shock waves.

  8. REVIEWS OF TOPICAL PROBLEMS: Acceleration of cosmic rays by shock waves

    NASA Astrophysics Data System (ADS)

    Berezhko, E. G.; Krymskiĭ, G. F.

    1988-01-01

    Theoretical work on various processes by which shock waves accelerate cosmic rays is reviewed. The most efficient of these processes, Fermi acceleration, is singled out for special attention. A linear theory for this process is presented. The results found on the basis of nonlinear models of Fermi acceleration, which incorporate the modification of the structure caused by the accelerated particles, are reported. There is a discussion of various possibilities for explaining the generation of high-energy particles observed in interplanetary and interstellar space on the basis of a Fermi acceleration mechanism. The acceleration by shock waves from supernova explosions is discussed as a possible source of galactic cosmic rays. The most important unresolved questions in the theory of acceleration of charged particles by shock waves are pointed out.

  9. Detecting Fragmentation of Kidney Stones in Lithotripsy by Means of Shock Wave Scattering

    NASA Astrophysics Data System (ADS)

    Sapozhnikov, Oleg A.; Trusov, Leonid A.; Owen, Neil R.; Bailey, Michael R.; Cleveland, Robin O.

    2006-05-01

    Although extracorporeal shock wave lithotripsy (a procedure of kidney stone comminution using focused shock waves) has been used clinically for many years, a proper monitoring of the stone fragmentation is still undeveloped. A method considered here is based on recording shock wave scattering signals with a focused receiver placed far from the stone, outside the patient body. When a fracture occurs in the stone or the stone becomes smaller, the elastic waves in the stone will propagate differently (e.g. shear waves will not cross a fracture) which, in turn, will change the scattered acoustic wave in the surrounding medium. Theoretical studies of the scattering phenomenon are based on a linear elastic model to predict shock wave scattering by a stone, with and without crack present in it. The elastic waves in the stone and the nearby liquid were modeled using a finite difference time domain approach. The subsequent acoustic propagation of the scattered waves into the far-field was calculated using the Helmholtz-Kirchhoff integral. Experimental studies were conducted using a research electrohydraulic lithotripter that produced the same acoustic output as an unmodified Dornier HM3 clinical lithotripter. Artificial stones, made from Ultracal-30 gypsum and acrylic, were used as targets. The stones had cylindrical shape and were positioned co-axially with the lithotripter axis. The scattered wave was measured by focused broadband PVDF hydrophone. It was shown that the size of the stone noticeably changed the signature of the reflected wave.

  10. Double shock front formation in cylindrical radiative blast waves produced by laser irradiation of krypton gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, I.; Quevedo, H. J.; Feldman, S.

    2013-12-15

    Radiative blast waves were created by irradiating a krypton cluster source from a supersonic jet with a high intensity femtosecond laser pulse. It was found that the radiation from the shock surface is absorbed in the optically thick upstream medium creating a radiative heat wave that travels supersonically ahead of the main shock. As the blast wave propagates into the heated medium, it slows and loses energy, and the radiative heat wave also slows down. When the radiative heat wave slows down to the transonic regime, a secondary shock in the ionization precursor is produced. This paper presents experimental datamore » characterizing both the initial and secondary shocks and numerical simulations to analyze the double-shock dynamics.« less

  11. [Extracorporeal shock-wave lithotripsy of gallstones].

    PubMed

    Freund, H R; Lebensart, P D; Muggia-Sullam, M; Durst, A L

    1989-08-01

    We performed 16 extracorporeal shock-wave lithotripsies (ESWL) to fragment gallstones in 11 women and 2 men, aged 19 to 57 (mean 41 +/- 10) years, during the past 10 months. Criteria for selection included a history of biliary colic, not more than 3 stones with a total diameter of not more than 30 mm, and a functioning gallbladder. 210 patients were examined, of whom 98 were referred for additional screening by combined ultrasonography and oral cholecystography. This resulted in rejection of another 71 patients due to multiple stones (38%), nonfunctioning gallbladder (22%), calcified stones (12%), stones not visualized in the prone position (9%), excessively large stones (3%) and other reasons (16%). Only 27 patients fulfilled all the criteria. Under epidural or general anesthesia (11 and 2 patients, respectively), we administered 1200-3500 (mean 2250 +/- 750) shock waves at 20-24 KV with the Tripter X1 (Direx, Israel-USA). This is an ultrasound-guided, modular portable, shock-wave generator utilizing underwater high energy spark discharge. Chenodeoxycholic or ursodeoxycholic acid, 10 mg/kg/day, was started 1 week prior to ESWL and continued for 3 months after disappearance of fragments and debris. We encountered skin petechiae in all patients, transient hematuria in 8, mild biliary colic in 1 and a small liver hematoma in 1. To date, 3 patients are free of stones, while in 7 only sludge and tiny fragments are present which we expect to disappear as a result of the litholytic therapy. 3 patients had fragments larger than 5 mm and required a second ESWL. Thus ESWL, which was indicated in only 13% of screened patients, proved to be safe and can be expected to be successful in 75% of selected candidates.

  12. The impact of vorticity waves on the shock dynamics in core-collapse supernovae

    NASA Astrophysics Data System (ADS)

    Huete, César; Abdikamalov, Ernazar; Radice, David

    2018-04-01

    Convective perturbations arising from nuclear shell burning can play an important role in propelling neutrino-driven core-collapse supernova explosions. In this work, we analyse the impact of vorticity waves on the shock dynamics, and subsequently on the post-shock flow, using the solution of the linear hydrodynamics equations. As a result of the interaction with the shock wave, vorticity waves increase their kinetic energy, and a new set of entropic and acoustic waves is deposited in the post-shock region. These perturbations interact with the neutrino-driven turbulent convection that develops in that region. Although both vorticity and acoustic waves inject non-radial motion into the gain region, the contribution of the acoustic waves is found to be negligibly small in comparison to that of the vorticity waves. On the other hand, entropy waves become buoyant and trigger more convection. Using the concept of critical neutrino luminosity, we assess the impact of these modes on the explosion conditions. While the direct injection of non-radial motion reduces the critical neutrino luminosity by ˜ 12 per cent for typical problem parameters, the buoyancy-driven convection triggered by entropy waves reduces the critical luminosity by ˜ 17-24 per cent, which approximately agrees with the results of three-dimensional neutrino-hydrodynamics simulations. Finally, we discuss the limits of validity of the assumptions employed.

  13. Dust Ion-Acoustic Shock Waves in a Multicomponent Magnetorotating Plasma

    NASA Astrophysics Data System (ADS)

    Kaur, Barjinder; Saini, N. S.

    2018-02-01

    The nonlinear properties of dust ion-acoustic (DIA) shock waves in a magnetorotating plasma consisting of inertial ions, nonextensive electrons and positrons, and immobile negatively charged dust are examined. The effects of dust charge fluctuations are not included in the present investigation, but the ion kinematic viscosity (collisions) is a source of dissipation, leading to the formation of stable shock structures. The Zakharov-Kuznetsov-Burgers (ZKB) equation is derived using the reductive perturbation technique, and from its solution the effects of different physical parameters, i.e. nonextensivity of electrons and positrons, kinematic viscosity, rotational frequency, and positron and dust concentrations, on the characteristics of shock waves are examined. It is observed that physical parameters play a very crucial role in the formation of DIA shocks. This study could be useful in understanding the electrostatic excitations in dusty plasmas in space (e.g. interstellar medium).

  14. Deformation behavior and spall fracture of the Hadfield steel under shock-wave loading

    NASA Astrophysics Data System (ADS)

    Gnyusov, S. F.; Rotshtein, V. P.; Polevin, S. D.; Kitsanov, S. A.

    2011-03-01

    Comparative studies of regularities in plastic deformation and fracture of the Hadfield polycrystalline steel upon quasi-static tension, impact failure, and shock-wave loading with rear spall are performed. The SINUS-7 accelerator was used as a shock-wave generator. The electron beam parameters of the accelerator were the following: maximum electron energy was 1.35 MeV, pulse duration at half-maximum was 45 ns, maximum energy density on a target was 3.4·1010 W/cm2, shock-wave amplitude was ~20 GPa, and strain rate was ~106 s-1. It is established that the failure mechanism changes from ductile transgranular to mixed ductile-brittle intergranular one when going from quasi-static tensile and Charpy impact tests to shock-wave loading. It is demonstrated that a reason for the intergranular spallation is the strain localization near the grain boundaries containing a carbide interlayer.

  15. In situ measurement of plasma and shock wave properties inside laser-drilled metal holes

    NASA Astrophysics Data System (ADS)

    Brajdic, Mihael; Hermans, Martin; Horn, Alexander; Kelbassa, Ingomar

    2008-10-01

    High-speed imaging of shock wave and plasma dynamics is a commonly used diagnostic method for monitoring processes during laser material treatment. It is used for processes such as laser ablation, cutting, keyhole welding and drilling. Diagnosis of laser drilling is typically adopted above the material surface because lateral process monitoring with optical diagnostic methods inside the laser-drilled hole is not possible due to the hole walls. A novel method is presented to investigate plasma and shock wave properties during the laser drilling inside a confined environment such as a laser-drilled hole. With a novel sample preparation and the use of high-speed imaging combined with spectroscopy, a time and spatial resolved monitoring of plasma and shock wave dynamics is realized. Optical emission of plasma and shock waves during drilling of stainless steel with ns-pulsed laser radiation is monitored and analysed. Spatial distributions and velocities of shock waves and of plasma are determined inside the holes. Spectroscopy is accomplished during the expansion of the plasma inside the drilled hole allowing for the determination of electron densities.

  16. Experimental studies of hypersonic shock-wave boundary-layer interactions

    NASA Technical Reports Server (NTRS)

    Lu, Frank K.

    1992-01-01

    Two classes of shock-wave boundary-layer interactions were studied experimentally in a shock tunnel in which a low Reynolds number, turbulent flow at Mach 8 was developed on a cold, flat test surface. The two classes of interactions were: (1) a swept interaction generated by a wedge ('fin') mounted perpendicularly on the flat plate; and (2) a two-dimensional, unseparated interaction induced by a shock impinging near an expansion corner. The swept interaction, with wedge angles of 5-20 degrees, was separated and there was also indication that the strongest interactions prossessed secondary separation zones. The interaction spread out extensively from the inviscid shock location although no indication of quasi-conical symmetry was evident. The surface pressure from the upstream influence to the inviscid shock was relatively low compared to the inviscid downstream value but it rose rapidly past the inviscid shock location. However, the surface pressure did not reach the downstream inviscid value and reasons were proposed for this anomalous behavior compared to strongly separated, supersonic interactions. The second class of interactions involved weak shocks impinging near small expansion corners. As a prelude to studying this interaction, a hypersonic similarity parameter was identified for the pure, expansion corner flow. The expansion corner severely damped out surface pressure fluctuations. When a shock impinged upstream of the corner, no significant changes to the surface pressure were found as compared to the case when the shock impinged on a flat plate. But, when the shock impinged downstream of the corner, a close coupling existed between the two wave systems, unlike the supersonic case. This close coupling modified the upstream influence. Regardless of whether the shock impinged ahead or behind the corner, the downstream region was affected by the close coupling between the shock and the expansion. Not only was the mean pressure distribution modified but the

  17. Molecular modeling of transmembrane delivery of paclitaxel by shock waves with nanobubbles

    NASA Astrophysics Data System (ADS)

    Lu, Xue-mei; Yuan, Bing; Zhang, Xian-ren; Yang, Kai; Ma, Yu-qiang

    2017-01-01

    The development of advanced delivery strategies for anticancer drugs that can permeate through cellular membranes is urgently required for biomedical applications. In this work, we investigated the dynamic transmembrane behavior of paclitaxel (PTX), a powerful anticancer drug, under the combined impact of shock waves and nanobubbles, by using atomistic molecular dynamics simulations. Our simulations show that the PTX molecule experiences complicated motion modes during the action process with the membrane, as a consequence of its interplay with the lipid bilayer and water, under the joint effect of the shock wave and nanobubble. Moreover, it was found that the transmembrane movement of PTX is closely associated with the conformation changes of PTX, as well as the structural changes of the membrane (e.g., compression and poration in membrane). The nanobubble collapse induced by the shock wave, the proper PTX location with respect to the nanobubble, and a suitable nanobubble size and shock impulse are all necessary for the delivery of PTX into the cell. This work provides a molecular understanding of the interaction mechanism between drug molecules and cell membranes under the influence of shock waves and nanobubbles, and paves the way for exploiting targeted drug delivery systems that combine nanobubbles and ultrasound.

  18. Epicardial shock-wave therapy improves ventricular function in a porcine model of ischaemic heart disease.

    PubMed

    Holfeld, Johannes; Zimpfer, Daniel; Albrecht-Schgoer, Karin; Stojadinovic, Alexander; Paulus, Patrick; Dumfarth, Julia; Thomas, Anita; Lobenwein, Daniela; Tepeköylü, Can; Rosenhek, Raphael; Schaden, Wolfgang; Kirchmair, Rudolf; Aharinejad, Seyedhossein; Grimm, Michael

    2016-12-01

    Previously we have shown that epicardial shock-wave therapy improves left ventricular ejection fraction (LVEF) in a rat model of myocardial infarction. In the present experiments we aimed to address the safety and efficacy of epicardial shock-wave therapy in a preclinical large animal model and to further evaluate mechanisms of action of this novel therapy. Four weeks after left anterior descending (LAD) artery ligation in pigs, the animals underwent re-thoracotomy with (shock-wave group, n = 6) or without (control group, n = 5) epicardial shock waves (300 impulses at 0.38 mJ/mm 2 ) applied to the infarcted anterior wall. Efficacy endpoints were improvement of LVEF and induction of angiogenesis 6 weeks after shock-wave therapy. Safety endpoints were haemodynamic stability during treatment and myocardial damage. Four weeks after LAD ligation, LVEF decreased in both the shock-wave (43 ± 3%, p < 0.001) and control (41 ± 4%, p = 0.012) groups. LVEF markedly improved in shock-wave animals 6 weeks after treatment (62 ± 9%, p = 0.006); no improvement was observed in controls (41 ± 4%, p = 0.36), yielding a significant difference. Quantitative histology revealed significant angiogenesis 6 weeks after treatment (controls 2 ± 0.4 arterioles/high-power field vs treatment group 9 ± 3; p = 0.004). No acute or chronic adverse effects were observed. As a potential mechanism of action in vitro experiments showed stimulation of VEGF receptors after shock-wave treatment in human coronary artery endothelial cells. Epicardial shock-wave treatment in a large animal model of ischaemic heart failure exerted a positive effect on LVEF improvement and did not show any adverse effects. Angiogenesis was induced by stimulation of VEGF receptors. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  19. Urodynamic and Immunohistochemical Evaluation of Intravesical Botulinum Toxin A Delivery Using Low Energy Shock Waves.

    PubMed

    Chuang, Yao-Chi; Huang, Tung-Liang; Tyagi, Pradeep; Huang, Chao-Cheng

    2016-08-01

    We investigated the feasibility of using low energy shock waves for intravesical botulinum toxin A delivery. We also evaluated its efficacy for acetic acid induced bladder hyperactivity in rats. In study 1 magnetic resonance imaging with intravesical administration of Gd-DTPA (Gd-diethylenetriamine pentaacetic acid) contrast medium was performed to visualize increased bladder urothelial permeability after low energy shock waves. In study 2 saline (1 ml) or botulinum toxin A (20 U/1 ml saline) was administered in the bladder with or without low energy shock waves (300 pulses at 0.12 mJ/mm(2)) and retained for 1 hour on day 1. Continuous cystometrograms were performed on day 8 by filling the bladder with saline followed by 0.3% acetic acid. The bladder was harvested for histology, and SNAP-25, SNAP-23 and COX-2 expression by Western blot or immunostaining. Magnetic resonance imaging established bladder urothelial leakage of Gd-DTPA after low energy shock waves, which was not seen in controls. The intercontraction interval was decreased 71.9%, 72.6% and 70.6% after intravesical instillation of acetic acid in saline, saline plus low energy shock wave and botulinum toxin A pretreated rats, respectively. However, rats that received botulinum toxin A plus low energy shock waves showed a significantly reduced response (48.6% decreased intercontraction interval) to acetic acid instillation without compromising voiding function. Rats pretreated with botulinum toxin A plus low energy shock waves showed a decreased inflammatory reaction (p <0.05), and decreased expression of SNAP-23 (p <0.05), SNAP-25 (p = 0.061) and COX-2 (p <0.05) compared with the control group. Low energy shock waves increased urothelial permeability, facilitated intravesical botulinum toxin A delivery and blocked acetic acid induced hyperactive bladder. These results support low energy shock waves as a promising method to deliver botulinum toxin A without the need for injection. Copyright © 2016

  20. Shock wave compression of iron-silicate garnet.

    NASA Technical Reports Server (NTRS)

    Graham, E. K.; Ahrens, T. J.

    1973-01-01

    Shock wave compression data to over 650 kb are presented for single-crystal almandine garnet. The data indicate the initiation of a phase transformation near 200 kb. Total transition to the high-pressure polymorph occurs at approximately 300 kb. The elastic properties of the high-pressure phase are calculated from the metastable Hugoniot data by using the linear shock velocity-particle velocity relationships. The overall results obtained strongly suggest that upper mantle minerals are likely to occur in the ilmenite structure over a substantial part of the lower mantle.

  1. Emergency shock wave lithotripsy for ureteric stones.

    PubMed

    Dasgupta, Ranan; Hegarty, Nicholas; Thomas, Kay

    2009-03-01

    Extracorporeal shock wave lithotripsy has been used for over 2 decades, but its application in the acute setting remains under review. With continuing refinements to the technology, it is timely to review its efficacy in the emergency setting. The procedure has an overall low morbidity and is generally well tolerated. Success rates of 70-80% are reported in a number of studies, with relatively low complication rates. Although much attention has been given to the improvements in the outcome of ureteroscopic stone clearance, the benefits of a noninvasive procedure which does not require general anaesthesia may be appealing and indeed preferable for many patients. This should remain a valid alternative treatment option offered to patients, and its provision may be restricted by resource availability rather than clinical evidence. Centres should be identified that can offer an emergency extracorporeal shock wave lithotripsy service and patients informed of outcome data from such centres.

  2. A fast estimation of shock wave pressure based on trend identification

    NASA Astrophysics Data System (ADS)

    Yao, Zhenjian; Wang, Zhongyu; Wang, Chenchen; Lv, Jing

    2018-04-01

    In this paper, a fast method based on trend identification is proposed to accurately estimate the shock wave pressure in a dynamic measurement. Firstly, the collected output signal of the pressure sensor is reconstructed by discrete cosine transform (DCT) to reduce the computational complexity for the subsequent steps. Secondly, the empirical mode decomposition (EMD) is applied to decompose the reconstructed signal into several components with different frequency-bands, and the last few low-frequency components are chosen to recover the trend of the reconstructed signal. In the meantime, the optimal component number is determined based on the correlation coefficient and the normalized Euclidean distance between the trend and the reconstructed signal. Thirdly, with the areas under the gradient curve of the trend signal, the stable interval that produces the minimum can be easily identified. As a result, the stable value of the output signal is achieved in this interval. Finally, the shock wave pressure can be estimated according to the stable value of the output signal and the sensitivity of the sensor in the dynamic measurement. A series of shock wave pressure measurements are carried out with a shock tube system to validate the performance of this method. The experimental results show that the proposed method works well in shock wave pressure estimation. Furthermore, comparative experiments also demonstrate the superiority of the proposed method over the existing approaches in both estimation accuracy and computational efficiency.

  3. Relativistic shock waves and Mach cones in viscous gluon matter

    NASA Astrophysics Data System (ADS)

    Bouras, Ioannis; Molnár, Etele; Niemi, Harri; Xu, Zhe; El, Andrej; Fochler, Oliver; Lauciello, Francesco; Greiner, Carsten; Rischke, Dirk H.

    2010-06-01

    To investigate the formation and the propagation of relativistic shock waves in viscous gluon matter we solve the relativistic Riemann problem using a microscopic parton cascade. We demonstrate the transition from ideal to viscous shock waves by varying the shear viscosity to entropy density ratio η/s. Furthermore we compare our results with those obtained by solving the relativistic causal dissipative fluid equations of Israel and Stewart (IS), in order to show the validity of the IS hydrodynamics. Employing the parton cascade we also investigate the formation of Mach shocks induced by a high-energy gluon traversing viscous gluon matter. For η/s = 0.08 a Mach cone structure is observed, whereas the signal smears out for η/s >= 0.32.

  4. Heat-flow equation motivated by the ideal-gas shock wave.

    PubMed

    Holian, Brad Lee; Mareschal, Michel

    2010-08-01

    We present an equation for the heat-flux vector that goes beyond Fourier's Law of heat conduction, in order to model shockwave propagation in gases. Our approach is motivated by the observation of a disequilibrium among the three components of temperature, namely, the difference between the temperature component in the direction of a planar shock wave, versus those in the transverse directions. This difference is most prominent near the shock front. We test our heat-flow equation for the case of strong shock waves in the ideal gas, which has been studied in the past and compared to Navier-Stokes solutions. The new heat-flow treatment improves the agreement with nonequilibrium molecular-dynamics simulations of hard spheres under strong shockwave conditions.

  5. First Clinical Experience with Extracorporeally Induced Destruction of Kidney Stones by Shock Waves.

    PubMed

    Chaussy, Christian; Schmiedt, Egbert; Jocham, Dieter; Brendel, Walter; Forssmann, Bernd; Walther, Volker

    2017-02-01

    We performed extracorporeally induced destruction of kidney stones on 72 patients. No complications have resulted from the tissue exposure to high energy shock waves. Clearance studies before and after the shock wave treatment indicate no changes in renal function. The method was used successfully in all patients with stones in the renal pelvis. In none of these patients was an open operation required. Two patients with ureteral stones also were treated with shock waves but had to be operated upon because of insufficient destruction of the stone. Copyright © 2002 American Urological Association, Inc.®. Published by Elsevier Inc. All rights reserved.

  6. Shock-wave generation and bubble formation in the retina by lasers

    NASA Astrophysics Data System (ADS)

    Sun, Jinming; Gerstman, Bernard S.; Li, Bin

    2000-06-01

    The generation of shock waves and bubbles has been experimentally observed due to absorption of sub-nanosecond laser pulses by melanosomes, which are found in retinal pigment epithelium cells. Both the shock waves and bubbles may be the cause of retinal damage at threshold fluence levels. The theoretical modeling of shock wave parameters such as amplitude, and bubble size, is a complicated problem due to the non-linearity of the phenomena. We have used two different approaches for treating pressure variations in water: the Tait Equation and a full Equation Of State (EOS). The Tait Equation has the advantage of being developed specifically to model pressure variations in water and is therefore simpler, quicker computationally, and allows the liquid to sustain negative pressures. Its disadvantage is that it does not allow for a change of phase, which prevents modeling of bubbles and leads to non-physical behavior such as the sustaining of ridiculously large negative pressures. The full EOS treatment includes more of the true thermodynamic behavior, such as phase changes that produce bubbles and avoids the generation of large negative pressures. Its disadvantage is that the usual stable equilibrium EOS allows for no negative pressures at all, since tensile stress is unstable with respect to a transition to the vapor phase. In addition, the EOS treatment requires longer computational times. In this paper, we compare shock wave generation for various laser pulses using the two different mathematical approaches and determine the laser pulse regime for which the simpler Tait Equation can be used with confidence. We also present results of our full EOS treatment in which both shock waves and bubbles are simultaneously modeled.

  7. Whistler mode waves observed by MGF search coil magnetometer -Polarization and wave normal features of upstream waves near the bow-shock

    NASA Astrophysics Data System (ADS)

    Hayashi, K.; Matsui, H.; Kawano, H.; Yamamoto, T.; Kokubun, S.

    1994-12-01

    Whistler mode waves observed in the upstream region very close to the bow-shock is focused from the initial survey for magnetic fed data in a frequency range between 1Hz and 50Hz observed by the search coil magnetometer on board the Geotail satellite. Based on the three component wave form data polarization and wave-normal characteristics of foreshock waves is first shown as dynamic spectra for the whole Fourier components of the 50 Hz band width. Intense whistler mode waves generated in the foot region of the bow-shock are found strongly controlled in the observed polarization dependent on the angle between directions of the wave propagation and the solar wind flow but not very dependent on frequency. Our simple scheme to derive the ware characteristics which is effective to survey large amount of data continuously growing is also introduced.

  8. Experimental Plans for Subsystems of a Shock Wave Driven Gas Core Reactor

    NASA Technical Reports Server (NTRS)

    Kazeminezhad, F.; Anghai, S.

    2008-01-01

    This Contractor Report proposes a number of plans for experiments on subsystems of a shock wave driven pulsed magnetic induction gas core reactor (PMI-GCR, or PMD-GCR pulsed magnet driven gas core reactor). Computer models of shock generation and collision in a large-scale PMI-GCR shock tube have been performed. Based upon the simulation results a number of issues arose that can only be addressed adequately by capturing experimental data on high pressure (approx.1 atmosphere or greater) partial plasma shock wave effects in large bore shock tubes ( 10 cm radius). There are three main subsystems that are of immediate interest (for appraisal of the concept viability). These are (1) the shock generation in a high pressure gas using either a plasma thruster or pulsed high magnetic field, (2) collision of MHD or gas dynamic shocks, their interaction time, and collision pile-up region thickness, and (3) magnetic flux compression power generation (not included here).

  9. Particle response to shock waves in solids: dynamic witness plate/PIV method for detonations

    NASA Astrophysics Data System (ADS)

    Murphy, Michael J.; Adrian, Ronald J.

    2007-08-01

    Studies using transparent, polymeric witness plates consisting of polydimethlysiloxane (PDMS) have been conducted to measure the output of exploding bridge wire (EBW) detonators and exploding foil initiators (EFI). Polymeric witness plates are utilized to alleviate particle response issues that arise in gaseous flow fields containing shock waves and to allow measurements of shock-induced material velocities to be made using particle image velocimetry (PIV). Quantitative comparisons of velocity profiles across the shock waves in air and in PDMS demonstrate the improved response achieved by the dynamic witness plate method. Schlieren photographs complement the analysis through direct visualization of detonator-induced shock waves in the witness plates.

  10. Thinner plantar fascia predicts decreased pain after extracorporeal shock wave therapy.

    PubMed

    Liang, Huey-Wen; Wang, Tyng-Guey; Chen, Wen-Shiang; Hou, Sheng-Mou

    2007-07-01

    Increased plantar fascia thickness is common with chronic plantar fasciitis, and reduction of the thickness after extracorporeal shock wave therapy or steroid injection has been reported. We hypothesized a decrease of plantar fascia thickness was associated with pain reduction after extracorporeal shock wave therapy. Fifty-three eligible patients with 78 symptomatic feet were randomly treated with piezoelectric-type extracorporeal shock wave therapy of two intensity levels (0.12 and 0.56 mJ/mm2). Two thousand shock waves for three consecutive sessions were applied at weekly intervals. A visual analog scale for pain, the Foot Function Index, the Short Form-36 Health Survey, and ultrasonographic measurement of plantar fascia thickness were evaluated at baseline and 3 and 6 months after treatment. We analyzed the association between pain level and plantar fascia thickness with generalized estimating equation analysis and adjusted for demographic and treatment-related variables. Patients with thinner plantar fascia experienced less pain after treatment; high-intensity treatment and regular exercise were associated with lower pain level. The overall success rates were 63% and 60% at the 3- and 6-month followups. High- and low-intensity treatments were associated with similar improvements in pain and function. Receiving high-intensity treatment, although associated with less pain at followup, did not provide a higher success rate.

  11. Transmission of singularities through a shock wave and the sound generation

    NASA Technical Reports Server (NTRS)

    Ting, L.

    1974-01-01

    The interaction of a plane shock wave of finite strength with a vortex line, point vortex, doublet or quadrupole of weak strength is studied. Based upon the physical condition that a free vortex line cannot support a pressure difference, rules are established which define the change of the linear intensity of the segment of the vortex line after its passage through the shock. The rules for point vortex, doublet, and quadrupole are then established as limiting cases. These rules can be useful for the construction of the solution of the entire flow field and for its physical interpretation. However, the solution can be obtained directly by the technique developed for shock diffraction problems. Explicit solutions and the associated sound generation are obtained for the passage of a point vortex through the shock wave.

  12. Shock wave refraction enhancing conditions on an extended interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markhotok, A.; Popovic, S.

    2013-04-15

    We determined the law of shock wave refraction for a class of extended interfaces with continuously variable gradients. When the interface is extended or when the gas parameters vary fast enough, the interface cannot be considered as sharp or smooth and the existing calculation methods cannot be applied. The expressions we derived are general enough to cover all three types of the interface and are valid for any law of continuously varying parameters. We apply the equations to the case of exponentially increasing temperature on the boundary and compare the results for all three types of interfaces. We have demonstratedmore » that the type of interface can increase or inhibit the shock wave refraction. Our findings can be helpful in understanding the results obtained in energy deposition experiments as well as for controlling the shock-plasma interaction in other settings.« less

  13. Heating a plasma by a broadband stream of fast electrons: Fast ignition, shock ignition, and Gbar shock wave applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gus’kov, S. Yu., E-mail: guskov@sci.lebedev.ru; Nicolai, Ph.; Ribeyre, X.

    2015-09-15

    An exact analytic solution is found for the steady-state distribution function of fast electrons with an arbitrary initial spectrum irradiating a planar low-Z plasma with an arbitrary density distribution. The solution is applied to study the heating of a material by fast electrons of different spectra such as a monoenergetic spectrum, a step-like distribution in a given energy range, and a Maxwellian spectrum, which is inherent in laser-produced fast electrons. The heating of shock- and fast-ignited precompressed inertial confinement fusion (ICF) targets as well as the heating of a target designed to generate a Gbar shock wave for equation ofmore » state (EOS) experiments by laser-produced fast electrons with a Maxwellian spectrum is investigated. A relation is established between the energies of two groups of Maxwellian fast electrons, which are responsible for generation of a shock wave and heating the upstream material (preheating). The minimum energy of the fast and shock igniting beams as well as of the beam for a Gbar shock wave generation increases with the spectral width of the electron distribution.« less

  14. Shock Wave Propagation in Layered Planetary Interiors: Revisited

    NASA Astrophysics Data System (ADS)

    Arkani-Hamed, J.; Monteux, J.

    2017-12-01

    The end of the terrestrial planet accretion is characterized by numerous large impacts. About 90% of the mass of a large planet is accreted while the core mantle separation is occurring, because of the accretionary and the short-lived radio-isotope heating. The characteristics of the shockwave propagation, hence the existing scaling laws are poorly known within the layered planets. Here, we use iSALE-2D hydrocode simulations to calculate shock pressure in a differentiated Mars type body for impact velocities of 5-20 km/s, and impactor sizes of 100-400 km. We use two different rheologies for the target interior, an inviscid model ("no-stress model") and a pressure and damage-dependent strength model ("elaborated model"). To better characterize the shock pressure within the whole mantle as a function of distance from the impact site, we propose the following distribution: (1) a near field zone larger than the isobaric core that extends to 7-15 times the projectile radius into the target, where the peak shock pressure decays exponentially with increasing distance, (2) a far field zone where the pressure decays with distance following a power law. The shock pressure decreases more rapidly with distance in the near field for the elaborated model than for the no-stress model because of the influence of acoustic fluidization and damage. However to better illustrate the influence of the rheology on the shock propagation, we use the same expressions to fit the shock pressure with distance for both models. At the core-mantle boundary, CMB, the peak shock pressure jumps as the shock wave enters the core. We derived the boundary condition at CMB for the peak shock pressure. It is less sensitive to the impact velocity or the impactor size, but strongly depends on the rheology of the planet's mantle. Because of the lower shock wave velocity in the core compared to that in the mantle, the refracted shockwave propagates toward the symmetry axis of the planet, and the shock

  15. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Measurements of laser-induced shock waves in aluminium

    NASA Astrophysics Data System (ADS)

    Werdiger, M.; Arad, B.; Moshe, E.; Eliezer, S.

    1995-02-01

    A simple optical method for measurements of high-irradiance (3×1013 W cm-2) laser-induced shock waves is described. The shock wave velocity (~13 km s-1) was measured with an error not exceeding 5%. The laser-induced one-to-two-dimensional (1D-to-2D) shock wave transition was studied.

  16. Uncovering the Secret of Shock Wave Lithotripsy

    NASA Astrophysics Data System (ADS)

    Zhong, P.

    Shock wave lithotripsy (SWL) is an engineering innovation that has revolutionized the treatment of kidney stone disease since the early 1980s [1] - [3]. Today, SWL is the first-line therapy for millions of patients worldwide with renal and upper urinary stones [3, 4].

  17. Modeling shock waves in an ideal gas: combining the Burnett approximation and Holian's conjecture.

    PubMed

    He, Yi-Guang; Tang, Xiu-Zhang; Pu, Yi-Kang

    2008-07-01

    We model a shock wave in an ideal gas by combining the Burnett approximation and Holian's conjecture. We use the temperature in the direction of shock propagation rather than the average temperature in the Burnett transport coefficients. The shock wave profiles and shock thickness are compared with other theories. The results are found to agree better with the nonequilibrium molecular dynamics (NEMD) and direct simulation Monte Carlo (DSMC) data than the Burnett equations and the modified Navier-Stokes theory.

  18. An FDTD-based computer simulation platform for shock wave propagation in electrohydraulic lithotripsy.

    PubMed

    Yılmaz, Bülent; Çiftçi, Emre

    2013-06-01

    Extracorporeal Shock Wave Lithotripsy (ESWL) is based on disintegration of the kidney stone by delivering high-energy shock waves that are created outside the body and transmitted through the skin and body tissues. Nowadays high-energy shock waves are also used in orthopedic operations and investigated to be used in the treatment of myocardial infarction and cancer. Because of these new application areas novel lithotriptor designs are needed for different kinds of treatment strategies. In this study our aim was to develop a versatile computer simulation environment which would give the device designers working on various medical applications that use shock wave principle a substantial amount of flexibility while testing the effects of new parameters such as reflector size, material properties of the medium, water temperature, and different clinical scenarios. For this purpose, we created a finite-difference time-domain (FDTD)-based computational model in which most of the physical system parameters were defined as an input and/or as a variable in the simulations. We constructed a realistic computational model of a commercial electrohydraulic lithotriptor and optimized our simulation program using the results that were obtained by the manufacturer in an experimental setup. We, then, compared the simulation results with the results from an experimental setup in which oxygen level in water was varied. Finally, we studied the effects of changing the input parameters like ellipsoid size and material, temperature change in the wave propagation media, and shock wave source point misalignment. The simulation results were consistent with the experimental results and expected effects of variation in physical parameters of the system. The results of this study encourage further investigation and provide adequate evidence that the numerical modeling of a shock wave therapy system is feasible and can provide a practical means to test novel ideas in new device design procedures

  19. Traveling waves in Hall-magnetohydrodynamics and the ion-acoustic shock structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagstrom, George I.; Hameiri, Eliezer

    Hall-magnetohydrodynamics (HMHD) is a mixed hyperbolic-parabolic partial differential equation that describes the dynamics of an ideal two fluid plasma with massless electrons. We study the only shock wave family that exists in this system (the other discontinuities being contact discontinuities and not shocks). We study planar traveling wave solutions and we find solutions with discontinuities in the hydrodynamic variables, which arise due to the presence of real characteristics in Hall-MHD. We introduce a small viscosity into the equations and use the method of matched asymptotic expansions to show that solutions with a discontinuity satisfying the Rankine-Hugoniot conditions and also anmore » entropy condition have continuous shock structures. The lowest order inner equations reduce to the compressible Navier-Stokes equations, plus an equation which implies the constancy of the magnetic field inside the shock structure. We are able to show that the current is discontinuous across the shock, even as the magnetic field is continuous, and that the lowest order outer equations, which are the equations for traveling waves in inviscid Hall-MHD, are exactly integrable. We show that the inner and outer solutions match, which allows us to construct a family of uniformly valid continuous composite solutions that become discontinuous when the diffusivity vanishes.« less

  20. Nonequilibrium recombination after a curved shock wave

    NASA Astrophysics Data System (ADS)

    Wen, Chihyung; Hornung, Hans

    2010-02-01

    The effect of nonequilibrium recombination after a curved two-dimensional shock wave in a hypervelocity dissociating flow of an inviscid Lighthill-Freeman gas is considered. An analytical solution is obtained with the effective shock values derived by Hornung (1976) [5] and the assumption that the flow is ‘quasi-frozen’ after a thin dissociating layer near the shock. The solution gives the expression of dissociation fraction as a function of temperature on a streamline. A rule of thumb can then be provided to check the validity of binary scaling for experimental conditions and a tool to determine the limiting streamline that delineates the validity zone of binary scaling. The effects on the nonequilibrium chemical reaction of the large difference in free stream temperature between free-piston shock tunnel and equivalent flight conditions are discussed. Numerical examples are presented and the results are compared with solutions obtained with two-dimensional Euler equations using the code of Candler (1988) [10].

  1. An LDA (Laser-Doppler Anemometry) investigation of three-dimensional normal shock wave boundary-layer interactions

    NASA Technical Reports Server (NTRS)

    Chriss, R. M.; Hingst, W. R.; Strazisar, A. J.; Keith, T. G., Jr.

    1989-01-01

    Nonintrusive measurements were made of a normal shock wave/boundary layer interaction. Two dimensional measurements were made throughout the interaction region while 3-D measurements were made in the vicinity of the shock wave. The measurements were made in the corner of the test section of a continuous supersonic wind tunnel in which a normal shock wave had been stabilized. Laser Doppler Anemometry, surface pressure measurement and flow visualization techniques were employed for two freestream Mach number test cases: 1.6 and 1.3. The former contained separated flow regions and a system of shock waves. The latter was found to be far less complicated. The results define the flow field structure in detail for each case.

  2. Vorticity Transfer in Shock Wave Interactions with Turbulence and Vortices

    NASA Astrophysics Data System (ADS)

    Agui, J. H.; Andreopoulos, J.

    1998-11-01

    Time-dependent, three-dimensional vorticity measurements of shock waves interacting with grid generated turbulence and concentrated tip vortices were conducted in a large diameter shock tube facility. Two different mesh size grids and a NACA-0012 semi-span wing acting as a tip vortex generator were used to carry out different relative Mach number interactions. The turbulence interactions produced a clear amplification of the lateral and spanwise vorticity rms, while the longitudinal component remained mostly unaffected. By comparison, the tip vortex/shock wave interactions produced a two fold increase in the rms of longitudinal vorticity. Considerable attention was given to the vorticity source terms. The mean and rms of the vorticity stretching terms dominated by 5 to 7 orders of magnitude over the dilitational compression terms in all the interactions. All three signals of the stretching terms manifested very intermittent, large amplitude peak events which indicated the bursting character of the stretching process. Distributions of these signals were characterized by extremely large levels of flatness with varying degrees of skewness. These distribution patterns were found to change only slightly through the turbulence interactions. However, the tip vortex/shock wave interactions brought about significant changes in these distributions which were associated with the abrupt structural changes of the vortex after the interaction.

  3. Electron Scattering by High-Frequency Whistler Waves at Earth's Bow Shock

    NASA Technical Reports Server (NTRS)

    Oka, M.; Wilson, L. B., III; Phan, T. D.; Hull, A. J.; Amano, T.; Hoshino, M.; Argall, M. R.; Le Contel, O.; Agapitov, O.; Gersham, D. J.; hide

    2017-01-01

    Electrons are accelerated to non-thermal energies at shocks in space and astrophysical environments. While different mechanisms of electron acceleration have been proposed, it remains unclear how non-thermal electrons are produced out of the thermal plasma pool. Here, we report in situ evidence of pitch-angle scattering of non-thermal electrons by whistler waves at Earths bow shock. On 2015 November 4, the Magnetospheric Multiscale (MMS) mission crossed the bow shock with an Alfvn Mach number is approximately 11 and a shock angle of approximately 84deg. In the ramp and overshoot regions, MMS revealed bursty enhancements of non-thermal (0.52 keV) electron flux, correlated with high-frequency (0.2 - 0.4 Omega(sub ce), where Omega(sub ce) is the cyclotron frequency) parallel-propagating whistler waves. The electron velocity distribution (measured at 30 ms cadence) showed an enhanced gradient of phase-space density at and around the region where the electron velocity component parallel to the magnetic field matched the resonant energy inferred from the wave frequency range. The flux of 0.5 keV electrons (measured at 1ms cadence) showed fluctuations with the same frequency. These features indicate that non-thermal electrons were pitch-angle scattered by cyclotron resonance with the high-frequency whistler waves. However, the precise role of the pitch-angle scattering by the higher-frequency whistler waves and possible nonlinear effects in the electron acceleration process remains unclear.

  4. Shock wave absorber having apertured plate

    DOEpatents

    Shin, Y.W.; Wiedermann, A.H.; Ockert, C.E.

    1983-08-26

    The shock or energy absorber disclosed herein utilizes an apertured plate maintained under the normal level of liquid flowing in a piping system and disposed between the normal liquid flow path and a cavity pressurized with a compressible gas. The degree of openness (or porosity) of the plate is between 0.01 and 0.60. The energy level of a shock wave travelling down the piping system thus is dissipated by some of the liquid being jetted through the apertured plate toward the cavity. The cavity is large compared to the quantity of liquid jetted through the apertured plate, so there is little change in its volume. The porosity of the apertured plate influences the percentage of energy absorbed.

  5. Shock wave absorber having apertured plate

    DOEpatents

    Shin, Yong W.; Wiedermann, Arne H.; Ockert, Carl E.

    1985-01-01

    The shock or energy absorber disclosed herein utilizes an apertured plate maintained under the normal level of liquid flowing in a piping system and disposed between the normal liquid flow path and a cavity pressurized with a compressible gas. The degree of openness (or porosity) of the plate is between 0.01 and 0.60. The energy level of a shock wave travelling down the piping system thus is dissipated by some of the liquid being jetted through the apertured plate toward the cavity. The cavity is large compared to the quantity of liquid jetted through the apertured plate, so there is little change in its volume. The porosity of the apertured plate influences the percentage of energy absorbed.

  6. Shock wave polarizations and optical metrics in the Born and the Born–Infeld electrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minz, Christoph, E-mail: christoph.minz@alumni.tu-berlin.de; Borzeszkowski, Horst-Heino von, E-mail: borzeszk@mailbox.tu-berlin.de; Chrobok, Thoralf, E-mail: tchrobok@mailbox.tu-berlin.de

    We analyze the behavior of shock waves in nonlinear theories of electrodynamics. For this, by use of generalized Hadamard step functions of increasing order, the electromagnetic potential is developed in a series expansion near the shock wave front. This brings about a corresponding expansion of the respective electromagnetic field equations which allows for deriving relations that determine the jump coefficients in the expansion series of the potential. We compute the components of a suitable gauge-normalized version of the jump coefficients given for a prescribed tetrad compatible with the shock front foliation. The solution of the first-order jump relations shows that,more » in contrast to linear Maxwell’s electrodynamics, in general the propagation of shock waves in nonlinear theories is governed by optical metrics and polarization conditions describing the propagation of two differently polarized waves (leading to a possible appearance of birefringence). In detail, shock waves are analyzed in the Born and Born–Infeld theories verifying that the Born–Infeld model exhibits no birefringence and the Born model does. The obtained results are compared to those ones found in literature. New results for the polarization of the two different waves are derived for Born-type electrodynamics.« less

  7. [Current status of extracorporeal shock wave lithotripsy in urinary lithiasis.

    PubMed

    Pereira-Arias, Jose Gregorio; Gamarra-Quintanilla, Mikel; Urdaneta-Salegui, Luis Felipe; Mora-Christian, Jorge Alberto; Sánchez-Vazquez, Andrea; Astobieta-Odriozola, Ander; Ibarluzea-González, Gaspar

    2017-03-01

    Over the last decade, urinary lithiasis' prevalence has dramatically increased due to diet and lifestyle changes, growing 10.6% and 7.1% in men and women respectively. Extracorporeal shock wave lithotripsy has lost relevance in current practice due to endoscopic device development and unpredictability of results. Instrument miniaturization is leading to an increase of the percutaneous approach of increasingly smaller stones, while most flexible ureteroscopes durability and digitalization has allowed urologists to address larger stones. So that, decision algorithm is now impossible to define, but what is clear is that ESWL has declined worldwide. Can it disappear as a urinary lithiasis treatment modality? If we don't improve appropriate candidate selection and optimize disintegration efficiency, guidelines are going to replace the more "boring" ESWL by popular and more attractive endoscopes. Shock wave technology has evolved in the last two decades, however lithotripsy fundamental principle has not changed. ESWL has passed the test of time and centers dedicated to stone treatment should have a lithotripter in order to offer an appropriate balance in different options for different clinical situations. New developments will be focused on improvements in location (in-line navigation systems; Vision track system) and automatic ultrasound location on a robotic arm; monitoring and stone fixation, implementation of different focal sizes with new acoustic lenses, multitask working stations that allow endourological approach, coupling control (avoiding microbubbles) and low cost devices for different applications. On the other hand, optimizing outcomes by: slower pulse rates, ramping strategies and patient selection with soft stones, short stone-skin distance, low BMI and favorable collecting system anatomy, allow us to achieve better outcomes in shock wave treatments. SWL still represents a unique non invasive method of stone disease treatment with no anesthesia and low

  8. Noninvasive Shock Wave Treatment for Capsular Contractures After Breast Augmentation: A Rabbit Study.

    PubMed

    Chen, Po Chou; Kuo, Shyh Ming; Jao, Jo Chi; Yang, Shiou Wen; Hsu, Ching Wen; Wu, Yu Chiuan

    2016-06-01

    Capsular contracture is the most common complication of breast augmentation. Although numerous procedures are intended to prevent capsular contracture, their efficacy does not satisfy surgeons or patients. In the present study, we used shock waves to develop innovative protocols to treat capsular contracture in rabbits. We used shock waves to treat capsular contracture in a rabbit model. Six clinical parameters were evaluated to determine the treatment efficacy of shock waves on the pathological histology of capsular contracture. Dual-flip-angle T1-mapping magnetic resonance imaging was used to confirm the pathological findings. Among the parameters, myxoid change, vascular proliferation, and lymphoplasma cell infiltration around the capsule increased more after treatment than they did in a control group. Capsular thickness, inner thinner collagen layer, and capsule wall collagen deposition decreased after shock wave treatment; only the inner thinner collagen layer and capsule wall collagen deposition changed significantly. The MRI findings for both scar thickness and water content were consistent with pathological biology findings. This was the first pilot study and trial to treat capsular contractures using shock waves. We found that shock waves can cause changes in the structure or the composition of capsular contracture. We conclude that the treatment could decrease water content, loosen structure, decrease collagen deposition, and might alleviate scar formation from capsular contracture. We believe that the treatment could be a viable remedy for capsular contractures. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  9. Free radical production by high energy shock waves--comparison with ionizing irradiation.

    PubMed

    Morgan, T R; Laudone, V P; Heston, W D; Zeitz, L; Fair, W R

    1988-01-01

    Fricke chemical dosimetry is used as an indirect measure of the free radical production of ionizing irradiation. We adapted the Fricke ferrous sulfate radiation dosimeter to examine the chemical effects of high energy shock waves. Significant free radical production was documented. The reaction was dose dependent, predictably increased by acoustic impedance, but curvilinear. A thousand shocks at 18 kilovolts induced the same free radical oxidation as 1100 rad cobalt-60 gamma ionizing irradiation, increasing to 2900 rad in the presence of an air-fluid zone of acoustic impedance. The biological effect of these free radicals was compared to that of cobalt-60 ionizing irradiation by measuring the affect on Chinese hamster cells by clonogenic assay. While cobalt-60 irradiation produced a marked decrease in clonogenic survivors, little effect was noted with high energy shock waves. This suggested that the chemical effects produced by shock waves were either absent or attenuated in the cells, or were inherently less toxic than those of ionizing irradiation.

  10. The Coronal Analysis of SHocks and Waves (CASHeW) framework

    NASA Astrophysics Data System (ADS)

    Kozarev, Kamen A.; Davey, Alisdair; Kendrick, Alexander; Hammer, Michael; Keith, Celeste

    2017-11-01

    Coronal bright fronts (CBF) are large-scale wavelike disturbances in the solar corona, related to solar eruptions. They are observed (mostly in extreme ultraviolet (EUV) light) as transient bright fronts of finite width, propagating away from the eruption source location. Recent studies of individual solar eruptive events have used EUV observations of CBFs and metric radio type II burst observations to show the intimate connection between waves in the low corona and coronal mass ejection (CME)-driven shocks. EUV imaging with the atmospheric imaging assembly instrument on the solar dynamics observatory has proven particularly useful for detecting large-scale short-lived CBFs, which, combined with radio and in situ observations, holds great promise for early CME-driven shock characterization capability. This characterization can further be automated, and related to models of particle acceleration to produce estimates of particle fluxes in the corona and in the near Earth environment early in events. We present a framework for the coronal analysis of shocks and waves (CASHeW). It combines analysis of NASA Heliophysics System Observatory data products and relevant data-driven models, into an automated system for the characterization of off-limb coronal waves and shocks and the evaluation of their capability to accelerate solar energetic particles (SEPs). The system utilizes EUV observations and models written in the interactive data language. In addition, it leverages analysis tools from the SolarSoft package of libraries, as well as third party libraries. We have tested the CASHeW framework on a representative list of coronal bright front events. Here we present its features, as well as initial results. With this framework, we hope to contribute to the overall understanding of coronal shock waves, their importance for energetic particle acceleration, as well as to the better ability to forecast SEP events fluxes.

  11. Shock-wave initiation of heated plastified TATB detonation

    NASA Astrophysics Data System (ADS)

    Kuzmitsky, Igor; Rudenko, Vladimir; Gatilov, Leonid; Koshelev, Alexandr

    1999-06-01

    Explosive, plastified TATB, attracts attention with its weak sensitivity to shock loads and high temperature stability ( Pthreshold ? 6.5 GPa and Tcrit ? 250 0Q). However, at its cooling to T 250 0Q plastified TATB becomes as sensitive to shock load as octogen base HE: the excitation threshold reduces down to Pthreshold 2.0 GPa. The main physical reason for the HE sensitivity change is reduction in density at heating and, hence, higher porosity of the product (approximately from 2Moreover, increasing temperature increases the growth rate of uhotf spots which additionally increases the shock sensitivity [1]. Heated TATB experiments are also conducted at VNIIEF. The detonation excitation was computed within 1D program system MAG using EOS JWL for HE and EP and LLNL kinetics [1,2,3]. Early successful results of using this kinetics to predict detonation excitation in heated plastified TATB in VNIIEF experiments with short and long loading pulses are presented. Parameters of the chemical zone of the stationary detonation wave in plastified TATB (LX-17) were computed with the data from [1]. Parameters Heated In shell Cooled Unheated ?0 , g/cm3 1.70 1.81 1.84 1.905 D , km/s 7.982 7.764 7.686 7.517 PN, GPa 45.4 45.8 35.7 32.9 PJ, GPa 27.0 27.3 27.2 26.4 ?x , mm 0.504 0.843 1.041 2.912 ?t , ns 63.1 108.6 135.5 387.4 [1] Effect of Confinement and Thermal Cycling on the Shock Initiation of LX-17 P.A. Urtiew, C.M. Tarver, J.L. Maienschein, and W.C. Tao. LLNL. Combustion and Flame 105: 43-53 (1996) [2] C.M. Tarver, P.A. Urtiew and W.C. Tao (LLNL) Effects of tandem and colliding shock waves on initiation of triaminotrinitrobenzene. J.Appl. Phys. 78(5), September 1995 [3] Craig M. Tarver, John W. Kury and R. Don Breithaupt Detonation waves in triaminotrinitrobenzene J. Appl. Phys. 82(8) , 15 October 1997.

  12. Experimental investigation of shock wave diffraction over a single- or double-sphere model

    NASA Astrophysics Data System (ADS)

    Zhang, L. T.; Wang, T. H.; Hao, L. N.; Huang, B. Q.; Chen, W. J.; Shi, H. H.

    2017-01-01

    In this study, the unsteady drag produced by the interaction of a shock wave with a single- and a double-sphere model is measured using imbedded accelerometers. The shock wave is generated in a horizontal circular shock tube with an inner diameter of 200 mm. The effect of the shock Mach number and the dimensionless distance between spheres is investigated. The time-history of the drag coefficient is obtained based on Fast Fourier Transformation (FFT) band-block filtering and polynomial fitting of the measured acceleration. The measured peak values of the drag coefficient, with the associated uncertainty, are reported.

  13. [Percutaneous nephrolithotomy by electrohydraulic shock wave].

    PubMed

    Hamao, T; Kuroko, K; Inoue, T; Ashida, H; Ishikawa, T

    1986-02-01

    Twelve patients underwent percutaneous nephrolithotomy in our hospital. Six of these patients had stone disintegration by electrohydraulic shock wave. The procedure was safe and effective for achieving rapid stone disintegration. Translocation of the stone fragments and central metal core of the probe left in the ureter were clinical problems. However, they passed spontaneously. Usefulness and problems of electrohydraulic lithotripsy were discussed.

  14. Rarefaction shock waves and Hugoniot curve in the presence of free and trapped particles

    NASA Astrophysics Data System (ADS)

    Niknam, A. R.; Hashemzadeh, M.; Shokri, B.; Rouhani, M. R.

    2009-12-01

    The effects of the relativistic ponderomotive force and trapped particles in the presence of ponderomotive force on the rarefaction shock waves are investigated. The ponderomotive force alters the electron density distribution. This force and relativistic mass affect the plasma frequency. These physical parameters modify the total pressure and the existence condition of the rarefaction shock wave. Furthermore, the trapping of particles by the high frequency electromagnetic field considerably changes the existence condition of the rarefaction shock wave. The total pressure and Hugoniot curve are obtained by considering the relativistic ponderomotive force and trapped particles.

  15. Some classes of gravitational shock waves from higher order theories of gravity

    NASA Astrophysics Data System (ADS)

    Oikonomou, V. K.

    2017-02-01

    We study the gravitational shock wave generated by a massless high energy particle in the context of higher order gravities of the form F(R,R_{μν}R^{μν},R_{μναβ}R^{μν αβ}). In the case of F(R) gravity, we investigate the gravitational shock wave solutions corresponding to various cosmologically viable gravities, and as we demonstrate the solutions are rescaled versions of the Einstein-Hilbert gravity solution. Interestingly enough, other higher order gravities result to the general relativistic solution, except for some specific gravities of the form F(R_{μν}R^{μν}) and F(R,R_{μν}R^{μν}), which we study in detail. In addition, when realistic Gauss-Bonnet gravities of the form R+F(G) are considered, the gravitational shock wave solutions are identical to the general relativistic solution. Finally, the singularity structure of the gravitational shock waves solutions is studied, and it is shown that the effect of higher order gravities makes the singularities milder in comparison to the general relativistic solutions, and in some particular cases the singularities seem to be absent.

  16. Massive retroperitoneal haemorrhage after extracorporeal shock wave lithotripsy (ESWL).

    PubMed

    Inoue, Hiromasa; Kamphausen, Thomas; Bajanowski, Thomas; Trübner, Kurt

    2011-01-01

    A 76-year-old male suffering from nephrolithiasis developed a shock syndrome 5 days after extracorporal shock wave lithotripsy (ESWL). CT scan of the abdomen showed massive haemorrhage around the right kidney. Although nephrectomy was performed immediately, the haemorrhage could not be controlled. Numerous units of erythrocytes were transfused, but the patient died. The autopsy revealed massive retroperitoneal haemorrhage around the right kidney. The kidney showed a subcapsular haematoma and a rupture of the capsule. The right renal artery was dissected. The inferior vena cava was lacerated. Accordingly, a hemorrhagic shock as the cause of death was determined, which might mainly have resulted from the laceration of the inferior vena cava due to ESWL. ESWL seems to be a relatively non-invasive modality, but one of its severe complications is perirenal hematoma. The injuries of the blood vessels might have been caused by excessive shock waves. Subsequently, anticoagulation therapy had been resumed 3 days after EWSL, which might have triggered the haemorrhage. Physicians should note that a haemorrhage after an ESWL can occur and they should pay attention to the postoperative management in aged individuals especially when they are under anticoagulation therapy.

  17. Influence of shock waves from plasma actuators on transonic and supersonic airflow

    NASA Astrophysics Data System (ADS)

    Mursenkova, I. V.; Znamenskaya, I. A.; Lutsky, A. E.

    2018-03-01

    This paper presents experimental and numerical investigations of high-current sliding surface discharges of nanosecond duration and their effect on high-speed flow as plasma actuators in a shock tube. This study deals with the effectiveness of a sliding surface discharge at low and medium air pressure. Results cover the electrical characteristics of the discharge and optical visualization of the discharge and high-speed post-discharge flow. A sliding surface discharge is first studied in quiescent air conditions and then in high-speed flow, being initiated in the boundary layer at a transverse flow velocity of 50-950 m s-1 behind a flat shock wave in air of density 0.04-0.45 kg m-3. The discharge is powered by a pulse voltage of 25-30 kV and the electric current is ~0.5 kA. Shadow imaging and particle image velocimetry (PIV) are used to measure the flow field parameters after the pulse surface discharge. Shadow imaging reveals shock waves originating from the channels of the discharge configurations. PIV is used to measure the velocity field resulting from the discharge in quiescent air and to determine the homogeneity of energy release along the sliding discharge channel. Semicylindrical shock waves from the channels of the sliding discharge have an initial velocity of more than 600 m s-1. The shock-wave configuration floats in the flow along the streamlined surface. Numerical simulation based on the equations of hydrodynamics matched with the experiment showed that 25%-50% of the discharge energy is instantly transformed into heat energy in a high-speed airflow, leading to the formation of shock waves. This energy is comparable to the flow enthalpy and can result in significant modification of the boundary layer and the entire flow.

  18. On the boundary conditions on a shock wave for hypersonic flow around a descent vehicle

    NASA Astrophysics Data System (ADS)

    Golomazov, M. M.; Ivankov, A. A.

    2013-12-01

    Stationary hypersonic flow around a descent vehicle is examined by considering equilibrium and nonequilibrium reactions. We study how physical-chemical processes and shock wave conditions for gas species influence the shock-layer structure. It is shown that conservation conditions of species on the shock wave cause high-temperature and concentration gradients in the shock layer when we calculate spacecraft deceleration trajectory in the atmosphere at 75 km altitude.

  19. Development and performance evaluation of an electromagnetic-type shock wave generator for lipolysis.

    PubMed

    Liang, S M; Chang, M H; Yang, Z Y

    2014-01-01

    This study aims at the design and development of electromagnetic-type intermittent shock wave generation in a liquid. The shock wave generated is focused at a focal point through an acoustic lens. This hardware device mainly consists of a full-wave bridge rectifier, 6 capacitors, a spark gap, and a flat coil. A metal disk is mounted in a liquid-filled tube and is placed in close proximity to the flat coil. Due to the repulsive force existing between the coil and disk shock waves are generated, while an eddy current is induced in the metal disk. Some components and materials associated with the device are also described. By increasing the capacitance content to enhance electric energy level, a highly focused pressure can be achieved at the focal point through an acoustic lens in order to lyse fat tissue. Focused pressures were measured at the focal point and its vicinity for different operation voltages. The designed shock wave generator with an energy intensity of 0.0016 mJ/mm(2) (at 4 kV) and 2000 firings or higher energy intensities with 1000 firings is found to be able to disrupt pig fat tissue.

  20. The relationship between elastic constants and structure of shock waves in a zinc single crystal

    NASA Astrophysics Data System (ADS)

    Krivosheina, M. N.; Kobenko, S. V.; Tuch, E. V.

    2017-12-01

    The paper provides a 3D finite element simulation of shock-loaded anisotropic single crystals on the example of a Zn plate under impact using a mathematical model, which allows for anisotropy in hydrostatic stress and wave velocities in elastic and plastic ranges. The simulation results agree with experimental data, showing the absence of shock wave splitting into an elastic precursor and a plastic wave in Zn single crystals impacted in the [0001] direction. It is assumed that the absence of an elastic precursor under impact loading of a zinc single crystal along the [0001] direction is determined by the anomalously large ratio of the c/a-axes and close values of the propagation velocities of longitudinal and bulk elastic waves. It is shown that an increase in only one elastic constant along the [0001] direction results in shock wave splitting into an elastic precursor and a shock wave of "plastic" compression.

  1. Switch-on Shock and Nonlinear Kink Alfvén Waves in Solar Polar Jets

    NASA Astrophysics Data System (ADS)

    DeVore, C. Richard; Karpen, Judith T.; Antiochos, Spiro K.; Uritsky, Vadim

    2016-05-01

    It is widely accepted that solar polar jets are produced by fast magnetic reconnection in the low corona, whether driven directly by flux emergence from below or indirectly by instability onset above the photosphere. In either scenario, twisted flux on closed magnetic field lines reconnects with untwisted flux on nearby open field lines. Part of the twist is inherited by the newly reconnected open flux, which rapidly relaxes due to magnetic tension forces that transmit the twist impulsively into the outer corona and heliosphere. We propose that this transfer of twist launches switch-on MHD shock waves, which propagate parallel to the ambient coronal magnetic field ahead of the shock and convect a perpendicular component of magnetic field behind the shock. In the frame moving with the shock front, the post-shock flow is precisely Alfvénic in all three directions, whereas the pre-shock flow is super-Alfvénic along the ambient magnetic field, yielding a density enhancement at the shock front. Nonlinear kink Alfvén waves are exact solutions of the time-dependent MHD equations in the post-shock region when the ambient corona is uniform and the magnetic field is straight. We have performed and analyzed 3D Cartesian and spherical simulations of polar jets driven by instability onset in the corona. The results of both simulations are consistent with the generation of MHD switch-on shocks trailed predominantly by incompressible kink Alfvén waves. It is noteworthy that the kink waves are irrotational, in sharp contrast to the vorticity-bearing torsional waves reported from previous numerical studies. We will discuss the implications of the results for understanding solar polar jets and predicting their heliospheric signatures. Our research was supported by NASA’s LWS TR&T and H-SR programs.

  2. Remote effects of extracorporeal shock wave therapy on cutaneous microcirculation.

    PubMed

    Kisch, Tobias; Sorg, Heiko; Forstmeier, Vinzent; Knobloch, Karsten; Liodaki, Eirini; Stang, Felix; Mailänder, Peter; Krämer, Robert

    2015-11-01

    Extracorporeal shock wave treatment (ESWT) has proven its clinical benefits in different fields of medicine. Tissue regeneration and healing is improved after shock wave treatment. Even in the case of burn wounds angiogenesis and re-epithelialization is accelerated, but ESWT in extensive burn wounds is impracticable. High energy ESWT influences cutaneous microcirculation at body regions remote from application site. Eighteen Sprague Dawley rats were randomly assigned to two groups and received either high energy ESWT (Group A: total 1000 impulses, 10 J) or placebo shock wave treatment (Group B: 0 impulses, 0 J), applied to the dorsal lower leg of the hind limb. Ten minutes later microcirculatory effects were assessed at the contralateral lower leg of the hind limb (remote body region) by combined Laser-Doppler-Imaging and Photospectrometry. In Group A cutaneous capillary blood velocity was significantly increased by 152.8% vs. placebo ESWT at the remote body location (p = 0.01). Postcapillary venous filling pressure remained statistically unchanged (p > 0.05), while cutaneous tissue oxygen saturation increased by 12.7% in Group A (p = 0.220). High energy ESWT affects cutaneous hemodynamics in body regions remote from application site in a standard rat model. The results of this preliminary study indicate that ESWT might be beneficial even in disseminated and extensive burn wounds by remote shock wave effects and should therefore be subject to further scientific evaluation. Copyright © 2015 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.

  3. Asymmetric Shock Wave Generation in a Microwave Rocket Using a Magnetic Field

    NASA Astrophysics Data System (ADS)

    Takahashi, Masayuki

    2017-10-01

    A plasma pattern is reproduced by coupling simulations between a particle-in- cell with Monte Carlo collisions model and a finite-difference time-domain simulation for an electromagnetic wave propagation when an external magnetic field is applied to the breakdown volume inside a microwave-rocket nozzle. The propagation speed and energy-absorption rate of the plasma are estimated based on the breakdown simulation, and these are utilized to reproduce shock wave propagation, which provides impulsive thrust for the microwave rocket. The shock wave propagation is numerically reproduced by solving the compressible Euler equation with an energy source of the microwave heating. The shock wave is asymmetrically generated inside the nozzle when the electron cyclotron resonance region has a lateral offset, which generates lateral and angular impulses for postural control of the vehicle. It is possible to develop an integrated device to maintain beaming ight of the microwave rocket, achieving both axial thrust improvement and postural control, by controlling the spatial distribution of the external magnetic field.

  4. Evolutions of elastic-plastic shock compression waves in different materials

    NASA Astrophysics Data System (ADS)

    Kanel, G. I.; Zaretsky, E. B.; Razorenov, S. V.; Savinykh, A. S.; Garkushin, G. V.

    2017-01-01

    In the paper, we discuss such unexpected features in the wave evolution in solids as a departure from self-similar development of the wave process which is accompanied with apparent sub-sonic wave propagation, changes of shape of elastic precursor wave as a result of variations in the material structure and the temperature, unexpected peculiarities of reflection of elastic-plastic waves from free surface, effects of internal friction at shock compression of glasses and some other effects.

  5. Shock-wave propagation and reflection in semicrystalline polyethylene: A molecular-level investigation

    NASA Astrophysics Data System (ADS)

    Elder, Robert M.; O'Connor, Thomas C.; Chantawansri, Tanya L.; Sliozberg, Yelena R.; Sirk, Timothy W.; Yeh, In-Chul; Robbins, Mark O.; Andzelm, Jan W.

    2017-09-01

    Semicrystalline polyethylene (PE) is attractive for a variety of mechanically demanding applications, where shock compression can occur. Although often highly crystalline, PE invariably contains nanoscale amorphous domains that influence shock propagation. Our objective in this work is to study the effects of such domains. To this end, we adopt a novel approach wherein we parametrize a simple continuum-level theory based on the shock impedance from molecular dynamics (MD) simulations. Using this theory, we predict how crystalline/amorphous interfaces attenuate shocks via energy reflection due to the impedance mismatch between the phases. The theory predicts that these interfaces attenuate weak shocks more effectively than strong shocks. We compare the theory to explicit nonequilibrium MD simulations of compressive shocks in semicrystalline PE containing nanometer-scale amorphous regions of varying size, where we analyze the pressure response and reflection of energy. The theory and simulations show good agreement for strong shocks (≥1.0 km /s ), but for weak shocks (<1.0 km /s ) the simulations show enhanced energy reflection relative to the continuum predictions. Furthermore, the simulations show an effect not captured by the continuum theory: the size of amorphous regions is important. The theory assumes a sharp (discontinuous) interface between two bulk phases and a sharp change in thermodynamic and hydrodynamic quantities at the shock front. However, the simulations show that when amorphous domains are narrow—with widths comparable to the shock front—reflection is reduced compared to the predictions. We identify several nanoscale mechanisms that reduce the impedance mismatch, and thus reduce reflection, at thin amorphous domains. First, the two-wave elastic-plastic structure of shocks in crystalline PE allows the faster-moving elastic precursor wave to compress small amorphous domains before the plastic wave arrives. Second, confinement between stiff

  6. Experimental particle acceleration by water evaporation induced by shock waves

    NASA Astrophysics Data System (ADS)

    Scolamacchia, T.; Alatorre Ibarguengoitia, M.; Scheu, B.; Dingwell, D. B.; Cimarelli, C.

    2010-12-01

    Shock waves are commonly generated during volcanic eruptions. They induce sudden changes in pressure and temperature causing phase changes. Nevertheless, their effects on flowfield properties are not well understood. Here we investigate the role of gas expansion generated by shock wave propagation in the acceleration of ash particles. We used a shock tube facility consisting of a high-pressure (HP) steel autoclave (450 mm long, 28 mm in internal diameter), pressurized with Ar gas, and a low-pressure tank at atmospheric conditions (LP). A copper diaphragm separated the HP autoclave from a 180 mm tube (PVC or acrylic glass) at ambient P, with the same internal diameter of the HP reservoir. Around the tube, a 30 cm-high acrylic glass cylinder, with the same section of the LP tank (40 cm), allowed the observation of the processes occurring downstream from the nozzle throat, and was large enough to act as an unconfined volume in which the initial diffracting shock and gas jet expand. All experiments were performed at Pres/Pamb ratios of 150:1. Two ambient conditions were used: dry air and air saturated with steam. Carbon fibers and glass spheres in a size range between 150 and 210 μm, were placed on a metal wire at the exit of the PVC tube. The sudden decompression of the Ar gas, due to the failure of the diaphragm, generated an initial air shock wave. A high-speed camera recorded the processes between the first 100 μsec and several ms after the diaphragm failure at frame rates ranging between 30,000 and 50,000 fps. In the experiments with ambient air saturated with steam, the high-speed camera allowed to visualize the condensation front associated with the initial air shock; a maximum velocity of 788 m/s was recorded, which decreases to 524 m/s at distance of 0.5 ±0.2 cm, 1.1 ms after the diaphragm rupture. The condensation front preceded the Ar jet front exhausting from the reservoir, by 0.2-0.5 ms. In all experiments particles velocities following the initial

  7. Molecular dynamics simulations of shock waves in oriented nitromethane single crystals.

    PubMed

    He, Lan; Sewell, Thomas D; Thompson, Donald L

    2011-03-28

    The structural relaxation of crystalline nitromethane initially at T = 200 K subjected to moderate (~15 GPa) supported shocks on the (100), (010), and (001) crystal planes has been studied using microcanonical molecular dynamics with the nonreactive Sorescu-Rice-Thompson force field [D. C. Sorescu, B. M. Rice, and D. L. Thompson, J. Phys. Chem. B 104, 8406 (2000)]. The responses to the shocks were determined by monitoring the mass density, the intermolecular, intramolecular, and total temperatures (average kinetic energies), the partitioning of total kinetic energy among Cartesian directions, the radial distribution functions for directions perpendicular to those of shock propagation, the mean-square displacements in directions perpendicular to those of shock propagation, and the time dependence of molecular rotational relaxation as a function of time. The results show that the mechanical response of crystalline nitromethane strongly depends on the orientation of the shock wave. Shocks propagating along [100] and [001] result in translational disordering in some crystal planes but not in others, a phenomenon that we refer to as plane-specific disordering; whereas for [010] the shock-induced stresses are relieved by a complicated structural rearrangement that leads to a paracrystalline structure. The plane-specific translational disordering is more complete by the end of the simulations (~6 ps) for shock propagation along [001] than along [100]. Transient excitation of the intermolecular degrees of freedom occurs in the immediate vicinity of the shock front for all three orientations; the effect is most pronounced for the [010] shock. In all three cases excitation of molecular vibrations occurs more slowly than the intermolecular excitation. The intermolecular and intramolecular temperatures are nearly equal by the end of the simulations, with 400-500 K of net shock heating. Results for two-dimensional mean-square molecular center-of-mass displacements, calculated

  8. Searching for the QCD Axion with Black Holes and Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Baryakhtar, Masha

    2017-01-01

    The LIGO detection of gravitational waves has opened a new window on the universe. I will discuss how the process of superradiance, combined with gravitational wave measurements, makes black holes into nature's laboratories to search for new light bosons. When a bosonic particle's Compton wavelength is comparable to the horizon size of a black hole, superradiance of these bosons into bound ``Bohr orbitals'' extracts energy and angular momentum from the black hole. The occupation number of the levels grows exponentially and the black hole spins down. For efficient superradiance of stellar black holes, the particle must be ultralight, with mass below 10-10 eV; one candidate for such an ultralight boson is the QCD axion with decay constant above the GUT scale. Measurements of BH spins in X-ray binaries and in mergers at Advanced LIGO can exclude or provide evidence for an ultralight axion. Axions transitioning between levels of the gravitational ``atom'' and annihilating to gravitons may produce thousands of monochromatic gravitational wave signals, turning LIGO into a particle detector.

  9. Influence of exothermic chemical reactions on laser-induced shock waves.

    PubMed

    Gottfried, Jennifer L

    2014-10-21

    Differences in the excitation of non-energetic and energetic residues with a 900 mJ, 6 ns laser pulse (1064 nm) have been investigated. Emission from the laser-induced plasma of energetic materials (e.g. triaminotrinitrobenzene [TATB], cyclotrimethylene trinitramine [RDX], and hexanitrohexaazaisowurtzitane [CL-20]) is significantly reduced compared to non-energetic materials (e.g. sugar, melamine, and l-glutamine). Expansion of the resulting laser-induced shock wave into the air above the sample surface was imaged on a microsecond timescale with a high-speed camera recording multiple frames from each laser shot; the excitation of energetic materials produces larger heat-affected zones in the surrounding atmosphere (facilitating deflagration of particles ejected from the sample surface), results in the formation of additional shock fronts, and generates faster external shock front velocities (>750 m s(-1)) compared to non-energetic materials (550-600 m s(-1)). Non-explosive materials that undergo exothermic chemical reactions in air at high temperatures such as ammonium nitrate and magnesium sulfate produce shock velocities which exceed those of the inert materials but are less than those generated by the exothermic reactions of explosive materials (650-700 m s(-1)). The most powerful explosives produced the highest shock velocities. A comparison to several existing shock models demonstrated that no single model describes the shock propagation for both non-energetic and energetic materials. The influence of the exothermic chemical reactions initiated by the pulsed laser on the velocity of the laser-induced shock waves has thus been demonstrated for the first time.

  10. Fourth-power law structure of the shock wave fronts in metals and ceramics

    NASA Astrophysics Data System (ADS)

    Bayandin, Yuriy; Naimark, Oleg; Saveleva, Natalia

    2017-06-01

    The plate impact experiments were performed for solids during last fifty years. It was established that the dependence between the strain rate and the shock wave amplitude for metals and ceramics expressed by a fourth-power law. Present study is focused on the theoretical investigation and numerical simulation of plane shock wave propagation in metals and ceramics. Statistically based constitutive model of solid with defects (microcracks and microshears) was developed to provide the relation between damage induced mechanisms of structural relaxation, thermally activated plastic flow and material reactions for extreme loading conditions. Original approach based on the wide range constitutive equations was proposed for the numerical simulation of multiscale damage-failure transition mechanisms and plane shock wave propagation in solids with defects in the range of strain rate 103 -108s-1 . It was shown that mechanisms of plastic relaxation and damage-failure transitions are linked to the multiscale kinetics of defects leading to the self-similar nature of shock wave fronts in metals and ceramics. The work was supported by the Russian Science Foundation (Project No. 14-19-01173).

  11. Measuring the flexoelectric coefficient of bulk barium titanate from a shock wave experiment

    NASA Astrophysics Data System (ADS)

    Hu, Taotao; Deng, Qian; Liang, Xu; Shen, Shengping

    2017-08-01

    In this paper, a phenomenon of polarization introduced by shock waves is experimentally studied. Although this phenomenon has been reported previously in the community of physics, this is the first time to link it to flexoelectricity, the coupling between electric polarization and strain gradients in dielectrics. As the shock waves propagate in a dielectric material, electric polarization is thought to be induced by the strain gradient at the shock front. First, we control the first-order hydrogen gas gun to impact and generate shock waves in unpolarized bulk barium titanate (BT) samples. Then, a high-precision oscilloscope is used to measure the voltage generated by the flexoelectric effect. Based on experimental results, strain elastic wave theory, and flexoelectric theory, a longitudinal flexoelectric coefficient of the bulk BT sample is calculated to be μ 11 = 17.33 × 10 - 6 C/m, which is in accord with the published transverse flexoelectric coefficient. This method effectively suppresses the majority of drawbacks in the quasi-static and low frequency dynamic techniques and provides more reliable results of flexoelectric behaviors.

  12. Interferometric data for a shock-wave/boundary-layer interaction

    NASA Technical Reports Server (NTRS)

    Dunagan, Stephen E.; Brown, James L.; Miles, John B.

    1986-01-01

    An experimental study of the axisymmetric shock-wave / boundary-layer strong interaction flow generated in the vicinity of a cylinder-cone intersection was conducted. The study data are useful in the documentation and understanding of compressible turbulent strong interaction flows, and are part of a more general effort to improve turbulence modeling for compressible two- and three-dimensional strong viscous/inviscid interactions. The nominal free stream Mach number was 2.85. Tunnel total pressures of 1.7 and 3.4 atm provided Reynolds number values of 18 x 10(6) and 36 x 10(6) based on model length. Three cone angles were studied giving negligible, incipient, and large scale flow separation. The initial cylinder boundary layer upstream of the interaction had a thickness of 1.0 cm. The subsonic layer of the cylinder boundary layer was quite thin, and in all cases, the shock wave penetrated a significant portion of the boundary layer. Owing to the thickness of the cylinder boundary layer, considerable structural detail was resolved for the three shock-wave / boundary-layer interaction cases considered. The primary emphasis was on the application of the holographic interferometry technique. The density field was deduced from an interferometric analysis based on the Able transform. Supporting data were obtained using a 2-D laser velocimeter, as well as mean wall pressure and oil flow measurements. The attached flow case was observed to be steady, while the separated cases exhibited shock unsteadiness. Comparisons with Navier-Stokes computations using a two-equation turbulence model are presented.

  13. Shock tubes and waves; Proceedings of the Sixteenth International Symposium, Rheinisch-Westfaelische Technische Hochschule, Aachen, Federal Republic of Germany, July 26-31, 1987

    NASA Astrophysics Data System (ADS)

    Groenig, Hans

    Topics discussed in this volume include shock wave structure, propagation, and interaction; shocks in condensed matter, dusty gases, and multiphase media; chemical processes and related combustion and detonation phenomena; shock wave reflection, diffraction, and focusing; computational fluid dynamic code development and shock wave application; blast and detonation waves; advanced shock tube technology and measuring technique; and shock wave applications. Papers are presented on dust explosions, the dynamics of shock waves in certain dense gases, studies of condensation kinetics behind incident shock waves, the autoignition mechanism of n-butane behind a reflected shock wave, and a numerical simulation of the focusing process of reflected shock waves. Attention is also given to the equilibrium shock tube flow of real gases, blast waves generated by planar detonations, modern diagnostic methods for high-speed flows, and interaction between induced waves and electric discharge in a very high repetition rate excimer laser.

  14. [Prognostic analysis of plantar fasciitis treated by pneumatic ballistic extracorporeal shock wave versus ultrasound guided intervention].

    PubMed

    Huo, Xiu-Lin; Wang, Ke-Tao; Zhang, Xiao-Ying; Yang, Yi-Tian; Cao, Fu-Yang; Yang, Jing; Yuan, Wei-Xiu; Mi, Wei-Dong

    2018-02-20

    To compare the medium- and long-term effect of pneumatic ballistic extracorporeal shock wave versus ultrasound-guided hormone injection in the treatment of plantar fasciitis. The clinical data were collected from patients with plantar fasciitis admitted to PLA General Hospital pain department from September, 2015 to February, 2017. The patients were randomly divided into ultrasound-guided drug injection group and shock wave group. The therapeutic parameters including the numerical rating scale (NRS) scores in the first step pain in the morning, American Orthopedic Foot and Ankle Society (AOFAS) Ankle Hindfoot Scale, and thickness of the plantar fascia were monitored before and at 1 week, 1 month, 3 months, and 6 months after the treatment. The recurrence rate, effectiveness, and patient satisfaction were compared between the two groups at 6 months after the treatment. Thirty-nine patients were enrolled in shock wave group and 38 patients in ultrasound group. The NRS scores in the first step pain in the morning were lowered after treatment in both groups (P<0.05), and the scores were significantly lower in ultrasound group than in shock wave group at 1 week and 1 month (P<0.01), but significantly higher in ultrasound group than in shock wave group at 3 and 6 months after treatment (P<0.05). The AOFAS functional scores were increased in both groups (P<0.05) at 6 months after treatment, was significantly lower in ultrasound group than in shock wave group than group B (90.44∓13.27 vs 75.76∓21.40; P<0.05). The effective rates in shock wave group and ultrasound group were 92.31% and 76.32%, respectively (P<0.05). Recurrence was found in 1 patient (2.56%) in shock wave group and in 8 (21.05%) in ultrasound group (P<0.05). The patient satisfaction scores were significantly higher in shock wave group than in ultrasound group (8.13∓2.67 vs 6.63∓3.75, P=0.048). Pneumatic ballistic extracorporeal shock achieves better medium- and long-term outcomes than ultrasound

  15. Experimental investigation of the propagation of a planar shock wave through a two-phase gas-liquid medium

    NASA Astrophysics Data System (ADS)

    Chauvin, A.; Jourdan, G.; Daniel, E.; Houas, L.; Tosello, R.

    2011-11-01

    We conducted a series of shock tube experiments to study the influence of a cloud of water droplets on the propagation of a planar shock wave. In a vertically oriented shock tube, the cloud of droplets was released downwards into the air at atmospheric pressure while the shock wave propagated upwards. Two shock wave Mach numbers, 1.3 and 1.5, and three different heights of clouds, 150 mm, 400 mm, and 700 mm, were tested with an air-water volume fraction and a droplet diameter fixed at 1.2% and 500 μm, respectively. From high-speed visualization and pressure measurements, we analyzed the effect of water clouds on the propagation of the shock wave. It was shown that the pressure histories recorded in the two-phase gas-liquid mixture are different from those previously obtained in the gas-solid case. This different behavior is attributed to the process of atomization of the droplets, which is absent in the gas-solid medium. Finally, it was observed that the shock wave attenuation was dependent on the exchange surface crossed by the shock combined with the breakup criterion.

  16. The acceleration of charged particles in interplanetary shock waves

    NASA Technical Reports Server (NTRS)

    Pesses, M. E.; Decker, R. B.; Armstrong, T. P.

    1982-01-01

    Consideration of the theoretical and observational literature on energetic ion acceleration in interplanetary shock waves is the basis for the present discussion of the shock acceleration of the solar wind plasma and particle transport effects. It is suggested that ISEE data be used to construct data sets for shock events that extend continuously from solar wind to galactic cosmic ray energies, including data for electrons, protons, alphas and ions with Z values greater than 2.0, and that the temporal and spatial evolution of two- and three-dimensional particle distribution functions be studied by means of two or more spacecraft.

  17. Observation of shock transverse waves in elastic media.

    PubMed

    Catheline, S; Gennisson, J-L; Tanter, M; Fink, M

    2003-10-17

    We report the first experimental observation of a shock transverse wave propagating in an elastic medium. This observation was possible because the propagation medium, a soft solid, allows one to reach a very high Mach number. In this extreme configuration, the shock formation is observed over a distance of less than a few wavelengths, thanks to a prototype of an ultrafast scanner (that acquires 5000 frames per second). A comparison of these new experimental data with theoretical predictions, based on a modified Burger's equation, shows good agreement.

  18. A Case of Acute Pancreatitis developing after Extracorporeal Shock Wave Lithotripsy.

    PubMed

    Goral, Vedat; Sahin, Erkan; Arslan, Murat

    2015-01-01

    Extracorporeal shock wave lithotripsy (ESWL) is a standard treatment method used for the treatment of renal calculi and upper ureteral calculi. Acute pancreatitis is a serious condition which develops due to multiple etiologic factors and is characterized by autodigestion of the pancreas. A case of acute pancreatitis which developed following ESWL performed for right renal calculi treatment is presented here. Goral V, Sahin E, Arslan M. A Case of Acute Pancreatitis developing after Extracorporeal Shock Wave Lithotripsy. Euroasian J Hepato-Gastroenterol 2015;5(1):52-54.

  19. Shock-Wave Pulse Compression and Stretching of Dodecane and Mineral Oils

    NASA Astrophysics Data System (ADS)

    Bannikova, I. A.; Zubareva, A. N.; Utkin, A. V.

    2018-04-01

    The behavior of dodecane, vacuum, and transformer oils under shock-wave pulse compression and stretching are studied experimentally. The wave profiles are registered using a VISAR laser interferometer. The shock adiabats, the dependence of the sound velocity on the pressure, and the maximum negative pressures developed in the studied liquids are determined. It is shown that the negative pressure value does not depend on the deformation rate in the case of oils and is a strong function of the compression pulse amplitude in the case of dodecane.

  20. Extracorporeal shock wave therapy (ESWT) for wound healing: technology, mechanisms, and clinical efficacy.

    PubMed

    Mittermayr, Rainer; Antonic, Vlado; Hartinger, Joachim; Kaufmann, Hanna; Redl, Heinz; Téot, Luc; Stojadinovic, Alexander; Schaden, Wolfgang

    2012-01-01

    For almost 30 years, extracorporeal shock wave therapy has been clinically implemented as an effective treatment to disintegrate urinary stones. This technology has also emerged as an effective noninvasive treatment modality for several orthopedic and traumatic indications including problematic soft tissue wounds. Delayed/nonhealing or chronic wounds constitute a burden for each patient affected, significantly impairing quality of life. Intensive wound care is required, and this places an enormous burden on society in terms of lost productivity and healthcare costs. Therefore, cost-effective, noninvasive, and efficacious treatments are imperative to achieve both (accelerated and complete) healing of problematic wounds and reduce treatment-related costs. Several experimental and clinical studies show efficacy for extracorporeal shock wave therapy as means to accelerate tissue repair and regeneration in various wounds. However, the biomolecular mechanism by which this treatment modality exerts its therapeutic effects remains unclear. Potential mechanisms, which are discussed herein, include initial neovascularization with ensuing durable and functional angiogenesis. Furthermore, recruitment of mesenchymal stem cells, stimulated cell proliferation and differentiation, and anti-inflammatory and antimicrobial effects as well as suppression of nociception are considered important facets of the biological responses to therapeutic shock waves. This review aims to provide an overview of shock wave therapy, its history and development as well as its current place in clinical practice. Recent research advances are discussed emphasizing the role of extracorporeal shock wave therapy in soft tissue wound healing. © 2012 by the Wound Healing Society.

  1. Test of a new heat-flow equation for dense-fluid shock waves.

    PubMed

    Holian, Brad Lee; Mareschal, Michel; Ravelo, Ramon

    2010-09-21

    Using a recently proposed equation for the heat-flux vector that goes beyond Fourier's Law of heat conduction, we model shockwave propagation in the dense Lennard-Jones fluid. Disequilibrium among the three components of temperature, namely, the difference between the kinetic temperature in the direction of a planar shock wave and those in the transverse directions, particularly in the region near the shock front, gives rise to a new transport (equilibration) mechanism not seen in usual one-dimensional heat-flow situations. The modification of the heat-flow equation was tested earlier for the case of strong shock waves in the ideal gas, which had been studied in the past and compared to Navier-Stokes-Fourier solutions. Now, the Lennard-Jones fluid, whose equation of state and transport properties have been determined from independent calculations, allows us to study the case where potential, as well as kinetic contributions are important. The new heat-flow treatment improves the agreement with nonequilibrium molecular-dynamics simulations under strong shock wave conditions, compared to Navier-Stokes.

  2. A computational study on oblique shock wave-turbulent boundary layer interaction

    NASA Astrophysics Data System (ADS)

    Joy, Md. Saddam Hossain; Rahman, Saeedur; Hasan, A. B. M. Toufique; Ali, M.; Mitsutake, Y.; Matsuo, S.; Setoguchi, T.

    2016-07-01

    A numerical computation of an oblique shock wave incident on a turbulent boundary layer was performed for free stream flow of air at M∞ = 2.0 and Re1 = 10.5×106 m-1. The oblique shock wave was generated from a 8° wedge. Reynolds averaged Navier-Stokes (RANS) simulation with k-ω SST turbulence model was first utilized for two dimensional (2D) steady case. The results were compared with the experiment at the same flow conditions. Further, to capture the unsteadiness, a 2D Large Eddy Simulation (LES) with sub-grid scale model WMLES was performed which showed the unsteady effects. The frequency of the shock oscillation was computed and was found to be comparable with that of experimental measurement.

  3. The effect of suppressors and muzzle brakes on shock wave strength

    NASA Astrophysics Data System (ADS)

    Phan, K. C.; Stollery, J. L.

    Experimental simulations of a gun blast were performed in the course of an optimization study of shock-wave suppressor and muzzle-brake geometry. A single-spark schlieren system was used to photograph the shock waves emerging from a 32-mm shock tube. The suppressor systems tested with respect to the overpressure level included a perforated tube enclosed in an expansion chamber, a cup-and-box suppressor, and noise-absorbent materials inside a suppressor; high suppression efficiency was observed for the first two. Recoil simulation tests, performed with plain and pyramidal baffles, disk, and cylinder, show that the blast level is generally higher for a more efective muzzle brake. An optimum distance from the muzzle to the brake is suggested to be in the region of one caliber.

  4. Peculiarity of convergence of shock wave generated by underwater electrical explosion of ring-shaped wire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shafer, D.; Toker, G. R.; Gurovich, V. Tz.

    2013-05-15

    Nanosecond timescale underwater electrical wire explosions of ring-shaped Cu wires were investigated using a pulsed generator with a current amplitude up to 50 kA. It was shown that this type of wire explosion results in the generation of a toroidal shock wave (SW). Time- and space-resolved optical diagnostics were used to determine azimuthal uniformity of the shock wave front and its velocity. It was found that the shock wave preserves its circular front shape in the range of radii 50μm

  5. Generalized self-similar unsteady gas flows behind the strong shock wave front

    NASA Astrophysics Data System (ADS)

    Bogatko, V. I.; Potekhina, E. A.

    2018-05-01

    Two-dimensional (plane and axially symmetric) nonstationary gas flows behind the front of a strong shock wave are considered. All the gas parameters are functions of the ratio of Cartesian coordinates to some degree of time tn, where n is a self-similarity index. The problem is solved in Lagrangian variables. It is shown that the resulting system of partial differential equations is suitable for constructing an iterative process. ¢he "thin shock layer" method is used to construct an approximate analytical solution of the problem. The limit solution of the problem is constructed. A formula for determining the path traversed by a gas particle in the shock layer along the front of a shock wave is obtained. A system of equations for determining the first approximation corrections is constructed.

  6. Simulation and Analysis of Converging Shock Wave Test Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramsey, Scott D.; Shashkov, Mikhail J.

    2012-06-21

    Results and analysis pertaining to the simulation of the Guderley converging shock wave test problem (and associated code verification hydrodynamics test problems involving converging shock waves) in the LANL ASC radiation-hydrodynamics code xRAGE are presented. One-dimensional (1D) spherical and two-dimensional (2D) axi-symmetric geometric setups are utilized and evaluated in this study, as is an instantiation of the xRAGE adaptive mesh refinement capability. For the 2D simulations, a 'Surrogate Guderley' test problem is developed and used to obviate subtleties inherent to the true Guderley solution's initialization on a square grid, while still maintaining a high degree of fidelity to the originalmore » problem, and minimally straining the general credibility of associated analysis and conclusions.« less

  7. Extracorporeal shock wave therapy in periodontics: A new paradigm.

    PubMed

    Venkatesh Prabhuji, Munivenkatappa Lakshmaiah; Khaleelahmed, Shaeesta; Vasudevalu, Sujatha; Vinodhini, K

    2014-05-01

    The quest for exploring new frontiers in the field of medical science for efficient and improved treatment modalities has always been on a rise. Extracorporeal shock wave therapy (ESWT) has been enormously used in medical practice, principally, for the management of urolithiasis, cholelithiasis and also in various orthopedic and musculoskeletal disorders. The efficacy of ESWT in the stimulation of osteoblasts, fibroblasts, induction of neovascularization and increased expression of bone morphogenic proteins has been well documented in the literature. However, dentistry is no exception to this trend. The present article enlightens the various applications of ESWT in the field of dentistry and explores its prospective applications in the field of periodontics, and the possibility of incorporating the beneficial properties of shock waves in improving the treatment outcome.

  8. Dust acoustic shock waves in magnetized dusty plasma

    NASA Astrophysics Data System (ADS)

    Yashika, GHAI; Nimardeep, KAUR; Kuldeep, SINGH; N, S. SAINI

    2018-07-01

    We have presented a theoretical study of the dust acoustic (DA) shock structures in a magnetized, electron depleted dusty plasma in the presence of two temperature superthermal ions. By deriving a Korteweg–de Vries–Burgers equation and studying its shock solution, we aim to highlight the effects of magnetic field and obliqueness on various properties of the DA shock structures in the presence of kappa-distributed two temperature ion population. The present model is motivated by the observations of Geotail spacecraft in the Earth's magnetotail and it is seen that the different physical parameters such as superthermality of the cold and hot ions, the cold to hot ion temperature ratio, the magnetic field strength, obliqueness and the dust kinematic viscosity greatly influence the dynamics of the shock structures so formed. The results suggest that the variation of superthermalities of the cold and hot ions have contrasting effects on both positive and negative polarity shock structures. Moreover, it is noted that the presence of the ambient magnetic field affects the dispersive properties of the medium and tends to make the shock structures less wide and more abrupt. The findings of present investigation may be useful in understanding the dynamics of shock waves in dusty plasma environments containing two temperature ions where the electrons are significantly depleted.

  9. Numerical studies of electron dynamics in oblique quasi-perpendicular collisionless shock waves

    NASA Technical Reports Server (NTRS)

    Liewer, P. C.; Decyk, V. K.; Dawson, J. M.; Lembege, B.

    1991-01-01

    Linear and nonlinear electron damping of the whistler precursor wave train to low Mach number quasi-perpendicular oblique shocks is studied using a one-dimensional electromagnetic plasma simulation code with particle electrons and ions. In some parameter regimes, electrons are observed to trap along the magnetic field lines in the potential of the whistler precursor wave train. This trapping can lead to significant electron heating in front of the shock for low beta(e). Use of a 64-processor hypercube concurrent computer has enabled long runs using realistic mass ratios in the full particle in-cell code and thus simulate shock parameter regimes and phenomena not previously studied numerically.

  10. Radial Shock Wave Devices Generate Cavitation

    PubMed Central

    Császár, Nikolaus B. M.; Angstman, Nicholas B.; Milz, Stefan; Sprecher, Christoph M.; Kobel, Philippe; Farhat, Mohamed; Furia, John P.; Schmitz, Christoph

    2015-01-01

    Background Conflicting reports in the literature have raised the question whether radial extracorporeal shock wave therapy (rESWT) devices and vibrating massage devices have similar energy signatures and, hence, cause similar bioeffects in treated tissues. Methods and Findings We used laser fiber optic probe hydrophone (FOPH) measurements, high-speed imaging and x-ray film analysis to compare fundamental elements of the energy signatures of two rESWT devices (Swiss DolorClast; Electro Medical Systems, Nyon, Switzerland; D-Actor 200; Storz Medical, Tägerwillen, Switzerland) and a vibrating massage device (Vibracare; G5/General Physiotherapy, Inc., Earth City, MO, USA). To assert potential bioeffects of these treatment modalities we investigated the influence of rESWT and vibrating massage devices on locomotion ability of Caenorhabditis elegans (C. elegans) worms. Results FOPH measurements demonstrated that both rESWT devices generated acoustic waves with comparable pressure and energy flux density. Furthermore, both rESWT devices generated cavitation as evidenced by high-speed imaging and caused mechanical damage on the surface of x-ray film. The vibrating massage device did not show any of these characteristics. Moreover, locomotion ability of C. elegans was statistically significantly impaired after exposure to radial extracorporeal shock waves but was unaffected after exposure of worms to the vibrating massage device. Conclusions The results of the present study indicate that both energy signature and bioeffects of rESWT devices are fundamentally different from those of vibrating massage devices. Clinical Relevance Prior ESWT studies have shown that tissues treated with sufficient quantities of acoustic sound waves undergo cavitation build-up, mechanotransduction, and ultimately, a biological alteration that “kick-starts” the healing response. Due to their different treatment indications and contra-indications rESWT devices cannot be equated to vibrating

  11. Radial Shock Wave Devices Generate Cavitation.

    PubMed

    Császár, Nikolaus B M; Angstman, Nicholas B; Milz, Stefan; Sprecher, Christoph M; Kobel, Philippe; Farhat, Mohamed; Furia, John P; Schmitz, Christoph

    2015-01-01

    Conflicting reports in the literature have raised the question whether radial extracorporeal shock wave therapy (rESWT) devices and vibrating massage devices have similar energy signatures and, hence, cause similar bioeffects in treated tissues. We used laser fiber optic probe hydrophone (FOPH) measurements, high-speed imaging and x-ray film analysis to compare fundamental elements of the energy signatures of two rESWT devices (Swiss DolorClast; Electro Medical Systems, Nyon, Switzerland; D-Actor 200; Storz Medical, Tägerwillen, Switzerland) and a vibrating massage device (Vibracare; G5/General Physiotherapy, Inc., Earth City, MO, USA). To assert potential bioeffects of these treatment modalities we investigated the influence of rESWT and vibrating massage devices on locomotion ability of Caenorhabditis elegans (C. elegans) worms. FOPH measurements demonstrated that both rESWT devices generated acoustic waves with comparable pressure and energy flux density. Furthermore, both rESWT devices generated cavitation as evidenced by high-speed imaging and caused mechanical damage on the surface of x-ray film. The vibrating massage device did not show any of these characteristics. Moreover, locomotion ability of C. elegans was statistically significantly impaired after exposure to radial extracorporeal shock waves but was unaffected after exposure of worms to the vibrating massage device. The results of the present study indicate that both energy signature and bioeffects of rESWT devices are fundamentally different from those of vibrating massage devices. Prior ESWT studies have shown that tissues treated with sufficient quantities of acoustic sound waves undergo cavitation build-up, mechanotransduction, and ultimately, a biological alteration that "kick-starts" the healing response. Due to their different treatment indications and contra-indications rESWT devices cannot be equated to vibrating massage devices and should be used with due caution in clinical practice.

  12. A heuristic model of stone comminution in shock wave lithotripsy

    PubMed Central

    Smith, Nathan B.; Zhong, Pei

    2013-01-01

    A heuristic model is presented to describe the overall progression of stone comminution in shock wave lithotripsy (SWL), accounting for the effects of shock wave dose and the average peak pressure, P+(avg), incident on the stone during the treatment. The model is developed through adaptation of the Weibull theory for brittle fracture, incorporating threshold values in dose and P+(avg) that are required to initiate fragmentation. The model is validated against experimental data of stone comminution from two stone types (hard and soft BegoStone) obtained at various positions in lithotripter fields produced by two shock wave sources of different beam width and pulse profile both in water and in 1,3-butanediol (which suppresses cavitation). Subsequently, the model is used to assess the performance of a newly developed acoustic lens for electromagnetic lithotripters in comparison with its original counterpart both under static and simulated respiratory motion. The results have demonstrated the predictive value of this heuristic model in elucidating the physical basis for improved performance of the new lens. The model also provides a rationale for the selection of SWL treatment protocols to achieve effective stone comminution without elevating the risk of tissue injury. PMID:23927195

  13. The cosmic QCD phase transition with dense matter and its gravitational waves from holography

    NASA Astrophysics Data System (ADS)

    Ahmadvand, M.; Bitaghsir Fadafan, K.

    2018-04-01

    Consistent with cosmological constraints, there are scenarios with the large lepton asymmetry which can lead to the finite baryochemical potential at the cosmic QCD phase transition scale. In this paper, we investigate this possibility in the holographic models. Using the holographic renormalization method, we find the first order Hawking-Page phase transition, between the Reissner-Nordström AdS black hole and thermal charged AdS space, corresponding to the de/confinement phase transition. We obtain the gravitational wave spectra generated during the evolution of bubbles for a range of the bubble wall velocity and examine the reliability of the scenarios and consequent calculations by gravitational wave experiments.

  14. Evolution and stability of shock waves in dissipative gases characterized by activated inelastic collisions.

    PubMed

    Sirmas, N; Radulescu, M I

    2015-02-01

    Previous experiments have revealed that shock waves driven through dissipative gases may become unstable, for example, in granular gases and in molecular gases undergoing strong relaxation effects. The mechanisms controlling these instabilities are not well understood. We successfully isolated and investigated this instability in the canonical problem of piston-driven shock waves propagating into a medium characterized by inelastic collision processes. We treat the standard model of granular gases, where particle collisions are taken as inelastic, with a constant coefficient of restitution. The inelasticity is activated for sufficiently strong collisions. Molecular dynamic simulations were performed for 30,000 particles. We find that all shock waves investigated become unstable, with density nonuniformities forming in the relaxation region. The wavelength of these fingers is found to be comparable to the characteristic relaxation thickness. Shock Hugoniot curves for both elastic and inelastic collisions were obtained analytically and numerically. Analysis of these curves indicates that the instability is not of the Bethe-Zeldovich-Thompson or D'yakov-Kontorovich type. Analysis of the shock relaxation rates and rates for clustering in a convected fluid element with the same thermodynamic history ruled out the clustering instability of a homogeneous granular gas. Instead, wave reconstruction of the early transient evolution indicates that the onset of instability occurs during repressurization of the gas following the initial relaxation of the medium behind the lead shock. This repressurization gives rise to internal pressure waves in the presence of strong density gradients. This indicates that the mechanism of instability is more likely of the vorticity-generating Richtmyer-Meshkov type, relying on the action of the inner pressure wave development during the transient relaxation.

  15. Analytical solution of the problem of a shock wave in the collapsing gas in Lagrangian coordinates

    NASA Astrophysics Data System (ADS)

    Kuropatenko, V. F.; Shestakovskaya, E. S.

    2016-10-01

    It is proposed the exact solution of the problem of a convergent shock wave and gas dynamic compression in a spherical vessel with an impermeable wall in Lagrangian coordinates. At the initial time the speed of cold ideal gas is equal to zero, and a negative velocity is set on boundary of the sphere. When t > t0 the shock wave spreads from this point into the gas. The boundary of the sphere will move under the certain law correlated with the motion of the shock wave. The trajectories of the gas particles in Lagrangian coordinates are straight lines. The equations determining the structure of the gas flow between the shock front and gas border have been found as a function of time and Lagrangian coordinate. The dependence of the entropy on the velocity of the shock wave has been found too. For Lagrangian coordinates the problem is first solved. It is fundamentally different from previously known formulations of the problem of the self-convergence of the self-similar shock wave to the center of symmetry and its reflection from the center, which was built up for the infinite area in Euler coordinates.

  16. Low Velocity Detonation of Nitromethane Affected by Precursor Shock Waves Propagating in Various Container Materials

    NASA Astrophysics Data System (ADS)

    Hamashima, H.; Osada, A.; Itoh, S.; Kato, Y.

    2007-12-01

    It is well known that some liquid explosives have two detonation behaviors, high velocity detonation (HVD) or low velocity detonation (LVD) can propagate. A physical model to describe the propagation mechanism of LVD in liquid explosives was proposed that LVD is not a self-reactive detonation, but rather a supported-reactive detonation from the cavitation field generated by precursor shock waves. However, the detailed structure of LVD in liquid explosives has not yet been clarified. In this study, high-speed photography was used to investigate the effects of the precursor shock waves propagating in various container materials for LVD in nitromethane (NM). Stable LVD was not observed in all containers, although transient LVD was observed. A very complicated structure of LVD was observed: the interaction of multiple precursor shock waves, multiple oblique shock waves, and the cavitation field.

  17. Low Velocity Detonation of Nitromethane Affected by Precursor Shock Waves Propagating in Various Container Materials

    NASA Astrophysics Data System (ADS)

    Hamashima, Hideki; Osada, Akinori; Kato, Yukio; Itoh, Shigeru

    2007-06-01

    It is well known that some liquid explosives have two detonation behaviors, high velocity detonation (HVD) or low velocity detonation (LVD) can propagate. A physical model to describe the propagation mechanism of LVD in liquid explosives was proposed that LVD is not a self-reactive detonation, but rather a supported-reactive detonation from the cavitation field generated by precursor shock waves. However, the detailed structure of LVD in liquid explosives has not yet been clarified. In this study, high-speed photography was used to investigate the effects of the precursor shock waves propagating in various container materials for LVD in nitromethane (NM). Stable LVD was not observed in all containers, although transient LVD was observed. A very complicated structure of LVD was observed: the interaction of multiple precursor shock waves, multiple oblique shock waves, and the cavitation field.

  18. Electron Scattering by High-frequency Whistler Waves at Earth’s Bow Shock

    NASA Astrophysics Data System (ADS)

    Oka, M.; Wilson, L. B., III; Phan, T. D.; Hull, A. J.; Amano, T.; Hoshino, M.; Argall, M. R.; Le Contel, O.; Agapitov, O.; Gershman, D. J.; Khotyaintsev, Y. V.; Burch, J. L.; Torbert, R. B.; Pollock, C.; Dorelli, J. C.; Giles, B. L.; Moore, T. E.; Saito, Y.; Avanov, L. A.; Paterson, W.; Ergun, R. E.; Strangeway, R. J.; Russell, C. T.; Lindqvist, P. A.

    2017-06-01

    Electrons are accelerated to non-thermal energies at shocks in space and astrophysical environments. While different mechanisms of electron acceleration have been proposed, it remains unclear how non-thermal electrons are produced out of the thermal plasma pool. Here, we report in situ evidence of pitch-angle scattering of non-thermal electrons by whistler waves at Earth’s bow shock. On 2015 November 4, the Magnetospheric Multiscale (MMS) mission crossed the bow shock with an Alfvén Mach number ˜11 and a shock angle ˜84°. In the ramp and overshoot regions, MMS revealed bursty enhancements of non-thermal (0.5-2 keV) electron flux, correlated with high-frequency (0.2-0.4 {{{Ω }}}{ce}, where {{{Ω }}}{ce} is the cyclotron frequency) parallel-propagating whistler waves. The electron velocity distribution (measured at 30 ms cadence) showed an enhanced gradient of phase-space density at and around the region where the electron velocity component parallel to the magnetic field matched the resonant energy inferred from the wave frequency range. The flux of 0.5 keV electrons (measured at 1 ms cadence) showed fluctuations with the same frequency. These features indicate that non-thermal electrons were pitch-angle scattered by cyclotron resonance with the high-frequency whistler waves. However, the precise role of the pitch-angle scattering by the higher-frequency whistler waves and possible nonlinear effects in the electron acceleration process remains unclear.

  19. Some observations on mesh refinement schemes applied to shock wave phenomena

    NASA Technical Reports Server (NTRS)

    Quirk, James J.

    1995-01-01

    This workshop's double-wedge test problem is taken from one of a sequence of experiments which were performed in order to classify the various canonical interactions between a planar shock wave and a double wedge. Therefore to build up a reasonably broad picture of the performance of our mesh refinement algorithm we have simulated three of these experiments and not just the workshop case. Here, using the results from these simulations together with their experimental counterparts, we make some general observations concerning the development of mesh refinement schemes for shock wave phenomena.

  20. [Treatment of kidney stones using shock-wave lithotripsy with sonographic control].

    PubMed

    Benes, J; Chmel, J; Simon, V; Stuka, C; Flejsar, P

    1991-10-01

    Lithotripsy by means of an extracorporeal shock-wave was performed in 128 patients with urolithiasis. In this group for the first time in Czechoslovakia ultrasound control of kidney stones was used in 44 patients; in the remainder X-ray control was used. The authors used equipment designed and manufactured locally. The ultrasonic probe is laterally connected with the shock-wave applicator. Disappearance of the fragments after lithotripsy was achieved in 39 patients where ultrasonic control was used. The paper presents the results, discusses the advantages and limitations of ultrasonic control in extracorporeal lithotripsy of urolithiasis.

  1. [Treatment of kidney calculi using shock-wave lithotripsy with ultrasonic guidance].

    PubMed

    Benes, J; Chmel, J; Simon, V; Stuka, C; Flejsar, P

    1991-01-01

    Lithotripsy by means of an extracorporeal shock-wave was performed in 128 patients with urolithiasis. In this group for the first time in Czechoslovakia ultrasound control of kidney stones was used in 44 patients; in the remainder X-ray control was used. The authors used equipment designed and manufactured locally. The ultrasonic probe is laterally connected with the shock-wave applicator. Disappearance of the fragments after lithotripsy was achieved in 39 patients where ultrasonic control was used. The paper presents the results, discusses the advantages and limitations of ultrasonic control in extracorporeal lithotripsy of urolithiasis.

  2. Superconductivity of Cu/CuOx interface formed by shock-wave pressure

    NASA Astrophysics Data System (ADS)

    Shakhray, D. V.; Avdonin, V. V.; Palnichenko, A. V.

    2016-11-01

    A mixture of powdered Cu and CuO has been subjected to shock-wave pressure of 350 kbar with following quenching of the vacuum-encapsulated product to 77 K. The ac magnetic susceptibility measurements of the samples have revealed metastable superconductivity with Tc ≈ 19 K, characterized by glassy dynamics of the shielding currents below Tc . Comparison of the ac susceptibility and the DC magnetization measurements infers that the superconductivity arises within the granular interfacial layer formed between metallic Cu and its oxides due to the shock-wave treatment.

  3. Effects of shock strength on shock turbulence interaction

    NASA Technical Reports Server (NTRS)

    Lee, Sangsan

    1993-01-01

    Direct numerical simulation (DNS) and linear analysis (LIA) of isotropic turbulence interacting with a shock wave are performed for several upstream shock normal Mach numbers (M(sub 1)). Turbulence kinetic energy (TKE) is amplified across the shock wave, but this amplification tends to saturate beyond M(sub 1) = 3.0. TKE amplification and Reynolds stress anisotropy obtained in DNS are consistent with LIA predictions. Rapid evolution of TKE immediate downstream of the shock wave persists for all shock strengths and is attributed to the transfer between kinetic and potential modes of turbulence energy through acoustic fluctuations. Changes in energy spectra and various length scales across the shock wave are predicted by LIA, which is consistent with DNS results. Most turbulence length scales decrease across the shock. Dissipation length scale (rho-bar q(exp 3) / epsilon), however, increases slightly for shock waves with M(sub 1) less than 1.65. Fluctuations in thermodynamic variables behind the shock wave stay nearly isentropic for M(sub 1) less than 1.2 and deviate significantly from isentropy for the stronger shock waves due to large entropy fluctuation generated through the interaction.

  4. Impact of shock waves on the conductive properties and structure of MgB2 tapes

    NASA Astrophysics Data System (ADS)

    Mikhailov, Boris P.; Mikhailova, Alexandra B.; Borovitskaya, Irina V.; Nikulin, Valerii Ya.; Peregudova, Elena N.; Polukhin, Sergei N.; Silin, Pavel V.

    2017-10-01

    This article presents data on shock waves effect on the structure and the critical current of superconducting MgB2 tapes. To generate shock waves, a plasma focus installation (PF) was used. The conductive characteristics of the superconducting tapes dependence on the intensity of the impact and the number of shock pulses were studied. A distinct pattern of change in critical currents in transversal and longitudinal magnetic fields in the range of 2-9 T is studied at a temperature of 4.2 K. The microstructure of the superconducting tape and chemical composition of its layer are studied in the original state and after the shock wave effect. Changes were found in a microstructure of layers of MgB2 (granulation, subdivision of grains and consolidation), which arose due to the shock-wave impact (SWI), are found. The possibility of increasing the critical current of tapes on 50-80 A in a transversal magnetic field of 2-3 T by means of SWI has been established. In a parallel magnetic field, the impact of the shock effect was essential in magnetic fields lower than 4 T.

  5. 'Thunder' - Shock waves in pre-biological organic synthesis.

    NASA Technical Reports Server (NTRS)

    Bar-Nun, A.; Tauber, M. E.

    1972-01-01

    Theoretical study of the gasdynamics and chemistry of lightning-produced shock waves in a postulated primordial reducing atmosphere. It is shown that the conditions are similar to those encountered in a previously performed shock-tube experiment which resulted in 36% of the ammonia in the original mixture being converted into amino acids. The calculations give the (very large) energy rate of about 0.4 cal/sq cm/yr available for amino acid production, supporting previous hypotheses that 'thunder' could have been responsible for efficient large-scale production of organic molecules serving as precursors of life.

  6. Uniform shock waves in disordered granular matter.

    PubMed

    Gómez, Leopoldo R; Turner, Ari M; Vitelli, Vincenzo

    2012-10-01

    The confining pressure P is perhaps the most important parameter controlling the properties of granular matter. Strongly compressed granular media are, in many respects, simple solids in which elastic perturbations travel as ordinary phonons. However, the speed of sound in granular aggregates continuously decreases as the confining pressure decreases, completely vanishing at the jamming-unjamming transition. This anomalous behavior suggests that the transport of energy at low pressures should not be dominated by phonons. In this work we use simulations and theory to show how the response of granular systems becomes increasingly nonlinear as pressure decreases. In the low-pressure regime the elastic energy is found to be mainly transported through nonlinear waves and shocks. We numerically characterize the propagation speed, shape, and stability of these shocks and model the dependence of the shock speed on pressure and impact intensity by a simple analytical approach.

  7. Streamlines behind curved shock waves in axisymmetric flow fields

    NASA Astrophysics Data System (ADS)

    Filippi, A. A.; Skews, B. W.

    2018-07-01

    Streamlines behind axisymmetric curved shock waves were used to predict the internal surfaces that produced them. Axisymmetric ring wedge models with varying internal radii of curvature and leading-edge angles were used to produce numerical results. Said numerical simulations were validated using experimental shadowgraph results for a series of ring wedge test pieces. The streamlines behind curved shock waves for lower leading-edge angles are examined at Mach 3.4, whereas the highest leading-edge angle cases are explored at Mach 2.8 and 3.4. Numerical and theoretical streamlines are compared for the highest leading-edge angle cases at Mach 3.6. It was found that wall-bounding theoretical streamlines did not match the internal curved surface. This was due to extreme streamline curvature curving the streamlines when the shock angle approached the Mach angle at lower leading-edge angles. Increased Mach number and internal radius of curvature produced more reasonable results. Very good agreement was found between the theoretical and numerical streamlines at lower curvatures before the influence of the trailing edge expansion fan.

  8. Electrohydraulic shock wave generation as a means to increase intrinsic permeability of mortar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maurel, O.; Reess, T.; Matallah, M.

    2010-12-15

    This article discusses the influence of compressive shock waves on the permeability of cementitious materials. Shock waves are generated in water by Pulsed Arc Electrohydraulic Discharges (PAED). The practical aim is to increase the intrinsic permeability of the specimens. The maximum pressure amplitude of the shock wave is 250 MPa. It generates damage in the specimens and the evolution of damage is correlated with the intrinsic permeability of the mortar. A threshold of pressure is observed. From this threshold, the increase of permeability is linear in a semi-log plot. The influence of repeated shocks on permeability is also discussed. Qualitativemore » X Ray Tomography illustrates the evolution of the microstructure of the material leading to the increase of permeability. Comparative results from mercury intrusion porosimetry (MIP) show that the micro-structural damage process starts at the sub-micrometric level and that the characteristic size of pores of growing volume increases.« less

  9. On A Problem Of Propagation Of Shock Waves Generated By Explosive Volcanic Eruptions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gusev, V. A.; Sobissevitch, A. L.

    2008-06-24

    Interdisciplinary study of flows of matter and energy in geospheres has become one of the most significant advances in Earth sciences. It is carried out by means of direct quantitative estimations based on detailed analysis of geological and geophysical observations and experimental data. The actual contribution is the interdisciplinary study of nonlinear acoustics and physical volcanology dedicated to shock wave propagation in a viscous and inhomogeneous medium. The equations governing evolution of shock waves with an arbitrary initial profile and an arbitrary cross-section of a beam are obtained. For the case of low viscous medium, the asymptotic solution meant tomore » calculate a profile of a shock wave in an arbitrary point has been derived. The analytical solution of the problem on propagation of shock pulses from atmosphere into a two-phase fluid-saturated geophysical medium is analysed. Quantitative estimations were carried out with respect to experimental results obtained in the course of real explosive volcanic eruptions.« less

  10. Numerical analysis on interactions of vortex, shock wave, and exothermal reaction in a supersonic planar shear layer laden with droplets

    NASA Astrophysics Data System (ADS)

    Ren, Zhaoxin; Wang, Bing; Zheng, Longxi

    2018-03-01

    The analysis on the interactions of a large-scale shearing vortex, an incident oblique shock wave, and a chemical reaction in a planar shear layer is performed by numerical simulations. The reacting flows are obtained by directly solving the multi-species Navier-Stokes equations in the Eulerian frame, and the motions of individual point-mass fuel droplets are tracked in the Lagrangian frame considering the two-way coupling. The influences of shock strength and spray equivalence ratio on the shock-vortex interaction and the induced combustion are further studied. Under the present conditions, the incident shock is distorted by the vortex evolution to form the complicated waves including an incident shock wave, a multi-refracted wave, a reflected wave, and a transmitted wave. The local pressure and temperature are elevated by the shock impingement on the shearing vortex, which carries flammable mixtures. The chemical reaction is mostly accelerated by the refracted shock across the vortex. Two different exothermal reaction modes could be distinguished during the shock-vortex interaction as a thermal mode, due to the additional energy from the incident shock, and a local quasi detonation mode, due to the coupling of the refracted wave with reaction. The former mode detaches the flame and shock wave, whereas the latter mode tends to occur when the incident shock strength is higher and local equivalence ratio is higher approaching to the stoichiometric value. The numerical results illustrate that those two modes by shock-vortex interaction depend on the structure of the post-shock flame kernel, which may be located either in the vortex-braids of post-shock flows or in the shock-vortex interaction regime.

  11. Stability of stagnation via an expanding accretion shock wave

    NASA Astrophysics Data System (ADS)

    Velikovich, A. L.; Murakami, M.; Taylor, B. D.; Giuliani, J. L.; Zalesak, S. T.; Iwamoto, Y.

    2016-05-01

    Stagnation of a cold plasma streaming to the center or axis of symmetry via an expanding accretion shock wave is ubiquitous in inertial confinement fusion (ICF) and high-energy-density plasma physics, the examples ranging from plasma flows in x-ray-generating Z pinches [Maron et al., Phys. Rev. Lett. 111, 035001 (2013)] to the experiments in support of the recently suggested concept of impact ignition in ICF [Azechi et al., Phys. Rev. Lett. 102, 235002 (2009); Murakami et al., Nucl. Fusion 54, 054007 (2014)]. Some experimental evidence indicates that stagnation via an expanding shock wave is stable, but its stability has never been studied theoretically. We present such analysis for the stagnation that does not involve a rarefaction wave behind the expanding shock front and is described by the classic ideal-gas Noh solution in spherical and cylindrical geometry. In either case, the stagnated flow has been demonstrated to be stable, initial perturbations exhibiting a power-law, oscillatory or monotonic, decay with time for all the eigenmodes. This conclusion has been supported by our simulations done both on a Cartesian grid and on a curvilinear grid in spherical coordinates. Dispersion equation determining the eigenvalues of the problem and explicit formulas for the eigenfunction profiles corresponding to these eigenvalues are presented, making it possible to use the theory for hydrocode verification in two and three dimensions.

  12. Stability of stagnation via an expanding accretion shock wave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velikovich, A. L.; Giuliani, J. L.; Murakami, M.

    Stagnation of a cold plasma streaming to the center or axis of symmetry via an expanding accretion shock wave is ubiquitous in inertial confinement fusion (ICF) and high-energy-density plasma physics, the examples ranging from plasma flows in x-ray-generating Z pinches [Maron et al., Phys. Rev. Lett. 111, 035001 (2013)] to the experiments in support of the recently suggested concept of impact ignition in ICF [Azechi et al., Phys. Rev. Lett. 102, 235002 (2009); Murakami et al., Nucl. Fusion 54, 054007 (2014)]. Some experimental evidence indicates that stagnation via an expanding shock wave is stable, but its stability has never beenmore » studied theoretically. We present such analysis for the stagnation that does not involve a rarefaction wave behind the expanding shock front and is described by the classic ideal-gas Noh solution in spherical and cylindrical geometry. In either case, the stagnated flow has been demonstrated to be stable, initial perturbations exhibiting a power-law, oscillatory or monotonic, decay with time for all the eigenmodes. This conclusion has been supported by our simulations done both on a Cartesian grid and on a curvilinear grid in spherical coordinates. Dispersion equation determining the eigenvalues of the problem and explicit formulas for the eigenfunction profiles corresponding to these eigenvalues are presented, making it possible to use the theory for hydrocode verification in two and three dimensions.« less

  13. Modeling secondary accidents identified by traffic shock waves.

    PubMed

    Junhua, Wang; Boya, Liu; Lanfang, Zhang; Ragland, David R

    2016-02-01

    The high potential for occurrence and the negative consequences of secondary accidents make them an issue of great concern affecting freeway safety. Using accident records from a three-year period together with California interstate freeway loop data, a dynamic method for more accurate classification based on the traffic shock wave detecting method was used to identify secondary accidents. Spatio-temporal gaps between the primary and secondary accident were proven be fit via a mixture of Weibull and normal distribution. A logistic regression model was developed to investigate major factors contributing to secondary accident occurrence. Traffic shock wave speed and volume at the occurrence of a primary accident were explicitly considered in the model, as a secondary accident is defined as an accident that occurs within the spatio-temporal impact scope of the primary accident. Results show that the shock waves originating in the wake of a primary accident have a more significant impact on the likelihood of a secondary accident occurrence than the effects of traffic volume. Primary accidents with long durations can significantly increase the possibility of secondary accidents. Unsafe speed and weather are other factors contributing to secondary crash occurrence. It is strongly suggested that when police or rescue personnel arrive at the scene of an accident, they should not suddenly block, decrease, or unblock the traffic flow, but instead endeavor to control traffic in a smooth and controlled manner. Also it is important to reduce accident processing time to reduce the risk of secondary accident. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Upstream electron oscillations and ion overshoot at an interplanetary shock wave

    NASA Technical Reports Server (NTRS)

    Potter, D. W.; Parks, G. K.

    1983-01-01

    During the passage of a large interplanetary shock on Oct. 13, 1981, the ISEE-1 and -2 spacecraft were in the solar wind outside of the upstream region of the bow shock. The high time resolution data of the University of California particle instruments allow pinpointing the expected electron spike as occurring just before the magnetic ramp. In addition, two features that occur at this shock have not been observed before: electron oscillations associated with low frequency waves upstream of the shock and sharp 'overshoot' (about 1 sec) in the ion fluxes that occur right after the magnetic ramp. This interplanetary shock exhibits many of the same characteristics that are observed at the earth's bow shock.

  15. Applications of Shock Wave Research to Developments of Therapeutic Devices.

    NASA Astrophysics Data System (ADS)

    Takayama, Kazuyoshi

    2007-06-01

    Underwater shock wave research applied to medicine started in 1980 by exploding micro lead azide pellets in water. Collaboration with urologists in the School of Medicine, Tohoku University at the same time was directed to disintegration of kidney stones by controlling shock waves. We initially proposed a miniature truncated ellipsoidal cavity for generating high-pressures enough to disintegrate the stone but gave up the idea, when encountering the Dornie Systems' invention of an extracorporeal shock wave lithotripter (ESWL). Then we confirmed its effectiveness by using 10 mg silver azide pellets and constructed our own lithotripter, which was officially approved for a clinical use in 1987. Tissue damage during ESWL was attributable to bubble collapse and we convinced it could be done in a controlled fashion. In 1996, we used 160 mJ pulsed Ho:YAG laser beam focusing inside a catheter for shock generation and applied it to the revascularization of cerebral embolism, which is recently expanded to the treatment of pulmonary infarction. Micro water jets discharged in air were so effective to dissect soft tissues preserving small blood vessels. Animal experiments are successfully performed with high frequency water jets driven by an actuator-assisted micro-pump. A metal foil is deformed at high speed by a Q-switched Nd:YAG laser beam loading. We used this technique to project micro-particles or dry drugs attached on its reverse side and extended it to a laser ablation assisted dry drug delivery or DNA introductory system.

  16. Dispersive shock waves in Bose-Einstein condensates and nonlinear nano-oscillators in ferromagnetic thin films

    NASA Astrophysics Data System (ADS)

    Hoefer, Mark A.

    This thesis examines nonlinear wave phenomena, in two physical systems: a Bose-Einstein condensate (BEC) and thin film ferromagnets where the magnetization dynamics are excited by the spin momentum transfer (SMT) effect. In the first system, shock waves generated by steep gradients in the BEC wavefunction are shown to be of the disperse type. Asymptotic and averaging methods are used to determine shock speeds and structure in one spatial dimension. These results are compared with multidimensional numerical simulations and experiment showing good, qualitative agreement. In the second system, a model of magnetization dynamics due to SMT is presented. Using this model, nonlinear oscillating modes---nano-oscillators---are found numerically and analytically using perturbative methods. These results compare well with experiment. A Bose-Einstein condensate (BEC) is a quantum fluid that gives rise to interesting shock wave nonlinear dynamics. Experiments depict a BEC that exhibits behavior similar to that of a shock wave in a compressible gas, e.g. traveling fronts with steep gradients. However, the governing Gross-Pitaevskii (GP) equation that describes the mean field of a BEC admits no dissipation hence classical dissipative shock solutions do not explain the phenomena. Instead, wave dynamics with small dispersion is considered and it is shown that this provides a mechanism for the generation of a dispersive shock wave (DSW). Computations with the GP equation are compared to experiment with excellent agreement. A comparison between a canonical 1D dissipative and dispersive shock problem shows significant differences in shock structure and shock front speed. Numerical results associated with laboratory experiments show that three and two-dimensional approximations are in excellent agreement and one dimensional approximations are in qualitative agreement. The interaction of two DSWs is investigated analytically and numerically. Using one dimensional DSW theory it is argued

  17. Shock-wave propagation and cavitation bubble oscillation by Nd:YAG laser ablation of a metal in water.

    PubMed

    Chen, Xiao; Xu, Rong-Qing; Chen, Jian-Ping; Shen, Zhong-Hua; Jian, Lu; Ni, Xiao-Wu

    2004-06-01

    A highly sensitive fiber-optic sensor based on optical beam deflection is applied for investigating the propagation of a laser-induced plasma shock wave, the oscillation of a cavitation bubble diameter, and the development of a bubble-collapse-induced shock wave when a Nd:YAG laser pulse is focused upon an aluminum surface in water. By the sequence of experimental waveforms detected at different distances, the attenuation properties of the plasma shock wave and of the bubble-collapse-induced shock wave are obtained. Besides, based on characteristic signals, both the maximum and the minimum bubble radii at each oscillation cycle are determined, as are the corresponding oscillating periods.

  18. Relationship between energy deposition and shock wave phenomenon in an underwater electrical wire explosion

    NASA Astrophysics Data System (ADS)

    Han, Ruoyu; Zhou, Haibin; Wu, Jiawei; Qiu, Aici; Ding, Weidong; Zhang, Yongmin

    2017-09-01

    An experimental study of pressure waves generated by an exploding copper wire in a water medium is performed. We examined the effects of energy deposited at different stages on the characteristics of the resulting shock waves. In the experiments, a microsecond time-scale pulsed current source was used to explode a 300-μm-diameter, 4-cm-long copper wire with initial stored energies ranging from 500 to 2700 J. Our experimental results indicated that the peak pressure (4.5-8.1 MPa) and energy (49-287 J) of the shock waves did not follow a simple relationship with any electrical parameters, such as peak voltage or deposited energy. Conversely, the impulse had a quasi-linear relationship with the parameter Π. We also found that the peak pressure was mainly influenced by the energy deposited before separation of the shock wave front and the discharge plasma channel (DPC). The decay time constant of the pressure waveform was affected by the energy injection after the separation. These phenomena clearly demonstrated that the deposited energy influenced the expansion of the DPC and affected the shock wave characteristics.

  19. Shock-wave facility at Tokyo Institute of Technology

    NASA Astrophysics Data System (ADS)

    Sawaoka, A.; Kondo, K.

    1982-04-01

    The shock-wave facility at the Tokyo Institute of Technology is described. Two double-stage light-gas guns are used to studying material science and technology. Recently construction has begun for a new type of rail gun combined with a double-stage light-gas gun.

  20. Kaon-Nucleon potential from lattice QCD

    NASA Astrophysics Data System (ADS)

    Ikeda, Y.; Aoki, S.; Doi, T.; Hatsuda, T.; Inoue, T.; Ishii, N.; Murano, K.; Nemura, H.; Sasaki, K.

    2010-04-01

    We study the K N interactions in the I(Jπ) = 0(1/2-) and 1(1/2-) channels and associated exotic state Θ+ from 2+1 flavor full lattice QCD simulation for relatively heavy quark mass corresponding to mπ = 871 MeV. The s-wave K N potentials are obtained from the Bethe-Salpeter wave function by using the method recently developed by HAL QCD (Hadrons to Atomic nuclei from Lattice QCD) Collaboration. Potentials in both channels reveal short range repulsions: Strength of the repulsion is stronger in the I = 1 potential, which is consistent with the prediction of the Tomozawa-Weinberg term. The I = 0 potential is found to have attractive well at mid range. From these potentials, the K N scattering phase shifts are calculated and compared with the experimental data.

  1. Development of Laser-induced Grating Spectroscopy for Underwater Temperature Measurement in Shock Wave Focusing Regions

    NASA Technical Reports Server (NTRS)

    Gojani, Ardian B.; Danehy, Paul M.; Alderfer, David W.; Saito, Tsutomu; Takayama, Kazuyoshi

    2003-01-01

    In Extracorporeal Shock Wave Lithotripsy (ESWL) underwater shock wave focusing generates high pressures at very short duration of time inside human body. However, it is not yet clear how high temperatures are enhanced at the spot where a shock wave is focused. The estimation of such dynamic temperature enhancements is critical for the evaluation of tissue damages upon shock loading. For this purpose in the Interdisciplinary Shock Wave Research Center a technique is developed which employs laser induced thermal acoustics or Laser Induced Grating Spectroscopy. Unlike most of gasdynamic methods of measuring physical quantities this provides a non-invasive one having spatial and temporal resolutions of the order of magnitude of 1.0 mm3 and 400 ns, respectively. Preliminary experiments in still water demonstrated that this method detected sound speed and hence temperature in water ranging 283 K to 333 K with errors of 0.5%. These results may be used to empirically establish the equation of states of water, gelatin or agar cells which will work as alternatives of human tissues.

  2. Multiscale modeling of shock wave localization in porous energetic material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, M. A.; Kittell, D. E.; Yarrington, C. D.

    Shock wave interactions with defects, such as pores, are known to play a key role in the chemical initiation of energetic materials. The shock response of hexanitrostilbene is studied through a combination of large-scale reactive molecular dynamics and mesoscale hydrodynamic simulations. In order to extend our simulation capability at the mesoscale to include weak shock conditions (< 6 GPa), atomistic simulations of pore collapse are used here to define a strain-rate-dependent strength model. Comparing these simulation methods allows us to impose physically reasonable constraints on the mesoscale model parameters. In doing so, we have been able to study shock wavesmore » interacting with pores as a function of this viscoplastic material response. Finally, we find that the pore collapse behavior of weak shocks is characteristically different than that of strong shocks.« less

  3. Multiscale modeling of shock wave localization in porous energetic material

    DOE PAGES

    Wood, M. A.; Kittell, D. E.; Yarrington, C. D.; ...

    2018-01-30

    Shock wave interactions with defects, such as pores, are known to play a key role in the chemical initiation of energetic materials. The shock response of hexanitrostilbene is studied through a combination of large-scale reactive molecular dynamics and mesoscale hydrodynamic simulations. In order to extend our simulation capability at the mesoscale to include weak shock conditions (< 6 GPa), atomistic simulations of pore collapse are used here to define a strain-rate-dependent strength model. Comparing these simulation methods allows us to impose physically reasonable constraints on the mesoscale model parameters. In doing so, we have been able to study shock wavesmore » interacting with pores as a function of this viscoplastic material response. Finally, we find that the pore collapse behavior of weak shocks is characteristically different than that of strong shocks.« less

  4. Acoustic and Cavitation Fields of Shock Wave Therapy Devices

    NASA Astrophysics Data System (ADS)

    Chitnis, Parag V.; Cleveland, Robin O.

    2006-05-01

    Extracorporeal shock wave therapy (ESWT) is considered a viable treatment modality for orthopedic ailments. Despite increasing clinical use, the mechanisms by which ESWT devices generate a therapeutic effect are not yet understood. The mechanistic differences in various devices and their efficacies might be dependent on their acoustic and cavitation outputs. We report acoustic and cavitation measurements of a number of different shock wave therapy devices. Two devices were electrohydraulic: one had a large reflector (HMT Ossatron) and the other was a hand-held source (HMT Evotron); the other device was a pneumatically driven device (EMS Swiss DolorClast Vet). Acoustic measurements were made using a fiber-optic probe hydrophone and a PVDF hydrophone. A dual passive cavitation detection system was used to monitor cavitation activity. Qualitative differences between these devices were also highlighted using a high-speed camera. We found that the Ossatron generated focused shock waves with a peak positive pressure around 40 MPa. The Evotron produced peak positive pressure around 20 MPa, however, its acoustic output appeared to be independent of the power setting of the device. The peak positive pressure from the DolorClast was about 5 MPa without a clear shock front. The DolorClast did not generate a focused acoustic field. Shadowgraph images show that the wave propagating from the DolorClast is planar and not focused in the vicinity of the hand-piece. All three devices produced measurable cavitation with a characteristic time (cavitation inception to bubble collapse) that varied between 95 and 209 μs for the Ossatron, between 59 and 283 μs for the Evotron, and between 195 and 431 μs for the DolorClast. The high-speed camera images show that the cavitation activity for the DolorClast is primarily restricted to the contact surface of the hand-piece. These data indicate that the devices studied here vary in acoustic and cavitation output, which may imply that the

  5. Modeling the Propagation of Shock Waves in Metals

    NASA Astrophysics Data System (ADS)

    Howard, W. Michael

    2005-07-01

    We present modeling results for the propagation of strong shock waves in metals. In particular, we use an arbitrary Lagrange Eulerian (ALE3D) code to model the propagation of strong pressure waves (P ˜300 to 400 kbars) generated with high explosives in contact with aluminum cylinders. The aluminum cylinders are assumed to be both flat-topped and have large-amplitude curved surfaces. We use 3D Lagrange mechanics. For the aluminum we use a rate-independent Steinberg-Guinan model, where the yield strength and bulk modulus depends on pressure, density and temperature. The calculation of the melt temperature is based on the Lindermann law. At melt the yield strength and bulk modulus is set to zero. The pressure is represented as a seven-term polynomial as a function of density. For the HMX-based high explosive, we use a JWL, with a program burn model that gives the correct detonation velocity and C-J pressure (P ˜ 390 kbars). For the case of the large-amplitude curved surface, we discuss the evolving shock structure in terms of the early shock propagation experiments by Sakharov. We also discuss the dependence of our results upon our material model for aluminum.

  6. Optimal Control of Shock Wave Turbulent Boundary Layer Interactions Using Micro-Array Actuation

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Tinapple, Jon; Surber, Lewis

    2006-01-01

    The intent of this study on micro-array flow control is to demonstrate the viability and economy of Response Surface Methodology (RSM) to determine optimal designs of micro-array actuation for controlling the shock wave turbulent boundary layer interactions within supersonic inlets and compare these concepts to conventional bleed performance. The term micro-array refers to micro-actuator arrays which have heights of 25 to 40 percent of the undisturbed supersonic boundary layer thickness. This study covers optimal control of shock wave turbulent boundary layer interactions using standard micro-vane, tapered micro-vane, and standard micro-ramp arrays at a free stream Mach number of 2.0. The effectiveness of the three micro-array devices was tested using a shock pressure rise induced by the 10 shock generator, which was sufficiently strong as to separate the turbulent supersonic boundary layer. The overall design purpose of the micro-arrays was to alter the properties of the supersonic boundary layer by introducing a cascade of counter-rotating micro-vortices in the near wall region. In this manner, the impact of the shock wave boundary layer (SWBL) interaction on the main flow field was minimized without boundary bleed.

  7. MHD simulation of the shock wave event on October 24, 2003

    NASA Astrophysics Data System (ADS)

    Ogino, T.; Kajiwara, Y.; Nakao, M.; Park, K. S.; Fukazawa, K.; Yi, Y.

    2007-11-01

    A three-dimensional global MHD simulation of the interaction between the solar wind and the Earth's magnetosphere has been executed to study the shock wave event on space weather problem on October 24, 2003, when an abnormal operation happened in a satellite for Environment Observation Technology, ADEOS-II (Midori-II). Characteristic features of the event are the long duration of southward IMF, arrival of a strong shock wave, then large variation of IMF By from negative to positive for about 15 min duration. In the simulation, the shock wave compresses the magnetosphere for southward IMF and a hot plasma was injected around the geosynchronous orbit from plasma sheet. During the interval when IMF By changes from negative to positive, the magnitude of IMF extremely decreases to bring attenuation of magnetic reconnection. The open-closed boundary shrinks in the polar cap and the transient expansion of the magnetic field lines occurs to imply enhancement of particle precipitation. The reconnection site moves from dawn to dusk in the dayside magnetopause and a narrow cockscomb closed field region is formed in the high latitude tail.

  8. Comparison of acoustic shock waves generated by micro and nanosecond lasers for a smart laser surgery system

    NASA Astrophysics Data System (ADS)

    Nguendon Kenhagho, Hervé K.; Rauter, Georg; Guzman, Raphael; C. Cattin, Philippe; Zam, Azhar

    2018-02-01

    Characterization of acoustic shock wave will guarantee efficient tissue differentiation as feedback to reduce the probability of undesirable damaging (i.e. cutting) of tissues in laser surgery applications. We ablated hard (bone) and soft (muscle) tissues using a nanosecond pulsed Nd:YAG laser at 532 nm and a microsecond pulsed Er:YAG laser at 2.94 μm. When the intense short ns-pulsed laser is applied to material, the energy gain causes locally a plasma at the ablated spot that expands and propagates as an acoustic shock wave with a rarefaction wave behind the shock front. However, when using a μs-pulsed Er:YAG laser for material ablation, the acoustic shock wave is generated during the explosion of the ablated material. We measured and compared the emitted acoustic shock wave generated by a ns-pulsed Nd:YAG laser and a μs-pulsed Er:YAG laser measured by a calibrated microphone. As the acoustic shock wave attenuates as it propagates through air, the distance between ablation spots and a calibrated microphone was at 5 cm. We present the measurements on the propagation characteristics of the laser generated acoustic shock wave by measuring the arrival time-of-flight with a calibrated microphone and the energy-dependent evolution of acoustic parameters such as peak-topeak pressure, the ratio of the peak-to-peak pressures for the laser induced breakdown in air, the ablated muscle and the bone, and the spectral energy.

  9. Quantitative evaluation of the mechanical strength of titanium/composite bonding using laser-generated shock waves

    NASA Astrophysics Data System (ADS)

    Ducousso, M.; Bardy, S.; Rouchausse, Y.; Bergara, T.; Jenson, F.; Berthe, L.; Videau, L.; Cuvillier, N.

    2018-03-01

    Intense acoustic shock waves were applied to evaluate the mechanical strength of structural epoxy bonds between a TA6V4 titanium alloy and a 3D woven carbon/epoxy composite material. Two bond types with different mechanical strengths were obtained from two different adhesive reticulations, at 50% and 90% of conversion, resulting in longitudinal static strengths of 10 and 39 MPa and transverse strengths of 15 and 35 MPa, respectively. The GPa shock waves were generated using ns-scale intense laser pulses and reaction principles to a confined plasma expansion. Simulations taking into account the laser-matter interaction, plasma relaxation, and non-linear shock wave propagation were conducted to aid interpretation of the experiments. Good correlations were obtained between the experiments and the simulation and between different measurement methods of the mechanical strength (normalized tests vs laser-generated shock waves). Such results open the door toward certification of structural bonding.

  10. Effect of Surface Roughness on Characteristics of Spherical Shock Waves

    NASA Technical Reports Server (NTRS)

    Huber, Paul W.; McFarland, Donald R.

    1959-01-01

    Measurements of peak overpressure and Mach stem height were made at four burst heights. Data were obtained with instrumentation capable of directly observing the variation of shock wave movement with time. Good similarity of free air shock peak overpressure with larger scale data was found to exist. The net effect of surface roughness on shock peak overpressures slightly. Surface roughness delayed the Mach stem formation at the greatest charge height and lowered the growth at all burst heights. A similarity parameter was found which approximately correlates the triple point path at different burst heights.

  11. Extracorporeal shock wave therapy in periodontics: A new paradigm

    PubMed Central

    Venkatesh Prabhuji, Munivenkatappa Lakshmaiah; Khaleelahmed, Shaeesta; Vasudevalu, Sujatha; Vinodhini, K.

    2014-01-01

    The quest for exploring new frontiers in the field of medical science for efficient and improved treatment modalities has always been on a rise. Extracorporeal shock wave therapy (ESWT) has been enormously used in medical practice, principally, for the management of urolithiasis, cholelithiasis and also in various orthopedic and musculoskeletal disorders. The efficacy of ESWT in the stimulation of osteoblasts, fibroblasts, induction of neovascularization and increased expression of bone morphogenic proteins has been well documented in the literature. However, dentistry is no exception to this trend. The present article enlightens the various applications of ESWT in the field of dentistry and explores its prospective applications in the field of periodontics, and the possibility of incorporating the beneficial properties of shock waves in improving the treatment outcome. PMID:25024562

  12. Urinary extracorporeal shock wave lithotripsy: equipment, techniques, and overview.

    PubMed

    Pfister, R C; Papanicolaou, N; Yoder, I C

    1988-01-01

    Second generation urinary lithotriptors are characterized by extensive technical alterations and significant equipment improvement in the functional, logistical, and medical aspects of shock wave lithotripsy (SWL). These newer devices feature a water bath-free environment, a reduced anesthesia requirement, improved imaging, functional uses in addition to lithotripsy, or combinations thereof. Shock wave generation by spark gap, electromagnetic, piezoelectric and microexplosive techniques are related to their peak energy, frequency, and total energy capabilities which impacts on both anesthesia needs and the length and number of treatment sessions required to pulverize calculi. A master table summarizes the types of SW energy, coupling, imaging systems, patient transport, functional features, cost, and treatment effectiveness of 12 worldwide lithotriptors in various stages of investigative and clinical trials as monitored by the Food and Drug Administration (FDA) of America.

  13. A new mathematical approach for shock-wave solution in a dusty plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, G.C.; Dwivedi, C.B.; Talukdar, M.

    1997-12-01

    The problem of nonlinear Burger equation in a plasma contaminated with heavy dust grains has been revisited. As discussed earlier [C. B. Dwivedi and B. P. Pandey, Phys. Plasmas {bold 2}, 9 (1995)], the Burger equation originates due to dust charge fluctuation dynamics. A new alternate mathematical approach based on a simple traveling wave formalism has been applied to find out the solution of the derived Burger equation, and the method recovers the known shock-wave solution. This technique, although having its own limitation, predicts successfully the salient features of the weak shock-wave structure in a dusty plasma with dust chargemore » fluctuation dynamics. It is emphasized that this approach of the traveling wave formalism is being applied for the first time to solve the nonlinear wave equation in plasmas. {copyright} {ital 1997 American Institute of Physics.}« less

  14. Is pre-shock wave lithotripsy stenting necessary for ureteral stones with moderate or severe hydronephrosis?

    PubMed

    El-Assmy, Ahmed; El-Nahas, Ahmed R; Sheir, Khaled Z

    2006-11-01

    We performed a prospective, randomized clinical trial to evaluate the outcome of ureteral stents for solitary ureteral stones 2 cm or less in moderately or severely obstructed systems using shock wave lithotripsy. Between 2001 and 2004, 186 patients who met study criteria were randomized into 2 groups. Group 1 received a pre-shock wave lithotripsy 6Fr Double-J stent and group 2 had no stent. Patients were treated with a Dornier MFL 5000 lithotripter. Results were compared in terms of clearance rates, number of shock waves and sessions, irritative voiding symptoms, incidence of complications and secondary interventions. Failure was defined as the need for additional procedure(s) for stone extraction. Overall 164 patients (88.2%) became stone-free after shock wave lithotripsy. Complete stone fragmentation was achieved after 1 to 3 and more than 3 session in 108 (58.1%), 30 (16.1%), 13 (7%) and 14 patients (7.5%), respectively. Ureteral stent insertion did not affect the stone-free rate, which was 84.9% and 91.4% in groups 1 and 2, respectively (p = 0.25). There was no statistical difference in the re-treatment rate, flank pain or temperature in the 2 groups. However, all patients in the stented group significantly complained of side effects attributable to the stent, including dysuria, suprapubic pain, hematuria, pyuria and positive urinary culture. Pretreatment stenting provides no advantage over in situ shock wave lithotripsy for significantly obstructing ureteral calculi. Shock wave lithotripsy is reasonable initial therapy for ureteral stones 2 cm or less that cause moderate or severe hydronephrosis.

  15. Numerical investigation of the interaction between a planar shock wave with square and triangular bubbles containing different gases

    NASA Astrophysics Data System (ADS)

    Igra, Dan; Igra, Ozer

    2018-05-01

    The interaction between a planar shock wave and square and triangular bubbles containing either SF6, He, Ar, or CO2 is studied numerically. It is shown that, due to the existing large differences in the molecular weight, the specific heat ratio, and the acoustic impedance between these gases, different wave patterns and pressure distribution inside the bubbles are developed during the interaction process. In the case of heavy gases, the velocity of the shock wave propagating along the bubble inner surface is always less than that of the incident shock wave and higher than that of the transmitted shock wave. However, in the case of the light gas (He), the fastest one is the transmitted shock wave and the slowest one is the incident shock wave. The largest pressure jump is witnessed in the SF6 case, while the smallest pressure jump is seen in the helium case. There are also pronounced differences in the deformation of the investigated bubbles; while triangular bubbles filled with either Ar, CO2, or SF6 were deformed to a crescent shape, the helium bubble is deformed to a trapezoidal shape with three pairs of vortices emanating from its surface.

  16. The Universal Role of Tubulence in the Propagation of Strong Shocks and Detonation Waves

    NASA Astrophysics Data System (ADS)

    Lee, John H.

    2001-06-01

    The passage of a strong shock wave usually results in irreversible physical and chemical changes in the medium. If the chemical reactions are sufficiently exothermic, the shock wave can be self-propagating, i.e., sustained by the chemical energy release via the expansion work of the reaction products. Although shocks and detonations can be globally stable and propagate at constant velocities (in the direction of motion), their structure may be highly unstable and exhibit large hydrodynamic fluctuations, i.e., turbulence. Recent investigations on plastic deformation of polycrystalline material behind shock waves have revealed particle velocity dispersion at the mesoscopic level, a result of vortical rotational motion similar to that of turbulent fluid flows at high Reynolds number.1 Strong ionizing shocks in noble gases2, as well as dissociating shock waves in carbon dioxide,3 also demonstrate a turbulent density fluctuation in the non-equilibrium shock transition zone. Perhaps the most thoroughly investigated unstable structure is that of detonation waves in gaseous explosives.4 Detonation waves in liquid explosives such as nitromethane also take on similar unstable structure as gaseous detonations.5 There are also indications that detonations in solid explosives have a similar unsteady structure under certain conditions. Thus, it appears that it is more of a rule than an exception that the structure of strong shocks and detonations are unstable and exhibit turbulent-like fluctuations as improved diagnostics now permit us to look more closely at the meso- and micro-levels. Increasing attention is now devoted to the understanding of the shock waves at the micro-scale level in recent years. This is motivated by the need to formulate physical and chemical models that contain the correct physics capable of describing quantitatively the shock transition process. It should be noted that, in spite of its unstable 3-D structure, the steady 1-D conservation laws (in the

  17. Solar-flare-induced Forbush decreases - Dependence on shock wave geometry

    NASA Technical Reports Server (NTRS)

    Thomas, B. T.; Gall, R.

    1984-01-01

    It is argued that the principal mechanism for the association of Forbush decreases with the passage of a solar flare shock wave is prolonged containment of cosmic ray particles behind the flare compression region, which acts as a semipermeable obstacle to particle motion along the field lines, leading to additional adiabatic cooling of the particles. Liouville's theorem is used to calculate the instantaneous distribution function at 1 AU for each particle arriving at the earth. By averaging over a large number of individual estimates, a representative estimate of the omnidirectional phase space density and the corresponding particle intensity is obtained. The energy change of individual particles at the shocks is found to be small in comparison to the energy lost by adiabatic cooling of the cosmic rays between the shock wave and the sun. The effects of particle rigidity, diffusion coefficient, and flare longitude on the magnitude of the Forbush decrease are quantitatively investigated.

  18. Exclusive QCD processes, quark-hadron duality, and the transition to perturbative QCD

    NASA Astrophysics Data System (ADS)

    Corianò, Claudio; Li, Hsiang-nan; Savkli, Cetin

    1998-07-01

    Experiments at CEBAF will scan the intermediate-energy region of the QCD dynamics for the nucleon form factors and for Compton Scattering. These experiments will definitely clarify the role of resummed perturbation theory and of quark-hadron duality (QCD sum rules) in this regime. With this perspective in mind, we review the factorization theorem of perturbative QCD for exclusive processes at intermediate energy scales, which embodies the transverse degrees of freedom of a parton and the Sudakov resummation of the corresponding large logarithms. We concentrate on the pion and proton electromagnetic form factors and on pion Compton scattering. New ingredients, such as the evolution of the pion wave function and the complete two-loop expression of the Sudakov factor, are included. The sensitivity of our predictions to the infrared cutoff for the Sudakov evolution is discussed. We also elaborate on QCD sum rule methods for Compton Scattering, which provide an alternative description of this process. We show that, by comparing the local duality analysis to resummed perturbation theory, it is possible to describe the transition of exclusive processes to perturbative QCD.

  19. Spallation reactions in shock waves at supernova explosions and related problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ustinova, G. K., E-mail: ustinova@dubna.net.ru

    2013-05-15

    The isotopic anomalies of some extinct radionuclides testify to the outburst of a nearby supernova just before the collapse of the protosolar nebula, and to the fact that the supernova was Sn Ia, i.e. the carbon-detonation supernova. A key role of spallation reactions in the formation of isotopic anomalies in the primordial matter of the Solar System is revealed. It is conditioned by the diffusive acceleration of particles in the explosive shock waves, which leads to the amplification of rigidity of the energy spectrum of particles and its enrichment with heavier ions. The quantitative calculations of such isotopic anomalies ofmore » many elements are presented. It is well-grounded that the anomalous Xe-HL in meteoritic nanodiamonds was formed simultaneously with nanodiamonds themselves during the shock wave propagation at the Sn Ia explosion. The possible effects of shock wave fractionation of noble gases in the atmosphere of planets are considered. The origin of light elements Li, Be and B in spallation reactions, predicted by Fowler in the middle of the last century, is argued. All the investigated isotopic anomalies give the evidence for the extremely high magnetohydrodynamics (MHD) conditions at the initial stage of free expansion of the explosive shock wave from Sn Ia, which can be essential in solution of the problem of origin of cosmic rays. The specific iron-enriched matter of Sn Ia and its MHD-separation in turbulent processes must be taking into account in the models of origin of the Solar System.« less

  20. Permeabilization of the plasma membrane of L1210 mouse leukemia cells using lithotripter shock waves.

    PubMed

    Gambihler, S; Delius, M; Ellwart, J W

    1994-09-01

    Permeabilization of L1210 cells by lithotripter shock waves in vitro was monitored by evaluating the accumulation of fluorescein-labeled dextrans with a relative molecular mass ranging from 3,900-2,000,000. Incubation with labeled dextran alone caused a dose- and time-dependent increase in cellular fluorescence as determined by flow cytometry, with a vesicular distribution pattern in the cells consistent with endocytotic uptake. Shock wave exposure prior to incubation with labeled dextran revealed similar fluorescence intensities compared to incubation with labeled dextran alone. When cells were exposed to shock waves in the presence of labeled dextran, mean cellular fluorescence was further increased, indicating additional internalization of the probe. Confocal laser scanning microscopy confirmed intracellular fluorescence of labeled dextran with a diffuse distribution pattern. Fluorescence-activated cell sorting with subsequent determination of proliferation revealed that permeabilized cells were viable and able to proliferate. Permeabilization of the membrane of L1210 cells by shock waves in vitro allowed loading of dextrans with a relative molecular mass up to 2,000,000. Permeabilization of tumor cells by shock waves provides a useful tool for introducing molecules into cells which might be of interest for drug targeting in tumor therapy in vivo.

  1. Experimental investigation on the characteristics of supersonic fuel spray and configurations of induced shock waves.

    PubMed

    Wang, Yong; Yu, Yu-Song; Li, Guo-Xiu; Jia, Tao-Ming

    2017-01-05

    The macro characteristics and configurations of induced shock waves of the supersonic sprays are investigated by experimental methods. Visualization study of spray shape is carried out with the high-speed camera. The macro characteristics including spray tip penetration, velocity of spray tip and spray angle are analyzed. The configurations of shock waves are investigated by Schlieren technique. For supersonic sprays, the concept of spray front angle is presented. Effects of Mach number of spray on the spray front angle are investigated. The results show that the shape of spray tip is similar to blunt body when fuel spray is at transonic region. If spray entered the supersonic region, the oblique shock waves are induced instead of normal shock wave. With the velocity of spray increasing, the spray front angle and shock wave angle are increased. The tip region of the supersonic fuel spray is commonly formed a cone. Mean droplet diameter of fuel spray is measured using Malvern's Spraytec. Then the mean droplet diameter results are compared with three popular empirical models (Hiroyasu's, Varde's and Merrigton's model). It is found that the Merrigton's model shows a relative good correlation between models and experimental results. Finally, exponent of injection velocity in the Merrigton's model is fitted with experimental results.

  2. Nonlinear CARS measurement of nitrogen vibrational and rotational temperatures behind hypervelocity strong shock wave

    NASA Astrophysics Data System (ADS)

    Osada, Takashi; Endo, Youichi; Kanazawa, Chikara; Ota, Masanori; Maeno, Kazuo

    2009-02-01

    The hypervelocity strong shock waves are generated, when the space vehicles reenter the atmosphere from space. Behind the shock wave radiative and non-equilibrium flow is generated in front of the surface of the space vehicle. Many studies have been reported to investigate the phenomena for the aerospace exploit and reentry. The research information and data on the high temperature flows have been available to the rational heatproof design of the space vehicles. Recent development of measurement techniques with laser systems and photo-electronics now enables us to investigate the hypervelocity phenomena with greatly advanced accuracy. In this research strong shock waves are generated in low-density gas to simulate the reentry range gas flow with a free-piston double-diaphragm shock tube, and CARS (Coherent Anti-stokes Raman Spectroscopy) measurement method is applied to the hypervelocity flows behind the shock waves, where spectral signals of high space/time resolution are acquired. The CARS system consists of YAG and dye lasers, a spectroscope, and a CCD camera system. We obtain the CARS signal spectrum data by this special time-resolving experiment, and the vibrational and rotational temperatures of N2 are determined by fitting between the experimental spectroscopic profile data and theoretically estimated spectroscopic data.

  3. Acoustic and mechanical properties of renal calculi: implications in shock wave lithotripsy.

    PubMed

    Chuong, C J; Zhong, P; Preminger, G M

    1993-12-01

    The acoustic and mechanical properties of renal calculi dictate how a stone interacts with the mechanical forces produced by shock wave lithotripsy; thus, these properties are directly related to the success of the treatment. Using an ultrasound pulse transmission technique, we measured both longitudinal and transverse (or shear) wave propagation speeds in nine groups of renal calculi with different chemical compositions. We also measured stone density using a pycnometer based on Archimedes' principle. From these measurements, we calculated wave impedance and dynamic mechanical properties of the renal stones. Calcium oxalate monohydrate and cystine stones had higher longitudinal and transverse wave speeds, wave impedances, and dynamic moduli (bulk modulus, Young's modulus, and shear modulus), suggesting that these stones are more difficult to fragment. Phosphate stones (carbonate apatite and magnesium ammonium phosphate hydrogen) were found to have lower values of these properties, suggesting they are more amenable to shock wave fragmentation. These data provide a physical explanation for the significant differences in stone fragility observed clinically.

  4. Laser-driven Mach waves for gigabar-range shock experiments

    NASA Astrophysics Data System (ADS)

    Swift, Damian; Jenei, Amy; Coppari, Federica; Saunders, Alison; Nilsen, Joseph

    2017-06-01

    Mach reflection offers possibilities for generating planar, supported shocks at higher pressures than are practical even with laser ablation. We have studied the formation of Mach waves by algebraic solution and hydrocode simulation for drive pressures at much than reported previously, and for realistic equations of state. We predict that Mach reflection continues to occur as the drive pressure increases, and the pressure enhancement increases monotonically with drive pressure even though the ``enhancement spike'' characteristic of low-pressure Mach waves disappears. The growth angle also increases monotonically with pressure, so a higher drive pressure seems always to be an advantage. However, there are conditions where the Mach wave is perturbed by reflections. We have performed trial experiments at the Omega facility, using a laser-heated halfraum to induce a Mach wave in a polystyrene cone. Pulse length and energy limitations meant that the drive was not maintained long enough to fully support the shock, but the results indicated a Mach wave of 25-30 TPa from a drive pressure of 5-6 TPa, consistent with simulations. A similar configuration should perform well at the NIF, and a Z-pinch driven configuration may be possible. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  5. Laser-driven Mach waves for gigabar-range shock experiments

    NASA Astrophysics Data System (ADS)

    Swift, Damian; Lazicki, Amy; Coppari, Federica; Saunders, Alison; Nilsen, Joseph

    2017-10-01

    Mach reflection offers possibilities for generating planar, supported shocks at higher pressures than are practical even with laser ablation. We have studied the formation of Mach waves by algebraic solution and hydrocode simulation for drive pressures at much than reported previously, and for realistic equations of state. We predict that Mach reflection continues to occur as the drive pressure increases, and the pressure enhancement increases monotonically with drive pressure even though the ``enhancement spike'' characteristic of low-pressure Mach waves disappears. The growth angle also increases monotonically with pressure, so a higher drive pressure seems always to be an advantage. However, there are conditions where the Mach wave is perturbed by reflections. We have performed trial experiments at the Omega facility, using a laser-heated halfraum to induce a Mach wave in a polystyrene cone. Pulse length and energy limitations meant that the drive was not maintained long enough to fully support the shock, but the results indicated a Mach wave of 25-30 TPa from a drive pressure of 5-6 TPa, consistent with simulations. A similar configuration should be tested at the NIF, and a Z-pinch driven configuration may be possible. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  6. Hypersonic shock wave interaction and impingement

    NASA Technical Reports Server (NTRS)

    Kessler, W. C.; Reilly, J. F.; Sampatacos, E.

    1971-01-01

    An experimental investigation was conducted on space shuttle type, body-wing configurations. The purpose of the investigation was to determine the effects of body and wing geometry on the hypersonic shock structure about these vehicles and on the resulting surface impingement of interior flow field shock and expansion waves. Schlieren photographs and thermographic phosphor paint data were obtained on three body cross sections with three wing planforms at 40, 50 and 60 degree angles of attack. Specific configuration data were obtained at 0 and 30 degree angles of attack to develop trends. These data were obtained at a nominal Mach number of 13.5 and a freestream unit Reynolds number of 0.7 million per foot. For comparison with these straight wing configurations, data were also obtained on a model of a point design, high cross-range, delta wing orbiter at 40, 50 and 60 degree angles of attack. As expected, the data on this delta wing orbiter indicated that the shock intersection/impingement phenomena associated with straight wing vehicles are considerably more complex than, and result in both windward and leeward surface heating regions not present on, the delta configuration.

  7. The effects of extracorporeal shock wave therapy on the pain and function of patients with degenerative knee arthritis.

    PubMed

    Lee, Ji-Hyun; Lee, Sangyong; Choi, SeokJoo; Choi, Yoon-Hee; Lee, Kwansub

    2017-03-01

    [Purpose] The purpose of this study was to identify the effects of extracorporeal shock wave therapy on the pain and function of patients with degenerative knee arthritis. [Subjects and Methods] Twenty patients with degenerative knee arthritis were divided into a conservative physical therapy group (n=10) and an extracorporeal shock wave therapy group (n=10). Both groups received general conservative physical therapy, and the extracorporeal shock wave therapy was additionally treated with extracorporeal shock wave therapy after receiving conservative physical therapy. Both groups were treated three times a week over a four-week period. The visual analogue scale was used to evaluate pain in the knee joints of the subjects, and the Korean Western Ontario and McMaster Universities Osteoarthritis Index was used to evaluate the function of the subjects. [Results] The comparison of the visual analogue scale and Korean Western Ontario and McMaster Universities Osteoarthritis Index scores within each group before and after the treatment showed statistically significant declines in scores in both the conservative physical therapy group and extracorporeal shock wave therapy group. A group comparison after the treatment showed statistically significant differences in these scores in the extracorporeal shock wave therapy group and the conservative physical therapy group. [Conclusion] extracorporeal shock wave therapy may be a useful nonsurgical intervention for reducing the pain of patients with degenerative knee arthritis and improving these patients' function.

  8. Shock Waves Propagation in Scope of the Nonlocal Theory of Dynamical Plasticity

    NASA Astrophysics Data System (ADS)

    Khantuleva, Tatyana A.

    2004-07-01

    From the point of view of the modern statistical mechanics the problems on shock compression of solids require a reformulation in terms of highly nonequilibrium effects arising inside the wave front. The self-organization during the multiscale and multistage momentum and energy exchange are originated by the correlation function. The theory of dynamic plasticity has been developed by the author on the base of the self-consistent nonlocal hydrodynamic approach had been applied to the shock wave propagation in solids. Nonlocal balance equations describe both the reversible wave type transport at the initial stage and the diffusive (dissipative) one in the end. The involved inverse influence of the mesoeffects on the wave propagation makes the formulation of problems self-consistent and involves a concept of the cybernetic control close-loop.

  9. Coronal Shock Waves and Solar Energetic Particle Events

    NASA Astrophysics Data System (ADS)

    Cliver, Edward

    Recent evidence supports the view first expressed by Wild, Smerd, and Weiss in 1963 that large solar energetic particle (SEP) events are a consequence of shock waves manifested by radio type II bursts. Following Tylka et al. (ApJ 625, 474, 2005), our picture of SEP acceleration at shocks now includes the effects of variable seed particle population and shock geometry. By taking these factors into account, Tylka and Lee (ApJ 646, 1319, 2006; see also Sandroos Vainio, ApJ 662, L127, 2007; AA 507, L21, 2009) were able to account for the charge-to-mass variability in high-Z ions first reported by Breneman and Stone in 1985. Recent studies of electron-to-proton ratios, both in interplanetary space (Cliver Ling, ApJ 658, 1349, 2007; Dietrich et al., in preparation, 2010) and in gamma-ray-line events (Shih et al., ApJ 698, L152, 2009), also support the view that large SEP events originate in coronal shocks and not in solar flares. Concurrent with the above developments, there is growing evidence that coronal shocks are driven by coronal mass ejections rather than by flare pressure pulses.

  10. Reorganization of pathological control functions of memory-A neural model for tissue healing by shock waves

    NASA Astrophysics Data System (ADS)

    Wess, Othmar

    2005-04-01

    Since 1980 shock waves have proven effective in the field of extracorporeal lithotripsy. More than 10 years ago shock waves were successfully applied for various indications such as chronic pain, non-unions and, recently, for angina pectoris. These fields do not profit from the disintegration power but from stimulating and healing effects of shock waves. Increased metabolism and neo-vascularization are reported after shock wave application. According to C. J. Wang, a biological cascade is initiated, starting with a stimulating effect of physical energy resulting in increased circulation and metabolism. Pathological memory of neural control patterns is considered the reason for different pathologies characterized by insufficient metabolism. This paper presents a neural model for reorganization of pathological reflex patterns. The model acts on associative memory functions of the brain based on modification of synaptic junctions. Accordingly, pathological memory effects of the autonomous nervous system are reorganized by repeated application of shock waves followed by development of normal reflex patterns. Physiologic control of muscle and vascular tone is followed by increased metabolism and tissue repair. The memory model may explain hyper-stimulation effects in pain therapy.

  11. The interaction of moderately strong shock waves with thick perforated walls of low porosity

    NASA Technical Reports Server (NTRS)

    Grant, D. J.

    1972-01-01

    A theoretical prediction is given of the flow through thick perforated walls of low porosity resulting from the impingement of a moderately strong traveling shock wave. The model was a flat plate positioned normal to the direction of the flow. Holes bored in the plate parallel to the direction of the flow provided nominal hole length-to-diameter ratios of 10:1 and an axial porosity of 25 percent of the flow channel cross section. The flow field behind the reflected shock wave was assumed to behave as a reservoir producing a quasi-steady duct flow through the model. Rayleigh and Fanno duct flow theoretical computations for each of three possible auxiliary wave patterns that can be associated with the transmitted shock (to satisfy contact surface compatibility) were used to provide bounding solutions as an alternative to the more complex influence coefficients method. Qualitative and quantitative behavior was verified in a 1.5- by 2.0-in. helium shock tube. High speed Schlieren photography, piezoelectric pressure-time histories, and electronic-counter wave speed measurements were used to assess the extent of correlation with the theoretical flow models. Reduced data indicated the adequacy of the bounding theory approach to predict wave phenomena and quantitative response.

  12. The preplasma effect on the properties of the shock wave driven by a fast electron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Llor Aisa, E.; Ribeyre, X.; Tikhonchuk, V. T.

    2016-08-15

    Strong shock wave generation by a mono-energetic fast electron beam in a plasma with an increasing density profile is studied theoretically. The proposed analytical model describes the shock wave characteristics for a homogeneous plasma preceded by a low density precursor. The shock pressure and the time of shock formation depend on the ratio of the electron stopping length to the preplasma areal density and on the initial energy of injected electrons. The conclusions of theoretical model are confirmed in numerical simulations.

  13. A cumulative shear mechanism for tissue damage initiation in shock-wave lithotripsy.

    PubMed

    Freund, Jonathan B; Colonius, Tim; Evan, Andrew P

    2007-09-01

    Evidence suggests that inertial cavitation plays an important role in the renal injury incurred during shock-wave lithotripsy. However, it is unclear how tissue damage is initiated, and significant injury typically occurs only after a sufficient dose of shock waves. Although it has been suggested that shock-induced shearing might initiate injury, estimates indicate that individual shocks do not produce sufficient shear to do so. In this paper, we hypothesize that the cumulative shear of the many shocks is damaging. This mechanism depends on whether there is sufficient time between shocks for tissue to relax to its unstrained state. We investigate the mechanism with a physics-based simulation model, wherein the basement membranes that define the tubules and vessels in the inner medulla are represented as elastic shells surrounded by viscous fluid. Material properties are estimated from in-vitro tests of renal basement membranes and documented mechanical properties of cells and extracellular gels. Estimates for the net shear deformation from a typical lithotripter shock (approximately 0.1%) are found from a separate dynamic shock simulation. The results suggest that the larger interstitial volume (approximately 40%) near the papilla tip gives the tissue there a relaxation time comparable to clinical shock delivery rates (approximately 1 Hz), thus allowing shear to accumulate. Away from the papilla tip, where the interstitial volume is smaller (approximately 20%), the model tissue relaxes completely before the next shock would be delivered. Implications of the model are that slower delivery rates and broader focal zones should both decrease injury, consistent with some recent observations.

  14. Numerical solutions of several reflected shock-wave flow fields with nonequilibrium chemical reactions

    NASA Technical Reports Server (NTRS)

    Hanson, R. K.; Presley, L. L.; Williams, E. V.

    1972-01-01

    The method of characteristics for a chemically reacting gas is used in the construction of the time-dependent, one-dimensional flow field resulting from the normal reflection of an incident shock wave at the end wall of a shock tube. Nonequilibrium chemical reactions are allowed behind both the incident and reflected shock waves. All the solutions are evaluated for oxygen, but the results are generally representative of any inviscid, nonconducting, and nonradiating diatomic gas. The solutions clearly show that: (1) both the incident- and reflected-shock chemical relaxation times are important in governing the time to attain steady state thermodynamic properties; and (2) adjacent to the end wall, an excess-entropy layer develops wherein the steady state values of all the thermodynamic variables except pressure differ significantly from their corresponding Rankine-Hugoniot equilibrium values.

  15. Investigating Vaporization of Silica through Laser Driven Shock Wave Experiments

    NASA Astrophysics Data System (ADS)

    Kraus, R. G.; Swift, D. C.; Stewart, S. T.; Smith, R.; Bolme, C. A.; Spaulding, D. K.; Hicks, D.; Eggert, J.; Collins, G.

    2010-12-01

    Giant impacts melt and vaporize a significant amount of the bolide and target body. However, our ability to determine how much melt or vapor a given impact creates depends strongly on our understanding of the liquid-vapor phase boundary of geologic materials. Our current knowledge of the liquid-vapor equilibrium for one of the most important minerals, SiO2, is rather limited due to the difficulty of performing experiments in this area of phase space. In this study, we investigate the liquid-vapor coexistence region by shocking quartz into a supercritical fluid state and allowing it to adiabatically expand to a state on the liquid-vapor phase boundary. Although shock compression and release has been used to study the liquid-vapor equilibrium of metals [1], few attempts have been made at studying geologic materials by this method [2]. Shock waves were produced by direct ablation of the quartz sample using the Jupiter Laser Facility of Lawrence Livermore National Laboratory. Steady shock pressures of 120-360 GPa were produced in the quartz samples: high enough to force the quartz into a supercritical fluid state. As the shock wave propagates through the sample, we measure the shock velocity using a line imaging velocity interferometer system for any reflector (VISAR) and shock temperature using a streaked optical pyrometer (SOP). When the shock wave reaches the free surface of the sample, the material adiabatically expands. Upon breakout of the shock at the free surface, the SOP records a distinct drop in radiance due to the lower temperature of the expanded material. For a subset of experiments, a LiF window is positioned downrange of the expanding silica. When the expanding silica impacts the LiF window, the velocity at the interface between the expanding silica and LiF window is measured using the VISAR. From the shock velocity measurements, we accurately determine the shocked state in the quartz. The post-shock radiance measurements are used to constrain the

  16. Experimental study on a heavy-gas cylinder accelerated by cylindrical converging shock waves

    NASA Astrophysics Data System (ADS)

    Si, T.; Zhai, Z.; Luo, X.; Yang, J.

    2014-01-01

    The Richtmyer-Meshkov instability behavior of a heavy-gas cylinder accelerated by a cylindrical converging shock wave is studied experimentally. A curved wall profile is well-designed based on the shock dynamics theory [Phys. Fluids, 22: 041701 (2010)] with an incident planar shock Mach number of 1.2 and a converging angle of in a mm square cross-section shock tube. The cylinder mixed with the glycol droplets flows vertically through the test section and is illuminated horizontally by a laser sheet. The images obtained only one per run by an ICCD (intensified charge coupled device) combined with a pulsed Nd:YAG laser are first presented and the complete evolution process of the cylinder is then captured in a single test shot by a high-speed video camera combined with a high-power continuous laser. In this way, both the developments of the first counter-rotating vortex pair and the second counter-rotating vortex pair with an opposite rotating direction from the first one are observed. The experimental results indicate that the phenomena induced by the converging shock wave and the reflected shock formed from the center of convergence are distinct from those found in the planar shock case.

  17. Mathematical analysis of thermal diffusion shock waves

    NASA Astrophysics Data System (ADS)

    Gusev, Vitalyi; Craig, Walter; Livoti, Roberto; Danworaphong, Sorasak; Diebold, Gerald J.

    2005-10-01

    Thermal diffusion, also known as the Ludwig-Soret effect, refers to the separation of mixtures in a temperature gradient. For a binary mixture the time dependence of the change in concentration of each species is governed by a nonlinear partial differential equation in space and time. Here, an exact solution of the Ludwig-Soret equation without mass diffusion for a sinusoidal temperature field is given. The solution shows that counterpropagating shock waves are produced which slow and eventually come to a halt. Expressions are found for the shock time for two limiting values of the starting density fraction. The effects of diffusion on the development of the concentration profile in time and space are found by numerical integration of the nonlinear differential equation.

  18. Large amplitude MHD waves upstream of the Jovian bow shock

    NASA Technical Reports Server (NTRS)

    Goldstein, M. L.; Smith, C. W.; Matthaeus, W. H.

    1983-01-01

    Observations of large amplitude magnetohydrodynamics (MHD) waves upstream of Jupiter's bow shock are analyzed. The waves are found to be right circularly polarized in the solar wind frame which suggests that they are propagating in the fast magnetosonic mode. A complete spectral and minimum variance eigenvalue analysis of the data was performed. The power spectrum of the magnetic fluctuations contains several peaks. The fluctuations at 2.3 mHz have a direction of minimum variance along the direction of the average magnetic field. The direction of minimum variance of these fluctuations lies at approximately 40 deg. to the magnetic field and is parallel to the radial direction. We argue that these fluctuations are waves excited by protons reflected off the Jovian bow shock. The inferred speed of the reflected protons is about two times the solar wind speed in the plasma rest frame. A linear instability analysis is presented which suggests an explanation for many of the observed features of the observations.

  19. Experimental investigation on the characteristics of supersonic fuel spray and configurations of induced shock waves

    PubMed Central

    Wang, Yong; Yu, Yu-song; Li, Guo-xiu; Jia, Tao-ming

    2017-01-01

    The macro characteristics and configurations of induced shock waves of the supersonic sprays are investigated by experimental methods. Visualization study of spray shape is carried out with the high-speed camera. The macro characteristics including spray tip penetration, velocity of spray tip and spray angle are analyzed. The configurations of shock waves are investigated by Schlieren technique. For supersonic sprays, the concept of spray front angle is presented. Effects of Mach number of spray on the spray front angle are investigated. The results show that the shape of spray tip is similar to blunt body when fuel spray is at transonic region. If spray entered the supersonic region, the oblique shock waves are induced instead of normal shock wave. With the velocity of spray increasing, the spray front angle and shock wave angle are increased. The tip region of the supersonic fuel spray is commonly formed a cone. Mean droplet diameter of fuel spray is measured using Malvern’s Spraytec. Then the mean droplet diameter results are compared with three popular empirical models (Hiroyasu’s, Varde’s and Merrigton’s model). It is found that the Merrigton’s model shows a relative good correlation between models and experimental results. Finally, exponent of injection velocity in the Merrigton’s model is fitted with experimental results. PMID:28054555

  20. T-wave loop area from a pre-implant 12-lead ECG is associated with appropriate ICD shocks

    PubMed Central

    Hnatkova, Katerina; Friede, Tim; Malik, Marek; Zabel, Markus

    2017-01-01

    Aims In implantable cardioverter-defibrillator (ICD) patients, predictors of ICD shocks and mortality are needed to improve patient selection. Electrocardiographic (ECG) markers are simple to obtain and have been demonstrated to predict mortality. We aimed to assess the association of T-wave loop area and circularity with ICD shocks. Methods The study investigated patients with ICDs implanted between 1998 and 2010 for whom digital 12-lead ECGs (Schiller CS200 ECG-Network) of sufficient quality were obtained within 1 month prior to the implantation. T-wave loop area and circularity were calculated. Follow-up data of appropriate shocks were obtained during ICD clinic visits that included reviews of device stored electrograms. Results A total of 605 patients (82% males) were included; 68% had ischemic cardiomyopathy and 72% were treated for primary prevention. Over 3.8±1.4 years of follow-up, 114 patients (19%) experienced appropriate shock(s). Those with smaller T-wave loop area received fewer shocks (TLA, hazard ratio, HR, per increase of 1 technical unit, 0.71; [95% confidence interval, 0.53–0.94]; P = 0.02) and those with larger T-wave loop circularity (TLC) representing rounder T wave loop received more shocks (HR per 1% TLC increase 2.96; [0.85–10.36]; P = 0.09). When the quartile containing the largest TLA and TLC values, respectively, were compared to the remaining cases, TLA remained significantly associated with fewer and TLC with more frequent shocks also after multivariate adjustment for clinical variables (HR, 0.59 [0.35–0.99], P = 0.044; and 1.64 [1.08–2.49], P = 0.021, respectively). Conclusions The size and shape of the T-wave loop calculated from pre-implantation 12-lead ECGs are associated with appropriate ICD shocks. PMID:28291831

  1. Nonequilibrium radiation behind a strong shock wave in CO 2-N 2

    NASA Astrophysics Data System (ADS)

    Rond, C.; Boubert, P.; Félio, J.-M.; Chikhaoui, A.

    2007-11-01

    This work presents experiments reproducing plasma re-entry for one trajectory point of a Martian mission. The typical facility to investigate such hypersonic flow is shock tube; here we used the free-piston shock tube TCM2. Measurements of radiative flux behind the shock wave are realized thanks to time-resolved emission spectroscopy which is calibrated in intensity. As CN violet system is the main radiator in near UV-visible range, we have focused our study on its spectrum. Moreover a physical model, based on a multi-temperature kinetic code and a radiative code, for calculation of non equilibrium radiation behind a shock wave is developed for CO 2-N 2-Ar mixtures. Comparisons between experiments and calculations show that standard kinetic models (Park, McKenzie) are inefficient to reproduce our experimental results. Therefore we propose new rate coefficients in particular for the dissociation of CO 2, showing the way towards a better description of the chemistry of the mixture.

  2. The Bactericidal Effect of Shock Waves

    NASA Astrophysics Data System (ADS)

    Leighs, James; Appleby-Thomas, Gareth; Wood, David; Goff, Michael; Hameed, Amer; Hazell, Paul

    2013-06-01

    There are a variety of theories relating to the origins of life on our home planet, some of which discuss the possibility that life may have been spread via inter-planetary impacts. There have been a number of investigations into the ability of life to withstand the likely conditions generated by asteroid impact (both contained in the impactor and buried beneath the planet surface). Previously published data regarding the ability of bacteria to survive such applied shock waves has produced conflicting conclusions. The work presented here used an established technique, in combination with a single stage gas gun to shock load and subsequently recover Escherichia coli populations suspended in a phosphate buffered saline solution. Peak pressure across the sample region was calculated via numerical modelling, validated via Heterodyne velocimetry measurements. Survival data against peak sample pressure for recovered samples is presented alongside control tests.

  3. Can cellulite be treated with low-energy extracorporeal shock wave therapy?

    PubMed Central

    Angehrn, Fiorenzo; Kuhn, Christoph; Voss, Axel

    2007-01-01

    The present study investigates the effects of low-energy defocused extracorporeal generated shock waves on collagen structure of cellulite afflicted skin. Cellulite measurement using high-resolution ultrasound technology was performed before and after low-energy defocused extracorporeal shock wave therapy (ESWT) in 21 female subjects. ESWT was applied onto the skin at the lateral thigh twice a week for a period of six weeks. Results provide evidence that low-energy defocused ESWT caused remodeling of the collagen within the dermis of the tested region. Improving device-parameters and therapy regimes will be essential for future development of a scientific based approach to cellulite treatment. PMID:18225463

  4. Determining integral density distribution in the mach reflection of shock waves

    NASA Astrophysics Data System (ADS)

    Shevchenko, A. M.; Golubev, M. P.; Pavlov, A. A.; Pavlov, Al. A.; Khotyanovsky, D. V.; Shmakov, A. S.

    2017-05-01

    We present a method for and results of determination of the field of integral density in the structure of flow corresponding to the Mach interaction of shock waves at Mach number M = 3. The optical diagnostics of flow was performed using an interference technique based on self-adjusting Zernike filters (SA-AVT method). Numerical simulations were carried out using the CFS3D program package for solving the Euler and Navier-Stokes equations. Quantitative data on the distribution of integral density on the path of probing radiation in one direction of 3D flow transillumination in the region of Mach interaction of shock waves were obtained for the first time.

  5. Precursor Wave Emission Enhanced by Weibel Instability in Relativistic Shocks

    NASA Astrophysics Data System (ADS)

    Iwamoto, Masanori; Amano, Takanobu; Hoshino, Masahiro; Matsumoto, Yosuke

    2018-05-01

    We investigated the precursor wave emission efficiency in magnetized purely perpendicular relativistic shocks in pair plasmas. We extended our previous study to include the dependence of upstream magnetic field orientations. We performed two-dimensional particle-in-cell simulations and focused on two magnetic field orientations: the magnetic field in the simulation plane (i.e., in-plane configuration) and that perpendicular to the simulation plane (i.e., out-of-plane configuration). Our simulations in the in-plane configuration demonstrated that not only extraordinary but also ordinary mode waves are excited. We quantified the emission efficiency as a function of the magnetization parameter σ e and found that the large-amplitude precursor waves are emitted for a wide range of σ e . We found that especially at low σ e , the magnetic field generated by Weibel instability amplifies the ordinary mode wave power. The amplitude is large enough to perturb the upstream plasma, and transverse density filaments are generated as in the case of the out-of-plane configuration investigated in the previous study. We confirmed that our previous conclusion holds regardless of upstream magnetic field orientations with respect to the two-dimensional simulation plane. We discuss the precursor wave emission in three dimensions and the feasibility of wakefield acceleration in relativistic shocks based on our results.

  6. Medium-Induced QCD Cascade: Democratic Branching and Wave Turbulence

    NASA Astrophysics Data System (ADS)

    Blaizot, J.-P.; Iancu, E.; Mehtar-Tani, Y.

    2013-08-01

    We study the average properties of the gluon cascade generated by an energetic parton propagating through a quark-gluon plasma. We focus on the soft, medium-induced emissions which control the energy transport at large angles with respect to the leading parton. We show that the effect of multiple branchings is important. In contrast with what happens in a usual QCD cascade in vacuum, medium-induced branchings are quasidemocratic, with offspring gluons carrying sizable fractions of the energy of their parent gluon. This results in an efficient mechanism for the transport of energy toward the medium, which is akin to wave turbulence with a scaling spectrum ˜1/ω. We argue that the turbulent flow may be responsible for the excess energy carried by very soft quanta, as revealed by the analysis of the dijet asymmetry observed in Pb-Pb collisions at the LHC.

  7. Impact of aging and comorbidity on the efficacy of low-intensity shock wave therapy for erectile dysfunction.

    PubMed

    Hisasue, Shin-ichi; China, Toshiyuki; Horiuchi, Akira; Kimura, Masaki; Saito, Keisuke; Isotani, Shuji; Ide, Hisamitsu; Muto, Satoru; Yamaguchi, Raizo; Horie, Shigeo

    2016-01-01

    To evaluate the efficacy of low-intensity shock wave therapy and to identify the predictive factors of its efficacy in Japanese patients with erectile dysfunction. The present study included 57 patients with erectile dysfunction who satisfied all the following conditions: more than 6-months history of erectile dysfunction, sexual health inventory for men score of ≤ 12 without phosphodiesterase type-5 inhibitor, erection hardness score grade 1 or 2, mean penile circumferential change by erectometer assessing sleep related erection of < 25 mm and non-neurological pathology. Patients were treated by a low-energy shock waves generator (ED1000; Medispec, Gaithersburg, MD, USA). A total of 12 shock wave treatments were applied. Sexual health inventory for men score, erection hardness score with or without phosphodiesterase type-5 inhibitor, and mean penile circumferential change were assessed at baseline, 1, 3 and 6 months after the termination of low-intensity shock wave therapy. Of 57 patients who were assigned for the low-intensity shock wave therapy trial, 56 patients were analyzed. Patients had a median age of 64 years. The sexual health inventory for men and erection hardness score (with and without phosphodiesterase type-5 inhibitor) were significantly increased (P < 0.001) at each time-point. The mean penile circumferential change was also increased from 13.1 to 20.2 mm after low-intensity shock wave therapy (P < 0.001). In the multivariate analysis, age and the number of concomitant comorbidities were statistically significant predictors for the efficacy. Low-intensity shock wave therapy seems to be an effective physical therapy for erectile dysfunction. Age and comorbidities are negative predictive factors of therapeutic response. © 2015 The Japanese Urological Association.

  8. Schlieren imaging of loud sounds and weak shock waves in air near the limit of visibility

    NASA Astrophysics Data System (ADS)

    Hargather, Michael John; Settles, Gary S.; Madalis, Matthew J.

    2010-02-01

    A large schlieren system with exceptional sensitivity and a high-speed digital camera are used to visualize loud sounds and a variety of common phenomena that produce weak shock waves in the atmosphere. Frame rates varied from 10,000 to 30,000 frames/s with microsecond frame exposures. Sound waves become visible to this instrumentation at frequencies above 10 kHz and sound pressure levels in the 110 dB (6.3 Pa) range and above. The density gradient produced by a weak shock wave is examined and found to depend upon the profile and thickness of the shock as well as the density difference across it. Schlieren visualizations of weak shock waves from common phenomena include loud trumpet notes, various impact phenomena that compress a bubble of air, bursting a toy balloon, popping a champagne cork, snapping a wooden stick, and snapping a wet towel. The balloon burst, snapping a ruler on a table, and snapping the towel and a leather belt all produced readily visible shock-wave phenomena. In contrast, clapping the hands, snapping the stick, and the champagne cork all produced wave trains that were near the weak limit of visibility. Overall, with sensitive optics and a modern high-speed camera, many nonlinear acoustic phenomena in the air can be observed and studied.

  9. The effect of treatment strategy on stone comminution efficiency in shock wave lithotripsy.

    PubMed

    Zhou, Yufeng; Cocks, Franklin H; Preminger, Glenn M; Zhong, Pei

    2004-07-01

    The comminution of kidney stones in shock wave lithotripsy (SWL) is a dose dependent process caused primarily by the combination of 2 fundamental mechanisms, namely stress waves and cavitation. The effect of treatment strategy with emphasis on enhancing the effect of stress waves or cavitation on stone comminution in SWL was investigated. Because vascular injury in SWL is also dose dependent, optimization of the treatment strategy may produce improved stone comminution with decreased tissue injury in SWL. Using an in vitro experiment system that mimics stone fragmentation in the renal pelvis spherical BegoStone (Bego USA, Smithfield, Rhode Island) phantoms (diameter 10 mm) were exposed to 1,500 shocks at a pulse repetition rate of 1 Hz in an unmodified HM-3 lithotripter (Dornier Medical Systems, Kennesaw, Georgia). The 3 treatment strategies used were increasing output voltage from 18 to 20 and then to 22 kV every 500 shocks with emphasis on enhancing the effect of cavitation on medium fragments (2 to 4 mm) at the final treatment stage, decreasing output voltage from 22 to 20 and then to 18 kV every 500 shocks with emphasis on enhancing the effect of stress waves on large fragments (greater than 4 mm) at the initial treatment stage and maintaining a constant output voltage at 20 kV, as typically used in SWL procedures. Following shock wave exposure the size distribution of fragments was determined by the sequential sieving method. In addition, pressure waveforms at lithotripter focus (F2) produced at different output settings were measured using a fiber optic probe hydrophone. The rate of stone comminution in SWL varied significantly in a dose dependent manner depending on the treatment strategies used. Specifically the comminution efficiencies produced by the 3 strategies after the initial 500 shocks were 30.7%, 59% and 41.9%, respectively. After 1,000 shocks the corresponding comminution efficiencies became similar (60.2%, 68.1% and 66.4%, respectively) with no

  10. Investigation of passive shock wave-boundary layer control for transonic airfoil drag reduction

    NASA Technical Reports Server (NTRS)

    Nagamatsu, H. T.; Brower, W. B., Jr.; Bahi, L.; Ross, J.

    1982-01-01

    The passive drag control concept, consisting of a porous surface with a cavity beneath it, was investigated with a 12-percent-thick circular arc and a 14-percent-thick supercritical airfoil mounted on the test section bottom wall. The porous surface was positioned in the shock wave/boundary layer interaction region. The flow circulating through the porous surface, from the downstream to the upstream of the terminating shock wave location, produced a lambda shock wave system and a pressure decrease in the downstream region minimizing the flow separation. The wake impact pressure data show an appreciably drag reduction with the porous surface at transonic speeds. To determine the optimum size of porosity and cavity, tunnel tests were conducted with different airfoil porosities, cavities and flow Mach numbers. A higher drag reduction was obtained by the 2.5 percent porosity and the 1/4-inch deep cavity.

  11. The development of shock wave overpressure driven by channel expansion of high current impulse discharge arc

    NASA Astrophysics Data System (ADS)

    Xiong, Jia-ming; Li, Lee; Dai, Hong-yu; Wu, Hai-bo; Peng, Ming-yang; Lin, Fu-chang

    2018-03-01

    During the formation of a high current impulse discharge arc, objects near the discharge arc will be strongly impacted. In this paper, a high power, high current gas switch is used as the site of the impulse discharge arc. The explosion wave theory and the arc channel energy balance equation are introduced to analyze the development of the shock wave overpressure driven by the high current impulse discharge arc, and the demarcation point of the arc channel is given, from which the energy of the arc channel is no longer converted into shock waves. Through the analysis and calculation, it is found that the magnitude of the shock wave overpressure caused by impulse discharge arc expansion is closely related to the arc current rising rate. The arc shock wave overpressure will undergo a slow decay process and then decay rapidly. The study of this paper will perform the function of deepening the understanding of the physical nature of the impulse arc discharge, which can be used to explain the damage effect of the high current impulse discharge arc.

  12. Characterization of laser-driven shock waves in solids using a fiber optic pressure probe.

    PubMed

    Cranch, Geoffrey A; Lunsford, Robert; Grün, Jacob; Weaver, James; Compton, Steve; May, Mark; Kostinski, Natalie

    2013-11-10

    Measurement of laser-driven shock wave pressure in solid blocks of polymethyl methacrylate is demonstrated using fiber optic pressure probes. Three probes based on a fiber Fabry-Perot, fiber Bragg grating, and interferometric fiber tip sensor are tested and compared. Shock waves are generated using a high-power laser focused onto a thin foil target placed in close proximity to the test blocks. The fiber Fabry-Perot sensor appears capable of resolving the shock front with a rise time of 91 ns. The peak pressure is estimated, using a separate shadowgraphy measurement, to be 3.4 GPa.

  13. Characterization of laser-driven shock waves in solids using a fiber optic pressure probe

    DOE PAGES

    Cranch, Geoffrey A.; Lunsford, Robert; Grun, Jacob; ...

    2013-11-08

    Measurement of laser-driven shock wave pressure in solid blocks of polymethyl methacrylate is demonstrated using fiber optic pressure probes. Three probes based on a fiber Fabry–Perot, fiber Bragg grating, and interferometric fiber tip sensor are tested and compared. Shock waves are generated using a high-power laser focused onto a thin foil target placed in close proximity to the test blocks. The fiber Fabry–Perot sensor appears capable of resolving the shock front with a rise time of 91 ns. As a result, the peak pressure is estimated, using a separate shadowgraphy measurement, to be 3.4 GPa.

  14. Nonlinear waveform distortion and shock formation in the near field of a continuous wave piston source

    NASA Astrophysics Data System (ADS)

    Sapozhnikov, Oleg A.; Khokhlova, Vera A.; Cathignol, Dominique

    2004-05-01

    A classical effect of nonlinear acoustics is that a plane sinusoidal acoustic wave propagating in a nonlinear medium transforms to a sawtooth wave with one shock per cycle. However, the waveform evolution can be quite different in the near field of a plane source due to diffraction. Previous numerical simulations of nonlinear acoustic waves in the near field of a circular piston source predict the development of two shocks per wave cycle [Khokhlova et al., J. Acoust. Soc. Am. 110, 95-108 (2001)]. Moreover, at some locations the peak pressure may be up to 4 times the source amplitude. The motivation of this work was to experimentally verify and further explain the phenomena of the nonlinear waveform distortion. Measurements were conducted in water with a 47-mm-diameter unfocused transducer, working at 1-MHz frequency. For pressure amplitudes higher than 0.5 MPa, two shocks per cycle were observed in the waveform beyond the last minimum of the fundamental harmonic amplitude. With the increase of the observation distance, these two shocks collided and formed one shock (per cycle), i.e., the waveform developed into the classical sawtooth wave. The experimental results were in a very good agreement with the modeling based on the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation.

  15. Failure waves in glass and ceramics under shock compression

    NASA Astrophysics Data System (ADS)

    Brar, N. S.

    2000-04-01

    The response of various types of glasses (fused silica, borosilicates, soda-lime, and lead filled) to shock wave loading, especially the failure of glass behind the shock wave through the "so called" failure wave or front, has been the subject of intense research among a number of investigators. The variations in material properties across this front include complete loss of tensile (spall) strength, loss in shear strength, reduction in acoustic impedance and opacity to light. Both the Stress and velocity history from VISAR measurements have shown that the failure front propagates at a speed of 1.5 to 2.5 mm/s, depending on the peak shock stress. The shear strength [τ=1/2(σ1-σ2)] behind the failure front, determined using embedded transverse gauges, is found to decrease to about 1 GPa for soda-lime, borosilicate, and filled glasses. Optical (high-speed photography) observations also confirm formation of this failure front. There is a general agreement among various researchers on these failure observations. However, three proposed mechanisms for the formation of failure front are based on totally different formulations. The first, due to Clifton, is based on the hypothesis of densification of glass under shock compression. Densification is followed by shear failure around inhomogeneities resulting in a phase boundary between the comminuted and the intact material. The second, proposed by Grady, involves the transfer of elastic shear strain energy to dilatant strain energy as a result of severe micro-cracking originating from impact. The third, by Espinosa and Brar, proposes that the front is created through shear micro-cracks, which nucleate and propagate from the impact face; as originally suggested by Kanel. This later mechanism is supported by the observed loss of shear strength of glass by Clifton et al. at shock stress above the threshold level. Espinosa has incorporated this mechanism in multiple-plane model and simulations predict the increase in lateral

  16. Ion streaming instabilities with application to collisionless shock wave structure

    NASA Technical Reports Server (NTRS)

    Golden, K. I.; Linson, L. M.; Mani, S. A.

    1973-01-01

    The electromagnetic dispersion relation for two counterstreaming ion beams of arbitrary relative strength flowing parallel to a dc magnetic field is derived. The beams flow through a stationary electron background and the dispersion relation in the fluid approximation is unaffected by the electron thermal pressure. The dispersion relation is solved with a zero net current condition applied and the regions of instability in the k-U space (U is the relative velocity between the two ion beams) are presented. The parameters are then chosen to be applicable for parallel shocks. It was found that unstable waves with zero group velocity in the shock frame can exist near the leading edge of the shock for upstream Alfven Mach numbers greater than 5.5. It is suggested that this mechanism could generate sufficient turbulence within the shock layer to scatter the incoming ions and create the required dissipation for intermediate strength shocks.

  17. On the propagation of decaying planar shock and blast waves through non-uniform channels

    NASA Astrophysics Data System (ADS)

    Peace, J. T.; Lu, F. K.

    2018-05-01

    The propagation of planar decaying shock and blast waves in non-uniform channels is investigated with the use of a two-equation approximation of the generalized CCW theory. The effects of flow non-uniformity for the cases of an arbitrary strength decaying shock and blast wave in the strong shock limit are considered. Unlike the original CCW theory, the two-equation approximation takes into account the effects of initial temporal flow gradients in the flow properties behind the shock as the shock encounters an area change. A generalized order-of-magnitude analysis is carried out to analyze under which conditions the classical area-Mach (A-M) relation and two-equation approximation are valid given a time constant of decay for the flow properties behind the shock. It is shown that the two-equation approximation extends the applicability of the CCW theory to problems where flow non-uniformity behind the shock is orders of magnitude above that for appropriate use of the A-M relation. The behavior of the two-equation solution is presented for converging and diverging channels and compared against the A-M relation. It is shown that the second-order approximation and A-M relation have good agreement for converging geometries, such that the influence of flow non-uniformity behind the shock is negligible compared to the effects of changing area. Alternatively, the two-equation approximation is shown to be strongly dependent on the initial magnitude of flow non-uniformity in diverging geometries. Further, in diverging geometries, the inclusion of flow non-uniformity yields shock solutions that tend toward an acoustic wave faster than that predicted by the A-M relation.

  18. Effect of Shock Wave Lithotripsy on Renal Hemodynamics

    NASA Astrophysics Data System (ADS)

    Handa, Rajash K.; Willis, Lynn R.; Evan, Andrew P.; Connors, Bret A.

    2008-09-01

    Extracorporeal shock wave lithotripsy (SWL) can injure tissue and decrease blood flow in the SWL-treated kidney, both tissue and functional effects being largely localized to the region targeted with shock waves (SWs). A novel method of limiting SWL-induced tissue injury is to employ the "protection" protocol, where the kidney is pretreated with low-energy SWs prior to the application of a standard clinical dose of high-energy SWs. Resistive index measurements of renal vascular resistance/impedance to blood flow during SWL treatment protocols revealed that a standard clinical dose of high-energy SWs did not alter RI during SW application. However, there was an interaction between low- and high-energy SWL treatment phases of the "protection" protocol such that an increase in RI (vasoconstriction) was observed during the later half of SW application, a time when tissue damage is occurring during the standard high-energy SWL protocol. We suggest that renal vasoconstriction may be responsible for reducing the degree of tissue damage that normally results from a standard clinical dose of high-energy SWs.

  19. Shock Wave Treatment Enhances Cell Proliferation and Improves Wound Healing by ATP Release-coupled Extracellular Signal-regulated Kinase (ERK) Activation*

    PubMed Central

    Weihs, Anna M.; Fuchs, Christiane; Teuschl, Andreas H.; Hartinger, Joachim; Slezak, Paul; Mittermayr, Rainer; Redl, Heinz; Junger, Wolfgang G.; Sitte, Harald H.; Rünzler, Dominik

    2014-01-01

    Shock wave treatment accelerates impaired wound healing in diverse clinical situations. However, the mechanisms underlying the beneficial effects of shock waves have not yet been fully revealed. Because cell proliferation is a major requirement in the wound healing cascade, we used in vitro studies and an in vivo wound healing model to study whether shock wave treatment influences proliferation by altering major extracellular factors and signaling pathways involved in cell proliferation. We identified extracellular ATP, released in an energy- and pulse number-dependent manner, as a trigger of the biological effects of shock wave treatment. Shock wave treatment induced ATP release, increased Erk1/2 and p38 MAPK activation, and enhanced proliferation in three different cell types (C3H10T1/2 murine mesenchymal progenitor cells, primary human adipose tissue-derived stem cells, and a human Jurkat T cell line) in vitro. Purinergic signaling-induced Erk1/2 activation was found to be essential for this proliferative effect, which was further confirmed by in vivo studies in a rat wound healing model where shock wave treatment induced proliferation and increased wound healing in an Erk1/2-dependent fashion. In summary, this report demonstrates that shock wave treatment triggers release of cellular ATP, which subsequently activates purinergic receptors and finally enhances proliferation in vitro and in vivo via downstream Erk1/2 signaling. In conclusion, our findings shed further light on the molecular mechanisms by which shock wave treatment exerts its beneficial effects. These findings could help to improve the clinical use of shock wave treatment for wound healing. PMID:25118288

  20. Autophagy activation protects shock wave induced renal tubular epithelial cell apoptosis may through modulation of Akt/ GSK-3β pathway.

    PubMed

    Long, Qingzhi; Li, Xiang; He, Hui; He, Dalin

    2016-01-01

    Extracorporeal shock wave lithotripsy (ESWL) is well documented to exert destructive effect to renal cells and its mechanism is not clear. Autophagy is one of cell basic response for stressful conditions and it is important to determine cell's fate. The aim of this study is to elucidate the role of autophagy in the process of shock wave-induced renal cells injury. NRK-52E cell, a rat renal tubular epithelial cell, was exposed to shock wave at the voltage of 14KV. GFP-LC3 puncta was used to monitor Autophagy flux in the process of shock wave injury. Autophagic relative proteins, such as light chain 3 (LC3), beclin-1 and p62, were also examined. Cell variability and apoptosis were detected when inhibition autophagy with 3-methyladenine (3MA) or stimulating its activity with rapamycin during the process of shock wave injury. The role of Akt/ GSK-3β and its connection with autophagy in the process of shock wave injury were also investigated. Shock wave was confirmed to activate autophagy in renal cells, which was manifested in LC3-II turnover, beclin-1 induction and degradation of p62. Inhibition autophagy enhanced cell damage or apoptosis, whereas its stimulating was able to exert protection from shock wave injury. Akt/ GSK-3β, a cell-survival signaling pathway, can also be activated during the process. And its activation could be suppressed by blockade autophagy. Autophagy is a self-protective response for renal cells from shock wave injury. The cyto-protection of autophagy may be connected with modulation Akt/ GSK-3β pathway.

  1. Shock wave treatment enhances cell proliferation and improves wound healing by ATP release-coupled extracellular signal-regulated kinase (ERK) activation.

    PubMed

    Weihs, Anna M; Fuchs, Christiane; Teuschl, Andreas H; Hartinger, Joachim; Slezak, Paul; Mittermayr, Rainer; Redl, Heinz; Junger, Wolfgang G; Sitte, Harald H; Rünzler, Dominik

    2014-09-26

    Shock wave treatment accelerates impaired wound healing in diverse clinical situations. However, the mechanisms underlying the beneficial effects of shock waves have not yet been fully revealed. Because cell proliferation is a major requirement in the wound healing cascade, we used in vitro studies and an in vivo wound healing model to study whether shock wave treatment influences proliferation by altering major extracellular factors and signaling pathways involved in cell proliferation. We identified extracellular ATP, released in an energy- and pulse number-dependent manner, as a trigger of the biological effects of shock wave treatment. Shock wave treatment induced ATP release, increased Erk1/2 and p38 MAPK activation, and enhanced proliferation in three different cell types (C3H10T1/2 murine mesenchymal progenitor cells, primary human adipose tissue-derived stem cells, and a human Jurkat T cell line) in vitro. Purinergic signaling-induced Erk1/2 activation was found to be essential for this proliferative effect, which was further confirmed by in vivo studies in a rat wound healing model where shock wave treatment induced proliferation and increased wound healing in an Erk1/2-dependent fashion. In summary, this report demonstrates that shock wave treatment triggers release of cellular ATP, which subsequently activates purinergic receptors and finally enhances proliferation in vitro and in vivo via downstream Erk1/2 signaling. In conclusion, our findings shed further light on the molecular mechanisms by which shock wave treatment exerts its beneficial effects. These findings could help to improve the clinical use of shock wave treatment for wound healing. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Recent development in lattice QCD studies for three-nucleon forces

    NASA Astrophysics Data System (ADS)

    Doi, Takumi; HAL QCD Collaboration

    2014-09-01

    The direct determination of nuclear forces from QCD has been one of the most desirable challenges in nuclear physics. Recently, a first-principles lattice QCD determination is becoming possible by a novel theoretical method, HAL QCD method, in which Nambu-Bethe-Salpeter (NBS) wave functions are utilized. In this talk, I will focus on the study of three-nucleon forces in HAL QCD method by presenting the recent theoretical/numerical development.

  3. Propagation of acoustic shock waves between parallel rigid boundaries and into shadow zones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desjouy, C., E-mail: cyril.desjouy@gmail.com; Ollivier, S.; Dragna, D.

    2015-10-28

    The study of acoustic shock propagation in complex environments is of great interest for urban acoustics, but also for source localization, an underlying problematic in military applications. To give a better understanding of the phenomenon taking place during the propagation of acoustic shocks, laboratory-scale experiments and numerical simulations were performed to study the propagation of weak shock waves between parallel rigid boundaries, and into shadow zones created by corners. In particular, this work focuses on the study of the local interactions taking place between incident, reflected, and diffracted waves according to the geometry in both regular or irregular – alsomore » called Von Neumann – regimes of reflection. In this latter case, an irregular reflection can lead to the formation of a Mach stem that can modify the spatial distribution of the acoustic pressure. Short duration acoustic shock waves were produced by a 20 kilovolts electric spark source and a schlieren optical method was used to visualize the incident shockfront and the reflection/diffraction patterns. Experimental results are compared to numerical simulations based on the high-order finite difference solution of the two dimensional Navier-Stokes equations.« less

  4. A computational study on the interaction between a vortex and a shock wave

    NASA Technical Reports Server (NTRS)

    Meadows, Kristine R.; Kumar, Ajay; Hussaini, M. Y.

    1989-01-01

    A computational study of two-dimensional shock vortex interaction is discussed in this paper. A second order upwind finite volume method is used to solve the Euler equations in conservation form. In this method, the shock wave is captured rather than fitted so that the cases where shock vortex interaction may cause secondary shocks can also be investigated. The effects of vortex strength on the computed flow and acoustic field generated by the interaction are qualitatively evaluated.

  5. Energetic electrons response to ULF waves induced by interplanetary shocks in the outer radiation belt

    NASA Astrophysics Data System (ADS)

    Zong, Qiugang

    Strong interplanetary shocks interaction with the Earth's magnetosphere would have great impacts on the Earth's magnetosphere. Cluster and Double Star constellation provides an ex-cellent opportunity to study the inner magnetospheric response to a powerful interplanetary solar wind forcing. An interplanetary shock on Nov.7 2004 with the solar wind dynamic pres-sure ˜ 70 nPa (Maximum) induced a large bipolar electric field in the plasmasphere boundary layer as observed by Cluster fleet, the peak-to-peak ∆Ey is more than 60 mV/m. Energetic elec-trons in the outer radiation belt are accelerated almost simultaneously when the interplanetary shock impinges upon the Earth's magnetosphere. Energetic electron bursts are coincident with the induced large electric field, energetic electrons (30 to 500 keV) with 900 pitch angles are accelerated first whereas those electrons are decelerated when the shock-induced electric field turns to positive value. Both toroidal and poloidal mode waves are found to be important but interacting with energetic electron at a different L-shell and a different period. At the Cluster's position (L = 4.4,), poloidal is predominant wave mode whereas at the geosynchronous orbits (L = 6.6), the ULF waves observed by the GOES -10 and -12 satellites are mostly toroidal. For comparison, a rather weak interplanetary shock on Aug. 30, 2001 (dynamic pressure ˜ 2.7 nPa) is also investigated in this paper. It is found that interplanetary shocks or solar wind pressure pulses with even small dynamic pressure change would have non-ignorable role in the radiation belt dynamic. Further, in this paper, our results also reveal the excitation of ULF waves re-sponses on the passing interplanetary shock, especially the importance of difference ULF wave modes when interacting with the energetic electrons in the radiation belt. The damping of the shock induced ULF waves could be separated into two terms: one term corresponds to the generalized Landau damping, the

  6. Blast shock wave mitigation using the hydraulic energy redirection and release technology.

    PubMed

    Chen, Yun; Huang, Wei; Constantini, Shlomi

    2012-01-01

    A hydraulic energy redirection and release technology has been developed for mitigating the effects of blast shock waves on protected objects. The technology employs a liquid-filled plastic tubing as a blast overpressure transformer to transfer kinetic energy of blast shock waves into hydraulic energy in the plastic tubings. The hydraulic energy is redirected through the plastic tubings to the openings at the lower ends, and then is quickly released with the liquid flowing out through the openings. The samples of the specifically designed body armor in which the liquid-filled plastic tubings were installed vertically as the outer layer of the body armor were tested. The blast test results demonstrated that blast overpressure behind the body armor samples was remarkably reduced by 97% in 0.2 msec after the liquid flowed out of its appropriate volume through the openings. The results also suggested that a volumetric liquid surge might be created when kinetic energy of blast shock wave was transferred into hydraulic energy to cause a rapid physical movement or displacement of the liquid. The volumetric liquid surge has a strong destructive power, and can cause a noncontact, remote injury in humans (such as blast-induced traumatic brain injury and post-traumatic stress disorder) if it is created in cardiovascular system. The hydraulic energy redirection and release technology can successfully mitigate blast shock waves from the outer surface of the body armor. It should be further explored as an innovative approach to effectively protect against blast threats to civilian and military personnel.

  7. Blast Shock Wave Mitigation Using the Hydraulic Energy Redirection and Release Technology

    PubMed Central

    Chen, Yun; Huang, Wei; Constantini, Shlomi

    2012-01-01

    A hydraulic energy redirection and release technology has been developed for mitigating the effects of blast shock waves on protected objects. The technology employs a liquid-filled plastic tubing as a blast overpressure transformer to transfer kinetic energy of blast shock waves into hydraulic energy in the plastic tubings. The hydraulic energy is redirected through the plastic tubings to the openings at the lower ends, and then is quickly released with the liquid flowing out through the openings. The samples of the specifically designed body armor in which the liquid-filled plastic tubings were installed vertically as the outer layer of the body armor were tested. The blast test results demonstrated that blast overpressure behind the body armor samples was remarkably reduced by 97% in 0.2 msec after the liquid flowed out of its appropriate volume through the openings. The results also suggested that a volumetric liquid surge might be created when kinetic energy of blast shock wave was transferred into hydraulic energy to cause a rapid physical movement or displacement of the liquid. The volumetric liquid surge has a strong destructive power, and can cause a noncontact, remote injury in humans (such as blast-induced traumatic brain injury and post-traumatic stress disorder) if it is created in cardiovascular system. The hydraulic energy redirection and release technology can successfully mitigate blast shock waves from the outer surface of the body armor. It should be further explored as an innovative approach to effectively protect against blast threats to civilian and military personnel. PMID:22745740

  8. Extracorporeal shock wave therapy is effective in treating chronic plantar fasciitis

    PubMed Central

    Sun, Jiale; Gao, Fuqiang; Wang, Yanhua; Sun, Wei; Jiang, Baoguo; Li, Zirong

    2017-01-01

    Abstract Background: Plantar fasciitis (PF) is the most common reason for heel pain. The efficacy of extracorporeal shock wave therapy (ESWT) as an ideal alternative to conservative treatments and surgery is controversial, and almost all previous articles compared general ESWT with placebo without indicating the kind of shock wave. We undertook a meta-analysis to compare the efficacy of general ESWT, focused shock wave (FSW), and radial shock wave (RSW) with placebo, to assess their effectiveness in chronic PF. Methods: The PubMed, Medline, EmBase, Web of Science, and Cochrane library databases were searched for studies comparing FSW or RSW therapy with placebo in chronic PF. Clinical outcomes included the odds ratios (ORs) of pain relief, pain reduction, and complications. Relevant data were analyzed using RevMan v5.3. Results: Nine studies involving 935 patients were included. ESWT had higher improvement rates than the placebo group (OR 2.58, 95% confidence interval [CI] 1.97–3.39, P < .00001). ESWT had markedly lower standardized mean difference than placebo, with heterogeneity observed (standardized mean difference 1.01, 95% CI −0.01 to 2.03, P = .05, I2 = 96%, P < .00001). FSW and RSW therapies had greater therapeutic success in pain relief than the placebo group (OR 2.17, 95% CI 1.49–3.16, P < .0001; OR 4.63, 95% CI 1.30–16.46, P = .02), but significant heterogeneity was observed in RSW therapy versus placebo (I2 = 81%, P = .005). Conclusion: This meta-analysis suggested that FSW therapy can relieve pain in chronic PF as an ideal alternative option; meanwhile, no firm conclusions of general ESWT and RSW effectiveness can be drawn. Due to variations in the included studies, additional trials are needed to validate these conclusions. PMID:28403111

  9. Acoustic waves in shock tunnels and expansion tubes

    NASA Technical Reports Server (NTRS)

    Paull, A.; Stalker, R. J.

    1992-01-01

    It is shown that disturbances in shock and expansion tubes can be modelled as lateral acoustic waves. The ratio of sound speed across the driver-test gas interface is shown to govern the quantity of noise in the test gas. Frequency 'focusing' which is fundamental to centered unsteady expansions is discussed and displayed in centerline pitot pressure measurements.

  10. Holographic studies of shock waves within transonic fan rotors

    NASA Technical Reports Server (NTRS)

    Benser, W. A.; Bailey, E. E.; Gelder, T. F.

    1974-01-01

    NASA has funded two separate contracts to apply pulsed laser holographic interferometry to the detection of shock patterns in the outer span regions of high tip speed transonic rotors. The first holographic approach used ruby laser light reflected from a portion of the centerbody just ahead of the rotor. These holograms showed the bow wave patterns upstream of the rotor and the shock patterns just inside the blade row near the tip. The second holographic approach, on a different rotor, used light transmitted diagonally across the inlet annulus past the centerbody. This approach gave a more extensive view of the region bounded by the blade leading and trailing edges, by the part span shroud and by the blade tip. These holograms showed the passage shock emanating from the blade leading edge and a moderately strong conical shock originating at the intersection of the part span shroud leading edge and the blade suction surface.

  11. Dynamics of Solar Energetic Particles in the Presence of a Shock Wave

    NASA Astrophysics Data System (ADS)

    Timofeev, V. E.; Petukhov, Ivan; Petukhov, Stanislav; Starodubtsev, Sergei

    2003-07-01

    From the analysis of problem solutions on the solar energetic particle propagation in the presence of a plane shock wave described by the diffusion convective transport equation, the condition and manifestations for the influence of a shock wave on the SEP propagation in the solar wind have been determined. Solar energetic particles (SEP) in gradual events are generated by shock waves (see, for example, [1] and references there). The SEP generation region is limited, on the whole, by the solar corona. Proton fluxes of 470 MeV to 21 GeV energies, a maximum of which occur at a time when the shock in the atmosphere of the Sun reaches heights equal to 5 10 solar radii [2] indicate to it. It is also confirmed by the significant advancing of the occurrence time of maximum in the SEP intensity with kinetic energies more than 10 MeV relative to the shock front arrival moment to Earth's orbit. model calculations for the particles acceleration by the diffusive mechanism in conditions, typical for the solar corona, show that the time taken to pass the solar atmosphere by the shock is quite sufficient to form the particle spectrum corresponding to the SEP characteristics observed [3,4]. Lee and Ryan [5] investigated the problem of SEP gradual event generation, propagation and confirmed the close association between the diffusive acceleration mechanism and SEP events. The absence of depending of particle diffusion coefficients on the energy is a lack of this model. As an extension of preceding investigations, in this work the temporal dynamics of the particle spectrum in the presence of a plane shock for diffusion coefficients depending on the particle energy and also their change in time is studied. The SEP event from a moment of arising of a shock to a moment of it's arrival on the Earth's orbit can be divided on two stages: the first stage (duration is ˜ 1 hour) is a generation of SEP in the solar corona, the second stage (duration is ˜ 1 day) is a propagation in

  12. Complexity-action duality of the shock wave geometry in a massive gravity theory

    NASA Astrophysics Data System (ADS)

    Miao, Yan-Gang; Zhao, Long

    2018-01-01

    On the holographic complexity dual to the bulk action, we investigate the action growth for a shock wave geometry in a massive gravity theory within the Wheeler-DeWitt (WDW) patch at the late time limit. For a global shock wave, the graviton mass does not affect the action growth in the bulk, i.e., the complexity on the boundary, showing that the action growth (complexity) is the same for both the Einstein gravity and the massive gravity. Nevertheless, for a local shock wave that depends on transverse coordinates, the action growth (complexity) caused by the boundary disturbance (perturbation) is proportional to the butterfly velocity for the two gravity theories, but the butterfly velocity of the massive gravity theory is smaller than that of the Einstein gravity theory, indicating that the action growth (complexity) of the massive gravity is depressed by the graviton mass. In addition, we extend the black hole thermodynamics of the massive gravity and obtain the right Smarr formula.

  13. Interaction between shock wave and single inertial bubbles near an elastic boundary.

    PubMed

    Sankin, G N; Zhong, P

    2006-10-01

    The interaction of laser-generated single inertial bubbles (collapse time = 121 mus) near a silicon rubber membrane with a shock wave (55 MPa in peak pressure and 1.7 mus in compressive pulse duration) is investigated. The interaction leads to directional, forced asymmetric collapse of the bubble with microjet formation toward the surface. Maximum jet penetration into the membrane is produced during the bubble collapse phase with optimal shock wave arrival time and stand-off distance. Such interaction may provide a unique acoustic means for in vivo microinjection, applicable to targeted delivery of macromolecules and gene vectors to biological tissues.

  14. Generation of Pc 1 waves by the ion temperature anisotropy associated with fast shocks caused by sudden impulses

    NASA Technical Reports Server (NTRS)

    Mandt, M. E.; Lee, L. C.

    1991-01-01

    The high correlation of Pc 1 events with magnetospheric compressions is known. A mechanism is proposed which leads to the generation of Pc 1 waves. The interaction of a dynamic pressure pulse with the earth's bow shock leads to the formation of a weak fast-mode shock propagating into the magnetoshealth. The shock wave can pass right through a tangential discontinuity (magnetopause) and into the magnetosphere, without disturbing either of the structures. In a quasiperpendicular geometry, the shock wave exhibits anisotropic heating. This anisotropy drives unstable ion-cyclotron waves which can contribute to the generation of the Pc 1 waves which are detected. The viability of the mechanism is demonstrated with simulations. This mechanism could explain the peak in the occurrence of observed Pc 1 waves in the postnoon sector where a field-aligned discontinuity in the solar wind would most often be parallel to the magnetopause surface due to the average Parker-spiral magnetic-field configuration.

  15. Punctuated equilibrium and shock waves in molecular models of biological evolution.

    PubMed

    Saakian, David B; Ghazaryan, Makar H; Hu, Chin-Kun

    2014-08-01

    We consider the dynamics in infinite population evolution models with a general symmetric fitness landscape. We find shock waves, i.e., discontinuous transitions in the mean fitness, in evolution dynamics even with smooth fitness landscapes, which means that the search for the optimal evolution trajectory is more complicated. These shock waves appear in the case of positive epistasis and can be used to represent punctuated equilibria in biological evolution during long geological time scales. We find exact analytical solutions for discontinuous dynamics at the large-genome-length limit and derive optimal mutation rates for a fixed fitness landscape to send the population from the initial configuration to some final configuration in the fastest way.

  16. Two dimensional electrostatic shock waves in relativistic electron positron ion plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masood, W.; Rizvi, H.

    2010-05-15

    Ion-acoustic shock waves (IASWs) are studied in an unmagnetized plasma consisting of electrons, positrons and hot ions. In this regard, Kadomtsev-Petviashvili-Burgers (KPB) equation is derived using the small amplitude perturbation expansion method. The dependence of the IASWs on various plasma parameters is numerically investigated. It is observed that ratio of ion to electron temperature, kinematic viscosity, positron concentration, and the relativistic ion streaming velocity affect the structure of the IASW. Limiting case of the KPB equation is also discussed. Stability of KPB equation is also presented. The present investigation may have relevance in the study of electrostatic shock waves inmore » relativistic electron-positron-ion plasmas.« less

  17. Simulation of the Action of a Shock Wave on Titanium Alloy

    NASA Astrophysics Data System (ADS)

    Afanas'eva, S. A.; Belov, N. N.; Burkin, V. V.; Dudarev, E. F.; Ishchenko, A. N.; Rogaev, K. S.; Dudarev, E. F.; Ishchenko, A. N.; Rogaev, K. S.

    2017-01-01

    The laws and mechanism of fracture of coarse-grain and ultrafine-grain titanium under shock-wave loading has been investigated. For the shock wave generator a "SINUS-7" accelerator emitting a nanosecond relativistic highcurrent electron beam was used. To test the high-velocity impact at velocities of the order of 2500 m/s, a ballistic installation of caliber 23 mm was used. The mathematical simulation of the high-velocity interaction was carried out with account for the fracture, the phase transitions, and the dependence of the strength characteristics of materials on the internal energy within the framework of continuum mechanics. For both granular structures the general laws and features of the fracture have been established.

  18. Studies of Shock Wave Interactions with Homogeneous and Isotropic Turbulence

    NASA Technical Reports Server (NTRS)

    Briassulis, G.; Agui, J.; Watkins, C. B.; Andreopoulos, Y.

    1998-01-01

    A nearly homogeneous nearly isotropic compressible turbulent flow interacting with a normal shock wave has been studied experimentally in a large shock tube facility. Spatial resolution of the order of 8 Kolmogorov viscous length scales was achieved in the measurements of turbulence. A variety of turbulence generating grids provide a wide range of turbulence scales. Integral length scales were found to substantially decrease through the interaction with the shock wave in all investigated cases with flow Mach numbers ranging from 0.3 to 0.7 and shock Mach numbers from 1.2 to 1.6. The outcome of the interaction depends strongly on the state of compressibility of the incoming turbulence. The length scales in the lateral direction are amplified at small Mach numbers and attenuated at large Mach numbers. Even at large Mach numbers amplification of lateral length scales has been observed in the case of fine grids. In addition to the interaction with the shock the present work has documented substantial compressibility effects in the incoming homogeneous and isotropic turbulent flow. The decay of Mach number fluctuations was found to follow a power law similar to that describing the decay of incompressible isotropic turbulence. It was found that the decay coefficient and the decay exponent decrease with increasing Mach number while the virtual origin increases with increasing Mach number. A mechanism possibly responsible for these effects appears to be the inherently low growth rate of compressible shear layers emanating from the cylindrical rods of the grid.

  19. Development of an Omnidirectional-Capable Electromagnetic Shock Wave Generator for Lipolysis

    PubMed Central

    Lin, San Yih

    2017-01-01

    Traditional methods for adipose tissue removal have progressed from invasive methods such as liposuction to more modern methods of noninvasive lipolysis. This research entails the development and evaluation of an omnidirectional-capable flat-coil electromagnetic shock wave generator (EMSWG) for lipolysis. The developed EMSWG has the advantage of omnidirectional-capable operation. This capability increases the eventual clinical usability by adding three designed supports to the aluminum disk of the EMSWG to allow omnidirectional operation. The focal pressures of the developed EMSWG for different operating voltages were measured, and its corresponding energy intensities were calculated. The developed EMSWG was mounted in a downward orientation for lipolysis and evaluated as proof of concept. In vitro tests on porcine fatty tissues have been carried out. It is found that at a 6 kV operating voltage with 1500 shock wave exposures, a 2 cm thick subcutaneous hypodermis of porcine fatty tissue can be ruptured, resulting in a damaged area of 1.39 mm2. At a 6.5 kV operating voltage with 2000 shock wave exposures, the damaged area is increased to about 5.20 mm2, which can be enlarged by changing the focal point location, resulting in significant lipolysis for use in clinical applications. PMID:29065664

  20. Development of an Omnidirectional-Capable Electromagnetic Shock Wave Generator for Lipolysis.

    PubMed

    Chang, Ming Hau; Lin, San Yih

    2017-01-01

    Traditional methods for adipose tissue removal have progressed from invasive methods such as liposuction to more modern methods of noninvasive lipolysis. This research entails the development and evaluation of an omnidirectional-capable flat-coil electromagnetic shock wave generator (EMSWG) for lipolysis. The developed EMSWG has the advantage of omnidirectional-capable operation. This capability increases the eventual clinical usability by adding three designed supports to the aluminum disk of the EMSWG to allow omnidirectional operation. The focal pressures of the developed EMSWG for different operating voltages were measured, and its corresponding energy intensities were calculated. The developed EMSWG was mounted in a downward orientation for lipolysis and evaluated as proof of concept. In vitro tests on porcine fatty tissues have been carried out. It is found that at a 6 kV operating voltage with 1500 shock wave exposures, a 2 cm thick subcutaneous hypodermis of porcine fatty tissue can be ruptured, resulting in a damaged area of 1.39 mm 2 . At a 6.5 kV operating voltage with 2000 shock wave exposures, the damaged area is increased to about 5.20 mm 2 , which can be enlarged by changing the focal point location, resulting in significant lipolysis for use in clinical applications.