Sample records for qpcr reference genes

  1. Reference genes for normalization of qPCR assays in sugarcane plants under water deficit.

    PubMed

    de Andrade, Larissa Mara; Dos Santos Brito, Michael; Fávero Peixoto Junior, Rafael; Marchiori, Paulo Eduardo Ribeiro; Nóbile, Paula Macedo; Martins, Alexandre Palma Boer; Ribeiro, Rafael Vasconcelos; Creste, Silvana

    2017-01-01

    Sugarcane ( Saccharum spp.) is the main raw material for sugar and ethanol production. Among the abiotic stress, drought is the main one that negatively impact sugarcane yield. Although gene expression analysis through quantitative PCR (qPCR) has increased our knowledge about biological processes related to drought, gene network that mediates sugarcane responses to water deficit remains elusive. In such scenario, validation of reference gene is a major requirement for successful analyzes involving qPCR. In this study, candidate genes were tested for their suitable as reference genes for qPCR analyses in two sugarcane cultivars with varying drought tolerance. Eight candidate reference genes were evaluated in leaves sampled in plants subjected to water deficit in both field and greenhouse conditions. In addition, five genes were evaluated in shoot roots of plants subjected to water deficit by adding PEG8000 to the nutrient solution. NormFinder and RefFinder algorithms were used to identify the most stable gene(s) among genotypes and under different experimental conditions. Both algorithms revealed that in leaf samples, UBQ1 and GAPDH genes were more suitable as reference genes, whereas GAPDH was the best reference one in shoot roots. Reference genes suitable for sugarcane under water deficit were identified, which would lead to a more accurate and reliable analysis of qPCR. Thus, results obtained in this study may guide future research on gene expression in sugarcane under varying water conditions.

  2. Evaluation of Suitable Reference Genes for Normalization of qPCR Gene Expression Studies in Brinjal (Solanum melongena L.) During Fruit Developmental Stages.

    PubMed

    Kanakachari, Mogilicherla; Solanke, Amolkumar U; Prabhakaran, Narayanasamy; Ahmad, Israr; Dhandapani, Gurusamy; Jayabalan, Narayanasamy; Kumar, Polumetla Ananda

    2016-02-01

    Brinjal/eggplant/aubergine is one of the major solanaceous vegetable crops. Recent availability of genome information greatly facilitates the fundamental research on brinjal. Gene expression patterns during different stages of fruit development can provide clues towards the understanding of its biological functions. Quantitative real-time PCR (qPCR) has become one of the most widely used methods for rapid and accurate quantification of gene expression. However, its success depends on the use of a suitable reference gene for data normalization. For qPCR analysis, a single reference gene is not universally suitable for all experiments. Therefore, reference gene validation is a crucial step. Suitable reference genes for qPCR analysis of brinjal fruit development have not been investigated so far. In this study, we have selected 21 candidate reference genes from the Brinjal (Solanum melongena) Plant Gene Indices database (compbio.dfci.harvard.edu/tgi/plant.html) and studied their expression profiles by qPCR during six different fruit developmental stages (0, 5, 10, 20, 30, and 50 days post anthesis) along with leaf samples of the Pusa Purple Long (PPL) variety. To evaluate the stability of gene expression, geNorm and NormFinder analytical softwares were used. geNorm identified SAND (SAND family protein) and TBP (TATA binding protein) as the best pairs of reference genes in brinjal fruit development. The results showed that for brinjal fruit development, individual or a combination of reference genes should be selected for data normalization. NormFinder identified Expressed gene (expressed sequence) as the best single reference gene in brinjal fruit development. In this study, we have identified and validated for the first time reference genes to provide accurate transcript normalization and quantification at various fruit developmental stages of brinjal which can also be useful for gene expression studies in other Solanaceae plant species.

  3. RNA-seq reveals more consistent reference genes for gene expression studies in human non-melanoma skin cancers

    PubMed Central

    Tan, Jean-Marie; Payne, Elizabeth J.; Lin, Lynlee L.; Sinnya, Sudipta; Raphael, Anthony P.; Lambie, Duncan; Frazer, Ian H.; Dinger, Marcel E.; Soyer, H. Peter

    2017-01-01

    Identification of appropriate reference genes (RGs) is critical to accurate data interpretation in quantitative real-time PCR (qPCR) experiments. In this study, we have utilised next generation RNA sequencing (RNA-seq) to analyse the transcriptome of a panel of non-melanoma skin cancer lesions, identifying genes that are consistently expressed across all samples. Genes encoding ribosomal proteins were amongst the most stable in this dataset. Validation of this RNA-seq data was examined using qPCR to confirm the suitability of a set of highly stable genes for use as qPCR RGs. These genes will provide a valuable resource for the normalisation of qPCR data for the analysis of non-melanoma skin cancer. PMID:28852586

  4. Validation of miRNA genes suitable as reference genes in qPCR analyses of miRNA gene expression in Atlantic salmon (Salmo salar).

    PubMed

    Johansen, Ilona; Andreassen, Rune

    2014-12-23

    MicroRNAs (miRNAs) are an abundant class of endogenous small RNA molecules that downregulate gene expression at the post-transcriptional level. They play important roles by regulating genes that control multiple biological processes, and recent years there has been an increased interest in studying miRNA genes and miRNA gene expression. The most common method applied to study gene expression of single genes is quantitative PCR (qPCR). However, before expression of mature miRNAs can be studied robust qPCR methods (miRNA-qPCR) must be developed. This includes identification and validation of suitable reference genes. We are particularly interested in Atlantic salmon (Salmo salar). This is an economically important aquaculture species, but no reference genes dedicated for use in miRNA-qPCR methods has been validated for this species. Our aim was, therefore, to identify suitable reference genes for miRNA-qPCR methods in Salmo salar. We used a systematic approach where we utilized similar studies in other species, some biological criteria, results from deep sequencing of small RNAs and, finally, experimental validation of candidate reference genes by qPCR to identify the most suitable reference genes. Ssa-miR-25-3p was identified as most suitable single reference gene. The best combinations of two reference genes were ssa-miR-25-3p and ssa-miR-455-5p. These two genes were constitutively and stably expressed across many different tissues. Furthermore, infectious salmon anaemia did not seem to affect their expression levels. These genes were amplified with high specificity, good efficiency and the qPCR assays showed a good linearity when applying a simple cybergreen miRNA-PCR method using miRNA gene specific forward primers. We have identified suitable reference genes for miRNA-qPCR in Atlantic salmon. These results will greatly facilitate further studies on miRNA genes in this species. The reference genes identified are conserved genes that are identical in their mature sequence in many aquaculture species. Therefore, they may also be suitable as reference genes in other teleosts. Finally, the systematic approach used in our study successfully identified suitable reference genes, suggesting that this may be a useful strategy to apply in similar validation studies in other aquaculture species.

  5. Identification of stable reference genes for quantitative PCR in cells derived from chicken lymphoid organs.

    PubMed

    Borowska, D; Rothwell, L; Bailey, R A; Watson, K; Kaiser, P

    2016-02-01

    Quantitative polymerase chain reaction (qPCR) is a powerful technique for quantification of gene expression, especially genes involved in immune responses. Although qPCR is a very efficient and sensitive tool, variations in the enzymatic efficiency, quality of RNA and the presence of inhibitors can lead to errors. Therefore, qPCR needs to be normalised to obtain reliable results and allow comparison. The most common approach is to use reference genes as internal controls in qPCR analyses. In this study, expression of seven genes, including β-actin (ACTB), β-2-microglobulin (B2M), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), β-glucuronidase (GUSB), TATA box binding protein (TBP), α-tubulin (TUBAT) and 28S ribosomal RNA (r28S), was determined in cells isolated from chicken lymphoid tissues and stimulated with three different mitogens. The stability of the genes was measured using geNorm, NormFinder and BestKeeper software. The results from both geNorm and NormFinder were that the three most stably expressed genes in this panel were TBP, GAPDH and r28S. BestKeeper did not generate clear answers because of the highly heterogeneous sample set. Based on these data we will include TBP in future qPCR normalisation. The study shows the importance of appropriate reference gene normalisation in other tissues before qPCR analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Reference Gene Selection for qPCR Normalization of Kosteletzkya virginica under Salt Stress

    PubMed Central

    Tang, Xiaoli; Wang, Hongyan; Shao, Chuyang; Shao, Hongbo

    2015-01-01

    Kosteletzkya virginica (L.) is a newly introduced perennial halophytic plant. Presently, reverse transcription quantitative real-time PCR (qPCR) is regarded as the best choice for analyzing gene expression and its accuracy mainly depends on the reference genes which are used for gene expression normalization. In this study, we employed qPCR to select the most stable reference gene in K. virginica which showed stable expression profiles under our experimental conditions. The candidate reference genes were 18S ribosomal RNA (18SrRNA), β-actin (ACT), α-tubulin (TUA), and elongation factor (EF). We tracked the gene expression profiles of the candidate genes and analyzed their stabilities through BestKeeper, geNorm, and NormFinder software programs. The results of the three programs were identical and 18SrRNA was assessed to be the most stable reference gene in this study. However, TUA was identified to be the most unstable. Our study proved again that the traditional reference genes indeed displayed a certain degree of variations under given experimental conditions. Importantly, our research also provides guidance for selecting most suitable reference genes and lays the foundation for further studies in K. virginica. PMID:26581422

  7. Defining suitable reference genes for RT-qPCR analysis on human sertoli cells after 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure.

    PubMed

    Ribeiro, Mariana Antunes; dos Reis, Mariana Bisarro; de Moraes, Leonardo Nazário; Briton-Jones, Christine; Rainho, Cláudia Aparecida; Scarano, Wellerson Rodrigo

    2014-11-01

    Quantitative real-time RT-PCR (qPCR) has proven to be a valuable molecular technique to quantify gene expression. There are few studies in the literature that describe suitable reference genes to normalize gene expression data. Studies of transcriptionally disruptive toxins, like tetrachlorodibenzo-p-dioxin (TCDD), require careful consideration of reference genes. The present study was designed to validate potential reference genes in human Sertoli cells after exposure to TCDD. 32 candidate reference genes were analyzed to determine their applicability. geNorm and NormFinder softwares were used to obtain an estimation of the expression stability of the 32 genes and to identify the most suitable genes for qPCR data normalization.

  8. RPL13A and EEF1A1 Are Suitable Reference Genes for qPCR during Adipocyte Differentiation of Vascular Stromal Cells from Patients with Different BMI and HOMA-IR.

    PubMed

    Gentile, Adriana-Mariel; Lhamyani, Said; Coín-Aragüez, Leticia; Oliva-Olivera, Wilfredo; Zayed, Hatem; Vega-Rioja, Antonio; Monteseirin, Javier; Romero-Zerbo, Silvana-Yanina; Tinahones, Francisco-José; Bermúdez-Silva, Francisco-Javier; El Bekay, Rajaa

    2016-01-01

    Real-time or quantitative PCR (qPCR) is a useful technique that requires reliable reference genes for data normalization in gene expression analysis. Adipogenesis is among the biological processes suitable for this technique. The selection of adequate reference genes is essential for qPCR gene expression analysis of human Vascular Stromal Cells (hVSCs) during their differentiation into adipocytes. To the best of our knowledge, there are no studies validating reference genes for the analyses of visceral and subcutaneous adipose tissue hVSCs from subjects with different Body Mass Index (BMI) and Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) index. The present study was undertaken to analyze this question. We first analyzed the stability of expression of five potential reference genes: CYC, GAPDH, RPL13A, EEF1A1, and 18S ribosomal RNA, during in vitro adipogenic differentiation, in samples from these types of patients. The expression of RPL13A and EEF1A1 was not affected by differentiation, thus being these genes the most stable candidates, while CYC, GAPDH, and 18S were not suitable for this sort of analysis. This work highlights that RPL13A and EEF1A1 are good candidates as reference genes for qPCR analysis of hVSCs differentiation into adipocytes from subjects with different BMI and HOMA-IR.

  9. RPL13A and EEF1A1 Are Suitable Reference Genes for qPCR during Adipocyte Differentiation of Vascular Stromal Cells from Patients with Different BMI and HOMA-IR

    PubMed Central

    Gentile, Adriana-Mariel; Lhamyani, Said; Coín-Aragüez, Leticia; Oliva-Olivera, Wilfredo; Zayed, Hatem; Vega-Rioja, Antonio; Monteseirin, Javier; Romero-Zerbo, Silvana-Yanina; Tinahones, Francisco-José; Bermúdez-Silva, Francisco-Javier; El Bekay, Rajaa

    2016-01-01

    Real-time or quantitative PCR (qPCR) is a useful technique that requires reliable reference genes for data normalization in gene expression analysis. Adipogenesis is among the biological processes suitable for this technique. The selection of adequate reference genes is essential for qPCR gene expression analysis of human Vascular Stromal Cells (hVSCs) during their differentiation into adipocytes. To the best of our knowledge, there are no studies validating reference genes for the analyses of visceral and subcutaneous adipose tissue hVSCs from subjects with different Body Mass Index (BMI) and Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) index. The present study was undertaken to analyze this question. We first analyzed the stability of expression of five potential reference genes: CYC, GAPDH, RPL13A, EEF1A1, and 18S ribosomal RNA, during in vitro adipogenic differentiation, in samples from these types of patients. The expression of RPL13A and EEF1A1 was not affected by differentiation, thus being these genes the most stable candidates, while CYC, GAPDH, and 18S were not suitable for this sort of analysis. This work highlights that RPL13A and EEF1A1 are good candidates as reference genes for qPCR analysis of hVSCs differentiation into adipocytes from subjects with different BMI and HOMA-IR. PMID:27304673

  10. Reference genes for quantitative PCR in the adipose tissue of mice with metabolic disease.

    PubMed

    Almeida-Oliveira, Fernanda; Leandro, João G B; Ausina, Priscila; Sola-Penna, Mauro; Majerowicz, David

    2017-04-01

    Obesity and diabetes are metabolic diseases and they are increasing in prevalence. The dynamics of gene expression associated with these diseases is fundamental to identifying genes involved in related biological processes. qPCR is a sensitive technique for mRNA quantification and the most commonly used method in gene-expression studies. However, the reliability of these results is directly influenced by data normalization. As reference genes are the major normalization method used, this work aims to identify reference genes for qPCR in adipose tissues of mice with type-I diabetes or obesity. We selected 12 genes that are commonly used as reference genes. The expression of these genes in the adipose tissues of mice was analyzed in the context of three different experimental protocols: 1) untreated animals; 2) high-fat-diet animals; and 3) streptozotocin-treated animals. Gene-expression stability was analyzed using four different algorithms. Our data indicate that TATA-binding protein is stably expressed across adipose tissues in control animals. This gene was also a useful reference when the brown adipose tissues of control and obese mice were analyzed. The mitochondrial ATP synthase F1 complex gene exhibits stable expression in subcutaneous and perigonadal adipose tissue from control and obese mice. Moreover, this gene is the best reference for qPCR normalization in adipose tissue from streptozotocin-treated animals. These results show that there is no perfect stable gene suited for use under all experimental conditions. In conclusion, the selection of appropriate genes is a prerequisite to ensure qPCR reliability and must be performed separately for different experimental protocols. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Reference genes for normalization of gene expression studies in human osteoarthritic articular cartilage.

    PubMed

    Pombo-Suarez, Manuel; Calaza, Manuel; Gomez-Reino, Juan J; Gonzalez, Antonio

    2008-01-29

    Assessment of gene expression is an important component of osteoarthritis (OA) research, greatly improved by the development of quantitative real-time PCR (qPCR). This technique requires normalization for precise results, yet no suitable reference genes have been identified in human articular cartilage. We have examined ten well-known reference genes to determine the most adequate for this application. Analyses of expression stability in cartilage from 10 patients with hip OA, 8 patients with knee OA and 10 controls without OA were done with classical statistical tests and the software programs geNorm and NormFinder. Results from the three methods of analysis were broadly concordant. Some of the commonly used reference genes, GAPDH, ACTB and 18S RNA, performed poorly in our analysis. In contrast, the rarely used TBP, RPL13A and B2M genes were the best. It was necessary to use together several of these three genes to obtain the best results. The specific combination depended, to some extent, on the type of samples being compared. Our results provide a satisfactory set of previously unused reference genes for qPCR in hip and knee OA This confirms the need to evaluate the suitability of reference genes in every tissue and experimental situation before starting the quantitative assessment of gene expression by qPCR.

  12. Selection of suitable endogenous reference genes for qPCR in kidney and hypothalamus of rats under testosterone influence

    PubMed Central

    2017-01-01

    Real-time quantitative PCR (qPCR) is the most reliable and accurate technique for analyses of gene expression. Endogenous reference genes are being used to normalize qPCR data even though their expression may vary under different conditions and in different tissues. Nonetheless, verification of expression of reference genes in selected studied tissue is essential in order to accurately assess the level of expression of target genes of interest. Therefore, in this study, we attempted to examine six commonly used reference genes in order to identify the gene being expressed most constantly under the influence of testosterone in the kidneys and hypothalamus. The reference genes include glyceraldehyde-3-phosphate dehydrogenase (GAPDH), actin beta (ACTB), beta-2 microglobulin (B2m), hypoxanthine phosphoribosyltransferase 1 (HPRT), peptidylprolylisomerase A (Ppia) and hydroxymethylbilane synthase (Hmbs). The cycle threshold (Ct) value for each gene was determined and data obtained were analyzed using the software programs NormFinder, geNorm, BestKeeper, and rank aggregation. Results showed that Hmbs and Ppia genes were the most stably expressed in the hypothalamus. Meanwhile, in kidneys, Hmbs and GAPDH appeared to be the most constant genes. In conclusion, variations in expression levels of reference genes occur in kidneys and hypothalamus under similar conditions; thus, it is important to verify reference gene levels in these tissues prior to commencing any studies. PMID:28591185

  13. Identification and evaluation of new reference genes in Gossypium hirsutum for accurate normalization of real-time quantitative RT-PCR data.

    PubMed

    Artico, Sinara; Nardeli, Sarah M; Brilhante, Osmundo; Grossi-de-Sa, Maria Fátima; Alves-Ferreira, Marcio

    2010-03-21

    Normalizing through reference genes, or housekeeping genes, can make more accurate and reliable results from reverse transcription real-time quantitative polymerase chain reaction (qPCR). Recent studies have shown that no single housekeeping gene is universal for all experiments. Thus, suitable reference genes should be the first step of any qPCR analysis. Only a few studies on the identification of housekeeping gene have been carried on plants. Therefore qPCR studies on important crops such as cotton has been hampered by the lack of suitable reference genes. By the use of two distinct algorithms, implemented by geNorm and NormFinder, we have assessed the gene expression of nine candidate reference genes in cotton: GhACT4, GhEF1alpha5, GhFBX6, GhPP2A1, GhMZA, GhPTB, GhGAPC2, GhbetaTUB3 and GhUBQ14. The candidate reference genes were evaluated in 23 experimental samples consisting of six distinct plant organs, eight stages of flower development, four stages of fruit development and in flower verticils. The expression of GhPP2A1 and GhUBQ14 genes were the most stable across all samples and also when distinct plants organs are examined. GhACT4 and GhUBQ14 present more stable expression during flower development, GhACT4 and GhFBX6 in the floral verticils and GhMZA and GhPTB during fruit development. Our analysis provided the most suitable combination of reference genes for each experimental set tested as internal control for reliable qPCR data normalization. In addition, to illustrate the use of cotton reference genes we checked the expression of two cotton MADS-box genes in distinct plant and floral organs and also during flower development. We have tested the expression stabilities of nine candidate genes in a set of 23 tissue samples from cotton plants divided into five different experimental sets. As a result of this evaluation, we recommend the use of GhUBQ14 and GhPP2A1 housekeeping genes as superior references for normalization of gene expression measures in different cotton plant organs; GhACT4 and GhUBQ14 for flower development, GhACT4 and GhFBX6 for the floral organs and GhMZA and GhPTB for fruit development. We also provide the primer sequences whose performance in qPCR experiments is demonstrated. These genes will enable more accurate and reliable normalization of qPCR results for gene expression studies in this important crop, the major source of natural fiber and also an important source of edible oil. The use of bona fide reference genes allowed a detailed and accurate characterization of the temporal and spatial expression pattern of two MADS-box genes in cotton.

  14. Identification and evaluation of new reference genes in Gossypium hirsutum for accurate normalization of real-time quantitative RT-PCR data

    PubMed Central

    2010-01-01

    Background Normalizing through reference genes, or housekeeping genes, can make more accurate and reliable results from reverse transcription real-time quantitative polymerase chain reaction (qPCR). Recent studies have shown that no single housekeeping gene is universal for all experiments. Thus, suitable reference genes should be the first step of any qPCR analysis. Only a few studies on the identification of housekeeping gene have been carried on plants. Therefore qPCR studies on important crops such as cotton has been hampered by the lack of suitable reference genes. Results By the use of two distinct algorithms, implemented by geNorm and NormFinder, we have assessed the gene expression of nine candidate reference genes in cotton: GhACT4, GhEF1α5, GhFBX6, GhPP2A1, GhMZA, GhPTB, GhGAPC2, GhβTUB3 and GhUBQ14. The candidate reference genes were evaluated in 23 experimental samples consisting of six distinct plant organs, eight stages of flower development, four stages of fruit development and in flower verticils. The expression of GhPP2A1 and GhUBQ14 genes were the most stable across all samples and also when distinct plants organs are examined. GhACT4 and GhUBQ14 present more stable expression during flower development, GhACT4 and GhFBX6 in the floral verticils and GhMZA and GhPTB during fruit development. Our analysis provided the most suitable combination of reference genes for each experimental set tested as internal control for reliable qPCR data normalization. In addition, to illustrate the use of cotton reference genes we checked the expression of two cotton MADS-box genes in distinct plant and floral organs and also during flower development. Conclusion We have tested the expression stabilities of nine candidate genes in a set of 23 tissue samples from cotton plants divided into five different experimental sets. As a result of this evaluation, we recommend the use of GhUBQ14 and GhPP2A1 housekeeping genes as superior references for normalization of gene expression measures in different cotton plant organs; GhACT4 and GhUBQ14 for flower development, GhACT4 and GhFBX6 for the floral organs and GhMZA and GhPTB for fruit development. We also provide the primer sequences whose performance in qPCR experiments is demonstrated. These genes will enable more accurate and reliable normalization of qPCR results for gene expression studies in this important crop, the major source of natural fiber and also an important source of edible oil. The use of bona fide reference genes allowed a detailed and accurate characterization of the temporal and spatial expression pattern of two MADS-box genes in cotton. PMID:20302670

  15. Selection of Reference Genes for Quantitative Real Time PCR (qPCR) Assays in Tissue from Human Ascending Aorta

    PubMed Central

    Rueda-Martínez, Carmen; Lamas, Oscar; Mataró, María José; Robledo-Carmona, Juan; Sánchez-Espín, Gemma; Jiménez-Navarro, Manuel; Such-Martínez, Miguel; Fernández, Borja

    2014-01-01

    Dilatation of the ascending aorta (AAD) is a prevalent aortopathy that occurs frequently associated with bicuspid aortic valve (BAV), the most common human congenital cardiac malformation. The molecular mechanisms leading to AAD associated with BAV are still poorly understood. The search for differentially expressed genes in diseased tissue by quantitative real-time PCR (qPCR) is an invaluable tool to fill this gap. However, studies dedicated to identify reference genes necessary for normalization of mRNA expression in aortic tissue are scarce. In this report, we evaluate the qPCR expression of six candidate reference genes in tissue from the ascending aorta of 52 patients with a variety of clinical and demographic characteristics, normal and dilated aortas, and different morphologies of the aortic valve (normal aorta and normal valve n = 30; dilated aorta and normal valve n = 10; normal aorta and BAV n = 4; dilated aorta and BAV n = 8). The expression stability of the candidate reference genes was determined with three statistical algorithms, GeNorm, NormFinder and Bestkeeper. The expression analyses showed that the most stable genes for the three algorithms employed were CDKN1β, POLR2A and CASC3, independently of the structure of the aorta and the valve morphology. In conclusion, we propose the use of these three genes as reference genes for mRNA expression analysis in human ascending aorta. However, we suggest searching for specific reference genes when conducting qPCR experiments with new cohort of samples. PMID:24841551

  16. Identification of Reference Genes for Real-Time Quantitative PCR Experiments in the Liverwort Marchantia polymorpha

    PubMed Central

    Dolan, Liam; Langdale, Jane A.

    2015-01-01

    Real-time quantitative polymerase chain reaction (qPCR) has become widely used as a method to compare gene transcript levels across different conditions. However, selection of suitable reference genes to normalize qPCR data is required for accurate transcript level analysis. Recently, Marchantia polymorpha has been adopted as a model for the study of liverwort development and land plant evolution. Identification of appropriate reference genes has therefore become a necessity for gene expression studies. In this study, transcript levels of eleven candidate reference genes have been analyzed across a range of biological contexts that encompass abiotic stress, hormone treatment and different developmental stages. The consistency of transcript levels was assessed using both geNorm and NormFinder algorithms, and a consensus ranking of the different candidate genes was then obtained. MpAPT and MpACT showed relatively constant transcript levels across all conditions tested whereas the transcript levels of other candidate genes were clearly influenced by experimental conditions. By analyzing transcript levels of phosphate and nitrate starvation reporter genes, we confirmed that MpAPT and MpACT are suitable reference genes in M. polymorpha and also demonstrated that normalization with an inappropriate gene can lead to erroneous analysis of qPCR data. PMID:25798897

  17. Evaluation of Reference Genes for Quantitative Real-Time PCR in Songbirds

    PubMed Central

    Zinzow-Kramer, Wendy M.; Horton, Brent M.; Maney, Donna L.

    2014-01-01

    Quantitative real-time PCR (qPCR) is becoming a popular tool for the quantification of gene expression in the brain and endocrine tissues of songbirds. Accurate analysis of qPCR data relies on the selection of appropriate reference genes for normalization, yet few papers on songbirds contain evidence of reference gene validation. Here, we evaluated the expression of ten potential reference genes (18S, ACTB, GAPDH, HMBS, HPRT, PPIA, RPL4, RPL32, TFRC, and UBC) in brain, pituitary, ovary, and testis in two species of songbird: zebra finch and white-throated sparrow. We used two algorithms, geNorm and NormFinder, to assess the stability of these reference genes in our samples. We found that the suitability of some of the most popular reference genes for target gene normalization in mammals, such as 18S, depended highly on tissue type. Thus, they are not the best choices for brain and gonad in these songbirds. In contrast, we identified alternative genes, such as HPRT, RPL4 and PPIA, that were highly stable in brain, pituitary, and gonad in these species. Our results suggest that the validation of reference genes in mammals does not necessarily extrapolate to other taxonomic groups. For researchers wishing to identify and evaluate suitable reference genes for qPCR songbirds, our results should serve as a starting point and should help increase the power and utility of songbird models in behavioral neuroendocrinology. PMID:24780145

  18. Evaluation of Reference Genes for RT qPCR Analyses of Structure-Specific and Hormone Regulated Gene Expression in Physcomitrella patens Gametophytes

    PubMed Central

    Le Bail, Aude; Scholz, Sebastian; Kost, Benedikt

    2013-01-01

    The use of the moss Physcomitrella patens as a model system to study plant development and physiology is rapidly expanding. The strategic position of P. patens within the green lineage between algae and vascular plants, the high efficiency with which transgenes are incorporated by homologous recombination, advantages associated with the haploid gametophyte representing the dominant phase of the P. patens life cycle, the simple structure of protonemata, leafy shoots and rhizoids that constitute the haploid gametophyte, as well as a readily accessible high-quality genome sequence make this moss a very attractive experimental system. The investigation of the genetic and hormonal control of P. patens development heavily depends on the analysis of gene expression patterns by real time quantitative PCR (RT qPCR). This technique requires well characterized sets of reference genes, which display minimal expression level variations under all analyzed conditions, for data normalization. Sets of suitable reference genes have been described for most widely used model systems including e.g. Arabidopsis thaliana, but not for P. patens. Here, we present a RT qPCR based comparison of transcript levels of 12 selected candidate reference genes in a range of gametophytic P. patens structures at different developmental stages, and in P. patens protonemata treated with hormones or hormone transport inhibitors. Analysis of these RT qPCR data using GeNorm and NormFinder software resulted in the identification of sets of P. patens reference genes suitable for gene expression analysis under all tested conditions, and suggested that the two best reference genes are sufficient for effective data normalization under each of these conditions. PMID:23951063

  19. Evaluation and Selection of Appropriate Reference Genes for Real-Time Quantitative PCR Analysis of Gene Expression in Nile Tilapia (Oreochromis niloticus) during Vaccination and Infection

    PubMed Central

    Wang, Erlong; Wang, Kaiyu; Chen, Defang; Wang, Jun; He, Yang; Long, Bo; Yang, Lei; Yang, Qian; Geng, Yi; Huang, Xiaoli; Ouyang, Ping; Lai, Weimin

    2015-01-01

    qPCR as a powerful and attractive methodology has been widely applied to aquaculture researches for gene expression analyses. However, the suitable reference selection is critical for normalizing target genes expression in qPCR. In the present study, six commonly used endogenous controls were selected as candidate reference genes to evaluate and analyze their expression levels, stabilities and normalization to immune-related gene IgM expression during vaccination and infection in spleen of tilapia with RefFinder and GeNorm programs. The results showed that all of these candidate reference genes exhibited transcriptional variations to some extent at different periods. Among them, EF1A was the most stable reference with RefFinder, followed by 18S rRNA, ACTB, UBCE, TUBA and GAPDH respectively and the optimal number of reference genes for IgM normalization under different experiment sets was two with GeNorm. Meanwhile, combination the Cq (quantification cycle) value and the recommended comprehensive ranking of reference genes, EF1A and ACTB, the two optimal reference genes, were used together as reference genes for accurate analysis of immune-related gene expression during vaccination and infection in Nile tilapia with qPCR. Moreover, the highest IgM expression level was at two weeks post-vaccination when normalized to EF1A, 18S rRNA, ACTB, and EF1A together with ACTB compared to one week post-vaccination before normalizing, which was also consistent with the IgM antibody titers detection by ELISA. PMID:25941937

  20. The Renilla luciferase gene as a reference gene for normalization of gene expression in transiently transfected cells.

    PubMed

    Jiwaji, Meesbah; Daly, Rónán; Pansare, Kshama; McLean, Pauline; Yang, Jingli; Kolch, Walter; Pitt, Andrew R

    2010-12-31

    The importance of appropriate normalization controls in quantitative real-time polymerase chain reaction (qPCR) experiments has become more apparent as the number of biological studies using this methodology has increased. In developing a system to study gene expression from transiently transfected plasmids, it became clear that normalization using chromosomally encoded genes is not ideal, at it does not take into account the transfection efficiency and the significantly lower expression levels of the plasmids. We have developed and validated a normalization method for qPCR using a co-transfected plasmid. The best chromosomal gene for normalization in the presence of the transcriptional activators used in this study, cadmium, dexamethasone, forskolin and phorbol-12-myristate 13-acetate was first identified. qPCR data was analyzed using geNorm, Normfinder and BestKeeper. Each software application was found to rank the normalization controls differently with no clear correlation. Including a co-transfected plasmid encoding the Renilla luciferase gene (Rluc) in this analysis showed that its calculated stability was not as good as the optimised chromosomal genes, most likely as a result of the lower expression levels and transfection variability. Finally, we validated these analyses by testing two chromosomal genes (B2M and ActB) and a co-transfected gene (Rluc) under biological conditions. When analyzing co-transfected plasmids, Rluc normalization gave the smallest errors compared to the chromosomal reference genes. Our data demonstrates that transfected Rluc is the most appropriate normalization reference gene for transient transfection qPCR analysis; it significantly reduces the standard deviation within biological experiments as it takes into account the transfection efficiencies and has easily controllable expression levels. This improves reproducibility, data validity and most importantly, enables accurate interpretation of qPCR data.

  1. Selection and Validation of Reference Genes for Quantitative Real-Time Polymerase Chain Reaction Studies in Mossy Maze Polypore, Cerrena unicolor (Higher Basidiomycetes).

    PubMed

    Yang, Jie; Lin, Qi; Lin, Juan; Ye, Xiuyun

    2016-01-01

    With its ability to produce ligninolytic enzymes such as laccases, white-rot basidiomycete Cerrena unicolor, a medicinal mushroom, has great potential in biotechnology. Elucidation of the expression profiles of genes encoding ligninolytic enzymes are important for increasing their production. Quantitative real-time polymerase chain reaction (qPCR) is a powerful tool to study transcriptional regulation of genes of interest. To ensure accuracy and reliability of qPCR analysis of C. unicolor, expression levels of seven candidate reference genes were studied at different growth phases, under various induction conditions, and with a range of carbon/nitrogen ratios and carbon and nitrogen sources. The stability of the genes were analyzed with five statistical approaches, namely geNorm, NormFinder, BestKeeper, the ΔCt method, and RefFinder. Our results indicated that the selection of reference genes varied with sample sets. A combination of four reference genes (Cyt-c, ATP6, TEF1, and β-tubulin) were recommended for normalizing gene expression at different growth phases. GAPDH and Cyt-c were the appropriate reference genes under different induction conditions. ATP6 and TEF1 were most stable in fermentation media with various carbon/nitrogen ratios. In the fermentation media with various carbon or nitrogen sources, 18S rRNA and GAPDH were the references of choice. The present study represents the first validation analysis of reference genes in C. unicolor and serves as a foundation for its qPCR analysis.

  2. Identification and Validation of Reference Genes and Their Impact on Normalized Gene Expression Studies across Cultivated and Wild Cicer Species

    PubMed Central

    Reddy, Palakolanu Sudhakar; Sri Cindhuri, Katamreddy; Sivaji Ganesh, Adusumalli; Sharma, Kiran Kumar

    2016-01-01

    Quantitative Real-Time PCR (qPCR) is a preferred and reliable method for accurate quantification of gene expression to understand precise gene functions. A total of 25 candidate reference genes including traditional and new generation reference genes were selected and evaluated in a diverse set of chickpea samples. The samples used in this study included nine chickpea genotypes (Cicer spp.) comprising of cultivated and wild species, six abiotic stress treatments (drought, salinity, high vapor pressure deficit, abscisic acid, cold and heat shock), and five diverse tissues (leaf, root, flower, seedlings and seed). The geNorm, NormFinder and RefFinder algorithms used to identify stably expressed genes in four sample sets revealed stable expression of UCP and G6PD genes across genotypes, while TIP41 and CAC were highly stable under abiotic stress conditions. While PP2A and ABCT genes were ranked as best for different tissues, ABCT, UCP and CAC were most stable across all samples. This study demonstrated the usefulness of new generation reference genes for more accurate qPCR based gene expression quantification in cultivated as well as wild chickpea species. Validation of the best reference genes was carried out by studying their impact on normalization of aquaporin genes PIP1;4 and TIP3;1, in three contrasting chickpea genotypes under high vapor pressure deficit (VPD) treatment. The chickpea TIP3;1 gene got significantly up regulated under high VPD conditions with higher relative expression in the drought susceptible genotype, confirming the suitability of the selected reference genes for expression analysis. This is the first comprehensive study on the stability of the new generation reference genes for qPCR studies in chickpea across species, different tissues and abiotic stresses. PMID:26863232

  3. Identification and Validation of Reference Genes and Their Impact on Normalized Gene Expression Studies across Cultivated and Wild Cicer Species.

    PubMed

    Reddy, Dumbala Srinivas; Bhatnagar-Mathur, Pooja; Reddy, Palakolanu Sudhakar; Sri Cindhuri, Katamreddy; Sivaji Ganesh, Adusumalli; Sharma, Kiran Kumar

    2016-01-01

    Quantitative Real-Time PCR (qPCR) is a preferred and reliable method for accurate quantification of gene expression to understand precise gene functions. A total of 25 candidate reference genes including traditional and new generation reference genes were selected and evaluated in a diverse set of chickpea samples. The samples used in this study included nine chickpea genotypes (Cicer spp.) comprising of cultivated and wild species, six abiotic stress treatments (drought, salinity, high vapor pressure deficit, abscisic acid, cold and heat shock), and five diverse tissues (leaf, root, flower, seedlings and seed). The geNorm, NormFinder and RefFinder algorithms used to identify stably expressed genes in four sample sets revealed stable expression of UCP and G6PD genes across genotypes, while TIP41 and CAC were highly stable under abiotic stress conditions. While PP2A and ABCT genes were ranked as best for different tissues, ABCT, UCP and CAC were most stable across all samples. This study demonstrated the usefulness of new generation reference genes for more accurate qPCR based gene expression quantification in cultivated as well as wild chickpea species. Validation of the best reference genes was carried out by studying their impact on normalization of aquaporin genes PIP1;4 and TIP3;1, in three contrasting chickpea genotypes under high vapor pressure deficit (VPD) treatment. The chickpea TIP3;1 gene got significantly up regulated under high VPD conditions with higher relative expression in the drought susceptible genotype, confirming the suitability of the selected reference genes for expression analysis. This is the first comprehensive study on the stability of the new generation reference genes for qPCR studies in chickpea across species, different tissues and abiotic stresses.

  4. Genome-Wide Identification and Evaluation of Reference Genes for Quantitative RT-PCR Analysis during Tomato Fruit Development.

    PubMed

    Cheng, Yuan; Bian, Wuying; Pang, Xin; Yu, Jiahong; Ahammed, Golam J; Zhou, Guozhi; Wang, Rongqing; Ruan, Meiying; Li, Zhimiao; Ye, Qingjing; Yao, Zhuping; Yang, Yuejian; Wan, Hongjian

    2017-01-01

    Gene expression analysis in tomato fruit has drawn increasing attention nowadays. Quantitative real-time PCR (qPCR) is a routine technique for gene expression analysis. In qPCR operation, reliability of results largely depends on the choice of appropriate reference genes (RGs). Although tomato is a model for fruit biology study, few RGs for qPCR analysis in tomato fruit had yet been developed. In this study, we initially identified 38 most stably expressed genes based on tomato transcriptome data set, and their expression stabilities were further determined in a set of tomato fruit samples of four different fruit developmental stages (Immature, mature green, breaker, mature red) using qPCR analysis. Two statistical algorithms, geNorm and Normfinder, concordantly determined the superiority of these identified putative RGs. Notably, SlFRG05 (Solyc01g104170), SlFRG12 (Solyc04g009770), SlFRG16 (Solyc10g081190), SlFRG27 (Solyc06g007510), and SlFRG37 (Solyc11g005330) were proved to be suitable RGs for tomato fruit development study. Further analysis using geNorm indicate that the combined use of SlFRG03 (Solyc02g063070) and SlFRG27 would provide more reliable normalization results in qPCR experiments. The identified RGs in this study will be beneficial for future qPCR analysis of tomato fruit developmental study, as well as for the potential identification of optimal normalization controls in other plant species.

  5. Genome-Wide Identification and Evaluation of Reference Genes for Quantitative RT-PCR Analysis during Tomato Fruit Development

    PubMed Central

    Cheng, Yuan; Bian, Wuying; Pang, Xin; Yu, Jiahong; Ahammed, Golam J.; Zhou, Guozhi; Wang, Rongqing; Ruan, Meiying; Li, Zhimiao; Ye, Qingjing; Yao, Zhuping; Yang, Yuejian; Wan, Hongjian

    2017-01-01

    Gene expression analysis in tomato fruit has drawn increasing attention nowadays. Quantitative real-time PCR (qPCR) is a routine technique for gene expression analysis. In qPCR operation, reliability of results largely depends on the choice of appropriate reference genes (RGs). Although tomato is a model for fruit biology study, few RGs for qPCR analysis in tomato fruit had yet been developed. In this study, we initially identified 38 most stably expressed genes based on tomato transcriptome data set, and their expression stabilities were further determined in a set of tomato fruit samples of four different fruit developmental stages (Immature, mature green, breaker, mature red) using qPCR analysis. Two statistical algorithms, geNorm and Normfinder, concordantly determined the superiority of these identified putative RGs. Notably, SlFRG05 (Solyc01g104170), SlFRG12 (Solyc04g009770), SlFRG16 (Solyc10g081190), SlFRG27 (Solyc06g007510), and SlFRG37 (Solyc11g005330) were proved to be suitable RGs for tomato fruit development study. Further analysis using geNorm indicate that the combined use of SlFRG03 (Solyc02g063070) and SlFRG27 would provide more reliable normalization results in qPCR experiments. The identified RGs in this study will be beneficial for future qPCR analysis of tomato fruit developmental study, as well as for the potential identification of optimal normalization controls in other plant species. PMID:28900431

  6. Selection and validation of reference genes for quantitative gene expression analyses in various tissues and seeds at different developmental stages in Bixa orellana L.

    PubMed

    Moreira, Viviane S; Soares, Virgínia L F; Silva, Raner J S; Sousa, Aurizangela O; Otoni, Wagner C; Costa, Marcio G C

    2018-05-01

    Bixa orellana L., popularly known as annatto, produces several secondary metabolites of pharmaceutical and industrial interest, including bixin, whose molecular basis of biosynthesis remain to be determined. Gene expression analysis by quantitative real-time PCR (qPCR) is an important tool to advance such knowledge. However, correct interpretation of qPCR data requires the use of suitable reference genes in order to reduce experimental variations. In the present study, we have selected four different candidates for reference genes in B. orellana , coding for 40S ribosomal protein S9 (RPS9), histone H4 (H4), 60S ribosomal protein L38 (RPL38) and 18S ribosomal RNA (18SrRNA). Their expression stabilities in different tissues (e.g. flower buds, flowers, leaves and seeds at different developmental stages) were analyzed using five statistical tools (NormFinder, geNorm, BestKeeper, ΔCt method and RefFinder). The results indicated that RPL38 is the most stable gene in different tissues and stages of seed development and 18SrRNA is the most unstable among the analyzed genes. In order to validate the candidate reference genes, we have analyzed the relative expression of a target gene coding for carotenoid cleavage dioxygenase 1 (CCD1) using the stable RPL38 and the least stable gene, 18SrRNA , for normalization of the qPCR data. The results demonstrated significant differences in the interpretation of the CCD1 gene expression data, depending on the reference gene used, reinforcing the importance of the correct selection of reference genes for normalization.

  7. The use of laser microdissection in the identification of suitable reference genes for normalization of quantitative real-time PCR in human FFPE epithelial ovarian tissue samples.

    PubMed

    Cai, Jing; Li, Tao; Huang, Bangxing; Cheng, Henghui; Ding, Hui; Dong, Weihong; Xiao, Man; Liu, Ling; Wang, Zehua

    2014-01-01

    Quantitative real-time PCR (qPCR) is a powerful and reproducible method of gene expression analysis in which expression levels are quantified by normalization against reference genes. Therefore, to investigate the potential biomarkers and therapeutic targets for epithelial ovarian cancer by qPCR, it is critical to identify stable reference genes. In this study, twelve housekeeping genes (ACTB, GAPDH, 18S rRNA, GUSB, PPIA, PBGD, PUM1, TBP, HRPT1, RPLP0, RPL13A, and B2M) were analyzed in 50 ovarian samples from normal, benign, borderline, and malignant tissues. For reliable results, laser microdissection (LMD), an effective technique used to prepare homogeneous starting material, was utilized to precisely excise target tissues or cells. One-way analysis of variance (ANOVA) and nonparametric (Kruskal-Wallis) tests were used to compare the expression differences. NormFinder and geNorm software were employed to further validate the suitability and stability of the candidate genes. Results showed that epithelial cells occupied a small percentage of the normal ovary indeed. The expression of ACTB, PPIA, RPL13A, RPLP0, and TBP were stable independent of the disease progression. In addition, NormFinder and geNorm identified the most stable combination (ACTB, PPIA, RPLP0, and TBP) and the relatively unstable reference gene GAPDH from the twelve commonly used housekeeping genes. Our results highlight the use of homogeneous ovarian tissues and multiple-reference normalization strategy, e.g. the combination of ACTB, PPIA, RPLP0, and TBP, for qPCR in epithelial ovarian tissues, whereas GAPDH, the most commonly used reference gene, is not recommended, especially as a single reference gene.

  8. Identification of TL-Om1, an Adult T-Cell Leukemia (ATL) Cell Line, as Reference Material for Quantitative PCR for Human T-Lymphotropic Virus 1

    PubMed Central

    Okuma, Kazu; Yamagishi, Makoto; Yamochi, Tadanori; Firouzi, Sanaz; Momose, Haruka; Mizukami, Takuo; Takizawa, Kazuya; Araki, Kumiko; Sugamura, Kazuo; Yamaguchi, Kazunari; Watanabe, Toshiki

    2014-01-01

    Quantitative PCR (qPCR) for human T-lymphotropic virus 1 (HTLV-1) is useful for measuring the amount of integrated HTLV-1 proviral DNA in peripheral blood mononuclear cells. Many laboratories in Japan have developed different HTLV-1 qPCR methods. However, when six independent laboratories analyzed the proviral load of the same samples, there was a 5-fold difference in their results. To standardize HTLV-1 qPCR, preparation of a well-defined reference material is needed. We analyzed the integrated HTLV-1 genome and the internal control (IC) genes of TL-Om1, a cell line derived from adult T-cell leukemia, to confirm its suitability as a reference material for HTLV-1 qPCR. Fluorescent in situ hybridization (FISH) showed that HTLV-1 provirus was monoclonally integrated in chromosome 1 at the site of 1p13 in the TL-Om1 genome. HTLV-1 proviral genome was not transferred from TL-Om1 to an uninfected T-cell line, suggesting that the HTLV-1 proviral copy number in TL-Om1 cells is stable. To determine the copy number of HTLV-1 provirus and IC genes in TL-Om1 cells, we used FISH, digital PCR, and qPCR. HTLV-1 copy numbers obtained by these three methods were similar, suggesting that their results were accurate. Also, the ratio of the copy number of HTLV-1 provirus to one of the IC genes, RNase P, was consistent for all three methods. These findings indicate that TL-Om1 cells are an appropriate reference material for HTLV-1 qPCR. PMID:25502533

  9. Characterization of reference genes for qPCR analysis in various tissues of the Fujian oyster Crassostrea angulata

    NASA Astrophysics Data System (ADS)

    Pu, Fei; Yang, Bingye; Ke, Caihuan

    2015-07-01

    Accurate quantification of transcripts using quantitative real-time polymerase chain reaction (qPCR) depends on the identification of reliable reference genes for normalization. This study aimed to identify and validate seven reference genes, including actin-2 ( ACT-2), elongation factor 1 alpha ( EF-1α), elongation factor 1 beta ( EF-1β), glyceraldehyde-3-phosphate dehydrogenase ( GAPDH), ubiquitin ( UBQ), β-tubulin ( β-TUB), and 18S ribosomal RNA, from Crassostrea angulata, a valuable marine bivalve cultured worldwide. Transcript levels of the candidate reference genes were examined using qPCR analysis and showed differential expression patterns in the mantle, gill, adductor muscle, labial palp, visceral mass, hemolymph and gonad tissues. Quantitative data were analyzed using the geNorm software to assess the expression stability of the candidate reference genes, revealing that β-TUB and UBQ were the most stable genes. The commonly used GAPDH and 18S rRNA showed low stability, making them unsuitable candidates in this system. The expression pattern of the G protein β-subunit gene ( Gβ) across tissue types was also examined and normalized to the expression of each or both of UBQ and β-TUB as internal controls. This revealed consistent trends with all three normalization approaches, thus validating the reliability of UBQ and β-TUB as optimal internal controls. The study provides the first validated reference genes for accurate data normalization in transcript profiling in Crassostrea angulata, which will be indispensable for further functional genomics studies in this economically valuable marine bivalve.

  10. Validation of Reference Genes for Gene Expression Studies in Virus-Infected Nicotiana benthamiana Using Quantitative Real-Time PCR

    PubMed Central

    Han, Chenggui; Yu, Jialin; Li, Dawei; Zhang, Yongliang

    2012-01-01

    Nicotiana benthamiana is the most widely-used experimental host in plant virology. The recent release of the draft genome sequence for N. benthamiana consolidates its role as a model for plant–pathogen interactions. Quantitative real-time PCR (qPCR) is commonly employed for quantitative gene expression analysis. For valid qPCR analysis, accurate normalisation of gene expression against an appropriate internal control is required. Yet there has been little systematic investigation of reference gene stability in N. benthamiana under conditions of viral infections. In this study, the expression profiles of 16 commonly used housekeeping genes (GAPDH, 18S, EF1α, SAMD, L23, UK, PP2A, APR, UBI3, SAND, ACT, TUB, GBP, F-BOX, PPR and TIP41) were determined in N. benthamiana and those with acceptable expression levels were further selected for transcript stability analysis by qPCR of complementary DNA prepared from N. benthamiana leaf tissue infected with one of five RNA plant viruses (Tobacco necrosis virus A, Beet black scorch virus, Beet necrotic yellow vein virus, Barley stripe mosaic virus and Potato virus X). Gene stability was analysed in parallel by three commonly-used dedicated algorithms: geNorm, NormFinder and BestKeeper. Statistical analysis revealed that the PP2A, F-BOX and L23 genes were the most stable overall, and that the combination of these three genes was sufficient for accurate normalisation. In addition, the suitability of PP2A, F-BOX and L23 as reference genes was illustrated by expression-level analysis of AGO2 and RdR6 in virus-infected N. benthamiana leaves. This is the first study to systematically examine and evaluate the stability of different reference genes in N. benthamiana. Our results not only provide researchers studying these viruses a shortlist of potential housekeeping genes to use as normalisers for qPCR experiments, but should also guide the selection of appropriate reference genes for gene expression studies of N. benthamiana under other biotic and abiotic stress conditions. PMID:23029521

  11. Validation of Reference Genes for Quantitative Expression Analysis by Real-Time RT-PCR in Four Lepidopteran Insects

    PubMed Central

    Teng, Xiaolu; Zhang, Zan; He, Guiling; Yang, Liwen; Li, Fei

    2012-01-01

    Quantitative real-time polymerase chain reaction (qPCR) is an efficient and widely used technique to monitor gene expression. Housekeeping genes (HKGs) are often empirically selected as the reference genes for data normalization. However, the suitability of HKGs used as the reference genes has been seldom validated. Here, six HKGs were chosen (actin A3, actin A1, GAPDH, G3PDH, E2F, rp49) in four lepidopteran insects Bombyx mori L. (Lepidoptera: Bombycidae), Plutella xylostella L. (Plutellidae), Chilo suppressalis Walker (Crambidae), and Spodoptera exigua Hübner (Noctuidae) to study their expression stability. The algorithms of geNorm, NormFinder, stability index, and ΔCt analysis were used to evaluate these HKGs. Across different developmental stages, actin A1 was the most stable in P. xylostella and C. suppressalis, but it was the least stable in B. mori and S. exigua. Rp49 and GAPDH were the most stable in B. mori and S. exigua, respectively. In different tissues, GAPDH, E2F, and Rp49 were the most stable in B. mori, S. exigua, and C. suppressalis, respectively. The relative abundances of Siwi genes estimated by 2-ΔΔCt method were tested with different HKGs as the reference gene, proving the importance of internal controls in qPCR data analysis. The results not only presented a list of suitable reference genes in four lepidopteran insects, but also proved that the expression stabilities of HKGs were different among evolutionarily close species. There was no single universal reference gene that could be used in all situations. It is indispensable to validate the expression of HKGs before using them as the internal control in qPCR. PMID:22938136

  12. Validation of reference genes for quantitative expression analysis by real-time rt-PCR in four lepidopteran insects.

    PubMed

    Teng, Xiaolu; Zhang, Zan; He, Guiling; Yang, Liwen; Li, Fei

    2012-01-01

    Quantitative real-time polymerase chain reaction (qPCR) is an efficient and widely used technique to monitor gene expression. Housekeeping genes (HKGs) are often empirically selected as the reference genes for data normalization. However, the suitability of HKGs used as the reference genes has been seldom validated. Here, six HKGs were chosen (actin A3, actin A1, GAPDH, G3PDH, E2F, rp49) in four lepidopteran insects Bombyx mori L. (Lepidoptera: Bombycidae), Plutella xylostella L. (Plutellidae), Chilo suppressalis Walker (Crambidae), and Spodoptera exigua Hübner (Noctuidae) to study their expression stability. The algorithms of geNorm, NormFinder, stability index, and ΔCt analysis were used to evaluate these HKGs. Across different developmental stages, actin A1 was the most stable in P. xylostella and C. suppressalis, but it was the least stable in B. mori and S. exigua. Rp49 and GAPDH were the most stable in B. mori and S. exigua, respectively. In different tissues, GAPDH, E2F, and Rp49 were the most stable in B. mori, S. exigua, and C. suppressalis, respectively. The relative abundances of Siwi genes estimated by 2(-ΔΔCt) method were tested with different HKGs as the reference gene, proving the importance of internal controls in qPCR data analysis. The results not only presented a list of suitable reference genes in four lepidopteran insects, but also proved that the expression stabilities of HKGs were different among evolutionarily close species. There was no single universal reference gene that could be used in all situations. It is indispensable to validate the expression of HKGs before using them as the internal control in qPCR.

  13. Normalizing gene expression by quantitative PCR during somatic embryogenesis in two representative conifer species: Pinus pinaster and Picea abies.

    PubMed

    de Vega-Bartol, José J; Santos, Raquen Raissa; Simões, Marta; Miguel, Célia M

    2013-05-01

    Suitable internal control genes to normalize qPCR data from different stages of embryo development and germination were identified in two representative conifer species. Clonal propagation by somatic embryogenesis has a great application potentiality in conifers. Quantitative PCR (qPCR) is widely used for gene expression analysis during somatic embryogenesis and embryo germination. No single reference gene is universal, so a systematic characterization of endogenous genes for concrete conditions is fundamental for accuracy. We identified suitable internal control genes to normalize qPCR data obtained at different steps of somatic embryogenesis (embryonal mass proliferation, embryo maturation and germination) in two representative conifer species, Pinus pinaster and Picea abies. Candidate genes included endogenous genes commonly used in conifers, genes previously tested in model plants, and genes with a lower variation of the expression along embryo development according to genome-wide transcript profiling studies. Three different algorithms were used to evaluate expression stability. The geometric average of the expression values of elongation factor-1α, α-tubulin and histone 3 in P. pinaster, and elongation factor-1α, α-tubulin, adenosine kinase and CAC in P. abies were adequate for expression studies throughout somatic embryogenesis. However, improved accuracy was achieved when using other gene combinations in experiments with samples at a single developmental stage. The importance of studies selecting reference genes to use in different tissues or developmental stages within one or close species, and the instability of commonly used reference genes, is highlighted.

  14. Validation of reference genes for normalization of qPCR mRNA expression levels in Staphylococcus aureus exposed to osmotic and lactic acid stress conditions encountered during food production and preservation.

    PubMed

    Sihto, Henna-Maria; Tasara, Taurai; Stephan, Roger; Johler, Sophia

    2014-07-01

    Staphylococcus aureus represents the most prevalent cause of food-borne intoxications worldwide. While being repressed by competing bacteria in most matrices, this pathogen exhibits crucial competitive advantages during growth at high salt concentrations or low pH, conditions frequently encountered in food production and preservation. We aimed to identify reference genes that could be used to normalize qPCR mRNA expression levels during growth of S. aureus in food-related osmotic (NaCl) and acidic (lactic acid) stress adaptation models. Expression stability of nine housekeeping genes was evaluated in full (LB) and nutrient-deficient (CYGP w/o glucose) medium under conditions of osmotic (4.5% NaCl) and acidic stress (lactic acid, pH 6.0) after 2-h exposure. Among the set of candidate reference genes investigated, rplD, rpoB,gyrB, and rho were most stably expressed in LB and thus represent the most suitable reference genes for normalization of qPCR data in osmotic or lactic acid stress models in a rich medium. Under nutrient-deficient conditions, expression of rho and rpoB was highly stable across all tested conditions. The presented comprehensive data on changes in expression of various S. aureus housekeeping genes under conditions of osmotic and lactic acid stress facilitate selection of reference genes for qPCR-based stress response models. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  15. Evaluation of Candidate Reference Genes for Quantitative Gene Expression Analysis in Spodoptera exigu a after Long-time Exposure to Cadmium.

    PubMed

    Płachetka-Bożek, Anna; Augustyniak, Maria

    2017-08-21

    Studies on the transcriptional control of gene expression play an important role in many areas of biology. Reference genes, which are often referred to as housekeeping genes, such as GAPDH, G3PDH, EF2, RpL7A, RpL10, TUBα and Actin, have traditionally been assumed to be stably expressed in all conditions, and they are frequently used to normalize mRNA levels between different samples in qPCR analysis. However, it is known that the expression of these genes is influenced by numerous factors, such as experimental conditions. The difference in gene expression underlies a range of biological processes, including development, reproduction and behavior. The aim of this study was to show the problems associated with using reference genes in the qPCR technique, in a study on inbred strains of Spodoptera exigua selected toward cadmium resistance. We present and discuss our results and observations, and give some recommendations concerning the use and limitations of housekeeping genes as internal standards, especially in research on insects. Our results suggest that holometabolism and poikilothermia, as well as time since metamorphosis and the level of exposure to the selective factor (cadmium in this case), have a significant effect on the expression of reference genes.

  16. A selection of reference genes and early-warning mRNA biomarkers for environmental monitoring using Mytilus spp. as sentinel species.

    PubMed

    Lacroix, C; Coquillé, V; Guyomarch, J; Auffret, M; Moraga, D

    2014-09-15

    mRNA biomarkers are promising tools for environmental health assessment and reference genes are needed to perform relevant qPCR analyses in tissue samples of sentinel species. In the present study, potential reference genes and mRNA biomarkers were tested in the gills and digestive glands of native and caged mussels (Mytilus spp.) exposed to harbor pollution. Results highlighted the difficulty to find stable reference genes in wild, non-model species and suggested the use of normalization indices instead of single genes as they exhibit a higher stability. Several target genes were found differentially expressed between mussel groups, especially in gills where cyp32, π-gst and CuZn-sod mRNA levels could be biomarker candidates. Multivariate analyses confirmed the ability of mRNA levels to highlight site-effects and suggested the use of several combined markers instead of individual ones. These findings support the use of qPCR technology and mRNA levels as early-warning biomarkers in marine monitoring programs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Evaluation of reference gene suitability for quantitative expression analysis by quantitative polymerase chain reaction in the mandibular condyle of sheep.

    PubMed

    Jiang, Xin; Xue, Yang; Zhou, Hongzhi; Li, Shouhong; Zhang, Zongmin; Hou, Rui; Ding, Yuxiang; Hu, Kaijin

    2015-10-01

    Reference genes are commonly used as a reliable approach to normalize the results of quantitative polymerase chain reaction (qPCR), and to reduce errors in the relative quantification of gene expression. Suitable reference genes belonging to numerous functional classes have been identified for various types of species and tissue. However, little is currently known regarding the most suitable reference genes for bone, specifically for the sheep mandibular condyle. Sheep are important for the study of human bone diseases, particularly for temporomandibular diseases. The present study aimed to identify a set of reference genes suitable for the normalization of qPCR data from the mandibular condyle of sheep. A total of 12 reference genes belonging to various functional classes were selected, and the expression stability of the reference genes was determined in both the normal and fractured area of the sheep mandibular condyle. RefFinder, which integrates the following currently available computational algorithms: geNorm, NormFinder, BestKeeper, and the comparative ΔCt method, was used to compare and rank the candidate reference genes. The results obtained from the four methods demonstrated a similar trend: RPL19, ACTB, and PGK1 were the most stably expressed reference genes in the sheep mandibular condyle. As determined by RefFinder comprehensive analysis, the results of the present study suggested that RPL19 is the most suitable reference gene for studies associated with the sheep mandibular condyle. In addition, ACTB and PGK1 may be considered suitable alternatives.

  18. Detection of methicillin-resistant Staphylococcus aureus by a duplex droplet digital PCR assay.

    PubMed

    Kelley, Kashonda; Cosman, Angela; Belgrader, Phillip; Chapman, Brenda; Sullivan, Donna C

    2013-07-01

    Health care-associated infections with methicillin-resistant Staphylococcus aureus (MRSA) contribute to significant hospitalization costs. We report here a droplet digital PCR (ddPCR) assay, which is a next-generation emulsion-based endpoint PCR assay for high-precision MRSA analysis. Reference cultures of MRSA, methicillin-susceptible S. aureus (MSSA), and confounders were included as controls. Copan swabs were used to sample cultures and collect specimens for analysis from patients at a large teaching hospital. Swab extraction and cell lysis were accomplished using magnetic-driven agitation of silica beads. Quantitative PCR (qPCR) (Roche Light Cycler 480) and ddPCR (Bio-Rad QX100 droplet digital PCR system) assays were used to detect genes for the staphylococcal protein SA0140 (SA) and the methicillin resistance (mecA) gene employing standard TaqMan chemistries. Both qPCR and ddPCR assays correctly identified culture controls for MRSA (76), MSSA (12), and confounder organisms (36) with 100% sensitivity and specificity. Analysis of the clinical samples (211 negative and 186 positive) collected during a study of MRSA nasal carriage allowed direct comparison of the qPCR and ddPCR assays to the Cepheid MRSA GeneXpert assay. A total of 397 clinical samples were examined in this study. Cepheid MRSA GeneXpert values were used to define negative and positive samples. Both the qPCR and ddPCR assays were in good agreement with the reference assay. The sensitivities for the qPCR and ddPCR assays were 96.8% (95% confidence interval [CI], 93.1 to 98.5%) and 96.8% (95% CI, 93.1 to 98.5%), respectively. Both the qPCR and ddPCR assays had specificities of 91.9% (95% CI, 87.5 to 94.9%) for qPCR and 91.0% (95% CI, 86.4 to 94.2%) for ddPCR technology.

  19. Reference gene selection for quantitative reverse transcription-polymerase chain reaction normalization during in vitro adventitious rooting in Eucalyptus globulus Labill.

    PubMed

    de Almeida, Márcia R; Ruedell, Carolina M; Ricachenevsky, Felipe K; Sperotto, Raul A; Pasquali, Giancarlo; Fett-Neto, Arthur G

    2010-09-20

    Eucalyptus globulus and its hybrids are very important for the cellulose and paper industry mainly due to their low lignin content and frost resistance. However, rooting of cuttings of this species is recalcitrant and exogenous auxin application is often necessary for good root development. To date one of the most accurate methods available for gene expression analysis is quantitative reverse transcription-polymerase chain reaction (qPCR); however, reliable use of this technique requires reference genes for normalization. There is no single reference gene that can be regarded as universal for all experiments and biological materials. Thus, the identification of reliable reference genes must be done for every species and experimental approach. The present study aimed at identifying suitable control genes for normalization of gene expression associated with adventitious rooting in E. globulus microcuttings. By the use of two distinct algorithms, geNorm and NormFinder, we have assessed gene expression stability of eleven candidate reference genes in E. globulus: 18S, ACT2, EF2, EUC12, H2B, IDH, SAND, TIP41, TUA, UBI and 33380. The candidate reference genes were evaluated in microccuttings rooted in vitro, in presence or absence of auxin, along six time-points spanning the process of adventitious rooting. Overall, the stability profiles of these genes determined with each one of the algorithms were very similar. Slight differences were observed in the most stable pair of genes indicated by each program: IDH and SAND for geNorm, and H2B and TUA for NormFinder. Both programs identified UBI and 18S as the most variable genes. To validate these results and select the most suitable reference genes, the expression profile of the ARGONAUTE1 gene was evaluated in relation to the most stable candidate genes indicated by each algorithm. Our study showed that expression stability varied between putative reference genes tested in E. globulus. Based on the AGO1 relative expression profile obtained using the genes suggested by the algorithms, H2B and TUA were considered as the most suitable reference genes for expression studies in E. globulus adventitious rooting. UBI and 18S were unsuitable for use as controls in qPCR related to this process. These findings will enable more accurate and reliable normalization of qPCR results for gene expression studies in this economically important woody plant, particularly related to rooting and clonal propagation.

  20. Reference gene selection for quantitative reverse transcription-polymerase chain reaction normalization during in vitro adventitious rooting in Eucalyptus globulus Labill

    PubMed Central

    2010-01-01

    Background Eucalyptus globulus and its hybrids are very important for the cellulose and paper industry mainly due to their low lignin content and frost resistance. However, rooting of cuttings of this species is recalcitrant and exogenous auxin application is often necessary for good root development. To date one of the most accurate methods available for gene expression analysis is quantitative reverse transcription-polymerase chain reaction (qPCR); however, reliable use of this technique requires reference genes for normalization. There is no single reference gene that can be regarded as universal for all experiments and biological materials. Thus, the identification of reliable reference genes must be done for every species and experimental approach. The present study aimed at identifying suitable control genes for normalization of gene expression associated with adventitious rooting in E. globulus microcuttings. Results By the use of two distinct algorithms, geNorm and NormFinder, we have assessed gene expression stability of eleven candidate reference genes in E. globulus: 18S, ACT2, EF2, EUC12, H2B, IDH, SAND, TIP41, TUA, UBI and 33380. The candidate reference genes were evaluated in microccuttings rooted in vitro, in presence or absence of auxin, along six time-points spanning the process of adventitious rooting. Overall, the stability profiles of these genes determined with each one of the algorithms were very similar. Slight differences were observed in the most stable pair of genes indicated by each program: IDH and SAND for geNorm, and H2B and TUA for NormFinder. Both programs indentified UBI and 18S as the most variable genes. To validate these results and select the most suitable reference genes, the expression profile of the ARGONAUTE1 gene was evaluated in relation to the most stable candidate genes indicated by each algorithm. Conclusion Our study showed that expression stability varied between putative reference genes tested in E. globulus. Based on the AGO1 relative expression profile obtained using the genes suggested by the algorithms, H2B and TUA were considered as the most suitable reference genes for expression studies in E. globulus adventitious rooting. UBI and 18S were unsuitable for use as controls in qPCR related to this process. These findings will enable more accurate and reliable normalization of qPCR results for gene expression studies in this economically important woody plant, particularly related to rooting and clonal propagation. PMID:20854682

  1. Selection of reference genes for gene expression studies in virus-infected monocots using quantitative real-time PCR.

    PubMed

    Zhang, Kun; Niu, Shaofang; Di, Dianping; Shi, Lindan; Liu, Deshui; Cao, Xiuling; Miao, Hongqin; Wang, Xianbing; Han, Chenggui; Yu, Jialin; Li, Dawei; Zhang, Yongliang

    2013-10-10

    Both genome-wide transcriptomic surveys of the mRNA expression profiles and virus-induced gene silencing-based molecular studies of target gene during virus-plant interaction involve the precise estimation of the transcript abundance. Quantitative real-time PCR (qPCR) is the most widely adopted technique for mRNA quantification. In order to obtain reliable quantification of transcripts, identification of the best reference genes forms the basis of the preliminary work. Nevertheless, the stability of internal controls in virus-infected monocots needs to be fully explored. In this work, the suitability of ten housekeeping genes (ACT, EF1α, FBOX, GAPDH, GTPB, PP2A, SAND, TUBβ, UBC18 and UK) for potential use as reference genes in qPCR were investigated in five different monocot plants (Brachypodium, barley, sorghum, wheat and maize) under infection with different viruses including Barley stripe mosaic virus (BSMV), Brome mosaic virus (BMV), Rice black-streaked dwarf virus (RBSDV) and Sugarcane mosaic virus (SCMV). By using three different algorithms, the most appropriate reference genes or their combinations were identified for different experimental sets and their effectiveness for the normalisation of expression studies were further validated by quantitative analysis of a well-studied PR-1 gene. These results facilitate the selection of desirable reference genes for more accurate gene expression studies in virus-infected monocots. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Reference gene stability of a synanthropic fly, Chrysomya megacephala.

    PubMed

    Wang, Xiaoyun; Xiong, Mei; Wang, Jialu; Lei, Chaoliang; Zhu, Fen

    2015-10-29

    Stable reference genes are essential for accurate normalization in gene expression studies with reverse transcription quantitative polymerase chain reaction (qPCR). A synanthropic fly, Chrysomya megacephala, is a well known medical vector and forensic indicator. Unfortunately, previous studies did not look at the stability of reference genes used in C. megacephala. In this study, the expression level of Actin, ribosomal protein L8 (Rpl8), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), elongation factor 1α (EF1), α-tubulin (α-TUB), β-tubulin (β-TUB), TATA binding box (TBP), 18S rRNA (18S) and ribosomal protein S7 (Rps7) were evaluated for their stability using online software RefFinder, which combines the normal software of the ΔCt method, BestKeeper, Normfinder, and geNorm. Moreover the number of suitable reference gene pairs was also suggested by Excel-based geNorm. The expression levels of these reference genes were evaluated under different experimental conditions with special perspectives of forensic applications: developmental stages (eggs, first, second and third instar larvae, pupae and adults); food sources of larvae (pork, fish and chicken); feeding larvae with drugs (untreated control, Estazolam and Marvelon); feeding larvae with heavy metals (untreated control, cadmium and zinc); tissues of adults (head, thorax, abdomen, legs and wings). According to RefFinder, EF1 was the most suitable reference gene of developmental stages, food and tissues; 18S and GAPDH were the most suitable reference genes for drugs and heavy metals, respectively, which could be widely used for quantification of target gene expression with qPCR in C. megacephala. Suitable reference gene pairs were also suggested by geNorm. This fundamental but vital work should facilitate the gene studies of related biological processes and deepen the understanding in physiology, toxicology, and especially medical and forensic entomology of C. megacephala.

  3. Elasmobranch qPCR reference genes: a case study of hypoxia preconditioned epaulette sharks

    PubMed Central

    2010-01-01

    Background Elasmobranch fishes are an ancient group of vertebrates which have high potential as model species for research into evolutionary physiology and genomics. However, no comparative studies have established suitable reference genes for quantitative PCR (qPCR) in elasmobranchs for any physiological conditions. Oxygen availability has been a major force shaping the physiological evolution of vertebrates, especially fishes. Here we examined the suitability of 9 reference candidates from various functional categories after a single hypoxic insult or after hypoxia preconditioning in epaulette shark (Hemiscyllium ocellatum). Results Epaulette sharks were caught and exposed to hypoxia. Tissues were collected from 10 controls, 10 individuals with single hypoxic insult and 10 individuals with hypoxia preconditioning (8 hypoxic insults, 12 hours apart). We produced sequence information for reference gene candidates and monitored mRNA expression levels in four tissues: cerebellum, heart, gill and eye. The stability of the genes was examined with analysis of variance, geNorm and NormFinder. The best ranking genes in our study were eukaryotic translation elongation factor 1 beta (eef1b), ubiquitin (ubq) and polymerase (RNA) II (DNA directed) polypeptide F (polr2f). The performance of the ribosomal protein L6 (rpl6) was tissue-dependent. Notably, in one tissue the analysis of variance indicated statistically significant differences between treatments for genes that were ranked as the most stable candidates by reference gene software. Conclusions Our results indicate that eef1b and ubq are generally the most suitable reference genes for the conditions and tissues in the present epaulette shark studies. These genes could also be potential reference gene candidates for other physiological studies examining stress in elasmobranchs. The results emphasise the importance of inter-group variation in reference gene evaluation. PMID:20416043

  4. A method for quantitative analysis of standard and high-throughput qPCR expression data based on input sample quantity.

    PubMed

    Adamski, Mateusz G; Gumann, Patryk; Baird, Alison E

    2014-01-01

    Over the past decade rapid advances have occurred in the understanding of RNA expression and its regulation. Quantitative polymerase chain reactions (qPCR) have become the gold standard for quantifying gene expression. Microfluidic next generation, high throughput qPCR now permits the detection of transcript copy number in thousands of reactions simultaneously, dramatically increasing the sensitivity over standard qPCR. Here we present a gene expression analysis method applicable to both standard polymerase chain reactions (qPCR) and high throughput qPCR. This technique is adjusted to the input sample quantity (e.g., the number of cells) and is independent of control gene expression. It is efficiency-corrected and with the use of a universal reference sample (commercial complementary DNA (cDNA)) permits the normalization of results between different batches and between different instruments--regardless of potential differences in transcript amplification efficiency. Modifications of the input quantity method include (1) the achievement of absolute quantification and (2) a non-efficiency corrected analysis. When compared to other commonly used algorithms the input quantity method proved to be valid. This method is of particular value for clinical studies of whole blood and circulating leukocytes where cell counts are readily available.

  5. Selection of suitable soybean EF1α genes as internal controls for real-time PCR analyses of tissues during plant development and under stress conditions.

    PubMed

    Saraiva, Kátia D C; Fernandes de Melo, Dirce; Morais, Vanessa D; Vasconcelos, Ilka M; Costa, José H

    2014-09-01

    The EF1α genes were stable in the large majority of soybean tissues during development and in specific tissues/conditions under stress. Quantitative real-time PCR (qPCR) analysis strongly depends on transcript normalization using stable reference genes. Reference genes are generally encoded by multigene families and are used in qPCR normalization; however, little effort has been made to verify the stability of different gene members within a family. Here, the expression stability of members of the soybean EF1α gene family (named EF1α 1a1, 1a2, 1b, 2a, 2b and 3) was evaluated in different tissues during plant development and stress exposure (SA and PEG). Four genes (UKN1, SKIP 16, EF1β and MTP) already established as stably expressed were also used in the comparative analysis. GeNorm analyses revealed different combinations of reference genes as stable in soybean tissues during development. The EF1α genes were the most stable in cotyledons (EF1α 3 and EF1α 1b), epicotyls (EF1α 1a2, EF1α 2b and EF1α 1a1), hypocotyls (EF1α 1a1 and EF1β), pods (EF1α 2a and EF1α 2b) and roots (EF1α 2a and UKN1) and less stable in tissues such as trifoliate and unifoliate leaves and germinating seeds. Under stress conditions, no suitable combination including only EF1α genes was found; however, some genes were relatively stable in leaves (EF1α 1a2) and roots (EF1α 1a1) treated with SA as well as in roots treated with PEG (EF1α 2b). EF1α 2a was the most stably expressed EF1α gene in all soybean tissues under stress. Taken together, our data provide guidelines for the selection of EF1α genes for use as reference genes in qPCR expression analyses during plant development and under stress conditions.

  6. Comparison of droplet digital PCR with quantitative real-time PCR for determination of zygosity in transgenic maize.

    PubMed

    Xu, Xiaoli; Peng, Cheng; Wang, Xiaofu; Chen, Xiaoyun; Wang, Qiang; Xu, Junfeng

    2016-12-01

    This study evaluated the applicability of droplet digital PCR (ddPCR) as a tool for maize zygosity determination using quantitative real-time PCR (qPCR) as a reference technology. Quantitative real-time PCR is commonly used to determine transgene copy number or GMO zygosity characterization. However, its effectiveness is based on identical reaction efficiencies for the transgene and the endogenous reference gene. Additionally, a calibrator sample should be utilized for accuracy. Droplet digital PCR is a DNA molecule counting technique that directly counts the absolute number of target and reference DNA molecules in a sample, independent of assay efficiency or external calibrators. The zygosity of the transgene can be easily determined using the ratio of the quantity of the target gene to the reference single copy endogenous gene. In this study, both the qPCR and ddPCR methods were used to determine insect-resistant transgenic maize IE034 zygosity. Both methods performed well, but the ddPCR method was more convenient because of its absolute quantification property.

  7. snoU6 and 5S RNAs are not reliable miRNA reference genes in neuronal differentiation.

    PubMed

    Lim, Q E; Zhou, L; Ho, Y K; Wan, G; Too, H P

    2011-12-29

    Accurate profiling of microRNAs (miRNAs) is an essential step for understanding the functional significance of these small RNAs in both physiological and pathological processes. Quantitative real-time PCR (qPCR) has gained acceptance as a robust and reliable transcriptomic method to profile subtle changes in miRNA levels and requires reference genes for accurate normalization of gene expression. 5S and snoU6 RNAs are commonly used as reference genes in microRNA quantification. It is currently unknown if these small RNAs are stably expressed during neuronal differentiation. Panels of miRNAs have been suggested as alternative reference genes to 5S and snoU6 in various physiological contexts. To test the hypothesis that miRNAs may serve as stable references during neuronal differentiation, the expressions of eight miRNAs, 5S and snoU6 RNAs in five differentiating neuronal cell types were analyzed using qPCR. The stabilities of the expressions were evaluated using two complementary statistical approaches (geNorm and Normfinder). Expressions of 5S and snoU6 RNAs were stable under some but not all conditions of neuronal differentiation and thus are not suitable reference genes. In contrast, a combination of three miRNAs (miR-103, miR-106b and miR-26b) allowed accurate expression normalization across different models of neuronal differentiation. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Identification of appropriate reference genes for human mesenchymal stem cell analysis by quantitative real-time PCR.

    PubMed

    Li, Xiuying; Yang, Qiwei; Bai, Jinping; Xuan, Yali; Wang, Yimin

    2015-01-01

    Normalization to a reference gene is the method of choice for quantitative reverse transcription-PCR (RT-qPCR) analysis. The stability of reference genes is critical for accurate experimental results and conclusions. We have evaluated the expression stability of eight commonly used reference genes found in four different human mesenchymal stem cells (MSC). Using geNorm, NormFinder and BestKeeper algorithms, we show that beta-2-microglobulin and peptidyl-prolylisomerase A were the optimal reference genes for normalizing RT-qPCR data obtained from MSC, whereas the TATA box binding protein was not suitable due to its extensive variability in expression. Our findings emphasize the significance of validating reference genes for qPCR analyses. We offer a short list of reference genes to use for normalization and recommend some commercially-available software programs as a rapid approach to validate reference genes. We also demonstrate that the two reference genes, β-actin and glyceraldehyde-3-phosphate dehydrogenase, are frequently used are not always successful in many cases.

  9. Determination of internal controls for quantitative gene expression of Isochrysis zhangjiangensis at nitrogen stress condition

    NASA Astrophysics Data System (ADS)

    Wu, Shuang; Zhou, Jiannan; Cao, Xupeng; Xue, Song

    2016-02-01

    Isochrysis zhangjiangensis is a potential marine microalga for biodiesel production, which accumulates lipid under nitrogen limitation conditions, but the mechanism on molecular level is veiled. Quantitative real-time polymerase chain reaction (qPCR) provides the possibility to investigate the gene expression levels, and a valid reference for data normalization is an essential prerequisite for firing up the analysis. In this study, five housekeeping genes, actin (ACT), α-tubulin (TUA), ß-tubulin (TUB), ubiquitin (UBI), 18S rRNA (18S) and one target gene, diacylglycerol acyltransferase (DGAT), were used for determining the reference. By analyzing the stabilities based on calculation of the stability index and on operating the two types of software, geNorm and bestkeeper, it showed that the reference genes widely used in higher plant and microalgae, such as UBI, TUA and 18S, were not the most stable ones in nitrogen-stressed I. zhangjiangensis, and thus are not suitable for exploring the mRNA expression levels under these experimental conditions. Our results show that ACT together with TUB is the most feasible internal control for investigating gene expression under nitrogen-stressed conditions. Our findings will contribute not only to future qPCR studies of I. zhangjiangensis, but also to verification of comparative transcriptomics studies of the microalgae under similar conditions.

  10. A common base method for analysis of qPCR data and the application of simple blocking in qPCR experiments.

    PubMed

    Ganger, Michael T; Dietz, Geoffrey D; Ewing, Sarah J

    2017-12-01

    qPCR has established itself as the technique of choice for the quantification of gene expression. Procedures for conducting qPCR have received significant attention; however, more rigorous approaches to the statistical analysis of qPCR data are needed. Here we develop a mathematical model, termed the Common Base Method, for analysis of qPCR data based on threshold cycle values (C q ) and efficiencies of reactions (E). The Common Base Method keeps all calculations in the logscale as long as possible by working with log 10 (E) ∙ C q , which we call the efficiency-weighted C q value; subsequent statistical analyses are then applied in the logscale. We show how efficiency-weighted C q values may be analyzed using a simple paired or unpaired experimental design and develop blocking methods to help reduce unexplained variation. The Common Base Method has several advantages. It allows for the incorporation of well-specific efficiencies and multiple reference genes. The method does not necessitate the pairing of samples that must be performed using traditional analysis methods in order to calculate relative expression ratios. Our method is also simple enough to be implemented in any spreadsheet or statistical software without additional scripts or proprietary components.

  11. Development, validation and implementation of a quadruplex real-time PCR assay for identification of potentially toxigenic corynebacteria.

    PubMed

    De Zoysa, Aruni; Efstratiou, Androulla; Mann, Ginder; Harrison, Timothy G; Fry, Norman K

    2016-12-01

    Toxigenic corynebacteria are uncommon in the UK; however, laboratory confirmation by the national reference laboratory can inform public health action according to national guidelines. Standard phenotypic tests for identification and toxin expression of isolates can take from ≥24 to ≥48 h from receipt. To decrease the time to result, a real-time PCR (qPCR) assay was developed for confirmation of both identification of Corynebacterium diphtheriae and Corynebacterium ulcerans/Corynebacterium pseudotuberculosis and detection of the diphtheria toxin gene. Target genes were the RNA polymerase β-subunit-encoding gene (rpoB) and A-subunit of the diphtheria toxin gene (tox). Green fluorescent protein DNA (gfp) was used as an internal process control. qPCR results were obtained within 3 to 4 h after receipt of isolate. The assay was validated according to published guidelines and demonstrated high diagnostic sensitivity (100 %), high specificity (98-100 %) and positive and negative predictive values of 91 to 100 % and 100 %, respectively, compared to both block-based PCR and the Elek test, together with a greatly reduced time from isolate receipt to reporting. Limitations of the qPCR assay were the inability to distinguish between C. ulcerans and C. pseudotuberculosis and that the presence of the toxin gene as demonstrated by qPCR may not always predict toxin expression. Thus, confirmation of expression of diphtheria toxin is always sought using the phenotypic Elek test. The new qPCR assay was formally introduced as the front-line test for putative toxigenic corynebacteria to inform public health action in England and Wales on 1 April 2014.

  12. Internal controls for quantitative polymerase chain reaction of swine mammary glands during pregnancy and lactation.

    PubMed

    Tramontana, S; Bionaz, M; Sharma, A; Graugnard, D E; Cutler, E A; Ajmone-Marsan, P; Hurley, W L; Loor, J J

    2008-08-01

    High-throughput microarray analysis is an efficient means of obtaining a genome-wide view of transcript profiles across physiological states. However, quantitative PCR (qPCR) remains the chosen method for high-precision mRNA abundance analysis. Essential for reliability of qPCR data is normalization using appropriate internal control genes (ICG), which is now, more than ever before, a fundamental step for accurate gene expression profiling. We mined mammary tissue microarray data on >13,000 genes at -34, -14, 0, 7, 14, 21, and 28 d relative to parturition in 27 crossbred primiparous gilts to identify suitable ICG. Initial analysis revealed TBK1, PCSK2, PTBP1, API5, VAPB, QTRT1, TRIM41, TMEM24, PPP2R5B, and AP1S1 as the most stable genes (sample/reference = 1 +/- 0.2). We also included 9 genes previously identified as ICG in bovine mammary tissue. Gene network analysis of the 19 genes identified AP1S1, API5, MTG1, VAPB, TRIM41, MRPL39, and RPS15A as having no known co-regulation. In addition, UXT and ACTB were added to this list, and mRNA abundance of these 9 genes was measured by qPCR. Expression of all 9 of these genes was decreased markedly during lactation. In a previous study with bovine mammary tissue, mRNA of stably expressed genes decreased during lactation due to a dilution effect brought about by large increases in expression of highly abundant genes. To verify this effect, highly abundant mammary genes such as CSN1S2, SCD, FABP3, and LTF were evaluated by qPCR. The tested ICG had a negative correlation with these genes, demonstrating a dilution effect in the porcine mammary tissue. Gene stability analysis identified API5, VABP, and MRPL39 as the most stable ICG in porcine mammary tissue and indicated that the use of those 3 genes was most appropriate for calculating a normalization factor. Overall, results underscore the importance of proper validation of internal controls for qPCR and highlight the limitations of using absence of time effects as the criteria for selection of appropriate ICG. Further, we showed that use of the same ICG from one organism might not be suitable for qPCR normalization in other species.

  13. Fluorescence acquisition during hybridization phase in quantitative real-time PCR improves specificity and signal-to-noise ratio.

    PubMed

    Mehndiratta, Mohit; Palanichamy, Jayanth Kumar; Ramalingam, Pradeep; Pal, Arnab; Das, Prerna; Sinha, Subrata; Chattopadhyay, Parthaprasad

    2008-12-01

    Quantitative real-time PCR (qPCR) is a standard method used for quantification of specific gene expression. This utilizes either dsDNA binding dyes or probe based chemistry. While dsDNA binding dyes have the advantage of low cost and flexibility, fluorescence due to primer dimers also interferes with the fluorescence of the specific product. Sometimes it is difficult, if not impossible, to standardize conditions and redesign primers in such a way that only specific fluorescence of the products of test and reference genes are acquired. Normally, the fluorescence acquisition in qPCR using dsDNA binding dyes is done during the melting phase of the PCR at a temperature between the melting points of primer dimers and the specific product. We have modified the protocol to acquire fluorescence during the hybridization phase. This significantly increased the signal-to-noise ratio and enabled the use of dsDNA binding dyes for mRNA quantification in situations where it was not possible when measurement was done in the melting phase. We have demonstrated it for three mRNAs, E6, E7, and DNMT1 with beta-actin as the reference gene, and for two miRNAs. This modification broadens the scope of qPCR using dsDNA binding dyes.

  14. Selection of suitable endogenous reference genes for relative copy number detection in sugarcane.

    PubMed

    Xue, Bantong; Guo, Jinlong; Que, Youxiong; Fu, Zhiwei; Wu, Luguang; Xu, Liping

    2014-05-19

    Transgene copy number has a great impact on the expression level and stability of exogenous gene in transgenic plants. Proper selection of endogenous reference genes is necessary for detection of genetic components in genetically modification (GM) crops by quantitative real-time PCR (qPCR) or by qualitative PCR approach, especially in sugarcane with polyploid and aneuploid genomic structure. qPCR technique has been widely accepted as an accurate, time-saving method on determination of copy numbers in transgenic plants and on detection of genetically modified plants to meet the regulatory and legislative requirement. In this study, to find a suitable endogenous reference gene and its real-time PCR assay for sugarcane (Saccharum spp. hybrids) DNA content quantification, we evaluated a set of potential "single copy" genes including P4H, APRT, ENOL, CYC, TST and PRR, through qualitative PCR and absolute quantitative PCR. Based on copy number comparisons among different sugarcane genotypes, including five S. officinarum, one S. spontaneum and two S. spp. hybrids, these endogenous genes fell into three groups: ENOL-3--high copy number group, TST-1 and PRR-1--medium copy number group, P4H-1, APRT-2 and CYC-2--low copy number group. Among these tested genes, P4H, APRT and CYC were the most stable, while ENOL and TST were the least stable across different sugarcane genotypes. Therefore, three primer pairs of P4H-3, APRT-2 and CYC-2 were then selected as the suitable reference gene primer pairs for sugarcane. The test of multi-target reference genes revealed that the APRT gene was a specific amplicon, suggesting this gene is the most suitable to be used as an endogenous reference target for sugarcane DNA content quantification. These results should be helpful for establishing accurate and reliable qualitative and quantitative PCR analysis of GM sugarcane.

  15. [Evaluation of cytomegalovirus quantification in blood by the R-gene real-time PCR test].

    PubMed

    Marque-Juillet, S; Touzard, A; Monnier, S; Fernand-Laurent, C; Therby, A; Rigaudeau, S; Harzic, M

    2010-04-01

    Diagnosing the presence of cytomegalovirus (CMV) in the blood of immunodepressed patients is often done by quantitative polymerase chain reaction (Q-PCR) even though the reference method remains the antigenemia pp65 (Ag-pp65) test. To define the predictive value of the Q-PCR in the diagnosis of CMV disease and assess treatment efficacy using the CMV R-gene test. To compare the Q-PCR results and feasibility with those of the Ag-pp65 test. The Q-PCR was performed in 34 whole blood samples (frozen at -80 degrees C until use) from five patients diagnosed with CMV disease, defined as the presence of clinical signs and Ag-pp65 in the nuclei of more than two cells. After extraction, viral DNA was quantified in each sample using the Q-PCR CMV R-gene kit according to the manufacturer's instructions. Immediately after blood was drawn, the Ag-pp65 test had been performed in 32 samples using CINAkit (Argene). The 16 samples positive by the Ag-pp65 test were also positive by PCR; six samples negative by the Ag-pp65 test were positive by PCR; and the remaining 10 samples were negative by both techniques. During treatment, the two markers' kinetics were similar. The CMV R-gene test has a predictive value as good as that of the Ag-pp65 test but is fast and easier to use. A prospective study with a greater number of patients is needed to define the prediction threshold for CMV disease. Copyright 2009 Elsevier Masson SAS. All rights reserved.

  16. Validation of reference genes for normalization of qPCR gene expression data from Coffea spp. hypocotyls inoculated with Colletotrichum kahawae

    PubMed Central

    2013-01-01

    Background Coffee production in Africa represents a significant share of the total export revenues and influences the lives of millions of people, yet severe socio-economic repercussions are annually felt in result of the overall losses caused by the coffee berry disease (CBD). This quarantine disease is caused by the fungus Colletotrichum kahawae Waller and Bridge, which remains one of the most devastating threats to Coffea arabica production in Africa at high altitude, and its dispersal to Latin America and Asia represents a serious concern. Understanding the molecular genetic basis of coffee resistance to this disease is of high priority to support breeding strategies. Selection and validation of suitable reference genes presenting stable expression in the system studied is the first step to engage studies of gene expression profiling. Results In this study, a set of ten genes (S24, 14-3-3, RPL7, GAPDH, UBQ9, VATP16, SAND, UQCC, IDE and β-Tub9) was evaluated to identify reference genes during the first hours of interaction (12, 48 and 72 hpi) between resistant and susceptible coffee genotypes and C. kahawae. Three analyses were done for the selection of these genes considering the entire dataset and the two genotypes (resistant and susceptible), separately. The three statistical methods applied GeNorm, NormFinder, and BestKeeper, allowed identifying IDE as one of the most stable genes for all datasets analysed, and in contrast GADPH and UBQ9 as the least stable ones. In addition, the expression of two defense-related transcripts, encoding for a receptor like kinase and a pathogenesis related protein 10, were used to validate the reference genes selected. Conclusion Taken together, our results provide guidelines for reference gene(s) selection towards a more accurate and widespread use of qPCR to study the interaction between Coffea spp. and C. kahawae. PMID:24073624

  17. Using nonlinear least squares to assess relative expression and its uncertainty in real-time qPCR studies.

    PubMed

    Tellinghuisen, Joel

    2016-03-01

    Relative expression ratios are commonly estimated in real-time qPCR studies by comparing the quantification cycle for the target gene with that for a reference gene in the treatment samples, normalized to the same quantities determined for a control sample. For the "standard curve" design, where data are obtained for all four of these at several dilutions, nonlinear least squares can be used to assess the amplification efficiencies (AE) and the adjusted ΔΔCq and its uncertainty, with automatic inclusion of the effect of uncertainty in the AEs. An algorithm is illustrated for the KaleidaGraph program. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Evaluation of RNA from human trabecular bone and identification of stable reference genes.

    PubMed

    Cepollaro, Simona; Della Bella, Elena; de Biase, Dario; Visani, Michela; Fini, Milena

    2018-06-01

    The isolation of good quality RNA from tissues is an essential prerequisite for gene expression analysis to study pathophysiological processes. This study evaluated the RNA isolated from human trabecular bone and defined a set of stable reference genes. After pulverization, RNA was extracted with a phenol/chloroform method and then purified using silica columns. The A260/280 ratio, A260/230 ratio, RIN, and ribosomal ratio were measured to evaluate RNA quality and integrity. Moreover, the expression of six candidates was analyzed by qPCR and different algorithms were applied to assess reference gene stability. A good purity and quality of RNA was achieved according to A260/280 and A260/230 ratios, and RIN values. TBP, YWHAZ, and PGK1 were the most stable reference genes that should be used for gene expression analysis. In summary, the method proposed is suitable for gene expression evaluation in human bone and a set of reliable reference genes has been identified. © 2017 Wiley Periodicals, Inc.

  19. Identification and validation of reference genes for qRT-PCR studies of the obligate aphid pathogenic fungus Pandora neoaphidis during different developmental stages.

    PubMed

    Zhang, Shutao; Chen, Chun; Xie, Tingna; Ye, Sudan

    2017-01-01

    The selection of stable reference genes is a critical step for the accurate quantification of gene expression. To identify and validate the reference genes in Pandora neoaphidis-an obligate aphid pathogenic fungus-the expression of 13classical candidate reference genes were evaluated by quantitative real-time reverse transcriptase polymerase chain reaction(qPCR) at four developmental stages (conidia, conidia with germ tubes, short hyphae and elongated hyphae). Four statistical algorithms, including geNorm, NormFinder, BestKeeper and Delta Ct method were used to rank putative reference genes according to their expression stability and indicate the best reference gene or combination of reference genes for accurate normalization. The analysis of comprehensive ranking revealed that ACT1and 18Swas the most stably expressed genes throughout the developmental stages. To further validate the suitability of the reference genes identified in this study, the expression of cell division control protein 25 (CDC25) and Chitinase 1(CHI1) genes were used to further confirm the validated candidate reference genes. Our study presented the first systematic study of reference gene(s) selection for P. neoaphidis study and provided guidelines to obtain more accurate qPCR results for future developmental efforts.

  20. Gene expression studies of reference genes for quantitative real-time PCR: an overview in insects.

    PubMed

    Shakeel, Muhammad; Rodriguez, Alicia; Tahir, Urfa Bin; Jin, Fengliang

    2018-02-01

    Whenever gene expression is being examined, it is essential that a normalization process is carried out to eliminate non-biological variations. The use of reference genes, such as glyceraldehyde-3-phosphate dehydrogenase, actin, and ribosomal protein genes, is the usual method of choice for normalizing gene expression. Although reference genes are used to normalize target gene expression, a major problem is that the stability of these genes differs among tissues, developmental stages, species, and responses to abiotic factors. Therefore, the use and validation of multiple reference genes are required. This review discusses the reasons that why RT-qPCR has become the preferred method for validating results of gene expression profiles, the use of specific and non-specific dyes and the importance of use of primers and probes for qPCR as well as to discuss several statistical algorithms developed to help the validation of potential reference genes. The conflicts arising in the use of classical reference genes in gene normalization and their replacement with novel references are also discussed by citing the high stability and low stability of classical and novel reference genes under various biotic and abiotic experimental conditions by employing various methods applied for the reference genes amplification.

  1. Selection of relatively exact reference genes for gene expression studies in goosegrass (Eleusine indica) under herbicide stress.

    PubMed

    Chen, Jingchao; Huang, Zhaofeng; Huang, Hongjuan; Wei, Shouhui; Liu, Yan; Jiang, Cuilan; Zhang, Jie; Zhang, Chaoxian

    2017-04-21

    Goosegrass (Eleusine indica) is one of the most serious annual grassy weeds worldwide, and its evolved herbicide-resistant populations are more difficult to control. Quantitative real-time PCR (qPCR) is a common technique for investigating the resistance mechanism; however, there is as yet no report on the systematic selection of stable reference genes for goosegrass. This study proposed to test the expression stability of 9 candidate reference genes in goosegrass in different tissues and developmental stages and under stress from three types of herbicide. The results show that for different developmental stages and organs (control), eukaryotic initiation factor 4 A (eIF-4) is the most stable reference gene. Chloroplast acetolactate synthase (ALS) is the most stable reference gene under glyphosate stress. Under glufosinate stress, eIF-4 is the best reference gene. Ubiquitin-conjugating enzyme (UCE) is the most stable reference gene under quizalofop-p-ethyl stress. The gene eIF-4 is the recommended reference gene for goosegrass under the stress of all three herbicides. Moreover, pairwise analysis showed that seven reference genes were sufficient to normalize the gene expression data under three herbicides treatment. This study provides a list of reliable reference genes for transcript normalization in goosegrass, which will facilitate resistance mechanism studies in this weed species.

  2. Identification of suitable reference gene and biomarkers of serum miRNAs for osteoporosis

    PubMed Central

    Chen, Jian; Li, Kai; Pang, Qianqian; Yang, Chao; Zhang, Hongyu; Wu, Feng; Cao, Hongqing; Liu, Hongju; Wan, Yumin; Xia, Weibo; Wang, Jinfu; Dai, Zhongquan; Li, Yinghui

    2016-01-01

    Our objective was to identify suitable reference genes in serum miRNA for normalization and screen potential new biomarkers for osteoporosis diagnosis by a systematic study. Two types of osteoporosis models were used like as mechanical unloading and estrogen deficiency. Through a large-scale screening using microarray, qPCR validation and statistical algorithms, we first identified miR-25-3p as a suitable reference gene for both type of osteoporosis, which also showed stability during the differentiation processes of osteoblast and osteoclast. Then 15 serum miRNAs with differential expression in OVX rats were identified by microarray and qPCR validation. We further detected these 15 miRNAs in postmenopausal women and bedrest rhesus monkeys and evaluated their diagnostic value by ROC analysis. Among these miRNAs, miR-30b-5p was significantly down-regulated in postmenopausal women with osteopenia or osteoporosis; miR-103-3p, miR-142-3p, miR-328-3p were only significantly decreased in osteoporosis. They all showed positive correlations with BMD. Except miR328-3p, the other three miRNAs were also declined in the rhesus monkeys after long-duration bedrest. Their AUC values (all >0.75) proved the diagnostic potential. Our results provided a reliable normalization reference gene and verified a group of circulating miRNAs as non-invasive biomarkers in the detection of postmenopausal- and mechanical unloading- osteoporosis. PMID:27821865

  3. Validation of Reference Genes for Real-Time Quantitative PCR (qPCR) Analysis of Avibacterium paragallinarum.

    PubMed

    Wen, Shuxiang; Chen, Xiaoling; Xu, Fuzhou; Sun, Huiling

    2016-01-01

    Real-time quantitative reverse transcription PCR (qRT-PCR) offers a robust method for measurement of gene expression levels. Selection of reliable reference gene(s) for gene expression study is conducive to reduce variations derived from different amounts of RNA and cDNA, the efficiency of the reverse transcriptase or polymerase enzymes. Until now reference genes identified for other members of the family Pasteurellaceae have not been validated for Avibacterium paragallinarum. The aim of this study was to validate nine reference genes of serovars A, B, and C strains of A. paragallinarum in different growth phase by qRT-PCR. Three of the most widely used statistical algorithms, geNorm, NormFinder and ΔCT method were used to evaluate the expression stability of reference genes. Data analyzed by overall rankings showed that in exponential and stationary phase of serovar A, the most stable reference genes were gyrA and atpD respectively; in exponential and stationary phase of serovar B, the most stable reference genes were atpD and recN respectively; in exponential and stationary phase of serovar C, the most stable reference genes were rpoB and recN respectively. This study provides recommendations for stable endogenous control genes for use in further studies involving measurement of gene expression levels.

  4. Selection of relatively exact reference genes for gene expression studies in goosegrass (Eleusine indica) under herbicide stress

    PubMed Central

    Chen, Jingchao; Huang, Zhaofeng; Huang, Hongjuan; Wei, Shouhui; Liu, Yan; Jiang, Cuilan; Zhang, Jie; Zhang, Chaoxian

    2017-01-01

    Goosegrass (Eleusine indica) is one of the most serious annual grassy weeds worldwide, and its evolved herbicide-resistant populations are more difficult to control. Quantitative real-time PCR (qPCR) is a common technique for investigating the resistance mechanism; however, there is as yet no report on the systematic selection of stable reference genes for goosegrass. This study proposed to test the expression stability of 9 candidate reference genes in goosegrass in different tissues and developmental stages and under stress from three types of herbicide. The results show that for different developmental stages and organs (control), eukaryotic initiation factor 4 A (eIF-4) is the most stable reference gene. Chloroplast acetolactate synthase (ALS) is the most stable reference gene under glyphosate stress. Under glufosinate stress, eIF-4 is the best reference gene. Ubiquitin-conjugating enzyme (UCE) is the most stable reference gene under quizalofop-p-ethyl stress. The gene eIF-4 is the recommended reference gene for goosegrass under the stress of all three herbicides. Moreover, pairwise analysis showed that seven reference genes were sufficient to normalize the gene expression data under three herbicides treatment. This study provides a list of reliable reference genes for transcript normalization in goosegrass, which will facilitate resistance mechanism studies in this weed species. PMID:28429727

  5. High-throughput multiplexed T-cell-receptor excision circle quantitative PCR assay with internal controls for detection of severe combined immunodeficiency in population-based newborn screening.

    PubMed

    Gerstel-Thompson, Jacalyn L; Wilkey, Jonathan F; Baptiste, Jennifer C; Navas, Jennifer S; Pai, Sung-Yun; Pass, Kenneth A; Eaton, Roger B; Comeau, Anne Marie

    2010-09-01

    Real-time quantitative PCR (qPCR) targeting a specific marker of functional T cells, the T-cell-receptor excision circle (TREC), detects the absence of functional T cells and has a demonstrated clinical validity for detecting severe combined immunodeficiency (SCID) in infants. There is need for a qPCR TREC assay with an internal control to monitor DNA quality and the relative cellular content of the particular dried blood spot punch sampled in each reaction. The utility of the qPCR TREC assay would also be far improved if more tests could be performed on the same newborn screening sample. We approached the multiplexing of qPCR for TREC by attenuating the reaction for the reference gene, with focus on maintaining tight quality assurance for reproducible slopes and for prevention of sample-to-sample cross contamination. Statewide newborn screening for SCID using the multiplexed assay was implemented, and quality-assurance data were recorded. The multiplex qPCR TREC assay showed nearly 100% amplification efficiency for each of the TREC and reference sequences, clinical validity for multiple forms of SCID, and an analytic limit of detection consistent with prevention of contamination. The eluate and residual ghost from a 3.2-mm dried blood spot could be used as source material for multiplexed immunoassays and multiplexed DNA tests (Multiplex Plus), with no disruption to the multiplex TREC qPCR. Population-based SCID newborn screening programs should consider multiplexing for quality assurance purposes. Potential benefits of using Multiplex Plus include the ability to perform multianalyte profiling.

  6. Expression stability and selection of optimal reference genes for gene expression normalization in early life stage rainbow trout exposed to cadmium and copper.

    PubMed

    Shekh, Kamran; Tang, Song; Niyogi, Som; Hecker, Markus

    2017-09-01

    Gene expression analysis represents a powerful approach to characterize the specific mechanisms by which contaminants interact with organisms. One of the key considerations when conducting gene expression analyses using quantitative real-time reverse transcription-polymerase chain reaction (qPCR) is the selection of appropriate reference genes, which is often overlooked. Specifically, to reach meaningful conclusions when using relative quantification approaches, expression levels of reference genes must be highly stable and cannot vary as a function of experimental conditions. However, to date, information on the stability of commonly used reference genes across developmental stages, tissues and after exposure to contaminants such as metals is lacking for many vertebrate species including teleost fish. Therefore, in this study, we assessed the stability of expression of 8 reference gene candidates in the gills and skin of three different early life-stages of rainbow trout after acute exposure (24h) to two metals, cadmium (Cd) and copper (Cu) using qPCR. Candidate housekeeping genes were: beta actin (b-actin), DNA directed RNA polymerase II subunit I (DRP2), elongation factor-1 alpha (EF1a), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), glucose-6-phosphate dehydrogenase (G6PD), hypoxanthine phosphoribosyltransferase (HPRT), ribosomal protein L8 (RPL8), and 18S ribosomal RNA (18S). Four algorithms, geNorm, NormFinder, BestKeeper, and the comparative ΔCt method were employed to systematically evaluate the expression stability of these candidate genes under control and exposed conditions as well as across three different life-stages. Finally, stability of genes was ranked by taking geometric means of the ranks established by the different methods. Stability of reference genes was ranked in the following order (from lower to higher stability): HPRT

  7. Evaluation of the branched-chain DNA assay for measurement of RNA in formalin-fixed tissues.

    PubMed

    Knudsen, Beatrice S; Allen, April N; McLerran, Dale F; Vessella, Robert L; Karademos, Jonathan; Davies, Joan E; Maqsodi, Botoul; McMaster, Gary K; Kristal, Alan R

    2008-03-01

    We evaluated the branched-chain DNA (bDNA) assay QuantiGene Reagent System to measure RNA in formalin-fixed, paraffin-embedded (FFPE) tissues. The QuantiGene Reagent System does not require RNA isolation, avoids enzymatic preamplification, and has a simple workflow. Five selected genes were measured by bDNA assay; quantitative polymerase chain reaction (qPCR) was used as a reference method. Mixed-effect statistical models were used to partition the overall variance into components attributable to xenograft, sample, and assay. For FFPE tissues, the coefficients of reliability were significantly higher for the bDNA assay (93-100%) than for qPCR (82.4-95%). Correlations between qPCR(FROZEN), the gold standard, and bDNA(FFPE) ranged from 0.60 to 0.94, similar to those from qPCR(FROZEN) and qPCR(FFPE). Additionally, the sensitivity of the bDNA assay in tissue homogenates was 10-fold higher than in purified RNA. In 9- to 13-year-old blocks with poor RNA quality, the bDNA assay allowed the correct identification of the overexpression of known cancer genes. In conclusion, the QuantiGene Reagent System is considerably more reliable, reproducible, and sensitive than qPCR, providing an alternative method for the measurement of gene expression in FFPE tissues. It also appears to be well suited for the clinical analysis of FFPE tissues with diagnostic or prognostic gene expression biomarker panels for use in patient treatment and management.

  8. Evaluation of the Branched-Chain DNA Assay for Measurement of RNA in Formalin-Fixed Tissues

    PubMed Central

    Knudsen, Beatrice S.; Allen, April N.; McLerran, Dale F.; Vessella, Robert L.; Karademos, Jonathan; Davies, Joan E.; Maqsodi, Botoul; McMaster, Gary K.; Kristal, Alan R.

    2008-01-01

    We evaluated the branched-chain DNA (bDNA) assay QuantiGene Reagent System to measure RNA in formalin-fixed, paraffin-embedded (FFPE) tissues. The QuantiGene Reagent System does not require RNA isolation, avoids enzymatic preamplification, and has a simple workflow. Five selected genes were measured by bDNA assay; quantitative polymerase chain reaction (qPCR) was used as a reference method. Mixed-effect statistical models were used to partition the overall variance into components attributable to xenograft, sample, and assay. For FFPE tissues, the coefficients of reliability were significantly higher for the bDNA assay (93–100%) than for qPCR (82.4–95%). Correlations between qPCRFROZEN, the gold standard, and bDNAFFPE ranged from 0.60 to 0.94, similar to those from qPCRFROZEN and qPCRFFPE. Additionally, the sensitivity of the bDNA assay in tissue homogenates was 10-fold higher than in purified RNA. In 9- to 13-year-old blocks with poor RNA quality, the bDNA assay allowed the correct identification of the overexpression of known cancer genes. In conclusion, the QuantiGene Reagent System is considerably more reliable, reproducible, and sensitive than qPCR, providing an alternative method for the measurement of gene expression in FFPE tissues. It also appears to be well suited for the clinical analysis of FFPE tissues with diagnostic or prognostic gene expression biomarker panels for use in patient treatment and management. PMID:18276773

  9. Identification of suitable qPCR reference genes in leaves of Brassica oleracea under abiotic stresses.

    PubMed

    Brulle, Franck; Bernard, Fabien; Vandenbulcke, Franck; Cuny, Damien; Dumez, Sylvain

    2014-04-01

    Real-time quantitative PCR is nowadays a standard method to study gene expression variations in various samples and experimental conditions. However, to interpret results accurately, data normalization with appropriate reference genes appears to be crucial. The present study describes the identification and the validation of suitable reference genes in Brassica oleracea leaves. Expression stability of eight candidates was tested following drought and cold abiotic stresses by using three different softwares (BestKeeper, NormFinder and geNorm). Four genes (BolC.TUB6, BolC.SAND1, BolC.UBQ2 and BolC.TBP1) emerged as the most stable across the tested conditions. Further gene expression analysis of a drought- and a cold-responsive gene (BolC.DREB2A and BolC.ELIP, respectively), confirmed the stability and the reliability of the identified reference genes when used for normalization in the leaves of B. oleracea. These four genes were finally tested upon a benzene exposure and all appeared to be useful reference genes along this toxicological condition. These results provide a good starting point for future studies involving gene expression measurement on leaves of B. oleracea exposed to environmental modifications.

  10. Inter-laboratory analysis of selected genetically modified plant reference materials with digital PCR.

    PubMed

    Dobnik, David; Demšar, Tina; Huber, Ingrid; Gerdes, Lars; Broeders, Sylvia; Roosens, Nancy; Debode, Frederic; Berben, Gilbert; Žel, Jana

    2018-01-01

    Digital PCR (dPCR), as a new technology in the field of genetically modified (GM) organism (GMO) testing, enables determination of absolute target copy numbers. The purpose of our study was to test the transferability of methods designed for quantitative PCR (qPCR) to dPCR and to carry out an inter-laboratory comparison of the performance of two different dPCR platforms when determining the absolute GM copy numbers and GM copy number ratio in reference materials certified for GM content in mass fraction. Overall results in terms of measured GM% were within acceptable variation limits for both tested dPCR systems. However, the determined absolute copy numbers for individual genes or events showed higher variability between laboratories in one third of the cases, most possibly due to variability in the technical work, droplet size variability, and analysis of the raw data. GMO quantification with dPCR and qPCR was comparable. As methods originally designed for qPCR performed well in dPCR systems, already validated qPCR assays can most generally be used for dPCR technology with the purpose of GMO detection. Graphical abstract The output of three different PCR-based platforms was assessed in an inter-laboratory comparison.

  11. A novel genotoxin-specific qPCR array based on the metabolically competent human HepaRG™ cell line as a rapid and reliable tool for improved in vitro hazard assessment.

    PubMed

    Ates, Gamze; Mertens, Birgit; Heymans, Anja; Verschaeve, Luc; Milushev, Dimiter; Vanparys, Philippe; Roosens, Nancy H C; De Keersmaecker, Sigrid C J; Rogiers, Vera; Doktorova, Tatyana Y

    2018-04-01

    Although the value of the regulatory accepted batteries for in vitro genotoxicity testing is recognized, they result in a high number of false positives. This has a major impact on society and industries developing novel compounds for pharmaceutical, chemical, and consumer products, as afflicted compounds have to be (prematurely) abandoned or further tested on animals. Using the metabolically competent human HepaRG ™ cell line and toxicogenomics approaches, we have developed an upgraded, innovative, and proprietary gene classifier. This gene classifier is based on transcriptomic changes induced by 12 genotoxic and 12 non-genotoxic reference compounds tested at sub-cytotoxic concentrations, i.e., IC10 concentrations as determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The resulting gene classifier was translated into an easy-to-handle qPCR array that, as shown by pathway analysis, covers several different cellular processes related to genotoxicity. To further assess the predictivity of the tool, a set of 5 known positive and 5 known negative test compounds for genotoxicity was evaluated. In addition, 2 compounds with debatable genotoxicity data were tested to explore how the qPCR array would classify these. With an accuracy of 100%, when equivocal results were considered positive, the results showed that combining HepaRG ™ cells with a genotoxin-specific qPCR array can improve (geno)toxicological hazard assessment. In addition, the developed qPCR array was able to provide additional information on compounds for which so far debatable genotoxicity data are available. The results indicate that the new in vitro tool can improve human safety assessment of chemicals in general by basing predictions on mechanistic toxicogenomics information.

  12. Validation of reference genes for quantitative gene expression analysis in experimental epilepsy.

    PubMed

    Sadangi, Chinmaya; Rosenow, Felix; Norwood, Braxton A

    2017-12-01

    To grasp the molecular mechanisms and pathophysiology underlying epilepsy development (epileptogenesis) and epilepsy itself, it is important to understand the gene expression changes that occur during these phases. Quantitative real-time polymerase chain reaction (qPCR) is a technique that rapidly and accurately determines gene expression changes. It is crucial, however, that stable reference genes are selected for each experimental condition to ensure that accurate values are obtained for genes of interest. If reference genes are unstably expressed, this can lead to inaccurate data and erroneous conclusions. To date, epilepsy studies have used mostly single, nonvalidated reference genes. This is the first study to systematically evaluate reference genes in male Sprague-Dawley rat models of epilepsy. We assessed 15 potential reference genes in hippocampal tissue obtained from 2 different models during epileptogenesis, 1 model during chronic epilepsy, and a model of noninjurious seizures. Reference gene ranking varied between models and also differed between epileptogenesis and chronic epilepsy time points. There was also some variance between the four mathematical models used to rank reference genes. Notably, we found novel reference genes to be more stably expressed than those most often used in experimental epilepsy studies. The consequence of these findings is that reference genes suitable for one epilepsy model may not be appropriate for others and that reference genes can change over time. It is, therefore, critically important to validate potential reference genes before using them as normalizing factors in expression analysis in order to ensure accurate, valid results. © 2017 Wiley Periodicals, Inc.

  13. Selection of reference genes for gene expression studies related to intramuscular fat deposition in Capra hircus skeletal muscle.

    PubMed

    Zhu, Wuzheng; Lin, Yaqiu; Liao, Honghai; Wang, Yong

    2015-01-01

    The identification of suitable reference genes is critical for obtaining reliable results from gene expression studies using quantitative real-time PCR (qPCR) because the expression of reference genes may vary considerably under different experimental conditions. In most cases, however, commonly used reference genes are employed in data normalization without proper validation, which may lead to incorrect data interpretation. Here, we aim to select a set of optimal reference genes for the accurate normalization of gene expression associated with intramuscular fat (IMF) deposition during development. In the present study, eight reference genes (PPIB, HMBS, RPLP0, B2M, YWHAZ, 18S, GAPDH and ACTB) were evaluated by three different algorithms (geNorm, NormFinder and BestKeeper) in two types of muscle tissues (longissimus dorsi muscle and biceps femoris muscle) across different developmental stages. All three algorithms gave similar results. PPIB and HMBS were identified as the most stable reference genes, while the commonly used reference genes 18S and GAPDH were the most variably expressed, with expression varying dramatically across different developmental stages. Furthermore, to reveal the crucial role of appropriate reference genes in obtaining a reliable result, analysis of PPARG expression was performed by normalization to the most and the least stable reference genes. The relative expression levels of PPARG normalized to the most stable reference genes greatly differed from those normalized to the least stable one. Therefore, evaluation of reference genes must be performed for a given experimental condition before the reference genes are used. PPIB and HMBS are the optimal reference genes for analysis of gene expression associated with IMF deposition in skeletal muscle during development.

  14. Superior Cross-Species Reference Genes: A Blueberry Case Study

    PubMed Central

    Die, Jose V.; Rowland, Lisa J.

    2013-01-01

    The advent of affordable Next Generation Sequencing technologies has had major impact on studies of many crop species, where access to genomic technologies and genome-scale data sets has been extremely limited until now. The recent development of genomic resources in blueberry will enable the application of high throughput gene expression approaches that should relatively quickly increase our understanding of blueberry physiology. These studies, however, require a highly accurate and robust workflow and make necessary the identification of reference genes with high expression stability for correct target gene normalization. To create a set of superior reference genes for blueberry expression analyses, we mined a publicly available transcriptome data set from blueberry for orthologs to a set of Arabidopsis genes that showed the most stable expression in a developmental series. In total, the expression stability of 13 putative reference genes was evaluated by qPCR and a set of new references with high stability values across a developmental series in fruits and floral buds of blueberry were identified. We also demonstrated the need to use at least two, preferably three, reference genes to avoid inconsistencies in results, even when superior reference genes are used. The new references identified here provide a valuable resource for accurate normalization of gene expression in Vaccinium spp. and may be useful for other members of the Ericaceae family as well. PMID:24058469

  15. New molecular settings to support in vivo anti-malarial assays.

    PubMed

    Bahamontes-Rosa, Noemí; Alejandre, Ane Rodriguez; Gomez, Vanesa; Viera, Sara; Gomez-Lorenzo, María G; Sanz-Alonso, Laura María; Mendoza-Losana, Alfonso

    2016-03-08

    Quantitative real-time PCR (qPCR) is now commonly used as a method to confirm diagnosis of malaria and to differentiate recrudescence from re-infection, especially in clinical trials and in reference laboratories where precise quantification is critical. Although anti-malarial drug discovery is based on in vivo murine efficacy models, use of molecular analysis has been limited. The aim of this study was to develop qPCR as a valid methodology to support pre-clinical anti-malarial models by using filter papers to maintain material for qPCR and to compare this with traditional methods. FTA technology (Whatman) is a rapid and safe method for extracting nucleic acids from blood. Peripheral blood samples from mice infected with Plasmodium berghei, P. yoelii, or P. falciparum were kept as frozen samples or as spots on FTA cards. The extracted genetic material from both types of samples was assessed for quantification by qPCR using sets of specific primers specifically designed for Plasmodium 18S rRNA, LDH, and CytB genes. The optimal conditions for nucleic acid extraction from FTA cards and qPCR amplification were set up, and were confirmed to be suitable for parasite quantification using DNA as template after storage at room temperature for as long as 26 months in the case of P. berghei samples and 52 months for P. falciparum and P. yoelii. The quality of DNA extracted from the FTA cards for gene sequencing and microsatellite amplification was also assessed. This is the first study to report the suitability of FTA cards and qPCR assay to quantify parasite load in samples from in vivo efficacy models to support the drug discovery process.

  16. Real-time PCR assays for detection and quantification of aflatoxin-producing molds in foods.

    PubMed

    Rodríguez, Alicia; Rodríguez, Mar; Luque, M Isabel; Martín, Alberto; Córdoba, Juan J

    2012-08-01

    Aflatoxins are among the most toxic mycotoxins. Early detection and quantification of aflatoxin-producing species is crucial to improve food safety. In the present work, two protocols of real-time PCR (qPCR) based on SYBR Green and TaqMan were developed, and their sensitivity and specificity were evaluated. Primers and probes were designed from the o-methyltransferase gene (omt-1) involved in aflatoxin biosynthesis. Fifty-three mold strains representing aflatoxin producers and non-producers of different species, usually reported in food products, were used as references. All strains were tested for aflatoxins production by high-performance liquid chromatography-mass spectrometry (HPLC-MS). The functionality of the proposed qPCR method was demonstrated by the strong linear relationship of the standard curves constructed with the omt-1 gene copy number and Ct values for the different aflatoxin producers tested. The ability of the qPCR protocols to quantify aflatoxin-producing molds was evaluated in different artificially inoculated foods. A good linear correlation was obtained over the range 4 to 1 log cfu/g per reaction for all qPCR assays in the different food matrices (peanuts, spices and dry-fermented sausages). The detection limit in all inoculated foods ranged from 1 to 2 log cfu/g for SYBR Green and TaqMan assays. No significant effect was observed due to the different equipment, operator, and qPCR methodology used in the tests of repeatability and reproducibility for different foods. The proposed methods quantified with high efficiency the fungal load in foods. These qPCR protocols are proposed for use to quantify aflatoxin-producing molds in food products. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Establishment of a quantitative PCR system for discriminating chitinase-like proteins: catalytically inactive breast regression protein-39 and Ym1 are constitutive genes in mouse lung.

    PubMed

    Ohno, Misa; Kida, Yuta; Sakaguchi, Masayoshi; Sugahara, Yasusato; Oyama, Fumitaka

    2014-10-08

    Mice and humans produce chitinase-like proteins (CLPs), which are highly homologous to chitinases but lack chitinolytic activity. Mice express primarily three CLPs, including breast regression protein-39 (BRP-39) [chitinase 3-like-1 (Chi3l1) or 38-kDa glycoprotein (gp38k)], Ym1 (Chi3l3) and Ym2 (Chi3l4). Recently, CLPs have attracted considerable attention due to their increased expression in a number of pathological conditions, including asthma, allergies, rheumatoid arthritis and malignant tumors. Although the exact functions of CLPs are largely unknown, the significance of their increased expression levels during pathophysiological states needs to be determined. The quantification of BRP-39, Ym1 and Ym2 is an important step in gaining insight into the in vivo regulation of the CLPs. We constructed a standard DNA for quantitative real-time PCR (qPCR) by containing three CLPs target fragments and five reference genes cDNA in a one-to-one ratio. We evaluated this system by analyzing the eight target cDNA sequences. Tissue cDNAs obtained by reverse transcription from total RNA from four embryonic stages and eight adult tissues were analyzed using the qPCR system with the standard DNA. We established a qPCR system detecting CLPs and comparing their expression levels with those of five reference genes using the same scale in mouse tissues. We found that BRP-39 and Ym1 were abundant in the mouse lung, whereas Ym2 mRNA was abundant in the stomach, followed by lung. The expression levels of BRP-39 and Ym1 in the mouse lung were higher than those of two active chitinases and were comparable to glyceraldehyde-3-phosphate dehydrogenase, a housekeeping gene which is constitutively expressed in all tissues. Our results indicate that catalytically inactive BRP-39 and Ym1 are constitutive genes in normal mouse lung.

  18. Multiplex real-time quantitative PCR, microscopy and rapid diagnostic immuno-chromatographic tests for the detection of Plasmodium spp: performance, limit of detection analysis and quality assurance.

    PubMed

    Khairnar, Krishna; Martin, Donald; Lau, Rachel; Ralevski, Filip; Pillai, Dylan R

    2009-12-09

    Accurate laboratory diagnosis of malaria species in returning travelers is paramount in the treatment of this potentially fatal infectious disease. A total of 466 blood specimens from returning travelers to Africa, Asia, and South/Central America with suspected malaria infection were collected between 2007 and 2009 at the reference public health laboratory. These specimens were assessed by reference microscopy, multipex real-time quantitative polymerase chain reaction (QPCR), and two rapid diagnostic immuno-chromatographic tests (ICT) in a blinded manner. Key clinical laboratory parameters such as limit of detection (LOD) analysis on clinical specimens by parasite stage, inter-reader variability of ICTs, staffing implications, quality assurance and cost analysis were evaluated. QPCR is the most analytically sensitive method (sensitivity 99.41%), followed by CARESTART (sensitivity 88.24%), and BINAXNOW (sensitivity 86.47%) for the diagnosis of malaria in returning travelers when compared to reference microscopy. However, microscopy was unable to specifically identify Plasmodia spp. in 18 out of 170 positive samples by QPCR. Moreover, the 17 samples that were negative by microscopy and positive by QPCR were also positive by ICTs. Quality assurance was achieved for QPCR by exchanging a blinded proficiency panel with another reference laboratory. The Kappa value of inter-reader variability among three readers for BINAXNOW and CARESTART was calculated to be 0.872 and 0.898 respectively. Serial dilution studies demonstrated that the QPCR cycle threshold correlates linearly with parasitemia (R(2) = 0.9746) in a clinically relevant dynamic range and retains a LOD of 11 rDNA copies/microl for P. falciparum, which was several log lower than reference microscopy and ICTs. LOD for QPCR is affected not only by parasitemia but the parasite stage distribution of each clinical specimen. QPCR was approximately 6-fold more costly than reference microscopy. These data suggest that multiplex QPCR although more costly confers a significant diagnostic advantage in terms of LOD compared to reference microscopy and ICTs for all four species. Quality assurance of QPCR is essential to the maintenance of proficiency in the clinical laboratory. ICTs showed good concordance between readers however lacked sensitivity for non-falciparum species due to antigenic differences and low parasitemia. Multiplex QPCR but not ICTs is an essential adjunct to microscopy in the reference laboratory detection of malaria species specifically due to the superior LOD. ICTs are better suited to the non-reference laboratory where lower specimen volumes challenge microscopy proficiency in the non-endemic setting.

  19. Evaluation of RNA extraction methods and identification of putative reference genes for real-time quantitative polymerase chain reaction expression studies on olive (Olea europaea L.) fruits.

    PubMed

    Nonis, Alberto; Vezzaro, Alice; Ruperti, Benedetto

    2012-07-11

    Genome wide transcriptomic surveys together with targeted molecular studies are uncovering an ever increasing number of differentially expressed genes in relation to agriculturally relevant processes in olive (Olea europaea L). These data need to be supported by quantitative approaches enabling the precise estimation of transcript abundance. qPCR being the most widely adopted technique for mRNA quantification, preliminary work needs to be done to set up robust methods for extraction of fully functional RNA and for the identification of the best reference genes to obtain reliable quantification of transcripts. In this work, we have assessed different methods for their suitability for RNA extraction from olive fruits and leaves and we have evaluated thirteen potential candidate reference genes on 21 RNA samples belonging to fruit developmental/ripening series and to leaves subjected to wounding. By using two different algorithms, GAPDH2 and PP2A1 were identified as the best reference genes for olive fruit development and ripening, and their effectiveness for normalization of expression of two ripening marker genes was demonstrated.

  20. Saponin determination, expression analysis and functional characterization of saponin biosynthetic genes in Chenopodium quinoa leaves.

    PubMed

    Fiallos-Jurado, Jennifer; Pollier, Jacob; Moses, Tessa; Arendt, Philipp; Barriga-Medina, Noelia; Morillo, Eduardo; Arahana, Venancio; de Lourdes Torres, Maria; Goossens, Alain; Leon-Reyes, Antonio

    2016-09-01

    Quinoa (Chenopodium quinoa Willd.) is a highly nutritious pseudocereal with an outstanding protein, vitamin, mineral and nutraceutical content. The leaves, flowers and seed coat of quinoa contain triterpenoid saponins, which impart bitterness to the grain and make them unpalatable without postharvest removal of the saponins. In this study, we quantified saponin content in quinoa leaves from Ecuadorian sweet and bitter genotypes and assessed the expression of saponin biosynthetic genes in leaf samples elicited with methyl jasmonate. We found saponin accumulation in leaves after MeJA treatment in both ecotypes tested. As no reference genes were available to perform qPCR in quinoa, we mined publicly available RNA-Seq data for orthologs of 22 genes known to be stably expressed in Arabidopsis thaliana using geNorm, NormFinder and BestKeeper algorithms. The quinoa ortholog of At2g28390 (Monensin Sensitivity 1, MON1) was stably expressed and chosen as a suitable reference gene for qPCR analysis. Candidate saponin biosynthesis genes were screened in the quinoa RNA-Seq data and subsequent functional characterization in yeast led to the identification of CqbAS1, CqCYP716A78 and CqCYP716A79. These genes were found to be induced by MeJA, suggesting this phytohormone might also modulate saponin biosynthesis in quinoa leaves. Knowledge of the saponin biosynthesis and its regulation in quinoa may aid the further development of sweet cultivars that do not require postharvest processing. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Endocrine disruption screening by protein and gene expression of vitellogenin in freshly isolated and cryopreserved rainbow trout hepatocytes.

    PubMed

    Markell, Lauren K; Mingoia, Robert T; Peterson, Heather M; Yao, Jianhong; Waters, Stephanie M; Finn, James P; Nabb, Diane L; Han, Xing

    2014-08-18

    Xenobiotics may activate the estrogen receptor, resulting in alteration of normal endocrine functions in animals and humans. Consequently, this necessitates development of assay end points capable of identifying estrogenic xenobiotics. In the present study, we screened the potential estrogenicity of chemicals via their ability to induce vitellogenin (VTG) expression in cultured primary hepatocytes from male trout. A routine method for VTG detection measures the secretion of the protein by enzyme-linked immunosorbent assay (ELISA) in freshly isolated trout hepatocytes. However, this lengthy (6 days) culturing procedure requires that hepatocyte isolation is performed each time the assay is run. We optimized this methodology by investigating the utility of cryopreserved hepatocytes, shortening the incubation time, performing a quantitative real-time PCR (qPCR) method for VTG quantification, and verifying the model system with reference chemicals 17β-estradiol, estrone, diethylstilbestrol, hexestrol, genistein, and a negative control, corticosterone. To test the performance of both freshly isolated and cryopreserved hepatocytes, mRNA was collected from hepatocytes following 24 h treatment for VTG gene expression analysis, whereas cell culture media was collected for a VTG ELISA 96 h post-treatment. EC50 values were obtained for each reference chemical except for corticosterone, which exhibited no induction of VTG gene or protein level. Our results show linear concordance between ELISA and qPCR detection methods. Although there was approximately 50% reduction in VTG inducibility following cryopreservation, linear concordance of EC50 values was found between freshly isolated and cryopreserved hepatocytes, indicating that cryopreservation does not alter the functional assessment of estrogen receptor activation and therefore VTG expression. These studies demonstrate that qPCR is a sensitive and specific method for detecting VTG gene expression that can be used together with cryopreserved trout hepatocytes for screening estrogenic chemicals, resulting in a reduction of the time required to perform the assay and enabling greater access to the model system through the approach of cryopreservation.

  2. Apparent polyploidization after gamma irradiation: pitfalls in the use of quantitative polymerase chain reaction (qPCR) for the estimation of mitochondrial and nuclear DNA gene copy numbers.

    PubMed

    Kam, Winnie W Y; Lake, Vanessa; Banos, Connie; Davies, Justin; Banati, Richard

    2013-05-30

    Quantitative polymerase chain reaction (qPCR) has been widely used to quantify changes in gene copy numbers after radiation exposure. Here, we show that gamma irradiation ranging from 10 to 100 Gy of cells and cell-free DNA samples significantly affects the measured qPCR yield, due to radiation-induced fragmentation of the DNA template and, therefore, introduces errors into the estimation of gene copy numbers. The radiation-induced DNA fragmentation and, thus, measured qPCR yield varies with temperature not only in living cells, but also in isolated DNA irradiated under cell-free conditions. In summary, the variability in measured qPCR yield from irradiated samples introduces a significant error into the estimation of both mitochondrial and nuclear gene copy numbers and may give spurious evidence for polyploidization.

  3. A Versatile Panel of Reference Gene Assays for the Measurement of Chicken mRNA by Quantitative PCR

    PubMed Central

    Maier, Helena J.; Van Borm, Steven; Young, John R.; Fife, Mark

    2016-01-01

    Quantitative real-time PCR assays are widely used for the quantification of mRNA within avian experimental samples. Multiple stably-expressed reference genes, selected for the lowest variation in representative samples, can be used to control random technical variation. Reference gene assays must be reliable, have high amplification specificity and efficiency, and not produce signals from contaminating DNA. Whilst recent research papers identify specific genes that are stable in particular tissues and experimental treatments, here we describe a panel of ten avian gene primer and probe sets that can be used to identify suitable reference genes in many experimental contexts. The panel was tested with TaqMan and SYBR Green systems in two experimental scenarios: a tissue collection and virus infection of cultured fibroblasts. GeNorm and NormFinder algorithms were able to select appropriate reference gene sets in each case. We show the effects of using the selected genes on the detection of statistically significant differences in expression. The results are compared with those obtained using 28s ribosomal RNA, the present most widely accepted reference gene in chicken work, identifying circumstances where its use might provide misleading results. Methods for eliminating DNA contamination of RNA reduced, but did not completely remove, detectable DNA. We therefore attached special importance to testing each qPCR assay for absence of signal using DNA template. The assays and analyses developed here provide a useful resource for selecting reference genes for investigations of avian biology. PMID:27537060

  4. The characterization and certification of a quantitative reference material for Legionella detection and quantification by qPCR.

    PubMed

    Baume, M; Garrelly, L; Facon, J P; Bouton, S; Fraisse, P O; Yardin, C; Reyrolle, M; Jarraud, S

    2013-06-01

    The characterization and certification of a Legionella DNA quantitative reference material as a primary measurement standard for Legionella qPCR. Twelve laboratories participated in a collaborative certification campaign. A candidate reference DNA material was analysed through PCR-based limiting dilution assays (LDAs). The validated data were used to statistically assign both a reference value and an associated uncertainty to the reference material. This LDA method allowed for the direct quantification of the amount of Legionella DNA per tube in genomic units (GU) and the determination of the associated uncertainties. This method could be used for the certification of all types of microbiological standards for qPCR. The use of this primary standard will improve the accuracy of Legionella qPCR measurements and the overall consistency of these measurements among different laboratories. The extensive use of this certified reference material (CRM) has been integrated in the French standard NF T90-471 (April 2010) and in the ISO Technical Specification 12 869 (Anon 2012 International Standardisation Organisation) for validating qPCR methods and ensuring the reliability of these methods. © 2013 The Society for Applied Microbiology.

  5. Suitable Reference Genes for Accurate Gene Expression Analysis in Parsley (Petroselinum crispum) for Abiotic Stresses and Hormone Stimuli

    PubMed Central

    Li, Meng-Yao; Song, Xiong; Wang, Feng; Xiong, Ai-Sheng

    2016-01-01

    Parsley, one of the most important vegetables in the Apiaceae family, is widely used in the food, medicinal, and cosmetic industries. Recent studies on parsley mainly focus on its chemical composition, and further research involving the analysis of the plant's gene functions and expressions is required. qPCR is a powerful method for detecting very low quantities of target transcript levels and is widely used to study gene expression. To ensure the accuracy of results, a suitable reference gene is necessary for expression normalization. In this study, four software, namely geNorm, NormFinder, BestKeeper, and RefFinder were used to evaluate the expression stabilities of eight candidate reference genes of parsley (GAPDH, ACTIN, eIF-4α, SAND, UBC, TIP41, EF-1α, and TUB) under various conditions, including abiotic stresses (heat, cold, salt, and drought) and hormone stimuli treatments (GA, SA, MeJA, and ABA). Results showed that EF-1α and TUB were the most stable genes for abiotic stresses, whereas EF-1α, GAPDH, and TUB were the top three choices for hormone stimuli treatments. Moreover, EF-1α and TUB were the most stable reference genes among all tested samples, and UBC was the least stable one. Expression analysis of PcDREB1 and PcDREB2 further verified that the selected stable reference genes were suitable for gene expression normalization. This study can guide the selection of suitable reference genes in gene expression in parsley. PMID:27746803

  6. Suitable Reference Genes for Accurate Gene Expression Analysis in Parsley (Petroselinum crispum) for Abiotic Stresses and Hormone Stimuli.

    PubMed

    Li, Meng-Yao; Song, Xiong; Wang, Feng; Xiong, Ai-Sheng

    2016-01-01

    Parsley, one of the most important vegetables in the Apiaceae family, is widely used in the food, medicinal, and cosmetic industries. Recent studies on parsley mainly focus on its chemical composition, and further research involving the analysis of the plant's gene functions and expressions is required. qPCR is a powerful method for detecting very low quantities of target transcript levels and is widely used to study gene expression. To ensure the accuracy of results, a suitable reference gene is necessary for expression normalization. In this study, four software, namely geNorm, NormFinder, BestKeeper, and RefFinder were used to evaluate the expression stabilities of eight candidate reference genes of parsley ( GAPDH, ACTIN, eIF-4 α, SAND, UBC, TIP41, EF-1 α, and TUB ) under various conditions, including abiotic stresses (heat, cold, salt, and drought) and hormone stimuli treatments (GA, SA, MeJA, and ABA). Results showed that EF-1 α and TUB were the most stable genes for abiotic stresses, whereas EF-1 α, GAPDH , and TUB were the top three choices for hormone stimuli treatments. Moreover, EF-1 α and TUB were the most stable reference genes among all tested samples, and UBC was the least stable one. Expression analysis of PcDREB1 and PcDREB2 further verified that the selected stable reference genes were suitable for gene expression normalization. This study can guide the selection of suitable reference genes in gene expression in parsley.

  7. Sampling and Pooling Methods for Capturing Herd Level Antibiotic Resistance in Swine Feces using qPCR and CFU Approaches

    PubMed Central

    Mellerup, Anders; Ståhl, Marie

    2015-01-01

    The aim of this article was to define the sampling level and method combination that captures antibiotic resistance at pig herd level utilizing qPCR antibiotic resistance gene quantification and culture-based quantification of antibiotic resistant coliform indicator bacteria. Fourteen qPCR assays for commonly detected antibiotic resistance genes were developed, and used to quantify antibiotic resistance genes in total DNA from swine fecal samples that were obtained using different sampling and pooling methods. In parallel, the number of antibiotic resistant coliform indicator bacteria was determined in the same swine fecal samples. The results showed that the qPCR assays were capable of detecting differences in antibiotic resistance levels in individual animals that the coliform bacteria colony forming units (CFU) could not. Also, the qPCR assays more accurately quantified antibiotic resistance genes when comparing individual sampling and pooling methods. qPCR on pooled samples was found to be a good representative for the general resistance level in a pig herd compared to the coliform CFU counts. It had significantly reduced relative standard deviations compared to coliform CFU counts in the same samples, and therefore differences in antibiotic resistance levels between samples were more readily detected. To our knowledge, this is the first study to describe sampling and pooling methods for qPCR quantification of antibiotic resistance genes in total DNA extracted from swine feces. PMID:26114765

  8. Quantitative real-time PCR method with internal amplification control to quantify cyclopiazonic acid producing molds in foods.

    PubMed

    Rodríguez, Alicia; Werning, María L; Rodríguez, Mar; Bermúdez, Elena; Córdoba, Juan J

    2012-12-01

    A quantitative TaqMan real-time PCR (qPCR) method that includes an internal amplification control (IAC) to quantify cyclopiazonic acid (CPA)-producing molds in foods has been developed. A specific primer pair (dmaTF/dmaTR) and a TaqMan probe (dmaTp) were designed on the basis of dmaT gene which encodes the enzyme dimethylallyl tryptophan synthase involved in the biosynthesis of CPA. The IAC consisted of a 105 bp chimeric DNA fragment containing a region of the hly gene of Listeria monocytogenes. Thirty-two mold reference strains representing CPA producers and non-producers of different mold species were used in this study. All strains were tested for CPA production by high-performance liquid chromatography-mass spectrometry (HPLC-MS). The functionality of the designed qPCR method was demonstrated by the high linear relationship of the standard curves relating to the dmaT gene copy numbers and the Ct values obtained from the different CPA producers tested. The ability of the qPCR protocol to quantify CPA-producing molds was evaluated in different artificially inoculated foods. A good linear correlation was obtained over the range 1-4 log cfu/g in the different food matrices. The detection limit in all inoculated foods ranged from 1 to 2 log cfu/g. This qPCR protocol including an IAC showed good efficiency to quantify CPA-producing molds in naturally contaminated foods avoiding false negative results. This method could be used to monitor the CPA producers in the HACCP programs to prevent the risk of CPA formation throughout the food chain. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. quantGenius: implementation of a decision support system for qPCR-based gene quantification.

    PubMed

    Baebler, Špela; Svalina, Miha; Petek, Marko; Stare, Katja; Rotter, Ana; Pompe-Novak, Maruša; Gruden, Kristina

    2017-05-25

    Quantitative molecular biology remains a challenge for researchers due to inconsistent approaches for control of errors in the final results. Due to several factors that can influence the final result, quantitative analysis and interpretation of qPCR data are still not trivial. Together with the development of high-throughput qPCR platforms, there is a need for a tool allowing for robust, reliable and fast nucleic acid quantification. We have developed "quantGenius" ( http://quantgenius.nib.si ), an open-access web application for a reliable qPCR-based quantification of nucleic acids. The quantGenius workflow interactively guides the user through data import, quality control (QC) and calculation steps. The input is machine- and chemistry-independent. Quantification is performed using the standard curve approach, with normalization to one or several reference genes. The special feature of the application is the implementation of user-guided QC-based decision support system, based on qPCR standards, that takes into account pipetting errors, assay amplification efficiencies, limits of detection and quantification of the assays as well as the control of PCR inhibition in individual samples. The intermediate calculations and final results are exportable in a data matrix suitable for further statistical analysis or visualization. We additionally compare the most important features of quantGenius with similar advanced software tools and illustrate the importance of proper QC system in the analysis of qPCR data in two use cases. To our knowledge, quantGenius is the only qPCR data analysis tool that integrates QC-based decision support and will help scientists to obtain reliable results which are the basis for biologically meaningful data interpretation.

  10. Insights into the role of differential gene expression on the ecological adaptation of the snail Littorina saxatilis

    PubMed Central

    2010-01-01

    Background In the past 40 years, there has been increasing acceptance that variation in levels of gene expression represents a major source of evolutionary novelty. Gene expression divergence is therefore likely to be involved in the emergence of incipient species, namely, in a context of adaptive radiation. In this study, a genome-wide expression profiling approach (cDNA-AFLP), validated by quantitative real-time polymerase chain reaction (qPCR) were used to get insights into the role of differential gene expression on the ecological adaptation of the marine snail Littorina saxatilis. This gastropod displays two sympatric ecotypes (RB and SU) which are becoming one of the best studied systems for ecological speciation. Results Among the 99 transcripts shared between ecotypes, 12.12% showed significant differential expression. At least 4% of these transcripts still displayed significant differences after correction for multiple tests, highlighting that gene expression can differ considerably between subpopulations adapted to alternative habitats in the face of gene flow. One of the transcripts identified was Cytochrome c Oxidase subunit I (COI). In addition, 6 possible reference genes were validated to normalize and confirm this result using qPCR. α-Tubulin and histone H3.3 showed the more stable expression levels, being therefore chosen as the best option for normalization. The qPCR analysis confirmed a higher COI expression in SU individuals. Conclusions At least 4% of the transcriptome studied is being differentially expressed between ecotypes living in alternative habitats, even when gene flow is still substantial between ecotypes. We could identify a candidate transcript of such ecotype differentiation: Cytochrome c Oxidase Subunit I (COI), a mitochondrial gene involved in energy metabolism. Quantitative PCR was used to confirm the differences found in COI and its over-expression in the SU ecotype. Interestingly, COI is involved in the oxidative phosphorylation, suggesting an enhanced mitochondrial gene expression (or increased number of mitochondria) to improve energy supply in the ecotype subjected to the strongest wave action. PMID:21087461

  11. Single-Step qPCR and dPCR Detection of Diverse CRISPR-Cas9 Gene Editing Events In Vivo.

    PubMed

    Falabella, Micol; Sun, Linqing; Barr, Justin; Pena, Andressa Z; Kershaw, Erin E; Gingras, Sebastien; Goncharova, Elena A; Kaufman, Brett A

    2017-10-05

    Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated protein 9 (Cas9)-based technology is currently the most flexible means to create targeted mutations by recombination or indel mutations by nonhomologous end joining. During mouse transgenesis, recombinant and indel alleles are often pursued simultaneously. Multiple alleles can be formed in each animal to create significant genetic complexity that complicates the CRISPR-Cas9 approach and analysis. Currently, there are no rapid methods to measure the extent of on-site editing with broad mutation sensitivity. In this study, we demonstrate the allelic diversity arising from targeted CRISPR editing in founder mice. Using this DNA sample collection, we validated specific quantitative and digital PCR methods (qPCR and dPCR, respectively) for measuring the frequency of on-target editing in founder mice. We found that locked nucleic acid (LNA) probes combined with an internal reference probe (Drop-Off Assay) provide accurate measurements of editing rates. The Drop-Off LNA Assay also detected on-target CRISPR-Cas9 gene editing in blastocysts with a sensitivity comparable to PCR-clone sequencing. Lastly, we demonstrate that the allele-specific LNA probes used in qPCR competitor assays can accurately detect recombinant mutations in founder mice. In summary, we show that LNA-based qPCR and dPCR assays provide a rapid method for quantifying the extent of on-target genome editing in vivo , testing RNA guides, and detecting recombinant mutations. Copyright © 2017 Falabella et al.

  12. Differences in AMY1 Gene Copy Numbers Derived from Blood, Buccal Cells and Saliva Using Quantitative and Droplet Digital PCR Methods: Flagging the Pitfall.

    PubMed

    Ooi, Delicia Shu Qin; Tan, Verena Ming Hui; Ong, Siong Gim; Chan, Yiong Huak; Heng, Chew Kiat; Lee, Yung Seng

    2017-01-01

    The human salivary (AMY1) gene, encoding salivary α-amylase, has variable copy number variants (CNVs) in the human genome. We aimed to determine if real-time quantitative polymerase chain reaction (qPCR) and the more recently available Droplet Digital PCR (ddPCR) can provide a precise quantification of the AMY1 gene copy number in blood, buccal cells and saliva samples derived from the same individual. Seven participants were recruited and DNA was extracted from the blood, buccal cells and saliva samples provided by each participant. Taqman assay real-time qPCR and ddPCR were conducted to quantify AMY1 gene copy numbers. Statistical analysis was carried out to determine the difference in AMY1 gene copy number between the different biological specimens and different assay methods. We found significant within-individual difference (p<0.01) in AMY1 gene copy number between different biological samples as determined by qPCR. However, there was no significant within-individual difference in AMY1 gene copy number between different biological samples as determined by ddPCR. We also found that AMY1 gene copy number of blood samples were comparable between qPCR and ddPCR, while there is a significant difference (p<0.01) between AMY1 gene copy numbers measured by qPCR and ddPCR for both buccal swab and saliva samples. Despite buccal cells and saliva samples being possible sources of DNA, it is pertinent that ddPCR or a single biological sample, preferably blood sample, be used for determining highly polymorphic gene copy numbers like AMY1, due to the large within-individual variability between different biological samples if real time qPCR is employed.

  13. Selection of reference genes for quantitative real-time PCR normalization in Panax ginseng at different stages of growth and in different organs.

    PubMed

    Liu, Jing; Wang, Qun; Sun, Minying; Zhu, Linlin; Yang, Michael; Zhao, Yu

    2014-01-01

    Quantitative real-time reverse transcription PCR (qRT-PCR) has become a widely used method for gene expression analysis; however, its data interpretation largely depends on the stability of reference genes. The transcriptomics of Panax ginseng, one of the most popular and traditional ingredients used in Chinese medicines, is increasingly being studied. Furthermore, it is vital to establish a series of reliable reference genes when qRT-PCR is used to assess the gene expression profile of ginseng. In this study, we screened out candidate reference genes for ginseng using gene expression data generated by a high-throughput sequencing platform. Based on the statistical tests, 20 reference genes (10 traditional housekeeping genes and 10 novel genes) were selected. These genes were tested for the normalization of expression levels in five growth stages and three distinct plant organs of ginseng by qPCR. These genes were subsequently ranked and compared according to the stability of their expressions using geNorm, NormFinder, and BestKeeper computational programs. Although the best reference genes were found to vary across different samples, CYP and EF-1α were the most stable genes amongst all samples. GAPDH/30S RPS20, CYP/60S RPL13 and CYP/QCR were the optimum pair of reference genes in the roots, stems, and leaves. CYP/60S RPL13, CYP/eIF-5A, aTUB/V-ATP, eIF-5A/SAR1, and aTUB/pol IIa were the most stably expressed combinations in each of the five developmental stages. Our study serves as a foundation for developing an accurate method of qRT-PCR and will benefit future studies on gene expression profiles of Panax Ginseng.

  14. Selection of novel reference genes for use in the human central nervous system: a BrainNet Europe Study.

    PubMed

    Durrenberger, Pascal F; Fernando, Francisca S; Magliozzi, Roberta; Kashefi, Samira N; Bonnert, Timothy P; Ferrer, Isidro; Seilhean, Danielle; Nait-Oumesmar, Brahim; Schmitt, Andrea; Gebicke-Haerter, Peter J; Falkai, Peter; Grünblatt, Edna; Palkovits, Miklos; Parchi, Piero; Capellari, Sabina; Arzberger, Thomas; Kretzschmar, Hans; Roncaroli, Federico; Dexter, David T; Reynolds, Richard

    2012-12-01

    The use of an appropriate reference gene to ensure accurate normalisation is crucial for the correct quantification of gene expression using qPCR assays and RNA arrays. The main criterion for a gene to qualify as a reference gene is a stable expression across various cell types and experimental settings. Several reference genes are commonly in use but more and more evidence reveals variations in their expression due to the presence of on-going neuropathological disease processes, raising doubts concerning their use. We conducted an analysis of genome-wide changes of gene expression in the human central nervous system (CNS) covering several neurological disorders and regions, including the spinal cord, and were able to identify a number of novel stable reference genes. We tested the stability of expression of eight novel (ATP5E, AARS, GAPVD1, CSNK2B, XPNPEP1, OSBP, NAT5 and DCTN2) and four more commonly used (BECN1, GAPDH, QARS and TUBB) reference genes in a smaller cohort using RT-qPCR. The most stable genes out of the 12 reference genes were tested as normaliser to validate increased levels of a target gene in CNS disease. We found that in human post-mortem tissue the novel reference genes, XPNPEP1 and AARS, were efficient in replicating microarray target gene expression levels and that XPNPEP1 was more efficient as a normaliser than BECN1, which has been shown to change in expression as a consequence of neuronal cell loss. We provide herein one more suitable novel reference gene, XPNPEP1, with no current neuroinflammatory or neurodegenerative associations that can be used for gene quantitative gene expression studies with human CNS post-mortem tissue and also suggest a list of potential other candidates. These data also emphasise the importance of organ/tissue-specific stably expressed genes as reference genes for RNA studies.

  15. A Complementary Isothermal Amplification Method to the U.S. EPA Quantitative Polymerase Chain Reaction Approach for the Detection of Enterococci in Environmental Waters

    PubMed Central

    2017-01-01

    We report a novel molecular assay, based on helicase-dependent amplification (HDA), for the detection of enterococci as markers for fecal pollution in water. This isothermal assay targets the same Enterococcus 23S rRNA gene region as the existing quantitative polymerase chain reaction (qPCR) assays of U.S. Environmental Protection Agency Methods 1611 and 1609 but can be entirely performed on a simple heating block. The developed Enterococcus HDA assay successfully discriminated 15 enterococcal from 15 non-enterococcal reference strains and reliably detected 48 environmental isolates of enterococci. The limit of detection was 25 target copies per reaction, only 3 times higher than that of qPCR. The applicability of the assay was tested on 30 environmental water sample DNA extracts, simulating a gradient of fecal pollution. Despite the isothermal nature of the reaction, the HDA results were consistent with those of the qPCR reference. Given this performance, we conclude that the developed Enterococcus HDA assay has great potential as a qualitative molecular screening method for resource-limited settings when combined with compatible up- and downstream processes. This amplification strategy can pave the way for developing a new generation of rapid, low-cost, and field-deployable molecular diagnostic tools for water quality monitoring. PMID:28541661

  16. Quantification of hookworm ova from wastewater matrices using quantitative PCR.

    PubMed

    Gyawali, Pradip; Ahmed, Warish; Sidhu, Jatinder P; Jagals, Paul; Toze, Simon

    2017-07-01

    A quantitative PCR (qPCR) assay was used to quantify Ancylostoma caninum ova in wastewater and sludge samples. We estimated the average gene copy numbers for a single ovum using a mixed population of ova. The average gene copy numbers derived from the mixed population were used to estimate numbers of hookworm ova in A. caninum seeded and unseeded wastewater and sludge samples. The newly developed qPCR assay estimated an average of 3.7×10 3 gene copies per ovum, which was then validated by seeding known numbers of hookworm ova into treated wastewater. The qPCR estimated an average of (1.1±0.1), (8.6±2.9) and (67.3±10.4) ova for treated wastewater that was seeded with (1±0), (10±2) and (100±21) ova, respectively. The further application of the qPCR assay for the quantification of A. caninum ova was determined by seeding a known numbers of ova into the wastewater matrices. The qPCR results indicated that 50%, 90% and 67% of treated wastewater (1L), raw wastewater (1L) and sludge (~4g) samples had variable numbers of A. caninum gene copies. After conversion of the qPCR estimated gene copy numbers to ova for treated wastewater, raw wastewater, and sludge samples, had an average of 0.02, 1.24 and 67 ova, respectively. The result of this study indicated that qPCR can be used for the quantification of hookworm ova from wastewater and sludge samples; however, caution is advised in interpreting qPCR generated data for health risk assessment. Copyright © 2017. Published by Elsevier B.V.

  17. Evaluation of endogenous control genes for gene expression studies across multiple tissues and in the specific sets of fat- and muscle-type samples of the pig.

    PubMed

    Gu, Y R; Li, M Z; Zhang, K; Chen, L; Jiang, A A; Wang, J Y; Li, X W

    2011-08-01

    To normalize a set of quantitative real-time PCR (q-PCR) data, it is essential to determine an optimal number/set of housekeeping genes, as the abundance of housekeeping genes can vary across tissues or cells during different developmental stages, or even under certain environmental conditions. In this study, of the 20 commonly used endogenous control genes, 13, 18 and 17 genes exhibited credible stability in 56 different tissues, 10 types of adipose tissue and five types of muscle tissue, respectively. Our analysis clearly showed that three optimal housekeeping genes are adequate for an accurate normalization, which correlated well with the theoretical optimal number (r ≥ 0.94). In terms of economical and experimental feasibility, we recommend the use of the three most stable housekeeping genes for calculating the normalization factor. Based on our results, the three most stable housekeeping genes in all analysed samples (TOP2B, HSPCB and YWHAZ) are recommended for accurate normalization of q-PCR data. We also suggest that two different sets of housekeeping genes are appropriate for 10 types of adipose tissue (the HSPCB, ALDOA and GAPDH genes) and five types of muscle tissue (the TOP2B, HSPCB and YWHAZ genes), respectively. Our report will serve as a valuable reference for other studies aimed at measuring tissue-specific mRNA abundance in porcine samples. © 2011 Blackwell Verlag GmbH.

  18. Development and validation of a duplex real-time PCR assay for the diagnosis of equine piroplasmosis.

    PubMed

    Lobanov, Vladislav A; Peckle, Maristela; Massard, Carlos L; Brad Scandrett, W; Gajadhar, Alvin A

    2018-03-02

    Equine piroplasmosis (EP) is an economically significant infection of horses and other equine species caused by the tick-borne protozoa Theileria equi and Babesia caballi. The long-term carrier state in infected animals makes importation of such subclinical cases a major risk factor for the introduction of EP into non-enzootic areas. Regulatory testing for EP relies on screening of equines by serological methods. The definitive diagnosis of EP infection in individual animals will benefit from the availability of sensitive direct detection methods, for example, when used as confirmatory assays for non-negative serological test results. The objectives of this study were to develop a real-time quantitative polymerase chain reaction (qPCR) assay for simultaneous detection of both agents of EP, perform comprehensive evaluation of its performance and assess the assay's utility for regulatory testing. We developed a duplex qPCR targeting the ema-1 gene of T. equi and the 18S rRNA gene of B. caballi and demonstrated that the assay has high analytical sensitivities for both piroplasm species. Validation of the duplex qPCR on samples from 362 competitive enzyme-linked immunosorbent assay (cELISA)-negative horses from Canada and the United States yielded no false-positive reactions. The assay's performance was further evaluated using samples collected from 430 horses of unknown EP status from a highly endemic area in Brazil. This set of samples was also tested by a single-target 18S rRNA qPCR for T. equi developed at the OIE reference laboratory for EP in Japan, and a previously published single-target 18S rRNA qPCR for B. caballi whose oligonucleotides we adopted for use in the duplex qPCR. Matching serum samples were tested for antibodies to these parasites using cELISA. By the duplex qPCR, T. equi-specific 18S rRNA qPCR and cELISA, infections with T. equi were detected in 87.9% (95% confidence interval, CI: 84.5-90.7%), 90.5% (95% CI: 87.3-92.3%) and 87.4% (95% CI: 84.0-90.2%) of the horses, respectively. The B. caballi prevalence estimates were 9.3% (95% CI: 6.9-12.4%) by the duplex qPCR and 7.9% (95% CI: 5.7-10.9%) by the respective single-target qPCR assay. These values were markedly lower compared to the seroprevalence of 58.6% (95% CI: 53.9-63.2%) obtained by B. caballi-specific cELISA. The relative diagnostic sensitivity of the duplex qPCR for T. equi was 95.5%, as 359 of the 376 horses with exposure to T. equi confirmed by cELISA had parasitemia levels above the detection limit of the molecular assay. In contrast, only 39 (15.5%) of the 252 horses with detectable B. caballi-specific antibodies were positive for this piroplasm species by the duplex qPCR. The duplex qPCR described here performed comparably to the existing single-target qPCR assays for T. equi and B. caballi and will be more cost-effective in terms of results turnaround time and reagent costs when both pathogens are being targeted for disease control and epidemiological investigations. These validation data also support the reliability of the ema-1 gene-specific oligonucleotides developed in this study for confirmatory testing of non-negative serological test results for T. equi by qPCR. However, the B. caballi-specific qPCR cannot be similarly recommended as a confirmatory assay for routine regulatory testing due to the low level of agreement with serological test results demonstrated in this study. Further studies are needed to determine the transmission risk posed by PCR-negative equines with detectable antibodies to B. caballi.

  19. Careful Selection of Reference Genes Is Required for Reliable Performance of RT-qPCR in Human Normal and Cancer Cell Lines

    PubMed Central

    Jacob, Francis; Guertler, Rea; Naim, Stephanie; Nixdorf, Sheri; Fedier, André; Hacker, Neville F.; Heinzelmann-Schwarz, Viola

    2013-01-01

    Reverse Transcription - quantitative Polymerase Chain Reaction (RT-qPCR) is a standard technique in most laboratories. The selection of reference genes is essential for data normalization and the selection of suitable reference genes remains critical. Our aim was to 1) review the literature since implementation of the MIQE guidelines in order to identify the degree of acceptance; 2) compare various algorithms in their expression stability; 3) identify a set of suitable and most reliable reference genes for a variety of human cancer cell lines. A PubMed database review was performed and publications since 2009 were selected. Twelve putative reference genes were profiled in normal and various cancer cell lines (n = 25) using 2-step RT-qPCR. Investigated reference genes were ranked according to their expression stability by five algorithms (geNorm, Normfinder, BestKeeper, comparative ΔCt, and RefFinder). Our review revealed 37 publications, with two thirds patient samples and one third cell lines. qPCR efficiency was given in 68.4% of all publications, but only 28.9% of all studies provided RNA/cDNA amount and standard curves. GeNorm and Normfinder algorithms were used in 60.5% in combination. In our selection of 25 cancer cell lines, we identified HSPCB, RRN18S, and RPS13 as the most stable expressed reference genes. In the subset of ovarian cancer cell lines, the reference genes were PPIA, RPS13 and SDHA, clearly demonstrating the necessity to select genes depending on the research focus. Moreover, a cohort of at least three suitable reference genes needs to be established in advance to the experiments, according to the guidelines. For establishing a set of reference genes for gene normalization we recommend the use of ideally three reference genes selected by at least three stability algorithms. The unfortunate lack of compliance to the MIQE guidelines reflects that these need to be further established in the research community. PMID:23554992

  20. Validation of Reference Genes for Relative Quantitative Gene Expression Studies in Cassava (Manihot esculenta Crantz) by Using Quantitative Real-Time PCR

    PubMed Central

    Hu, Meizhen; Hu, Wenbin; Xia, Zhiqiang; Zhou, Xincheng; Wang, Wenquan

    2016-01-01

    Reverse transcription quantitative real-time polymerase chain reaction (real-time PCR, also referred to as quantitative RT-PCR or RT-qPCR) is a highly sensitive and high-throughput method used to study gene expression. Despite the numerous advantages of RT-qPCR, its accuracy is strongly influenced by the stability of internal reference genes used for normalizations. To date, few studies on the identification of reference genes have been performed on cassava (Manihot esculenta Crantz). Therefore, we selected 26 candidate reference genes mainly via the three following channels: reference genes used in previous studies on cassava, the orthologs of the most stable Arabidopsis genes, and the sequences obtained from 32 cassava transcriptome sequence data. Then, we employed ABI 7900 HT and SYBR Green PCR mix to assess the expression of these genes in 21 materials obtained from various cassava samples under different developmental and environmental conditions. The stability of gene expression was analyzed using two statistical algorithms, namely geNorm and NormFinder. geNorm software suggests the combination of cassava4.1_017977 and cassava4.1_006391 as sufficient reference genes for major cassava samples, the union of cassava4.1_014335 and cassava4.1_006884 as best choice for drought stressed samples, and the association of cassava4.1_012496 and cassava4.1_006391 as optimal choice for normally grown samples. NormFinder software recommends cassava4.1_006884 or cassava4.1_006776 as superior reference for qPCR analysis of different materials and organs of drought stressed or normally grown cassava, respectively. Results provide an important resource for cassava reference genes under specific conditions. The limitations of these findings were also discussed. Furthermore, we suggested some strategies that may be used to select candidate reference genes. PMID:27242878

  1. Validation of Suitable Reference Genes for Expression Normalization in Echinococcus spp. Larval Stages

    PubMed Central

    Espínola, Sergio Martin; Ferreira, Henrique Bunselmeyer; Zaha, Arnaldo

    2014-01-01

    In recent years, a significant amount of sequence data (both genomic and transcriptomic) for Echinococcus spp. has been published, thereby facilitating the analysis of genes expressed during a specific stage or involved in parasite development. To perform a suitable gene expression quantification analysis, the use of validated reference genes is strongly recommended. Thus, the aim of this work was to identify suitable reference genes to allow reliable expression normalization for genes of interest in Echinococcus granulosus sensu stricto (s.s.) (G1) and Echinococcus ortleppi upon induction of the early pre-adult development. Untreated protoscoleces (PS) and pepsin-treated protoscoleces (PSP) from E. granulosus s.s. (G1) and E. ortleppi metacestode were used. The gene expression stability of eleven candidate reference genes (βTUB, NDUFV2, RPL13, TBP, CYP-1, RPII, EF-1α, βACT-1, GAPDH, ETIF4A-III and MAPK3) was assessed using geNorm, Normfinder, and RefFinder. Our qPCR data showed a good correlation with the recently published RNA-seq data. Regarding expression stability, EF-1α and TBP were the most stable genes for both species. Interestingly, βACT-1 (the most commonly used reference gene), and GAPDH and ETIF4A-III (previously identified as housekeeping genes) did not behave stably in our assay conditions. We propose the use of EF-1α as a reference gene for studies involving gene expression analysis in both PS and PSP experimental conditions for E. granulosus s.s. and E. ortleppi. To demonstrate its applicability, EF-1α was used as a normalizer gene in the relative quantification of transcripts from genes coding for antigen B subunits. The same EF-1α reference gene may be used in studies with other Echinococcus sensu lato species. This report validates suitable reference genes for species of class Cestoda, phylum Platyhelminthes, thus providing a foundation for further validation in other epidemiologically important cestode species, such as those from the Taenia genus. PMID:25014071

  2. Validation of suitable reference genes for expression normalization in Echinococcus spp. larval stages.

    PubMed

    Espínola, Sergio Martin; Ferreira, Henrique Bunselmeyer; Zaha, Arnaldo

    2014-01-01

    In recent years, a significant amount of sequence data (both genomic and transcriptomic) for Echinococcus spp. has been published, thereby facilitating the analysis of genes expressed during a specific stage or involved in parasite development. To perform a suitable gene expression quantification analysis, the use of validated reference genes is strongly recommended. Thus, the aim of this work was to identify suitable reference genes to allow reliable expression normalization for genes of interest in Echinococcus granulosus sensu stricto (s.s.) (G1) and Echinococcus ortleppi upon induction of the early pre-adult development. Untreated protoscoleces (PS) and pepsin-treated protoscoleces (PSP) from E. granulosus s.s. (G1) and E. ortleppi metacestode were used. The gene expression stability of eleven candidate reference genes (βTUB, NDUFV2, RPL13, TBP, CYP-1, RPII, EF-1α, βACT-1, GAPDH, ETIF4A-III and MAPK3) was assessed using geNorm, Normfinder, and RefFinder. Our qPCR data showed a good correlation with the recently published RNA-seq data. Regarding expression stability, EF-1α and TBP were the most stable genes for both species. Interestingly, βACT-1 (the most commonly used reference gene), and GAPDH and ETIF4A-III (previously identified as housekeeping genes) did not behave stably in our assay conditions. We propose the use of EF-1α as a reference gene for studies involving gene expression analysis in both PS and PSP experimental conditions for E. granulosus s.s. and E. ortleppi. To demonstrate its applicability, EF-1α was used as a normalizer gene in the relative quantification of transcripts from genes coding for antigen B subunits. The same EF-1α reference gene may be used in studies with other Echinococcus sensu lato species. This report validates suitable reference genes for species of class Cestoda, phylum Platyhelminthes, thus providing a foundation for further validation in other epidemiologically important cestode species, such as those from the Taenia genus.

  3. [Effects of berberine on mRNA expression levels of PPARγ and adipocytokines in insulin-resistant adipocytes].

    PubMed

    Tu, Jun; Luo, Xin-Xin; Li, Bing-Tao; Li, Yu; Xu, Guo-Liang

    2016-06-01

    Adipocytokines are closely associated with insulin resistance (IR) in adipose tissues, and they are more and more seriously taken in the study of the development of diabetes. This experiment was mainly to study the effect of berberine on mRNA expression levels of PPARγ and adipocytokines in insulin resistant adipocytes, and investigate the molecular mechanism of berberine in enhancing insulin sensitization and application advantages of droplet digital PCR (ddPCR). ddPCR absolute quantification analysis was taken in this experiment to simply and intuitively determine the appropriate reference genes. ddPCR and quantitative Real-time PCR (qPCR) were used to compare the effect of different doses of berberine (10, 20, 50, 100 μmol•L⁻¹) on mRNA expression levels of PPARγ, adiponectin, resistin and leptin in IR 3T3-L1adipocytes. Antagonist GW9662 was added to study the inherent correlation between PPARγ and adiponectin mRNA expression levels. ddPCR results showed that the expression level of β-actin in adipocytes was stable, and suitable as reference gene for normalization of quantitative PCR data. Both of ddPCR and qPCR results showed that, as compared with IR models, the mRNA expression levels of adiponectin were decreased in the treatment with berberine (10, 20, 50, 100 μmol•L⁻¹) in a dose-dependent manner (P<0.01); the expression of PPARγ was decreased by 20, 50, 100 μmol•L⁻¹ berberine in a dose-dependent manner in qPCR assay (P<0.01) and decreased only by 50 and 100 μmol•L⁻¹ berberine in ddPCR assay (P<0.05). PPARγ specific antagonist GW9662 intervention experiment showed that adiponectin gene expression was directly relevant with PPARγ (P<0.05). ddPCR probe assay showed that various doses of berberine could significantly reduce mRNA expression levels of resistin and leptin (P<0.01) in a dose-dependent manner. In conclusion, berberine enhanced insulin sensitization effect not by up-regulating adiponect in expression of transcriptional level in PPARγ-dependent manner, but may by the elevated multimerization of adiponectin in the posttranslational regulation level. Berberine down-regulated the resistin and leptin expression levels, which could alleviate lipolysis and improve IR in adipocytes. ddPCR provided better sensitivity and linear range than qPCR, with obvious technical advantages for the detection of low abundance expression of target genes. Copyright© by the Chinese Pharmaceutical Association.

  4. A targeted gene expression platform allows for rapid analysis of chemical-induced antioxidant mRNA expression in zebrafish larvae.

    PubMed

    Mills, Margaret G; Gallagher, Evan P

    2017-01-01

    Chemical-induced oxidative stress and the biochemical pathways that protect against oxidative damage are of particular interest in the field of toxicology. To rapidly identify oxidative stress-responsive gene expression changes in zebrafish, we developed a targeted panel of antioxidant genes using the Affymetrix QuantiGene Plex (QGP) platform. The genes contained in our panel include eight putative Nrf2 (Nfe2l2a)-dependent antioxidant genes (hmox1a, gstp1, gclc, nqo1, prdx1, gpx1a, sod1, sod2), a stress response gene (hsp70), an inducible DNA damage repair gene (gadd45bb), and three reference genes (actb1, gapdh, hprt1). We tested this platform on larval zebrafish exposed to tert-butyl hydroperoxide (tBHP) and cadmium (Cd), two model oxidative stressors with different modes of action, and compared our results with those obtained using the more common quantitative PCR (qPCR) method. Both methods showed that exposure to tBHP and Cd induced expression of prdx1, gstp1, and hmox1a (2- to 12-fold increase via QGP), indicative of an activated Nrf2 response in larval zebrafish. Both compounds also elicited a general stress response as reflected by elevation of hsp70 and gadd45bb, with Cd being the more potent inducer. Transient changes were observed in sod2 and gpx1a expression, whereas nqo1, an Nrf2-responsive gene in mammalian cells, was minimally affected by either tBHP or Cd chemical exposures. Developmental expression analysis of the target genes by QGP revealed marked upregulation of sod2 between 0-96hpf, and to a lesser extent, of sod1 and gstp1. Once optimized, QGP analysis of these experiments was accomplished more rapidly, using far less tissue, and at lower total costs than qPCR analysis. In summary, the QGP platform as applied to higher-throughput zebrafish studies provides a reasonable cost-effective alternative to qPCR or more comprehensive transcriptomics approaches to rapidly assess the potential for chemicals to elicit oxidative stress as a mechanism of chemical toxicity.

  5. Identification of the major capsid protein of erythrocytic necrosis virus (ENV) and development of quantitative real-time PCR assays for quantification of ENV DNA.

    PubMed

    Purcell, Maureen K; Pearman-Gillman, Schuyler; Thompson, Rachel L; Gregg, Jacob L; Hart, Lucas M; Winton, James R; Emmenegger, Eveline J; Hershberger, Paul K

    2016-07-01

    Viral erythrocytic necrosis (VEN) is a disease of marine and anadromous fish that is caused by the erythrocytic necrosis virus (ENV), which was recently identified as a novel member of family Iridoviridae by next-generation sequencing. Phylogenetic analysis of the ENV DNA polymerase grouped ENV with other erythrocytic iridoviruses from snakes and lizards. In the present study, we identified the gene encoding the ENV major capsid protein (MCP) and developed a quantitative real-time PCR (qPCR) assay targeting this gene. Phylogenetic analysis of the MCP gene sequence supported the conclusion that ENV does not group with any of the currently described iridovirus genera. Because there is no information regarding genetic variation of the MCP gene across the reported host and geographic range for ENV, we also developed a second qPCR assay for a more conserved ATPase-like gene region. The MCP and ATPase qPCR assays demonstrated good analytical and diagnostic sensitivity and specificity based on samples from laboratory challenges of Pacific herring Clupea pallasii The qPCR assays had similar diagnostic sensitivity and specificity as light microscopy of stained blood smears for the presence of intraerythrocytic inclusion bodies. However, the qPCR assays may detect viral DNA early in infection prior to the formation of inclusion bodies. Both qPCR assays appear suitable for viral surveillance or as a confirmatory test for ENV in Pacific herring from the Salish Sea. © 2016 The Author(s).

  6. Identification of the major capsid protein of erythrocytic necrosis virus (ENV) and development of quantitative real-time PCR assays for quantification of ENV DNA

    USGS Publications Warehouse

    Purcell, Maureen K.; Pearman-Gillman, Schuyler; Thompson, Rachel L.; Gregg, Jacob L.; Hart, Lucas M.; Winton, James R.; Emmenegger, Eveline J.; Hershberger, Paul K.

    2016-01-01

    Viral erythrocytic necrosis (VEN) is a disease of marine and anadromous fish that is caused by the erythrocytic necrosis virus (ENV), which was recently identified as a novel member of family Iridoviridae by next-generation sequencing. Phylogenetic analysis of the ENV DNA polymerase grouped ENV with other erythrocytic iridoviruses from snakes and lizards. In the present study, we identified the gene encoding the ENV major capsid protein (MCP) and developed a quantitative real-time PCR (qPCR) assay targeting this gene. Phylogenetic analysis of the MCP gene sequence supported the conclusion that ENV does not group with any of the currently described iridovirus genera. Because there is no information regarding genetic variation of the MCP gene across the reported host and geographic range for ENV, we also developed a second qPCR assay for a more conserved ATPase-like gene region. The MCP and ATPase qPCR assays demonstrated good analytical and diagnostic sensitivity and specificity based on samples from laboratory challenges of Pacific herring Clupea pallasii. The qPCR assays had similar diagnostic sensitivity and specificity as light microscopy of stained blood smears for the presence of intraerythrocytic inclusion bodies. However, the qPCR assays may detect viral DNA early in infection prior to the formation of inclusion bodies. Both qPCR assays appear suitable for viral surveillance or as a confirmatory test for ENV in Pacific herring from the Salish Sea.

  7. Quantitative PCR for detection of Shigella improves ascertainment of Shigella burden in children with moderate-to-severe diarrhea in low-income countries.

    PubMed

    Lindsay, Brianna; Ochieng, John B; Ikumapayi, Usman N; Toure, Aliou; Ahmed, Dilruba; Li, Shan; Panchalingam, Sandra; Levine, Myron M; Kotloff, Karen; Rasko, David A; Morris, Carolyn R; Juma, Jane; Fields, Barry S; Dione, Michel; Malle, Dramane; Becker, Stephen M; Houpt, Eric R; Nataro, James P; Sommerfelt, Halvor; Pop, Mihai; Oundo, Joe; Antonio, Martin; Hossain, Anowar; Tamboura, Boubou; Stine, O Colin

    2013-06-01

    Estimates of the prevalence of Shigella spp. are limited by the suboptimal sensitivity of current diagnostic and surveillance methods. We used a quantitative PCR (qPCR) assay to detect Shigella in the stool samples of 3,533 children aged <59 months from the Gambia, Mali, Kenya, and Bangladesh, with or without moderate-to-severe diarrhea (MSD). We compared the results from conventional culture to those from qPCR for the Shigella ipaH gene. Using MSD as the reference standard, we determined the optimal cutpoint to be 2.9 × 10(4) ipaH copies per 100 ng of stool DNA for set 1 (n = 877). One hundred fifty-eight (18%) specimens yielded >2.9 × 10(4) ipaH copies. Ninety (10%) specimens were positive by traditional culture for Shigella. Individuals with ≥ 2.9 × 10(4) ipaH copies have 5.6-times-higher odds of having diarrhea than those with <2.9 × 10(4) ipaH copies (95% confidence interval, 3.7 to 8.5; P < 0.0001). Nearly identical results were found using an independent set of samples. qPCR detected 155 additional MSD cases with high copy numbers of ipaH, a 90% increase from the 172 cases detected by culture in both samples. Among a subset (n = 2,874) comprising MSD cases and their age-, gender-, and location-matched controls, the fraction of MSD cases that were attributable to Shigella infection increased from 9.6% (n = 129) for culture to 17.6% (n = 262) for qPCR when employing our cutpoint. We suggest that qPCR with a cutpoint of approximately 1.4 × 10(4) ipaH copies be the new reference standard for the detection and diagnosis of shigellosis in children in low-income countries. The acceptance of this new standard would substantially increase the fraction of MSD cases that are attributable to Shigella.

  8. Identification of five highly priced tuna species by quantitative real-time polymerase chain reaction.

    PubMed

    Liu, Shasha; Xu, Kunhua; Wu, Zhigang; Xie, Xiao; Feng, Junli

    2016-09-01

    Tunas are economically important fishery worldwide, and are often used for commercial processed production. For effective fishery management and protection of consumers' rights, it is important to develop a molecular method to identify species in canned tuna products rapidly and reliably. Here, we have developed a duplex quantitative real-time PCR (qPCR) for identification of five highly priced tuna species (Thunnus maccoyii, Thunnus obesus, Thunnus albacares, Thunnus alalunga and Katsuwonus pelamis) from processed as well as fresh fish. After amplification and sequencing of seven genetic markers commonly used for species identification, 16S rDNA and control region (CR) of mitochondrial DNA were selected as the reference gene markers for genus Thunnus and tuna species identification, respectively. Subsequently, a 73 bp fragment of 16S rDNA and 85-99 bp fragment of CR were simultaneously amplified from each target species by qPCR. The qPCR efficiency of each reaction was calculated according to the standard curves, and the method was validated by amplification DNA extracted from single or mixed tuna specimen. The developed duplex qPCR system was applied to authenticate species of 14 commercial tuna products successfully, which demonstrated it was really a useful and academic technique to identify highly priced tuna species.

  9. Performance Assessment PCR-Based Assays Targeting Bacteroidales Genetic Markers of Bovine Fecal Pollution▿

    PubMed Central

    Shanks, Orin C.; White, Karen; Kelty, Catherine A.; Hayes, Sam; Sivaganesan, Mano; Jenkins, Michael; Varma, Manju; Haugland, Richard A.

    2010-01-01

    There are numerous PCR-based assays available to characterize bovine fecal pollution in ambient waters. The determination of which approaches are most suitable for field applications can be difficult because each assay targets a different gene, in many cases from different microorganisms, leading to variation in assay performance. We describe a performance evaluation of seven end-point PCR and real-time quantitative PCR (qPCR) assays reported to be associated with either ruminant or bovine feces. Each assay was tested against a reference collection of DNA extracts from 247 individual bovine fecal samples representing 11 different populations and 175 fecal DNA extracts from 24 different animal species. Bovine-associated genetic markers were broadly distributed among individual bovine samples ranging from 39 to 93%. Specificity levels of the assays spanned 47.4% to 100%. End-point PCR sensitivity also varied between assays and among different bovine populations. For qPCR assays, the abundance of each host-associated genetic marker was measured within each bovine population and compared to results of a qPCR assay targeting 16S rRNA gene sequences from Bacteroidales. Experiments indicate large discrepancies in the performance of bovine-associated assays across different bovine populations. Variability in assay performance between host populations suggests that the use of bovine microbial source-tracking applications will require a priori characterization at each watershed of interest. PMID:20061457

  10. Insight into the expression variation of metal-responsive genes in the seedling of date palm (Phoenix dactylifera).

    PubMed

    Chaâbene, Zayneb; Rorat, Agnieszka; Rekik Hakim, Imen; Bernard, Fabien; Douglas, Grubb C; Elleuch, Amine; Vandenbulcke, Franck; Mejdoub, Hafedh

    2018-04-01

    Phytochelatin synthase and metallothionein gene expressions were monitored via qPCR in order to investigate the molecular mechanisms involved in Cd and Cr detoxification in date palm (Phoenix dactylifera). A specific reference gene validation procedure using BestKeeper, NormFinder and geNorm programs allowed selection of the three most stable reference genes in a context of Cd or Cr contamination among six reference gene candidates, namely elongation factor α1, actin, aldehyde dehydrogenase, SAND family, tubulin 6 and TaTa box binding protein. Phytochelatin synthase (pcs) and metallothionein (mt) encoding gene expression were induced from the first days of exposure. At low Cd stress (0.02 mM), genes were still up-regulated until 60th day of exposure. At the highest metal concentrations, however, pcs and mt gene expressions decreased. pcs encoding gene was significantly up-regulated under Cr exposure, and was more responsive to increasing Cr concentration than mt encoding gene. Moreover, exposure to Cd or Cr influenced clearly seed germination and hypocotyls elongation. Thus, the results have proved that both analyzed genes participate in metal detoxification and their expression is regulated at transcriptional level in date palm subjected to Cr and Cd stress. Consequently, variations of expression of mt and pcs genes may serve as early-warning biomarkers of metal stress in this species. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control consortium

    PubMed Central

    2014-01-01

    We present primary results from the Sequencing Quality Control (SEQC) project, coordinated by the United States Food and Drug Administration. Examining Illumina HiSeq, Life Technologies SOLiD and Roche 454 platforms at multiple laboratory sites using reference RNA samples with built-in controls, we assess RNA sequencing (RNA-seq) performance for junction discovery and differential expression profiling and compare it to microarray and quantitative PCR (qPCR) data using complementary metrics. At all sequencing depths, we discover unannotated exon-exon junctions, with >80% validated by qPCR. We find that measurements of relative expression are accurate and reproducible across sites and platforms if specific filters are used. In contrast, RNA-seq and microarrays do not provide accurate absolute measurements, and gene-specific biases are observed, for these and qPCR. Measurement performance depends on the platform and data analysis pipeline, and variation is large for transcript-level profiling. The complete SEQC data sets, comprising >100 billion reads (10Tb), provide unique resources for evaluating RNA-seq analyses for clinical and regulatory settings. PMID:25150838

  12. Identification of Suitable Reference Genes for mRNA Studies in Bone Marrow in a Mouse Model of Hematopoietic Stem Cell Transplantation.

    PubMed

    Li, H; Chen, C; Yao, H; Li, X; Yang, N; Qiao, J; Xu, K; Zeng, L

    2016-10-01

    Bone marrow micro-environment changes during hematopoietic stem cell transplantation (HSCT) with subsequent alteration of genes expression. Quantitative polymerase chain reaction (q-PCR) is a reliable and reproducible technique for the analysis of gene expression. To obtain more accurate results, it is essential to find a reference during HSCT. However, which gene is suitable during HSCT remains unclear. This study aimed to identify suitable reference genes for mRNA studies in bone marrow after HSCT. C57BL/6 mice were treated with either total body irradiation (group T) or busulfan/cyclophosphamide (BU/CY) (group B) followed by infusion of bone marrow cells. Normal mice without treatments were served as a control. All samples (group T + group B + control) were defined as group G. On days 7, 14, and 21 after transplantation, transcription levels of 7 candidate genes, ACTB, B2M, GAPDH, HMBS, HPRT, SDHA, and YWHAZ, in bone marrow cells were measured by use of real-time quantitative PCR. The expression stability of these 7 candidate reference genes were analyzed by 2 statistical software programs, GeNorm and NormFinder. Our results showed that ACTB displayed the highest expression in group G, with lowest expression of PSDHA in group T and HPRT in groups B and G. Analysis of expression stability by use of GeNorm or NormFinder demonstrated that expression of B2M in bone marrow were much more stable during HSCT, compared with other candidate genes including commonly used reference genes GAPDH and ACTB. ACTB could be used as a suitable reference gene for mRNA studies in bone marrow after HSCT. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. qPCR in gastrointestinal stromal tumors: Evaluation of reference genes and expression analysis of KIT and the alternative receptor tyrosine kinases FLT3, CSF1-R, PDGFRB, MET and AXL

    PubMed Central

    2010-01-01

    Background Gastrointestinal stromal tumors (GIST) represent the most common mesenchymal tumors of the gastrointestinal tract. About 85% carry an activating mutation in the KIT or PDGFRA gene. Approximately 10% of GIST are so-called wild type GIST (wt-GIST) without mutations in the hot spots. In the present study we evaluated appropriate reference genes for the expression analysis of formalin-fixed, paraffin-embedded and fresh frozen samples from gastrointestinal stromal tumors. We evaluated the gene expression of KIT as well as of the alternative receptor tyrosine kinase genes FLT3, CSF1-R, PDGFRB, AXL and MET by qPCR. wt-GIST were compared to samples with mutations in KIT exon 9 and 11 and PDGFRA exon 18 in order to evaluate whether overexpression of these alternative RTK might contribute to the pathogenesis of wt-GIST. Results Gene expression variability of the pooled cDNA samples is much lower than the single reverse transcription cDNA synthesis. By combining the lowest variability values of fixed and fresh tissue, the genes POLR2A, PPIA, RPLPO and TFRC were chosen for further analysis of the GIST samples. Overexpression of KIT compared to the corresponding normal tissue was detected in each GIST subgroup except in GIST with PDGFRA exon 18 mutation. Comparing our sample groups, no significant differences in the gene expression levels of FLT3, CSF1R and AXL were determined. An exception was the sample group with KIT exon 9 mutation. A significantly reduced expression of CSF1R, FLT3 and PDGFRB compared to the normal tissue was detected. GIST with mutations in KIT exon 9 and 11 and in PDGFRA exon 18 showed a significant PDGFRB downregulation. Conclusions As the variability of expression levels for the reference genes is very high comparing fresh frozen and formalin-fixed tissue there is a strong need for validation in each tissue type. None of the alternative receptor tyrosine kinases analyzed is associated with the pathogenesis of wild-type or mutated GIST. It remains to be clarified whether an autocrine or paracrine mechanism by overexpression of receptor tyrosine kinase ligands is responsible for the tumorigenesis of wt-GIST. PMID:21171987

  14. Comparison of commercial RNA extraction kits and qPCR master mixes for studying gene expression in small biopsy tissue samples from the equine gastric epithelium.

    PubMed

    Tesena, Parichart; Korchunjit, Wasamon; Taylor, Jane; Wongtawan, Tuempong

    2017-01-01

    Gastric tissue biopsy and gene expression analysis are important tools for disease diagnosis and study of the physiology of the equine stomach. However, RNA extraction from gastric biopsy samples is a complex procedure because the samples contain low quantities of RNA and are contaminated with mucous protein and bacterial flora. The objectives of these studies were to compare the performance of RNA extraction methods and to investigate the sensitivity of commercial qPCR master mixes for gene expression analysis of gastric biopsy samples. Three commercial RNA extraction methods (TRIzol ™ , GENEzol ™ and MiniPrep ™ ) and four qPCR master mixes with SYBR ® green (qPCRBIO, KAPA, QuantiNova, and PerfeCTa) were compared. RNA qualification and quantitation were compared. Real-time PCR was used to compare qPCR master mixes. The results revealed that TRIzol and GENEzol obtained significantly higher yield of RNA (P<0.01) but that TRIzol had the highest contamination of protein and DNA (P<0.05). Conversely, MiniPrep resulting in a significantly higher purification of RNA (P<0.05) but provided the lowest yield of RNA (P<0.01). For PCR master mixes, KAPA was significantly (P<0.05) more sensitive than other qPCR kits for all amounts of DNA template, particularly at the lowest amount of cDNA. In conclusion, GENEzol is the best method to obtain a high RNA yield and purification and it is more cost-effective than the others as well. Regarding the qPCR master mixes, KAPA SYBR qPCR Master Mix (2x) Universal is superior to the other tested master mixes for studying gene expression in equine gastric biopsies.

  15. Molecular cloning, tissue expression of gene Muc2 in blunt snout bream Megalobrama amblycephala and regulation after re-feeding

    NASA Astrophysics Data System (ADS)

    Xue, Chunyu; Xi, Bingwen; Ren, Mingchun; Dong, Jingjing; Xie, Jun; Xu, Pao

    2015-03-01

    Mucins are important components of mucus, which form a natural, physical, biochemical and semipermeable mucosal layer on the epidermis of fish gills, skin, and the gastrointestinal tract. As the first step towards characterizing the function of Muc2, we cloned a partial Megalobrama amblycephala Muc2 cDNA of 2 175 bp, and analyzed its tissue-specific expression pattern by quantitative real-time PCR (qPCR). The obtained sequence comprised 41 bp 5'-untranslated region (5'-UTR), 2 134 bp open reading frame encoding a protein of 711 amino acids. BLAST searching and phylogenetic analysis showed that the predicted protein contained several common secreted mucin-module domains (VWD-C8-TIL-VWD-C8) and had high homology with mucins from other vertebrates. Among four candidate reference genes ( β- Actin, RPI13α, RPII, 18S) for the qPCR, RPII was chosen as an appropriate reference gene because of its lowest variation in different tissues. M. amblycephala Muc2 was mainly expressed in the intestine, in the order (highest to lowest) middle-intestine > fore-intestine > hind-intestine. Muc2 was expressed relatively poorly in other organs (brain, liver, kidney, spleen, skin and gill). Furthermore, after 20-days of starvation, M. amblycephala Muc2 expressions after refeeding for 0 h, 3 h, 16 h, 3 d, and 10 d were significantly decreased in the three intestinal segments ( P<0.05) at 16 h, and were then upregulated to near the initial level at 10 d.

  16. Identification of Reference Genes for Quantitative Real-Time PCR in Date Palm (Phoenix dactylifera L.) Subjected to Drought and Salinity.

    PubMed

    V Patankar, Himanshu; M Assaha, Dekoum V; Al-Yahyai, Rashid; Sunkar, Ramanjulu; Yaish, Mahmoud W

    2016-01-01

    Date palm is an important crop plant in the arid and semi-arid regions supporting human population in the Middle East and North Africa. These areas have been largely affected by drought and salinity due to insufficient rainfall and improper irrigation practices. Date palm is a relatively salt- and drought-tolerant plant and more recently efforts have been directed to identifying genes and pathways that confer stress tolerance in this species. Quantitative real-time PCR (qPCR) is a promising technique for the analysis of stress-induced differential gene expression, which involves the use of stable reference genes for normalizing gene expression. In an attempt to find the best reference genes for date palm's drought and salinity research, we evaluated the stability of 12 most commonly used reference genes using the geNorm, NormFinder, BestKeeper statistical algorithms and the comparative ΔCT method. The comprehensive results revealed that HEAT SHOCK PROTEIN (HSP), UBIQUITIN (UBQ) and YTH domain-containing family protein (YT521) were stable in drought-stressed leaves whereas GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE (GAPDH), ACTIN and TUBULIN were stable in drought-stressed roots. On the other hand, SMALL SUBUNIT RIBOSOMAL RNA (25S), YT521 and 18S ribosomal RNA (18S); and UBQ, ACTIN and ELONGATION FACTOR 1-ALPHA (eEF1a) were stable in leaves and roots, respectively, under salt stress. The stability of these reference genes was verified by using the abiotic stress-responsive CYTOSOLIC Cu/Zn SUPEROXIDE DISMUTASE (Cyt-Cu/Zn SOD), an ABA RECEPTOR, and a PROLINE TRANSPORTER 2 (PRO) genes. A combination of top 2 or 3 stable reference genes were found to be suitable for normalization of the target gene expression and will facilitate gene expression analysis studies aimed at identifying functional genes associated with drought and salinity tolerance in date palm.

  17. Evaluation of bacterial pathogen diversity, abundance and health risks in urban recreational water by amplicon next-generation sequencing and quantitative PCR.

    PubMed

    Cui, Qijia; Fang, Tingting; Huang, Yong; Dong, Peiyan; Wang, Hui

    2017-07-01

    The microbial quality of urban recreational water is of great concern to public health. The monitoring of indicator organisms and several pathogens alone is not sufficient to accurately and comprehensively identify microbial risks. To assess the levels of bacterial pathogens and health risks in urban recreational water, we analyzed pathogen diversity and quantified four pathogens in 46 water samples collected from waterbodies in Beijing Olympic Forest Park in one year. The pathogen diversity revealed by 16S rRNA gene targeted next-generation sequencing (NGS) showed that 16 of 40 genera and 13 of 76 reference species were present. The most abundant species were Acinetobacter johnsonii, Mycobacterium avium and Aeromonas spp. Quantitative polymerase chain reaction (qPCR) of Escherichia coli (uidA), Aeromonas (aerA), M. avium (16S rRNA), Pseudomonas aeruginosa (oaa) and Salmonella (invA) showed that the aerA genes were the most abundant, occurring in all samples with concentrations of 10 4-6 genome copies/100mL, followed by oaa, invA and M. avium. In total, 34.8% of the samples harbored all genes, indicating the prevalence of these pathogens in this recreational waterbody. Based on the qPCR results, a quantitative microbial risk assessment (QMRA) showed that the annual infection risks of Salmonella, M. avium and P. aeruginosa in five activities were mostly greater than the U.S. EPA risk limit for recreational contacts, and children playing with water may be exposed to the greatest infection risk. Our findings provide a comprehensive understanding of bacterial pathogen diversity and pathogen abundance in urban recreational water by applying both NGS and qPCR. Copyright © 2016. Published by Elsevier B.V.

  18. Characterization and Quantitation of a Novel β-Lactamase Gene Found in a Wastewater Treatment Facility and the Surrounding Coastal Ecosystem▿

    PubMed Central

    Uyaguari, Miguel I.; Fichot, Erin B.; Scott, Geoffrey I.; Norman, R. Sean

    2011-01-01

    Wastewater treatment plants (WWTPs) are engineered structures that collect, concentrate, and treat human waste, ultimately releasing treated wastewater into local environments. While WWTPs efficiently remove most biosolids, it has been shown that many antibiotics and antibiotic-resistant bacteria can survive the treatment process. To determine how WWTPs influence the concentration and dissemination of antibiotic-resistant genes into the environment, a functional metagenomic approach was used to identify a novel antibiotic resistance gene within a WWTP, and quantitative PCR (qPCR) was used to determine gene copy numbers within the facility and the local coastal ecosystem. From the WWTP metagenomic library, the fosmid insert contained in one highly resistant clone (MIC, ∼416 μg ml−1 ampicillin) was sequenced and annotated, revealing 33 putative genes, including a 927-bp gene that is 42% identical to a functionally characterized β-lactamase from Staphylococcus aureus PC1. Isolation and subcloning of this gene, referred to as blaM-1, conferred ampicillin resistance to its Escherichia coli host. When normalized to volume, qPCR showed increased concentrations of blaM-1 during initial treatment stages but 2-fold-decreased concentrations during the final treatment stage. The concentration ng−1 DNA increased throughout the WWTP process from influent to effluent, suggesting that blaM-1 makes up a significant proportion of the overall genetic material being released into the coastal ecosystem. Average discharge was estimated to be 3.9 × 1014 copies of the blaM-1 gene released daily into this coastal ecosystem. Furthermore, the gene was observed in all sampled coastal water and sediment samples surrounding the facility. Our results suggest that WWTPs may be a pathway for the dissemination of novel antibiotic resistance genes into the environment. PMID:21965412

  19. GETPrime 2.0: gene- and transcript-specific qPCR primers for 13 species including polymorphisms

    PubMed Central

    David, Fabrice P.A.; Rougemont, Jacques; Deplancke, Bart

    2017-01-01

    GETPrime (http://bbcftools.epfl.ch/getprime) is a database with a web frontend providing gene- and transcript-specific, pre-computed qPCR primer pairs. The primers have been optimized for genome-wide specificity and for allowing the selective amplification of one or several splice variants of most known genes. To ease selection, primers have also been ranked according to defined criteria such as genome-wide specificity (with BLAST), amplicon size, and isoform coverage. Here, we report a major upgrade (2.0) of the database: eight new species (yeast, chicken, macaque, chimpanzee, rat, platypus, pufferfish, and Anolis carolinensis) now complement the five already included in the previous version (human, mouse, zebrafish, fly, and worm). Furthermore, the genomic reference has been updated to Ensembl v81 (while keeping earlier versions for backward compatibility) as a result of re-designing the back-end database and automating the import of relevant sections of the Ensembl database in species-independent fashion. This also allowed us to map known polymorphisms to the primers (on average three per primer for human), with the aim of reducing experimental error when targeting specific strains or individuals. Another consequence is that the inclusion of future Ensembl releases and other species has now become a relatively straightforward task. PMID:28053161

  20. Development of Noninvasive Biomarkers for Diagnosing and Monitoring Nonindolent Prostate Cancer

    DTIC Science & Technology

    2013-04-01

    of higher-grade non-indolent tumors. By gene expression analysis (from microdissected Gleason-pattern (GP) 3 and GP4 PCa), in combination with...publically available Gleason-associated transcriptional profiles, we have created a 46- gene panel that differentiates high Gleason from low Gleason...We validated the GP4-associated upregulation of candidate genes by qPCR. Additionally, we have started to measure by qPCR the transcript levels for

  1. Validation of reference genes for gene expression analysis in olive (Olea europaea) mesocarp tissue by quantitative real-time RT-PCR

    PubMed Central

    2014-01-01

    Background Gene expression analysis using quantitative reverse transcription PCR (qRT-PCR) is a robust method wherein the expression levels of target genes are normalised using internal control genes, known as reference genes, to derive changes in gene expression levels. Although reference genes have recently been suggested for olive tissues, combined/independent analysis on different cultivars has not yet been tested. Therefore, an assessment of reference genes was required to validate the recent findings and select stably expressed genes across different olive cultivars. Results A total of eight candidate reference genes [glyceraldehyde 3-phosphate dehydrogenase (GAPDH), serine/threonine-protein phosphatase catalytic subunit (PP2A), elongation factor 1 alpha (EF1-alpha), polyubiquitin (OUB2), aquaporin tonoplast intrinsic protein (TIP2), tubulin alpha (TUBA), 60S ribosomal protein L18-3 (60S RBP L18-3) and polypyrimidine tract-binding protein homolog 3 (PTB)] were chosen based on their stability in olive tissues as well as in other plants. Expression stability was examined by qRT-PCR across 12 biological samples, representing mesocarp tissues at various developmental stages in three different olive cultivars, Barnea, Frantoio and Picual, independently and together during the 2009 season with two software programs, GeNorm and BestKeeper. Both software packages identified GAPDH, EF1-alpha and PP2A as the three most stable reference genes across the three cultivars and in the cultivar, Barnea. GAPDH, EF1-alpha and 60S RBP L18-3 were found to be most stable reference genes in the cultivar Frantoio while 60S RBP L18-3, OUB2 and PP2A were found to be most stable reference genes in the cultivar Picual. Conclusions The analyses of expression stability of reference genes using qRT-PCR revealed that GAPDH, EF1-alpha, PP2A, 60S RBP L18-3 and OUB2 are suitable reference genes for expression analysis in developing Olea europaea mesocarp tissues, displaying the highest level of expression stability across three different olive cultivars, Barnea, Frantoio and Picual, however the combination of the three most stable reference genes do vary amongst individual cultivars. This study will provide guidance to other researchers to select reference genes for normalization against target genes by qPCR across tissues obtained from the mesocarp region of the olive fruit in the cultivars, Barnea, Frantoio and Picual. PMID:24884716

  2. Quantitative Real-Time PCR using the Thermo Scientific Solaris qPCR Assay

    PubMed Central

    Ogrean, Christy; Jackson, Ben; Covino, James

    2010-01-01

    The Solaris qPCR Gene Expression Assay is a novel type of primer/probe set, designed to simplify the qPCR process while maintaining the sensitivity and accuracy of the assay. These primer/probe sets are pre-designed to >98% of the human and mouse genomes and feature significant improvements from previously available technologies. These improvements were made possible by virtue of a novel design algorithm, developed by Thermo Scientific bioinformatics experts. Several convenient features have been incorporated into the Solaris qPCR Assay to streamline the process of performing quantitative real-time PCR. First, the protocol is similar to commonly employed alternatives, so the methods used during qPCR are likely to be familiar. Second, the master mix is blue, which makes setting the qPCR reactions easier to track. Third, the thermal cycling conditions are the same for all assays (genes), making it possible to run many samples at a time and reducing the potential for error. Finally, the probe and primer sequence information are provided, simplifying the publication process. Here, we demonstrate how to obtain the appropriate Solaris reagents using the GENEius product search feature found on the ordering web site (www.thermo.com/solaris) and how to use the Solaris reagents for performing qPCR using the standard curve method. PMID:20567213

  3. Detection and discrimination of five E. coli pathotypes using a combinatory SYBR® Green qPCR screening system.

    PubMed

    Barbau-Piednoir, Elodie; Denayer, Sarah; Botteldoorn, Nadine; Dierick, Katelijne; De Keersmaecker, Sigrid C J; Roosens, Nancy H

    2018-04-01

    A detection and discrimination system for five Escherichia coli pathotypes, based on a combination of 13 SYBR® Green qPCR, has been developed, i.e., combinatory SYBR® Green qPCR screening system for pathogenic E. coli (CoSYPS Path E. coli). It allows the discrimination on isolates and the screening of potential presence in food of the following pathotypes of E. coli: shigatoxigenic (STEC) (including enterohemorrhagic (EHEC)), enteropathogenic (EPEC), enteroaggregative (EAggEC), enteroaggregative shigatoxigenic (EAggSTEC), and enteroinvasive (EIEC) E. coli. The SYBR® Green qPCR assays target the uidA, ipaH, eae, aggR, aaiC, stx1, and stx2 genes. uidA controls for E. coli presence and all the other genes are specific targets of E. coli pathotypes. For each gene, two primer pairs have been designed to guarantee a sufficient detection even in case of deletion or polymorphisms in the target gene. Moreover, all the qPCR have been designed to be run together in a single analytical PCR plate. This study includes the primer pairs' design, in silico and in situ selectivity, sensitivity, repeatability, and reproducibility evaluation of the 13 SYBR® Green qPCR assays. Each target displayed a selectivity of 100%. The limit of detection of the 13 assays is between 1 and 10 genomic copies. Their repeatability and reproducibility comply with the European requirements. As a preliminary feasibility study on food, the CoSYPS Path E. coli system was subsequently evaluated on four food matrices artificially contaminated with pathogenic E. coli. It allowed the detection of an initial contamination level as low as 2 to 7 cfu of STEC/25 g of food matrix after 24 h of enrichment.

  4. Comparison of Gull Feces-specific Assays Targeting the 16S rRNA Gene of Catellicoccus Marimammalium and Streptococcus spp.

    EPA Science Inventory

    Two novel gull-specific qPCR assays were developed using 16S rRNA gene sequences from gull fecal clone libraries: a SYBR-green-based assay targeting Streptococcus spp. (i.e., gull3) and a TaqMan qPCR assay targeting Catellicoccus marimammalium (i.e., gull4). The main objectives ...

  5. Real time PCR to detect the environmental faecal contamination by Echinococcus multilocularis from red fox stools.

    PubMed

    Knapp, Jenny; Millon, Laurence; Mouzon, Lorane; Umhang, Gérald; Raoul, Francis; Ali, Zeinaba Said; Combes, Benoît; Comte, Sébastien; Gbaguidi-Haore, Houssein; Grenouillet, Frédéric; Giraudoux, Patrick

    2014-03-17

    The oncosphere stage of Echinococcus multilocularis in red fox stools can lead, after ingestion, to the development of alveolar echinococcosis in the intermediate hosts, commonly small mammals and occasionally humans. Monitoring animal infection and environmental contamination is a key issue in public health surveillance. We developed a quantitative real-time PCR technique (qPCR) to detect and quantify E. multilocularis DNA released in fox faeces. A qPCR technique using a hydrolysis probe targeting part of the mitochondrial gene rrnL was assessed on (i) a reference collection of stools from 57 necropsied foxes simultaneously investigated using the segmental sedimentation and counting technique (SSCT) (29 positive for E. multilocularis worms and 28 negative animals for the parasite); (ii) a collection of 114 fox stools sampled in the field: two sets of 50 samples from contrasted endemic regions in France and 14 from an E. multilocularis-free area (Greenland). Of the negative SSCT controls, 26/28 were qPCR-negative and two were weakly positive. Of the positive SSCT foxes, 25/29 samples were found to be positive by qPCR. Of the field samples, qPCR was positive in 21/50 (42%) and 5/48 (10.4%) stools (2 samples inhibited), originating respectively from high and low endemic areas. In faeces, averages of 0.1 pg/μl of DNA in the Jura area and 0.7 pg/μl in the Saône-et-Loire area were detected. All qPCR-positive samples were confirmed by sequencing. The qPCR technique developed here allowed us to quantify environmental E. multilocularis contamination by fox faeces by studying the infectious agent directly. No previous study had performed this test in a one-step reaction. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Quantitative Analysis of Food and Feed Samples with Droplet Digital PCR

    PubMed Central

    Morisset, Dany; Štebih, Dejan; Milavec, Mojca; Gruden, Kristina; Žel, Jana

    2013-01-01

    In this study, the applicability of droplet digital PCR (ddPCR) for routine analysis in food and feed samples was demonstrated with the quantification of genetically modified organisms (GMOs). Real-time quantitative polymerase chain reaction (qPCR) is currently used for quantitative molecular analysis of the presence of GMOs in products. However, its use is limited for detecting and quantifying very small numbers of DNA targets, as in some complex food and feed matrices. Using ddPCR duplex assay, we have measured the absolute numbers of MON810 transgene and hmg maize reference gene copies in DNA samples. Key performance parameters of the assay were determined. The ddPCR system is shown to offer precise absolute and relative quantification of targets, without the need for calibration curves. The sensitivity (five target DNA copies) of the ddPCR assay compares well with those of individual qPCR assays and of the chamber digital PCR (cdPCR) approach. It offers a dynamic range over four orders of magnitude, greater than that of cdPCR. Moreover, when compared to qPCR, the ddPCR assay showed better repeatability at low target concentrations and a greater tolerance to inhibitors. Finally, ddPCR throughput and cost are advantageous relative to those of qPCR for routine GMO quantification. It is thus concluded that ddPCR technology can be applied for routine quantification of GMOs, or any other domain where quantitative analysis of food and feed samples is needed. PMID:23658750

  7. Real-time PCR assay-based strategy for differentiation between active Pneumocystis jirovecii pneumonia and colonization in immunocompromised patients.

    PubMed

    Alanio, A; Desoubeaux, G; Sarfati, C; Hamane, S; Bergeron, A; Azoulay, E; Molina, J M; Derouin, F; Menotti, J

    2011-10-01

    Diagnosis of pneumocystosis usually relies on microscopic demonstration of Pneumocystis jirovecii in respiratory samples. Conventional PCR can detect low levels of P. jirovecii DNA but cannot differentiate active pneumonia from colonization. In this study, we used a new real-time quantitative PCR (qPCR) assay to identify and discriminate these entities. One hundred and sixty-three bronchoalveolar lavage fluids and 115 induced sputa were prospectively obtained from 238 consecutive immunocompromised patients presenting signs of pneumonia. Each patient was classified as having a high or a low probability of P. jirovecii pneumonia according to clinical and radiological presentation. Samples were processed by microscopy and by a qPCR assay amplifying the P. jirovecii mitochondrial large-subunit rRNA gene; qPCR results were expressed as trophic form equivalents (TFEq)/mL by reference to a standard curve obtained from numbered suspensions of trophic forms. From 21 samples obtained from 16 patients with a high probability of P. jirovecii pneumonia, 21 were positive by qPCR whereas only 16 were positive by microscopy. Fungal load ranged from 134 to 1.73 × 10(6)  TFEq/mL. Among 257 specimens sampled from 222 patients with a low probability of P. jirovecii pneumonia, 222 were negative by both techniques but 35 were positive by qPCR (0.1-1840 TFEq/mL), suggesting P. jirovecii colonization. Two cut-off values of 120 and 1900 TFEq/mL were proposed to discriminate active pneumonia from colonization, with a grey zone between them. In conclusion, this qPCR assay discriminates active pneumonia from colonization. This is particularly relevant for patient management, especially in non-human immunodeficiency virus (HIV)-infected immunocompromised patients, who often present low-burden P. jirovecii infections that are not diagnosed microscopically. © 2011 The Authors. Clinical Microbiology and Infection © 2011 European Society of Clinical Microbiology and Infectious Diseases.

  8. Development and accuracy of quantitative real-time polymerase chain reaction assays for detection and quantification of enterotoxigenic Escherichia coli (ETEC) heat labile and heat stable toxin genes in travelers' diarrhea samples.

    PubMed

    Youmans, Bonnie P; Ajami, Nadim J; Jiang, Zhi-Dong; Petrosino, Joseph F; DuPont, Herbert L; Highlander, Sarah K

    2014-01-01

    Enterotoxigenic Escherichia coli (ETEC), the leading bacterial pathogen of travelers' diarrhea, is routinely detected by an established DNA hybridization protocol that is neither sensitive nor quantitative. Quantitative real-time polymerase chain reaction (qPCR) assays that detect the ETEC toxin genes eltA, sta1, and sta2 in clinical stool samples were developed and tested using donor stool inoculated with known quantities of ETEC bacteria. The sensitivity of the qPCR assays is 89%, compared with 22% for the DNA hybridization assay, and the limits of detection are 10,000-fold lower than the DNA hybridization assays performed in parallel. Ninety-three clinical stool samples, previously characterized by DNA hybridization, were tested using the new ETEC qPCR assays. Discordant toxin profiles were observed for 22 samples, notably, four samples originally typed as ETEC negative were ETEC positive. The qPCR assays are unique in their sensitivity and ability to quantify the three toxin genes in clinical stool samples.

  9. Clinical significance of ESR1 gene copy number changes in breast cancer as measured by fluorescence in situ hybridisation.

    PubMed

    Lin, Ching-Hung; Liu, Jacqueline M; Lu, Yen-Shen; Lan, Chieh; Lee, Wei-Chung; Kuo, Kuan-Ting; Wang, Chung-Chieh; Chang, Dwan-Ying; Huang, Chiun-Sheng; Cheng, Ann-Lii

    2013-02-01

    The ESR1 gene encodes for oestrogen receptor (ER) α, which plays a crucial role in mammary carcinogenesis and clinical outcome in patients with breast cancer. However, the clinical significance of the ESR1 gene copy number change for breast cancer has not been clarified. ESR1 gene copy number was determined by fluorescence in situ hybridisation (FISH) on tissue sections. A minimum of 20 tumour cells were counted per section, and a FISH ratio of ESR1 gene to CEP6 ≥ 2.0 was considered ESR1 amplification. A ratio >1.2 but <2.0 was considered ESR1 gain. The ESR1 copy number was further measured by quantitative real-time PCR (Q-PCR) with ASXL2 as a reference. FISH revealed ESR1 amplification in six cases (4.0%) and ESR1 gain in 13 cases (8.7%) from a total of 150 cases. ESR1 gain and amplification were more common in older patients (p<0.001), and correlated well with ER protein expression (p=0.03) measured by immunohistochemistry, and ESR1 copy number (p<0.001) measured by Q-PCR. Furthermore, the multivariate analysis revealed that ESR1 amplification was associated with a shorter disease-free survival (HR=5.56, p=0.03) and a shorter overall survival (HR=5.11, p=0.04). In general, the frequency of ESR1 amplification in breast cancer is low when measured by FISH in large sections. ESR1 gain and amplification in breast cancer may be associated with older age and poorer outcomes.

  10. GETPrime 2.0: gene- and transcript-specific qPCR primers for 13 species including polymorphisms.

    PubMed

    David, Fabrice P A; Rougemont, Jacques; Deplancke, Bart

    2017-01-04

    GETPrime (http://bbcftools.epfl.ch/getprime) is a database with a web frontend providing gene- and transcript-specific, pre-computed qPCR primer pairs. The primers have been optimized for genome-wide specificity and for allowing the selective amplification of one or several splice variants of most known genes. To ease selection, primers have also been ranked according to defined criteria such as genome-wide specificity (with BLAST), amplicon size, and isoform coverage. Here, we report a major upgrade (2.0) of the database: eight new species (yeast, chicken, macaque, chimpanzee, rat, platypus, pufferfish, and Anolis carolinensis) now complement the five already included in the previous version (human, mouse, zebrafish, fly, and worm). Furthermore, the genomic reference has been updated to Ensembl v81 (while keeping earlier versions for backward compatibility) as a result of re-designing the back-end database and automating the import of relevant sections of the Ensembl database in species-independent fashion. This also allowed us to map known polymorphisms to the primers (on average three per primer for human), with the aim of reducing experimental error when targeting specific strains or individuals. Another consequence is that the inclusion of future Ensembl releases and other species has now become a relatively straightforward task. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. A multiplex real-time PCR assay, based on invA and pagC genes, for the detection and quantification of Salmonella enterica from cattle lymph nodes.

    PubMed

    Bai, Jianfa; Trinetta, Valentina; Shi, Xiaorong; Noll, Lance W; Magossi, Gabriela; Zheng, Wanglong; Porter, Elizabeth P; Cernicchiaro, Natalia; Renter, David G; Nagaraja, Tiruvoor G

    2018-05-01

    Cattle lymph nodes can harbor Salmonella and potentially contaminate beef products. We have developed and validated a new real-time PCR (qPCR) assay for the detection and quantification of Salmonella enterica in cattle lymph nodes. The assay targets both the invA and pagC genes, the most conserved molecular targets in Salmonella enterica. An 18S rRNA gene assay that amplifies from cattle and other animal species was also included as an internal control. Available DNA sequences for invA, pagC and 18S rRNA genes were used for primer and probe selections. Three Salmonella serotypes, S. Typhimurium, S. Anatum, and S. Montevideo, were used to assess the assay's analytical sensitivity. Correlation coefficients of standard curves generated for each target and for all three serotypes were >99% and qPCR amplification efficiencies were between 93% and 110%. Assay sensitivity was also determined using standard curve data generated from Salmonella-negative cattle lymph nodes spiked with 10-fold dilutions of the three Salmonella serotypes. Assay specificity was determined using Salmonella culture method, and qPCR testing on 36 Salmonella strains representing 33 serotypes, 38 Salmonella strains of unknown serotypes, 252 E. coli strains representing 40 serogroups, and 31 other bacterial strains representing 18 different species. A collection of 647 cattle lymph node samples from steers procured from the Midwest region of the US were tested by the qPCR, and compared to culture-method of detection. Salmonella prevalence by qPCR for pre-enriched and enriched lymph nodes was 19.8% (128/647) and 94.9% (614/647), respectively. A majority of qPCR positive pre-enriched samples (105/128) were at concentrations between 10 4 and 10 5  CFU/mL. Culture method detected Salmonella in 7.7% (50/647) and 80.7% (522/647) of pre- and post-enriched samples, respectively; 96.0% (48/50) of pre-enriched and 99.4% (519/522) of post-enriched culture-positive samples were also positive by qPCR. More samples tested positive by qPCR than by culture method, indicating that the real-time PCR assay was more sensitive. Our data indicate that this triplex qPCR can be used to accurately detect and quantify Salmonella enterica strains from cattle lymph node samples. The assay may serve as a useful tool to monitor the prevalence of Salmonella in beef production systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Geomagnetic Field (Gmf) and Plant Evolution: Investigating the Effects of Gmf Reversal on Arabidopsis thaliana Development and Gene Expression.

    PubMed

    Bertea, Cinzia M; Narayana, Ravishankar; Agliassa, Chiara; Rodgers, Christopher T; Maffei, Massimo E

    2015-11-30

    One of the most stimulating observations in plant evolution is a correlation between the occurrence of geomagnetic field (GMF) reversals (or excursions) and the moment of the radiation of Angiosperms. This led to the hypothesis that alterations in GMF polarity may play a role in plant evolution. Here, we describe a method to test this hypothesis by exposing Arabidopsis thaliana to artificially reversed GMF conditions. We used a three-axis magnetometer and the collected data were used to calculate the magnitude of the GMF. Three DC power supplies were connected to three Helmholtz coil pairs and were controlled by a computer to alter the GMF conditions. Plants grown in Petri plates were exposed to both normal and reversed GMF conditions. Sham exposure experiments were also performed. Exposed plants were photographed during the experiment and images were analyzed to calculate root length and leaf areas. Arabidopsis total RNA was extracted and Quantitative Real Time-PCR (qPCR) analyses were performed on gene expression of CRUCIFERIN 3 (CRU3), copper transport protein1 (COTP1), Redox Responsive Transcription Factor1 (RRTF1), Fe Superoxide Dismutase 1, (FSD1), Catalase3 (CAT3), Thylakoidal Ascorbate Peroxidase (TAPX), a cytosolic Ascorbate Peroxidase1 (APX1), and NADPH/respiratory burst oxidase protein D (RbohD). Four different reference genes were analysed to normalize the results of the qPCR. The best of the four genes was selected and the most stable gene for normalization was used. Our data show for the first time that reversing the GMF polarity using triaxial coils has significant effects on plant growth and gene expression. This supports the hypothesis that GMF reversal contributes to inducing changes in plant development that might justify a higher selective pressure, eventually leading to plant evolution.

  13. Real-time PCR for Leishmania species identification: Evaluation and comparison with classical techniques.

    PubMed

    de Morais, Rayana Carla Silva; da Costa Oliveira, Cintia Nascimento; de Albuquerque, Suênia da Cunha Gonçalves; Mendonça Trajano Silva, Lays Adrianne; Pessoa-E-Silva, Rômulo; Alves da Cruz, Heidi Lacerda; de Brito, Maria Edileuza Felinto; de Paiva Cavalcanti, Milena

    2016-06-01

    Cutaneous leishmaniasis (CL) is a parasitic disease caused by various Leishmania species. Several studies have shown that real time quantitative PCR (qPCR) can be used for Leishmania spp. identification by analyzing the melting temperature (Tm). Thus, the aim of this study was to evaluate the viability of qPCR for differentiating eight closely related Leishmania species that cause the same clinical form of the disease and to compare the results with classical techniques. qPCR assays for standardizing the Tm using reference strains were performed. After the CL diagnosis on blood samples of domestic animals, positive samples were analyzed by their Tm and qPCR products were purified and sequenced. Ten human samples previously characterized by Multilocus Enzyme Electrophoresis (MLEE) were also analyzed by Tm. A Restriction Fragment Length Polymorphism (RFLP) assay, a reference test, was also standardized, by using the reference strains. Through standardization of Tm for Leishmania spp., two Tm ranges were created for analysis: 1 (Tm = 78-79.99 °C) included Leishmania (V.) braziliensis, Leishmania (V.) panamensis, Leishmania (V.) lainsoni, Leishmania (V.) guyanensis and Leishmania (V.) shawi; and 2 (Tm = 80-82.2 °C) included Leishmania (V.) naiffi, Leishmania (L.) amazonensis and Leishmania (L.) mexicana. A total of 223 positive blood samples were analyzed, with 58 included in range 1 and 165 in range 2. L. (V.) braziliensis, L. (V.) panamensis and L. (V.) guyanensis were identified by sequencing, while L. (V.) braziliensis, L. (L.) mexicana and L. (V.) panamensis were identified by RFLP analysis. Ten human samples previously characterized by Multilocus Enzyme Electrophoresis (MLEE) were also analyzed by qPCR Tm analysis; five were classified in range 1 and five in range 2. A concordance of 80% was calculated between qPCR and the gold-standard (MLEE) with no significant difference between the methods (p = 0.6499); a similar result was observed for sequencing and qPCR (p = 0.2566). In contrast, a highly significant difference was observed for qPCR and RFLP (p < 0.001). In this study, we demonstrated the potential use of qPCR as a tool for Leishmania species identification using two Tm ranges. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Development and validation of a quantitative PCR to detect Parvicapsula minibicornis and comparison to histologically ranked infection of juvenile Chinook salmon, Oncorhynchus tshawytscha (Walbaum), from the Klamath River, USA

    USGS Publications Warehouse

    True, K.; Purcell, M.K.; Foott, J.S.

    2009-01-01

    Parvicapsula minibicornis is a myxosporean parasite that is associated with disease in Pacific salmon during their freshwater life history phase. This study reports the development of a quantitative (real-time) polymerase chain reaction (QPCR) to detect P. minibicornis DNA. The QPCR assay targets the 18S ribosomal subunit gene. A plasmid DNA control was developed to calibrate cycle threshold (CT) score to plasmid molecular equivalent (PME) units, a measure of gene copy number. Assay validation revealed that the QPCR was sensitive and able to detect 50 ag of plasmid DNA, which was equivalent to 12.5 PME. The QPCR assay could detect single P. minibicornis actinospores well above assay sensitivity, indicating a single spore contains at least 100 times the 18S DNA copies required for detection. The QPCR assay was repeatable and highly specific; no detectable amplification was observed using DNA from related myxozoan parasites. The method was validated using kidney tissues from 218 juvenile Chinook salmon sampled during the emigration period of March to July 2005 from the Klamath River. The QPCR assay was compared with histological examination. The QPCR assay detected P. minibicornis infection in 88.1% of the fish sampled, while histological examination detected infection in 71.1% of the fish sampled. Good concordance was found between the methods as 80% of the samples were in agreement. The majority of the disconcordant fish were positive by QPCR, with low levels of P. minibicornis DNA, but negative by histology. The majority of the fish rated histologically as having subclinical or clinical infections had high QPCR levels. The results of this study demonstrate that QPCR is a sensitive quantitative tool for evaluating P. minibicornis infection in fish health monitoring studies. ?? 2008 Blackwell Publishing Ltd.

  15. Nitrogen Cycle Evaluation (NiCE) Chip for the Simultaneous Analysis of Multiple N-Cycle Associated Genes.

    PubMed

    Oshiki, Mamoru; Segawa, Takahiro; Ishii, Satoshi

    2018-02-02

    Various microorganisms play key roles in the Nitrogen (N) cycle. Quantitative PCR (qPCR) and PCR-amplicon sequencing of the N cycle functional genes allow us to analyze the abundance and diversity of microbes responsible in the N transforming reactions in various environmental samples. However, analysis of multiple target genes can be cumbersome and expensive. PCR-independent analysis, such as metagenomics and metatranscriptomics, is useful but expensive especially when we analyze multiple samples and try to detect N cycle functional genes present at relatively low abundance. Here, we present the application of microfluidic qPCR chip technology to simultaneously quantify and prepare amplicon sequence libraries for multiple N cycle functional genes as well as taxon-specific 16S rRNA gene markers for many samples. This approach, named as N cycle evaluation (NiCE) chip, was evaluated by using DNA from pure and artificially mixed bacterial cultures and by comparing the results with those obtained by conventional qPCR and amplicon sequencing methods. Quantitative results obtained by the NiCE chip were comparable to those obtained by conventional qPCR. In addition, the NiCE chip was successfully applied to examine abundance and diversity of N cycle functional genes in wastewater samples. Although non-specific amplification was detected on the NiCE chip, this could be overcome by optimizing the primer sequences in the future. As the NiCE chip can provide high-throughput format to quantify and prepare sequence libraries for multiple N cycle functional genes, this tool should advance our ability to explore N cycling in various samples. Importance. We report a novel approach, namely Nitrogen Cycle Evaluation (NiCE) chip by using microfluidic qPCR chip technology. By sequencing the amplicons recovered from the NiCE chip, we can assess diversities of the N cycle functional genes. The NiCE chip technology is applicable to analyze the temporal dynamics of the N cycle gene transcriptions in wastewater treatment bioreactors. The NiCE chip can provide high-throughput format to quantify and prepare sequence libraries for multiple N cycle functional genes. While there is a room for future improvement, this tool should significantly advance our ability to explore the N cycle in various environmental samples. Copyright © 2018 American Society for Microbiology.

  16. Robust measurement of telomere length in single cells

    PubMed Central

    Wang, Fang; Pan, Xinghua; Kalmbach, Keri; Seth-Smith, Michelle L.; Ye, Xiaoying; Antumes, Danielle M. F.; Yin, Yu; Liu, Lin; Keefe, David L.; Weissman, Sherman M.

    2013-01-01

    Measurement of telomere length currently requires a large population of cells, which masks telomere length heterogeneity in single cells, or requires FISH in metaphase arrested cells, posing technical challenges. A practical method for measuring telomere length in single cells has been lacking. We established a simple and robust approach for single-cell telomere length measurement (SCT-pqPCR). We first optimized a multiplex preamplification specific for telomeres and reference genes from individual cells, such that the amplicon provides a consistent ratio (T/R) of telomeres (T) to the reference genes (R) by quantitative PCR (qPCR). The average T/R ratio of multiple single cells corresponded closely to that of a given cell population measured by regular qPCR, and correlated with those of telomere restriction fragments (TRF) and quantitative FISH measurements. Furthermore, SCT-pqPCR detected the telomere length for quiescent cells that are inaccessible by quantitative FISH. The reliability of SCT-pqPCR also was confirmed using sister cells from two cell embryos. Telomere length heterogeneity was identified by SCT-pqPCR among cells of various human and mouse cell types. We found that the T/R values of human fibroblasts at later passages and from old donors were lower and more heterogeneous than those of early passages and from young donors, that cancer cell lines show heterogeneous telomere lengths, that human oocytes and polar bodies have nearly identical telomere lengths, and that the telomere lengths progressively increase from the zygote, two-cell to four-cell embryo. This method will facilitate understanding of telomere heterogeneity and its role in tumorigenesis, aging, and associated diseases. PMID:23661059

  17. Reference Genes for qPCR Analysis in Resin-Tapped Adult Slash Pine As a Tool to Address the Molecular Basis of Commercial Resinosis

    PubMed Central

    de Lima, Júlio C.; de Costa, Fernanda; Füller, Thanise N.; Rodrigues-Corrêa, Kelly C. da Silva; Kerber, Magnus R.; Lima, Mariano S.; Fett, Janette P.; Fett-Neto, Arthur G.

    2016-01-01

    Pine oleoresin is a major source of terpenes, consisting of turpentine (mono- and sesquiterpenes) and rosin (diterpenes) fractions. Higher oleoresin yields are of economic interest, since oleoresin derivatives make up a valuable source of materials for chemical industries. Oleoresin can be extracted from living trees, often by the bark streak method, in which bark removal is done periodically, followed by application of stimulant paste containing sulfuric acid and other chemicals on the freshly wounded exposed surface. To better understand the molecular basis of chemically-stimulated and wound induced oleoresin production, we evaluated the stability of 11 putative reference genes for the purpose of normalization in studying Pinus elliottii gene expression during oleoresinosis. Samples for RNA extraction were collected from field-grown adult trees under tapping operations using stimulant pastes with different compositions and at various time points after paste application. Statistical methods established by geNorm, NormFinder, and BestKeeper softwares were consistent in pointing as adequate reference genes HISTO3 and UBI. To confirm expression stability of the candidate reference genes, expression profiles of putative P. elliottii orthologs of resin biosynthesis-related genes encoding Pinus contorta β-pinene synthase [PcTPS-(−)β-pin1], P. contorta levopimaradiene/abietadiene synthase (PcLAS1), Pinus taeda α-pinene synthase [PtTPS-(+)αpin], and P. taeda α-farnesene synthase (PtαFS) were examined following stimulant paste application. Increased oleoresin yields observed in stimulated treatments using phytohormone-based pastes were consistent with higher expression of pinene synthases. Overall, the expression of all genes examined matched the expected profiles of oleoresin-related transcript changes reported for previously examined conifers. PMID:27379135

  18. Reference Genes for qPCR Analysis in Resin-Tapped Adult Slash Pine As a Tool to Address the Molecular Basis of Commercial Resinosis.

    PubMed

    de Lima, Júlio C; de Costa, Fernanda; Füller, Thanise N; Rodrigues-Corrêa, Kelly C da Silva; Kerber, Magnus R; Lima, Mariano S; Fett, Janette P; Fett-Neto, Arthur G

    2016-01-01

    Pine oleoresin is a major source of terpenes, consisting of turpentine (mono- and sesquiterpenes) and rosin (diterpenes) fractions. Higher oleoresin yields are of economic interest, since oleoresin derivatives make up a valuable source of materials for chemical industries. Oleoresin can be extracted from living trees, often by the bark streak method, in which bark removal is done periodically, followed by application of stimulant paste containing sulfuric acid and other chemicals on the freshly wounded exposed surface. To better understand the molecular basis of chemically-stimulated and wound induced oleoresin production, we evaluated the stability of 11 putative reference genes for the purpose of normalization in studying Pinus elliottii gene expression during oleoresinosis. Samples for RNA extraction were collected from field-grown adult trees under tapping operations using stimulant pastes with different compositions and at various time points after paste application. Statistical methods established by geNorm, NormFinder, and BestKeeper softwares were consistent in pointing as adequate reference genes HISTO3 and UBI. To confirm expression stability of the candidate reference genes, expression profiles of putative P. elliottii orthologs of resin biosynthesis-related genes encoding Pinus contorta β-pinene synthase [PcTPS-(-)β-pin1], P. contorta levopimaradiene/abietadiene synthase (PcLAS1), Pinus taeda α-pinene synthase [PtTPS-(+)αpin], and P. taeda α-farnesene synthase (PtαFS) were examined following stimulant paste application. Increased oleoresin yields observed in stimulated treatments using phytohormone-based pastes were consistent with higher expression of pinene synthases. Overall, the expression of all genes examined matched the expected profiles of oleoresin-related transcript changes reported for previously examined conifers.

  19. Selection of stable reference genes for quantitative rt-PCR comparisons of mouse embryonic and extra-embryonic stem cells.

    PubMed

    Veazey, Kylee J; Golding, Michael C

    2011-01-01

    Isolation and culture of both embryonic and tissue specific stem cells provide an enormous opportunity to study the molecular processes driving development. To gain insight into the initial events underpinning mammalian embryogenesis, pluripotent stem cells from each of the three distinct lineages present within the preimplantation blastocyst have been derived. Embryonic (ES), trophectoderm (TS) and extraembryonic endoderm (XEN) stem cells possess the developmental potential of their founding lineages and seemingly utilize distinct epigenetic modalities to program gene expression. However, the basis for these differing cellular identities and epigenetic properties remain poorly defined.Quantitative reverse transcription-polymerase chain reaction (qPCR) is a powerful and efficient means of rapidly comparing patterns of gene expression between different developmental stages and experimental conditions. However, careful, empirical selection of appropriate reference genes is essential to accurately measuring transcriptional differences. Here we report the quantitation and evaluation of fourteen commonly used references genes between ES, TS and XEN stem cells. These included: Actb, B2m, Hsp70, Gapdh, Gusb, H2afz, Hk2, Hprt, Pgk1, Ppia, Rn7sk, Sdha, Tbp and Ywhaz. Utilizing three independent statistical analysis, we identify Pgk1, Sdha and Tbp as the most stable reference genes between each of these stem cell types. Furthermore, we identify Sdha, Tbp and Ywhaz as well as Ywhaz, Pgk1 and Hk2 as the three most stable reference genes through the in vitro differentiation of embryonic and trophectoderm stem cells respectively.Understanding the transcriptional and epigenetic regulatory mechanisms controlling cellular identity within these distinct stem cell types provides essential insight into cellular processes controlling both embryogenesis and stem cell biology. Normalizing quantitative RT-PCR measurements using the geometric mean CT values obtained for the identified mRNAs, offers a reliable method to assess differing patterns of gene expression between the three founding stem cell lineages present within the mammalian preimplantation embryo.

  20. Improved group-specific primers based on the full SILVA 16S rRNA gene reference database.

    PubMed

    Pfeiffer, Stefan; Pastar, Milica; Mitter, Birgit; Lippert, Kathrin; Hackl, Evelyn; Lojan, Paul; Oswald, Andreas; Sessitsch, Angela

    2014-08-01

    Quantitative PCR (qPCR) and community fingerprinting methods, such as the Terminal Restriction Fragment Length Polymorphism (T-RFLP) analysis,are well-suited techniques for the examination of microbial community structures. The use of phylum and class-specific primers can provide enhanced sensitivity and phylogenetic resolution as compared with domain-specific primers. To date, several phylum- and class-specific primers targeting the 16S ribosomal RNA gene have been published. However, many of these primers exhibit low discriminatory power against non-target bacteria in PCR. In this study, we evaluated the precision of certain published primers in silico and via specific PCR. We designed new qPCR and T-RFLP primer pairs (for the classes Alphaproteobacteria and Betaproteobacteria, and the phyla Bacteroidetes, Firmicutes and Actinobacteria) by combining the sequence information from a public dataset (SILVA SSU Ref 102 NR) with manual primer design. We evaluated the primer pairs via PCR using isolates of the above-mentioned groups and via screening of clone libraries from environmental soil samples and human faecal samples. As observed through theoretical and practical evaluation, the primers developed in this study showed a higher level of precision than previously published primers, thus allowing a deeper insight into microbial community dynamics.

  1. Effect of platform, reference material, and quantification model on enumeration of Enterococcus by quantitative PCR methods

    EPA Science Inventory

    Quantitative polymerase chain reaction (qPCR) is increasingly being used for the quantitative detection of fecal indicator bacteria in beach water. QPCR allows for same-day health warnings, and its application is being considered as an optionn for recreational water quality testi...

  2. Development and evaluation of a quantitative PCR assay for detection of Hepatozoon sp.

    PubMed

    Criado-Fornelio, A; Buling, A; Cunha-Filho, N A; Ruas, J L; Farias, N A R; Rey-Valeiron, C; Pingret, J L; Etievant, M; Barba-Carretero, J C

    2007-12-25

    With the aim to improve current molecular diagnostic techniques of Hepatozoon sp. in carnivore mammals, we developed a quantitative PCR (qPCR) assay with SYBR Green I((R)). The method, consisting of amplification of a 235bp fragment of the 18S rRNA gene, is able to detect at least 0.1fg of parasite DNA. Reproducible quantitative results were obtained over a range of 0.1ng-0.1fg of Hepatozoon sp. DNA. To assess the performance of the qPCR assay, DNA samples from dogs (140) and cats (50) were tested with either standard PCR or qPCR. Positive samples were always confirmed by partial sequencing of the 18S rRNA gene. Quantitative PCR was 15.8% more sensitive than standard PCR to detect H. canis in dogs. In cats, no infections were detected by standard PCR, compared to two positives by qPCR (which were infected by H. canis as shown by sequencing).

  3. The use of digital PCR to improve the application of quantitative molecular diagnostic methods for tuberculosis.

    PubMed

    Devonshire, Alison S; O'Sullivan, Denise M; Honeyborne, Isobella; Jones, Gerwyn; Karczmarczyk, Maria; Pavšič, Jernej; Gutteridge, Alice; Milavec, Mojca; Mendoza, Pablo; Schimmel, Heinz; Van Heuverswyn, Fran; Gorton, Rebecca; Cirillo, Daniela Maria; Borroni, Emanuele; Harris, Kathryn; Barnard, Marinus; Heydenrych, Anthenette; Ndusilo, Norah; Wallis, Carole L; Pillay, Keshree; Barry, Thomas; Reddington, Kate; Richter, Elvira; Mozioğlu, Erkan; Akyürek, Sema; Yalçınkaya, Burhanettin; Akgoz, Muslum; Žel, Jana; Foy, Carole A; McHugh, Timothy D; Huggett, Jim F

    2016-08-03

    Real-time PCR (qPCR) based methods, such as the Xpert MTB/RIF, are increasingly being used to diagnose tuberculosis (TB). While qualitative methods are adequate for diagnosis, the therapeutic monitoring of TB patients requires quantitative methods currently performed using smear microscopy. The potential use of quantitative molecular measurements for therapeutic monitoring has been investigated but findings have been variable and inconclusive. The lack of an adequate reference method and reference materials is a barrier to understanding the source of such disagreement. Digital PCR (dPCR) offers the potential for an accurate method for quantification of specific DNA sequences in reference materials which can be used to evaluate quantitative molecular methods for TB treatment monitoring. To assess a novel approach for the development of quality assurance materials we used dPCR to quantify specific DNA sequences in a range of prototype reference materials and evaluated accuracy between different laboratories and instruments. The materials were then also used to evaluate the quantitative performance of qPCR and Xpert MTB/RIF in eight clinical testing laboratories. dPCR was found to provide results in good agreement with the other methods tested and to be highly reproducible between laboratories without calibration even when using different instruments. When the reference materials were analysed with qPCR and Xpert MTB/RIF by clinical laboratories, all laboratories were able to correctly rank the reference materials according to concentration, however there was a marked difference in the measured magnitude. TB is a disease where the quantification of the pathogen could lead to better patient management and qPCR methods offer the potential to rapidly perform such analysis. However, our findings suggest that when precisely characterised materials are used to evaluate qPCR methods, the measurement result variation is too high to determine whether molecular quantification of Mycobacterium tuberculosis would provide a clinically useful readout. The methods described in this study provide a means by which the technical performance of quantitative molecular methods can be evaluated independently of clinical variability to improve accuracy of measurement results. These will assist in ultimately increasing the likelihood that such approaches could be used to improve patient management of TB.

  4. Testing an aflatoxin B1 gene signature in rat archival tissues.

    PubMed

    Merrick, B Alex; Auerbach, Scott S; Stockton, Patricia S; Foley, Julie F; Malarkey, David E; Sills, Robert C; Irwin, Richard D; Tice, Raymond R

    2012-05-21

    Archival tissues from laboratory studies represent a unique opportunity to explore the relationship between genomic changes and agent-induced disease. In this study, we evaluated the applicability of qPCR for detecting genomic changes in formalin-fixed, paraffin-embedded (FFPE) tissues by determining if a subset of 14 genes from a 90-gene signature derived from microarray data and associated with eventual tumor development could be detected in archival liver, kidney, and lung of rats exposed to aflatoxin B1 (AFB1) for 90 days in feed at 1 ppm. These tissues originated from the same rats used in the microarray study. The 14 genes evaluated were Adam8, Cdh13, Ddit4l, Mybl2, Akr7a3, Akr7a2, Fhit, Wwox, Abcb1b, Abcc3, Cxcl1, Gsta5, Grin2c, and the C8orf46 homologue. The qPCR FFPE liver results were compared to the original liver microarray data and to qPCR results using RNA from fresh frozen liver. Archival liver paraffin blocks yielded 30 to 50 μg of degraded RNA that ranged in size from 0.1 to 4 kB. qPCR results from FFPE and fresh frozen liver samples were positively correlated (p ≤ 0.05) by regression analysis and showed good agreement in direction and proportion of change with microarray data for 11 of 14 genes. All 14 transcripts could be amplified from FFPE kidney RNA except the glutamate receptor gene Grin2c; however, only Abcb1b was significantly upregulated from control. Abundant constitutive transcripts, S18 and β-actin, could be amplified from lung FFPE samples, but the narrow RNA size range (25-500 bp length) prevented consistent detection of target transcripts. Overall, a discrete gene signature derived from prior transcript profiling and representing cell cycle progression, DNA damage response, and xenosensor and detoxication pathways was successfully applied to archival liver and kidney by qPCR and indicated that gene expression changes in response to subchronic AFB1 exposure occurred predominantly in the liver, the primary target for AFB1-induced tumors. We conclude that an evaluation of gene signatures in archival tissues can be an important toxicological tool for evaluating critical molecular events associated with chemical exposures.

  5. Loop-Mediated Isothermal Amplification (LAMP) for Rapid Detection and Quantification of Dehalococcoides Biomarker Genes in Commercial Reductive Dechlorinating Cultures KB-1 and SDC-9

    PubMed Central

    Kanitkar, Yogendra H.; Stedtfeld, Robert D.; Steffan, Robert J.; Hashsham, Syed A.

    2016-01-01

    Real-time quantitative PCR (qPCR) protocols specific to the reductive dehalogenase (RDase) genes vcrA, bvcA, and tceA are commonly used to quantify Dehalococcoides spp. in groundwater from chlorinated solvent-contaminated sites. In this study, loop-mediated isothermal amplification (LAMP) was developed as an alternative approach for the quantification of these genes. LAMP does not require a real-time thermal cycler (i.e., amplification is isothermal), allowing the method to be performed using less-expensive and potentially field-deployable detection devices. Six LAMP primers were designed for each of three RDase genes (vcrA, bvcA, and tceA) using Primer Explorer V4. The LAMP assays were compared to conventional qPCR approaches using plasmid standards, two commercially available bioaugmentation cultures, KB-1 and SDC-9 (both contain Dehalococcoides species). DNA was extracted over a growth cycle from KB-1 and SDC-9 cultures amended with trichloroethene and vinyl chloride, respectively. All three genes were quantified for KB-1, whereas only vcrA was quantified for SDC-9. A comparison of LAMP and qPCR using standard plasmids indicated that quantification results were similar over a large range of gene concentrations. In addition, the quantitative increase in gene concentrations over one growth cycle of KB-1 and SDC-9 using LAMP was comparable to that of qPCR. The developed LAMP assays for vcrA and tceA genes were validated by comparing quantification on the Gene-Z handheld platform and a real-time thermal cycler using DNA isolated from eight groundwater samples obtained from an SDC-9-bioaugmented site (Tulsa, OK). These assays will be particularly useful at sites subject to bioaugmentation with these two commonly used Dehalococcoides species-containing cultures. PMID:26746711

  6. Evaluation of 16S rRNA qPCR for detection of Mycobacterium leprae DNA in nasal secretion and skin biopsy samples from multibacillary and paucibacillary leprosy cases.

    PubMed

    Marques, Lívia Érika Carlos; Frota, Cristiane Cunha; Quetz, Josiane da Silva; Bindá, Alexandre Havt; Mota, Rosa Maria Salane; Pontes, Maria Araci de Andrade; Gonçalves, Heitor de Sá; Kendall, Carl; Kerr, Ligia Regina Franco Sansigolo

    2017-12-26

    Mycobacterium leprae bacilli are mainly transmitted by the dissemination of nasal aerosols from multibacillary (MB) patients to susceptible individuals through inhalation. The upper respiratory tract represents the main entry and exit routes of M. leprae. Therefore, this study aimed to evaluate the sensitivity and specificity of real-time quantitative polymerase chain reaction (qPCR) in detecting M. leprae in nasal secretion (NS) and skin biopsy (SB) samples from MB and paucibacillary (PB) cases. Fifty-four NS samples were obtained from leprosy patients at the Dona Libânia National Reference Centre for Sanitary Dermatology in Ceará, Brazil. Among them, 19 MB cases provided both NS and SB samples. Bacilloscopy index assays were conducted and qPCR amplification was performed using specific primers for M. leprae 16S rRNA gene, generating a 124-bp fragment. Primer specificity was verified by determining the amplicon melting temperature (T m  = 79.5 °C) and detection limit of qPCR was 20 fg of M. leprae DNA. Results were positive for 89.7 and 73.3% of NS samples from MB and PB cases, respectively. SB samples from MB patients were 100% positive. The number of bacilli detected in NS samples were 1.39 × 10 3 -8.02 × 10 5 , and in SB samples from MB patients were 1.87 × 10 3 -1.50 × 10 6 . Therefore, qPCR assays using SYBR Green targeting M. leprae 16S rRNA region can be employed in detecting M. leprae in nasal swabs from leprosy patients, validating this method for epidemiological studies aiming to identify healthy carriers among household contacts or within populations of an endemic area.

  7. An event-specific method for the detection and quantification of ML01, a genetically modified Saccharomyces cerevisiae wine strain, using quantitative PCR.

    PubMed

    Vaudano, Enrico; Costantini, Antonella; Garcia-Moruno, Emilia

    2016-10-03

    The availability of genetically modified (GM) yeasts for winemaking and, in particular, transgenic strains based on the integration of genetic constructs deriving from other organisms into the genome of Saccharomyces cerevisiae, has been a reality for several years. Despite this, their use is only authorized in a few countries and limited to two strains: ML01, able to convert malic acid into lactic acid during alcoholic fermentation, and ECMo01 suitable for reducing the risk of carbamate production. In this work we propose a quali-quantitative culture-independent method for the detection of GM yeast ML01 in commercial preparations of ADY (Active Dry Yeast) consisting of efficient extraction of DNA and qPCR (quantitative PCR) analysis based on event-specific assay targeting MLC (malolactic cassette), and a taxon-specific S. cerevisiae assay detecting the MRP2 gene. The ADY DNA extraction methodology has been shown to provide good purity DNA suitable for subsequent qPCR. The MLC and MRP2 qPCR assay showed characteristics of specificity, dynamic range, limit of quantification (LOQ) limit of detection (LOD), precision and trueness, which were fully compliant with international reference guidelines. The method has been shown to reliably detect 0.005% (mass/mass) of GM ML01 S. cerevisiae in commercial preparations of ADY. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Concentration of facultative pathogenic bacteria and antibiotic resistance genes during sewage treatment and in receiving rivers.

    PubMed

    Heß, Stefanie; Lüddeke, Frauke; Gallert, Claudia

    2016-10-01

    Whereas the hygienic condition of drinking and bathing water by law must be monitored by culture-based methods, for quantification of microbes and antibiotic resistance in soil or the aquatic environment, often molecular genetic assays are used. For comparison of both methods, knowledge of their correlation is necessary. Therefore the population of total bacteria, Escherichia coli, enterococci and staphylococci during sewage treatment and in receiving river water was compared by agar plating and quantitative polymerase chain reaction (qPCR) assays. In parallel, all samples were investigated for clinically relevant antibiotic resistance genes. Whereas plating and qPCR data for total bacteria correlated well in sewage after primary treatment, qPCR data of river water indicated higher cell numbers for E. coli. It is unknown if these cells are 'only' not growing under standard conditions or if they are dead. Corresponding to the amount of non-culturable cells, the 'breakpoints' for monitoring water quality should be adapted. The abundances of clinically relevant antibiotic resistance genes in river water were in the same order of magnitude or even higher than in treated sewage. For estimation of the health risk it is important to investigate which species carry respective genes and whether these genes are disseminated via gene transfer.

  9. Determining ACTB, ATP5B and RPL32 as optimal reference genes for quantitative RT-PCR studies of cryopreserved stallion semen.

    PubMed

    Pérez-Rico, A; Crespo, F; Sanmartín, M L; De Santiago, A; Vega-Pla, J L

    2014-10-01

    Equine germplasm bank management involves not only the conservation and use of semen doses, in addition it can also be a resource to study stallion semen quality and after thawing semen properties for reproductive purposes. A possible criterion to measure quality may be based on differential gene expression of loci involved during spermatogenesis and sperm quality maturation. The rapid degradation of sperm after thawing affects the integrity and availability of RNA. In this study we have analyzed genes expressed in equine cryopreserved sperm, which provided an adequate amplification, specificity, and stability to be used as future reference genes in expression studies. Live spermatozoa were selected from cryopreserved semen straws derived from 20 stallions, through a discontinuous concentration gradient. RNA purification followed a combination of the organic and column extraction methods together with a deoxyribonuclease treatment. The selective amplification of nine candidate genes was undertaken using reverse transcription and real-time polymerase chain reaction (qPCR) carried out in a one-step mode (qRT-PCR). Specificities were tested by melting curves, agarose gel electrophoresis and sequencing. In addition, gene stabilities were also calculated. Results indicated that five out of the nine candidate genes amplified properly (β-Actin, ATP synthase subunit beta, Protamine 1, L32 ribosomal protein and Ubiquitin B), of which β-Actin and the L32 Ribosomal protein showed the highest stability thus being the most suitable to be considered as reference genes for equine cryopreserved sperm studies, followed by the ATP synthase subunit beta and Ubiquitin B. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. mcrA Gene abundance correlates with hydrogenotrophic methane production rates in full-scale anaerobic waste treatment systems.

    PubMed

    Morris, R L; Tale, V P; Mathai, P P; Zitomer, D H; Maki, J S

    2016-02-01

    Anaerobic treatment is a sustainable and economical technology for waste stabilization and production of methane as a renewable energy. However, the process is under-utilized due to operational challenges. Organic overload or toxicants can stress the microbial community that performs waste degradation, resulting in system failure. In addition, not all methanogenic microbial communities are equally capable of consistent, maximum biogas production. Opinion varies as to which parameters should be used to monitor the fitness of digester biomass. No standard molecular tools are currently in use to monitor and compare full-scale operations. It was hypothesized that determining the number of gene copies of mcrA, a methanogen-specific gene, would positively correlate with specific methanogenic activity (SMA) rates from biomass samples from six full-scale anaerobic digester systems. Positive correlations were observed between mcrA gene copy numbers and methane production rates against H2  : CO2 and propionate (R(2)  = 0·67-0·70, P < 0·05) but not acetate (R(2)  = 0·49, P > 0·05). Results from this study indicate that mcrA gene targeted qPCR can be used as an alternate tool to monitor and compare certain methanogen communities in anaerobic digesters. Using quantitative PCR (qPCR), we demonstrate that the abundance of mcrA, a gene specific to methane producing archaea, correlated with specific methanogenic activity (SMA) measurements when H2 and CO2 , or propionate were provided as substrates. However, mcrA abundance did not correlate with SMA with acetate. SMA values are often used as a fitness indicator of anaerobic biomass. Results from qPCR can be obtained within a day while SMA analysis requires days to weeks to complete. Therefore, qPCR for mcrA abundance is a sensitive and fast method to compare and monitor the fitness of certain anaerobic biomass. As a monitoring tool, qPCR of mcrA will help anaerobic digester operators optimize treatment and encourage more widespread use of this valuable technology. © 2015 The Society for Applied Microbiology.

  11. Diagnosis of bacteremia in pediatric oncologic patients by in-house real-time PCR.

    PubMed

    Quiles, Milene Gonçalves; Menezes, Liana Carballo; Bauab, Karen de Castro; Gumpl, Elke Kreuscher; Rocchetti, Talita Trevizani; Palomo, Flavia Silva; Carlesse, Fabianne; Pignatari, Antonio Carlos Campos

    2015-07-23

    Infections are the major cause of morbidity and mortality in children with cancer. Gaining a favorable prognosis for these patients depends on selecting the appropriate therapy, which in turn depends on rapid and accurate microbiological diagnosis. This study employed real-time PCR (qPCR) to identify the main pathogens causing bloodstream infection (BSI) in patients treated at the Pediatric Oncology Institute IOP-GRAACC-UNIFESP-Brazil. Antimicrobial resistance genes were also investigated using this methodology. A total of 248 samples from BACTEC® blood culture bottles and 99 whole-blood samples collected in tubes containing EDTA K2 Gel were isolated from 137 patients. All samples were screened by specific Gram probes for multiplex qPCR. Seventeen sequences were evaluated using gender-specific TaqMan probes and the resistance genes bla SHV, bla TEM, bla CTX, bla KPC, bla IMP, bla SPM, bla VIM, vanA, vanB and mecA were detected using the SYBR Green method. Positive qPCR results were obtained in 112 of the blood culture bottles (112/124), and 90 % agreement was observed between phenotypic and molecular microbial detection methods. For bacterial and fungal identification, the performance test showed: sensitivity 87 %; specificity 91 %; NPV 90 %; PPV 89 % and accuracy of 89 % when compared with the phenotypic method. The mecA gene was detected in 37 samples, extended-spectrum β-lactamases were detected in six samples and metallo-β-lactamase coding genes in four samples, with 60 % concordance between the two methods. The qPCR on whole blood detected eight samples possessing the mecA gene and one sample harboring the vanB gene. The bla KPC, bla VIM, bla IMP and bla SHV genes were not detected in this study. Real-time PCR is a useful tool in the early identification of pathogens and antimicrobial resistance genes from bloodstream infections of pediatric oncologic patients.

  12. Development, validation and field evaluation of a quantitative real-time PCR able to differentiate between field Mycoplasma synoviae and the MS-H-live vaccine strain.

    PubMed

    Dijkman, R; Feberwee, A; Landman, W J M

    2017-08-01

    A quantitative PCR (qPCR) able to differentiate between field Mycoplasma synoviae and MS-H vaccine strain was developed, validated and evaluated. It was developed using nucleotide differences in the obg gene. Analytical specificity and sensitivity assessed using DNA from 194 M. synoviae field samples, three different batches of MS-H vaccine and from 43 samples representing four other avian Mycoplasma species proved to be 100%. The detection limit for field M. synoviae and MS-H vaccine strain was 10 2-3 and 10 2 colony-forming units PCR equivalents/g trachea mucus, respectively. The qPCR was able to detect both, field M. synoviae and MS-H vaccine strain in ratios of 1:100 determined both using spiked and field samples. One hundred and twenty samples from M. synoviae-infected non-vaccinated birds, 110 samples from M. synoviae-vaccinated birds from a bird experiment and 224 samples from M. synoviae negative (serology and PCR) birds were used to determine the relative sensitivity and specificity using a previously described M. synoviae PCR as reference. The relative sensitivity and specificity for field M. synoviae were 95.0% and 99.6%, respectively, and 94.6% and 100% for the MS-H-live vaccine, respectively. Field validation and confirmation by multi locus sequence typing revealed that the qPCR correctly distinguished between MS-H and field M. synoviae. Evaluation of the differentiating M. synoviae qPCR in three commercial flocks suggested transmission of MS-H-live vaccine from vaccinated to non-vaccinated flocks at the same farm. Furthermore, it showed evidence for the colonization with field M. synoviae in MS-H-vaccinated flocks.

  13. Real-time PCR to supplement gold-standard culture-based detection of Legionella in environmental samples.

    PubMed

    Collins, S; Jorgensen, F; Willis, C; Walker, J

    2015-10-01

    Culture remains the gold-standard for the enumeration of environmental Legionella. However, it has several drawbacks including long incubation and poor sensitivity, causing delays in response times to outbreaks of Legionnaires' disease. This study aimed to validate real-time PCR assays to quantify Legionella species (ssrA gene), Legionella pneumophila (mip gene) and Leg. pneumophila serogroup-1 (wzm gene) to support culture-based detection in a frontline public health laboratory. Each qPCR assay had 100% specificity, excellent sensitivity (5 GU/reaction) and reproducibility. Comparison of the assays to culture-based enumeration of Legionella from 200 environmental samples showed that they had a negative predictive value of 100%. Thirty eight samples were positive for Legionella species by culture and qPCR. One hundred samples were negative by both methods, whereas 62 samples were negative by culture but positive by qPCR. The average log10 increase between culture and qPCR for Legionella spp. and Leg. pneumophila was 0·72 (P = 0·0002) and 0·51 (P = 0·006), respectively. The qPCR assays can be conducted on the same 1 l water sample as culture thus can be used as a supplementary technique to screen out negative samples and allow more rapid indication of positive samples. The assay could prove informative in public health investigations to identify or rule out sources of Legionella as well as to specifically identify Leg. pneumophila serogroup 1 in a timely manner not possible with culture. © 2015 The Society for Applied Microbiology.

  14. O-5S quantitative real-time PCR: a new diagnostic tool for laboratory confirmation of human onchocerciasis.

    PubMed

    Mekonnen, Solomon A; Beissner, Marcus; Saar, Malkin; Ali, Solomon; Zeynudin, Ahmed; Tesfaye, Kassahun; Adbaru, Mulatu G; Battke, Florian; Poppert, Sven; Hoelscher, Michael; Löscher, Thomas; Bretzel, Gisela; Herbinger, Karl-Heinz

    2017-10-02

    Onchocerciasis is a parasitic disease caused by the filarial nematode Onchocerca volvulus. In endemic areas, the diagnosis is commonly confirmed by microscopic examination of skin snip samples, though this technique is considered to have low sensitivity. The available melting-curve based quantitative real-time PCR (qPCR) using degenerated primers targeting the O-150 repeat of O. volvulus was considered insufficient for confirming the individual diagnosis, especially in elimination studies. This study aimed to improve detection of O. volvulus DNA in clinical samples through the development of a highly sensitive qPCR assay. A novel hydrolysis probe based qPCR assay was designed targeting the specific sequence of the O. volvulus O-5S rRNA gene. A total of 200 clinically suspected onchocerciasis cases were included from Goma district in South-west Ethiopia, from October 2012 through May 2013. Skin snip samples were collected and subjected to microscopy, O-150 qPCR, and the novel O-5S qPCR. Among the 200 individuals, 133 patients tested positive (positivity rate of 66.5%) and 67 negative by O-5S qPCR, 74 tested positive by microscopy (37.0%) and 78 tested positive by O-150 qPCR (39.0%). Among the 133 O-5S qPCR positive individuals, microscopy and O-150 qPCR detected 55.6 and 59.4% patients, respectively, implying a higher sensitivity of O-5S qPCR than microscopy and O-150 qPCR. None of the 67 individuals who tested negative by O-5S qPCR tested positive by microscopy or O-150 qPCR, implying 100% specificity of the newly designed O-5S qPCR assay. The novel O-5S qPCR assay is more sensitive than both microscopic examination and the existing O-150 qPCR for the detection of O. volvulus from skin snip samples. The newly designed assay is an important step towards appropriate individual diagnosis and control of onchocerciasis.

  15. Rapid detection of the Vibrio cholerae ctx gene in food enrichments using real-time polymerase chain reaction.

    PubMed

    Fedio, Willis; Blackstone, George M; Kikuta-Oshima, Lynne; Wendakoon, Chitra; McGrath, Timothy H; DePaola, Angelo

    2007-01-01

    A real-time polymerase chain reaction (qPCR) assay for the detection of the ctxA gene of toxigenic Vibrio cholerae (Vc) was validated against standard culture techniques. The first experimental phase determined optimal enrichment conditions for detection by culture and qPCR of Vc in shrimp, bottled water, milk, and potato salad. The conditions tested included temperature (35 and 42 degrees C), time (6 and 18 h), and effect of shaking (0 and 100 rpm). No definitive trends were found with enrichment temperature or shaking on Vc isolation frequency or detection by qPCR. Generally, Vc was detected by qPCR more frequently than Vc was isolated, but this difference was significant only in the 35 degrees C 6 h enrichment without shaking. In the second phase of experiments, shrimp, bottled water, milk, potato salad, and oysters were inoculated with each of 3 toxigenic Vc strains (Latin American O1 strain, an O139 strain, and an O1 strain from the U.S. Gulf Coast) and enriched under static conditions at 42OC for 6 and 18 h. Overall, detection frequency of ctx by qPCR was 98% (88/90) and 100% (90/90) after 6 and 18 h enrichments, respectively, while Vc isolation frequency was 87% (78/90) and 83% (75/90) after 6 and 18 h, respectively. Toxigenic Vc can be detected by qPCR within an 8 h work day using the 6 h enrichment procedure, assuming an initial level of at least 1-2 colony-forming units/g; however, overnight enrichment may be necessary to detect lower levels. These data indicate that the qPCR assay for ctx is a more reliable, sensitive, and rapid alternative to standard Vc culture methods and is applicable to diverse food products.

  16. Real-Time PCR (qPCR) Primer Design Using Free Online Software

    ERIC Educational Resources Information Center

    Thornton, Brenda; Basu, Chhandak

    2011-01-01

    Real-time PCR (quantitative PCR or qPCR) has become the preferred method for validating results obtained from assays which measure gene expression profiles. The process uses reverse transcription polymerase chain reaction (RT-PCR), coupled with fluorescent chemistry, to measure variations in transcriptome levels between samples. The four most…

  17. Development and validation of qualitative SYBR®Green real-time PCR for detection and discrimination of Listeria spp. and Listeria monocytogenes.

    PubMed

    Barbau-Piednoir, Elodie; Botteldoorn, Nadine; Yde, Marc; Mahillon, Jacques; Roosens, Nancy H

    2013-05-01

    A combination of four qualitative SYBR®Green qPCR screening assays targeting two levels of discrimination: Listeria genus (except Listeria grayi) and Listeria monocytogenes, is presented. These assays have been developed to be run simultaneously using the same polymerase chain reaction (PCR) programme. The paper also proposes a new validation procedure to specifically validate qPCR assays applied to food microbiology according to two guidelines: the ISO 22118 norm and the "Definition of minimum performance requirements for analytical methods of GMO testing". The developed assays target the iap, prs and hlyA genes that belong to or neighbour the virulence cluster of Listeria spp. The selected primers were designed to amplify short fragments (60 to 103 bp) in order to obtain optimal PCR efficiency (between 97 and 107 % efficiency). The limit of detection of the SYBR®Green qPCR assays is two to five copies of target genes per qPCR reaction. These assays are highly accurate (98.08 and 100 % accuracy for the Listeria spp. and L. monocytogenes assays, respectively).

  18. Quantitative PCR high-resolution melting (qPCR-HRM) curve analysis, a new approach to simultaneously screen point mutations and large rearrangements: application to MLH1 germline mutations in Lynch syndrome.

    PubMed

    Rouleau, Etienne; Lefol, Cédrick; Bourdon, Violaine; Coulet, Florence; Noguchi, Tetsuro; Soubrier, Florent; Bièche, Ivan; Olschwang, Sylviane; Sobol, Hagay; Lidereau, Rosette

    2009-06-01

    Several techniques have been developed to screen mismatch repair (MMR) genes for deleterious mutations. Until now, two different techniques were required to screen for both point mutations and large rearrangements. For the first time, we propose a new approach, called "quantitative PCR (qPCR) high-resolution melting (HRM) curve analysis (qPCR-HRM)," which combines qPCR and HRM to obtain a rapid and cost-effective method suitable for testing a large series of samples. We designed PCR amplicons to scan the MLH1 gene using qPCR HRM. Seventy-six patients were fully scanned in replicate, including 14 wild-type patients and 62 patients with known mutations (57 point mutations and five rearrangements). To validate the detected mutations, we used sequencing and/or hybridization on a dedicated MLH1 array-comparative genomic hybridization (array-CGH). All point mutations and rearrangements detected by denaturing high-performance liquid chromatography (dHPLC)+multiplex ligation-dependent probe amplification (MLPA) were successfully detected by qPCR HRM. Three large rearrangements were characterized with the dedicated MLH1 array-CGH. One variant was detected with qPCR HRM in a wild-type patient and was located within the reverse primer. One variant was not detected with qPCR HRM or with dHPLC due to its proximity to a T-stretch. With qPCR HRM, prescreening for point mutations and large rearrangements are performed in one tube and in one step with a single machine, without the need for any automated sequencer in the prescreening process. In replicate, its reagent cost, sensitivity, and specificity are comparable to those of dHPLC+MLPA techniques. However, qPCR HRM outperformed the other techniques in terms of its rapidity and amount of data provided.

  19. Rapid and Sensitive Detection of Bartonella bacilliformis in Experimentally Infected Sand Flies by Loop-Mediated Isothermal Amplification (LAMP) of the Pap31 Gene

    PubMed Central

    Angkasekwinai, Nasikarn; Atkins, Erin H.; Johnson, Richard N.; Grieco, John P.; Ching, Wei Mei; Chao, Chien Chung

    2014-01-01

    Background Carrion' disease, caused by Bartonella bacilliformis, remains truly neglected due to its focal geographical nature. A wide spectrum of clinical manifestations, including asymptomatic bacteremia, and lack of a sensitive diagnostic test can potentially lead to a spread of the disease into non-endemic regions where competent sand fly vectors may be present. A reliable test capable of detecting B. bacilliformis is urgently needed. Our objective is to develop a loop-mediated isothermal amplification (LAMP) assay targeting the pap31 gene to detect B. bacilliformis. Methods and Findings The sensitivity of the LAMP was evaluated in comparison to qPCR using plasmid DNA containing the target gene and genomic DNA in the absence and presence of human or sand fly DNA. The detection limit of LAMP was 1 to 10 copies/µL, depending on the sample metrics. No cross-reaction was observed when testing against a panel of various closely related bacteria. The utility of the LAMP was further compared to qPCR by the examination of 74 Lutzomyia longipalpis sand flies artificially fed on blood spiked with B. bacilliformis and harvested at days (D) 1, 3, 5, 7 and 9 post feeding. Only 86% of sand flies at D1 and 63% of flies at D3 were positive by qPCR. LAMP was able to detect B. bacilliformis in all those flies confirmed positive by qPCR. However, none of the flies after D3 were positive by either LAMP or qPCR. In addition to demonstrating the sensitivity of the LAMP assay, these results suggest that B. bacilliformis cannot propagate in artificially fed L. longipalpis. Conclusions The LAMP assay is as sensitive as qPCR for the detection of B. bacilliformis and could be useful to support diagnosis of patients in low-resource settings and also to identify B. bacilliformis in the sand fly vector. PMID:25522230

  20. Detection of pseudorabies virus by duplex droplet digital PCR assay.

    PubMed

    Ren, Meishen; Lin, Hua; Chen, Shijie; Yang, Miao; An, Wei; Wang, Yin; Xue, Changhua; Sun, Yinjie; Yan, Yubao; Hu, Juan

    2018-01-01

    Aujeszky's disease, caused by pseudorabies virus (PRV), has damaged the economy of the Chinese swine industry. A large number of PRV gene-deleted vaccines have been constructed based on deletion of the glycoprotein E ( gE) gene combined with other virulence-related gene deletions, such as thymidine kinase ( TK), whereas PRV wild-type strains contain an intact gE gene. We developed a sensitive duplex droplet digital PCR (ddPCR) assay to rapidly detect PRV wild-type isolates and gE gene-deleted viral vaccines. We compared this assay with a TaqMan real-time PCR (qPCR) using the same primers and probes. Both assays exhibited good linearity and repeatability; however, ddPCR maintained linearity at extremely low concentrations, whereas qPCR did not. Based on positive results for both gE and gB, the detection limit of ddPCR was found to be 4.75 copies/µL in contrast of 76 copies/µL for qPCR, showing that ddPCR provided a 16-fold improvement in sensitivity. In addition, no nonspecific amplification was shown in specificity testing, and the PRV wild-type was distinguished from a gE-deleted strain. The ddPCR was more sensitive when analyzing clinical serum samples. Thus, ddPCR may become an appropriate detection platform for PRV.

  1. Identification of a Novel De Novo Heterozygous Deletion in the SOX10 Gene in Waardenburg Syndrome Type II Using Next-Generation Sequencing.

    PubMed

    Li, Haonan; Jin, Peng; Hao, Qian; Zhu, Wei; Chen, Xia; Wang, Ping

    2017-11-01

    Waardenburg syndrome (WS) is a rare autosomal dominant disorder associated with pigmentation abnormalities and sensorineural hearing loss. In this study, we investigated the genetic cause of WSII in a patient and evaluated the reliability of the targeted next-generation exome sequencing method for the genetic diagnosis of WS. Clinical evaluations were conducted on the patient and targeted next-generation sequencing (NGS) was used to identify the candidate genes responsible for WSII. Multiplex ligation-dependent probe amplification (MLPA) and real-time quantitative polymerase chain reaction (qPCR) were performed to confirm the targeted NGS results. Targeted NGS detected the entire deletion of the coding sequence (CDS) of the SOX10 gene in the WSII patient. MLPA results indicated that all exons of the SOX10 heterozygous deletion were detected; no aberrant copy number in the PAX3 and microphthalmia-associated transcription factor (MITF) genes was found. Real-time qPCR results identified the mutation as a de novo heterozygous deletion. This is the first report of using a targeted NGS method for WS candidate gene sequencing; its accuracy was verified by using the MLPA and qPCR methods. Our research provides a valuable method for the genetic diagnosis of WS.

  2. Identification and environmental distribution of dcpA encoding the 1,2-dichloropropane-to-propene reductive dehalogenase in organohalide-respiring Chloroflexi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padilla-Crespo, Elizabeth; Yan, Jun; Swift, Cynthia M

    2014-01-01

    Dehalococcoides mccartyi (Dhc) strains KS and RC grow with 1,2-dichloropropane (1,2-D) as an electron acceptor in enrichment cultures derived from hydrocarbon-contaminated and pristine river sediments, respectively. Transcription, expression, enzymatic and PCR analyses implicated the reductive dehalogenase gene dcpA in 1,2-D dichloroelimination to propene and inorganic chloride. Quantitative real-time PCR (qPCR) analyses demonstrated Dhc cell increase during growth with 1,2-D and suggested that both Dhc strains carried a single dcpA gene copy per genome. Dhc strain RC and strain KS produced 1.8 0.1 x 107 and 1.4 0.5 x 107 cells per mole of propene formed, respectively. The dcpA gene wasmore » identified in 1,2-D-to-propene-dechlorinating microcosms established with sediment samples collected from different geographical locations in Europe and North and South America. Clone library analysis revealed two distinct dcpA phylogenetic clusters, both of which the dcpA gene-targeted qPCR assay captured, suggesting the qPCR assay is useful for site assessment and bioremediation monitoring at 1,2-D-contaminated sites.« less

  3. Real-Time Quantitative PCR (QPCR) and Reverse Transcription-QPCR for Detection and Enumeration of Total Yeasts in Wine▿

    PubMed Central

    Hierro, Núria; Esteve-Zarzoso, Braulio; González, Ángel; Mas, Albert; Guillamón, Jose M.

    2006-01-01

    Real-time PCR, or quantitative PCR (QPCR), has been developed to rapidly detect and quantify the total number of yeasts in wine without culturing. Universal yeast primers were designed from the variable D1/D2 domains of the 26S rRNA gene. These primers showed good specificity with all the wine yeasts tested, and they did not amplify the most representative wine species of acetic acid bacteria and lactic acid bacteria. Numerous standard curves were constructed with different strains and species grown in yeast extract-peptone-dextrose medium or incubated in wine. The small standard errors with these replicas proved that the assay is reproducible and highly robust. This technique was validated with artificially contaminated and natural wine samples. We also performed a reverse transcription-QPCR (RT-QPCR) assay from rRNA for total viable yeast quantification. This technique had a low detection limit and was more accurate than QPCR because the dead cells were not quantified. As far as we know, this is the first time that RT-QPCR has been performed to quantify viable yeasts from rRNA. RT-QPCR is a rapid and accurate technique for enumerating yeasts during industrial wine fermentation and controlling the risk of wine spoilage. PMID:17088381

  4. Modification of two capripoxvirus quantitative real-time PCR assays to improve diagnostic sensitivity and include beta-actin as an internal positive control.

    PubMed

    Das, Amaresh; Deng, Ming Y; Babiuk, Shawn; McIntosh, Michael T

    2017-05-01

    Capripoxviruses (CaPVs), consisting of Sheeppox virus (SPV), Goatpox virus (GPV), and Lumpy skin disease virus (LSDV) species, cause economically significant diseases in sheep, goats, and cattle, respectively. Quantitative real-time polymerase chain reaction (qPCR) assays are routinely used for rapid detection of CaPVs in surveillance and outbreak management programs. We further modified and optimized 2 previously published CaPV qPCR assays, referred to as the Balinsky and Bowden assays, by changing commercial PCR reagents used in the tests. The modified assays displayed 100% analytical specificity and showed no apparent changes in analytical sensitivities for detection of CaPVs compared with the original assays. Diagnostic sensitivities, assessed using 50 clinical reference samples from experimentally infected sheep, goats, and cattle, improved from 82% to 92% for the modified Balinsky assay and from 58% to 82% for the modified Bowden assay. The modified qPCR assays were multiplexed for detection of beta-actin as an indicator for potential false-negative results. The multiplex modified qPCR assays exhibited the same diagnostic sensitivities as the singleplex assays suggesting their utility in the detection of CaPVs.

  5. A ready-to-use duplex qPCR to detect Leishmania infantum DNA in naturally infected dogs.

    PubMed

    Rampazzo, Rita de Cássia Pontello; Solcà, Manuela da Silva; Santos, Liliane Celestino Sales; Pereira, Lais de Novaes; Guedes, José Carlos Oliveira; Veras, Patrícia Sampaio Tavares; Fraga, Deborah Bittencourt Mothé; Krieger, Marco Aurélio; Costa, Alexandre Dias Tavares

    2017-11-15

    Canine visceral leishmaniasis (CVL) is a systemic disease caused by Leishmania infantum. A precise CVL diagnosis would allow for a faster and more specific treatment. Quantitative PCR (qPCR) is a sensitive and specific technique that can diagnose CVL and also monitor parasite load in the animal during the course of the infection or treatment. The aim of this study was to develop a ready-to-use (gelified and freezer-free) duplex qPCR for the identification of infected animals. We combined a new qPCR protocol that detects the canine 18S rRNA gene with an existing protocol for L. infantum kDNA detection, creating a duplex qPCR. This duplex method was then developed into a ready-to-use format. The performance of the duplex and singleplex reactions were compared in the traditional format (liquid and freezer-stored). Furthermore, the duplex qPCR performance was compared between the ready-to-use and traditional formats. The singleplex and new duplex qPCR exhibited the same detection limit in the traditional format (0.1 parasites/reaction). The ready-to-use format showed a detection limit of 1 parasite/reaction without affecting the reaction efficiency. The performance of the new qPCR protocol in the two formats was assessed using canine tissue samples from 82 dogs in an endemic CVL area that were previously characterized by standard serological and parasitological protocols. Splenic aspirates provided a higher rate of positivity (92.9%) followed by skin (50%) and blood (35.7%). The reported detection limits were observed for all tissues studied. Our results show that the amplification of L. infantum kDNA and canine DNA in a single tube, using either the traditional or ready-to-use format, exhibited the same diagnostic performance as amplification of the parasite kDNA alone. The detection of the host gene strengthens the qPCR results by confirming the presence and quality of DNA in the samples and the absence of polymerase inhibitors. The ready-to-use duplex qPCR format has many advantages. By joining two qPCR protocols into one, more results can be obtained in the same amount of time with reduced costs and embedded quality control. Reagents are preloaded and stored on the plate, reducing the operator's hands-on time to set up a reaction, as well as decreasing manipulation steps, which reduces the risk of mistakes or contamination. Thus, the ready-to-use duplex format turns qPCR into a robust, easy-to-use tool, which could help increase the availability of qPCR for CVL diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Geomagnetic Field (Gmf) and Plant Evolution: Investigating the Effects of Gmf Reversal on Arabidopsis thaliana Development and Gene Expression

    PubMed Central

    Bertea, Cinzia M.; Narayana, Ravishankar; Agliassa, Chiara; Rodgers, Christopher T.; Maffei, Massimo E.

    2015-01-01

    One of the most stimulating observations in plant evolution is a correlation between the occurrence of geomagnetic field (GMF) reversals (or excursions) and the moment of the radiation of Angiosperms. This led to the hypothesis that alterations in GMF polarity may play a role in plant evolution. Here, we describe a method to test this hypothesis by exposing Arabidopsis thaliana to artificially reversed GMF conditions. We used a three-axis magnetometer and the collected data were used to calculate the magnitude of the GMF. Three DC power supplies were connected to three Helmholtz coil pairs and were controlled by a computer to alter the GMF conditions. Plants grown in Petri plates were exposed to both normal and reversed GMF conditions. Sham exposure experiments were also performed. Exposed plants were photographed during the experiment and images were analyzed to calculate root length and leaf areas. Arabidopsis total RNA was extracted and Quantitative Real Time-PCR (qPCR) analyses were performed on gene expression of CRUCIFERIN 3 (CRU3), copper transport protein1 (COTP1), Redox Responsive Transcription Factor1 (RRTF1), Fe Superoxide Dismutase 1, (FSD1), Catalase3 (CAT3), Thylakoidal Ascorbate Peroxidase (TAPX), a cytosolic Ascorbate Peroxidase1 (APX1), and NADPH/respiratory burst oxidase protein D (RbohD). Four different reference genes were analysed to normalize the results of the qPCR. The best of the four genes was selected and the most stable gene for normalization was used. Our data show for the first time that reversing the GMF polarity using triaxial coils has significant effects on plant growth and gene expression. This supports the hypothesis that GMF reversal contributes to inducing changes in plant development that might justify a higher selective pressure, eventually leading to plant evolution. PMID:26649488

  7. Q-PCR based bioburden assessment of drinking water throughout treatment and delivery to the International Space Station

    NASA Technical Reports Server (NTRS)

    Newcombe, David; Stuecker, Tara; La Duc, Myron; Venkateswaran, Kasthuri

    2005-01-01

    Previous studies indicated evidence of opportunistic pathogens samples obtained during missions to the International Space Station (ISS). This study utilized TaqMan quantitative PCR to determine specific gene abundance in potable and non-potable ISS waters. Probe and primer sets specific to the small subunit rRNA genes were used to elucidate overall bacterial rRNA gene numbers. while those specific for Burkholderia cepacia and Stenotrophomonas maltophilia were optimized and used to probe for the presence of these two opportunistic pathogens. This research builds upon previous microbial diversity studies of ISS water and demonstrates the utility of Q-PCR tool to examine water quality.

  8. Real-time PCR to quantify composition of arbuscular mycorrhizal fungal communities--marker design, verification, calibration and field validation.

    PubMed

    Thonar, C; Erb, A; Jansa, J

    2012-03-01

    Quantitative real-time PCR (qPCR) is slowly becoming established as a tool to quantify abundance of different arbuscular mycorrhizal fungal (AMF) taxa in roots and in soil. Here, we describe the development and field validation of qPCR markers (i.e. primers with associated hydrolysis probes), targeting taxon-specific motifs in the nuclear large ribosomal subunit RNA genes. Design of such markers is complicated by the multinuclear and multigenomic cellular organization of these fungi and the high DNA sequence diversity within the smallest biologically relevant units (i.e. single-spore isolates). These limitations are further compounded by inefficient biomass production of these fungi, resulting in limited availability of pure genomic DNA (gDNA) of well-defined isolates for cross-specificity testing of the markers. Here we demonstrate, using a number of AMF isolates, the possibility to establish stringent qPCR running conditions allowing quantification of phylogenetically disjunctive AMF taxa. Further, we show that these markers can more generally be used to quantify abundance (i.e. number of target gene copies or amount of gDNA) of what is usually considered the level of AMF species, regardless of the isolate identities. We also illustrate the range of variation within qPCR signal strength across different AMF taxa with respect to the detected number of gene copies per unit amount of gDNA. This information is paramount for interpretation of the qPCR analyses of field samples. Finally, the field validation of these markers confirmed their potential to assess composition of field AMF communities and monitor the changes owing to agricultural practices such as soil tillage. © 2011 Blackwell Publishing Ltd.

  9. A Quantitative Polymerase Chain Reaction Assay for the Detection and Quantification of Epizootic Epitheliotropic Disease Virus (EEDV; Salmonid Herpesvirus 3).

    PubMed

    Glenney, Gavin W; Barbash, Patricia A; Coll, John A

    2016-03-01

    Epizootic epitheliotropic disease virus (EEDV; salmonid herpesvirus [SalHV3]; family Alloherpesviridae) causes a systemic disease of juvenile and yearling Lake Trout Salvelinus namaycush. No cell lines are currently available for the culture and propagation of EEDV, so primary diagnosis is limited to PCR and electron microscopy. To better understand the pervasiveness of EEDV (carrier or latent state of infection) in domesticated and wild Lake Trout populations, we developed a sensitive TaqMan quantitative PCR (qPCR) assay to detect the presence of the EEDV terminase gene in Lake Trout tissues. This assay was able to detect a linear standard curve over nine logs of plasmid dilution and was sensitive enough to detect single-digit copies of EEDV. The efficiency of the PCR assay was 99.4 ± 0.06% (mean ± SD), with a 95% confidence limit of 0.0296 (R(2) = 0.994). Methods were successfully applied to collect preliminary data from a number of species and water bodies in the states of Pennsylvania, New York, and Vermont, indicating that EEDV is more common in wild fish than previously known. In addition, through the development of this qPCR assay, we detected EEDV in a new salmonid species, the Cisco Coregonus artedi. The qPCR assay was unexpectedly able to detect two additional herpesviruses, the Atlantic Salmon papillomatosis virus (ASPV; SalHV4) and the Namaycush herpesvirus (NamHV; SalHV5), which both share high sequence identity with the EEDV terminase gene. With these unexpected findings, we subsequently designed three primer sets to confirm initial TaqMan qPCR assay positives and to differentiate among EEDV, ASPV, and NamHV by detecting the glycoprotein genes via SYBR Green qPCR. Received April 20, 2015; accepted November 10, 2015.

  10. Global preamplification simplifies targeted mRNA quantification

    PubMed Central

    Kroneis, Thomas; Jonasson, Emma; Andersson, Daniel; Dolatabadi, Soheila; Ståhlberg, Anders

    2017-01-01

    The need to perform gene expression profiling using next generation sequencing and quantitative real-time PCR (qPCR) on small sample sizes and single cells is rapidly expanding. However, to analyse few molecules, preamplification is required. Here, we studied global and target-specific preamplification using 96 optimised qPCR assays. To evaluate the preamplification strategies, we monitored the reactions in real-time using SYBR Green I detection chemistry followed by melting curve analysis. Next, we compared yield and reproducibility of global preamplification to that of target-specific preamplification by qPCR using the same amount of total RNA. Global preamplification generated 9.3-fold lower yield and 1.6-fold lower reproducibility than target-specific preamplification. However, the performance of global preamplification is sufficient for most downstream applications and offers several advantages over target-specific preamplification. To demonstrate the potential of global preamplification we analysed the expression of 15 genes in 60 single cells. In conclusion, we show that global preamplification simplifies targeted gene expression profiling of small sample sizes by a flexible workflow. We outline the pros and cons for global preamplification compared to target-specific preamplification. PMID:28332609

  11. Stability and infectivity of cytolethal distending toxin type V gene-carrying bacteriophages in a water mesocosm and under different inactivation conditions.

    PubMed

    Allué-Guardia, Anna; Jofre, Juan; Muniesa, Maite

    2012-08-01

    Two cytolethal distending toxin (Cdt) type V-encoding bacteriophages (Φ62 and Φ125) were induced spontaneously from their wild-type Escherichia coli strains and from the lysogens generated in Shigella sonnei. The stability of Cdt phages was determined at various temperatures and pH values after 1 month of storage by means of infectivity tests using a plaque blot assay and analysis of phage genomes using real-time quantitative PCR (qPCR): both were highly stable. We assessed the inactivation of Cdt phages by thermal treatment, chlorination, UV radiation, and in a mesocosm in both summer and winter. The results for the two Cdt phages showed similar trends and were also similar to the phage SOM23 used for reference, but they showed a much higher persistence than Cdt-producing E. coli. Cdt phages showed maximal inactivation after 1 h at 70°C, 30 min of UV radiation, and 30 min of contact with a 10-ppm chlorine treatment. Inactivation in a mesocosm was higher in summer than in winter, probably because of solar radiation. The treatments reduced the number of infectious phages but did not have a significant effect on the Cdt phage particles detected by qPCR. Cdt phages were quantified by qPCR in 73% of river samples, and these results suggest that Cdt phages are a genetic vehicle and the natural reservoir for cdt in the environment.

  12. Detection and quantification of Renibacterium salmoninarum DNA in salmonid tissues by real-time quantitative polymerase chain reaction analysis

    USGS Publications Warehouse

    Chase, D.M.; Elliott, D.G.; Pascho, R.J.

    2006-01-01

    Renibacterium salmoninarum is an important salmonid pathogen that is difficult to culture. We developed and assessed a real-time, quantitative, polymerase chain reaction (qPCR) assay for the detection and enumeration of R. salmoninarum. The qPCR is based on TaqMan technology and amplifies a 69-base pair (bp) region of the gene encoding the major soluble antigen (MSA) of R. salmoninarum. The qPCR assay consistently detected as few as 5 R. salmoninarum cells per reaction in kidney tissue. The specificity of the qPCR was confirmed by testing the DNA extracts from a panel of microorganisms that were either common fish pathogens or reported to cause false-positive reactions in the enzyme-linked immunosorbent assay (ELISA). Kidney samples from 38 juvenile Chinook salmon (Oncorhynchus tshawytscha) in a naturally infected population were examined by real-time qPCR, a nested PCR, and ELISA, and prevalences of R. salmoninarum detected were 71, 66, and 71%, respectively. The qPCR should be a valuable tool for evaluating the R. salmoninarum infection status of salmonids.

  13. Comparison of the QuantiGene 2.0 Assay and Real-Time RT-PCR in the Detection of p53 Isoform mRNA Expression in Formalin-Fixed Paraffin-Embedded Tissues- A Preliminary Study

    PubMed Central

    Morten, Brianna C.; Scott, Rodney J.; Avery-Kiejda, Kelly A.

    2016-01-01

    p53 is expressed as multiple smaller isoforms whose functions in cancer are not well understood. The p53 isoforms demonstrate abnormal expression in different cancers, suggesting they are important in modulating the function of full-length p53 (FLp53). The quantification of relative mRNA expression has routinely been performed using real-time PCR (qPCR). However, there are serious limitations when detecting p53 isoforms using this method, particularly for formalin-fixed paraffin-embedded (FFPE) tissues. The use of FFPE tumours would be advantageous to correlate expression of p53 isoforms with important clinical features of cancer. One alternative method of RNA detection is the hybridization-based QuantiGene 2.0 Assay, which has been shown to be advantageous for the detection of RNA from FFPE tissues. In this pilot study, we compared the QuantiGene 2.0 Assay to qPCR for the detection of FLp53 and its isoform Δ40p53 in matched fresh frozen (FF) and FFPE breast tumours. FLp53 mRNA expression was detected using qPCR in FF and FFPE tissues, but Δ40p53 mRNA was only detectable in FF tissues. Similar results were obtained for the QuantiGene 2.0 Assay. FLp53 relative mRNA expression was shown to be strongly correlated between the two methods (R2 = 0.9927, p = 0.0031) in FF tissues, however Δ40p53 was not (R2 = 0.4429, p = 0.3345). When comparing the different methods for the detection of FLp53 mRNA from FFPE and FF samples, no correlation (R2 = 0.0002, p = 0.9863) was shown using the QuantiGene 2.0 Assay, and in contrast, the level of expression was highly correlated between the two tissues using qPCR (R2 = 0.8753, p = 0.0644). These results suggest that both the QuantiGene 2.0 Assay and qPCR methods are inadequate for the quantification of Δ40p53 mRNA in FFPE tissues. Therefore, alternative methods of RNA detection and quantification are required to study the relative expression of Δ40p53 in FFPE samples. PMID:27832134

  14. A nested real-time PCR assay for the quantification of Plasmodium falciparum DNA extracted from dried blood spots.

    PubMed

    Tran, Tuan M; Aghili, Amirali; Li, Shanping; Ongoiba, Aissata; Kayentao, Kassoum; Doumbo, Safiatou; Traore, Boubacar; Crompton, Peter D

    2014-10-04

    As public health efforts seek to eradicate malaria, there has been an emphasis on eliminating low-density parasite reservoirs in asymptomatic carriers. As such, diagnosing submicroscopic Plasmodium infections using PCR-based techniques has become important not only in clinical trials of malaria vaccines and therapeutics, but also in active malaria surveillance campaigns. However, PCR-based quantitative assays that rely on nucleic acid extracted from dried blood spots (DBS) have demonstrated lower sensitivity than assays that use cryopreserved whole blood as source material. The density of Plasmodium falciparum asexual parasites was quantified using genomic DNA extracted from dried blood spots (DBS) and the sensitivity of two approaches was compared: quantitative real-time PCR (qPCR) targeting the P. falciparum 18S ribosomal RNA gene, either with an initial conventional PCR amplification prior to qPCR (nested qPCR), or without an initial amplification (qPCR only). Parasite densities determined by nested qPCR, qPCR only, and light microscopy were compared. Nested qPCR results in 10-fold higher sensitivity (0.5 parasites/μl) when compared to qPCR only (five parasites/ul). Among microscopy-positive samples, parasite densities calculated by nested qPCR correlated strongly with microscopy for both asymptomatic (Pearson's r=0.58, P<0.001) and symptomatic (Pearson's r=0.70, P<0.0001) P. falciparum infections. Nested qPCR improves the sensitivity for the detection of P. falciparum blood-stage infection from clinical DBS samples. This approach may be useful for active malaria surveillance in areas where submicroscopic asymptomatic infections are prevalent.

  15. Practical utilization of recombinant AAV vector reference standards: focus on vector genomes titration by free ITR qPCR.

    PubMed

    D'Costa, Susan; Blouin, Veronique; Broucque, Frederic; Penaud-Budloo, Magalie; François, Achille; Perez, Irene C; Le Bec, Christine; Moullier, Philippe; Snyder, Richard O; Ayuso, Eduard

    2016-01-01

    Clinical trials using recombinant adeno-associated virus (rAAV) vectors have demonstrated efficacy and a good safety profile. Although the field is advancing quickly, vector analytics and harmonization of dosage units are still a limitation for commercialization. AAV reference standard materials (RSMs) can help ensure product safety by controlling the consistency of assays used to characterize rAAV stocks. The most widely utilized unit of vector dosing is based on the encapsidated vector genome. Quantitative polymerase chain reaction (qPCR) is now the most common method to titer vector genomes (vg); however, significant inter- and intralaboratory variations have been documented using this technique. Here, RSMs and rAAV stocks were titered on the basis of an inverted terminal repeats (ITRs) sequence-specific qPCR and we found an artificial increase in vg titers using a widely utilized approach. The PCR error was introduced by using single-cut linearized plasmid as the standard curve. This bias was eliminated using plasmid standards linearized just outside the ITR region on each end to facilitate the melting of the palindromic ITR sequences during PCR. This new "Free-ITR" qPCR delivers vg titers that are consistent with titers obtained with transgene-specific qPCR and could be used to normalize in-house product-specific AAV vector standards and controls to the rAAV RSMs. The free-ITR method, including well-characterized controls, will help to calibrate doses to compare preclinical and clinical data in the field.

  16. Development, validation and testing costs of an in-house real-time PCR assay for the detection of Chlamydia trachomatis.

    PubMed

    Santos, Camila Gurgel Dos; Sabidó, Meritxell; Leturiondo, André Luiz; Ferreira, Cynthia de Oliveira; da Cruz, Thielle Pereira; Benzaken, Adele Schwartz

    2017-03-01

    To improve the screening of Chlamydia trachomatis(C. trachomatis) in Brazil, an accurate and affordable method is needed. The objective of this study was to develop and assess the performance and costs of a new in-house real-time PCR (qPCR) assay for the diagnosis of C. trachomatis infection. Asymptomatic women aged 14-25 years who attended primary health services in Manaus, Brazil, were screened for C. trachomatis using the Digene Hybrid Capture II CT-ID (HCII CT-ID) DNA test. A subset of cervical specimens were tested using an in-house qPCR and a commercial qPCR, ArtusC. trachomatis Plus RG PCR 96 CE (Artus qPCR) kit, as a reference test. A primer/probe based on the sequence of cryptic plasmid (CP) was designed. An economic evaluation was conducted from the provider's perspective. The primers were considered specific for C. trachomatis because they did not amplify any product from non-sexually transmitted bacterial species tested. Overall, 292 specimens were tested by both the commercial kit (Artus qPCR) and the in-house qPCR. Of those, one resulted in no amplification and was excluded from the analysis. The sensitivity, specificity, and positive and negative predictive values of the in-house qPCR were 99.5 % [95 % confidence interval (CI): 97.1-100], 95.1 % (95 % CI: 89-98.4), 97.4 % (95 % CI: 94-99.1) and 99.0 % (95 % CI: 94.5-100), respectively. The cost per case of C. trachomatis was £0.44 ($0.55) for HCII CT-ID, £1.16 ($1.45) for Artus qPCR and £1.06 ($1.33) for in-house qPCR. We have standardized an in-house qPCR to detect cervical C. trachomatis targeting CP. The in-house qPCR showed excellent accuracy and was more affordable than the commercial qPCR kit.

  17. Identification, Characterization and Expression Profiling of Stress-Related Genes in Easter Lily (Lilium formolongi)

    PubMed Central

    Howlader, Jewel; Park, Jong-In; Robin, Arif Hasan Khan; Sumi, Kanij Rukshana; Nou, Ill-Sup

    2017-01-01

    Biotic and abiotic stresses are the major causes of crop loss in lily worldwide. In this study, we retrieved 12 defense-related expressed sequence tags (ESTs) from the NCBI database and cloned, characterized, and established seven of these genes as stress-induced genes in Lilium formolongi. Using rapid amplification of cDNA ends PCR (RACE-PCR), we successfully cloned seven full-length mRNA sequences from L. formolongi line Sinnapal lily. Based on the presence of highly conserved characteristic domains and phylogenetic analysis using reference protein sequences, we provided new nomenclature for the seven nucleotide and protein sequences and submitted them to GenBank. The real-time quantitative PCR (qPCR) relative expression analysis of these seven genes, including LfHsp70-1, LfHsp70-2, LfHsp70-3, LfHsp90, LfUb, LfCyt-b5, and LfRab, demonstrated that they were differentially expressed in all organs examined, possibly indicating functional redundancy. We also investigated the qPCR relative expression levels under two biotic and four abiotic stress conditions. All seven genes were induced by Botrytis cinerea treatment, and all genes except LfHsp70-3 and LfHsp90 were induced by Botrytis elliptica treatment; these genes might be associated with disease tolerance mechanisms in L. formolongi. In addition, LfHsp70-1, LfHsp70-2, LfHsp70-3, LfHsp90, LfUb, and LfCyt-b5 were induced by heat treatment, LfHsp70-1, LfHsp70-2, LfHsp70-3, LfHsp90, and LfCyt-b5 were induced by cold treatment, and LfHsp70-1, LfHsp70-2, LfHsp70-3, LfHsp90, LfCy-b5, and LfRab were induced by drought and salt stress, indicating their likely association with tolerance to these stress conditions. The stress-induced candidate genes identified in this study provide a basis for further functional analysis and the development of stress-resistant L. formolongi cultivars.

  18. Pneumocystis jirovecii (Pj) quantitative PCR to differentiate Pj pneumonia from Pj colonization in immunocompromised patients.

    PubMed

    Maillet, M; Maubon, D; Brion, J P; François, P; Molina, L; Stahl, J P; Epaulard, O; Bosseray, A; Pavese, P

    2014-03-01

    Conventional polymerase chain reaction (PCR) in respiratory samples does not differentiate between Pneumocystis pneumonia (PCP) and Pneumocystis jirovecii (Pj) colonization. We used Pj real-time quantitative PCR (qPCR) with the objective to discriminate PCP from Pj colonization in immunocompromised patients. All positive Pj qPCR [targeting the major surface glycoprotein (MSG) gene] obtained in respiratory samples from immunocompromised patients presenting pneumonia at the Grenoble University Hospital, France, were collected between August 2009 and April 2011. Diagnoses were retrospectively determined by a multidisciplinary group of experts blinded to the Pj qPCR results. Thirty-one bronchoalveolar lavages and four broncho aspirations positive for the Pj qPCR were obtained from 35 immunocompromised patients. Diagnoses of definite, probable, and possible PCP, and pneumonia from another etiology were retrospectively made for 7, 4, 5, and 19 patients, respectively. Copy numbers were significantly higher in the "definite group" (median 465,000 copies/ml) than in the "probable group" (median 38,600 copies/ml), the "possible group" (median 1,032 copies/ml), and the "other diagnosis group" (median 390 copies/ml). With the value of 3,160 copies/ml, the sensitivity and specificity of qPCR for the diagnosis of PCP were 100 % and 70 %, respectively. With the value of 31,600 copies/ml, the sensitivity and specificity were 80 % and 100 %, respectively. The positive predictive value was 100 % for results with more than 31,600 copies/ml and the negative predictive value was 100 % for results with fewer than 3,160 copies/ml. qPCR targeting the MSG gene can be helpful to discriminate PCP from Pj colonization in immunocompromised patients, using two cut-off values, with a gray zone between them.

  19. Expression of estrogen, estrogen related and androgen receptors in adrenal cortex of intact adult male and female rats.

    PubMed

    Trejter, Marcin; Jopek, Karol; Celichowski, Piotr; Tyczewska, Marianna; Malendowicz, Ludwik K; Rucinski, Marcin

    2015-01-01

    Adrenocortical activity in various species is sensitive to androgens and estrogens. They may affect adrenal cortex growth and functioning either via central pathways (CRH and ACTH) or directly, via specific receptors expressed in the cortex and/or by interfering with adrenocortical enzymes, among them those involved in steroidogenesis. Only limited data on expression of androgen and estrogen receptors in adrenal glands are available. Therefore the present study aimed to characterize, at the level of mRNA, expression of these receptors in specific components of adrenal cortex of intact adult male and female rats. Studies were performed on adult male and female (estrus) Wistar rats. Total RNA was isolated from adrenal zona glomerulosa (ZG) and fasciculate/reticularis (ZF/R). Expression of genes were evaluated by means of Affymetrix® Rat Gene 1.1 ST Array Strip and QPCR. By means of Affymetrix® Rat Gene 1.1 ST Array we examined adrenocortical sex differences in the expression of nearly 30,000 genes. All data were analyzed in relation to the adrenals of the male rats. 32 genes were differentially expressed in ZG, and 233 genes in ZF/R. In the ZG expression levels of 24 genes were lower and 8 higher in female rats. The more distinct sex differences were observed in the ZF/R, in which expression levels of 146 genes were lower and 87 genes higher in female rats. Performed analyses did not reveal sex differences in the expression levels of both androgen (AR) and estrogen (ER) receptor genes in the adrenal cortex of male and female rats. Therefore matrix data were validated by QPCR. QPCR revealed higher expression levels of AR gene both in ZG and ZF/R of male than female rats. On the other hand, QPCR did not reveal sex-related differences in the expression levels of ERα, ERβ and non-genomic GPR30 (GPER-1) receptor. Of those genes expression levels of ERα genes were the highest. In studied adrenal samples the relative expression of ERα mRNA was higher than ERβ mRNA. In adrenals of adult male and female rats expression levels of estrogen-related receptors ERRα and ERRβ were similar, and only in the ZF/R of female rats ERRγ expression levels were significantly higher than in males. We also analyzed expression profile of three isoforms of steroid 5α-reductase (Srd5a1, Srd5a2 and Srd5a3) and aromatase (Cyp19a1) and expression levels of all these genes were similar in ZG and ZF/R of male and female rats. In contrast to Affymetrix microarray data QPCR revealed higher expression levels of AR gene in adrenal glands of the male rats. In adrenals of both sexes expression levels of ERa, ERb, non-genomic GPR30 (GPER-1), ERR α and ERRβ receptors were comparable. The obtained results suggest that acute steroidogenic effect of estrogens on corticosteroid secretion may be mediated by non-genomic GPR30.

  20. Detection and quantification of Spirocerca lupi by HRM qPCR in fecal samples from dogs with spirocercosis.

    PubMed

    Rojas, Alicia; Segev, Gilad; Markovics, Alex; Aroch, Itamar; Baneth, Gad

    2017-09-19

    Spirocerca lupi, the dog oesophageal nematode, causes a potentially fatal disease in domestic dogs, and is currently clinically diagnosed by coproscopy and oesophagoscopy. To date, a single molecular method, a semi-nested PCR, targeting the cox1 gene, has been developed to aid in the diagnosis of spirocercosis. The present study describes three novel high-resolution melt (HRM) quantitative PCR (qPCR) assays targeting fragments of the ITS1, 18S and cytb loci of S. lupi. The performance of these molecular assays in feces was compared to fecal flotation and to the previously described cox1 gene semi-nested PCR in 18 fecal samples from dogs with clinical oesophageal spirocercosis diagnosed by oesophagoscopy. The HRM qPCR for ITS1 and 18S were both able to detect 0.2 S. lupi eggs per gram (epg), while the HRM qPCR for the cytb and the semi-nested PCR for the cox1 detected 6 epg and 526 epg, respectively. Spirocerca lupi was detected in 61.1%, 44.4%, 27.8%, 11.1% and 5.6% of the fecal samples of dogs diagnosed with spirocercosis by using the ITS1 and 18S HRM qPCR assays, fecal flotation, cytb HRM qPCR and cox1 semi-nested PCR, respectively. All dogs positive by fecal flotation were also positive by ITS1 and 18S HRM qPCRs. Quantification of S. lupi eggs was successfully achieved in the HRM qPCRs and compared to the fecal flotation with no significant difference in the calculated concentrations between the HRM qPCRs that detected the 18S and ITS1 loci and the fecal flotation. The HRM qPCR for the 18S cross-amplified DNA from Toxocara canis and Toxascaris leonina. In contrast, the HRM qPCR for ITS1 did not cross-amplify DNA from other canine gastrointestinal parasites. This study presents two new molecular assays with significantly increased sensitivity for confirming and quantifying fecal S. lupi eggs. Of these, the HRM qPCR for ITS1 showed the best performance in terms of the limit of detection and absence of cross-amplification with other parasites. These assays will be useful in detecting infection and for follow-up during therapy.

  1. Identification of potential transcriptomic markers in developing pediatric sepsis: a weighted gene co-expression network analysis and a case-control validation study.

    PubMed

    Li, Yiping; Li, Yanhong; Bai, Zhenjiang; Pan, Jian; Wang, Jian; Fang, Fang

    2017-12-13

    Sepsis represents a complex disease with the dysregulated inflammatory response and high mortality rate. The goal of this study was to identify potential transcriptomic markers in developing pediatric sepsis by a co-expression module analysis of the transcriptomic dataset. Using the R software and Bioconductor packages, we performed a weighted gene co-expression network analysis to identify co-expression modules significantly associated with pediatric sepsis. Functional interpretation (gene ontology and pathway analysis) and enrichment analysis with known transcription factors and microRNAs of the identified candidate modules were then performed. In modules significantly associated with sepsis, the intramodular analysis was further performed and "hub genes" were identified and validated by quantitative real-time PCR (qPCR) in this study. 15 co-expression modules in total were detected, and four modules ("midnight blue", "cyan", "brown", and "tan") were most significantly associated with pediatric sepsis and suggested as potential sepsis-associated modules. Gene ontology analysis and pathway analysis revealed that these four modules strongly associated with immune response. Three of the four sepsis-associated modules were also enriched with known transcription factors (false discovery rate-adjusted P < 0.05). Hub genes were identified in each of the four modules. Four of the identified hub genes (MYB proto-oncogene like 1, killer cell lectin like receptor G1, stomatin, and membrane spanning 4-domains A4A) were further validated to be differentially expressed between septic children and controls by qPCR. Four pediatric sepsis-associated co-expression modules were identified in this study. qPCR results suggest that hub genes in these modules are potential transcriptomic markers for pediatric sepsis diagnosis. These results provide novel insights into the pathogenesis of pediatric sepsis and promote the generation of diagnostic gene sets.

  2. Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology.

    PubMed

    Smith, Cindy J; Osborn, A Mark

    2009-01-01

    Quantitative PCR (Q-PCR or real-time PCR) approaches are now widely applied in microbial ecology to quantify the abundance and expression of taxonomic and functional gene markers within the environment. Q-PCR-based analyses combine 'traditional' end-point detection PCR with fluorescent detection technologies to record the accumulation of amplicons in 'real time' during each cycle of the PCR amplification. By detection of amplicons during the early exponential phase of the PCR, this enables the quantification of gene (or transcript) numbers when these are proportional to the starting template concentration. When Q-PCR is coupled with a preceding reverse transcription reaction, it can be used to quantify gene expression (RT-Q-PCR). This review firstly addresses the theoretical and practical implementation of Q-PCR and RT-Q-PCR protocols in microbial ecology, highlighting key experimental considerations. Secondly, we review the applications of (RT)-Q-PCR analyses in environmental microbiology and evaluate the contribution and advances gained from such approaches. Finally, we conclude by offering future perspectives on the application of (RT)-Q-PCR in furthering understanding in microbial ecology, in particular, when coupled with other molecular approaches and more traditional investigations of environmental systems.

  3. Data on regulation of the gene for the adipocyte-enriched micropeptide Adig/Smaf1 by qPCR analysis and luciferase reporter assay.

    PubMed

    Ren, Gang; Cairl, Nicholas; Kim, Ji Young; Smas, Cynthia M

    2016-12-01

    This article describes qPCR analysis for the Adig/Smaf1 gene in multiple in vitro adipocyte differentiation models including white and brown adipogenesis, cell lines and primary cultures. The article also contains qPCR data for transcript levels of Adig/Smaf1 in a wide panel of murine tissues. Expression of Adig/Smaf1 transcript in white and brown adipose tissue in fasted and refed mice is reported and also data for Adig/Smaf1 transcript expression in genetically obese ob/ob mice. Data on the effects of siRNA-mediated knockdown of Srebp1c on Adig/Smaf1 transcript levels in 3T3-L1 adipocytes are shown. Luciferase reporter assays provide data for regulation of an ~ 2 kb fragment of the 5' flanking region of Adig/Smaf1 gene by PPARγ/RXRα. This data is related to a research article describing Adig/Smaf1 protein expression, "Expression, regulation and functional assessment of the 80 amino acid Small Adipocyte Factor 1 (Smaf1) protein in adipocytes" (G. Ren, P. Eskandari, S. Wang, C.M. Smas, 2016) [1].

  4. Gene transcription in sea otters (Enhydra lutris); development of a diagnostic tool for sea otter and ecosystem health

    USGS Publications Warehouse

    Bowen, Lizabeth; Miles, A. Keith; Murray, Michael; Haulena, Martin; Tuttle, Judy; van Bonn, William; Adams, Lance; Bodkin, James L.; Ballachey, Brenda E.; Estes, James A.; Tinker, M. Tim; Keister, Robin; Stott, Jeffrey L.

    2012-01-01

    Gene transcription analysis for diagnosing or monitoring wildlife health requires the ability to distinguish pathophysiological change from natural variation. Herein, we describe methodology for the development of quantitative real-time polymerase chain reaction (qPCR) assays to measure differential transcript levels of multiple immune function genes in the sea otter (Enhydra lutris); sea otter-specific qPCR primer sequences for the genes of interest are defined. We establish a ‘reference’ range of transcripts for each gene in a group of clinically healthy captive and free-ranging sea otters. The 10 genes of interest represent multiple physiological systems that play a role in immuno-modulation, inflammation, cell protection, tumour suppression, cellular stress response, xenobiotic metabolizing enzymes, antioxidant enzymes and cell–cell adhesion. The cycle threshold (CT) measures for most genes were normally distributed; the complement cytolysis inhibitor was the exception. The relative enumeration of multiple gene transcripts in simple peripheral blood samples expands the diagnostic capability currently available to assess the health of sea otters in situ and provides a better understanding of the state of their environment.

  5. Exon expression in lymphoblastoid cell lines from subjects with schizophrenia before and after glucose deprivation

    PubMed Central

    Martin, Maureen V; Rollins, Brandi; Sequeira, P Adolfo; Mesén, Andrea; Byerley, William; Stein, Richard; Moon, Emily A; Akil, Huda; Jones, Edward G; Watson, Stanley J; Barchas, Jack; DeLisi, Lynn E; Myers, Richard M; Schatzberg, Alan; Bunney, William E; Vawter, Marquis P

    2009-01-01

    Background The purpose of this study was to examine the effects of glucose reduction stress on lymphoblastic cell line (LCL) gene expression in subjects with schizophrenia compared to non-psychotic relatives. Methods LCLs were grown under two glucose conditions to measure the effects of glucose reduction stress on exon expression in subjects with schizophrenia compared to unaffected family member controls. A second aim of this project was to identify cis-regulated transcripts associated with diagnosis. Results There were a total of 122 transcripts with significant diagnosis by probeset interaction effects and 328 transcripts with glucose deprivation by probeset interaction probeset effects after corrections for multiple comparisons. There were 8 transcripts with expression significantly affected by the interaction between diagnosis and glucose deprivation and probeset after correction for multiple comparisons. The overall validation rate by qPCR of 13 diagnosis effect genes identified through microarray was 62%, and all genes tested by qPCR showed concordant up- or down-regulation by qPCR and microarray. We assessed brain gene expression of five genes found to be altered by diagnosis and glucose deprivation in LCLs and found a significant decrease in expression of one gene, glutaminase, in the dorsolateral prefrontal cortex (DLPFC). One SNP with previously identified regulation by a 3' UTR SNP was found to influence IRF5 expression in both brain and lymphocytes. The relationship between the 3' UTR rs10954213 genotype and IRF5 expression was significant in LCLs (p = 0.0001), DLPFC (p = 0.007), and anterior cingulate cortex (p = 0.002). Conclusion Experimental manipulation of cells lines from subjects with schizophrenia may be a useful approach to explore stress related gene expression alterations in schizophrenia and to identify SNP variants associated with gene expression. PMID:19772658

  6. FlyPrimerBank: An Online Database for Drosophila melanogaster Gene Expression Analysis and Knockdown Evaluation of RNAi Reagents

    PubMed Central

    Hu, Yanhui; Sopko, Richelle; Foos, Marianna; Kelley, Colleen; Flockhart, Ian; Ammeux, Noemie; Wang, Xiaowei; Perkins, Lizabeth; Perrimon, Norbert; Mohr, Stephanie E.

    2013-01-01

    The evaluation of specific endogenous transcript levels is important for understanding transcriptional regulation. More specifically, it is useful for independent confirmation of results obtained by the use of microarray analysis or RNA-seq and for evaluating RNA interference (RNAi)-mediated gene knockdown. Designing specific and effective primers for high-quality, moderate-throughput evaluation of transcript levels, i.e., quantitative, real-time PCR (qPCR), is nontrivial. To meet community needs, predefined qPCR primer pairs for mammalian genes have been designed and sequences made available, e.g., via PrimerBank. In this work, we adapted and refined the algorithms used for the mammalian PrimerBank to design 45,417 primer pairs for 13,860 Drosophila melanogaster genes, with three or more primer pairs per gene. We experimentally validated primer pairs for ~300 randomly selected genes expressed in early Drosophila embryos, using SYBR Green-based qPCR and sequence analysis of products derived from conventional PCR. All relevant information, including primer sequences, isoform specificity, spatial transcript targeting, and any available validation results and/or user feedback, is available from an online database (www.flyrnai.org/flyprimerbank). At FlyPrimerBank, researchers can retrieve primer information for fly genes either one gene at a time or in batch mode. Importantly, we included the overlap of each predicted amplified sequence with RNAi reagents from several public resources, making it possible for researchers to choose primers suitable for knockdown evaluation of RNAi reagents (i.e., to avoid amplification of the RNAi reagent itself). We demonstrate the utility of this resource for validation of RNAi reagents in vivo. PMID:23893746

  7. Developing noninvasive diagnosis for single-gene disorders: the role of digital PCR.

    PubMed

    Barrett, Angela N; Chitty, Lyn S

    2014-01-01

    Cell-free fetal DNA constitutes approximately 10 % of the cell-free DNA found in maternal plasma and can be used as a reliable source of fetal genetic material for noninvasive prenatal diagnosis (NIPD) from early pregnancy. The relatively high levels of maternal background can make detection of paternally inherited point mutations challenging. Diagnosis of inheritance of autosomal recessive disorders using qPCR is even more challenging due to the high background of mutant maternal allele. Digital PCR is a very sensitive modified method of quantitative real-time PCR (qPCR), allowing absolute quantitation and rare allele detection without the need for standards or normalization. Samples are diluted and then partitioned into a large number of small qPCR reactions, some of which contain the target molecule and some which do not; the proportion of positive reactions can be used to calculate the concentration of targets in the initial sample. Here we discuss the use of digital PCR as an accurate approach to NIPD for single-gene disorders.

  8. Validation of qPCR Methods for the Detection of Mycobacterium in New World Animal Reservoirs.

    PubMed

    Housman, Genevieve; Malukiewicz, Joanna; Boere, Vanner; Grativol, Adriana D; Pereira, Luiz Cezar M; Silva, Ita de Oliveira; Ruiz-Miranda, Carlos R; Truman, Richard; Stone, Anne C

    2015-11-01

    Zoonotic pathogens that cause leprosy (Mycobacterium leprae) and tuberculosis (Mycobacterium tuberculosis complex, MTBC) continue to impact modern human populations. Therefore, methods able to survey mycobacterial infection in potential animal hosts are necessary for proper evaluation of human exposure threats. Here we tested for mycobacterial-specific single- and multi-copy loci using qPCR. In a trial study in which armadillos were artificially infected with M. leprae, these techniques were specific and sensitive to pathogen detection, while more traditional ELISAs were only specific. These assays were then employed in a case study to detect M. leprae as well as MTBC in wild marmosets. All marmosets were negative for M. leprae DNA, but 14 were positive for the mycobacterial rpoB gene assay. Targeted capture and sequencing of rpoB and other MTBC genes validated the presence of mycobacterial DNA in these samples and revealed that qPCR is useful for identifying mycobacterial-infected animal hosts.

  9. Evaluation of a Turbidimetric β-d-Glucan Test for Detection of Pneumocystis jirovecii Pneumonia.

    PubMed

    Dichtl, Karl; Seybold, Ulrich; Wagener, Johannes

    2018-07-01

    Currently, diagnosis of Pneumocystis jirovecii pneumonia (PJP) relies on analysis of lower respiratory specimens, either by microscopy or quantitative real-time PCR (qPCR). Thus, bronchoscopy is required, which is associated with increased risk of respiratory failure. We assessed the value of noninvasive serologic β-d-glucan (BDG) testing for laboratory diagnosis of PJP using a newly available turbidimetric assay. We identified 73 cases of PJP with positive qPCR results from lower respiratory specimens for Pneumocystis and serology samples dating from 1 week before to 4 weeks after qPCR. In addition, 25 sera from controls with suspected PJP but specimens negative for Pneumocystis by qPCR were identified. Sera were tested with a turbidimetric BDG assay (Fujifilm Wako Chemicals Europe GmbH, Neuss, Germany), using an 11-pg/ml cutoff. Sensitivity and specificity were calculated based on qPCR test results as a reference. The turbidimetric BDG assay identified 63/73 patients with positive or slightly positive qPCR tests for an overall sensitivity of 86%; after exclusion of cases with only slightly positive qPCR results, sensitivity was 91%. No correlation between serum BDG levels and respiratory specimen DNA levels was found. Serologic BDG testing was negative in 25/25 controls with negative qPCR for a specificity of 100% using the predefined cutoff. In 22/25 samples (88%), no BDG was detected. Serologic BDG testing using the turbidimetric assay showed high sensitivity and specificity compared to qPCR of lower respiratory specimens for the diagnosis of PJP. Both turnover time and test performance will allow clinicians to delay or in some cases forego bronchoscopy. Copyright © 2018 American Society for Microbiology.

  10. Quantitative developmental transcriptomes of the Mediterranean sea urchin Paracentrotus lividus.

    PubMed

    Gildor, Tsvia; Malik, Assaf; Sher, Noa; Avraham, Linor; Ben-Tabou de-Leon, Smadar

    2016-02-01

    Embryonic development progresses through the timely activation of thousands of differentially activated genes. Quantitative developmental transcriptomes provide the means to relate global patterns of differentially expressed genes to the emerging body plans they generate. The sea urchin is one of the classic model systems for embryogenesis and the models of its developmental gene regulatory networks are of the most comprehensive of their kind. Thus, the sea urchin embryo is an excellent system for studies of its global developmental transcriptional profiles. Here we produced quantitative developmental transcriptomes of the sea urchin Paracentrotus lividus (P. lividus) at seven developmental stages from the fertilized egg to prism stage. We generated de-novo reference transcriptome and identified 29,817 genes that are expressed at this time period. We annotated and quantified gene expression at the different developmental stages and confirmed the reliability of the expression profiles by QPCR measurement of a subset of genes. The progression of embryo development is reflected in the observed global expression patterns and in our principle component analysis. Our study illuminates the rich patterns of gene expression that participate in sea urchin embryogenesis and provide an essential resource for further studies of the dynamic expression of P. lividus genes. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Design and optimization of reverse-transcription quantitative PCR experiments.

    PubMed

    Tichopad, Ales; Kitchen, Rob; Riedmaier, Irmgard; Becker, Christiane; Ståhlberg, Anders; Kubista, Mikael

    2009-10-01

    Quantitative PCR (qPCR) is a valuable technique for accurately and reliably profiling and quantifying gene expression. Typically, samples obtained from the organism of study have to be processed via several preparative steps before qPCR. We estimated the errors of sample withdrawal and extraction, reverse transcription (RT), and qPCR that are introduced into measurements of mRNA concentrations. We performed hierarchically arranged experiments with 3 animals, 3 samples, 3 RT reactions, and 3 qPCRs and quantified the expression of several genes in solid tissue, blood, cell culture, and single cells. A nested ANOVA design was used to model the experiments, and relative and absolute errors were calculated with this model for each processing level in the hierarchical design. We found that intersubject differences became easily confounded by sample heterogeneity for single cells and solid tissue. In cell cultures and blood, the noise from the RT and qPCR steps contributed substantially to the overall error because the sampling noise was less pronounced. We recommend the use of sample replicates preferentially to any other replicates when working with solid tissue, cell cultures, and single cells, and we recommend the use of RT replicates when working with blood. We show how an optimal sampling plan can be calculated for a limited budget. .

  12. An Analysis of Thaumarchaeota Populations from the Northern Gulf of Mexico

    PubMed Central

    Tolar, Bradley B.; King, Gary M.; Hollibaugh, James T.

    2013-01-01

    We sampled Thaumarchaeota populations in the northern Gulf of Mexico, including shelf waters under the Mississippi River outflow plume that are subject to recurrent hypoxia. Data from this study allowed us to: (1) test the hypothesis that Thaumarchaeota would be abundant in this region; (2) assess phylogenetic composition of these populations for comparison with other regions; (3) compare the efficacy of quantitative PCR (qPCR) based on primers for 16S rRNA genes (rrs) with primers for genes in the ammonia oxidation (amoA) and carbon fixation (accA, hcd) pathways; (4) compare distributions obtained by qPCR with the relative abundance of Thaumarchaeota rrs in pyrosequenced libraries; (5) compare Thaumarchaeota distributions with environmental variables to help us elucidate the factors responsible for the distributions; (6) compare the distribution of Thaumarchaeota with Nitrite-Oxidizing Bacteria (NOB) to gain insight into the coupling between ammonia and nitrite oxidation. We found up to 108 copies L−1 of Thaumarchaeota rrs in our samples (up to 40% of prokaryotes) by qPCR, with maximum abundance in slope waters at 200–800 m. Thaumarchaeota rrs were also abundant in pyrosequenced libraries and their relative abundance correlated well with values determined by qPCR (r2 = 0.82). Thaumarchaeota populations were strongly stratified by depth. Canonical correspondence analysis using a suite of environmental variables explained 92% of the variance in qPCR-estimated gene abundances. Thaumarchaeota rrs abundance was correlated with salinity and depth, while accA abundance correlated with fluorescence and pH. Correlations of Archaeal amoA abundance with environmental variables were primer-dependent, suggesting differential responses of sub-populations to environmental variables. Bacterial amoA was at the limit of qPCR detection in most samples. NOB and Euryarchaeota rrs were found in the pyrosequenced libraries; NOB distribution was correlated with that of Thaumarchaeota (r2 = 0.49). PMID:23577005

  13. pcr: an R package for quality assessment, analysis and testing of qPCR data

    PubMed Central

    Ahmed, Mahmoud

    2018-01-01

    Background Real-time quantitative PCR (qPCR) is a broadly used technique in the biomedical research. Currently, few different analysis models are used to determine the quality of data and to quantify the mRNA level across the experimental conditions. Methods We developed an R package to implement methods for quality assessment, analysis and testing qPCR data for statistical significance. Double Delta CT and standard curve models were implemented to quantify the relative expression of target genes from CT in standard qPCR control-group experiments. In addition, calculation of amplification efficiency and curves from serial dilution qPCR experiments are used to assess the quality of the data. Finally, two-group testing and linear models were used to test for significance of the difference in expression control groups and conditions of interest. Results Using two datasets from qPCR experiments, we applied different quality assessment, analysis and statistical testing in the pcr package and compared the results to the original published articles. The final relative expression values from the different models, as well as the intermediary outputs, were checked against the expected results in the original papers and were found to be accurate and reliable. Conclusion The pcr package provides an intuitive and unified interface for its main functions to allow biologist to perform all necessary steps of qPCR analysis and produce graphs in a uniform way. PMID:29576953

  14. Evaluation of quantitative polymerase chain reaction assays targeting Mycobacterium avium, M. intracellulare, and M. avium subspecies paratuberculosis in drinking water biofilms.

    PubMed

    Chern, Eunice C; King, Dawn; Haugland, Richard; Pfaller, Stacy

    2015-03-01

    Mycobacterium avium (MA), Mycobacterium intracellulare (MI), and Mycobacterium avium subsp. paratuberculosis (MAP) are difficult to culture due to their slow growing nature. A quantitative polymerase chain reaction (qPCR) method for the rapid detection of MA, MI, and MAP can be used to provide data supporting drinking water biofilms as potential sources of human exposure. The aim of this study was to characterize two qPCR assays targeting partial 16S rRNA gene sequences of MA and MI and use these assays, along with two previously reported MAP qPCR assays (IS900 and Target 251), to investigate Mycobacterium occurrence in kitchen faucet biofilms. MA and MI qPCR assays demonstrated 100% specificity and sensitivity when evaluated against 18 non-MA complex, 76 MA, and 17 MI isolates. Both assays detected approximately 1,000 cells from a diluted cell stock inoculated on a sampling swab 100% of the time. DNA analysis by qPCR indicated that 35.3, 56.9 and 11.8% of the 51 kitchen faucet biofilm samples collected contained MA, MI, and MAP, respectively. This study introduces novel qPCR assays designed to specifically detect MA and MI in biofilm. Results support the use of qPCR as an alternative to culture for detection and enumeration of MA, MI, and MAP in microbiologically complex samples.

  15. RNA-seq Analysis of Early Hepatic Response to Handling and Confinement Stress in Rainbow Trout

    PubMed Central

    Liu, Sixin; Gao, Guangtu; Palti, Yniv; Cleveland, Beth M.; Weber, Gregory M.; Rexroad, Caird E.

    2014-01-01

    Fish under intensive rearing conditions experience various stressors which have negative impacts on survival, growth, reproduction and fillet quality. Identifying and characterizing the molecular mechanisms underlying stress responses will facilitate the development of strategies that aim to improve animal welfare and aquaculture production efficiency. In this study, we used RNA-seq to identify transcripts which are differentially expressed in the rainbow trout liver in response to handling and confinement stress. These stressors were selected due to their relevance in aquaculture production. Total RNA was extracted from the livers of individual fish in five tanks having eight fish each, including three tanks of fish subjected to a 3 hour handling and confinement stress and two control tanks. Equal amount of total RNA of six individual fish was pooled by tank to create five RNA-seq libraries which were sequenced in one lane of Illumina HiSeq 2000. Three sequencing runs were conducted to obtain a total of 491,570,566 reads which were mapped onto the previously generated stress reference transcriptome to identify 316 differentially expressed transcripts (DETs). Twenty one DETs were selected for qPCR to validate the RNA-seq approach. The fold changes in gene expression identified by RNA-seq and qPCR were highly correlated (R2 = 0.88). Several gene ontology terms including transcription factor activity and biological process such as glucose metabolic process were enriched among these DETs. Pathways involved in response to handling and confinement stress were implicated by mapping the DETs to reference pathways in the KEGG database. Accession Numbers Raw RNA-seq reads have been submitted to the NCBI Short Read Archive under accession number SRP022881. Customized Perl Scripts All customized scripts described in this paper are available from Dr. Guangtu Gao or the corresponding author. PMID:24558395

  16. Calibration-free assays on standard real-time PCR devices

    PubMed Central

    Debski, Pawel R.; Gewartowski, Kamil; Bajer, Seweryn; Garstecki, Piotr

    2017-01-01

    Quantitative Polymerase Chain Reaction (qPCR) is one of central techniques in molecular biology and important tool in medical diagnostics. While being a golden standard qPCR techniques depend on reference measurements and are susceptible to large errors caused by even small changes of reaction efficiency or conditions that are typically not marked by decreased precision. Digital PCR (dPCR) technologies should alleviate the need for calibration by providing absolute quantitation using binary (yes/no) signals from partitions provided that the basic assumption of amplification a single target molecule into a positive signal is met. Still, the access to digital techniques is limited because they require new instruments. We show an analog-digital method that can be executed on standard (real-time) qPCR devices. It benefits from real-time readout, providing calibration-free assessment. The method combines advantages of qPCR and dPCR and bypasses their drawbacks. The protocols provide for small simplified partitioning that can be fitted within standard well plate format. We demonstrate that with the use of synergistic assay design standard qPCR devices are capable of absolute quantitation when normal qPCR protocols fail to provide accurate estimates. We list practical recipes how to design assays for required parameters, and how to analyze signals to estimate concentration. PMID:28327545

  17. Calibration-free assays on standard real-time PCR devices

    NASA Astrophysics Data System (ADS)

    Debski, Pawel R.; Gewartowski, Kamil; Bajer, Seweryn; Garstecki, Piotr

    2017-03-01

    Quantitative Polymerase Chain Reaction (qPCR) is one of central techniques in molecular biology and important tool in medical diagnostics. While being a golden standard qPCR techniques depend on reference measurements and are susceptible to large errors caused by even small changes of reaction efficiency or conditions that are typically not marked by decreased precision. Digital PCR (dPCR) technologies should alleviate the need for calibration by providing absolute quantitation using binary (yes/no) signals from partitions provided that the basic assumption of amplification a single target molecule into a positive signal is met. Still, the access to digital techniques is limited because they require new instruments. We show an analog-digital method that can be executed on standard (real-time) qPCR devices. It benefits from real-time readout, providing calibration-free assessment. The method combines advantages of qPCR and dPCR and bypasses their drawbacks. The protocols provide for small simplified partitioning that can be fitted within standard well plate format. We demonstrate that with the use of synergistic assay design standard qPCR devices are capable of absolute quantitation when normal qPCR protocols fail to provide accurate estimates. We list practical recipes how to design assays for required parameters, and how to analyze signals to estimate concentration.

  18. Specific metabolic activity of ripening bacteria quantified by real-time reverse transcription PCR throughout Emmental cheese manufacture.

    PubMed

    Falentin, Hélène; Postollec, Florence; Parayre, Sandrine; Henaff, Nadine; Le Bivic, Pierre; Richoux, Romain; Thierry, Anne; Sohier, Danièle

    2010-11-15

    Bacterial communities of fermented foods are usually investigated by culture-dependent methods. Real-time quantitative PCR (qPCR) and reverse transcription (RT)-qPCR offer new possibilities to quantify the populations present and their metabolic activity. The aim of this work was to develop qPCR and RT-qPCR methods to assess the metabolic activity and the stress level of the two species used as ripening cultures in Emmental cheese manufacture, Propionibacterium freudenreichii and Lactobacillus paracasei. Three small scale (1/100) microbiologically controlled Emmental cheeses batches were manufactured and inoculated with Lactobacillus helveticus, Streptococcus thermophilus, P. freudenreichii and L. paracasei. At 12 steps of cheese manufacture and ripening, the populations of P. freudenreichii and L. paracasei were quantified by numerations on agar media and by qPCR. 16S, tuf and groL transcript levels were quantified by RT-qPCR. Sampling was carried out in triplicate. qPCR and RT-qPCR assessments were specific, efficient and linear. The quantification limit was 10(3) copies of cells or cDNA/g of cheese. Cell quantifications obtained by qPCR gave similar results than plate count for P. freudenreichii growth and 0.5 to 1 log lower in the stationary phase. Bacterial counts and qPCR quantifications showed that L. paracasei began to grow during the pressing step while P. freudenreichii began to grow from the beginning of ripening (in the cold room). Tuf cDNA quantification results suggested that metabolic activity of L. paracasei reached a maximum during the first part of the ripening (in cold room) and decreased progressively during ripening (in the warm room). Metabolic activity of P. freudenreichii was maximum at the end of cold ripening room and was stable during the first two weeks in warm room. After lactate exhaustion (after two weeks of warm room), the number of tuf cDNA decreased reflecting reduced metabolic activity. For L. paracasei, groL cDNA were stable during ripening. For P. freudenreichii, groL1 gene was highly-expressed during acidification, while groL2 gene highly expression was only observed at the end of the ripening stage after lactate (carbon substrate of P. freudenreichii) exhaustion. The potential use of 16S and tuf genes for the normalization of cDNA quantification throughout an Emmental cheese manufacture is discussed. For the first time, specific gene expression was performed by RT-qPCR yielding metabolic activity and stress response evaluation for L. paracasei and P. freudenreichii in cheese. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Establishment of a real-time PCR method for quantification of geosmin-producing Streptomyces spp. in recirculating aquaculture systems.

    PubMed

    Auffret, Marc; Pilote, Alexandre; Proulx, Emilie; Proulx, Daniel; Vandenberg, Grant; Villemur, Richard

    2011-12-15

    Geosmin and 2-methylisoborneol (MIB) have been associated with off-flavour problems in fish and seafood products, generating a strong negative impact for aquaculture industries. Although most of the producers of geosmin and MIB have been identified as Streptomyces species or cyanobacteria, Streptomyces spp. are thought to be responsible for the synthesis of these compounds in indoor recirculating aquaculture systems (RAS). The detection of genes involved in the synthesis of geosmin and MIB can be a relevant indicator of the beginning of off-flavour events in RAS. Here, we report a real-time polymerase chain reaction (qPCR) protocol targeting geoA sequences that encode a germacradienol synthase involved in geosmin synthesis. New geoA-related sequences were retrieved from eleven geosmin-producing Actinomycete strains, among them two Streptomyces strains isolated from two RAS. Combined with geoA-related sequences available in gene databases, we designed primers and standards suitable for qPCR assays targeting mainly Streptomyces geoA. Using our qPCR protocol, we succeeded in measuring the level of geoA copies in sand filter and biofilters in two RAS. This study is the first to apply qPCR assays to detect and quantify the geosmin synthesis gene (geoA) in RAS. Quantification of geoA in RAS could permit the monitoring of the level of geosmin producers prior to the occurrence of geosmin production. This information will be most valuable for fish producers to manage further development of off-flavour events. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Development and validation of a citrate synthase directed quantitative PCR marker for soil bacterial communities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castro Gonzalez, Hector F; Classen, Aimee T; Austin, Emily E

    2012-01-01

    Molecular innovations in microbial ecology are allowing scientists to correlate microbial community characteristics to a variety of ecosystem functions. However, to date the majority of soil microbial ecology studies target phylogenetic rRNA markers, while a smaller number target functional markers linked to soil processes. We validated a new primer set targeting citrate synthase (gtlA), a central enzyme in the citric acid cycle linked to aerobic respiration. Primers for a 225 bp fragment suitable for qPCR were tested for specificity and assay performance verified on multiple soils. Clone libraries of the PCR-amplified gtlA gene exhibited high diversity and recovered most majormore » groups identified in a previous 16S rRNA gene study. Comparisons among bacterial communities based on gtlA sequencing using UniFrac revealed differences among the experimental soils studied. Conditions for gtlA qPCR were optimized and calibration curves were highly linear (R2 > 0.99) over six orders of magnitude (4.56 10^5 to 4.56 10^11 copies), with high amplification efficiencies (>1.7). We examined the performance of the gtlA qPCR across a variety of soils and ecosystems, spanning forests, old fields and agricultural areas. We were able to amplify gtlA genes in all tested soils, and detected differences in gtlA abundance within and among environments. These results indicate that a fully developed gtlA-targeted qPCR approach may have potential to link microbial community characteristics with changes in soil respiration.« less

  1. Enumeration of verocytotoxigenic Escherichia coli (VTEC) O157 and O26 in milk by quantitative PCR.

    PubMed

    Mancusi, Rocco; Trevisani, Marcello

    2014-08-01

    Quantitative real-time polymerase chain reaction (qPCR) can be a convenient alternative to the Most Probable Number (MPN) methods to count VTEC in milk. The number of VTEC is normally very low in milk; therefore with the aim of increasing the method sensitivity a qPCR protocol that relies on preliminary enrichment was developed. The growth pattern of six VTEC strains (serogroups O157 and O26) was studied using enrichment in Buffered Peptone Water (BPW) with or without acriflavine for 4-24h. Milk samples were inoculated with these strains over a five Log concentration range between 0.24-0.50 and 4.24-4.50 Log CFU/ml. DNA was extracted from the enriched samples in duplicate and each extract was analysed in duplicate by qPCR using pairs of primers specific for the serogroups O157 and O26. When samples were pre-enriched in BPW at 37°C for 8h, the relationship between threshold cycles (CT values) and VTEC Log numbers was linear over a five Log concentration range. The regression of PCR threshold cycle numbers on VTEC Log CFU/ml had a slope coefficient equal to -3.10 (R(2)=0.96) which is indicative of a 10-fold difference of the gene copy numbers between samples (with a 100 ± 10% PCR efficiency). The same 10-fold proportion used for inoculating the milk samples with VTEC was observed, therefore, also in the enriched samples at 8h. A comparison of the CT values of milk samples and controls revealed that the strains inoculated in milk grew with 3 Log increments in the 8h enrichment period. Regression lines that fitted the qPCR and MPN data revealed that the error of the qPCR estimates is lower than the error of the estimated MPN (r=0.982, R(2)=0.965 vs. r=0.967, R(2)=0.935). The growth rates of VTEC strains isolated from milk should be comparatively assessed before qPCR estimates based on the regression model are considered valid. Comparative assessment of the growth rates can be done using spectrophotometric measurements of standardized cultures of isolates and reference strains cultured in BPW at 37°C for 8h. The method developed for the serogroups O157 and O26 can be easily adapted to the other VTEC serogroups that are relevant for human health. The qPCR method is less laborious and faster than the standard MPN method and has been shown to be a good technique for quantifying VTEC in milk. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Gene expression ratio stability evaluation in prepubertal bovine mammary tissue from calves fed different milk replacers reveals novel internal controls for quantitative polymerase chain reaction.

    PubMed

    Piantoni, Paola; Bionaz, Massimo; Graugnard, Daniel E; Daniels, Kristy M; Akers, R Michael; Loor, Juan J

    2008-06-01

    Prepubertal mammary development can be affected by nutrition partly through alterations in gene network expression. Quantitative PCR (qPCR) remains the most accurate method to measure mRNA expression but is subject to analytical errors that introduce variation. Thus, qPCR data normalization through the use of internal control genes (ICG) is required. The objective of this study was to mine microarray data (> 10,000 genes) from prepubertal mammary parenchyma and stroma to identify the most suitable ICG for normalization of qPCR. Tissue for RNA extraction was obtained from calves ( approximately 63 d old; n = 5/diet) fed a control (200 g/kg crude protein, 210 g/kg crude fat, fed at 441 g/d dry matter) or a high-protein milk replacer (280 g/kg crude protein, 200 g/kg crude fat, fed at 951 g/d dry matter). ICG were selected based on both absence of expression variation across treatment and of coregulation (gene network analysis). Genes evaluated were ubiquitously expressed transcript, protein phosphatase 1 regulatory (inhibitor) subunit 11 (PPP1R11), matrix metallopeptidase 14 (MMP14), ClpB caseinolytic peptidase B, SAPS domain family member 1 (SAPS1), mitochondrial GTPase 1 (MTG1), mitochondrial ribosomal protein L39, ribosomal protein S15a (RPS15A), and actin beta (ACTB). Network analysis demonstrated that MMP14 and ACTB are coregulated by v-myc myelocytomatosis viral oncogene, tumor protein p53, and potentially insulin-like growth factor 1. Pairwise comparison of expression ratios showed that ACTB, MMP14, and SAPS1 had the lowest stability and were unsuitable as ICG. PPP1R11, RPS15A, and MTG1 were the most stable among ICG tested. We conclude that the geometric mean of PPP1R11, RPS15A, and MTG1 is ideal for normalization of qPCR data in prepubertal bovine mammary tissue. This study provides a list of candidate ICG that could be used by researchers working in bovine mammary development and allied fields.

  3. Volume dependency for culture of fungi from respiratory secretions and increased sensitivity of Aspergillus quantitative PCR.

    PubMed

    Fraczek, Marcin G; Kirwan, Marie B; Moore, Caroline B; Morris, Julie; Denning, David W; Richardson, Malcolm D

    2014-02-01

    Diagnosis of aspergillosis is often difficult. We compared fungal yields from respiratory specimens using the Health Protection Agency standard culture method (BSOP57), a higher volume undiluted culture method Mycology Reference Centre Manchester (MRCM) and Aspergillus quantitative real time polymerase chain reaction (qPCR). Sputum, bronchial aspirate and bronchoalveolar lavage (BAL) samples (total 23) were collected from aspergillosis patients. One fraction of all samples was cultured using the MRCM method, one BSOP57 and one was used for qPCR. The recovery rate for fungi was significantly higher by MRCM (87%) than by BSOP57 (8.7%) from all 23 specimens. Sputum samples were 44% positive by MRCM compared to no fungi isolated (0%) by BSOP57. Bronchial aspirates were 75% positive by MRCM and 0% by BSOP57. BAL samples were positive in 20% by MRCM and 10% by BSOP57. qPCR was always more sensitive than culture (95.6%) from all samples. In general, over 100 mould colonies (81 Aspergillus fumigatus) were grown using the MRCM method compared with only one colony from BSOP57. This study provides a reference point for standardisation of respiratory sample processing in diagnostic laboratories. Culture from higher volume undiluted respiratory specimens has a much higher yield for Aspergillus than BSOP57. qPCR is much more sensitive than culture and the current UK method requires revision. © 2013 Blackwell Verlag GmbH.

  4. Comparison of quantitative PCR assays for Escherichia coli targeting ribosomal RNA and single copy genes

    EPA Science Inventory

    Aims: Compare specificity and sensitivity of quantitative PCR (qPCR) assays targeting single and multi-copy gene regions of Escherichia coli. Methods and Results: A previously reported assay targeting the uidA gene (uidA405) was used as the basis for comparing the taxono...

  5. Validation of high-throughput single cell analysis methodology.

    PubMed

    Devonshire, Alison S; Baradez, Marc-Olivier; Morley, Gary; Marshall, Damian; Foy, Carole A

    2014-05-01

    High-throughput quantitative polymerase chain reaction (qPCR) approaches enable profiling of multiple genes in single cells, bringing new insights to complex biological processes and offering opportunities for single cell-based monitoring of cancer cells and stem cell-based therapies. However, workflows with well-defined sources of variation are required for clinical diagnostics and testing of tissue-engineered products. In a study of neural stem cell lines, we investigated the performance of lysis, reverse transcription (RT), preamplification (PA), and nanofluidic qPCR steps at the single cell level in terms of efficiency, precision, and limit of detection. We compared protocols using a separate lysis buffer with cell capture directly in RT-PA reagent. The two methods were found to have similar lysis efficiencies, whereas the direct RT-PA approach showed improved precision. Digital PCR was used to relate preamplified template copy numbers to Cq values and reveal where low-quality signals may affect the analysis. We investigated the impact of calibration and data normalization strategies as a means of minimizing the impact of inter-experimental variation on gene expression values and found that both approaches can improve data comparability. This study provides validation and guidance for the application of high-throughput qPCR workflows for gene expression profiling of single cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Sources of Blood Meals of Sylvatic Triatoma guasayana near Zurima, Bolivia, Assayed with qPCR and 12S Cloning

    PubMed Central

    Lucero, David E.; Ribera, Wilma; Pizarro, Juan Carlos; Plaza, Carlos; Gordon, Levi W.; Peña, Reynaldo; Morrissey, Leslie A.; Rizzo, Donna M.; Stevens, Lori

    2014-01-01

    Background In this study we compared the utility of two molecular biology techniques, cloning of the mitochondrial 12S ribosomal RNA gene and hydrolysis probe-based qPCR, to identify blood meal sources of sylvatic Chagas disease insect vectors collected with live-bait mouse traps (also known as Noireau traps). Fourteen T. guasayana were collected from six georeferenced trap locations in the Andean highlands of the department of Chuquisaca, Bolivia. Methodology/Principal Findings We detected four blood meals sources with the cloning assay: seven samples were positive for human (Homo sapiens), five for chicken (Gallus gallus) and unicolored blackbird (Agelasticus cyanopus), and one for opossum (Monodelphis domestica). Using the qPCR assay we detected chicken (13 vectors), and human (14 vectors) blood meals as well as an additional blood meal source, Canis sp. (4 vectors). Conclusions/Significance We show that cloning of 12S PCR products, which avoids bias associated with developing primers based on a priori knowledge, detected blood meal sources not previously considered and that species-specific qPCR is more sensitive. All samples identified as positive for a specific blood meal source by the cloning assay were also positive by qPCR. However, not all samples positive by qPCR were positive by cloning. We show the power of combining the cloning assay with the highly sensitive hydrolysis probe-based qPCR assay provides a more complete picture of blood meal sources for insect disease vectors. PMID:25474154

  7. Detection of nucleophosmin 1 mutations by quantitative real-time polymerase chain reaction versus capillary electrophoresis: a comparative study.

    PubMed

    Barakat, Fareed H; Luthra, Rajyalakshmi; Yin, C Cameron; Barkoh, Bedia A; Hai, Seema; Jamil, Waqar; Bhakta, Yaminiben I; Chen, Su; Medeiros, L Jeffrey; Zuo, Zhuang

    2011-08-01

    Nucleophosmin 1 (NPM1) is the most commonly mutated gene in acute myeloid leukemia. Detection of NPM1 mutations is useful for stratifying patients for therapy, predicting prognosis, and assessing for minimal residual disease. Several methods have been developed to rapidly detect NPM1 mutations in genomic DNA and/or messenger RNA specimens. To directly compare a quantitative real-time polymerase chain reaction (qPCR) assay with a widely used capillary electrophoresis assay for detecting NPM1 mutations. We adopted and modified a qPCR assay designed to detect the 6 most common NPM1 mutations and performed the assay in parallel with capillary electrophoresis assay in 207 bone marrow aspirate or peripheral blood samples from patients with a range of hematolymphoid neoplasms. The qPCR assay demonstrated a higher analytical sensitivity than the capillary electrophoresis 1/1000 versus 1/40, respectively. The capillary electrophoresis assay generated 10 equivocal results that needed to be repeated, whereas the qPCR assay generated only 1 equivocal result. After test conditions were optimized, the qPCR and capillary electrophoresis methods produced 100% concordant results, 85 positive and 122 negative. Given the higher analytical sensitivity and specificity of the qPCR assay, that assay is less likely to generate equivocal results than the capillary electrophoresis assay. Moreover, the qPCR assay is quantitative, faster, cheaper, less prone to contamination, and well suited for monitoring minimal residual disease.

  8. Brazilian spotted fever: real-time PCR for diagnosis of fatal cases.

    PubMed

    dos Santos, Fabiana Cristina Pereira; do Nascimento, Elvira Maria Mendes; Katz, Gizelda; Angerami, Rodrigo Nogueira; Colombo, Silvia; de Souza, Eliana Rodrigues; Labruna, Marcelo Bahia; da Silva, Marcos Vinicius

    2012-12-01

    Suspicion of Brazilian spotted fever (BSF) should occur in endemic regions upon surveillance of the acute febrile icteric hemorrhagic syndrome (AFIHS). However, limitations associated with currently available laboratory tests pose a challenge to early diagnosis, especially in fatal cases. Two real-time PCR (qPCR) protocols were evaluated to diagnose BSF in 110 fatal AFIHS cases, collected in BSF-endemic regions in 2009-2010. Of these, 24 were positive and 86 negative by indirect immunofluorescence (IFA) assay (cut-off IgG and/or IgM ≥ 128). DNA from these samples was used in the qPCR protocols: one to detect Rickettsia spp. (citrate synthase gene) and another to determine spotted fever group (SFG) Rickettsia species (OmpA gene). Of the 24 IFA-positive samples, 5 (21%) were positive for OmpA and 9 (38%) for citrate synthase. In the IFA-negative group (n=86), OmpA and citrate synthase were positive in 23 (27%) and 27 (31%), respectively. These results showed that the 2 qPCR protocols were about twice as sensitive as the IFA test alone (93% concordance). In conclusion, qPCR is a sensitive method for the diagnosis of fatal BSF cases and should be considered for routine surveillance of AFIHS in places like Brazil, where spotted fever-related lethality is high and other endemic diseases like dengue and leptospirosis can mislead diagnosis. Copyright © 2012 Elsevier GmbH. All rights reserved.

  9. Quantitative DNA Analyses for Airborne Birch Pollen

    PubMed Central

    Müller-Germann, Isabell; Vogel, Bernhard; Vogel, Heike; Pauling, Andreas; Fröhlich-Nowoisky, Janine; Pöschl, Ulrich; Després, Viviane R.

    2015-01-01

    Birch trees produce large amounts of highly allergenic pollen grains that are distributed by wind and impact human health by causing seasonal hay fever, pollen-related asthma, and other allergic diseases. Traditionally, pollen forecasts are based on conventional microscopic counting techniques that are labor-intensive and limited in the reliable identification of species. Molecular biological techniques provide an alternative approach that is less labor-intensive and enables identification of any species by its genetic fingerprint. A particularly promising method is quantitative Real-Time polymerase chain reaction (qPCR), which can be used to determine the number of DNA copies and thus pollen grains in air filter samples. During the birch pollination season in 2010 in Mainz, Germany, we collected air filter samples of fine (<3 μm) and coarse air particulate matter. These were analyzed by qPCR using two different primer pairs: one for a single-copy gene (BP8) and the other for a multi-copy gene (ITS). The BP8 gene was better suitable for reliable qPCR results, and the qPCR results obtained for coarse particulate matter were well correlated with the birch pollen forecasting results of the regional air quality model COSMO-ART. As expected due to the size of birch pollen grains (~23 μm), the concentration of DNA in fine particulate matter was lower than in the coarse particle fraction. For the ITS region the factor was 64, while for the single-copy gene BP8 only 51. The possible presence of so-called sub-pollen particles in the fine particle fraction is, however, interesting even in low concentrations. These particles are known to be highly allergenic, reach deep into airways and cause often severe health problems. In conclusion, the results of this exploratory study open up the possibility of predicting and quantifying the pollen concentration in the atmosphere more precisely in the future. PMID:26492534

  10. Genes indicative of zoonotic and swine pathogens are persistent in stream water and sediment following a swine manure spill

    USGS Publications Warehouse

    Haack, Sheridan K.; Duris, Joseph W.; Kolpin, Dana W.; Fogarty, Lisa R.; Johnson, Heather E.; Gibson, Kristen E.; Focazio, Michael J.; Schwab, Kellogg J.; Hubbard, Laura E.; Foreman, William T.

    2015-01-01

    Manure spills to streams are relatively frequent, but no studies have characterized stream contamination with zoonotic and veterinary pathogens, or fecal chemicals, following a spill. We tested stream water and sediment over 25 days and downstream for 7.6 km for: fecal indicator bacteria (FIB); the fecal indicator chemicals cholesterol and coprostanol; 20 genes for zoonotic and swine-specific bacterial pathogens by presence/absence polymerase chain reaction (PCR) for viable cells; one swine-specific Escherichia coli toxin gene (STII) by quantitative PCR (qPCR); and nine human and animal viruses by qPCR, or reverse-transcriptase qPCR. Twelve days post-spill, and 4.2 km downstream, water concentrations of FIB, cholesterol, and coprostanol were 1-2 orders of magnitude greater than those detected before, or above, the spill, and genes indicating viable zoonotic or swine-infectious Escherichia coli, were detected in water or sediment. STII increased from undetectable before, or above the spill, to 105 copies/100 mL water 12 days post-spill. Thirteen of 14 water (8/9 sediment) samples had viable STII-carrying cells post-spill. Eighteen days post-spill porcine adenovirus and teschovirus were detected 5.6 km downstream. Sediment FIB concentrations (per gram wet weight) were greater than in water, and sediment was a continuous reservoir of genes and chemicals post-spill. Constituent concentrations were much lower, and detections less frequent, in a runoff event (200 days post-spill) following manure application, although the swine-associated STII and stx2e genes were detected. Manure spills are an underappreciated pathway for livestock-derived contaminants to enter streams, with persistent environmental outcomes, and the potential for human and veterinary health consequences.

  11. Quantification of Microbial Communities in Subsurface Marine Sediments of the Black Sea and off Namibia.

    PubMed

    Schippers, Axel; Kock, Dagmar; Höft, Carmen; Köweker, Gerrit; Siegert, Michael

    2012-01-01

    Organic-rich subsurface marine sediments were taken by gravity coring up to a depth of 10 m below seafloor at six stations from the anoxic Black Sea and the Benguela upwelling system off Namibia during the research cruises Meteor 72-5 and 76-1, respectively. The quantitative microbial community composition at various sediment depths was analyzed using total cell counting, catalyzed reporter deposition - fluorescence in situ hybridization (CARD-FISH) and quantitative real-time PCR (Q-PCR). Total cell counts decreased with depths from 10(9) to 10(10) cells/mL at the sediment surface to 10(7)-10(9) cells/mL below one meter depth. Based on CARD-FISH and Q-PCR analyses overall similar proportions of Bacteria and Archaea were found. The down-core distribution of prokaryotic and eukaryotic small subunit ribosomal RNA genes (16S and 18S rRNA) as well as functional genes involved in different biogeochemical processes was quantified using Q-PCR. Crenarchaeota and the bacterial candidate division JS-1 as well as the classes Anaerolineae and Caldilineae of the phylum Chloroflexi were highly abundant. Less abundant but detectable in most of the samples were Eukarya as well as the metal and sulfate-reducing Geobacteraceae (only in the Benguela upwelling influenced sediments). The functional genes cbbL, encoding for the large subunit of RuBisCO, the genes dsrA and aprA, indicative of sulfate-reducers as well as the mcrA gene of methanogens were detected in the Benguela upwelling and Black Sea sediments. Overall, the high organic carbon content of the sediments goes along with high cell counts and high gene copy numbers, as well as an equal abundance of Bacteria and Archaea.

  12. Development of a real-time quantitative PCR assay to enumerate Yersinia pestis in fleas.

    PubMed

    Gabitzsch, Elizabeth S; Vera-Tudela, Rommelle; Eisen, Rebecca J; Bearden, Scott W; Gage, Kenneth L; Zeidner, Nordin S

    2008-07-01

    A real-time quantitative polymerase chain reaction (qPCR) assay was developed for Yersina pestis. The qPCR assay was developed utilizing a conserved region of the Y. pestis ferric iron uptake regulator gene (fur) to design primers and a fluorescent (FAM-labeled) TaqMan probe. The assay was optimized using cultured Y. pestis (UG05-0454) and was confirmed to work with strains from 3 Y. pestis biovars. The optimized assay was capable of detecting a single organism of cultured Y. pestis and as little as 300 bacteria in infected flea triturates. This qPCR assay enables rapid enumeration of Y. pestis bacterium in laboratory-infected fleas when compared with conventional serial dilution plating.

  13. An Improved Quantitative Real-Time PCR Assay for the Enumeration of Heterosigma akashiwo (Raphidophyceae) Cysts Using a DNA Debris Removal Method and a Cyst-Based Standard Curve.

    PubMed

    Kim, Joo-Hwan; Kim, Jin Ho; Wang, Pengbin; Park, Bum Soo; Han, Myung-Soo

    2016-01-01

    The identification and quantification of Heterosigma akashiwo cysts in sediments by light microscopy can be difficult due to the small size and morphology of the cysts, which are often indistinguishable from those of other types of algae. Quantitative real-time PCR (qPCR) based assays represent a potentially efficient method for quantifying the abundance of H. akashiwo cysts, although standard curves must be based on cyst DNA rather than on vegetative cell DNA due to differences in gene copy number and DNA extraction yield between these two cell types. Furthermore, qPCR on sediment samples can be complicated by the presence of extracellular DNA debris. To solve these problems, we constructed a cyst-based standard curve and developed a simple method for removing DNA debris from sediment samples. This cyst-based standard curve was compared with a standard curve based on vegetative cells, as vegetative cells may have twice the gene copy number of cysts. To remove DNA debris from the sediment, we developed a simple method involving dilution with distilled water and heating at 75°C. A total of 18 sediment samples were used to evaluate this method. Cyst abundance determined using the qPCR assay without DNA debris removal yielded results up to 51-fold greater than with direct counting. By contrast, a highly significant correlation was observed between cyst abundance determined by direct counting and the qPCR assay in conjunction with DNA debris removal (r2 = 0.72, slope = 1.07, p < 0.001). Therefore, this improved qPCR method should be a powerful tool for the accurate quantification of H. akashiwo cysts in sediment samples.

  14. Interlaboratory and between-specimen comparisons of diagnostic tests for leptospirosis in sheep and cattle.

    PubMed

    Fang, Fang; Collins-Emerson, Julie M; Heuer, Cord; Hill, Fraser I; Tisdall, David J; Wilson, Peter R; Benschop, Jackie

    2014-11-01

    A study was performed to investigate interlaboratory test agreement between a research and a commercial veterinary diagnostic laboratory on blood and urine samples, and to investigate test agreement between blood, urine, and kidney samples (research laboratory) for leptospirosis diagnosis. Samples were sourced from 399 sheep and 146 beef cattle from a local abattoir. Interlaboratory agreement for real-time quantitative polymerase chain reaction (qPCR) results on urine samples was almost perfect (kappa = 0.90), despite the use of different amplification targets (DNA gyrase subunit B gene vs. 16s ribosomal RNA gene), chemistries (SYTO9 vs. TaqMan probe), and pre-PCR processing. Interlaboratory agreement for microscopic agglutination test (MAT) positivity was almost perfect (kappa = 0.93) for Leptospira borgpetersenii serovar Hardjo subtype Hardjobovis (Hardjobovis) but moderate (kappa = 0.53) for Leptospira interrogans serovar Pomona (Pomona). Among animals that had different titers recorded, higher Hardjobovis and lower Pomona titers were reported by the commercial laboratory than by the research laboratory (P < 0.005). These interlaboratory comparisons can assist researchers and diagnosticians in interpreting the sometimes discrepant test results. Within the research laboratory, the comparison of qPCR results on urine and kidney showed almost perfect agreement (kappa = 0.84), suggesting that the qPCR on these 2 specimens can be used interchangeably. The agreement between MAT positivity and urine and kidney qPCR results was fair (kappa = 0.32 and kappa = 0.33, respectively). However, the prevalence ratio of urine and kidney qPCR positivity in Hardjobovis-seropositive versus Hardjobovis-seronegative sheep indicated that Hardjobovis seropositivity found in sheep may be able to predict shedding or renal carriage. © 2014 The Author(s).

  15. Assessment of reference gene stability influenced by extremely divergent disease symptoms in Solanum lycopersicum L.

    PubMed

    Wieczorek, Przemysław; Wrzesińska, Barbara; Obrępalska-Stęplowska, Aleksandra

    2013-12-01

    Tomato (Solanum lycopersicum L.) is one of the most important vegetables of great worldwide economic value. The scientific importance of the vegetable results from the fact that the genome of S. lycopersicum has been sequenced. This allows researchers to study fundamental mechanisms playing an essential role during tomato development and response to environmental factors contributing significantly to cell metabolism alterations. Parallel with the development of contemporary genetics and the constant increase in sequencing data, progress has to be aligned with improvement of experimental methods used for studying genes functions and gene expression levels, of which the quantitative polymerase chain reaction (qPCR) is still the most reliable. As well as with other nucleic acid-based methods used for comparison of the abundance of specific RNAs, the RT-qPCR data have to be normalised to the levels of RNAs represented stably in a cell. To achieve the goal, the so-called housekeeping genes (i.e., RNAs encoding, for instance, proteins playing an important role in the cell metabolism or structure maintenance), are used for normalisation of the target gene expression data. However, a number of studies have indicated the transcriptional instability of commonly used reference genes analysed in different situations or conditions; for instance, the origin of cells, tissue types, or environmental or other experimental conditions. The expression of ten common housekeeping genes of S. lycopersicum, namely EF1α, TUB, CAC, EXP, RPL8, GAPDH, TBP, ACT, SAND and 18S rRNA were examined during viral infections of tomato. Changes in the expression levels of the genes were estimated by comparison of the non-inoculated tomato plants with those infected with commonly known tomato viral pathogens, Tomato torrado virus, Cucumber mosaic virus, Tobacco mosaic virus and Pepino mosaic virus, inducing a diverse range of disease symptoms on the common host, ranging from mild leaves chlorosis to very severe stem necrosis. It is emphasised that despite the wide range of diverse disease symptoms it is concluded that ACT, CAC and EF1α could be used as the most suitable reference genes in studies of host-virus interactions in tomato. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. A 10-Year Retrospective Comparison of Two Target Sequences, REP-529 and B1, for Toxoplasma gondii Detection by Quantitative PCR

    PubMed Central

    Belaz, Sorya; Gangneux, Jean-Pierre; Dupretz, Peggy; Guiguen, Claude

    2015-01-01

    This study aimed to evaluate the repeated sequence REP-529 compared to that of the B1 gene in the molecular diagnosis of toxoplasmosis by quantitative PCR (qPCR) in routine diagnosis. Over a 10-year period (2003 to 2013), all patients prospectively diagnosed with a positive REP-529 qPCR result for toxoplasmosis were included. All DNA samples (76 samples from 56 patients) were simultaneously tested using the two qPCR methods (REP-529 and B1). The mean cycle threshold (CT) obtained with the B1 qPCR was significantly higher (+4.71 cycles) than that obtained with REP-529 qPCR (P < 0.0001). Thirty-one out of 69 extracts (45.6%) positive with REP-529 qPCR were not amplified with the B1 qPCR (relative sensitivity of 54.4% compared to that with REP-529), yielding false-negative results with 15/28 placenta, 5 cord blood, 2 amniotic fluid, 4 cerebrospinal fluid, 1 aqueous humor, 2 lymph node puncture, and 1 abortion product sample. This defect in sensitivity would have left 20/56 patients undiagnosed, distributed as follows: 12/40 congenital toxoplasmosis, 4/5 cerebral toxoplasmosis, 2/8 patients with retinochoroiditis, and 2 patients with chronic lymphadenopathy. This poor performance of B1 qPCR might be related to low parasite loads, since the mean Toxoplasma quantification in extracts with B1 false-negative results was 0.4 parasite/reaction. These results clearly show the superiority of the REP-529 sequence in the diagnosis of toxoplasmosis by PCR and suggest that this target should be adopted as part of the standardization of the PCR assay. PMID:25653416

  17. A 10-year retrospective comparison of two target sequences, REP-529 and B1, for Toxoplasma gondii detection by quantitative PCR.

    PubMed

    Belaz, Sorya; Gangneux, Jean-Pierre; Dupretz, Peggy; Guiguen, Claude; Robert-Gangneux, Florence

    2015-04-01

    This study aimed to evaluate the repeated sequence REP-529 compared to that of the B1 gene in the molecular diagnosis of toxoplasmosis by quantitative PCR (qPCR) in routine diagnosis. Over a 10-year period (2003 to 2013), all patients prospectively diagnosed with a positive REP-529 qPCR result for toxoplasmosis were included. All DNA samples (76 samples from 56 patients) were simultaneously tested using the two qPCR methods (REP-529 and B1). The mean cycle threshold (CT) obtained with the B1 qPCR was significantly higher (+4.71 cycles) than that obtained with REP-529 qPCR (P<0.0001). Thirty-one out of 69 extracts (45.6%) positive with REP-529 qPCR were not amplified with the B1 qPCR (relative sensitivity of 54.4% compared to that with REP-529), yielding false-negative results with 15/28 placenta, 5 cord blood, 2 amniotic fluid, 4 cerebrospinal fluid, 1 aqueous humor, 2 lymph node puncture, and 1 abortion product sample. This defect in sensitivity would have left 20/56 patients undiagnosed, distributed as follows: 12/40 congenital toxoplasmosis, 4/5 cerebral toxoplasmosis, 2/8 patients with retinochoroiditis, and 2 patients with chronic lymphadenopathy. This poor performance of B1 qPCR might be related to low parasite loads, since the mean Toxoplasma quantification in extracts with B1 false-negative results was 0.4 parasite/reaction. These results clearly show the superiority of the REP-529 sequence in the diagnosis of toxoplasmosis by PCR and suggest that this target should be adopted as part of the standardization of the PCR assay. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. Comparison of nested PCR and qPCR for the detection and quantitation of BoHV6 DNA.

    PubMed

    Kubiś, Piotr; Materniak, Magdalena; Kuźmak, Jacek

    2013-12-01

    Nested PCR and qPCR (quantitative PCR) tests based on glycoprotein B (gB) gene were designed for detecting Bovine herpesvirus 6 (BoHV6) in bovine whole blood samples and wild ruminant blood clots (deer and roe-deer). This virus, commonly known as BLHV (bovine lymphotropic herpesvirus) belongs to the Herpesviridae family, subfamily Gammaherpesvirinae and Macavirus genus. DNA isolated from 92 dairy cow blood samples and 69 wild ruminant clots were examined for the presence of BoHV6 using nested PCR and qPCR tests. Viral DNA was detected by using nested PCR in 59 out of 92 bovine blood samples (64.1%), and by qPCR in 68 out of 92 bovine blood samples (73.9%), but none out of 69 DNA samples isolated from wild ruminant blood clots, was positive in both assays. The specificity of nested PCR and qPCR was confirmed by using BoHV1, BoHV4, BoHV6, BFV, BIV, and BLV DNA. The sensitivity of nested PCR and qPCR was determined using a serially 10-fold diluted vector pCR2.1HgB (2 × 10(0)-2 × 10(6)copies/reaction). In this testing, qPCR was more sensitive than the nested PCR, detecting two copies of BoHV6 whilst the limit of detection for nested PCR was 20 copies. In all qPCR assays, the coefficients of determination (R(2)) ranged between 0.990 and 0.999, and the calculated amplification efficiencies (Eff%) within the range of 89.7-106.9. The intra- and inter-assay CV (coefficient of variation) values did not exceed 4%. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Aberrant Expression of Xist in Aborted Porcine Fetuses Derived from Somatic Cell Nuclear Transfer Embryos

    PubMed Central

    Yuan, Lin; Wang, Anfeng; Yao, Chaogang; Huang, Yongye; Duan, Feifei; Lv, Qinyan; Wang, Dongxu; Ouyang, Hongsheng; Li, Zhanjun; Lai, Liangxue

    2014-01-01

    Cloned pigs generated by somatic cell nuclear transfer (SCNT) show a greater ratio of early abortion during mid-gestation than normal controls. X-linked genes have been demonstrated to be important for the development of cloned embryos. To determine the relationship between the expression of X-linked genes and abortion of cloned porcine fetuses, the expression of X-linked genes were investigated by quantitative real-time polymerase chain reaction (q-PCR) and the methylation status of Xist DMR was performed by bisulfate-specific PCR (BSP). q-PCR analysis indicated that there was aberrant expression of X-linked genes, especially the upregulated expression of Xist in both female and male aborted fetuses compared to control fetuses. Results of BSP suggested that hypomethylation of Xist occurred in aborted fetuses, whether male or female. These results suggest that the abnormal expression of Xist may be associated with the abortion of fetuses derived from somatic cell nuclear transfer embryos. PMID:25429426

  20. Is qPCR a Reliable Indicator of Cyanotoxin Risk in Freshwater?

    PubMed Central

    Pacheco, Ana Beatriz F.; Guedes, Iame A.; Azevedo, Sandra M.F.O.

    2016-01-01

    The wide distribution of cyanobacteria in aquatic environments leads to the risk of water contamination by cyanotoxins, which generate environmental and public health issues. Measurements of cell densities or pigment contents allow both the early detection of cellular growth and bloom monitoring, but these methods are not sufficiently accurate to predict actual cyanobacterial risk. To quantify cyanotoxins, analytical methods are considered the gold standards, but they are laborious, expensive, time-consuming and available in a limited number of laboratories. In cyanobacterial species with toxic potential, cyanotoxin production is restricted to some strains, and blooms can contain varying proportions of both toxic and non-toxic cells, which are morphologically indistinguishable. The sequencing of cyanobacterial genomes led to the description of gene clusters responsible for cyanotoxin production, which paved the way for the use of these genes as targets for PCR and then quantitative PCR (qPCR). Thus, the quantification of cyanotoxin genes appeared as a new method for estimating the potential toxicity of blooms. This raises a question concerning whether qPCR-based methods would be a reliable indicator of toxin concentration in the environment. Here, we review studies that report the parallel detection of microcystin genes and microcystin concentrations in natural populations and also a smaller number of studies dedicated to cylindrospermopsin and saxitoxin. We discuss the possible issues associated with the contradictory findings reported to date, present methodological limitations and consider the use of qPCR as an indicator of cyanotoxin risk. PMID:27338471

  1. Development and optimization of an efficient qPCR system for olive authentication in edible oils.

    PubMed

    Alonso-Rebollo, Alba; Ramos-Gómez, Sonia; Busto, María D; Ortega, Natividad

    2017-10-01

    The applicability of qPCR in olive-oil authentication depends on the DNA obtained from the oils and the amplification primers. Therefore, four olive-specific amplification systems based on the trnL gene were designed (A-, B-, C- and D-trnL systems). The qPCR conditions, primer concentration and annealing temperature, were optimized. The systems were tested for efficiency and sensitivity to select the most suitable for olive oil authentication. The selected system (D-trnL) demonstrated specificity toward olive in contrast to other oleaginous species (canola, soybean, sunflower, maize, peanut and coconut) and showed high sensitivity in a broad linear dynamic range (LOD and LOQ: 500ng - 0.0625pg). This qPCR system enabled detection, with high sensitivity and specificity, of olive DNA isolated from oils processed in different ways, establishing it as an efficient method for the authentication of olive oil regardless of its category. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Identification, Expression Analysis, and Target Prediction of Flax Genotroph MicroRNAs Under Normal and Nutrient Stress Conditions

    PubMed Central

    Melnikova, Nataliya V.; Dmitriev, Alexey A.; Belenikin, Maxim S.; Koroban, Nadezhda V.; Speranskaya, Anna S.; Krinitsina, Anastasia A.; Krasnov, George S.; Lakunina, Valentina A.; Snezhkina, Anastasiya V.; Sadritdinova, Asiya F.; Kishlyan, Natalya V.; Rozhmina, Tatiana A.; Klimina, Kseniya M.; Amosova, Alexandra V.; Zelenin, Alexander V.; Muravenko, Olga V.; Bolsheva, Nadezhda L.; Kudryavtseva, Anna V.

    2016-01-01

    Cultivated flax (Linum usitatissimum L.) is an important plant valuable for industry. Some flax lines can undergo heritable phenotypic and genotypic changes (LIS-1 insertion being the most common) in response to nutrient stress and are called plastic lines. Offspring of plastic lines, which stably inherit the changes, are called genotrophs. MicroRNAs (miRNAs) are involved in a crucial regulatory mechanism of gene expression. They have previously been assumed to take part in nutrient stress response and can, therefore, participate in genotroph formation. In the present study, we performed high-throughput sequencing of small RNAs (sRNAs) extracted from flax plants grown under normal, phosphate deficient and nutrient excess conditions to identify miRNAs and evaluate their expression. Our analysis revealed expression of 96 conserved miRNAs from 21 families in flax. Moreover, 475 novel potential miRNAs were identified for the first time, and their targets were predicted. However, none of the identified miRNAs were transcribed from LIS-1. Expression of seven miRNAs (miR168, miR169, miR395, miR398, miR399, miR408, and lus-miR-N1) with up- or down-regulation under nutrient stress (on the basis of high-throughput sequencing data) was evaluated on extended sampling using qPCR. Reference gene search identified ETIF3H and ETIF3E genes as most suitable for this purpose. Down-regulation of novel potential lus-miR-N1 and up-regulation of conserved miR399 were revealed under the phosphate deficient conditions. In addition, the negative correlation of expression of lus-miR-N1 and its predicted target, ubiquitin-activating enzyme E1 gene, as well as, miR399 and its predicted target, ubiquitin-conjugating enzyme E2 gene, was observed. Thus, in our study, miRNAs expressed in flax plastic lines and genotrophs were identified and their expression and expression of their targets was evaluated using high-throughput sequencing and qPCR for the first time. These data provide new insights into nutrient stress response regulation in plastic flax cultivars. PMID:27092149

  3. Latent class analysis of real time qPCR and bacteriological culturing for the diagnosis of Streptococcus agalactiae in cow composite milk samples.

    PubMed

    Holmøy, Ingrid H; Toft, Nils; Jørgensen, Hannah J; Mørk, Tormod; Sølverød, Liv; Nødtvedt, Ane

    2018-06-01

    Streptococcus agalactiae (S. agalactiae) has re-emerged as a mastitis pathogen among Norwegian dairy cows. The Norwegian cattle health services recommend that infected herds implement measures to eradicate S. agalactiae, this includes a screening of milk samples from all lactating cows. The performance of the qPCR-test currently in use for this purpose has not been evaluated under field conditions. The objective of this study was to estimate the sensitivity and specificity of the real-time qPCR assay in use in Norway (Mastitis 4 qPCR, DNA Diagnostics A/S, Risskov, Denmark) and compare it to conventional bacteriological culturing for detection of S. agalactiae in milk samples. Because none of these tests are considered a perfect reference test, the evaluation was performed using latent class models in a Bayesian analysis. Aseptically collected cow-composite milk samples from 578 cows belonging to 6 herds were cultured and tested by qPCR. While 37 (6.4%) samples were positive for S. agalactiae by bacteriological culture, 66 (11.4%) samples were positive by qPCR. The within-herd prevalence in the six herds, as estimated by the latent class models ranged from 7.7 to 50.8%. At the recommended cut-off (cycle threshold 37), the sensitivity of the qPCR was significantly higher at 95.3 (95% posterior probability interval [PPI] [84.2; 99.6]) than that of bacteriological culture at 58.2 (95% PPI [43.8; 74.4]). However, bacterial culture had a higher specificity of 99.7 (95% PPI [98.5; 100.0]) compared to the qPCR at 98.5 (95% PPI [94.6; 99.9]). The median estimated negative predictive values of qPCR was consistently higher than those of the BC at all estimated prevalences, and the superiority of the qPCR increased with increasing within-herd prevalence. The median positive predictive values of BC was in general higher than the estimates for the qPCR, however, at the highest prevalence the predictive ability of both tests were similar. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Development of two real-time polymerase chain reaction assays to detect Actinobacillus pleuropneumoniae serovars 1-9-11 and serovar 2.

    PubMed

    Marois-Créhan, Corinne; Lacouture, Sonia; Jacques, Mario; Fittipaldi, Nahuel; Kobisch, Marylène; Gottschalk, Marcelo

    2014-01-01

    Two real-time, or quantitative, polymerase chain reaction (qPCR) assays were developed to detect Actinobacillus pleuropneumoniae serovars 1-9-11 (highly related serovars with similar virulence potential) and serovar 2, respectively. The specificity of these assays was verified on a collection of 294 strains, which included all 16 reference A. pleuropneumoniae strains (including serovars 5a and 5b), 263 A. pleuropneumoniae field strains isolated between 1992 and 2009 in different countries, and 15 bacterial strains other than A. pleuropneumoniae. The detection levels of both qPCR tests were evaluated using 10-fold dilutions of chromosomal DNA from reference strains of A. pleuropneumoniae serovars 1 and 2, and the detection limit for both assays was 50 fg per assay. The analytical sensitivities of the qPCR tests were also estimated by using pure cultures and tonsils experimentally spiked with A. pleuropneumoniae. The detection threshold was 2.5 × 10(4) colony forming units (CFU)/ml and 2.9 × 10(5) CFU/0.1 g of tonsil, respectively, for both assays. These specific and sensitive tests can be used for the serotyping of A. pleuropneumoniae in diagnostic laboratories to control porcine pleuropneumonia.

  5. Identification of a cytochrome P450 gene in the earthworm Eisenia fetida and its mRNA expression under enrofloxacin stress.

    PubMed

    Li, Yinsheng; Zhao, Chun; Lu, Xiaoxu; Ai, Xiaojie; Qiu, Jiangping

    2018-04-15

    Cytochrome P450 (CYP450) enzymes are a family of hemoproteins primarily responsible for detoxification functions. Earthworms have been used as a bioindicator of soil pollution in numerous studies, but no CYP450 gene has so far been cloned. RT-PCR and RACE-PCR were employed to construct and sequence the CYP450 gene DNA from the extracted mRNA in the earthworm Eisenia fetida. The cloned gene (EW1) has an open reading frame of 477bp. The 3'-terminal region contained both the consensus and the signature sequences characteristic of CYP450. It was closely related to the CYP450 gene from the flatworm genus Opisthorchis felineus with 87% homology. The predicted structure of the putative protein was 97% homologous to human CYP450 family 27. This gene has been deposited in GenBank (accession no. KM881474). Earthworms (E. fetida) were then exposed to 1, 10, 100, and 500mgkg -1 enrofloxacin in soils to explore the mRNA expression by real time qPCR. The effect of enrofloxacin on mRNA expression levels of EW1 exhibited a marked hormesis pattern across the enrofloxacin dose range tested. This is believed to be the first reported CYP450 gene in earthworms, with reference value for molecular studies on detoxification processes in earthworms. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Gene expression analysis reveals schizophrenia-associated dysregulation of immune pathways in peripheral blood mononuclear cells.

    PubMed

    Gardiner, Erin J; Cairns, Murray J; Liu, Bing; Beveridge, Natalie J; Carr, Vaughan; Kelly, Brian; Scott, Rodney J; Tooney, Paul A

    2013-04-01

    Peripheral blood mononuclear cells (PBMCs) represent an accessible tissue source for gene expression profiling in schizophrenia that could provide insight into the molecular basis of the disorder. This study used the Illumina HT_12 microarray platform and quantitative real time PCR (QPCR) to perform mRNA expression profiling on 114 patients with schizophrenia or schizoaffective disorder and 80 non-psychiatric controls from the Australian Schizophrenia Research Bank (ASRB). Differential expression analysis revealed altered expression of 164 genes (59 up-regulated and 105 down-regulated) in the PBMCs from patients with schizophrenia compared to controls. Bioinformatic analysis indicated significant enrichment of differentially expressed genes known to be involved or associated with immune function and regulating the immune response. The differential expression of 6 genes, EIF2C2 (Ago 2), MEF2D, EVL, PI3, S100A12 and DEFA4 was confirmed by QPCR. Genome-wide expression analysis of PBMCs from individuals with schizophrenia was characterized by the alteration of genes with immune system function, supporting the hypothesis that the disorder has a significant immunological component in its etiology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Persistence of antibiotic resistance and plasmid-associated genes in soil following application of sewage sludge and abundance on vegetables at harvest.

    PubMed

    Rahube, Teddie O; Marti, Romain; Scott, Andrew; Tien, Yuan-Ching; Murray, Roger; Sabourin, Lyne; Duenk, Peter; Lapen, David R; Topp, Edward

    2016-07-01

    Sewage sludge recovered from wastewater treatment plants contains antibiotic residues and is rich in antibiotic resistance genes, selected for and enriched in the digestive tracts of human using antibiotics. The use of sewage sludge as a crop fertilizer constitutes a potential route of human exposure to antibiotic resistance genes through consumption of contaminated crops. Several gene targets associated with antibiotic resistance (catA1, catB3, ereA, ereB, erm(B), str(A), str(B), qnrD, sul1, and mphA), mobile genetic elements (int1, mobA, IncW repA, IncP1 groups -α, -β, -δ, -γ, -ε), and bacterial 16S rRNA (rrnS) were quantified by qPCR from soil and vegetable samples obtained from unamended and sludge-amended plots at an experimental field in London, Ontario. The qPCR data reveals an increase in abundance of gene targets in the soil and vegetables samples, indicating that there is potential for additional crop exposure to antibiotic resistance genes carried within sewage sludge following field application. It is therefore advisable to allow an appropriate delay period before harvesting of vegetables for human consumption.

  8. Comparison of Quantitative PCR and Droplet Digital PCR Multiplex Assays for Two Genera of Bloom-Forming Cyanobacteria, Cylindrospermopsis and Microcystis

    PubMed Central

    Te, Shu Harn; Chen, Enid Yingru

    2015-01-01

    The increasing occurrence of harmful cyanobacterial blooms, often linked to deteriorated water quality and adverse public health effects, has become a worldwide concern in recent decades. The use of molecular techniques such as real-time quantitative PCR (qPCR) has become increasingly popular in the detection and monitoring of harmful cyanobacterial species. Multiplex qPCR assays that quantify several toxigenic cyanobacterial species have been established previously; however, there is no molecular assay that detects several bloom-forming species simultaneously. Microcystis and Cylindrospermopsis are the two most commonly found genera and are known to be able to produce microcystin and cylindrospermopsin hepatotoxins. In this study, we designed primers and probes which enable quantification of these genera based on the RNA polymerase C1 gene for Cylindrospermopsis species and the c-phycocyanin beta subunit-like gene for Microcystis species. Duplex assays were developed for two molecular techniques—qPCR and droplet digital PCR (ddPCR). After optimization, both qPCR and ddPCR assays have high linearity and quantitative correlations for standards. Comparisons of the two techniques showed that qPCR has higher sensitivity, a wider linear dynamic range, and shorter analysis time and that it was more cost-effective, making it a suitable method for initial screening. However, the ddPCR approach has lower variability and was able to handle the PCR inhibition and competitive effects found in duplex assays, thus providing more precise and accurate analysis for bloom samples. PMID:26025892

  9. Monitoring the dynamics of syntrophic β-oxidizing bacteria during anaerobic degradation of oleic acid by quantitative PCR.

    PubMed

    Ziels, Ryan M; Beck, David A C; Martí, Magalí; Gough, Heidi L; Stensel, H David; Svensson, Bo H

    2015-04-01

    The ecophysiology of long-chain fatty acid-degrading syntrophic β-oxidizing bacteria has been poorly understood due to a lack of quantitative abundance data. Here, TaqMan quantitative PCR (qPCR) assays targeting the 16S rRNA gene of the known mesophilic syntrophic β-oxidizing bacterial genera Syntrophomonas and Syntrophus were developed and validated. Microbial community dynamics were followed using qPCR and Illumina-based high-throughput amplicon sequencing in triplicate methanogenic bioreactors subjected to five consecutive batch feedings of oleic acid. With repeated oleic acid feeding, the initial specific methane production rate significantly increased along with the relative abundances of Syntrophomonas and methanogenic archaea in the bioreactor communities. The novel qPCR assays showed that Syntrophomonas increased from 7 to 31% of the bacterial community 16S rRNA gene concentration, whereas that of Syntrophus decreased from 0.02 to less than 0.005%. High-throughput amplicon sequencing also revealed that Syntrophomonas became the dominant genus within the bioreactor microbiomes. These results suggest that increased specific mineralization rates of oleic acid were attributed to quantitative shifts within the microbial communities toward higher abundances of syntrophic β-oxidizing bacteria and methanogenic archaea. The novel qPCR assays targeting syntrophic β-oxidizing bacteria may thus serve as monitoring tools to indicate the fatty acid β-oxidization potential of anaerobic digester communities. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. A quantitative PCR assay for aerobic, vinyl chloride- and ethene-assimilating microorganisms in groundwater.

    PubMed

    Jin, Yang Oh; Mattes, Timothy E

    2010-12-01

    Vinyl chloride (VC) is a known human carcinogen that is primarily formed in groundwater via incomplete anaerobic dechlorination of chloroethenes. Aerobic, ethene-degrading bacteria (etheneotrophs), which are capable of both fortuitous and growth-linked VC oxidation, could be important in natural attenuation of VC plumes that escape anaerobic treatment. In this work, we developed a quantitative, real-time PCR (qPCR) assay for etheneotrophs in groundwater. We designed and tested degenerate qPCR primers for two functional genes involved in aerobic, growth-coupled VC- and ethene-oxidation (etnC and etnE). Primer specificity to these target genes was tested by comparison to nucleotide sequence databases, PCR analysis of template DNA extracted from isolates and environmental samples, and sequencing of qPCR products obtained from VC-contaminated groundwater. The assay was made quantitative by constructing standard curves (threshold cycle vs log gene copy number) with DNA amplified from Mycobacterium strain JS60, an etheneotrophic isolate. Analysis of groundwater samples from three different VC-contaminated sites revealed that etnC abundance ranged from 1.6 × 10(3) - 1.0 × 10(5) copies/L groundwater while etnE abundance ranged from 4.3 × 10(3) - 6.3 × 10(5) copies/L groundwater. Our data suggest this novel environmental measurement method will be useful for supporting VC bioremediation strategies, assisting in site closure, and conducting microbial ecology studies involving etheneotrophs.

  11. The genomic transcriptional response of female fathead minnows (Pimephales promelas) to an acute exposure to the androgen, 17β-trenbolone

    USGS Publications Warehouse

    Dorts, Jennifer; Richter, Catherine A.; Wright-Osment, Maureen K.; Ellersieck, Mark R.; Carter, Barbara J.; Tillitt, Donald E.

    2009-01-01

    We investigated the genomic transcriptional response of female fathead minnows (Pimephales promelas) to an acute (4 days) exposure to 0.1 or 1.0 ??g/L of 17??-trenbolone (TB), the active metabolite of an anabolic androgenic steroid used as a growth promoter in cattle and a contaminant of concern in aquatic systems. Our objectives were to investigate the gene expression profile induced by TB, define biomarkers of exposure to TB, and increase our understanding of the mechanisms of adverse effects of TB on fish reproduction. In female gonad tissue, microarray analysis using a 22 K oligonucleotide microarray (EcoArray Inc., Gainesville, FL) showed 99 significantly upregulated genes and 741 significantly downregulated genes in response to 1 ??g TB/L. In particular, hydroxysteroid (17??) dehydrogenase 12a (hsd17b12a), zona pellucida glycoprotein 2.2 (zp2.2), and protein inhibitor of activated STAT, 2 (pias2) were all downregulated in gonad. Q-PCR measurements in a larger sample set were consistent with the microarray results in the direction and magnitude of these changes in gene expression. However, several novel potential biomarkers were verified by Q-PCR in the same samples, but could not be validated in independent samples. In liver, Q-PCR measurements showed a significant decrease in vitellogenin 1 (vtg1) mRNA expression. In brain, cytochrome P450, family 19, subfamily A, polypeptide 1b (cyp19a1b, previously known as aromatase B) transcript levels were significantly reduced following TB exposure. Our study provides a candidate gene involved in mediating the action of TB, hsd17b12a, and two potential biomarkers sensitive to acute TB exposure, hepatic vtg1 and brain cyp19a1b.

  12. MicroRNAs and cardiac sarcoplasmic reticulum calcium ATPase-2 in human myocardial infarction: expression and bioinformatic analysis.

    PubMed

    Boštjančič, Emanuela; Zidar, Nina; Glavač, Damjan

    2012-10-15

    Cardiac sarco(endo)plasmic reticulum calcium ATPase-2 (SERCA2) plays one of the central roles in myocardial contractility. Both, SERCA2 mRNA and protein are reduced in myocardial infarction (MI), but the correlation has not been always observed. MicroRNAs (miRNAs) act by targeting 3'-UTR mRNA, causing translational repression in physiological and pathological conditions, including cardiovascular diseases. One of the aims of our study was to identify miRNAs that could influence SERCA2 expression in human MI. The protein SERCA2 was decreased and 43 miRNAs were deregulated in infarcted myocardium compared to corresponding remote myocardium, analyzed by western blot and microRNA microarrays, respectively. All the samples were stored as FFPE tissue and in RNAlater. miRNAs binding prediction to SERCA2 including four prediction algorithms (TargetScan, PicTar, miRanda and mirTarget2) identified 213 putative miRNAs. TAM and miRNApath annotation of deregulated miRNAs identified 18 functional and 21 diseased states related to heart diseases, and association of the half of the deregulated miRNAs to SERCA2. Free-energy of binding and flanking regions (RNA22, RNAfold) was calculated for 10 up-regulated miRNAs from microarray analysis (miR-122, miR-320a/b/c/d, miR-574-3p/-5p, miR-199a, miR-140, and miR-483), and nine miRNAs deregulated from microarray analysis were used for validation with qPCR (miR-21, miR-122, miR-126, miR-1, miR-133, miR-125a/b, and miR-98). Based on qPCR results, the comparison between FFPE and RNAlater stored tissue samples, between Sybr Green and TaqMan approaches, as well as between different reference genes were also performed. Combing all the results, we identified certain miRNAs as potential regulators of SERCA2; however, further functional studies are needed for verification. Using qPCR, we confirmed deregulation of nine miRNAs in human MI, and show that qPCR normalization strategy is important for the outcome of miRNA expression analysis in human MI.

  13. Comparison of viable plate count, turbidity measurement and real-time PCR for quantification of Porphyromonas gingivalis.

    PubMed

    Clais, S; Boulet, G; Van Kerckhoven, M; Lanckacker, E; Delputte, P; Maes, L; Cos, P

    2015-01-01

    The viable plate count (VPC) is considered as the reference method for bacterial enumeration in periodontal microbiology but shows some important limitations for anaerobic bacteria. As anaerobes such as Porphyromonas gingivalis are difficult to culture, VPC becomes time-consuming and less sensitive. Hence, efficient normalization of experimental data to bacterial cell count requires alternative rapid and reliable quantification methods. This study compared the performance of VPC with that of turbidity measurement and real-time PCR (qPCR) in an experimental context using highly concentrated bacterial suspensions. Our TaqMan-based qPCR assay for P. gingivalis 16S rRNA proved to be sensitive and specific. Turbidity measurements offer a fast method to assess P. gingivalis growth, but suffer from high variability and a limited dynamic range. VPC was very time-consuming and less repeatable than qPCR. Our study concludes that qPCR provides the most rapid and precise approach for P. gingivalis quantification. Although our data were gathered in a specific research context, we believe that our conclusions on the inferior performance of VPC and turbidity measurements in comparison to qPCR can be extended to other research and clinical settings and even to other difficult-to-culture micro-organisms. Various clinical and research settings require fast and reliable quantification of bacterial suspensions. The viable plate count method (VPC) is generally seen as 'the gold standard' for bacterial enumeration. However, VPC-based quantification of anaerobes such as Porphyromonas gingivalis is time-consuming due to their stringent growth requirements and shows poor repeatability. Comparison of VPC, turbidity measurement and TaqMan-based qPCR demonstrated that qPCR possesses important advantages regarding speed, accuracy and repeatability. © 2014 The Society for Applied Microbiology.

  14. Detection of group a streptococcal pharyngitis by quantitative PCR.

    PubMed

    Dunne, Eileen M; Marshall, Julia L; Baker, Ciara A; Manning, Jayne; Gonis, Gena; Danchin, Margaret H; Smeesters, Pierre R; Satzke, Catherine; Steer, Andrew C

    2013-07-11

    Group A streptococcus (GAS) is the most common bacterial cause of sore throat. School-age children bear the highest burden of GAS pharyngitis. Accurate diagnosis is difficult: the majority of sore throats are viral in origin, culture-based identification of GAS requires 24-48 hours, and up to 15% of children are asymptomatic throat carriers of GAS. The aim of this study was to develop a quantitative polymerase chain reaction (qPCR) assay for detecting GAS pharyngitis and assess its suitability for clinical diagnosis. Pharyngeal swabs were collected from children aged 3-18 years (n = 91) and adults (n = 36) located in the Melbourne area who presented with sore throat. Six candidate PCR assays were screened using a panel of reference isolates, and two of these assays, targeting speB and spy1258, were developed into qPCR assays. The qPCR assays were compared to standard culture-based methods for their ability to detect GAS pharyngitis. GAS isolates from culture positive swabs underwent emm-typing. Clinical data were used to calculate McIsaac scores as an indicator of disease severity. Twenty-four of the 127 samples (18.9%) were culture-positive for GAS, and all were in children (26%). The speB qPCR had 100% sensitivity and 100% specificity compared with gold-standard culture, whereas the spy1258 qPCR had 87% sensitivity and 100% specificity. Nine different emm types were found, of which emm 89, 3, and 28 were most common. Bacterial load as measured by qPCR correlated with culture load. There were no associations between symptom severity as indicated by McIsaac scores and GAS bacterial load. The speB qPCR displayed high sensitivity and specificity and may be a useful tool for GAS pharyngitis diagnosis and research.

  15. The combination of quantitative PCR and western blot detecting CP4-EPSPS component in Roundup Ready soy plant tissues and commercial soy-related foodstuffs.

    PubMed

    Xiao, Xiao; Wu, Honghong; Zhou, Xinghu; Xu, Sheng; He, Jian; Shen, Wenbiao; Zhou, Guanghong; Huang, Ming

    2012-06-01

    With the widespread use of Roundup Ready soy (event 40-3-2) (RRS), the comprehensive detection of genetically modified component in foodstuffs is of significant interest, but few protein-based approaches have been found useful in processed foods. In this report, the combination of quantitative PCR (qPCR) and western blot was used to detect cp4-epsps gene and its protein product in different RRS plant tissues and commercial soy-containing foodstuffs. The foods included those of plant origin produced by different processing procedures and also some products containing both meat and plant protein concentrates. The validity of the 2 methods was confirmed first. We also showed that the CP4-EPSPS protein existed in different RRS plant tissues. In certain cases, the results from the western blot and the qPCR were not consistent. To be specific, at least 2 degraded fragments of CP4-EPSPS protein (35.5 and 24.6 kDa) were observed. For dried bean curd crust and deep-fried bean curd, a degraded protein fragment with the size of 24.6 kDa appeared, while cp4-epsps gene could not be traced by qPCR. In contrast, we found a signal of cp4-epsps DNA in 3 foodstuffs, including soy-containing ham cutlet product, meat ball, and sausage by qPCR, while CP4-EPSPS protein could not be detected by western blot in such samples. Our study therefore concluded that the combination of DNA- and protein-based methods would compensate each other, thus resulting in a more comprehensive detection from nucleic acid and protein levels. The combination of quantitative PCR (qPCR) and western blot was used to detect cp4-epsps gene and its protein product in different Roundup Ready soy (event 40-3-2) plant tissues and commercial soy-containing foodstuffs. The foods included those of plant origin produced by different processing procedures and also some products containing a combination of both meat and plant protein concentrates. This study indicated that the combination of DNA- and protein-based methods would supplement each other for genetically modified detection from nucleic acid and protein levels. Accordingly, qPCR and western blot could be used in CP4-EPSPS detection in a wide variety of soy-related foodstuffs. © 2012 Institute of Food Technologists®

  16. A recombinant rabies virus carrying GFP between N and P affects viral transcription in vitro.

    PubMed

    Luo, Jun; Zhao, Jing; Tian, Qin; Mo, Weiyu; Wang, Yifei; Chen, Hao; Guo, Xiaofeng

    2016-06-01

    Several studies have demonstrated the rabies virus to be a perfect potential vaccine vector to insert foreign genes into the target genome. For this study, a green fluorescent protein (GFP) gene was cloned into the rabies virus (RABV) genome between the N and P gene. CT dinucleotide was inserted as intergenic region. The recombinant high egg passage Flury strain (HEP-Flury) of RABV, carrying GFP (rHEP-NP-GFP), was generated in BHK-21 cells using reverse genetics. According to the viral growth kinetics assay, the addition of GFP between N and P gene has little effect on the viral growth compared to the parental strain HEP-Flury. Quantitative real-time PCR (qPCR) indicated that rHEP-NP-GFP showed different viral gene transcription, especially for G gene, compared to HEP-Flury. The same is true for one other recombinant RABV carrying GFP between G and L gene in NA cells. In addition, parent HEP-Flury showed more expression of innate immune-related molecules in NA cells. Compared to HEP-Flury, Western blotting (WB) indicated that insertion of a foreign gene following N gene enhanced the expression of M and G proteins. According to the qPCR and WB, GFP expression levels of rHEP-NP-GFP were significantly higher than rHEP-GFP. This study indicates HEP-Flury as valid vector to express exogenous genes between N and P.

  17. Viability-qPCR for detecting Legionella: Comparison of two assays based on different amplicon lengths.

    PubMed

    Ditommaso, Savina; Giacomuzzi, Monica; Ricciardi, Elisa; Zotti, Carla M

    2015-08-01

    Two different real-time quantitative PCR (PMA-qPCR) assays were applied for quantification of Legionella spp. by targeting a long amplicon (approx 400 bp) of 16S rRNA gene and a short amplicon (approx. 100 bp) of 5S rRNA gene. Purified DNA extracts from pure cultures of Legionella spp. and from environmental water samples were quantified. Application of the two assays to quantify Legionella in artificially contaminated water achieved that both assays were able to detect Legionella over a linear range of 10 to 10(5) cells ml(-1). A statistical analysis of the standard curves showed that both assays were linear with a good correlation coefficient (R(2) = 0.99) between the Ct and the copy number. Amplification with the reference assay was the most effective for detecting low copy numbers (1 bacterium per PCR mixture). Using selective quantification of viable Legionella by the PMA-qPCR method we obtained a greater inhibition of the amplification of the 400-bp 16S gene fragment (Δlog(10) = 3.74 ± 0.39 log(10) GU ml(-1)). A complete inhibition of the PCR signal was obtained when heat-killed cells in a concentration below 1 × 10(5) cells ml(-1) were pretreated with PMA. Analysing short amplicon sizes led to only 2.08 log reductions in the Legionella dead-cell signal. When we tested environmental water samples, the two qPCR assays were in good agreement according to the kappa index (0.741). Applying qPCR combined with PMA treatment, we also obtained a good agreement (kappa index 0.615). The comparison of quantitative results shows that both assays yielded the same quantification sensitivity (mean log = 4.59 vs mean log = 4.31). Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Determining miRNA Expression Levels in Degraded RNA Samples Using Real-Time RT-qPCR and Microarray Technologies

    PubMed Central

    Tighe, S.; Holbrook, J.; Nadella, V.; Carmical, R.; Sol-Church, K.; Yueng, A.T.; Chittur, S.

    2011-01-01

    The Nucleic Acid Research Group (NARG) has previously conducted studies evaluating the impact of RNA integrity and priming strategies on cDNA synthesis and real-time RT-qPCR. The results of last year's field study as it relates to degraded RNA will be presented. In continuation of the RNA integrity theme, this year's study was designed to evaluate the impact of RNA integrity on the analysis of miRNA expression using real-time RT-qPCR. Target section was based on data obtained by the Microarray Research Group (MARG) and other published data from next gen sequencing. These 9 miRNAs represent three groups of miRNA that are expressed at low, medium or high levels in the First Choice human brain reference RNA sample. Two popular RT priming strategies tested in this study include the Megaplex miRNA TaqMan assay (ABI) and the RT2 miRNA qPCR assay (Qiagen/SA Biosciences). The basis for the ABI assay design is a target-specific stem-loop structure and reverse-transcription primer, while the Qiagen design combines poly(A) tailing and a universal reverse transcription in one cDNA synthesis reaction. For this study, the human brain reference RNA was subject to controlled degradation using RNase A to RIN (RNA Integrity Number) values of 7 (good), 4 (moderately degraded), and 2 (severely degraded).These templates were then used to assess both RT methods. In addition to this real-time RT-qPCR data, the same RNA templates were further analyzed using universal poly(A) tailing and hybridization to Affymetrix miRNA GeneChips. This talk will provide insights into RT priming strategies for miRNA and contrast the qPCR results obtained using different technologies.

  19. Quantitative real-time PCR approaches for microbial community studies in wastewater treatment systems: applications and considerations.

    PubMed

    Kim, Jaai; Lim, Juntaek; Lee, Changsoo

    2013-12-01

    Quantitative real-time PCR (qPCR) has been widely used in recent environmental microbial ecology studies as a tool for detecting and quantifying microorganisms of interest, which aids in better understandings of the complexity of wastewater microbial communities. Although qPCR can be used to provide more specific and accurate quantification than other molecular techniques, it does have limitations that must be considered when applying it in practice. This article reviews the principle of qPCR quantification and its applications to microbial ecology studies in various wastewater treatment environments. Here we also address several limitations of qPCR-based approaches that can affect the validity of quantification data: template nucleic acid quality, nucleic acid extraction efficiency, specificity of group-specific primers and probes, amplification of nonviable DNA, gene copy number variation, and limited number of sequences in the database. Even with such limitations, qPCR is reportedly among the best methods for quantitatively investigating environmental microbial communities. The application of qPCR is and will continue to be increasingly common in studies of wastewater treatment systems. To obtain reliable analyses, however, the limitations that have often been overlooked must be carefully considered when interpreting the results. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Multiplex real-time PCR using temperature sensitive primer-supplying hydrogel particles and its application for malaria species identification

    PubMed Central

    Byoun, Mun Sub; Yoo, Changhoon; Sim, Sang Jun; Lim, Chae Seung; Kim, Sung Woo

    2018-01-01

    Real-time PCR, also called quantitative PCR (qPCR), has been powerful analytical tool for detection of nucleic acids since it developed. Not only for biological research but also for diagnostic needs, qPCR technique requires capacity to detect multiple genes in recent years. Solid phase PCR (SP-PCR) where one or two directional primers are immobilized on solid substrates could analyze multiplex genetic targets. However, conventional SP-PCR was subjected to restriction of application for lack of PCR efficiency and quantitative resolution. Here we introduce an advanced qPCR with primer-incorporated network (PIN). One directional primers are immobilized in the porous hydrogel particle by covalent bond and the other direction of primers are temporarily immobilized at so-called 'Supplimers'. Supplimers released the primers to aqueous phase in the hydrogel at the thermal cycling of PCR. It induced the high PCR efficiency over 92% with high reliability. It reduced the formation of primer dimers and improved the selectivity of qPCR thanks to the strategy of 'right primers supplied to right place only'. By conducting a six-plex qPCR of 30 minutes, we analyzed DNA samples originated from malaria patients and successfully identified malaria species in a single reaction. PMID:29293604

  1. Arctic antibiotic resistance gene contamination, a result of anthropogenic activities and natural origin.

    PubMed

    Tan, Lu; Li, Linyun; Ashbolt, Nicholas; Wang, Xiaolong; Cui, Yuxiao; Zhu, Xiao; Xu, Yan; Yang, Yang; Mao, Daqing; Luo, Yi

    2018-04-15

    The increasing global prevalence of antibiotic resistance genes (ARGs) in the environment is attributed to anthropogenic activities, particularly the misuse of antimicrobial drugs in human care and animal production. In the present study, we first examined Arctic/sub-Arctic (polar) sediments for the abundance and diversity of 30 ARGs against sulfonamide, tetracycline, aminoglycoside, quinolone, macrolide, and β-lactam antibiotics. Polar sediment ARGs were detected by qPCR at relatively low levels (10 -9 to 10 -5 copies/16S rRNA gene copies) compared to the reference sites, which were heavily impacted regions of China (the Haihe River, the Tianjin Water Park water and the Qilihai Wetland water, at 10 -8 to 10 -2 copies/16S rRNA gene copies). A human mitochondrial gene target, Hmt, was first used to aid in the identification of ARGs associated with anthropogenic activities, being relatively persistent, in high copy number and a human-specific molecular marker. Hmt was consistently present in easily quantifiable amounts in the polar sediment samples, indicating their relationship with human-impact, and it was also positively correlated with the relative abundance of ARGs and to the concentrations of modern-day antibiotics. Phylogenetic analyses of resistance sequences from both the Arctic marine sediments and a major database of human pathogens indicated that the ARGs in polar region were the result of a mix of human influence and natural origins. To our knowledge, this is the first study to show that ARGs in Arctic marine sediments appear to be a mixture of both natural origins and recent human influence. This study provides a significant reference regarding the global reach of antibiotic resistance, which is associated with anthropogenic activities. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Sleep Deprivation Influences Circadian Gene Expression in the Lateral Habenula.

    PubMed

    Zhang, Beilin; Gao, Yanxia; Li, Yang; Yang, Jing; Zhao, Hua

    2016-01-01

    Sleep is governed by homeostasis and the circadian clock. Clock genes play an important role in the generation and maintenance of circadian rhythms but are also involved in regulating sleep homeostasis. The lateral habenular nucleus (LHb) has been implicated in sleep-wake regulation, since LHb gene expression demonstrates circadian oscillation characteristics. This study focuses on the participation of LHb clock genes in regulating sleep homeostasis, as the nature of their involvement is unclear. In this study, we observed changes in sleep pattern following sleep deprivation in LHb-lesioned rats using EEG recording techniques. And then the changes of clock gene expression (Per1, Per2, and Bmal1) in the LHb after 6 hours of sleep deprivation were detected by using real-time quantitative PCR (qPCR). We found that sleep deprivation increased the length of Non-Rapid Eye Movement Sleep (NREMS) and decreased wakefulness. LHb-lesioning decreased the amplitude of reduced wake time and increased NREMS following sleep deprivation in rats. qPCR results demonstrated that Per2 expression was elevated after sleep deprivation, while the other two genes were unaffected. Following sleep recovery, Per2 expression was comparable to the control group. This study provides the basis for further research on the role of LHb Per2 gene in the regulation of sleep homeostasis.

  3. The presence of p53 influences the expression of multiple human cytomegalovirus genes at early times postinfection.

    PubMed

    Hannemann, Holger; Rosenke, Kyle; O'Dowd, John M; Fortunato, Elizabeth A

    2009-05-01

    Human cytomegalovirus (HCMV) is a common cause of morbidity and mortality in immunocompromised and immunosuppressed individuals. During infection, HCMV is known to employ host transcription factors to facilitate viral gene expression. To further understand the previously observed delay in viral replication and protein expression in p53 knockout cells, we conducted microarray analyses of p53(+/+) and p53(-/-) immortalized fibroblast cell lines. At a multiplicity of infection (MOI) of 1 at 24 h postinfection (p.i.), the expression of 22 viral genes was affected by the absence of p53. Eleven of these 22 genes (group 1) were examined by real-time reverse transcriptase, or quantitative, PCR (q-PCR). Additionally, five genes previously determined to have p53 bound to their nearest p53-responsive elements (group 2) and three control genes without p53 binding sites in their upstream sequences (group 3) were also examined. At an MOI of 1, >3-fold regulation was found for five group 1 genes. The expression of group 2 and 3 genes was not changed. At an MOI of 5, all genes from group 1 and four of five genes from group 2 were found to be regulated. The expression of control genes from group 3 remained unchanged. A q-PCR time course of four genes revealed that p53 influences viral gene expression most at immediate-early and early times p.i., suggesting a mechanism for the reduced and delayed production of virions in p53(-/-) cells.

  4. Characterization and Comparison of Galactomannan Enzyme Immunoassay and Quantitative Real-Time PCR Assay for Detection of Aspergillus fumigatus in Bronchoalveolar Lavage Fluid from Experimental Invasive Pulmonary Aspergillosis

    PubMed Central

    Francesconi, Andrea; Kasai, Miki; Petraitiene, Ruta; Petraitis, Vidmantas; Kelaher, Amy M.; Schaufele, Robert; Hope, William W.; Shea, Yvonne R.; Bacher, John; Walsh, Thomas J.

    2006-01-01

    Bronchoalveolar lavage (BAL) is widely used for evaluation of patients with suspected invasive pulmonary aspergillosis (IPA). However, the diagnostic yield of BAL for detection of IPA by culture and direct examination is limited. Earlier diagnosis may be facilitated by assays that can detect Aspergillus galactomannan antigen or DNA in BAL fluid. We therefore characterized and compared the diagnostic yields of a galactomannan enzyme immunoassay (GM EIA), quantitative real-time PCR (qPCR), and quantitative cultures in experiments using BAL fluid from neutropenic rabbits with experimentally induced IPA defined as microbiologically and histologically evident invasion. The qPCR assay targeted the rRNA gene complex of Aspergillus fumigatus. The GM EIA and qPCR assay were characterized by receiver operator curve analysis. With an optimal cutoff of 0.75, the GM EIA had a sensitivity and specificity of 100% in untreated controls. A decline in sensitivity (92%) was observed when antifungal therapy (AFT) was administered. The optimal cutoff for qPCR was a crossover of 36 cycles, with sensitivity and specificity of 80% and 100%, respectively. The sensitivity of qPCR also decreased with AFT to 50%. Quantitative culture of BAL had a sensitivity of 46% and a specificity of 100%. The sensitivity of quantitative culture decreased with AFT to 16%. The GM EIA and qPCR assay had greater sensitivity than culture in detection of A. fumigatus in BAL fluid in experimentally induced IPA (P ± 0.04). Use of the GM EIA and qPCR assay in conjunction with culture-based diagnostic methods applied to BAL fluid could facilitate accurate diagnosis and more-timely initiation of specific therapy. PMID:16825367

  5. Improving qPCR telomere length assays: Controlling for well position effects increases statistical power.

    PubMed

    Eisenberg, Dan T A; Kuzawa, Christopher W; Hayes, M Geoffrey

    2015-01-01

    Telomere length (TL) is commonly measured using quantitative PCR (qPCR). Although, easier than the southern blot of terminal restriction fragments (TRF) TL measurement method, one drawback of qPCR is that it introduces greater measurement error and thus reduces the statistical power of analyses. To address a potential source of measurement error, we consider the effect of well position on qPCR TL measurements. qPCR TL data from 3,638 people run on a Bio-Rad iCycler iQ are reanalyzed here. To evaluate measurement validity, correspondence with TRF, age, and between mother and offspring are examined. First, we present evidence for systematic variation in qPCR TL measurements in relation to thermocycler well position. Controlling for these well-position effects consistently improves measurement validity and yields estimated improvements in statistical power equivalent to increasing sample sizes by 16%. We additionally evaluated the linearity of the relationships between telomere and single copy gene control amplicons and between qPCR and TRF measures. We find that, unlike some previous reports, our data exhibit linear relationships. We introduce the standard error in percent, a superior method for quantifying measurement error as compared to the commonly used coefficient of variation. Using this measure, we find that excluding samples with high measurement error does not improve measurement validity in our study. Future studies using block-based thermocyclers should consider well position effects. Since additional information can be gleaned from well position corrections, rerunning analyses of previous results with well position correction could serve as an independent test of the validity of these results. © 2015 Wiley Periodicals, Inc.

  6. qPCR for Second Year Undergraduates: A Short, Structured Inquiry to Illustrate Differential Gene Expression

    ERIC Educational Resources Information Center

    McCauslin, Christine Seitz; Gunn, Kathryn Elaine; Pirone, Dana; Staiger, Jennifer

    2015-01-01

    We describe a structured inquiry laboratory exercise that examines transcriptional regulation of the "NOS2" gene under conditions that simulate the inflammatory response in macrophages. Using quantitative PCR and the comparative C[subscript T] method, students are able determine whether transcriptional activation of "NOS2"…

  7. Diazotrophic diversity in the rhizosphere of two exotic weed plants, Prosopis juliflora and Parthenium hysterophorus.

    PubMed

    Cibichakravarthy, B; Preetha, R; Sundaram, S P; Kumar, K; Balachandar, D

    2012-02-01

    This study is aimed at assessing culturable diazotrophic bacterial diversity in the rhizosphere of Prosopis juliflora and Parthenium hysterophorus, which grow profusely in nutritionally-poor soils and environmentally-stress conditions so as to identify some novel strains for bioinoculant technology. Diazotrophic isolates from Prosopis and Parthenium rhizosphere were characterized for nitrogenase activity by Acetylene Reduction Assay (ARA) and 16S rRNA gene sequencing. Further, the culture-independent quantitative PCR (qPCR) was performed to compare the abundance of diazotrophs in rhizosphere with bulk soils. The proportion of diazotrophs in total heterotrophs was higher in rhizosphere than bulk soils and 32 putative diazotrophs from rhizosphere of two plants were identified by nifH gene amplification. The ARA activity of the isolates ranged from 40 to 95 nmol ethylene h(-1) mg protein(-1). The 16S rRNA gene analysis identified the isolates to be members of alpha, beta and gamma Proteobacteria and firmicutes. The qPCR assay also confirmed that abundance of nif gene in rhizosphere of these two plants was 10-fold higher than bulk soil.

  8. Determination of viable Salmonellae from potable and source water through PMA assisted qPCR.

    PubMed

    Singh, Gulshan; Vajpayee, Poornima; Bhatti, Saurabh; Ronnie, Nirmala; Shah, Nimish; McClure, Peter; Shanker, Rishi

    2013-07-01

    Resource constrained countries identified as endemic zones for pathogenicity of Salmonella bear an economic burden due to recurring expenditure on medical treatment. qPCR used for Salmonella detection could not discriminate between viable and nonviable cells. Propidium monoazide (PMA) that selectively penetrates nonviable cells to cross-link their DNA, was coupled with ttr gene specific qPCR for quantifying viable salmonellae in source/potable waters collected from a north Indian city. Source water (raw water for urban potable water supply) and urban potable water exhibited viable salmonellae in the range of 2.1×10(4)-2.6×10(6) and 2-7160CFU/100mL, respectively. Potable water at water works exhibited DNA from dead cells but no viable cells were detected. PMA assisted qPCR could specifically detect low numbers of live salmonellae in Source and potable waters. This strategy can be used in surveillance of urban potable water distribution networks to map contamination points for better microbial risk management. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Accumulation of cholesterol and increased demand for zinc in serum-deprived RPE cells

    PubMed Central

    Mishra, Sanghamitra; Peterson, Katherine; Yin, Lili; Berger, Alan; Fan, Jianguo

    2016-01-01

    Purpose Having observed that confluent ARPE-19 cells (derived from human RPE) survive well in high-glucose serum-free medium (SFM) without further feeding for several days, we investigated the expression profile of RPE cells under the same conditions. Methods Expression profiles were examined with microarray and quantitative PCR (qPCR) analyses, followed by western blot analysis of key regulated proteins. The effects of low-density lipoprotein (LDL) and zinc supplementation were examined with qPCR. Immunofluorescence was used to localize the LDL receptor and to examine LDL uptake. Cellular cholesterol levels were measured with filipin binding. Expression patterns in primary fetal RPE cells were compared using qPCR. Results Microarray analyses of gene expression in ARPE-19, confirmed with qPCR, showed upregulation of lipid and cholesterol biosynthesis pathways in SFM. At the protein level, the cholesterol synthesis control factor SRBEF2 was activated, and other key lipid synthesis proteins increased. Supplementation of SFM with LDL reversed the upregulation of lipid and cholesterol synthesis genes, but not of cholesterol transport genes. The LDL receptor relocated to the plasma membrane, and LDL uptake was activated by day 5–7 in SFM, suggesting increased demand for cholesterol. Confluent ARPE-19 cells in SFM accumulated intracellular cholesterol, compared with cells supplemented with serum, over 7 days. Over the same time course in SFM, the expression of metallothioneins decreased while the major zinc transporter was upregulated, consistent with a parallel increase in demand for zinc. Supplementation with zinc reversed expression changes for metallothionein genes, but not for other zinc-related genes. Similar patterns of regulation were also seen in primary fetal human RPE cells in SFM. Conclusions ARPE-19 cells respond to serum deprivation and starvation with upregulation of the lipid and cholesterol pathways, accumulation of intracellular cholesterol, and increased demand for zinc. Similar trends are seen in primary fetal RPE cells. Cholesterol accumulation basal to RPE is a prominent feature of age-related macular degeneration (AMD), while dietary zinc is protective. It is conceivable that accumulating defects in Bruch’s membrane and dysfunction of the choriocapillaris could impede transport between RPE and vasculature in AMD. Thus, this pattern of response to serum deprivation in RPE-derived cells may have relevance for some aspects of the progression of AMD. PMID:28003730

  10. Developing high throughput quantitative PCR assays for diagnosing Ikeda and other Theileria orientalis types common to New Zealand in bovine blood samples.

    PubMed

    Pulford, D J; Gias, E; Bueno, I M; McFadden, Amj

    2016-01-01

    To develop rapid, quantitative PCR (qPCR) assays using high resolution melt (HRM) analysis and type-specific TaqMan assays for identifying the prevalent types of Theileria orientalis found in New Zealand cattle; and to evaluate their analytical and diagnostic characteristics compared with other assays for T. orientalis. Nucleotide sequences aligned with T. orientalis Buffeli, Chitose and Ikeda types, obtained from DNA extracted from blood samples from infected cattle, were used to design HRM and type-specific probe-based qPCR assays. The three type-specific assays were also incorporated into a single-tube multiplex qPCR assay. These assays were validated using DNA extracted from blood samples from cattle in herds with or without clinical signs of T. orientalis infection, other veterinary laboratory samples, as well as plasmids containing T. orientalis type-specific sequences. Diagnostic specificity (DSp) and sensitivity (DSe) estimates for the qPCR assays were compared to blood smear piroplasm results, and other PCR assays for T. orientalis. Copy number estimates of Ikeda DNA in blood were determined from cattle exhibiting anaemia using the Ikeda-specific qPCR assay. The T. orientalis type-specific and the HRM qPCR assays displayed 100% analytical specificity. The Ikeda-specific qPCR assay exhibited linearity (R(2) = 0.997) with an efficiency of 94.3%. Intra-assay CV were ≤0.08 and inter-assay CV were ≤0.095. For blood samples from cows with signs of infection with T. orientalis, the DSp and DSe of the multiplex probe qPCR assay were 93 and 96%, respectively compared with blood smears, and 97 and 100%, respectively compared with conventional PCR assays. For the Ikeda-specific qPCR assay, the number of positive samples (n=66) was slightly higher than a conventional PCR assay (n=64). The concentration of Ikeda genomes in blood samples from 41 dairy cows with signs of infection with T. orientalis ranged between 5.6 × 10(4) and 3.3 × 10(6) genomes per µL of blood. All qPCR assays had improved specificity and sensitivity over existing conventional PCR assays for diagnosis of T. orientalis Ikeda. The burden of Ikeda DNA in blood was demonstrated using an Ikeda-specific qPCR assay with titrated synthetic gene target. Adoption of high-throughput DNA extraction and qPCR reduced T. orientalis and Ikeda diagnosis times. The Ikeda-specific qPCR assay provides a specific diagnosis for Ikeda in animals with signs of infection with T. orientalis and can be used to monitor the parasite load of Ikeda in blood.

  11. Validation and Application of a PCR Primer Set to Quantify Fungal Communities in the Soil Environment by Real-Time Quantitative PCR

    PubMed Central

    Chemidlin Prévost-Bouré, Nicolas; Christen, Richard; Dequiedt, Samuel; Mougel, Christophe; Lelièvre, Mélanie; Jolivet, Claudy; Shahbazkia, Hamid Reza; Guillou, Laure; Arrouays, Dominique; Ranjard, Lionel

    2011-01-01

    Fungi constitute an important group in soil biological diversity and functioning. However, characterization and knowledge of fungal communities is hampered because few primer sets are available to quantify fungal abundance by real-time quantitative PCR (real-time Q-PCR). The aim in this study was to quantify fungal abundance in soils by incorporating, into a real-time Q-PCR using the SYBRGreen® method, a primer set already used to study the genetic structure of soil fungal communities. To satisfy the real-time Q-PCR requirements to enhance the accuracy and reproducibility of the detection technique, this study focused on the 18S rRNA gene conserved regions. These regions are little affected by length polymorphism and may provide sufficiently small targets, a crucial criterion for enhancing accuracy and reproducibility of the detection technique. An in silico analysis of 33 primer sets targeting the 18S rRNA gene was performed to select the primer set with the best potential for real-time Q-PCR: short amplicon length; good fungal specificity and coverage. The best consensus between specificity, coverage and amplicon length among the 33 sets tested was the primer set FR1 / FF390. This in silico analysis of the specificity of FR1 / FF390 also provided additional information to the previously published analysis on this primer set. The specificity of the primer set FR1 / FF390 for Fungi was validated in vitro by cloning - sequencing the amplicons obtained from a real time Q-PCR assay performed on five independent soil samples. This assay was also used to evaluate the sensitivity and reproducibility of the method. Finally, fungal abundance in samples from 24 soils with contrasting physico-chemical and environmental characteristics was examined and ranked to determine the importance of soil texture, organic carbon content, C∶N ratio and land use in determining fungal abundance in soils. PMID:21931659

  12. An overview of technical considerations when using quantitative real-time PCR analysis of gene expression in human exercise research

    PubMed Central

    Yan, Xu; Bishop, David J.

    2018-01-01

    Gene expression analysis by quantitative PCR in skeletal muscle is routine in exercise studies. The reproducibility and reliability of the data fundamentally depend on how the experiments are performed and interpreted. Despite the popularity of the assay, there is a considerable variation in experimental protocols and data analyses from different laboratories, and there is a lack of consistency of proper quality control steps throughout the assay. In this study, we present a number of experiments on various steps of quantitative PCR workflow, and demonstrate how to perform a quantitative PCR experiment with human skeletal muscle samples in an exercise study. We also tested some common mistakes in performing qPCR. Interestingly, we found that mishandling of muscle for a short time span (10 mins) before RNA extraction did not affect RNA quality, and isolated total RNA was preserved for up to one week at room temperature. Demonstrated by our data, use of unstable reference genes lead to substantial differences in the final results. Alternatively, cDNA content can be used for data normalisation; however, complete removal of RNA from cDNA samples is essential for obtaining accurate cDNA content. PMID:29746477

  13. Evaluation of a Campylobacter fetus subspecies venerealis real-time quantitative polymerase chain reaction for direct analysis of bovine preputial samples

    PubMed Central

    Chaban, Bonnie; Chu, Shirley; Hendrick, Steven; Waldner, Cheryl; Hill, Janet E.

    2012-01-01

    The detection and subspeciation of Campylobacter fetus subsp. venerealis (CFV) from veterinary samples is important for both clinical and economic reasons. Campylobacter fetus subsp. venerealis is the causative agent of bovine genital campylobacteriosis, a venereal disease that can lead to serious reproductive problems in cattle, and strict international regulations require animals and animal products to be CFV-free for trade. This study evaluated methods reported in the literature for CFV detection and reports the translation of an extensively tested CFV-specific polymerase chain reaction (PCR) primer set; including the VenSF/VenSR primers and a real-time, quantitative PCR (qPCR) platform using SYBR Green chemistry. Three methods of preputial sample preparation for direct qPCR were evaluated and a heat lysis DNA extraction method was shown to allow for CFV detection at the level of approximately one cell equivalent per reaction (or 1.0 × 103 CFU/mL) from prepuce. The optimized sample preparation and qPCR protocols were then used to evaluate 3 western Canadian bull cohorts, which included 377 bulls, for CFV. The qPCR assay detected 11 positive bulls for the CFV-specific parA gene target. DNA sequence data confirmed the identity of the amplified product and revealed that positive samples were comprised of 2 sequence types; one identical to previously reported CFV parA gene sequences and one with a 9% sequence divergence. These results add valuable information towards our understanding of an important CFV subspeciation target and offer a significantly improved format for an internationally recognized PCR test. PMID:23277694

  14. Comparison of Quantitative PCR and Droplet Digital PCR Multiplex Assays for Two Genera of Bloom-Forming Cyanobacteria, Cylindrospermopsis and Microcystis.

    PubMed

    Te, Shu Harn; Chen, Enid Yingru; Gin, Karina Yew-Hoong

    2015-08-01

    The increasing occurrence of harmful cyanobacterial blooms, often linked to deteriorated water quality and adverse public health effects, has become a worldwide concern in recent decades. The use of molecular techniques such as real-time quantitative PCR (qPCR) has become increasingly popular in the detection and monitoring of harmful cyanobacterial species. Multiplex qPCR assays that quantify several toxigenic cyanobacterial species have been established previously; however, there is no molecular assay that detects several bloom-forming species simultaneously. Microcystis and Cylindrospermopsis are the two most commonly found genera and are known to be able to produce microcystin and cylindrospermopsin hepatotoxins. In this study, we designed primers and probes which enable quantification of these genera based on the RNA polymerase C1 gene for Cylindrospermopsis species and the c-phycocyanin beta subunit-like gene for Microcystis species. Duplex assays were developed for two molecular techniques-qPCR and droplet digital PCR (ddPCR). After optimization, both qPCR and ddPCR assays have high linearity and quantitative correlations for standards. Comparisons of the two techniques showed that qPCR has higher sensitivity, a wider linear dynamic range, and shorter analysis time and that it was more cost-effective, making it a suitable method for initial screening. However, the ddPCR approach has lower variability and was able to handle the PCR inhibition and competitive effects found in duplex assays, thus providing more precise and accurate analysis for bloom samples. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. Multiplex Real-Time qPCR Assay for Simultaneous and Sensitive Detection of Phytoplasmas in Sesame Plants and Insect Vectors

    PubMed Central

    Ikten, Cengiz; Ustun, Rustem; Catal, Mursel; Yol, Engin; Uzun, Bulent

    2016-01-01

    Phyllody, a destructive and economically important disease worldwide caused by phytoplasma infections, is characterized by the abnormal development of floral structures into stunted leafy parts and contributes to serious losses in crop plants, including sesame (Sesamum indicum L.). Accurate identification, differentiation, and quantification of phyllody-causing phytoplasmas are essential for effective management of this plant disease and for selection of resistant sesame varieties. In this study, a diagnostic multiplex qPCR assay was developed using TaqMan® chemistry based on detection of the 16S ribosomal RNA gene of phytoplasmas and the 18S ribosomal gene of sesame. Phytoplasma and sesame specific primers and probes labeled with different fluorescent dyes were used for simultaneous amplification of 16SrII and 16SrIX phytoplasmas in a single tube. The multiplex real-time qPCR assay allowed accurate detection, differentiation, and quantification of 16SrII and 16SrIX groups in 109 sesame plant and 92 insect vector samples tested. The assay was found to have a detection sensitivity of 1.8 x 102 and 1.6 x 102 DNA copies for absolute quantification of 16SrII and 16SrIX group phytoplasmas, respectively. Relative quantification was effective and reliable for determination of phyllody phytoplasma DNA amounts normalized to sesame DNA in infected plant tissues. The development of this qPCR assay provides a method for the rapid measurement of infection loads to identify resistance levels of sesame genotypes against phyllody phytoplasma disease. PMID:27195795

  16. Examining Smoking-Induced Differential Gene Expression Changes in Buccal Mucosa

    DTIC Science & Technology

    2010-01-01

    microarray analyses were used to evaluate gene expression in buccal cells. Initially, qPCR was used to assess relative transcript levels of four genes...U133 plus 2.0 arrays were used for a global evaluation of gene expression changes between four smokers and four nonsmokers. All female subjects were...used to prevent any gender bias in the data, and both cheeks from each subject were sampled. Total RNA was isolated and evaluated for quality as for

  17. Forager bees (Apis mellifera) highly express immune and detoxification genes in tissues associated with nectar processing.

    PubMed

    Vannette, Rachel L; Mohamed, Abbas; Johnson, Brian R

    2015-11-09

    Pollinators, including honey bees, routinely encounter potentially harmful microorganisms and phytochemicals during foraging. However, the mechanisms by which honey bees manage these potential threats are poorly understood. In this study, we examine the expression of antimicrobial, immune and detoxification genes in Apis mellifera and compare between forager and nurse bees using tissue-specific RNA-seq and qPCR. Our analysis revealed extensive tissue-specific expression of antimicrobial, immune signaling, and detoxification genes. Variation in gene expression between worker stages was pronounced in the mandibular and hypopharyngeal gland (HPG), where foragers were enriched in transcripts that encode antimicrobial peptides (AMPs) and immune response. Additionally, forager HPGs and mandibular glands were enriched in transcripts encoding detoxification enzymes, including some associated with xenobiotic metabolism. Using qPCR on an independent dataset, we verified differential expression of three AMP and three P450 genes between foragers and nurses. High expression of AMP genes in nectar-processing tissues suggests that these peptides may contribute to antimicrobial properties of honey or to honey bee defense against environmentally-acquired microorganisms. Together, these results suggest that worker role and tissue-specific expression of AMPs, and immune and detoxification enzymes may contribute to defense against microorganisms and xenobiotic compounds acquired while foraging.

  18. Enhancement of expression of survivin promoter-driven CD/TK double suicide genes by the nuclear matrix attachment region in transgenic gastric cancer cells.

    PubMed

    Niu, Ying; Li, Jian-Sheng; Luo, Xian-Run

    2014-01-25

    This work aimed to study a novel transgenic expression system of the CD/TK double suicide genes enhanced by the nuclear matrix attachment region (MAR) for gene therapy. The recombinant vector pMS-CD/TK containing the MAR-survivin promoter-CD/TK cassette was developed and transfected into human gastric cancer SGC-7901 cells. Expression of the CD/TK genes was detected by quantitative real-time PCR (qPCR) and Western blot. Cell viability and apoptosis were measured using the methyl thiazolyl tetrazolium (MTT) assay and flow cytometry. When the MAR fragment was inserted into the upstream of the survivin promoter, the qPCR result showed that the expression of the CD/TK genes significantly increased 7.7-fold in the transgenic SGC-7901 cells with plasmid pMS-CD/TK compared with that without MAR. MTT and flow cytometry analyses indicated that treatment with the prodrugs (5-FC+GCV) significantly decreased the cellular survival rate and enhanced the cellular apoptosis in the SGC-7901 cells. The expression of the CD/TK double suicide genes driven by the survivin promoter can be enhanced by the MAR fragment in human gastric cancer cells. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Forager bees (Apis mellifera) highly express immune and detoxification genes in tissues associated with nectar processing

    PubMed Central

    Vannette, Rachel L.; Mohamed, Abbas; Johnson, Brian R.

    2015-01-01

    Pollinators, including honey bees, routinely encounter potentially harmful microorganisms and phytochemicals during foraging. However, the mechanisms by which honey bees manage these potential threats are poorly understood. In this study, we examine the expression of antimicrobial, immune and detoxification genes in Apis mellifera and compare between forager and nurse bees using tissue-specific RNA-seq and qPCR. Our analysis revealed extensive tissue-specific expression of antimicrobial, immune signaling, and detoxification genes. Variation in gene expression between worker stages was pronounced in the mandibular and hypopharyngeal gland (HPG), where foragers were enriched in transcripts that encode antimicrobial peptides (AMPs) and immune response. Additionally, forager HPGs and mandibular glands were enriched in transcripts encoding detoxification enzymes, including some associated with xenobiotic metabolism. Using qPCR on an independent dataset, we verified differential expression of three AMP and three P450 genes between foragers and nurses. High expression of AMP genes in nectar-processing tissues suggests that these peptides may contribute to antimicrobial properties of honey or to honey bee defense against environmentally-acquired microorganisms. Together, these results suggest that worker role and tissue-specific expression of AMPs, and immune and detoxification enzymes may contribute to defense against microorganisms and xenobiotic compounds acquired while foraging. PMID:26549293

  20. Comparison of quantitative real-time polymerase chain reaction with NanoString® methodology using adipose and liver tissues from rats fed seaweed.

    PubMed

    Bentley-Hewitt, Kerry L; Hedderley, Duncan I; Monro, John; Martell, Sheridan; Smith, Hannah; Mishra, Suman

    2016-05-25

    Experimental methods are constantly being improved by new technology. Recently a new technology, NanoString®, has been introduced to the market for the analysis of gene expression. Our experiments used adipose and liver samples collected from a rat feeding trial to explore gene expression changes resulting from a diet of 7.5% seaweed. Both quantitative real-time polymerase chain reaction (qPCR) and NanoString methods were employed to look at expression of genes related to fat and glucose metabolism and this paper compares results from both methods. We conclude that NanoString offers a valuable alternative to qPCR and our data suggest that results are more accurate because of the reduced sample handling and direct quantification of gene copy number without the need for enzymatic amplification. However, we have highlighted a potential challenge for both methods, which needs to be addressed when designing primers or probes. We suggest a literature search for known splice variants of a particular gene to be completed so that primers or probes can be designed that do not span exons which may be affected by alternative gene sequences. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Genome-wide screen of DNA methylation changes induced by low dose X-ray radiation in mice.

    PubMed

    Wang, Jingzi; Zhang, Youwei; Xu, Kai; Mao, Xiaobei; Xue, Lijun; Liu, Xiaobei; Yu, Hongjun; Chen, Longbang; Chu, Xiaoyuan

    2014-01-01

    Epigenetic mechanisms play a key role in non-targeted effects of radiation. The purpose of this study was to investigate global hypomethylation and promoter hypermethylation of particular genes induced by low dose radiation (LDR). Thirty male BALB/c mice were divided into 3 groups: control, acutely exposed (0.5 Gy X-rays), and chronic exposure for 10 days (0.05Gy/d×10d). High-performance liquid chromatography (HPLC) and MeDIP-quantitative polymerase chain reaction (qPCR) were used to study methylation profiles. DNMT1 and MBD2 expression was determined by qPCR and western blot assays. Methylation and expression of Rad23b and Ddit3 were determined by bisulfate sequencing primers (BSP) and qPCR, respectively. The results show that LDR induced genomic hypomethylation in blood 2 h postirraditaion, but was not retained at 1-month. DNMT1 and MBD2 were downregulated in a tissue-specific manner but did not persist. Specific hypermethylation was observed for 811 regions in the group receiving chronic exposure, which covered almost all key biological processes as indicated by GO and KEGG pathway analysis. Eight hypermethylated genes (Rad23b, Tdg, Ccnd1, Ddit3, Llgl1, Rasl11a, Tbx2, Scl6a15) were verified by MeDIP-qPCR. Among them, Rad23b and Ddit3 gene displayed tissue-specific methylation and downregulation, which persisted for 1-month postirradiation. Thus, LDR induced global hypomethylation and tissue-specific promoter hypermethylation of particular genes. Promoter hypermethylation, rather than global hypomethylation, was relatively stable. Dysregulation of methylation might be correlated with down-regulation of DNMT1 and MBD2, but much better understanding the molecular mechanisms involved in this process will require further study.

  2. Effect of human rhinovirus infection on airway epithelium tight junction protein disassembly and transepithelial permeability.

    PubMed

    Looi, Kevin; Troy, Niamh M; Garratt, Luke W; Iosifidis, Thomas; Bosco, Anthony; Buckley, Alysia G; Ling, Kak-Ming; Martinovich, Kelly M; Kicic-Starcevich, Elizabeth; Shaw, Nicole C; Sutanto, Erika N; Zosky, Graeme R; Rigby, Paul J; Larcombe, Alexander N; Knight, Darryl A; Kicic, Anthony; Stick, Stephen M

    2016-10-11

    No studies have assessed the effects of human rhinovirus (HRV) infection on epithelial tight junctions (TJs) and resultant barrier function. To correlate viral infection with TJ disassembly, epithelial barrier integrity, and function. Human airway epithelial cells were infected with HRV minor serotype 1B (HRV-1B) at various 50% tissue culture infectivity doses (TCID 50 ) over 72 hours. HRV replication was assessed by quantitative-polymerase chain reaction (qPCR) while cell viability and apoptosis were assessed by proliferation and apoptotic assays, respectively. Protein expression of claudin-1, occludin, and zonula occludens protein-1 (ZO-1) was assessed using In-Cell™ Western assays. Transepithelial permeability assays were performed to assess effects on barrier functionality. RT 2 Profiler focused qPCR arrays and pathway analysis evaluating associations between human TJ and antiviral response were performed to identify potential interactions and pathways between genes of interests. HRV-1B infection affected viability that was both time and TCID 50 dependent. Significant increases in apoptosis and viral replication post-infection correlated with viral titer. Viral infection significantly decreased claudin-1 protein expression at the lower TCID 50 , while a significant decrease in all three TJ protein expressions occurred at higher TCID 50 . Decrease in protein expression was concomitant with significant increases in epithelial permeability of fluorescein isothiocynate labeled-dextran 4 and 20 kDa. Analysis of focused qPCR arrays demonstrated a significant decrease in ZO-1 gene expression. Furthermore, network analysis between human TJ and antiviral response genes revealed possible interactions and regulation of TJ genes via interleukin (IL)-15 in response to HRV-1B infection. HRV-1B infection directly alters human airway epithelial TJ expression leading to increased epithelial permeability potentially via an antiviral response of IL-15.

  3. Culture-Independent Identification of Mycobacterium avium Subspecies paratuberculosis in Ovine Tissues: Comparison with Bacterial Culture and Histopathological Lesions

    PubMed Central

    Acharya, Kamal R.; Dhand, Navneet K.; Whittington, Richard J.; Plain, Karren M.

    2017-01-01

    Johne’s disease is a chronic debilitating enteropathy of ruminants caused by Mycobacterium avium subspecies paratuberculosis (MAP). Current abattoir surveillance programs detect disease via examination of gross lesions and confirmation by histopathological and/or tissue culture, which is time-consuming and has relatively low sensitivity. This study aimed to investigate whether a high-throughput quantitative PCR (qPCR) test is a viable alternative for tissue testing. Intestine and mesenteric lymph nodes were sourced from sheep experimentally infected with MAP and the DNA extracted using a protocol developed for tissues, comprised enzymatic digestion of the tissue homogenate, chemical and mechanical lysis, and magnetic bead-based DNA purification. The extracted DNA was tested by adapting a previously validated qPCR for fecal samples, and the results were compared with culture and histopathology results of the corresponding tissues. The MAP tissue qPCR confirmed infection in the majority of sheep with gross lesions on postmortem (37/38). Likewise, almost all tissue culture (61/64) or histopathology (52/58) positives were detected with good to moderate agreement (Cohen’s kappa statistic) and no significant difference to the reference tests (McNemar’s Chi-square test). Higher MAP DNA quantities corresponded to animals with more severe histopathology (odds ratio: 1.82; 95% confidence interval: 1.60, 2.07). Culture-independent strain typing on tissue DNA was successfully performed. This MAP tissue qPCR method had a sensitivity equivalent to the reference tests and is thus a viable replacement for gross- and histopathological examination of tissue samples in abattoirs. In addition, the test could be validated for testing tissue samples intended for human consumption. PMID:29312970

  4. Culture-Independent Identification of Mycobacterium avium Subspecies paratuberculosis in Ovine Tissues: Comparison with Bacterial Culture and Histopathological Lesions.

    PubMed

    Acharya, Kamal R; Dhand, Navneet K; Whittington, Richard J; Plain, Karren M

    2017-01-01

    Johne's disease is a chronic debilitating enteropathy of ruminants caused by Mycobacterium avium subspecies paratuberculosis (MAP). Current abattoir surveillance programs detect disease via examination of gross lesions and confirmation by histopathological and/or tissue culture, which is time-consuming and has relatively low sensitivity. This study aimed to investigate whether a high-throughput quantitative PCR (qPCR) test is a viable alternative for tissue testing. Intestine and mesenteric lymph nodes were sourced from sheep experimentally infected with MAP and the DNA extracted using a protocol developed for tissues, comprised enzymatic digestion of the tissue homogenate, chemical and mechanical lysis, and magnetic bead-based DNA purification. The extracted DNA was tested by adapting a previously validated qPCR for fecal samples, and the results were compared with culture and histopathology results of the corresponding tissues. The MAP tissue qPCR confirmed infection in the majority of sheep with gross lesions on postmortem (37/38). Likewise, almost all tissue culture (61/64) or histopathology (52/58) positives were detected with good to moderate agreement (Cohen's kappa statistic) and no significant difference to the reference tests (McNemar's Chi-square test). Higher MAP DNA quantities corresponded to animals with more severe histopathology (odds ratio: 1.82; 95% confidence interval: 1.60, 2.07). Culture-independent strain typing on tissue DNA was successfully performed. This MAP tissue qPCR method had a sensitivity equivalent to the reference tests and is thus a viable replacement for gross- and histopathological examination of tissue samples in abattoirs. In addition, the test could be validated for testing tissue samples intended for human consumption.

  5. Reproducibility of telomere length assessment: an international collaborative study.

    PubMed

    Martin-Ruiz, Carmen M; Baird, Duncan; Roger, Laureline; Boukamp, Petra; Krunic, Damir; Cawthon, Richard; Dokter, Martin M; van der Harst, Pim; Bekaert, Sofie; de Meyer, Tim; Roos, Goran; Svenson, Ulrika; Codd, Veryan; Samani, Nilesh J; McGlynn, Liane; Shiels, Paul G; Pooley, Karen A; Dunning, Alison M; Cooper, Rachel; Wong, Andrew; Kingston, Andrew; von Zglinicki, Thomas

    2015-10-01

    Telomere length is a putative biomarker of ageing, morbidity and mortality. Its application is hampered by lack of widely applicable reference ranges and uncertainty regarding the present limits of measurement reproducibility within and between laboratories. We instigated an international collaborative study of telomere length assessment: 10 different laboratories, employing 3 different techniques [Southern blotting, single telomere length analysis (STELA) and real-time quantitative PCR (qPCR)] performed two rounds of fully blinded measurements on 10 human DNA samples per round to enable unbiased assessment of intra- and inter-batch variation between laboratories and techniques. Absolute results from different laboratories differed widely and could thus not be compared directly, but rankings of relative telomere lengths were highly correlated (correlation coefficients of 0.63-0.99). Intra-technique correlations were similar for Southern blotting and qPCR and were stronger than inter-technique ones. However, inter-laboratory coefficients of variation (CVs) averaged about 10% for Southern blotting and STELA and more than 20% for qPCR. This difference was compensated for by a higher dynamic range for the qPCR method as shown by equal variance after z-scoring. Technical variation per laboratory, measured as median of intra- and inter-batch CVs, ranged from 1.4% to 9.5%, with differences between laboratories only marginally significant (P = 0.06). Gel-based and PCR-based techniques were not different in accuracy. Intra- and inter-laboratory technical variation severely limits the usefulness of data pooling and excludes sharing of reference ranges between laboratories. We propose to establish a common set of physical telomere length standards to improve comparability of telomere length estimates between laboratories. © The Author 2014. Published by Oxford University Press on behalf of the International Epidemiological Association.

  6. Single Fluorescence Channel-based Multiplex Detection of Avian Influenza Virus by Quantitative PCR with Intercalating Dye

    PubMed Central

    Ahberg, Christian D.; Manz, Andreas; Neuzil, Pavel

    2015-01-01

    Since its invention in 1985 the polymerase chain reaction (PCR) has become a well-established method for amplification and detection of segments of double-stranded DNA. Incorporation of fluorogenic probe or DNA intercalating dyes (such as SYBR Green) into the PCR mixture allowed real-time reaction monitoring and extraction of quantitative information (qPCR). Probes with different excitation spectra enable multiplex qPCR of several DNA segments using multi-channel optical detection systems. Here we show multiplex qPCR using an economical EvaGreen-based system with single optical channel detection. Previously reported non quantitative multiplex real-time PCR techniques based on intercalating dyes were conducted once the PCR is completed by performing melting curve analysis (MCA). The technique presented in this paper is both qualitative and quantitative as it provides information about the presence of multiple DNA strands as well as the number of starting copies in the tested sample. Besides important internal control, multiplex qPCR also allows detecting concentrations of more than one DNA strand within the same sample. Detection of the avian influenza virus H7N9 by PCR is a well established method. Multiplex qPCR greatly enhances its specificity as it is capable of distinguishing both haemagglutinin (HA) and neuraminidase (NA) genes as well as their ratio. PMID:26088868

  7. Development of a Gene Expression Assay for the Diagnosis of Mycobacterium bovis Infection in African Lions (Panthera leo).

    PubMed

    Olivier, T T; Viljoen, I M; Hofmeyr, J; Hausler, G A; Goosen, W J; Tordiffe, A S W; Buss, P; Loxton, A G; Warren, R M; Miller, M A; van Helden, P D; Parsons, S D C

    2017-06-01

    Mycobacterium bovis infection, the cause of bovine tuberculosis (BTB), is endemic in wildlife in the Kruger National Park (KNP), South Africa. In lions, a high infection prevalence and BTB mortalities have been documented in the KNP; however, the ecological consequences of this disease are currently unknown. Sensitive assays for the detection of this infection in this species are therefore required. Blood from M. bovis-exposed, M. bovis-unexposed, M. tuberculosis-exposed and M. bovis-infected lions was incubated in QuantiFERON ® -TB Gold (QFT) tubes containing either saline or ESAT-6/CFP-10 peptides. Using qPCR, selected reference genes were evaluated for expression stability in these samples and selected target genes were evaluated as markers of antigen-dependent immune activation. The abundance of monokine induced by gamma interferon (MIG/CXCL9) mRNA, measured in relation to that of YWHAZ, was used as a marker of ESAT-6/CFP-10 sensitization. The gene expression assay results were compared between lion groups, and lenient and stringent diagnostic cut-off values were calculated. This CXCL9 gene expression assay combines a highly specific stimulation platform with a sensitive diagnostic marker that allows for discrimination between M. bovis-infected and M. bovis-uninfected lions. © 2015 Blackwell Verlag GmbH.

  8. Identification and SNP association analysis of a novel gene in chicken.

    PubMed

    Mei, Xingxing; Kang, Xiangtao; Liu, Xiaojun; Jia, Lijuan; Li, Hong; Li, Zhuanjian; Jiang, Ruirui

    2016-02-01

    A novel gene that was predicted to encode a long noncoding RNA (lncRNA) transcript was identified in a previous study that aimed to detect candidate genes related to growth rate differences between Chinese local breed Gushi chickens and Anka broilers. To characterise the biological function of the lncRNA, we cloned and sequenced the complete open reading frame of the gene. We performed quantitative real-time polymerase chain reaction (qPCR) to analyse the expression patterns of the lncRNA in different tissues of chicken at different development stages. The qPCR data showed that the novel lncRNA gene was expressed extensively, with the highest abundance in spleen and lung and the lowest abundance in pectoralis and leg muscle. Additionally, we identified a single nucleotide polymorphism (SNP) at the 5'-end of the gene and studied the association between the SNP and chicken growth traits using data from an F2 resource population of Gushi chickens and Anka broilers. The association analysis showed that the SNP was significantly (P < 0.05) associated with leg muscle weight, chest breadth, sternal length and body weight in chickens at 1 day, 4 weeks and 6 weeks of age. We concluded that the novel lncRNA gene, which we designated pouBW1, may play an important role in regulating chicken growth. © 2015 Stichting International Foundation for Animal Genetics.

  9. Nrf2 target genes are induced under marginal selenium-deficiency

    PubMed Central

    Müller, Mike; Banning, Antje; Brigelius-Flohé, Regina

    2010-01-01

    A suboptimal selenium supply appears to prevail in Europe. The current study, therefore, was focused on the changes in gene expression under a suboptimal selenium intake. Previous microarray analyses in the colon of mice fed either a selenium-adequate or a moderately deficient diet revealed a change in genes of several pathways. Severe selenium-deficiency has been found previously to influence Nrf2-regulated genes of the adaptive response. Since the previous pathway analyses were done with a program not searching for Nrf2 target genes, respective genes were manually selected and confirmed by qPCR. qPCR revealed an induction of phase II (Nqo1, Gsts, Sult1b1 and Ugt1a6) and antioxidant enzymes (Hmox1, Mt2, Prdx1, Srxn1, Sod1 and Gclc) under the selenium-poor diet, which is considered to compensate for the loss of selenoproteins. The strongest effects were observed in the duodenum where preferentially genes for antioxidant enzymes were up-regulated. These also include the mRNA of the selenoproteins TrxR1 and GPx2 that would enable their immediate translation upon selenium refeeding. The down-regulation of Gsk3β in moderate selenium-deficiency observed in the previous paper provides a possible explanation for the activation of the Nrf2 pathway, because inhibition of GSK3β results in the nuclear accumulation of Nrf2. PMID:21189866

  10. Bartonella vinsonii subsp. berkhoffii and B. henselae in dogs.

    PubMed

    Müller, A; Soto, F; Sepúlveda, M; Bittencourt, P; Benevenute, J L; Ikeda, P; Machado, R Z; André, M R

    2018-05-06

    This study aimed to molecularly survey Bartonella in dogs from Chile. Quantitative real-time PCR (qPCR) for Bartonella spp. based on nuoG gene was performed in 139 blood samples taken from dogs belonging to rural localities of the Valdivia Province, Los Ríos region, southern Chile. nuoG qPCR-positive samples were submitted to conventional PCR assays for ftsZ, gltA, rpoB and nuoG genes and sequencing for speciation and phylogenetic analysis. Based upon qPCR results, Bartonella spp. occurrence in dogs was 4.3% (6/139). Out of six nuoG qPCR-positive samples, six, three, two and none showed positive results in cPCR assays based on gltA, ftsZ, rpoB and nuoG genes, respectively. Consistent sequencing results were obtained only for the ftsZ gene from sample #1532 (GeneBank accession number: MG252491), and gltA gene from samples #1535 (MG252490) and #1532 (148 bp fragment that was not deposited in GenBank). Phylogenetic analysis of ftsZ and gltA genes allowed speciation of two nuoG-positive samples, one as Bartonella vinsonii subsp. berkhoffii and the other as B. henselae. Bartonella vinsonii subsp. berkhoffii and B. henselae are detected for the first time in dogs from Chile, highlighting the importance of the canine population as a source of zoonotic agents and potential infection risk to humans.

  11. Monitoring the freshness of fish: development of a qPCR method applied to MAP chilled whiting.

    PubMed

    Dehaut, Alexandre; Krzewinski, Frédéric; Grard, Thierry; Chollet, Marlène; Jacques, Philippe; Brisabois, Anne; Duflos, Guillaume

    2016-04-01

    Monitoring of early stages of freshness decay is a major issue for the fishery industry to guarantee the best quality for this highly perishable food matrix. Numerous techniques have been developed, but most of them have the disadvantage of being reliable only either in the last stages of fish freshness or for the analysis of whole fish. This study describes the development of a qPCR method targeting the torA gene harboured by fish spoilage microorganisms. torA encodes an enzyme that leads to the production of trimethylamine responsible for the characteristic spoiled-fish odour. A degenerate primer pair was designed. It amplified torA gene of both Vibrio and Photobacterium with good efficiencies on 7-log DNA dilutions. The primer pair was used during a shelf-life monitoring study achieved on modified atmosphere packed, chilled, whiting (Merlangius merlangus) fillets. The qPCR approach allows the detection of an increase of torA copies throughout the storage of fillets in correlation with the evolution of both total volatile basic nitrogen (-0.86) and trimethylamine concentrations (-0.81), known as spoilage markers. This study described a very promising, sensitive, reliable, time-effective, technique in the field of freshness characterisation of processed fish. © 2015 Society of Chemical Industry.

  12. Differential expression of the Slc4 bicarbonate transporter family in murine corneal endothelium and cell culture.

    PubMed

    Shei, William; Liu, Jun; Htoon, Hla M; Aung, Tin; Vithana, Eranga N

    2013-01-01

    To characterize the relative expression levels of all the solute carrier 4 (Slc4) transporter family members (Slc4a1-Slc4a11) in murine corneal endothelium using real-time quantitative (qPCR), to identify further important members besides Slc4a11 and Slc4a4, and to explore how close to the baseline levels the gene expressions remain after cells have been subjected to expansion and culture. Descemet's membrane-endothelial layers of 8-10-week-old C57BL6 mice were stripped from corneas and used for both primary cell culture and direct RNA extraction. Total RNA (from uncultured cells as well as cultured cells at passages 2 and 7) was reverse transcribed, and the cDNA was used for real time qPCR using specific primers for all the Slc4 family members. The geNorm method was applied to determine the most stable housekeeping genes and normalization factor, which was calculated from multiple housekeeping genes for more accurate and robust quantification. qPCR analyses revealed that all Slc4 bicarbonate transporter family members were expressed in mouse corneal endothelium. Slc4a11 showed the highest expression, which was approximately three times higher than that of Slc4a4 (3.4±0.3; p=0.004). All Slc4 genes were also expressed in cultured cells, and interestingly, the expression of Slc4a11 in cultured cells was significantly reduced by approximately 20-fold (0.05±0.001; p=0.000001) in early passage and by approximately sevenfold (0.14±0.002; p=0.000002) in late passage cells. Given the known involvement of SLC4A4 and SLC4A11 in corneal dystrophies, we speculate that the other two highly expressed genes in the uncultured corneal endothelium, SLC4A2 and SLC4A7, are worthy of being considered as potential candidate genes for corneal endothelial diseases. Moreover, as cell culture can affect expression levels of Slc4 genes, caution and careful design of experiments are necessary when undertaking studies of Slc4-mediated ion transport in cultured cells.

  13. Development of Quantitative Real-Time PCR Assays for Detection and Quantification of Surrogate Biological Warfare Agents in Building Debris and Leachate▿

    PubMed Central

    Saikaly, Pascal E.; Barlaz, Morton A.; de los Reyes, Francis L.

    2007-01-01

    Evaluation of the fate and transport of biological warfare (BW) agents in landfills requires the development of specific and sensitive detection assays. The objective of the current study was to develop and validate SYBR green quantitative real-time PCR (Q-PCR) assays for the specific detection and quantification of surrogate BW agents in synthetic building debris (SBD) and leachate. Bacillus atrophaeus (vegetative cells and spores) and Serratia marcescens were used as surrogates for Bacillus anthracis (anthrax) and Yersinia pestis (plague), respectively. The targets for SYBR green Q-PCR assays were the 16S-23S rRNA intergenic transcribed spacer (ITS) region and recA gene for B. atrophaeus and the gyrB, wzm, and recA genes for S. marcescens. All assays showed high specificity when tested against 5 ng of closely related Bacillus and Serratia nontarget DNA from 21 organisms. Several spore lysis methods that include a combination of one or more of freeze-thaw cycles, chemical lysis, hot detergent treatment, bead beat homogenization, and sonication were evaluated. All methods tested showed similar threshold cycle values. The limit of detection of the developed Q-PCR assays was determined using DNA extracted from a pure bacterial culture and DNA extracted from sterile water, leachate, and SBD samples spiked with increasing quantities of surrogates. The limit of detection for B. atrophaeus genomic DNA using the ITS and B. atrophaeus recA Q-PCR assays was 7.5 fg per PCR. The limits of detection of S. marcescens genomic DNA using the gyrB, wzm, and S. marcescens recA Q-PCR assays were 7.5 fg, 75 fg, and 7.5 fg per PCR, respectively. Quantification of B. atrophaeus vegetative cells and spores was linear (R2 > 0.98) over a 7-log-unit dynamic range down to 101 B. atrophaeus cells or spores. Quantification of S. marcescens (R2 > 0.98) was linear over a 6-log-unit dynamic range down to 102 S. marcescens cells. The developed Q-PCR assays are highly specific and sensitive and can be used for monitoring the fate and transport of the BW surrogates B. atrophaeus and S. marcescens in building debris and leachate. PMID:17720820

  14. A qPCR-Based Tool to Diagnose the Presence of Harmful Cyanobacteria and Cyanotoxins in Drinking Water Sources.

    PubMed

    Chiu, Yi-Ting; Chen, Yi-Hsuan; Wang, Ting-Shaun; Yen, Hung-Kai; Lin, Tsair-Fuh

    2017-05-20

    Harmful cyanobacteria have been an important concern for drinking water quality for quite some time, as they may produce cyanotoxins and odorants. Microcystis and Cylindrospermopsis are two common harmful cyanobacterial genera detected in freshwater lakes and reservoirs, with microcystins (MCs) and cylindrospermopsin (CYN) as their important metabolites, respectively. In this study, two sets of duplex qPCR systems were developed, one for quantifying potentially-toxigenic Microcystis and Microcystis , and the other one for cylindrospermopsin-producing cyanobacteria and Cylindrospermopsis . The duplex qPCR systems were developed and validated in the laboratory by using 338 samples collected from 29 reservoirs in Taiwan and her offshore islands. Results show that cell numbers of Microcystis and Cylindorspermopsis enumerated with microscopy, and MCs and CYN concentrations measured with the enzyme-linked immuno-sorbent assay method, correlated well with their corresponding gene copies determined with the qPCR systems (range of coefficients of determination R² = 0.392-0.740). The developed qPCR approach may serve as a useful tool for the water industry to diagnose the presence of harmful cyanobacteria and the potential presence of cyanotoxins in source waters.

  15. A qPCR-Based Tool to Diagnose the Presence of Harmful Cyanobacteria and Cyanotoxins in Drinking Water Sources

    PubMed Central

    Chiu, Yi-Ting; Chen, Yi-Hsuan; Wang, Ting-Shaun; Yen, Hung-Kai; Lin, Tsair-Fuh

    2017-01-01

    Harmful cyanobacteria have been an important concern for drinking water quality for quite some time, as they may produce cyanotoxins and odorants. Microcystis and Cylindrospermopsis are two common harmful cyanobacterial genera detected in freshwater lakes and reservoirs, with microcystins (MCs) and cylindrospermopsin (CYN) as their important metabolites, respectively. In this study, two sets of duplex qPCR systems were developed, one for quantifying potentially-toxigenic Microcystis and Microcystis, and the other one for cylindrospermopsin-producing cyanobacteria and Cylindrospermopsis. The duplex qPCR systems were developed and validated in the laboratory by using 338 samples collected from 29 reservoirs in Taiwan and her offshore islands. Results show that cell numbers of Microcystis and Cylindorspermopsis enumerated with microscopy, and MCs and CYN concentrations measured with the enzyme-linked immuno-sorbent assay method, correlated well with their corresponding gene copies determined with the qPCR systems (range of coefficients of determination R2 = 0.392−0.740). The developed qPCR approach may serve as a useful tool for the water industry to diagnose the presence of harmful cyanobacteria and the potential presence of cyanotoxins in source waters. PMID:28531121

  16. Clinical relevance of molecular identification of microorganisms and detection of antimicrobial resistance genes in bloodstream infections of paediatric cancer patients.

    PubMed

    Carlesse, Fabianne; Cappellano, Paola; Quiles, Milene Gonçalves; Menezes, Liana Carballo; Petrilli, Antonio Sérgio; Pignatari, Antonio Carlos

    2016-09-01

    Bloodstream infections (BSIs) are the major cause of mortality in cancer patients. Molecular techniques are used for rapid diagnosis of BSI, allowing early therapy and improving survival. We aimed to establish whether real-time quantitative polymerase chain reaction (qPCR) could improve early diagnosis and therapy in paediatric cancer patients, and describe the predominant pathogens of BSI and their antimicrobial susceptibility. Blood samples were processed by the BACTEC system and microbial identification and susceptibility tests were performed by the Phoenix system. All samples were screened by multiplex 16 s rDNA qPCR. Seventeen species were evaluated using sex-specific TaqMan probes and resistance genes blaSHV, blaTEM, blaCTX, blaKPC, blaIMP, blaSPM, blaVIM, vanA, vanB and mecA were screened by SYBR Green reactions. Therapeutic efficacy was evaluated at the time of positive blood culture and at final phenotypic identification and antimicrobial susceptibility results. We analyzed 69 episodes of BSI from 64 patients. Gram-positive bacteria were identified in 61 % of the samples, Gram-negative bacteria in 32 % and fungi in 7 %. There was 78.2 % of agreement between the phenotypic and molecular methods in final species identification. The mecA gene was detected in 81.4 % of Staphylococcus spp., and 91.6 % were concordant with the phenotypic method. Detection of vanA gene was 100 % concordant. The concordance for Gram-negative susceptibilities was 71.4 % for Enterobacteriaceae and 50 % for Pseudomonas aeruginosa. Therapy was more frequently inadequate in patients who died, and the molecular test was concordant with the phenotypic susceptibility test in 50 %. qPCR has potential indication for early identification of pathogens and antimicrobial resistance genes from BSI in paediatric cancer patients and may improve antimicrobial therapy.

  17. Development of iPS (induced pluripotent stem cells) using natural product from extract of fish oocyte to provide stem cell for regenerative therapy

    NASA Astrophysics Data System (ADS)

    Meilany, Sofy; Firdausiyah, Qonitha S.; Naroeni, Aroem

    2017-02-01

    In this study, we developed a method to induce pluripotency of adult cells (fibroblast) into stem cells using a natural product, extract of fish oocyte, by comparing the extract concentration, 1 mg/ml and 2 mg/ml. The analyses were done by measuring the Nanog gene expression in cells using qPCR and detecting fibroblast marker anti H2-KK. The results revealed existence of a colony of stem cells in the cell that was induced with 2mg/ml concentration of oocytes. Nanoggene expression was analyzed by qPCR and the results showed expression of Nanog gene compared to the control. Analysis of result of fibroblast using Tali Cytometer and anti H2KK antibody showed loss of expression of Anti H2KK meaning there was transformation from fibroblast type cell to pluripotent cell type.

  18. Chemical and biological quality of water in Grand Lake St. Marys, Ohio, 2011-12, with emphasis on cyanobacteria

    USGS Publications Warehouse

    Dumouchelle, Denise H.; Stelzer, Erin A.

    2014-01-01

    Microcystin concentrations were correlated to cyanobacteria biovolumes, and to concentrations of one ion (sodium) and three trace elements (molybdenum, antimony, and lithium). Concentrations of toxin genes (mcyE) determined by qPCR were consistently low forMicrocystis and consistently high for Planktothrix throughout both sampling years. Concentrations of cyanobacteria found by qPCR were correlated to microcystin concentrations, cyanobacteria biovolumes, selected nutrient concentrations, and other parameters. Results from qRT-PCR assays showed that toxin gene expression was predominantly from the genus Planktothrix, and concentrations of the RNA transcript varied throughout the two sampling years. A number of conditions that may play a role in the dominance ofPlanktothrix and the production of microcystin were identified including water temperature; low-light transmission; low concentrations of silica and manganese; and relatively high concentrations of sodium, sulfate, and the trace elements of strontium, vanadium, and boron.

  19. Comparison of gull-specific assays targeting 16S rRNA gene of Catellicoccus marimammalium and Streptococcus spp.

    EPA Science Inventory

    Gulls have been implicated as a source of fecal contamination in inland and coastal waters. Only one gull-specific assay is currently available (i.e., gull2 qPCR assay). This assay is based on the 16S rRNA gene of Catellicocclls marimammalium and has showed a high level of host-s...

  20. Abundances of Tetracycline, Sulphonamide and Beta-Lactam Antibiotic Resistance Genes in Conventional Wastewater Treatment Plants (WWTPs) with Different Waste Load

    PubMed Central

    Voolaid, Veiko; Ritz, Christian; Tenson, Tanel; Virta, Marko; Kisand, Veljo

    2014-01-01

    Antibiotics and antibiotic resistant bacteria enter wastewater treatment plants (WWTPs), an environment where resistance genes can potentially spread and exchange between microbes. Several antibiotic resistance genes (ARGs) were quantified using qPCR in three WWTPs of decreasing capacity located in Helsinki, Tallinn, and Tartu, respectively: sulphonamide resistance genes (sul1 and sul2), tetracycline resistance genes (tetM and tetC), and resistance genes for extended spectrum beta-lactams (blaoxa-58, blashv-34, and blactx-m-32). To avoid inconsistencies among qPCR assays we normalised the ARG abundances with 16S rRNA gene abundances while assessing if the respective genes increased or decreased during treatment. ARGs were detected in most samples; sul1, sul2, and tetM were detected in all samples. Statistically significant differences (adjusted p<0.01) between the inflow and effluent were detected in only four cases. Effluent values for blaoxa-58 and tetC decreased in the two larger plants while tetM decreased in the medium-sized plant. Only blashv-34 increased in the effluent from the medium-sized plant. In all other cases the purification process caused no significant change in the relative abundance of resistance genes, while the raw abundances fell by several orders of magnitude. Standard water quality variables (biological oxygen demand, total phosphorus and nitrogen, etc.) were weakly related or unrelated to the relative abundance of resistance genes. Based on our results we conclude that there is neither considerable enrichment nor purification of antibiotic resistance genes in studied conventional WWTPs. PMID:25084517

  1. Comparison of sensitivity and specificity of 4 methods for detection of Giardia duodenalis in feces: immunofluorescence and PCR are superior to microscopy of concentrated iodine-stained samples.

    PubMed

    Gotfred-Rasmussen, Helle; Lund, Marianne; Enemark, Heidi L; Erlandsen, Mogens; Petersen, Eskild

    2016-03-01

    For decades, microscopy of feces after formol-ethylacetate (FEA) concentration and iodine staining has been the routine test for intestinal protozoa. Lately, polymerase chain reaction or fluorescence-labeled parasite-specific antibodies have been introduced, but their place in everyday routine diagnostics has not yet been established. We compared FEA and salt-sugar flotation (SSF) concentration followed by microscopy of iodine-stained concentrate and immunofluorescence assay (IFA) and real-time polymerase chain reaction (qPCR) for detection of Giardia duodenalis in human feces. The median number of Giardia cysts found by FEA in 19 Giardia-positive samples was 50 cysts per gram (CPG), by SSF 350 CPG, by IFA 76,700 CPG, and by qPCR 316,000 CPG. We next tested 455 consecutive samples for presence of Giardia cysts. Using IFA as reference, qPCR had a sensitivity of 91%, specificity of 95.1%, a false-positive rate of 50%, a false-negative rate of 0.48%, a positive predictive value of 50%, and a negative predictive value of 99.5%. In conclusion, qPCR and IFA were significantly more sensitive than microscopy of iodine-stained concentrates using either FEA or SSF. We suggest, when using qPCR, that positive samples are verified by IFA to prevent false-positive results. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Development of a duplex droplet digital PCR assay for absolute quantitative detection of "Candidatus Liberibacter asiaticus".

    PubMed

    Selvaraj, Vijayanandraj; Maheshwari, Yogita; Hajeri, Subhas; Chen, Jianchi; McCollum, Thomas Greg; Yokomi, Raymond

    2018-01-01

    Huanglongbing (HLB, citrus greening) is a devastating citrus disease affecting citrus production worldwide. It is associated with the bacterium "Candidatus Liberibacter asiaticus" (CLas) and is vectored by the Asian citrus psyllid (ACP). Currently, diagnosis of CLas in regulatory samples is based on real-time quantitative polymerase chain reaction (qPCR) using 16S rRNA gene specific primers/probe. The detection of CLas using qPCR is challenging due to low pathogen titer and uneven distribution in infected plants and exacerbated by sampling issues and presence of inhibitors. This study evaluated a duplex droplet digital polymerase chain reaction (ddPCR) using multi-copy gene targets, 16S and RNR, to simultaneously detect CLas DNA targets in the same sample for unambiguous detection of the HLB pathogen in DNA extracts from citrus leaves and ACP. Standard curve analyses on tenfold dilution series with plasmid, citrus leaf and ACP DNA showed that both ddPCR and qPCR exhibited good linearity and efficiency in the duplex assay. CLas-infected low titer samples were used to validate the duplex ddPCR and qPCR performance and demonstrated that detection rate is higher when both 16S and RNR primers were used in duplex assay. However, the receiver operating characteristic analysis indicated that area under the curve for RNR primer was significantly broader, compared to 16S primers for CLas detection at low target titer. The absolute quantification of CLas at variable titers was reproducible and repeatable for both primer sets and the ddPCR showed higher resilience to PCR inhibitors with citrus leaf and ACP extracts. Hence, the resultant duplex ddPCR assay resulted in a significantly improved detection platform for diagnosis of CLas in samples with low pathogen titer.

  3. Development of a duplex droplet digital PCR assay for absolute quantitative detection of "Candidatus Liberibacter asiaticus"

    PubMed Central

    Hajeri, Subhas; Chen, Jianchi; McCollum, Thomas Greg

    2018-01-01

    Huanglongbing (HLB, citrus greening) is a devastating citrus disease affecting citrus production worldwide. It is associated with the bacterium “Candidatus Liberibacter asiaticus” (CLas) and is vectored by the Asian citrus psyllid (ACP). Currently, diagnosis of CLas in regulatory samples is based on real-time quantitative polymerase chain reaction (qPCR) using 16S rRNA gene specific primers/probe. The detection of CLas using qPCR is challenging due to low pathogen titer and uneven distribution in infected plants and exacerbated by sampling issues and presence of inhibitors. This study evaluated a duplex droplet digital polymerase chain reaction (ddPCR) using multi-copy gene targets, 16S and RNR, to simultaneously detect CLas DNA targets in the same sample for unambiguous detection of the HLB pathogen in DNA extracts from citrus leaves and ACP. Standard curve analyses on tenfold dilution series with plasmid, citrus leaf and ACP DNA showed that both ddPCR and qPCR exhibited good linearity and efficiency in the duplex assay. CLas-infected low titer samples were used to validate the duplex ddPCR and qPCR performance and demonstrated that detection rate is higher when both 16S and RNR primers were used in duplex assay. However, the receiver operating characteristic analysis indicated that area under the curve for RNR primer was significantly broader, compared to 16S primers for CLas detection at low target titer. The absolute quantification of CLas at variable titers was reproducible and repeatable for both primer sets and the ddPCR showed higher resilience to PCR inhibitors with citrus leaf and ACP extracts. Hence, the resultant duplex ddPCR assay resulted in a significantly improved detection platform for diagnosis of CLas in samples with low pathogen titer. PMID:29772016

  4. Microbial Abundances in Salt Marsh Soils: A Molecular Approach for Small Spatial Scales

    NASA Astrophysics Data System (ADS)

    Granse, Dirk; Mueller, Peter; Weingartner, Magdalena; Hoth, Stefan; Jensen, Kai

    2016-04-01

    The rate of biological decomposition greatly determines the carbon sequestration capacity of salt marshes. Microorganisms are involved in the decomposition of biomass and the rate of decomposition is supposed to be related to microbial abundance. Recent studies quantified microbial abundance by means of quantitative polymerase chain reaction (QPCR), a method that also allows determining the microbial community structure by applying specific primers. The main microbial community structure can be determined by using primers specific for 16S rRNA (Bacteria) and 18S rRNA (Fungi) of the microbial DNA. However, the investigation of microbial abundance pattern at small spatial scales, such as locally varying abiotic conditions within a salt-marsh system, requires high accuracy in DNA extraction and QPCR methods. Furthermore, there is evidence that a single extraction may not be sufficient to reliably quantify rRNA gene copies. The aim of this study was to establish a suitable DNA extraction method and stable QPCR conditions for the measurement of microbial abundances in semi-terrestrial environments. DNA was extracted from two soil samples (top WE{5}{cm}) by using the PowerSoil DNA Extraction Kit (Mo Bio Laboratories, Inc., Carlsbad, CA) and applying a modified extraction protocol. The DNA extraction was conducted in four consecutive DNA extraction loops from three biological replicates per soil sample by reusing the PowerSoil bead tube. The number of Fungi and Bacteria rRNA gene copies of each DNA extraction loop and a pooled DNA solution (extraction loop 1 - 4) was measured by using the QPCR method with taxa specific primer pairs (Bacteria: B341F, B805R; Fungi: FR1, FF390). The DNA yield of the replicates varied at DNA extraction loop 1 between WE{25 and 85}{ng

  5. Occurrence of Coliform and Escherichia coli Contamination and Absence of Escherichia coli O157:H7 on Romaine Lettuce from Retail Stores in the Upper Midwest.

    PubMed

    Greve, Josephine D; Zietlow, Mark S; Miller, Kevin M; Ellingson, Jay L E

    2015-09-01

    A total of 720 whole, romaine lettuce heads were purchased from retail locations in the Upper Midwest and assessed for coliform and Escherichia coli contamination and for the presence of E. coli O157:H7. During a 16-month period (August 2010 through December 2011), coliform and E. coli counts were enumerated on Petrifilm, and the presence of E. coli O157:H7 and the virulence gene eae was evaluated by real-time PCR (qPCR). Over half (400 of 720) of the lettuce samples were processed with an immunomagnetic separation step before the qPCR assay. All retail lettuce samples were negative for E. coli O157:H7 when tested with the R.A.P.I.D. LT qPCR targeting a region of the O-antigen, and only two (0.28%) were positive for the eae gene when tested with LightCycler qPCR. On Petrifilm, coliform counts of most lettuce samples (96.4%) were between <10(1) and 10(3) CFU/g, and E. coli counts for nearly all lettuce samples (98.2%) were <10(1) CFU/g. No seasonal trend in coliform and E. coli counts was observed throughout the examination period nor was a difference in coliform counts observed between packaged and nonpackaged lettuce heads. These results contribute to the limited recorded data and understanding of microbial contamination of whole romaine lettuce heads purchased from retail locations, specifically revealing the absence of E. coli O157:H7 and low levels of contamination with coliforms and other E. coli strains.

  6. Development and application of a rapid, user-friendly, and inexpensive method to detect Dehalococcoides sp. reductive dehalogenase genes from groundwater.

    PubMed

    Kanitkar, Yogendra H; Stedtfeld, Robert D; Hatzinger, Paul B; Hashsham, Syed A; Cupples, Alison M

    2017-06-01

    TaqMan probe-based quantitative polymerase chain reaction (qPCR) specific to the biomarker reductive dehalogenase (RDase) genes is a widely accepted molecular biological tool (MBT) for determining the abundance of Dehalococcoides sp. in groundwater samples from chlorinated solvent-contaminated sites. However, there are significant costs associated with this MBT. In this study, we describe an approach that requires only low-cost laboratory equipment (a bench top centrifuge and a water bath) and requires less time and resources compared to qPCR. The method involves the concentration of biomass from groundwater, without DNA extraction, and loop-mediated isothermal amplification (LAMP) of the cell templates. The amplification products are detected by a simple visual color change (orange/green). The detection limits of the assay were determined using groundwater from a contaminated site. In addition, the assay was tested with groundwater from three additional contaminated sites. The final approach to detect RDase genes, without DNA extraction or a thermal cycler, was successful to 1.8 × 10 5  gene copies per L for vcrA and 1.3 × 10 5  gene copies per L for tceA. Both values are below the threshold recommended for effective in situ dechlorination.

  7. Quantitative detection of antibiotic resistance genes using magnetic/luminescent core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Son, Ahjeong; Hristova, Krassimira R.; Dosev, Dosi; Kennedy, Ian M.

    2008-02-01

    Nanoscale magnetic/luminescent core-shell particles were used for DNA quantification in a hybridization-in-solution format. We demonstrated a simple, high-throughput, and non-PCR based DNA assay for quantifying antibiotic resistance gene tetQ. Fe 3O 4/Eu:Gd IIO 3 nanoparticles (NPs) synthesized by spray pyrolysis were biofunctionalized by passive adsorption of NeutrAvidin. Following immobilization of biotinylated probe DNA on the particles' surfaces, target dsDNA and signaling probe DNA labeled with Cy3 were hybridized with NPs-probe DNA. Hybridized DNA complexes were separated from solution by a magnet, while non-hybridized DNA remained in solution. A linear quantification (R2 = 0.99) of a target tetQ gene was achieved based on the normalized fluorescence (Cy3/NPs) of DNANP hybrids. A real-time qPCR assay was used for evaluation of the NPs assay sensitivity and range of quantification. The quantity of antibiotic resistance tetQ genes in activated sludge microcosms, with and without addition of tetracycline or triclosan has been determined, indicating the potential of the optimized assay for monitoring the level of antibiotic resistance in environmental samples. In addition, the tetQ gene copy numbers in microcosms determined by NPhybridization were well correlated with the numbers measured by real-time qPCR assay (R2 = 0.92).

  8. Meta-Analysis of Quantification Methods Shows that Archaea and Bacteria Have Similar Abundances in the Subseafloor

    PubMed Central

    May, Megan K.; Kevorkian, Richard T.; Steen, Andrew D.

    2013-01-01

    There is no universally accepted method to quantify bacteria and archaea in seawater and marine sediments, and different methods have produced conflicting results with the same samples. To identify best practices, we compiled data from 65 studies, plus our own measurements, in which bacteria and archaea were quantified with fluorescent in situ hybridization (FISH), catalyzed reporter deposition FISH (CARD-FISH), polyribonucleotide FISH, or quantitative PCR (qPCR). To estimate efficiency, we defined “yield” to be the sum of bacteria and archaea counted by these techniques divided by the total number of cells. In seawater, the yield was high (median, 71%) and was similar for FISH, CARD-FISH, and polyribonucleotide FISH. In sediments, only measurements by CARD-FISH in which archaeal cells were permeabilized with proteinase K showed high yields (median, 84%). Therefore, the majority of cells in both environments appear to be alive, since they contain intact ribosomes. In sediments, the sum of bacterial and archaeal 16S rRNA gene qPCR counts was not closely related to cell counts, even after accounting for variations in copy numbers per genome. However, qPCR measurements were precise relative to other qPCR measurements made on the same samples. qPCR is therefore a reliable relative quantification method. Inconsistent results for the relative abundance of bacteria versus archaea in deep subsurface sediments were resolved by the removal of CARD-FISH measurements in which lysozyme was used to permeabilize archaeal cells and qPCR measurements which used ARCH516 as an archaeal primer or TaqMan probe. Data from best-practice methods showed that archaea and bacteria decreased as the depth in seawater and marine sediments increased, although archaea decreased more slowly. PMID:24096423

  9. A quantitative TaqMan PCR assay for the detection of Ureaplasma diversum.

    PubMed

    Marques, Lucas M; Amorim, Aline T; Martins, Hellen Braga; Rezende, Izadora Souza; Barbosa, Maysa Santos; Lobão, Tassia Neves; Campos, Guilherme B; Timenetsky, Jorge

    2013-12-27

    Ureaplasma diversum in veterinary studies is an undesirable microbe, which may cause infection in bulls and may result in seminal vesiculitis, balanopostitis, and alterations in spermatozoids, whereas in cows, it may cause placentitis, fetal alveolitis, abortion, and birth of weak calves. U. diversum is released through organic secretions, especially semen, preputial and vaginal mucus, conjunctival secretion, and milk. The aim of the present study was to develop a TaqMan probe, highly sensitive and specific quantitative PCR (qPCR) assay for the detection and quantification of U. diversum from genital swabs of bovines. Primers and probes specific to U. diversum 16S rRNA gene were designed. The specificity, detection limit, intra- and inter-assay variability of qPCR to detect this ureaplasma was compared with the results of the conventional PCR assay (cPCR). Swabs of vaginal mucus from 169 cows were tested. The qPCR assay detected as few as 10 copies of U. diversum and was 100-fold more sensitive than the cPCR. No cross-reactivity with other Mollicutes or eubacteria was observed. U. diversum was detected in 79 swabs (46.42%) by qPCR, while using cPCR it was detected in 42 (25%) samples. The difference in cPCR and qPCR ureaplasma detection between healthy and sick animals was not statistically significant. But the U. diversum load in samples from animals with genital disorders was higher than in healthy animals. The qPCR assay developed herein is highly sensitive and specific for the detection and quantification of U. diversum in vaginal bovine samples. Copyright © 2013. Published by Elsevier B.V.

  10. Distribution and Abundance of Hopanoid Producers in Low-Oxygen Environments of the Eastern Pacific Ocean.

    PubMed

    Kharbush, Jenan J; Kejriwal, Kanchi; Aluwihare, Lihini I

    2016-02-01

    Hopanoids are bacterial membrane lipid biomarker molecules that feature prominently in the molecular fossil record. In the modern marine water column, recent reports implicate bacteria inhabiting low-oxygen environments as important sources of hopanoids to marine sediments. However, the preliminary biogeography reported by recent studies and the environmental conditions governing such distributions can only be confirmed when the numerical abundance of these organisms is known with more certainty. In this study, we employ two different approaches to examine the quantitative significance of phylogenetically distinct hopanoid producers in low-oxygen environments. First, we develop a novel quantitative PCR (qPCR) assay for the squalene hopene cyclase (sqhC) gene, targeting a subset of hopanoid producers previously identified to be important in the eastern North Pacific Ocean. The results represent the first quantitative gene abundance data of any kind for hopanoid producers in the marine water column and show that these putative alphaproteobacterial hopanoid producers are rare, comprising at most 0.2 % of the total bacterial community in our samples. Second, a complementary analysis of existing low-oxygen metagenomic datasets further examined the generality of the qPCR observation. We find that the dominant sqhC sequences in these metagenomic datasets are associated with phyla such as Nitrospinae rather than Proteobacteria, consistent with the qPCR finding that alphaproteobacterial hopanoid producers are not very abundant in low-oxygen environments. In fact, positive correlations between sqhC gene abundance and environmental parameters in these samples identify nitrite availability as a potentially important factor in the ecology of hopanoid producers that dominate low-oxygen environments.

  11. The Development of a Novel qPCR Assay-Set for Identifying Fecal Contamination Originating from Domestic Fowls and Waterfowl in Israel.

    PubMed

    Ohad, Shoshanit; Ben-Dor, Shifra; Prilusky, Jaime; Kravitz, Valeria; Dassa, Bareket; Chalifa-Caspi, Vered; Kashi, Yechezkel; Rorman, Efrat

    2016-01-01

    The emerging microbial source tracking (MST) methodologies aim to identify fecal contamination originating from domestic and wild animals, and from humans. Avian MST is especially challenging, primarily because the Aves class includes both domesticated and wild species with highly diverse habitats and dietary characteristics. The quest for specific fecal bacterial MST markers can be difficult with respect to attaining sufficient assay sensitivity and specificity. The present study utilizes high throughput sequencing (HTS) to screen bacterial 16S rRNA genes from fecal samples collected from both domestic and wild avian species. Operational taxonomic unit (OTU) analysis was then performed, from which sequences were retained for downstream quantitative polymerase chain reaction (qPCR) marker development. Identification of unique avian host DNA sequences, absent in non-avian hosts, was then carried out using a dedicated database of bacterial 16S rRNA gene taken from the Ribosomal Database Project. Six qPCR assays were developed targeting the 16S rRNA gene of Lactobacillus, Gallibacterium, Firmicutes, Fusobacteriaceae, and other bacteria. Two assays (Av4143 and Av163) identified most of the avian fecal samples and demonstrated sensitivity values of 91 and 70%, respectively. The Av43 assay only identified droppings from battery hens and poultry, whereas each of the other three assays (Av24, Av13, and Av216) identified waterfowl species with lower sensitivities values. The development of an MST assay-panel, which includes both domestic and wild avian species, expands the currently known MST analysis capabilities for decoding fecal contamination.

  12. Seasonal Dynamics of Microcystis spp. and Their Toxigenicity as Assessed by qPCR in a Temperate Reservoir

    PubMed Central

    Martins, António; Moreira, Cristiana; Vale, Micaela; Freitas, Marisa; Regueiras, Ana; Antunes, Agostinho; Vasconcelos, Vitor

    2011-01-01

    Blooms of toxic cyanobacteria are becoming increasingly frequent, mainly due to water quality degradation. This work applied qPCR as a tool for early warning of microcystin(MC)-producer cyanobacteria and risk assessment of water supplies. Specific marker genes for cyanobacteria, Microcystis and MC-producing Microcystis, were quantified to determine the genotypic composition of the natural Microcystis population. Correlations between limnological parameters, pH, water temperature, dissolved oxygen and conductivity and MC concentrations as well as Microcystis abundance were assessed. A negative significant correlation was observed between toxic (with mcy genes) to non-toxic (without mcy genes) genotypes ratio and the overall Microcystis density. The highest proportions of toxic Microcystis genotypes were found 4–6 weeks before and 8–10 weeks after the peak of the bloom, with the lowest being observed at its peak. These results suggest positive selection of non-toxic genotypes under favorable environmental growth conditions. Significant positive correlations could be found between quantity of toxic genotypes and MC concentration, suggesting that the method applied can be useful to predict potential MC toxicity risk. No significant correlation was found between the limnological parameters measured and MC concentrations or toxic genotypes proportions indicating that other abiotic and biotic factors should be governing MC production and toxic genotypes dynamics. The qPCR method here applied is useful to rapidly estimate the potential toxicity of environmental samples and so, it may contribute to the more efficient management of water use in eutrophic systems. PMID:22072994

  13. Transcriptome analysis in Coffea eugenioides, an Arabica coffee ancestor, reveals differentially expressed genes in leaves and fruits.

    PubMed

    Yuyama, Priscila Mary; Reis Júnior, Osvaldo; Ivamoto, Suzana Tiemi; Domingues, Douglas Silva; Carazzolle, Marcelo Falsarella; Pereira, Gonçalo Amarante Guimarães; Charmetant, Pierre; Leroy, Thierry; Pereira, Luiz Filipe Protasio

    2016-02-01

    Studies in diploid parental species of polyploid plants are important to understand their contributions to the formation of plant and species evolution. Coffea eugenioides is a diploid species that is considered to be an ancestor of allopolyploid Coffea arabica together with Coffea canephora. Despite its importance in the evolutionary history of the main economic species of coffee, no study has focused on C. eugenioides molecular genetics. RNA-seq creates the possibility to generate reference transcriptomes and identify coding genes and potential candidates related to important agronomic traits. Therefore, the main objectives were to obtain a global overview of transcriptionally active genes in this species using next-generation sequencing and to analyze specific genes that were highly expressed in leaves and fruits with potential exploratory characteristics for breeding and understanding the evolutionary biology of coffee. A de novo assembly generated 36,935 contigs that were annotated using eight databases. We observed a total of ~5000 differentially expressed genes between leaves and fruits. Several genes exclusively expressed in fruits did not exhibit similarities with sequences in any database. We selected ten differentially expressed unigenes in leaves and fruits to evaluate transcriptional profiles using qPCR. Our study provides the first gene catalog for C. eugenioides and enhances the knowledge concerning the mechanisms involved in the C. arabica homeologous. Furthermore, this work will open new avenues for studies into specific genes and pathways in this species, especially related to fruit, and our data have potential value in assisted breeding applications.

  14. Direct quantification and distribution of tetracycline-resistant genes in meat samples by real-time polymerase chain reaction.

    PubMed

    Guarddon, Mónica; Miranda, Jose M; Vázquez, Beatriz I; Cepeda, Alberto; Franco, Carlos M

    2012-07-01

    The evolution of antimicrobial-resistant bacteria has become a threat to food safety and methods to control them are necessary. Counts of tetracycline-resistant (TR) bacteria by microbiological methods were compared with those obtained by quantitative PCR (qPCR) in 80 meat samples. TR Enterobacteriaceae counts were similar between the count plate method and qPCR (P= 0.24), whereas TR aerobic mesophilic bacteria counts were significantly higher by the microbiological method (P < 0.001). The distribution of tetA and tetB genes was investigated in different types of meat. tetA was detected in chicken meat (40%), turkey meat (100%), pork (20%), and beef (40%) samples, whereas tetB was detected in chicken meat (45%), turkey meat (70%), pork (30%), and beef (35%) samples. The presence of tetracycline residues was also investigated by a receptor assay. This study offers an alternative and rapid method for monitoring the presence of TR bacteria in meat and furthers the understanding of the distribution of tetA and tetB genes. © 2012 Institute of Food Technologists®

  15. A new method for tracking poultry litter in the Potomac Basin headwaters of West Virginia.

    PubMed

    Weidhaas, J; Lipscomb, E

    2013-08-01

    To validate the distribution of a poultry litter-specific marker gene in faecally contaminated environmental waters of an intensive poultry litter rearing region. A TaqMan(®)-based qPCR assay for Brevibacterium sp. LA35 16S rRNA (LA35 gene), which was previously shown to be associated with poultry litter and faeces, was tested on 126 nontarget faecal samples and 28 poultry litter and faecal samples. The TaqMan assay was sensitive (76%) and specific (100%) to the LA35 gene and exhibited a detection limit for poultry litter in water samples that is sufficiently low (2.5 × 10(-2) mg litter l(-1)) to be applicable for environmental monitoring. The LA35 gene was detected in 43% of water samples (n = 30) collected in an intensive poultry rearing region of West Virginia which drains to the Chesapeake Bay. The poultry-specific TaqMan qPCR method for the LA35 gene is more specific than previously published methods and can be used to identify regions impacted by poultry rearing activities. The LA35 gene appears to have a broad geographical distribution as it has been found in poultry litter and faeces from Delaware and West Virginia, in this study and from Arkansas, Georgia, Florida, Minnesota, Oklahoma and Utah previously. © 2013 The Society for Applied Microbiology.

  16. GETPrime: a gene- or transcript-specific primer database for quantitative real-time PCR.

    PubMed

    Gubelmann, Carine; Gattiker, Alexandre; Massouras, Andreas; Hens, Korneel; David, Fabrice; Decouttere, Frederik; Rougemont, Jacques; Deplancke, Bart

    2011-01-01

    The vast majority of genes in humans and other organisms undergo alternative splicing, yet the biological function of splice variants is still very poorly understood in large part because of the lack of simple tools that can map the expression profiles and patterns of these variants with high sensitivity. High-throughput quantitative real-time polymerase chain reaction (qPCR) is an ideal technique to accurately quantify nucleic acid sequences including splice variants. However, currently available primer design programs do not distinguish between splice variants and also differ substantially in overall quality, functionality or throughput mode. Here, we present GETPrime, a primer database supported by a novel platform that uniquely combines and automates several features critical for optimal qPCR primer design. These include the consideration of all gene splice variants to enable either gene-specific (covering the majority of splice variants) or transcript-specific (covering one splice variant) expression profiling, primer specificity validation, automated best primer pair selection according to strict criteria and graphical visualization of the latter primer pairs within their genomic context. GETPrime primers have been extensively validated experimentally, demonstrating high transcript specificity in complex samples. Thus, the free-access, user-friendly GETPrime database allows fast primer retrieval and visualization for genes or groups of genes of most common model organisms, and is available at http://updepla1srv1.epfl.ch/getprime/. Database URL: http://deplanckelab.epfl.ch.

  17. GETPrime: a gene- or transcript-specific primer database for quantitative real-time PCR

    PubMed Central

    Gubelmann, Carine; Gattiker, Alexandre; Massouras, Andreas; Hens, Korneel; David, Fabrice; Decouttere, Frederik; Rougemont, Jacques; Deplancke, Bart

    2011-01-01

    The vast majority of genes in humans and other organisms undergo alternative splicing, yet the biological function of splice variants is still very poorly understood in large part because of the lack of simple tools that can map the expression profiles and patterns of these variants with high sensitivity. High-throughput quantitative real-time polymerase chain reaction (qPCR) is an ideal technique to accurately quantify nucleic acid sequences including splice variants. However, currently available primer design programs do not distinguish between splice variants and also differ substantially in overall quality, functionality or throughput mode. Here, we present GETPrime, a primer database supported by a novel platform that uniquely combines and automates several features critical for optimal qPCR primer design. These include the consideration of all gene splice variants to enable either gene-specific (covering the majority of splice variants) or transcript-specific (covering one splice variant) expression profiling, primer specificity validation, automated best primer pair selection according to strict criteria and graphical visualization of the latter primer pairs within their genomic context. GETPrime primers have been extensively validated experimentally, demonstrating high transcript specificity in complex samples. Thus, the free-access, user-friendly GETPrime database allows fast primer retrieval and visualization for genes or groups of genes of most common model organisms, and is available at http://updepla1srv1.epfl.ch/getprime/. Database URL: http://deplanckelab.epfl.ch. PMID:21917859

  18. Abundance and Genetic Diversity of nifH Gene Sequences in Anthropogenically Affected Brazilian Mangrove Sediments

    PubMed Central

    Dias, Armando Cavalcante Franco; Pereira e Silva, Michele de Cassia; Cotta, Simone Raposo; Dini-Andreote, Francisco; Soares, Fábio Lino; Salles, Joana Falcão; Azevedo, João Lúcio; van Elsas, Jan Dirk

    2012-01-01

    Although mangroves represent ecosystems of global importance, the genetic diversity and abundance of functional genes that are key to their functioning scarcely have been explored. Here, we present a survey based on the nifH gene across transects of sediments of two mangrove systems located along the coast line of São Paulo state (Brazil) which differed by degree of disturbance, i.e., an oil-spill-affected and an unaffected mangrove. The diazotrophic communities were assessed by denaturing gradient gel electrophoresis (DGGE), quantitative PCR (qPCR), and clone libraries. The nifH gene abundance was similar across the two mangrove sediment systems, as evidenced by qPCR. However, the nifH-based PCR-DGGE profiles revealed clear differences between the mangroves. Moreover, shifts in the nifH gene diversities were noted along the land-sea transect within the previously oiled mangrove. The nifH gene diversity depicted the presence of nitrogen-fixing bacteria affiliated with a wide range of taxa, encompassing members of the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Firmicutes, and also a group of anaerobic sulfate-reducing bacteria. We also detected a unique mangrove-specific cluster of sequences denoted Mgv-nifH. Our results indicate that nitrogen-fixing bacterial guilds can be partially endemic to mangroves, and these communities are modulated by oil contamination, which has important implications for conservation strategies. PMID:22941088

  19. Abundance and genetic diversity of nifH gene sequences in anthropogenically affected Brazilian mangrove sediments.

    PubMed

    Dias, Armando Cavalcante Franco; Pereira e Silva, Michele de Cassia; Cotta, Simone Raposo; Dini-Andreote, Francisco; Soares, Fábio Lino; Salles, Joana Falcão; Azevedo, João Lúcio; van Elsas, Jan Dirk; Andreote, Fernando Dini

    2012-11-01

    Although mangroves represent ecosystems of global importance, the genetic diversity and abundance of functional genes that are key to their functioning scarcely have been explored. Here, we present a survey based on the nifH gene across transects of sediments of two mangrove systems located along the coast line of São Paulo state (Brazil) which differed by degree of disturbance, i.e., an oil-spill-affected and an unaffected mangrove. The diazotrophic communities were assessed by denaturing gradient gel electrophoresis (DGGE), quantitative PCR (qPCR), and clone libraries. The nifH gene abundance was similar across the two mangrove sediment systems, as evidenced by qPCR. However, the nifH-based PCR-DGGE profiles revealed clear differences between the mangroves. Moreover, shifts in the nifH gene diversities were noted along the land-sea transect within the previously oiled mangrove. The nifH gene diversity depicted the presence of nitrogen-fixing bacteria affiliated with a wide range of taxa, encompassing members of the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Firmicutes, and also a group of anaerobic sulfate-reducing bacteria. We also detected a unique mangrove-specific cluster of sequences denoted Mgv-nifH. Our results indicate that nitrogen-fixing bacterial guilds can be partially endemic to mangroves, and these communities are modulated by oil contamination, which has important implications for conservation strategies.

  20. Determining Physical Mechanisms of Gene Expression Regulation from Single Cell Gene Expression Data.

    PubMed

    Ezer, Daphne; Moignard, Victoria; Göttgens, Berthold; Adryan, Boris

    2016-08-01

    Many genes are expressed in bursts, which can contribute to cell-to-cell heterogeneity. It is now possible to measure this heterogeneity with high throughput single cell gene expression assays (single cell qPCR and RNA-seq). These experimental approaches generate gene expression distributions which can be used to estimate the kinetic parameters of gene expression bursting, namely the rate that genes turn on, the rate that genes turn off, and the rate of transcription. We construct a complete pipeline for the analysis of single cell qPCR data that uses the mathematics behind bursty expression to develop more accurate and robust algorithms for analyzing the origin of heterogeneity in experimental samples, specifically an algorithm for clustering cells by their bursting behavior (Simulated Annealing for Bursty Expression Clustering, SABEC) and a statistical tool for comparing the kinetic parameters of bursty expression across populations of cells (Estimation of Parameter changes in Kinetics, EPiK). We applied these methods to hematopoiesis, including a new single cell dataset in which transcription factors (TFs) involved in the earliest branchpoint of blood differentiation were individually up- and down-regulated. We could identify two unique sub-populations within a seemingly homogenous group of hematopoietic stem cells. In addition, we could predict regulatory mechanisms controlling the expression levels of eighteen key hematopoietic transcription factors throughout differentiation. Detailed information about gene regulatory mechanisms can therefore be obtained simply from high throughput single cell gene expression data, which should be widely applicable given the rapid expansion of single cell genomics.

  1. Droplet Digital PCR for Minimal Residual Disease Detection in Mature Lymphoproliferative Disorders.

    PubMed

    Drandi, Daniela; Ferrero, Simone; Ladetto, Marco

    2018-01-01

    Minimal residual disease (MRD) detection has a powerful prognostic relevance for response evaluation and prediction of relapse in hematological malignancies. Real-time quantitative PCR (qPCR) has become the settled and standardized method for MRD assessment in lymphoid disorders. However, qPCR is a relative quantification approach, since it requires a reference standard curve. Droplet digital TM PCR (ddPCR TM ) allows a reliable absolute tumor burden quantification withdrawing the need for preparing, for each experiment, a tumor-specific standard curve. We have recently shown that ddPCR has a good concordance with qPCR and could be a feasible and reliable tool for MRD monitoring in mature lymphoproliferative disorders. In this chapter we describe the experimental workflow, from the detection of the clonal molecular marker to the MRD monitoring by ddPCR, in patients affected by multiple myeloma, mantle cell lymphoma and follicular lymphoma. However, standardization programs among different laboratories are needed in order to ensure the reliability and reproducibility of ddPCR-based MRD results.

  2. Digital PCR for detection of citrus pathogens

    USDA-ARS?s Scientific Manuscript database

    Citrus trees are often infected with multiple pathogens of economic importance, especially those with insect or mite vectors. Real-time/quantitative PCR (qPCR) has been used for high-throughput detection and relative quantification of pathogens; however, target reference or standards are required. I...

  3. Gene identification for risk of relapse in stage I lung adenocarcinoma patients: a combined methodology of gene expression profiling and computational gene network analysis.

    PubMed

    Ludovini, Vienna; Bianconi, Fortunato; Siggillino, Annamaria; Piobbico, Danilo; Vannucci, Jacopo; Metro, Giulio; Chiari, Rita; Bellezza, Guido; Puma, Francesco; Della Fazia, Maria Agnese; Servillo, Giuseppe; Crinò, Lucio

    2016-05-24

    Risk assessment and treatment choice remains a challenge in early non-small-cell lung cancer (NSCLC). The aim of this study was to identify novel genes involved in the risk of early relapse (ER) compared to no relapse (NR) in resected lung adenocarcinoma (AD) patients using a combination of high throughput technology and computational analysis. We identified 18 patients (n.13 NR and n.5 ER) with stage I AD. Frozen samples of patients in ER, NR and corresponding normal lung (NL) were subjected to Microarray technology and quantitative-PCR (Q-PCR). A gene network computational analysis was performed to select predictive genes. An independent set of 79 ADs stage I samples was used to validate selected genes by Q-PCR.From microarray analysis we selected 50 genes, using the fold change ratio of ER versus NR. They were validated both in pool and individually in patient samples (ER and NR) by Q-PCR. Fourteen increased and 25 decreased genes showed a concordance between two methods. They were used to perform a computational gene network analysis that identified 4 increased (HOXA10, CLCA2, AKR1B10, FABP3) and 6 decreased (SCGB1A1, PGC, TFF1, PSCA, SPRR1B and PRSS1) genes. Moreover, in an independent dataset of ADs samples, we showed that both high FABP3 expression and low SCGB1A1 expression was associated with a worse disease-free survival (DFS).Our results indicate that it is possible to define, through gene expression and computational analysis, a characteristic gene profiling of patients with an increased risk of relapse that may become a tool for patient selection for adjuvant therapy.

  4. Telomere length shortening is associated with treatment-free remission in chronic myeloid leukemia patients.

    PubMed

    Caocci, Giovanni; Greco, Marianna; Delogu, Giuseppe; Secchi, Christian; Martino, Bruno; Labate, Claudia; Abruzzese, Elisabetta; Trawinska, Malgorzata Monika; Galimberti, Sara; Orru, Federica; Fozza, Claudio; Gambacorti Passerini, Carlo; Galimi, Francesco; La Nasa, Giorgio

    2016-07-29

    We studied telomere length in 32 CML patients who discontinued imatinib after achieving complete molecular remission and 32 age-sex-matched controls. The relative telomere length (RTL) was determined by q-PCR as the telomere to single copy gene (36B4) ratio normalized to a reference sample (K-562 DNA). Age-corrected RTL (acRTL) was also obtained. The 36-month probability of treatment-free remission (TFR) was 59.4 %. TFR patients showed shorter acRTL compared to relapsed (mean ± SD = 0.01 ± 0.14 vs 0.20 ± 0.21; p = 0.01). TFR was significantly higher in CML patients with acRTL ≤0.09 (78.9 vs 30.8 %, p = 0.002). CML stem cells harboring longer telomeres possibly maintain a proliferative potential after treatment discontinuation.

  5. Data in support of qPCR primer design and verification in a Pink1 -/- rat model of Parkinson disease.

    PubMed

    Kelm-Nelson, Cynthia A; Stevenson, Sharon A; Ciucci, Michelle R

    2016-09-01

    Datasets provided in this article represent the Rattus norvegicus primer design and verification used in Pink1 -/- and wildtype Long Evans brain tissue. Accessible tables include relevant information, accession numbers, sequences, temperatures and product length, describing primer design specific to the transcript amplification use. Additionally, results of Sanger sequencing of qPCR reaction products (FASTA aligned sequences) are presented for genes of interest. Results and further interpretation and discussion can be found in the original research article "Atp13a2 expression in the periaqueductal gray is decreased in the Pink1 -/- rat model of Parkinson disease" [1].

  6. Optimization and Verification of Droplet Digital PCR Even-Specific Methods for the Quantification of GM Maize DAS1507 and NK603.

    PubMed

    Grelewska-Nowotko, Katarzyna; Żurawska-Zajfert, Magdalena; Żmijewska, Ewelina; Sowa, Sławomir

    2018-05-01

    In recent years, digital polymerase chain reaction (dPCR), a new molecular biology technique, has been gaining in popularity. Among many other applications, this technique can also be used for the detection and quantification of genetically modified organisms (GMOs) in food and feed. It might replace the currently widely used real-time PCR method (qPCR), by overcoming problems related to the PCR inhibition and the requirement of certified reference materials to be used as a calibrant. In theory, validated qPCR methods can be easily transferred to the dPCR platform. However, optimization of the PCR conditions might be necessary. In this study, we report the transfer of two validated qPCR methods for quantification of maize DAS1507 and NK603 events to the droplet dPCR (ddPCR) platform. After some optimization, both methods have been verified according to the guidance of the European Network of GMO Laboratories (ENGL) on analytical method verification (ENGL working group on "Method Verification." (2011) Verification of Analytical Methods for GMO Testing When Implementing Interlaboratory Validated Methods). Digital PCR methods performed equally or better than the qPCR methods. Optimized ddPCR methods confirm their suitability for GMO determination in food and feed.

  7. Quantitative polymerase chain reaction based quantification of Brucella DNA in serum of pre- and post-therapeutic occupationally exposed infected human population.

    PubMed

    Thakur, Shalini; Bedi, Jasbir S; Singh, Randhir; Gill, Jatinder P S; Arora, Anil K; Kashyap, Neeraj

    Brucellosis is one of the neglected zoonotic diseases in humans. The serological methods based on antibody detections are unable to detect the effectiveness of treatment in humans as antibodies persist for long time in humans even after therapy. Therefore, we developed qPCR technique to overcome such discrepancy and device a rapid and efficient test for both diagnosis and follow up of the brucellosis affected individuals. High risk suspected individuals with positive serology (RBPT, STAT and iELISA) and PCR were mainly analyzed for DNA quantification by qPCR assay. The bcsp-31 gene, a shared gene of Brucella species was amplified by genus specific primers and cloned to pGEMT™ easy vector and the cloned plasmid were used to construct a standard curve (R 2 =0.99, efficiency=1.98) over 7 orders of magnitude with sensitivity of ≈10 copy number. The assay was found 100% specific. Overall 85 individuals were found positive out of 188. Out of them, 23 serological, PCR and qPCR positive individuals were recommended for 45days therapy according to WHO regimen (Doxycycline and Rifampin) and each case was further followed by qPCR. The mean threshold cycle (C q ) before treatment was 26.05±0.347 (3940.5copies/μl), which increased significantly to 32.7±0.66 (259.13copies/μl) on 4th week during treatment, 35.12±3.12 (38.52copies/μl) at 6th week on day of treatment completion, 35.6±0.66 (34.21copies/μl) on 21st day after treatment depicting a significant reduction in DNA load over the course of treatment. Serological follow up showed that only 3 individuals had decreased STAT titre but no change in RBPT results. Out of 17 symptomatic individuals under therapy, 10 improved clinically, 5 improved clinically with persistent weakness and 2 had no effect of therapy. The study suggests that qPCR is more useful and rapid test to follow treated individuals than serology. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Variation in embryonic mortality and maternal transcript expression among Atlantic cod (Gadus morhua) broodstock: a functional genomics study.

    PubMed

    Rise, Matthew L; Nash, Gordon W; Hall, Jennifer R; Booman, Marije; Hori, Tiago S; Trippel, Edward A; Gamperl, A Kurt

    2014-12-01

    Early life stage mortality is an important issue for Atlantic cod aquaculture, yet the impact of the cod maternal (egg) transcriptome on egg quality and mortality during embryonic development is poorly understood. In the present work, we studied embryonic mortality and maternal transcript expression using eggs from 15 females. Total mortality at 7days post-fertilization (7 dpf, segmentation stage) was used as an indice of egg quality. A 20,000 probe (20K) microarray experiment compared the 7hours post-fertilization (7 hpf, ~2-cell stage) egg transcriptome of the two lowest quality females (>90% mortality at 7 dpf) to that of the highest quality female (~16% mortality at 7 dpf). Forty-three microarray probes were consistently differentially expressed in both low versus high quality egg comparisons (25 higher expressed in low quality eggs, and 18 higher expressed in high quality eggs). The microarray experiment also identified many immune-relevant genes [e.g. interferon (IFN) pathway genes ifngr1 and ifrd1)] that were highly expressed in eggs of all 3 females regardless of quality. Twelve of the 43 candidate egg quality-associated genes, and ifngr1, ifrd1 and irf7, were included in a qPCR study with 7 hpf eggs from all 15 females. Then, the genes that were confirmed by qPCR to be greater than 2-fold differentially expressed between 7 hpf eggs from the lowest and highest quality females (dcbld1, ddc, and acy3 more highly expressed in the 2 lowest quality females; kpna7 and hacd1 more highly expressed in the highest quality female), and the 3 IFN pathway genes, were included in a second qPCR study with unfertilized eggs. While some maternal transcripts included in these qPCR studies were associated with extremes in egg quality, there was little correlation between egg quality and gene expression when all females were considered. Both dcbld1 and ddc showed greater than 100-fold differences in transcript expression between females and were potentially influenced by family. The Atlantic cod ddc (dopa decarboxylase) complete cDNA was characterized, and has a 1461bp open reading frame encoding a 486 amino acid protein that contains all eight residues of the conserved pyridoxal 5'-phosphate binding site including the catalytic lysine. This study provides valuable new information and resources related to the Atlantic cod egg transcriptome. Some of these microarray-identified, qPCR-confirmed, Atlantic cod egg transcripts (e.g. ddc, kpna7) play important roles during embryonic development of other vertebrate species, and may have similar functions in Atlantic cod. Copyright © 2014. Published by Elsevier B.V.

  9. Molecular characterization of pyrethroid resistance in the olive fruit fly Bactrocera oleae.

    PubMed

    Pavlidi, Nena; Kampouraki, Anastasia; Tseliou, Vasilis; Wybouw, Nicky; Dermauw, Wannes; Roditakis, Emmanouil; Nauen, Ralf; Van Leeuwen, Thomas; Vontas, John

    2018-06-01

    Α reduction of pyrethroid efficacy has been recently recorded in Bactrocera oleae, the most destructive insect of olives. The resistance levels of field populations collected from Crete-Greece scaled up to 22-folds, compared to reference laboratory strains. Sequence analysis of the IIS4-IIS6 region of para sodium channel gene in a large number of resistant flies indicated that resistance may not be associated with target site mutations, in line with previous studies in other Tephritidae species. We analyzed the transcriptomic differences between two resistant populations versus an almost susceptible field population and two laboratory strains. A large number of genes was found to be significantly differentially transcribed across the pairwise comparisons. Interestingly, gene set analysis revealed that genes of the 'electron carrier activity' GO group were enriched in one specific comparison, which might suggest a P450-mediated resistance mechanism. The up-regulation of several transcripts encoding detoxification enzymes was qPCR validated, focusing on transcripts coding for P450s. Of note, the expression of contig00436 and contig02103, encoding CYP6 P450s, was significantly higher in all resistant populations, compared to susceptible ones. These results suggest that an increase in the amount of the CYP6 P450s might be an important mechanism of pyrethroid resistance in B. oleae. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Data Analysis of Sequences and qPCR for Microbial Communities during Algal Blooms

    EPA Pesticide Factsheets

    A training opportunity is open to a highly microbial-research-motivated student to conduct sequence analysis, explore novel genes and metabolic pathways, validate resultant findings using qPCR/RT-qPCR and summarize the findings

  11. A Novel Real-Time PCR for Listeria monocytogenes That Monitors Analytical Performance via an Internal Amplification Control

    PubMed Central

    Rodríguez-Lázaro, David; Pla, Maria; Scortti, Mariela; Monzó, Héctor J.; Vázquez-Boland, José A.

    2005-01-01

    We describe a novel quantitative real-time (Q)-PCR assay for Listeria monocytogenes based on the coamplification of a target hly gene fragment and an internal amplification control (IAC). The IAC is a chimeric double-stranded DNA containing a fragment of the rapeseed BnACCg8 gene flanked by the hly-specific target sequences. This IAC is detected using a second TaqMan probe labeled with a different fluorophore, enabling the simultaneous monitoring of the hly and IAC signals. The hly-IAC assay had a specificity and sensitivity of 100%, as assessed using 49 L. monocytogenes isolates of different serotypes and 96 strains of nontarget bacteria, including 51 Listeria isolates. The detection and quantification limits were 8 and 30 genome equivalents, and the coefficients for PCR linearity (R2) and efficiency (E) were 0.997 and 0.80, respectively. We tested the performance of the hly-IAC Q-PCR assay using various broth media and food matrices. Fraser and half-Fraser media, raw pork, and raw or cold-smoked salmon were strongly PCR-inhibitory. This Q-PCR assay for L. monocytogenes, the first incorporating an IAC to be described for quantitative detection of a food-borne pathogen, is a simple and robust tool facilitating the identification of false negatives or underestimations of contamination loads due to PCR failure. PMID:16332910

  12. Impacts of Long-Term Irrigation of Domestic Treated Wastewater on Soil Biogeochemistry and Bacterial Community Structure

    PubMed Central

    Wafula, Denis; White, John R.; Canion, Andy; Jagoe, Charles; Pathak, Ashish

    2015-01-01

    Freshwater scarcity and regulations on wastewater disposal have necessitated the reuse of treated wastewater (TWW) for soil irrigation, which has several environmental and economic benefits. However, TWW irrigation can cause nutrient loading to the receiving environments. We assessed bacterial community structure and associated biogeochemical changes in soil plots irrigated with nitrate-rich TWW (referred to as pivots) for periods ranging from 13 to 30 years. Soil cores (0 to 40 cm) were collected in summer and winter from five irrigated pivots and three adjacently located nonirrigated plots. Total bacterial and denitrifier gene abundances were estimated by quantitative PCR (qPCR), and community structure was assessed by 454 massively parallel tag sequencing (MPTS) of small-subunit (SSU) rRNA genes along with terminal restriction fragment length polymorphism (T-RFLP) analysis of nirK, nirS, and nosZ functional genes responsible for denitrification of the TWW-associated nitrate. Soil physicochemical analyses showed that, regardless of the seasons, pH and moisture contents (MC) were higher in the irrigated (IR) pivots than in the nonirrigated (NIR) plots; organic matter (OM) and microbial biomass carbon (MBC) were higher as a function of season but not of irrigation treatment. MPTS analysis showed that TWW loading resulted in the following: (i) an increase in the relative abundance of Proteobacteria, especially Betaproteobacteria and Gammaproteobacteria; (ii) a decrease in the relative abundance of Actinobacteria; (iii) shifts in the communities of acidobacterial groups, along with a shift in the nirK and nirS denitrifier guilds as shown by T-RFLP analysis. Additionally, bacterial biomass estimated by genus/group-specific real-time qPCR analyses revealed that higher numbers of total bacteria, Acidobacteria, Actinobacteria, Alphaproteobacteria, and the nirS denitrifier guilds were present in the IR pivots than in the NIR plots. Identification of the nirK-containing microbiota as a proxy for the denitrifier community indicated that bacteria belonged to alphaproteobacteria from the Rhizobiaceae family within the agroecosystem studied. Multivariate statistical analyses further confirmed some of the above soil physicochemical and bacterial community structure changes as a function of long-term TWW application within this agroecosystem. PMID:26253672

  13. The Effect of Gestational Age on Angiogenic Gene Expression in the Rat Placenta

    PubMed Central

    Vaswani, Kanchan; Hum, Melissa Wen-Ching; Chan, Hsiu-Wen; Ryan, Jennifer; Wood-Bradley, Ryan J.; Nitert, Marloes Dekker; Mitchell, Murray D.; Armitage, James A.; Rice, Gregory E.

    2013-01-01

    The placenta plays a central role in determining the outcome of pregnancy. It undergoes changes during gestation as the fetus develops and as demands for energy substrate transfer and gas exchange increase. The molecular mechanisms that coordinate these changes have yet to be fully elucidated. The study performed a large scale screen of the transcriptome of the rat placenta throughout mid-late gestation (E14.25–E20) with emphasis on characterizing gestational age associated changes in the expression of genes invoved in angiogenic pathways. Sprague Dawley dams were sacrificed at E14.25, E15.25, E17.25 and E20 (n = 6 per group) and RNA was isolated from one placenta per dam. Changes in placental gene expression were identifed using Illumina Rat Ref-12 Expression BeadChip Microarrays. Differentially expressed genes (>2-fold change, <1% false discovery rate, FDR) were functionally categorised by gene ontology pathway analysis. A subset of differentially expressed genes identified by microarrays were confirmed using Real-Time qPCR. The expression of thirty one genes involved in the angiogenic pathway was shown to change over time, using microarray analysis (22 genes displayed increased and 9 gene decreased expression). Five genes (4 up regulated: Cd36, Mmp14, Rhob and Angpt4 and 1 down regulated: Foxm1) involved in angiogenesis and blood vessel morphogenesis were subjected to further validation. qPCR confirmed late gestational increased expression of Cd36, Mmp14, Rhob and Angpt4 and a decrease in expression of Foxm1 before labour onset (P<0.0001). The observed acute, pre-labour changes in the expression of the 31 genes during gestation warrant further investigation to elucidate their role in pregnancy. PMID:24391823

  14. Rhinovirus infection induces distinct transcriptome profiles in polarized human macrophages.

    PubMed

    Rajput, Charu; Walsh, Megan P; Eder, Breanna N; Metitiri, Ediri E; Popova, Antonia P; Hershenson, Marc B

    2018-05-01

    Infections with rhinovirus (RV) cause asthma exacerbations. Recent studies suggest that macrophages play a role in asthmatic airway inflammation and the innate immune response to RV infection. Macrophages exhibit phenotypes based on surface markers and gene expression. We hypothesized that macrophage polarization state alters gene expression in response to RV infection. Cells were derived from human peripheral blood derived monocytes. M1 and M2 polarization was carried out by using IFN-γ and IL-4, respectively, and RNA was extracted for Affymetrix Human Gene ST2.1 exon arrays. Selected genes were validated by quantitative (q)PCR. Treatment of nonactivated (M0) macrophages with IFN-γ and IL-4 induced the expression of 252 and 153 distinct genes, respectively, including previously-identified M1 and M2 markers. RV infection of M0 macrophages induced upregulation of 232 genes; pathway analysis showed significant overrepresentation of genes involved in IFN-α/β signaling and cytokine signaling in the immune system. RV infection induced differential expression of 195 distinct genes in M1-like macrophages but only seven distinct genes in M2-like-polarized cells. In a secondary analysis, comparison between M0-, RV-infected, and M1-like-polarized, RV-infected macrophages revealed differential expression of 227 genes including those associated with asthma and its exacerbation. qPCR demonstrated increased expression of CCL8, CXCL10, TNFSF10, TNFSF18, IL6, NOD2, and GSDMD and reduced expression of VNN1, AGO1, and AGO2. Together, these data show that, in contrast to M2-like-polarized macrophages, gene expression of M1-like macrophages is highly regulated by RV.

  15. Gene expression profiling demonstrates WNT/β-catenin pathway genes alteration in Mexican patients with colorectal cancer and diabetes mellitus.

    PubMed

    Ivonne Wence-Chavez, Laura; Palomares-Chacon, Ulises; Pablo Flores-Gutierrez, Juan; Felipe Jave-Suarez, Luis; Del Carmen Aguilar-Lemarroy, Adriana; Barros-Nunez, Patricio; Esperanza Flores-Martinez, Silvia; Sanchez-Corona, Jose; Alejandra Rosales-Reynoso, Monica

    2017-01-01

    Several studies have shown a strong association between diabetes mellitus (DM) and increased risk of colorectal cancer (CRC). The fundamental mechanisms that support this association are not entirely understood; however, it is believed that hyperinsulinemia and hyperglycemia may be involved. Some proposed mechanisms include upregulation of mitogenic signaling pathways like MAPK, PI3K, mTOR, and WNT, which are involved in cell proliferation, growth, and cancer cell survival. The purpose of this study was to evaluate the gene expression profile and identify differently expressed genes involved in mitogenic pathways in CRC patients with and without DM. In this study, microarray analysis of gene expression followed by quantitative PCR (qPCR) was performed in cancer tissue from CRC patients with and without DM to identify the gene expression profiles and validate the differently expressed genes. Among the study groups, some differently expressed genes were identified. However, when bioinformatics clustering tools were used, a significant modulation of genes involved in the WNT pathway was evident. Therefore, we focused on genes participating in this pathway, such as WNT3A, LRP6, TCF7L2, and FRA-1. Validation of the expression levels of those genes by qPCR showed that CRC patients without type 2 diabetes mellitus (T2DM) expressed significantly more WNT3Ay LRP6, but less TCF7L2 and FRA-1 compared to controls, while in CRC patients with DM the expression levels of WNT3A, LRP6, TCF7L2, and FRA-1 were significantly higher compared to controls. Our results suggest that WNT/β-catenin pathway is upregulated in patients with CRC and DM, demonstrating its importance and involvement in both pathologies.

  16. Comparison of a new multiplex real-time PCR with the Kato Katz thick smear and copro-antigen ELISA for the detection and differentiation of Taenia spp. in human stools.

    PubMed

    Ng-Nguyen, Dinh; Stevenson, Mark A; Dorny, Pierre; Gabriël, Sarah; Vo, Tinh Van; Nguyen, Van-Anh Thi; Phan, Trong Van; Hii, Sze Fui; Traub, Rebecca J

    2017-07-01

    Taenia solium, the cause of neurocysticercosis (NCC), has significant socioeconomic impacts on communities in developing countries. This disease, along with taeniasis is estimated to infect 2.5 to 5 million people globally. Control of T. solium NCC necessitates accurate diagnosis and treatment of T. solium taeniasis carriers. In areas where all three species of Taenia tapeworms (T. solium, Taenia saginata and Taenia asiatica) occur sympatrically, conventional microscope- and copro-antigen based diagnostic methods are unable to distinguish between these three Taenia species. Molecular diagnostic tools have been developed to overcome this limitation; however, conventional PCR-based techniques remain unsuitable for large-scale deployment in community-based surveys. Moreover, a real-time PCR (qPCR) for the discrimination of all three species of Taenia in human stool does not exist. This study describes the development and validation of a new triplex Taq-Man probe-based qPCR for the detection and discrimination of all three Taenia human tapeworms in human stools collected from communities in the Central Highlands of Vietnam. The diagnostic characteristics of the test are compared with conventional Kato Katz (KK) thick smear and copro-antigen ELISA (cAgELISA) method utilizing fecal samples from a community based cross-sectional study. Using this new multiplex real-time PCR we provide an estimate of the true prevalence of taeniasis in the source population for the community based cross-sectional study. Primers and TaqMan probes for the specific amplification of T. solium, T. saginata and T. asiatica were designed and successfully optimized to target the internal transcribed spacer I (ITS-1) gene of T. solium and the cytochrome oxidase subunit I (COX-1) gene of T. saginata and T. asiatica. The newly designed triplex qPCR (T3qPCR) was compared to KK and cAgELISA for the detection of Taenia eggs in stool samples collected from 342 individuals in Dak Lak province, Central Highlands of Vietnam. The overall apparent prevalence of taeniasis in Dak Lak province was 6.72% (95% confidence interval (CI) [3.94-9.50]) in which T. solium accounted for 1.17% (95% CI [0.37-3.17]), according to the T3qPCR. There was sympatric presence of T. solium, T. saginata and T. asiatica. The T3qPCR proved superior to KK and cAgELISA for the detection and differentiation of Taenia species in human feces. Diagnostic sensitivities of 0.94 (95% credible interval (CrI) [0.88-0.98]), 0.82 (95% CrI [0.58-0.95]) and 0.52 (95% CrI [0.07-0.94]), and diagnostic specificities of 0.98 (95% CrI [0.94-1.00]), 0.91 (95% CrI [0.85-0.96]) and 0.99 (95% CrI [0.96-1.00]) were estimated for the diagnosis of taeniasis for the T3qPCR, cAgELISA and KK thick smear in this study, respectively. T3qPCR is not only superior to the KK thick smear and cAgELISA in terms of diagnostic sensitivity and specificity, but it also has the advantage of discriminating between species of Taenia eggs in stools. Application of this newly developed T3qPCR has identified the existence of all three human Taenia tapeworms in Dak Lak province and proves for the first time, the existence of T. asiatica in the Central Highlands and the south of Vietnam.

  17. Evaluation of urine for Leishmania infantum DNA detection by real-time quantitative PCR.

    PubMed

    Pessoa-E-Silva, Rômulo; Mendonça Trajano-Silva, Lays Adrianne; Lopes da Silva, Maria Almerice; da Cunha Gonçalves-de-Albuquerque, Suênia; de Goes, Tayná Correia; Silva de Morais, Rayana Carla; Lopes de Melo, Fábio; de Paiva-Cavalcanti, Milena

    2016-12-01

    The availability of some sorts of biological samples which require noninvasive collection methods has led to an even greater interest in applying molecular biology on visceral leishmaniasis (VL) diagnosis, since these samples increase the safety and comfort of both patients and health professionals. In this context, this work aimed to evaluate the suitability of the urine as a specimen for Leishmania infantum kinetoplast DNA detection by real-time quantitative PCR (qPCR). Subsequent to the reproducibility analysis, the detection limit of the qPCR assay was set at 5fg (~0.025 parasites) per μL of urine. From the comparative analysis performed with a set of diagnostic criteria (serological and molecular reference tests), concordance value of 96.08% was obtained (VL-suspected and HIV/AIDS patients, n=51) (P>0.05). Kappa coefficient (95% CI) indicated a good agreement between the test and the set of diagnostic criteria (k=0.778±0.151). The detection of Leishmania DNA in urine by qPCR was possible in untreated individuals, and in those with or without suggestive renal impairment. Fast depletion of the parasite's DNA in urine after treatment (from one dose of meglumine antimoniate) was suggested by negative qPCR results, thus indicating it as a potential alternative specimen to follow up the efficacy of therapeutic approaches. Even when evaluated in a clinically heterogeneous set of patients, the urine showed good prospect as sample for VL diagnosis by qPCR, also indicating a good negative predictive value for untreated suspected patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Diversity and population-genetic properties of copy number variations and multicopy genes in cattle

    PubMed Central

    Bickhart, Derek M.; Xu, Lingyang; Hutchison, Jana L.; Cole, John B.; Null, Daniel J.; Schroeder, Steven G.; Song, Jiuzhou; Garcia, Jose Fernando; Sonstegard, Tad S.; Van Tassell, Curtis P.; Schnabel, Robert D.; Taylor, Jeremy F.; Lewin, Harris A.; Liu, George E.

    2016-01-01

    The diversity and population genetics of copy number variation (CNV) in domesticated animals are not well understood. In this study, we analysed 75 genomes of major taurine and indicine cattle breeds (including Angus, Brahman, Gir, Holstein, Jersey, Limousin, Nelore, and Romagnola), sequenced to 11-fold coverage to identify 1,853 non-redundant CNV regions. Supported by high validation rates in array comparative genomic hybridization (CGH) and qPCR experiments, these CNV regions accounted for 3.1% (87.5 Mb) of the cattle reference genome, representing a significant increase over previous estimates of the area of the genome that is copy number variable (∼2%). Further population genetics and evolutionary genomics analyses based on these CNVs revealed the population structures of the cattle taurine and indicine breeds and uncovered potential diversely selected CNVs near important functional genes, including AOX1, ASZ1, GAT, GLYAT, and KRTAP9-1. Additionally, 121 CNV gene regions were found to be either breed specific or differentially variable across breeds, such as RICTOR in dairy breeds and PNPLA3 in beef breeds. In contrast, clusters of the PRP and PAG genes were found to be duplicated in all sequenced animals, suggesting that subfunctionalization, neofunctionalization, or overdominance play roles in diversifying those fertility-related genes. These CNV results provide a new glimpse into the diverse selection histories of cattle breeds and a basis for correlating structural variation with complex traits in the future. PMID:27085184

  19. A novel mechanism for direct real-time polymerase chain reaction that does not require DNA isolation from prokaryotic cells.

    PubMed

    Soejima, Takashi; Xiao, Jin-Zhong; Abe, Fumiaki

    2016-06-23

    Typically, polymerase chain reaction (PCR) is performed after DNA isolation. Real-time PCR (qPCR), also known as direct qPCR in mammalian cells with weak membranes, is a common technique using crude samples subjected to preliminary boiling to elute DNA. However, applying this methodology to prokaryotic cells, which have solid cell walls, in contrast to mammalian cells which immediately burst in water, can result in poor detection. We successfully achieved PCR elongation with the addition of 1.3 cfu of Cronobacter muytjensii to a newly developed direct qPCR master mix without performing any crude DNA extraction (detection limit of 1.6 × 10(0) cfu/ml for the test sample compared with a detection limit of 1.6 × 10(3) cfu/ml primarily for crude (boiling) or classical DNA isolation). We revealed that the chromosomal DNA retained in prokaryotic cells can function as a PCR template, similarly to the mechanism in in situ PCR. Elucidating this reaction mechanism may contribute to the development of an innovative master mix for direct qPCR to detect genes in a single bacterium with solid cell walls and might lead to numerous novel findings in prokaryotic genomics research.

  20. Fine mapping of the NRC-1 tumor suppressor locus within chromosome 3p12.

    PubMed

    Zhang, Kun; Lott, Steven T; Jin, Li; Killary, Ann McNeill

    2007-08-31

    Identification of tumor suppressor genes based on physical mapping exercises has proven to be a challenging endeavor, due to the difficulty of narrowing regions of loss of heterozygosity (LOH), infrequency of homozygous deletions, and the labor-intensive characterization process for screening candidates in a given genomic interval. We previously defined a chromosome 3p12 tumor suppressor locus NRC-1 (Nonpapillary Renal Carcinoma-1) by functional complementation experiments in which renal cell carcinoma microcell hybrids containing introduced normal chromosome 3p fragments were either suppressed or unsuppressed for tumorigenicity following injection into athymic nude mice. We now present the fine-scale physical mapping of NRC-1 using a QPCR-based approach for measuring copy number at sequence tagged sites (STS) which allowed a sub-exon mapping resolution. Using STS-QPCR and a novel statistical algorithm, the NRC-1 locus was narrowed to 4.615-Mb with the distal boundary mapping within a 38-Kb interval between exon 3 and exon 4 of the DUTT1/Robo1 gene, currently the only candidate tumor suppressor gene in the interval. Further mutational screening and gene expression analyses indicate that DUTT1/ROBO1 is not involved in the tumor suppressor activity of NRC-1, suggesting that there are at least two important tumor suppressor genes within the chromosome 3p12 interval.

  1. Identification of immune-related genes in gill cells of Japanese eels (Anguilla japonica) in adaptation to water salinity changes.

    PubMed

    Gu, Jie; Dai, Shuya; Liu, Haitao; Cao, Quanquan; Yin, Shaowu; Lai, Keng Po; Tse, William Ka Fai; Wong, Chris Kong Chu; Shi, Haifeng

    2018-02-01

    The changes in ambient salinity influence ion and water homeostasis, hormones secretion, and immune response in fish gills. The physiological functions of hormones and ion transporters in the regulation of gill-osmoregulation have been widely studied, however the modulation of immune response under salinity changes is not determined. Using transcriptome sequencing, we obtained a comprehensive profile of osmo-responsive genes in gill cells of Japanese eel (Anguilla japonica). Herein, we applied bioinformatics analysis to identify the immune-related genes that were significantly higher expressed in gill pavement cells (PVCs) and mitochondrial-rich cells (MRCs) in freshwater (FW) than seawater (SW) adapted fish. We validated the data using the real-time qPCR, which showed a high correlation between the RNA-seq and real-time qPCR data. In addition, the immunohistochemistry results confirmed the changes of the expression of selected immune-related genes, including C-reactive protein (CRP) in PVCs, toll-like receptor 2 (TLR2) in MRCs and interleukin-1 receptor type 2 (IL-1R2) in both PVCs and MRCs. Collectively our results demonstrated that those immune-related genes respond to salinity changes, and might trigger related special signaling pathways and network. This study provides new insights into the impacts of ambient salinity changes on adaptive immune response in fish gill cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Assessing mycoplasma contamination of cell cultures by qPCR using a set of universal primer pairs targeting a 1.5 kb fragment of 16S rRNA genes

    PubMed Central

    Jean, Audrey; Tardy, Florence; Allatif, Omran; Grosjean, Isabelle; Blanquier, Bariza

    2017-01-01

    Mycoplasmas (a generic name for Mollicutes) are a predominant bacterial contaminant of cell culture and cell derived products including viruses. This prokaryote class is characterized by very small size and lack of a cell wall. Consequently, mycoplasmas escape ultrafiltration and visualization under routine microscopic examination, hence the ease with which cells in culture can be contaminated, with routinely more than 10% of cell lines being contaminated. Mycoplasma are a formidable threat both in fundamental research by perverting a whole range of cell properties and functions and in the pharmacological use of cells and cell derived products. Although many methods have been developed, there is still a need for a sensitive, universal assay. Here is reported the development and validation of a quantitative polymerase chain reaction (qPCR) based on the amplification of a 1.5 kb fragment covering the 16S rDNA of the Mollicute class by real-time PCR using universal U1 and U8 degenerate primers. The method includes the addition of a DNA loading probe to each sample to monitor DNA extraction and the absence of PCR inhibitors in the extracted DNA, a positive mycoplasma 16S rDNA traceable reference sample to exclude any accidental contamination of an unknown sample with this reference DNA, an analysis procedure based on the examination of the melting curve and the size of the PCR amplicon, followed by quantification of the number of 16S rDNA copies (with a lower limit of 19 copies) when relevant, and, if useful, the identification of the contaminating prokaryote by sequencing. The method was validated on a collection of mycoplasma strains and by testing over 100 samples of unknown contamination status including stocks of viruses requiring biosafety level 2, 3 or 4 containments. When compared to four established methods, the m16S_qPCR technique exhibits the highest sensitivity in detecting mycoplasma contamination. PMID:28225826

  3. Enrichment and isolation of neurons from adult mouse brain for ex vivo analysis.

    PubMed

    Berl, Sabina; Karram, Khalad; Scheller, Anja; Jungblut, Melanie; Kirchhoff, Frank; Waisman, Ari

    2017-05-01

    Isolation of neurons from the adult mouse CNS is important in order to study their gene expression during development or the course of different diseases. Here we present two different methods for the enrichment or isolation of neurons from adult mouse CNS. These methods: are either based on flow cytometry sorting of eYFP expressing neurons, or by depletion of non-neuronal cells by sorting with magnetic-beads. Enrichment by FACS sorting of eYFP positive neurons results in a population of 62.4% NeuN positive living neurons. qPCR data shows a 3-5fold upregulation of neuronal markers. The isolation of neurons based on depletion of non-neuronal cells using the Miltenyi Neuron Isolation Kit, reaches a purity of up to 86.5%. qPCR data of these isolated neurons shows an increase in neuronal markers and an absence of glial markers, proving pure neuronal RNA isolation. Former data related to neuronal gene expression are mainly based on histology, which does not allow for high-throughput transcriptome analysis to examine differential gene expression. These protocols can be used to study cell type specific gene expression of neurons to unravel their function in the process of damage to the CNS. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. A Java program for LRE-based real-time qPCR that enables large-scale absolute quantification.

    PubMed

    Rutledge, Robert G

    2011-03-02

    Linear regression of efficiency (LRE) introduced a new paradigm for real-time qPCR that enables large-scale absolute quantification by eliminating the need for standard curves. Developed through the application of sigmoidal mathematics to SYBR Green I-based assays, target quantity is derived directly from fluorescence readings within the central region of an amplification profile. However, a major challenge of implementing LRE quantification is the labor intensive nature of the analysis. Utilizing the extensive resources that are available for developing Java-based software, the LRE Analyzer was written using the NetBeans IDE, and is built on top of the modular architecture and windowing system provided by the NetBeans Platform. This fully featured desktop application determines the number of target molecules within a sample with little or no intervention by the user, in addition to providing extensive database capabilities. MS Excel is used to import data, allowing LRE quantification to be conducted with any real-time PCR instrument that provides access to the raw fluorescence readings. An extensive help set also provides an in-depth introduction to LRE, in addition to guidelines on how to implement LRE quantification. The LRE Analyzer provides the automated analysis and data storage capabilities required by large-scale qPCR projects wanting to exploit the many advantages of absolute quantification. Foremost is the universal perspective afforded by absolute quantification, which among other attributes, provides the ability to directly compare quantitative data produced by different assays and/or instruments. Furthermore, absolute quantification has important implications for gene expression profiling in that it provides the foundation for comparing transcript quantities produced by any gene with any other gene, within and between samples.

  5. Quantitative PCR-based parasite burden estimation of Babesia gibsoni in the vector tick, Haemaphysalis longicornis (Acari: Ixodidae), fed on an experimentally infected dog.

    PubMed

    Hatta, Takeshi; Matsubayashi, Makoto; Miyoshi, Takeharu; Islam, Khyrul; Alim, M Abdul; Anisuzzaman; Yamaji, Kayoko; Fujisaki, Kozo; Tsuji, Naotoshi

    2013-01-31

    Most causative agents of babesiosis, Babesia parasites, are transmitted transovarially in ixodid ticks. In this study, B. gibsoni, the causative agent of canine babesiosis which has transovarial transmission, was detected in tissues of the vector tick, Haemaphysalis longicornis using a modified quantitative PCR assay. Conventional PCR results showed that the newly designed primer set, which amplifies a 143-bp fragment of rhoptry-associated protein-1 (BgRAP-1) gene in B. gibsoni, was 100 times more sensitive than primers targeting P18 gene encoding 18 kDa protein of B. gibsoni, which was recently renamed as thrombospondin related adhesive protein (BgTRAP) gene, in an artificially generated sample solution containing metagenomic DNA (B. gibsoni DNA extracted from infected dog blood mixed with tick DNA). The TaqMan probe-based quantitative PCR (qPCR) for BgRAP-1 could also detect infected RBCs (iRBCs) at levels of 3.5 × 10(5) to 3.5 × 10(1)/μl, a range that is broader than that of a past SYBR Green-based qPCR method for P18/BgTRAP, which had a detection limit of 3.5 × 10(3) iRBCs/μl. Using this qPCR assay, we attempted to quantify the B. gibsoni burden in tick ovaries and embryonated eggs. Levels of infection were normalized to the copy number of tick's genomic DNA fragment of ribosomal DNA internal transcribed spacer region 2 (ITS2) for the standardization. According to this, low levels of parasite burden were quantified in ovaries and eggs. This detection system is sensitive and is recommended as a tool for elucidating the biological interactions between the vector tick H. longicornis and the parasite, B. gibsoni.

  6. Braf, Kras and Helicobacter pylori epigenetic changes-associated chronic gastritis in Egyptian patients with and without gastric cancer.

    PubMed

    Sabry, Dina; Ahmed, Rasha; Abdalla, Sayed; Fathy, Wael; Eldemery, Ahmed; Elamir, Azza

    2016-06-01

    We aimed to study MLH1 and MGMT methylation status in Helicobacter pylori-associated chronic gastritis in Egyptian patients with and without gastric cancer. 39 patients were included in our study. They were divided into 2 groups; patients without (group I) and with gastric adenocarcinoma (group II). Patients were subjected to clinical examination, abdominal ultrasound and upper endoscopy for gastric biopsy. Biopsies were subjected to urease test, histological examination, and DNA purification. H. pylori, Braf, Kras, MLH1 and MGMT methylation were assessed by quantitative PCR. DNA sequencing was performed to assess Braf and Kras genes mutation. qPCR of H. pylori was significantly higher in patients with adenocarcinoma (group II) than those without adenocarcinoma (group I); with a p < 0.001 as well as in patients with age above 50 years with a p value = 0.008. By applying logistic regression analysis it was reported that the H. pylori qPCR is a significant predictor to the adenocarcinoma with OR = 1.025 (95 % CI: 1. 002-1.048), with sensitivity of 90 % and specificity of 100 %. Adenocarcinoma patients had a significantly higher mean age and levels of H. Pylori, Braf, K-ras, methylated MGMT and methylated MLH1 than those of gastritis patients. DNA sequence analysis of Braf (codon 12) and Kras (codon 600) had genes mutation in gastric adenocarcinoma versus chronic gastritis. H. pylori may cause epigenetic changes predisposing the patients to cancer stomach. Estimation of H. pylori by qPCR can be a good predictor to adenocarcinoma. Braf and Kras genes mutation were reveled in gastritis and adenocarcinoma patients.

  7. A Java Program for LRE-Based Real-Time qPCR that Enables Large-Scale Absolute Quantification

    PubMed Central

    Rutledge, Robert G.

    2011-01-01

    Background Linear regression of efficiency (LRE) introduced a new paradigm for real-time qPCR that enables large-scale absolute quantification by eliminating the need for standard curves. Developed through the application of sigmoidal mathematics to SYBR Green I-based assays, target quantity is derived directly from fluorescence readings within the central region of an amplification profile. However, a major challenge of implementing LRE quantification is the labor intensive nature of the analysis. Findings Utilizing the extensive resources that are available for developing Java-based software, the LRE Analyzer was written using the NetBeans IDE, and is built on top of the modular architecture and windowing system provided by the NetBeans Platform. This fully featured desktop application determines the number of target molecules within a sample with little or no intervention by the user, in addition to providing extensive database capabilities. MS Excel is used to import data, allowing LRE quantification to be conducted with any real-time PCR instrument that provides access to the raw fluorescence readings. An extensive help set also provides an in-depth introduction to LRE, in addition to guidelines on how to implement LRE quantification. Conclusions The LRE Analyzer provides the automated analysis and data storage capabilities required by large-scale qPCR projects wanting to exploit the many advantages of absolute quantification. Foremost is the universal perspective afforded by absolute quantification, which among other attributes, provides the ability to directly compare quantitative data produced by different assays and/or instruments. Furthermore, absolute quantification has important implications for gene expression profiling in that it provides the foundation for comparing transcript quantities produced by any gene with any other gene, within and between samples. PMID:21407812

  8. Use of a real time PCR assay for detection of the ctxA gene of Vibrio cholerae in an environmental survey of Mobile Bay.

    PubMed

    Blackstone, George M; Nordstrom, Jessica L; Bowen, Michael D; Meyer, Richard F; Imbro, Paula; DePaola, Angelo

    2007-02-01

    Toxigenic Vibrio cholerae, the etiological agent of cholera, is a natural inhabitant of the marine environment and causes severe diarrheal disease affecting thousands of people each year in developing countries. It is the subject of extensive testing of shrimp produced and exported from these countries. We report the development of a real time PCR (qPCR) assay to detect the gene encoding cholera toxin, ctxA, found in toxigenic V. cholerae strains. This assay was tested against DNA isolated from soil samples collected from diverse locations in the US, a panel of eukaryotic DNA from various sources, and prokaryotic DNA from closely related and unrelated bacterial sources. Only Vibrio strains known to contain ctxA generated a fluorescent signal with the 5' nuclease probe targeting the ctxA gene, thus confirming the specificity of the assay. In addition, the assay was quantitative in pure culture across a six-log dynamic range down to <10 CFU per reaction. To test the robustness of this assay, oysters, aquatic sediments, and seawaters from Mobile Bay, AL, were analyzed by qPCR and traditional culture methods. The assay was applied to overnight alkaline peptone water enrichments of these matrices after boiling the enrichments for 10 min. Toxigenic V. cholerae strains were not detected by either qPCR or conventional methods in the 16 environmental samples examined. A novel exogenous internal amplification control developed by us to prevent false negatives identified the samples that were inhibitory to the PCR. This assay, with the incorporated internal control, provides a highly specific, sensitive, and rapid detection method for the detection of toxigenic strains of V. cholerae.

  9. A Study of Mercury Methylation Genetics: Qualitative and Quantitative Analysis of hgcAB in Pure Culture

    NASA Astrophysics Data System (ADS)

    Christensen, G. A.; Wymore, A. M.; King, A. J.; Podar, M.; Hurt, R. A., Jr.; Santillan, E. F. U.; Gilmour, C. C.; Brandt, C. C.; Brown, S. D.; Palumbo, A. V.; Elias, D. A.

    2015-12-01

    Two proteins (HgcA and HgcB) have been determined to be essential for mercury (Hg)-methylation and either one alone is not sufficient for this process. Detection and quantification of these genes to determine at risk environments is critical. Universal degenerate polymerase chain reaction (PCR) primers spanning hgcAB were developed to ascertain organismal diversity and validate that both genes were present as an established prerequisite for Hg-methylation. To confirm this approach, an extensive set of pure cultures with published genomes (including methylators and non-methylators: 13 Deltaproteobacteria, 9 Firmicutes, and 10 methanogenic Archaea) were assayed with the newly designed universal hgcAB primer set. A single band within an agarose gel was observed for the majority of the cultures with known hgcAB and confirmed via Sanger sequencing. For environmental applications, once the potential for Hg-methylation is established from PCR amplification with the universal hgcAB primer set, quantification of clade-specific hgcAB gene abundance is desirable. We developed quantitative polymerase chain reaction (qPCR) degenerate primers targeting hgcA from each of the three dominate clades (Deltaproteobacteria, Firmicutes and methanogenic Archaea) known to be associated with anaerobic Hg-methylation. The qPCR primers amplify virtually all hgcA positive cultures overall and are specific for their designed clade. Finally, to ensure the procedure is robust and sensitive in complex environmental matrices, cells from all clades were mixed in different combinations and ratios to assess qPCR primer specificity. The development and validation of these high fidelity quantitative molecular tools now allows for rapid and accurate risk management assessment in any environment.

  10. Genomic and Proteomic Analyses of the Fungus Arthrobotrys oligospora Provide Insights into Nematode-Trap Formation

    PubMed Central

    Feng, Yun; Li, Xiaomin; Zou, Chenggang; Xu, Jianping; Ren, Yan; Mi, Qili; Wu, Junli; Liu, Shuqun; Liu, Yu; Huang, Xiaowei; Wang, Haiyan; Niu, Xuemei; Li, Juan; Liang, Lianming; Luo, Yanlu; Ji, Kaifang; Zhou, Wei; Yu, Zefen; Li, Guohong; Liu, Yajun; Li, Lei; Qiao, Min; Feng, Lu; Zhang, Ke-Qin

    2011-01-01

    Nematode-trapping fungi are “carnivorous” and attack their hosts using specialized trapping devices. The morphological development of these traps is the key indicator of their switch from saprophytic to predacious lifestyles. Here, the genome of the nematode-trapping fungus Arthrobotrys oligospora Fres. (ATCC24927) was reported. The genome contains 40.07 Mb assembled sequence with 11,479 predicted genes. Comparative analysis showed that A. oligospora shared many more genes with pathogenic fungi than with non-pathogenic fungi. Specifically, compared to several sequenced ascomycete fungi, the A. oligospora genome has a larger number of pathogenicity-related genes in the subtilisin, cellulase, cellobiohydrolase, and pectinesterase gene families. Searching against the pathogen-host interaction gene database identified 398 homologous genes involved in pathogenicity in other fungi. The analysis of repetitive sequences provided evidence for repeat-induced point mutations in A. oligospora. Proteomic and quantitative PCR (qPCR) analyses revealed that 90 genes were significantly up-regulated at the early stage of trap-formation by nematode extracts and most of these genes were involved in translation, amino acid metabolism, carbohydrate metabolism, cell wall and membrane biogenesis. Based on the combined genomic, proteomic and qPCR data, a model for the formation of nematode trapping device in this fungus was proposed. In this model, multiple fungal signal transduction pathways are activated by its nematode prey to further regulate downstream genes associated with diverse cellular processes such as energy metabolism, biosynthesis of the cell wall and adhesive proteins, cell division, glycerol accumulation and peroxisome biogenesis. This study will facilitate the identification of pathogenicity-related genes and provide a broad foundation for understanding the molecular and evolutionary mechanisms underlying fungi-nematodes interactions. PMID:21909256

  11. Genomic and proteomic analyses of the fungus Arthrobotrys oligospora provide insights into nematode-trap formation.

    PubMed

    Yang, Jinkui; Wang, Lei; Ji, Xinglai; Feng, Yun; Li, Xiaomin; Zou, Chenggang; Xu, Jianping; Ren, Yan; Mi, Qili; Wu, Junli; Liu, Shuqun; Liu, Yu; Huang, Xiaowei; Wang, Haiyan; Niu, Xuemei; Li, Juan; Liang, Lianming; Luo, Yanlu; Ji, Kaifang; Zhou, Wei; Yu, Zefen; Li, Guohong; Liu, Yajun; Li, Lei; Qiao, Min; Feng, Lu; Zhang, Ke-Qin

    2011-09-01

    Nematode-trapping fungi are "carnivorous" and attack their hosts using specialized trapping devices. The morphological development of these traps is the key indicator of their switch from saprophytic to predacious lifestyles. Here, the genome of the nematode-trapping fungus Arthrobotrys oligospora Fres. (ATCC24927) was reported. The genome contains 40.07 Mb assembled sequence with 11,479 predicted genes. Comparative analysis showed that A. oligospora shared many more genes with pathogenic fungi than with non-pathogenic fungi. Specifically, compared to several sequenced ascomycete fungi, the A. oligospora genome has a larger number of pathogenicity-related genes in the subtilisin, cellulase, cellobiohydrolase, and pectinesterase gene families. Searching against the pathogen-host interaction gene database identified 398 homologous genes involved in pathogenicity in other fungi. The analysis of repetitive sequences provided evidence for repeat-induced point mutations in A. oligospora. Proteomic and quantitative PCR (qPCR) analyses revealed that 90 genes were significantly up-regulated at the early stage of trap-formation by nematode extracts and most of these genes were involved in translation, amino acid metabolism, carbohydrate metabolism, cell wall and membrane biogenesis. Based on the combined genomic, proteomic and qPCR data, a model for the formation of nematode trapping device in this fungus was proposed. In this model, multiple fungal signal transduction pathways are activated by its nematode prey to further regulate downstream genes associated with diverse cellular processes such as energy metabolism, biosynthesis of the cell wall and adhesive proteins, cell division, glycerol accumulation and peroxisome biogenesis. This study will facilitate the identification of pathogenicity-related genes and provide a broad foundation for understanding the molecular and evolutionary mechanisms underlying fungi-nematodes interactions.

  12. Rapid QPCR-based assay for fecal Bacteroides spp. as a tool for assessing fecal contamination in recreational waters.

    PubMed

    Converse, Reagan R; Blackwood, A Denene; Kirs, Marek; Griffith, John F; Noble, Rachel T

    2009-11-01

    Concentrations of fecal indicator bacteria (FIB; e.g. Escherichia coli, and Enterococcus sp.) can only be used in limited ways for determining the source of fecal contamination in recreational waters because they cannot distinguish human from non-human fecal contamination. Several Bacteroides spp. have been suggested as potential alternative indicators. We have developed a rapid, culture-independent method for quantifying fecal Bacteroides spp. using quantitative PCR (QPCR) targeting the 16S rRNA gene. The assay specifically targets and quantifies the most common human Bacteroides spp. The details of the method are presented, including analyses of a wide range of fecal samples from different organisms. Specificity and performance of the QPCR assay were also tested via a laboratory experiment where human sewage and gull guano were inoculated into a range of environmental water samples. Concentrations of fecal Bacteroides spp., total Enterococcus sp., Enterococcus faecium, Enterococcus faecalis, and Enterococcus casseliflavus were measured using QPCR, and total Enterococcus sp. and E. coli were quantified by membrane filtration (MF). Samples spiked with gull guano were highly concentrated with total Enterococcus sp., E. coli, E. faecalis, and E. casseliflavus, demonstrating that these indicators are prominent in animal feces. On the other hand, fecal Bacteroides spp. concentrations were high in samples containing sewage and were relatively low in samples spiked with gull guano. Sensitivity and specificity results suggest that the rapid fecal Bacteroides spp. QPCR assay may be a useful tool to effectively predict the presence and concentration of human-specific fecal pollution.

  13. Effect of bioaugmentation and biostimulation on sulfate-reducing column startup captured by functional gene profiling.

    PubMed

    Pereyra, Luciana P; Hiibel, Sage R; Perrault, Elizabeth M; Reardon, Kenneth F; Pruden, Amy

    2012-10-01

    Sulfate-reducing permeable reactive zones (SR-PRZs) depend upon a complex microbial community to utilize a lignocellulosic substrate and produce sulfides, which remediate mine drainage by binding heavy metals. To gain insight into the impact of the microbial community composition on the startup time and pseudo-steady-state performance, functional genes corresponding to cellulose-degrading (CD), fermentative, sulfate-reducing, and methanogenic microorganisms were characterized in columns simulating SR-PRZs using quantitative polymerase chain reaction (qPCR) and denaturing gradient gel electrophoresis (DGGE). Duplicate columns were bioaugmented with sulfate-reducing or CD bacteria or biostimulated with ethanol or carboxymethyl cellulose and compared with baseline dairy manure inoculum and uninoculated controls. Sulfate removal began after ~ 15 days for all columns and pseudo-steady state was achieved by Day 30. Despite similar performance, DGGE profiles of 16S rRNA gene and functional genes at pseudo-steady state were distinct among the column treatments, suggesting the potential to control ultimate microbial community composition via bioaugmentation and biostimulation. qPCR revealed enrichment of functional genes in all columns between the initial and pseudo-steady-state time points. This is the first functional gene-based study of CD, fermentative and sulfate-reducing bacteria and methanogenic archaea in a lignocellulose-based environment and provides new qualitative and quantitative insight into startup of a complex microbial system. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  14. Long-term dietary supplementation of organic selenium modulates gene expression profiles in leukocytes of adult pigs.

    PubMed

    Song, Ki-Duk; Dowd, Scott E; Lee, Hak-Kyo; Kim, Sung Woo

    2013-03-01

    Seventy-two pigs at 34.4 kg body weight (BW) were allotted to two treatments with six replicates/treatment and six pigs/pen: the CON (negative control, no added selenium (Se)) and the OS (0.36 mg/kg added selenium from selenium-enriched yeast). Pigs were fed until 130 kg BW. The CON diet contained 0.18 mg/kg indigenous Se whereas the OS diet contained 0.54 mg/kg Se. Blood samples were collected at 130 kg BW and further processed for microarray analysis, prepared with 885 genes related to immune function of pigs. Among those, 28 genes related to improved immune status and innate immunity were up-regulated (P < 0.05) in leukocytes from Se-fed pigs and those include major histocompatibility class I (> 1.66), arginase I (> 1.27), integrin beta-1-subunit (> 1.20), toll like receptor 2 (> 1.12) and double-stranded RNA-dependent protein kinase. However, 24 genes including tissue factor (< 4.70), serum amyloid A-2 protein (< 3.11) and p27Kip1 (< 1.42) were down-regulated (P < 0.05) in leukocytes from Se-fed pigs. Expression of four selected genes was validated using quantitative PCR (qPCR) showing significant correlation between mircroarray analysis and qPCR analysis. This study indicates that a long- term dietary supplementation (0.3%) of organic Se improves the expression of genes that are related to enhanced immunity of pigs. © 2012 Japanese Society of Animal Science.

  15. Characterization of vitellogenin gene expression in round goby (Neogobius melanostomus) using a quantitative polymerase chain reaction assay.

    PubMed

    Bowley, Lucas A; Alam, Farhana; Marentette, Julie R; Balshine, Sigal; Wilson, Joanna Y

    2010-12-01

    A growing concern over endocrine disruption in aquatic species has prompted the development of molecular assays to monitor environmental impacts. This study describes the development of quantitative polymerase chain reaction (qPCR) assays to characterize the expression of two vitellogenin (Vtg) genes in the invasive round goby (Neogobius melanostomus). Fragments from the 18SrRNA (housekeeping gene), Vtg II, and Vtg III genes were cloned and sequenced. The qPCR assays were developed to detect hepatic Vtg expression in goby. The assays detected induction of both Vtg genes in nonreproductive males following a two-week laboratory exposure to 17β-estradiol (≥1 mg/kg i.p. injection). The assays were applied to goby from Hamilton Harbour, Lake Ontario (Canada), including those from sites where feminization and intersex of goby has been documented. Both Vtg genes had significantly higher expression in females compared to males. Male reproductive goby adopt either parental or sneaker tactics; Vtg II expression was higher in sneaker than in parental males but parental and nonreproductive males did not differ from each other. The Vtg III expression was significantly higher in sneaker males followed by parental males and nonreproductive males, respectively. The Vtg II and III expression in nonreproductive males was elevated in the contaminated site with documented intersex. This assay provides an important tool for the use of an invasive species in monitoring endocrine disruption in the Great Lakes region. Copyright © 2010 SETAC.

  16. Immunomediator expression profiling in two beluga whale (delphinapterus leucas) clinical cases

    USDA-ARS?s Scientific Manuscript database

    Cytokines and other immunomediators can be biomarkers of inflammation. Quantitative real-time PCR (qPCR) has been used to examine cytokine gene expression in beluga whale (Delphinapterus leucas) peripheral blood mononuclear cells (PBMC). Thus, qPCR-based immunomediator assays could supplement clinic...

  17. Estimating growth rates of uncultivated clades of archaea and bacteria in marine sediments

    NASA Astrophysics Data System (ADS)

    Lloyd, K. G.

    2016-12-01

    The vast majority of microbes present in marine sediments have never been cultivated in laboratory conditions. It is therefore difficult to estimate the growth rates of these organisms in situ. Quantitative PCR (qPCR) and 16S rRNA gene libraries from sediments below 10 cm show very little change in abundance of these organisms with depth or with redox conditions. Therefore, we hypothesized that uncultivated clades of bacteria and archaea that are ubiquitous in marine sediments, actually grow in the upper 10 cm of marine sediments. We collected sediment cores from the White Oak River estuary, sectioned them in 1 cm intervals, and examined the changes in abundance of uncultivated microbes with depth using 16S rRNA gene libraries and qPCR. We found that some of the key clades associated with the deep subsurface microbiome, such as Bathyarchaeota and MBG-D, increase in abundance with depth, demonstrating extremely slow growth in these shallow subsurface sediments.

  18. Rapid and visual detection of Leptospira in urine by LigB-LAMP assay with pre-addition of dye.

    PubMed

    Ali, Syed Atif; Kaur, Gurpreet; Boby, Nongthombam; Sabarinath, T; Solanki, Khushal; Pal, Dheeraj; Chaudhuri, Pallab

    2017-12-01

    Leptospirosis is considered to be the most widespread zoonotic disease caused by pathogenic species of Leptospira. The present study reports a novel set of primers targeting LigB gene for visual detection of pathogenic Leptospira in urine samples through Loop-mediated isothermal amplification (LAMP). The results were recorded by using Hydroxyl napthol blue (HNB), SYBR GREEN I and calcein. Analytical sensitivity of LAMP was as few as 10 leptospiral organisms in spiked urine samples from cattle and dog. LigB gene based LAMP, termed as LigB-LAMP, was found 10 times more sensitive than conventional PCR. The diagnostic specificity of LAMP was 100% when compared to SYBR green qPCR for detection of Leptospira in urine samples. Though qPCR was found more sensitive, the rapidity and simplicity in setting LAMP test followed by visual detection of Leptospira infection in clinical samples makes LigB-LAMP an alternative and favourable diagnostic tool in resource poor setting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. A new arylalkylamine N-acetyltransferase in silkworm (Bombyx mori) affects integument pigmentation.

    PubMed

    Long, Yaohang; Li, Jiaorong; Zhao, Tianfu; Li, Guannan; Zhu, Yong

    2015-04-01

    Dopamine is a precursor for melanin synthesis. Arylalkylamine N-acetyltransferase (AANAT) is involved in the melatonin formation in insects because it could catalyze the transformation from dopamine to dopamine-N-acetyldopamine. In this study, we identified a new AANAT gene in the silkworm (Bombyx mori) and assessed its role in the silkworm. The cDNA of this gene encodes 233 amino acids that shares 57 % amino acid identity with the Bm-iAANAT protein. We thus refer to this gene as Bm-iAANAT2. To investigate the role of Bm-iAANAT2, we constructed a transgenic interference system using a 3xp3 promoter to suppress the expression of Bm-iAANAT2 in the silkworm. We observed that melanin deposition occurs in the head and integument in transgenic lines. To verify the melanism pattern, dopamine content and the enzyme activity of AANAT were determined by high-performance liquid chromatography (HPLC). We found that an increase in dopamine levels affects melanism patterns on the heads of transgenic B. mori. A reduction in the enzyme activity of AANAT leads to changes in dopamine levels. We analyzed the expression of the Bm-iAANAT2 genes by qPCR and found that the expression of Bm-iAANAT2 gene is significantly lower in transgenic lines. Our results lead us to conclude that Bm-iAANAT2 is a new arylalkylamine N-acetyltransferase gene in the silkworm and is involved in the metabolism of the dopamine to avoid the generation of melanin.

  20. Genome-wide transcriptome and expression profile analysis of Phalaenopsis during explant browning.

    PubMed

    Xu, Chuanjun; Zeng, Biyu; Huang, Junmei; Huang, Wen; Liu, Yumei

    2015-01-01

    Explant browning presents a major problem for in vitro culture, and can lead to the death of the explant and failure of regeneration. Considerable work has examined the physiological mechanisms underlying Phalaenopsis leaf explant browning, but the molecular mechanisms of browning remain elusive. In this study, we used whole genome RNA sequencing to examine Phalaenopsis leaf explant browning at genome-wide level. We first used Illumina high-throughput technology to sequence the transcriptome of Phalaenopsis and then performed de novo transcriptome assembly. We assembled 79,434,350 clean reads into 31,708 isogenes and generated 26,565 annotated unigenes. We assigned Gene Ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations, and potential Pfam domains to each transcript. Using the transcriptome data as a reference, we next analyzed the differential gene expression of explants cultured for 0, 3, and 6 d, respectively. We then identified differentially expressed genes (DEGs) before and after Phalaenopsis explant browning. We also performed GO, KEGG functional enrichment and Pfam analysis of all DEGs. Finally, we selected 11 genes for quantitative real-time PCR (qPCR) analysis to confirm the expression profile analysis. Here, we report the first comprehensive analysis of transcriptome and expression profiles during Phalaenopsis explant browning. Our results suggest that Phalaenopsis explant browning may be due in part to gene expression changes that affect the secondary metabolism, such as: phenylpropanoid pathway and flavonoid biosynthesis. Genes involved in photosynthesis and ATPase activity have been found to be changed at transcription level; these changes may perturb energy metabolism and thus lead to the decay of plant cells and tissues. This study provides comprehensive gene expression data for Phalaenopsis browning. Our data constitute an important resource for further functional studies to prevent explant browning.

  1. High throughput transcriptome analysis of coffee reveals prehaustorial resistance in response to Hemileia vastatrix infection.

    PubMed

    Florez, Juan Carlos; Mofatto, Luciana Souto; do Livramento Freitas-Lopes, Rejane; Ferreira, Sávio Siqueira; Zambolim, Eunize Maciel; Carazzolle, Marcelo Falsarella; Zambolim, Laércio; Caixeta, Eveline Teixeira

    2017-12-01

    We provide a transcriptional profile of coffee rust interaction and identified putative up regulated resistant genes Coffee rust disease, caused by the fungus Hemileia vastatrix, is one of the major diseases in coffee throughout the world. The use of resistant cultivars is considered to be the most effective control strategy for this disease. To identify candidate genes related to different mechanism defense in coffee, we present a time-course comparative gene expression profile of Caturra (susceptible) and Híbrido de Timor (HdT, resistant) in response to H. vastatrix race XXXIII infection. The main objectives were to obtain a global overview of transcriptome in both interaction, compatible and incompatible, and, specially, analyze up-regulated HdT specific genes with inducible resistant and defense signaling pathways. Using both Coffea canephora as a reference genome and de novo assembly, we obtained 43,159 transcripts. At early infection events (12 and 24 h after infection), HdT responded to the attack of H. vastatrix with a larger number of up-regulated genes than Caturra, which was related to prehaustorial resistance. The genes found in HdT at early hours were involved in receptor-like kinases, response ion fluxes, production of reactive oxygen species, protein phosphorylation, ethylene biosynthesis and callose deposition. We selected 13 up-regulated HdT-exclusive genes to validate by real-time qPCR, which most of them confirmed their higher expression in HdT than in Caturra at early stage of infection. These genes have the potential to assist the development of new coffee rust control strategies. Collectively, our results provide understanding of expression profiles in coffee-H. vastatrix interaction over a time course in susceptible and resistant coffee plants.

  2. Genome-Wide Transcriptome and Expression Profile Analysis of Phalaenopsis during Explant Browning

    PubMed Central

    Xu, Chuanjun; Zeng, Biyu; Huang, Junmei; Huang, Wen; Liu, Yumei

    2015-01-01

    Background Explant browning presents a major problem for in vitro culture, and can lead to the death of the explant and failure of regeneration. Considerable work has examined the physiological mechanisms underlying Phalaenopsis leaf explant browning, but the molecular mechanisms of browning remain elusive. In this study, we used whole genome RNA sequencing to examine Phalaenopsis leaf explant browning at genome-wide level. Methodology/Principal Findings We first used Illumina high-throughput technology to sequence the transcriptome of Phalaenopsis and then performed de novo transcriptome assembly. We assembled 79,434,350 clean reads into 31,708 isogenes and generated 26,565 annotated unigenes. We assigned Gene Ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations, and potential Pfam domains to each transcript. Using the transcriptome data as a reference, we next analyzed the differential gene expression of explants cultured for 0, 3, and 6 d, respectively. We then identified differentially expressed genes (DEGs) before and after Phalaenopsis explant browning. We also performed GO, KEGG functional enrichment and Pfam analysis of all DEGs. Finally, we selected 11 genes for quantitative real-time PCR (qPCR) analysis to confirm the expression profile analysis. Conclusions/Significance Here, we report the first comprehensive analysis of transcriptome and expression profiles during Phalaenopsis explant browning. Our results suggest that Phalaenopsis explant browning may be due in part to gene expression changes that affect the secondary metabolism, such as: phenylpropanoid pathway and flavonoid biosynthesis. Genes involved in photosynthesis and ATPase activity have been found to be changed at transcription level; these changes may perturb energy metabolism and thus lead to the decay of plant cells and tissues. This study provides comprehensive gene expression data for Phalaenopsis browning. Our data constitute an important resource for further functional studies to prevent explant browning. PMID:25874455

  3. Genotyping of Indian antigenic, vaccine, and field Brucella spp. using multilocus sequence typing.

    PubMed

    Shome, Rajeswari; Krithiga, Natesan; Shankaranarayana, Padmashree B; Jegadesan, Sankarasubramanian; Udayakumar S, Vishnu; Shome, Bibek Ranjan; Saikia, Girin Kumar; Sharma, Narendra Kumar; Chauhan, Harshad; Chandel, Bharat Singh; Jeyaprakash, Rajendhran; Rahman, Habibur

    2016-03-31

    Brucellosis is one of the most important zoonotic diseases that affects multiple livestock species and causes great economic losses. The highly conserved genomes of Brucella, with > 90% homology among species, makes it important to study the genetic diversity circulating in the country. A total of 26 Brucella spp. (4 reference strains and 22 field isolates) and 1 B. melitensis draft genome sequence from India (B. melitensis Bm IND1) were included for sequence typing. The field isolates were identified by biochemical tests and confirmed by both conventional and quantitative polymerase chain reaction (qPCR) targeting bcsp 31Brucella genus-specific marker. Brucella speciation and biotyping was done by Bruce ladder, probe qPCR, and AMOS PCRs, respectively, and genotyping was done by multilocus sequence typing (MLST). The MLST typing of 27 Brucella spp. revealed five distinct sequence types (STs); the B. abortus S99 reference strain and 21 B. abortus field isolates belonged to ST1. On the other hand, the vaccine strain B. abortus S19 was genotyped as ST5. Similarly, B. melitensis 16M reference strain and one B. melitensis field isolate were grouped into ST7. Another B. melitensis field isolate belonged to ST8 (draft genome sequence from India), and only B. suis 1330 reference strain was found to be ST14. The sequences revealed genetic similarity of the Indian strains to the global reference and field strains. The study highlights the usefulness of MLST for typing of field isolates and validation of reference strains used for diagnosis and vaccination against brucellosis.

  4. Development of a qPCR Method for the Identification and Quantification of Two Closely Related Tuna Species, Bigeye Tuna (Thunnus obesus) and Yellowfin Tuna (Thunnus albacares), in Canned Tuna.

    PubMed

    Bojolly, Daline; Doyen, Périne; Le Fur, Bruno; Christaki, Urania; Verrez-Bagnis, Véronique; Grard, Thierry

    2017-02-01

    Bigeye tuna (Thunnus obesus) and yellowfin tuna (Thunnus albacares) are among the most widely used tuna species for canning purposes. Not only substitution but also mixing of tuna species is prohibited by the European regulation for canned tuna products. However, as juveniles of bigeye and yellowfin tunas are very difficult to distinguish, unintentional substitutions may occur during the canning process. In this study, two mitochondrial markers from NADH dehydrogenase subunit 2 and cytochrome c oxidase subunit II genes were used to identify bigeye tuna and yellowfin tuna, respectively, utilizing TaqMan qPCR methodology. Two different qPCR-based methods were developed to quantify the percentage of flesh of each species used for can processing. The first one was based on absolute quantification using standard curves realized with these two markers; the second one was founded on relative quantification with the universal 12S rRNA gene as the endogenous gene. On the basis of our results, we conclude that our methodology could be applied to authenticate these two closely related tuna species when used in a binary mix in tuna cans.

  5. Time-course monitoring of urban bioaerosol bacterial communities and its use in microbial hazard identification during Asian Dust events in Seoul, Korea

    NASA Astrophysics Data System (ADS)

    Park, J.

    2015-12-01

    The microbial communities transported by Asian dust events have attracted much attention as bioaerosols because the transported airborne microbes may strongly influence the downwind ecosystems and potentially human health in East Asia. Bioaerosol study has received relatively little attention and their characterization and risk assessments remain poorly developed. We used high throughput 16S rRNA gene targeted pyrosequencing and real-time quantitative PCR (qPCR) to monitor airborne bacterial communities and assess their potential risk. We monitored microbial communities in bioaerosol in Seoul between 2011 and 2013 using high volume air samplers. Six samples were collected during Asian dust (AD) events and the other 34 samples were urban air collected during non-Asian dust (non-AD) events. According to the qPCR result, the gene copy numbers of 16S rRNA genes were significantly higher during the AD events (P < 0.05) and their abundances were positively correlated with PM10 concentrations and bacterial diversities. The most abundant bacterial members (genus level) in the AD samples were Bacillus, Neisseria and E.coli/Shigella. To identify pathogenic populations, multilocus sequence typing (MLST) and virulence tests were applied using culture methods. 16S rRNA gene sequences of several pathogens were detected and their relative abundances appeared to have increased with increased concentrations of PM10. About 1% of Bacillus isolates were identified as known pathogenic B. cereus, confirming their presence in Asian dust samples. The qPCR detection of bceT gene, which codes for an enterotoxin in B. cereus group, was significantly increased in the AD dust samples over the non-AD samples. The following MLST assessment and virulence test of cultivated Bacillus isolates showed that B. cereus, B. licheniformis and B. mycoides were identified as pathogenic bacteria, and these pathogenic bacteria were usually more abundant during AD events. To assess the possible associations of identified pathogens on the hospital stroke admissions of residents in Seoul, we identified sixteen bioaerosol episodes using Poisson regression and calculated relative risk. The findings are useful in building a database for bacterial pathogens in AD events.

  6. Denitrification potential of the eastern oyster microbiome using a 16S rRNA gene based metabolic inference approach

    PubMed Central

    Bowman, Jeff S.; Piehler, Michael

    2017-01-01

    The eastern oyster (Crassostrea virginica) is a foundation species providing significant ecosystem services. However, the roles of oyster microbiomes have not been integrated into any of the services, particularly nitrogen removal through denitrification. We investigated the composition and denitrification potential of oyster microbiomes with an approach that combined 16S rRNA gene analysis, metabolic inference, qPCR of the nitrous oxide reductase gene (nosZ), and N2 flux measurements. Microbiomes of the oyster digestive gland, the oyster shell, and sediments adjacent to the oyster reef were examined based on next generation sequencing (NGS) of 16S rRNA gene amplicons. Denitrification potentials of the microbiomes were determined by metabolic inferences using a customized denitrification gene and genome database with the paprica (PAthway PRediction by phylogenetIC plAcement) bioinformatics pipeline. Denitrification genes examined included nitrite reductase (nirS and nirK) and nitrous oxide reductase (nosZ), which was further subdivided by genotype into clade I (nosZI) or clade II (nosZII). Continuous flow through experiments measuring N2 fluxes were conducted with the oysters, shells, and sediments to compare denitrification activities. Paprica properly classified the composition of microbiomes, showing similar classification results from Silva, Greengenes and RDP databases. Microbiomes of the oyster digestive glands and shells were quite different from each other and from the sediments. The relative abundance of denitrifying bacteria inferred by paprica was higher in oysters and shells than in sediments suggesting that oysters act as hotspots for denitrification in the marine environment. Similarly, the inferred nosZI gene abundances were also higher in the oyster and shell microbiomes than in the sediment microbiome. Gene abundances for nosZI were verified with qPCR of nosZI genes, which showed a significant positive correlation (F1,7 = 14.7, p = 6.0x10-3, R2 = 0.68). N2 flux rates were significantly higher in the oyster (364.4 ± 23.5 μmol N-N2 m-2 h-1) and oyster shell (355.3 ± 6.4 μmol N-N2 m-2 h-1) compared to the sediment (270.5 ± 20.1 μmol N-N2 m-2 h-1). Thus, bacteria carrying nosZI genes were found to be an important denitrifier, facilitating nitrogen removal in oyster reefs. In addition, this is the first study to validate the use of 16S gene based metabolic inference as a method for determining microbiome function, such as denitrification, by comparing inference results with qPCR gene quantification and rate measurements. PMID:28934286

  7. Denitrification potential of the eastern oyster microbiome using a 16S rRNA gene based metabolic inference approach.

    PubMed

    Arfken, Ann; Song, Bongkeun; Bowman, Jeff S; Piehler, Michael

    2017-01-01

    The eastern oyster (Crassostrea virginica) is a foundation species providing significant ecosystem services. However, the roles of oyster microbiomes have not been integrated into any of the services, particularly nitrogen removal through denitrification. We investigated the composition and denitrification potential of oyster microbiomes with an approach that combined 16S rRNA gene analysis, metabolic inference, qPCR of the nitrous oxide reductase gene (nosZ), and N2 flux measurements. Microbiomes of the oyster digestive gland, the oyster shell, and sediments adjacent to the oyster reef were examined based on next generation sequencing (NGS) of 16S rRNA gene amplicons. Denitrification potentials of the microbiomes were determined by metabolic inferences using a customized denitrification gene and genome database with the paprica (PAthway PRediction by phylogenetIC plAcement) bioinformatics pipeline. Denitrification genes examined included nitrite reductase (nirS and nirK) and nitrous oxide reductase (nosZ), which was further subdivided by genotype into clade I (nosZI) or clade II (nosZII). Continuous flow through experiments measuring N2 fluxes were conducted with the oysters, shells, and sediments to compare denitrification activities. Paprica properly classified the composition of microbiomes, showing similar classification results from Silva, Greengenes and RDP databases. Microbiomes of the oyster digestive glands and shells were quite different from each other and from the sediments. The relative abundance of denitrifying bacteria inferred by paprica was higher in oysters and shells than in sediments suggesting that oysters act as hotspots for denitrification in the marine environment. Similarly, the inferred nosZI gene abundances were also higher in the oyster and shell microbiomes than in the sediment microbiome. Gene abundances for nosZI were verified with qPCR of nosZI genes, which showed a significant positive correlation (F1,7 = 14.7, p = 6.0x10-3, R2 = 0.68). N2 flux rates were significantly higher in the oyster (364.4 ± 23.5 μmol N-N2 m-2 h-1) and oyster shell (355.3 ± 6.4 μmol N-N2 m-2 h-1) compared to the sediment (270.5 ± 20.1 μmol N-N2 m-2 h-1). Thus, bacteria carrying nosZI genes were found to be an important denitrifier, facilitating nitrogen removal in oyster reefs. In addition, this is the first study to validate the use of 16S gene based metabolic inference as a method for determining microbiome function, such as denitrification, by comparing inference results with qPCR gene quantification and rate measurements.

  8. Prevalence of antibiotic resistance genes in bacteriophage DNA fraction from Funan River water in Sichuan, China.

    PubMed

    Yang, Yanxian; Shi, Wenjin; Lu, Shao-Yeh; Liu, Jinxin; Liang, Huihui; Yang, Yifan; Duan, Guowei; Li, Yunxia; Wang, Hongning; Zhang, Anyun

    2018-06-01

    To better understand the role that bacteriophages play in antibiotic resistance genes (ARGs) dissemination in the aquatic environment, 36 water samples were collected from the Funan River in Sichuan, China. The occurrence of 15 clinically relevant ARGs and one class 1 integron gene int1 in phage-particle DNA were evaluated by PCR. The abundance of ARGs (bla CTX-M , sul1, and aac-(6')-1b-cr) was determined by quantitative PCR (qPCR). High prevalence of the int1 gene (66.7%) was found in the phage-particle DNA of tested samples, followed by sul1 (41.7%), sul2 (33.3%), bla CTX-M (33.3%), aac-(6')-lb-cr (25%), aph(3')-IIIa (16.7%), and ermF (8.3%). The qPCR data showed higher gene copy (GC) numbers in samples collected near a hospital (site 7) and a wastewater treatment plant (WWTP) (site 10) (P < .05). Particularly the absolute abundance of aac-(6')-lb-cr gene was significantly higher than the bla CTX-M and sul1 genes with the gene copy (GC) numbers of 5.73 log 10  copy/mL for site 7 and 4.99 log 10  copy/mL for site 10. To our best knowledge, this is the first study to report the presence of sul2, aac-(6')-lb-cr, ermF and aph(3')-IIIa genes in bacteriophage DNA derived from aquatic environments. Our findings highlight the potential of ARGs to be transmitted via bacteriophages in the aquatic environment. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Retinal cell responses to elevated intraocular pressure: a gene array comparison between the whole retina and retinal ganglion cell layer.

    PubMed

    Guo, Ying; Cepurna, William O; Dyck, Jennifer A; Doser, Tom A; Johnson, Elaine C; Morrison, John C

    2010-06-01

    To determine and compare gene expression patterns in the whole retina and retinal ganglion cell layer (RGCL) in a rodent glaucoma model. IOP was unilaterally elevated in Brown Norway rats (N = 26) by injection of hypertonic saline and monitored for 5 weeks. A cDNA microarray was used on whole retinas from one group of eyes with extensive optic nerve injury and on RGCL isolated by laser capture microdissection (LCM) from another group with comparable injury, to determine the significantly up- or downregulated genes and gene categories in both groups. Expression changes of selected genes were examined by quantitative reverse transcription-PCR (qPCR) to verify microarray results. Microarray analysis of the whole retina identified 632 genes with significantly changed expression (335 up, 297 down), associated with 9 upregulated and 3 downregulated biological processes. In contrast, the RGCL microarray yielded 3726 genes with significantly changed expression (2003 up, 1723 down), including 60% of those found in whole retina. Thirteen distinct upregulated biological processes were identified in the RGCL, dominated by protein synthesis. Among 11 downregulated processes, axon extension and dendrite morphogenesis and generation of precursor metabolism and energy were uniquely identified in the RGCL. qPCR confirmed significant changes in 6 selected messages in whole retina and 11 in RGCL. Increased Atf3, the most upregulated gene in the RGCL, was confirmed by immunohistochemistry of RGCs. Isolation of RGCL by LCM allows a more refined detection of gene response to elevated pressure and improves the potential of determining cellular mechanisms in RGCs and their supporting cells that could be targets for enhancing RGC survival.

  10. Identification and expression profiles of fifteen delta-class glutathione S-transferase genes from a stored-product pest, Liposcelis entomophila (Enderlein) (Psocoptera: Liposcelididae).

    PubMed

    Jing, Tian-Xing; Wu, Yu-Xian; Li, Ting; Wei, Dan-Dan; Smagghe, Guy; Wang, Jin-Jun

    2017-04-01

    Glutathione S-transferases (GSTs) comprise a diverse family of enzymes found ubiquitously in aerobic organisms and they play important roles in insecticide resistance. In this study, we tested the sensitivities of Liposcelis entomophila, collected from four different field populations, to three insecticides. The results showed that the insects from Tongliang population had a relatively higher tolerance to malathion and propuxor than insects from other field populations. The insecticide sensitivities of different populations detected in psocids may be due to the different control practices. Through sequence mining and phylogenetic analyses, we identified 15 delta class GST genes that contained the conserved motifs of the GSTs. Quantitative real-time PCR (Q-PCR) analysis indicated that the 15 GST genes were expressed at all tested developmental stages, and 12 GST genes had significantly higher expression levels in adulthood than in egg stage. The expression levels of 15 GST genes in different field populations showed that 9 GST genes were significantly higher in Tongliang population compared to other populations. Furthermore, Q-PCR confirmed that the expression of several delta class GSTs was upregulated at different times after malathion, propuxor and deltamethrine exposure with the LC 50 concentration of insecticide. Taken together, these findings showed that delta class GST genes have various expression levels in different developmental stages and different field populations, and they were up-regulated in response to insecticide exposure, which suggested that these GSTs may be associated with insecticide metabolism in psocids. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Detection of the Helicobacter pylori dupA gene is strongly affected by the PCR design.

    PubMed

    Abadi, Amin Talebi Bezmin; Loffeld, Ruud J L F; Constancia, Ashandra C; Wagenaar, Jaap A; Kusters, Johannes G

    2014-11-01

    The Helicobacter pylori virulence gene dupA is usually detected by PCR, but the primer binding sites used are highly variable. Our newly designed qPCR against a conserved region of dupA was positive in 64.2% of 394 clinical isolates while the positivity rate of the commonly used PCRs ranged from 29.9% to 37.8%. Copyright © 2014. Published by Elsevier B.V.

  12. Duplex quantitative real-time PCR assay for the detection and discrimination of the eggs of Toxocara canis and Toxocara cati (Nematoda, Ascaridoidea) in soil and fecal samples.

    PubMed

    Durant, Jean-Francois; Irenge, Leonid M; Fogt-Wyrwas, Renata; Dumont, Catherine; Doucet, Jean-Pierre; Mignon, Bernard; Losson, Bertrand; Gala, Jean-Luc

    2012-12-07

    Toxocarosis is a zoonotic disease caused by Toxocara canis (T. canis) and/or Toxocara cati (T. cati), two worldwide distributed roundworms which are parasites of canids and felids, respectively. Infections of humans occur through ingestion of embryonated eggs of T. canis or T. cati, when playing with soils contaminated with dogs or cats feces. Accordingly, the assessment of potential contamination of these areas with these roundworms eggs is paramount. A duplex quantitative real-time PCR (2qPCR) targeting the ribosomal RNA gene internal transcribed spacer (ITS2) has been developed and used for rapid and specific identification of T. canis and T. cati eggs in fecal and soil samples. The assay was set up on DNA samples extracted from 53 adult worms including T. canis, T. cati, T. leonina, Ascaris suum (A. suum) and Parascaris equorum (P. equorum). The assay was used to assess the presence of T. cati eggs in several samples, including 12 clean soil samples spiked with eggs of either T. cati or A. suum, 10 actual soil samples randomly collected from playgrounds in Brussels, and fecal samples from cats, dogs, and other animals. 2qPCR results on dogs and cats fecal samples were compared with results from microscopic examination. 2qPCR assay allowed specific detection of T. canis and T. cati, whether adult worms, eggs spiked in soil or fecal samples. The 2qPCR limit of detection (LOD) in spiked soil samples was 2 eggs per g of soil for a turnaround time of 3 hours. A perfect concordance was observed between 2qPCR assay and microscopic examination on dogs and cats feces. The newly developed 2qPCR assay can be useful for high throughput prospective or retrospective detection of T.canis and/or T. cati eggs in fecal samples as well as in soil samples from playgrounds, parks and sandpits.

  13. Fusobacterium nucleatum in gastroenterological cancer: Evaluation of measurement methods using quantitative polymerase chain reaction and a literature review.

    PubMed

    Yamamura, Kensuke; Baba, Yoshifumi; Miyake, Keisuke; Nakamura, Kenichi; Shigaki, Hironobu; Mima, Kosuke; Kurashige, Junji; Ishimoto, Takatsugu; Iwatsuki, Masaaki; Sakamoto, Yasuo; Yamashita, Yoichi; Yoshida, Naoya; Watanabe, Masayuki; Baba, Hideo

    2017-12-01

    The human microbiome Fusobacterium nucleatum , which primarily inhabits the oral cavity, causes periodontal disease and has also been implicated in the development of colorectal cancer. However, whether F. nucleatum is present in other gastroenterological cancer tissues remains to be elucidated. The present study evaluated whether quantitative polymerase chain reaction (qPCR) assays were able to detect F. nucleatum DNA and measure the quantity of F. nucleatum DNA in esophageal, gastric, pancreatic and liver cancer tissues. The accuracy of the qPCR assay was determined from a calibration curve using DNA extracted from cells from the oral cavity. Formalin-fixed paraffin-embedded (FFPE) tumor tissues from 20 patients with gastroenterological [esophageal (squamous cell carcinoma), gastric, colorectal, pancreatic and liver] cancer and 20 matched normal tissues were evaluated for F. nucleatum DNA content. The cycle threshold values in the qPCR assay for F. nucleatum and solute carrier organic anion transporter family member 2A1 (reference sample) decreased linearly with the quantity of input DNA ( r 2 >0.99). The F. nucleatum detection rate in esophageal, gastric and colorectal cancer tissues were 20% (4/20), 10% (2/20) and 45% (9/20), respectively. F. nucleatum was not detected in liver and pancreatic cancer tissues. The qPCR results from the frozen and FFPE tissues were consistent. Notably, F. nucleatum was detected at a higher level in superficial areas compared with the invasive areas. F. nucleatum in esophageal, gastric and colorectal cancer tissues was evaluated by qPCR using FFPE tissues. F. nucleatum may be involved in the development of esophageal, gastric and colorectal cancer.

  14. Evaluation of a Real-Time PCR Test for the Detection and Discrimination of Theileria Species in the African Buffalo (Syncerus caffer)

    PubMed Central

    Chaisi, Mamohale E.; Janssens, Michiel E.; Vermeiren, Lieve; Oosthuizen, Marinda C.; Collins, Nicola E.; Geysen, Dirk

    2013-01-01

    A quantitative real-time PCR (qPCR) assay based on the cox III gene was evaluated for the simultaneous detection and discrimination of Theileria species in buffalo and cattle blood samples from South Africa and Mozambique using melting curve analysis. The results obtained were compared to those of the reverse line blot (RLB) hybridization assay for the simultaneous detection and differentiation of Theileria spp. in mixed infections, and to the 18S rRNA qPCR assay results for the specific detection of Theileria parva. Theileria parva, Theileria sp. (buffalo), Theileria taurotragi, Theileria buffeli and Theileria mutans were detected by the cox III assay. Theileria velifera was not detected from any of the samples analysed. Seventeen percent of the samples had non-species specific melting peaks and 4.5% of the samples were negative or below the detection limit of the assay. The cox III assay identified more T. parva and Theileria sp. (buffalo) positive samples than the RLB assay, and also detected more T. parva infections than the 18S assay. However, only a small number of samples were positive for the benign Theileria spp. To our knowledge T. taurotragi has never been identified from the African buffalo, its identification in some samples by the qPCR assay was unexpected. Because of these discrepancies in the results, cox III qPCR products were cloned and sequenced. Sequence analysis indicated extensive inter- and intra-species variations in the probe target regions of the cox III gene sequences of the benign Theileria spp. and therefore explains their low detection. The cox III assay is specific for the detection of T. parva infections in cattle and buffalo. Sequence data generated from this study can be used for the development of a more inclusive assay for detection and differentiation of all variants of the mildly pathogenic and benign Theileria spp. of buffalo and cattle. PMID:24146782

  15. Evaluation of a real-time PCR test for the detection and discrimination of theileria species in the African buffalo (Syncerus caffer).

    PubMed

    Chaisi, Mamohale E; Janssens, Michiel E; Vermeiren, Lieve; Oosthuizen, Marinda C; Collins, Nicola E; Geysen, Dirk

    2013-01-01

    A quantitative real-time PCR (qPCR) assay based on the cox III gene was evaluated for the simultaneous detection and discrimination of Theileria species in buffalo and cattle blood samples from South Africa and Mozambique using melting curve analysis. The results obtained were compared to those of the reverse line blot (RLB) hybridization assay for the simultaneous detection and differentiation of Theileria spp. in mixed infections, and to the 18S rRNA qPCR assay results for the specific detection of Theileria parva. Theileria parva, Theileria sp. (buffalo), Theileria taurotragi, Theileria buffeli and Theileria mutans were detected by the cox III assay. Theileria velifera was not detected from any of the samples analysed. Seventeen percent of the samples had non-species specific melting peaks and 4.5% of the samples were negative or below the detection limit of the assay. The cox III assay identified more T. parva and Theileria sp. (buffalo) positive samples than the RLB assay, and also detected more T. parva infections than the 18S assay. However, only a small number of samples were positive for the benign Theileria spp. To our knowledge T. taurotragi has never been identified from the African buffalo, its identification in some samples by the qPCR assay was unexpected. Because of these discrepancies in the results, cox III qPCR products were cloned and sequenced. Sequence analysis indicated extensive inter- and intra-species variations in the probe target regions of the cox III gene sequences of the benign Theileria spp. and therefore explains their low detection. The cox III assay is specific for the detection of T. parva infections in cattle and buffalo. Sequence data generated from this study can be used for the development of a more inclusive assay for detection and differentiation of all variants of the mildly pathogenic and benign Theileria spp. of buffalo and cattle.

  16. Polyphasic Analyses of Methanogenic Archaeal Communities in Agricultural Biogas Plants▿

    PubMed Central

    Nettmann, E.; Bergmann, I.; Pramschüfer, S.; Mundt, K.; Plogsties, V.; Herrmann, C.; Klocke, M.

    2010-01-01

    Knowledge of the microbial consortia participating in the generation of biogas, especially in methane formation, is still limited. To overcome this limitation, the methanogenic archaeal communities in six full-scale biogas plants supplied with different liquid manures and renewable raw materials as substrates were analyzed by a polyphasic approach. Fluorescence in situ hybridization (FISH) was carried out to quantify the methanogenic Archaea in the reactor samples. In addition, quantitative real-time PCR (Q-PCR) was used to support and complete the FISH analysis. Five of the six biogas reactors were dominated by hydrogenotrophic Methanomicrobiales. The average values were between 60 to 63% of archaeal cell counts (FISH) and 61 to 99% of archaeal 16S rRNA gene copies (Q-PCR). Within this order, Methanoculleus was found to be the predominant genus as determined by amplified rRNA gene restriction analysis. The aceticlastic family Methanosaetaceae was determined to be the dominant methanogenic group in only one biogas reactor, with average values for Q-PCR and FISH between 64% and 72%. Additionally, in three biogas reactors hitherto uncharacterized but potentially methanogenic species were detected. They showed closest accordance with nucleotide sequences of the hitherto unclassified CA-11 (85%) and ARC-I (98%) clusters. These results point to hydrogenotrophic methanogenesis as a predominant pathway for methane synthesis in five of the six analyzed biogas plants. In addition, a correlation between the absence of Methanosaetaceae in the biogas reactors and high concentrations of total ammonia (sum of NH3 and NH4+) was observed. PMID:20154117

  17. Development and validation of a multiplex quantitative polymerase chain reaction assay for the detection of Mollicutes impurities in human cells, cultured under good manufacturing practice conditions, and following European Pharmacopoeia requirements and the International Conference on Harmonization guidelines.

    PubMed

    Vanni, Irene; Ugolotti, Elisabetta; Raso, Alessandro; Di Marco, Eddi; Melioli, Giovanni; Biassoni, Roberto

    2012-07-01

    The clinical applications of in vitro manipulated cultured cells and their precursors are often made use of in therapeutic trials. However, tissue cultures can be easily contaminated by the ubiquitous Mollicutes micro-organisms, which can cause various and severe alterations in cellular function. Thus methods able to detect and trace Mollicutes impurities contaminating cell cultures are required before starting any attempt to grow cells under good manufacturing practice (GMP) conditions. We developed a multiplex quantitative polymerase chain reaction (qPCR) assay specific for the 16S-23S rRNA intergenic spacer regions, for the Tuf and P1 cytoadhesin genes, able to detect contaminant Mollicutes species in a single tube reaction. The system was validated by analyzing different cell lines and the positive samples were confirmed by 16S and P1 cytoadhesin gene dideoxy sequencing. Our multiplex qPCR detection system was able to reach a sensitivity, specificity and robustness comparable with the culture and the indicator cell culture method, as required by the European Pharmacopoeia guidelines. We have developed a multiplex qPCR method, validated following International Conference on Harmonization (ICH) guidelines, as a qualitative limit test for impurities, assessing the validation characteristics of limit of detection and specificity. It also follows the European Pharmacopoeia guidelines and Food and Drug Administration (FDA) requirements.

  18. RNA-Seq for gene identification and transcript profiling of three Stevia rebaudiana genotypes.

    PubMed

    Chen, Junwen; Hou, Kai; Qin, Peng; Liu, Hongchang; Yi, Bin; Yang, Wenting; Wu, Wei

    2014-07-07

    Stevia (Stevia rebaudiana) is an important medicinal plant that yields diterpenoid steviol glycosides (SGs). SGs are currently used in the preparation of medicines, food products and neutraceuticals because of its sweetening property (zero calories and about 300 times sweeter than sugar). Recently, some progress has been made in understanding the biosynthesis of SGs in Stevia, but little is known about the molecular mechanisms underlying this process. Additionally, the genomics of Stevia, a non-model species, remains uncharacterized. The recent advent of RNA-Seq, a next generation sequencing technology, provides an opportunity to expand the identification of Stevia genes through in-depth transcript profiling. We present a comprehensive landscape of the transcriptome profiles of three genotypes of Stevia with divergent SG compositions characterized using RNA-seq. 191,590,282 high-quality reads were generated and then assembled into 171,837 transcripts with an average sequence length of 969 base pairs. A total of 80,160 unigenes were annotated, and 14,211 of the unique sequences were assigned to specific metabolic pathways by the Kyoto Encyclopedia of Genes and Genomes. Gene sequences of all enzymes known to be involved in SG synthesis were examined. A total of 143 UDP-glucosyltransferase (UGT) unigenes were identified, some of which might be involved in SG biosynthesis. The expression patterns of eight of these genes were further confirmed by RT-QPCR. RNA-seq analysis identified candidate genes encoding enzymes responsible for the biosynthesis of SGs in Stevia, a non-model plant without a reference genome. The transcriptome data from this study yielded new insights into the process of SG accumulation in Stevia. Our results demonstrate that RNA-Seq can be successfully used for gene identification and transcript profiling in a non-model species.

  19. Quantitative PCR: an appropriate tool to detect viable but not culturable Brettanomyces bruxellensis in wine.

    PubMed

    Willenburg, Elize; Divol, Benoit

    2012-11-15

    Quantitative PCR as a tool has been used to detect Brettanomyces bruxellensis directly from wine samples. Accurate and timely detection of this yeast is important to prevent unwanted spoilage of wines and beverages. The aim of this study was to distinguish differences between DNA and mRNA as template for the detection of this yeast. The study was also used to determine if it is possible to accurately detect cells in the viable but not culturable (VBNC) state of B. bruxellensis by qPCR. Several methods including traditional plating, epifluorescence counts and qPCR were used to amplify DNA and mRNA. It was observed that mRNA was a better template for the detection in terms of standard curve analysis and qPCR efficiencies. Various primers previously published were tested for their specificity, qPCR efficiency and accuracy of enumeration. A single primer set was selected which amplified a region of the actin-encoding gene. The detection limit for this assay was 10cellsmL(-1). B. bruxellensis could also be quantified in naturally contaminated wines with this assay. The mRNA gave a better indication of the viability of the cells which compared favourably to fluorescent microscopy and traditional cell counts. The ability of the assay to accurately estimate the number of cells in the VBNC state was also demonstrated. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Nucleic Acid Research Group (NARG) 2009-2010 Study : Optimal Priming Strategies for cDNA Synthesis in Real-Time RT-qPCR

    PubMed Central

    Hunter, T.C.; Knudtson, K.L.; Nadella, V.; Sol-Church, K.; Taylor, W.L.; Tighe, S.; Yueng, A.T.; Chittur, S.

    2010-01-01

    r1-1 Real-time reverse transcriptase quantitative PCR (RT-qPCR) is a widely used technique for measuring transcript levels. Priming strategy and reverse transcriptase enzyme are key elements that affect sensitivity and variability of RT-qPCR and microarray results. Previously, the Nucleic Acid Research Group (NARG) had conducted preliminary studies within the group to examine the effects of priming strategy on generating cDNA for use with qPCR. This year's study was an open study in which the qPCR community was invited to participate. Participants received the RT primers and RNA template and were asked to perform the RT reaction using their preferred reaction conditions. Each participating laboratory was provided at least two RNA templates of varying quality. The RT products were returned to the NARG and all RT reactions were used in a qPCR reaction. The qPCR assays looked at three genes of varying abundance, b-actin (high copy), b-glucuronidase (medium copy) and TATA binding protein (low copy) as well as varying distance from the 3? end for each transcript. Results from participating laboratories will be evaluated to determine the impact of priming strategy, assay chemistry and experimental setup on the RT step. Additionally, we will address the impact of RNA integrity on cDNA synthesis.

  1. Single Laboratory Comparison of Quantitative Real-Time PCR Assays for the Detection of Human Fecal Pollution

    EPA Science Inventory

    There are numerous quantitative real-time PCR (qPCR) methods available to detect and enumerate human fecal pollution in ambient waters. Each assay employs distinct primers and/or probes and many target different genes and microorganisms leading to potential variations in method ...

  2. Single Laboratory Comparison of Quantitative Real-time PCR Assays for the Detection of Fecal Pollution

    EPA Science Inventory

    There are numerous quantitative real-time PCR (qPCR) assays available to detect and enumerate fecal pollution in ambient waters. Each assay employs distinct primers and probes that target different rRNA genes and microorganisms leading to potential variations in concentration es...

  3. Enhanced Detection of Bacteria in Environmental Waters: an RNA-based Approach

    EPA Science Inventory

    Molecular assays (i.e., PCR and qPCR) used in microbial water quality studies often target ribosomal RNA genes (rDNA). However, using DNA as the PCR template does not discriminate between active and dead cells. The use of RNA-based detection methods has recently been proposed as ...

  4. Identification and quantification of virulence factors of enterotoxigenic Escherichia coli by high-resolution melting curve quantitative PCR.

    PubMed

    Wang, Weilan; Zijlstra, Ruurd T; Gänzle, Michael G

    2017-05-15

    Diagnosis of enterotoxigenic E. coli (ETEC) associated diarrhea is complicated by the diversity of E.coli virulence factors. This study developed a multiplex quantitative PCR assay based on high-resolution melting curves analysis (HRM-qPCR) to identify and quantify genes encoding five ETEC fimbriae related to diarrhea in swine, i.e. K99, F41, F18, F6 and K88. Five fimbriae expressed by ETEC were amplified in multiple HRM-qPCR reactions to allow simultaneous identification and quantification of five target genes. The assay was calibrated to allow quantification of the most abundant target gene, and validated by analysis of 30 samples obtained from piglets with diarrhea and healthy controls, and comparison to standard qPCR detection. The five amplicons with melting temperatures (Tm) ranging from 74.7 ± 0.06 to 80.5 ± 0.15 °C were well-separated by HRM-qPCR. The area of amplicons under the melting peak correlated linearly to the proportion of the template in the calibration mixture if the proportion exceeded 4.8% (K88) or <1% (all other amplicons). The suitability of the method was evaluated using 30 samples from weaned pigs aged 6-7 weeks; 14 of these animals suffered from diarrhea in consequence of poor sanitary conditions. Genes encoding fimbriae and enterotoxins were quantified by HRM-qPCR and/or qPCR. The multiplex HRM-qPCR allowed accurate analysis when the total gene copy number of targets was more than 1 × 10 5 / g wet feces and the HRM curves were able to simultaneously distinguish fimbriae genes in the fecal samples. The relative quantification of the most abundant F18 based on melting peak area was highly correlated (P < 0.001; r 2  = 0.956) with that of individual qPCR result but the correlation for less abundant fimbriae was much lower. The multiplex HRM assay identifies ETEC virulence factors specifically and efficiently. It correctly indicated the predominant fimbriae type and additionally provides information of presence/ absence of other fimbriae types and it could find broad applications for pathogen diagnosis.

  5. Real-time PCR (qPCR) primer design using free online software.

    PubMed

    Thornton, Brenda; Basu, Chhandak

    2011-01-01

    Real-time PCR (quantitative PCR or qPCR) has become the preferred method for validating results obtained from assays which measure gene expression profiles. The process uses reverse transcription polymerase chain reaction (RT-PCR), coupled with fluorescent chemistry, to measure variations in transcriptome levels between samples. The four most commonly used fluorescent chemistries are SYBR® Green dyes and TaqMan®, Molecular Beacon or Scorpion probes. SYBR® Green is very simple to use and cost efficient. As SYBR® Green dye binds to any double-stranded DNA product, its success depends greatly on proper primer design. Many types of online primer design software are available, which can be used free of charge to design desirable SYBR® Green-based qPCR primers. This laboratory exercise is intended for those who have a fundamental background in PCR. It addresses the basic fluorescent chemistries of real-time PCR, the basic rules and pitfalls of primer design, and provides a step-by-step protocol for designing SYBR® Green-based primers with free, online software. Copyright © 2010 Wiley Periodicals, Inc.

  6. Characterization of vaginal Lactobacillus species by rplK -based multiplex qPCR in Russian women.

    PubMed

    Demkin, Vladimir V; Koshechkin, Stanislav I

    2017-10-01

    We describe a multiplex qPCR assay for identification and quantitative assessment of a set of vaginal Lactobacillus species, including L. acidophilus, L. crispatus, L. gasseri, L. helveticus, L. iners, and L. jensenii. The assay extends the previously developed qPCR method for Lactobacillus detection and total quantification based on targeting the rplK gene. Both assays use only single pair of primers and a set of probes combined in three reactions, comprising a vaginal Lactobacillus diagnostic assay panel. The utility of the diagnostic panel was evaluated by analyzing of vaginal swab specimens from 145 patients with different status of vaginal health. Most frequently, only one Lactobacillus species was dominant (68,9%), mostly L. crispatus (18,6%) or L. iners (33,1%), but two or three Lactobacillus species were also being simultaneously detected (24,9%). The diagnostic panel will facilitate investigations of the role of Lactobacillus species in the health of the female reproductive system and promote studies of variability of the vaginal microbiota. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. QUANTITATIVE PCR ANALYSIS OF FUNGI IN DUST FROM HOMES OF INFANTS WHO DEVELOPED IDIOPATHIC PULMONARY HEMORRHAGING

    EPA Science Inventory

    Fungal concentrations were measured in the dust of six homes in Cleveland, OH, where a child developed pulmonary hemorrhage (pulmonary hemorrhage homes, i.e. PHH), and 26 reference homes (RH) with no known fungal contamination. QPCR assays for 82 species (or assay groups) were u...

  8. Accurate measurement of transgene copy number in crop plants using droplet digital PCR.

    PubMed

    Collier, Ray; Dasgupta, Kasturi; Xing, Yan-Ping; Hernandez, Bryan Tarape; Shao, Min; Rohozinski, Dominica; Kovak, Emma; Lin, Jeanie; de Oliveira, Maria Luiza P; Stover, Ed; McCue, Kent F; Harmon, Frank G; Blechl, Ann; Thomson, James G; Thilmony, Roger

    2017-06-01

    Genetic transformation is a powerful means for the improvement of crop plants, but requires labor- and resource-intensive methods. An efficient method for identifying single-copy transgene insertion events from a population of independent transgenic lines is desirable. Currently, transgene copy number is estimated by either Southern blot hybridization analyses or quantitative polymerase chain reaction (qPCR) experiments. Southern hybridization is a convincing and reliable method, but it also is expensive, time-consuming and often requires a large amount of genomic DNA and radioactively labeled probes. Alternatively, qPCR requires less DNA and is potentially simpler to perform, but its results can lack the accuracy and precision needed to confidently distinguish between one- and two-copy events in transgenic plants with large genomes. To address this need, we developed a droplet digital PCR-based method for transgene copy number measurement in an array of crops: rice, citrus, potato, maize, tomato and wheat. The method utilizes specific primers to amplify target transgenes, and endogenous reference genes in a single duplexed reaction containing thousands of droplets. Endpoint amplicon production in the droplets is detected and quantified using sequence-specific fluorescently labeled probes. The results demonstrate that this approach can generate confident copy number measurements in independent transgenic lines in these crop species. This method and the compendium of probes and primers will be a useful resource for the plant research community, enabling the simple and accurate determination of transgene copy number in these six important crop species. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  9. Presence of Mycobacterium leprae genotype 4 in environmental waters in Northeast Brazil.

    PubMed

    Holanda, Maísa Viana de; Marques, Livia Erika Carlos; Macedo, Maria Luisa Bezerra de; Pontes, Maria Araci de Andrade; Sabadia, José Antonio Beltrão; Kerr, Ligia Regina Franco Sansigolo; Almeida, Rosa Lívia Freitas; Frota, Cristiane Cunha

    2017-01-01

    This study quantified Mycobacterium leprae bacilli in environmental water samples from five municipalities in the State of Ceará by quantitative polymerase chain reaction (qPCR) and compared the identified genotypes with those obtained from leprosy patient biopsies. We collected five replicas from each of the 30 selected reservoirs and skin lesion biopsies from 25 new leprosy cases treated at a reference center in Fortaleza, Ceará from 2010 to 2013. The 16S rRNA gene region of M. leprae was amplified by qPCR and a standard curve was created with the pIDTBlue 16SrRNAMlep plasmid. The Juazeiro do Norte water samples and the biopsies were genotyped (single nucleotide polymorphism [SNP] 1 to 4) and the SNP 4 genotypes were subtyped. Of the 149 water samples analyzed, 54.4% were positive for the M. leprae DNA. The M. leprae bacilli copy number ranged from 1.42 × 10 -1 to 1.44 × 10 + 2 . Most biopsies showed SNP type 4 (64%), while all samples from Juazeiro do Norte were SNP type 4, with subtype 4-N appearing at the highest frequency. We suggest that environmental waters containing M. leprae bacilli play an important role in disease transmission, justifying PGL-1 seropositivity in individuals living in areas where there is no reported case, and in leprosy cases individuals who report no previous contact with other case. Therefore, further investigation is needed to clarify disease transmission in this region and to explore the role of the environment. We also suggest that in this area surveillance for leprosy cases should be intensified.

  10. Using Reference Quantitative Polymerase Chain Reaction to Assess the Clinical Performance of the Paracheck-Pf® Rapid Diagnostic Test in a Field Setting in Uganda.

    PubMed

    Mitran, Catherine J; Mbonye, Anthony K; Hawkes, Michael; Yanow, Stephanie K

    2018-06-04

    Malaria rapid diagnostic tests (RDTs) are widely used in clinical and surveillance settings. However, the performance of most RDTs has not been characterized at parasite densities below detection by microscopy. We present findings from Uganda, where RDT results from 491 participants with suspected malaria were correlated with quantitative polymerase chain reaction (qPCR)-defined parasitemia. Compared with qPCR, the sensitivity and specificity of the RDT for Plasmodium falciparum mono-infections were 76% (95% confidence interval [CI]: 68-83%) and 95% (95% CI: 92-97%), respectively. The sensitivity of the RDT at parasite densities between 0.2 and 200 parasites/μL was surprisingly high (87%, 95% CI: 74-94%). The high sensitivity of the RDT is likely because of histidine-rich protein 2 from submicroscopic infections, gametocytes, or sequestered parasites. These findings underscore the importance of evaluating different RDTs in field studies against qPCR reference testing to better define the sensitivity and specificity, particularly at low parasite densities.

  11. Use of Serial Quantitative PCR of the vapA Gene of Rhodococcus equi in Feces for Early Detection of R. equi Pneumonia in Foals.

    PubMed

    Madrigal, R G; Shaw, S D; Witkowski, L A; Sisson, B E; Blodgett, G P; Chaffin, M K; Cohen, N D

    2016-01-01

    Current screening tests for Rhodococcus equi pneumonia in foals lack adequate accuracy for clinical use. Real-time, quantitative PCR (qPCR) for virulent R. equi in feces has not been systematically evaluated as a screening test. The objective of this study was to evaluate the accuracy of qPCR for vapA in serially collected fecal samples as a screening test for R. equi pneumonia in foals. One hundred and twenty-five foals born in 2011 at a ranch in Texas. Fecal samples were collected concurrently with thoracic ultrasonography (TUS) screening examinations at ages 3, 5, and 7 weeks. Affected (pneumonic) foals (n = 25) were matched by age and date-of-birth to unaffected (n = 25) and subclinical (ie, having thoracic TUS lesions but no clinical signs of pneumonia) foals (n = 75). DNA was extracted from feces using commercial kits and concentration of virulent R. equi in feces was determined by qPCR. Subsequently affected foals had significantly greater concentrations of vapA in feces than foals that did not develop pneumonia (unaffected and subclinical foals) at 5 and 7 weeks of age. Accuracy of fecal qPCR, however, was poor as a screening test to differentiate foals that would develop clinical signs of pneumonia from those that would remain free of clinical signs (including foals with subclinical pulmonary lesions attributed to R. equi) using receiver operating characteristic (ROC) methods. In the population studied, serial qPCR on feces lacked adequate accuracy as a screening test for clinical R. equi foal pneumonia. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  12. A Novel Triplex Quantitative PCR Strategy for Quantification of Toxigenic and Nontoxigenic Vibrio cholerae in Aquatic Environments

    PubMed Central

    Bliem, Rupert; Schauer, Sonja; Plicka, Helga; Obwaller, Adelheid; Sommer, Regina; Steinrigl, Adolf; Alam, Munirul; Reischer, Georg H.; Farnleitner, Andreas H.

    2015-01-01

    Vibrio cholerae is a severe human pathogen and a frequent member of aquatic ecosystems. Quantification of V. cholerae in environmental water samples is therefore fundamental for ecological studies and health risk assessment. Beside time-consuming cultivation techniques, quantitative PCR (qPCR) has the potential to provide reliable quantitative data and offers the opportunity to quantify multiple targets simultaneously. A novel triplex qPCR strategy was developed in order to simultaneously quantify toxigenic and nontoxigenic V. cholerae in environmental water samples. To obtain quality-controlled PCR results, an internal amplification control was included. The qPCR assay was specific, highly sensitive, and quantitative across the tested 5-log dynamic range down to a method detection limit of 5 copies per reaction. Repeatability and reproducibility were high for all three tested target genes. For environmental application, global DNA recovery (GR) rates were assessed for drinking water, river water, and water from different lakes. GR rates ranged from 1.6% to 76.4% and were dependent on the environmental background. Uncorrected and GR-corrected V. cholerae abundances were determined in two lakes with extremely high turbidity. Uncorrected abundances ranged from 4.6 × 102 to 2.3 × 104 cell equivalents liter−1, whereas GR-corrected abundances ranged from 4.7 × 103 to 1.6 × 106 cell equivalents liter−1. GR-corrected qPCR results were in good agreement with an independent cell-based direct detection method but were up to 1.6 log higher than cultivation-based abundances. We recommend the newly developed triplex qPCR strategy as a powerful tool to simultaneously quantify toxigenic and nontoxigenic V. cholerae in various aquatic environments for ecological studies as well as for risk assessment programs. PMID:25724966

  13. Detection of hemoplasma infection of goats by use of a quantitative polymerase chain reaction assay and risk factor analysis for infection.

    PubMed

    Johnson, Kathy A; do Nascimento, Naíla C; Bauer, Amy E; Weng, Hsin-Yi; Hammac, G Kenitra; Messick, Joanne B

    2016-08-01

    OBJECTIVE To develop and validate a real-time quantitative PCR (qPCR) assay for the detection and quantification of Mycoplasma ovis in goats and investigate the prevalence and risk factors for hemoplasma infection of goats located in Indiana. ANIMALS 362 adult female goats on 61 farms. PROCEDURES Primers were designed for amplification of a fragment of the dnaK gene of M ovis by use of a qPCR assay. Blood samples were collected into EDTA-containing tubes for use in total DNA extraction, blood film evaluation, and determination of PCV. Limit of detection, intra-assay variability, interassay variability, and specificity of the assay were determined. RESULTS Reaction efficiency of the qPCR assay was 94.45% (R(2), 0.99; slope, -3.4623), and the assay consistently detected as few as 10 copies of plasmid/reaction. Prevalence of infection in goats on the basis of results for the qPCR assay was 18.0% (95% confidence interval, 14% to 22%), with infected goats ranging from 1 to 14 years old, whereby 61% (95% confidence interval, 47% to 73%) of the farms had at least 1 infected goat. Bacterial load in goats infected with M ovis ranged from 1.05 × 10(3) target copies/mL of blood to 1.85 × 10(5) target copies/mL of blood; however, no bacteria were observed on blood films. Production use of a goat was the only risk factor significantly associated with hemoplasma infection. CONCLUSIONS AND CLINICAL RELEVANCE The qPCR assay was more sensitive for detecting hemoplasma infection than was evaluation of a blood film, and production use of a goat was a risk factor for infection.

  14. Multiplex digital PCR: breaking the one target per color barrier of quantitative PCR.

    PubMed

    Zhong, Qun; Bhattacharya, Smiti; Kotsopoulos, Steven; Olson, Jeff; Taly, Valérie; Griffiths, Andrew D; Link, Darren R; Larson, Jonathan W

    2011-07-07

    Quantitative polymerase chain reactions (qPCR) based on real-time PCR constitute a powerful and sensitive method for the analysis of nucleic acids. However, in qPCR, the ability to multiplex targets using differently colored fluorescent probes is typically limited to 4-fold by the spectral overlap of the fluorophores. Furthermore, multiplexing qPCR assays requires expensive instrumentation and most often lengthy assay development cycles. Digital PCR (dPCR), which is based on the amplification of single target DNA molecules in many separate reactions, is an attractive alternative to qPCR. Here we report a novel and easy method for multiplexing dPCR in picolitre droplets within emulsions-generated and read out in microfluidic devices-that takes advantage of both the very high numbers of reactions possible within emulsions (>10(6)) as well as the high likelihood that the amplification of only a single target DNA molecule will initiate within each droplet. By varying the concentration of different fluorogenic probes of the same color, it is possible to identify the different probes on the basis of fluorescence intensity. Adding multiple colors increases the number of possible reactions geometrically, rather than linearly as with qPCR. Accurate and precise copy numbers of up to sixteen per cell were measured using a model system. A 5-plex assay for spinal muscular atrophy was demonstrated with just two fluorophores to simultaneously measure the copy number of two genes (SMN1 and SMN2) and to genotype a single nucleotide polymorphism (c.815A>G, SMN1). Results of a pilot study with SMA patients are presented. This journal is © The Royal Society of Chemistry 2011

  15. Knock down of Whitefly Gut Gene Expression and Mortality by Orally Delivered Gut Gene-Specific dsRNAs.

    PubMed

    Vyas, Meenal; Raza, Amir; Ali, Muhammad Yousaf; Ashraf, Muhammad Aleem; Mansoor, Shahid; Shahid, Ahmad Ali; Brown, Judith K

    2017-01-01

    Control of the whitefly Bemisia tabaci (Genn.) agricultural pest and plant virus vector relies on the use of chemical insecticides. RNA-interference (RNAi) is a homology-dependent innate immune response in eukaryotes, including insects, which results in degradation of the corresponding transcript following its recognition by a double-stranded RNA (dsRNA) that shares 100% sequence homology. In this study, six whitefly 'gut' genes were selected from an in silico-annotated transcriptome library constructed from the whitefly alimentary canal or 'gut' of the B biotype of B. tabaci, and tested for knock down efficacy, post-ingestion of dsRNAs that share 100% sequence homology to each respective gene target. Candidate genes were: Acetylcholine receptor subunit α, Alpha glucosidase 1, Aquaporin 1, Heat shock protein 70, Trehalase1, and Trehalose transporter1. The efficacy of RNAi knock down was further tested in a gene-specific functional bioassay, and mortality was recorded in 24 hr intervals, six days, post-treatment. Based on qPCR analysis, all six genes tested showed significantly reduced gene expression. Moderate-to-high whitefly mortality was associated with the down-regulation of osmoregulation, sugar metabolism and sugar transport-associated genes, demonstrating that whitefly survivability was linked with RNAi results. Silenced Acetylcholine receptor subunit α and Heat shock protein 70 genes showed an initial low whitefly mortality, however, following insecticide or high temperature treatments, respectively, significantly increased knockdown efficacy and death was observed, indicating enhanced post-knockdown sensitivity perhaps related to systemic silencing. The oral delivery of gut-specific dsRNAs, when combined with qPCR analysis of gene expression and a corresponding gene-specific bioassay that relates knockdown and mortality, offers a viable approach for functional genomics analysis and the discovery of prospective dsRNA biopesticide targets. The approach can be applied to functional genomics analyses to facilitate, species-specific dsRNA-mediated control of other non-model hemipterans.

  16. Stromal Gene Expression and Function in Primary Breast Tumors that Metastasize to Bone Cancer

    DTIC Science & Technology

    2004-07-01

    by quantitative RT-QPCR. Further analysis of epithelium from matched spine metastases revealed some genes that were up-regulated further at the...9-fold in matched bone metastases. The expression in spine metastases was verified by in situ hybridisation whilst the expression of stefin Al in...growth in the mammary gland of Balb/c mice. Fresh resected tissue (normal fat pad, primary tumor tissue or the metastatic sites spine , femur and lung) was

  17. Direct quantification of microRNA at low pM level in sera of glioma patients using a competitive hybridization followed by amplified voltammetric detection

    PubMed Central

    Wang, Jianxiu; Yi, Xinyao; Tang, Hailin; Han, Hongxing; Wu, Minghua; Zhou, Feimeng

    2012-01-01

    MicroRNAs (miRNAs), acting as oncogenes or tumor suppressors in humans, play a key role in regulating gene expression and are believed to be important for developing novel therapeutic treatments and clinical prognoses. Due to their short lengths (17–25 nucleotides) and extremely low concentrations (typically < pM) in biological samples, quantification of miRNAs has been challenging to conventional biochemical methods, such as Northern blotting, microarray, and quantitative polymerase chain reaction (qPCR). In this work, a biotinylated miRNA (biotin-miRNA) whose sequence is the same as that of a miRNA target is introduced into samples of interest and allowed to compete with the miRNA target for the oligonucleotide (ODN) probe preimmobilized onto an electrode. Voltammetric quantification of the miRNA target was accomplished after complexation of the biotin-miRNA with ferrocene (Fc)-capped gold nanoparticle/streptavidin conjugates. The Fc oxidation current was found to be inversely proportional to the concentration of target miRNA between 10 fM and 2.0 pM. The method is highly reproducible (RSD < 5%), regenerable (at least 8 regeneration/assay cycles without discernible signal decrease) and selective (with sequence specificity down to a single nucleotide mismatch). The low detection levels (10 fM or 0.1 attomoles of miRNA in a 10-HL solution) allow the direct quantification of miRNA-182, a marker correlated to the progression of glioma in patients, to be performed in serum samples without sample pretreatment and RNA extraction and enrichment. The concentration of miRNA-182 in glioma patients was found to be 3.1 times as high as that in healthy persons, a conclusion in excellent agreement with a separate qPCR measurement of the expression level. The obviations of the requirement of an internal reference in qPCR, simplicity, and cost-effectiveness are other additional advantages of this method for detection of nucleic acids in clinical samples. PMID:22788545

  18. Identification and gene-silencing of a putative odorant receptor transcription factor in Varroa destructor: possible role in olfaction.

    PubMed

    Singh, N K; Eliash, N; Stein, I; Kamer, Y; Ilia, Z; Rafaeli, A; Soroker, V

    2016-04-01

    The ectoparasitic mite Varroa destructor is one of the major threats to apiculture. Using a behavioural choice bioassay, we determined that phoretic mites were more successful in reaching a bee than reproductive mites, suggesting an energy trade-off between reproduction and host selection. We used both chemo-ecological and molecular strategies to identify the regulation of the olfactory machinery of Varroa and its association with reproduction. We focused on transcription regulation. Using primers designed to the conserved DNA binding region of transcription factors, we identified a gene transcript in V. destructor homologous to the pheromone receptor transcription factor (PRTF) gene of Pediculus humanus corporis. Quantitative PCR (qPCR) revealed that this PRTF-like gene transcript is expressed in the forelegs at higher levels than in the body devoid of forelegs. Subsequent comparative qPCR analysis showed that transcript expression was significantly higher in the phoretic as compared to the reproductive stage. Electrophysiological and behavioural studies revealed a reduction in the sensitivity of PRTF RNA interference-silenced mites to bee headspace, consistent with a reduction in the mites' ability to reach a host. In addition, vitellogenin expression was stimulated in PRTF-silenced mites to similar levels as found in reproductive mites. These data shed light upon the regulatory mechanism of host chemosensing in V. destructor. © 2016 The Royal Entomological Society.

  19. Lactobacillus rhamnosus GG and its SpaC pilus adhesin modulate inflammatory responsiveness and TLR-related gene expression in the fetal human gut

    PubMed Central

    Ganguli, Kriston; Collado, Maria Carmen; Rautava, Jaana; Lu, Lei; Satokari, Reetta; von Ossowski, Ingemar; Reunanen, Justus; de Vos, Willem M.; Palva, Airi; Isolauri, Erika; Salminen, Seppo; Walker, W. Allan; Rautava, Samuli

    2015-01-01

    Background Bacterial contact in utero modulates fetal and neonatal immune responses. Maternal probiotic supplementation reduces the risk of immune-mediated disease in the infant. We investigated the immunomodulatory properties of live Lactobacillus rhamnosus GG and its SpaC pilus adhesin in human fetal intestinal models. Methods TNF-α mRNA expression was measured by qPCR in a human fetal intestinal organ culture model exposed to live L. rhamnosus GG and proinflammatory stimuli. Binding of recombinant SpaC pilus protein to intestinal epithelial cells was assessed in human fetal intestinal organ culture and the human fetal intestinal epithelial cell line H4 by immunohistochemistry and immunofluorescence, respectively. TLR-related gene expression in fetal ileal organ culture after exposure to recombinant SpaC was assessed by qPCR. Results Live L. rhamnosus GG significantly attenuates pathogen-induced TNF-α mRNA expression in the human fetal gut. Recombinant SpaC protein was found to adhere to the fetal gut and to modulate varying levels of TLR-related gene expression. Conclusion The human fetal gut is responsive to luminal microbes. L. rhamnosus GG significantly attenuates fetal intestinal inflammatory responses to pathogenic bacteria. The L. rhamnosus GG pilus adhesin SpaC binds to immature human intestinal epithelial cells and directly modulates intestinal epithelial cell innate immune gene expression. PMID:25580735

  20. Archaeal enrichment in the hypoxic zone in the northern Gulf of Mexico.

    PubMed

    Gillies, Lauren E; Thrash, J Cameron; deRada, Sergio; Rabalais, Nancy N; Mason, Olivia U

    2015-10-01

    Areas of low oxygen have spread exponentially over the past 40 years, and are cited as a key stressor on coastal ecosystems. The world's second largest coastal hypoxic (≤ 2 mg of O2 l(-1)) zone occurs annually in the northern Gulf of Mexico. The net effect of hypoxia is the diversion of energy flow away from higher trophic levels to microorganisms. This energy shunt is consequential to the overall productivity of hypoxic water masses and the ecosystem as a whole. In this study, water column samples were collected at 39 sites in the nGOM, 21 of which were hypoxic. Analysis of the microbial community along a hypoxic to oxic dissolved oxygen gradient revealed that the relative abundance (iTag) of Thaumarchaeota species 16S rRNA genes (> 40% of the microbial community in some hypoxic samples), the absolute abundance (quantitative polymerase chain reaction; qPCR) of Thaumarchaeota 16S rRNA genes and archaeal ammonia-monooxygenase gene copy number (qPCR) were significantly higher in hypoxic samples. Spatial interpolation of the microbial and chemical data revealed a continuous, shelfwide band of low dissolved oxygen waters that were dominated by Thaumarchaeota (and Euryarchaeota), amoA genes and high concentrations of phosphate in the nGOM, thus implicating physicochemical forcing on microbial abundance. © 2015 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. Molecular characterization of an Apolipophorin-III gene from the Chinese oak silkworm, Antheraea pernyi (Lepidoptera: Saturniidae).

    PubMed

    Liu, Qiu-Ning; Lin, Kun-Zhang; Yang, Lin-Nan; Dai, Li-Shang; Wang, Lei; Sun, Yu; Qian, Cen; Wei, Guo-Qing; Liu, Dong-Ran; Zhu, Bao-Jian; Liu, Chao-Liang

    2015-03-01

    Apolipophorin-III (ApoLp-III) acts in lipid transport, lipoprotein metabolism, and innate immunity in insects. In this study, an ApoLp-III gene of Antheraea pernyi pupae (Ap-ApoLp-III) was isolated and characterized. The full-length cDNA of Ap-ApoLp-III is 687 bp, including a 5'-untranslated region (UTR) of 40 bp, 3'-UTR of 86 bp and an open reading frame of 561 bp encoding a polypeptide of 186 amino acids that contains an Apolipophorin-III precursor domain (PF07464). The deduced Ap-apoLp-III protein sequence has 68, 59, and 23% identity with its orthologs of Manduca sexta, Bombyx mori, and Aedes aegypti, respectively. Phylogenetic analysis showed that the Ap-apoLp-III was close to that of Bombycoidea. qPCR analysis revealed that Ap-ApoLp-III expressed during the four developmental stages and in integument, fat body, and ovaries. After six types of microorganism infections, expression levels of the Ap-ApoLp-III gene were upregulated significantly at different time points compared with control. RNA interference (RNAi) of Ap-ApoLp-III showed that the expression of Ap-ApoLp-III was significantly downregulated using qPCR after injection of E. coli. We infer that the Ap-ApoLp-III gene acts in the innate immunity of A. pernyi. © 2014 Wiley Periodicals, Inc.

  2. Growth of ammonia-oxidizing archaea in soil microcosms is inhibited by acetylene.

    PubMed

    Offre, Pierre; Prosser, James I; Nicol, Graeme W

    2009-10-01

    Autotrophic ammonia-oxidizing bacteria were considered to be responsible for the majority of ammonia oxidation in soil until the recent discovery of the autotrophic ammonia-oxidizing archaea. To assess the relative contributions of bacterial and archaeal ammonia oxidizers to soil ammonia oxidation, their growth was analysed during active nitrification in soil microcosms incubated for 30 days at 30 degrees C, and the effect of an inhibitor of ammonia oxidation (acetylene) on their growth and soil nitrification kinetics was determined. Denaturing gradient gel electrophoresis (DGGE) analysis of bacterial ammonia oxidizer 16S rRNA genes did not detect any change in their community composition during incubation, and quantitative PCR (qPCR) analysis of bacterial amoA genes indicated a small decrease in abundance in control and acetylene-containing microcosms. DGGE fingerprints of archaeal amoA and 16S rRNA genes demonstrated changes in the relative abundance of specific crenarchaeal phylotypes during active nitrification. Growth was also indicated by increases in crenarchaeal amoA gene copy number, determined by qPCR. In microcosms containing acetylene, nitrification and growth of the crenarchaeal phylotypes were suppressed, suggesting that these crenarchaea are ammonia oxidizers. Growth of only archaeal but not bacterial ammonia oxidizers occurred in microcosms with active nitrification, indicating that ammonia oxidation was mostly due to archaea in the conditions of the present study.

  3. Molecular differential diagnosis of follicular thyroid carcinoma and adenoma based on gene expression profiling by using formalin-fixed paraffin-embedded tissues

    PubMed Central

    2013-01-01

    Background Differential diagnosis between malignant follicular thyroid cancer (FTC) and benign follicular thyroid adenoma (FTA) is a great challenge for even an experienced pathologist and requires special effort. Molecular markers may potentially support a differential diagnosis between FTC and FTA in postoperative specimens. The purpose of this study was to derive molecular support for differential post-operative diagnosis, in the form of a simple multigene mRNA-based classifier that would differentiate between FTC and FTA tissue samples. Methods A molecular classifier was created based on a combined analysis of two microarray datasets (using 66 thyroid samples). The performance of the classifier was assessed using an independent dataset comprising 71 formalin-fixed paraffin-embedded (FFPE) samples (31 FTC and 40 FTA), which were analysed by quantitative real-time PCR (qPCR). In addition, three other microarray datasets (62 samples) were used to confirm the utility of the classifier. Results Five of 8 genes selected from training datasets (ELMO1, EMCN, ITIH5, KCNAB1, SLCO2A1) were amplified by qPCR in FFPE material from an independent sample set. Three other genes did not amplify in FFPE material, probably due to low abundance. All 5 analysed genes were downregulated in FTC compared to FTA. The sensitivity and specificity of the 5-gene classifier tested on the FFPE dataset were 71% and 72%, respectively. Conclusions The proposed approach could support histopathological examination: 5-gene classifier may aid in molecular discrimination between FTC and FTA in FFPE material. PMID:24099521

  4. Gene Expression Profiling Reveals Functional Specialization along the Intestinal Tract of a Carnivorous Teleostean Fish (Dicentrarchus labrax)

    PubMed Central

    Calduch-Giner, Josep A.; Sitjà-Bobadilla, Ariadna; Pérez-Sánchez, Jaume

    2016-01-01

    High-quality sequencing reads from the intestine of European sea bass were assembled, annotated by similarity against protein reference databases and combined with nucleotide sequences from public and private databases. After redundancy filtering, 24,906 non-redundant annotated sequences encoding 15,367 different gene descriptions were obtained. These annotated sequences were used to design a custom, high-density oligo-microarray (8 × 15 K) for the transcriptomic profiling of anterior (AI), middle (MI), and posterior (PI) intestinal segments. Similar molecular signatures were found for AI and MI segments, which were combined in a single group (AI-MI) whereas the PI outstood separately, with more than 1900 differentially expressed genes with a fold-change cutoff of 2. Functional analysis revealed that molecular and cellular functions related to feed digestion and nutrient absorption and transport were over-represented in AI-MI segments. By contrast, the initiation and establishment of immune defense mechanisms became especially relevant in PI, although the microarray expression profiling validated by qPCR indicated that these functional changes are gradual from anterior to posterior intestinal segments. This functional divergence occurred in association with spatial transcriptional changes in nutrient transporters and the mucosal chemosensing system via G protein-coupled receptors. These findings contribute to identify key indicators of gut functions and to compare different fish feeding strategies and immune defense mechanisms acquired along the evolution of teleosts. PMID:27610085

  5. Gene Expression Profiling Reveals Functional Specialization along the Intestinal Tract of a Carnivorous Teleostean Fish (Dicentrarchus labrax).

    PubMed

    Calduch-Giner, Josep A; Sitjà-Bobadilla, Ariadna; Pérez-Sánchez, Jaume

    2016-01-01

    High-quality sequencing reads from the intestine of European sea bass were assembled, annotated by similarity against protein reference databases and combined with nucleotide sequences from public and private databases. After redundancy filtering, 24,906 non-redundant annotated sequences encoding 15,367 different gene descriptions were obtained. These annotated sequences were used to design a custom, high-density oligo-microarray (8 × 15 K) for the transcriptomic profiling of anterior (AI), middle (MI), and posterior (PI) intestinal segments. Similar molecular signatures were found for AI and MI segments, which were combined in a single group (AI-MI) whereas the PI outstood separately, with more than 1900 differentially expressed genes with a fold-change cutoff of 2. Functional analysis revealed that molecular and cellular functions related to feed digestion and nutrient absorption and transport were over-represented in AI-MI segments. By contrast, the initiation and establishment of immune defense mechanisms became especially relevant in PI, although the microarray expression profiling validated by qPCR indicated that these functional changes are gradual from anterior to posterior intestinal segments. This functional divergence occurred in association with spatial transcriptional changes in nutrient transporters and the mucosal chemosensing system via G protein-coupled receptors. These findings contribute to identify key indicators of gut functions and to compare different fish feeding strategies and immune defense mechanisms acquired along the evolution of teleosts.

  6. Droplet digital PCR technology promises new applications and research areas.

    PubMed

    Manoj, P

    2016-01-01

    Digital Polymerase Chain Reaction (dPCR) is used to quantify nucleic acids and its applications are in the detection and precise quantification of low-level pathogens, rare genetic sequences, quantification of copy number variants, rare mutations and in relative gene expressions. Here the PCR is performed in large number of reaction chambers or partitions and the reaction is carried out in each partition individually. This separation allows a more reliable collection and sensitive measurement of nucleic acid. Results are calculated by counting amplified target sequence (positive droplets) and the number of partitions in which there is no amplification (negative droplets). The mean number of target sequences was calculated by Poisson Algorithm. Poisson correction compensates the presence of more than one copy of target gene in any droplets. The method provides information with accuracy and precision which is highly reproducible and less susceptible to inhibitors than qPCR. It has been demonstrated in studying variations in gene sequences, such as copy number variants and point mutations, distinguishing differences between expression of nearly identical alleles, assessment of clinically relevant genetic variations and it is routinely used for clonal amplification of samples for NGS methods. dPCR enables more reliable predictors of tumor status and patient prognosis by absolute quantitation using reference normalizations. Rare mitochondrial DNA deletions associated with a range of diseases and disorders as well as aging can be accurately detected with droplet digital PCR.

  7. Detection and Differentiation of Leishmania spp. in Clinical Specimens by Use of a SYBR Green-Based Real-Time PCR Assay.

    PubMed

    de Almeida, Marcos E; Koru, Ozgur; Steurer, Francis; Herwaldt, Barbara L; da Silva, Alexandre J

    2017-01-01

    Leishmaniasis in humans is caused by Leishmania spp. in the subgenera Leishmania and Viannia Species identification often has clinical relevance. Until recently, our laboratory relied on conventional PCR amplification of the internal transcribed spacer 2 (ITS2) region (ITS2-PCR) followed by sequencing analysis of the PCR product to differentiate Leishmania spp. Here we describe a novel real-time quantitative PCR (qPCR) approach based on the SYBR green technology (LSG-qPCR), which uses genus-specific primers that target the ITS1 region and amplify DNA from at least 10 Leishmania spp., followed by analysis of the melting temperature (T m ) of the amplicons on qPCR platforms (the Mx3000P qPCR system [Stratagene-Agilent] and the 7500 real-time PCR system [ABI Life Technologies]). We initially evaluated the assay by testing reference Leishmania isolates and comparing the results with those from the conventional ITS2-PCR approach. Then we compared the results from the real-time and conventional molecular approaches for clinical specimens from 1,051 patients submitted to the reference laboratory of the Centers for Disease Control and Prevention for Leishmania diagnostic testing. Specimens from 477 patients tested positive for Leishmania spp. with the LSG-qPCR assay, specimens from 465 of these 477 patients also tested positive with the conventional ITS2-PCR approach, and specimens from 10 of these 465 patients had positive results because of retesting prompted by LSG-qPCR positivity. On the basis of the T m values of the LSG-qPCR amplicons from reference and clinical specimens, we were able to differentiate four groups of Leishmania parasites: the Viannia subgenus in aggregate; the Leishmania (Leishmania) donovani complex in aggregate; the species L (L) tropica; and the species L (L) mexicana, L (L) amazonensis, L (L) major, and L (L) aethiopica in aggregate. Copyright © 2016 American Society for Microbiology.

  8. Liver Transcriptome and miRNA Analysis of Silver Carp (Hypophthalmichthys molitrix) Intraperitoneally Injected With Microcystin-LR

    PubMed Central

    Qu, Xiancheng; Hu, Menghong; Shang, Yueyong; Pan, Lisha; Jia, Peixuan; Fu, Chunxue; Liu, Qigen; Wang, Youji

    2018-01-01

    Next-generation sequencing was used to analyze the effects of toxic microcystin-LR (MC-LR) on silver carp (Hypophthalmichthys molitrix). Silver carps were intraperitoneally injected with MC-LR, and RNA-seq and miRNA-seq in the liver were analyzed at 0.25, 0.5, and 1 h. The expression of glutathione S-transferase (GST), which acts as a marker gene for MC-LR, was tested to determine the earliest time point at which GST transcription was initiated in the liver tissues of the MC-LR-treated silver carps. Hepatic RNA-seq/miRNA-seq analysis and data integration analysis were conducted with reference to the identified time point. Quantitative PCR (qPCR) was performed to detect the expression of the following genes at the three time points: heme oxygenase 1 (HO-1), interleukin-10 receptor 1 (IL-10R1), apolipoprotein A-I (apoA-I), and heme binding protein 2 (HBP2). Results showed that the liver GST expression was remarkably decreased at 0.25 h (P < 0.05). RNA-seq at this time point revealed that the liver tissue contained 97,505 unigenes, including 184 significantly different unigenes and 75 unknown genes. Gene Ontology (GO) term enrichment analysis suggested that 35 of the 145 enriched GO terms were significantly enriched and mainly related to the immune system regulation network. KEGG pathway enrichment analysis showed that 18 of the 189 pathways were significantly enriched, and the most significant was a ribosome pathway containing 77 differentially expressed genes. miRNA-seq analysis indicated that the longest miRNA had 22 nucleotides (nt), followed by 21 and 23 nt. A total of 286 known miRNAs, 332 known miRNA precursor sequences, and 438 new miRNAs were predicted. A total of 1,048,575 mRNA–miRNA interaction sites were obtained, and 21,252 and 21,241 target genes were respectively predicted in known and new miRNAs. qPCR revealed that HO-1, IL-10R1, apoA-I, and HBP2 were significantly differentially expressed and might play important roles in the toxicity and liver detoxification of MC-LR in fish. These results were consistent with those of high-throughput sequencing, thereby verifying the accuracy of our sequencing data. RNA-seq and miRNA-seq analyses of silver carp liver injected with MC-LR provided valuable and new insights into the toxic effects of MC-LR and the antitoxic mechanisms of MC-LR in fish. The RNA/miRNA data are available from the NCBI database Registration No. : SRP075165. PMID:29692738

  9. No control genes required: Bayesian analysis of qRT-PCR data.

    PubMed

    Matz, Mikhail V; Wright, Rachel M; Scott, James G

    2013-01-01

    Model-based analysis of data from quantitative reverse-transcription PCR (qRT-PCR) is potentially more powerful and versatile than traditional methods. Yet existing model-based approaches cannot properly deal with the higher sampling variances associated with low-abundant targets, nor do they provide a natural way to incorporate assumptions about the stability of control genes directly into the model-fitting process. In our method, raw qPCR data are represented as molecule counts, and described using generalized linear mixed models under Poisson-lognormal error. A Markov Chain Monte Carlo (MCMC) algorithm is used to sample from the joint posterior distribution over all model parameters, thereby estimating the effects of all experimental factors on the expression of every gene. The Poisson-based model allows for the correct specification of the mean-variance relationship of the PCR amplification process, and can also glean information from instances of no amplification (zero counts). Our method is very flexible with respect to control genes: any prior knowledge about the expected degree of their stability can be directly incorporated into the model. Yet the method provides sensible answers without such assumptions, or even in the complete absence of control genes. We also present a natural Bayesian analogue of the "classic" analysis, which uses standard data pre-processing steps (logarithmic transformation and multi-gene normalization) but estimates all gene expression changes jointly within a single model. The new methods are considerably more flexible and powerful than the standard delta-delta Ct analysis based on pairwise t-tests. Our methodology expands the applicability of the relative-quantification analysis protocol all the way to the lowest-abundance targets, and provides a novel opportunity to analyze qRT-PCR data without making any assumptions concerning target stability. These procedures have been implemented as the MCMC.qpcr package in R.

  10. Error minimization algorithm for comparative quantitative PCR analysis: Q-Anal.

    PubMed

    OConnor, William; Runquist, Elizabeth A

    2008-07-01

    Current methods for comparative quantitative polymerase chain reaction (qPCR) analysis, the threshold and extrapolation methods, either make assumptions about PCR efficiency that require an arbitrary threshold selection process or extrapolate to estimate relative levels of messenger RNA (mRNA) transcripts. Here we describe an algorithm, Q-Anal, that blends elements from current methods to by-pass assumptions regarding PCR efficiency and improve the threshold selection process to minimize error in comparative qPCR analysis. This algorithm uses iterative linear regression to identify the exponential phase for both target and reference amplicons and then selects, by minimizing linear regression error, a fluorescence threshold where efficiencies for both amplicons have been defined. From this defined fluorescence threshold, cycle time (Ct) and the error for both amplicons are calculated and used to determine the expression ratio. Ratios in complementary DNA (cDNA) dilution assays from qPCR data were analyzed by the Q-Anal method and compared with the threshold method and an extrapolation method. Dilution ratios determined by the Q-Anal and threshold methods were 86 to 118% of the expected cDNA ratios, but relative errors for the Q-Anal method were 4 to 10% in comparison with 4 to 34% for the threshold method. In contrast, ratios determined by an extrapolation method were 32 to 242% of the expected cDNA ratios, with relative errors of 67 to 193%. Q-Anal will be a valuable and quick method for minimizing error in comparative qPCR analysis.

  11. Quantitative real-time polymerase chain reaction for the verification of genomic imbalances detected by microarray-based comparative genomic hybridization.

    PubMed

    Yu, Shihui; Kielt, Matthew; Stegner, Andrew L; Kibiryeva, Nataliya; Bittel, Douglas C; Cooley, Linda D

    2009-12-01

    The American College of Medical Genetics guidelines for microarray analysis for constitutional cytogenetic abnormalities require abnormal or ambiguous results from microarray-based comparative genomic hybridization (aCGH) analysis be confirmed by an alternative method. We employed quantitative real-time polymerase chain reaction (qPCR) technology using SYBR Green I reagents for confirmation of 93 abnormal aCGH results (50 deletions and 43 duplications) and 54 parental samples. A novel qPCR protocol using DNA sequences coding for X-linked lethal diseases in males for designing reference primers was established. Of the 81 sets of test primers used for confirmation of 93 abnormal copy number variants (CNVs) in 80 patients, 71 sets worked after the initial primer design (88%), 9 sets were redesigned once, and 1 set twice because of poor amplification. Fifty-four parental samples were tested using 33 sets of test primers to follow up 34 CNVs in 30 patients. Nineteen CNVs were confirmed as inherited, 13 were negative in both parents, and 2 were inconclusive due to a negative result in a single parent. The qPCR assessment clarified aCGH results in two cases and corrected a fluorescence in situ hybridization result in one case. Our data illustrate that qPCR methodology using SYBR Green I reagents is accurate, highly sensitive, specific, rapid, and cost-effective for verification of chromosomal imbalances detected by aCGH in the clinical setting.

  12. Comparison of a new multiplex real-time PCR with the Kato Katz thick smear and copro-antigen ELISA for the detection and differentiation of Taenia spp. in human stools

    PubMed Central

    Stevenson, Mark A.; Dorny, Pierre; Gabriël, Sarah; Vo, Tinh Van; Nguyen, Van-Anh Thi; Phan, Trong Van; Hii, Sze Fui; Traub, Rebecca J.

    2017-01-01

    Background Taenia solium, the cause of neurocysticercosis (NCC), has significant socioeconomic impacts on communities in developing countries. This disease, along with taeniasis is estimated to infect 2.5 to 5 million people globally. Control of T. solium NCC necessitates accurate diagnosis and treatment of T. solium taeniasis carriers. In areas where all three species of Taenia tapeworms (T. solium, Taenia saginata and Taenia asiatica) occur sympatrically, conventional microscope- and copro-antigen based diagnostic methods are unable to distinguish between these three Taenia species. Molecular diagnostic tools have been developed to overcome this limitation; however, conventional PCR-based techniques remain unsuitable for large-scale deployment in community-based surveys. Moreover, a real-time PCR (qPCR) for the discrimination of all three species of Taenia in human stool does not exist. This study describes the development and validation of a new triplex Taq-Man probe-based qPCR for the detection and discrimination of all three Taenia human tapeworms in human stools collected from communities in the Central Highlands of Vietnam. The diagnostic characteristics of the test are compared with conventional Kato Katz (KK) thick smear and copro-antigen ELISA (cAgELISA) method utilizing fecal samples from a community based cross-sectional study. Using this new multiplex real-time PCR we provide an estimate of the true prevalence of taeniasis in the source population for the community based cross-sectional study. Methodology/Principal findings Primers and TaqMan probes for the specific amplification of T. solium, T. saginata and T. asiatica were designed and successfully optimized to target the internal transcribed spacer I (ITS-1) gene of T. solium and the cytochrome oxidase subunit I (COX-1) gene of T. saginata and T. asiatica. The newly designed triplex qPCR (T3qPCR) was compared to KK and cAgELISA for the detection of Taenia eggs in stool samples collected from 342 individuals in Dak Lak province, Central Highlands of Vietnam. The overall apparent prevalence of taeniasis in Dak Lak province was 6.72% (95% confidence interval (CI) [3.94–9.50]) in which T. solium accounted for 1.17% (95% CI [0.37–3.17]), according to the T3qPCR. There was sympatric presence of T. solium, T. saginata and T. asiatica. The T3qPCR proved superior to KK and cAgELISA for the detection and differentiation of Taenia species in human feces. Diagnostic sensitivities of 0.94 (95% credible interval (CrI) [0.88–0.98]), 0.82 (95% CrI [0.58–0.95]) and 0.52 (95% CrI [0.07–0.94]), and diagnostic specificities of 0.98 (95% CrI [0.94–1.00]), 0.91 (95% CrI [0.85–0.96]) and 0.99 (95% CrI [0.96–1.00]) were estimated for the diagnosis of taeniasis for the T3qPCR, cAgELISA and KK thick smear in this study, respectively. Conclusions T3qPCR is not only superior to the KK thick smear and cAgELISA in terms of diagnostic sensitivity and specificity, but it also has the advantage of discriminating between species of Taenia eggs in stools. Application of this newly developed T3qPCR has identified the existence of all three human Taenia tapeworms in Dak Lak province and proves for the first time, the existence of T. asiatica in the Central Highlands and the south of Vietnam. PMID:28686662

  13. Evaluation of two spike-and-recovery controls for assessment of extraction efficiency in microbial source tracking studies

    USGS Publications Warehouse

    Stoeckel, D.M.; Stelzer, E.A.; Dick, L.K.

    2009-01-01

    Quantitative PCR (qPCR), applied to complex environmental samples such as water, wastewater, and feces, is susceptible to methodological and sample related biases. In this study, we evaluated two exogenous DNA spike-and-recovery controls as proxies for recovery efficiency of Bacteroidales 16S rDNA gene sequences (AllBac and qHF183) that are used for microbial source tracking (MST) in river water. Two controls-(1) the plant pathogen Pantoea stewartii, carrying the chromosomal target gene cpsD, and (2) Escherichia coli, carrying the plasmid-borne target gene DsRed2-were added to raw water samples immediately prior to concentration and DNA extraction for qPCR. When applied to samples processed in replicate, recovery of each control was positively correlated with the observed concentration of each MST marker. Adjustment of MST marker concentrations according to recovery efficiency reduced variability in replicate analyses when consistent processing and extraction methodologies were applied. Although the effects of this procedure on accuracy could not be tested due to uncertainties in control DNA concentrations, the observed reduction in variability should improve the strength of statistical comparisons. These findings suggest that either of the tested spike-and-recovery controls can be useful to measure efficiency of extraction and recovery in routine laboratory processing. ?? 2009 Elsevier Ltd.

  14. Microbial community structure across a wastewater-impacted riparian buffer zone in the southeastern coastal plain.

    PubMed

    Ducey, T F; Johnson, P R; Shriner, A D; Matheny, T A; Hunt, P G

    2013-01-01

    Riparian buffer zones are important for both natural and developed ecosystems throughout the world because of their ability to retain nutrients, prevent soil erosion, protect aquatic environments from excessive sedimentation, and filter pollutants. Despite their importance, the microbial community structures of riparian buffer zones remains poorly defined. Our objectives for this study were twofold: first, to characterize the microbial populations found in riparian buffer zone soils; and second, to determine if microbial community structure could be linked to denitrification enzyme activity (DEA). To achieve these objectives, we investigated the microbial populations of a riparian buffer zone located downslope of a pasture irrigated with swine lagoon effluent, utilizing DNA sequencing of the 16S rDNA, DEA, and quantitative PCR (qPCR) of the denitrification genes nirK, nirS, and nosZ. Clone libraries of the 16S rDNA gene were generated from each of twelve sites across the riparian buffer with a total of 986 partial sequences grouped into 654 operational taxonomic units (OTUs). The Proteobacteria were the dominant group (49.8% of all OTUs), with the Acidobacteria also well represented (19.57% of all OTUs). Analysis of qPCR results identified spatial relationships between soil series, site location, and gene abundance, which could be used to infer both incomplete and total DEA rates.

  15. DNA barcoding of freshwater fishes and the development of a quantitative qPCR assay for the species-specific detection and quantification of fish larvae from plankton samples.

    PubMed

    Loh, W K W; Bond, P; Ashton, K J; Roberts, D T; Tibbetts, I R

    2014-08-01

    The barcoding of mitochondrial cytochrome c oxidase subunit 1 (coI) gene was amplified and sequenced from 16 species of freshwater fishes found in Lake Wivenhoe (south-eastern Queensland, Australia) to support monitoring of reservoir fish populations, ecosystem function and water health. In this study, 630-650 bp sequences of the coI barcoding gene from 100 specimens representing 15 genera, 13 families and two subclasses of fishes allowed 14 of the 16 species to be identified and differentiated. The mean ± s.e. Kimura 2 parameter divergence within and between species was 0.52 ± 0.10 and 23.8 ± 2.20% respectively, indicating that barcodes can be used to discriminate most of the fish species accurately. The two terapontids, Amniataba percoides and Leiopotherapon unicolor, however, shared coI DNA sequences and could not be differentiated using this gene. A barcoding database was established and a qPCR assay was developed using coI sequences to identify and quantify proportional abundances of fish species in ichthyoplankton samples from Lake Wivenhoe. These methods provide a viable alternative to the time-consuming process of manually enumerating and identifying ichthyoplankton samples. © 2014 The Fisheries Society of the British Isles.

  16. Tracking native and applied populations of Cryptococcus flavescens in the environment

    USDA-ARS?s Scientific Manuscript database

    Cryptococcus flavescens strain OH182.9_3C (3C) exhibits biological control efficacy against Fusarium Head Blight, a globally important disease of wheat. In this study, a quantitative PCR (qPCR) assay of SYBR® Green chemistry targeting a Heat Shock Protein 70 kDa gene was developed and applied to mon...

  17. Single Laboratory Comparison of Quantitative Real-Time PCR Assays for the Detection of Human Fecal Pollution - Poster

    EPA Science Inventory

    There are numerous quantitative real-time PCR (qPCR) methods available to detect and enumerate human fecal pollution in ambient waters. Each assay employs distinct primers and/or probes and many target different genes and microorganisms leading to potential variations in method p...

  18. Development of a duplex ddPCR assay for detection of “Candidatus Liberibacter asiaticus”

    USDA-ARS?s Scientific Manuscript database

    Huanglongbing (HLB) (aka citrus greening) is a devastating citrus disease associated with “Candidatus Liberibacter asiaticus” (CLas). Currently, diagnosis of CLas in regulatory samples is based on a real-time quantitative polymerase chain reaction (qPCR) assay using 16S rRNA gene specific primers/pr...

  19. Gene expression results

    EPA Pesticide Factsheets

    qPCR results for VitellogeninThis dataset is associated with the following publication:Armstrong, B., J. Lazorchak , K. Jensen , H. Haring , M.E. Smith, R. Flick , D. Bencic , and A. Biales. Reproductive effects in fathead minnows (Pimphales promelas) following a 21 d exposure to 17α-ethinylestradiol. CHEMOSPHERE. Elsevier Science Ltd, New York, NY, USA, 144(1): 366-373, (2015).

  20. Comparison of two poultry litter qPCR assays targeting the 16S rRNA gene of Brevibacterium sp

    EPA Science Inventory

    Chicken feces are vectors of human pathogens and are also important sources of fecal pollution in environmental waters. Consequently, methods that can detect chicken fecal pollution are needed in public health and environmental monitoring studies. In this study, we compared a pre...

  1. Development and use of a real-time polymerase chain reaction assay for the detection of Ophidiomyces ophiodiicola in snakes.

    PubMed

    Allender, Matthew C; Bunick, David; Dzhaman, Elena; Burrus, Lucienne; Maddox, Carol

    2015-03-01

    Fungal pathogens threatening the conservation of wildlife are becoming increasingly common. Since 2008, free-ranging snakes across North America have been experiencing a marked increase in the prevalence of snake fungal disease associated with Ophidiomyces ophiodiicola. Diagnosis has historically relied on histology, microbiology, and conventional polymerase chain reaction (PCR). More sensitive methods are needed to adequately characterize the epidemiology. The current study describes the development of a real-time PCR (qPCR) assay for detecting a segment of the internal transcribed spacer 1 region between the 18S and 5.8S ribosomal RNA gene. The assay was able to detect as few as 1.05 × 10(1) gene copies per reaction. An additional 4 positive cases were detected when comparing a conventional PCR (n = 3) and the qPCR (n = 7) when used on swab samples from 47 eastern massasauga rattlesnakes. The newly developed assay is a sensitive and specific tool for surveillance and monitoring in the conservation of free-ranging snakes. © 2015 The Author(s).

  2. Detection and Characterization of Leishmania (Leishmania) and Leishmania (Viannia) by SYBR Green-Based Real-Time PCR and High Resolution Melt Analysis Targeting Kinetoplast Minicircle DNA

    PubMed Central

    Ceccarelli, Marcello; Galluzzi, Luca; Migliazzo, Antonella; Magnani, Mauro

    2014-01-01

    Leishmaniasis is a neglected disease with a broad clinical spectrum which includes asymptomatic infection. A thorough diagnosis, able to distinguish and quantify Leishmania parasites in a clinical sample, constitutes a key step in choosing an appropriate therapy, making an accurate prognosis and performing epidemiological studies. Several molecular techniques have been shown to be effective in the diagnosis of leishmaniasis. In particular, a number of PCR methods have been developed on various target DNA sequences including kinetoplast minicircle constant regions. The first aim of this study was to develop a SYBR green-based qPCR assay for Leishmania (Leishmania) infantum detection and quantification, using kinetoplast minicircle constant region as target. To this end, two assays were compared: the first used previously published primer pairs (qPCR1), whereas the second used a nested primer pairs generating a shorter PCR product (qPCR2). The second aim of this study was to evaluate the possibility to discriminate among subgenera Leishmania (Leishmania) and Leishmania (Viannia) using the qPCR2 assay followed by melting or High Resolution Melt (HRM) analysis. Both assays used in this study showed good sensitivity and specificity, and a good correlation with standard IFAT methods in 62 canine clinical samples. However, the qPCR2 assay allowed to discriminate between Leishmania (Leishmania) and Leishmania (Viannia) subgenera through melting or HRM analysis. In addition to developing assays, we investigated the number and genetic variability of kinetoplast minicircles in the Leishmania (L.) infantum WHO international reference strain (MHOM/TN/80/IPT1), highlighting the presence of minicircle subclasses and sequence heterogeneity. Specifically, the kinetoplast minicircle number per cell was estimated to be 26,566±1,192, while the subclass of minicircles amplifiable by qPCR2 was estimated to be 1,263±115. This heterogeneity, also observed in canine clinical samples, must be taken into account in quantitative PCR-based applications; however, it might also be used to differentiate between Leishmania subgenera. PMID:24551178

  3. Impact of pre-application treatment on municipal sludge composition, soil dynamics of antibiotic resistance genes, and abundance of antibiotic-resistance genes on vegetables at harvest.

    PubMed

    Lau, Calvin Ho-Fung; Li, Bing; Zhang, Tong; Tien, Yuan-Ching; Scott, Andrew; Murray, Roger; Sabourin, Lyne; Lapen, David R; Duenk, Peter; Topp, Edward

    2017-06-01

    In many jurisdictions sludge recovered from the sewage treatment process is a valued fertilizer for crop production. Pre-treatment of sewage sludge prior to land application offers the potential to abate enteric microorganisms that carry genes conferring resistance to antibiotics. Pre-treatment practices that accomplish this should have the desirable effect of reducing the risk of contamination of crops or adjacent water with antibiotic resistance genes carried in these materials. In the present study, we obtained municipal sludge that had been subjected to one of five treatments. There were, anaerobic-digestion or aerobic-digestion, in both instances with and without dewatering; and heat-treatment and pelletization. Each of the five types of biosolids was applied to an agricultural field at commercial rates, following which lettuce, carrots and radishes were planted. Based on qPCR, the estimated antibiotic gene loading rates were comparable with each of the five biosolids. However, the gene abundance in soil following application of the pelletized biosolids was anomalously lower than expected. Following application, the abundance of antibiotic resistance genes decreased in a generally coherent fashion, except sul1 which increased in abundance during the growing season in the soil fertilized with pelletized biosolids. Based on qPCR and high throughput sequencing evidence for transfer of antibiotic resistance genes from the biosolids to the vegetables at harvest was weak. Clostridia were more abundant in soils receiving any of the biosolids except the pelletized. Overall, the behavior of antibiotic resistance genes in soils receiving aerobically or anaerobically-digested biosolids was consistent and coherent with previous studies. However, dynamics of antibiotic resistance genes in soils receiving the heat treated pelletized biosolids were very different, and the underlying mechanisms merit investigation. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  4. Comparison of monocyte gene expression among patients with neurocysticercosis-associated epilepsy, Idiopathic Epilepsy and idiopathic headaches in India.

    PubMed

    Prabhakaran, Vasudevan; Drevets, Douglas A; Ramajayam, Govindan; Manoj, Josephine J; Anderson, Michael P; Hanas, Jay S; Rajshekhar, Vedantam; Oommen, Anna; Carabin, Hélène

    2017-06-01

    Neurocysticercosis (NCC), a neglected tropical disease, inflicts substantial health and economic costs on people living in endemic areas such as India. Nevertheless, accurate diagnosis using brain imaging remains poorly accessible and too costly in endemic countries. The goal of this study was to test if blood monocyte gene expression could distinguish patients with NCC-associated epilepsy, from NCC-negative imaging lesion-free patients presenting with idiopathic epilepsy or idiopathic headaches. Patients aged 18 to 51 were recruited from the Department of Neurological Sciences, Christian Medical College and Hospital, Vellore, India, between January 2013 and October 2014. mRNA from CD14+ blood monocytes was isolated from 76 patients with NCC, 10 Recovered NCC (RNCC), 29 idiopathic epilepsy and 17 idiopathic headaches patients. A preliminary microarray analysis was performed on six NCC, six idiopathic epilepsy and four idiopathic headaches patients to identify genes differentially expressed in NCC-associated epilepsy compared with other groups. This analysis identified 1411 upregulated and 733 downregulated genes in patients with NCC compared to Idiopathic Epilepsy. Fifteen genes up-regulated in NCC patients compared with other groups were selected based on possible relevance to NCC, and analyzed by qPCR in all patients' samples. Differential gene expression among patients was assessed using linear regression models. qPCR analysis of 15 selected genes showed generally higher gene expression among NCC patients, followed by RNCC, idiopathic headaches and Idiopathic Epilepsy. Gene expression was also generally higher among NCC patients with single cyst granulomas, followed by mixed lesions and single calcifications. Expression of certain genes in blood monocytes can distinguish patients with NCC-related epilepsy from patients with active Idiopathic Epilepsy and idiopathic headaches. These findings are significant because they may lead to the development of new tools to screen for and monitor NCC patients without brain imaging.

  5. Expression of the Long Intergenic Non-Protein Coding RNA 665 (LINC00665) Gene and the Cell Cycle in Hepatocellular Carcinoma Using The Cancer Genome Atlas, the Gene Expression Omnibus, and Quantitative Real-Time Polymerase Chain Reaction.

    PubMed

    Wen, Dong-Yue; Lin, Peng; Pang, Yu-Yan; Chen, Gang; He, Yun; Dang, Yi-Wu; Yang, Hong

    2018-05-05

    BACKGROUND Long non-coding RNAs (lncRNAs) have a role in physiological and pathological processes, including cancer. The aim of this study was to investigate the expression of the long intergenic non-protein coding RNA 665 (LINC00665) gene and the cell cycle in hepatocellular carcinoma (HCC) using database analysis including The Cancer Genome Atlas (TCGA), the Gene Expression Omnibus (GEO), and quantitative real-time polymerase chain reaction (qPCR). MATERIAL AND METHODS Expression levels of LINC00665 were compared between human tissue samples of HCC and adjacent normal liver, clinicopathological correlations were made using TCGA and the GEO, and qPCR was performed to validate the findings. Other public databases were searched for other genes associated with LINC00665 expression, including The Atlas of Noncoding RNAs in Cancer (TANRIC), the Multi Experiment Matrix (MEM), Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and protein-protein interaction (PPI) networks. RESULTS Overexpression of LINC00665 in patients with HCC was significantly associated with gender, tumor grade, stage, and tumor cell type. Overexpression of LINC00665 in patients with HCC was significantly associated with overall survival (OS) (HR=1.47795%; CI: 1.046-2.086). Bioinformatics analysis identified 469 related genes and further analysis supported a hypothesis that LINC00665 regulates pathways in the cell cycle to facilitate the development and progression of HCC through ten identified core genes: CDK1, BUB1B, BUB1, PLK1, CCNB2, CCNB1, CDC20, ESPL1, MAD2L1, and CCNA2. CONCLUSIONS Overexpression of the lncRNA, LINC00665 may be involved in the regulation of cell cycle pathways in HCC through ten identified hub genes.

  6. The stretch responsive microRNA miR-148a-3p is a novel repressor of IKBKB, NF-κB signaling, and inflammatory gene expression in human aortic valve cells

    PubMed Central

    Patel, Vishal; Carrion, Katrina; Hollands, Andrew; Hinton, Andrew; Gallegos, Thomas; Dyo, Jeffrey; Sasik, Roman; Leire, Emma; Hardiman, Gary; Mohamed, Salah A.; Nigam, Sanjay; King, Charles C.; Nizet, Victor; Nigam, Vishal

    2015-01-01

    Bicuspid aortic valves calcify at a significantly higher rate than normal aortic valves, a process that involves increased inflammation. Because we have previously found that bicuspid aortic valve experience greater stretch, we investigated the potential connection between stretch and inflammation in human aortic valve interstitial cells (AVICs). Microarray, quantitative PCR (qPCR), and protein assays performed on AVICs exposed to cyclic stretch showed that stretch was sufficient to increase expression of interleukin and metalloproteinase family members by more than 1.5-fold. Conditioned medium from stretched AVICs was sufficient to activate leukocytes. microRNA sequencing and qPCR experiments demonstrated that miR-148a-3p was repressed in both stretched AVICs (43% repression) and, as a clinical correlate, human bicuspid aortic valves (63% reduction). miR-148a-3p was found to be a novel repressor of IKBKB based on data from qPCR, luciferase, and Western blot experiments. Furthermore, increasing miR-148a-3p levels in AVICs was sufficient to decrease NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) signaling and NF-κB target gene expression. Our data demonstrate that stretch-mediated activation of inflammatory pathways is at least partly the result of stretch-repression of miR-148a-3p and a consequent failure to repress IKBKB. To our knowledge, we are the first to report that cyclic stretch of human AVICs activates inflammatory genes in a tissue-autonomous manner via a microRNA that regulates a central inflammatory pathway.—Patel, V., Carrion, K., Hollands, A., Hinton, A., Gallegos, T., Dyo, J., Sasik, R., Leire, E., Hardiman, G., Mohamed, S. A., Nigam, S., King, C. C., Nizet, V., Nigam V. The stretch responsive microRNA miR-148a-3p is a novel repressor of IKBKB, NF-κB signaling, and inflammatory gene expression in human aortic valve cells. PMID:25630970

  7. Detection of Microcystin-Producing Cyanobacteria in Missisquoi Bay, Quebec, Canada, Using Quantitative PCR▿

    PubMed Central

    Fortin, Nathalie; Aranda-Rodriguez, Rocio; Jing, Hongmei; Pick, Frances; Bird, David; Greer, Charles W.

    2010-01-01

    Toxic cyanobacterial blooms, as well as their increasing global occurrence, pose a serious threat to public health, domestic animals, and livestock. In Missisquoi Bay, Lake Champlain, public health advisories have been issued from 2001 to 2009, and local microcystin concentrations found in the lake water regularly exceeded the Canadian drinking water guideline of 1.5 μg liter−1. A quantitative PCR (Q-PCR) approach was developed for the detection of blooms formed by microcystin-producing cyanobacteria. Primers were designed for the β-ketoacyl synthase (mcyDKS) and the first dehydratase domain (mcyDDH) of the mcyD gene, involved in microcystin synthesis. The Q-PCR method was used to track the toxigenic cyanobacteria in Missisquoi Bay during the summers of 2006 and 2007. Two toxic bloom events were detected in 2006: more than 6.5 × 104 copies of the mcyDKS gene ml−1 were detected in August, and an average of 4.0 × 104 copies ml−1 were detected in September, when microcystin concentrations were more than 4 μg liter−1 and approximately 2 μg liter−1, respectively. Gene copy numbers and total microcystin concentrations (determined by enzyme-linked immunosorbent assay [ELISA]) were highly correlated in the littoral (r = 0.93, P < 0.001) and the pelagic station (r = 0.87, P < 0.001) in 2006. In contrast to the situation in 2006, a cyanobacterial bloom occurred only in late summer-early fall of 2007, reaching only 3 × 102 mcyDKS copies ml−1, while the microcystin concentration was barely detectable. The Q-PCR method allowed the detection of microcystin-producing cyanobacteria when toxins and toxigenic cyanobacterial abundance were still below the limit of detection by high-pressure liquid chromatography (HPLC) and microscopy. Toxin gene copy numbers grew exponentially at a steady rate over a period of 7 weeks. Onshore winds selected for cells with a higher cell quota of microcystin. This technique could be an effective approach for the routine monitoring of the most at-risk water bodies. PMID:20562282

  8. Occurrence and quantification of Shiga toxin-producing Escherichia coli from food matrices

    PubMed Central

    Sethulekshmi, C.; Latha, C.; Anu, C. J.

    2018-01-01

    Aim: The objective of the study was to detect Shiga toxin-producing Escherichia coli (STEC) and develop a quantitative polymerase chain reaction (qPCR) assay to quantify the bacterial DNA present in different food matrices. Materials and Methods: A total of 758 samples were collected during a period from January 2015 to December 2016 from Kozhikode, Thrissur, and Alappuzha districts of Kerala. The samples consisted of raw milk (135), pasteurized milk (100), beef (132), buffalo meat (130), chevon (104), beef kheema (115), and beef sausage (42). All the samples collected were subjected to isolation and identification of STEC by conventional culture technique. Confirmation of virulence genes was carried out using PCR. For the quantification of STEC in different food matrices, a qPCR was standardized against stx1 gene of STEC by the construction of standard curve using SYBR green chemistry. Results: The overall occurrence of STEC in raw milk (n=135), beef (n=132), buffalo meat (n=130), chevon (n=104), and beef kheema (n=115) samples collected from Kozhikode, Thrissur, and Alappuzha districts of Kerala was 19.26%, 41.6%, 16.92%, 28.85%, and 41.74%, respectively. PCR revealed the presence of stx 1 and stx 2 genes in 88.46 and 83.64 and 30.77 and 40.00% of STEC isolates from raw milk and beef samples, respectively, while 100% of the STEC isolates from buffalo beef and beef kheema samples carried stx 1 gene. Real-time qPCR assay was used to quantify the bacterial cells present in different food matrices. The standard curve was developed, and the slopes, intercept, and R2 of linear regression curves were −3.10, 34.24, and 0.99, respectively. Conclusion: The considerably high occurrence of STEC in the study confirms the importance of foods of animal origin as a vehicle of infection to humans. In the present study, on comparing the overall occurrence of STEC, the highest percentage of occurrence was reported in beef kheema samples. The study shows the need for rigid food safety measures to combat the potential pathogenic effects of harmful bacteria throughout the production chain from production to consumption. PMID:29657388

  9. PCR-Mediated Detection and Quantification of the Goss's Wilt Pathogen Clavibacter michiganensis subsp. nebraskensis Via a Novel Gene Target.

    PubMed

    McNally, R Ryan; Ishimaru, Carol A; Malvick, Dean K

    2016-12-01

    Goss's leaf blight and wilt of maize (corn) is a significant and reemerging disease caused by the bacterium Clavibacter michiganensis subsp. nebraskensis. Despite its importance, molecular tools for diagnosing and studying this disease remain limited. We report the identification of CMN_01184 as a novel gene target and its use in conventional PCR (cPCR) and SYBR green-based quantitative PCR (qPCR) assays for specific detection and quantification of C. michiganensis subsp. nebraskensis. The cPCR and qPCR assays based on primers targeting CMN_01184 specifically amplified only C. michiganensis subsp. nebraskensis among a diverse collection of 129 bacterial and fungal isolates, including multiple maize bacterial and fungal pathogens, environmental organisms from agricultural fields, and all known subspecies of C. michiganensis. Specificity of the assays for detection of only C. michiganensis subsp. nebraskensis was also validated with field samples of C. michiganensis subsp. nebraskensis-infected and uninfected maize leaves and C. michiganensis subsp. nebraskensis-infested and uninfested soil. Detection limits were determined at 30 and 3 ng of pure C. michiganensis subsp. nebraskensis DNA, and 100 and 10 CFU of C. michiganensis subsp. nebraskensis for the cPCR and qPCR assays, respectively. Infection of maize leaves by C. michiganensis subsp. nebraskensis was quantified from infected field samples and was standardized using an internal maize DNA control. These novel, specific, and sensitive PCR assays based on CMN_01184 are effective for diagnosis of Goss's wilt and for studies of the epidemiology and host-pathogen interactions of C. michiganensis subsp. nebraskensis.

  10. Bacterial community structure in two permafrost wetlands on the Tibetan Plateau and Sanjiang Plain, China.

    PubMed

    Yun, Juanli; Ju, Yiwen; Deng, Yongcui; Zhang, Hongxun

    2014-08-01

    Permafrost wetlands are important methane emission sources and fragile ecosystems sensitive to climate change. Presently, there remains a lack of knowledge regarding bacterial communities, especially methanotrophs in vast areas of permafrost on the Tibetan Plateau in Northwest China and the Sanjiang Plain (SJ) in Northeast China. In this study, 16S rRNA-based quantitative PCR (qPCR) and 454 pyrosequencing were used to identify bacterial communities in soils sampled from a littoral wetland of Lake Namco on the Tibetan Plateau (NMC) and an alluvial wetland on the SJ. Additionally, methanotroph-specific primers targeting particulate methane monooxygenase subunit A gene (pmoA) were used for qPCR and pyrosequencing analysis of methanotrophic community structure in NMC soils. qPCR analysis revealed the presence of 10(10) 16S rRNA gene copies per gram of wet soil in both wetlands, with 10(8) pmoA copies per gram of wet soil in NMC. The two permafrost wetlands showed similar bacterial community compositions, which differed from those reported in other cold environments. Proteobacteria, Actinobacteria , and Chloroflexi were the most abundant phyla in both wetlands, whereas Acidobacteria was prevalent in the acidic wetland SJ only. These four phyla constituted more than 80 % of total bacterial community diversity in permafrost wetland soils, and Methylobacter of type I methanotrophs was overwhelmingly dominant in NMC soils. This study is the first major bacterial sequencing effort of permafrost in the NMC and SJ wetlands, which provides fundamental data for further studies of microbial function in extreme ecosystems under climate change scenarios.

  11. Prediction of lymph node parasite load from clinical data in dogs with leishmaniasis: An application of radial basis artificial neural networks.

    PubMed

    Torrecilha, Rafaela Beatriz Pintor; Utsunomiya, Yuri Tani; Batista, Luís Fábio da Silva; Bosco, Anelise Maria; Nunes, Cáris Maroni; Ciarlini, Paulo César; Laurenti, Márcia Dalastra

    2017-01-30

    Quantification of Leishmania infantum load via real-time quantitative polymerase chain reaction (qPCR) in lymph node aspirates is an accurate tool for diagnostics, surveillance and therapeutics follow-up in dogs with leishmaniasis. However, qPCR requires infrastructure and technical training that is not always available commercially or in public services. Here, we used a machine learning technique, namely Radial Basis Artificial Neural Network, to assess whether parasite load could be learned from clinical data (serological test, biochemical markers and physical signs). By comparing 18 different combinations of input clinical data, we found that parasite load can be accurately predicted using a relatively small reference set of 35 naturally infected dogs and 20 controls. In the best case scenario (use of all clinical data), predictions presented no bias or inflation and an accuracy (i.e., correlation between true and predicted values) of 0.869, corresponding to an average error of ±38.2 parasites per unit of volume. We conclude that reasonable estimates of L. infantum load from lymph node aspirates can be obtained from clinical records when qPCR services are not available. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Adaptation of Musca domestica L. Field Population to Laboratory Breeding Causes Transcriptional Alterations

    PubMed Central

    Højland, Dorte H.; Jensen, Karl-Martin Vagn; Kristensen, Michael

    2014-01-01

    Background The housefly, Musca domestica, has developed resistance to most insecticides applied for its control. Expression of genes coding for detoxification enzymes play a role in the response of the housefly when encountered by a xenobiotic. The highest level of constitutive gene expression of nine P450 genes was previously found in a newly-collected susceptible field population in comparison to three insecticide-resistant laboratory strains and a laboratory reference strain. Results We compared gene expression of five P450s by qPCR as well as global gene expression by RNAseq in the newly-acquired field population (845b) in generation F1, F13 and F29 to test how gene expression changes following laboratory adaption. Four (CYP6A1, CYP6A36, CYP6D3, CYP6G4) of five investigated P450 genes adapted to breeding by decreasing expression. CYP6D1 showed higher female expression in F29 than in F1. For males, about half of the genes accessed in the global gene expression were up-regulated in F13 and F29 in comparison with the F1 population. In females, 60% of the genes were up-regulated in F13 in comparison with F1, while 33% were up-regulated in F29. Forty potential P450 genes were identified. In most cases, P450 gene expression was decreased in F13 flies in comparison with F1. Gene expression then increased from F13 to F29 in males and decreased further in females. Conclusion The global gene expression changes massively during adaptation to laboratory breeding. In general, global expression decreased as a result of laboratory adaption in males, while female expression was not unidirectional. Expression of P450 genes was in general down-regulated as a result of laboratory adaption. Expression of hexamerin, coding for a storage protein was increased, while gene expression of genes coding for amylases decreased. This suggests a major impact of the surrounding environment on gene response to xenobiotics and genetic composition of housefly strains. PMID:24489682

  13. Cosilencing Intestinal Transglutaminase-2 and Interleukin-15 Using Gelatin-Based Nanoparticles in an in Vitro Model of Celiac Disease.

    PubMed

    Attarwala, Husain; Clausen, Valerie; Chaturvedi, Prasoon; Amiji, Mansoor M

    2017-09-05

    In this study, we have developed a type B gelatin nanoparticle based siRNA delivery system for silencing of intestinal transglutaminase-2 (TG2) and interleukin-15 (IL-15) genes in cultured human intestinal epithelial cells (Caco-2) and murine alveolar macrophage cells (J774A.1). Small interfering RNA (siRNA) targeting the TG2 or IL-15 gene was encapsulated within gelatin nanoparticles using ethanol-water solvent displacement method. Size, charge, and morphology of gelatin nanoparticles were evaluated using a Zetasizer instrument and transmission electron microscopy. siRNA encapsulation efficiency was determined using an siRNA specific stem-loop quantitative polymerase chain reaction (qPCR) assay. Cellular uptake of siRNA-containing gelatin nanoparticles was determined using fluorescent microscopy and stem-loop qPCR assay. siRNA loading in the RISC (RNA-induced silencing complex) was determined by immunoprecipitation of argonaute 2 (AGO2) protein followed by stem-loop qPCR for siRNA quantification. Gene expression analysis of TG2, IL-15, and the proinflammatory cytokines, tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ), was performed using qPCR assays. Efficacy of silencing TG2 and IL-15 knockdown was evaluated in an in vitro model of celiac disease by utilizing immunogenic α-gliadin peptide p31-43 in cultured J774A.1 cells. siRNA-containing gelatin nanoparticles were spherical in shape with mean particle size and charge of 217 ± 8.39 nm and -6.2 ± 0.95 mV, respectively. siRNA loading efficiency within gelatin nanoparticles was found to be 89.3 ± 3.05%. Evaluations of cellular uptake using fluorescent microscopy showed rapid internalization of gelatin nanoparticles within 2 h of dosing, with cytosolic localization of delivered siRNA in Caco-2 cells. Gelatin nanoparticles showed greater intracellular siRNA exposure with a longer half-life, when compared to Lipofectamine-mediated siRNA delivery. Approximately 0.1% of total intracellular siRNA was associated in the RISC complex. A maximum knockdown of 60% was observed at 72 h post siRNA treatment for both TG2 and IL-15 genes, which corresponded to ∼200 copies of RISC associated siRNA. Further, efficacy of gelatin nanoparticle mediated knockdown of TG2 and IL-15 mRNA was tested in an in vitro model of celiac disease. Significant suppression in the levels of proinflammatory cytokines (TNF-α and IFN-γ) was observed in p31-43 stimulated J774A.1 cells upon either IL-15 or IL-15 + TG2 siRNA treatment. The results from this study indicate that gelatin nanoparticle mediated TG2 and IL-15 siRNA gene silencing is a very promising approach for the treatment of celiac disease.

  14. Molecular diagnosis of canine visceral leishmaniasis: a comparative study of three methods using skin and spleen from dogs with natural Leishmania infantum infection.

    PubMed

    Reis, Levi Eduardo Soares; Coura-Vital, Wendel; Roatt, Bruno Mendes; Bouillet, Leoneide Érica Maduro; Ker, Henrique Gama; Fortes de Brito, Rory Cristiane; Resende, Daniela de Melo; Carneiro, Mariângela; Giunchetti, Rodolfo Cordeiro; Marques, Marcos José; Carneiro, Cláudia Martins; Reis, Alexandre Barbosa

    2013-11-08

    Polymerase chain reaction (PCR) and its variations represent highly sensitive and specific methods for Leishmania DNA detection and subsequent canine visceral leishmaniasis (CVL) diagnosis. The aim of this work was to compare three different molecular diagnosis techniques (conventional PCR [cPCR], seminested PCR [snPCR], and quantitative PCR [qPCR]) in samples of skin and spleen from 60 seropositive dogs by immunofluorescence antibody test and enzyme-linked immunosorbent assay. Parasitological analysis was conducted by culture of bone marrow aspirate and optical microscopic assessment of ear skin and spleen samples stained with Giemsa, the standard tests for CVL diagnosis. The primers L150/L152 and LINR4/LIN17/LIN19 were used to amplify the conserved region of the Leishmania kDNA minicircle in the cPCR, and snPCR and qPCR were performed using the DNA polymerase gene (DNA pol α) primers from Leishmania infantum. The parasitological analysis revealed parasites in 61.7% of the samples. Sensitivities were 89.2%, 86.5%, and 97.3% in the skin and 81.1%, 94.6%, and 100.0% in spleen samples used for cPCR, snPCR, and qPCR, respectively. We demonstrated that the qPCR method was the best technique to detect L. infantum in both skin and spleen samples. However, we recommend the use of skin due to the high sensitivity and sampling being less invasive. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Quantitative PCR Profiling of Escherichia coli in Livestock Feces Reveals Increased Population Resilience Relative to Culturable Counts under Temperature Extremes.

    PubMed

    Oliver, David M; Bird, Clare; Burd, Emmy; Wyman, Michael

    2016-09-06

    The relationship between culturable counts (CFU) and quantitative PCR (qPCR) cell equivalent counts of Escherichia coli in dairy feces exposed to different environmental conditions and temperature extremes was investigated. Fecal samples were collected in summer and winter from dairy cowpats held under two treatments: field-exposed versus polytunnel-protected. A significant correlation in quantified E. coli was recorded between the qPCR and culture-based methods (r = 0.82). Evaluation of the persistence profiles of E. coli over time revealed no significant difference in the E. coli numbers determined as either CFU or gene copies during the summer for the field-exposed cowpats, whereas significantly higher counts were observed by qPCR for the polytunnel-protected cowpats, which were exposed to higher ambient temperatures. In winter, the qPCR returned significantly higher counts of E. coli for the field-exposed cowpats, thus representing a reversal of the findings from the summer sampling campaign. Results from this study suggest that with increasing time post-defecation and with the onset of challenging environmental conditions, such as extremes in temperature, culture-based counts begin to underestimate the true resilience of viable E. coli populations in livestock feces. This is important not only in the long term as the Earth changes in response to climate-change drivers but also in the short term during spells of extremely cold or hot weather.

  16. A quantitative PCR method for assessing the presence of Pasteurella testudinis DNA in nasal lavage samples from the desert tortoise (Gopherus agassizii).

    PubMed

    duPre', S A; Tracy, C R; Sandmeier, F C; Hunter, K W

    2012-12-01

    Pasteurella testudinis has been associated with upper respiratory tract disease (URTD) in the threatened desert tortoise (Gopherus agassizii). Our goal was to develop a sensitive and specific qPCR method for detecting DNA from P. testudinis in nasal lavage fluid collected from desert tortoises in the field. Probes for 16S ribosomal RNA and RNA polymerase β-subunit (rpoB) genes were designed. A standard curve generated with DNA extracted from known numbers of bacterial cells determined by flow cytometry revealed a lower detection limit of 50 fg/ml (10 bacteria/ml). The nasal lavage fluid contained no interfering substances, and the qPCR method did not recognize normal flora DNA. The nasal lavage samples from 20 desert tortoises captured in Clark County, Nevada, USA in 2007 and housed at the Desert Tortoise Conservation Center, were all positive for P. testudinis DNA by qPCR. Another set of 19 lavage samples collected in 2010 from wild desert tortoises in the Mojave Desert were tested and 84% were positive for P. testudinis DNA. Fully validated, this qPCR method will provide a means of determining colonization rate. When used in conjunction with serological methods and clinical evaluations, both infection rate and disease rate can be determined for this potential URTD pathogen. This new assay provides an important tool for managing the threatened populations of the Mojave Desert tortoise. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Quantification of fungal abundance on cultural heritage using real time PCR targeting the β-actin gene

    PubMed Central

    Ettenauer, Jörg; Piñar, Guadalupe; Tafer, Hakim; Sterflinger, Katja

    2014-01-01

    The traditional methodology used for the identification of microbes colonizing our cultural heritage was the application of cultivation methods and/or microscopy. This approach has many advantages, as living microorganisms may be obtained for physiological investigations. In addition, these techniques allow the quantitative and qualitative assessment of the investigated environment. Quantitative analyses are done by plate count and the determination of abundance by the colony forming unit (CFU). Nevertheless, these techniques have many drawbacks that lead to an underestimation of the cell numbers and do not provide a comprehensive overview of the composition of the inhabiting microbiota. In the last decades, several molecular techniques have been developed enabling many advantages over the cultivation approach. Mainly PCR-based, fingerprinting techniques allow a qualitative detection and identification of the microbiota. In this study, we developed a real time PCR method as a simple, rapid and reliable tool to detect and quantify fungal abundance using the β-actin gene, which is known to appear as a single-copy gene in fungi. To this end, five different indoor thermal insulation materials applied for historical buildings that were previously tested for their bio-susceptibility against various fungi were subjected to qPCR analyses. The obtained results were compared with those obtained from a previous study investigating the bio-susceptibility of the insulation materials using classical cultivation experiments. Both results correlated well, revealing that Perlite plaster was the most suitable insulation material, showing the lowest fungal CFU and qPCR values. In contrast, insulations made of wood showed to be not recommendable from the microbiological point of view. In addition, the potential of qPCR was tested in other materials of cultural heritage, as old parchments, showing to be a suitable method for measuring fungal abundance in these delicate materials. PMID:24904567

  18. gbpA as a Novel qPCR Target for the Species-Specific Detection of Vibrio cholerae O1, O139, Non-O1/Non-O139 in Environmental, Stool, and Historical Continuous Plankton Recorder Samples

    PubMed Central

    Vezzulli, Luigi; Stauder, Monica; Grande, Chiara; Pezzati, Elisabetta; Verheye, Hans M.; Owens, Nicholas J. P.; Pruzzo, Carla

    2015-01-01

    The Vibrio cholerae N-acetyl glucosamine-binding protein A (GbpA) is a chitin-binding protein involved in V. cholerae attachment to environmental chitin surfaces and human intestinal cells. We previously investigated the distribution and genetic variations of gbpA in a large collection of V. cholerae strains and found that the gene is consistently present and highly conserved in this species. Primers and probe were designed from the gbpA sequence of V. cholerae and a new Taq-based qPCR protocol was developed for diagnostic detection and quantification of the bacterium in environmental and stool samples. In addition, the positions of primers targeting the gbpA gene region were selected to obtain a short amplified fragment of 206 bp and the protocol was optimized for the analysis of formalin-fixed samples, such as historical Continuous Plankton Recorder (CPR) samples. Overall, the method is sensitive (50 gene copies), highly specific for V. cholerae and failed to amplify strains of the closely-related species Vibrio mimicus. The sensitivity of the assay applied to environmental and stool samples spiked with V. cholerae ATCC 39315 was comparable to that of pure cultures and was of 102 genomic units/l for drinking and seawater samples, 101 genomic units/g for sediment and 102 genomic units/g for bivalve and stool samples. The method also performs well when tested on artificially formalin-fixed and degraded genomic samples and was able to amplify V. cholerae DNA in historical CPR samples, the earliest of which date back to August 1966. The detection of V. cholerae in CPR samples collected in cholera endemic areas such as the Benguela Current Large Marine Ecosystem (BCLME) is of particular significance and represents a proof of concept for the possible use of the CPR technology and the developed qPCR assay in cholera studies. PMID:25915771

  19. gbpA as a Novel qPCR Target for the Species-Specific Detection of Vibrio cholerae O1, O139, Non-O1/Non-O139 in Environmental, Stool, and Historical Continuous Plankton Recorder Samples.

    PubMed

    Vezzulli, Luigi; Stauder, Monica; Grande, Chiara; Pezzati, Elisabetta; Verheye, Hans M; Owens, Nicholas J P; Pruzzo, Carla

    2015-01-01

    The Vibrio cholerae N-acetyl glucosamine-binding protein A (GbpA) is a chitin-binding protein involved in V. cholerae attachment to environmental chitin surfaces and human intestinal cells. We previously investigated the distribution and genetic variations of gbpA in a large collection of V. cholerae strains and found that the gene is consistently present and highly conserved in this species. Primers and probe were designed from the gbpA sequence of V. cholerae and a new Taq-based qPCR protocol was developed for diagnostic detection and quantification of the bacterium in environmental and stool samples. In addition, the positions of primers targeting the gbpA gene region were selected to obtain a short amplified fragment of 206 bp and the protocol was optimized for the analysis of formalin-fixed samples, such as historical Continuous Plankton Recorder (CPR) samples. Overall, the method is sensitive (50 gene copies), highly specific for V. cholerae and failed to amplify strains of the closely-related species Vibrio mimicus. The sensitivity of the assay applied to environmental and stool samples spiked with V. cholerae ATCC 39315 was comparable to that of pure cultures and was of 102 genomic units/l for drinking and seawater samples, 101 genomic units/g for sediment and 102 genomic units/g for bivalve and stool samples. The method also performs well when tested on artificially formalin-fixed and degraded genomic samples and was able to amplify V. cholerae DNA in historical CPR samples, the earliest of which date back to August 1966. The detection of V. cholerae in CPR samples collected in cholera endemic areas such as the Benguela Current Large Marine Ecosystem (BCLME) is of particular significance and represents a proof of concept for the possible use of the CPR technology and the developed qPCR assay in cholera studies.

  20. FOXC1 Regulates Expression of Prostaglandin Receptors Leading to an Attenuated Response to Latanoprost.

    PubMed

    Doucette, Lance P; Footz, Tim; Walter, Michael A

    2018-05-01

    This study examines the effect of FOXC1 on the prostaglandin pathway in order to explore FOXC1's role in the prostaglandin-resistant glaucoma phenotype commonly seen in Axenfeld-Rieger syndrome. Binding and transcriptional activity of FOXC1 to the gene coding for the EP3 prostaglandin receptor (PTGER3) were evaluated through ChIP-qPCR and luciferase-based assays. Immortalized trabecular meshwork cells (TM1) and HeLa cells had FOXC1 mRNA reduced via siRNA interference. qPCR and Western blot experiments were conducted to examine the changes in prostaglandin receptor expression brought about by lowered FOXC1. TM1 cells were then treated with 10 μM latanoprost acid and/or an siRNA for FOXC1. The expression of fibronectin and matrix metalloproteinase 9 were evaluated via qPCR in each treatment condition. ChIP-qPCR and luciferase experiments confirmed that FOXC1 binds to and activates transcription of the EP3 gene prostaglandin receptor. qPCR and Western experiments in HeLa and TM1 cells showed that FOXC1 siRNA knockdown results in significantly lowered EP3 levels (protein and RNA). In addition, RNA levels of the other prostaglandin receptor genes EP1 (PTGER1), EP2 (PTGER2), EP4 (PTGER4), and FP (PTGFR) were altered when FOXC1 was knocked down in TM1 and HeLa cells. Analysis of fibronectin expression in TM1 cells after treatment with 10 μM latanoprost acid showed a statistically significant increase in expression; this increase was abrogated by cotreatment with a siRNA for FOXC1. We show the abrogation of latanoprost signalling when FOXC1 is knocked down via siRNA in a trabecular meshwork cell line. We propose that the lower levels of active FOXC1 in Axenfeld-Rieger syndrome patients with glaucoma account for the lack of response to prostaglandin-based medications.

  1. Detection of Mycoplasma pneumoniae by real-time PCR.

    PubMed

    Winchell, Jonas M; Mitchell, Stephanie L

    2013-01-01

    Mycoplasma pneumoniae is a significant cause of respiratory disease, accounting for approximately 20% of cases of community-acquired pneumonia. Although several diagnostic methods exist to detect M. pneumoniae in respiratory specimens, real-time PCR has emerged as a significant improvement for the rapid diagnosis of this pathogen. The method described herein details the procedure for the detection of M. pneumoniae by real-time PCR (qPCR). The qPCR assay described can be performed with three targets specific for M. pneumoniae (Mp181, Mp3, and Mp7) and one marker for the detection of the RNaseP gene found in human nucleic acid as an internal control reaction. Recent studies have demonstrated the ability of this procedure to reliably identify this agent and facilitate the timely recognition of an outbreak.

  2. Rickettsia spp. among wild mammals and their respective ectoparasites in Pantanal wetland, Brazil.

    PubMed

    de Sousa, Keyla Carstens Marques; Herrera, Heitor Miraglia; Rocha, Fabiana Lopes; Costa, Francisco Borges; Martins, Thiago Fernandes; Labruna, Marcelo Bahia; Machado, Rosangela Zacarias; André, Marcos Rogério

    2018-01-01

    The genus Rickettsia comprises obligatory intracellular bacteria, well known to cause zoonotic diseases around the world. The present work aimed to investigate the occurrence of Rickettsia spp. in wild animals, domestic dogs and their respective ectoparasites in southern Pantanal region, central-western Brazil, by molecular and serological techniques. Between August 2013 and March 2015, serum, whole blood and/or spleen samples were collected from 31 coatis, 78 crab-eating foxes, seven ocelots, 42 dogs, 110 wild rodents, and 30 marsupials. Serum samples from canids, felids, rodents and marsupials were individually tested by indirect fluorescent antibody test (IFAT) in order to detect IgG antibodies to Rickettsia rickettsii, Rickettsia parkeri and Rickettsia amblyommatis. DNA samples from mammals and ectoparasites were submitted to a multiplex qPCR assay in order to detect and quantify spotted fever group (SFG) and typhus group (TG) rickettsiae and Orientia tsutsugamushi. Positive samples in qPCR assays were submitted to conventional PCR assays targeting gltA, ompA, ompB and htrA genes, followed by sequencing and phylogenetic analyses. The ticks collected (1582) from animals belonged to the species Amblyomma sculptum, Amblyomma parvum, Amblyomma ovale, Amblyomma tigrinum, Rhipicephalus (Boophilus) microplus, Rhipicephalus sanguineus sensu lato and Amblyomma auricularium. Overall, 27 (64.2%) dogs, 59 (75.6%) crab-eating foxes and six (85.7%) ocelots were seroreactive (titer≥64) to at least one Rickettsia species. For 17 (40.4%) dogs, 33 (42.3%) crab-eating foxes, and two (33.3%) ocelots, homologous reactions to R. amblyommatis or a closely related organism were suggested. One hundred and sixteen (23.5%) tick samples and one (1.2%) crab-eating fox blood sample showed positivity in qPCR assays for SFG Rickettsia spp. Among SFG Rickettsia-positive ticks samples, 93 (80.2%) belonged to A. parvum, 14 (12%) belonged to A. sculptum species, three (2.5%) belonged to A. auricularim, and six (5.2%) were Amblyomma larval pools. Thirty samples out of 117 qPCR positive samples for SFG Rickettsia spp. also showed positivity in cPCR assays based on gltA, htrA and/or ompB genes. The Blast analyses showed 100% identity with 'Candidatus Rickettsia andeanae' in all 30 sequences obtained from gltA, htrA and/or ompB genes. The concatenated phylogenetic analysis based on gltA and 17-kDa htrA genes grouped the Rickettsia sequences obtained from tick samples in the same clade of 'Candidatus Rickettsia andeanae'. The present study revealed that wild and domestic animals in southern Pantanal region, Brazil, are exposed to SFG rickettsiae agents. Future studies regarding the pathogenicity of these agents are necessary in order to prevent human cases of rickettsiosis in Brazilian southern Pantanal. Copyright © 2017 Elsevier GmbH. All rights reserved.

  3. Duplex quantitative real-time PCR assay for the detection and discrimination of the eggs of Toxocara canis and Toxocara cati (Nematoda, Ascaridoidea) in soil and fecal samples

    PubMed Central

    2012-01-01

    Background Toxocarosis is a zoonotic disease caused by Toxocara canis (T. canis) and/or Toxocara cati (T. cati), two worldwide distributed roundworms which are parasites of canids and felids, respectively. Infections of humans occur through ingestion of embryonated eggs of T. canis or T. cati, when playing with soils contaminated with dogs or cats feces. Accordingly, the assessment of potential contamination of these areas with these roundworms eggs is paramount. Methods A duplex quantitative real-time PCR (2qPCR) targeting the ribosomal RNA gene internal transcribed spacer (ITS2) has been developed and used for rapid and specific identification of T. canis and T. cati eggs in fecal and soil samples. The assay was set up on DNA samples extracted from 53 adult worms including T. canis, T. cati, T. leonina, Ascaris suum (A. suum) and Parascaris equorum (P. equorum). The assay was used to assess the presence of T. cati eggs in several samples, including 12 clean soil samples spiked with eggs of either T. cati or A. suum, 10 actual soil samples randomly collected from playgrounds in Brussels, and fecal samples from cats, dogs, and other animals. 2qPCR results on dogs and cats fecal samples were compared with results from microscopic examination. Results 2qPCR assay allowed specific detection of T. canis and T. cati, whether adult worms, eggs spiked in soil or fecal samples. The 2qPCR limit of detection (LOD) in spiked soil samples was 2 eggs per g of soil for a turnaround time of 3 hours. A perfect concordance was observed between 2qPCR assay and microscopic examination on dogs and cats feces. Conclusion The newly developed 2qPCR assay can be useful for high throughput prospective or retrospective detection of T.canis and/or T. cati eggs in fecal samples as well as in soil samples from playgrounds, parks and sandpits. PMID:23216873

  4. Designing primers and evaluation of the efficiency of propidium monoazide - Quantitative polymerase chain reaction for counting the viable cells of Lactobacillus gasseri and Lactobacillus salivarius.

    PubMed

    Lai, Chieh-Hsien; Wu, Sih-Rong; Pang, Jen-Chieh; Ramireddy, Latha; Chiang, Yu-Cheng; Lin, Chien-Ku; Tsen, Hau-Yang

    2017-07-01

    The purpose of this study is to evaluate the efficiency of using propidium monoazide (PMA) real-time quantitative polymerase chain reaction (qPCR) to count the viable cells of Lactobacillus gasseri and Lactobacillus salivarius in probiotic products. Based on the internal transcription spacer and 23S rRNA genes, two primer sets specific for these two Lactobacillus species were designed. For a probiotic product, the total deMan Rogosa Sharpe plate count was 8.65±0.69 log CFU/g, while for qPCR, the cell counts of L. gasseri and L. salivarius were 8.39±0.14 log CFU/g and 8.57±0.24 log CFU/g, respectively. Under the same conditions, for its heat-killed product, qPCR counts for L. gasseri and L. salivarius were 6.70±0.16 log cells/g and 7.67±0.20 log cells/g, while PMA-qPCR counts were 5.33±0.18 log cells/g and 5.05±0.23 log cells/g, respectively. For cell dilutions with a viable cell count of 8.5 log CFU/mL for L. gasseri and L. salivarius, after heat killing, the PMA-qPCR count for both Lactobacillus species was near 5.5 log cells/mL. When the PMA-qPCR counts of these cell dilutions were compared before and after heat killing, although some DNA might be lost during the heat killing, significant qPCR signals from dead cells, i.e., about 4-5 log cells/mL, could not be reduced by PMA treatment. Increasing PMA concentrations from 100 μM to 200 μM or light exposure time from 5 minutes to 15 minutes had no or, if any, only minor effect on the reduction of qPCR signals from their dead cells. Thus, to differentiate viable lactic acid bacterial cells from dead cells using the PMA-qPCR method, the efficiency of PMA to reduce the qPCR signals from dead cells should be notable. Copyright © 2016. Published by Elsevier B.V.

  5. Transcriptome analysis of Gossypium hirsutum flower buds infested by cotton boll weevil (Anthonomus grandis) larvae.

    PubMed

    Artico, Sinara; Ribeiro-Alves, Marcelo; Oliveira-Neto, Osmundo Brilhante; de Macedo, Leonardo Lima Pepino; Silveira, Sylvia; Grossi-de-Sa, Maria Fátima; Martinelli, Adriana Pinheiro; Alves-Ferreira, Marcio

    2014-10-04

    Cotton is a major fibre crop grown worldwide that suffers extensive damage from chewing insects, including the cotton boll weevil larvae (Anthonomus grandis). Transcriptome analysis was performed to understand the molecular interactions between Gossypium hirsutum L. and cotton boll weevil larvae. The Illumina HiSeq 2000 platform was used to sequence the transcriptome of cotton flower buds infested with boll weevil larvae. The analysis generated a total of 327,489,418 sequence reads that were aligned to the G. hirsutum reference transcriptome. The total number of expressed genes was over 21,697 per sample with an average length of 1,063 bp. The DEGseq analysis identified 443 differentially expressed genes (DEG) in cotton flower buds infected with boll weevil larvae. Among them, 402 (90.7%) were up-regulated, 41 (9.3%) were down-regulated and 432 (97.5%) were identified as orthologues of A. thaliana genes using Blastx. Mapman analysis of DEG indicated that many genes were involved in the biotic stress response spanning a range of functions, from a gene encoding a receptor-like kinase to genes involved in triggering defensive responses such as MAPK, transcription factors (WRKY and ERF) and signalling by ethylene (ET) and jasmonic acid (JA) hormones. Furthermore, the spatial expression pattern of 32 of the genes responsive to boll weevil larvae feeding was determined by "in situ" qPCR analysis from RNA isolated from two flower structures, the stamen and the carpel, by laser microdissection (LMD). A large number of cotton transcripts were significantly altered upon infestation by larvae. Among the changes in gene expression, we highlighted the transcription of receptors/sensors that recognise chitin or insect oral secretions; the altered regulation of transcripts encoding enzymes related to kinase cascades, transcription factors, Ca2+ influxes, and reactive oxygen species; and the modulation of transcripts encoding enzymes from phytohormone signalling pathways. These data will aid in the selection of target genes to genetically engineer cotton to control the cotton boll weevil.

  6. Selection of Suitable Internal Control Genes for Accurate Normalization of Real-Time Quantitative PCR Data of Buffalo (Bubalus bubalis) Blastocysts Produced by SCNT and IVF.

    PubMed

    Sood, Tanushri Jerath; Lagah, Swati Viviyan; Sharma, Ankita; Singla, Suresh Kumar; Mukesh, Manishi; Chauhan, Manmohan Singh; Manik, Radheysham; Palta, Prabhat

    2017-10-01

    We evaluated the suitability of 10 candidate internal control genes (ICGs), belonging to different functional classes, namely ACTB, EEF1A1, GAPDH, HPRT1, HMBS, RPS15, RPS18, RPS23, SDHA, and UBC for normalizing the real-time quantitative polymerase chain reaction (qPCR) data of blastocyst-stage buffalo embryos produced by hand-made cloning and in vitro fertilization (IVF). Total RNA was isolated from three pools, each of cloned and IVF blastocysts (n = 50/pool) for cDNA synthesis. Two different statistical algorithms geNorm and NormFinder were used for evaluating the stability of these genes. Based on gene stability measure (M value) and pairwise variation (V value), calculated by geNorm analysis, the most stable ICGs were RPS15, HPRT1, and ACTB for cloned blastocysts, HMBS, UBC, and HPRT1 for IVF blastocysts and RPS15, GAPDH, and HPRT1 for both the embryo types analyzed together. RPS18 was the least stable gene for both cloned and IVF blastocysts. Following NormFinder analysis, the order of stability was RPS15 = HPRT1>GAPDH for cloned blastocysts, HMBS = UBC>RPS23 for IVF blastocysts, and HPRT1>GAPDH>RPS15 for cloned and IVF blastocysts together. These results suggest that despite overlapping of the three most stable ICGs between cloned and IVF blastocysts, the panel of ICGs selected for normalization of qPCR data of cloned and IVF blastocyst-stage embryos should be different.

  7. The cytomegalovirus promoter-driven short hairpin RNA constructs mediate effective RNA interference in zebrafish in vivo.

    PubMed

    Su, Jianguo; Zhu, Zuoyan; Wang, Yaping; Xiong, Feng; Zou, Jun

    2008-01-01

    The ability to utilize the RNA interference (RNAi) machinery for silencing target-gene expression has created a lot of excitement in the research community. In the present study, we used a cytomegalovirus (CMV) promoter-driven DNA template approach to induce short hairpin RNA (shRNA) triggered RNAi to block exogenous Enhanced Green Fluorescent Protein (EGFP) and endogenous No Tail (NTL) gene expressions. We constructed three plasmids, pCMV-EGFP-CMV-shGFP-SV40, pCMV-EGFP-CMV-shNTL-SV40, and pCMV-EGFP-CMV-shScrambled-SV40, each containing a CMV promoter driving an EGFP reporter cDNA and DNA coding for one shRNA under the control of another CMV promoter. The three shRNA-generating plasmids and pCMV-EGFP control plasmid were introduced into zebrafish embryos by microinjection. Samples were collected at 48 h after injection. Results were evaluated by phenotype observation and real-time fluorescent quantitative reverse-transcription polymerase chain reaction (Q-PCR). The shGFP-generating plasmid significantly inhibited the EGFP expression viewed under fluorescent microscope and reduced by 70.05 +/- 1.26% of exogenous EGFP gene mRNA levels compared with controls by Q-PCR. The shRNA targeting endogenous NTL gene resulted in obvious NTL phenotype of 30 +/- 4% and decreased the level of their corresponding mRNAs up to 54.52 +/- 2.05% compared with nontargeting control shRNA. These data proved the feasibility of the CMV promoter-driven shRNA expression technique to be used to inhibit exogenous and endogenous gene expressions in zebrafish in vivo.

  8. Effects of Selected Egyptian Honeys on the Cellular Ultrastructure and the Gene Expression Profile of Escherichia coli

    PubMed Central

    Elkhatib, Walid F.

    2016-01-01

    The purpose of this study was to: (i) evaluate the antibacterial activities of three Egyptian honeys collected from different floral sources (namely, citrus, clover, and marjoram) against Escherichia coli; (ii) investigate the effects of these honeys on bacterial ultrastructure; and (iii) assess the anti-virulence potential of these honeys, by examining their impacts on the expression of eight selected genes (involved in biofilm formation, quorum sensing, and stress survival) in the test organism. The minimum inhibitory concentration (MIC) of the honey samples against E. coli ATCC 8739 were assessed by the broth microdilution assay in the presence and absence of catalase enzyme. Impacts of the honeys on the cellular ultrastructure and the expression profiles of the selected genes of E. coli were examined using transmission electron microscopy (TEM) and quantitative real-time polymerase chain reaction (qPCR) analysis, respectively. The susceptibility tests showed promising antibacterial activities of all the tested honeys against E. coli. This was supported by the TEM observations, which revealed “ghost” cells lacking DNA, in addition to cells with increased vacuoles, and/or with irregular shrunken cytoplasm. Among the tested honeys, marjoram exhibited the highest total antibacterial activity and the highest levels of peroxide-dependent activity. The qPCR analysis showed that all honey-treated cells share a similar overall pattern of gene expression, with a trend toward reduced expression of the virulence genes of interest. Our results indicate that some varieties of the Egyptian honey have the potential to be effective inhibitor and virulence modulator of E. coli via multiple molecular targets. PMID:26954570

  9. Effects of Selected Egyptian Honeys on the Cellular Ultrastructure and the Gene Expression Profile of Escherichia coli.

    PubMed

    Wasfi, Reham; Elkhatib, Walid F; Khairalla, Ahmed S

    2016-01-01

    The purpose of this study was to: (i) evaluate the antibacterial activities of three Egyptian honeys collected from different floral sources (namely, citrus, clover, and marjoram) against Escherichia coli; (ii) investigate the effects of these honeys on bacterial ultrastructure; and (iii) assess the anti-virulence potential of these honeys, by examining their impacts on the expression of eight selected genes (involved in biofilm formation, quorum sensing, and stress survival) in the test organism. The minimum inhibitory concentration (MIC) of the honey samples against E. coli ATCC 8739 were assessed by the broth microdilution assay in the presence and absence of catalase enzyme. Impacts of the honeys on the cellular ultrastructure and the expression profiles of the selected genes of E. coli were examined using transmission electron microscopy (TEM) and quantitative real-time polymerase chain reaction (qPCR) analysis, respectively. The susceptibility tests showed promising antibacterial activities of all the tested honeys against E. coli. This was supported by the TEM observations, which revealed "ghost" cells lacking DNA, in addition to cells with increased vacuoles, and/or with irregular shrunken cytoplasm. Among the tested honeys, marjoram exhibited the highest total antibacterial activity and the highest levels of peroxide-dependent activity. The qPCR analysis showed that all honey-treated cells share a similar overall pattern of gene expression, with a trend toward reduced expression of the virulence genes of interest. Our results indicate that some varieties of the Egyptian honey have the potential to be effective inhibitor and virulence modulator of E. coli via multiple molecular targets.

  10. Genome-wide patterns of copy number variation in the diversified chicken genomes using next-generation sequencing.

    PubMed

    Yi, Guoqiang; Qu, Lujiang; Liu, Jianfeng; Yan, Yiyuan; Xu, Guiyun; Yang, Ning

    2014-11-07

    Copy number variation (CNV) is important and widespread in the genome, and is a major cause of disease and phenotypic diversity. Herein, we performed a genome-wide CNV analysis in 12 diversified chicken genomes based on whole genome sequencing. A total of 8,840 CNV regions (CNVRs) covering 98.2 Mb and representing 9.4% of the chicken genome were identified, ranging in size from 1.1 to 268.8 kb with an average of 11.1 kb. Sequencing-based predictions were confirmed at a high validation rate by two independent approaches, including array comparative genomic hybridization (aCGH) and quantitative PCR (qPCR). The Pearson's correlation coefficients between sequencing and aCGH results ranged from 0.435 to 0.755, and qPCR experiments revealed a positive validation rate of 91.71% and a false negative rate of 22.43%. In total, 2,214 (25.0%) predicted CNVRs span 2,216 (36.4%) RefSeq genes associated with specific biological functions. Besides two previously reported copy number variable genes EDN3 and PRLR, we also found some promising genes with potential in phenotypic variation. Two genes, FZD6 and LIMS1, related to disease susceptibility/resistance are covered by CNVRs. The highly duplicated SOCS2 may lead to higher bone mineral density. Entire or partial duplication of some genes like POPDC3 may have great economic importance in poultry breeding. Our results based on extensive genetic diversity provide a more refined chicken CNV map and genome-wide gene copy number estimates, and warrant future CNV association studies for important traits in chickens.

  11. Experimental assessment of diazotroph responses to elevated seawater pCO2 in the North Pacific Subtropical Gyre

    NASA Astrophysics Data System (ADS)

    Böttjer, Daniela; Karl, David M.; Letelier, Ricardo M.; Viviani, Donn A.; Church, Matthew J.

    2014-06-01

    We examined short-term (24-72 h) responses of naturally occurring marine N2 fixing microorganisms (termed diazotrophs) to abrupt increases in the partial pressure of carbon dioxide (pCO2) in seawater during nine incubation experiments conducted between May 2010 and September 2012 at Station ALOHA (A Long-term Oligotrophic Habitat Assessment) (22°45'N, 158°W) in the North Pacific Subtropical Gyre (NPSG). Rates of N2 fixation, nitrogenase (nifH) gene abundances and transcripts of six major groups of cyanobacterial diazotrophs (including both unicellular and filamentous phylotypes), and rates of primary productivity (as measured by 14C-bicarbonate assimilation into plankton biomass) were determined under contemporary (~390 ppm) and elevated pCO2 conditions (~1100 ppm). Quantitative polymerase chain reaction (QPCR) amplification of planktonic nifH genes revealed that unicellular cyanobacteria phylotypes dominated gene abundances during these experiments. In the majority of experiments (seven out of nine), elevated pCO2 did not significantly influence rates of dinitrogen (N2) fixation or primary productivity (two-way analysis of variance (ANOVA), P > 0.05). During two experiments, rates of N2 fixation and primary productivity were significantly lower (by 79 to 82% and 52 to 72%, respectively) in the elevated pCO2 treatments relative to the ambient controls (two-way ANOVA, P < 0.05). QPCR amplification of nifH genes and gene transcripts revealed that diazotroph abundances and nifH gene expression were largely unchanged by the perturbation of the seawater pCO2. Our results suggest that naturally occurring N2 fixing plankton assemblages in the NPSG are relatively resilient to large, short-term increases in pCO2.

  12. Quantitative polymerase chain reaction (PCR) assays for a bacterial thiaminase I gene and the thiaminase-producing bacterium Paenibacillus thiaminolyticus.

    USGS Publications Warehouse

    Richter, C.A.; Wright-Osment, Maureen K.; Zajicek, J.L.; Honeyfield, D.C.; Tillitt, D.E.

    2009-01-01

    The thiaminase I enzyme produced by the gram-positive bacterium Paenibacillus thiaminolyticus isolated from the viscera of Lake Michigan alewives Alosa pseudoharengus is currently the only defined source of the thiaminase activity linked to thiamine (vitamin B1) deficiency in early mortality syndrome (EMS) in the larvae of Great Lakes salmonines. Diets of alewife or isolated strains of P. thiaminolyticus mixed in a semipurified diet and fed to lake trout Salvelinus namaycush have been shown to produce EMS in fry. We utilized quantitative polymerase chain reaction (Q-PCR) to aid in studies of the sources of P. thiaminolyticus and thiaminase I. Quantitative PCR assays were established to detect the thiaminase I gene of P. thiaminolyticus, the 16S rRNA gene from most species of bacteria, and the 16S rRNA gene specifically from P. thiaminolyticus and a few closely related taxa. The Q-PCR assays are linear over at least six orders of magnitude and can detect the thiaminase I gene of P. thiaminolyticus from as few as 1,000 P. thiaminolyticus cells/g of sample or the Paenibacillus 16S rRNA gene from as few as 100 P. thiaminolyticus cells/g of sample. The initial results from alewife viscera samples with high thiaminase activity yielded unexpectedly low densities of P. thiaminolyticus cells; Paenibacillus thiaminolyticus was detectable in 2 of 6 alewife viscera tested at densities on the order of 100 cells/g out of 100,000,000 total bacterial cells/g. The low numbers of P. thiaminolyticus detected suggest that alewives contain additional non-P. thiaminolyticus sources of thiaminase activity.

  13. Effects of oral eicosapentaenoic acid versus docosahexaenoic acid on human peripheral blood mononuclear cell gene expression.

    PubMed

    Tsunoda, Fumiyoshi; Lamon-Fava, Stefania; Asztalos, Bela F; Iyer, Lakshmanan K; Richardson, Kris; Schaefer, Ernst J

    2015-08-01

    Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have beneficial effects on inflammation and cardiovascular disease (CVD). Our aim was to assess the effect of a six-week supplementation with either olive oil, EPA, or DHA on gene expression in peripheral blood mononuclear cells (PBMC). Subjects were sampled at baseline and six weeks after receiving either: olive oil 6.0 g/day (n = 16), EPA 1.8 g/day (n = 16), or DHA 1.8 g/day (n = 18). PBMC were subjected to gene expression analysis by microarray with key findings confirmed by quantitative real-time polymerase chain reaction (Q-PCR). Plasma phospholipid EPA increased 3 fold in the EPA group, and DHA increased 63% in the DHA group (both p < 0.01), while no effects were observed in the olive oil group. Microarray analysis indicated that EPA but not DHA or olive oil significantly affected the gene expression in the following pathways: 1) interferon signaling, 2) receptor recognition of bacteria and viruses, 3) G protein signaling, glycolysis and glycolytic shunting, 4) S-adenosyl-l-methionine biosynthesis, and 5) cAMP-mediated signaling including cAMP responsive element protein 1 (CREB1), as well as many other individual genes including hypoxia inducible factor 1, α subunit (HIF1A). The findings for CREB1 and HIF1A were confirmed by Q-PCR analysis. Our data indicate that EPA supplementation was associated with significant effects on gene expression involving the interferon pathway as well as down-regulation of CREB1 and HIF1A, which may relate to its beneficial effect on CVD risk reduction. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Quantitative phenotyping of X-disease resistance in chokecherry using real-time PCR.

    PubMed

    Huang, Danqiong; Walla, James A; Dai, Wenhao

    2014-03-01

    A quantitative real-time SYBR Green PCR (qPCR) assay has been developed to detect and quantify X-disease phytoplasmas in chokecherry. An X-disease phytoplasma-specific and high sensitivity primer pair was designed based on the 16S rRNA gene sequence of X-disease phytoplasmas. This primer pair was specific to the 16SrIII group (X-disease) phytoplasmas. The qPCR method can quantify phytoplasmas from a DNA mix (a mix of both chokecherry and X-disease phytoplasma DNA) at as low as 0.001 ng, 10-fold lower than conventional PCR using the same primer pair. A significant correlation between the copy number of phytoplasmas and visual phenotypic rating scores of X-disease resistance in chokecherry plants was observed. Disease resistant chokecherries had a significantly lower titer of X-disease phytoplasmas than susceptible plants. This suggests that the qPCR assay provides a more objective tool to phenotype phytoplasma disease severity, particularly for early evaluation of host resistance; therefore, this method will facilitate quantitative phenotyping of disease resistance and has great potential in enhancing plant breeding. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Identification of Pseudallescheria and Scedosporium species by three molecular methods.

    PubMed

    Lu, Qiaoyun; Gerrits van den Ende, A H G; Bakkers, J M J E; Sun, Jiufeng; Lackner, M; Najafzadeh, M J; Melchers, W J G; Li, Ruoyu; de Hoog, G S

    2011-03-01

    The major clinically relevant species in Scedosporium (teleomorph Pseudallescheria) are Pseudallescheria boydii, Scedosporium aurantiacum, Scedosporium apiospermum, and Scedosporium prolificans, while Pseudallescheria minutispora, Petriellopsis desertorum, and Scedosporium dehoogii are exceptional agents of disease. Three molecular methods targeting the partial β-tubulin gene were developed and evaluated to identify six closely related species of the S. apiospermum complex using quantitative real-time PCR (qPCR), PCR-based reverse line blot (PCR-RLB), and loop-mediated isothermal amplification (LAMP). qPCR was not specific enough for the identification of all species but had the highest sensitivity. The PCR-RLB assay was efficient for the identification of five species. LAMP distinguished all six species unambiguously. The analytical sensitivities of qPCR, PCR-RLB, and LAMP combined with MagNAPure, CTAB (cetyltrimethylammonium bromide), and FTA filter (Whatman) extraction were 50, 5 × 10(3), and 5 × 10(2) cells/μl, respectively. When LAMP was combined with a simplified DNA extraction method using an FTA filter, identification to the species level was achieved within 2 h, including DNA extraction. The FTA-LAMP assay is therefore recommended as a cost-effective, simple, and rapid method for the identification of Scedosporium species.

  16. miPrimer: an empirical-based qPCR primer design method for small noncoding microRNA

    PubMed Central

    Kang, Shih-Ting; Hsieh, Yi-Shan; Feng, Chi-Ting; Chen, Yu-Ting; Yang, Pok Eric; Chen, Wei-Ming

    2018-01-01

    MicroRNAs (miRNAs) are 18–25 nucleotides (nt) of highly conserved, noncoding RNAs involved in gene regulation. Because of miRNAs’ short length, the design of miRNA primers for PCR amplification remains a significant challenge. Adding to the challenge are miRNAs similar in sequence and miRNA family members that often only differ in sequences by 1 nt. Here, we describe a novel empirical-based method, miPrimer, which greatly reduces primer dimerization and increases primer specificity by factoring various intrinsic primer properties and employing four primer design strategies. The resulting primer pairs displayed an acceptable qPCR efficiency of between 90% and 110%. When tested on miRNA families, miPrimer-designed primers are capable of discriminating among members of miRNA families, as validated by qPCR assays using Quark Biosciences’ platform. Of the 120 miRNA primer pairs tested, 95.6% and 93.3% were successful in amplifying specifically non-family and family miRNA members, respectively, after only one design trial. In summary, miPrimer provides a cost-effective and valuable tool for designing miRNA primers. PMID:29208706

  17. Quantification of Agrobacterium tumefaciens C58 attachment to Arabidopsis thaliana roots.

    PubMed

    Petrovicheva, Anna; Joyner, Jessica; Muth, Theodore R

    2017-10-02

    Agrobacterium tumefaciens is the causal agent of crown gall disease and is a vector for DNA transfer in transgenic plants. The transformation process by A. tumefaciens has been widely studied, but the attachment stage has not been well characterized. Most measurements of attachment have used microscopy and colony counting, both of which are labor and time intensive. To reduce the time and effort required to analyze bacteria attaching to plant tissues, we developed a quantitative real-time PCR (qPCR) assay to quantify attached A. tumefaciens using the chvE gene as marker for the presence of the bacteria. The qPCR detection threshold of A. tumefaciens from pure culture was 104 cell equivalents/ml. The A. tumefaciens minimum threshold concentration from root-bound populations was determined to be 105 cell equivalents/ml inoculum to detect attachment above background. The qPCR assay can be used for measuring A. tumefaciens attachment in applications such as testing the effects of mutations on bacterial adhesion molecules or biofilm formation, comparing attachment across various plant species and ecotypes, and detecting mutations in putative attachment receptors expressed in plant roots. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Comparative evaluation of two Rickettsia typhi-specific quantitative real-time PCRs for research and diagnostic purposes.

    PubMed

    Papp, Stefanie; Rauch, Jessica; Kuehl, Svenja; Richardt, Ulricke; Keller, Christian; Osterloh, Anke

    2017-02-01

    Rickettsioses are caused by intracellular bacteria of the family of Rickettsiaceae. Rickettsia (R.) typhi is the causative agent of endemic typhus. The disease occurs worldwide and is one of the most prevalent rickettsioses. Rickettsial diseases, however, are generally underdiagnosed which is mainly due to the lack of sensitive and specific methods. In addition, methods for quantitative detection of the bacteria for research purposes are rare. We established two qPCRs for the detection of R. typhi by amplification of the outer membrane protein B (ompB) and parvulin-type PPIase (prsA) genes. Both qPCRs are specific and exclusively recognize R. typhi but no other rickettsiae including the closest relative, R. prowazekii. The prsA-based qPCR revealed to be much more sensitive than the amplification of ompB and provided highly reproducible results in the detection of R. typhi in organs of infected mice. Furthermore, as a nested PCR the prsA qPCR was applicable for the detection of R. typhi in human blood samples. Collectively, the prsA-based qPCR represents a reliable method for the quantitative detection of R. typhi for research purposes and is a promising candidate for differential diagnosis.

  19. Identification of Pseudallescheria and Scedosporium Species by Three Molecular Methods▿

    PubMed Central

    Lu, Qiaoyun; Gerrits van den Ende, A. H. G.; Bakkers, J. M. J. E.; Sun, Jiufeng; Lackner, M.; Najafzadeh, M. J.; Melchers, W. J. G.; Li, Ruoyu; de Hoog, G. S.

    2011-01-01

    The major clinically relevant species in Scedosporium (teleomorph Pseudallescheria) are Pseudallescheria boydii, Scedosporium aurantiacum, Scedosporium apiospermum, and Scedosporium prolificans, while Pseudallescheria minutispora, Petriellopsis desertorum, and Scedosporium dehoogii are exceptional agents of disease. Three molecular methods targeting the partial β-tubulin gene were developed and evaluated to identify six closely related species of the S. apiospermum complex using quantitative real-time PCR (qPCR), PCR-based reverse line blot (PCR-RLB), and loop-mediated isothermal amplification (LAMP). qPCR was not specific enough for the identification of all species but had the highest sensitivity. The PCR-RLB assay was efficient for the identification of five species. LAMP distinguished all six species unambiguously. The analytical sensitivities of qPCR, PCR-RLB, and LAMP combined with MagNAPure, CTAB (cetyltrimethylammonium bromide), and FTA filter (Whatman) extraction were 50, 5 × 103, and 5 × 102 cells/μl, respectively. When LAMP was combined with a simplified DNA extraction method using an FTA filter, identification to the species level was achieved within 2 h, including DNA extraction. The FTA-LAMP assay is therefore recommended as a cost-effective, simple, and rapid method for the identification of Scedosporium species. PMID:21177887

  20. Performance of a new gelled nested PCR test for the diagnosis of imported malaria: comparison with microscopy, rapid diagnostic test, and real-time PCR.

    PubMed

    Iglesias, Nuria; Subirats, Mercedes; Trevisi, Patricia; Ramírez-Olivencia, Germán; Castán, Pablo; Puente, Sabino; Toro, Carlos

    2014-07-01

    Microscopy and rapid diagnostic tests (RDTs) are the techniques commonly used for malaria diagnosis but they are usually insensitive at very low levels of parasitemia. Nested PCR is commonly used as a reference technique in the diagnosis of malaria due to its high sensitivity and specificity. However, it is a cumbersome assay only available in reference centers. We evaluated a new nested PCR-based assay, BIOMALAR kit (Biotools B&M Labs, Madrid, Spain) which employs ready-to-use gelled reagents and allows the identification of the main four species of Plasmodium. Blood samples were obtained from patients with clinical suspicion of malaria. A total of 94 subjects were studied. Fifty-two (55.3%) of them were malaria-infected subjects corresponding to 48 cases of Plasmodium falciparum, 1 Plasmodium malariae, 2 Plasmodium vivax, and 1 Plasmodium ovale. The performance of the BIOMALAR test was compared with microscopy, rapid diagnostic test (RDT) (BinaxNOW® Malaria) and real-time quantitative PCR (qPCR). The BIOMALAR test showed a sensitivity of 98.1% (95% confidence interval [CI], 89.7-100), superior to microscopy (82.7% [95% CI, 69.7-91.8]) and RDT (94.2% [95% CI, 84.1-98.8]) and similar to qPCR (100% [95% CI, 93.2-100]). In terms of specificity, the BIOMALAR assay showed the same value as microscopy and qPCR (100% [95% CI, 93.2-100]). Nine subjects were submicroscopic carriers of malaria. The BIOMALAR test identified almost all of them (8/9) in comparison with RDT (6/9) and microscopy (0/9). In conclusion, the BIOMALAR is a PCR-based assay easy to use with an excellent performance and especially useful for diagnosis submicroscopic malaria.

  1. Effect of biofilm formation by clinical isolates of Helicobacter pylori on the efflux-mediated resistance to commonly used antibiotics.

    PubMed

    Attaran, Bahareh; Falsafi, Tahereh; Ghorbanmehr, Nassim

    2017-02-21

    To evaluate the role of biofilm formation on the resistance of Helicobacter pylori ( H. pylori ) to commonly prescribed antibiotics, the expression rates of resistance genes in biofilm-forming and planktonic cells were compared. A collection of 33 H. pylori isolates from children and adult patients with chronic infection were taken for the present study. The isolates were screened for biofilm formation ability, as well as for polymerase chain reaction (PCR) reaction with HP1165 and hp1165 efflux pump genes. Susceptibilities of the selected strains to antibiotic and differences between susceptibilities of planktonic and biofilm-forming cell populations were determined. Quantitative real-time PCR (qPCR) analysis was performed using 16S rRNA gene as a H. pylori -specific primer, and two efflux pumps-specific primers, hp1165 and hefA . The strains were resistant to amoxicillin, metronidazole, and erythromycin, except for one strain, but they were all susceptible to tetracycline. Minimum bactericidal concentrations of antibiotics in the biofilm-forming cells were significantly higher than those of planktonic cells. qPCR demonstrated that the expression of efflux pump genes was significantly higher in the biofilm-forming cells as compared to the planktonic ones. The present work demonstrated an association between H. pylori biofilm formation and decreased susceptibility to all the antibiotics tested. This decreased susceptibility to antibiotics was associated with enhanced functional activity of two efflux pumps: hp1165 and hefA .

  2. Pathway Analysis Hints Towards Beneficial Effects of Long-Term Vibration on Human Chondrocytes.

    PubMed

    Lützenberg, Ronald; Solano, Kendrick; Buken, Christoph; Sahana, Jayashree; Riwaldt, Stefan; Kopp, Sascha; Krüger, Marcus; Schulz, Herbert; Saar, Kathrin; Huebner, Norbert; Hemmersbach, Ruth; Bauer, Johann; Infanger, Manfred; Grimm, Daniela; Wehland, Markus

    2018-06-27

    Spaceflight negatively influences the function of cartilage tissue in vivo. In vitro human chondrocytes exhibit an altered gene expression of inflammation markers after a two-hour exposure to vibration. Little is known about the impact of long-term vibration on chondrocytes. Human cartilage cells were exposed for up to 24 h (VIB) on a specialised vibration platform (Vibraplex) simulating the vibration profile which occurs during parabolic flights and compared to static control conditions (CON). Afterwards, they were investigated by phase-contrast microscopy, rhodamine phalloidin staining, microarray analysis, qPCR and western blot analysis. Morphological investigations revealed no changes between CON and VIB chondrocytes. F-Actin staining showed no alterations of the cytoskeleton in VIB compared with CON cells. DAPI and TUNEL staining did not identify apoptotic cells. ICAM-1 was elevated and vimentin, beta-tubulin and osteopontin proteins were significantly reduced in VIB compared to CON cells. qPCR of cytoskeletal genes, ITGB1, SOX3, SOX5, SOX9 did not reveal differential regulations. Microarray analysis detected 13 differentially expressed genes, mostly indicating unspecific stimulations. Pathway analyses demonstrated interactions of PSMD4 and CNOT7 with ICAM. Long-term vibration did not damage human chondrocytes in vitro. The reduction of osteopontin protein and the down-regulation of PSMD4 and TBX15 gene expression suggest that in vitro long-term vibration might even positively influence cultured chondrocytes. © 2018 The Author(s). Published by S. Karger AG, Basel.

  3. Comparison of reverse transcription-quantitative polymerase chain reaction methods and platforms for single cell gene expression analysis.

    PubMed

    Fox, Bridget C; Devonshire, Alison S; Baradez, Marc-Olivier; Marshall, Damian; Foy, Carole A

    2012-08-15

    Single cell gene expression analysis can provide insights into development and disease progression by profiling individual cellular responses as opposed to reporting the global average of a population. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is the "gold standard" for the quantification of gene expression levels; however, the technical performance of kits and platforms aimed at single cell analysis has not been fully defined in terms of sensitivity and assay comparability. We compared three kits using purification columns (PicoPure) or direct lysis (CellsDirect and Cells-to-CT) combined with a one- or two-step RT-qPCR approach using dilutions of cells and RNA standards to the single cell level. Single cell-level messenger RNA (mRNA) analysis was possible using all three methods, although the precision, linearity, and effect of lysis buffer and cell background differed depending on the approach used. The impact of using a microfluidic qPCR platform versus a standard instrument was investigated for potential variability introduced by preamplification of template or scaling down of the qPCR to nanoliter volumes using laser-dissected single cell samples. The two approaches were found to be comparable. These studies show that accurate gene expression analysis is achievable at the single cell level and highlight the importance of well-validated experimental procedures for low-level mRNA analysis. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Knockout of the HCC suppressor gene Lass2 downregulates the expression level of miR-694.

    PubMed

    Lu, Xiaodong; Chen, Yuanyuan; Zeng, Tiantian; Chen, Lufang; Shao, Qixiang; Qin, Wenxin

    2014-12-01

    Homo sapiens longevity assurance homolog 2 of yeast LAG (Lass2) catalyzes the synthesis of long-chain ceramide which is an essential element of membranous structures. Deletion of Lass2 is associated with a high risk of spontaneous or DEN-induced hepatocellular carcinoma (HCC), yet the mechanism remains unclear. In the present study, we found extensive vesicles in hepatocytes of one-month-old Lass2-knockout (KO) mice. Hepatic biochemical indices were increased and expression of albumin was attenuated in the one‑month Lass2-KO liver. The results indicate that the injuries of the hepatocytes in young Lass2-KO mice, based on the results of Gene Ontology analysis of mRNA microarray of Lass2-KO liver vs. wild-type liver showed 'wounding response' was the mostly possible altered pathway in the Lass2-KO mice. miR-mRNA integrated analysis revealed that miR-694 was downregulated while its target gene tumor necrosis factor α-induced protein 3 (Tnfaip3) was upregulated, as confirmed by qPCR. The expression of NF-κB which is negatively controlled by Tnfaip3 was detected by qPCR and was found to be downregulated. Herein, we first report that Lass2 deficiency caused the downregulation of miR-694 and the upregulation of its target gene Tnfaip3 in vivo in mice, which may be related to a high risk of occurrence of HCC.

  5. New polymorphisms of Xeroderma Pigmentosum DNA repair genes in myelodysplastic syndrome.

    PubMed

    Santiago, Sabrina Pinheiro; Junior, Howard Lopes Ribeiro; de Sousa, Juliana Cordeiro; de Paula Borges, Daniela; de Oliveira, Roberta Taiane Germano; Farias, Izabelle Rocha; Costa, Marília Braga; Maia, Allan Rodrigo Soares; da Nóbrega Ito, Mayumi; Magalhães, Silvia Maria Meira; Pinheiro, Ronald Feitosa

    2017-07-01

    The association between Xeroderma Pigmentosum DNA repair genes (XPA rs1800975, XPC rs2228000, XPD rs1799793 and XPF rs1800067) polymorphisms and myelodysplastic syndrome (MDS) have not been reported. To assess the functional role between these polymorphisms and MDS, we evaluated 189 samples stratified in two groups: 95 bone marrow samples from MDS patients and 94 from healthy elderly volunteers used as controls. Genotypes for all polymorphisms were identified in DNA samples in an allelic discrimination experiment by real-time polymerase chain reaction (qPCR). We also studied the mRNA expression of XPA and XPC genes to evaluate if its polymorphisms were functional in 53 RNAm MDS patients by qPCR methodologies. To the rs2228000 polymorphism, the CT and TT polymorphic genotype were associated with increased odds ratio (OR) of more profound cytopenia (hemoglobin and neutrophils count). To the rs1799793 polymorphism, we found that the GG homozygous wild-type genotype was associated with a decreased chance of developing MDS. We observed low expression of XPA in younger patients, in hypoplastic MDS and patients with abnormal karyotype when presented AG or AA polymorphic genotypes. We also found that there was a statistically significant interaction between the presence of micromegakaryocyte on down regulation of XPC regarding the CT heterozygous genotype of the rs1800975 polymorphism. Our results suggest that new functional polymorphisms of Xeroderma Pigmentosum DNA repair genes in MDS are related to its pathogenesis and prognosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Plasmodium copy number variation scan: gene copy numbers evaluation in haploid genomes.

    PubMed

    Beghain, Johann; Langlois, Anne-Claire; Legrand, Eric; Grange, Laura; Khim, Nimol; Witkowski, Benoit; Duru, Valentine; Ma, Laurence; Bouchier, Christiane; Ménard, Didier; Paul, Richard E; Ariey, Frédéric

    2016-04-12

    In eukaryotic genomes, deletion or amplification rates have been estimated to be a thousand more frequent than single nucleotide variation. In Plasmodium falciparum, relatively few transcription factors have been identified, and the regulation of transcription is seemingly largely influenced by gene amplification events. Thus copy number variation (CNV) is a major mechanism enabling parasite genomes to adapt to new environmental changes. Currently, the detection of CNVs is based on quantitative PCR (qPCR), which is significantly limited by the relatively small number of genes that can be analysed at any one time. Technological advances that facilitate whole-genome sequencing, such as next generation sequencing (NGS) enable deeper analyses of the genomic variation to be performed. Because the characteristics of Plasmodium CNVs need special consideration in algorithms and strategies for which classical CNV detection programs are not suited a dedicated algorithm to detect CNVs across the entire exome of P. falciparum was developed. This algorithm is based on a custom read depth strategy through NGS data and called PlasmoCNVScan. The analysis of CNV identification on three genes known to have different levels of amplification and which are located either in the nuclear, apicoplast or mitochondrial genomes is presented. The results are correlated with the qPCR experiments, usually used for identification of locus specific amplification/deletion. This tool will facilitate the study of P. falciparum genomic adaptation in response to ecological changes: drug pressure, decreased transmission, reduction of the parasite population size (transition to pre-elimination endemic area).

  7. Microbial diversity and anaerobic hydrocarbon degradation potential in an oil-contaminated mangrove sediment

    PubMed Central

    2012-01-01

    Background Mangrove forests are coastal wetlands that provide vital ecosystem services and serve as barriers against natural disasters like tsunamis, hurricanes and tropical storms. Mangroves harbour a large diversity of organisms, including microorganisms with important roles in nutrient cycling and availability. Due to tidal influence, mangroves are sites where crude oil from spills farther away can accumulate. The relationship between mangrove bacterial diversity and oil degradation in mangrove sediments remains poorly understood. Results Mangrove sediment was sampled from 0–5, 15–20 and 35–40 cm depth intervals from the Suruí River mangrove (Rio de Janeiro, Brazil), which has a history of oil contamination. DGGE fingerprinting for bamA, dsr and 16S rRNA encoding fragment genes, and qPCR analysis using dsr and 16S rRNA gene fragment revealed differences with sediment depth. Conclusions Analysis of bacterial 16S rRNA gene diversity revealed changes with depth. DGGE for bamA and dsr genes shows that the anaerobic hydrocarbon-degrading community profile also changed between 5 and 15 cm depth, and is similar in the two deeper sediments, indicating that below 15 cm the anaerobic hydrocarbon-degrading community appears to be well established and homogeneous in this mangrove sediment. qPCR analysis revealed differences with sediment depth, with general bacterial abundance in the top layer (0–5 cm) being greater than in both deeper sediment layers (15–20 and 35–40 cm), which were similar to each other. PMID:22935169

  8. Microbial diversity and anaerobic hydrocarbon degradation potential in an oil-contaminated mangrove sediment.

    PubMed

    Andrade, Luiza L; Leite, Deborah C A; Ferreira, Edir M; Ferreira, Lívia Q; Paula, Geraldo R; Maguire, Michael J; Hubert, Casey R J; Peixoto, Raquel S; Domingues, Regina M C P; Rosado, Alexandre S

    2012-08-30

    Mangrove forests are coastal wetlands that provide vital ecosystem services and serve as barriers against natural disasters like tsunamis, hurricanes and tropical storms. Mangroves harbour a large diversity of organisms, including microorganisms with important roles in nutrient cycling and availability. Due to tidal influence, mangroves are sites where crude oil from spills farther away can accumulate. The relationship between mangrove bacterial diversity and oil degradation in mangrove sediments remains poorly understood. Mangrove sediment was sampled from 0-5, 15-20 and 35-40 cm depth intervals from the Suruí River mangrove (Rio de Janeiro, Brazil), which has a history of oil contamination. DGGE fingerprinting for bamA, dsr and 16S rRNA encoding fragment genes, and qPCR analysis using dsr and 16S rRNA gene fragment revealed differences with sediment depth. Analysis of bacterial 16S rRNA gene diversity revealed changes with depth. DGGE for bamA and dsr genes shows that the anaerobic hydrocarbon-degrading community profile also changed between 5 and 15 cm depth, and is similar in the two deeper sediments, indicating that below 15 cm the anaerobic hydrocarbon-degrading community appears to be well established and homogeneous in this mangrove sediment. qPCR analysis revealed differences with sediment depth, with general bacterial abundance in the top layer (0-5 cm) being greater than in both deeper sediment layers (15-20 and 35-40 cm), which were similar to each other.

  9. Candidate gene identification of ovulation-inducing genes by RNA sequencing with an in vivo assay in zebrafish.

    PubMed

    Klangnurak, Wanlada; Fukuyo, Taketo; Rezanujjaman, M D; Seki, Masahide; Sugano, Sumio; Suzuki, Yutaka; Tokumoto, Toshinobu

    2018-01-01

    We previously reported the microarray-based selection of three ovulation-related genes in zebrafish. We used a different selection method in this study, RNA sequencing analysis. An additional eight up-regulated candidates were found as specifically up-regulated genes in ovulation-induced samples. Changes in gene expression were confirmed by qPCR analysis. Furthermore, up-regulation prior to ovulation during natural spawning was verified in samples from natural pairing. Gene knock-out zebrafish strains of one of the candidates, the starmaker gene (stm), were established by CRISPR genome editing techniques. Unexpectedly, homozygous mutants were fertile and could spawn eggs. However, a high percentage of unfertilized eggs and abnormal embryos were produced from these homozygous females. The results suggest that the stm gene is necessary for fertilization. In this study, we selected additional ovulation-inducing candidate genes, and a novel function of the stm gene was investigated.

  10. Seasonal and Sex-Specific mRNA Levels of Key Endocrine Genes in Adult Yellow Perch (Perca flavescens) from Lake Erie

    USDA-ARS?s Scientific Manuscript database

    Yellow perch exhibit a sexual size dimorphism (SSD) where females grow faster and larger than males and estrogen preferentially stimulates growth in females. In an effort to gain more understanding of yellow perch endocrinology, real-time quantitative PCR (qPCR) was used to measure pituitary, liver...

  11. Multiplex enrichment quantitative PCR (ME-qPCR): a high-throughput, highly sensitive detection method for GMO identification.

    PubMed

    Fu, Wei; Zhu, Pengyu; Wei, Shuang; Zhixin, Du; Wang, Chenguang; Wu, Xiyang; Li, Feiwu; Zhu, Shuifang

    2017-04-01

    Among all of the high-throughput detection methods, PCR-based methodologies are regarded as the most cost-efficient and feasible methodologies compared with the next-generation sequencing or ChIP-based methods. However, the PCR-based methods can only achieve multiplex detection up to 15-plex due to limitations imposed by the multiplex primer interactions. The detection throughput cannot meet the demands of high-throughput detection, such as SNP or gene expression analysis. Therefore, in our study, we have developed a new high-throughput PCR-based detection method, multiplex enrichment quantitative PCR (ME-qPCR), which is a combination of qPCR and nested PCR. The GMO content detection results in our study showed that ME-qPCR could achieve high-throughput detection up to 26-plex. Compared to the original qPCR, the Ct values of ME-qPCR were lower for the same group, which showed that ME-qPCR sensitivity is higher than the original qPCR. The absolute limit of detection for ME-qPCR could achieve levels as low as a single copy of the plant genome. Moreover, the specificity results showed that no cross-amplification occurred for irrelevant GMO events. After evaluation of all of the parameters, a practical evaluation was performed with different foods. The more stable amplification results, compared to qPCR, showed that ME-qPCR was suitable for GMO detection in foods. In conclusion, ME-qPCR achieved sensitive, high-throughput GMO detection in complex substrates, such as crops or food samples. In the future, ME-qPCR-based GMO content identification may positively impact SNP analysis or multiplex gene expression of food or agricultural samples. Graphical abstract For the first-step amplification, four primers (A, B, C, and D) have been added into the reaction volume. In this manner, four kinds of amplicons have been generated. All of these four amplicons could be regarded as the target of second-step PCR. For the second-step amplification, three parallels have been taken for the final evaluation. After the second evaluation, the final amplification curves and melting curves have been achieved.

  12. Analysis of early mesothelial cell responses to Staphylococcus epidermidis isolated from patients with peritoneal dialysis-associated peritonitis.

    PubMed

    McGuire, Amanda L; Mulroney, Kieran T; Carson, Christine F; Ram, Ramesh; Morahan, Grant; Chakera, Aron

    2017-01-01

    The major complication of peritoneal dialysis (PD) is the development of peritonitis, an infection within the abdominal cavity, primarily caused by bacteria. PD peritonitis is associated with significant morbidity, mortality and health care costs. Staphylococcus epidermidis is the most frequently isolated cause of PD-associated peritonitis. Mesothelial cells are integral to the host response to peritonitis, and subsequent clinical outcomes, yet the effects of infection on mesothelial cells are not well characterised. We systematically investigated the early mesothelial cell response to clinical and reference isolates of S. epidermidis using primary mesothelial cells and the mesothelial cell line Met-5A. Using an unbiased whole genome microarray, followed by a targeted panel of genes known to be involved in the human antibacterial response, we identified 38 differentially regulated genes (adj. p-value < 0.05) representing 35 canonical pathways after 1 hour exposure to S. epidermidis. The top 3 canonical pathways were TNFR2 signaling, IL-17A signaling, and TNFR1 signaling (adj. p-values of 0.0012, 0.0012 and 0.0019, respectively). Subsequent qPCR validation confirmed significant differences in gene expression in a number of genes not previously described in mesothelial cell responses to infection, with heterogeneity observed between clinical isolates of S. epidermidis, and between Met-5A and primary mesothelial cells. Heterogeneity between different S. epidermidis isolates suggests that specific virulence factors may play critical roles in influencing outcomes from peritonitis. This study provides new insights into early mesothelial cell responses to infection with S. epidermidis, and confirms the importance of validating findings in primary mesothelial cells.

  13. Quantitative CrAssphage PCR Assays for Human Fecal ...

    EPA Pesticide Factsheets

    Environmental waters are monitored for fecal pollution to protect public health and water resources. Traditionally, general fecal indicator bacteria are used; however, they cannot distinguish human fecal waste from pollution from other animals. Recently, a novel bacteriophage, crAssphage, was discovered by metagenomic data mining and reported to be abundant in and closely associated with human fecal waste. To confirm bioinformatic predictions, 384 primer sets were designed along the length of the crAssphage genome. Based upon initial screening, two novel crAssphage qPCR assays (CPQ_056 and CPQ_064) were designed and evaluated in reference fecal samples and water matrices. The assays exhibited high specificities (98.6%) when tested against a large animal fecal reference library and were highly abundant in raw sewage and sewage impacted water samples. In addition, CPQ_056 and CPQ_064 assay performance was compared to HF183/BacR287 and HumM2 methods in paired experiments. Findings confirm viral crAssphage qPCR assays perform at a similar level to well established bacterial human-associated fecal source identification technologies. These new viral based assays could become important water quality management and research tools. To inform the public.

  14. Direct Quantification of Ice Nucleation Active Bacteria in Aerosols and Precipitation: Their Potential Contribution as Ice Nuclei

    NASA Astrophysics Data System (ADS)

    Hill, T. C.; DeMott, P. J.; Garcia, E.; Moffett, B. F.; Prenni, A. J.; Kreidenweis, S. M.; Franc, G. D.

    2013-12-01

    Ice nucleation active (INA) bacteria are a potentially prodigious source of highly active (≥-12°C) atmospheric ice nuclei, especially from agricultural land. However, we know little about the conditions that promote their release (eg, daily or seasonal cycles, precipitation, harvesting or post-harvest decay of litter) or their typical contribution to the pool of boundary layer ice nucleating particles (INP). To initiate these investigations we developed a quantitative Polymerase Chain Reaction (qPCR) test of the ina gene, the gene that codes for the ice nucleating protein, to directly count INA bacteria in environmental samples. The qPCR test amplifies most forms of the gene and is highly sensitive, able to detect perhaps a single gene copy (ie, a single bacterium) in DNA extracted from precipitation. Direct measurement of the INA bacteria is essential because environmental populations will be a mixture of living, viable-but-not culturable, moribund and dead cells, all of which may retain ice nucleating proteins. Using the qPCR test on leaf washings of plants from three farms in Wyoming, Colorado and Nebraska we found INA bacteria to be abundant on crops, especially on cereals. Mid-summer populations on wheat and barley were ~108/g fresh weigh of foliage. Broadleaf crops, such as corn, alfalfa, sugar beet and potato supported 105-107/g. Unexpectedly, however, in the absence of a significant physical disturbance, such as harvesting, we were unable to detect the ina gene in aerosols sampled above the crops. Likewise, in fresh snow samples taken over two winters, ina genes from a range of INA bacteria were detected in about half the samples but at abundances that equated to INA bacterial numbers that accounted for only a minor proportion of INP active at -10°C. By contrast, in a hail sample from a summer thunderstorm we found 0.3 INA bacteria per INP at -10°C and ~0.5 per hail stone. Although the role of the INA bacteria as warm-temperature INP in these samples appeared to be minor, or sample dependent, we found that a biological component (inferred from its sensitivity to heat) predominated in essentially all samples. At -10°C, around 85-95% of INP in aerosols and an average of ~85% of INP in snow and hail were organic. This source, or sources, of biological ice nuclei are the focus of current research.

  15. The deep biosphere in terrestrial sediments in the chesapeake bay area, virginia, USA.

    PubMed

    Breuker, Anja; Köweker, Gerrit; Blazejak, Anna; Schippers, Axel

    2011-01-01

    For the first time quantitative data on the abundance of Bacteria, Archaea, and Eukarya in deep terrestrial sediments are provided using multiple methods (total cell counting, quantitative real-time PCR, Q-PCR and catalyzed reporter deposition-fluorescence in situ hybridization, CARD-FISH). The oligotrophic (organic carbon content of ∼0.2%) deep terrestrial sediments in the Chesapeake Bay area at Eyreville, Virginia, USA, were drilled and sampled up to a depth of 140 m in 2006. The possibility of contamination during drilling was checked using fluorescent microspheres. Total cell counts decreased from 10(9) to 10(6) cells/g dry weight within the uppermost 20 m, and did not further decrease with depth below. Within the top 7 m, a significant proportion of the total cell counts could be detected with CARD-FISH. The CARD-FISH numbers for Bacteria were about an order of magnitude higher than those for Archaea. The dominance of Bacteria over Archaea was confirmed by Q-PCR. The down core quantitative distribution of prokaryotic and eukaryotic small subunit ribosomal RNA genes as well as functional genes involved in different biogeochemical processes was revealed by Q-PCR for the uppermost 10 m and for 80-140 m depth. Eukarya and the Fe(III)- and Mn(IV)-reducing bacterial group Geobacteriaceae were almost exclusively found in the uppermost meter (arable soil), where reactive iron was detected in higher amounts. The bacterial candidate division JS-1 and the classes Anaerolineae and Caldilineae of the phylum Chloroflexi, highly abundant in marine sediments, were found up to the maximum sampling depth in high copy numbers at this terrestrial site as well. A similar high abundance of the functional gene cbbL encoding for the large subunit of RubisCO suggests that autotrophic microorganisms could be relevant in addition to heterotrophs. The functional gene aprA of sulfate reducing bacteria was found within distinct layers up to ca. 100 m depth in low copy numbers. The gene mcrA of methanogens was not detectable. Cloning and sequencing data of 16S rRNA genes revealed sequences of typical soil Bacteria. The closest relatives of the archaeal sequences were Archaea recovered from terrestrial and marine environments. Phylogenetic analysis of the Crenarchaeota and Euryarchaeota revealed new members of the uncultured South African Gold Mine Group, Deep Sea Hydrothermal Vent Euryarchaeotal Group 6, and Miscellaneous Crenarcheotic Group clusters.

  16. Novel Firmicutes Group Implicated in the Dechlorination of Two Chlorinated Xanthones, Analogues of Natural Organochlorines

    PubMed Central

    Krzmarzick, Mark J.; Miller, Hanna R.; Yan, Tao

    2014-01-01

    Although the abundance and diversity of natural organochlorines are well established, much is still unknown about the degradation of these compounds. Triplicate microcosms were used to determine whether, and which, bacterial communities could dechlorinate two chlorinated xanthones (2,7-dichloroxanthone and 5,7-dichloro-1,3-dihydroxylxanthone), analogues of a diverse class of natural organochlorines. According to quantitative-PCR (qPCR) results, several known dechlorinating genera were either not present or not enriched during dechlorination of the xanthones. Denaturing gradient gel electrophoresis, however, indicated that several Firmicutes were enriched in the dechlorinating cultures compared to triplicate controls amended with nonchlorinated xanthones. One such group, herein referred to as the Gopher group, was further studied with a novel qPCR method that confirmed enrichment of Gopher group 16S rRNA genes in the dechlorinating cultures. The enrichment of the Gopher group was again tested with two new sets of triplicate microcosms. Enrichment was observed during chlorinated xanthone dechlorination in one set of these triplicate microcosms. In the other set, two microcosms showed clear enrichment while a third did not. The Gopher group is a previously unidentified group of Firmicutes, distinct from but related to the Dehalobacter and Desulfitobacterium genera; this group also contains clones from at least four unique cultures capable of dechlorinating anthropogenic organochlorines that have been previously described in the literature. This study suggests that natural chlorinated xanthones may be effective biostimulants to enhance the remediation of pollutants and highlights the idea that novel genera of dechlorinators likely exist and may be active in bioremediation and the natural cycling of chlorine. PMID:24296507

  17. Development of a species-specific TaqMan-MGB real-time PCR assay to quantify Olsenella scatoligenes in pigs offered a chicory root-based diet.

    PubMed

    Li, Xiaoqiong; Jensen, Bent Borg; Højberg, Ole; Noel, Samantha Joan; Canibe, Nuria

    2018-06-16

    Olsenella scatoligenes is the only skatole-producing bacterium isolated from the pig gut. Skatole, produced from microbial degradation of l-tryptophan, is the main contributor to boar taint, an off-odor and off-flavor taint, released upon heating meat from some entire male pigs. An appropriate method for quantifying O. scatoligenes would help investigating the relationship between O. scatoligenes abundance and skatole concentration in the pig gut. Thus, the present study aimed at developing a TaqMan-MGB probe-based, species-specific qPCR assay for rapid quantification of O. scatoligenes. The use of a MGB probe allowed discriminating O. scatoligenes from other closely related species. Moreover, the assay allowed quantifying down to three target gene copies per PCR reaction using genomic DNA-constructed standards, or 1.5 × 10 3  cells/g digesta, using O. scatoligenes-spiked digesta samples as reference standards. The developed assay was applied to assess the impact of dietary chicory roots on O. scatoligenes in the hindgut of pigs. Olsenella scatoligenes made up < 0.01% of the microbial population in the pig hindgut. Interestingly, the highest number of O. scatoligenes was found in young entire male pigs fed high levels of chicory roots. This indicates that the known effect of chicory roots for reducing skatole production is not by inhibiting the growth of this skatole-producing bacterium in the pig hindgut. Accordingly, the abundance of O. scatoligenes in the hindgut does not seem to be an appropriate indicator of boar taint. The present study is the first to describe a TaqMan-MGB probe qPCR assay for detection and quantification of O. scatoligenes in pigs.

  18. Quantitative polymerase chain reaction detection of circulating DNA in serum for early diagnosis of mucormycosis in immunocompromised patients.

    PubMed

    Millon, Laurence; Larosa, Fabrice; Lepiller, Quentin; Legrand, Faezeh; Rocchi, Steffi; Daguindau, Etienne; Scherer, Emeline; Bellanger, Anne-Pauline; Leroy, Joel; Grenouillet, Frederic

    2013-05-01

    The aim of our study was to assess the detection of circulating DNA from the most common species of Mucorales for early diagnosis of mucormycosis in at-risk patients. We retrospectively evaluated a combination of 3 quantitative polymerase chain reaction (qPCR) assays using hydrolysis probes targeting Mucor/Rhizopus, Lichtheimia (formerly Absidia), and Rhizomucor for circulating Mucorales detection. Serial serum samples from 10 patients diagnosed with proven mucormycosis (2-9 samples per patient) were analyzed. No cross-reactivity was detected in the 3 qPCR assays using 19 reference strains of opportunistic fungi, and the limit of detection ranged from 3.7 to 15 femtograms/10 µL, depending on the species. DNA from Mucorales was detected in the serum of 9 of 10 patients between 68 and 3 days before mucormycosis diagnosis was confirmed by histopathological examination and/or positive culture. All the qPCR results were concordant with culture and/or PCR-based identification of the causing agents in tissue (Lichtheimia species, Rhizomucor species, and Mucor/Rhizopus species in 4, 3, and 2 patients, respectively). Quantitative PCR was negative in only 1 patient with proven disseminated mucormycosis caused by Lichtheimia species. Our study suggests that using specific qPCR targeting several species of Mucorales according to local ecology to screen at-risk patients could be useful in a clinical setting. The cost and efficacy of this strategy should be evaluated. However, given the human and economic cost of mucormycosis and the need for rapid diagnosis to initiate prompt directed antifungal therapy, this strategy could be highly attractive.

  19. Determination of the Efficacy of Two Building Decontamination Strategies by Surface Sampling with Culture and Quantitative PCR Analysis

    PubMed Central

    Buttner, Mark P.; Cruz, Patricia; Stetzenbach, Linda D.; Klima-Comba, Amy K.; Stevens, Vanessa L.; Cronin, Tracy D.

    2004-01-01

    The efficacy of currently available decontamination strategies for the treatment of indoor furnishings contaminated with bioterrorism agents is poorly understood. Efficacy testing of decontamination products in a controlled environment is needed to ensure that effective methods are used to decontaminate domestic and workplace settings. An experimental room supplied with materials used in office furnishings (i.e., wood laminate, painted metal, and vinyl tile) was used with controlled dry aerosol releases of endospores of Bacillus atrophaeus (“Bacillus subtilis subsp. niger,” also referred to as BG), a Bacillus anthracis surrogate. Studies were performed using two test products, a foam decontaminant and chlorine dioxide gas. Surface samples were collected pre- and posttreatment with three sampling methods and analyzed by culture and quantitative PCR (QPCR). Additional aerosol releases with environmental background present on the surface materials were also conducted to determine if there was any interference with decontamination or sample analysis. Culture results indicated that 105 to 106 CFU per sample were present on surfaces before decontamination. After decontamination with the foam, no culturable B. atrophaeus spores were detected. After decontamination with chlorine dioxide gas, no culturable B. atrophaeus was detected in 24 of 27 samples (89%). However, QPCR analysis showed that B. atrophaeus DNA was still present after decontamination with both methods. Environmental background material had no apparent effect on decontamination, but inhibition of the QPCR assay was observed. These results demonstrate the effectiveness of two decontamination methods and illustrate the utility of surface sampling and QPCR analysis for the evaluation of decontamination strategies. PMID:15294810

  20. Determination of the efficacy of two building decontamination strategies by surface sampling with culture and quantitative PCR analysis.

    PubMed

    Buttner, Mark P; Cruz, Patricia; Stetzenbach, Linda D; Klima-Comba, Amy K; Stevens, Vanessa L; Cronin, Tracy D

    2004-08-01

    The efficacy of currently available decontamination strategies for the treatment of indoor furnishings contaminated with bioterrorism agents is poorly understood. Efficacy testing of decontamination products in a controlled environment is needed to ensure that effective methods are used to decontaminate domestic and workplace settings. An experimental room supplied with materials used in office furnishings (i.e., wood laminate, painted metal, and vinyl tile) was used with controlled dry aerosol releases of endospores of Bacillus atrophaeus ("Bacillus subtilis subsp. niger," also referred to as BG), a Bacillus anthracis surrogate. Studies were performed using two test products, a foam decontaminant and chlorine dioxide gas. Surface samples were collected pre- and posttreatment with three sampling methods and analyzed by culture and quantitative PCR (QPCR). Additional aerosol releases with environmental background present on the surface materials were also conducted to determine if there was any interference with decontamination or sample analysis. Culture results indicated that 10(5) to 10(6) CFU per sample were present on surfaces before decontamination. After decontamination with the foam, no culturable B. atrophaeus spores were detected. After decontamination with chlorine dioxide gas, no culturable B. atrophaeus was detected in 24 of 27 samples (89%). However, QPCR analysis showed that B. atrophaeus DNA was still present after decontamination with both methods. Environmental background material had no apparent effect on decontamination, but inhibition of the QPCR assay was observed. These results demonstrate the effectiveness of two decontamination methods and illustrate the utility of surface sampling and QPCR analysis for the evaluation of decontamination strategies.

  1. A 10-Gene Classifier for Indeterminate Thyroid Nodules: Development and Multicenter Accuracy Study

    PubMed Central

    González, Hernán E.; Martínez, José R.; Vargas-Salas, Sergio; Solar, Antonieta; Veliz, Loreto; Cruz, Francisco; Arias, Tatiana; Loyola, Soledad; Horvath, Eleonora; Tala, Hernán; Traipe, Eufrosina; Meneses, Manuel; Marín, Luis; Wohllk, Nelson; Diaz, René E.; Véliz, Jesús; Pineda, Pedro; Arroyo, Patricia; Mena, Natalia; Bracamonte, Milagros; Miranda, Giovanna; Bruce, Elsa

    2017-01-01

    Background: In most of the world, diagnostic surgery remains the most frequent approach for indeterminate thyroid cytology. Although several molecular tests are available for testing in centralized commercial laboratories in the United States, there are no available kits for local laboratory testing. The aim of this study was to develop a prototype in vitro diagnostic (IVD) gene classifier for the further characterization of nodules with an indeterminate thyroid cytology. Methods: In a first stage, the expression of 18 genes was determined by quantitative polymerase chain reaction (qPCR) in a broad histopathological spectrum of 114 fresh-tissue biopsies. Expression data were used to train several classifiers by supervised machine learning approaches. Classifiers were tested in an independent set of 139 samples. In a second stage, the best classifier was chosen as a model to develop a multiplexed-qPCR IVD prototype assay, which was tested in a prospective multicenter cohort of fine-needle aspiration biopsies. Results: In tissue biopsies, the best classifier, using only 10 genes, reached an optimal and consistent performance in the ninefold cross-validated testing set (sensitivity 93% and specificity 81%). In the multicenter cohort of fine-needle aspiration biopsy samples, the 10-gene signature, built into a multiplexed-qPCR IVD prototype, showed an area under the curve of 0.97, a positive predictive value of 78%, and a negative predictive value of 98%. By Bayes' theorem, the IVD prototype is expected to achieve a positive predictive value of 64–82% and a negative predictive value of 97–99% in patients with a cancer prevalence range of 20–40%. Conclusions: A new multiplexed-qPCR IVD prototype is reported that accurately classifies thyroid nodules and may provide a future solution suitable for local reference laboratory testing. PMID:28521616

  2. Arsenic exposure and intestinal microbiota in children from Sirajdikhan, Bangladesh.

    PubMed

    Dong, Xiaoxi; Shulzhenko, Natalia; Lemaitre, Julien; Greer, Renee L; Peremyslova, Kate; Quamruzzaman, Quazi; Rahman, Mahmudar; Hasan, Omar Sharif Ibn; Joya, Sakila Afroz; Golam, Mostofa; Christiani, David C; Morgun, Andriy; Kile, Molly L

    2017-01-01

    Arsenic has antimicrobial properties at high doses yet few studies have examined its effect on gut microbiota. This warrants investigation since arsenic exposure increases the risk of many diseases in which gut microbiota have been shown to play a role. We examined the association between arsenic exposure from drinking water and the composition of intestinal microbiota in children exposed to low and high arsenic levels during prenatal development and early life. 16S rRNA gene sequencing revealed that children with high arsenic exposure had a higher abundance of Proteobacteria in their stool compared to matched controls with low arsenic exposure. Furthermore, whole metagenome shotgun sequencing identified 332 bacterial SEED functions that were enriched in the high exposure group. A separate model showed that these genes, which included genes involved in virulence and multidrug resistance, were positively correlated with arsenic concentration within the group of children in the high arsenic group. We performed reference free genome assembly, and identified strains of E.coli as contributors to the arsenic enriched SEED functions. Further genome annotation of the E.coli genome revealed two strains containing two different arsenic resistance operons that are not present in the gut microbiome of a recently described European human cohort (Metagenomics of the Human Intestinal Tract, MetaHIT). We then performed quantification by qPCR of two arsenic resistant genes (ArsB, ArsC). We observed that the expression of these two operons was higher among the children with high arsenic exposure compared to matched controls. This preliminary study indicates that arsenic exposure early in life was associated with altered gut microbiota in Bangladeshi children. The enrichment of E.coli arsenic resistance genes in the high exposure group provides an insight into the possible mechanisms of how this toxic compound could affect gut microbiota.

  3. Sequence homology and expression profile of genes associated with DNA repair pathways in Mycobacterium leprae.

    PubMed

    Sharma, Mukul; Vedithi, Sundeep Chaitanya; Das, Madhusmita; Roy, Anindya; Ebenezer, Mannam

    2017-01-01

    Survival of Mycobacterium leprae, the causative bacteria for leprosy, in the human host is dependent to an extent on the ways in which its genome integrity is retained. DNA repair mechanisms protect bacterial DNA from damage induced by various stress factors. The current study is aimed at understanding the sequence and functional annotation of DNA repair genes in M. leprae. T he genome of M. leprae was annotated using sequence alignment tools to identify DNA repair genes that have homologs in Mycobacterium tuberculosis and Escherichia coli. A set of 96 genes known to be involved in DNA repair mechanisms in E. coli and Mycobacteriaceae were chosen as a reference. Among these, 61 were identified in M. leprae based on sequence similarity and domain architecture. The 61 were classified into 36 characterized gene products (59%), 11 hypothetical proteins (18%), and 14 pseudogenes (23%). All these genes have homologs in M. tuberculosis and 49 (80.32%) in E. coli. A set of 12 genes which are absent in E. coli were present in M. leprae and in Mycobacteriaceae. These 61 genes were further investigated for their expression profiles in the whole transcriptome microarray data of M. leprae which was obtained from the signal intensities of 60bp probes, tiling the entire genome with 10bp overlaps. It was noted that transcripts corresponding to all the 61 genes were identified in the transcriptome data with varying expression levels ranging from 0.18 to 2.47 fold (normalized with 16SrRNA). The mRNA expression levels of a representative set of seven genes ( four annotated and three hypothetical protein coding genes) were analyzed using quantitative Polymerase Chain Reaction (qPCR) assays with RNA extracted from skin biopsies of 10 newly diagnosed, untreated leprosy cases. It was noted that RNA expression levels were higher for genes involved in homologous recombination whereas the genes with a low level of expression are involved in the direct repair pathway. This study provided preliminary information on the potential DNA repair pathways that are extant in M. leprae and the associated genes.

  4. Successful downstream application of the Paxgene Blood RNA system from small blood samples in paediatric patients for quantitative PCR analysis

    PubMed Central

    Carrol, Enitan D; Salway, Fiona; Pepper, Stuart D; Saunders, Emma; Mankhambo, Limangeni A; Ollier, William E; Hart, C Anthony; Day, Phillip

    2007-01-01

    Background The challenge of gene expression studies is to reliably quantify levels of transcripts, but this is hindered by a number of factors including sample availability, handling and storage. The PAXgene™ Blood RNA System includes a stabilizing additive in a plastic evacuated tube, but requires 2.5 mL blood, which makes routine implementation impractical for paediatric use. The aim of this study was to modify the PAXgene™ Blood RNA System kit protocol for application to small, sick chidren, without compromising RNA integrity, and subsequently to perform quantitative analysis of ICAM and interleukin-6 gene expression. Aliquots of 0.86 mL PAXgene™ reagent were put into microtubes and 0.3 mL whole blood added to maintain the same recommended proportions as in the PAXgene™ evacuated tube system. RNA quality was assessed using the Agilent BioAnalyser 2100 and an in-house TaqMan™ assay which measures GAPDH transcript integrity by determining 3' to 5' ratios. qPCR analysis was performed on an additional panel of 7 housekeeping genes. Three reference genes (HPRT1, YWHAZ and GAPDH) were identified using the GeNORM algorithm, which were subsequently used to normalising target gene expression levels. ICAM-1 and IL-6 gene expression were measured in 87 Malawian children with invasive pneumococcal disease. Results Total RNA yield was between 1,114 and 2,950 ng and the BioAnalyser 2100 demonstrated discernible 18s and 28s bands. The cycle threshold values obtained for the seven housekeeping genes were between 15 and 30 and showed good consistency. Median relative ICAM and IL-6 gene expression were significantly reduced in non-survivors compared to survivors (ICAM: 3.56 vs 4.41, p = 0.04, and IL-6: 2.16 vs 6.73, p = 0.02). Conclusion We have successfully modified the PAXgene™ blood collection system for use in small children and demonstrated preservation of RNA integrity and successful quantitative real-time PCR analysis. PMID:17850649

  5. Comparison of Five Major Trichome Regulatory Genes in Brassica villosa with Orthologues within the Brassicaceae

    PubMed Central

    Nayidu, Naghabushana K.; Kagale, Sateesh; Taheri, Ali; Withana-Gamage, Thushan S.; Parkin, Isobel A. P.; Sharpe, Andrew G.; Gruber, Margaret Y.

    2014-01-01

    Coding sequences for major trichome regulatory genes, including the positive regulators GLABRA 1(GL1), GLABRA 2 (GL2), ENHANCER OF GLABRA 3 (EGL3), and TRANSPARENT TESTA GLABRA 1 (TTG1) and the negative regulator TRIPTYCHON (TRY), were cloned from wild Brassica villosa, which is characterized by dense trichome coverage over most of the plant. Transcript (FPKM) levels from RNA sequencing indicated much higher expression of the GL2 and TTG1 regulatory genes in B. villosa leaves compared with expression levels of GL1 and EGL3 genes in either B. villosa or the reference genome species, glabrous B. oleracea; however, cotyledon TTG1 expression was high in both species. RNA sequencing and Q-PCR also revealed an unusual expression pattern for the negative regulators TRY and CPC, which were much more highly expressed in trichome-rich B. villosa leaves than in glabrous B. oleracea leaves and in glabrous cotyledons from both species. The B. villosa TRY expression pattern also contrasted with TRY expression patterns in two diploid Brassica species, and with the Arabidopsis model for expression of negative regulators of trichome development. Further unique sequence polymorphisms, protein characteristics, and gene evolution studies highlighted specific amino acids in GL1 and GL2 coding sequences that distinguished glabrous species from hairy species and several variants that were specific for each B. villosa gene. Positive selection was observed for GL1 between hairy and non-hairy plants, and as expected the origin of the four expressed positive trichome regulatory genes in B. villosa was predicted to be from B. oleracea. In particular the unpredicted expression patterns for TRY and CPC in B. villosa suggest additional characterization is needed to determine the function of the expanded families of trichome regulatory genes in more complex polyploid species within the Brassicaceae. PMID:24755905

  6. Dissecting the organ specificity of insecticide resistance candidate genes in Anopheles gambiae: known and novel candidate genes.

    PubMed

    Ingham, Victoria A; Jones, Christopher M; Pignatelli, Patricia; Balabanidou, Vasileia; Vontas, John; Wagstaff, Simon C; Moore, Jonathan D; Ranson, Hilary

    2014-11-25

    The elevated expression of enzymes with insecticide metabolism activity can lead to high levels of insecticide resistance in the malaria vector, Anopheles gambiae. In this study, adult female mosquitoes from an insecticide susceptible and resistant strain were dissected into four different body parts. RNA from each of these samples was used in microarray analysis to determine the enrichment patterns of the key detoxification gene families within the mosquito and to identify additional candidate insecticide resistance genes that may have been overlooked in previous experiments on whole organisms. A general enrichment in the transcription of genes from the four major detoxification gene families (carboxylesterases, glutathione transferases, UDP glucornyltransferases and cytochrome P450s) was observed in the midgut and malpighian tubules. Yet the subset of P450 genes that have previously been implicated in insecticide resistance in An gambiae, show a surprisingly varied profile of tissue enrichment, confirmed by qPCR and, for three candidates, by immunostaining. A stringent selection process was used to define a list of 105 genes that are significantly (p ≤0.001) over expressed in body parts from the resistant versus susceptible strain. Over half of these, including all the cytochrome P450s on this list, were identified in previous whole organism comparisons between the strains, but several new candidates were detected, notably from comparisons of the transcriptomes from dissected abdomen integuments. The use of RNA extracted from the whole organism to identify candidate insecticide resistance genes has a risk of missing candidates if key genes responsible for the phenotype have restricted expression within the body and/or are over expression only in certain tissues. However, as transcription of genes implicated in metabolic resistance to insecticides is not enriched in any one single organ, comparison of the transcriptome of individual dissected body parts cannot be recommended as a preferred means to identify new candidate insecticide resistant genes. Instead the rich data set on in vivo sites of transcription should be consulted when designing follow up qPCR validation steps, or for screening known candidates in field populations.

  7. Detection of Shigella spp. nucleic acids in the synovial tissue of Tunisian rheumatoid arthritis patients and other forms of arthritis by quantitative real-time polymerase chain reaction.

    PubMed

    Siala, Mariam; Rihl, Markus; Sellami, Hanen; Znazen, Abir; Sassi, Nadia; Laadhar, Lilia; Gdoura, Radhouane; Belghuith, Imen; Mrabet, Dalila; Baklouti, Sofien; Sellami, Slaheddine; Sibilia, Jean; Fourati, Hela; Hammami, Adnene; Cheour, Ilhem

    2018-06-01

    Enterobacterial components in the joints of patients are believed to contribute to a perpetuating inflammation leading to a reactive arthritis (ReA), a condition in which microbial agents cannot be recovered from the joint. At present, it is unclear whether nucleic acids from Shigella spp. are playing a pathogenic role in causing not only ReA but also other forms of arthritis. Quantitative real-time polymerase chain reaction assay (qPCR) is the method of choice for the identification of bacteria within the synovium. The aim of our study was to detect the presence of Shigella spp. nucleic acids in the synovial tissue (ST) of Tunisian arthritis patients. We investigated 57 ST samples from rheumatoid arthritis (RA) n = 38, undifferentiated oligoarthritis (UOA) n = 12, and spondyloarthritis (SpA) n = 7 patients; 5 ST samples from healthy individuals were used as controls. Shigella spp. DNA and mRNA transcripts encoding the virulence gene A (VirA) were examined using an optimized qPCR with newly designed primers and probes. Using qPCR, Shigella spp. DNA was found in 37/57 (65%) ST samples (24/38, i.e., 63.2% of RA, 8/12, i.e., 67% of UOA, and 5/7, i.e., 71.4% of SpA patients). Paired DNA and mRNA were extracted from 39 ST samples, whose VirA cDNA was found in 29/39 (74.4%) patients. qPCR did not yield any nucleic acids in the five healthy control ST samples. The qPCR assay was sensitive and showed a good intra- and inter-run reproducibility. These preliminary findings generated by an optimized, highly sensitive PCR assay underline a potential role of past gastrointestinal infections. In Tunisian patients, a bacterial etiology involving Shigella spp. in the manifestation of arthritic disorders including RA might be more common than expected.

  8. Standardization and validation of real time PCR assays for the diagnosis of histoplasmosis using three molecular targets in an animal model.

    PubMed

    López, Luisa F; Muñoz, César O; Cáceres, Diego H; Tobón, Ángela M; Loparev, Vladimir; Clay, Oliver; Chiller, Tom; Litvintseva, Anastasia; Gade, Lalitha; González, Ángel; Gómez, Beatriz L

    2017-01-01

    Histoplasmosis is considered one of the most important endemic and systemic mycoses worldwide. Until now few molecular techniques have been developed for its diagnosis. The aim of this study was to develop and evaluate three real time PCR (qPCR) protocols for different protein-coding genes (100-kDa, H and M antigens) using an animal model. Fresh and formalin-fixed and paraffin-embedded (FFPE) lung tissues from BALB/c mice inoculated i.n. with 2.5x106 Histoplasma capsulatum yeast or PBS were obtained at 1, 2, 3, 4, 8, 12 and 16 weeks post-infection. A collection of DNA from cultures representing different clades of H. capsulatum (30 strains) and other medically relevant pathogens (36 strains of related fungi and Mycobacterium tuberculosis) were used to analyze sensitivity and specificity. Analytical sensitivity and specificity were 100% when DNAs from the different strains were tested. The highest fungal burden occurred at first week post-infection and complete fungal clearance was observed after the third week; similar results were obtained when the presence of H. capsulatum yeast cells was demonstrated in histopathological analysis. In the first week post-infection, all fresh and FFPE lung tissues from H. capsulatum-infected animals were positive for the qPCR protocols tested except for the M antigen protocol, which gave variable results when fresh lung tissue samples were analyzed. In the second week, all qPCR protocols showed variable results for both fresh and FFPE tissues. Samples from the infected mice at the remaining times post-infection and uninfected mice (controls) were negative for all protocols. Good agreement was observed between CFUs, histopathological analysis and qPCR results for the 100-kDa and H antigen protocols. We successfully standardized and validated three qPCR assays for detecting H. capsulatum DNA in fresh and FFPE tissues, and conclude that the 100-kDa and H antigen molecular assays are promising tests for diagnosing this mycosis.

  9. Comparative evaluation of molecular diagnostic tests for Nucleospora salmonis and prevalence in migrating juvenile salmonids from the Snake River, USA

    USGS Publications Warehouse

    Badil, Samantha; Elliott, Diane G.; Kurobe, Tomofumi; Hedrick, Ronald P.; Clemens, Kathy; Blair, Marilyn; Purcell, Maureen K.

    2011-01-01

    Nucleospora salmonis is an intranuclear microsporidian that primarily infects lymphoblast cells and contributes to chronic lymphoblastosis and a leukemia-like condition in a range of salmonid species. The primary goal of this study was to evaluate the prevalence of N. salmonis in out-migrating juvenile hatchery and wild Chinook salmon Oncorhynchus tshawytscha and steelhead O. mykiss from the Snake River in the U.S. Pacific Northwest. To achieve this goal, we first addressed the following concerns about current molecular diagnostic tests for N. salmonis: (1) nonspecific amplification patterns by the published nested polymerase chain reaction (nPCR) test, (2) incomplete validation of the published quantitative PCR (qPCR) test, and (3) whether N. salmonis can be detected reliably from nonlethal samples. Here, we present an optimized nPCR protocol that eliminates nonspecific amplification. During validation of the published qPCR test, our laboratory developed a second qPCR test that targeted a different gene sequence and used different probe chemistry for comparison purposes. We simultaneously evaluated the two different qPCR tests for N. salmonis and found that both assays were highly specific, sensitive, and repeatable. The nPCR and qPCR tests had good overall concordance when DNA samples derived from both apparently healthy and clinically diseased hatchery rainbow trout were tested. Finally, we demonstrated that gill snips were a suitable tissue for nonlethal detection of N. salmonis DNA in juvenile salmonids. Monitoring of juvenile salmonid fish in the Snake River over a 3-year period revealed low prevalence of N. salmonis in hatchery and wild Chinook salmon and wild steelhead but significantly higher prevalence in hatchery-derived steelhead. Routine monitoring of N. salmonis is not performed for all hatchery steelhead populations. At present, the possible contribution of this pathogen to delayed mortality of steelhead has not been determined.

  10. Combined quantification of pulmonary Pneumocystis jirovecii DNA and serum (1->3)-β-D-glucan for differential diagnosis of pneumocystis pneumonia and Pneumocystis colonization.

    PubMed

    Damiani, Céline; Le Gal, Solène; Da Costa, Cécilia; Virmaux, Michèle; Nevez, Gilles; Totet, Anne

    2013-10-01

    This study assessed a quantitative PCR (qPCR) assay for Pneumocystis jirovecii quantification in bronchoalveolar lavage (BAL) fluid samples combined with serum (1→3)-β-d-glucan (BG) level detection to distinguish Pneumocystis pneumonia (PCP) from pulmonary colonization with P. jirovecii. Forty-six patients for whom P. jirovecii was initially detected in BAL fluid samples were retrospectively enrolled. Based on clinical data and results of P. jirovecii detection, 17 and 29 patients were diagnosed with PCP and colonization, respectively. BAL fluid samples were reassayed using a qPCR assay targeting the mitochondrial large subunit rRNA gene. qPCR results and serum BG levels (from a Fungitell kit) were analyzed conjointly. P. jirovecii DNA copy numbers were significantly higher in the PCP group than in the colonization group (1.3 × 10(7) versus 3.4 × 10(3) copies/μl, P < 0.05). A lower cutoff value (1.6 × 10(3) copies/μl) achieving 100% sensitivity for PCP diagnosis and an upper cutoff value (2 × 10(4) copies/μl) achieving 100% specificity were determined. Applying these two values, 13/17 PCP patients and 19/29 colonized patients were correctly assigned to their patient groups. For the remaining 14 patients with P. jirovecii DNA copy numbers between the cutoff values, PCP and colonization could not be distinguished on the basis of qPCR results. Four of these patients who were initially assigned to the PCP group presented BG levels of ≥100 pg/ml. The other 10 patients, who were initially assigned to the colonization group, presented BG levels of <100 pg/ml. These results suggest that the combination of the qPCR assay, applying cutoff values of 1.6 × 10(3) and 2 × 10(4) copies/μl, and serum BG detection, applying a 100 pg/ml threshold, can differentiate PCP and colonization diagnoses.

  11. Combined Quantification of Pulmonary Pneumocystis jirovecii DNA and Serum (1→3)-β-d-Glucan for Differential Diagnosis of Pneumocystis Pneumonia and Pneumocystis Colonization

    PubMed Central

    Le Gal, Solène; Da Costa, Cécilia; Virmaux, Michèle; Nevez, Gilles; Totet, Anne

    2013-01-01

    This study assessed a quantitative PCR (qPCR) assay for Pneumocystis jirovecii quantification in bronchoalveolar lavage (BAL) fluid samples combined with serum (1→3)-β-d-glucan (BG) level detection to distinguish Pneumocystis pneumonia (PCP) from pulmonary colonization with P. jirovecii. Forty-six patients for whom P. jirovecii was initially detected in BAL fluid samples were retrospectively enrolled. Based on clinical data and results of P. jirovecii detection, 17 and 29 patients were diagnosed with PCP and colonization, respectively. BAL fluid samples were reassayed using a qPCR assay targeting the mitochondrial large subunit rRNA gene. qPCR results and serum BG levels (from a Fungitell kit) were analyzed conjointly. P. jirovecii DNA copy numbers were significantly higher in the PCP group than in the colonization group (1.3 × 107 versus 3.4 × 103 copies/μl, P < 0.05). A lower cutoff value (1.6 × 103 copies/μl) achieving 100% sensitivity for PCP diagnosis and an upper cutoff value (2 × 104 copies/μl) achieving 100% specificity were determined. Applying these two values, 13/17 PCP patients and 19/29 colonized patients were correctly assigned to their patient groups. For the remaining 14 patients with P. jirovecii DNA copy numbers between the cutoff values, PCP and colonization could not be distinguished on the basis of qPCR results. Four of these patients who were initially assigned to the PCP group presented BG levels of ≥100 pg/ml. The other 10 patients, who were initially assigned to the colonization group, presented BG levels of <100 pg/ml. These results suggest that the combination of the qPCR assay, applying cutoff values of 1.6 × 103 and 2 × 104 copies/μl, and serum BG detection, applying a 100 pg/ml threshold, can differentiate PCP and colonization diagnoses. PMID:23903553

  12. Novel Cadmium Responsive MicroRNAs in Daphnia pulex.

    PubMed

    Chen, Shuai; McKinney, Garrett J; Nichols, Krista M; Colbourne, John K; Sepúlveda, Maria S

    2015-12-15

    Daphnia pulex is a widely used toxicological model and is known for its sensitivity to cadmium (Cd). Recent research suggests that microRNAs (miRNAs) play a critical role in animal responses to heavy metals. To investigate the functions of D. pulex miRNAs under Cd exposure, we analyzed the miRNA profiles of D. pulex after 48 h using miRNA microarrays and validated our findings by q-PCR. miRNA dpu-let-7 was identified as a stably expressed gene and used as a reference. We identified 22 and 21 differentially expressed miRNAs under low (20 μg/L CdCl2) and high-exposure (40 μg/L CdCl2) concentrations compared to controls, respectively. Cellular functions of predicted miRNA target Cd-responsive genes included oxidative stress, ion transport, mitochondrial damage, and DNA repair. An insulin-related network was also identified in relation to several Cd-responsive miRNAs. The expression of three predicted target genes for miR-71 and miR-210 were evaluated, and expression of two of them (SCN2A and SLC31A1) was negatively correlated with the expression of their regulator miRNAs. We show miR-210 is hypoxia-responsive in D. pulex and propose Cd and hypoxia induce miR-210 via a same HIF1α modulated pathway. Collectively, this research advances our understanding on the role of miRNAs in response to heavy-metal exposure.

  13. Molecular identification of Lutzomyia migonei (Diptera: Psychodidae) as a potential vector for Leishmania infantum (Kinetoplastida: Trypanosomatidae).

    PubMed

    Rodrigues, Ana Caroline Moura; Melo, Luciana Magalhães; Magalhães, Rafaela Damasceno; de Moraes, Nélio Batista; de Souza Júnior, Antônio Domingos; Bevilaqua, Claudia Maria Leal

    2016-04-15

    Visceral leishmaniasis (VL) in Brazil is caused by the protozoan Leishmania infantum. This parasite is transmitted by the bite of a female sand fly. The most important sand fly species in VL transmission is Lutzomyia longipalpis. In Fortaleza, the capital of Ceará State, Brazil, the simultaneous occurrence of Lutzomyia migonei and L. longipalpis was detected in localities where VL transmission is observed. The purpose of this study was to determine conclusively if L. migonei can be found naturally infected with L. infantum in key focus in Fortaleza. Using a CDC traps we performed phlebotomine capture during one year. External morphological features and qPCR targeting species-specific gene sequences of Lutzomyia species were used to identify the female phlebotomine sand flies. The molecular identification of the Leishmania species was performed using qPCR targeting species-specific gene sequences of L. infantum and Leishmania braziliensis. The males L. migonei abundance was higher in the rainy season. Humidity and rainfall positively correlated with males L. migonei abundance, while temperature showed a negative correlation. The correlation between the density of L. migonei female with rainfall, relative air humidity, and temperature were not statistically significant. According to the molecular data produced by qPCR amplifications, three positive sand flies were identified as L. longipalpis, and one was identified as L. migonei. The infection rate was 0.35% and 0.18%, respectively. The parasite load was 32,492±2572 L. infantum in L. migonei while the L. longipalpis had parasite loads between 2,444,964.6±116,000 and 6,287,130±124,277. Our findings confirm L. migonei as a potential vector of VL in Fortaleza at a molecular level. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Whole Genome Sequencing and Multiplex qPCR Methods to Identify Campylobacter jejuni Encoding cst-II or cst-III Sialyltransferase

    PubMed Central

    Neal-McKinney, Jason M.; Liu, Kun C.; Jinneman, Karen C.; Wu, Wen-Hsin; Rice, Daniel H.

    2018-01-01

    Campylobacter jejuni causes more than 2 million cases of gastroenteritis annually in the United States, and is also linked to the autoimmune sequelae Guillan–Barre syndrome (GBS). GBS often results in flaccid paralysis, as the myelin sheaths of nerve cells are degraded by the adaptive immune response. Certain strains of C. jejuni modify their lipooligosaccharide (LOS) with the addition of neuraminic acid, resulting in LOS moieties that are structurally similar to gangliosides present on nerve cells. This can trigger GBS in a susceptible host, as antibodies generated against C. jejuni can cross-react with gangliosides, leading to demyelination of nerves and a loss of signal transduction. The goal of this study was to develop a quantitative PCR (qPCR) method and use whole genome sequencing data to detect the Campylobacter sialyltransferase (cst) genes responsible for the addition of neuraminic acid to LOS. The qPCR method was used to screen a library of 89 C. jejuni field samples collected by the Food and Drug Administration Pacific Northwest Lab (PNL) as well as clinical isolates transferred to PNL. In silico analysis was used to screen 827 C. jejuni genomes in the FDA GenomeTrakr SRA database. The results indicate that a majority of C. jejuni strains could produce LOS with ganglioside mimicry, as 43.8% of PNL isolates and 46.9% of the GenomeTrakr isolates lacked the cst genes. The methods described in this study can be used by public health laboratories to rapidly determine whether a C. jejuni isolate has the potential to induce GBS. Based on these results, a majority of C. jejuni in the PNL collection and submitted to GenomeTrakr have the potential to produce LOS that mimics human gangliosides. PMID:29615986

  15. Whole Genome Sequencing and Multiplex qPCR Methods to Identify Campylobacter jejuni Encoding cst-II or cst-III Sialyltransferase.

    PubMed

    Neal-McKinney, Jason M; Liu, Kun C; Jinneman, Karen C; Wu, Wen-Hsin; Rice, Daniel H

    2018-01-01

    Campylobacter jejuni causes more than 2 million cases of gastroenteritis annually in the United States, and is also linked to the autoimmune sequelae Guillan-Barre syndrome (GBS). GBS often results in flaccid paralysis, as the myelin sheaths of nerve cells are degraded by the adaptive immune response. Certain strains of C. jejuni modify their lipooligosaccharide (LOS) with the addition of neuraminic acid, resulting in LOS moieties that are structurally similar to gangliosides present on nerve cells. This can trigger GBS in a susceptible host, as antibodies generated against C. jejuni can cross-react with gangliosides, leading to demyelination of nerves and a loss of signal transduction. The goal of this study was to develop a quantitative PCR (qPCR) method and use whole genome sequencing data to detect the Campylobacter sialyltransferase ( cst ) genes responsible for the addition of neuraminic acid to LOS. The qPCR method was used to screen a library of 89 C. jejuni field samples collected by the Food and Drug Administration Pacific Northwest Lab (PNL) as well as clinical isolates transferred to PNL. In silico analysis was used to screen 827 C. jejuni genomes in the FDA GenomeTrakr SRA database. The results indicate that a majority of C. jejuni strains could produce LOS with ganglioside mimicry, as 43.8% of PNL isolates and 46.9% of the GenomeTrakr isolates lacked the cst genes. The methods described in this study can be used by public health laboratories to rapidly determine whether a C. jejuni isolate has the potential to induce GBS. Based on these results, a majority of C. jejuni in the PNL collection and submitted to GenomeTrakr have the potential to produce LOS that mimics human gangliosides.

  16. Dietary Selenium Levels Affect Selenoprotein Expression and Support the Interferon-γ and IL-6 Immune Response Pathways in Mice

    PubMed Central

    Tsuji, Petra A.; Carlson, Bradley A.; Anderson, Christine B.; Seifried, Harold E.; Hatfield, Dolph L.; Howard, Michael T.

    2015-01-01

    Selenium is an essential element that is required to support a number of cellular functions and biochemical pathways. The objective of this study was to examine the effects of reduced dietary selenium levels on gene expression to assess changes in expression of non-selenoprotein genes that may contribute to the physiological consequences of selenium deficiency. Mice were fed diets that were either deficient in selenium or supplemented with selenium in the form of sodium selenite for six weeks. Differences in liver mRNA expression and translation were measured using a combination of ribosome profiling, RNA-Seq, microarrays, and qPCR. Expression levels and translation of mRNAs encoding stress-related selenoproteins were shown to be up-regulated by increased selenium status, as were genes involved in inflammation and response to interferon-γ. Changes in serum cytokine levels were measured which confirmed that interferon-γ, as well as IL-6, were increased in selenium adequate mice. Finally, microarray and qPCR analysis of lung tissue demonstrated that the selenium effects on immune function are not limited to liver. These data are consistent with previous reports indicating that adequate selenium levels can support beneficial immune responses, and further identify the IL-6 and interferon-γ pathways as being responsive to dietary selenium intake. PMID:26258789

  17. TCDD influences reservoir of antibiotic resistance genes in murine gut microbiome.

    PubMed

    Stedtfeld, Robert D; Stedtfeld, Tiffany M; Fader, Kelly A; Williams, Maggie R; Bhaduri, Prianca; Quensen, John; Zacharewski, Timothy R; Tiedje, James M; Hashsham, Syed A

    2017-05-01

    Dysbiosis of the gut microbiome via antibiotics, changes in diet and infection can select for bacterial groups that more frequently harbor antimicrobial resistance genes (ARGs) and mobile genetic elements (MGEs). However, the impact of environmental toxicants on the reservoir of ARGs in the gut microbiome has received less attention. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a potent aryl hydrocarbon receptor (AhR) agonist with multiple toxic health effects including immune dysfunction. The selective pressure of TCDD on the abundance of ARG and MGE-harboring gut populations was examined using C57BL/6 mice exposed to 0-30 μg/kg TCDD for 28 and 92 days with the latter having a 30-day recovery period. DNA extracted from temporally collected fecal pellets was characterized using a qPCR array with 384 assays targeting ARGs and MGEs. Fourteen genes, typically observed in Enterobacteriaceae, increased significantly within 8 days of initial dosing, persisted throughout the treatment period, and remained induced 30 days post dosing. A qPCR primer set targeting Enterobacteriaceae also showed 10- to 100-fold higher abundance in TCDD-treated groups, which was further verified using metagenomics. Results show a bloom of ARG-harboring bacterial groups in the gut due to a xenobiotic compound that is not a metal, biocide or antimicrobial. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. A Comparison of Anammox Bacterial Abundance and Community Structures in Three Different Emerged Plants-Related Sediments.

    PubMed

    Chu, Jinyu; Zhang, Jinping; Zhou, Xiaohong; Liu, Biao; Li, Yimin

    2015-09-01

    Quantitative polymerase chain reaction (qPCR) assays and 16S rRNA gene clone libraries were used to document the abundance, diversity and community structure of anaerobic ammonia-oxidising (anammox) bacteria in the rhizosphere and non-rhizosphere sediments of three emergent macrophyte species (Iris pseudacorus, Thalia dealbata and Typha orientalis). The qPCR results confirmed the existence of anammox bacteria (AMX) with observed log number of gene copies per dry gram sediment ranging from 5.00 to 6.78. AMX was more abundant in T. orientalis-associated sediments than in the other two plant species. The I. pseudacorus- and T. orientalis-associated sediments had higher Shannon diversity values, indicating higher AMX diversity in these sediments. Based on the 16S rRNA gene, Candidatus 'Brocadia', Candidatus 'Kuenenia', Candidatus 'Jettenia' and new clusters were observed with the predominant Candidatus 'Kuenenia' cluster. The I. pseudacorus-associated sediments contained all the sequences of the C. 'Jettenia' cluster. Sequences obtained from T. orientalis-associated sediments contributed more than 90 % sequences in the new cluster, whereas none was found from I. pseudacorus. The new cluster was distantly related to known sequences; thus, this cluster was grouped outside the known clusters, indicating that the new cluster may be a new Planctomycetales genus. Further studies should be undertaken to confirm this finding.

  19. Sulfur-oxidizing bacterial populations within cyanobacterial dominated coral disease lesions.

    PubMed

    Bourne, David G; van der Zee, Marc J J; Botté, Emmanuelle S; Sato, Yui

    2013-08-01

    This study investigated the diversity and quantitative shifts of sulfur-oxidizing bacteria (SOB) during the onset of black band disease (BBD) in corals using quantitative PCR (qPCR) and cloning approaches targeting the soxB gene, involved in sulfur oxidation. Four Montipora sp. coral colonies identified with lesions previously termed cyanobacterial patches (CP) (comprising microbial communities different from those of BBD lesions), was monitored in situ as CP developed into BBD. The overall abundance of SOB in both CP and BBD lesions were very low and near the detection limit of the qPCR assay, although consistently indicated that SOB populations decreased as the lesions transitioned from CP to BBD. Phylogenetic assessment of retrieved soxB genes showed that SOB in both CP and BBD lesions were dominated by one sequence type, representing > 70% of all soxB gene sequences and affiliated with members of the Rhodobacteraceae within the α-Proteobacteria. This study represents the first assessment targeting SOB within BBD lesions and clearly shows that SOB are not highly diverse or abundant in this complex microbial mat. The lack of oxidation of reduced sulfur compounds by SOB likely aids the accumulation of high levels of sulfide at the base of the BBD mat, a compound contributing to the pathogenicity of BBD lesions. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.

  20. Chitinase mRNA Levels Determined by QPCR in Crab-Eating Monkey (Macaca fascicularis) Tissues: Species-Specific Expression of Acidic Mammalian Chitinase and Chitotriosidase.

    PubMed

    Uehara, Maiko; Tabata, Eri; Ishii, Kazuhiro; Sawa, Akira; Ohno, Misa; Sakaguchi, Masayoshi; Matoska, Vaclav; Bauer, Peter O; Oyama, Fumitaka

    2018-05-09

    Mice and humans express two active chitinases: acidic mammalian chitinase (AMCase) and chitotriosidase (CHIT1). Both chitinases are thought to play important roles in specific pathophysiological conditions. The crab-eating monkey ( Macaca fascicularis ) is one of the most frequently used nonhuman primate models in basic and applied biomedical research. Here, we performed gene expression analysis of two chitinases in normal crab-eating monkey tissues by way of quantitative real-time polymerase chain reaction (qPCR) using a single standard DNA molecule. Levels of AMCase and CHIT1 messenger RNAs (mRNAs) were highest in the stomach and the lung, respectively, when compared to other tissues. Comparative gene expression analysis of mouse, monkey, and human using monkey⁻mouse⁻human hybrid standard DNA showed that the AMCase mRNA levels were exceptionally high in mouse and monkey stomachs while very low in the human stomach. As for the CHIT1 mRNA, we detected higher levels in the monkey lung when compared with those of mouse and human. The differences of mRNA expression between the species in the stomach tissues were basically reflecting the levels of the chitinolytic activities. These results indicate that gene expression of AMCase and CHIT1 differs between mammalian species and requiring special attention in handling data in chitinase-related studies in particular organisms.

  1. Species level identification of coagulase negative Staphylococcus spp. from buffalo using matrix-assisted laser desorption ionization-time of flight mass spectrometry and cydB real-time quantitative PCR.

    PubMed

    Pizauro, Lucas J L; de Almeida, Camila C; Soltes, Glenn A; Slavic, Durda; Rossi-Junior, Oswaldo D; de Ávila, Fernando A; Zafalon, Luiz F; MacInnes, Janet I

    2017-05-01

    Incorrect identification of Staphylococcus spp. can have serious clinical and zoonotic repercussions. Accordingly, the aim of this study was to determine if matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and/or cydB real- time quantitative PCR (qPCR) could be used to accurately identify coagulase negative Staphylococcus spp. (CoNS) obtained from buffalo milk and milking environment samples. Seventy-five of 84 CoNS isolates could be identified to the species level (score value >1.99) using MALDI-TOF MS. However, as determined by cytochrome d ubiquinol oxidase subunit II (cydB) qPCR and by 16S RNA and cydB gene sequencing, 10S. agnetis strains were wrongly identified as S. hyicus by MALDI-TOF MS. In addition, 9 isolates identified by MALDI-TOF only to the genus level (score values between 1.70 and 1.99) could be identified to species by cydB qPCR. Our findings suggest that MALDI-TOF MS is a reliable method for rapid identification of S. chromogenes and S. epidermidis (species of interest both in human and veterinary medicine) and may be able to correctly identify other Staphylococcus spp. However, at present not all Staphylococcus spp. found in buffalo milk can be accurately identified by MALDI-TOF MS and for these organisms, the cydB qPCR developed in the current study may provide a reliable alternative method for rapid identification of CoNS species. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Broadly targeted multiprobe QPCR for detection of coronaviruses: Coronavirus is common among mallard ducks (Anas platyrhynchos).

    PubMed

    Muradrasoli, Shaman; Mohamed, Nahla; Hornyák, Akos; Fohlman, Jan; Olsen, Björn; Belák, Sándor; Blomberg, Jonas

    2009-08-01

    Coronaviruses (CoVs) can cause trivial or fatal disease in humans and in animals. Detection methods for a wide range of CoVs are needed, to understand viral evolution, host range, transmission and maintenance in reservoirs. A new concept, "Multiprobe QPCR", which uses a balanced mixture of competing discrete non- or moderately degenerated nuclease degradable (TaqMan) probes was employed. It provides a broadly targeted and rational single tube real-time reverse transcription PCR ("NQPCR") for the generic detection and discovery of CoV. Degenerate primers, previously published, and the new probes, were from a conserved stretch of open reading frame 1b, encoding the replicase. This multiprobe design reduced the degree of probe degeneration, which otherwise decreases the sensitivity, and allowed a preliminary classification of the amplified sequence directly from the QPCR trace. The split probe strategy allowed detection of down to 10 viral nucleic acid equivalents of CoV from all known CoV groups. Evaluation was with reference CoV strains, synthetic targets, human respiratory samples and avian fecal samples. Infectious-Bronchitis-Virus (IBV)-related variants were found in 7 of 35 sample pools, from 100 wild mallards (Anas platyrhynchos). Ducks may spread and harbour CoVs. NQPCR can detect a wide range of CoVs, as illustrated for humans and ducks.

  3. Comparison of propidium monoazide-quantitative PCR and reverse transcription quantitative PCR for viability detection of fresh Cryptosporidium oocysts following disinfection and after long-term storage in water samples

    EPA Science Inventory

    Purified oocysts of Cryptosporidium parvum were used to evaluate applicability of two quantitative PCR (qPCR) viability detection methods in raw surface water and disinfection treated water. Propidium monoazide-qPCR targeting hsp70 gene was compared to reverse transcription (RT)-...

  4. Functional blaKPC-2 sequences are present in United States beef cattle feces regardless of antibiotic use

    USDA-ARS?s Scientific Manuscript database

    Recently, using quantitative PCR (qPCR) we detected blaKPC-2 in metagenomic DNA (mgDNA) prepared from the feces of 36 lots beef cattle "raised without antibiotics" (RWA) and 36 lots raised "conventionally" (CONV). Since a small internal fragment of the blaKPC-2 gene was targeted we sought to confirm...

  5. A rapid Q-PCR titration protocol for adenovirus and helper-dependent adenovirus vectors that produces biologically relevant results

    PubMed Central

    Gallaher, Sean D.; Berk, Arnold J.

    2013-01-01

    Adenoviruses are employed in the study of cellular processes and as expression vectors used in gene therapy. The success and reproducibility of these studies is dependent in part on having accurate and meaningful titers of replication competent and helper-dependent adenovirus stocks, which is problematic due to the use of varied and divergent titration protocols. Physical titration methods, which quantify the total number of viral particles, are used by many, but are poor at estimating activity. Biological titration methods, such as plaque assays, are more biologically relevant, but are time consuming and not applicable to helper-dependent gene therapy vectors. To address this, a protocol was developed called “infectious genome titration” in which viral DNA is isolated from the nuclei of cells ~3 h post-infection, and then quantified by Q-PCR. This approach ensures that only biologically active virions are counted as part of the titer determination. This approach is rapid, robust, sensitive, reproducible, and applicable to all forms of adenovirus. Unlike other Q-PCR-based methods, titers determined by this protocol are well correlated with biological activity. PMID:23624118

  6. Molecular identification and real-time quantitative PCR (qPCR) for rapid detection of Thelohanellus kitauei, a Myxozoan parasite causing intestinal giant cystic disease in the Israel carp.

    PubMed

    Seo, Jung Soo; Jeon, Eun Ji; Kim, Moo Sang; Woo, Sung Ho; Kim, Jin Do; Jung, Sung Hee; Park, Myoung Ae; Jee, Bo Young; Kim, Jin Woo; Kim, Yi-Cheong; Lee, Eun Hye

    2012-06-01

    Intestinal giant-cystic disease (IGCD) of the Israel carp (Cyprinus carpio nudus) has been recognized as one of the most serious diseases afflicting inland farmed fish in the Republic of Korea, and Thelohanellus kitauei has been identified as the causative agent of the disease. Until now, studies concerning IGCD caused by T. kitauei in the Israel carp have been limited to morphological and histopathological examinations. However, these types of diagnostic examinations are relatively time-consuming, and the infection frequently cannot be detected in its early stages. In this study, we cloned the full-length 18S rRNA gene of T. kitauei isolated from diseased Israel carps, and carried out molecular identification by comparing the sequence with those of other myxosporeans. Moreover, conventional PCR and real-time quantitative PCR (qPCR) using oligonucleotide primers for the amplification of 18S rRNA gene fragment were established for further use as methods for rapid diagnosis of IGCD. Our results demonstrated that both the conventional PCR and real-time quantitative PCR systems applied herein are effective for rapid detection of T. kitauei spores in fish tissues and environmental water.

  7. Obesity, starch digestion and amylase: association between copy number variants at human salivary (AMY1) and pancreatic (AMY2) amylase genes

    PubMed Central

    Carpenter, Danielle; Dhar, Sugandha; Mitchell, Laura M.; Fu, Beiyuan; Tyson, Jess; Shwan, Nzar A.A.; Yang, Fengtang; Thomas, Mark G.; Armour, John A.L.

    2015-01-01

    The human salivary amylase genes display extensive copy number variation (CNV), and recent work has implicated this variation in adaptation to starch-rich diets, and in association with body mass index. In this work, we use paralogue ratio tests, microsatellite analysis, read depth and fibre-FISH to demonstrate that human amylase CNV is not a smooth continuum, but is instead partitioned into distinct haplotype classes. There is a fundamental structural distinction between haplotypes containing odd or even numbers of AMY1 gene units, in turn coupled to CNV in pancreatic amylase genes AMY2A and AMY2B. Most haplotypes have one copy each of AMY2A and AMY2B and contain an odd number of copies of AMY1; consequently, most individuals have an even total number of AMY1. In contrast, haplotypes carrying an even number of AMY1 genes have rearrangements leading to CNVs of AMY2A/AMY2B. Read-depth and experimental data show that different populations harbour different proportions of these basic haplotype classes. In Europeans, the copy numbers of AMY1 and AMY2A are correlated, so that phenotypic associations caused by variation in pancreatic amylase copy number could be detected indirectly as weak association with AMY1 copy number. We show that the quantitative polymerase chain reaction (qPCR) assay previously applied to the high-throughput measurement of AMY1 copy number is less accurate than the measures we use and that qPCR data in other studies have been further compromised by systematic miscalibration. Our results uncover new patterns in human amylase variation and imply a potential role for AMY2 CNV in functional associations. PMID:25788522

  8. Obesity, starch digestion and amylase: association between copy number variants at human salivary (AMY1) and pancreatic (AMY2) amylase genes.

    PubMed

    Carpenter, Danielle; Dhar, Sugandha; Mitchell, Laura M; Fu, Beiyuan; Tyson, Jess; Shwan, Nzar A A; Yang, Fengtang; Thomas, Mark G; Armour, John A L

    2015-06-15

    The human salivary amylase genes display extensive copy number variation (CNV), and recent work has implicated this variation in adaptation to starch-rich diets, and in association with body mass index. In this work, we use paralogue ratio tests, microsatellite analysis, read depth and fibre-FISH to demonstrate that human amylase CNV is not a smooth continuum, but is instead partitioned into distinct haplotype classes. There is a fundamental structural distinction between haplotypes containing odd or even numbers of AMY1 gene units, in turn coupled to CNV in pancreatic amylase genes AMY2A and AMY2B. Most haplotypes have one copy each of AMY2A and AMY2B and contain an odd number of copies of AMY1; consequently, most individuals have an even total number of AMY1. In contrast, haplotypes carrying an even number of AMY1 genes have rearrangements leading to CNVs of AMY2A/AMY2B. Read-depth and experimental data show that different populations harbour different proportions of these basic haplotype classes. In Europeans, the copy numbers of AMY1 and AMY2A are correlated, so that phenotypic associations caused by variation in pancreatic amylase copy number could be detected indirectly as weak association with AMY1 copy number. We show that the quantitative polymerase chain reaction (qPCR) assay previously applied to the high-throughput measurement of AMY1 copy number is less accurate than the measures we use and that qPCR data in other studies have been further compromised by systematic miscalibration. Our results uncover new patterns in human amylase variation and imply a potential role for AMY2 CNV in functional associations. © The Author 2015. Published by Oxford University Press.

  9. Transcriptome Profiling of a Multiple Recurrent Muscle-Invasive Urothelial Carcinoma of the Bladder by Deep Sequencing

    PubMed Central

    Zhang, Shufang; Liu, Yanxuan; Liu, Zhenxiang; Zhang, Chong; Cao, Hui; Ye, Yongqing; Wang, Shunlan; Zhang, Ying'ai; Xiao, Sifang; Yang, Peng; Li, Jindong; Bai, Zhiming

    2014-01-01

    Urothelial carcinoma of the bladder (UCB) is one of the commonly diagnosed cancers in the world. The UCB has the highest rate of recurrence of any malignancy. A genome-wide screening of transcriptome dysregulation between cancer and normal tissue would provide insight into the molecular basis of UCB recurrence and is a key step to discovering biomarkers for diagnosis and therapeutic targets. Compared with microarray technology, which is commonly used to identify expression level changes, the recently developed RNA-seq technique has the ability to detect other abnormal regulations in the cancer transcriptome, such as alternative splicing. In this study, we performed high-throughput transcriptome sequencing at ∼50× coverage on a recurrent muscle-invasive cisplatin-resistance UCB tissue and the adjacent non-tumor tissue. The results revealed cancer-specific differentially expressed genes between the tumor and non-tumor tissue enriched in the cell adhesion molecules, focal adhesion and ECM-receptor interaction pathway. Five dysregulated genes, including CDH1, VEGFA, PTPRF, CLDN7, and MMP2 were confirmed by Real time qPCR in the sequencing samples and the additional eleven samples. Our data revealed that more than three hundred genes showed differential splicing patterns between tumor tissue and non-tumor tissue. Among these genes, we filtered 24 cancer-associated alternative splicing genes with differential exon usage. The findings from RNA-Seq were validated by Real time qPCR for CD44, PDGFA, NUMB, and LPHN2. This study provides a comprehensive survey of the UCB transcriptome, which provides better insight into the complexity of regulatory changes during recurrence and metastasis. PMID:24622401

  10. Genomic profiling of human penile carcinoma predicts worse prognosis and survival.

    PubMed

    Busso-Lopes, Ariane F; Marchi, Fábio A; Kuasne, Hellen; Scapulatempo-Neto, Cristovam; Trindade-Filho, José Carlos S; de Jesus, Carlos Márcio N; Lopes, Ademar; Guimarães, Gustavo C; Rogatto, Silvia R

    2015-02-01

    The molecular mechanisms underlying penile carcinoma are still poorly understood, and the detection of genetic markers would be of great benefit for these patients. In this study, we assessed the genomic profile aiming at identifying potential prognostic biomarkers in penile carcinoma. Globally, 46 penile carcinoma samples were considered to evaluate DNA copy-number alterations via array comparative genomic hybridization (aCGH) combined with human papillomavirus (HPV) genotyping. Specific genes were investigated by using qPCR, FISH, and RT-qPCR. Genomic alterations mapped at 3p and 8p were related to worse prognostic features, including advanced T and clinical stage, recurrence and death from the disease. Losses of 3p21.1-p14.3 and gains of 3q25.31-q29 were associated with reduced cancer-specific and disease-free survival. Genomic alterations detected for chromosome 3 (LAMP3, PPARG, TNFSF10 genes) and 8 (DLC1) were evaluated by qPCR. DLC1 and PPARG losses were associated with poor prognosis characteristics. Losses of DLC1 were an independent risk factor for recurrence on multivariate analysis. The gene-expression analysis showed downexpression of DLC1 and PPARG and overexpression of LAMP3 and TNFSF10 genes. Chromosome Y losses and MYC gene (8q24) gains were confirmed by FISH. HPV infection was detected in 34.8% of the samples, and 19 differential genomic regions were obtained related to viral status. At first time, we described recurrent copy-number alterations and its potential prognostic value in penile carcinomas. We also showed a specific genomic profile according to HPV infection, supporting the hypothesis that penile tumors present distinct etiologies according to virus status. ©2014 American Association for Cancer Research.

  11. Application of Whole Exome Sequencing in Six Families with an Initial Diagnosis of Autosomal Dominant Retinitis Pigmentosa: Lessons Learned

    PubMed Central

    Fernandez-San Jose, Patricia; Liu, Yichuan; March, Michael; Pellegrino, Renata; Golhar, Ryan; Corton, Marta; Blanco-Kelly, Fiona; López-Molina, Maria Isabel; García-Sandoval, Blanca; Guo, Yiran; Tian, Lifeng; Liu, Xuanzhu; Guan, Liping; Zhang, Jianguo; Keating, Brendan; Xu, Xun

    2015-01-01

    This study aimed to identify the genetics underlying dominant forms of inherited retinal dystrophies using whole exome sequencing (WES) in six families extensively screened for known mutations or genes. Thirty-eight individuals were subjected to WES. Causative variants were searched among single nucleotide variants (SNVs) and insertion/deletion variants (indels) and whenever no potential candidate emerged, copy number variant (CNV) analysis was performed. Variants or regions harboring a candidate variant were prioritized and segregation of the variant with the disease was further assessed using Sanger sequencing in case of SNVs and indels, and quantitative PCR (qPCR) for CNVs. SNV and indel analysis led to the identification of a previously reported mutation in PRPH2. Two additional mutations linked to different forms of retinal dystrophies were identified in two families: a known frameshift deletion in RPGR, a gene responsible for X-linked retinitis pigmentosa and p.Ser163Arg in C1QTNF5 associated with Late-Onset Retinal Degeneration. A novel heterozygous deletion spanning the entire region of PRPF31 was also identified in the affected members of a fourth family, which was confirmed with qPCR. This study allowed the identification of the genetic cause of the retinal dystrophy and the establishment of a correct diagnosis in four families, including a large heterozygous deletion in PRPF31, typically considered one of the pitfalls of this method. Since all findings in this study are restricted to known genes, we propose that targeted sequencing using gene-panel is an optimal first approach for the genetic screening and that once known genetic causes are ruled out, WES might be used to uncover new genes involved in inherited retinal dystrophies. PMID:26197217

  12. High-throughput profiling of antibiotic resistance genes in drinking water treatment plants and distribution systems.

    PubMed

    Xu, Like; Ouyang, Weiying; Qian, Yanyun; Su, Chao; Su, Jianqiang; Chen, Hong

    2016-06-01

    Antibiotic resistance genes (ARGs) are present in surface water and often cannot be completely eliminated by drinking water treatment plants (DWTPs). Improper elimination of the ARG-harboring microorganisms contaminates the water supply and would lead to animal and human disease. Therefore, it is of utmost importance to determine the most effective ways by which DWTPs can eliminate ARGs. Here, we tested water samples from two DWTPs and distribution systems and detected the presence of 285 ARGs, 8 transposases, and intI-1 by utilizing high-throughput qPCR. The prevalence of ARGs differed in the two DWTPs, one of which employed conventional water treatments while the other had advanced treatment processes. The relative abundance of ARGs increased significantly after the treatment with biological activated carbon (BAC), raising the number of detected ARGs from 76 to 150. Furthermore, the final chlorination step enhanced the relative abundance of ARGs in the finished water generated from both DWTPs. The total enrichment of ARGs varied from 6.4-to 109.2-fold in tap water compared to finished water, among which beta-lactam resistance genes displayed the highest enrichment. Six transposase genes were detected in tap water samples, with the transposase gene TnpA-04 showing the greatest enrichment (up to 124.9-fold). We observed significant positive correlations between ARGs and mobile genetic elements (MGEs) during the distribution systems, indicating that transposases and intI-1 may contribute to antibiotic resistance in drinking water. To our knowledge, this is the first study to investigate the diversity and abundance of ARGs in drinking water treatment systems utilizing high-throughput qPCR techniques in China. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Nitrate reduction mechanisms and rates in an unconfined eogenetic karst aquifer in two sites with different redox potential

    NASA Astrophysics Data System (ADS)

    Henson, W. R.; Huang, L.; Graham, W. D.; Ogram, A.

    2017-05-01

    This study integrates push-pull tracer tests (PPTT) with microbial characterization of extracted water via quantitative polymerase chain reaction (qPCR) and reverse transcriptase qPCR (RT-qPCR) of selected functional N transformation genes to quantify nitrate reduction mechanisms and rates in sites with different redox potential in a karst aquifer. PPTT treatments with nitrate (AN) and nitrate-fumarate (ANC) were executed in two wells representing anoxic and oxic geochemical end-members. Oxic aquifer zero-order nitrate loss rates (mmol L-1 h-1) were similar for AN and ANC treatment, ranging from 0.03 ± 0.01 to 0.05 ± 0.01. Anoxic aquifer zero-order nitrate loss rates ranged from 0.03 ± 0.02 (AN) to 0.13 ± 0.02 (ANC). Microbial characterization indicates mechanisms influencing these rates were dissimilatory nitrate reduction to ammonium (DNRA) at the anoxic site with AN treatment, assimilatory reduction of nitrate to ammonium (ANRA) with ANC treatment in the water column at both sites, and additional documented nitrate reduction that occurred in unsampled biofilms. With carbon treatment, total numbers of microbes (16S rRNA genes) significantly increased (fourteenfold to thirtyfold), supporting stimulated growth with resulting ANRA. Decreased DNRA gene concentrations (nrfA DNA) and increased DNRA activity ratio (nrfA-cDNA/DNA) supported the assertion that DNRA occurred in the anoxic zone with AN and ANC treatment. Furthermore, decreased DNRA gene copy numbers at the anoxic site with ANC treatment suggests that DNRA microbes in the anoxic site are chemolithoautotrophic. Increased RT-qPCR denitrification gene expression (nirK and nirS) was not observed in water samples, supporting that any observed NO3-N loss due to denitrification may be occurring in unsampled microbial biofilms.

  14. Transcriptome Analysis of Genes Involved in Lipid Biosynthesis in the Developing Embryo of Pecan (Carya illinoinensis).

    PubMed

    Huang, Ruimin; Huang, Youjun; Sun, Zhichao; Huang, Jianqin; Wang, Zhengjia

    2017-05-24

    Pecan (Carya illinoinensis) is an important woody tree species because of the high content of healthy oil in its nut. Thus far, the pathways and key genes related to oil biosynthesis in developing pecan seeds remain largely unclear. Our analyses revealed that mature pecan embryo accumulated more than 80% oil, in which 90% was unsaturated fatty acids with abundant oleic acid. RNA sequencing generated 84,643 unigenes in three cDNA libraries prepared from pecan embryos collected at 105, 120, and 165 days after flowering (DAF). We identified 153 unigenes associated with lipid biosynthesis, including 107 unigenes for fatty acid biosynthesis, 34 for triacylglycerol biosynthesis, 7 for oil bodies, and 5 for transcription factors involved in oil synthesis. The genes associated with fatty acid synthesis were the most abundantly expressed genes at 120 DAF. Additionally, the biosynthesis of oil began to increase while crude fat contents increased from 16.61 to 74.45% (165 DAF). We identified four SAD, two FAD2, one FAD6, two FAD7, and two FAD8 unigenes responsible for unsaturated fatty acid biosynthesis. However, FAD3 homologues were not detected. Consequently, we inferred that the linolenic acid in developing pecan embryos is generated by FAD7 and FAD8 in plastids rather than FAD3 in endoplasmic reticula. During pecan embryo development, different unigenes are expressed for plastidial and cytosolic glycolysis. Plastidial glycolysis is more relevant to lipid synthesis than cytosolic glycolysis. The 18 most important genes associated with lipid biosynthesis were evaluated in five stages of developing embryos using quantitative PCR (qPCR). The qPCR data were well consistent with their expression in transcriptomic analyses. Our data would be important for the metabolic engineering of pecans to increase oil contents and modify fatty acid composition.

  15. The SGBS cell strain as a model for the in vitro study of obesity and cancer.

    PubMed

    Allott, Emma H; Oliver, Elizabeth; Lysaght, Joanne; Gray, Steven G; Reynolds, John V; Roche, Helen M; Pidgeon, Graham P

    2012-10-01

    The murine adipocyte cell line 3T3-L1 is well characterised and used widely, while the human pre-adipocyte cell strain, Simpson-Golabi-Behmel Syndrome (SGBS), requires validation for use in human studies. Obesity is currently estimated to account for up to 41 % of the worldwide cancer burden. A human in vitro model system is required to elucidate the molecular mechanisms for this poorly understood association. This work investigates the relevance of the SGBS cell strain for obesity and cancer research in humans. Pre-adipocyte 3T3-L1 and SGBS were differentiated according to standard protocols. Morphology was assessed by Oil Red O staining. Adipocyte-specific gene expression was measured by qPCR and biochemical function was assessed by glycerol-3-phosphate dehydrogenase (GPDH) enzyme activity. Differential gene expression in oesophageal adenocarcinoma cell line OE33 following co-culture with SGBS or primary omental human adipocytes was investigated using Human Cancer Profiler qPCR arrays. During the process of differentiation, SGBS expressed higher levels of adipocyte-specific transcripts and fully differentiated SGBS expressed more similar morphology, transcript levels and biochemical function to primary omental adipocytes, relative to 3T3-L1. Co-culture with SGBS or primary omental adipocytes induced differential expression of genes involved in adhesion (ITGB3), angiogenesis (IGF1, TEK, TNF, VEGFA), apoptosis (GZMA, TERT) and invasion and metastasis (MMP9, TIMP3) in OE33 tumour cells. Comparable adipocyte-specific gene expression, biochemical function and a shared induced gene signature in co-cultured OE33 cells indicate that SGBS is a relevant in vitro model for obesity and cancer research in humans.

  16. Correlation of quantitative PCR for a poultry-specific brevibacterium marker gene with bacterial and chemical indicators of water pollution in a watershed impacted by land application of poultry litter.

    PubMed

    Weidhaas, Jennifer L; Macbeth, Tamzen W; Olsen, Roger L; Harwood, Valerie J

    2011-03-01

    The impact of fecal contamination from human and agricultural animal waste on water quality is a major public health concern. Identification of the dominant source(s) of fecal pollution in a watershed is necessary for assessing the safety of recreational water and protecting water resources. A field study was conducted using quantitative PCR (qPCR) for the 16S rRNA gene of Brevibacterium sp. LA35 to track feces-contaminated poultry litter in environmental samples. Based on sensitivity and specificity characteristics of the qPCR method, the Bayesian conditional probability that detection of the LA35 marker gene in a water sample represented a true-positive result was 93%. The marker's covariance with fecal indicator bacteria (FIB) and metals associated with poultry litter was also assessed in litter, runoff, surface water, and groundwater samples. LA35 was detected in water and soil samples collected throughout the watershed, and its concentration covaried with concentrations of Escherichia coli, enterococci, As, Cu, P, and Zn. Significantly greater concentrations of FIB, As, Cu, P, and Zn were observed in edge-of-field runoff samples in which LA35 was detected, compared to samples in which it was not detected. Furthermore, As, Cu, P, and Zn concentrations covaried in environmental samples in which LA35 was detected and typically did not in samples in which the marker gene was not detected. The covariance of the poultry-specific LA35 marker gene with these known contaminants from poultry feces provides further evidence that it is a useful tool for assessing the impact of poultry-derived fecal pollution in environmental waters.

  17. Differential induction of antioxidant stilbenoids in hairy roots of Vitis rotundifolia treated with methyl jasmonate and hydrogen peroxide.

    PubMed

    Nopo-Olazabal, Cesar; Condori, Jose; Nopo-Olazabal, Luis; Medina-Bolivar, Fabricio

    2014-01-01

    Stilbenoids are polyphenolic phytoalexins that exhibit potential health applications in humans. Hairy root cultures of muscadine grape (Vitis rotundifolia Michx.) were used to study the biochemical and molecular regulation of stilbenoid biosynthesis upon treatment with 100 μM methyl jasmonate (MeJA) or 10 mM hydrogen peroxide (H2O2) over a 96-h period. Resveratrol, piceid, and ε-viniferin were identified in higher concentrations in the tissue whereas resveratrol was the most abundant stilbenoid in the medium under either treatment. An earlier increase in resveratrol accumulation was observed for the MeJA-treated group showing a maximum at 12 h in the tissue and 18 h in the medium. Furthermore, the antioxidant capacity of extracts from the tissue and medium was determined by the 2,2'-azinobis[3-ethylbenzthiazoline sulfonic acid] (ABTS) and the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays showing correlation with the stilbenoid content. Fourteen candidate reference genes for qPCR were tested under the described experimental conditions and resulted in the selection of 5 reference genes. Quantitative analyses of transcripts for phenylalanine ammonia-lyase (PAL), resveratrol synthase (RS), and two stilbene synthases (STS and STS2) showed the highest RNA level induction at 3 h for both treatments with a higher induction for the MeJA treatment. In contrast, the flavonoid-related chalcone synthase (CHS) transcripts showed induction and a decrease in expression for MeJA and H2O2 treatments, respectively. The observed responses could be related to an oxidative burst triggered by the exposure to abiotic stressor compounds with signaling function such as MeJA and H2O2 which have been previously related to the synthesis of secondary metabolites. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  18. Addressing fluorogenic real-time qPCR inhibition using the novel custom Excel file system 'FocusField2-6GallupqPCRSet-upTool-001' to attain consistently high fidelity qPCR reactions

    PubMed Central

    Ackermann, Mark R.

    2006-01-01

    The purpose of this manuscript is to discuss fluorogenic real-time quantitative polymerase chain reaction (qPCR) inhibition and to introduce/define a novel Microsoft Excel-based file system which provides a way to detect and avoid inhibition, and enables investigators to consistently design dynamically-sound, truly LOG-linear qPCR reactions very quickly. The qPCR problems this invention solves are universal to all qPCR reactions, and it performs all necessary qPCR set-up calculations in about 52 seconds (using a pentium 4 processor) for up to seven qPCR targets and seventy-two samples at a time – calculations that commonly take capable investigators days to finish. We have named this custom Excel-based file system "FocusField2-6GallupqPCRSet-upTool-001" (FF2-6-001 qPCR set-up tool), and are in the process of transforming it into professional qPCR set-up software to be made available in 2007. The current prototype is already fully functional. PMID:17033699

  19. Genome-wide identification and characterization of the NF-Y gene family in grape (vitis vinifera L.).

    PubMed

    Ren, Chong; Zhang, Zhan; Wang, Yi; Li, Shaohua; Liang, Zhenchang

    2016-08-11

    Nuclear factor Y (NF-Y) transcription factor is composed of three distinct subunits: NF-YA, NF-YB and NF-YC. Many members of NF-Y family have been reported to be key regulators in plant development, phytohormone signaling and drought tolerance. However, the function of the NF-Y family is less known in grape (Vitis vinifera L.). A total of 34 grape NF-Y genes that distributed unevenly on grape (V. vinifera) chromosomes were identified in this study. Phylogenetic analysis was performed to predict functional similarities between Arabidopsis thaliana and grape NF-Y genes. Comparison of the structures of grape NF-Y genes (VvNF-Ys) revealed their functional conservation and alteration. Furthermore, we investigated the expression profiles of VvNF-Ys in response to various stresses, phytohormone treatments, and in leaves and grape berries with various sugar contents at different developmental stages. The relationship between VvNF-Y transcript levels and sugar content was examined to select candidates for exogenous sugar treatments. Quantitative real-time PCR (qPCR) indicated that many VvNF-Ys responded to different sugar stimuli with variations in transcript abundance. qPCR and publicly available microarray data suggest that VvNF-Ys exhibit distinct expression patterns in different grape organs and developmental stages, and a number of VvNF-Ys may participate in responses to multiple abiotic and biotic stresses, phytohormone treatments and sugar accumulation or metabolism. In this study, we characterized 34 VvNF-Ys based on their distributions on chromosomes, gene structures, phylogenetic relationship with Arabidopsis NF-Y genes, and their expression patterns. The potential roles of VvNF-Ys in sugar accumulation or metabolism were also investigated. Altogether, the data provide significant insights on VvNF-Ys, and lay foundations for further functional studies of NF-Y genes in grape.

  20. No Control Genes Required: Bayesian Analysis of qRT-PCR Data

    PubMed Central

    Matz, Mikhail V.; Wright, Rachel M.; Scott, James G.

    2013-01-01

    Background Model-based analysis of data from quantitative reverse-transcription PCR (qRT-PCR) is potentially more powerful and versatile than traditional methods. Yet existing model-based approaches cannot properly deal with the higher sampling variances associated with low-abundant targets, nor do they provide a natural way to incorporate assumptions about the stability of control genes directly into the model-fitting process. Results In our method, raw qPCR data are represented as molecule counts, and described using generalized linear mixed models under Poisson-lognormal error. A Markov Chain Monte Carlo (MCMC) algorithm is used to sample from the joint posterior distribution over all model parameters, thereby estimating the effects of all experimental factors on the expression of every gene. The Poisson-based model allows for the correct specification of the mean-variance relationship of the PCR amplification process, and can also glean information from instances of no amplification (zero counts). Our method is very flexible with respect to control genes: any prior knowledge about the expected degree of their stability can be directly incorporated into the model. Yet the method provides sensible answers without such assumptions, or even in the complete absence of control genes. We also present a natural Bayesian analogue of the “classic” analysis, which uses standard data pre-processing steps (logarithmic transformation and multi-gene normalization) but estimates all gene expression changes jointly within a single model. The new methods are considerably more flexible and powerful than the standard delta-delta Ct analysis based on pairwise t-tests. Conclusions Our methodology expands the applicability of the relative-quantification analysis protocol all the way to the lowest-abundance targets, and provides a novel opportunity to analyze qRT-PCR data without making any assumptions concerning target stability. These procedures have been implemented as the MCMC.qpcr package in R. PMID:23977043

Top