Sample records for qrt-pcr rflp method

  1. Human papillomavirus detection and typing using a nested-PCR-RFLP assay.

    PubMed

    Coser, Janaina; Boeira, Thaís da Rocha; Fonseca, André Salvador Kazantzi; Ikuta, Nilo; Lunge, Vagner Ricardo

    2011-01-01

    It is clinically important to detect and type human papillomavirus (HPV) in a sensitive and specific manner. Development of a nested-polymerase chain reaction-restriction fragment length polymorphism (nested-PCR-RFLP) assay to detect and type HPV based on the analysis of L1 gene. Analysis of published DNA sequence of mucosal HPV types to select sequences of new primers. Design of an original nested-PCR assay using the new primers pair selected and classical MY09/11 primers. HPV detection and typing in cervical samples using the nested-PCR-RFLP assay. The nested-PCR-RFLP assay detected and typed HPV in cervical samples. Of the total of 128 clinical samples submitted to simple PCR and nested-PCR for detection of HPV, 37 (28.9%) were positive for the virus by both methods and 25 samples were positive only by nested-PCR (67.5% increase in detection rate compared with single PCR). All HPV positive samples were effectively typed by RFLP assay. The method of nested-PCR proved to be an effective diagnostic tool for HPV detection and typing.

  2. COMPARISON OF TAXONOMIC, COLONY MORPHOTYPE AND PCR-RFLP METHODS TO CHARACTERIZE MICROFUNGAL DIVERSITY

    EPA Science Inventory

    We compared three methods for estimating fungal species diversity in soil samples. A rapid screening method based on gross colony morphological features and color reference standards was compared with traditional fungal taxonomic methods and PCR-RFLP for estimation of ecological ...

  3. Analysis of ELA-DQB exon 2 polymorphism in Argentine Creole horses by PCR-RFLP and PCR-SSCP.

    PubMed

    Villegas-Castagnasso, E E; Díaz, S; Giovambattista, G; Dulout, F N; Peral-García, P

    2003-08-01

    The second exon of equine leucocyte antigen (ELA)-DQB genes was amplified from genomic DNA of 32 Argentine Creole horses by PCR. Amplified DNA was analysed by PCR-restriction fragment length polymorphism (RFLP) and PCR-single-strand conformation polymorphism (SSCP). The PCR-RFLP analysis revealed two HaeIII patterns, four RsaI patterns, five MspI patterns and two HinfI patterns. EcoRI showed no variation in the analysed sample. Additional patterns that did not account for known exon 2 DNA sequences were observed, suggesting the existence of novel ELA-DQB alleles. PCR-SSCP analysis exhibited seven different band patterns, and the number of bands per animal ranged from four to nine. Both methods indicated that at least two DQB genes are present. The presence of more than two alleles in each animal showed that the primers employed in this work are not specific for a unique DQB locus. The improvement of this PCR-RFLP method should provide a simple and rapid technique for an accurate definition of ELA-DQB typing in horses.

  4. Sensitive identification of mycobacterial species using PCR-RFLP on bronchial washings.

    PubMed

    Hidaka, E; Honda, T; Ueno, I; Yamasaki, Y; Kubo, K; Katsuyama, T

    2000-03-01

    In 98 patients (24 with active pulmonary tuberculosis [TB] lesions, 28 with cured TB lesions, and 46 with nontuberculous opacities [control group] in chest CT scans), we examined whether washing the bronchus after brushing the lesion, then applying polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) to the bronchial washings might be useful for diagnosing TB and nontuberculous mycobacteriosis (NTMosis). After biopsy and brushing with a bronchoscope, the bronchus connecting to the lesion was washed with 20 ml saline. The saline used for washing the brushes (5 ml; brushing sample), and 3 to 10 ml saline aspirated through the forceps channel (washing sample) were examined by PCR-RFLP, which proved able to identify Mycobacterium tuberculosis and seven species of nontuberculous mycobacteria (NTM). The values obtained for the sensitivity of the PCR-RFLP with respect to the brushing sample, the washing sample, and both samples mixed together were 70, 76, and 91%, respectively, when only patients who were culture-positive or radiologically improved after antituberculous therapy were considered as showing true infection. A mixture of brushing and washing samples provides useful material for PCR and culture, and the PCR-RFLP used here is a good method for the simultaneous identification of several species of mycobacterium (including M. tuberculosis).

  5. Identification of five sea cucumber species through PCR-RFLP analysis

    NASA Astrophysics Data System (ADS)

    Lv, Yingchun; Zheng, Rong; Zuo, Tao; Wang, Yuming; Li, Zhaojie; Xue, Yong; Xue, Changhu; Tang, Qingjuan

    2014-10-01

    Sea cucumbers are traditional marine food and Chinese medicine in Asia. The rapid expansion of sea cucumber market has resulted in various problems, such as commercial fraud and mislabeling. Conventionally, sea cucumber species could be distinguished by their morphological and anatomical characteristics; however, their identification becomes difficult when they are processed. The aim of this study was to develop a new convenient method of identifying and distinguishing sea cucumber species. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis of mitochondrial cytochrome oxidase I gene ( COI) was used to identifing five sea cucumber species ( Apostichopus japonicus, Cucumaria frondosa, Thelenota ananas, Parastichopus californicus and Actinopyga lecanora). A 692 bp fragment of COI was searched for BamHI, KpnI, PstI, XbaI and Eco31I restriction sites with DNAMAN 6.0, which were then used to PCR-RFLP analysis. These five sea cucumber species can be discriminated from mixed sea cucumbers. The developed PCR-RFLP assay will facilitate the identification of sea cucumbers, making their source tracing and quality controlling feasible.

  6. Highly sensitive detection of the PIK3CA (H1047R) mutation in colorectal cancer using a novel PCR-RFLP method.

    PubMed

    Li, Wan-Ming; Hu, Ting-Ting; Zhou, Lin-Lin; Feng, Yi-Ming; Wang, Yun-Yi; Fang, Jin

    2016-07-12

    The PIK3CA (H1047R) mutation is considered to be a potential predictive biomarker for EGFR-targeted therapies. In this study, we developed a novel PCR-PFLP approach to detect the PIK3CA (H1047R) mutation in high effectiveness. A 126-bp fragment of PIK3CA exon-20 was amplified by PCR, digested with FspI restriction endonuclease and separated by 3 % agarose gel electrophoresis for the PCR-RFLP analysis. The mutant sequence of the PIK3CA (H1047R) was spiked into the corresponding wild-type sequence in decreasing ratios for sensitivity analysis. Eight-six cases of formalin-fixed paraffin-embedded colorectal cancer (CRC) specimens were subjected to PCR-RFLP to evaluate the applicability of the method. The PCR-RFLP method had a capability to detect as litter as 0.4 % of mutation, and revealed 16.3 % of the PIK3CA (H1047R) mutation in 86 CRC tissues, which was significantly higher than that discovered by DNA sequencing (9.3 %). A positive association between the PIK3CA (H1047R) mutation and the patients' age was first found, except for the negative relationship with the degree of tumor differentiation. In addition, the highly sensitive detection of a combinatorial mutation of PIK3CA, KRAS and BRAF was achieved using individual PCR-RFLP methods. We developed a sensitive, simple and rapid approach to detect the low-abundance PIK3CA (H1047R) mutation in real CRC specimens, providing an effective tool for guiding cancer targeted therapy.

  7. Development of RFLP-PCR method for the identification of medically important Aspergillus species using single restriction enzyme MwoI.

    PubMed

    Diba, K; Mirhendi, H; Kordbacheh, P; Rezaie, S

    2014-01-01

    In this study we attempted to modify the PCR-RFLP method using restriction enzyme MwoI for the identification of medically important Aspergillus species. Our subjects included nine standard Aspergillus species and 205 Aspergillus isolates of approved hospital acquired infections and hospital indoor sources. First of all, Aspergillus isolates were identified in the level of species by using morphologic method. A twenty four hours culture was performed for each isolates to harvest Aspergillus mycelia and then genomic DNA was extracted using Phenol-Chloroform method. PCR-RFLP using single restriction enzyme MwoI was performed in ITS regions of rDNA gene. The electrophoresis data were analyzed and compared with those of morphologic identifications. Total of 205 Aspergillus isolates included 153 (75%) environmental and 52 (25%) clinical isolates. A. flavus was the most frequently isolate in our study (55%), followed by A. niger 65(31.7%), A. fumigatus 18(8.7%), A. nidulans and A. parasiticus 2(1% each). MwoI enabled us to discriminate eight medically important Aspergillus species including A. fumigatus, A. niger, A. flavus as the most common isolated species. PCR-RFLP method using the restriction enzyme MwoI is a rapid and reliable test for identification of at least the most medically important Aspergillus species.

  8. Development of RFLP-PCR method for the identification of medically important Aspergillus species using single restriction enzyme MwoI

    PubMed Central

    Diba, K.; Mirhendi, H.; Kordbacheh, P.; Rezaie, S.

    2014-01-01

    In this study we attempted to modify the PCR-RFLP method using restriction enzyme MwoI for the identification of medically important Aspergillus species. Our subjects included nine standard Aspergillus species and 205 Aspergillus isolates of approved hospital acquired infections and hospital indoor sources. First of all, Aspergillus isolates were identified in the level of species by using morphologic method. A twenty four hours culture was performed for each isolates to harvest Aspergillus mycelia and then genomic DNA was extracted using Phenol-Chloroform method. PCR-RFLP using single restriction enzyme MwoI was performed in ITS regions of rDNA gene. The electrophoresis data were analyzed and compared with those of morphologic identifications. Total of 205 Aspergillus isolates included 153 (75%) environmental and 52 (25%) clinical isolates. A. flavus was the most frequently isolate in our study (55%), followed by A. niger 65(31.7%), A. fumigatus 18(8.7%), A. nidulans and A. parasiticus 2(1% each). MwoI enabled us to discriminate eight medically important Aspergillus species including A. fumigatus, A. niger, A. flavus as the most common isolated species. PCR-RFLP method using the restriction enzyme MwoI is a rapid and reliable test for identification of at least the most medically important Aspergillus species. PMID:25242934

  9. Comparison of Three Different Hepatitis C Virus Genotyping Methods: 5'NCR PCR-RFLP, Core Type-Specific PCR, and NS5b Sequencing in a Tertiary Care Hospital in South India.

    PubMed

    Daniel, Hubert D-J; David, Joel; Raghuraman, Sukanya; Gnanamony, Manu; Chandy, George M; Sridharan, Gopalan; Abraham, Priya

    2017-05-01

    Based on genetic heterogeneity, hepatitis C virus (HCV) is classified into seven major genotypes and 64 subtypes. In spite of the sequence heterogeneity, all genotypes share an identical complement of colinear genes within the large open reading frame. The genetic interrelationships between these genes are consistent among genotypes. Due to this property, complete sequencing of the HCV genome is not required. HCV genotypes along with subtypes are critical for planning antiviral therapy. Certain genotypes are also associated with higher progression to liver cirrhosis. In this study, 100 blood samples were collected from individuals who came for routine HCV genotype identification. These samples were used for the comparison of two different genotyping methods (5'NCR PCR-RFLP and HCV core type-specific PCR) with NS5b sequencing. Of the 100 samples genotyped using 5'NCR PCR-RFLP and HCV core type-specific PCR, 90% (κ = 0.913, P < 0.00) and 96% (κ = 0.794, P < 0.00) correlated with NS5b sequencing, respectively. Sixty percent and 75% of discordant samples by 5'NCR PCR-RFLP and HCV core type-specific PCR, respectively, belonged to genotype 6. All the HCV genotype 1 subtypes were classified accurately by both the methods. This study shows that the 5'NCR-based PCR-RFLP and the HCV core type-specific PCR-based assays correctly identified HCV genotypes except genotype 6 from this region. Direct sequencing of the HCV core region was able to identify all the genotype 6 from this region and serves as an alternative to NS5b sequencing. © 2016 Wiley Periodicals, Inc.

  10. Molecular discrimination of Echinococcus granulosus and Echinococcus multilocularis by sequencing and a new PCR-RFLP method with the potential use for other Echinococcus species.

    PubMed

    Şakalar, Çağrı; Kuk, Salih; Erensoy, Ahmet; Dağli, Adile Ferda; Özercan, İbrahim Hanifi; Çetınkaya, Ülfet; Yazar, Süleyman

    2014-01-01

    To develop a novel polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) protocol using a new genomic marker sequence and a novel set of restriction enzymes in order to detect and discriminate 2 Echinococcus species, E. granulosus and E. multilocularis, found in formalin-fixed paraffin-embedded (FFPE) human tissues. DNA was isolated from 11 FFPE human tissue samples positive for cystic echinococcosis or alveolar echinococcosis. A mitochondrial genomic marker region was amplified and sequenced using a novel primer pair and a new PCR-RFLP protocol was developed for the detection and discrimination of E. granulosus and E. multilocularis using a set of restriction enzymes including AccI, MboI, MboII, and TsoI. The selected marker region was amplified using DNA isolated from FFPE human tissue samples positive for cystic echinococcosis or alveolar echinococcosis and the discrimination of E. granulosus and E. multilocularis was accomplished by use of the novel PCR-RFLP method. In this PCR-RFLP protocol, use of any single restriction enzyme is enough for the discrimination of E. granulosus and E. multilocularis. The PCR-RFLP protocol can be potentially used for the discrimination of 5 other Echinococcus species: E. oligarthus, E. shiquicus, E. ortleppi, E. canadensis, and E. vogeli.

  11. SNP-RFLPing 2: an updated and integrated PCR-RFLP tool for SNP genotyping.

    PubMed

    Chang, Hsueh-Wei; Cheng, Yu-Huei; Chuang, Li-Yeh; Yang, Cheng-Hong

    2010-04-08

    PCR-restriction fragment length polymorphism (RFLP) assay is a cost-effective method for SNP genotyping and mutation detection, but the manual mining for restriction enzyme sites is challenging and cumbersome. Three years after we constructed SNP-RFLPing, a freely accessible database and analysis tool for restriction enzyme mining of SNPs, significant improvements over the 2006 version have been made and incorporated into the latest version, SNP-RFLPing 2. The primary aim of SNP-RFLPing 2 is to provide comprehensive PCR-RFLP information with multiple functionality about SNPs, such as SNP retrieval to multiple species, different polymorphism types (bi-allelic, tri-allelic, tetra-allelic or indels), gene-centric searching, HapMap tagSNPs, gene ontology-based searching, miRNAs, and SNP500Cancer. The RFLP restriction enzymes and the corresponding PCR primers for the natural and mutagenic types of each SNP are simultaneously analyzed. All the RFLP restriction enzyme prices are also provided to aid selection. Furthermore, the previously encountered updating problems for most SNP related databases are resolved by an on-line retrieval system. The user interfaces for functional SNP analyses have been substantially improved and integrated. SNP-RFLPing 2 offers a new and user-friendly interface for RFLP genotyping that can be used in association studies and is freely available at http://bio.kuas.edu.tw/snp-rflping2.

  12. Comparison of Nested PCR and RFLP for Identification and Classification of Malassezia Yeasts from Healthy Human Skin

    PubMed Central

    Oh, Byung Ho; Song, Young Chan; Choe, Yong Beom; Ahn, Kyu Joong

    2009-01-01

    Background Malassezia yeasts are normal flora of the skin found in 75~98% of healthy subjects. The accurate identification of the Malassezia species is important for determining the pathogenesis of the Malassezia yeasts with regard to various skin diseases such as Malassezia folliculitis, seborrheic dermatitis, and atopic dermatitis. Objective This research was conducted to determine a more accurate and rapid molecular test for the identification and classification of Malassezia yeasts. Methods We compared the accuracy and efficacy of restriction fragment length polymorphism (RFLP) and the nested polymerase chain reaction (PCR) for the identification of Malassezia yeasts. Results Although both methods demonstrated rapid and reliable results with regard to identification, the nested PCR method was faster. However, 7 different Malassezia species (1.2%) were identified by the nested PCR compared to the RFLP method. Conclusion Our results show that RFLP method was relatively more accurate and reliable for the detection of various Malassezia species compared to the nested PCR. But, in the aspect of simplicity and time saving, the latter method has its own advantages. In addition, the 26S rDNA, which was targeted in this study, contains highly conserved base sequences and enough sequence variation for inter-species identification of Malassezia yeasts. PMID:20523823

  13. Using ITS2 PCR-RFLP to generate molecular markers for authentication of Sophora flavescens Ait.

    PubMed

    Lin, Tzu Che; Yeh, Mau Shing; Cheng, Ya Ming; Lin, Li Chang; Sung, Jih Min

    2012-03-15

    Dried root of Sophora flavescens Ait. is a medicinal material occasionally misused or adulterated by other species similar in appearance. In this study the internal transcribed spacer (ITS) regions of DNA samples of S. flavescens Ait. collected from different areas of Taiwan were amplified by polymerase chain reaction (PCR) and compared. The effectiveness of using ITS2 PCR restriction fragment length polymorphism (RFLP)-generated markers to differentiate S. flavescens Ait. from possible adulterants was also evaluated. The S. flavescens Ait. samples collected from different areas were extremely low in ITS sequence variability at species level. ITS2 PCR-RFLP coupled with restriction enzymes Sac I, Sac II, Xho I or Pvu I produced specific fragments for all tested variants. ITS2 PCR-RFLP coupled with Sac II was further performed to identify mixtures of DNA extracts of S. flavescens Ait. and Sophora tomentosa L. in various ratios. The developed ITS2 PCR-RFLP markers could detect mixed DNA samples of S. flavescens Ait./S. tomentosa L. up to a ratio of 10:1. The present study demonstrates the usefulness of ITS2 PCR-RFLP coupled with pre-selected restriction enzymes for practical and accurate authentication of S. flavescens Ait. The technique is also suitable for analysing S. flavescens Ait. mixed with other adulterants.

  14. Bovine Papillomavirus in Brazil: Detection of Coinfection of Unusual Types by a PCR-RFLP Method

    PubMed Central

    Carvalho, R. F.; Sakata, S. T.; Giovanni, D. N. S.; Mori, E.; Brandão, P. E.; Richtzenhain, L. J.; Pozzi, C. R.; Arcaro, J. R. P.; Miranda, M. S.; Mazzuchelli-de-Souza, J.; Melo, T. C.; Comenale, G.; Assaf, S. L. M. R.; Beçak, W.; Stocco, R. C.

    2013-01-01

    Bovine papillomavirus (BPV) is recognized as a causal agent of benign and malignant tumors in cattle. Thirteen types of BPV are currently characterized and classified into three distinct genera, associated with different pathological outcomes. The described BPV types as well as other putative ones have been demonstrated by molecular biology methods, mainly by the employment of degenerated PCR primers. Specifically, divergences in the nucleotide sequence of the L1 gene are useful for the identification and classification of new papillomavirus types. On the present work, a method based on the PCR-RFLP technique and DNA sequencing was evaluated as a screening tool, allowing for the detection of two relatively rare types of BPV in lesions samples from a six-year-old Holstein dairy cow, chronically affected with cutaneous papillomatosis. These findings point to the dissemination of BPVs with unclear pathogenic potential, since two relatively rare, new described BPV types, which were first characterized in Japan, were also detected in Brazil. PMID:23865043

  15. Comparative evaluation of the nested ITS PCR against the 18S PCR-RFLP in a survey of bovine trypanosomiasis in Kwale County, Kenya.

    PubMed

    Odongo, Steven; Delespaux, Vincent; Ngotho, Maina; Bekkele, Serkalem Mindaye; Magez, Stefan

    2016-09-01

    We compared the nested internal transcribed spacer (ITS) PCR and the 18S PCR-RFLP (restriction-fragment length polymorphism) pan-trypanosome assays in a cross-sectional survey of bovine trypanosomiasis in 358 cattle in Kwale County, Kenya. The prevalence of trypanosomiasis as determined by the nested ITS PCR was 19.6% (70/358) and by 18S PCR-RFLP was 16.8% (60/358). Of the pathogenic trypanosomes detected, the prevalence of Trypanosoma congolense and Trypanosoma vivax was greater than that of Trypanosoma simiae The nested ITS PCR detected 83 parasite events, whereas the 18S PCR-RFLP detected 64; however, overall frequencies of infections and the parasite events detected did not differ between the assays (χ(2) = 0.8, df = 1, p > 0.05 and χ(2) = 2.5, df = 1, p > 0.05, respectively). The kappa statistic (0.8) showed good agreement between the tests. The nested ITS PCR and the 18S PCR-RFLP had comparable sensitivity, although the nested ITS PCR was better at detecting mixed infections (χ(2) = 5.4, df = 1, p < 0.05). © 2016 The Author(s).

  16. Clinical application of RT-nested PCR integrated with RFLP in Hantavirus detection and genotyping: a prospective study in Shandong Province, PR China.

    PubMed

    Liu, Yun-Xi; Zhao, Zhong-Tang; Cao, Wu-Chun; Xu, Xiao-Qun; Suo, Ji-Jiang; Xing, Yu-Bin; Jia, Ning; Du, Ming-Mei; Liu, Bo-Wei; Yao, Yuan

    2013-01-01

    The aim of the present study was to evaluate the clinical usefulness of applying RT-nested PCR along with RFLP as a method for diagnosis and genotypic differentiation of Hantavirus in the acute-stage sera of HFRS patients as compared to the ELISA technique. A prospective study of patients with suspected HFRS patients was carried out. Sera were collected for serological evaluation by ELISA and RT-nested PCR testing. Primers were selected from the published sequence of the S segment of HTNV strain 76-118 and SEOV strain SR-11, which made it possible to obtain an amplicon of 403 bp by RT-nested PCR. The genotypic differentiations of the RT-nested PCR amplicons were carried out by RFLP. Sequence analyses of the amplicons were used to confirm the accuracy of the results obtained by RFLP. Of the 48 acute-stage sera from suspected HFRS patients, 35 were ELISA-positive while 41 were positive by RT-nested PCR. With Hind III and Hinf I, RFLP profiles of the RT-nested PCR amplicons of the 41 positive sera exhibited two patterns. 33 had RFLP profiles similar to the reference strain R22, and thus belonged to the SEOV type. The other 8 samples which were collected during October-December had RFLP profiles similar to the reference strain 76-118, and thus belonged to the HTNV type. Sequence phylogenetic analysis of RT-nested PCR amplicons revealed sdp1, sdp2 YXL-2008, and sdp3 as close relatives of HTNV strain 76-118, while sdp22 and sdp37 as close relatives of SEOV strain Z37 and strain R22 located in two separate clusters in the phylogenetic tree. These results were identical to those acquired by RFLP. RT-nested PCR integrated with RFLP was a rapid, simple, accurate method for detecting and differentiating the genotypes of Hantavirus in the acute-stage sera of suspected HFRS patients. In Shandong province, the main genotypes of Hantavirus belonged to the SEOV types, while the HTNV types were observed during the autumn-winter season.

  17. PCR-RFLP genotypes associated with quinolone resistance in isolates of Flavobacterium psychrophilum.

    PubMed

    Izumi, S; Ouchi, S; Kuge, T; Arai, H; Mito, T; Fujii, H; Aranishi, F; Shimizu, A

    2007-03-01

    A novel genotyping method for epizootiological studies of bacterial cold-water disease caused by Flavobacterium psychrophilum and associated with quinolone resistance was developed. Polymerase chain reaction followed by restriction fragment length polymorphism (PCR-RFLP) was performed on 244 F. psychrophilum isolates from various fish species. PCR was performed with primer pair GYRA-FP1F and GYRA-FP1R amplifying the A subunit of the DNA gyrase (GyrA) gene, which contained the quinolone resistance determining region. Digestion of PCR products with the restriction enzyme Mph1103I showed two genotypes, QR and QS. The difference between these genotypes was amino acid substitutions at position 83 of GyrA (Escherichia coli numbering). The genotype QR indicated an alanine residue at this position associated with quinolone resistance in F. psychrophilum isolates. Of the 244 isolates tested in this study, the number of QR genotype isolates was 153 (62.7%). In isolates from ayu (n=177), 146 (82.5%) were genotype QR. With combination of this technique and previously reported PCR-RFLP genotyping, eight genotypes were observed in F. psychrophilum isolates. Using this genotyping system, the relationships between genotype and host fish species, or locality of isolation, were analysed and are discussed.

  18. Differentiation of Toxocara canis and Toxocara cati based on PCR-RFLP analyses of rDNA-ITS and mitochondrial cox1 and nad1 regions.

    PubMed

    Mikaeili, Fattaneh; Mathis, Alexander; Deplazes, Peter; Mirhendi, Hossein; Barazesh, Afshin; Ebrahimi, Sepideh; Kia, Eshrat Beigom

    2017-09-26

    The definitive genetic identification of Toxocara species is currently based on PCR/sequencing. The objectives of the present study were to design and conduct an in silico polymerase chain reaction-restriction fragment length polymorphism method for identification of Toxocara species. In silico analyses using the DNASIS and NEBcutter softwares were performed with rDNA internal transcribed spacers, and mitochondrial cox1 and nad1 sequences obtained in our previous studies along with relevant sequences deposited in GenBank. Consequently, RFLP profiles were designed and all isolates of T. canis and T. cati collected from dogs and cats in different geographical areas of Iran were investigated with the RFLP method using some of the identified suitable enzymes. The findings of in silico analyses predicted that on the cox1 gene only the MboII enzyme is appropriate for PCR-RFLP to reliably distinguish the two species. No suitable enzyme for PCR-RFLP on the nad1 gene was identified that yields the same pattern for all isolates of a species. DNASIS software showed that there are 241 suitable restriction enzymes for the differentiation of T. canis from T. cati based on ITS sequences. RsaI, MvaI and SalI enzymes were selected to evaluate the reliability of the in silico PCR-RFLP. The sizes of restriction fragments obtained by PCR-RFLP of all samples consistently matched the expected RFLP patterns. The ITS sequences are usually conserved and the PCR-RFLP approach targeting the ITS sequence is recommended for the molecular differentiation of Toxocara species and can provide a reliable tool for identification purposes particularly at the larval and egg stages.

  19. Consensus criteria for sensitive detection of minimal neuroblastoma cells in bone marrow, blood and stem cell preparations by immunocytology and QRT-PCR: recommendations by the International Neuroblastoma Risk Group Task Force

    PubMed Central

    Beiske, K; Burchill, S A; Cheung, I Y; Hiyama, E; Seeger, R C; Cohn, S L; Pearson, A D J; Matthay, K K

    2009-01-01

    Disseminating disease is a predictive and prognostic indicator of poor outcome in children with neuroblastoma. Its accurate and sensitive assessment can facilitate optimal treatment decisions. The International Neuroblastoma Risk Group (INRG) Task Force has defined standardised methods for the determination of minimal disease (MD) by immunocytology (IC) and quantitative reverse transcriptase-polymerase chain reaction (QRT-PCR) using disialoganglioside GD2 and tyrosine hydroxylase mRNA respectively. The INRG standard operating procedures (SOPs) define methods for collecting, processing and evaluating bone marrow (BM), peripheral blood (PB) and peripheral blood stem cell harvest by IC and QRT-PCR. Sampling PB and BM is recommended at diagnosis, before and after myeloablative therapy and at the end of treatment. Peripheral blood stem cell products should be analysed at the time of harvest. Performing MD detection according to INRG SOPs will enable laboratories throughout the world to compare their results and thus facilitate quality-controlled multi-centre prospective trials to assess the clinical significance of MD and minimal residual disease in heterogeneous patient groups. PMID:19401690

  20. Detection and identification of Malassezia species in domestic animals and aquatic birds by PCR-RFLP

    PubMed Central

    Zia, M.; Mirhendi, H.; Toghyani, M.

    2015-01-01

    The present study aimed at detection and species-level identification of the Malassezia yeasts in domestic animals and aquatic birds by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Samples were collected using tape strips and swabs from 471 animals including 97 horses, 102 cattle, 105 sheep, 20 camels, 60 dogs, 30 cats, 1 hamster, 1 squirrel, 50 aquatic birds and 5 turkeys. Tape-strip samples were examined by direct microscopy. All samples were inoculated on modified Leeming and Notman agar medium. DNA extracted from the yeast colonies was amplified by PCR using primers specific for 26S rDNA. RFLP of the PCR products was performed using Hin6I enzyme, and PCR and RFLP products were visualized by agarose gel electrophoresis. Malassezia yeasts were detected at the following frequencies: 15.46% in horses, 12.74% in cattle, 12.38% in sheep, 28.33% in dogs, 26.66% in cats and 26% in aquatic birds. Eighty colonies of 6 species were isolated: Malassezia globosa 41.25%, Malassezia furfur 22.5%, Malassezia restricta 15%, Malassezia sympodialis 15%, Malassezia pachydermatis 5% and Malassezia slooffiae 1.25%. Therefore different lipophilic Malassezia species are found in a wide diversity of animals and aquatic birds. PCR-RFLP is a suitable technique for identification of different Malassezia species. PMID:27175148

  1. Detection and identification of Leishmania spp.: application of two hsp70-based PCR-RFLP protocols to clinical samples from the New World.

    PubMed

    Montalvo, Ana M; Fraga, Jorge; Tirado, Dídier; Blandón, Gustavo; Alba, Annia; Van der Auwera, Gert; Vélez, Iván Darío; Muskus, Carlos

    2017-07-01

    Leishmaniasis is highly prevalent in New World countries, where several methods are available for detection and identification of Leishmania spp. Two hsp70-based PCR protocols (PCR-N and PCR-F) and their corresponding restriction fragment length polymorphisms (RFLP) were applied for detection and identification of Leishmania spp. in clinical samples recruited in Colombia, Guatemala, and Honduras. A total of 93 cases were studied. The samples were classified into positive or suspected of leishmaniasis according to parasitological criteria. Molecular amplification of two different hsp70 gene fragments and further RFLP analysis for identification of Leishmania species was done. The detection in parasitologically positive samples was higher using PCR-N than PCR-F. In the total of samples studied, the main species identified were Leishmania panamensis, Leishmania braziliensis, and Leishmania infantum (chagasi). Although RFLP-N was more efficient for the identification, RFLP-F is necessary for discrimination between L. panamensis and Leishmania guyanesis, of great importance in Colombia. Unexpectedly, one sample from this country revealed an RFLP pattern corresponding to Leishmania naiffi. Both molecular variants are applicable for the study of clinical samples originated in Colombia, Honduras, and Guatemala. Choosing the better tool for each setting depends on the species circulating. More studies are needed to confirm the presence of L. naiffi in Colombian territory.

  2. Software for optimization of SNP and PCR-RFLP genotyping to discriminate many genomes with the fewest assays

    PubMed Central

    Gardner, Shea N; Wagner, Mark C

    2005-01-01

    Background Microbial forensics is important in tracking the source of a pathogen, whether the disease is a naturally occurring outbreak or part of a criminal investigation. Results A method and SPR Opt (SNP and PCR-RFLP Optimization) software to perform a comprehensive, whole-genome analysis to forensically discriminate multiple sequences is presented. Tools for the optimization of forensic typing using Single Nucleotide Polymorphism (SNP) and PCR-Restriction Fragment Length Polymorphism (PCR-RFLP) analyses across multiple isolate sequences of a species are described. The PCR-RFLP analysis includes prediction and selection of optimal primers and restriction enzymes to enable maximum isolate discrimination based on sequence information. SPR Opt calculates all SNP or PCR-RFLP variations present in the sequences, groups them into haplotypes according to their co-segregation across those sequences, and performs combinatoric analyses to determine which sets of haplotypes provide maximal discrimination among all the input sequences. Those set combinations requiring that membership in the fewest haplotypes be queried (i.e. the fewest assays be performed) are found. These analyses highlight variable regions based on existing sequence data. These markers may be heterogeneous among unsequenced isolates as well, and thus may be useful for characterizing the relationships among unsequenced as well as sequenced isolates. The predictions are multi-locus. Analyses of mumps and SARS viruses are summarized. Phylogenetic trees created based on SNPs, PCR-RFLPs, and full genomes are compared for SARS virus, illustrating that purported phylogenies based only on SNP or PCR-RFLP variations do not match those based on multiple sequence alignment of the full genomes. Conclusion This is the first software to optimize the selection of forensic markers to maximize information gained from the fewest assays, accepting whole or partial genome sequence data as input. As more sequence data becomes

  3. A cultivation-independent PCR-RFLP assay targeting oprF gene for detection and identification of Pseudomonas spp. in samples from fibrocystic pediatric patients.

    PubMed

    Lagares, Antonio; Agaras, Betina; Bettiol, Marisa P; Gatti, Blanca M; Valverde, Claudio

    2015-07-01

    Species-specific genetic markers are crucial to develop faithful and sensitive molecular methods for the detection and identification of Pseudomonas aeruginosa (Pa). We have previously set up a PCR-RFLP protocol targeting oprF, the gene encoding the genus-specific outer membrane porin F, whose strong conservation and marked sequence diversity allowed detection and differentiation of environmental isolates (Agaras et al., 2012). Here, we evaluated the ability of the PCR-RFLP assay to genotype clinical isolates previously identified as Pa by conventional microbiological methods within a collection of 62 presumptive Pa isolates from different pediatric clinical samples and different sections of the Hospital de Niños "Sor María Ludovica" from La Plata, Argentina. All isolates, but one, gave an oprF amplicon consistent with that from reference Pa strains. The sequence of the smaller-sized amplicon revealed that the isolate was in fact a mendocina Pseudomonas strain. The oprF RFLP pattern generated with TaqI or HaeIII nucleases matched those of reference Pa strains for 59 isolates (96%). The other two Pa isolates (4%) revealed a different RFLP pattern based on HaeIII digestion, although oprF sequencing confirmed that Pa identification was correct. We next tested the effectiveness of the PCR-RFLP to detect pseudomonads on clinical samples of pediatric fibrocystic patients directly without sample cultivation. The expected amplicon and its cognate RFLP profile were obtained for all samples in which Pa was previously detected by cultivation-dependent methods. Altogether, these results provide the basis for the application of the oprF PCR-RFLP protocol to directly detect and identify Pa and other non-Pa pseudomonads in fibrocystic clinical samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Aspergillus tubingensis and Aspergillus niger as the dominant black Aspergillus, use of simple PCR-RFLP for preliminary differentiation.

    PubMed

    Mirhendi, H; Zarei, F; Motamedi, M; Nouripour-Sisakht, S

    2016-03-01

    This work aimed to identify the species distribution of common clinical and environmental isolates of black Aspergilli based on simple restriction fragment length polymorphism (RFLP) analysis of the β-tubulin gene. A total of 149 clinical and environmental strains of black Aspergilli were collected and subjected to preliminary morphological examination. Total genomic DNAs were extracted, and PCR was performed to amplify part of the β-tubulin gene. At first, 52 randomly selected samples were species-delineated by sequence analysis. In order to distinguish the most common species, PCR amplicons of 117 black Aspergillus strains were identified by simple PCR-RFLP analysis using the enzyme TasI. Among 52 sequenced isolates, 28 were Aspergillus tubingensis, 21 Aspergillus niger, and the three remaining isolates included Aspergillus uvarum, Aspergillus awamori, and Aspergillus acidus. All 100 environmental and 17 BAL samples subjected to TasI-RFLP analysis of the β-tubulin gene, fell into two groups, consisting of about 59% (n=69) A. tubingensis and 41% (n=48) A. niger. Therefore, the method successfully and rapidly distinguished A. tubingensis and A. niger as the most common species among the clinical and environmental isolates. Although tardy, the Ehrlich test was also able to differentiate A. tubingensis and A. niger according to the yellow color reaction specific to A. niger. A. tubingensis and A. niger are the most common black Aspergillus in both clinical and environmental isolates in Iran. PCR-RFLP using TasI digestion of β-tubulin DNA enables rapid screening for these common species. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. Detection of the Single Nucleotide Polymorphism at Position rs2735940 in the Human Telomerase Reverse Transcriptase Gene by the Introduction of a New Restriction Enzyme Site for the PCR-RFLP Assay.

    PubMed

    Wang, Sihua; Ding, Mingcui; Duan, Xiaoran; Wang, Tuanwei; Feng, Xiaolei; Wang, Pengpeng; Yao, Wu; Wu, Yongjun; Yan, Zhen; Feng, Feifei; Yu, Songcheng; Wang, Wei

    2017-09-01

    It has been shown that the single nucleotide polymorphism (SNP) of the rs2735940 site in the human telomerase reverse transcriptase ( hTERT ) gene is associated with increased cancer risk. The traditional method to detect SNP genotypes is polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). However, there is a limitation to utilizing PCR-RFLP due to a lack of proper restriction enzyme sites at many polymorphic loci. This study used an improved PCR-RFLP method with a mismatched base for detection of the SNP rs2735940. A new restriction enzyme cutting site was created by created restriction site PCR (CRS-PCR), and in addition, the restriction enzyme Msp I for CRS-PCR was cheaper than other enzymes. We used this novel assay to determine the allele frequencies in 552 healthy Chinese Han individuals, and found the allele frequencies to be 63% for allele C and 37% for allele T In summary, the modified PCR-RFLP can be used to detect the SNP of rs2735940 with low cost and high efficiency. © 2017 by the Association of Clinical Scientists, Inc.

  6. A novel PCR-RFLP assay for molecular characterization of Echinococcus granulosus sensu lato and closely related species in developing countries.

    PubMed

    Chaâbane-Banaoues, Raja; Oudni-M'rad, Myriam; M'rad, Selim; Amani, Hizem; Mezhoud, Habib; Babba, Hamouda

    2016-10-01

    Cystic echinococcosis, due to Echinococcus granulosus sensu lato (s. l.), currently affects three million people, especially in low-income countries and results in high livestock production loss. DNA-based methods demonstrated genetic variability of E. granulosus s. l., and five species were recognized to belong to the complex, including E. granulosus sensu stricto (s.s) (genotypes G1-G3), Echinococcus equinus (genotype G4), Echinococcus ortleppi (genotype G5), Echinococcus canadensis (genotypes G6-G10), and the lion strain Echinococcus felidis. The characterization of Echinococcus species responsible for human and animal echinococcosis is crucial to adapt the preventive measures against this parasitic disease. The sequencing approach is the gold standard for genotyping assays. Unfortunately, developing countries do not often have access to these techniques. Based on in silico RFLP tools, we described an accurate PCR-RFLP method for Echinococcus spp. characterization. The double digestion with the HaeIII and HinfI restriction enzymes of the PCR product from nad1 gene (1071 bp) led to a clear discrimination between E. granulosus s. l. and most closely related species (Echinococcus shiquicus and Echinococcus multilocularis).Molecular procedures and phylogenetic analysis confirmed the efficiency and the reproducibility of this simple and fast PCR-RFLP method. This technique is proved useful for fresh/unfixed and FF-PET tissues and enables large-scale molecular epidemiological screening in developing countries.

  7. Genotyping of Chromobacterium violaceum isolates by recA PCR-RFLP analysis.

    PubMed

    Scholz, Holger Christian; Witte, Angela; Tomaso, Herbert; Al Dahouk, Sascha; Neubauer, Heinrich

    2005-03-15

    Intraspecies variation of Chromobacterium violaceum was examined by comparative sequence - and by restriction fragment length polymorphism analysis of the recombinase A gene (recA-PCR-RFLP). Primers deduced from the known recA gene sequence of the type strain C. violaceum ATCC 12472(T) allowed the specific amplification of a 1040bp recA fragment from each of the 13 C. violaceum strains investigated, whereas other closely related organisms tested negative. HindII-PstI-recA RFLP analysis generated from 13 representative C. violaceum strains enabled us to identify at least three different genospecies. In conclusion, analysis of the recA gene provides a rapid and robust nucleotide sequence-based approach to specifically identify and classify C. violaceum on genospecies level.

  8. Genotyping of bacteria belonging to the former Erwinia genus by PCR-RFLP analysis of a recA gene fragment.

    PubMed

    Waleron, Małgorzata; Waleron, Krzysztof; Podhajska, Anna J; Lojkowska, Ewa

    2002-02-01

    Genotypic characterization, based on the analysis of restriction fragment length polymorphism of the recA gene fragment PCR product (recA PCR-RFLP), was performed on members of the former Erwinia genus. PCR primers deduced from published recA gene sequences of Erwinia carotovora allowed the amplification of an approximately 730 bp DNA fragment from each of the 19 Erwinia species tested. Amplified recA fragments were compared using RFLP analysis with four endonucleases (AluI, HinfI, TasI and Tru1I), allowing the detection of characteristic patterns of RFLP products for most of the Erwinia species. Between one and three specific RFLP groups were identified among most of the species tested (Erwinia amylovora, Erwinia ananas, Erwinia cacticida, Erwinia cypripedii, Erwinia herbicola, Erwinia mallotivora, Erwinia milletiae, Erwinia nigrifluens, Erwinia persicina, Erwinia psidii, Erwinia quercina, Erwinia rhapontici, Erwinia rubrifaciens, Erwinia salicis, Erwinia stewartii, Erwinia tracheiphila, Erwinia uredovora, Erwinia carotovora subsp. atroseptica, Erwinia carotovora subsp. betavasculorum, Erwinia carotovora subsp. odorifera and Erwinia carotovora subsp. wasabiae). However, in two cases, Erwinia chrysanthemi and Erwinia carotovora subsp. carotovora, 15 and 18 specific RFLP groups were detected, respectively. The variability of genetic patterns within these bacteria could be explained in terms of their geographic origin and/or wide host-range. The results indicated that PCR-RFLP analysis of the recA gene fragment is a useful tool for identification of species and subspecies belonging to the former Erwinia genus, as well as for differentiation of strains within E. carotovora subsp. carotovora and E. chrysanthemi.

  9. Genotyping of friesian horses to detect a hydrocephalus-associated c.1423C>T mutation in B3GALNT2 using PCR-RFLP and PCR-PIRA methods: Frequency in stallion horses in México.

    PubMed

    Ayala-Valdovinos, Miguel Angel; Galindo-García, Jorge; Sánchez-Chiprés, David; Duifhuis-Rivera, Theodor

    2017-04-01

    Hydrocephalus in Friesian horses is an autosomal recessive hereditary disease that can result in an abortion, a stillbirth, or euthanization of a newborn foal. Here, the hydrocephalus-associated c.1423C > T mutation in B3GALNT2 gene was detected with PCR-RFLP and PCR-PIRA methods for horse genotyping. A preliminary genotyping survey was performed on 83 randomly selected Friesian stallion horses to determine the current allele frequency in Mexico. The frequency of the mutant T allele was 9.6%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Complementary techniques: validation of gene expression data by quantitative real time PCR.

    PubMed

    Provenzano, Maurizio; Mocellin, Simone

    2007-01-01

    Microarray technology can be considered the most powerful tool for screening gene expression profiles of biological samples. After data mining, results need to be validated with highly reliable biotechniques allowing for precise quantitation of transcriptional abundance of identified genes. Quantitative real time PCR (qrt-PCR) technology has recently reached a level of sensitivity, accuracy and practical ease that support its use as a routine bioinstrumentation for gene level measurement. Currently, qrt-PCR is considered by most experts the most appropriate method to confirm or confute microarray-generated data. The knowledge of the biochemical principles underlying qrt-PCR as well as some related technical issues must be beard in mind when using this biotechnology.

  11. Typing clinical and animal environment Aspergillus fumigatus gliotoxin producer strains isolated from Brazil by PCR-RFLP markers.

    PubMed

    Soleiro, C A; Pena, G A; Cavaglieri, L R; Coelho, I; Keller, L M; Dalcero, A M; Rosa, C A R

    2013-12-01

    Aspergillus fumigatus, a well-known human and animal pathogen causing aspergillosis, has been historically identified by morphological and microscopic features. However, recent studies have shown that species identification on the basis of morphology alone is problematic. The aim of this work was to confirm the taxonomic state at specie level of a set of clinical (human and animal) and animal environment A. fumigatus strains identified by morphological criteria applying a PCR-RFLP assay by an in silico and in situ analysis with three restriction enzymes. The A. fumigatus gliotoxin-producing ability was also determined. Previous to the in situ PCR-RFLP analysis, an in silico assay with BccI, MspI and Sau3AI restriction enzymes was carried out. After that, these enzymes were used for in situ assay. All A. fumigatus strains isolated from corn silage, human aspergillosis and bovine mastitis and high per cent of the strains isolated from cereals, animal feedstuff and sorghum silage were able to produce high gliotoxin levels. Also, all these strains identified by morphological criteria as A. fumigatus, regardless of its isolation source, had band patterns according to A. fumigatus sensu stricto by PCR-RFLP markers. Aspergillus fumigatus is a well-known human and animal pathogen causing aspergillosis. In this study, clinical (human and animal) and animal environment strains were able to produce high gliotoxin levels and had band profiles according to A. fumigatus sensu stricto by PCR-RFLP markers. The results obtained here suggest that strains involved in human and animal aspergillosis could come from the animal environment in which A. fumigatus is frequently found. Its presence in animal environments could affect animal health and productivity; in addition, there are risks of contamination for rural workers during handling and storage of animal feedstuffs. © 2013 The Society for Applied Microbiology.

  12. Case-Study Investigation of Equine Maternity via PCR-RFLP: A Biochemistry Laboratory Experiment

    PubMed Central

    Millard, Julie T.; Chuang, Edward; Lucas, James S.; Nagy, Erzsebet E.; Davis, Griffin T.

    2013-01-01

    A simple and robust biochemistry laboratory experiment is described that uses restriction fragment length polymorphism (RFLP) of polymerase chain reaction (PCR) products to verify the identity of a potentially valuable horse. During the first laboratory period, students purify DNA from equine samples and amplify two loci of mitochondrial DNA. During the second laboratory period, students digest PCR products with restriction enzymes and analyze the fragment sizes through agarose gel electrophoresis. An optional step of validating DNA extracts through realtime PCR can expand the experiment to three weeks. This experiment, which has an engaging and versatile scenario, provides students with exposure to key principles and techniques of molecular biology, bioinformatics, and evolution in a forensic context. PMID:24363455

  13. Hemi-nested PCR and RFLP methodologies for identifying blood meals of the Chagas disease vector, Triatoma infestans.

    PubMed

    Roellig, Dawn M; Gomez-Puerta, Luis A; Mead, Daniel G; Pinto, Jesus; Ancca-Juarez, Jenny; Calderon, Maritza; Bern, Caryn; Gilman, Robert H; Cama, Vitaliano A

    2013-01-01

    Trypanosoma cruzi, the etiologic agent of Chagas disease, is transmitted by hematophagous reduviid bugs within the subfamily Triatominae. These vectors take blood meals from a wide range of hosts, and their feeding behaviors have been used to investigate the ecology and epidemiology of T. cruzi. In this study we describe two PCR-based methodologies that amplify a fragment of the 16S mitochondrial rDNA, aimed to improve the identification of blood meal sources for Triatoma infestans: a.--Sequence analyses of two heminested PCRs that allow the identification of mammalian and avian species, and b.--restriction fragment length polymorphism (RFLP) analysis from the mammalian PCR to identify and differentiate multi-host blood meals. Findings from both methodologies indicate that host DNA could be detected and the host species identified in samples from laboratory reared and field collected triatomines. The implications of this study are two-fold. First, these methods can be used in areas where the fauna diversity and feeding behavior of the triatomines are unknown. Secondly, the RFLP method led to the identification of multi-host DNA from T. infestans gut contents, enhancing the information provided by this assay. These tools are important contributions for ecological and epidemiological studies of vector-borne diseases.

  14. Evaluation of a PCR-RFLP- ITS2 assay for discrimination of Anopheles species in northern and western Colombia

    PubMed Central

    Cienfuegos, Astrid V.; Rosero, Doris A.; Naranjo, Nelson; Luckhart, Shirley; Conn, Jan E.; Correa, Margarita M.

    2011-01-01

    Anopheles mosquitoes are routinely identified using morphological characters of the female that often lead to misidentification due to interspecies similarity and intraspecies variability. The aim of this work was to evaluate the applicability of a previously developed PCR-RFLP-ITS2 assay for accurate discrimination of anophelines in twelve localities spanning three Colombian malaria epidemiological regions: Atlantic Coast, Pacific Coast, and Uraba-Bajo Cauca-Alto Sinu Region. The evaluation of the stability of the PCR-RFLP patterns is required since variability of the ITS2 has been documented and may produce discrepancies in the patterns previously reported. The assay was used to evaluate species assignation of 939 mosquitoes identified by morphology. Strong agreement between the morphological and molecular identification was found for species An. albimanus, An. aquasalis, An. darlingi and An. triannulatus s.l. (p ≥ 0.05, kappa=1). However, disagreement was found for species An. nuneztovari s.l., An. neomaculipalpus, An. apicimacula and An. punctimacula (p ≤ 0.05; kappa ranging from 0.33–0.80). The ITS2-PCR-RFLP assay proved valuable for discriminating anopheline species of northern and western Colombia, especially those with overlapping morphology in the Oswaldoi Group. PMID:21345325

  15. A PCR-RFLP Assay targeting RPS8 gene for the discrimination between bovine Babesia and Theileria species in China.

    PubMed

    Tian, Zhancheng; Du, Junzheng; Yang, Jifei; Liu, Aihong; Liu, Xiaocui; Liu, Guangyuan; Yin, Hong

    2015-09-17

    Bovine babesiosis and theileriosis is an important hemoprotozoal disease in cattles and yaks in tropical and subtropical regions leading to significant economic losses. In the field, the risk of co-infection between the bovine Babesia and Theileria species is very high. Thus, it is necessary to develop a simple, accurate, rapid and cost-effective method for large-scale epidemic investigation, in particular for the detection of co-infection in field. In this study, DNA sequences of a ribosomal protein S8 (RPS8) gene from eight species of cattle piroplasms in China were used to develop a species-specific PCR-RFLP diagnostic tool. The eight Theileria and Babesia species could be differentiated by digesting the RPS8 PCR product with Mbo I. The sensitivity of the PCR assays was 0.1 pg DNA for Babesia species but 1 pg DNA for Theileria species. The clearly different size of the PCR-RFLP products allowed for a direct discrimination between eight bovine Theileria and Babesia species (T. annulata, T. sinensis, T. sergenti, B. ovata, B. bovis, B. bigemina, B. major and Babesia species Kashi isolate). Our results indicated that the established method based on the RPS8 gene was a reliable molecular diagnostic tool for the simultaneous detection and identification of bovine Babesia and Theileria species in China, which could be applicable for the survey of parasite dynamics, epidemiological studies as well as prevention and control of the disease.

  16. Authentication of beef, carabeef, chevon, mutton and pork by a PCR-RFLP assay of mitochondrial cytb gene.

    PubMed

    Kumar, Deepak; Singh, S P; Karabasanavar, Nagappa S; Singh, Rashmi; Umapathi, V

    2014-11-01

    Authentication of meat assumes significance in view of religious, quality assurance, food safety, public health, conservation and legal concerns. Here, we describe a PCR-RFLP (Polymerase Chain Reaction- Restriction Fragment Length Polymorphism) assay targeting mitochondrial cytochrome-b gene for the identification of meats of five most common food animals namely cattle, buffalo, goat, sheep and pig. A pair of forward and reverse primers (VPH-F & VPH-R) amplifying a conserved region (168-776 bp) of mitochondrial cytochrome-b (cytb) gene for targeted species was designed which yielded a 609 bp PCR amplicon. Further, restriction enzyme digestion of the amplicons with Alu1 and Taq1 restriction enzymes resulted in a distinctive digestion pattern that was able to discriminate each species. The repeatability of the PCR-RFLP assay was validated ten times with consistent results observed. The developed assay can be used in routine diagnostic laboratories to differentiate the meats of closely related domestic livestock species namely cattle from buffalo and sheep from goat.

  17. PCR-RFLP on β-tubulin gene for rapid identification of the most clinically important species of Aspergillus.

    PubMed

    Nasri, Tuba; Hedayati, Mohammad Taghi; Abastabar, Mahdi; Pasqualotto, Alessandro C; Armaki, Mojtaba Taghizadeh; Hoseinnejad, Akbar; Nabili, Mojtaba

    2015-10-01

    Aspergillus species are important agents of life-threatening infections in immunosuppressed patients. Proper speciation in the Aspergilli has been justified based on varied fungal virulence, clinical presentations, and antifungal resistance. Accurate identification of Aspergillus species usually relies on fungal DNA sequencing but this requires expensive equipment that is not available in most clinical laboratories. We developed and validated a discriminative low-cost PCR-based test to discriminate Aspergillus isolates at the species level. The Beta tubulin gene of various reference strains of Aspergillus species was amplified using the universal fungal primers Bt2a and Bt2b. The PCR products were subjected to digestion with a single restriction enzyme AlwI. All Aspergillus isolates were subjected to DNA sequencing for final species characterization. The PCR-RFLP test generated unique patterns for six clinically important Aspergillus species, including Aspergillus flavus, Aspergillus fumigatus, Aspergillus nidulans, Aspergillus terreus, Aspergillus clavatus and Aspergillus nidulans. The one-enzyme PCR-RFLP on Beta tubulin gene designed in this study is a low-cost tool for the reliable and rapid differentiation of the clinically important Aspergillus species. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Genetic differentiation of Colletotrichum gloeosporioides and C. truncatum associated with Anthracnose disease of papaya (Carica papaya L.) and bell pepper (Capsium annuum L.) based on ITS PCR-RFLP fingerprinting.

    PubMed

    Maharaj, Ariana; Rampersad, Sephra N

    2012-03-01

    Members of the genus Colletotrichum include some of the most economically important fungal pathogens in the world. Accurate diagnosis is critical to devising disease management strategies. Two species, Colletotrichum gloeosporioides and C. truncatum, are responsible for anthracnose disease in papaya (Carica papaya L.) and bell pepper (Capsicum annuum L.) in Trinidad. The ITS1-5.8S-ITS2 region of 48 Colletotrichum isolates was sequenced, and the ITS PCR products were analyzed by PCR-RFLP analysis. Restriction site polymorphisms generated from 11 restriction enzymes enabled the identification of specific enzymes that were successful in distinguishing between C. gloeosporioides and C. truncatum isolates. Species-specific restriction fragment length polymorphisms generated by the enzymes AluI, HaeIII, PvuII, RsaI, and Sau3A were used to consistently resolve C. gloeosporioides and C. truncatum isolates from papaya. AluI, ApaI, PvuII, RsaI, and SmaI reliably separated isolates of C. gloeosporioides and C. truncatum from bell pepper. PvuII, RsaI, and Sau3A were also capable of distinguishing among the C. gloeosporioides isolates from papaya based on the different restriction patterns that were obtained as a result of intra-specific variation in restriction enzyme recognition sites in the ITS1-5.8S-ITS2 rDNA region. Of all the isolates tested, C. gloeosporioides from papaya also had the highest number of PCR-RFLP haplotypes. Cluster analysis of sequence and PCR-RFLP data demonstrated that all C. gloeosporioides and C. truncatum isolates clustered separately into species-specific clades regardless of host species. Phylograms also revealed consistent topologies which suggested that the genetic distances for PCR-RFLP-generated data were comparable to that of ITS sequence data. ITS PCR-RFLP fingerprinting is a rapid and reliable method to identify and differentiate between Colletotrichum species.

  19. Genetic Diversity and Phylogenetic Analysis of the Iranian Leishmania Parasites Based on HSP70 Gene PCR-RFLP and Sequence Analysis.

    PubMed

    Nemati, Sara; Fazaeli, Asghar; Hajjaran, Homa; Khamesipour, Ali; Anbaran, Mohsen Falahati; Bozorgomid, Arezoo; Zarei, Fatah

    2017-08-01

    Despite the broad distribution of leishmaniasis among Iranians and animals across the country, little is known about the genetic characteristics of the causative agents. Applying both HSP70 PCR-RFLP and sequence analyses, this study aimed to evaluate the genetic diversity and phylogenetic relationships among Leishmania spp. isolated from Iranian endemic foci and available reference strains. A total of 36 Leishmania isolates from almost all districts across the country were genetically analyzed for the HSP70 gene using both PCR-RFLP and sequence analysis. The original HSP70 gene sequences were aligned along with homologous Leishmania sequences retrieved from NCBI, and subjected to the phylogenetic analysis. Basic parameters of genetic diversity were also estimated. The HSP70 PCR-RFLP presented 3 different electrophoretic patterns, with no further intraspecific variation, corresponding to 3 Leishmania species available in the country, L. tropica, L. major, and L. infantum. Phylogenetic analyses presented 5 major clades, corresponding to 5 species complexes. Iranian lineages, including L. major, L. tropica, and L. infantum, were distributed among 3 complexes L. major, L. tropica, and L. donovani. However, within the L. major and L. donovani species complexes, the HSP70 phylogeny was not able to distinguish clearly between the L. major and L. turanica isolates, and between the L. infantum, L. donovani, and L. chagasi isolates, respectively. Our results indicated that both HSP70 PCR-RFLP and sequence analyses are medically applicable tools for identification of Leishmania species in Iranian patients. However, the reduced genetic diversity of the target gene makes it inevitable that its phylogeny only resolves the major groups, namely, the species complexes.

  20. Genetic polymorphism in Leishmania infantum isolates from human and animals determined by nagt PCR-RFLP.

    PubMed

    El Hamouchi, Adil; El Kacem, Sofia; Ejghal, Rajaa; Lemrani, Meryem

    2018-06-14

    Leishmania infantum is the causative agent of human visceral leishmaniasis (VL) and sporadic human cutaneous leishmaniasis (CL) in the Mediterranean region. The genetic variation of the Leishmania parasites may result in different phenotypes that can be associated with the geographical distribution and diversity of the clinical manifestations. The main objective of this study was to explore the genetic polymorphism in L. infantum isolates from human and animal hosts in different regions of Morocco. The intraspecific genetic variability of 40 Moroccan L. infantum MON-1 strains isolated from patients with VL (n = 31) and CL (n = 2) and from dogs (n = 7) was evaluated by PCR-RFLP of nagt, a single-copy gene encoding N-acetylglucosamine-1-phosphate transferase. For a more complete analysis of L. infantum polymorphism, we included the restriction patterns of nagt from 17 strains available in the literature and patterns determined by in-silico digestion of three sequences from the GenBank database. Moroccan L. infantum strains presented a certain level of genetic diversity and six distinct nagt-RFLP genotypes were identified. Three of the six genotypes were exclusively identified in the Moroccan population of L. infantum: variant M1 (15%), variant M2 (7.5%), and variant M3 (2.5%). The most common genotype (65%), variant 2 (2.5%), and variant 4 (7.5%), were previously described in several countries with endemic leishmaniasis. Phylogenetic analysis segregated our L. infantum population into two distinct clusters, whereas variant M2 was clearly distinguished from both cluster I and cluster II. This distribution highlights the degree of genetic variability among the Moroccan L. infantum population. The nagt PCR-RFLP method presented here showed an important genetic heterogeneity among Moroccan L. infantum strains isolated from human and canine reservoirs with 6 genotypes identified. Three of the six Moroccan nagt genotypes, have not been previously described and

  1. First genotyping of Cryptosporidium spp. in pre-weaned calves, broiler chickens and children in Syria by PCR-RFLP analysis.

    PubMed

    Kassouha, Morshed; Soukkarieh, Chadi; Alkhaled, Abdulkarim

    2016-07-30

    In this study, PCR-RFLP was used for the first time in Syria for genotyping Cryptosporidium species of man, calves and chickens. The total of 391 fecal samples included 213 from children with diarrhea (<5years), 67 from pre-weaned calves with diarrhea and 111 from broiler chicken farms. All samples were collected and examined with acid fast stain to detect the positive samples. Subsequently a nested-PCR test was performed on 35 positive samples (17 from calves, 11 from chicken, and 7 from children) targeting SSU rRNA gene, and was followed by RFLP analysis using three restriction enzymes SspI, VspI and MboII. Results showed that C. parvum was the only identified species in children and calves, on the other hand C. baileyi was identified in broilers in addition to another species with unknown RFLP profile in comparison to those which have been described in chicken. Further studies using more genes are needed to sequence and detect subtypes of this parasite. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. EVALUATION OF RAPID, QUANTITATIVE REAL-TIME PCR METHOD FOR ENUMERATION OF PATHOGENIC CANDIDA CELLS IN WATER

    EPA Science Inventory

    Quantitative Real-Time PCR (QRT-PCR) technology, incorporating fluorigenic 5' nuclease (TaqMan (trademark)) chemistry, was developed for the specific detection and quantification of six pathogenic species of Candida (C. albicans, C. tropicalis, C. krusei, C. parapsilosis, C. glab...

  3. Development of a PCR-RFLP assay for the detection and differentiation of canine parvovirus and mink enteritis virus.

    PubMed

    Zhang, Chuanmei; Yu, Yongle; Yang, Haiyan; Li, Guimei; Yu, Zekun; Zhang, Hongliang; Shan, Hu

    2014-12-15

    A polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay has been developed to detect and differentiate between canine parvovirus (CPV) and mink enteritis virus (MEV). Eight CPV and three MEV epidemic strains isolated from 28 pathological samples from dogs and minks suspected of being infected with parvovirus were amplified by PCR using a pair of specific primers designed based on the CPV-N strain (M19296). PCR amplified a fragment of 1016bp from the genomic DNA of both MEV and CPV. The MEV-derived fragment could be digested with the restriction enzyme BSP1407I into three fragments of 102bp, 312bp and 602bp, while the fragment amplified from the CPV genomic DNA was digested into only two fragments of 414bp and 602bp. The lowest DNA concentration of CPV and MEV that could be detected using this assay was 0.004μg/ml and 0.03μg/ml, respectively. The PCR-RFLP assay developed in the present study can, therefore, be used to detect and differentiate MEV from CPV with high specificity and sensitivity. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. EVALUATION OF A RAPID, QUANTITATIVE REAL-TIME PCR METHOD FOR ENUMERATION OF PATHOGENIC CANDIDA CELLS IN WATER

    EPA Science Inventory

    Quantitative Real-Time PCR (QRT-PCR) technology, incorporating fluorigenic 5' nuclease (TaqMan?) chemistry, was developed for the specific detection and quantification of six pathogenic species of Candida (C. albicans, C. tropicalis, C. krusei, C. parapsilosis, C. glabrata and C....

  5. Using PCR-RFLP technology to teach single nucleotide polymorphism for undergraduates.

    PubMed

    Zhang, Bo; Wang, Yan; Xu, Xiaofeng; Guan, Xingying; Bai, Yun

    2013-01-01

    Recent studies indicated that the aberrant gene expression of peroxiredoxin-6 (prdx6) was found in various kinds of cancers. Because of its biochemical function and gene expression pattern in cancer cells, the association between genetic polymorphism of Prdx6 and cancer onset is interesting. In this report, we have developed and implemented a serial experiment in molecular biology laboratory course to teach single nucleotide polymorphism (SNP) to undergraduate students majoring in molecular biology or genetics. The flanking sequence of rs4382766 was located in Prdx6 gene, which contained a restriction site of SspI, and was used as a target in this lab course. The students could mimic real research by integrating different techniques, such as database retrieving, genomic DNA isolation, PCR, and restriction enzyme assay. This serial experiment of PCR-RFLP helps students set up intact idea of molecular biology and understand the relation among individual experiments. Students were found to be more enthusiastic during the laboratory classes than those in the former curriculum. Copyright © 2013 Wiley Periodicals, Inc.

  6. RFLP Analysis and Allelic Discrimination with Real-Time PCR Using the Human Lactase Persistence Trait: A Pair of Molecular Genetic Investigations

    ERIC Educational Resources Information Center

    Weinlander, Kenneth M.; Hall, David J.; De Stasio, Elizabeth A.

    2010-01-01

    We describe here two open-ended laboratory investigations for an undergraduate laboratory course that uses students' DNA as templates for quantitative real-time PCR and for traditional PCR followed by RFLP analysis. Students are captivated by the immediacy of the application and the relevance of the genotypes and traits, lactase persistence or…

  7. Genetic characterization of Toxoplasma gondii from pigs from different localities in China by PCR-RFLP.

    PubMed

    Jiang, Hai-Hai; Huang, Si-Yang; Zhou, Dong-Hui; Zhang, Xiao-Xuan; Su, Chunlei; Deng, Shun-Zhou; Zhu, Xing-Quan

    2013-08-07

    Toxoplasma gondii is a widely prevalent protozoan parasite that causes serious toxoplasmosis in humans and animals. The present study aimed to determine the genetic diversity of T. gondii isolates from pigs in Jiangxi, Sichuan, Guangdong Provinces and Chongqing Municipality in China using multilocous polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technology. A total of 38 DNA samples were extracted from hilar lymph nodes of pigs with suspected toxoplasmosis, and were detected for the presence of T. gondii by semi-nested PCR of B1 gene. The positive DNA samples were typed at 11 genetic markers, including 10 nuclear loci, namely, SAG1, 5'-SAG2 and 3'-SAG2, alternative SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1, and an apicoplast locus Apico. Twenty-five of the 38 DNA samples were T. gondii B1 gene positive. Complete genotyping data for all loci could be obtained for 17 of the 25 samples. Two genotypes were revealed (ToxoDB PCR-RFLP genotypes #9 and #3). Sixteen samples belong to genotype #9 which is the major lineage in mainland China and one sample belongs to genotype #3 which is Type II variant. To our knowledge, this is the first report of genetic typing of T. gondii isolates from pigs in Jiangxi, Sichuan Province and Chongqing Municipality, and the first report of ToxoDB #3 T. gondii from pigs in China. These results have implications for the prevention and control of foodborne toxoplasmosis in humans.

  8. A Rapid PCR-RFLP Method for Monitoring Genetic Variation among Commercial Mushroom Species

    ERIC Educational Resources Information Center

    Martin, Presley; Muruke, Masoud; Hosea, Kenneth; Kivaisi, Amelia; Zerwas, Nick; Bauerle, Cynthia

    2004-01-01

    We report the development of a simplified procedure for restriction fragment length polymorphism (RFLP) analysis of mushrooms. We have adapted standard molecular techniques to be amenable to an undergraduate laboratory setting in order to allow students to explore basic questions about fungal diversity and relatedness among mushroom species. The…

  9. Quinoid radio-toxin (QRT) induced metabolic changes in mice: An ex vivo and in vivo EPR investigation

    PubMed Central

    Ibragimova, M.I.; Petukhov, V.Yu.; Zheglov, E.P.; Khan, N.; Hou, H.; Swartz, H.M.; Konjukhov, G.V.; Nizamov, R.N.

    2013-01-01

    Radio-toxins are toxic metabolites produced by ionizing irradiation and have toxic effects similar to those caused by direct irradiation. We have investigated the effect of a quinoid radio-toxin (QRT) obtained from γ-irradiated potato tuber on various organs in mice using ex vivo and in vivo EPR spectroscopy. Results indicate a decrease in the activity of ribonucleotide reductase enzyme in spleen of mice treated with 0.2 mg QRT. A dose of 2 mg QRT was fatal to mice within 45–60 min of treatment. Nitrosyl hemoglobin complexes α-(Fe2+–NO)α-(Fe2+)β-(Fe2+)2 were detected from spleen, blood, liver, kidney, heart, and lung tissue samples of mice treated with lethal doses of QRT. A significant decrease of pO2 in liver and brain was observed after administration of QRT at the lethal dose. The time of the appearance of the nitrosyl hemoglobin complex and its intensity varied with the dose of QRT and the type of tissue. These results indicate that the effect of the QRT is more prominent in spleen and to a lesser extent in liver and blood. The QRT action at the lethal doses resulted in an increased hypoxia over time with disruption of compensatory adaptive response. The results indicate similar outcome of QRT as observed with γ-irradiation. PMID:18230367

  10. PCR/RFLP-based analysis of genetically distinct Plasmodium vivax population of Pvmsp-3α and Pvmsp-3β genes in Pakistan.

    PubMed

    Khan, Shahid Niaz; Khan, Asif; Khan, Sanaullah; Ayaz, Sultan; Attaullah, Sobia; Khan, Jabbar; Khan, Muhammad Asim; Ali, Ijaz; Shah, Abdul Haleem

    2014-09-09

    Plasmodium vivax is one of the widespread human malarial parasites accounting for 75% of malaria epidemics. However, there is no baseline information about the status and nature of genetic variation of Plasmodium species circulating in various parts of Pakistan. The present study was aimed at observing the molecular epidemiology and genetic variation of Plasmodium vivax by analysing its merozoite surface protein-3α (msp-3α) and merozoite surface protein-3β (msp-3β) genes, by using suballele, species-specific, combined nested PCR/RFLP detection techniques. A total of 230 blood samples from suspected subjects tested slide positive for vivax malaria were collected from Punjab, Sindh, Khyber Pakhtunkhwa, and Balochistan during the period May 2012 to December 2013. Combined nested PCR/RFLP technique was conducted using Pvmsp-3α and Pvmsp-3β genetic markers to detect extent of genetic variation in clinical isolates of P. vivax in the studied areas of Pakistan. By PCR, P. vivax, 202/230 (87.82%), was found to be widely distributed in the studied areas. PCR/RFLP analysis showed a high range of allelic variations for both msp-3α and msp-3β genetic markers of P. vivax, i.e., 21 alleles for msp-3α and 19 for msp-3β. Statistically a significant difference (p ≤ 0.05) was observed in the genetic diversity of the suballelic variants of msp-3α and msp-3β genes of P. vivax. It is concluded that P. vivax populations are highly polymorphic and diverse allelic variants of Pvmsp-3α and Pvmsp-3β are present in Pakistan.

  11. Blood grouping based on PCR methods and agarose gel electrophoresis.

    PubMed

    Sell, Ana Maria; Visentainer, Jeane Eliete Laguila

    2015-01-01

    The study of erythrocyte antigens continues to be an intense field of research, particularly after the development of molecular testing methods. More than 300 specificities have been described by the International Society for Blood Transfusion as belonging to 33 blood group systems. The polymerase chain reaction (PCR) is a central tool for red blood cells (RBC) genotyping. PCR and agarose gel electrophoresis are low cost, easy, and versatile in vitro methods for amplifying defined target DNA (RBC polymorphic region). Multiplex-PCR, AS-PCR (Specific Allele Polymerase Chain Reaction), and RFLP-PCR (Restriction Fragment Length Polymorphism-Polymerase Chain Reaction) techniques are usually to identify RBC polymorphisms. Furthermore, it is an easy methodology to implement. This chapter describes the PCR methodology and agarose gel electrophoresis to identify the polymorphisms of the Kell, Duffy, Kidd, and MNS blood group systems.

  12. Fish species identification using PCR-RFLP analysis and lab-on-a-chip capillary electrophoresis: application to detect white fish species in food products and an interlaboratory study.

    PubMed

    Dooley, John J; Sage, Helen D; Clarke, Marie-Anne L; Brown, Helen M; Garrett, Stephen D

    2005-05-04

    Identification of 10 white fish species associated with U.K. food products was achieved using PCR-RFLP of the mitochondrial cytochrome b gene. Use of lab-on-a-chip capillary electrophoresis for end-point analysis enabled accurate sizing of DNA fragments and identification of fish species at a level of 5% (w/w) in a fish admixture. One restriction enzyme, DdeI, allowed discrimination of eight species. When combined with NlaIII and HaeIII, specific profiles for all 10 species were generated. The method was applied to a range of products and subjected to an interlaboratory study carried out by five U.K. food control laboratories. One hundred percent correct identification of single species samples and six of nine admixture samples was achieved by all laboratories. The results indicated that fish species identification could be carried out using a database of PCR-RFLP profiles without the need for reference materials.

  13. Genetic variation in Pythium myriotylum based on SNP typing and development of a PCR-RFLP detection of isolates recovered from Pythium soft rot ginger.

    PubMed

    Le, D P; Smith, M K; Aitken, E A B

    2017-10-01

    Pythium myriotylum is responsible for severe losses in both capsicum and ginger crops in Australia under different regimes. Intraspecific genomic variation within the pathogen might explain the differences in aggressiveness and pathogenicity on diverse hosts. In this study, whole genome data of four P. myriotylum isolates recovered from three hosts and one Pythium zingiberis isolate were derived and analysed for sequence diversity based on single nucleotide polymorphisms (SNPs). A higher number of true and unique SNPs occurred in P. myriotylum isolates obtained from ginger with symptoms of Pythium soft rot (PSR) in Australia compared to other P. myriotylum isolates. Overall, SNPs were discovered more in the mitochondrial genome than those in the nuclear genome. Among the SNPs, a single substitution from the cytosine (C) to the thymine (T) in the partially sequenced CoxII gene of 14 representatives of PSR P. myriotylum isolates was within a restriction site of HinP1I enzyme which was used in the PCR-RFLP for detection and identification of the isolates without sequencing. The PCR-RFLP was also sensitive to detect PSR P. myriotylum strains from artificially infected ginger without the need for isolation for pure cultures. This is the first study of intraspecific variants of Pythium myriotylum isolates recovered from different hosts and origins based on single nucleotide polymorphism (SNP) genotyping of multiple genes. The SNPs discovered provide valuable makers for detection and identification of P. myriotylum strains initially isolated from Pythium soft rot (PSR) ginger by using PCR-RFLP of the CoxII locus. The PCR-RFLP was also sensitive to detect P. myriotylum directly from PSR ginger sampled from pot trials without the need of isolation for pure cultures. © 2017 The Society for Applied Microbiology.

  14. Molecular typing of the actin gene of Trichomonas vaginalis isolates by PCR-RFLP in Iran.

    PubMed

    Momeni, Zohreh; Sadraei, Javid; Kazemi, Bahram; Dalimi, Abdolhossein

    2015-12-01

    Trichomonas vaginalis is a human urogenital pathogen that causes trichomoniasis, the most common nonviral, parasitic sexually transmitted infection in the world. At present, little is known regarding the degree of strain variability of T. vaginalis. A classification method for T. vaginalis strains would be a useful tool in the study of the epidemiology, drug resistance, pathogenesis and transmission of T. vaginalis. Eight different types of actin genes have been identified by PCR-RFLP in T. vaginalis; the purpose of this study is to determine the genotypes of this parasite in Karaj city, Iran. Forty-five clinical T. vaginalis isolates from vaginal secretions and urine sediment were collected from Karaj city from 2012 through 2014. DNA was extracted and the actin gene was amplified by nested-PCR; all samples were positive. To determine the genetic differences, sequencing on seven samples was conducted. Then, all PCR products were digested with HindII, MseI, and RsaI restriction enzymes. Of 45 isolates, 23 samples (51.1%) were of actin genotype G, 11 samples (24.4%) of genotype E, six samples (13.3%) of genotype H, three samples (6.6%) of genotype I, and two samples (4.4%) were mixed genotypes of G and E. Genetic diversity of T. vaginalis isolates is notable. The actin genotype G may be the dominant genotype in Karaj city, Iran. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Comparison of Direct Sequencing, Real-Time PCR-High Resolution Melt (PCR-HRM) and PCR-Restriction Fragment Length Polymorphism (PCR-RFLP) Analysis for Genotyping of Common Thiopurine Intolerant Variant Alleles NUDT15 c.415C>T and TPMT c.719A>G (TPMT*3C).

    PubMed

    Fong, Wai-Ying; Ho, Chi-Chun; Poon, Wing-Tat

    2017-05-12

    Thiopurine intolerance and treatment-related toxicity, such as fatal myelosuppression, is related to non-function genetic variants encoding thiopurine S-methyltransferase (TPMT) and Nudix hydrolase 15 (NUDT15). Genetic testing of the common variants NUDT15:NM_018283.2:c.415C>T (Arg139Cys, dbSNP rs116855232 T allele) and TPMT: NM_000367.4:c.719A>G (TPMT*3C, dbSNP rs1142345 G allele) in East Asians including Chinese can potentially prevent treatment-related complications. Two complementary genotyping approaches, real-time PCR-high resolution melt (PCR-HRM) and PCR-restriction fragment length morphism (PCR-RFLP) analysis were evaluated using conventional PCR and Sanger sequencing genotyping as the gold standard. Sixty patient samples were tested, revealing seven patients (11.7%) heterozygous for NUDT15 c.415C>T, one patient homozygous for the variant and one patient heterozygous for the TPMT*3C non-function allele. No patient was found to harbor both variants. In total, nine out of 60 (15%) patients tested had genotypic evidence of thiopurine intolerance, which may require dosage adjustment or alternative medication should they be started on azathioprine, mercaptopurine or thioguanine. The two newly developed assays were more efficient and showed complete concordance (60/60, 100%) compared to the Sanger sequencing results. Accurate and cost-effective genotyping assays by real-time PCR-HRM and PCR-RFLP for NUDT15 c.415C>T and TPMT*3C were successfully developed. Further studies may establish their roles in genotype-informed clinical decision-making in the prevention of morbidity and mortality due to thiopurine intolerance.

  16. Diagnosis of clinical samples spotted on FTA cards using PCR-based methods.

    PubMed

    Jamjoom, Manal; Sultan, Amal H

    2009-04-01

    The broad clinical presentation of Leishmaniasis makes the diagnosis of current and past cases of this disease rather difficult. Differential diagnosis is important because diseases caused by other aetiologies and a clinical spectrum similar to that of leishmaniasis (e.g. leprosy, skin cancers and tuberculosis for CL; malaria and schistosomiasis for VL) are often present in endemic areas of endemicity. Presently, a variety of methods have been developed and tested to aid the identification and diagnosis of Leishmania. The advent of the PCR technology has opened new channels for the diagnosis of leishmaniasis in a variety of clinical materials. PCR is a simple, rapid procedure that has been adapted for diagnosis of leishmaniasis. A range of tools is currently available for the diagnosis and identification of leishmaniasis and Leishmania species, respectively. However, none of these diagnostic tools are examined and tested using samples spotted on FTA cards. Three different PCR-based approaches were examined including: kDNA minicircle, Leishmania 18S rRNA gene and PCR-RFLP of Intergenic region of ribosomal protein. PCR primers were designed that sit within the coding sequences of genes (relatively well conserved) but which amplify across the intervening intergenic sequence (relatively variable). These were used in PCR-RFLP on reference isolates of 10 of the most important Leishmania species: L. donovani, L. infantum, L. major & L. tropica. Digestion of PCR products with restriction enzymes produced species-specific restriction patterns allowed discrimination of reference isolates. The kDNA minicircle primers are highly sensitive in diagnosis of both bone marrow and skin smears from FTA cards. Leishmania 18S rRNA gene conserved region is sensitive in identification of bone marrow smear but less sensitive in diagnosing skin smears. The intergenic nested PCR-RFLP using P5 & P6 as well as P1 & P2 newly designed primers showed high level of reproducibility and sensitivity

  17. Specific detection of benzimidazole resistance in Colletotrichum gloeosporioides from fruit crops by PCR-RFLP.

    PubMed

    Chung, Wen-Hsin; Chung, Wen-Chuan; Peng, Mun-Tsu; Yang, Hong-Ren; Huang, Jenn-Wen

    2010-02-28

    Anthracnose diseases, caused by Colletotrichum gloeosporioides, are a worldwide problem and are especially important in Taiwan owing to the severe economic damage they cause to tropical fruits that are grown for local consumption and export. Benzimidazoles are systemic fungicides widely used for controlling these diseases in Taiwan. Thirty-one isolates of C. gloeosporioides from mango and strawberry grown in Taiwan were examined for their sensitivity to benzimidazole fungicides. The responses of the isolates grown on benzimidazole-amended culture media were characterized as sensitive, moderately resistant, resistant or highly resistant. Analysis of point mutations in the beta-tubulin gene by DNA sequencing of PCR-amplified fragments revealed a substitution of GCG for GAG at codon 198 in resistant and highly resistant isolates and a substitution of TAC for TTC at codon 200 in moderately resistant isolates. A set of specific primers, TubGF1 and TubGR, was designed to amplify a portion of the beta-tubulin gene for the detection of benzimidazole-resistant C. gloeosporioides. Bsh1236I restriction maps of the amplified beta-tubulin gene showed that the resistant isolate sequence, but not the sensitive isolate sequence, was cut. The PCR restriction fragment length polymorphism (PCR-RFLP) was validated to detect benzimidazole-resistant and benzimidazole-sensitive C. gloeosporioides isolates recovered from avocado, banana, carambola, dragon fruit, grape, guava, jujube, lychee, papaya, passion fruit and wax apple. This method has the potential to become a valuable tool for monitoring the occurrence of benzimidazole-resistant C. gloeosporioides and for assessment of the need for alternative management practices. Copyright 2009 Elsevier B.V. All rights reserved.

  18. Comparative evaluation of three automated systems for DNA extraction in conjunction with three commercially available real-time PCR assays for quantitation of plasma Cytomegalovirus DNAemia in allogeneic stem cell transplant recipients.

    PubMed

    Bravo, Dayana; Clari, María Ángeles; Costa, Elisa; Muñoz-Cobo, Beatriz; Solano, Carlos; José Remigia, María; Navarro, David

    2011-08-01

    Limited data are available on the performance of different automated extraction platforms and commercially available quantitative real-time PCR (QRT-PCR) methods for the quantitation of cytomegalovirus (CMV) DNA in plasma. We compared the performance characteristics of the Abbott mSample preparation system DNA kit on the m24 SP instrument (Abbott), the High Pure viral nucleic acid kit on the COBAS AmpliPrep system (Roche), and the EZ1 Virus 2.0 kit on the BioRobot EZ1 extraction platform (Qiagen) coupled with the Abbott CMV PCR kit, the LightCycler CMV Quant kit (Roche), and the Q-CMV complete kit (Nanogen), for both plasma specimens from allogeneic stem cell transplant (Allo-SCT) recipients (n = 42) and the OptiQuant CMV DNA panel (AcroMetrix). The EZ1 system displayed the highest extraction efficiency over a wide range of CMV plasma DNA loads, followed by the m24 and the AmpliPrep methods. The Nanogen PCR assay yielded higher mean CMV plasma DNA values than the Abbott and the Roche PCR assays, regardless of the platform used for DNA extraction. Overall, the effects of the extraction method and the QRT-PCR used on CMV plasma DNA load measurements were less pronounced for specimens with high CMV DNA content (>10,000 copies/ml). The performance characteristics of the extraction methods and QRT-PCR assays evaluated herein for clinical samples were extensible at cell-based standards from AcroMetrix. In conclusion, different automated systems are not equally efficient for CMV DNA extraction from plasma specimens, and the plasma CMV DNA loads measured by commercially available QRT-PCRs can differ significantly. The above findings should be taken into consideration for the establishment of cutoff values for the initiation or cessation of preemptive antiviral therapies and for the interpretation of data from clinical studies in the Allo-SCT setting.

  19. Lab-on-a-Chip-Based PCR-RFLP Assay for the Detection of Malayan Box Turtle (Cuora amboinensis) in the Food Chain and Traditional Chinese Medicines

    PubMed Central

    Asing; Ali, Md. Eaqub; Abd Hamid, Sharifah Bee; Hossain, M. A. Motalib; Mustafa, Shuhaimi; Kader, Md. Abdul; Zaidul, I. S. M.

    2016-01-01

    The Malayan box turtle (Cuora amboinensis) (MBT) is a vulnerable and protected turtle species, but it is a lucrative item in the illegal wildlife trade because of its great appeal as an exotic food item and in traditional medicine. Although several polymerase chain reaction (PCR) assays to identify MBT by various routes have been documented, their applicability for forensic authentication remains inconclusive due to the long length of the amplicon targets, which are easily broken down by natural decomposition, environmental stresses or physiochemical treatments during food processing. To address this research gap, we developed, for the first time, a species-specific PCR-restriction fragment length polymorphism (RFLP) assay with a very short target length (120 bp) to detect MBT in the food chain; this authentication ensured better security and reliability through molecular fingerprints. The PCR-amplified product was digested with Bfa1 endonuclease, and distinctive restriction fingerprints (72, 43 and 5 bp) for MBT were found upon separation in a microfluidic chip-based automated electrophoresis system, which enhances the resolution of short oligos. The chances of any false negative identifications were eliminated through the use of a universal endogenous control for eukaryotes, and the limit of detection was 0.0001 ng DNA or 0.01% of the meat under admixed states. Finally, the optimized PCR-RFLP assay was validated for the screening of raw and processed commercial meatballs, burgers and frankfurters, which are very popular in most countries. The optimized PCR-RFLP assay was further used to screen MBT materials in 153 traditional Chinese medicines of 17 different brands and 62 of them were found MBT positive; wherein the ingredients were not declared in product labels. Overall, the novel assay demonstrated sufficient merit for use in any forensic and/or archaeological authentication of MBT, even under a state of decomposition. PMID:27716792

  20. Lab-on-a-Chip-Based PCR-RFLP Assay for the Detection of Malayan Box Turtle (Cuora amboinensis) in the Food Chain and Traditional Chinese Medicines.

    PubMed

    Asing; Ali, Md Eaqub; Abd Hamid, Sharifah Bee; Hossain, M A Motalib; Mustafa, Shuhaimi; Kader, Md Abdul; Zaidul, I S M

    2016-01-01

    The Malayan box turtle (Cuora amboinensis) (MBT) is a vulnerable and protected turtle species, but it is a lucrative item in the illegal wildlife trade because of its great appeal as an exotic food item and in traditional medicine. Although several polymerase chain reaction (PCR) assays to identify MBT by various routes have been documented, their applicability for forensic authentication remains inconclusive due to the long length of the amplicon targets, which are easily broken down by natural decomposition, environmental stresses or physiochemical treatments during food processing. To address this research gap, we developed, for the first time, a species-specific PCR-restriction fragment length polymorphism (RFLP) assay with a very short target length (120 bp) to detect MBT in the food chain; this authentication ensured better security and reliability through molecular fingerprints. The PCR-amplified product was digested with Bfa1 endonuclease, and distinctive restriction fingerprints (72, 43 and 5 bp) for MBT were found upon separation in a microfluidic chip-based automated electrophoresis system, which enhances the resolution of short oligos. The chances of any false negative identifications were eliminated through the use of a universal endogenous control for eukaryotes, and the limit of detection was 0.0001 ng DNA or 0.01% of the meat under admixed states. Finally, the optimized PCR-RFLP assay was validated for the screening of raw and processed commercial meatballs, burgers and frankfurters, which are very popular in most countries. The optimized PCR-RFLP assay was further used to screen MBT materials in 153 traditional Chinese medicines of 17 different brands and 62 of them were found MBT positive; wherein the ingredients were not declared in product labels. Overall, the novel assay demonstrated sufficient merit for use in any forensic and/or archaeological authentication of MBT, even under a state of decomposition.

  1. Identification of Pork Contamination in Meatballs of Indonesia Local Market Using Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) Analysis

    PubMed Central

    Erwanto, Yuny; Abidin, Mohammad Zainal; Sugiyono, Eko Yasin Prasetyo Muslim; Rohman, Abdul

    2014-01-01

    This research applied and evaluated a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) using cytochrome b gene to detect pork contamination in meatballs from local markets in Surabaya and Yogyakarta regions, Indonesia. To confirm the effectiveness and specificity of this fragment, thirty nine DNA samples from different meatball shops were isolated and amplified, and then the PCR amplicon was digested by BseDI restriction enzyme to detect the presence of pork in meatballs. BseDI restriction enzyme was able to cleave porcine cytochrome b gene into two fragments (131 bp and 228 bp). Testing the meatballs from the local market showed that nine of twenty meatball shops in Yogyakarta region were detected to have pork contamination, but there was no pork contamination in meatball shops in Surabaya region. In conclusion, specific PCR amplification of cytochrome b gen and cleaved by BseDI restriction enzymes seems to be a powerful technique for the identification of pork presence in meatball because of its simplicity, specificity and sensitivity. Furthermore, pork contamination intended for commercial products of sausage, nugget, steak and meat burger can be checked. The procedure is also much cheaper than other methods based on PCR, immunodiffusion and other techniques that need expensive equipment. PMID:25178301

  2. Identification of Pork Contamination in Meatballs of Indonesia Local Market Using Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) Analysis.

    PubMed

    Erwanto, Yuny; Abidin, Mohammad Zainal; Sugiyono, Eko Yasin Prasetyo Muslim; Rohman, Abdul

    2014-10-01

    This research applied and evaluated a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) using cytochrome b gene to detect pork contamination in meatballs from local markets in Surabaya and Yogyakarta regions, Indonesia. To confirm the effectiveness and specificity of this fragment, thirty nine DNA samples from different meatball shops were isolated and amplified, and then the PCR amplicon was digested by BseDI restriction enzyme to detect the presence of pork in meatballs. BseDI restriction enzyme was able to cleave porcine cytochrome b gene into two fragments (131 bp and 228 bp). Testing the meatballs from the local market showed that nine of twenty meatball shops in Yogyakarta region were detected to have pork contamination, but there was no pork contamination in meatball shops in Surabaya region. In conclusion, specific PCR amplification of cytochrome b gen and cleaved by BseDI restriction enzymes seems to be a powerful technique for the identification of pork presence in meatball because of its simplicity, specificity and sensitivity. Furthermore, pork contamination intended for commercial products of sausage, nugget, steak and meat burger can be checked. The procedure is also much cheaper than other methods based on PCR, immunodiffusion and other techniques that need expensive equipment.

  3. Development of real-time PCR method for the detection and the quantification of a new endogenous reference gene in sugar beet "Beta vulgaris L.": GMO application.

    PubMed

    Chaouachi, Maher; Alaya, Akram; Ali, Imen Ben Haj; Hafsa, Ahmed Ben; Nabi, Nesrine; Bérard, Aurélie; Romaniuk, Marcel; Skhiri, Fethia; Saïd, Khaled

    2013-01-01

    KEY MESSAGE : Here, we describe a new developed quantitative real-time PCR method for the detection and quantification of a new specific endogenous reference gene used in GMO analysis. The key requirement of this study was the identification of a new reference gene used for the differentiation of the four genomic sections of the sugar beet (Beta vulgaris L.) (Beta, Corrollinae, Nanae and Procumbentes) suitable for quantification of genetically modified sugar beet. A specific qualitative polymerase chain reaction (PCR) assay was designed to detect the sugar beet amplifying a region of the adenylate transporter (ant) gene only from the species of the genomic section I of the genus Beta (cultivated and wild relatives) and showing negative PCR results for 7 species of the 3 other sections, 8 related species and 20 non-sugar beet plants. The sensitivity of the assay was 15 haploid genome copies (HGC). A quantitative real-time polymerase chain reaction (QRT-PCR) assay was also performed, having high linearity (R (2) > 0.994) over sugar beet standard concentrations ranging from 20,000 to 10 HGC of the sugar beet DNA per PCR. The QRT-PCR assay described in this study was specific and more sensitive for sugar beet quantification compared to the validated test previously reported in the European Reference Laboratory. This assay is suitable for GMO quantification in routine analysis from a wide variety of matrices.

  4. Comparison of two PCR-based methods and automated DNA sequencing for prop-1 genotyping in Ames dwarf mice.

    PubMed

    Gerstner, Arpad; DeFord, James H; Papaconstantinou, John

    2003-07-25

    Ames dwarfism is caused by a homozygous single nucleotide mutation in the pituitary specific prop-1 gene, resulting in combined pituitary hormone deficiency, reduced growth and extended lifespan. Thus, these mice serve as an important model system for endocrinological, aging and longevity studies. Because the phenotype of wild type and heterozygous mice is undistinguishable, it is imperative for successful breeding to accurately genotype these animals. Here we report a novel, yet simple, approach for prop-1 genotyping using PCR-based allele-specific amplification (PCR-ASA). We also compare this method to other potential genotyping techniques, i.e. PCR-based restriction fragment length polymorphism analysis (PCR-RFLP) and fluorescence automated DNA sequencing. We demonstrate that the single-step PCR-ASA has several advantages over the classical PCR-RFLP because the procedure is simple, less expensive and rapid. To further increase the specificity and sensitivity of the PCR-ASA, we introduced a single-base mismatch at the 3' penultimate position of the mutant primer. Our results also reveal that the fluorescence automated DNA sequencing has limitations for detecting a single nucleotide polymorphism in the prop-1 gene, particularly in heterozygotes.

  5. Possibilities in identification of genomic species of Burkholderia cepacia complex by PCR and RFLP.

    PubMed

    Navrátilová, Lucie; Chromá, Magdalena; Hanulík, Vojtech; Raclavský, Vladislav

    2013-01-01

    The strains belonging to Burkholderia cepacia complex are important opportunistic pathogens in immunocompromised patients and cause serious diseases. It is possible to obtain isolates from soil, water, plants and human samples. Taxonomy of this group is difficult. Burkholderia cepacia complex consists of seventeen genomic species and the genetic scheme is based on recA gene. Commonly, first five genomovars occurre in humans, mostly genomovars II and III, subdivision IIIA. Within this study we tested identification of first five genomovars by PCR with following melting analysis and RFLP. The experiments were targeted on eubacterial 16S rDNA and specific gene recA, which allowed identification of all five genomovars. RecA gene appeared as more suitable than 16S rDNA, which enabled direct identification of only genomovars II and V; genomovars I, III and IV were similar within 16S rDNA sequence.

  6. Chloroplast and nuclear DNA studies in a few members of the Brassica oleracea L. group using PCR-RFLP and ISSR-PCR markers: a population genetic analysis.

    PubMed

    Panda, S; Martín, J P; Aguinagalde, I

    2003-04-01

    A population genetic analysis of chloroplast and nuclear DNA was performed covering nine wild populations of Brassica oleracea. Three members of the n = 9 group, all close to B. oleracea, Brassica alboglabra Bailey, Brassica bourgeaui (Webb) O. Kuntze and Brassica montana Pourret, were also studied to better understand their relationship with B. oleracea. Chloroplast DNA was analysed using the PCR-RFLP (polymerase chain reaction - restriction fragment length polymorphism) method. The ISSR-PCR (inter-simple sequence repeat - polymerase chain reaction) technique was adopted to study nuclear DNA. Twelve primer pairs of chloroplast DNA showed very good amplification. The amplified product of each primer pair, digested by three restriction enzymes, revealed no variation of cpDNA among the taxa studied. This indicates they may have the same chloroplast genotype. Seven selected ISSR primers have detected genetic variation, both within and among the populations/taxa surveyed. The information obtained on the intra- and inter-populational genetic diversity of wild populations of B. oleracea neatly defined the individual plants. It could provide important guidelines for backing management and conservation strategies in this species. The study confirms a close relationship between B. alboglabra, B. bourgeaui and B. montana, which is parallel to their morphological similitude.

  7. Characterization of copy numbers of 16S rDNA and 16S rRNA of Candidatus Liberibacter asiaticus and the implication in detection in planta using quantitative PCR.

    PubMed

    Kim, Jeong-Soon; Wang, Nian

    2009-03-06

    Citrus Huanglongbing (HLB) is one of the most devastating diseases on citrus and is associated with Candidatus Liberibacter spp.. The pathogens are phloem limited and have not been cultured in vitro. The current management strategy of HLB is to remove infected citrus trees and reduce psyllid populations with insecticides to prevent the spreading. This strategy requires sensitive and reliable diagnostic methods for early detection. We investigated the copy numbers of the 16S rDNA and 16S rRNA of the HLB pathogen and the implication of improving the diagnosis of HLB for early detection using Quantitative PCR. We compared the detection of HLB with different Quantitative PCR based methods with primers/probe targeting either 16S rDNA, beta-operon DNA, 16S rRNA, or beta-operon RNA. The 16S rDNA copy number of Ca. Liberibacter asiaticus was estimated to be three times of that of the beta-operon region, thus allowing detection of lower titer of Ca. L. asiaticus. Quantitative reverse transcriptional PCR (QRT-PCR) indicated that the 16S rRNA averaged 7.83 times more than that of 16S rDNA for the same samples. Dilution analysis also indicates that QRT-PCR targeting 16S rRNA is 10 time more sensitive than QPCR targeting 16S rDNA. Thus QRT-PCR was able to increase the sensitivity of detection by targeting 16S rRNA. Our result indicates that Candidatus Liberibacter asiaticus contains three copies of 16S rDNA. The copy number of 16S rRNA of Ca. L. asiaticus in planta averaged about 7.8 times of 16S rDNA for the same set of samples tested in this study. Detection sensitivity of HLB could be improved through the following approaches: using 16S rDNA based primers/probe in the QPCR assays; and using QRT-PCR assays targeting 16S rRNA.

  8. PCR-RFLP assays to distinguish the Western and Eastern phylogroups in wild and cultured tench Tinca tinca.

    PubMed

    Lajbner, Z; Kotlík, P

    2011-03-01

    The tench Tinca tinca is a valued table fish native to Europe and Asia, but which is now widely distributed in many temperate freshwater regions of the world as the result of human-mediated translocations. Fish are currently being transplanted between watersheds without concern for genetic similarity to wild populations or local adaptation, and efficient phylogeographic markers are therefore urgently needed to rapidly distinguish genetically distinct geographical populations and to assess their contribution to the hatchery breeds and to the stocked wild populations. Here, we present a new method to distinguish recently discovered and morphologically undistinguishable Western and Eastern phylogroups of the tench. The method relies on PCR-RFLP assays of two independent nuclear-encoded exon-primed intron-crossing (EPIC) markers and of one mitochondrial DNA (mDNA) marker and allows the rapid identification of the Western and Eastern phylogroup and also of three geographical mtDNA clades within the Eastern phylogroup. Our method will enable researchers and fishery practitioners to rapidly distinguish genetically divergent geographical populations of the tench and will be useful for monitoring the introduction and human-mediated spread of the phylogroups in wild populations, for characterization of cultured strains and in breeding experiments. © 2010 Blackwell Publishing Ltd.

  9. PCR and RFLP analyses based on the ribosomal protein operon

    USDA-ARS?s Scientific Manuscript database

    Differentiation and classification of phytoplasmas have been primarily based on the highly conserved 16Sr RNA gene. RFLP analysis of 16Sr RNA gene sequences has identified 31 16Sr RNA (16Sr) groups and more than 100 16Sr subgroups. Classification of phytoplasma strains can however, become more refin...

  10. Rapid differentiation of Staphylococcus aureus isolates harbouring egc loci with pseudogenes psient1 and psient2 and the selu or seluv gene using PCR-RFLP.

    PubMed

    Collery, Mark M; Smyth, Cyril J

    2007-02-01

    The egc locus of Staphylococus aureus harbours two enterotoxin genes (seg and sei) and three enterotoxin-like genes (selm, seln and selo). Between the sei and seln genes are located two pseudogenes, psient1 and psient2, or the selu or seluv gene. While these two alternative sei-seln intergenic regions can be distinguished by PCR, to date, DNA sequencing has been the only confirmatory option because of the very high degree of sequence similarity between egc loci bearing the pseudogenes and the selu or seluv gene. In silico restriction enzyme digestion of genomic regions encompassing the egc locus from the 3' end of the sei gene through the 5' first quarter of the seln gene allowed pseudogene- and selu- or seluv-bearing egc loci to be distinguished by PCR-RFLP. Experimental application of these findings demonstrated that endonuclease HindIII cleaved PCR amplimers bearing pseudogenes but not those with a selu or seluv gene, while selu- or seluv-bearing amplimers were susceptible to cleavage by endonuclease HphI, but not by endonuclease HindIII. The restriction enzyme BccI cleaved selu- or seluv-harbouring amplimers at a unique restriction site created by their signature 15 bp insertion compared with pseudogene-bearing amplimers, thereby allowing distinction of these egc loci. PCR-RFLP analysis using these restriction enzymes provides a rapid, easy to interpret alternative to DNA sequencing for verification of PCR findings on the nature of an egc locus type, and can also be used for the primary identification of the intergenic sei-seln egc locus type.

  11. RFLP and sequence analysis of the cytochrome b gene of selected animals and man: methodology and forensic application.

    PubMed

    Zehner, R; Zimmermann, S; Mebs, D

    1998-01-01

    To identify common animal species by analysis of the cytochrome b gene a method has been developed to obtain PCR products of a large domain of the cytochrome b gene (981 bp out of 1140 bp) in humans, selected mammals and birds using the same specifically designed primers. Species-specific RFLP patterns are generated by co-restriction with the restriction endonucleases ALU I and NCO I. The RFLP patterns obtained are conclusive even in mixtures of two or more species. The results were confirmed by sequence analysis which in addition explained intraspecies variations in the RFLP patterns. The method has been applied to forensic casework studies where the origin of roasted meat, stomach contents and a bone sample has been successfully identified.

  12. Multilocus PCR-RFLP profiling in Trypanosoma cruzi I highlights an intraspecific genetic variation pattern.

    PubMed

    Ramírez, Juan David; Duque, María Clara; Montilla, Marleny; Cucunubá, Zulma M; Guhl, Felipe

    2012-12-01

    Chagas disease represents a serious problem in public health. This zoonotic pathology is caused by the kinetoplastid Trypanosoma cruzi which displays a high genetic diversity falling into six Discrete Typing Units (TcI-TcVI). In Colombia, the prevalent DTU is TcI with findings of TcII, TcIII and TcIV in low proportions. The aim of this work was to observe the genetic variability within TcI using a multilocus PCR-RFLP strategy. We analyzed 70 single-celled clones from triatomines, reservoirs and humans that were amplified and restricted via ten PCR-RFLPs targets across TcI genome, the restriction fragments were used to construct phylograms according to calculated genetic distances. We obtained five polymorphic targets (1f8, HSP60, HSP70, SAPA and H1) and the consensus tree constructed according to these regions allowed us to observe two well-defined groups with close association to the transmission cycles (domestic/peridomestic and sylvatic) of Chagas disease in Colombia. Our findings allowed us to corroborate the previous reported genotypes based on the intergenic region of mini-exon gene. More studies examining the genetic diversity among T. cruzi I populations must be conducted in order to obtain a better understanding in regions where this DTU is endemic. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Differentiation of Leishmania (Viannia) panamensis and Leishmania (V.) guyanensis using BccI for hsp70 PCR-RFLP.

    PubMed

    Montalvo Alvarez, Ana Margarita; Nodarse, Jorge Fraga; Goodridge, Ivón Montano; Fidalgo, Lianet Monzote; Marin, Marcel; Van Der Auwera, Gert; Dujardin, Jean-Claude; Bernal, Iván Darío Velez; Muskus, Carlos

    2010-05-01

    Leishmania panamensis and Leishmania guyanensis are two species of the subgenus Viannia that are genetically very similar. Both parasites are usually associated with cutaneous leishmaniasis, but also have the potential to cause the mucocutaneous form of the disease. In addition, the study of foci and consequently the identification of vectors and probable reservoirs involved in transmission require a correct differentiation between both species, which is important at epidemiological level. We explored the possibility of identifying these species by using restriction fragment length polymorphisms (RFLP) in the gene coding for heat-shock protein 70 (hsp70). Previously, an hsp70 PCR-RFLP assay proved to be very effective in differentiating other Leishmania species when HaeIII is used as restriction enzyme. Based on hsp70 sequences analysis, BccI was found to generate species-specific fragments that can easily be recognized by agarose gel electrophoresis. Using the analysis of biopsies, scrapings, and parasite isolates previously grouped in a cluster comprising both L. panamensis and L. guyanensis, we showed that our approach allowed differentiation of both entities. This offers the possibility not only for identification of parasites in biological samples, but also to apply molecular epidemiology in certain countries of the New World, where several Leishmania species could coexist. Copyright 2009 Royal Society of Tropical Medicine and Hygiene. Published by Elsevier Ltd. All rights reserved.

  14. Characterization and quantification of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in a nitrogen-removing reactor using T-RFLP and qPCR

    PubMed Central

    Jin, Tao; Yan, Qingmei

    2010-01-01

    Using ammonia monooxygenase α-subunit (amoA) gene and 16S rRNA gene, the community structure and abundance of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in a nitrogen-removing reactor, which was operated for five phases, were characterized and quantified by cloning, terminal restriction fragment length polymorphism (T-RFLP), and quantitative polymerase chain reaction (qPCR). The results suggested that the dominant AOB in the reactor fell to the genus Nitrosomonas, while the dominant AOA belonged to Crenarchaeotal Group I.1a in phylum Crenarchaeota. Real-time PCR results demonstrated that the levels of AOB amoA varied from 2.9 × 103 to 2.3 × 105 copies per nanogram DNA, greatly (about 60 times) higher than those of AOA, which ranged from 1.7 × 102 to 3.8 × 103 copies per nanogram DNA. This indicated the possible leading role of AOB in the nitrification process in this study. T-RFLP results showed that the AOB community structure significantly shifted in different phases while AOA only showed one major peak for all the phases. The analyses also suggested that the AOB community was more sensitive than that of AOA to operational conditions, such as ammonia loading and dissolved oxygen. PMID:20405121

  15. Mitochondrial DNA diversity of orchid bee Euglossa fimbriata (Hymenoptera: Apidae) populations assessed by PCR-RFLP.

    PubMed

    Suzuki, Karen M; Arias, Maria C; Giangarelli, Douglas C; Freiria, Gabriele A; Sofia, Silvia H

    2010-04-01

    Euglossa fimbriata is a euglossine species widely distributed in Brazil and occurring primarily in Atlantic Forest remnants. In this study, the genetic mitochondrial structure of E. fimbriata from six Atlantic Forest fragments was studied by RFLP analysis of three PCR-amplified mtDNA gene segments (16S, COI-COII, and cyt b). Ten composite haplotypes were identified, six of which were exclusive and represented singleton mitotypes. Low haplotype diversity (0.085-0.289) and nucleotide diversity (0.000-0.002) were detected within samples. AMOVA partitioned 91.13% of the overall genetic variation within samples and 8.87% (phi(st) = 0.089; P < 0.05) among samples. Pairwise comparisons indicated high levels of differentiation among some pairs of samples (phi(st) = 0.161-0.218; P < 0.05). These high levels indicate that these populations of E. fimbriata, despite their highly fragmented landscape, apparently have not suffered loss of genetic variation, suggesting that this particular population is not currently endangered.

  16. PCR-RFLP of ribosomal internal transcribed spacers highlights inter and intra-species variation among Leishmania strains native to La Paz, Bolivia.

    PubMed

    Buitrago, Rosio; Cupolillo, Elisa; Bastrenta, Brigitte; Le Pont, Francois; Martinez, Eddy; Barnabé, Christian; Brenière, Simone Frédérique

    2011-04-01

    Human leishmaniasis is highly endemic in Bolivia and shows a growing incidence. This report reveals the genetic variability of 35 isolates mainly belonging to Leishmania braziliensis and Leishmania amazonensis species. Among them, 31 were from human patients with different clinical presentations, 3 strains from Lutzomya nuneztovari anglesi (the proven vector of L. amazonensis) and 1 strain of a mammal (Conepatus chinga). The isolates were analyzed by isoenzyme electrophoresis (MLEE) and PCR-RFLP of ITS rRNA genes, a genetic marker highly polymorphic and better adapted to sub-structuring of populations. MLEE and RFLP-ITS were in agreement to discriminate the species, 12 belong to L. (V.) braziliensis, 21 to L. (L.) amazonensis, 1 to Leishmania (V.) lainsoni and 1 to Leishmania (L.) chagasi. Among L. (V.) braziliensis the RFLP-ITS only highlights variability. Ten isolates from either cutaneous or mucocutaneous clinical forms, were grouped together (bootstrap value of 99.8%) apart from two others, one from a mammal (C. chinga), the other from a patient with a cutaneous form. Among L. (L.) amazonensis both markers detect variability but no significant sub-division was identified including isolates from different clinical forms. Moreover, the high frequency of several isolates from cutaneous forms occurred during an outbreak, with putative hybrid character (multiloci heterozygous patterns depicted by MLEE) could be linked to better fitness of these parasites. However, in the absence of observation of hypothetical parents, their hybrid status remains a question. Copyright © 2010. Published by Elsevier B.V.

  17. Development of a PCR-RFLP method based on the transcription elongation factor 1-α gene to differentiate Fusarium graminearum from other species within the Fusarium graminearum species complex.

    PubMed

    Garmendia, Gabriela; Umpierrez-Failache, Mariana; Ward, Todd J; Vero, Silvana

    2018-04-01

    Fusarium head blight (FHB) is a destructive disease of cereals crops worldwide and a major food safety concern due to grain contamination with trichothecenes and other mycotoxins. Fusarium graminearum, a member of the Fusarium graminearum species complex (FGSC) is the dominant FHB pathogen in many parts of the world. However, a number of other Fusarium species, including other members of the FGSC, may also be present for example in Argentina, New Zealand, Ethiopia, Nepal, Unites States in cereals such as wheat and barley. Proper species identification is critical to research aimed at improving disease and mycotoxin control programs. Identification of Fusarium species is are often unreliable by traditional, as many species are morphologically cryptic. DNA sequence-based methods offer a reliable means of species identification, but can be expensive when applied to the analyses of population samples. To facilitate identification of the major causative agent of FHB, this work describes an easy and inexpensive method to differentiate F. graminearum from the remaining species within the FGSC and from the other common Fusarium species causing FHB in cereals. The developed method is based on a PCR-RFLP of the transcription elongation factor (TEF 1-α) gene using the restriction enzyme BsaHI. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Routine use of PCR-restriction fragment length polymorphism analysis for identification of mycobacteria growing in liquid media.

    PubMed Central

    Taylor, T B; Patterson, C; Hale, Y; Safranek, W W

    1997-01-01

    A PCR-restriction fragment length polymorphism (PCR-RFLP) procedure capable of rapidly identifying 28 species of clinically encountered mycobacteria was evaluated for use in the routine identification of acid-fast isolates growing in BACTEC 12B and 13A liquid media. PCR-RFLP identified 100 of 103 acid-fast isolates recovered from 610 patient specimens submitted for culture during the study. The three isolates unidentifiable by PCR-RFLP produced restriction patterns not included in the PCR-RFLP algorithm and could therefore not be assigned to a species. These isolates were characterized by their morphologic and biochemical characteristics. Two of the isolates were identified as M. terrae complex and M. gordonae. The third isolate could not be definitively identified and could only be characterized as a Mycobacterium sp. most closely resembling M. chelonae. PCR-RFLP identifications agreed with the conventional identifications for 96 of the 100 isolates identified by PCR-RFLP. Subsequent identification of the four discordant isolates by gas chromatography analysis supported the PCR-RFLP identification of each isolate. Amplification products were also obtained from isolates of Streptococcus albus and Rhodococcus equi recovered from patient specimens; however, the restriction patterns of these nonmycobacterial species did not resemble the patterns of any mycobacterial species included in the PCR-RFLP algorithm. PCR-RFLP seems to be a reliable procedure for the routine identification of mycobacteria and has the potential for providing identifications of mycobacterial isolates which are more accurate than conventional identification techniques based on morphologic and biochemical characteristics. PMID:8968884

  19. Genome-wide identification of suitable zebrafish Danio rerio reference genes for normalization of gene expression data by RT-qPCR.

    PubMed

    Xu, H; Li, C; Zeng, Q; Agrawal, I; Zhu, X; Gong, Z

    2016-06-01

    In this study, to systematically identify the most stably expressed genes for internal reference in zebrafish Danio rerio investigations, 37 D. rerio transcriptomic datasets (both RNA sequencing and microarray data) were collected from gene expression omnibus (GEO) database and unpublished data, and gene expression variations were analysed under three experimental conditions: tissue types, developmental stages and chemical treatments. Forty-four putative candidate genes were identified with the c.v. <0·2 from all datasets. Following clustering into different functional groups, 21 genes, in addition to four conventional housekeeping genes (eef1a1l1, b2m, hrpt1l and actb1), were selected from different functional groups for further quantitative real-time (qrt-)PCR validation using 25 RNA samples from different adult tissues, developmental stages and chemical treatments. The qrt-PCR data were then analysed using the statistical algorithm refFinder for gene expression stability. Several new candidate genes showed better expression stability than the conventional housekeeping genes in all three categories. It was found that sep15 and metap1 were the top two stable genes for tissue types, ube2a and tmem50a the top two for different developmental stages, and rpl13a and rp1p0 the top two for chemical treatments. Thus, based on the extensive transcriptomic analyses and qrt-PCR validation, these new reference genes are recommended for normalization of D. rerio qrt-PCR data respectively for the three different experimental conditions. © 2016 The Fisheries Society of the British Isles.

  20. Tools for T-RFLP data analysis using Excel.

    PubMed

    Fredriksson, Nils Johan; Hermansson, Malte; Wilén, Britt-Marie

    2014-11-08

    Terminal restriction fragment length polymorphism (T-RFLP) analysis is a DNA-fingerprinting method that can be used for comparisons of the microbial community composition in a large number of samples. There is no consensus on how T-RFLP data should be treated and analyzed before comparisons between samples are made, and several different approaches have been proposed in the literature. The analysis of T-RFLP data can be cumbersome and time-consuming, and for large datasets manual data analysis is not feasible. The currently available tools for automated T-RFLP analysis, although valuable, offer little flexibility, and few, if any, options regarding what methods to use. To enable comparisons and combinations of different data treatment methods an analysis template and an extensive collection of macros for T-RFLP data analysis using Microsoft Excel were developed. The Tools for T-RFLP data analysis template provides procedures for the analysis of large T-RFLP datasets including application of a noise baseline threshold and setting of the analysis range, normalization and alignment of replicate profiles, generation of consensus profiles, normalization and alignment of consensus profiles and final analysis of the samples including calculation of association coefficients and diversity index. The procedures are designed so that in all analysis steps, from the initial preparation of the data to the final comparison of the samples, there are various different options available. The parameters regarding analysis range, noise baseline, T-RF alignment and generation of consensus profiles are all given by the user and several different methods are available for normalization of the T-RF profiles. In each step, the user can also choose to base the calculations on either peak height data or peak area data. The Tools for T-RFLP data analysis template enables an objective and flexible analysis of large T-RFLP datasets in a widely used spreadsheet application.

  1. Comparison of the Performances of Five Primer Sets for the Detection and Quantification of Plasmodium in Anopheline Vectors by Real-Time PCR.

    PubMed

    Chaumeau, V; Andolina, C; Fustec, B; Tuikue Ndam, N; Brengues, C; Herder, S; Cerqueira, D; Chareonviriyaphap, T; Nosten, F; Corbel, V

    2016-01-01

    Quantitative real-time polymerase chain reaction (qrtPCR) has made a significant improvement for the detection of Plasmodium in anopheline vectors. A wide variety of primers has been used in different assays, mostly adapted from molecular diagnosis of malaria in human. However, such an adaptation can impact the sensitivity of the PCR. Therefore we compared the sensitivity of five primer sets with different molecular targets on blood stages, sporozoites and oocysts standards of Plasmodium falciparum (Pf) and P. vivax (Pv). Dilution series of standard DNA were used to discriminate between methods at low concentrations of parasite and to generate standard curves suitable for the absolute quantification of Plasmodium sporozoites. Our results showed that the best primers to detect blood stages were not necessarily the best ones to detect sporozoites. Absolute detection threshold of our qrtPCR assay varied between 3.6 and 360 Pv sporozoites and between 6 and 600 Pf sporozoites per mosquito according to the primer set used in the reaction mix. In this paper, we discuss the general performance of each primer set and highlight the need to use efficient detection methods for transmission studies.

  2. Comparison of the Performances of Five Primer Sets for the Detection and Quantification of Plasmodium in Anopheline Vectors by Real-Time PCR

    PubMed Central

    Chaumeau, V.; Andolina, C.; Fustec, B.; Tuikue Ndam, N.; Brengues, C.; Herder, S.; Cerqueira, D.; Chareonviriyaphap, T.; Nosten, F.; Corbel, V.

    2016-01-01

    Quantitative real-time polymerase chain reaction (qrtPCR) has made a significant improvement for the detection of Plasmodium in anopheline vectors. A wide variety of primers has been used in different assays, mostly adapted from molecular diagnosis of malaria in human. However, such an adaptation can impact the sensitivity of the PCR. Therefore we compared the sensitivity of five primer sets with different molecular targets on blood stages, sporozoites and oocysts standards of Plasmodium falciparum (Pf) and P. vivax (Pv). Dilution series of standard DNA were used to discriminate between methods at low concentrations of parasite and to generate standard curves suitable for the absolute quantification of Plasmodium sporozoites. Our results showed that the best primers to detect blood stages were not necessarily the best ones to detect sporozoites. Absolute detection threshold of our qrtPCR assay varied between 3.6 and 360 Pv sporozoites and between 6 and 600 Pf sporozoites per mosquito according to the primer set used in the reaction mix. In this paper, we discuss the general performance of each primer set and highlight the need to use efficient detection methods for transmission studies. PMID:27441839

  3. The potential of SNP-based PCR-RFLP capillary electrophoresis analysis to authenticate and detect admixtures of Mediterranean olive oils.

    PubMed

    Bazakos, Christos; Khanfir, Emna; Aoun, Mariem; Spano, Thodhoraq; Zein, Zeina El; Chalak, Lamis; Riachy, Milad El; Abou-Sleymane, Gretta; Ali, Sihem Ben; Grati Kammoun, Naziha; Kalaitzis, Panagiotis

    2016-07-01

    Authentication and traceability of extra virgin olive oil is a challenging research task due to the complexity of fraudulent practices. In this context, the monovarietal olive oils of Protected Designation of Origin (PDO) and Protected Geographical Indication (PGI) require new tests and cutting edge analytical technologies to detect mislabeling and misleading origin. Toward this direction, DNA-based technologies could serve as a complementary to the analytical techniques assay. Single nucleotide polymorphisms are ideal molecular markers since they require short PCR analytical targets which are a prerequisite for forensic applications in olive oil sector. In the present study, a small number of polymorphic SNPs were used with an SNP-based PCR-RFLP capillary electrophoresis platform to discriminate six out of 13 monovarietal olive oils of Mediterranean origin from three different countries, Greece, Tunisia, and Lebanon. Moreover, the high sensitivity of capillary electrophoresis in combination with the DNA extraction protocol lowered the limit of detection to 10% in an admixture of Tsounati in a Koroneiki olive oil matrix. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Prevalence of renal lesions in slaughtered cattle in Shiraz, Iran, and detection of Leptospira in them by nested PCR-RFLP.

    PubMed

    Taghadosi, Vahideh; Hosseinzadeh, Saeid; Shekarforoush, Seyed Shahram; Samiei, Azadeh

    2016-12-01

    Renal diseases in cattle are frequently not recognized due to the subclinical conditions. Some species of Leptospira are the main cause of infectious agents that damage the kidneys and lead to abortion and economic losses in cattle and are also of major concern in the public health. This study was aimed to assess the prevalence of renal lesions of slaughtered cattle in the Shiraz abattoir and to determine the correlation between rejected kidneys and infection with Leptospira using nested PCR-restriction fragment length polymorphism (RFLP) techniques. Out of 1000 inspected animals, 205 (20.5 %) revealed the renal lesions. Chronic nephritis (7.5 %), white-spotted kidney (7.3 %), and petechial hemorrhage (3.5 %) were the most prevalent forms of the lesions. A direct correlation between increasing the age and significant increase in the rate of lesions was also observed (P = 0.03). Using nested PCR-RFLP assay, 40.8 % of the tested kidneys were turned to be infected to the pathogenic species of Leptospira. The risk of infection of the kidneys with white spot to pathogenic species of Leptospira (53.8 %) was more than that of the kidneys with other lesions (25.0 %) (P = 0.014). The odd ratio indicates that the kidneys with white spot lesions are likely to be infected with pathogenic species of Leptospira, five times greater than other lesions. This study showed that renal lesions especially white-spotted kidney, which were considerably associated with Leptospira in slaughtered cattle in Shiraz, were very high. This is important in terms of public health and in particular, increases the risk of transmission of disease to human specially in the high-risk careers including farmers, veterinarians, and abattoir workers.

  5. Epidemiologic Study of Malassezia Yeasts in Seborrheic Dermatitis Patients by the Analysis of 26S rDNA PCR-RFLP.

    PubMed

    Oh, Byung Ho; Lee, Yang Won; Choe, Yong Beom; Ahn, Kyu Joong

    2010-05-01

    This case-control study concerns a molecular biological method based on the data gathered from a group of Korean subjects to examine the distribution of Malassezia yeasts in seborrheic dermatitis (SD) patients. Cultures for Malassezia yeasts were taken from the foreheads, cheeks and chests of 60 patients with SD and in 60 healthy controls of equivalent age. The purpose of this study is to identify the relationship between certain species of Malassezia and SD. This was done by analyzing the differences in the distribution of Malassezia species in terms of age and body parts of the host with healthy controls. 26S rDNA PCR-RFLP, a fast and accurate molecular biological method, was used to overcome the limits of morphological and biochemical methods. The positive Malassezia culture rate was 51.7% in patients with SD, which was lower than that of healthy adults (63.9%). M. restricta was dominant in patients with SD (19.5%). Likewise, M. restricta was identified as a common species (20.5%) in healthy controls. In the ages 31~40, M. restricta was found to be the most common species (31.6%) among SD patients. According to the results of the study, the most frequently isolated species was M. restricta (19.5%) in patients with SD. There was no statistically significant difference in the distribution of Malassezia species between the SD patients and healthy control groups.

  6. Epidemiologic Study of Malassezia Yeasts in Seborrheic Dermatitis Patients by the Analysis of 26S rDNA PCR-RFLP

    PubMed Central

    Oh, Byung Ho; Choe, Yong Beom; Ahn, Kyu Joong

    2010-01-01

    Background This case-control study concerns a molecular biological method based on the data gathered from a group of Korean subjects to examine the distribution of Malassezia yeasts in seborrheic dermatitis (SD) patients. Cultures for Malassezia yeasts were taken from the foreheads, cheeks and chests of 60 patients with SD and in 60 healthy controls of equivalent age. Objective The purpose of this study is to identify the relationship between certain species of Malassezia and SD. This was done by analyzing the differences in the distribution of Malassezia species in terms of age and body parts of the host with healthy controls. Methods 26S rDNA PCR-RFLP, a fast and accurate molecular biological method, was used to overcome the limits of morphological and biochemical methods. Results The positive Malassezia culture rate was 51.7% in patients with SD, which was lower than that of healthy adults (63.9%). M. restricta was dominant in patients with SD (19.5%). Likewise, M. restricta was identified as a common species (20.5%) in healthy controls. In the ages 31~40, M. restricta was found to be the most common species (31.6%) among SD patients. Conclusion According to the results of the study, the most frequently isolated species was M. restricta (19.5%) in patients with SD. There was no statistically significant difference in the distribution of Malassezia species between the SD patients and healthy control groups. PMID:20548904

  7. Assessment of a Pan-Dermatophyte Nested-PCR Compared with Conventional Methods for Direct Detection and Identification of Dermatophytosis Agents in Animals.

    PubMed

    Piri, Fahimeh; Zarei Mahmoudabadi, Ali; Ronagh, Ali; Ahmadi, Bahram; Makimura, Koichi; Rezaei-Matehkolaei, Ali

    2018-06-26

    Conventional direct microscopy with potassium hydroxide (KOH) and culture were found to lack the ability to establish a fast and specific diagnosis of dermatophytosis. A pan-dermatophyte nested-PCR assay was developed using a novel primer pair targeting the translation elongation factor 1-α (Tef-1α) sequences for direct detection and identification of most veterinary relevant dermatophytes in animal samples suspected to dermatophytosis. A total of 140 animal skin and hair samples were subjected to direct microscopy, culture, and ITS-RFLP/ITS-sequencing of culture isolates for the detection and identification of dermatophytosis agents. Nested-PCR sequencing was performed on all the extracted DNAs using a commercial kit after dissolving the specimens by mechanical beating. Nested-PCR was positive in 90% of samples, followed by direct microscopy (85.7%) and culture (75%). The degree of agreement between nested-PCR and direct microscopy (94.4%) was higher than with culture (83.3%). In 105 culture positive cases, the measures of agreement for the identification of dermatophytosis agents were as follows: 100% between nested-PCR sequencing and ITS-RFLP/ITS-sequencing and 63.8% between nested-PCR sequencing and culture. The developed nested-PCR was faster as well as more sensitive and specific than conventional methods for detection and identification of dermatophytes in clinical samples, which was particularly suitable for epidemiological studies. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. Epidemiologic Study of Malassezia Yeasts in Patients with Malassezia Folliculitis by 26S rDNA PCR-RFLP Analysis

    PubMed Central

    Ko, Jong Hyun; Choe, Yong Beom; Ahn, Kyu Joong

    2011-01-01

    Background So far, studies on the inter-relationship between Malassezia and Malassezia folliculitis have been rather scarce. Objective We sought to analyze the differences in body sites, gender and age groups, and to determine whether there is a relationship between certain types of Malassezia species and Malassezia folliculitis. Methods Specimens were taken from the forehead, cheek and chest of 60 patients with Malassezia folliculitis and from the normal skin of 60 age- and gender-matched healthy controls by 26S rDNA PCR-RFLP. Results M. restricta was dominant in the patients with Malassezia folliculitis (20.6%), while M. globosa was the most common species (26.7%) in the controls. The rate of identification was the highest in the teens for the patient group, whereas it was the highest in the thirties for the control group. M. globosa was the most predominant species on the chest with 13 cases (21.7%), and M. restricta was the most commonly identified species, with 17 (28.3%) and 12 (20%) cases on the forehead and cheek, respectively, for the patient group. Conclusion Statistically significant differences were observed between the patient and control groups for the people in their teens and twenties, and in terms of the body site, on the forehead only. PMID:21747616

  9. Genetic diversity pattern of microeukaryotic communities and its relationship with the environment based on PCR-DGGE and T-RFLP techniques in Dongshan Bay, southeast China

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjing; Mo, Yuanyuan; Yang, Jun; Zhou, Jing; Lin, Yuanshao; Isabwe, Alain; Zhang, Jian; Gao, Xiu; Yu, Zheng

    2018-07-01

    Microeukaryotes play important roles in aquatic ecosystems, and could act as drivers of the biological nutrient cycling processes. However, compared with prokaryotic ones, little is known about the genetic diversity pattern of their community, and the environmental factors affecting their ecological pattern, especially in marine ecosystems. In this study, we used denaturing gradient gel electrophoresis (DGGE) and terminal restriction fragment length polymorphism (T-RFLP) to explore the genetic diversity structure of microeukaryotic communities in Dongshan Bay, southeast China. Our results revealed that microeukaryotic diversity ranged from 31 to 48 phylotypes (on average, 42) using the DGGE approach, while from 22 to 38 phylotypes (on average, 30) based on T-RFLP method, and the Shannon-Wiener diversity (DGGE-based) was relatively higher, suggesting that DGGE displayed a slightly higher resolution than T-RFLP. Surprisingly, the DGGE showed significant horizontal difference among microeukaryotic communities, but was similar with T-RFLP analysis that had no significant influence on microeukaryotic diversity at vertical scale. Further, redundancy analysis (RDA) indicated that the DGGE-based microeukaryotic communities distribution was significantly correlated with three environmental factors (Chl-a, TP and salinity), whereas microeukaryotic community revealed by T-RFLP was affected by four environmental factors namely salinity, temperature, depth and NOX-N. Compared with RDA, BIO-ENV analysis showed that heterotrophic bacteria and NOX-N were important environmental variable influencing microeukaryotic communities in both methods. These differences may be attributed to the noisy effects caused by the relatively large number of environmental variables. Generally speaking, despite differences in beta-diversity ordination for both DGGE and T-RFLP methods, there exists some consistency in the results of both techniques in terms of microeukaryotes responses to the

  10. Genotyping of β-Lactoglobulin gene by PCR-RFLP in Sahiwal and Tharparkar cattle breeds

    PubMed Central

    Rachagani, Satyanarayana; Gupta, Ishwar Dayal; Gupta, Neelam; Gupta, SC

    2006-01-01

    Background Improvement of efficiency and economic returns is an important goal in dairy farming, as in any agricultural enterprise. The primary goal of dairy industry has been to identify an efficient and economical way of increasing milk production and its constituents without increasing the size of the dairy herd. Selection of animals with desirable genotypes and mating them to produce the next generation has been the basis of livestock improvement and this would continue to remain the same in the coming years. The use of polymorphic genes as detectable molecular markers is a promising alternative to the current methods of trait selection once these genes are proven to be associated with traits of interest in animals. The point mutations in exon IV of bovine β-Lactoglobulin gene determine two allelic variants A and B. These variants were distinguished by Polymerase Chain Reaction and Restriction Fragment Length Polymorphism (PCR-RFLP) analysis in two indigenous Bos indicus breeds viz. Sahiwal and Tharparkar cattle. DNA samples (228 in Sahiwal and 86 in Tharparkar) were analyzed for allelic variants of β-Lactoglobulin gene. Polymorphism was detected by digestion of PCR amplified products with Hae III enzyme, and separation on 12% non-denaturing gels and resolved by silver staining. Results The allele B of β-Lactoglobulin occurred at a higher frequency than the allele A in both Sahiwal and Tharparkar breeds. The genotypic frequencies of AA, AB, and BB in Sahiwal and Tharparkar breeds were 0.031, 0.276, 0.693 and 0.023, 0.733, 0.244 respectively. Frequencies of A and B alleles were 0.17 and 0.83, and 0.39 and 0.61 in Sahiwal and Tharparkar breeds respectively. The Chi-square test results (at one degree of freedom at one per cent level) revealed that the Tharparkar population was not in Hardy-Weinberg equilibrium as there was a continuous migration of animals in the herd studied, where as, the results are not significant for the Sahiwal population. Conclusion

  11. High-Density Real-Time PCR-Based in Vivo Toxicogenomic Screen to Predict Organ-Specific Toxicity

    PubMed Central

    Fabian, Gabriella; Farago, Nora; Feher, Liliana Z.; Nagy, Lajos I.; Kulin, Sandor; Kitajka, Klara; Bito, Tamas; Tubak, Vilmos; Katona, Robert L.; Tiszlavicz, Laszlo; Puskas, Laszlo G.

    2011-01-01

    Toxicogenomics, based on the temporal effects of drugs on gene expression, is able to predict toxic effects earlier than traditional technologies by analyzing changes in genomic biomarkers that could precede subsequent protein translation and initiation of histological organ damage. In the present study our objective was to extend in vivo toxicogenomic screening from analyzing one or a few tissues to multiple organs, including heart, kidney, brain, liver and spleen. Nanocapillary quantitative real-time PCR (QRT-PCR) was used in the study, due to its higher throughput, sensitivity and reproducibility, and larger dynamic range compared to DNA microarray technologies. Based on previous data, 56 gene markers were selected coding for proteins with different functions, such as proteins for acute phase response, inflammation, oxidative stress, metabolic processes, heat-shock response, cell cycle/apoptosis regulation and enzymes which are involved in detoxification. Some of the marker genes are specific to certain organs, and some of them are general indicators of toxicity in multiple organs. Utility of the nanocapillary QRT-PCR platform was demonstrated by screening different references, as well as discovery of drug-like compounds for their gene expression profiles in different organs of treated mice in an acute experiment. For each compound, 896 QRT-PCR were done: four organs were used from each of the treated four animals to monitor the relative expression of 56 genes. Based on expression data of the discovery gene set of toxicology biomarkers the cardio- and nephrotoxicity of doxorubicin and sulfasalazin, the hepato- and nephrotoxicity of rotenone, dihydrocoumarin and aniline, and the liver toxicity of 2,4-diaminotoluene could be confirmed. The acute heart and kidney toxicity of the active metabolite SN-38 from its less toxic prodrug, irinotecan could be differentiated, and two novel gene markers for hormone replacement therapy were identified, namely fabp4 and pparg

  12. Designing and Validation of One-Step T-ARMS-PCR for Genotyping the eNOS rs1799983 SNP

    PubMed Central

    Heidar, Mohammad Mehdi; Khatami, Mehri

    2017-01-01

    Background: The transversion of G to T (G894T) in human endothelial nitric oxide synthase (eNOS) gene has profound effects such as male infertility, recurrent miscarriage, multiple sclerosis and cardiovascular diseases. Objectives: Development of a new Multiplex Tetra-Primer Amplification Refractory Mutation System - Polymerase Chain Reaction (T-ARMS-PCR) for detection of rs1799983 (G894T) in the human eNOS was sought. Materials and Methods: A T-ARMS-PCR for rs1799983 polymorphism in a single-step PCR was carried out, and the results were confirmed by PCR-RFLP technique in 82 infertile men with varicocele. Results: The results showed that GG (varicocele infertile men), GT and TT genotypes appear to be 53.65%, 34.14%, and 12.19%, respectively. Full accordance between PCR-RFLP and T-ARMS-PCR methods for genotyping of rs1799983 polymorphism was found. Conclusions: This is the first work that describes a rapid, relatively cheap, high throughput detection of G894T polymorphism in eNOS that can be used in large scale clinical studies. PMID:29845071

  13. Designing and Validation of One-Step T-ARMS-PCR for Genotyping the eNOS rs1799983 SNP.

    PubMed

    Heidar, Mohammad Mehdi; Khatami, Mehri

    2017-01-01

    Background: The transversion of G to T (G894T) in human endothelial nitric oxide synthase ( eNOS ) gene has profound effects such as male infertility, recurrent miscarriage, multiple sclerosis and cardiovascular diseases. Objectives: Development of a new Multiplex Tetra-Primer Amplification Refractory Mutation System - Polymerase Chain Reaction (T-ARMS-PCR) for detection of rs1799983 (G894T) in the human eNOS was sought. Materials and Methods: A T-ARMS-PCR for rs1799983 polymorphism in a single-step PCR was carried out, and the results were confirmed by PCR-RFLP technique in 82 infertile men with varicocele. Results: The results showed that GG (varicocele infertile men), GT and TT genotypes appear to be 53.65%, 34.14%, and 12.19%, respectively. Full accordance between PCR-RFLP and T-ARMS-PCR methods for genotyping of rs1799983 polymorphism was found. Conclusions: This is the first work that describes a rapid, relatively cheap, high throughput detection of G894T polymorphism in eNOS that can be used in large scale clinical studies.

  14. Identification of Pit-1 Gen Using PCR-RFLP of Padjadjaran Sheep and Evaluate of Growth Rate

    NASA Astrophysics Data System (ADS)

    Prajoga, S. B. K.; Andriani, L.; Subhandiana, H.

    2018-02-01

    The objectives of this research were to evaluate variation of Pit-1 gen of Padjadjaran Sheep and evaluate of their growth rate. The data comprised of 15 lambs female and 15 lambs male records of 0 - 12 mouths old lambs. Variation of Padjadjaran Sheep PIT-1 gen was analyzed using PCR-RFLP and used primer by 5’-GAGGGATAATTACAAATGGTCC-3’ and 5’-TGTTAACAGCTGTGGGACACAC-3’, length fragment analyse using HinfI restriction enzyme. Presence or absence of deference bands in a PCR fragment of the result can be distinguished by differences in the electrophoretic migration of the fragment. The result showed that the variation Pit1 gene showed that there was in the position 345 bp, 137 bp and 115 bp. In this experiment the difference migration did occur in all samples (monomorphic), that was amplificated with reverse and forward primer. The average male birth weight (BW), weaning weight (WN) and Yearling Weight (YW) was 2.29 ±0.42kg 8.96 ±1,89 kg and 30.12 ±5,65 kg. The average female birth weight (BW), weaning weight (WN) and Yearling Weight (YW) was 2.33 ±0.49 kg; 8.23 ±1.99 kg and 26.11 ±5.50 kg. Correlation value between age and body weight was 0,99 for female and 0,97 for male. The highest body weight gain per month was 2.85 kg for female at the age of six months and 3.4 kg for male at the age of one year. The best equition of growth rate was Ŷ = 1,862 + 0,127X1 0,076X2

  15. Detection and Resolution of Cryptosporidium Species and Species Mixtures by Genus-Specific Nested PCR-Restriction Fragment Length Polymorphism Analysis, Direct Sequencing, and Cloning ▿

    PubMed Central

    Ruecker, Norma J.; Hoffman, Rebecca M.; Chalmers, Rachel M.; Neumann, Norman F.

    2011-01-01

    Molecular methods incorporating nested PCR-restriction fragment length polymorphism (RFLP) analysis of the 18S rRNA gene of Cryptosporidium species were validated to assess performance based on limit of detection (LoD) and for detecting and resolving mixtures of species and genotypes within a single sample. The 95% LoD was determined for seven species (Cryptosporidium hominis, C. parvum, C. felis, C. meleagridis, C. ubiquitum, C. muris, and C. andersoni) and ranged from 7 to 11 plasmid template copies with overlapping 95% confidence limits. The LoD values for genomic DNA from oocysts on microscope slides were 7 and 10 template copies for C. andersoni and C. parvum, respectively. The repetitive nested PCR-RFLP slide protocol had an LoD of 4 oocysts per slide. When templates of two species were mixed in equal ratios in the nested PCR-RFLP reaction mixture, there was no amplification bias toward one species over another. At high ratios of template mixtures (>1:10), there was a reduction or loss of detection of the less abundant species by RFLP analysis, most likely due to heteroduplex formation in the later cycles of the PCR. Replicate nested PCR was successful at resolving many mixtures of Cryptosporidium at template concentrations near or below the LoD. The cloning of nested PCR products resulted in 17% of the cloned sequences being recombinants of the two original templates. Limiting-dilution nested PCR followed by the sequencing of PCR products resulted in no sequence anomalies, suggesting that this method is an effective and accurate way to study the species diversity of Cryptosporidium, particularly for environmental water samples, in which mixtures of parasites are common. PMID:21498746

  16. PCR-based methods for identification of potentially zoonotic ascaridoid parasites of the dog, fox and cat.

    PubMed

    Jacobs, D E; Zhu, X; Gasser, R B; Chilton, N B

    1997-11-01

    Genomic DNA was extracted from ascaridoid nematodes collected from dogs, foxes and cats. A region spanning the second internal transcribed spacer (ITS-2) of the ribosomal DNA of each sample was amplified by PCR. Representative ITS-2 products for each nematode species (Toxocara canis, Toxocara cati and Toxascaris leonina) were sequenced. Restriction sites were identified for use as genetic markers in a PCR-linked RFLP assay. The three species could be differentiated from each other and from other ascaridoids that may be found in human tissues by use of two endonucleases, HinfI and RsaI. Primers were designed to unique regions of the ITS-2 sequences of the three species for use in diagnostic PCR procedures and primer sets evaluated against panels of homologous and heterologous DNA samples. Results suggest that both methods are good candidates for further development for the detection and/or identification of ascaridoid larvae in human tissues.

  17. Detection of undeclared animal by-products in commercial canine canned foods: Comparative analyses by ELISA and PCR-RFLP coupled with slab gel electrophoresis or capillary gel electrophoresis.

    PubMed

    Hsieh, Ming-Kun; Shih, Pei-Yin; Wei, Chia-Fong; Vickroy, Thomas W; Chou, Chi-Chung

    2016-03-30

    The potential presence of undeclared animal by-products in pet foods is not subject to routine examination. Previously published methods for species-based identification of animal by-products have not been used routinely owing to inconsistent results. The present study evaluated the utility of several approaches for accurate identification of animal by-products in 11 commercial brands of canine canned foods. Canine canned foods from several countries were analysed by ELISA, PCR-RFLP coupled with slab-gel electrophoresis (SGE) and capillary gel electrophoresis (CGE) to test for evidence of by-products derived from cattle, chicken, sheep or pig. While CGE-based analysis detected all (24) animal-derived by-products that were reported for the 11 test samples, SGE and ELISA detected only 22/24 (92%) and 14/24 (58%) of labelled by-products, respectively. In addition, undeclared animal by-products were found using all three analytical approaches with CGE detecting more positives (19) than SGE (17) or ELISA (5). Significant disparities were evident between the labelled contents and the detected content of animal by-products. CGE-based testing for PCR products appears to provide greater sensitivity and accuracy than either SGE or ELISA-based methods. As testing of commercial products becomes more reliable and mainstream, manufacturers will need to develop more thorough and accurate labelling protocols. © 2015 Society of Chemical Industry.

  18. Cytokine gene polymorphisms in Italian preterm infants: association between interleukin-10 -1082 G/A polymorphism and respiratory distress syndrome.

    PubMed

    Capasso, Mario; Avvisati, Rosa Anna; Piscopo, Carmelo; Laforgia, Nicola; Raimondi, Francesco; de Angelis, Filomena; Iolascon, Achille

    2007-03-01

    In this study, we determined the genotype frequencies of polymorphisms of cytokine genes and investigated their association with the risk of respiratory distress syndrome (RDS) in preterm infants. Genetic polymorphisms in the cytokines interleukin (IL)-10, IL-8, and tumor necrosis factor (TNF) alpha, were studied in 342 white Italian newborns (112 without RDS, 66 prematurely born with RDS, and 164 infants born at term who were included as healthy controls). The polymorphisms were analyzed by polymerase chain reaction (PCR) restriction fragment length polymorphism (RFLP). The IL-10 mRNA levels were analyzed according to genotype by quantitative real-time PCR (QRT-PCR) in Epstein-Barr virus-transformed lymphoblastoid cell lines (EBV-LCLs) of 42 full-term healthy infants. Logistic regression analysis demonstrated the risk of RDS to be significantly lower in preterm infants with an IL-10 -1082 GG/GA genotype than in those with an AA genotype [odds ratio (OR) = 0.48, 95% confidence interval (CI): 0.24-0.95, p = 0.03]. QRT-PCR analyses showed that the IL-10 mRNA levels were significantly higher in 27 IL-10 -1082 GG/GA carriers compared with 15 IL-10 -1082 AA carriers (p = 0.03). We conclude that the IL-10 -1082 GG/GA polymorphism may have a role in RDS development in premature infants.

  19. Identification of Ancylostoma ceylanicum in children from a tribal community in Tamil Nadu, India using a semi-nested PCR-RFLP tool.

    PubMed

    George, Santosh; Kaliappan, Saravanakumar Puthupalayam; Kattula, Deepthi; Roy, Sheela; Geldhof, Peter; Kang, Gagandeep; Vercruysse, Jozef; Levecke, Bruno

    2015-04-01

    It is generally assumed that hookworm infections in humans are caused by Necator americanus and Ancylostoma duodenale. However, previous studies have also reported the presence of the animal hookworm A. ceylanicum in human stools. We determined hookworm infections in children in a tribal community in Tamil Nadu, India, using a semi-nested PCR-RFLP approach. The results indicate that human species account for a majority of the hookworm infections (N. americanus 39/41 [95%]; A. duodenale 6/41 [15%]), whereas the animal hookworm A. ceylanicum only accounts for a minority of the infections (5%; 2/41). The results emphasize the need to consider zoonotic ancylostomiasis while developing strategies to control hookworm infections. © The Author 2015. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Aspergillus Section Fumigati Typing by PCR-Restriction Fragment Polymorphism▿

    PubMed Central

    Staab, Janet F.; Balajee, S. Arunmozhi; Marr, Kieren A.

    2009-01-01

    Recent studies have shown that there are multiple clinically important members of the Aspergillus section Fumigati that are difficult to distinguish on the basis of morphological features (e.g., Aspergillus fumigatus, A. lentulus, and Neosartorya udagawae). Identification of these organisms may be clinically important, as some species vary in their susceptibilities to antifungal agents. In a prior study, we utilized multilocus sequence typing to describe A. lentulus as a species distinct from A. fumigatus. The sequence data show that the gene encoding β-tubulin, benA, has high interspecies variability at intronic regions but is conserved among isolates of the same species. These data were used to develop a PCR-restriction fragment length polymorphism (PCR-RFLP) method that rapidly and accurately distinguishes A. fumigatus, A. lentulus, and N. udagawae, three major species within the section Fumigati that have previously been implicated in disease. Digestion of the benA amplicon with BccI generated unique banding patterns; the results were validated by screening a collection of clinical strains and by in silico analysis of the benA sequences of Aspergillus spp. deposited in the GenBank database. PCR-RFLP of benA is a simple method for the identification of clinically important, similar morphotypes of Aspergillus spp. within the section Fumigati. PMID:19403766

  1. Aspergillus section Fumigati typing by PCR-restriction fragment polymorphism.

    PubMed

    Staab, Janet F; Balajee, S Arunmozhi; Marr, Kieren A

    2009-07-01

    Recent studies have shown that there are multiple clinically important members of the Aspergillus section Fumigati that are difficult to distinguish on the basis of morphological features (e.g., Aspergillus fumigatus, A. lentulus, and Neosartorya udagawae). Identification of these organisms may be clinically important, as some species vary in their susceptibilities to antifungal agents. In a prior study, we utilized multilocus sequence typing to describe A. lentulus as a species distinct from A. fumigatus. The sequence data show that the gene encoding beta-tubulin, benA, has high interspecies variability at intronic regions but is conserved among isolates of the same species. These data were used to develop a PCR-restriction fragment length polymorphism (PCR-RFLP) method that rapidly and accurately distinguishes A. fumigatus, A. lentulus, and N. udagawae, three major species within the section Fumigati that have previously been implicated in disease. Digestion of the benA amplicon with BccI generated unique banding patterns; the results were validated by screening a collection of clinical strains and by in silico analysis of the benA sequences of Aspergillus spp. deposited in the GenBank database. PCR-RFLP of benA is a simple method for the identification of clinically important, similar morphotypes of Aspergillus spp. within the section Fumigati.

  2. SMA Diagnosis: Detection of SMN1 Deletion with Real-Time mCOP-PCR System Using Fresh Blood DNA.

    PubMed

    Niba, Emma Tabe Eko; Ar Rochmah, Mawaddah; Harahap, Nur Imma Fatimah; Awano, Hiroyuki; Morioka, Ichiro; Iijima, Kazumoto; Saito, Toshio; Saito, Kayoko; Takeuchi, Atsuko; Lai, Poh San; Bouike, Yoshihiro; Nishio, Hisahide; Shinohara, Masakazu

    2017-12-18

    Spinal muscular atrophy (SMA) is one of the most common autosomal recessive disorders. The symptoms are caused by defects of lower motor neurons in the spinal cord. More than 95% of SMA patients are homozygous for survival motor neuron 1 (SMN1) deletion. We previously developed a screening system for SMN1 deletion based on a modified competitive oligonucleotide priming-PCR (mCOP-PCR) technique using dried blood spot (DBS) on filter paper. This system is convenient for mass screening in the large population and/or first-tier diagnostic method of the patients in the remote areas. However, this system was still time-consuming and effort-taking, because it required pre-amplification procedure to avoid non-specific amplification and gel-electrophoresis to detect the presence or absence of SMN1 deletion. When the fresh blood samples are used instead of DBS, or when the gel-electrophoresis is replaced by real-time PCR, we may have a simpler and more rapid diagnostic method for SMA. To establish a simpler and more rapid diagnostic method of SMN1 deletion using fresh blood DNA. DNA samples extracted from fresh blood and stored at 4 ℃ for 1 month. The samples were assayed using a real-time mCOP-PCR system without pre-amplification procedures. DNA samples had already been genotyped by PCR-restriction fragment length polymorphism (PCR-RFLP), showing the presence or absence of SMN1 exon 7. The DNA samples were directly subjected to the mCOP-PCR step. The amplification of mCOP-PCR was monitored in a real-time PCR apparatus. The genotyping results of the real-time mCOP-PCR system using fresh blood DNA were completely matched with those of PCR-RFLP. In this real-time mCOP-PCR system using fresh blood-DNA, it took only four hours from extraction of DNA to detection of the presence or absence of SMN1 deletion, while it took more than 12 hours in PCR-RFLP. Our real-time mCOP-PCR system using fresh blood DNA was rapid and accurate, suggesting it may be useful for the first

  3. Nested PCR and RFLP analysis based on the 16S rRNA gene

    USDA-ARS?s Scientific Manuscript database

    Current phytoplasma detection and identification method is primarily based on nested PCR followed by restriction fragment length polymorphism analysis and gel electrophoresis. This method can potentially detect and differentiate all phytoplasmas including those previously not described. The present ...

  4. Multimarker Quantitative Real-Time PCR Detection of Circulating Melanoma Cells in Peripheral Blood: Relation to Disease Stage in Melanoma Patients

    PubMed Central

    Koyanagi, Kazuo; Kuo, Christine; Nakagawa, Taku; Mori, Takuji; Ueno, Hideaki; Lorico, Arnulfo R.; Wang, He-Jing; Hseuh, Eddie; O’Day, Steven J.; Hoon, Dave S.B.

    2010-01-01

    Background Detection of melanoma cells in circulation may be important in assessing tumor progression. The objective of this study was to develop a specific, reliable, multimarker quantitative real-time reverse transcription-PCR (qRT) assay for detecting melanoma cells in patients’ blood. Methods We developed qRT assays for the mRNA of four melanoma-associated markers: MART-1, GalNAc-T, PAX-3, and MAGE-A3. In optimization studies, we tested 17 melanoma cell lines and 49 peripheral blood leukocyte (PBL) samples from volunteers. We performed RNA and melanoma cell dilution studies to assess the detection limits and imprecision of the assays. We measured the mRNAs in blood specimens from 94 melanoma patients [American Joint Committee on Cancer (AJCC) stage I, n = 20; II, n = 20; III, n = 32; IV, n = 22]. Results All markers were frequently detected in melanoma cell lines, whereas none of the markers was detected in PBLs from volunteers. The qRT assay could detect 1 melanoma cell in 107 PBLs in the melanoma cell-dilution studies. Markers were detected in 15%, 30%, 75%, and 86% of melanoma patients with AJCC stage I, II, III, and IV disease, respectively. The number of positive markers and AJCC stage were significantly correlated (Spearman correlation coefficient = 0.58; P <0.0001). Conclusions Multimarker qRT can detect circulating melanoma cells in blood. Measurement of the studied molecular markers in blood may be useful in detection of metastasis and monitoring treatment response of melanoma patients. PMID:15817820

  5. Molecular analysis of Leptospira spp. isolated from humans by restriction fragment length polymorphism, real-time PCR and pulsed-field gel electrophoresis.

    PubMed

    Turk, Nenad; Milas, Zoran; Mojcec, Vesna; Ruzic-Sabljic, Eva; Staresina, Vilim; Stritof, Zrinka; Habus, Josipa; Postic, Daniele

    2009-11-01

    A total of 17 Leptospira clinical strains isolated from humans in Croatia were serologically and genetically analysed. For serovar identification, the microscopic agglutination test (MAT) and pulsed-field gel electrophoresis (PFGE) were used. To identify isolates on genomic species level, PCR-based restriction fragment length polymorphism (RFLP) and real-time PCR were performed. MAT revealed the following serogroup affinities: Grippotyphosa (seven isolates), Icterohaemorrhagiae (eight isolates) and Javanica (two isolates). RFLP of PCR products from a 331-bp-long fragment of rrs (16S rRNA gene) digested with endonucleases MnlI and DdeI and real-time PCR revealed three Leptospira genomic species. Grippotyphosa isolates belonged to Leptospira kirschneri, Icterohaemorrhagiae isolates to Leptospira interrogans and Javanica isolates to Leptospira borgpetersenii. Genomic DNA from 17 leptospiral isolates was digested with NotI and SgrAI restriction enzymes and analysed by PFGE. Results showed that seven isolates have the same binding pattern to serovar Grippotyphosa, eight isolates to serovar Icterohaemorrhagiae and two isolates to serovar Poi. Results demonstrate the diversity of leptospires circulating in Croatia. We point out the usefulness of a combination of PFGE, RFLP and real-time PCR as appropriate molecular methods in molecular analysis of leptospires.

  6. Detection and differentiation of field and vaccine strains of canine distemper virus using reverse transcription followed by nested real time PCR (RT-nqPCR) and RFLP analysis.

    PubMed

    Fischer, Cristine Dossin Bastos; Ikuta, Nilo; Canal, Cláudio Wageck; Makiejczuk, Aline; Allgayer, Mariangela da Costa; Cardoso, Cristine Hoffmeister; Lehmann, Fernanda Kieling; Fonseca, André Salvador Kazantzi; Lunge, Vagner Ricardo

    2013-12-01

    Canine distemper virus (CDV) is the cause of a severe and highly contagious disease in dogs. Practical diagnosis of canine distemper based on clinical signs and laboratory tests are required to confirm CDV infection. The present study aimed to develop a molecular assay to detect and differentiate field and vaccine CDV strains. Reverse transcription followed by nested real time polymerase chain reaction (RT-nqPCR) was developed, which exhibited analytical specificity (all the samples from healthy dogs and other canine infectious agents were not incorrectly detected) and sensitivity (all replicates of a vaccine strain were positive up to the 3125-fold dilution - 10(0.7) TCID50). RT-nqPCR was validated for CDV detection on different clinical samples (blood, urine, rectal and conjunctival swabs) of 103 animals suspected to have distemper. A total of 53 animals were found to be positive based on RT-nqPCR in at least one clinical sample. Blood resulted in more positive samples (50 out of 53, 94.3%), followed by urine (44/53, 83.0%), rectal (38/53, 71%) and conjunctival (27/53, 50.9%) swabs. A commercial immunochromatography (IC) assay had detected CDV in only 30 conjunctival samples of these positive dogs. Nucleoprotein (NC) gene sequencing of 25 samples demonstrated that 23 of them were closer to other Brazilian field strains and the remaining two to vaccine strains. A single nucleotide sequences difference, which creates an Msp I restriction enzyme digestion, was used to differentiate between field and vaccine CDV strains by restriction fragment length polymorphism (RFLP) analysis. The complete assay was more sensitive than was IC for the detection of CDV. Blood was the more frequently positive specimen and the addition of a restriction enzyme step allowed the differentiation of vaccine and Brazilian field strains. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Isolation and RFLP genotyping of Toxoplasma gondii from the gray wolf (Canis lupus).

    PubMed

    Dubey, J P; Choudhary, S; Ferreira, L R; Kwok, O C H; Butler, E; Carstensen, M; Yu, L; Su, C

    2013-11-08

    Little is known of the genetic diversity of Toxoplasma gondii circulating in wildlife. In the present study feral gray wolves (Canis lupus) from Minnesota were examined for T. gondii infection. Antibodies to T. gondii were detected in 130 (52.4%) of 248 wolves tested by the modified agglutination test (cut-off titer of 25). Tissues (hearts, brains or both) of 109 wolves were bioassayed in mice for protozoal isolation. Viable T. gondii was isolated from 25 and the isolates were further propagated in cell culture. T. gondii DNA from these isolates was characterized using 10 PCR-RFLP markers (SAG1, SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1 and Apico). Four genotypes were detected. Twenty-one isolates were Type 12 (ToxoDB PCR-RFLP genotype #5), 2 were Type II clonal (ToxoDB #1), 1 was Type II variant (ToxoDB #3), and 1 was a new genotype designated as ToxoDB genotype #219. Published by Elsevier B.V.

  8. Genetic divergence and phylogenetic relationships in grey mullets (Teleostei: Mugilidae) based on PCR-RFLP analysis of mtDNA segments.

    PubMed

    Papasotiropoulos, V; Klossa-Kilia, E; Kilias, G; Alahiotis, S

    2002-04-01

    The genetic differentiation and phylogenetic relationships among five species of the Mugilidae family (Mugil cephalus, Chelon labrosus, Liza aurata, Liza ramada, and Liza saliens) were investigated at the mtDNA level, on samples taken from Messolongi lagoon-Greece. RFLP analysis of three PCR-amplified mtDNA gene segments (12s rRNA, 16s rRNA, and CO I) was used. Ten, eight, and nine restriction enzymes were found to have at least one recognition site at 12s rRNA, 16s rRNA, and CO I genes, respectively. Several fragment patterns were revealed to be species-specific, and thus they could be useful in species taxonomy as diagnostic markers, as well as for further evolutionary studies. Seven different haplotypes were detected. The greatest amount of genetic differentiation was observed at the interspecific level, while little variation was revealed at the intraspecific level. The highest values of nucleotide sequence divergence were observed between M. cephalus and all the other species, while the lowest was found between C. labrosus and L. saliens. Dendrograms obtained by the three different methods (UPGMA, Neighbor-Joining, and Dollo parsimony), were found to exhibit in all cases the same topology. According to this, the most distinct species is M. cephalus, while the other species are clustered in two separate groups, thefirst one containing L. aurata and L. ramada, the other L. saliens and C. labrosus. This last clustering makes the monophyletic origin of the genus Liza questionable.

  9. A comprehensive experiment for molecular biology: Determination of single nucleotide polymorphism in human REV3 gene using PCR-RFLP.

    PubMed

    Zhang, Xu; Shao, Meng; Gao, Lu; Zhao, Yuanyuan; Sun, Zixuan; Zhou, Liping; Yan, Yongmin; Shao, Qixiang; Xu, Wenrong; Qian, Hui

    2017-07-08

    Laboratory exercise is helpful for medical students to understand the basic principles of molecular biology and to learn about the practical applications of molecular biology. We have designed a lab course on molecular biology about the determination of single nucleotide polymorphism (SNP) in human REV3 gene, the product of which is a subunit of DNA polymerase ζ and SNPs in this gene are associated with altered susceptibility to cancer. This newly designed experiment is composed of three parts, including genomic DNA extraction, gene amplification by PCR, and genotyping by RFLP. By combining these activities, the students are not only able to learn a series of biotechniques in molecular biology, but also acquire the ability to link the learned knowledge with practical applications. This comprehensive experiment will help the medical students improve the conceptual understanding of SNP and the technical understanding of SNP detection. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(4):299-304, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  10. Standardization of PCR-RFLP analysis of nsSNP rs1468384 of NPC1L1 gene

    PubMed Central

    Balgir, Praveen P.; Khanna, Divya; Kaur, Gurlovleen

    2008-01-01

    Niemann-Pick C1-like 1 (NPC1L1) protein, a newly identified sterol influx transporter, located at the apical membrane of the enterocyte, which may actively facilitate the uptake of cholesterol by promoting the passage of sterols across the brush border membrane of the enterocyte. It effects intestinal cholesterol absorption and intracellular transport and as such is an integral part of complex process of cholesterol homeostasis. The study of population data for the distribution of these single nucleotide polymorphisms (SNP) of NPC1L1 has lead to the identification of six non-synonymous single nucleotide polymorphisms (nsSNP). The in vitro analysis using the software MuPro and StructureSNP shows that nsSNP M510I (rs1468384), which involves A→G base pair change leads to decrease in the stability of the protein. A reproducible and a cost-effective PCR-RFLP based assay was developed to screen for the SNP among population data. This SNP has been studied in Caucasian, Asian, and African American populations. Till date, no data is available on Indian population. The distribution of M510I NPC1L1 genotype was estimated in the North Western Indian Population as a test case. The allele distribution in Indian Population differs significantly from that of other populations. The methodology thus proved to be robust enough to bring out these differences. PMID:20300301

  11. Relative diversity and community structure analysis of rumen protozoa according to T-RFLP and microscopic methods.

    PubMed

    Tymensen, Lisa; Barkley, Cindy; McAllister, Tim A

    2012-01-01

    Protozoa are common inhabitants of the rumen where they play roles in host nutrition and methanogenesis. Knowledge of how changes in the composition of protozoa communities affect these processes is limited in part due to a lack of efficient methods for protozoa community analysis. In this study, a terminal-restriction fragment length polymorphism (T-RFLP) assay targeting the 18S rRNA gene was developed for comparative analysis of rumen protozoa communities. Comparison of diversity and structure of protozoa communities from hay-fed versus silage/grain-fed cattle via T-RFLP analysis yielded similar overall results to microscopy analysis. According to both methods, Entodinium spp. were more abundant in the silage/grain-fed cattle and protozoa diversity (as calculated using the Shannon index) was higher for the hay-fed cattle due to greater species evenness. Type B protozoa were more prevalent in the hay-fed cattle, whereas Type A protozoa were more prevalent in the silage/grain-fed cattle. Analysis of similarity (ANOSIM) indicated that the protozoa communities from hay-fed and silage/grain-fed cattle were different, and multivariate analysis indicated that pen mates (i.e., cattle fed the same diet and housed together) tended to have similar protozoa communities types. In summary, we present a T-RFLP method for analyzing rumen protozoa communities which complements traditional microscopy approaches but has the advantage of being amenable to high-throughput. Copyright © 2011. Published by Elsevier B.V.

  12. Giardia duodenalis genotypes in domestic and wild animals from Romania identified by PCR-RFLP targeting the gdh gene.

    PubMed

    Adriana, Gyӧrke; Zsuzsa, Kalmár; Mirabela Oana, Dumitrache; Mircea, Gherman Călin; Viorica, Mircean

    2016-02-15

    Sixty Giardia duodenalis isolates from domestic (n=49) and wild (n=11) animals (dogs, cats, deers, wolves, raccoon dog and muskrat) were analysed by PCR-RFLP at glutamate dehydrogenase locus (gdh). The isolates were obtained from positive feces samples for Giardia cysts analysed by flotation technique with saturated sodium chloride solution (specific gravity 1.28). Three G. duodenalis genotypes were identified: C (10/60; 16.7%); D (42/60; 70.0%); and E (7/60; 11.7%). In dogs all three genotypes were found, with the following prevalences: 76.9% genotype D (30/39); 23.1% C (9/39); 2.6% genotype E (1/39). One dog was co-infected with C and D genotypes. In cats we identified only G. duodenalis genotype D. Wolves and raccoon dog harbored infection with G. duodenalis genotype D, deers with E type and muskrat C type. This is the first study regarding genotyping of G. duodenalis in cats and wild animals from Romania. To the best of our knowledge, this is the first report of assemblages E in roe deers; assemblage C in wolves and muskrat; and assemblage D in raccoon dog. Copyright © 2016. Published by Elsevier B.V.

  13. Discrimination of SHV β-Lactamase Genes by Restriction Site Insertion-PCR

    PubMed Central

    Chanawong, Aroonwadee; M'Zali, Fatima Hannachi; Heritage, John; Lulitanond, Aroonlug; Hawkey, Peter Michael

    2001-01-01

    Restriction site insertion-PCR (RSI-PCR) is a simple, rapid technique for detection of point mutations. This technique exploits primers with one to three base mismatches near the 3′ end to modulate a restriction site. We have developed this technique to identify described mutations of the blaSHV genes for differentiation of SHV variants that cannot be distinguished easily by other techniques. To validate this method, eight standard strains were used, each producing a different SHV β-lactamase: SHV-1, SHV-2, SHV-3, SHV-4, SHV-5, SHV-6, SHV-8, and SHV-18. Mismatch primers were designed to detect mutations affecting amino acids at positions 8 (SspI), 179 (HinfI), 205 (PstI), 238 (Gly→Ala) (BsrI), and 240 (NruI) of blaSHV genes. All amplimers of the blaSHV genes used in this study yielded the predicted restriction endonuclease digestion products. In addition, this study also makes theoretical identification of blaSHV-6, blaSHV-8, and 12 novel blaSHV variants using the PCR-restriction fragment length polymorphism (RFLP) technique possible. By using a combination of PCR-RFLP and RSI-PCR techniques, up to 27 SHV variants can now be distinguished rapidly and reliably. These simple techniques are readily applied to epidemiological studies of the SHV β-lactamases and may be extended to the characterisation of other resistance determinants. PMID:11408231

  14. Frequencies of VNTR and RFLP polymorphisms associated with factor VIII gene in Singapore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fong, I.; Lai, P.S.; Ouah, T.C.

    1994-09-01

    The allelic frequency of any polymorphism within a population determines its usefulness for genetic counselling. This is important in populations of non-Caucasian origin as RFLPs may significantly differ among ethnic groups. We report a study of five intragenic polymorphisms in factor VIII gene carried out in Singapore. The three PCR-based RFLP markers studied were Intron 18/Bcl I, Intron 19/Hind III and Intron 22/Xba I. In an analysis of 148 unrelated normal X chromosomes, the allele frequencies were found to be A1 = 0.18, A2 = 0.82 (Bcl I RFLP), A1 = 0.80, A2 = 0.20 (Hind III RFLP) and A1more » = 0.58, and A2 = 0.42 (Xba I RFLP). The heterozygosity rates of 74 females analyzed separately were 31%, 32% and 84.2%, respectively. Linkage disequilibrium was also observed to some degree between Bcl I and Hind III polymorphism in our population. We have also analyzed a sequence polymorphism in Intron 7 using hybridization with radioactive-labelled {sup 32}P allele-specific oligonucleotide probes. This polymorphism was not very polymorphic in our population with only 2% of 117 individuals analyzed being informative. However, the use of a hypervariable dinucleotide repeat sequence (VNTR) in Intron 13 showed that 25 of our of 27 (93%) females were heterozygous. Allele frequencies ranged from 1 to 55 %. We conclude that a viable strategy for molecular analysis of Hemophilia A families in our population should include the use of Intron 18/Bcl I and Intron 22/Xba I RFLP markers and the Intron 13 VNTR marker.« less

  15. Identification of the razor clam species Ensis arcuatus, E. siliqua, E. directus, E. macha, and Solen marginatus using PCR-RFLP analysis of the 5S rDNA region.

    PubMed

    Fernandez-Tajes, Juan; Méndez, Josefina

    2007-09-05

    Polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) analysis of the 5S ribosomal DNA region has been applied to the establishment of DNA-based molecular markers for the identification of five razor clam species: Ensis arcuatus, E. siliqua, E. directus, E. macha, and Solen marginatus. PCR amplifications were carried out using a pair of universal primers from the coding region of 5S rDNA. S. marginatus was simply distinguished by the different size of the amplicons obtained. Species-specific restriction endonuclease patterns were found with the enzymes Hae III for E. arcuatus, E. siliqua, and E. directus, and Acs I for E. macha, and when two enzymes were combined, the four species were also identified. Thus, this work provides a simple, reliable, and rapid protocol for the accurate identification of Ensis and Solen species in fresh and canned products, which is very useful for traceability and to enforce labeling regulations.

  16. Lab-on-a-chip-based PCR-RFLP assay for the confirmed detection of short-length feline DNA in food.

    PubMed

    Ali, Md Eaqub; Al Amin, Md; Hamid, Sharifah Bee Abd; Hossain, M A Motalib; Mustafa, Shuhaimi

    2015-01-01

    Wider availability but lack of legal market trades has given feline meat a high potential for use as an adulterant in common meat and meat products. However, mixing of feline meat or its derivatives in food is a sensitive issue, since it is a taboo in most countries and prohibited in certain religions such as Islam and Judaism. Cat meat also has potential for contamination with of severe acute respiratory syndrome, anthrax and hepatitis, and its consumption might lead to an allergic reaction. We developed a very short-amplicon-length (69 bp) PCR assay, authenticated the amplified PCR products by AluI-restriction digestion followed by its separation and detection on a lab-on-a-chip-based automated electrophoretic system, and proved its superiority over the existing long-amplicon-based assays. Although it has been assumed that longer DNA targets are susceptible to breakdown under compromised states, scientific evidence for this hypothesis has been rarely documented. Strong evidence showed that shorter targets are more stable than the longer ones. We confirmed feline-specificity by cross-challenging the primers against 10 different species of terrestrial, aquatic and plant origins in the presence of a 141-bp site of an 18S rRNA gene as a universal eukaryotic control. RFLP analysis separated 43- and 26-bp fragments of AluI-digest in both the gel-image and electropherograms, confirming the original products. The tested detection limit was 0.01% (w/w) feline meat in binary and ternary admixed as well as meatball matrices. Shorter target, better stability and higher sensitivity mean such an assay would be valid for feline identification even in degraded specimens.

  17. Real-time PCR for Leishmania species identification: Evaluation and comparison with classical techniques.

    PubMed

    de Morais, Rayana Carla Silva; da Costa Oliveira, Cintia Nascimento; de Albuquerque, Suênia da Cunha Gonçalves; Mendonça Trajano Silva, Lays Adrianne; Pessoa-E-Silva, Rômulo; Alves da Cruz, Heidi Lacerda; de Brito, Maria Edileuza Felinto; de Paiva Cavalcanti, Milena

    2016-06-01

    Cutaneous leishmaniasis (CL) is a parasitic disease caused by various Leishmania species. Several studies have shown that real time quantitative PCR (qPCR) can be used for Leishmania spp. identification by analyzing the melting temperature (Tm). Thus, the aim of this study was to evaluate the viability of qPCR for differentiating eight closely related Leishmania species that cause the same clinical form of the disease and to compare the results with classical techniques. qPCR assays for standardizing the Tm using reference strains were performed. After the CL diagnosis on blood samples of domestic animals, positive samples were analyzed by their Tm and qPCR products were purified and sequenced. Ten human samples previously characterized by Multilocus Enzyme Electrophoresis (MLEE) were also analyzed by Tm. A Restriction Fragment Length Polymorphism (RFLP) assay, a reference test, was also standardized, by using the reference strains. Through standardization of Tm for Leishmania spp., two Tm ranges were created for analysis: 1 (Tm = 78-79.99 °C) included Leishmania (V.) braziliensis, Leishmania (V.) panamensis, Leishmania (V.) lainsoni, Leishmania (V.) guyanensis and Leishmania (V.) shawi; and 2 (Tm = 80-82.2 °C) included Leishmania (V.) naiffi, Leishmania (L.) amazonensis and Leishmania (L.) mexicana. A total of 223 positive blood samples were analyzed, with 58 included in range 1 and 165 in range 2. L. (V.) braziliensis, L. (V.) panamensis and L. (V.) guyanensis were identified by sequencing, while L. (V.) braziliensis, L. (L.) mexicana and L. (V.) panamensis were identified by RFLP analysis. Ten human samples previously characterized by Multilocus Enzyme Electrophoresis (MLEE) were also analyzed by qPCR Tm analysis; five were classified in range 1 and five in range 2. A concordance of 80% was calculated between qPCR and the gold-standard (MLEE) with no significant difference between the methods (p = 0.6499); a similar result was observed for sequencing

  18. Identification of aster yellows phytoplasma in garlic and green onion by PCR-based methods.

    PubMed

    Khadhair, A H; Evans, I R; Choban, B

    2002-01-01

    In the summer of 1999, typical yellows-type symptoms were observed on garlic and green onion plants in a number of gardens and plots around Edmonton, Alberta, Canada. DNA was extracted from leaf tissues of evidently healthy and infected plants. DNA amplifications were conducted on these samples, using two primer pairs, R16F2n/R2 and R16(1)F1/R1, derived from phytoplasma rDNA sequences. DNA samples of aster yellows (AY), lime witches'-broom (LWB) and potato witches'-broom (PWB) phytoplasmas served as controls and were used to determine group relatedness. In a direct polymerase chain reaction (PCR) assay, DNA amplification with universal primer pair R16F2n/R2 gave the expected amplified products of 1.2 kb. Dilution (1/40) of each of the latter products were used as template and nested with specific primer pair R16(1)F1/R1. An expected PCR product of 1.1 kb was obtained from each phytoplasma-infected garlic and green onion samples, LWB and AY phytoplasmas but not from PWB phytoplasma. An aliquot from each amplification product (1.2 kb) with universal primers was subjected to PCR-based restriction fragment length polymorphism (RFLP) to identify phytoplasma isolates, using four restriction endonucleases (AluI, KpnI, MseI and RsaI). DNA amplification with specific primer pair R16(1)F1/R1 and RFLP analysis indicated the presence of AY phytoplasma in the infected garlic and green onion samples. These results suggest that AY phytoplasma in garlic and green onion samples belong to the subgroup 16Sr1-A.

  19. Use of PCR-restriction fragment length polymorphism analysis for identification of yeast species isolated from bovine intramammary infection.

    PubMed

    Fadda, M E; Pisano, M B; Scaccabarozzi, L; Mossa, V; Deplano, M; Moroni, P; Liciardi, M; Cosentino, S

    2013-01-01

    This study reports a rapid PCR-based technique using a one-enzyme RFLP for discrimination of yeasts isolated from bovine clinical and subclinical mastitis milk samples. We analyzed a total of 1,486 milk samples collected over 1 yr in south Sardinia and northern Italy, and 142 yeast strains were preliminarily grouped based on their cultural morphology and physiological characteristics. Assimilation tests were conducted using the identification kit API ID 32C and APILAB Plus software (bioMérieux, Marcy l'Etoile, France). For PCR-RFLP analysis, the 18S-ITS1-5.8S ribosomal(r)DNA region was amplified and then digested with HaeIII, and dendrogram analysis of RFLP fragments was carried out. Furthermore, within each of the groups identified by the API or PCR-RFLP methods, the identification of isolates was confirmed by sequencing of the D1/D2 region using an ABI Prism 310 automatic sequencer (Applied Biosystems, Foster City, CA). The combined phenotypic and molecular approach enabled the identification of 17 yeast species belonging to the genera Candida (47.9%), Cryptococcus (21.1%), Trichosporon (19.7%), Geotrichum (7.1%), and Rhodotorula (4.2%). All Candida species were correctly identified by the API test and their identification confirmed by sequencing. All strains identified with the API system as Geotrichum candidum, Cryptococcus uniguttulatus, and Rhodotorula glutinis also produced characteristic restriction patterns and were confirmed as Galactomyces geotrichum (a teleomorph of G. candidum), Filobasidium uniguttulatum (teleomorph of Crypt. uniguttulatus), and R. glutinis, respectively, by D1/D2 rDNA sequencing. With regard to the genus Trichosporon, preliminary identification by API was problematic, whereas the RFLP technique used in this study gave characteristic restriction profiles for each species. Moreover, sequencing of the D1/D2 region allowed not only successful identification of Trichosporon gracile where API could not, but also correct identification of

  20. Rapid identification of Campylobacter, Arcobacter, and Helicobacter isolates by PCR-restriction fragment length polymorphism analysis of the 16S rRNA gene.

    PubMed

    Marshall, S M; Melito, P L; Woodward, D L; Johnson, W M; Rodgers, F G; Mulvey, M R

    1999-12-01

    A rapid two-step identification scheme based on PCR-restriction fragment length polymorphism (PCR-RFLP) analysis of the 16S rRNA gene was developed in order to differentiate isolates belonging to the Campylobacter, Arcobacter, and Helicobacter genera. For 158 isolates (26 reference cultures and 132 clinical isolates), specific RFLP patterns were obtained and species were successfully identified by this assay.

  1. First isolation and RFLP genotyping of Toxoplasma gondii from crab-eating fox (Cerdocyon thous-Linnaeus, 1766).

    PubMed

    de Almeida, Jonatas Campos; de Melo, Renata Pimentel Bandeira; de Morais Pedrosa, Camila; da Silva Santos, Marcelo; de Barros, Luiz Daniel; Garcia, João Luis; Porto, Wagnner José Nascimento; Mota, Rinaldo Aparecido

    2017-05-01

    Wild animals may play an important role in the transmission and maintenance of Toxoplasma gondii in the environment. The purpose of the present study was to isolate and genotype T. gondii from a free-ranging crab-eating fox (Cerdocyon thous-Linnaeus, 1766). A crab-eating fox in critical health condition was attended in a veterinary hospital in Recife, Pernambuco State, Brazil. The animal died despite emergency treatment. The brain was collected aseptically and destined for mouse bioassay. One isolate of T. gondii was obtained, and Polymerase Chain Reaction - Restriction Fragment Length Polymorphism (PCR-RFLP) was used to assess genetic variability at 11 markers (SAG1, SAG2, altSAG2, SAG3, BTUB, GRA6, c228, c292, L358, PK1 and APICO). A murine model was used to assess the virulence of the isolate. Using the PCR-RFLP, genotype ToxoDB #13 was identified, which is considered an atypical strain. The isolate was classified as avirulent in the murine model. This is the first study to report T. gondii infection in the crab-eating fox. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Population structure of wild bananas, Musa balbisiana, in China determined by SSR fingerprinting and cpDNA PCR-RFLP.

    PubMed

    Ge, X J; Liu, M H; Wang, W K; Schaal, B A; Chiang, T Y

    2005-04-01

    Both demographic history and dispersal mechanisms influence the apportionment of genetic diversity among plant populations across geographical regions. In this study, phylogeography and population structure of wild banana, Musa balbisiana, one of the progenitors of cultivated bananas and plantains in China were investigated by an analysis of genetic diversity of simple sequence repeat (SSR) fingerprint markers and cpDNA PCR-RFLP. A chloroplast DNA (cpDNA) genealogy of 21 haplotypes identified two major clades, which correspond to two geographical regions separated by the Beijiang and Xijiang rivers, suggesting a history of vicariance. Significant genetic differentiation was detected among populations with cpDNA markers, a result consistent with limited seed dispersal in wild banana mediated by foraging of rodents. Nuclear SSR data also revealed significant geographical structuring in banana populations. In western China, however, there was no detected phylogeograpahical pattern, possibly due to frequent pollen flow via fruit bats. In contrast, populations east of the Beijiang River and the population of Hainan Island, where long-range soaring pollinators are absent, are genetically distinct. Colonization-extinction processes may have influenced the evolution of Musa populations, which have a metapopulation structure and are connected by migrating individuals. Effective gene flow via pollen, estimated from the nuclear SSR data, is 3.65 times greater than gene flow via seed, estimated from cpDNA data. Chloroplast and nuclear DNAs provide different insights into phylogeographical patterns of wild banana populations and, taken together, can inform conservation practices.

  3. Identification of Novel Helicobacter Species in Pig Stomachs by PCR and Partial Sequencing

    PubMed Central

    Choi, Young K.; Han, Jeong H.; Joo, Han S.

    2001-01-01

    Evidence of infection with Helicobacter species in pig stomach was investigated by the use of a PCR with Helicobacter genus-specific primers. Forty pig stomachs, each of four different ulcer lesion grades, 0, 1, 2, and 3 in the pars esophagea area, were collected from a slaughterhouse in Minnesota. Of 160 stomach samples examined, 102 (63.8%) were positive by the PCR assay. The 40 samples each of lesion grades 0, 1, 2, and 3 showed 22.5, 52.5, 85.0, and 95.0% PCR-positive results, respectively. There was a significant trend (P ≤ 0.01) in the proportions of PCR-positive cases relative to severity of the lesion. About 80% of the 16S rRNA gene was amplified, and PCR-restriction fragment length polymorphism (RFLP) patterns were analyzed. Of 102 PCR-positive samples, the PCR-RFLP patterns resulted in four different types, 32 samples being classified into type MN 1, 16 samples into type MN 2, 43 samples into type MN 3, and 11 samples into type MN 4. When the sequences of each RFLP type were compared to those reported in databases by using BLAST software, types MN 1, MN 2, MN 3, and MN 4 showed homologies of 97.3, 95.4, 96.7, and 99.5% with the 16S ribosomal DNA of Helicobacter flexispira taxon 3, Helicobacter sp. strains MIT 94-022 and MZ 640285, and Helicobacter suis, respectively. None of the 102 samples positive for the Helicobacter genus were positive with a primer set specific for Helicobacter pylori. Attempts to culture the organisms from selected stomachs in vitro were unsuccessful. PMID:11526168

  4. Reduction in PSA messenger-RNA expression and clinical recurrence in patients with prostatic cancer undergoing neoadjuvant therapy before radical prostatectomy

    PubMed Central

    Grasso, Marco; Lania, Caterina; Blanco, Salvatore; Baruffi, Marco; Mocellin, Simone

    2004-01-01

    Background We assessed the incidence of micro-metastases at surgical margins (SM) and pelvic lymph nodes (LN) in patients submitted to radical retropubic prostatectomy (RP) after neoadjuvant therapy (NT) or to RP alone. We compared traditional staging to molecular detection of PSA using Taqman-based quantitative real-time PCR (qrt-PCR) never used before for this purpose. Methods 29 patients were assigned to NT plus RP (arm A) or RP alone (arm B). Pelvic LN were dissected for qrt-PCR analysis, together with right and left lateral SM. Results 64,3% patients of arm B and 26.6% of arm A had evidence of PSA mRNA expression in LN and/or SM. 17,2% patients, all of arm B, had biochemical recurrence. Conclusions Qrt-PCR may be more sensitive, compared to conventional histology, in identifying presence of viable prostate carcinoma cells in SM and LN. Gene expression of PSA in surgical periprostatic samples might be considered as a novel and reliable indicator of minimal residual disease after NT. PMID:15104791

  5. Discrimination of gastrointestinal nematode eggs from crude fecal egg preparations by inhibitor-resistant conventional and real-time PCR.

    PubMed

    Demeler, Janina; Ramünke, Sabrina; Wolken, Sonja; Ianiello, Davide; Rinaldi, Laura; Gahutu, Jean Bosco; Cringoli, Giuseppe; von Samson-Himmelstjerna, Georg; Krücken, Jürgen

    2013-01-01

    Diagnosis of gastrointestinal nematodes relies predominantly on coproscopic methods such as flotation, Kato-Katz, McMaster or FLOTAC. Although FLOTAC allows accurate quantification, many nematode eggs can only be differentiated to genus or family level. Several molecular diagnostic tools discriminating closely related species suffer from high costs for DNA isolation from feces and limited sensitivity since most kits use only small amounts of feces (<1 g). A direct PCR from crude egg preparations was designed for full compatibility with FLOTAC to accurately quantify eggs per gram feces (epg) and determine species composition. Eggs were recovered from the flotation solution and concentrated by sieving. Lysis was achieved by repeated boiling and freezing cycles - only Trichuris eggs required additional mechanic disruption. Egg lysates were directly used as template for PCR with Phusion DNA polymerase which is particularly resistant to PCR inhibitors. Qualitative results were obtained with feces of goats, cattle, horses, swine, cats, dogs and mice. The finally established protocol was also compatible with quantitative real-time PCR in the presence of EvaGreen and no PCR inhibition was detectable when extracts were diluted at least fourfold. Sensitivity was comparable to DNA isolation protocols and spiked samples with five epg were reliably detected. For Toxocara cati a detection limit below one epg was demonstrated. It was possible to distinguish T. cati and Toxocara canis using high resolution melt (HRM) analysis, a rapid tool for species identification. In human samples, restriction fragment length polymorphism (RFLP) and HRM analysis were used to discriminate Necator americanus and Ancylostoma duodenale. The method is able to significantly improve molecular diagnosis of gastrointestinal nematodes by increasing speed and sensitivity while decreasing overall costs. For identification of species or resistance alleles, analysis of PCR products with many different post

  6. Discrimination of Gastrointestinal Nematode Eggs from Crude Fecal Egg Preparations by Inhibitor-Resistant Conventional and Real-Time PCR

    PubMed Central

    Demeler, Janina; Ramünke, Sabrina; Wolken, Sonja; Ianiello, Davide; Rinaldi, Laura; Gahutu, Jean Bosco; Cringoli, Giuseppe; von Samson-Himmelstjerna, Georg; Krücken, Jürgen

    2013-01-01

    Diagnosis of gastrointestinal nematodes relies predominantly on coproscopic methods such as flotation, Kato-Katz, McMaster or FLOTAC. Although FLOTAC allows accurate quantification, many nematode eggs can only be differentiated to genus or family level. Several molecular diagnostic tools discriminating closely related species suffer from high costs for DNA isolation from feces and limited sensitivity since most kits use only small amounts of feces (<1 g). A direct PCR from crude egg preparations was designed for full compatibility with FLOTAC to accurately quantify eggs per gram feces (epg) and determine species composition. Eggs were recovered from the flotation solution and concentrated by sieving. Lysis was achieved by repeated boiling and freezing cycles – only Trichuris eggs required additional mechanic disruption. Egg lysates were directly used as template for PCR with Phusion DNA polymerase which is particularly resistant to PCR inhibitors. Qualitative results were obtained with feces of goats, cattle, horses, swine, cats, dogs and mice. The finally established protocol was also compatible with quantitative real-time PCR in the presence of EvaGreen and no PCR inhibition was detectable when extracts were diluted at least fourfold. Sensitivity was comparable to DNA isolation protocols and spiked samples with five epg were reliably detected. For Toxocara cati a detection limit below one epg was demonstrated. It was possible to distinguish T. cati and Toxocara canis using high resolution melt (HRM) analysis, a rapid tool for species identification. In human samples, restriction fragment length polymorphism (RFLP) and HRM analysis were used to discriminate Necator americanus and Ancylostoma duodenale. The method is able to significantly improve molecular diagnosis of gastrointestinal nematodes by increasing speed and sensitivity while decreasing overall costs. For identification of species or resistance alleles, analysis of PCR products with many different post

  7. PCR-Restriction Fragment Length Polymorphism for Rapid, Low-Cost Identification of Isoniazid-Resistant Mycobacterium tuberculosis▿

    PubMed Central

    Caws, Maxine; Tho, Dau Quang; Duy, Phan Minh; Lan, Nguyen Thi Ngoc; Hoa, Dai Viet; Torok, Mili Estee; Chau, Tran Thi Hong; Van Vinh Chau, Nguyen; Chinh, Nguyen Tran; Farrar, Jeremy

    2007-01-01

    PCR-restriction fragment length poymorphism (PCR-RFLP) is a simple, robust technique for the rapid identification of isoniazid-resistant Mycobacterium tuberculosis. One hundred consecutive isolates from a Vietnamese tuberculosis hospital were tested by MspA1I PCR-RFLP for the detection of isoniazid-resistant katG_315 mutants. The test had a sensitivity of 80% and a specificity of 100% against conventional phenotypic drug susceptibility testing. The positive and negative predictive values were 1 and 0.86, respectively. None of the discrepant isolates had mutant katG_315 codons by sequencing. The test is cheap (less than $1.50 per test), specific, and suitable for the rapid identification of isoniazid resistance in regions with a high prevalence of katG_315 mutants among isoniazid-resistant M. tuberculosis isolates. PMID:17428939

  8. A PCR technique based on the Hip1 interspersed repetitive sequence distinguishes cyanobacterial species and strains.

    PubMed

    Smith, J K; Parry, J D; Day, J G; Smith, R J

    1998-10-01

    The use of primers based on the Hip1 sequence as a typing technique for cyanobacteria has been investigated. The discovery of short repetitive sequence structures in bacterial DNA during the last decade has led to the development of PCR-based methods for typing, i.e., distinguishing and identifying, bacterial species and strains. An octameric palindromic sequence known as Hip1 has been shown to be present in the chromosomal DNA of many species of cyanobacteria as a highly repetitious interspersed sequence. PCR primers were constructed that extended the Hip1 sequence at the 3' end by two bases. Five of the 16 possible extended primers were tested. Each of the five primers produced a different set of products when used to prime PCR from cyanobacterial genomic DNA. Each primer produced a distinct set of products for each of the 15 cyanobacterial species tested. The ability of Hip1-based PCR to resolve taxonomic differences was assessed by analysis of independent isolates of Anabaena flos-aquae and Nostoc ellipsosporum obtained from the CCAP (Culture Collection of Algae and Protozoa, IFE, Cumbria, UK). A PCR-based RFLP analysis of products amplified from the 23S-16S rDNA intergenic region was used to characterize the isolates and to compare with the Hip1 typing data. The RFLP and Hip1 typing yielded similar results and both techniques were able to distinguish different strains. On the basis of these results it is suggested that the Hip1 PCR technique may assist in distinguishing cyanobacterial species and strains.

  9. Molecular identification key based on PCR/RFLP for three polychaete sibling species of the genus Marenzelleria, and the species' current distribution in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Blank, M.; Laine, A. O.; Jürss, K.; Bastrop, R.

    2008-06-01

    Studies of Marenzelleria species were often hampered by identification uncertainties when using morphological characters only. A newly developed PCR/RFLP protocol allows a more efficient discrimination of the three species Marenzelleria viridis, Marenzelleria neglecta and Marenzelleria arctia currently known for the Baltic Sea. The protocol is based on PCR amplification of two mitochondrial DNA gene segments (16S, COI) followed by digestion with restriction enzymes. As it is faster and cheaper than PCR/sequencing protocols used so far, the protocol is recommended for large-scale analyses. The markers allow an undoubted determination of species irrespective of life stage or condition of the worms in the samples. The protocol was validated on about 950 specimens sampled at more than 30 sites of the Baltic and the North Sea, and on specimens from populations of the North American east coast. Besides this test we used mitochondrial DNA sequences (16S, COI, Cytb) and starch gel electrophoresis to further investigate the distribution of the three Marenzelleria species in the Baltic Sea. The results show that M. viridis (formerly genetic type I or M. cf. wireni) occurred in the Öresund area, in the south western as well as in the eastern Baltic Sea, where it is found sympatric with M. neglecta. Allozyme electrophoresis indicated an introduction by range expansion from the North Sea. The second species, M. arctia, was only found in the northern Baltic Sea, where it sometimes occurred sympatric with M. neglecta or M. viridis. For Baltic M. arctia, the most probable way of introduction is by ship ballast water from the European Arctic. There is an urgent need for a new genetic analysis of all Marenzelleria populations of the Baltic Sea to unravel the current distribution of the three species.

  10. Comparison of CHROMagar, polymerase chain reaction-restriction fragment length polymorphism, and polymerase chain reaction-fragment size for the identification of Candida species.

    PubMed

    Jafari, Zahra; Motamedi, Marjan; Jalalizand, Nilufar; Shokoohi, Gholam R; Charsizadeh, Arezu; Mirhendi, Hossein

    2017-09-01

    The epidemiological alteration in the distribution of Candida species, as well as the significantly increasing trend of either intrinsic or acquired resistance of some of these fungi highlights the need for a reliable method for the identification of the species. Polymerase chain reaction (PCR) is one of the methods facilitating the quick and precise identification of Candida species. The aim of this study was to compare the efficiency of CHROMagar, PCR-restriction fragment length polymorphism (PCR-RFLP), and PCR-fragment size polymorphism (PCR-FSP) assays in the identification of Candida species to determine the benefits and limitations of these methods. This study was conducted on 107 Candida strains, including 20 standard strains and 87 clinical isolates. The identification of the isolates was accomplished by using CHROMagar as a conventional method. The PCR-RFLP assay was performed on the entire internal transcribed spacer (ITS) region of ribosomal DNA (rDNA), and the consequent enzymatic digestion was compared with PCR-FSP results in which ITS1 and ITS2 regions were separately PCR amplified. In both molecular assays, yeast identification was carried out through the specific electrophoretic profiles of the PCR products. According to the results, the utilization of CHROMagar resulted in the identification of 29 (33.3%) Candida isolates, while the PCR-RFLP and PCR-FSP facilitated the identification of 83 (95.4%) and 80 (91.9%) clinical isolates, respectively. The obtained concordances between CHROMagar and PCR-RFLP, between CHROMagar and PCR-FSP, as well as between PCR-RFLP and PCR-FSP were 0.23, 0.20, and 0.77, respectively. The recognition of the benefits and limitations of PCR methods allows for the selection of the most efficient technique for a fast and correct differentiation. The PCR-RFLP and PCR-FSP assays had satisfactory concordance. The PCR-FSP provides a rapid, technically simple, and cost-effective method for the identification of Candida species

  11. Nested PCR for ultrasensitive detection of the potato ring rot bacterium, Clavibacter michiganensis subsp. sepedonicus.

    PubMed

    Lee, I M; Bartoszyk, I M; Gundersen, D E; Mogen, B; Davis, R E

    1997-07-01

    Oligonucleotide primers derived from sequences of the 16S rRNA gene (CMR16F1, CMR16R1, CMR16F2, and CMR16R2) and insertion element IS1121 of Clavibacter michiganensis subsp. sepedonicus (CMSIF1, CMSIR1, CMSIF2, and CMISR2) were used in nested PCR to detect the potato ring rot bacterium C. michiganensis subsp. sepedonicus. Nested PCR with primer pair CMSIF1-CMSIR1 followed by primer pair CMSIF2-CMSIR2 specifically detected C. michiganensis subsp. sepedonicus, while nested PCR with CMR16F1-CMR16R1 followed by CMR16F2-CMR16R2 detected C. michiganensis subsp. sepedonicus and the other C. michiganensis subspecies. In the latter case, C. michiganensis subsp. sepedonicus can be differentiated from the other subspecies by restriction fragment length polymorphism (RFLP) analyses of the nested PCR products (16S rDNA sequences). The nested PCR assays developed in this work allow ultrasensitive detection of very low titers of C. michiganensis subsp. sepedonicus which may be present in symptomiess potato plants or tubers and which cannot be readily detected by direct PCR (single PCR amplification). RFLP analysis of PCR products provides for an unambiguous confirmation of the identify of C. michiganensis subsp. sepedonicus.

  12. Differential changes in mGlu2 and mGlu3 gene expression following pilocarpine-induced status epilepticus: A comparative real-time PCR analysis

    PubMed Central

    Ermolinsky, Boris; Pacheco Otalora, Luis F.; Arshadmansab, Massoud F.; Zarei, Masoud; Garrido-Sanabria, Emilio R.

    2008-01-01

    Group II metabotropic glutamate (mGlu II) receptors subtype 2 and 3 (mGlu2 and mGlu3) are subtle regulators of neuronal excitability and synaptic plasticity in the hippocampus. In recent years, researchers have investigated the potential neuroprotective and anticonvulsant effects of compounds acting on mGlu II receptors. However, abnormal expression and function of mGlu2 and mGlu3 have been reported in temporal lobe epilepsy, a phenomena that may limit the therapeutic effectiveness of these potentially new antiepileptic drugs. Here, we investigated seizure-induced changes in mGlu2 and mGlu3 mRNA following pilocarpine-inducted status epilepticus (SE) and subsequent epileptogenesis. Relative changes in gene expression were assessed by comparative analysis of quantitative real-time PCR (qrtPCR) by the delta-delta CT method. Pilocarpine-treated and control rats were sacrificed at different periods (24h, 10 days, one month and more than two months) following SE. Total RNA was isolated from microdissected dentate gyrus and processed for RT-PCR and qrtPCR using glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as an endogenous control gene. Analysis of relative quantification (RQ) ratios of mGlu2 and mGlu3 mRNA expression revealed a significant down-regulation of both targets at 24h after SE. Gene expression partially recovered at 10 days following SE reaching control levels at one month after SE. Two month after SE, mGlu2 mRNA expression was significantly down-regulated to ~41% of control expression whereas mGlu3 mRNA was comparable to control levels. Our data indicate that mGlu2 and mGlu3 expression is dynamically down-regulated or selectively enhanced during critical periods of epileptogenesis. Seizure-induced differential dysregulation of mGlu2 and mGlu3 receptors may affect the availability of these molecular targets for therapeutic compounds in epilepsy. PMID:18585369

  13. Species determination within Staphylococcus genus by extended PCR-restriction fragment length polymorphism of saoC gene.

    PubMed

    Bukowski, Michal; Polakowska, Klaudia; Ilczyszyn, Weronika M; Sitarska, Agnieszka; Nytko, Kinga; Kosecka, Maja; Miedzobrodzki, Jacek; Dubin, Adam; Wladyka, Benedykt

    2015-01-01

    Genetic methods based on PCR-restriction fragment length polymorphism (RFLP) are widely used for microbial species determination. In this study, we present the application of saoC gene as an effective tool for species determination and within-species diversity analysis for Staphylococcus genus. The unique sequence diversity of saoC allows us to apply four restriction enzymes to obtain RFLP patterns, which appear highly distinctive even among closely related species as well as atypical isolates of environmental origin. Such patterns were successfully obtained for 26 species belonging to Staphylococcus genus. What is more, tracing polymorphisms detected by different restriction enzymes allowed for basic phylogeny analysis for Staphylococcus aureus, which is potentially applicable for other staphylococcal species. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Characterization of Erwinia chrysanthemi by pectinolytic isozyme polymorphism and restriction fragment length polymorphism analysis of PCR-amplified fragments of pel genes.

    PubMed Central

    Nassar, A; Darrasse, A; Lemattre, M; Kotoujansky, A; Dervin, C; Vedel, R; Bertheau, Y

    1996-01-01

    Conserved regions about 420 bp long of the pelADE cluster specific to Erwinia chrysanthemi were amplified by PCR and used to differentiate 78 strains of E. chrysanthemi that were obtained from different hosts and geographical areas. No PCR products were obtained from DNA samples extracted from other pectinolytic and nonpectinolytic species and genera. The pel fragments amplified from the E. chrysanthemi strains studied were compared by performing a restriction fragment length polymorphism (RFLP) analysis. On the basis of similarity coefficients derived from the RFLP analysis, the strains were separated into 16 PCR RFLP patterns grouped in six clusters, These clusters appeared to be correlated with other infraspecific levels of E. chrysanthemi classification, such as pathovar and biovar, and occasionally with geographical origin. Moreover, the clusters correlated well with the polymorphism of pectate lyase and pectin methylesterase isoenzymes. While the pectin methylesterase profiles correlated with host monocot-dicot classification, the pectate lyase polymorphism might reflect the cell wall microdomains of the plants belonging to these classes. PMID:8779560

  15. Identification of Lactobacillus strains of goose origin using MALDI-TOF mass spectrometry and 16S-23S rDNA intergenic spacer PCR analysis.

    PubMed

    Dec, Marta; Urban-Chmiel, Renata; Gnat, Sebastian; Puchalski, Andrzej; Wernicki, Andrzej

    2014-04-01

    The objective of our study was to identify Lactobacillus sp. strains of goose origin using MALDI-TOF mass spectrometry, ITS-PCR and ITS-PCR/RFLP. All three techniques proved to be valuable tools for identification of avian lactobacilli and produced comparable classification results. Lactobacillus strains were isolated from 100% of geese aged 3 weeks to 4 years, but from only 25% of chicks aged 1-10 days. Among the 104 strains isolated, we distinguished 14 Lactobacillus species. The dominant species was Lactobacillus salivarius (35.6%), followed by Lactobacillus johnsonii (18.3%), Lactobacillus ingluviei (11.5%) and Lactobacillus agilis (7.7%). The intact-cell MALDI-TOF mass spectrometry enabled rapid species identification of the lactobacilli with minimal pretreatment. However, it produced more than one identification result for 11.5% examined strains (mainly of the species L. johnsonii). ITS-PCR distinguished 12 genotypes among the isolates, but was not able to differentiate closely related strains, i.e. between Lactobacillus amylovorus and Lactobacillus kitasatonis and between Lactobacillus paracasei, Lactobacillus rhamnosus and Lactobacillus zeae. These species were differentiated by ITS-PCR/RFLP using the restriction enzymes TaqI and MseI. The results obtained indicate that ITS-PCR and ITS-PCR/RFLP assays could be used not only for interspecific, but also for intraspecific, typing. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  16. Neer Award 2017: A rapid method for detecting Propionibacterium acnes in surgical biopsy specimens from the shoulder.

    PubMed

    Holmes, Scott; Pena Diaz, Ana M; Athwal, George S; Faber, Kenneth J; O'Gorman, David B

    2017-02-01

    Propionibacterium (P) acnes infection of the shoulder after arthroplasty is a common and serious complication. Current detection methods for P acnes involve anaerobic cultures that require prolonged incubation periods (typically 7-14 days). We have developed a polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) approach that sensitively and specifically identifies P acnes in tissue specimens within a 24-hour period. Primers were designed to amplify a unique region of the 16S rRNA gene in P acnes that contained a unique HaeIII restriction enzyme site. PCR and RFLP analyses were optimized to detect P acnes DNA in in vitro cultures and in arthroscopic surgical biopsy specimens from patients with P acnes infections. A 564 base-pair PCR amplicon was derived from all of the known P acnes strains. HaeIII digests of the amplicon yielded a restriction fragment pattern that was unique to P acnes. P acnes-specific amplicons were detected in as few as 10 bacterial cells and in clinical biopsy specimens of infected shoulder tissues. This PCR-RFLP assay combines the sensitivity of PCR with the specificity of RFLP mapping to identify P acnes in surgical isolates. The assay is robust and rapid, and a P acnes-positive tissue specimen can be confirmed within 24 hours of sampling, facilitating treatment decision making, targeted antibiotic therapy, and monitoring to minimize implant failure and revision surgery. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  17. [Differentiation of geographic biovariants of smallpox virus by PCR].

    PubMed

    Babkin, I V; Babkina, I N

    2010-01-01

    Comparative analysis of amino acid and nucleotides sequences of ORFs located in extended segments of the terminal variable regions in variola virus genome detected a promising locus for viral genotyping according to the geographic origin. This is ORF O1L of VARV. The primers were calculated for synthesis of this ORF fragment by PCR, which makes it possible to distinguish South America-Western Africa genotype from other VARV strains. Subsequent RFLP analysis reliably differentiated Asian strains from African strains (except Western Africa isolates). This method has been tested using 16 VARV strains from various geographic regions. The developed approach is simple, fast and reliable.

  18. Mycobacterium avium restriction fragment length polymorphism-IS IS1245 and the simple double repetitive element polymerase chain reaction typing method to screen genetic diversity in Brazilian strains.

    PubMed

    Sequeira, Patrícia Carvalho de; Fonseca, Leila de Souza; Silva, Marlei Gomes da; Saad, Maria Helena Féres

    2005-11-01

    Simple double repetitive element polymerase chain reaction (MaDRE-PCR) and Pvu II-IS1245 restriction fragment length polymorphism (RFLP) typing methods were used to type 41 Mycobacterium avium isolates obtained from 14 AIDS inpatients and 10 environment and animals specimens identified among 53 mycobacteria isolated from 237 food, chicken, and pig. All environmental and animals strains showed orphan patterns by both methods. By MaDRE-PCR four patients, with multiple isolates, showed different patterns, suggesting polyclonal infection that was confirmed by RFLP in two of them. This first evaluation of MaDRE-PCR on Brazilian M. avium strains demonstrated that the method seems to be useful as simple and less expensive typing method for screening genetic diversity in M. avium strains on selected epidemiological studies, although with limitation on analysis identical patterns except for one band.

  19. PCR Conditions for 16S Primers for Analysis of Microbes in the Colon of Rats.

    PubMed

    Guillen, I A; Camacho, H; Tuero, A D; Bacardí, D; Palenzuela, D O; Aguilera, A; Silva, J A; Estrada, R; Gell, O; Suárez, J; Ancizar, J; Brown, E; Colarte, A B; Castro, J; Novoa, L I

    2016-09-01

    The study of the composition of the intestinal flora is important to the health of the host, playing a key role in maintaining intestinal homeostasis and the evolution of the immune system. For these studies, various universal primers of the 16S rDNA gene are used in microbial taxonomy. Here, we report an evaluation of 5 universal primers to explore the presence of microbial DNA in colon biopsies preserved in RNAlater solution. The DNA extracted was used for the amplification of PCR products containing the variable (V) regions of the microbial 16S rDNA gene. The PCR products were studied by restriction fragment length polymorphism (RFLP) analysis and DNA sequence, whose percent of homology with microbial sequences reported in GenBank was verified using bioinformatics tools. The presence of microbes in the colon of rats was quantified by the quantitative PCR (qPCR) technique. We obtained microbial DNA from rat, useful for PCR analysis with the universal primers for the bacteria 16S rDNA. The sequences of PCR products obtained from a colon biopsy of the animal showed homology with the classes bacilli (Lactobacillus spp) and proteobacteria, normally represented in the colon of rats. The proposed methodology allowed the attainment of DNA of bacteria with the quality and integrity for use in qPCR, sequencing, and PCR-RFLP analysis. The selected universal primers provided knowledge of the abundance of microorganisms and the formation of a preliminary test of bacterial diversity in rat colon biopsies.

  20. Direct Detection and Identification of Mycobacterium tuberculosis and Mycobacterium bovis in Bovine Samples by a Novel Nested PCR Assay: Correlation with Conventional Techniques

    PubMed Central

    Mishra, A.; Singhal, A.; Chauhan, D. S.; Katoch, V. M.; Srivastava, K.; Thakral, S. S.; Bharadwaj, S. S.; Sreenivas, V.; Prasad, H. K.

    2005-01-01

    Mycobacterium tuberculosis and M. bovis infect animals and humans. Their epidemiologies in developed and developing countries differ, owing to differences in the implementation of preventive measures (World Health Organization, 1999). Identification and differentiation of these closely related mycobacterial species would help to determine the source, reservoirs of infection, and disease burden due to diverse mycobacterial pathogens. The utility of the hupB gene (Rv2986c in M. tuberculosis, or Mb3010c in M. bovis) to differentiate M. tuberculosis and M. bovis was evaluated by a PCR-restriction fragment length polymorphism (RFLP) assay with 56 characterized bovine isolates (S. Prabhakar et al., J. Clin. Microbiol. 42:2724-2732, 2004). The degree of concordance between the PCR-RFLP assay and the microbiological characterization was 99.0% (P < 0.001). A nested PCR (N-PCR) assay was developed, replacing the PCR-RFLP assay for direct detection of M. tuberculosis and M. bovis in bovine samples. The N-PCR products of M. tuberculosis and M. bovis corresponded to 116 and 89 bp, respectively. The detection limit of mycobacterial DNA by N-PCR was 50 fg, equivalent to five tubercle bacilli. M. tuberculosis and/or M. bovis was detected in 55.5% (105/189) of the samples by N-PCR, compared to 9.4% (18/189) by culture. The sensitivities of N-PCR and culture were 97.3 and 29.7, respectively, and their specificities were 22.2 and 77.7%, respectively. The percentages of animals or samples identified as infected with M. tuberculosis or M. bovis by N-PCR and culture reflected the clinical categorizations of the cattle (P of <0.05 to <0.01). Mixed infection by N-PCR was detected in 22 animals, whereas by culture mixed infection was detected in 1 animal. PMID:16272503

  1. Comparison of DNA-based techniques for differentiation of production strains of ale and lager brewing yeast.

    PubMed

    Kopecká, J; Němec, M; Matoulková, D

    2016-06-01

    Brewing yeasts are classified into two species-Saccharomyces pastorianus and Saccharomyces cerevisiae. Most of the brewing yeast strains are natural interspecies hybrids typically polyploids and their identification is thus often difficult giving heterogenous results according to the method used. We performed genetic characterization of a set of the brewing yeast strains coming from several yeast culture collections by combination of various DNA-based techniques. The aim of this study was to select a method for species-specific identification of yeast and discrimination of yeast strains according to their technological classification. A group of 40 yeast strains were characterized using PCR-RFLP analysis of ITS-5·8S, NTS, HIS4 and COX2 genes, multiplex PCR, RAPD-PCR of genomic DNA, mtDNA-RFLP and electrophoretic karyotyping. Reliable differentiation of yeast to the species level was achieved by PCR-RFLP of HIS4 gene. Numerical analysis of the obtained RAPD-fingerprints and karyotype revealed species-specific clustering corresponding with the technological classification of the strains. Taxonomic position and partial hybrid nature of strains were verified by multiplex PCR. Differentiation among species using the PCR-RFLP of ITS-5·8S and NTS region was shown to be unreliable. Karyotyping and RFLP of mitochondrial DNA evinced small inaccuracies in strain categorization. PCR-RFLP of HIS4 gene and RAPD-PCR of genomic DNA are reliable and suitable methods for fast identification of yeast strains. RAPD-PCR with primer 21 is a fast and reliable method applicable for differentiation of brewing yeasts with only 35% similarity of fingerprint profile between the two main technological groups (ale and lager) of brewing strains. It was proved that PCR-RFLP method of HIS4 gene enables precise discrimination among three technologically important Saccharomyces species. Differentiation of brewing yeast to the strain level can be achieved using the RAPD-PCR technique. © 2016 The

  2. A method to discriminate between closely related bovine major histocompatibility complex class I alleles by combining established PCR-SSP assays with RFLPs.

    PubMed

    Svitek, N; Nzau, B; Steinaa, L; Nene, V

    2015-04-01

    We have developed a polymerase chain reaction-sequence-specific primers-restriction fragment length polymorphism (PCR-SSP-RFLP) method to rapidly differentiate between the A18 and A18 variant (v) BoLA haplotypes and between A14 and A15/A15v BoLA haplotypes in Holstein/Friesian cattle. We used published SSP to PCR amplify BoLA alleles expressed in animals of known haplotype and exposed the amplicons to the restriction enzyme PvuII that was predicted to cut at a unique site in the middle of BoLA-6*01302 (A18v) and BoLA-1*00901 (A15) but not in BoLA-6*01301 (A18) or BoLA-1*02301 (A14) alleles. Whereas the method does not discriminate between the A15 and A15v haplotypes, as the BoLA-1*00902 allele associated with A15v also contains a PvuII site, we are interested in cattle of A18 and A14 haplotype for vaccine related studies. Our results also indicated that the BoLA-6*01302 (A18v) allele is much more abundant than BoLA-6*01301 (A18) in the cattle that we sampled. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. [Methodological study for detecting gene mutation of family with genotyping of compound heterogenicity of SEA alpha-thalassemia 1 and HbCS].

    PubMed

    Chen, Jian; Luo, Bi; Qi, Zhu; Huo, Pei-Dan; Zhang, Quan-Sheng; Wang, Hong

    2010-06-01

    This study was aimed to establish a method of PCR combination with PCR-RFLP for detecting the South-East Asian (SEA) deletion type alpha-thalassemia 1 and non-deletion mutation of Hb Constant Spring (CS), and to investigate the application value of this method. For the members of the families with alpha-thalassemia, SEA deletion mutation was detected by PCR, then the HbCS point mutation was screened by PCR-RFLP. The results indicated that 15 carriers with alpha-thalassemia (--(SEA)/) were found in 19 members from 7 families, and 2 families with genotype of --(SEA)/alpha(CS)alpha were screened out successfully. It is concluded that the PCR combination with PCR-RFLP is a simple, rapid, and reliable method for screening HbH disease with genotype of --(SEA)/alpha(CS)alpha.

  4. The Next-Generation PCR-Based Quantification Method for Ambient Waters: Digital PCR.

    PubMed

    Cao, Yiping; Griffith, John F; Weisberg, Stephen B

    2016-01-01

    Real-time quantitative PCR (qPCR) is increasingly being used for ambient water monitoring, but development of digital polymerase chain reaction (digital PCR) has the potential to further advance the use of molecular techniques in such applications. Digital PCR refines qPCR by partitioning the sample into thousands to millions of miniature reactions that are examined individually for binary endpoint results, with DNA density calculated from the fraction of positives using Poisson statistics. This direct quantification removes the need for standard curves, eliminating the labor and materials associated with creating and running standards with each batch, and removing biases associated with standard variability and mismatching amplification efficiency between standards and samples. Confining reactions and binary endpoint measurements to small partitions also leads to other performance advantages, including reduced susceptibility to inhibition, increased repeatability and reproducibility, and increased capacity to measure multiple targets in one analysis. As such, digital PCR is well suited for ambient water monitoring applications and is particularly advantageous as molecular methods move toward autonomous field application.

  5. Multiplex enrichment quantitative PCR (ME-qPCR): a high-throughput, highly sensitive detection method for GMO identification.

    PubMed

    Fu, Wei; Zhu, Pengyu; Wei, Shuang; Zhixin, Du; Wang, Chenguang; Wu, Xiyang; Li, Feiwu; Zhu, Shuifang

    2017-04-01

    Among all of the high-throughput detection methods, PCR-based methodologies are regarded as the most cost-efficient and feasible methodologies compared with the next-generation sequencing or ChIP-based methods. However, the PCR-based methods can only achieve multiplex detection up to 15-plex due to limitations imposed by the multiplex primer interactions. The detection throughput cannot meet the demands of high-throughput detection, such as SNP or gene expression analysis. Therefore, in our study, we have developed a new high-throughput PCR-based detection method, multiplex enrichment quantitative PCR (ME-qPCR), which is a combination of qPCR and nested PCR. The GMO content detection results in our study showed that ME-qPCR could achieve high-throughput detection up to 26-plex. Compared to the original qPCR, the Ct values of ME-qPCR were lower for the same group, which showed that ME-qPCR sensitivity is higher than the original qPCR. The absolute limit of detection for ME-qPCR could achieve levels as low as a single copy of the plant genome. Moreover, the specificity results showed that no cross-amplification occurred for irrelevant GMO events. After evaluation of all of the parameters, a practical evaluation was performed with different foods. The more stable amplification results, compared to qPCR, showed that ME-qPCR was suitable for GMO detection in foods. In conclusion, ME-qPCR achieved sensitive, high-throughput GMO detection in complex substrates, such as crops or food samples. In the future, ME-qPCR-based GMO content identification may positively impact SNP analysis or multiplex gene expression of food or agricultural samples. Graphical abstract For the first-step amplification, four primers (A, B, C, and D) have been added into the reaction volume. In this manner, four kinds of amplicons have been generated. All of these four amplicons could be regarded as the target of second-step PCR. For the second-step amplification, three parallels have been taken for

  6. [Optimized application of nested PCR method for detection of malaria].

    PubMed

    Yao-Guang, Z; Li, J; Zhen-Yu, W; Li, C

    2017-04-28

    Objective To optimize the application of the nested PCR method for the detection of malaria according to the working practice, so as to improve the efficiency of malaria detection. Methods Premixing solution of PCR, internal primers for further amplification and new designed primers that aimed at two Plasmodium ovale subspecies were employed to optimize the reaction system, reaction condition and specific primers of P . ovale on basis of routine nested PCR. Then the specificity and the sensitivity of the optimized method were analyzed. The positive blood samples and examination samples of malaria were detected by the routine nested PCR and the optimized method simultaneously, and the detection results were compared and analyzed. Results The optimized method showed good specificity, and its sensitivity could reach the pg to fg level. The two methods were used to detect the same positive malarial blood samples simultaneously, the results indicated that the PCR products of the two methods had no significant difference, but the non-specific amplification reduced obviously and the detection rates of P . ovale subspecies improved, as well as the total specificity also increased through the use of the optimized method. The actual detection results of 111 cases of malarial blood samples showed that the sensitivity and specificity of the routine nested PCR were 94.57% and 86.96%, respectively, and those of the optimized method were both 93.48%, and there was no statistically significant difference between the two methods in the sensitivity ( P > 0.05), but there was a statistically significant difference between the two methods in the specificity ( P < 0.05). Conclusion The optimized PCR can improve the specificity without reducing the sensitivity on the basis of the routine nested PCR, it also can save the cost and increase the efficiency of malaria detection as less experiment links.

  7. Comparison of allele-specific PCR, created restriction-site PCR, and PCR with primer-introduced restriction analysis methods used for screening complex vertebral malformation carriers in Holstein cattle

    PubMed Central

    Altınel, Ahmet

    2017-01-01

    Complex vertebral malformation (CVM) is an inherited, autosomal recessive disorder of Holstein cattle. The aim of this study was to compare sensitivity, specificity, positive and negative predictive values, accuracy, and rapidity of allele-specific polymerase chain reaction (AS-PCR), created restriction-site PCR (CRS-PCR), and PCR with primer-introduced restriction analysis (PCR-PIRA), three methods used in identification of CVM carriers in a Holstein cattle population. In order to screen for the G>T mutation in the solute carrier family 35 member A3 (SLC35A3) gene, DNA sequencing as the gold standard method was used. The prevalence of carriers and the mutant allele frequency were 3.2% and 0.016, respectively, among Holstein cattle in the Thrace region of Turkey. Among the three methods, the fastest but least accurate was AS-PCR. Although the rapidity of CRS-PCR and PCR-PIRA were nearly equal, the accuracy of PCR-PIRA was higher than that of CRS-PCR. Therefore, among the three methods, PCR-PIRA appears to be the most efficacious for screening of mutant alleles when identifying CVM carriers in a Holstein cattle population. PMID:28927256

  8. Application of PCR-LDR-nucleic acid detection strip in detection of YMDD mutation in hepatitis B patients treated with lamivudine.

    PubMed

    Xu, Gaolian; You, Qimin; Pickerill, Sam; Zhong, Huayan; Wang, Hongying; Shi, Jian; Luo, Ying; You, Paul; Kong, Huimin; Lu, Fengmin; Hu, Lin

    2010-07-01

    Chronic hepatitis B virus (CHBV) infection causes cirrhosis and hepatocellular carcinoma. Lamivudine (LAM) has been successfully used to treat CHBV infections but prolonged use leads to the emergence of drug-resistant variants. This is primarily linked to a mutation in the tyrosine-methionine-aspartate-aspartate (YMDD) motif of the HBV polymerase gene at position 204. Rapid diagnosis of drug-resistant HBV is necessary for a prompt treatment response. Common diagnostic methods such as sequencing and restriction fragment length polymorphism (RFLP) analysis lack sensitivity and require significant processing. The aim of this study was to demonstrate the usefulness of a novel diagnostic method that combines polymerase chain reaction (PCR), ligase detection reaction (LDR) and a nucleic acid detection strip (NADS) in detecting site-specific mutations related to HBV LAM resistance. We compared this method (PLNA) to direct sequencing and RFLP analysis in 50 clinical samples from HBV infected patients. There was 90% concordance between all three results. PLNA detected more samples containing mutant variants than both sequencing and RFLP analysis and was more sensitive in detecting mixed variant populations. Plasmid standards indicated that the sensitivity of PLNA is at or below 3,000 copies per ml and that it can detect a minor variant at 5% of the total viral population. This warrants its further development and suggests that the PLNA method could be a useful tool in detecting LAM resistance. (c) 2010 Wiley-Liss, Inc.

  9. Isolation and RFLP Genotyping of Toxoplasma gondii in Free-Range Chickens (Gallus domesticus) in Grenada, West Indies, Revealed Widespread and Dominance of Clonal Type III Parasites.

    PubMed

    Chikweto, Alfred; Sharma, Ravindra N; Tiwari, Keshaw P; Verma, Shiv K; Calero-Bernal, Rafael; Jiang, Tiantian; Su, Chunlei; Kwok, Oliver C; Dubey, Jitender P

    2017-02-01

    The objectives of the present cross-sectional study were to isolate and genotype Toxoplasma gondii in free-range chickens from Grenada, West Indies. Using the modified agglutination test, antibodies to T. gondii were found in 39 (26.9%) of 145 free-range chickens with titers of 25 in 7 chickens, 50 in 6 chickens, 100 in 2 chickens, and 200 or higher in 24 chickens. The hearts of the 39 seropositive chickens were bioassayed in mice; viable T. gondii was isolated from 20 and further propagated in cell culture. Genotyping of T. gondii DNA extracted from cell-cultured tachyzoites using the 10 PCR-restriction fragment length polymorphism (RFLP) markers SAG1, SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1, and Apico revealed 4 genotypes, including ToxoDB PCR-RFLP no. 2 (Type III), no. 7, no. 13, and no. 259 (new). These results indicated that T. gondii population genetics in free-range chickens seems to be moderately diverse with ToxoDB no. 2 (Type III) as the most frequent (15/20 = 75%) compared to other genotypes in Grenada.

  10. [A new method of processing quantitative PCR data].

    PubMed

    Ke, Bing-Shen; Li, Guang-Yun; Chen, Shi-Min; Huang, Xiang-Yan; Chen, Ying-Jian; Xu, Jun

    2003-05-01

    Today standard PCR can't satisfy the need of biotechnique development and clinical research any more. After numerous dynamic research, PE company found there is a linear relation between initial template number and cycling time when the accumulating fluorescent product is detectable.Therefore,they developed a quantitative PCR technique to be used in PE7700 and PE5700. But the error of this technique is too great to satisfy the need of biotechnique development and clinical research. A better quantitative PCR technique is needed. The mathematical model submitted here is combined with the achievement of relative science,and based on the PCR principle and careful analysis of molecular relationship of main members in PCR reaction system. This model describes the function relation between product quantity or fluorescence intensity and initial template number and other reaction conditions, and can reflect the accumulating rule of PCR product molecule accurately. Accurate quantitative PCR analysis can be made use this function relation. Accumulated PCR product quantity can be obtained from initial template number. Using this model to do quantitative PCR analysis,result error is only related to the accuracy of fluorescence intensity or the instrument used. For an example, when the fluorescence intensity is accurate to 6 digits and the template size is between 100 to 1,000,000, the quantitative result accuracy will be more than 99%. The difference of result error is distinct using same condition,same instrument but different analysis method. Moreover,if the PCR quantitative analysis system is used to process data, it will get result 80 times of accuracy than using CT method.

  11. Identification of Burkholderia spp. in the Clinical Microbiology Laboratory: Comparison of Conventional and Molecular Methods

    PubMed Central

    van Pelt, Cindy; Verduin, Cees M.; Goessens, Wil H. F.; Vos, Margreet C.; Tümmler, Burkhard; Segonds, Christine; Reubsaet, Frans; Verbrugh, Henri; van Belkum, Alex

    1999-01-01

    Cystic fibrosis (CF) predisposes patients to bacterial colonization and infection of the lower airways. Several species belonging to the genus Burkholderia are potential CF-related pathogens, but microbiological identification may be complicated. This situation is not in the least due to the poorly defined taxonomic status of these bacteria, and further validation of the available diagnostic assays is required. A total of 114 geographically diverse bacterial isolates, previously identified in reference laboratories as Burkholderia cepacia (n = 51), B. gladioli (n = 14), Ralstonia pickettii (n = 6), B. multivorans (n = 2), Stenotrophomonas maltophilia (n = 3), and Pseudomonas aeruginosa (n = 11), were collected from environmental, clinical, and reference sources. In addition, 27 clinical isolates putatively identified as Burkholderia spp. were recovered from the sputum of Dutch CF patients. All isolates were used to evaluate the accuracy of two selective growth media, four systems for biochemical identification (API 20NE, Vitek GNI, Vitek NFC, and MicroScan), and three different PCR-based assays. The PCR assays amplify different parts of the ribosomal DNA operon, either alone or in combination with cleavage by various restriction enzymes (PCR-restriction fragment length polymorphism [RFLP] analysis). The best system for the biochemical identification of B. cepacia appeared to be the API 20NE test. None of the biochemical assays successfully grouped the B. gladioli strains. The PCR-RFLP method appeared to be the optimal method for accurate nucleic acid-mediated identification of the different Burkholderia spp. With this method, B. gladioli was also reliably classified in a separate group. For the laboratory diagnosis of B. cepacia, we recommend parallel cultures on blood agar medium and selective agar plates. Further identification of colonies with a Burkholderia phenotype should be performed with the API 20NE test. For final confirmation of species identities, PCR

  12. New, Improved Version of the mCOP-PCR Screening System for Detection of Spinal Muscular Atrophy Gene (SMN1) Deletion.

    PubMed

    Shinohara, Masakazu; Ar Rochmah, Mawaddah; Nakanishi, Kenta; Harahap, Nur Imma Fatimah; Niba, Emma Tabe Eko; Saito, Toshio; Saito, Kayoko; Takeuchi, Atsuko; Bouike, Yoshihiro; Nishio, Hisahide

    2017-09-07

    Spinal muscular atrophy (SMA) is a frequent autosomal recessive disorder, characterized by lower motor neuron loss in the spinal cord. More than 95% of SMA patients show homozygous survival motor neuron 1 (SMN1) deletion. We previously developed a screening system for SMN1 deletion based on a modified competitive oligonucleotide priming-PCR (mCOP-PCR) technique. However, non-specific amplification products were observed with mCOP-PCR, which might lead to erroneous interpretation of the screening results. To establish an improved version of the mCOP-PCR screening system without non-specific amplification. DNA samples were assayed using a new version of the mCOP-PCR screening system. DNA samples had already been genotyped by PCR-restriction fragment length polymorphism (PCR-RFLP), showing the presence or absence of SMN1 exon 7. The new mCOP-PCR method contained a targeted pre-amplification step of the region, including an SMN1-specific nucleotide, prior to the mCOP-PCR step. mCOP-PCR products were electrophoresed on agarose gels. No non-specific amplification products were detected in electrophoresis gels with the new mCOP-PCR screening system. An additional targeted pre-amplification step eliminated non-specific amplification from mCOP-PCR screening.

  13. Optimization of routine KRAS mutation PCR-based testing procedure for rational individualized first-line-targeted therapy selection in metastatic colorectal cancer.

    PubMed

    Chretien, Anne-Sophie; Harlé, Alexandre; Meyer-Lefebvre, Magali; Rouyer, Marie; Husson, Marie; Ramacci, Carole; Harter, Valentin; Genin, Pascal; Leroux, Agnès; Merlin, Jean-Louis

    2013-02-01

    KRAS mutation detection represents a crucial issue in metastatic colorectal cancer (mCRC). The optimization of KRAS mutation detection delay enabling rational prescription of first-line treatment in mCRC including anti-EGFR-targeted therapy requires robust and rapid molecular biology techniques. Routine analysis of mutations in codons 12 and 13 on 674 paraffin-embedded tissue specimens of mCRC has been performed for KRAS mutations detection using three molecular biology techniques, that is, high-resolution melting (HRM), polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP), and allelic discrimination PCR (TaqMan PCR). Discordant cases were assessed with COBAS 4800 KRAS CE-IVD assay. Among the 674 tumor specimens, 1.5% (10/674) had excessive DNA degradation and could not be analyzed. KRAS mutations were detected in 38.0% (256/674) of the analysable specimens (82.4% in codon 12 and 17.6% in codon 13). Among 613 specimens in whom all three techniques were used, 12 (2.0%) cases of discordance between the three techniques were observed. 83.3% (10/12) of the discordances were due to PCR-RFLP as confirmed by COBAS 4800 retrospective analysis. The three techniques were statistically comparable (κ > 0.9; P < 0.001). From these results, optimization of the routine procedure consisted of proceeding to systematic KRAS detection using HRM and TaqMan and PCR-RFLP in case of discordance and allowed significant decrease in delays. The results showed an excellent correlation between the three techniques. Using HRM and TaqMan warrants high-quality and rapid-routine KRAS mutation detection in paraffin-embedded tumor specimens. The new procedure allowed a significant decrease in delays for reporting results, enabling rational prescription of first-line-targeted therapy in mCRC.

  14. Remarkable variation in the informativeness of RFLP markers linked to hemophilia B locus in Indian population groups: implication in the strategy for carrier detection.

    PubMed

    Mukherjee, S; Saha, A; Kumar P, Senthil; Chandak, G R; Majumder, P P; Ray, K

    2006-01-01

    Hemophilia B, an X-linked recessive bleeding disorder, is caused by heterogeneous mutations in the factor IX (F9) gene. Hence, carriers of the disease are usually detected by F9 gene linked RFLP analysis. We aimed to test a set of RFLP markers (DdeI, XmnI, MnlI, TaqI & HhaI), used worldwide for carrier detection, to estimate its heterozygosity in different population groups of India, and identify additional single nucleotide polymorphisms (SNPs) if necessary. A total of 8 population groups encompassing different regions of India, consisting of 107 unrelated normal females without any history of hemophilia B in the family and 13 unrelated obligate carriers were recruited in the study. Regions of F9 gene were amplified by PCR from genomic DNA of the donors followed by restriction enzyme digestion and/or sequencing as appropriate. Combined informativeness for the markers varied between 52-86% among normal females belonging to different geographical locations of India. Haplotype analysis revealed that the most prevalent haplotype lacked the restriction sites for all five RFLP markers. Screening regions of F9 gene that harbor 10 SNPs reported in dbSNP yielded only two SNPs, which increased the overall informativeness in each population group and heterozygosity in the obligate carriers for the disease from 38% to 69%. Our data show that heterozygosity of commonly used RFLP markers is remarkably variable across different regions of India. Thus prudent selection of the markers based on specific population groups including usage of additional markers is recommended for efficient carrier detection.

  15. Remarkable Variation in the Informativeness of RFLP Markers Linked to Hemophilia B Locus in Indian Population Groups: Implication in the Strategy for Carrier Detection

    PubMed Central

    Mukherjee, S.; Saha, A.; Kumar P., Senthil; Chandak, G. R.; Majumder, P. P.; Ray, K.

    2006-01-01

    Hemophilia B, an X-linked recessive bleeding disorder, is caused by heterogeneous mutations in the factor IX (F9) gene. Hence, carriers of the disease are usually detected by F9 gene linked RFLP analysis. We aimed to test a set of RFLP markers (DdeI, XmnI, MnlI, TaqI & HhaI), used worldwide for carrier detection, to estimate its heterozygosity in different population groups of India, and identify additional single nucleotide polymorphisms (SNPs) if necessary. A total of 8 population groups encompassing different regions of India, consisting of 107 unrelated normal females without any history of hemophilia B in the family and 13 unrelated obligate carriers were recruited in the study. Regions of F9 gene were amplified by PCR from genomic DNA of the donors followed by restriction enzyme digestion and/or sequencing as appropriate. Combined informativeness for the markers varied between 52–86% among normal females belonging to different geographical locations of India. Haplotype analysis revealed that the most prevalent haplotype lacked the restriction sites for all five RFLP markers. Screening regions of F9 gene that harbor 10 SNPs reported in dbSNP yielded only two SNPs, which increased the overall informativeness in each population group and heterozygosity in the obligate carriers for the disease from 38% to 69%. Our data show that heterozygosity of commonly used RFLP markers is remarkably variable across different regions of India. Thus prudent selection of the markers based on specific population groups including usage of additional markers is recommended for efficient carrier detection. PMID:17264403

  16. PCR and microsatellite analysis of diminazene aceturate resistance of bovine trypanosomes correlated to knowledge, attitude and practice of livestock keepers in South-Western Ethiopia.

    PubMed

    Moti, Y; De Deken, R; Thys, E; Van Den Abbeele, J; Duchateau, L; Delespaux, V

    2015-06-01

    African Animal Trypanosomosis is threatening the agricultural production and cattle breeding more severely than any other livestock disease in the continent, even more since the advent of drug resistance. A longitudinal study was conducted from November 2012 to May 2013 in the Ghibe valley to evaluate diminazene aceturate (DA) resistance and assess livestock owner's perception of trypanocidal drug use. Four Peasant Associations (PAs) were purposively selected and the cattle randomly sampled in each PAs. At the beginning of the study (t0), 106 bovines positive for trypanosomes by the haematocrit centrifugation technique (HCT) and 119 negative control animals were recruited for six months follow-up using HCT, 18S-PCR-RFLP, DpnII-PCR-RFLP and microsatellite analysis. Prevalence of trypanosomosis was 18.1% based on the HCT technique and the mean PCV value was 23.6±5.1% for the 587 sampled cattle. Out of the 106 HCT positive, 64 (60.4%) were positive for the presence of trypanosomes using the 18S-PCR-RFLP. Species detection showed 38 (59.4%) Trypanosoma congolense savannah, 18 (28.1%) Trypanosoma vivax, 5 (7.8%) Trypanosoma theileri and 3 (4.7%) T. congolense Kilifi. Among the T. congolense savannah samples, 31 (81.6%) showed a DA resistant RFLP profile, 2 (5.3%) a mixed profile and 5 did not amplify using the DpnII-PCR-RFLP. A positive HCT had a significant effect on PCV (p<0.001) with the mean PCV value equal to 24.4±0.2% in the absence of trypanosomes and to 20.9±0.3% in the presence of trypanosomes. PCV increased significantly (p<0.001) with 4.4±0.5% one month after treatment. All T. congolense savannah type were analyzed using microsatellite markers TCM1, TCM3 and TCM4. The main events were new infections (40.0%) and relapses (37.5%) with cures lagging at 22.5%. In 10 purposively selected PAs a semi-structured questionnaire was used. The average herd size was the highest in Abelti PA (6.7±1.8 TLU) and the mean herd size was statistically different (p=0.01) in

  17. Qualitative PCR method for Roundup Ready soybean: interlaboratory study.

    PubMed

    Kodama, Takashi; Kasahara, Masaki; Minegishi, Yasutaka; Futo, Satoshi; Sawada, Chihiro; Watai, Masatoshi; Akiyama, Hiroshi; Teshima, Reiko; Kurosawa, Yasunori; Furui, Satoshi; Hino, Akihiro; Kitta, Kazumi

    2011-01-01

    Quantitative and qualitative methods based on PCR have been developed for genetically modified organisms (GMO). Interlaboratory studies were previously conducted for GMO quantitative methods; in this study, an interlaboratory study was conducted for a qualitative method for a GM soybean, Roundup Ready soy (RR soy), with primer pairs designed for the quantitative method of RR soy studied previously. Fourteen laboratories in Japan participated. Each participant extracted DNA from 1.0 g each of the soy samples containing 0, 0.05, and 0.10% of RR soy, and performed PCR with primer pairs for an internal control gene (Le1) and RR soy followed by agarose gel electrophoresis. The PCR product amplified in this PCR system for Le1 was detected from all samples. The sensitivity, specificity, and false-negative and false-positive rates of the method were obtained from the results of RR soy detection. False-negative rates at the level of 0.05 and 0.10% of the RR soy samples were 6.0 and 2.3%, respectively, revealing that the LOD of the method was somewhat below 0.10%. The current study demonstrated that the qualitative method would be practical for monitoring the labeling system of GM soy in kernel lots.

  18. Initial genetic analysis of Xylella fastidiosa in Texas.

    PubMed

    Morano, Lisa D; Bextine, Blake R; Garcia, Dennis A; Maddox, Shermel V; Gunawan, Stanley; Vitovsky, Natalie J; Black, Mark C

    2008-04-01

    Xylella fastidiosa is the causative agent of Pierce's Disease of grape. No published record of X. fastidiosa genetics in Texas exists despite growing financial risk to the U.S. grape industry, a Texas population of the glassy-winged sharpshooter insect vector (Homalodisca vitripennis) now spreading in California, and evidence that the bacterium is ubiquitous to southern states. Using sequences of conserved gyrB and mopB genes, we have established at least two strains in Texas, grape strain and ragweed strain, corresponding genetically with subsp. piercei and multiplex, respectively. The grape strain in Texas is found in Vitis vinifera varieties, hybrid vines, and wild Vitis near vineyards, whereas the ragweed strain in Texas is found in annuals, shrubs, and trees near vineyards or other areas. RFLP and QRT PCR techniques were used to differentiate grape and ragweed strains with greater efficiency than sequencing and are practical for screening numerous X. fastidiosa isolates for clade identity.

  19. Automated PCR setup for forensic casework samples using the Normalization Wizard and PCR Setup robotic methods.

    PubMed

    Greenspoon, S A; Sykes, K L V; Ban, J D; Pollard, A; Baisden, M; Farr, M; Graham, N; Collins, B L; Green, M M; Christenson, C C

    2006-12-20

    Human genome, pharmaceutical and research laboratories have long enjoyed the application of robotics to performing repetitive laboratory tasks. However, the utilization of robotics in forensic laboratories for processing casework samples is relatively new and poses particular challenges. Since the quantity and quality (a mixture versus a single source sample, the level of degradation, the presence of PCR inhibitors) of the DNA contained within a casework sample is unknown, particular attention must be paid to procedural susceptibility to contamination, as well as DNA yield, especially as it pertains to samples with little biological material. The Virginia Department of Forensic Science (VDFS) has successfully automated forensic casework DNA extraction utilizing the DNA IQ(trade mark) System in conjunction with the Biomek 2000 Automation Workstation. Human DNA quantitation is also performed in a near complete automated fashion utilizing the AluQuant Human DNA Quantitation System and the Biomek 2000 Automation Workstation. Recently, the PCR setup for casework samples has been automated, employing the Biomek 2000 Automation Workstation and Normalization Wizard, Genetic Identity version, which utilizes the quantitation data, imported into the software, to create a customized automated method for DNA dilution, unique to that plate of DNA samples. The PCR Setup software method, used in conjunction with the Normalization Wizard method and written for the Biomek 2000, functions to mix the diluted DNA samples, transfer the PCR master mix, and transfer the diluted DNA samples to PCR amplification tubes. Once the process is complete, the DNA extracts, still on the deck of the robot in PCR amplification strip tubes, are transferred to pre-labeled 1.5 mL tubes for long-term storage using an automated method. The automation of these steps in the process of forensic DNA casework analysis has been accomplished by performing extensive optimization, validation and testing of the

  20. Species-specific diagnostic assays for Bonamia ostreae and B. exitiosa in European flat oyster Ostrea edulis: conventional, real-time and multiplex PCR.

    PubMed

    Ramilo, Andrea; Navas, J Ignacio; Villalba, Antonio; Abollo, Elvira

    2013-05-27

    Bonamia ostreae and B. exitiosa have caused mass mortalities of various oyster species around the world and co-occur in some European areas. The World Organisation for Animal Health (OIE) has included infections with both species in the list of notifiable diseases. However, official methods for species-specific diagnosis of either parasite have certain limitations. In this study, new species-specific conventional PCR (cPCR) and real-time PCR techniques were developed to diagnose each parasite species. Moreover, a multiplex PCR method was designed to detect both parasites in a single assay. The analytical sensitivity and specificity of each new method were evaluated. These new procedures were compared with 2 OIE-recommended methods, viz. standard histology and PCR-RFLP. The new procedures showed higher sensitivity than the OIE recommended ones for the diagnosis of both species. The sensitivity of tests with the new primers was higher using oyster gills and gonad tissue, rather than gills alone. The lack of a 'gold standard' prevented accurate estimation of sensitivity and specificity of the new methods. The implementation of statistical tools (maximum likelihood method) for the comparison of the diagnostic tests showed the possibility of false positives with the new procedures, although the absence of a gold standard precluded certainty. Nevertheless, all procedures showed negative results when used for the analysis of oysters from a Bonamia-free area.

  1. A new QRT-PCR assay designed for the differentiation between elements provided from Agrobacterium sp. in GMOs plant events and natural Agrobacterium sp. bacteria.

    PubMed

    Nabi, Nesrine; Chaouachi, Maher; Zellama, Mohamed Salem; Ben Hafsa, Ahmed; Mrabet, Besma; Saïd, Khaled; Fathia, Harzallah Skhiri

    2016-04-01

    The question asked in the present work was how to differentiate between contamination of field samples with and GM plants contained sequences provided from this bacterium in order to avoid false positives in the frame of the detection and the quantification of GMO. For this, new set of primers and corresponding TaqMan Minor Groove Binder (MGB) probes were designed to target Agrobacterium sp. using the tumor-morphology-shooty gene (TMS1). Final standard curves were calculated for each pathogen by plotting the threshold cycle value against the bacterial number (log (colony forming units) per milliliter) via linear regression. The method designed was highly specific and sensitive, with a detection limit of 10CFU/ml. No significant cross-reaction was observed. Results from this study showed that TaqMan real-time PCR, is potentially an effective method for the rapid and reliable quantification of Agrobacterium sp. in samples containing GMO or non GMO samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Gene expression profile of mouse prostate tumors reveals dysregulations in major biological processes and identifies potential murine targets for preclinical development of human prostate cancer therapy.

    PubMed

    Haram, Kerstyn M; Peltier, Heidi J; Lu, Bin; Bhasin, Manoj; Otu, Hasan H; Choy, Bob; Regan, Meredith; Libermann, Towia A; Latham, Gary J; Sanda, Martin G; Arredouani, Mohamed S

    2008-10-01

    Translation of preclinical studies into effective human cancer therapy is hampered by the lack of defined molecular expression patterns in mouse models that correspond to the human counterpart. We sought to generate an open source TRAMP mouse microarray dataset and to use this array to identify differentially expressed genes from human prostate cancer (PCa) that have concordant expression in TRAMP tumors, and thereby represent lead targets for preclinical therapy development. We performed microarrays on total RNA extracted and amplified from eight TRAMP tumors and nine normal prostates. A subset of differentially expressed genes was validated by QRT-PCR. Differentially expressed TRAMP genes were analyzed for concordant expression in publicly available human prostate array datasets and a subset of resulting genes was analyzed by QRT-PCR. Cross-referencing differentially expressed TRAMP genes to public human prostate array datasets revealed 66 genes with concordant expression in mouse and human PCa; 56 between metastases and normal and 10 between primary tumor and normal tissues. Of these 10 genes, two, Sox4 and Tubb2a, were validated by QRT-PCR. Our analysis also revealed various dysregulations in major biologic pathways in the TRAMP prostates. We report a TRAMP microarray dataset of which a gene subset was validated by QRT-PCR with expression patterns consistent with previous gene-specific TRAMP studies. Concordance analysis between TRAMP and human PCa associated genes supports the utility of the model and suggests several novel molecular targets for preclinical therapy.

  3. C. trachomatis in female reproductive tract infections and RFLP-based genotyping: a 16-year study from a tertiary care hospital.

    PubMed

    Gita, Satpathy; Suneeta, Mittal; Anjana, Sharma; Niranjan, Nayak; Sujata, Mohanty; Pandey, R M

    2011-01-01

    Presence of Chlamydia trachomatis in endocervix was determined in 2466 women attending a tertiary care hospital in New Delhi, India over a period of 16 years, using a monoclonal-based direct immunofluorescence assay, tissue culture isolation, and a conventional PCR assay. Chlamydia antigen could be detected in 391 out of 2466 (15.85%) of patients studied; in 27.27% women with PID, 16.74% women with cervicitis, 16.03% women with infertility, and 12.06% women with adverse pregnancy outcomes, respectively. There was a statistically significant decreasing trend in Chlamydia antigen positivity between the years 1994-1999 and 2000-2004; the apparent decline in antigen positivity between the years 2000-2004 and 2005-2010 was not statistically significant. Antigen detection assay detected equal number of positives as the PCR assay; tissue culture isolation demonstrated lower positivity. In a few representative specimens from cervicitis patients, genotyping was done using RFLP pattern analysis of C. trachomatis MOMP gene amplified by PCR assay, all of these belonged to Chlamydia trachomatis serovar E.

  4. C. trachomatis in Female Reproductive Tract Infections and RFLP-Based Genotyping: A 16-Year Study from a Tertiary Care Hospital

    PubMed Central

    Gita, Satpathy; Suneeta, Mittal; Anjana, Sharma; Niranjan, Nayak; Sujata, Mohanty; Pandey, R. M.

    2011-01-01

    Presence of Chlamydia trachomatis in endocervix was determined in 2466 women attending a tertiary care hospital in New Delhi, India over a period of 16 years, using a monoclonal-based direct immunofluorescence assay, tissue culture isolation, and a conventional PCR assay. Chlamydia antigen could be detected in 391 out of 2466 (15.85%) of patients studied; in 27.27% women with PID, 16.74% women with cervicitis, 16.03% women with infertility, and 12.06% women with adverse pregnancy outcomes, respectively. There was a statistically significant decreasing trend in Chlamydia antigen positivity between the years 1994–1999 and 2000–2004; the apparent decline in antigen positivity between the years 2000–2004 and 2005–2010 was not statistically significant. Antigen detection assay detected equal number of positives as the PCR assay; tissue culture isolation demonstrated lower positivity. In a few representative specimens from cervicitis patients, genotyping was done using RFLP pattern analysis of C. trachomatis MOMP gene amplified by PCR assay, all of these belonged to Chlamydia trachomatis serovar E. PMID:21747643

  5. Autoclave method for rapid preparation of bacterial PCR-template DNA.

    PubMed

    Simmon, Keith E; Steadman, Dewey D; Durkin, Sarah; Baldwin, Amy; Jeffrey, Wade H; Sheridan, Peter; Horton, Rene; Shields, Malcolm S

    2004-02-01

    An autoclave method for preparing bacterial DNA for PCR template is presented, it eliminates the use of detergents, organic solvents, and mechanical cellular disruption approaches, thereby significantly reducing processing time and costs while increasing reproducibility. Bacteria are lysed by rapid heating and depressurization in an autoclave. The lysate, cleared by microcentrifugation, was either used directly in the PCR reaction, or concentrated by ultrafiltration. This approach was compared with seven established methods of DNA template preparation from four bacterial sources which included boiling Triton X-100 and SDS, bead beating, lysozyme/proteinase K, and CTAB lysis method components. Bacteria examined were Enterococcus and Escherichia coli, a natural marine bacterial community and an Antarctic cyanobacterial-mat. DNAs were tested for their suitability as PCR templates by repetitive element random amplified polymorphic DNA (RAPD) and denaturing gradient gel electrophoresis (DGGE) analysis. The autoclave method produced PCR amplifiable template comparable or superior to the other methods, with greater reproducibility, much shorter processing time, and at a significantly lower cost.

  6. Molecular Analysis of Spinal Muscular Atrophy: A genotyping protocol based on TaqMan(®) real-time PCR.

    PubMed

    de Souza Godinho, Fernanda Marques; Bock, Hugo; Gheno, Tailise Conte; Saraiva-Pereira, Maria Luiza

    2012-12-01

    Spinal muscular atrophy (SMA) is an autosomal recessive inherited disorder caused by alterations in the survival motor neuron I (SMN1) gene. SMA patients are classified as type I-IV based on severity of symptoms and age of onset. About 95% of SMA cases are caused by the homozygous absence of SMN1 due to gene deletion or conversion into SMN2. PCR-based methods have been widely used in genetic testing for SMA. In this work, we introduce a new approach based on TaqMan(®)real-time PCR for research and diagnostic settings. DNA samples from 100 individuals with clinical signs and symptoms suggestive of SMA were analyzed. Mutant DNA samples as well as controls were confirmed by DNA sequencing. We detected 58 SMA cases (58.0%) by showing deletion of SMN1 exon 7. Considering clinical information available from 56 of them, the patient distribution was 26 (46.4%) SMA type I, 16 (28.6%) SMA type II and 14 (25.0%) SMA type III. Results generated by the new method was confirmed by PCR-RFLP and by DNA sequencing when required. In conclusion, a protocol based on real-time PCR was shown to be effective and specific for molecular analysis of SMA patients.

  7. [Comparative analysis between diatom nitric acid digestion method and plankton 16S rDNA PCR method].

    PubMed

    Han, Jun-ge; Wang, Cheng-bao; Li, Xing-biao; Fan, Yan-yan; Feng, Xiang-ping

    2013-10-01

    To compare and explore the application value of diatom nitric acid digestion method and plankton 16S rDNA PCR method for drowning identification. Forty drowning cases from 2010 to 2011 were collected from Department of Forensic Medicine of Wenzhou Medical University. Samples including lung, kidney, liver and field water from each case were tested with diatom nitric acid digestion method and plankton 16S rDNA PCR method, respectively. The Diatom nitric acid digestion method and plankton 16S rDNA PCR method required 20 g and 2 g of each organ, and 15 mL and 1.5 mL of field water, respectively. The inspection time and detection rate were compared between the two methods. Diatom nitric acid digestion method mainly detected two species of diatoms, Centriae and Pennatae, while plankton 16S rDNA PCR method amplified a length of 162 bp band. The average inspection time of each case of the Diatom nitric acid digestion method was (95.30 +/- 2.78) min less than (325.33 +/- 14.18) min of plankton 16S rDNA PCR method (P < 0.05). The detection rates of two methods for field water and lung were both 100%. For liver and kidney, the detection rate of plankton 16S rDNA PCR method was both 80%, higher than 40% and 30% of diatom nitric acid digestion method (P < 0.05), respectively. The laboratory testing method needs to be appropriately selected according to the specific circumstances in the forensic appraisal of drowning. Compared with diatom nitric acid digestion method, plankton 16S rDNA PCR method has practice values with such advantages as less quantity of samples, huge information and high specificity.

  8. PCR-based identification and characterization of Burkholderia cepacia complex bacteria from clinical and environmental sources.

    PubMed

    Seo, S-T; Tsuchiya, K

    2004-01-01

    To study the genotypic identification and characterization of the 119 Burkholderia cepacia complex (Bcc) strains recovered from clinical and environmental sources in Japan and Thailand. Based on the results of analysis by 16S rDNA RFLP generated after digestion with DdeI, the Bcc strains were differentiated into two patterns: pattern 1 (including Burkholderia vietnamiensis) and pattern 2 (including B. cepacia genomovar I, Burkholderia cenocepacia and Burkholderia stabilis). All strains belonged to pattern 2 except for one strain. In the RFLP analysis of the recA gene using HaeIII, strains were separated into eight patterns designated as A, D, E, G, H, I, J and K, of which pattern K was new. Burkholderia cepacia epidemic strain marker (BCESM) encoded by esmR [corrected] and the pyrrolnitrin biosynthetic locus encoded by prnC were present in 22 strains (18%) and 88 strains (74%) from all sources, respectively. All esmR-positive [corrected] strains belonged to B. cenocepacia, whereas most prnC-positive strains belonged to B. cepacia genomovar I. Strains derived from clinical sources were assigned to B. cepacia genomovar I, B. cenocepacia, B. stabilis and B. vietnamiensis. The majority of Bcc strains from environmental sources (77 of a total 95 strains) belonged to B. cepacia genomovar I, whereas the rest belonged to B. cenocepacia. On the basis of genomovar-specific PCR and prnC RFLP analysis, strains belonging to recA pattern K were identified as B. cepacia genomovar I. This work provides the genotypic identification of a collection of the Bcc strains from Japan and Thailand. RFLP analysis of the prnC gene promises to be a useful method for differentiating Burkholderia pyrrocinia from B. cepacia genomovar I strains.

  9. Phylogenetic Analysis and Molecular Characterization of Xanthium sibiricum Using DNA Barcoding, PCR-RFLP, and Specific Primers.

    PubMed

    Tomasello, Salvatore; Heubl, Günther

    2017-07-01

    The fruits of Xanthium sibiricum have been widely used in traditional Chinese medicine for the treatment of nasal sinusitis and headaches. The genus Xanthium (cocklebur) is a taxonomically complex genus. Different taxonomic concepts have been proposed, some including several species, others lumping the different taxa in a few extremely polymorphic species. Due to the morphological similarities between species, the correct authentication of X. sibiricum is very difficult. Therefore, we established a polymerase chain reaction-restriction fragment length polymorphism method and diagnostic PCR based on nuclear internal transcribed spacer and chloroplast trnQ-rps16 barcodes to differentiate X. sibirium from related species.Results from the phylogenetic analyses based on sequence information from four marker regions (plastidal psbA-trnH and trnQ-rps16 and nuclear ITS and D35 ) support those taxonomic concepts accepting a reduced number of species, as four to five major clades are revealed in the phylogenetic reconstructions. X. sibiricum , together with some accessions from closely related taxa, is always supported as monophyletic, constituting a well-defined genetic entity. Allele-specific primer pairs for ITS and trnQ-rps16 were designed to amplify diagnostic products from the genomic DNA of X. sibiricum . Specific PCR in combination with digestion using the restriction enzyme Mse I allowed for the identification of X. sibiricum by producing specific restriction patterns. The results demonstrate that the applied techniques provide effective and accurate authentication of X. sibiricum . Georg Thieme Verlag KG Stuttgart · New York.

  10. Validation of PCR methods for quantitation of genetically modified plants in food.

    PubMed

    Hübner, P; Waiblinger, H U; Pietsch, K; Brodmann, P

    2001-01-01

    For enforcement of the recently introduced labeling threshold for genetically modified organisms (GMOs) in food ingredients, quantitative detection methods such as quantitative competitive (QC-PCR) and real-time PCR are applied by official food control laboratories. The experiences of 3 European food control laboratories in validating such methods were compared to describe realistic performance characteristics of quantitative PCR detection methods. The limit of quantitation (LOQ) of GMO-specific, real-time PCR was experimentally determined to reach 30-50 target molecules, which is close to theoretical prediction. Starting PCR with 200 ng genomic plant DNA, the LOQ depends primarily on the genome size of the target plant and ranges from 0.02% for rice to 0.7% for wheat. The precision of quantitative PCR detection methods, expressed as relative standard deviation (RSD), varied from 10 to 30%. Using Bt176 corn containing test samples and applying Bt176 specific QC-PCR, mean values deviated from true values by -7to 18%, with an average of 2+/-10%. Ruggedness of real-time PCR detection methods was assessed in an interlaboratory study analyzing commercial, homogeneous food samples. Roundup Ready soybean DNA contents were determined in the range of 0.3 to 36%, relative to soybean DNA, with RSDs of about 25%. Taking the precision of quantitative PCR detection methods into account, suitable sample plans and sample sizes for GMO analysis are suggested. Because quantitative GMO detection methods measure GMO contents of samples in relation to reference material (calibrants), high priority must be given to international agreements and standardization on certified reference materials.

  11. Genetic screening of spinal muscular atrophy using a real-time modified COP-PCR technique with dried blood-spot DNA.

    PubMed

    Ar Rochmah, Mawaddah; Harahap, Nur Imma Fatimah; Niba, Emma Tabe Eko; Nakanishi, Kenta; Awano, Hiroyuki; Morioka, Ichiro; Iijima, Kazumoto; Saito, Toshio; Saito, Kayoko; Lai, Poh San; Takeshima, Yasuhiro; Takeuchi, Atsuko; Bouike, Yoshihiro; Okamoto, Maya; Nishio, Hisahide; Shinohara, Masakazu

    2017-10-01

    Spinal muscular atrophy (SMA) is a common neuromuscular disorder caused by mutations in SMN1. More than 95% of SMA patients carry homozygous SMN1 deletion. SMA is the leading genetic cause of infant death, and has been considered an incurable disease. However, a recent clinical trial with an antisense oligonucleotide drug has shown encouraging clinical efficacy. Thus, early and accurate detection of SMN1 deletion may improve prognosis of many infantile SMA patients. A total of 88 DNA samples (37 SMA patients, 12 carriers and 39 controls) from dried blood spots (DBS) on filter paper were analyzed. All participants had previously been screened for SMN genes by PCR restriction fragment length polymorphism (PCR-RFLP) using DNA extracted from freshly collected blood. DNA was extracted from DBS that had been stored at room temperature (20-25°C) for 1week to 5years. To ensure sufficient quality and quantity of DNA samples, target sequences were pre-amplified by conventional PCR. Real-time modified competitive oligonucleotide priming-PCR (mCOP-PCR) with the pre-amplified PCR products was performed for the gene-specific amplification of SMN1 and SMN2 exon 7. Compared with PCR-RFLP using DNA from freshly collected blood, results from real-time mCOP-PCR using DBS-DNA for detection of SMN1 exon 7 deletion showed a sensitivity of 1.00 (CI [0.87, 1.00])] and specificity of 1.00 (CI [0.90, 1.00]), respectively. We combined DNA extraction from DBS on filter paper, pre-amplification of target DNA, and real-time mCOP-PCR to specifically detect SMN1 and SMN2 genes, thereby establishing a rapid, accurate, and high-throughput system for detecting SMN1-deletion with practical applications for newborn screening. Copyright © 2017 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  12. Real-Time PCR Method for Detection of Salmonella spp. in Environmental Samples.

    PubMed

    Kasturi, Kuppuswamy N; Drgon, Tomas

    2017-07-15

    The methods currently used for detecting Salmonella in environmental samples require 2 days to produce results and have limited sensitivity. Here, we describe the development and validation of a real-time PCR Salmonella screening method that produces results in 18 to 24 h. Primers and probes specific to the gene invA , group D, and Salmonella enterica serovar Enteritidis organisms were designed and evaluated for inclusivity and exclusivity using a panel of 329 Salmonella isolates representing 126 serovars and 22 non- Salmonella organisms. The invA - and group D-specific sets identified all the isolates accurately. The PCR method had 100% inclusivity and detected 1 to 2 copies of Salmonella DNA per reaction. Primers specific for Salmonella -differentiating fragment 1 (Sdf-1) in conjunction with the group D set had 100% inclusivity for 32 S Enteritidis isolates and 100% exclusivity for the 297 non-Enteritidis Salmonella isolates. Single-laboratory validation performed on 1,741 environmental samples demonstrated that the PCR method detected 55% more positives than the V itek i mmuno d iagnostic a ssay s ystem (VIDAS) method. The PCR results correlated well with the culture results, and the method did not report any false-negative results. The receiver operating characteristic (ROC) analysis documented excellent agreement between the results from the culture and PCR methods (area under the curve, 0.90; 95% confidence interval of 0.76 to 1.0) confirming the validity of the PCR method. IMPORTANCE This validated PCR method detects 55% more positives for Salmonella in half the time required for the reference method, VIDAS. The validated PCR method will help to strengthen public health efforts through rapid screening of Salmonella spp. in environmental samples.

  13. Real-Time PCR Method for Detection of Salmonella spp. in Environmental Samples

    PubMed Central

    Drgon, Tomas

    2017-01-01

    ABSTRACT The methods currently used for detecting Salmonella in environmental samples require 2 days to produce results and have limited sensitivity. Here, we describe the development and validation of a real-time PCR Salmonella screening method that produces results in 18 to 24 h. Primers and probes specific to the gene invA, group D, and Salmonella enterica serovar Enteritidis organisms were designed and evaluated for inclusivity and exclusivity using a panel of 329 Salmonella isolates representing 126 serovars and 22 non-Salmonella organisms. The invA- and group D-specific sets identified all the isolates accurately. The PCR method had 100% inclusivity and detected 1 to 2 copies of Salmonella DNA per reaction. Primers specific for Salmonella-differentiating fragment 1 (Sdf-1) in conjunction with the group D set had 100% inclusivity for 32 S. Enteritidis isolates and 100% exclusivity for the 297 non-Enteritidis Salmonella isolates. Single-laboratory validation performed on 1,741 environmental samples demonstrated that the PCR method detected 55% more positives than the Vitek immunodiagnostic assay system (VIDAS) method. The PCR results correlated well with the culture results, and the method did not report any false-negative results. The receiver operating characteristic (ROC) analysis documented excellent agreement between the results from the culture and PCR methods (area under the curve, 0.90; 95% confidence interval of 0.76 to 1.0) confirming the validity of the PCR method. IMPORTANCE This validated PCR method detects 55% more positives for Salmonella in half the time required for the reference method, VIDAS. The validated PCR method will help to strengthen public health efforts through rapid screening of Salmonella spp. in environmental samples. PMID:28500041

  14. Using high-throughput DNA sequencing, genetic fingerprinting, and quantitative PCR as tools for monitoring bloom-forming and toxigenic cyanobacteria in Upper Klamath Lake, Oregon, 2013 and 2014

    USGS Publications Warehouse

    Caldwell Eldridge, Sara L.; Driscoll, Conner; Dreher, Theo W.

    2017-06-05

    Monitoring the community structure and metabolic activities of cyanobacterial blooms in Upper Klamath Lake, Oregon, is critical to lake management because these blooms degrade water quality and produce toxic microcystins that are harmful to humans, domestic animals, and wildlife. Genetic tools, such as DNA fingerprinting by terminal restriction fragment length polymorphism (T-RFLP) analysis, high-throughput DNA sequencing (HTS), and real-time, quantitative polymerase chain reaction (qPCR), provide more sensitive and rapid assessments of bloom ecology than traditional techniques. The objectives of this study were (1) to characterize the microbial community at one site in Upper Klamath Lake and determine changes in the cyanobacterial community through time using T-RFLP and HTS in comparison with traditional light microscopy; (2) to determine relative abundances and changes in abundance over time of toxigenic Microcystis using qPCR; and (3) to determine relative abundances and changes in abundance over time of Aphanizomenon, Microcystis, and total cyanobacteria using qPCR. T-RFLP analysis of total cyanobacteria showed a dominance of only one or two distinct genotypes in samples from 2013, but results of HTS in 2013 and 2014 showed more variations in the bloom cycle that fit with the previous understanding of bloom dynamics in Upper Klamath Lake and indicated that potentially toxigenic Microcystis was more prevalent in 2014 than in years prior. The qPCR-estimated copy numbers of all target genes were higher in 2014 than in 2013, when microcystin concentrations also were higher. Total Microcystis density was shown with qPCR to be a better predictor of late-season increases in microcystin concentrations than the relative proportions of potentially toxigenic cells. In addition, qPCR targeting Aphanizomenon at one site in Upper Klamath Lake indicated a moderate bloom of this species (corresponding to chlorophyll a concentrations between approximately 75 and 200 micrograms

  15. Usefulness of in-house PCR methods for hepatitis B virus DNA detection.

    PubMed

    Portilho, Moyra Machado; Baptista, Marcia Leite; da Silva, Messias; de Sousa, Paulo Sérgio Fonseca; Lewis-Ximenez, Lia Laura; Lampe, Elisabeth; Villar, Livia Melo

    2015-10-01

    The aim of the present study was to evaluate the performance of three in-house PCR techniques for HBV DNA detection and compare it with commercial quantitative methods to evaluate the usefulness of in-house methods for HBV diagnosis. Three panels of HBsAg reactive sera samples were evaluated: (i) 50 samples were examined using three methods for in-house qualitative PCR and the Cobas Amplicor HBV Monitor Assay; (ii) 87 samples were assayed using in-house semi-nested PCR and the Cobas TaqMan HBV test; (iii) 11 serial samples obtained from 2 HBV-infected individuals were assayed using the Cobas Amplicor HBV test and semi-nested PCR. In panel I, HBV DNA was detected in 44 samples using the Cobas Amplicor HBV test, 42 samples using semi-nested PCR (90% concordance with Cobas Amplicor), 22 samples using PCR for the core gene (63.6% concordance) and 29 samples using single-round PCR for the pre-S/S gene (75% concordance). In panel II, HBV DNA was quantified in 78 of the 87 HBsAg reactive samples using Cobas TaqMan but 52 samples using semi-nested PCR (67.8% concordance). HBV DNA was detected in serial samples until the 17th and 26th week after first donation using in-house semi-nested PCR and the Cobas Amplicor HBV test, respectively. In-house semi-nested PCR presented adequate concordance with commercial methods as an alternative method for HBV molecular diagnosis in low-resource settings. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Evaluation of the PCR method for identification of Bifidobacterium species.

    PubMed

    Youn, S Y; Seo, J M; Ji, G E

    2008-01-01

    Bifidobacterium species are known for their beneficial effects on health and their wide use as probiotics. Although various polymerase chain reaction (PCR) methods for the identification of Bifidobacterium species have been published, the reliability of these methods remains open to question. In this study, we evaluated 37 previously reported PCR primer sets designed to amplify 16S rDNA, 23S rDNA, intergenic spacer regions, or repetitive DNA sequences of various Bifidobacterium species. Ten of 37 experimental primer sets showed specificity for B. adolescentis, B. angulatum, B. pseudocatenulatum, B. breve, B. bifidum, B. longum, B. longum biovar infantis and B. dentium. The results suggest that published Bifidobacterium primer sets should be re-evaluated for both reproducibility and specificity for the identification of Bifidobacterium species using PCR. Improvement of existing PCR methods will be needed to facilitate identification of other Bifidobacterium strains, such as B. animalis, B. catenulatum, B. thermophilum and B. subtile.

  17. Treatment of PCR products with exonuclease I and heat-labile alkaline phosphatase improves the visibility of combined bisulfite restriction analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Kousuke; Emoto, Noriko; Sunohara, Mitsuhiro

    2010-08-27

    Research highlights: {yields} Incubating PCR products at a high temperature causes smears in gel electrophoresis. {yields} Smears interfere with the interpretation of methylation analysis using COBRA. {yields} Treatment with exonuclease I and heat-labile alkaline phosphatase eliminates smears. {yields} The elimination of smears improves the visibility of COBRA. -- Abstract: DNA methylation plays a vital role in the regulation of gene expression. Abnormal promoter hypermethylation is an important mechanism of inactivating tumor suppressor genes in human cancers. Combined bisulfite restriction analysis (COBRA) is a widely used method for identifying the DNA methylation of specific CpG sites. Here, we report that exonucleasemore » I and heat-labile alkaline phosphatase can be used for PCR purification for COBRA, improving the visibility of gel electrophoresis after restriction digestion. This improvement is observed when restriction digestion is performed at a high temperature, such as 60 {sup o}C or 65 {sup o}C, with BstUI and TaqI, respectively. This simple method can be applied instead of DNA purification using spin columns or phenol/chloroform extraction. It can also be applied to other situations when PCR products are digested by thermophile-derived restriction enzymes, such as PCR restriction fragment length polymorphism (RFLP) analysis.« less

  18. Risk factors associated with cluster size of Mycobacterium tuberculosis (Mtb) of different RFLP lineages in Brazil.

    PubMed

    Peres, Renata Lyrio; Vinhas, Solange Alves; Ribeiro, Fabíola Karla Correa; Palaci, Moisés; do Prado, Thiago Nascimento; Reis-Santos, Bárbara; Zandonade, Eliana; Suffys, Philip Noel; Golub, Jonathan E; Riley, Lee W; Maciel, Ethel Leonor

    2018-02-08

    Tuberculosis (TB) transmission is influenced by patient-related risk, environment and bacteriological factors. We determined the risk factors associated with cluster size of IS6110 RFLP based genotypes of Mycobacterium tuberculosis (Mtb) isolates from Vitoria, Espirito Santo, Brazil. Cross-sectional study of new TB cases identified in the metropolitan area of Vitoria, Brazil between 2000 and 2010. Mtb isolates were genotyped by the IS6110 RFLP, spoligotyping and RD Rio . The isolates were classified according to genotype cluster sizes by three genotyping methods and associated patient epidemiologic characteristics. Regression Model was performed to identify factors associated with cluster size. Among 959 Mtb isolates, 461 (48%) cases had an isolate that belonged to an RFLP cluster, and six clusters with ten or more isolates were identified. Of the isolates spoligotyped, 448 (52%) were classified as LAM and 412 (48%) as non-LAM. Our regression model found that 6-9 isolates/RFLP cluster were more likely belong to the LAM family, having the RD Rio genotype and to be smear-positive (adjusted OR = 1.17, 95% CI 1.08-1.26; adjusted OR = 1.25, 95% CI 1.14-1.37; crude OR = 2.68, 95% IC 1.13-6.34; respectively) and living in a Serra city neighborhood decrease the risk of being in the 6-9 isolates/RFLP cluster (adjusted OR = 0.29, 95% CI, 0.10-0.84), than in the others groups. Individuals aged 21 to 30, 31 to 40 and > 50 years were less likely of belonging the 2-5 isolates/RFLP cluster than unique patterns compared to individuals < 20 years of age (adjusted OR = 0.49, 95% CI 0.28-0.85, OR = 0.43 95% CI 0.24-0.77and OR = 0. 49, 95% CI 0.26-0.91), respectively. The extrapulmonary disease was less likely to occur in those infected with strains in the 2-5 isolates/cluster group (adjustment OR = 0.45, 95% CI 0.24-0.85) than unique patterns. We found that a large proportion of new TB infections in Vitoria is caused by prevalent Mtb genotypes

  19. Utility of PCR, Culture, and Antigen Detection Methods for Diagnosis of Legionellosis.

    PubMed

    Chen, Derrick J; Procop, Gary W; Vogel, Sherilynn; Yen-Lieberman, Belinda; Richter, Sandra S

    2015-11-01

    The goal of this retrospective study was to evaluate the performance of different diagnostic tests for Legionnaires' disease in a clinical setting where Legionella pneumophila PCR had been introduced. Electronic medical records at the Cleveland Clinic were searched for Legionella urinary antigen (UAG), culture, and PCR tests ordered from March 2010 through December 2013. For cases where two or more test methods were performed and at least one was positive, the medical record was reviewed for relevant clinical and epidemiologic factors. Excluding repeat testing on a given patient, 19,912 tests were ordered (12,569 UAG, 3,747 cultures, and 3,596 PCR) with 378 positive results. The positivity rate for each method was 0.4% for culture, 0.8% for PCR, and 2.7% for UAG. For 37 patients, at least two test methods were performed with at least one positive result: 10 (27%) cases were positive by all three methods, 16 (43%) were positive by two methods, and 11 (30%) were positive by one method only. For the 32 patients with medical records available, clinical presentation was consistent with proven or probable Legionella infection in 84% of the cases. For those cases, the sensitivities of culture, PCR, and UAG were 50%, 92%, and 96%, respectively. The specificities were 100% for culture and 99.9% for PCR and UAG. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. Utility of PCR, Culture, and Antigen Detection Methods for Diagnosis of Legionellosis

    PubMed Central

    Chen, Derrick J.; Procop, Gary W.; Vogel, Sherilynn; Yen-Lieberman, Belinda

    2015-01-01

    The goal of this retrospective study was to evaluate the performance of different diagnostic tests for Legionnaires' disease in a clinical setting where Legionella pneumophila PCR had been introduced. Electronic medical records at the Cleveland Clinic were searched for Legionella urinary antigen (UAG), culture, and PCR tests ordered from March 2010 through December 2013. For cases where two or more test methods were performed and at least one was positive, the medical record was reviewed for relevant clinical and epidemiologic factors. Excluding repeat testing on a given patient, 19,912 tests were ordered (12,569 UAG, 3,747 cultures, and 3,596 PCR) with 378 positive results. The positivity rate for each method was 0.4% for culture, 0.8% for PCR, and 2.7% for UAG. For 37 patients, at least two test methods were performed with at least one positive result: 10 (27%) cases were positive by all three methods, 16 (43%) were positive by two methods, and 11 (30%) were positive by one method only. For the 32 patients with medical records available, clinical presentation was consistent with proven or probable Legionella infection in 84% of the cases. For those cases, the sensitivities of culture, PCR, and UAG were 50%, 92%, and 96%, respectively. The specificities were 100% for culture and 99.9% for PCR and UAG. PMID:26292304

  1. Tetra-primer ARMS-PCR identified four pivotal genetic variations in bovine PNPLA3 gene and its expression patterns.

    PubMed

    Wang, Zi-nian; Cai, Han-fang; Li, Ming-xun; Cao, Xiu-kai; Lan, Xian-yong; Lei, Chu-zhao; Chen, Hong

    2016-01-10

    Patatin-like phospholipase domain-containing protein 3 (PNPLA3), a member of the patatin like phospholipase domain-containing (PNPLA) family, plays an important role in energy balance, fat metabolism regulation, glucose metabolism and fatty liver disease. Tetra-primer amplification refractory mutation system PCR (T-ARMS-PCR) is a new method offering fast detection and extreme simplicity at a negligible cost for SNP genotyping. In this paper, we investigated the genetic variations at different ages of 660 Chinese indigenous cattle belonging to three breeds (QC, NY, JX) and applied T-ARMS-PCR and PCR-RFLP methods to genotype four SNPs, SNP1: g.A2980G, SNP2: g.A2996T, SNP3: g.A36718G, SNP4: g.G36850A. The statistical analyses indicated that these 4 SNPs affected growth traits markedly (P<0.05) in QC population, whereas combined haplotypes were not (P>0.05). The qPCR (quantitative PCR) indicated that bovine PNPLA3 gene was exclusively expressed in fat tissues. Besides, the analysis between SNP and mRNA expression revealed that, in SNP1, the expression of AG was much higher than AA and GG (P<0.05), which was in accordance with the results of growth traits association analysis, while the results of SNP4 was not. These results supported high potential that SNPs of bovine PNPLA3 gene might be utilized as genetic markers in marker-assisted selection (MAS) for Chinese cattle breeding programs. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Comparison of PCR and quantitative real-time PCR methods for the characterization of ruminant and cattle fecal pollution sources.

    PubMed

    Raith, Meredith R; Kelty, Catherine A; Griffith, John F; Schriewer, Alexander; Wuertz, Stefan; Mieszkin, Sophie; Gourmelon, Michele; Reischer, Georg H; Farnleitner, Andreas H; Ervin, Jared S; Holden, Patricia A; Ebentier, Darcy L; Jay, Jennifer A; Wang, Dan; Boehm, Alexandria B; Aw, Tiong Gim; Rose, Joan B; Balleste, E; Meijer, W G; Sivaganesan, Mano; Shanks, Orin C

    2013-11-15

    The State of California has mandated the preparation of a guidance document on the application of fecal source identification methods for recreational water quality management. California contains the fifth highest population of cattle in the United States, making the inclusion of cow-associated methods a logical choice. Because the performance of these methods has been shown to change based on geography and/or local animal feeding practices, laboratory comparisons are needed to determine which assays are best suited for implementation. We describe the performance characterization of two end-point PCR assays (CF128 and CF193) and five real-time quantitative PCR (qPCR) assays (Rum2Bac, BacR, BacCow, CowM2, and CowM3) reported to be associated with either ruminant or cattle feces. Each assay was tested against a blinded set of 38 reference challenge filters (19 duplicate samples) containing fecal pollution from 12 different sources suspected to impact water quality. The abundance of each host-associated genetic marker was measured for qPCR-based assays in both target and non-target animals and compared to quantities of total DNA mass, wet mass of fecal material, as well as Bacteroidales, and enterococci determined by 16S rRNA qPCR and culture-based approaches (enterococci only). Ruminant- and cow-associated genetic markers were detected in all filters containing a cattle fecal source. However, some assays cross-reacted with non-target pollution sources. A large amount of variability was evident across laboratories when protocols were not fixed suggesting that protocol standardization will be necessary for widespread implementation. Finally, performance metrics indicate that the cattle-associated CowM2 qPCR method combined with either the BacR or Rum2Bac ruminant-associated methods are most suitable for implementation. Published by Elsevier Ltd.

  3. A new specific reference gene based on growth hormone gene (GH1) used for detection and relative quantification of Aquadvantage® GM salmon (Salmo salar L.) in food products.

    PubMed

    Hafsa, Ahmed Ben; Nabi, Nesrine; Zellama, Mohamed Salem; Said, Khaled; Chaouachi, Maher

    2016-01-01

    Genetic transformation of fish is mainly oriented towards the improvement of growth for the benefit of the aquaculture. Actually, Atlantic salmon (Salmo salar) is the species most transformed to achieve growth rates quite large compared to the wild. To anticipate the presence of contaminations with GM salmon in fish markets and the lack of labeling regulations with a mandatory threshold, the proper methods are needed to test the authenticity of the ingredients. A quantitative real-time polymerase chain reaction (QRT-PCR) method was used in this study. Ct values were obtained and validated using 15 processed food containing salmon. The relative and absolute limits of detection were 0.01% and 0.01 ng/μl of genomic DNA, respectively. Results demonstrate that the developed QRT-PCR method is suitable specifically for identification of S. salar in food ingredients based on the salmon growth hormone gene 1 (GH1). The processes used to develop the specific salmon reference gene case study are intended to serve as a model for performing quantification of Aquadvantage® GM salmon on future genetically modified (GM) fish to be commercialized. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Practical Algorisms for PCR-RFLP-Based Genotyping of Echinococcus granulosus Sensu Lato.

    PubMed

    Kim, Hye-Jin; Yong, Tae-Soon; Shin, Myeong Heon; Lee, Kyu-Jae; Park, Gab-Man; Suvonkulov, Uktamjon; Kovalenko, Dmitriy; Yu, Hak Sun

    2017-12-01

    Echinococcus granulosus sensu lato (s.l.) is a causative agent of cystic echinococcosis or cystic hydatid disease in humans and domestic and wild animals. The disease is a serious health problem in countries associated with poverty and poor hygiene practices, particularly in livestock raising. We introduced a practical algorism for genotyping the parasite, which may be useful to many developing countries. To evaluate the efficiency of the algorism, we genotyped 3 unknown strains isolated from human patients. We found that unknowns 1 and 3 were included in G1, G2, and G3 genotypes group and unknown 2 was included in G4 genotype (Echinococcus equinus) according to the algorisms. We confirmed these results by sequencing the 3 unknown isolates cox1 and nad1 PCR products. In conclusion, these new algorisms are very fast genotype identification tools that are suitable for evaluating E. granulosus s.l. isolated from livestock or livestock holders, particularly in developing countries.

  5. A Nested-Splicing by Overlap Extension PCR Improves Specificity of this Standard Method.

    PubMed

    Karkhane, Ali Asghar; Yakhchali, Bagher; Rastgar Jazii, Ferdous; Bambai, Bijan; Aminzadeh, Saeed; Rahimi, Fatemeh

    2015-06-01

    Splicing by overlap extension (SOE) PCR is used to create mutation in the coding sequence of an enzyme in order to study the role of specific residues in protein's structure and function. We introduced a nested-SOE-PCR (N -SOE-PCR) in order to increase the specificity and generating mutations in a gene by SOE-PCR. Genomic DNA from Bacillus thermocatenulatus was extracted. Nested PCR was used to amplify B. thermocatenulatus lipase gene variants, namely wild type and mutant, using gene specific and mutagenic specific primers, followed by cloning in a suitable vector. Briefly in N-SOE-PCR method, instead of two pairs of primers, three pairs of primers are used to amplify a mutagenic fragment. Moreover, the first and second PCR products are slightly longer than PCR products in a conventional SOE. PCR products obtained from the first round of PCR are used for the second PCR by applying the nested and mutated primers. Following to the purification of the amplified fragments, they will be subject of the further purification and will be used as template to perform the third round of PCR using gene specific primers. In the end, the products will be cloned into a suitable vector for subsequent application. In comparison to the conventional SOE-PCR, the improved method (i.e. N-SOE-PCR) increases the yield and specificity of the products. In addition, the proposed method shows a large reduction in the non-specific products. By applying two more primers in the conventional SOE, the specificity of the method will be improved. This would be in part due to annealing of the primers further inside the amplicon that increases both the efficiency and a better attachment of the primers. Positioning of the primer far from both ends of an amplicon leads to an enhanced binding as well as increased affinity in the third round of amplification in SOE.

  6. A common base method for analysis of qPCR data and the application of simple blocking in qPCR experiments.

    PubMed

    Ganger, Michael T; Dietz, Geoffrey D; Ewing, Sarah J

    2017-12-01

    qPCR has established itself as the technique of choice for the quantification of gene expression. Procedures for conducting qPCR have received significant attention; however, more rigorous approaches to the statistical analysis of qPCR data are needed. Here we develop a mathematical model, termed the Common Base Method, for analysis of qPCR data based on threshold cycle values (C q ) and efficiencies of reactions (E). The Common Base Method keeps all calculations in the logscale as long as possible by working with log 10 (E) ∙ C q , which we call the efficiency-weighted C q value; subsequent statistical analyses are then applied in the logscale. We show how efficiency-weighted C q values may be analyzed using a simple paired or unpaired experimental design and develop blocking methods to help reduce unexplained variation. The Common Base Method has several advantages. It allows for the incorporation of well-specific efficiencies and multiple reference genes. The method does not necessitate the pairing of samples that must be performed using traditional analysis methods in order to calculate relative expression ratios. Our method is also simple enough to be implemented in any spreadsheet or statistical software without additional scripts or proprietary components.

  7. DNA decontamination methods for internal quality management in clinical PCR laboratories.

    PubMed

    Wu, Yingping; Wu, Jianyong; Zhang, Zhihui; Cheng, Chen

    2018-03-01

    The polymerase chain reaction (PCR) technique, one of the most commonly applied methods in diagnostic and molecular biology, has a frustrating downside: the occurrence of false-positive signals due to contamination. In previous research, various DNA decontamination methods have been developed to overcome this limitation. Unfortunately, the use of random or poorly focused sampling methods for monitoring air and/or object surfaces leads to the incomplete elimination during decontamination procedures. We herein attempted to develop a novel DNA decontamination method (environmental surveillance, including surface and air sampling) and quality management program for clinical molecular diagnostic laboratories (or clinical PCR laboratories). Here, we performed a step-by-step evaluation of current DNA decontamination methods and developed an effective procedure for assessing the presence of decontaminating DNA via PCR analysis. Performing targeted environmental surveillance by sampling, which reached optimal performance over 2 weeks, and the decontamination process had been verified as reliable. Additionally, the process was validated to not affect PCR amplification efficiency based on a comparative study. In this study, effective guidelines for DNA decontamination were developed. The method employed ensured that surface DNA contamination could be effectively identified and eliminated. Furthermore, our study highlighted the importance of overall quality assurance and good clinical laboratory practices for preventing contamination, which are key factors for compliance with regulatory or accreditation requirements. Taken together, we provided the evidence that the presented scheme ranged from troubleshooting to the elimination of surface contamination, could serve as critical foundation for developing regular environmental surveillance guidelines for PCR laboratories. © 2017 Wiley Periodicals, Inc.

  8. Have you tried spermine? A rapid and cost-effective method to eliminate dextran sodium sulfate inhibition of PCR and RT-PCR.

    PubMed

    Krych, Łukasz; Kot, Witold; Bendtsen, Katja M B; Hansen, Axel K; Vogensen, Finn K; Nielsen, Dennis S

    2018-01-01

    The Dextran Sulfate Sodium (DSS) induced colitis mouse model is commonly used to investigate human inflammatory bowel disease (IBD). Nucleic acid extracts originating from these animals are often contaminated with DSS, which is a strong inhibitor of many enzymatic based molecular biology reactions including PCR and reverse-transcription (RT). Methods for removing DSS from nucleic acids extracts exist for RNA, but no effective protocol for DNA or cDNA is currently available. However, spermine has previously been shown to be an effective agent for counteracting DSS inhibition of polynucleotide kinase, which led to the hypothesis, that spermine could be used to counteract DSS inhibition of PCR and RT. We investigated the means of adding spermine in an adequate concentration to PCR based protocols (including qPCR, two-step RT-qPCR, and amplicon sequencing library preparation) to remove DSS inhibition. Within the range up to 0.01g/L, spermine can be added to PCR/qPCR or RT prophylactically without a significant reduction of reaction efficiency. Addition of spermine at the concentration of 0.08g/L can be used to recover qualitative PCR signal inhibited by DSS in concentrations up to 0.32g/L. For optimal quantitative analysis, the concentration of spermine requires fine adjustment. Hence, we present here a simple fluorometric based method for adjusting the concentration of spermine ensuring an optimal efficiency of the reaction exposed to an unknown concentration of DSS. In conclusion, we demonstrate a cost effective and easy method to counteract DSS inhibition in PCR and two-step RT-qPCR. Fixed or fine-tuned concentrations of spermine can be administered depending on the qualitative or quantitative character of the analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. PCR and restriction fragment length polymorphism of a pel gene as a tool to identify Erwinia carotovora in relation to potato diseases.

    PubMed Central

    Darrasse, A; Priou, S; Kotoujansky, A; Bertheau, Y

    1994-01-01

    Using a sequenced pectate lyase-encoding gene (pel gene), we developed a PCR test for Erwinia carotovora. A set of primers allowed the amplification of a 434-bp fragment in E. carotovora strains. Among the 89 E. carotovora strains tested, only the Erwinia carotovora subsp. betavasculorum strains were not detected. A restriction fragment length polymorphism (RFLP) study was undertaken on the amplified fragment with seven endonucleases. The Sau3AI digestion pattern specifically identified the Erwinia carotovora subsp. atroseptica strains, and the whole set of data identified the Erwinia carotovora subsp. wasabiae strains. However, Erwinia carotovora subsp. carotovora and Erwinia carotovora subsp. odorifera could not be separated. Phenetic and phylogenic analyses of RFLP results showed E. carotovora subsp. atroseptica as a homogeneous group while E. carotovora subsp. carotovora and E. carotovora subsp. odorifera strains exhibited a genetic diversity that may result from a nonmonophyletic origin. The use of RFLP on amplified fragments in epidemiology and for diagnosis is discussed. Images PMID:7912502

  10. A real-time PCR diagnostic method for detection of Naegleria fowleri.

    PubMed

    Madarová, Lucia; Trnková, Katarína; Feiková, Sona; Klement, Cyril; Obernauerová, Margita

    2010-09-01

    Naegleria fowleri is a free-living amoeba that can cause primary amoebic meningoencephalitis (PAM). While, traditional methods for diagnosing PAM still rely on culture, more current laboratory diagnoses exist based on conventional PCR methods; however, only a few real-time PCR processes have been described as yet. Here, we describe a real-time PCR-based diagnostic method using hybridization fluorescent labelled probes, with a LightCycler instrument and accompanying software (Roche), targeting the Naegleria fowleriMp2Cl5 gene sequence. Using this method, no cross reactivity with other tested epidemiologically relevant prokaryotic and eukaryotic organisms was found. The reaction detection limit was 1 copy of the Mp2Cl5 DNA sequence. This assay could become useful in the rapid laboratory diagnostic assessment of the presence or absence of Naegleria fowleri. Copyright 2009 Elsevier Inc. All rights reserved.

  11. Development of a tetra-primer ARMS-PCR for detecting the E198A SNP in the isotype-1 β-tubulin gene of Haemonchus contortus populations in China.

    PubMed

    Zongze, Zhang; Xin, Yang; Awais, Ali Ahmad; Weiqiang, Lei; Chunqun, Wang; Di, Wenda; Yanqin, Zhou; Junlong, Zhao; Rui, Fang; Min, Hu

    2018-03-15

    The tetra-primer ARMS-PCR is a rapid, simple and low cost method for single nucleotide polymorphism (SNP) genotyping and has been used to detect SNPs associated with diseases and drug resistance. E198A in the isotype-1 β-tubulin gene is one of the three SNPs associated with benzimidazole resistance in parasitic nematode Haemonchus contortus. However, up to now, only PCR-RFLP method was used to test E198A in H. contortus. In the present study, we developed a tetra-primer ARMS-PCR to detect E198A in H. contortus and the accuracy of the results was compared with that of PCR-coupled sequencing. The results showed that optimization of PCR reaction system, especially the proportion of the amount of inner and outer primers, could achieve desirable amplification effect. Three different profiles displaying three distinct genotypes could be identified clearly and intuitively on the agarose gel where the samples with amplified PCR products containing two bands of 433 bp and 200 bp in size indicated susceptible homozygous (SS), those with PCR products containing two bands of 433 bp and 284 bp in length indicated resistant homozygous (RR) and the samples with amplified PCR products containing three bands of 433 bp, 284 bp and 200 bp in size indicated heterozygous (RS). The results showed that the established method can be successfully applied to the detection of E198A in H. contortus, which has high accuracy and is easy to perform. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. [Molecular typing of Leishmania (Leishmania) amazonensis and species of the subgenus Viannia associated with cutaneous and mucosal leishmaniasis in Colombia: A concordance study].

    PubMed

    Ovalle-Bracho, Clemencia; Camargo, Carolina; Díaz-Toro, Yira; Parra-Muñoz, Marcela

    2018-03-15

    Multilocus enzyme electrophoresis (MLEE) is the reference standard for the characterization of Leishmania species. The test is restricted to specialized laboratories due to its technical complexity, cost, and time required to obtain results. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) is used to identify Leishmania species. To establish the concordance between the two tests as identifying methods for circulating species in Colombia. A total of 96 isolates from patients with cutaneous or mucosal leishmaniasis were selected and identified by MLEE and PCR-RFLP with miniexon and hsp70 as the molecular targets, which were used sequentially. Restriction enzymes HaeIII and BccI were similarly applied. Cohen's kappa coefficient and the 95% confidence interval (CI) were calculated. The kappa coefficient and the 95% CI between MLEE and PCR-RFLP displayed "very good" concordance with a coefficient of 0.98 (CI95%: 0.98 to 1.00). The identified species were Leishmania Viannia braziliensis, Leishmania Viannia panamensis, Leishmania Viannia guyanensis and Leishmania Leishmania amazonensis. A total of 80 of the 96 isolates were sequenced and the results obtained by PCR-RFLP were confirmed. Due to the concordance obtained between tests results with the amplification of the genes miniexon and hsp70, PCR-RFLP is proposed as an alternative for identifying circulating Leishmania species in Colombia.

  13. A Droplet Digital PCR Method for Severe Combined Immunodeficiency Newborn Screening.

    PubMed

    Vidal-Folch, Noemi; Milosevic, Dragana; Majumdar, Ramanath; Gavrilov, Dimitar; Matern, Dietrich; Raymond, Kimiyo; Rinaldo, Piero; Tortorelli, Silvia; Abraham, Roshini S; Oglesbee, Devin

    2017-09-01

    Severe combined immunodeficiency (SCID) benefits from early intervention via hematopoietic cell transplantation to reverse T-cell lymphopenia (TCL). Newborn screening (NBS) programs use T-cell receptor excision circle (TREC) levels to detect SCID. Real-time quantitative PCR is often performed to quantify TRECs in dried blood spots (DBSs) for NBS. Yet, real-time quantitative PCR has inefficiencies necessitating normalization, repeat analyses, or standard curves. To address these issues, we developed a multiplex, droplet digital PCR (ddPCR) method for measuring absolute TREC amounts in one DBS punch. TREC and RPP30 levels were simultaneously measured with a Bio-Rad AutoDG and QX200 ddPCR system. DBSs from 610 presumed-normal, 29 lymphocyte-profiled, and 10 clinically diagnosed infants (1 X-linked SCID, 1 RAG1 Omenn syndrome, and other conditions) were tested. Control infants showed 14 to 474 TREC copies/μL blood. SCID infants, and other TCL conditions, had ≤15 TREC copies/μL. The ddPCR lower limit of quantitation was 14 TREC copies/μL, and the limit of detection was 4 TREC copies/μL. Intra-assay and interassay imprecision was <20% CV for DBSs at 54 to 60 TREC copies/μL. Testing 29 infants with known lymphocyte profiles resulted in a sensitivity of 88.9% and a specificity of 100% at TRECs <20 copies/μL. We developed a multiplex ddPCR method for the absolute quantitation of DBS TRECs that can detect SCID and other TCL conditions associated with absent or low TRECs and validated this method for NBS. Copyright © 2017 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  14. A Novel Universal Primer-Multiplex-PCR Method with Sequencing Gel Electrophoresis Analysis

    PubMed Central

    Huang, Kunlun; Zhang, Nan; Yuan, Yanfang; Shang, Ying; Luo, Yunbo

    2012-01-01

    In this study, a novel universal primer-multiplex-PCR (UP-M-PCR) method adding a universal primer (UP) in the multiplex PCR reaction system was described. A universal adapter was designed in the 5′-end of each specific primer pairs which matched with the specific DNA sequences for each template and also used as the universal primer (UP). PCR products were analyzed on sequencing gel electrophoresis (SGE) which had the advantage of exhibiting extraordinary resolution. This method overcame the disadvantages rooted deeply in conventional multiplex PCR such as complex manipulation, lower sensitivity, self-inhibition and amplification disparity resulting from different primers, and it got a high specificity and had a low detection limit of 0.1 ng for single kind of crops when screening the presence of genetically modified (GM) crops in mixture samples. The novel developed multiplex PCR assay with sequencing gel electrophoresis analysis will be useful in many fields, such as verifying the GM status of a sample irrespective of the crop and GM trait and so on. PMID:22272223

  15. A duplicated PLP gene causing Pelizaeus-Merzbacher disease detected by comparative multiplex PCR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inoue, K.; Sugiyama, N.; Kawanishi, C.

    1996-07-01

    Pelizaeus-Merzbacher disease (PMD) is an X-linked dysmyelinating disorder caused by abnormalities in the proteolipid protein (PLP) gene, which is essential for oligodendrocyte differentiation and CNS myelin formation. Although linkage analysis has shown the homogeneity at the PLP locus in patients with PMD, exonic mutations in the PLP gene have been identified in only 10% - 25% of all cases, which suggests the presence of other genetic aberrations, including gene duplication. In this study, we examined five families with PMD not carrying exonic mutations in PLP gene, using comparative multiplex PCR (CM-PCR) as a semiquantitative assay of gene dosage. PLP genemore » duplications were identified in four families by CM-PCR and confirmed in three families by densitometric RFLP analysis. Because a homologous myelin protein gene, PMP22, is duplicated in the majority of patients with Charcot-Marie-Tooth 1A, PLP gene overdosage may be an important genetic abnormality in PMD and affect myelin formation. 38 ref., 5 figs., 2 tabs.« less

  16. Fly Diversity Revealed by PCR-RFLP of Mitochondrial DNA

    ERIC Educational Resources Information Center

    Asraoui, Jimmy F.; Sayar, Nancy P.; Knio, Khouzama M.; Smith, Colin A.

    2008-01-01

    In this article, we describe an inexpensive, two-session undergraduate laboratory activity that introduces important molecular biology methods in the context of biodiversity. In the first session, students bring tentatively identified flies (order Diptera, true flies) to the laboratory, extract DNA, and amplify a region of the mitochondrial gene…

  17. Detection of adenoviruses in shellfish by means of conventional-PCR, nested-PCR, and integrated cell culture PCR (ICC/PCR).

    PubMed

    Rigotto, C; Sincero, T C M; Simões, C M O; Barardi, C R M

    2005-01-01

    We tested three PCR based methodologies to detect adenoviruses associated with cultivated oysters. Conventional-PCR, nested-PCR, and integrated cell culture-PCR (ICC/PCR) were first optimized using oysters seeded with know amounts of Adenovirus serotype 5 (Ad5). The maximum sensitivity for Ad5 detection was determined for each method, and then used to detect natural adenovirus contamination in oysters from three aquiculture farms in Florianopolis, Santa Catarina State, Brazil, over a period of 6 months. The results showed that the nested-PCR was more sensitive (limit of detection: 1.2 PFU/g of tissue) than conventional-PCR and ICC-PCR (limit of detection for both: 1.2 x 10(2)PFU/g of tissue) for detection of Ad5 in oyster extracts. Nested-PCR was able to detect 90% of Ad5 contamination in harvested oyster samples, while conventional-PCR was unable to detect Ad5 in any of the samples. The present work suggests that detection of human adenoviruses can be used as a tool to monitor the presence of human viruses in marine environments where shellfish grow, and that nested-PCR is the method of choice.

  18. PCR-RFLP to Detect Codon 248 Mutation in Exon 7 of "p53" Tumor Suppressor Gene

    ERIC Educational Resources Information Center

    Ouyang, Liming; Ge, Chongtao; Wu, Haizhen; Li, Suxia; Zhang, Huizhan

    2009-01-01

    Individual genome DNA was extracted fast from oral swab and followed up with PCR specific for codon 248 of "p53" tumor suppressor gene. "Msp"I restriction mapping showed the G-C mutation in codon 248, which closely relates to cancer susceptibility. Students learn the concepts, detection techniques, and research significance of point mutations or…

  19. Comparison of culture and qPCR methods in detection of mycobacteria from drinking waters.

    PubMed

    Räsänen, Noora H J; Rintala, Helena; Miettinen, Ilkka T; Torvinen, Eila

    2013-04-01

    Environmental mycobacteria are common bacteria in man-made water systems and may cause infections and hypersensitivity pneumonitis via exposure to water. We compared a generally used cultivation method and a quantitative polymerase chain reaction (qPCR) method to detect mycobacteria in 3 types of drinking waters: surface water, ozone-treated surface water, and groundwater. There was a correlation between the numbers of mycobacteria obtained by cultivation and qPCR methods, but the ratio of the counts obtained by the 2 methods varied among the types of water. The qPCR counts in the drinking waters produced from surface or groundwater were 5 to 34 times higher than culturable counts. In ozone-treated surface waters, both methods gave similar counts. The ozone-treated drinking waters had the highest concentration of assimilable organic carbon, which may explain the good culturability. In warm tap waters, qPCR gave 43 times higher counts than cultivation, but both qPCR counts and culturable counts were lower than those in the drinking waters collected from the same sites. The TaqMan qPCR method is a rapid and sensitive tool for total quantitation of mycobacteria in different types of clean waters. The raw water source and treatments affect both culturability and total numbers of mycobacteria in drinking waters.

  20. Molecular typing of Vibrio parahaemolyticus strains isolated from the Philippines by PCR-based methods.

    PubMed

    Maluping, R P; Ravelo, C; Lavilla-Pitogo, C R; Krovacek, K; Romalde, J L

    2005-01-01

    The main aim of the present study was to use three PCR-based techniques for the analysis of genetic variability among Vibrio parahaemolyticus strains isolated from the Philippines. Seventeen strains of V. parahaemolyticus isolated from shrimps (Penaeus monodon) and from the environments where these shrimps are being cultivated were analysed by random amplified polymorphic DNA PCR (RAPD-PCR), enterobacterial repetitive intergenic consensus sequence PCR (ERIC-PCR) and repetitive extragenic palindromic PCR (REP-PCR). The results of this work have demonstrated genetic variability within the V. parahaemolyticus strains that were isolated from the Philippines. In addition, RAPD, ERIC and REP-PCR are suitable rapid typing methods for V. parahaemolyticus. All three methods have good discriminative ability and can be used as a rapid means of comparing V. parahaemolyticus strains for epidemiological investigation. Based on the results of this study, we could say that REP-PCR is inferior to RAPD and ERIC-PCR owing to the fact that it is less reproducible. Moreover, the REP-PCR analysis yielded a relatively small number of products. This may suggests that the REP sequences may not be widely distributed in the V. parahaemolyticus genome. Genetic variability within V. parahaemolyticus strains isolated in the Philippines has been demonstrated. The presence of ERIC and REP sequences in the genome of this bacterial species was confirmed. The RAPD, ERIC and REP-PCR techniques are useful methods for molecular typing of V. parahaemolyticus strains. To our knowledge this is the first study of this kind carried out on V. parahaemolyticus strains isolated from the Philippines.

  1. Detection of EML4-ALK fusion gene in Chinese non-small cell lung cancer by using a sensitive quantitative real-time reverse transcriptase PCR technique.

    PubMed

    Fu, Sha; Wang, Fang; Shao, Qiong; Zhang, Xu; Duan, Li-Ping; Zhang, Xiao; Zhang, Li; Shao, Jian-Yong

    2015-04-01

    Anaplastic lymphoma kinase (ALK) rearrangement is present in approximately 5% of lung adenocarcinoma. Clinical trials on ALK inhibitor phase I to III have shown an interesting disease control rate and acceptable tolerability in ALK rearrangement patients. In clinical application, the precise diagnostic strategy for identifying ALK rearrangements remains to be determined. In this study, ALK rearrangement was screened by using quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR), direct sequencing, 2 fluorescence in situ hybridization (FISH) assays, and immunohistochemistry in 173 lung adenocarcinomas. We identified 18 cases (10.4%) with EML4-ALK fusion-positive by qRT-PCR, and all were positive for EML4-ALK fusion gene validated by direct sequencing. The result was consistent with that of other methods. Furthermore, of the 18 EML4-ALK fusion-positive cases, 16 (9.2%) were positive by using EML4-ALK fusion probe FISH, and 15 (8.7%) were positive by using ALK break-apart probe FISH and immunohistochemistry staining. Of the 18 ALK fusion-positive lung adenocarcinomas, 8 cases (44.4%) were histologically diagnosed as subtypes of cribriform adenocarcinoma, 7 cases (38.9%) as cribriform adenocarcinoma mixed with papillary and/or mucinous pattern, 2 cases (11.1%) as papillary adenocarcinoma, and 1 case (5.6%) as mucinous adenocarcinoma. In the present study, the ALK rearrangement frequency detected by qRT-PCR in Chinese NSCLC patients was higher than that in the western populations. QRT-PCR is a rapid, sensitive technology that could be used as a screening tool for identifying EML4-ALK fusion-positive NSCLC patients who would be sensitive for receiving ALK inhibitor therapy.

  2. An Authentic RFLP Lab for High School or College Biology Students.

    ERIC Educational Resources Information Center

    Guilfoile, Patrick G.; Plum, Stephen

    1998-01-01

    Explains how students can perform an alternative authentic DNA fingerprinting analysis. Presents restriction fragment length polymorphism (RFLP) analysis and can serve as a simulated molecular epidemiology laboratory or as a simulated forensic laboratory exercise. (DDR)

  3. PCR-Restriction Fragment Length Polymorphism Analysis of the Phospholipase B (PLB1) Gene for Subtyping of Cryptococcus neoformans Isolates

    PubMed Central

    Latouche, G. Nicolas; Huynh, Matthew; Sorrell, Tania C.; Meyer, Wieland

    2003-01-01

    Cryptococcus neoformans is a pathogenic yeast that is currently divided into three varieties, five serotypes, and eight molecular types. The following report describes the use of PCR-restriction fragment length polymorphism (RFLP) analysis of the phospholipase B gene (PLB1) as a simple tool to differentiate between C. neoformans subgroups. A PLB1 fragment, 1,970 bp, was amplified and digested with either AvaI or HindIII. Both sets of profiles grouped the isolates into their respective varieties, but only the AvaI profiles allowed for the identification of the eight molecular types via the corresponding RFLP profiles A1 to A8. Digestion of the same fragments with HindIII resulted in RFLP profiles H1 to H5, which distinguished only between serotype A, AD, D, and B/C. Neither enzyme distinguished serotype B from serotype C. The serotype AD profile was a composite of the serotype A and D profiles. Further investigation showed that the serotype AD isolates used in this study are heterozygous, with one allele of PLB1 originating from a serotype A parent and the other from a serotype D parent. PMID:12676686

  4. Operational Evaluation of the Rapid Viability PCR Method for ...

    EPA Pesticide Factsheets

    Journal Article This research work has a significant impact on the use of the RV-PCR method to analyze post-decontamination environmental samples during an anthrax event. The method has shown 98% agreement with the traditional culture based method. With such a success, this method, upon validation, will significantly increase the laboratory throughput/capacity to analyze a large number of anthrax event samples in a relatively short time.

  5. A Simple PCR Method for Rapid Genotype Analysis of Mycobacterium ulcerans

    PubMed Central

    Stinear, Timothy; Davies, John K.; Jenkin, Grant A.; Portaels, Françoise; Ross, Bruce C.; OppEdIsano, Frances; Purcell, Maria; Hayman, John A.; Johnson, Paul D. R.

    2000-01-01

    Two high-copy-number insertion sequences, IS2404 and IS2606, were recently identified in Mycobacterium ulcerans and were shown by Southern hybridization to possess restriction fragment length polymorphism between strains from different geographic origins. We have designed a simple genotyping method that captures these differences by PCR amplification of the region between adjacent copies of IS2404 and IS2606. We have called this system 2426 PCR. The method is rapid, reproducible, sensitive, and specific for M. ulcerans, and it has confirmed previous studies suggesting a clonal population structure of M. ulcerans within a geographic region. M. ulcerans isolates from Australia, Papua New Guinea, Malaysia, Surinam, Mexico, Japan, China, and several countries in Africa were easily differentiated based on an array of 4 to 14 PCR products ranging in size from 200 to 900 bp. Numerical analysis of the banding patterns suggested a close evolutionary link between M. ulcerans isolates from Africa and southeast Asia. The application of 2426 PCR to total DNA, extracted directly from M. ulcerans-infected tissue specimens without culture, demonstrated the sensitivity and specificity of this method and confirmed for the first time that both animal and human isolates from areas of endemicity in southeast Australia have the same genotype. PMID:10747130

  6. Common rs5918 (PlA1/A2) polymorphism in the ITGB3 gene and risk of coronary artery disease

    PubMed Central

    Heidari, Mohammad Mehdi; Soheilyfar, Sorour

    2016-01-01

    Introduction The T to C transition at nucleotide 1565 of the human glycoprotein IIIa (ITGB3) gene represents a genetic polymorphism (PlA1/A2) that can influence both platelet activation and aggregation and that has been associated with many types of disease. Here, we present a newly designed multiplex tetra-primer amplification refractory mutation system – polymerase chain reaction (T-ARMS-PCR) for genotyping a single nucleotide polymorphism (SNP) (dbSNP ID: rs5918) in the human ITGB3 gene. Material and methods We set up T-ARMS-PCR for the rs5918 SNP in a single-step PCR and the results were validated by the PCR-RFLP method in 132 coronary artery disease (CAD) patients and 122 unrelated healthy individuals. Results Full accordance was found for genotype determination by the PCR-RFLP method. The multiple logistic regression analysis showed a significant association of the rs5918 polymorphism and CAD according to dominant and recessive models (dominant model OR: 2.40, 95% CI: 1.33–4.35; p = 0.003, recessive model OR: 4.71, 95% CI: 1.32–16.80; p = 0.0067). Conclusions Our T-ARMS-PCR in comparison with RFLP and allele-specific PCR is more advantageous because this PCR method allows the evaluation of both the wild type and the mutant allele in the same tube. Our results suggest that the rs5918 (PlA1/A2) polymorphism in the ITGB3 gene may contribute to the susceptibility of sporadic Iranian coronary artery disease (CAD) patients. PMID:28905013

  7. Biodiversity and ITS-RFLP Characterisation of Aspergillus Section Nigri Isolates in Grapes from Four Traditional Grape-Producing Areas in Greece

    PubMed Central

    Kizis, Dimosthenis; Natskoulis, Pantelis; Nychas, George-John E.; Panagou, Efstathios Z.

    2014-01-01

    A study on the occurrence of Aspergillus section Nigri species on grapes from four traditional grape-producing areas in Greece during the 2011/2012 vintage, and their capability to produce OTA was conducted. One hundred and twenty-eight black aspergilli isolates were characterised at the species level initially by the use of morphological criteria in accordance with appropriate keys, followed by molecular characterisation performed with Polymerase Chain Reaction–Restriction Fragment Length Polymorphism (PCR-RFLP) of the 5.8 ribosomal RNA gene Internal Transcribed Spacer region (5.8 rRNA ITS). Restriction enzyme digestion of the ITS amplicons using the HhaI, HinfI and RsaI, endonucleases distinguished eleven different patterns of restriction fragment length polymorphism (RFLP), four for each of the HhaI and RsaI digests and three for HinfI. From a total number of 128 individual isolates, 124 were classified into four Aspergillus species corresponding to A. carbonarius, A. tubingensis, A. japonicus and A. ibericus, and the remaining 4 were classified as members of the A. niger aggregate. A. carbonarius and A. tubingensis being the main representative species were equally counted, with higher geographical representation of the former in southern and the latter in northern regions, respectively. All isolates were tested for their ochratoxigenic potential by use of High Performance Liquid Chromatography (HPLC) and Enzyme Linked Immuno Sorbent Assay (ELISA), resulting in significant interspecies differences in OTA production. PMID:24710283

  8. A computational method for estimating the PCR duplication rate in DNA and RNA-seq experiments.

    PubMed

    Bansal, Vikas

    2017-03-14

    PCR amplification is an important step in the preparation of DNA sequencing libraries prior to high-throughput sequencing. PCR amplification introduces redundant reads in the sequence data and estimating the PCR duplication rate is important to assess the frequency of such reads. Existing computational methods do not distinguish PCR duplicates from "natural" read duplicates that represent independent DNA fragments and therefore, over-estimate the PCR duplication rate for DNA-seq and RNA-seq experiments. In this paper, we present a computational method to estimate the average PCR duplication rate of high-throughput sequence datasets that accounts for natural read duplicates by leveraging heterozygous variants in an individual genome. Analysis of simulated data and exome sequence data from the 1000 Genomes project demonstrated that our method can accurately estimate the PCR duplication rate on paired-end as well as single-end read datasets which contain a high proportion of natural read duplicates. Further, analysis of exome datasets prepared using the Nextera library preparation method indicated that 45-50% of read duplicates correspond to natural read duplicates likely due to fragmentation bias. Finally, analysis of RNA-seq datasets from individuals in the 1000 Genomes project demonstrated that 70-95% of read duplicates observed in such datasets correspond to natural duplicates sampled from genes with high expression and identified outlier samples with a 2-fold greater PCR duplication rate than other samples. The method described here is a useful tool for estimating the PCR duplication rate of high-throughput sequence datasets and for assessing the fraction of read duplicates that correspond to natural read duplicates. An implementation of the method is available at https://github.com/vibansal/PCRduplicates .

  9. Rapid-viability PCR method for detection of live, virulent Bacillus anthracis in environmental samples.

    PubMed

    Létant, Sonia E; Murphy, Gloria A; Alfaro, Teneile M; Avila, Julie R; Kane, Staci R; Raber, Ellen; Bunt, Thomas M; Shah, Sanjiv R

    2011-09-01

    In the event of a biothreat agent release, hundreds of samples would need to be rapidly processed to characterize the extent of contamination and determine the efficacy of remediation activities. Current biological agent identification and viability determination methods are both labor- and time-intensive such that turnaround time for confirmed results is typically several days. In order to alleviate this issue, automated, high-throughput sample processing methods were developed in which real-time PCR analysis is conducted on samples before and after incubation. The method, referred to as rapid-viability (RV)-PCR, uses the change in cycle threshold after incubation to detect the presence of live organisms. In this article, we report a novel RV-PCR method for detection of live, virulent Bacillus anthracis, in which the incubation time was reduced from 14 h to 9 h, bringing the total turnaround time for results below 15 h. The method incorporates a magnetic bead-based DNA extraction and purification step prior to PCR analysis, as well as specific real-time PCR assays for the B. anthracis chromosome and pXO1 and pXO2 plasmids. A single laboratory verification of the optimized method applied to the detection of virulent B. anthracis in environmental samples was conducted and showed a detection level of 10 to 99 CFU/sample with both manual and automated RV-PCR methods in the presence of various challenges. Experiments exploring the relationship between the incubation time and the limit of detection suggest that the method could be further shortened by an additional 2 to 3 h for relatively clean samples.

  10. Comparison of three human papillomavirus DNA detection methods: Next generation sequencing, multiplex-PCR and nested-PCR followed by Sanger based sequencing.

    PubMed

    da Fonseca, Allex Jardim; Galvão, Renata Silva; Miranda, Angelica Espinosa; Ferreira, Luiz Carlos de Lima; Chen, Zigui

    2016-05-01

    To compare the diagnostic performance for HPV infection using three laboratorial techniques. Ninty-five cervicovaginal samples were randomly selected; each was tested for HPV DNA and genotypes using 3 methods in parallel: Multiplex-PCR, the Nested PCR followed by Sanger sequencing, and the Next_Gen Sequencing (NGS) with two assays (NGS-A1, NGS-A2). The study was approved by the Brazilian National IRB (CONEP protocol 16,800). The prevalence of HPV by the NGS assays was higher than that using the Multiplex-PCR (64.2% vs. 45.2%, respectively; P = 0.001) and the Nested-PCR (64.2% vs. 49.5%, respectively; P = 0.003). NGS also showed better performance in detecting high-risk HPV (HR-HPV) and HPV16. There was a weak interobservers agreement between the results of Multiplex-PCR and Nested-PCR in relation to NGS for the diagnosis of HPV infection, and a moderate correlation for HR-HPV detection. Both NGS assays showed a strong correlation for detection of HPVs (k = 0.86), HR-HPVs (k = 0.91), HPV16 (k = 0.92) and HPV18 (k = 0.91). NGS is more sensitive than the traditional Sanger sequencing and the Multiplex PCR to genotype HPVs, with promising ability to detect multiple infections, and may have the potential to establish an alternative method for the diagnosis and genotyping of HPV. © 2015 Wiley Periodicals, Inc.

  11. Establishment of a nested-ASP-PCR method to determine the clarithromycin resistance of Helicobacter pylori

    PubMed Central

    Luo, Xiao-Feng; Jiao, Jian-Hua; Zhang, Wen-Yue; Pu, Han-Ming; Qu, Bao-Jin; Yang, Bing-Ya; Hou, Min; Ji, Min-Jun

    2016-01-01

    AIM: To investigate clarithromycin resistance positions 2142, 2143 and 2144 of the 23SrRNA gene in Helicobacter pylori (H. pylori) by nested-allele specific primer-polymerase chain reaction (nested-ASP-PCR). METHODS: The gastric tissue and saliva samples from 99 patients with positive results of the rapid urease test (RUT) were collected. The nested-ASP-PCR method was carried out with the external primers and inner allele-specific primers corresponding to the reference strain and clinical strains. Thirty gastric tissue and saliva samples were tested to determine the sensitivity of nested-ASP-PCR and ASP-PCR methods. Then, clarithromycin resistance was detected for 99 clinical samples by using different methods, including nested-ASP-PCR, bacterial culture and disk diffusion. RESULTS: The nested-ASP-PCR method was successfully established to test the resistance mutation points 2142, 2143 and 2144 of the 23SrRNA gene of H. pylori. Among 30 samples of gastric tissue and saliva, the H. pylori detection rate of nested-ASP-PCR was 90% and 83.33%, while the detection rate of ASP-PCR was just 63% and 56.67%. Especially in the saliva samples, nested-ASP-PCR showed much higher sensitivity in H. pylori detection and resistance mutation rates than ASP-PCR. In the 99 RUT-positive gastric tissue and saliva samples, the H. pylori-positive detection rate by nested-ASP-PCR was 87 (87.88%) and 67 (67.68%), in which there were 30 wild-type and 57 mutated strains in gastric tissue and 22 wild-type and 45 mutated strains in saliva. Genotype analysis showed that three-points mixed mutations were quite common, but different resistant strains were present in gastric mucosa and saliva. Compared to the high sensitivity shown by nested-ASP-PCR, the positive detection of bacterial culture with gastric tissue samples was 50 cases, in which only 26 drug-resistant strains were found through analyzing minimum inhibitory zone of clarithromycin. CONCLUSION: The nested-ASP-PCR assay showed higher

  12. Evaluation of quantification methods for real-time PCR minor groove binding hybridization probe assays.

    PubMed

    Durtschi, Jacob D; Stevenson, Jeffery; Hymas, Weston; Voelkerding, Karl V

    2007-02-01

    Real-time PCR data analysis for quantification has been the subject of many studies aimed at the identification of new and improved quantification methods. Several analysis methods have been proposed as superior alternatives to the common variations of the threshold crossing method. Notably, sigmoidal and exponential curve fit methods have been proposed. However, these studies have primarily analyzed real-time PCR with intercalating dyes such as SYBR Green. Clinical real-time PCR assays, in contrast, often employ fluorescent probes whose real-time amplification fluorescence curves differ from those of intercalating dyes. In the current study, we compared four analysis methods related to recent literature: two versions of the threshold crossing method, a second derivative maximum method, and a sigmoidal curve fit method. These methods were applied to a clinically relevant real-time human herpes virus type 6 (HHV6) PCR assay that used a minor groove binding (MGB) Eclipse hybridization probe as well as an Epstein-Barr virus (EBV) PCR assay that used an MGB Pleiades hybridization probe. We found that the crossing threshold method yielded more precise results when analyzing the HHV6 assay, which was characterized by lower signal/noise and less developed amplification curve plateaus. In contrast, the EBV assay, characterized by greater signal/noise and amplification curves with plateau regions similar to those observed with intercalating dyes, gave results with statistically similar precision by all four analysis methods.

  13. Establishment of a nested-ASP-PCR method to determine the clarithromycin resistance of Helicobacter pylori.

    PubMed

    Luo, Xiao-Feng; Jiao, Jian-Hua; Zhang, Wen-Yue; Pu, Han-Ming; Qu, Bao-Jin; Yang, Bing-Ya; Hou, Min; Ji, Min-Jun

    2016-07-07

    To investigate clarithromycin resistance positions 2142, 2143 and 2144 of the 23SrRNA gene in Helicobacter pylori (H. pylori) by nested-allele specific primer-polymerase chain reaction (nested-ASP-PCR). The gastric tissue and saliva samples from 99 patients with positive results of the rapid urease test (RUT) were collected. The nested-ASP-PCR method was carried out with the external primers and inner allele-specific primers corresponding to the reference strain and clinical strains. Thirty gastric tissue and saliva samples were tested to determine the sensitivity of nested-ASP-PCR and ASP-PCR methods. Then, clarithromycin resistance was detected for 99 clinical samples by using different methods, including nested-ASP-PCR, bacterial culture and disk diffusion. The nested-ASP-PCR method was successfully established to test the resistance mutation points 2142, 2143 and 2144 of the 23SrRNA gene of H. pylori. Among 30 samples of gastric tissue and saliva, the H. pylori detection rate of nested-ASP-PCR was 90% and 83.33%, while the detection rate of ASP-PCR was just 63% and 56.67%. Especially in the saliva samples, nested-ASP-PCR showed much higher sensitivity in H. pylori detection and resistance mutation rates than ASP-PCR. In the 99 RUT-positive gastric tissue and saliva samples, the H. pylori-positive detection rate by nested-ASP-PCR was 87 (87.88%) and 67 (67.68%), in which there were 30 wild-type and 57 mutated strains in gastric tissue and 22 wild-type and 45 mutated strains in saliva. Genotype analysis showed that three-points mixed mutations were quite common, but different resistant strains were present in gastric mucosa and saliva. Compared to the high sensitivity shown by nested-ASP-PCR, the positive detection of bacterial culture with gastric tissue samples was 50 cases, in which only 26 drug-resistant strains were found through analyzing minimum inhibitory zone of clarithromycin. The nested-ASP-PCR assay showed higher detection sensitivity than ASP-PCR and

  14. Detection of Legionella pneumophila by PCR-ELISA method in industrial cooling tower water.

    PubMed

    Soheili, Majid; Nejadmoghaddam, Mohammad Reza; Babashamsi, Mohammad; Ghasemi, Jamileh; Jeddi Tehrani, Mahmood

    2007-11-15

    Water supply and Cooling Tower Water (CTW) are among the most common sources of Legionella pneumophila (LP) contamination. A nonradio active method is described to detect LP in industrial CTW samples. DNA was purified and amplified by nested -PCR with amplimers specific for the 16s rRNA gene of LP. The 5' end biotinylated oligomer probe was immobilized on sterptavidin B coated microtiter plates. The nested-PCR product was labeled with digoxigenin and then hybridized with 5'-biotinylated probes. The amplification products were detected by using proxidase-labled anti dioxygenin antibody in a colorimetric reaction. The assay detected LP present in 1 L of 5 CTW samples examined. All of the samples were Legionella positive in both culture and PCR-ELISA methods. The PCR-ELISA assay appears to exhibit high specificity and is a more rapid technique in comparison with bacterial culture method. Thus could prove suitable for use in the routine examination of industrial CTW contamination.

  15. Colony-PCR Is a Rapid Method for DNA Amplification of Hyphomycetes

    PubMed Central

    Walch, Georg; Knapp, Maria; Rainer, Georg; Peintner, Ursula

    2016-01-01

    Fungal pure cultures identified with both classical morphological methods and through barcoding sequences are a basic requirement for reliable reference sequences in public databases. Improved techniques for an accelerated DNA barcode reference library construction will result in considerably improved sequence databases covering a wider taxonomic range. Fast, cheap, and reliable methods for obtaining DNA sequences from fungal isolates are, therefore, a valuable tool for the scientific community. Direct colony PCR was already successfully established for yeasts, but has not been evaluated for a wide range of anamorphic soil fungi up to now, and a direct amplification protocol for hyphomycetes without tissue pre-treatment has not been published so far. Here, we present a colony PCR technique directly from fungal hyphae without previous DNA extraction or other prior manipulation. Seven hundred eighty-eight fungal strains from 48 genera were tested with a success rate of 86%. PCR success varied considerably: DNA of fungi belonging to the genera Cladosporium, Geomyces, Fusarium, and Mortierella could be amplified with high success. DNA of soil-borne yeasts was always successfully amplified. Absidia, Mucor, Trichoderma, and Penicillium isolates had noticeably lower PCR success. PMID:29376929

  16. Identification of Malassezia species from pityriasis versicolor lesions with a new multiplex PCR method.

    PubMed

    Vuran, Emre; Karaarslan, Aydın; Karasartova, Djursun; Turegun, Buse; Sahin, Fikret

    2014-02-01

    Despite the fact that a range of molecular methods have been developed as tools for the diagnosis of Malassezia species, there are several drawbacks associated with them, such as inefficiency of differentiating all the species, high cost, and questionable reproducibility. In addition, most of the molecular methods require cultivation to enhance sensitivity. Therefore, alternative methods eliminating cultivation and capable of identifying species with high accuracy and reliability are needed. Herein, a multiplex polymerase chain reaction (PCR)-based method was especially developed for the detection of eleven Malassezia species. The multiplex PCR was standardized by incorporating a consensus forward primer, along with Malassezia species-specific reverse primers considering the sizes of the PCR products. In the method, the multiplex-PCR primer content is divided into three parts to circumvent the problem of increased nonspecific background resulting from the use of a large number of primers. DNA extraction protocol described by Harju and colleagues was modified using liquid nitrogen instead of -80 °C to break down the yeast membrane. By a modified extraction procedure followed by multiplex PCR and electrophoresis, the method enables identification and differentiation of Malassezia species from both of the samples obtained directly from skin and yeast colonies grown in culture. Fifty-five patients who were confirmed with pityriasis versicolor were enrolled in the study. Multiplex PCR detected and differentiated all 55 samples obtained directly from the patients' skin. However, 50 out of 55 samples yielded Malassezia colony in the culture. In addition, eight of 50 colonies were misdiagnosed or not completely differentiated by conventional methods based on the sequence analysis of eight colonies. The method is capable of identifying species with high accuracy and reliability. In addition, it is simple, quick, and cost-effective. More importantly, the method works

  17. [A Duplex PCR Method for Detection of Babesia caballi and Theileria equi].

    PubMed

    Zhang, Yang; Zhang, Yu-ting; Wang, Zhen-bao; Bolati; Li, Hai; Bayinchahan

    2015-04-01

    To develop a duplex PCR assay for detection of Babesia caballi and Theileria equi. Two pairs of primers were designed according to the BC48 gene of B. caballi and 18 s rRNA gene of T. equi, and a duplex PCR assay was developed by the optimization of reaction conditions. The specificity, sensitivity and reliability of the method were tested. The horse blood samples of suspected cases were collected from Yili region, and detected by the duplex PCR, microspopy, conventional PCR, and fluorescence quantitative PCR, and the results were compared. Using the duplex PCR assay, the specific fragments of 155 bp and 280 bp were amplified from DNA samples of B. caballi and T. equi, respectively. No specific fragment was amplified from DNA samples of B. bigemina, Theilerdia annulata, Theilerdia sergenti, Toxoplasma gondii, Neospora caninum, and Trypanosoma evansi. The limit of detection was 4.85 x 10(5) copies/L for B. caballi DNA and 4.85 x 10(4) copies/µl for T. equi DNA, respectively. Among the 24 blood samples, 11 were found B. caballi-positive by the duplex PCR assay, and 18 were T. equi-positive. The coincidence rate of microscopy, conventional PCR, and fluorescence quantitative PCR with duplex PCR was 91.7% (22/24), 95.8% (23/24), and 95.8% (23/24), respectively. A duplex PCR assay for simultaneous detection of B. caballi and T. equi is established.

  18. The use of digital PCR to improve the application of quantitative molecular diagnostic methods for tuberculosis.

    PubMed

    Devonshire, Alison S; O'Sullivan, Denise M; Honeyborne, Isobella; Jones, Gerwyn; Karczmarczyk, Maria; Pavšič, Jernej; Gutteridge, Alice; Milavec, Mojca; Mendoza, Pablo; Schimmel, Heinz; Van Heuverswyn, Fran; Gorton, Rebecca; Cirillo, Daniela Maria; Borroni, Emanuele; Harris, Kathryn; Barnard, Marinus; Heydenrych, Anthenette; Ndusilo, Norah; Wallis, Carole L; Pillay, Keshree; Barry, Thomas; Reddington, Kate; Richter, Elvira; Mozioğlu, Erkan; Akyürek, Sema; Yalçınkaya, Burhanettin; Akgoz, Muslum; Žel, Jana; Foy, Carole A; McHugh, Timothy D; Huggett, Jim F

    2016-08-03

    Real-time PCR (qPCR) based methods, such as the Xpert MTB/RIF, are increasingly being used to diagnose tuberculosis (TB). While qualitative methods are adequate for diagnosis, the therapeutic monitoring of TB patients requires quantitative methods currently performed using smear microscopy. The potential use of quantitative molecular measurements for therapeutic monitoring has been investigated but findings have been variable and inconclusive. The lack of an adequate reference method and reference materials is a barrier to understanding the source of such disagreement. Digital PCR (dPCR) offers the potential for an accurate method for quantification of specific DNA sequences in reference materials which can be used to evaluate quantitative molecular methods for TB treatment monitoring. To assess a novel approach for the development of quality assurance materials we used dPCR to quantify specific DNA sequences in a range of prototype reference materials and evaluated accuracy between different laboratories and instruments. The materials were then also used to evaluate the quantitative performance of qPCR and Xpert MTB/RIF in eight clinical testing laboratories. dPCR was found to provide results in good agreement with the other methods tested and to be highly reproducible between laboratories without calibration even when using different instruments. When the reference materials were analysed with qPCR and Xpert MTB/RIF by clinical laboratories, all laboratories were able to correctly rank the reference materials according to concentration, however there was a marked difference in the measured magnitude. TB is a disease where the quantification of the pathogen could lead to better patient management and qPCR methods offer the potential to rapidly perform such analysis. However, our findings suggest that when precisely characterised materials are used to evaluate qPCR methods, the measurement result variation is too high to determine whether molecular quantification

  19. Peculiarities of RFLP of highly repetitive DNA in crow genomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chelomina, G.N.; Kryukov, A.P.; Ivanov, S.V.

    1995-02-01

    We present a study of the structural organization of highly repetitive DNA in genomes of hooded crow Corvus cornix L., carrion crow C. corone L., and jungle crow C. macrorhynchos Wagl. RFLP and blot-hybridization with {sup 32}P-labeled Msp I fragment from hooded crow nDNA suggest the interspecific structural conservatism of the most repetitive DNA. The family of repeats we studied had tandem organization and the same (210 bp) period of reiteration for a set of restriction enzymes. However, in parallel to the general similarity of restriction patterns, there are species-specific peculiarities. The repetitive family revealed (Alu I, BsuR I, andmore » Msp I fragments) has quantitative RFLP of nDNA and interspecific differences in the extent of the multimer {open_quotes}ladder{close_quotes} pattern of Msp I fragments. The latter is more pronounced in nDNA of carrion crow than in that of phylogenetically distant jungle crow and closely related hooded crow. This suggests a recent amplification event for highly organized homological repeats in crow genomes. 10 refs., 2 figs.« less

  20. Detection of Toxoplasma oocysts from soil by modified sucrose flotation and PCR methods.

    PubMed

    Matsuo, Junji; Kimura, Daisuke; Rai, Shiba Kumar; Uga, Shoji

    2004-06-01

    A detection method of Toxoplasma gondii oocysts from soil was evaluated using the sucrose flotation technique with modification involving addition of 0.1% gelatin into washing and floating solutions. PCR was performed on untreated samples and after treatment with polyvinylpyrrolidone (PVP), heating and cooling, and NaCl. The addition of gelatin in the sucrose solution yielded a higher number of oocysts. A very thin band was observed when DNA extract was diluted to 1:1024, indicating the presence of PCR inhibitor in the soil. PCR performed on untreated DNA, on PVP-treated, and on PVP-treated with heating and cooling without added bovine serum albumin (BSA) showed a band only at higher dilutions (1:1024 and 1:512) but at a much lower dilution (1:8) with BSA. In contrast, DNA treated with all three agents showed a band at a much lower dilution (1:64), even without added BSA, and no dilution was required when BSA was added. The PCR inhibitors present in the soil were removed by employing various treatment procedures during DNA extraction, and BSA in PCR. Furthermore, the detection limit with the method was 1 oocyst/g of soil, indicating that this method is useful in epidemiological studies.

  1. Quantitative detection method of Enterocytozoon hepatopenaei using TaqMan probe real-time PCR.

    PubMed

    Liu, Ya-Mei; Qiu, Liang; Sheng, An-Zhi; Wan, Xiao-Yuan; Cheng, Dong-Yuan; Huang, Jie

    2018-01-01

    A TaqMan probe and a pair of specific primers were selected from the small subunit ribosomal DNA (SSU rDNA) sequence of Enterocytozoon hepatopenaei (EHP); this real-time PCR assay was developed and optimized. It showed a good linearity in detecting standards of EHP SSU rDNA fragments from 4 × 10 2 to 4 × 10 8 copies/reaction using the established method. The detection limit of the qPCR method was as low as 4 × 10 1 copies per reaction, which was higher than the conventional PCR and SYBR Green I-based EHP qPCR reported. Using the qPCR assay, EHP was detected in four batches of slow-growing Penaeus vannamei specimens collected from Tianjin and Zhejiang Province in China was detected using qPCR. The results showed that all the hepatopancreas from the slow-growing P. vannamei specimens were detected as EHP-positive. EHP copies of hepatopancreas in some batches had a negative correlation with the body mass index (BMI) of shrimps; however, not all batches of specimens had this negative correlation between EHP copies of hepatopancreas and BMI. This qPCR technique is sensitive, specific and easy to perform (96 tests in <3 h), which provides technical support for the detection and prevention of EHP. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Diagnosis and identification of Leishmania spp. from Giemsa-stained slides, by real-time PCR and melting curve analysis in south-west of Iran.

    PubMed

    Khademvatan, S; Neisi, N; Maraghi, S; Saki, J

    2011-12-01

    The aim of present study was describing a real-time PCR assay for the diagnosis and direct identification of Leishmania species on Giemsa-stained slides in south-west of Iran. Altogether, 102 Giemsa-stained slides were collected from different part of south-west of Iran between 2008 and 2011. All the Giemsa-stained slides were examined under light microscope. After DNA extraction, real-time PCR amplification and detection were conducted with fluorescent SYBR Green I. For identification, PCR products were analysed with melting curve analysis. One hundred and two archived slides from suspected lesion examined by microscopy and real-time PCR. The sensitivity of the real-time PCR on Giemsa-stained slid was 98% (96/102). The melting curve analysis (T(m)) were 88·3±0·2°C for L. tropica (MHOM/IR/02/Mash10), 86·5±0·2°C for L. major (MHOM/IR/75/ER) and 89·4±0·3°C for L. infantum (MCAN/IR/97/LON 49), respectively. This study is first report in use of real-time PCR for diagnosis and identification of Leishmania spp. in Iran. Up to now, in Iran, the majority of identification of Leishmania species is restriction fragment length polymorphism (PCR-RFLP) of ITS1 and kinetoplast DNA. Our data showed that Giemsa-stained slides that were stored more than 3 years, can be use for Leishmania DNA extraction and amplification by real-time PCR. Compared to conventional PCR-based methods, the real-time PCR is extremely rapid with results and more samples can be processed at one time.

  3. A multiplex PCR method for detection of Aspergillus spp. and Mycobacterium tuberculosis in BAL specimens.

    PubMed

    Amini, F; Kachuei, R; Noorbakhsh, F; Imani Fooladi, A A

    2015-06-01

    The aim of this study was the detection of Aspergillus species and Mycobacterium tuberculosis together in bronchoalveolar lavage (BAL) using of multiplex PCR. In this study, from September 2012 until June 2013, 100 bronchoalveolar lavage (BAL) specimens were collected from patients suspected of tuberculosis (TB). After the direct and culture test, multiplex PCR were utilized in order to diagnose Aspergillus species and M. tuberculosis. Phenol-chloroform manual method was used in order to extract DNA from these microorganisms. Aspergillus specific primers, M. tuberculosis designed primers and beta actin primers were used for multiplex PCR. In this study, by multiplex PCR method, Aspergillus species were identified in 12 samples (12%), positive samples in direct and culture test were respectively 11% and 10%. Sensitivity and specificity of this method in comparison to direct test were respectively 100% and 98.8%, also sensitivity and specificity of this method in comparison to culture test were respectively 100% and 97.7%. In this assay, M. tuberculosis was identified in 8 samples (8%). Mycobacterium-positive samples in molecular method, direct and culture test were respectively 6%, 5% and 7%. Sensitivity and specificity of PCR method in comparison to direct test were 80% and 97.8% also sensitivity and specificity of this method in comparison to culture test was 71.4% and 98.9%. In the present study, multiplex PCR method had higher sensitivity than direct and culture test in order to identify and detect Aspergillus, also this method had lower sensitivity for identification of M. tuberculosis, suggesting that the method of DNA extraction was not suitable. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  4. Haloacetic acid-degrading bacterial communities in drinking water systems as determined by cultivation and by terminal restriction fragment length polymorphism of PCR-amplified haloacid dehalogenase gene fragments.

    PubMed

    Grigorescu, A S; Hozalski, R M; Lapara, T M

    2012-04-01

    To characterize the HAA-degrading bacteria in drinking water systems. Haloacetic acid (HAA)-degrading bacteria were analysed in drinking water systems by cultivation and by a novel application of terminal restriction fragment length polymorphism (tRFLP). Substantial similarities were observed among the tRFLP patterns of dehI and dehII gene fragments in drinking water samples obtained from three different cities (Minneapolis, MN; St Paul, MN; Bucharest, Romania) and from one biologically active granular activated carbon filter (Hershey, PA). The dominant fragment in the tRFLP profiles of dehI genes from the drinking water samples matched the pattern from an Afipia sp. that was previously isolated from drinking water. In contrast, the dominant fragment in the tRFLP profiles of dehII genes did not match any previously characterized dehII gene fragment. PCR cloning was used to characterize this gene fragment, which had <65% nucleotide sequence identity with any previously characterized dehII gene. Afipia spp. are an appropriate model organism for studying the biodegradation of HAAs in drinking water distribution systems as encoded by dehI genes; the organism that harbours the most prominent dehII gene in drinking water has yet to be cultivated and identified. The development of a novel application of tRFLP targeting dehI and dehII genes could be broadly useful in understanding HAA-degrading bacteria in numerous environments. © 2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  5. Tendency for interlaboratory precision in the GMO analysis method based on real-time PCR.

    PubMed

    Kodama, Takashi; Kurosawa, Yasunori; Kitta, Kazumi; Naito, Shigehiro

    2010-01-01

    The Horwitz curve estimates interlaboratory precision as a function only of concentration, and is frequently used as a method performance criterion in food analysis with chemical methods. The quantitative biochemical methods based on real-time PCR require an analogous criterion to progressively promote method validation. We analyzed the tendency of precision using a simplex real-time PCR technique in 53 collaborative studies of seven genetically modified (GM) crops. Reproducibility standard deviation (SR) and repeatability standard deviation (Sr) of the genetically modified organism (GMO) amount (%) was more or less independent of GM crops (i.e., maize, soybean, cotton, oilseed rape, potato, sugar beet, and rice) and evaluation procedure steps. Some studies evaluated whole steps consisting of DNA extraction and PCR quantitation, whereas others focused only on the PCR quantitation step by using DNA extraction solutions. Therefore, SR and Sr for GMO amount (%) are functions only of concentration similar to the Horwitz curve. We proposed S(R) = 0.1971C 0.8685 and S(r) = 0.1478C 0.8424, where C is the GMO amount (%). We also proposed a method performance index in GMO quantitative methods that is analogous to the Horwitz Ratio.

  6. Molecular identification of house dust mites and storage mites.

    PubMed

    Wong, Shew Fung; Chong, Ai Ling; Mak, Joon Wah; Tan, Jessie; Ling, Suk Jiun; Ho, Tze Ming

    2011-10-01

    Mites are known causes of allergic diseases. Currently, identification of mites based on morphology is difficult if only one mite is isolated from a (dust) sample, or when only one gender is found, or when the specimen is not intact especially with the loss of the legs. The purpose of this study was to use polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) of the ITS2 gene, to complement the morphological data for the identification of mites to the species level. For this, six species were cultured: Dermatophagoides pteronyssinus, D. farinae, Blomia tropicalis, Tyrophagus putrescentiae, Aleuroglyphus ovatus and Glycycometus malaysiensis. Genomic DNA of the mites was extracted, quantified, amplified and digested individually with restriction enzymes. Hinf I and Ple I differentiated the restriction patterns of D. pteronyssinus and D. farinae. Bfa I and Alu I enzymes differentiated B. tropicalis and G. malaysiensis. Ple I enzyme was useful for the differentiation between T. putrescentiae and A. ovatus. Bfa I was useful for the differentiation of G. malaysiensis from the rest of the species. In conclusion, different species of mites can be differentiated using PCR-RFLP of ITS2 region. With the established PCR-RFLP method in this study, identification of these mites to the species level is possible even if complete and intact adult specimens of both sexes are not available. As no study to date has reported PCR-RFLP method for the identification of domestic mites, the established method should be validated for the identification of other species of mites that were not included in this study.

  7. [Multiplex real-time PCR method for rapid detection of Marburg virus and Ebola virus].

    PubMed

    Yang, Yu; Bai, Lin; Hu, Kong-Xin; Yang, Zhi-Hong; Hu, Jian-Ping; Wang, Jing

    2012-08-01

    Marburg virus and Ebola virus are acute infections with high case fatality rates. A rapid, sensitive detection method was established to detect Marburg virus and Ebola virus by multiplex real-time fluorescence quantitative PCR. Designing primers and Taqman probes from highly conserved sequences of Marburg virus and Ebola virus through whole genome sequences alignment, Taqman probes labeled by FAM and Texas Red, the sensitivity of the multiplex real-time quantitative PCR assay was optimized by evaluating the different concentrations of primers and Probes. We have developed a real-time PCR method with the sensitivity of 30.5 copies/microl for Marburg virus positive plasmid and 28.6 copies/microl for Ebola virus positive plasmids, Japanese encephalitis virus, Yellow fever virus, Dengue virus were using to examine the specificity. The Multiplex real-time PCR assays provide a sensitive, reliable and efficient method to detect Marburg virus and Ebola virus simultaneously.

  8. A TaqI PCR-RFLP detecting a novel SNP in exon 2 of the bovine POU1F1 gene.

    PubMed

    Pan, Chuanying; Lan, Xianyong; Chen, Hong; Guo, Yikun; Shu, Jianhong; Lei, Chuzhao; Wang, Xinzhuang

    2008-08-01

    PCR-SSCP and DNA sequencing methods were applied to reveal three novel single nucleotide polymorphisms (SNPs) in exon 2 of the POU1F1 gene in 963 Chinese cattle belonging to eight breeds. Among them, a silent SNP (NM_174579:c.545G > A) detected by TaqI endonuclease is described. Frequencies of the POU1F1-G allele varied from 0.685 to 1.000. The association of TaqI polymorphism with growth traits was analyzed in 251 Nanyang cattle. No significant associations of the TaqI polymorphism with body weight and average daily gain for different growth periods (6, 12, 18, and 24 months old) were observed (P > 0.05), as well as for body sizes (P > 0.05).

  9. Comparison of Real-Time PCR, Reverse Transcriptase Real-Time PCR, Loop-Mediated Isothermal Amplification, and the FDA Conventional Microbiological Method for the Detection of Salmonella spp. in Produce ▿ †

    PubMed Central

    Zhang, Guodong; Brown, Eric W.; González-Escalona, Narjol

    2011-01-01

    Contamination of foods, especially produce, with Salmonella spp. is a major concern for public health. Several methods are available for the detection of Salmonella in produce, but their relative efficiency for detecting Salmonella in commonly consumed vegetables, often associated with outbreaks of food poisoning, needs to be confirmed. In this study, the effectiveness of three molecular methods for detection of Salmonella in six produce matrices was evaluated and compared to the FDA microbiological detection method. Samples of cilantro (coriander leaves), lettuce, parsley, spinach, tomato, and jalapeno pepper were inoculated with Salmonella serovars at two different levels (105 and <101 CFU/25 g of produce). The inoculated produce was assayed by the FDA Salmonella culture method (Bacteriological Analytical Manual) and by three molecular methods: quantitative real-time PCR (qPCR), quantitative reverse transcriptase real-time PCR (RT-qPCR), and loop-mediated isothermal amplification (LAMP). Comparable results were obtained by these four methods, which all detected as little as 2 CFU of Salmonella cells/25 g of produce. All control samples (not inoculated) were negative by the four methods. RT-qPCR detects only live Salmonella cells, obviating the danger of false-positive results from nonviable cells. False negatives (inhibition of either qPCR or RT-qPCR) were avoided by the use of either a DNA or an RNA amplification internal control (IAC). Compared to the conventional culture method, the qPCR, RT-qPCR, and LAMP assays allowed faster and equally accurate detection of Salmonella spp. in six high-risk produce commodities. PMID:21803916

  10. A Molecular Epidemiological Survey of Clinically Important Dermatophytes in Iran Based on Specific RFLP Profiles of Beta-tubulin Gene

    PubMed Central

    ABASTABAR, Mahdi; REZAEI-MATEHKOLAEI, Ali; SHIDFAR, Mohammad Reza; KORDBACHEH, Parivash; MOHAMMADI, Rasoul; SHOKOOHI, Tahereh; HEDAYATI, Mohammad Taghi; JALALIZAND, Nilufar; MIRHENDI, Hossein

    2013-01-01

    Abstract Background Surveillance of dermatophytosis is essential to determine the likely changes in etiological trends and distribution profile of this infection. In this study beta tubulin gene (BT2), was used as the first time in a PCR-RFLP format to clarify the distribution of dermatophytosis agents in some parts of Iran. Methods A total of 603 clinical isolates was obtained from 500 patients in Tehran, Isfahan, Mazandaran and Guilan provinces. The isolates were identified using macro/micro-morphological criteria and electrophoretic patterns of PCR amplicons of BT2after digestion with each of the restriction enzymes FatI, HpyCH4V, MwoI and Alw21I. Results Among the patients, 59.2% were male and 40.8% female. The most prevalent clinical form was tinea pedis (42.4%), followed by tinea cruris (24.2%), tinea unguium (12.3%), tinea corporis (10.8%), tinea faciei (4%), tinea manuum (3.14%), tinea capitis (3%) and tinea barbae (0.16%), respectively. Trichophyton interdigitale ranked the first, followed by T. rubrum, Epidermophyton floccosum, Microsporum canis, T. tonsurans, T. erinacei and T. violaceum (each 0.49%) and the less frequent species were T. schoenleinii, M. gypseum and T.anamorph of Arthroderma benhamiae (each 0.16%). A case of scalp infection by E. floccosum was an exceptional event in the study. No case of T. verrucosum was found. Conclusion Trichophyton species and E. floccosum are yet the predominant agents of infection in Iran, while Microsporum species are decreasing. T. interdigitale and Tinea pedis remain as the most causal agent and clinical form of dermatophytosis, respectively. It seems that BT2 can be a useful genetic marker for epidemiological survey of common pathogenic dermatophytes. PMID:26060667

  11. An alternative method to amplify RNA without loss of signal conservation for expression analysis with a proteinase DNA microarray in the ArrayTube format.

    PubMed

    Schüler, Susann; Wenz, Ingrid; Wiederanders, B; Slickers, P; Ehricht, R

    2006-06-12

    alternative method for detecting even low expressed genes by microarray experiments in a highly reproducible and sensitive manner. Preservation of signal integrity is demonstrated out by QRT-PCR measurements. The little amounts of total RNA necessary for the analyses make this method applicable for investigations with limited material as in clinical samples from, for example, organ or tumour biopsies. Those are arguments in favour of the high potential of our assay compared to established procedures for amplification within the field of diagnostic expression profiling. Nevertheless, the screening character of microarray data must be mentioned, and independent methods should verify the results.

  12. Rapid-Viability PCR Method for Detection of Live, Virulent Bacillus anthracis in Environmental Samples ▿

    PubMed Central

    Létant, Sonia E.; Murphy, Gloria A.; Alfaro, Teneile M.; Avila, Julie R.; Kane, Staci R.; Raber, Ellen; Bunt, Thomas M.; Shah, Sanjiv R.

    2011-01-01

    In the event of a biothreat agent release, hundreds of samples would need to be rapidly processed to characterize the extent of contamination and determine the efficacy of remediation activities. Current biological agent identification and viability determination methods are both labor- and time-intensive such that turnaround time for confirmed results is typically several days. In order to alleviate this issue, automated, high-throughput sample processing methods were developed in which real-time PCR analysis is conducted on samples before and after incubation. The method, referred to as rapid-viability (RV)-PCR, uses the change in cycle threshold after incubation to detect the presence of live organisms. In this article, we report a novel RV-PCR method for detection of live, virulent Bacillus anthracis, in which the incubation time was reduced from 14 h to 9 h, bringing the total turnaround time for results below 15 h. The method incorporates a magnetic bead-based DNA extraction and purification step prior to PCR analysis, as well as specific real-time PCR assays for the B. anthracis chromosome and pXO1 and pXO2 plasmids. A single laboratory verification of the optimized method applied to the detection of virulent B. anthracis in environmental samples was conducted and showed a detection level of 10 to 99 CFU/sample with both manual and automated RV-PCR methods in the presence of various challenges. Experiments exploring the relationship between the incubation time and the limit of detection suggest that the method could be further shortened by an additional 2 to 3 h for relatively clean samples. PMID:21764960

  13. Evolution of Toxoplasma-PCR methods and practices: a French national survey and proposal for technical guidelines.

    PubMed

    Roux, Guillaume; Varlet-Marie, Emmanuelle; Bastien, Patrick; Sterkers, Yvon

    2018-06-08

    The molecular diagnosis of toxoplasmosis lacks standardisation due to the use of numerous methods with variable performance. This diversity of methods also impairs robust performance comparisons between laboratories. The harmonisation of practices by diffusion of technical guidelines is a useful way to improve these performances. The knowledge of methods and practices used for this molecular diagnosis is an essential step to provide guidelines for Toxoplasma-PCR. In the present study, we aimed (i) to describe the methods and practices of Toxoplasma-PCR used by clinical microbiology laboratories in France and (ii) to propose technical guidelines to improve molecular diagnosis of toxoplasmosis. To do so, a yearly self-administered questionnaire-based survey was undertaken in proficient French laboratories from 2008 to 2015, and guidelines were proposed based on the results of those as well as previously published work. This period saw the progressive abandonment of conventional PCR methods, of Toxoplasma-PCR targeting the B1 gene and of the use of two concomitant molecular methods for this diagnosis. The diversity of practices persisted during the study, in spite of the increasing use of commercial kits such as PCR kits, DNA extraction controls and PCR inhibition controls. We also observed a tendency towards the automation of DNA extraction. The evolution of practices did not always go together with an improvement in those, as reported notably by the declining use of Uracil-DNA Glycosylase to avoid carry-over contamination. We here propose technical recommendations which correspond to items explored during the survey, with respect to DNA extraction, Toxoplasma-PCR and good PCR practices. Copyright © 2018 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  14. Community analysis of preservative-treated southern pine (Pinus spp.) using terminal restriction fragment length polymorphism (T-RFLP) analysis

    Treesearch

    Grant T. Kirker; M. Lynn Prewitt; Walter J. Diehl; Susan V. Diehl

    2012-01-01

    The effects of wood preservatives on the bacterial community in southern yellow pine were assessed by the molecular method ‘terminal restriction fragment length polymorphism’ (T-RFLP). Stakes, treated with 0.25 % and 0.37 % ammoniacal copper quat (ACQ-C), 0.1 % and 0.25 % chlorothalonil (CTN), 0.1 % and 0.25 % CTN with 2 % butylated hydroxytoluene (BHT), and 2 % BHT...

  15. Comparison of four PCR methods for efficient detection of Trypanosoma cruzi in routine diagnostics.

    PubMed

    Seiringer, Peter; Pritsch, Michael; Flores-Chavez, María; Marchisio, Edoardo; Helfrich, Kerstin; Mengele, Carolin; Hohnerlein, Stefan; Bretzel, Gisela; Löscher, Thomas; Hoelscher, Michael; Berens-Riha, Nicole

    2017-07-01

    Due to increased migration, Chagas disease has become an international health problem. Reliable diagnosis of chronically infected people is crucial for prevention of non-vectorial transmission as well as treatment. This study compared four distinct PCR methods for detection of Trypanosoma cruzi DNA for the use in well-equipped routine diagnostic laboratories. DNA was extracted of T. cruzi-positive and negative patients' blood samples and cultured T. cruzi, T. rangeli as well as Leishmania spp. One conventional and two real-time PCR methods targeting a repetitive Sat-DNA sequence as well as one conventional PCR method targeting the variable region of the kDNA minicircle were compared for sensitivity, intra- and interassay precision, limit of detection, specificity and cross-reactivity. Considering the performance, costs and ease of use, an algorithm for PCR-diagnosis of patients with a positive serology for T. cruzi antibodies was developed. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  16. Using T-RFLP data on denitrifier community composition to inform understanding of denitrification in stream sediments (Invited)

    NASA Astrophysics Data System (ADS)

    Wang, S.; Somers, K.; Sudduth, E.; Hassett, B.; Bernhardt, E. S.; Urban, D. L.

    2010-12-01

    We used terminal restriction fragment length polymorphism (T-RFLP), a molecular fingerprinting method, to characterize denitrifier communities in sediments taken from 48 study streams in North Carolina, USA. In addition to characterizing denitrifier communities, we also used denitrification enzyme activity (DEA) assays to measure potential denitrification rates. Due to differences in watershed land-use, study streams covered a gradient of nitrogen and carbon concentrations, as well as a gradient of contaminant loading from stormwater and sanitary sewers. Nitrogen and carbon (i.e., substrate) concentrations are commonly used to make predictions about denitrification rates in streams. Such models do not take into account denitrifier community composition, which may be an important, independent control of denitrification rates, particularly under stressful conditions (e.g., high contaminant loading) that prevent communities from capitalizing on high substrate availability. Our results indicate that substrate availability by itself was a weak predictor of denitrification rates; the same was also true for denitrifier community composition. However, when both factors were incorporated in a multiple regression model, the percent variation explained increased substantially. These findings suggest that T-RFLP, a relatively cost-effective method, can be used to improve our understanding of controls on denitrification rates in streams with varying watershed land-uses.

  17. Optimization and Verification of Droplet Digital PCR Even-Specific Methods for the Quantification of GM Maize DAS1507 and NK603.

    PubMed

    Grelewska-Nowotko, Katarzyna; Żurawska-Zajfert, Magdalena; Żmijewska, Ewelina; Sowa, Sławomir

    2018-05-01

    In recent years, digital polymerase chain reaction (dPCR), a new molecular biology technique, has been gaining in popularity. Among many other applications, this technique can also be used for the detection and quantification of genetically modified organisms (GMOs) in food and feed. It might replace the currently widely used real-time PCR method (qPCR), by overcoming problems related to the PCR inhibition and the requirement of certified reference materials to be used as a calibrant. In theory, validated qPCR methods can be easily transferred to the dPCR platform. However, optimization of the PCR conditions might be necessary. In this study, we report the transfer of two validated qPCR methods for quantification of maize DAS1507 and NK603 events to the droplet dPCR (ddPCR) platform. After some optimization, both methods have been verified according to the guidance of the European Network of GMO Laboratories (ENGL) on analytical method verification (ENGL working group on "Method Verification." (2011) Verification of Analytical Methods for GMO Testing When Implementing Interlaboratory Validated Methods). Digital PCR methods performed equally or better than the qPCR methods. Optimized ddPCR methods confirm their suitability for GMO determination in food and feed.

  18. Detection and quantification limits of the EPA Enterococcus qPCR method

    EPA Science Inventory

    The U.S. EPA will be recommending a quantitative polymerase chain reaction (qPCR) method targeting Enterococcus spp. as an option for monitoring recreational beach water quality in 2013 and has published preliminary proposed water quality criteria guidelines for the method. An im...

  19. A multiplex PCR method for the simultaneous detection of three viruses associated with canine viral enteric infections.

    PubMed

    Deng, Xiaoyu; Zhang, Jiali; Su, Jiazi; Liu, Hao; Cong, Yanlong; Zhang, Lei; Zhang, Kemeng; Shi, Ning; Lu, Rongguang; Yan, Xijun

    2018-04-19

    The aim of this study was to establish a multiplex PCR (mPCR) method that can simultaneously detect canine parvovirus (CPV-2), canine coronavirus (CCoV) and canine adenovirus (CAV), thereby eliminating the need to detect these pathogens individually. Based on conserved regions in the genomes of these three viruses, the VP2 gene of CPV-2, the endoribonuclease nsp15 gene of CCoV, and the 52K gene of CAV were selected for primer design. The specificity of the mPCR results showed no amplification of canine distemper virus (CDV), canine parainfluenza virus (CPIV), or pseudorabies virus (PRV), indicating that the method had good specificity. A sensitivity test showed that the detection limit of the mPCR method was 1 × 10 4 viral copies. A total of 63 rectal swabs from dogs with diarrheal symptoms were evaluated using mPCR and routine PCR. The ratio of positive samples to total samples for CPV-2, CCoV, and CAV was 55.6% (35/63) for mPCR and 55.6% (35/63) for routine PCR. Thirty-five positive samples were detected by both methods, for a coincidence ratio of 100%. This mPCR method can simultaneously detect CCoV (CCoV-II), CAV (CAV-1, CAV-2) and CPV-2 (CPV-2a, CPV-2b, CPV-2c), which are associated with viral enteritis, thereby providing an efficient, inexpensive, specific, and accurate new tool for clinical diagnosis and laboratory epidemiological investigations.

  20. Highly Sensitive Detection of Low-Abundance White Spot Syndrome Virus by a Pre-Amplification PCR Method.

    PubMed

    Pan, Xiaoming; Zhang, Yanfang; Sha, Xuejiao; Wang, Jing; Li, Jing; Dong, Ping; Liang, Xingguo

    2017-03-28

    White spot syndrome virus (WSSV) is a major threat to the shrimp farming industry and so far there is no effective therapy for it, and thus early diagnostic of WSSV is of great importance. However, at the early stage of infection, the extremely low-abundance of WSSV DNA challenges the detection sensitivity and accuracy of PCR. To effectively detect low-abundance WSSV, here we developed a pre-amplification PCR (pre-amp PCR) method to amplify trace amounts of WSSV DNA from massive background genomic DNA. Combining with normal specific PCR, 10 copies of target WSSV genes were detected from ~10 10 magnitude of backgrounds. In particular, multiple target genes were able to be balanced amplified with similar efficiency due to the usage of the universal primer. The efficiency of the pre-amp PCR was validated by nested-PCR and quantitative PCR, and pre-amp PCR showed higher efficiency than nested-PCR when multiple targets were detected. The developed method is particularly suitable for the super early diagnosis of WSSV, and has potential to be applied in other low-abundance sample detection cases.

  1. Comparison of FilmArray and Quantitative Real-Time Reverse Transcriptase PCR for Detection of Zaire Ebolavirus from Contrived and Clinical Specimens

    PubMed Central

    Southern, Timothy R.; Racsa, Lori D.; Albariño, César G.; Fey, Paul D.; Hinrichs, Steven H.; Murphy, Caitlin N.; Herrera, Vicki L.; Sambol, Anthony R.; Hill, Charles E.; Ryan, Emily L.; Kraft, Colleen S.; Campbell, Shelley; Sealy, Tara K.; Schuh, Amy; Ritchie, James C.; Lyon, G. Marshall; Mehta, Aneesh K.; Varkey, Jay B.; Ribner, Bruce S.; Brantly, Kent P.; Ströher, Ute; Iwen, Peter C.

    2015-01-01

    Rapid, reliable, and easy-to-use diagnostic assays for detection of Zaire ebolavirus (ZEBOV) are urgently needed. The goal of this study was to examine the agreement among emergency use authorization (EUA) tests for the detection of ZEBOV nucleic acids, including the BioFire FilmArray BioThreat (BT) panel, the FilmArray BT-E panel, and the NP2 and VP40 quantitative real-time reverse transcriptase (qRT) PCR assays from the Centers for Disease Control and Prevention (CDC). Specimens used in this study included whole blood spiked with inactivated ZEBOV at known titers and whole-blood, plasma, and urine clinical specimens collected from persons diagnosed with Ebola virus disease (EVD). The agreement for FilmArray and qRT-PCR results using contrived whole-blood specimens was 100% (6/6 specimens) for each ZEBOV dilution from 4 × 107 to 4 × 102 50% tissue culture infective dose (TCID50)/ml, as well as the no-virus negative-control sample. The limit of detection for FilmArray and qRT-PCR assays with inactivated ZEBOV, based on duplicate positive results, was determined to be 4 × 102 TCID50/ml. Rates of agreement between FilmArray and qRT-PCR results for clinical specimens from patients with EVD were 85% (23/27 specimens) for whole-blood specimens, 90% (18/20 specimens) for whole-blood specimens tested by FilmArray testing and matched plasma specimens tested by qRT-PCR testing, and 85% (11/13 specimens) for urine specimens. Among 60 specimens, eight discordant results were noted, with ZEBOV nucleic acids being detected only by FilmArray testing in four specimens and only by qRT-PCR testing in the remaining four specimens. These findings demonstrate that the rapid and easy-to-use FilmArray panels are effective tests for evaluating patients with EVD. PMID:26157148

  2. DNA-PCR analysis of bloodstains sampled by the polyvinyl-alcohol method.

    PubMed

    Schyma, C; Huckenbeck, W; Bonte, W

    1999-01-01

    Among the usual techniques of sampling gunshot residues (GSR), the polyvinyl-alcohol method (PVAL) includes the advantage of embedding all particles, foreign bodies and stains on the surface of the shooter's hand in exact and reproducible topographic localization. The aim of the present study on ten persons killed by firearms was to check the possibility of DNA-PCR typing of blood traces embedded in the PVAL gloves in a second step following GSR analysis. The results of these examinations verify that the PVAL technique does not include factors that inhibit successful PCR typing. Thus the PVAL method can be recommended as a combination technique to secure and preserve inorganic and biological traces at the same time.

  3. New multiplex PCR methods for rapid screening of genetically modified organisms in foods

    PubMed Central

    Datukishvili, Nelly; Kutateladze, Tamara; Gabriadze, Inga; Bitskinashvili, Kakha; Vishnepolsky, Boris

    2015-01-01

    We present novel multiplex PCR methods for rapid and reliable screening of genetically modified organisms (GMOs). New designed PCR primers targeting four frequently used GMO specific sequences permitted identification of new DNA markers, in particular 141 bp fragment of cauliflower mosaic virus (CaMV) 35S promoter, 224 bp fragment of Agrobacterium tumefaciens nopaline synthase (NOS) terminator, 256 bp fragment of 5-enolppyruvylshikimate-phosphate synthase (epsps) gene and 258 bp fragment of Cry1Ab delta-endotoxin (cry1Ab) gene for GMO screening. The certified reference materials containing Roundup Ready soybean (RRS) and maize MON 810 were applied for the development and optimization of uniplex and multiplex PCR systems. Evaluation of amplification products by agarose gel electrophoresis using negative and positive controls confirmed high specificity and sensitivity at 0.1% GMO for both RRS and MON 810. The fourplex PCR was developed and optimized that allows simultaneous detection of three common transgenic elements, such as: CaMV 35S promoter, NOS terminator, epsps gene together with soybean-specific lectin gene. The triplex PCR developed enables simultaneous identification of transgenic elements, such as: 35S promoter and cry1Ab gene together with maize zein gene. The analysis of different processed foods demonstrated that multiplex PCR methods developed in this study are useful for accurate and fast screening of GM food products. PMID:26257724

  4. New multiplex PCR methods for rapid screening of genetically modified organisms in foods.

    PubMed

    Datukishvili, Nelly; Kutateladze, Tamara; Gabriadze, Inga; Bitskinashvili, Kakha; Vishnepolsky, Boris

    2015-01-01

    We present novel multiplex PCR methods for rapid and reliable screening of genetically modified organisms (GMOs). New designed PCR primers targeting four frequently used GMO specific sequences permitted identification of new DNA markers, in particular 141 bp fragment of cauliflower mosaic virus (CaMV) 35S promoter, 224 bp fragment of Agrobacterium tumefaciens nopaline synthase (NOS) terminator, 256 bp fragment of 5-enolppyruvylshikimate-phosphate synthase (epsps) gene and 258 bp fragment of Cry1Ab delta-endotoxin (cry1Ab) gene for GMO screening. The certified reference materials containing Roundup Ready soybean (RRS) and maize MON 810 were applied for the development and optimization of uniplex and multiplex PCR systems. Evaluation of amplification products by agarose gel electrophoresis using negative and positive controls confirmed high specificity and sensitivity at 0.1% GMO for both RRS and MON 810. The fourplex PCR was developed and optimized that allows simultaneous detection of three common transgenic elements, such as: CaMV 35S promoter, NOS terminator, epsps gene together with soybean-specific lectin gene. The triplex PCR developed enables simultaneous identification of transgenic elements, such as: 35S promoter and cry1Ab gene together with maize zein gene. The analysis of different processed foods demonstrated that multiplex PCR methods developed in this study are useful for accurate and fast screening of GM food products.

  5. Inheritance of RFLP loci in a loblolly pine three-generation pedigree

    Treesearch

    M.D. Devey; K.D. Jermstad; C.G. Tauer; D.B. Neale

    1991-01-01

    A high-density restriction fragment length polymorphism (RFLP) linkage map is being constructed for loblolly pine (Pinus taeda L.). Loblolly pine cDNA and genomic DNA clones were used as probes in hybridizations to genomic DNAs prepared from grandparents, parents, and progeny of a three-generation outbred pedigree. Approximately 200 probes were...

  6. Immuno-PCR: Achievements and Perspectives.

    PubMed

    Ryazantsev, D Y; Voronina, D V; Zavriev, S K

    2016-12-01

    The immuno-PCR (iPCR) method combines advantages of enzyme-linked immunosorbent assay and polymerase chain reaction, which is used in iPCR as a method of "visualization" of antigen-antibody interaction. The use of iPCR provides classical PCR sensitivity to objects traditionally detected by ELISA. This method could be very sensitive and allow for detection of quantities of femtograms/ml order. However, iPCR is still not widely used. The aim of this review is to highlight the special features of the iPCR method and to show the main aspects of its development and application in recent years.

  7. Digital PCR: A Sensitive and Precise Method for KIT D816V Quantification in Mastocytosis.

    PubMed

    Greiner, Georg; Gurbisz, Michael; Ratzinger, Franz; Witzeneder, Nadine; Simonitsch-Klupp, Ingrid; Mitterbauer-Hohendanner, Gerlinde; Mayerhofer, Matthias; Müllauer, Leonhard; Sperr, Wolfgang R; Valent, Peter; Hoermann, Gregor

    2018-03-01

    The analytically sensitive detection of KIT D816V in blood and bone marrow is important for diagnosing systemic mastocytosis (SM). Additionally, precise quantification of the KIT D816V variant allele fraction (VAF) is relevant clinically because it helps to predict multilineage involvement and prognosis in cases of advanced SM. Digital PCR (dPCR) is a promising new method for sensitive detection and accurate quantification of somatic mutations. We performed a validation study of dPCR for KIT D816V on 302 peripheral blood and bone marrow samples from 156 patients with mastocytosis for comparison with melting curve analysis after peptide nucleic acid-mediated PCR clamping (clamp-PCR) and allele-specific quantitative real-time PCR (qPCR). dPCR showed a limit of detection of 0.01% VAF with a mean CV of 8.5% and identified the mutation in 90% of patients compared with 70% for clamp-PCR ( P < 0.001). Moreover, dPCR for KIT D816V was highly concordant with qPCR without systematic deviation of results, and confirmed the clinical value of KIT D816V VAF measurements. Thus, patients with advanced SM showed a significantly higher KIT D816V VAF (median, 2.43%) compared with patients with indolent SM (median, 0.14%; P < 0.001). Moreover, dPCR confirmed the prognostic significance of a high KIT D816V VAF regarding survival ( P < 0.001). dPCR for KIT D816V provides a high degree of precision and sensitivity combined with the potential for interlaboratory standardization, which is crucial for the implementation of KIT D816V allele burden measurement. Thus, dPCR is suitable as a new method for KIT D816V testing in patients with mastocytosis. © 2017 American Association for Clinical Chemistry.

  8. Rapid detection of human fecal Eubacterium species and related genera by nested PCR method.

    PubMed

    Kageyama, A; Benno, Y

    2001-01-01

    PCR procedures based on 16S rDNA gene sequence specific for seven Eubacterium spp. and Eggerthella lenta that predominate in the human intestinal tract were developed, and used for direct detection of these species in seven human feces samples. Three species of Eggerthella lenta, Eubacterium rectale, and Eubacterium eligens were detected from seven fecal samples. Eubacterium biforme was detected from six samples. It was reported that E. rectale, E. eligens, and E. biforme were difficult to detect by traditional culture method, but the nested PCR method is available for the detection of these species. This result shows that the nested PCR method utilizing a universal primer pair, followed by amplification with species-specific primers, would allow rapid detection of Eubacterium species in human feces.

  9. PCR-Based Method for Detecting Viral Penetration of Medical Exam Gloves

    PubMed Central

    Broyles, John M.; O'Connell, Kevin P.; Korniewicz, Denise M.

    2002-01-01

    The test approved by the U.S. Food and Drug Administration for assessment of the barrier quality of medical exam gloves includes visual inspection and a water leak test. Neither method tests directly the ability of gloves to prevent penetration by microorganisms. Methods that use microorganisms (viruses and bacteria) to test gloves have been developed but require classical culturing of the organism to detect it. We have developed a PCR assay for bacteriophage φX174 that allows the rapid detection of penetration of gloves by this virus. The method is suitable for use with both latex and synthetic gloves. The presence of glove powder on either latex or synthetic gloves had no effect on the ability of the PCR assay to detect bacteriophage DNA. The assay is rapid, sensitive, and inexpensive; requires only small sample volumes; and can be automated. PMID:12149320

  10. Multi-laboratory survey of qPCR enterococci analysis method performance

    EPA Pesticide Factsheets

    Quantitative polymerase chain reaction (qPCR) has become a frequently used technique for quantifying enterococci in recreational surface waters, but there are several methodological options. Here we evaluated how three method permutations, type of mastermix, sample extract dilution and use of controls in results calculation, affect method reliability among multiple laboratories with respect to sample interference. Multiple samples from each of 22 sites representing an array of habitat types were analyzed using EPA Method 1611 and 1609 reagents with full strength and five-fold diluted extracts. The presence of interference was assessed three ways: using sample processing and PCR amplifications controls; consistency of results across extract dilutions; and relative recovery of target genes from spiked enterococci in water sample compared to control matrices with acceptable recovery defined as 50 to 200%. Method 1609, which is based on an environmental mastermix, was found to be superior to Method 1611, which is based on a universal mastermix. Method 1611 had over a 40% control assay failure rate with undiluted extracts and a 6% failure rate with diluted extracts. Method 1609 failed in only 11% and 3% of undiluted and diluted extracts analyses. Use of sample processing control assay results in the delta-delta Ct method for calculating relative target gene recoveries increased the number of acceptable recovery results. Delta-delta tended to bias recoveries fr

  11. Laboratory Evaluations of the Enterococcus qPCR Method for Recreational Water Quality Testing: Method Performance and Sources of Uncertainty in Quantitative Measurements

    EPA Science Inventory

    The BEACH Act of 2000 directed the U.S. EPA to establish more expeditious methods for the detection of pathogen indicators in coastal waters, as well as new water quality criteria based on these methods. Progress has been made in developing a quantitative PCR (qPCR) method for en...

  12. Increased efficacy for in-house validation of real-time PCR GMO detection methods.

    PubMed

    Scholtens, I M J; Kok, E J; Hougs, L; Molenaar, B; Thissen, J T N M; van der Voet, H

    2010-03-01

    To improve the efficacy of the in-house validation of GMO detection methods (DNA isolation and real-time PCR, polymerase chain reaction), a study was performed to gain insight in the contribution of the different steps of the GMO detection method to the repeatability and in-house reproducibility. In the present study, 19 methods for (GM) soy, maize canola and potato were validated in-house of which 14 on the basis of an 8-day validation scheme using eight different samples and five on the basis of a more concise validation protocol. In this way, data was obtained with respect to the detection limit, accuracy and precision. Also, decision limits were calculated for declaring non-conformance (>0.9%) with 95% reliability. In order to estimate the contribution of the different steps in the GMO analysis to the total variation variance components were estimated using REML (residual maximum likelihood method). From these components, relative standard deviations for repeatability and reproducibility (RSD(r) and RSD(R)) were calculated. The results showed that not only the PCR reaction but also the factors 'DNA isolation' and 'PCR day' are important factors for the total variance and should therefore be included in the in-house validation. It is proposed to use a statistical model to estimate these factors from a large dataset of initial validations so that for similar GMO methods in the future, only the PCR step needs to be validated. The resulting data are discussed in the light of agreed European criteria for qualified GMO detection methods.

  13. A new detection method for the K variant of butyrylcholinesterase based on PCR primer introduced restriction analysis (PCR-PIRA).

    PubMed Central

    Shibuta, K; Abe, M; Suzuki, T

    1994-01-01

    The K variant of human butyrylcholinesterase is caused by a G/A transition in the butyrylcholinesterase gene, which neither creates nor destroys any restriction site. In an attempt to detect the K variant both simply and rapidly, we developed a two step method of "PCR primer introduced restriction analysis" (PCR-PIRA). The first step was used to introduce a new Fun4HI site into the normal allele for a screening test, while the second step was performed to create a new MaeIII site on the variant allele for a specific test. This method thus enabled us to distinguish clearly the K variant from the normal allele, and also showed that the frequency of the K variant allele is 0.164 in the Japanese population. Images PMID:7966197

  14. Influence of nitrogen fertilization on diazotrophic communities in the rhizosphere of the Jerusalem artichoke (Helianthus tuberosus L.).

    PubMed

    Meng, Xianfa; Wang, Lin; Long, Xiaohua; Liu, Zhaopu; Zhang, Zhenhua; Zed, Rengel

    2012-06-01

    Diazotrophs in the soil may be influenced by plant factors as well as nitrogen (N) fertilization. In this study, we investigated potential diazotrophic communities in the rhizosphere of the Jerusalem artichoke (Helianthus tuberosus L.) supplied with differing amounts of N. The community structure of N(2)-fixing bacteria was profiled using the length heterogeneity polymerase chain reaction (LH-PCR) and terminal restriction fragment length polymorphism (T-RFLP) based on a variation in the nifH gene. Higher numbers of diazotrophs were detected by T-RFLP compared to LH-PCR. The lowest number of N(2)-fixing bacteria was observed in the rhizosphere soil with high N fertilization. T-RFLP was a better method than LH-PCR for profiling microbial diversity of diazotrophs using multidimensional scaling (MDS) and analysis of similarity (ANOSIM) of fingerprints as well as diversity measures. The supply of N fertilizer appeared to negatively influence the abundance of diazotrophs in the rhizophere of the Jerusalem artichoke. Copyright © 2012 Institut Pasteur. All rights reserved.

  15. Detection of species and molecular typing of Leishmania in suspected patients by targeting cytochrome b gene in Zahedan, southeast of Iran.

    PubMed

    Mirahmadi, Hadi; Rezaee, Nasrin; Mehravaran, Ahmad; Heydarian, Peyman; Raeghi, Saber

    2018-05-01

    Cutaneous leishmaniasis (CL) is one of the most important health problems that are capable of involving both tropical and subtropical areas, especially in Iran. This cross-sectional study aimed to differentiate the species that are able to cause CL in Zahedan city by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. It was conducted on 145 suspected CL patients in Zahedan city between 2014 and 2016. The smears were initially prepared, air-dried, fixed with absolute methanol, and stained with 10% Giemsa. Then, we examined the stained samples by a light microscope under 1000× magnifications. PCR assay targeted cytochrome b (cyt b ) gene using LCBF1 and LCBR2 primers and the products digested by Ssp1 enzymes. From 145 suspected CL patients, 76 (52.4%) were positive in microscopic examination. In addition, we detected gene of interest (cyt b ) in 98 (67.5%). The results of PCR-RFLP indicated that 53/98 (54%) cases were Leishmania major and 45/98 (46%) were Leishmania tropica , and the main species in these areas was L. major . We concluded that the microscopic examination is not sensitive enough and is not able to distinguish between different Leishmania species. Instead, molecular methods like PCR-RFLP can be appropriately used with promising results.

  16. Meat species identification and Halal authentication analysis using mitochondrial DNA.

    PubMed

    Murugaiah, Chandrika; Noor, Zainon Mohd; Mastakim, Maimunah; Bilung, Lesley Maurice; Selamat, Jinap; Radu, Son

    2009-09-01

    A method utilizing PCR-restriction fragment length polymorphism (RFLP) in the mitochondrial genes was developed for beef (Bos taurus), pork (Sus scrofa), buffalo (Bubalus bubali), quail (Coturnix coturnix), chicken (Gallus gallus), goat (Capra hircus), rabbit (Oryctolagus cuniculus) species identification and Halal authentication. PCR products of 359-bp were successfully obtained from the cyt b gene of these six meats. AluI, BsaJI, RsaI, MseI, and BstUI enzymes were identified as potential restriction endonucleases to differentiate the meats. The genetic differences within the cyt b gene among the meat were successfully confirmed by PCR-RFLP. A reliable typing scheme of species which revealed the genetic differences among the species was developed.

  17. A digital PCR method for identifying and quantifying adulteration of meat species in raw and processed food

    PubMed Central

    Ren, Junan; Deng, Tingting; Huang, Wensheng; Chen, Ying; Ge, Yiqiang

    2017-01-01

    Meat adulteration is a worldwide concern. In this paper, a new droplet digital PCR (ddPCR) method was developed for the quantitative determination of the presence of chicken in sheep and goat meat products. Meanwhile, a constant (multiplication factor) was introduced to transform the ratio of copy numbers to the proportion of meats. The presented ddPCR method was also proved to be more accurate (showing bias of less than 9% in the range from 5% to 80%) than real-time PCR, which has been widely used in this determination. The method exhibited good repeatability and stability in different thermal treatments and at ultra-high pressure. The relative standard deviation (RSD) values of 5% chicken content was less than 5.4% for ultra-high pressure or heat treatment. Moreover, we confirmed that different parts of meat had no effect on quantification accuracy of the ddPCR method. In contrast to real-time PCR, we examined the performance of ddPCR as a more precise, sensitive and stable analytical strategy to overcome potential problems of discrepancies in amplification efficiency discrepancy and to obtain the copy numbers directly without standard curves. The method and strategy developed in this study can be applied to quantify the presence and to confirm the absence of adulterants not only to sheep but also to other kinds of meat and meat products. PMID:28319152

  18. Methods for producing partially digested restriction DNA fragments and for producing a partially modified PCR product

    DOEpatents

    Wong, Kwong-Kwok

    2000-01-01

    The present invention is an improved method of making a partially modified PCR product from a DNA fragment with a polymerase chain reaction (PCR). In a standard PCR process, the DNA fragment is combined with starting deoxynucleoside triphosphates, a primer, a buffer and a DNA polymerase in a PCR mixture. The PCR mixture is then reacted in the PCR producing copies of the DNA fragment. The improvement of the present invention is adding an amount of a modifier at any step prior to completion of the PCR process thereby randomly and partially modifying the copies of the DNA fragment as a partially modified PCR product. The partially modified PCR product may then be digested with an enzyme that cuts the partially modified PCR product at unmodified sites thereby producing an array of DNA restriction fragments.

  19. Real-Time PCR (qPCR) Primer Design Using Free Online Software

    ERIC Educational Resources Information Center

    Thornton, Brenda; Basu, Chhandak

    2011-01-01

    Real-time PCR (quantitative PCR or qPCR) has become the preferred method for validating results obtained from assays which measure gene expression profiles. The process uses reverse transcription polymerase chain reaction (RT-PCR), coupled with fluorescent chemistry, to measure variations in transcriptome levels between samples. The four most…

  20. EPA Method 1615. Measurement of Enterovirus and Norovirus Occurrence in Water by Culture and RT-qPCR. Part III. Virus Detection by RT-qPCR

    EPA Science Inventory

    EPA Method 1615 measures enteroviruses and noroviruses present in environmental and drinking waters. The viral ribonucleic acid (RNA) from water sample concentrates is extracted and tested for enterovirus and norovirus RNA using reverse transcription-quantitative PCR (RT-qPCR). V...

  1. DETECTION OF FECAL ENTEROCOCCI USING A REAL TIME PCR METHOD

    EPA Science Inventory

    In spite of their importance in public health, the detection of fecal enterococci is performed via culturing methods that are time consuming and that are subject to inaccuracies that relate to their culturable status. In order to address these problems, a real time PCR (TaqMan) ...

  2. A mutant screening method by critical annealing temperature-PCR for site-directed mutagenesis.

    PubMed

    Liu, Ying; Wu, Ting; Song, Jian; Chen, Xuelian; Zhang, Yu; Wan, Yu

    2013-03-11

    Distinguishing desired mutants from parental templates and undesired mutants is a problem not well solved in Quikchange™ mutagenesis. Although Dpn I digestion can eliminate methylated parental (WT) DNA, the efficiency is not satisfying due to the existence of hemi-methylated DNA in the PCR products, which is resistant to Dpn I. The present study designed a novel critical annealing temperature (T(c))-PCR to replace Dpn I digestion for more perfect mutant distinguishing, in which part-overlapping primers containing mutation(s) were used to reduce initial concentration of template DNA in mutagenic PCR. A T(c)-PCR with the same mutagenic primers was performed without Dpn I digestion. The T(c) for each pair of the primers was identified by gradient PCR. The relationship between PCR-identified T(c) and T(m) of the primers was analyzed and modeled with correlation and regression. Gradient PCR identified a T(c) for each of 14 tested mutagenic primers, which could discriminate mismatched parental molecules and undesired mutants from desired mutants. The PCR-identified T(c) was correlated to the primer's T(m) (r = 0.804, P<0.0001). Thus, in practical applications, the T(c) can be easily calculated with a regression equation, T(c)= 48.81 + 0.253*T(m). The new protocol introduced a novel T(c)-PCR method for mutant screening which can more efficiently and accurately select against parental molecules and undesired mutations in mutagenic sequence segments.

  3. Evaluation of PCR methods for detection of Brucella strains from culture and tissues.

    PubMed

    Çiftci, Alper; İça, Tuba; Savaşan, Serap; Sareyyüpoğlu, Barış; Akan, Mehmet; Diker, Kadir Serdar

    2017-04-01

    The genus Brucella causes significant economic losses due to infertility, abortion, stillbirth or weak calves, and neonatal mortality in livestock. Brucellosis is still a zoonosis of public health importance worldwide. The study was aimed to optimize and evaluate PCR assays used for the diagnosis of Brucella infections. For this aim, several primers and PCR protocols were performed and compared with Brucella cultures and biological material inoculated with Brucella. In PCR assays, genus- or species-specific oligonucleotide primers derived from 16S rRNA sequences (F4/R2, Ba148/928, IS711, BruP6-P7) and OMPs (JPF/JPR, 31ter/sd) of Brucella were used. All primers except for BruP6-P7 detected the DNA from reference Brucella strains and field isolates. In spiked blood, milk, and semen samples, F4-R2 primer-oriented PCR assays detected minimal numbers of Brucella. In spiked serum and fetal stomach content, Ba148/928 primer-oriented PCR assays detected minimal numbers of Brucella. Field samples collected from sheep and cattle were examined by bacteriological methods and optimized PCR assays. Overall, sensitivity of PCR assays was found superior to conventional bacteriological isolation. Brucella DNA was detected in 35.1, 1.1, 24.8, 5.0, and 8.0% of aborted fetus, blood, milk, semen, and serum samples by PCR assays, respectively. In conclusion, PCR assay in optimized conditions was found to be valuable in sensitive and specific detection of Brucella infections of animals.

  4. Viability PCR, a Culture-Independent Method for Rapid and Selective Quantification of Viable Legionella pneumophila Cells in Environmental Water Samples▿

    PubMed Central

    Delgado-Viscogliosi, Pilar; Solignac, Lydie; Delattre, Jean-Marie

    2009-01-01

    PCR-based methods have been developed to rapidly screen for Legionella pneumophila in water as an alternative to time-consuming culture techniques. However, these methods fail to discriminate between live and dead bacteria. Here, we report a viability assay (viability PCR [v-PCR]) for L. pneumophila that combines ethidium monoazide bromide with quantitative real-time PCR (qPCR). The ability of v-PCR to differentiate viable from nonviable L. pneumophila cells was confirmed with permeabilizing agents, toluene, or isopropanol. v-PCR suppressed more than 99.9% of the L. pneumophila PCR signal in nonviable cultures and was able to discriminate viable cells in mixed samples. A wide range of physiological states, from culturable to dead cells, was observed with 64 domestic hot-water samples after simultaneous quantification of L. pneumophila cells by v-PCR, conventional qPCR, and culture methods. v-PCR counts were equal to or higher than those obtained by culture and lower than or equal to conventional qPCR counts. v-PCR was used to successfully monitor in vitro the disinfection efficacy of heating to 70°C and glutaraldehyde and chlorine curative treatments. The v-PCR method appears to be a promising and rapid technique for enumerating L. pneumophila bacteria in water and, in comparison with conventional qPCR techniques used to monitor Legionella, has the advantage of selectively amplifying only viable cells. PMID:19363080

  5. Multiplex PCR method for use in real-time PCR for identification of fish fillets from grouper (Epinephelus and Mycteroperca species) and common substitute species.

    PubMed

    Trotta, Michele; Schönhuth, Susana; Pepe, Tiziana; Cortesi, M Luisa; Puyet, Antonio; Bautista, José M

    2005-03-23

    Mitochondrial 16S rRNA sequences from morphological validated grouper (Epinephelus aeneus, E. caninus, E. costae, and E. marginatus; Mycteroperca fusca and M. rubra), Nile perch (Lates niloticus), and wreck fish (Polyprion americanus) were used to develop an analytical system for group diagnosis based on two alternative Polymerase Chain Reaction (PCR) approaches. The first includes conventional multiplex PCR in which electrophoretic migration of different sizes of bands allowed identification of the fish species. The second approach, involving real-time PCR, produced a single amplicon from each species that showed different Tm values allowing the fish groups to be directly identified. Real-time PCR allows the quick differential diagnosis of the three groups of species and high-throughput screening of multiple samples. Neither PCR system cross-reacted with DNA samples from 41 common marketed fish species, thus conforming to standards for species validation. The use of these two PCR-based methods makes it now possible to discriminate grouper from substitute fish species.

  6. Effects of DNA extraction and purification methods on real-time quantitative PCR analysis of Roundup Ready soybean.

    PubMed

    Demeke, Tigst; Ratnayaka, Indira; Phan, Anh

    2009-01-01

    The quality of DNA affects the accuracy and repeatability of quantitative PCR results. Different DNA extraction and purification methods were compared for quantification of Roundup Ready (RR) soybean (event 40-3-2) by real-time PCR. DNA was extracted using cetylmethylammonium bromide (CTAB), DNeasy Plant Mini Kit, and Wizard Magnetic DNA purification system for food. CTAB-extracted DNA was also purified using the Zymo (DNA Clean & Concentrator 25 kit), Qtip 100 (Qiagen Genomic-Tip 100/G), and QIAEX II Gel Extraction Kit. The CTAB extraction method provided the largest amount of DNA, and the Zymo purification kit resulted in the highest percentage of DNA recovery. The Abs260/280 and Abs260/230 ratios were less than the expected values for some of the DNA extraction and purification methods used, indicating the presence of substances that could inhibit PCR reactions. Real-time quantitative PCR results were affected by the DNA extraction and purification methods used. Further purification or dilution of the CTAB DNA was required for successful quantification of RR soybean. Less variability of quantitative PCR results was observed among experiments and replications for DNA extracted and/or purified by CTAB, CTAB+Zymo, CTAB+Qtip 100, and DNeasy methods. Correct and repeatable results for real-time PCR quantification of RR soybean were achieved using CTAB DNA purified with Zymo and Qtip 100 methods.

  7. Characterization of Aspergillus species on Brazil nut from the Brazilian Amazonian region and development of a PCR assay for identification at the genus level

    PubMed Central

    2014-01-01

    Background Brazil nut is a protein-rich extractivist tree crop in the Amazon region. Fungal contamination of shells and kernel material frequently includes the presence of aflatoxigenic Aspergillus species from the section Flavi. Aflatoxins are polyketide secondary metabolites, which are hepatotoxic carcinogens in mammals. The objectives of this study were to identify Aspergillus species occurring on Brazil nut grown in different states in the Brazilian Amazon region and develop a specific PCR method for collective identification of member species of the genus Aspergillus. Results Polyphasic identification of 137 Aspergillus strains isolated from Brazil nut shell material from cooperatives across the Brazilian Amazon states of Acre, Amapá and Amazonas revealed five species, with Aspergillus section Flavi species A. nomius and A. flavus the most abundant. PCR primers ASP_GEN_MTSSU_F1 and ASP_GEN_MTSSU_R1 were designed for the genus Aspergillus, targeting a portion of the mitochondrial small subunit ribosomal RNA gene. Primer specificity was validated through both electronic PCR against target gene sequences at Genbank and in PCR reactions against DNA from Aspergillus species and other fungal genera common on Brazil nut. Collective differentiation of the observed section Flavi species A. flavus, A. nomius and A. tamarii from other Aspergillus species was possible on the basis of RFLP polymorphism. Conclusions Given the abundance of Aspergillus section Flavi species A. nomius and A. flavus observed on Brazil nut, and associated risk of mycotoxin accumulation, simple identification methods for such mycotoxigenic species are of importance for Hazard Analysis Critical Control Point system implementation. The assay for the genus Aspergillus represents progress towards specific PCR identification and detection of mycotoxigenic species. PMID:24885088

  8. Detection of Legionella species in environmental water by the quantitative PCR method in combination with ethidium monoazide treatment.

    PubMed

    Inoue, Hiroaki; Takama, Tomoko; Yoshizaki, Miwa; Agata, Kunio

    2015-01-01

    We detected Legionella species in 111 bath water samples and 95 cooling tower water samples by using a combination of conventional plate culture, quantitative polymerase chain reaction (qPCR) and qPCR combined with ethidium monoazide treatment (EMA-qPCR) methods. In the case of bath water samples, Legionella spp. were detected in 30 samples by plate culture, in 85 samples by qPCR, and in 49 samples by EMA-qPCR. Of 81 samples determined to be Legionella-negative by plate culture, 56 and 23 samples were positive by qPCR and EMA-qPCR, respectively. Therefore, EMA treatment decreased the number of Legionella-positive bath water samples detected by qPCR. In contrast, EMA treatment had no effect on cooling tower water samples. We therefore expect that EMA-qPCR is a useful method for the rapid detection of viable Legionella spp. from bath water samples.

  9. A noninvasive, direct real-time PCR method for sex determination in multiple avian species

    USGS Publications Warehouse

    Brubaker, Jessica L.; Karouna-Renier, Natalie K.; Chen, Yu; Jenko, Kathryn; Sprague, Daniel T.; Henry, Paula F.P.

    2011-01-01

    Polymerase chain reaction (PCR)-based methods to determine the sex of birds are well established and have seen few modifications since they were first introduced in the 1990s. Although these methods allowed for sex determination in species that were previously difficult to analyse, they were not conducive to high-throughput analysis because of the laboriousness of DNA extraction and gel electrophoresis. We developed a high-throughput real-time PCR-based method for analysis of sex in birds, which uses noninvasive sample collection and avoids DNA extraction and gel electrophoresis.

  10. Effective characterization of Salmonella Enteritidis by most probable number (MPN) followed by multiplex polymerase chain reaction (PCR) methods.

    PubMed

    Zappelini, Lincohn; Martone-Rocha, Solange; Dropa, Milena; Matté, Maria Helena; Tiba, Monique Ribeiro; Breternitz, Bruna Suellen; Razzolini, Maria Tereza Pepe

    2017-02-01

    Nontyphoidal Salmonella (NTS) is a relevant pathogen involved in gastroenteritis outbreaks worldwide. In this study, we determined the capacity to combine the most probable number (MPN) and multiplex polymerase chain reaction (PCR) methods to characterize the most important Salmonella serotypes in raw sewage. A total of 499 isolates were recovered from 27 raw sewage samples and screened using two previously described multiplex PCR methods. From those, 123 isolates were selected based on PCR banding pattern-identical or similar to Salmonella Enteritidis and Salmonella Typhimurium-and submitted to conventional serotyping. Results showed that both PCR assays correctly serotyped Salmonella Enteritidis, however, they presented ambiguous results for Salmonella Typhimurium identification. These data highlight that MPN and multiplex PCR can be useful methods to describe microbial quality in raw sewage and suggest two new PCR patterns for Salmonella Enteritidis identification.

  11. PCR Testing of IVC Filter Tops as a Method for Detecting Murine Pinworms and Fur Mites.

    PubMed

    Gerwin, Philip M; Ricart Arbona, Rodolfo J; Riedel, Elyn R; Henderson, Kenneth S; Lipman, Neil S

    2017-11-01

    We evaluated PCR testing of filter tops from cages maintained on an IVC system through which exhaust air is filtered at the cage level as a method for detecting parasite-infected and -infested cages. Cages containing 4 naïve Swiss Webster mice received 360 mL of uncontaminated aspen chip or α-cellulose bedding (n = 18 cages each) and 60 mL of the same type of bedding weekly from each of the following 4 groups of cages housing mice infected or infested with Syphacia obvelata (SO), Aspiculuris tetraptera (AT), Myocoptes musculinus (MC), or Myobia musculi (MB) and Radfordia affinis (RA; 240 mL bedding total). Detection rates were compared at 30, 60, and 90 d after initiating bedding exposure, by using PCR analysis of filter tops (media extract and swabs) and testing of mouse samples (fur swab [direct] PCR testing, fecal flotation, anal tape test, direct examination of intestinal contents, and skin scrape). PCR testing of filter media extract detected 100% of all parasites at 30 d (both bedding types) except for AT (α-cellulose bedding, 67% detection rate); identified more cages with fur mites (MB and MC) than direct PCR when cellulose bedding was used; and was better at detecting parasites than all nonmolecular methods evaluated. PCR analysis of filter media extract was superior to swab and direct PCR for all parasites cumulatively for each bedding type. Direct PCR more effectively detected MC and all parasites combined for aspen chip compared with cellulose bedding. PCR analysis of filter media extract for IVC systems in which exhaust air is filtered at the cage level was shown to be a highly effective environmental testing method.

  12. PCR Testing of IVC Filter Tops as a Method for Detecting Murine Pinworms and Fur Mites

    PubMed Central

    Gerwin, Philip M; Arbona, Rodolfo J Ricart; Riedel, Elyn R; Henderson, Kenneth S; Lipman, Neil S

    2017-01-01

    We evaluated PCR testing of filter tops from cages maintained on an IVC system through which exhaust air is filtered at the cage level as a method for detecting parasite- infected and -infested cages. Cages containing 4 naïve Swiss Webster mice received 360 mL of uncontaminated aspen chip or α-cellulose bedding (n = 18 cages each) and 60 mL of the same type of bedding weekly from each of the following 4 groups of cages housing mice infected or infested with Syphacia obvelata (SO), Aspiculuris tetraptera (AT), Myocoptes musculinus (MC), or Myobia musculi (MB) and Radfordia affinis (RA; 240 mL bedding total). Detection rates were compared at 30, 60, and 90 d after initiating bedding exposure, by using PCR analysis of filter tops (media extract and swabs) and testing of mouse samples (fur swab [direct] PCR testing, fecal flotation, anal tape test, direct examination of intestinal contents, and skin scrape). PCR testing of filter media extract detected 100% of all parasites at 30 d (both bedding types) except for AT (α-cellulose bedding, 67% detection rate); identified more cages with fur mites (MB and MC) than direct PCR when cellulose bedding was used; and was better at detecting parasites than all nonmolecular methods evaluated. PCR analysis of filter media extract was superior to swab and direct PCR for all parasites cumulatively for each bedding type. Direct PCR more effectively detected MC and all parasites combined for aspen chip compared with cellulose bedding. PCR analysis of filter media extract for IVC systems in which exhaust air is filtered at the cage level was shown to be a highly effective environmental testing method. PMID:29256370

  13. Rapid detection of coliforms in drinking water of Arak city using multiplex PCR method in comparison with the standard method of culture (Most Probably Number)

    PubMed Central

    Fatemeh, Dehghan; Reza, Zolfaghari Mohammad; Mohammad, Arjomandzadegan; Salomeh, Kalantari; Reza, Ahmari Gholam; Hossein, Sarmadian; Maryam, Sadrnia; Azam, Ahmadi; Mana, Shojapoor; Negin, Najarian; Reza, Kasravi Alii; Saeed, Falahat

    2014-01-01

    Objective To analyse molecular detection of coliforms and shorten the time of PCR. Methods Rapid detection of coliforms by amplification of lacZ and uidA genes in a multiplex PCR reaction was designed and performed in comparison with most probably number (MPN) method for 16 artificial and 101 field samples. The molecular method was also conducted on isolated coliforms from positive MPN samples; standard sample for verification of microbial method certificated reference material; isolated strains from certificated reference material and standard bacteria. The PCR and electrophoresis parameters were changed for reducing the operation time. Results Results of PCR for lacZ and uidA genes were similar in all of standard, operational and artificial samples and showed the 876 bp and 147 bp bands of lacZ and uidA genes by multiplex PCR. PCR results were confirmed by MPN culture method by sensitivity 86% (95% CI: 0.71-0.93). Also the total execution time, with a successful change of factors, was reduced to less than two and a half hour. Conclusions Multiplex PCR method with shortened operation time was used for the simultaneous detection of total coliforms and Escherichia coli in distribution system of Arak city. It's recommended to be used at least as an initial screening test, and then the positive samples could be randomly tested by MPN. PMID:25182727

  14. Partial DNA sequencing of Douglas-fir cDNAs used in RFLP mapping

    Treesearch

    K.D. Jermstad; D.L. Bassoni; C.S. Kinlaw; D.B. Neale

    1998-01-01

    DNA sequences from 87 Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) cDNA RFLP probes were determined. Sequences were submitted to the GenBank dbEST database and searched for similarity against nucleotide and protein databases using the BLASTn and BLASTx programs. Twenty-one sequences (24%) were assigned putative functions; 18 of which...

  15. Multiplexed Single Intact Cell Droplet Digital PCR (MuSIC ddPCR) Method for Specific Detection of Enterohemorrhagic E. coli (EHEC) in Food Enrichment Cultures

    PubMed Central

    McMahon, Tanis C.; Blais, Burton W.; Wong, Alex; Carrillo, Catherine D.

    2017-01-01

    Foodborne illness attributed to enterohemorrhagic E. coli (EHEC), a highly pathogenic subset of Shiga toxin-producing E. coli (STEC), is increasingly recognized as a significant public health issue. Current microbiological methods for identification of EHEC in foods often use PCR-based approaches to screen enrichment broth cultures for characteristic gene markers [i.e., Shiga toxin (stx) and intimin (eae)]. However, false positives arise when complex food matrices, such as beef, contain mixtures of eae-negative STEC and eae-positive E. coli, but no EHEC with both markers in a single cell. To reduce false-positive detection of EHEC in food enrichment samples, a Multiplexed, Single Intact Cell droplet digital PCR (MuSIC ddPCR) assay capable of detecting the co-occurrence of the stx and eae genes in a single bacterial cell was developed. This method requires: (1) dispersal of intact bacteria into droplets; (2) release of genomic DNA (gDNA) by heat lysis; and (3) amplification and detection of genetic targets (stx and eae) using standard TaqMan chemistries with ddPCR. Performance of the method was tested with panels of EHEC and non-target E. coli. By determining the linkage (i.e., the proportion of droplets in which stx and eae targets were both amplified), samples containing EHEC (typically greater than 20% linkage) could be distinguished from samples containing mixtures of eae-negative STEC and eae-positive E. coli (0–2% linkage). The use of intact cells was necessary as this linkage was not observed with gDNA extracts. EHEC could be accurately identified in enrichment broth cultures containing excess amounts of background E. coli and in enrichment cultures derived from ground beef/pork and leafy-green produce samples. To our knowledge, this is the first report of dual-target detection in single bacterial cells using ddPCR. The application of MuSIC ddPCR to enrichment-culture screening would reduce false-positives, thereby improving the cost, speed, and accuracy of

  16. Multiplexed Single Intact Cell Droplet Digital PCR (MuSIC ddPCR) Method for Specific Detection of Enterohemorrhagic E. coli (EHEC) in Food Enrichment Cultures.

    PubMed

    McMahon, Tanis C; Blais, Burton W; Wong, Alex; Carrillo, Catherine D

    2017-01-01

    Foodborne illness attributed to enterohemorrhagic E. coli (EHEC), a highly pathogenic subset of Shiga toxin-producing E. coli (STEC), is increasingly recognized as a significant public health issue. Current microbiological methods for identification of EHEC in foods often use PCR-based approaches to screen enrichment broth cultures for characteristic gene markers [i.e., Shiga toxin ( stx ) and intimin ( eae )]. However, false positives arise when complex food matrices, such as beef, contain mixtures of eae -negative STEC and eae -positive E. coli , but no EHEC with both markers in a single cell. To reduce false-positive detection of EHEC in food enrichment samples, a Multiplexed, Single Intact Cell droplet digital PCR (MuSIC ddPCR) assay capable of detecting the co-occurrence of the stx and eae genes in a single bacterial cell was developed. This method requires: (1) dispersal of intact bacteria into droplets; (2) release of genomic DNA (gDNA) by heat lysis; and (3) amplification and detection of genetic targets ( stx and eae ) using standard TaqMan chemistries with ddPCR. Performance of the method was tested with panels of EHEC and non-target E. coli . By determining the linkage (i.e., the proportion of droplets in which stx and eae targets were both amplified), samples containing EHEC (typically greater than 20% linkage) could be distinguished from samples containing mixtures of eae -negative STEC and eae -positive E. coli (0-2% linkage). The use of intact cells was necessary as this linkage was not observed with gDNA extracts. EHEC could be accurately identified in enrichment broth cultures containing excess amounts of background E. coli and in enrichment cultures derived from ground beef/pork and leafy-green produce samples. To our knowledge, this is the first report of dual-target detection in single bacterial cells using ddPCR. The application of MuSIC ddPCR to enrichment-culture screening would reduce false-positives, thereby improving the cost, speed, and

  17. Cloned plasmid DNA fragments as calibrators for controlling GMOs: different real-time duplex quantitative PCR methods.

    PubMed

    Taverniers, Isabel; Van Bockstaele, Erik; De Loose, Marc

    2004-03-01

    Analytical real-time PCR technology is a powerful tool for implementation of the GMO labeling regulations enforced in the EU. The quality of analytical measurement data obtained by quantitative real-time PCR depends on the correct use of calibrator and reference materials (RMs). For GMO methods of analysis, the choice of appropriate RMs is currently under debate. So far, genomic DNA solutions from certified reference materials (CRMs) are most often used as calibrators for GMO quantification by means of real-time PCR. However, due to some intrinsic features of these CRMs, errors may be expected in the estimations of DNA sequence quantities. In this paper, two new real-time PCR methods are presented for Roundup Ready soybean, in which two types of plasmid DNA fragments are used as calibrators. Single-target plasmids (STPs) diluted in a background of genomic DNA were used in the first method. Multiple-target plasmids (MTPs) containing both sequences in one molecule were used as calibrators for the second method. Both methods simultaneously detect a promoter 35S sequence as GMO-specific target and a lectin gene sequence as endogenous reference target in a duplex PCR. For the estimation of relative GMO percentages both "delta C(T)" and "standard curve" approaches are tested. Delta C(T) methods are based on direct comparison of measured C(T) values of both the GMO-specific target and the endogenous target. Standard curve methods measure absolute amounts of target copies or haploid genome equivalents. A duplex delta C(T) method with STP calibrators performed at least as well as a similar method with genomic DNA calibrators from commercial CRMs. Besides this, high quality results were obtained with a standard curve method using MTP calibrators. This paper demonstrates that plasmid DNA molecules containing either one or multiple target sequences form perfect alternative calibrators for GMO quantification and are especially suitable for duplex PCR reactions.

  18. Detection of MET Gene Copy Number in Cancer Samples Using the Droplet Digital PCR Method.

    PubMed

    Zhang, Yanni; Tang, En-Tzu; Du, Zhiqiang

    2016-01-01

    The analysis of MET gene copy number (CN) has been considered to be a potential biomarker to predict the response to MET-targeted therapies in various cancers. However, the current standard methods to determine MET CN are SNP 6.0 in the genomic DNA of cancer cell lines and fluorescence in situ hybridization (FISH) in tumor models, respectively, which are costly and require advanced technical skills and result in relatively subjective judgments. Therefore, we employed a novel method, droplet digital PCR (ddPCR), to determine the MET gene copy number with high accuracy and precision. The genomic DNA of cancer cell lines or tumor models were tested and compared with the MET gene CN and MET/CEN-7 ratio determined by SNP 6.0 and FISH, respectively. In cell lines, the linear association of the MET CN detected by ddPCR and SNP 6.0 is strong (Pearson correlation = 0.867). In tumor models, the MET CN detected by ddPCR was significantly different between the MET gene amplification and non-amplification groups according to FISH (mean: 15.4 vs 2.1; P = 0.044). Given that MET gene amplification is defined as MET CN >5.5 by ddPCR, the concordance rate between ddPCR and FISH was 98.0%, and Cohen's kappa coefficient was 0.760 (95% CI, 0.498-1.000; P <0.001). The results demonstrated that the ddPCR method has the potential to quantify the MET gene copy number with high precision and accuracy as compared with the results from SNP 6.0 and FISH in cancer cell lines and tumor samples, respectively.

  19. EPA Method 1615. Measurement of Enterovirus and Norovirus Occurrence in Water by Culture and RT-qPCR. Part III. Virus Detection by RT-qPCR

    PubMed Central

    Fout, G. Shay; Cashdollar, Jennifer L.; Griffin, Shannon M.; Brinkman, Nichole E.; Varughese, Eunice A.; Parshionikar, Sandhya U.

    2016-01-01

    EPA Method 1615 measures enteroviruses and noroviruses present in environmental and drinking waters. This method was developed with the goal of having a standardized method for use in multiple analytical laboratories during monitoring period 3 of the Unregulated Contaminant Monitoring Rule. Herein we present the protocol for extraction of viral ribonucleic acid (RNA) from water sample concentrates and for quantitatively measuring enterovirus and norovirus concentrations using reverse transcription-quantitative PCR (RT-qPCR). Virus concentrations for the molecular assay are calculated in terms of genomic copies of viral RNA per liter based upon a standard curve. The method uses a number of quality controls to increase data quality and to reduce interlaboratory and intralaboratory variation. The method has been evaluated by examining virus recovery from ground and reagent grade waters seeded with poliovirus type 3 and murine norovirus as a surrogate for human noroviruses. Mean poliovirus recoveries were 20% in groundwaters and 44% in reagent grade water. Mean murine norovirus recoveries with the RT-qPCR assay were 30% in groundwaters and 4% in reagent grade water. PMID:26862985

  20. Analysis of raw meats and fats of pigs using polymerase chain reaction for Halal authentication.

    PubMed

    Aida, A A; Che Man, Y B; Wong, C M V L; Raha, A R; Son, R

    2005-01-01

    A method for species identification from pork and lard samples using polymerase chain reaction (PCR) analysis of a conserved region in the mitochondrial (mt) cytochrome b (cyt b) gene has been developed. Genomic DNA of pork and lard were extracted using Qiagen DNeasy(®) Tissue Kits and subjected to PCR amplification targeting the mt cyt b gene. The genomic DNA from lard was found to be of good quality and produced clear PCR products on the amplification of the mt cyt b gene of approximately 360 base pairs. To distinguish between species, the amplified PCR products were cut with restriction enzyme BsaJI resulting in porcine-specific restriction fragment length polymorphisms (RFLP). The cyt b PCR-RFLP species identification assay yielded excellent results for identification of pig species. It is a potentially reliable technique for detection of pig meat and fat from other animals for Halal authentication.

  1. Evaluation of qPCR curve analysis methods for reliable biomarker discovery: bias, resolution, precision, and implications.

    PubMed

    Ruijter, Jan M; Pfaffl, Michael W; Zhao, Sheng; Spiess, Andrej N; Boggy, Gregory; Blom, Jochen; Rutledge, Robert G; Sisti, Davide; Lievens, Antoon; De Preter, Katleen; Derveaux, Stefaan; Hellemans, Jan; Vandesompele, Jo

    2013-01-01

    RNA transcripts such as mRNA or microRNA are frequently used as biomarkers to determine disease state or response to therapy. Reverse transcription (RT) in combination with quantitative PCR (qPCR) has become the method of choice to quantify small amounts of such RNA molecules. In parallel with the democratization of RT-qPCR and its increasing use in biomedical research or biomarker discovery, we witnessed a growth in the number of gene expression data analysis methods. Most of these methods are based on the principle that the position of the amplification curve with respect to the cycle-axis is a measure for the initial target quantity: the later the curve, the lower the target quantity. However, most methods differ in the mathematical algorithms used to determine this position, as well as in the way the efficiency of the PCR reaction (the fold increase of product per cycle) is determined and applied in the calculations. Moreover, there is dispute about whether the PCR efficiency is constant or continuously decreasing. Together this has lead to the development of different methods to analyze amplification curves. In published comparisons of these methods, available algorithms were typically applied in a restricted or outdated way, which does not do them justice. Therefore, we aimed at development of a framework for robust and unbiased assessment of curve analysis performance whereby various publicly available curve analysis methods were thoroughly compared using a previously published large clinical data set (Vermeulen et al., 2009) [11]. The original developers of these methods applied their algorithms and are co-author on this study. We assessed the curve analysis methods' impact on transcriptional biomarker identification in terms of expression level, statistical significance, and patient-classification accuracy. The concentration series per gene, together with data sets from unpublished technical performance experiments, were analyzed in order to assess the

  2. A Global Health Diagnostic for Personalized Medicine in Resource-Constrained World Settings: A Simple PCR-RFLP Method for Genotyping CYP2B6 g.15582C>T and Science and Policy Relevance for Optimal Use of Antiretroviral Drug Efavirenz

    PubMed Central

    Evans, Jonathan; Swart, Marelize; Soko, Nyarai; Wonkam, Ambroise; Huzair, Farah

    2015-01-01

    Abstract The use of pharmacogenomics (PGx) knowledge in treatment of individual patients is becoming a common phenomenon in the developed world. However, poorly resourced countries have thus far been constrained for three main reasons. First, the cost of whole genome sequencing is still considerably high in comparison to other (non-genomics) diagnostics in the developing world where both science and social dynamics create a dynamic and fragile healthcare ecosystem. Second, studies correlating genomic differences with drug pharmacokinetics and pharmacodynamics have not been consistent, and more importantly, often not indexed to impact on societal end-points, beyond clinical practice. Third, ethics regulatory frames over PGx testing require improvements based on nested accountability systems and in ways that address the user community needs. Thus, CYP2B6 is a crucial enzyme in the metabolism of antiretroviral drugs, efavirenz and nevirapine. More than 40 genetic variants have been reported, but only a few contribute to differences in plasma EFV and NVP concentrations. The most widely reported CYP2B6 variants affecting plasma drug levels include c.516G>T, c.983T>C, and to a lesser extent, g.15582C>T, which should be considered in future PGx tests. While the first two variants are easily characterized, the g.15582C>T detection has been performed primarily by sequencing, which is costly, labor intensive, and requires access to barely available expertise in the developing world. We report here on a simple, practical PCR-RFLP method with vast potentials for use in resource-constrained world regions to detect the g.15582C>T variation among South African and Cameroonian persons. The effects of CYP2B6 g.15582C>T on plasma EFV concentration were further evaluated among HIV/AIDS patients. We report no differences in the frequency of the g.15582T variant between the South African (0.08) and Cameroonian (0.06) groups, which are significantly lower than reported in Asians (0

  3. dPCR: A Technology Review

    PubMed Central

    Quan, Phenix-Lan; Sauzade, Martin

    2018-01-01

    Digital Polymerase Chain Reaction (dPCR) is a novel method for the absolute quantification of target nucleic acids. Quantification by dPCR hinges on the fact that the random distribution of molecules in many partitions follows a Poisson distribution. Each partition acts as an individual PCR microreactor and partitions containing amplified target sequences are detected by fluorescence. The proportion of PCR-positive partitions suffices to determine the concentration of the target sequence without a need for calibration. Advances in microfluidics enabled the current revolution of digital quantification by providing efficient partitioning methods. In this review, we compare the fundamental concepts behind the quantification of nucleic acids by dPCR and quantitative real-time PCR (qPCR). We detail the underlying statistics of dPCR and explain how it defines its precision and performance metrics. We review the different microfluidic digital PCR formats, present their underlying physical principles, and analyze the technological evolution of dPCR platforms. We present the novel multiplexing strategies enabled by dPCR and examine how isothermal amplification could be an alternative to PCR in digital assays. Finally, we determine whether the theoretical advantages of dPCR over qPCR hold true by perusing studies that directly compare assays implemented with both methods. PMID:29677144

  4. Comparison of culture-based, vital stain and PMA-qPCR methods for the quantitative detection of viable hookworm ova.

    PubMed

    Gyawali, P; Sidhu, J P S; Ahmed, W; Jagals, P; Toze, S

    2017-06-01

    Accurate quantitative measurement of viable hookworm ova from environmental samples is the key to controlling hookworm re-infections in the endemic regions. In this study, the accuracy of three quantitative detection methods [culture-based, vital stain and propidium monoazide-quantitative polymerase chain reaction (PMA-qPCR)] was evaluated by enumerating 1,000 ± 50 Ancylostoma caninum ova in the laboratory. The culture-based method was able to quantify an average of 397 ± 59 viable hookworm ova. Similarly, vital stain and PMA-qPCR methods quantified 644 ± 87 and 587 ± 91 viable ova, respectively. The numbers of viable ova estimated by the culture-based method were significantly (P < 0.05) lower than vital stain and PMA-qPCR methods. Therefore, both PMA-qPCR and vital stain methods appear to be suitable for the quantitative detection of viable hookworm ova. However, PMA-qPCR would be preferable over the vital stain method in scenarios where ova speciation is needed.

  5. Evaluation of DNA extraction methods for PCR-based detection of Listeria monocytogenes from vegetables.

    PubMed

    Vojkovska, H; Kubikova, I; Kralik, P

    2015-03-01

    Epidemiological data indicate that raw vegetables are associated with outbreaks of Listeria monocytogenes. Therefore, there is a demand for the availability of rapid and sensitive methods, such as PCR assays, for the detection and accurate discrimination of L. monocytogenes. However, the efficiency of PCR methods can be negatively affected by inhibitory compounds commonly found in vegetable matrices that may cause false-negative results. Therefore, the sample processing and DNA isolation steps must be carefully evaluated prior to the introduction of such methods into routine practice. In this study, we compared the ability of three column-based and four magnetic bead-based commercial DNA isolation kits to extract DNA of the model micro-organism L. monocytogenes from raw vegetables. The DNA isolation efficiency of all isolation kits was determined using a triplex real-time qPCR assay designed to specifically detect L. monocytogenes. The kit with best performance, the PowerSoil(™) Microbial DNA Isolation Kit, is suitable for the extraction of amplifiable DNA from L. monocytogenes cells in vegetable with efficiencies ranging between 29.6 and 70.3%. Coupled with the triplex real-time qPCR assay, this DNA isolation kit is applicable to the samples with bacterial loads of 10(3) bacterial cells per gram of L. monocytogenes. Several recent outbreaks of Listeria monocytogenes have been associated with the consumption of fruits and vegetables. Real-time PCR assays allow fast detection and accurate quantification of microbes. However, the success of real-time PCR is dependent on the success with which template DNA can be extracted. The results of this study suggest that the PowerSoil(™) Microbial DNA Isolation Kit can be used for the extraction of amplifiable DNA from L. monocytogenes cells in vegetable with efficiencies ranging between 29.6 and 70.3%. This method is applicable to samples with bacterial loads of 10(3) bacterial cells per gram of L. monocytogenes. © 2014

  6. Monochloramine disinfection kinetics of Nitrosomonas europaea by propidium monoazide quantitative PCR and Live/Dead BacLight Methods

    EPA Science Inventory

    Monochloramine disinfection kinetics were determined for the pure culture ammonia-oxidizing bacterium Nitrosomonas europaea (ATCC 19718) by two culture independent methods: (1) LIVE/DEAD® BacLight™ (LD) and (2) propidium monoazide quantitative PCR (PMA-qPCR). Both methods were f...

  7. Droplet digital PCR as a novel detection method for quantifying microRNAs in acute myocardial infarction.

    PubMed

    Robinson, S; Follo, M; Haenel, D; Mauler, M; Stallmann, D; Tewari, M; Duerschmied, D; Peter, K; Bode, C; Ahrens, I; Hortmann, M

    2018-04-15

    micro-RNAs have shown promise as potential biomarkers for acute myocardial infarction and ischemia-reperfusion injury (I/R). Most recently droplet digital polymerase chain reaction (ddPCR) has been introduced as a more reliable and reproducible method for detecting micro-RNAs. We aimed to demonstrate the improved technical performance and diagnostic potential of ddPCR by measuring micro-RNAs in ST-elevation myocardial infarction (STEMI). A dilution series was performed in duplicate on synthetic Caenorrhabditis elegans-miR-39, comparing quantitative real-time PCR (qRT-PCR) and ddPCR. We used ddPCR and qRT-PCR to quantify the serum levels of miR-21, miR-208a and miR-499 between STEMI patients (n=24) and stable coronary artery disease (CAD) patients (n=20). In STEMI, I/R injury was assessed via measurement of ST-segment resolution. In the dilution series, ddPCR demonstrated superior coefficient of variation (12.1%vs.32.9%) and limit of detection (0.9325 vs.2.425copies/μl). In the patient cohort, ddPCR demonstrated greater differences in miR-21 levels (2190.5 vs. 484.7copies/μl; p=0.0004 for ddPCR and 136.4 vs. 122.8copies/μl; p=0.2273 for qRT-PCR) and in miR-208a (0 vs. 24.1copies/μl, p=0.0013 for ddPCR and 0 vs. 0copies/μl, p=0.0032 for qRT-PCR), with similar differences observed in miR-499 levels (9.4 vs. 81.5copies/μl, p<0.0001 for ddPCR and 0 vs. 19.41copies/μl, p<0.0001 for qRT-PCR). ddPCR also more accurately defined STEMI for all miRNAs (area under the curve (AUC) of 0.8021/0.7740/0.9063 for miR-21/208a/499 with ddPCR vs. AUC of 0.6083/0.6917/0.8417 with qRT-PCR). However, there was no association between miR-21/208a/499 levels and ischemia-reperfusion injury. ddPCR demonstrates superiority in both technical performance and diagnostic potential compared to qRT-PCR. Ultimately, this supports its use as a diagnostic method for quantifying micro-RNAs, particularly in large multi-center trials. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. A novel method of multiple nucleic acid detection: Real-time RT-PCR coupled with probe-melting curve analysis.

    PubMed

    Han, Yang; Hou, Shao-Yang; Ji, Shang-Zhi; Cheng, Juan; Zhang, Meng-Yue; He, Li-Juan; Ye, Xiang-Zhong; Li, Yi-Min; Zhang, Yi-Xuan

    2017-11-15

    A novel method, real-time reverse transcription PCR (real-time RT-PCR) coupled with probe-melting curve analysis, has been established to detect two kinds of samples within one fluorescence channel. Besides a conventional TaqMan probe, this method employs another specially designed melting-probe with a 5' terminus modification which meets the same label with the same fluorescent group. By using an asymmetric PCR method, the melting-probe is able to detect an extra sample in the melting stage effectively while it almost has little influence on the amplification detection. Thus, this method allows the availability of united employment of both amplification stage and melting stage for detecting samples in one reaction. The further demonstration by simultaneous detection of human immunodeficiency virus (HIV) and hepatitis C virus (HCV) in one channel as a model system is presented in this essay. The sensitivity of detection by real-time RT-PCR coupled with probe-melting analysis was proved to be equal to that detected by conventional real-time RT-PCR. Because real-time RT-PCR coupled with probe-melting analysis can double the detection throughputs within one fluorescence channel, it is expected to be a good solution for the problem of low-throughput in current real-time PCR. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Simple and fast multiplex PCR method for detection of species origin in meat products.

    PubMed

    Izadpanah, Mehrnaz; Mohebali, Nazanin; Elyasi Gorji, Zahra; Farzaneh, Parvaneh; Vakhshiteh, Faezeh; Shahzadeh Fazeli, Seyed Abolhassan

    2018-02-01

    Identification of animal species is one of the major concerns in food regulatory control and quality assurance system. Different approaches have been used for species identification in animal origin of feedstuff. This study aimed to develop a multiplex PCR approach to detect the origin of meat and meat products. Specific primers were designed based on the conserved region of mitochondrial Cytochrome C Oxidase subunit I ( COX1 ) gene. This method could successfully distinguish the origin of the pig, camel, sheep, donkey, goat, cow, and chicken in one single reaction. Since PCR products derived from each species represent unique molecular weight, the amplified products could be identified by electrophoresis and analyzed based on their size. Due to the synchronized amplification of segments within a single PCR reaction, multiplex PCR is considered to be a simple, fast, and inexpensive technique that can be applied for identification of meat products in food industries. Nowadays, this technique has been considered as a practical method to identify the species origin, which could further applied for animal feedstuffs identification.

  10. Screening DNA chip and event-specific multiplex PCR detection methods for biotech crops.

    PubMed

    Lee, Seong-Hun

    2014-11-01

    There are about 80 biotech crop events that have been approved by safety assessment in Korea. They have been controlled by genetically modified organism (GMO) and living modified organism (LMO) labeling systems. The DNA-based detection method has been used as an efficient scientific management tool. Recently, the multiplex polymerase chain reaction (PCR) and DNA chip have been developed as simultaneous detection methods for several biotech crops' events. The event-specific multiplex PCR method was developed to detect five biotech maize events: MIR604, Event 3272, LY 038, MON 88017 and DAS-59122-7. The specificity was confirmed and the sensitivity was 0.5%. The screening DNA chip was developed from four endogenous genes of soybean, maize, cotton and canola respectively along with two regulatory elements and seven genes: P35S, tNOS, pat, bar, epsps1, epsps2, pmi, cry1Ac and cry3B. The specificity was confirmed and the sensitivity was 0.5% for four crops' 12 events: one soybean, six maize, three cotton and two canola events. The multiplex PCR and DNA chip can be available for screening, gene-specific and event-specific analysis of biotech crops as efficient detection methods by saving on workload and time. © 2014 Society of Chemical Industry. © 2014 Society of Chemical Industry.

  11. A Novel High-Resolving Method for Genomic PCR-Fingerprinting of Enterobacteria

    PubMed Central

    Isaeva, A.S.; Kulikov, E.E.; Tarasyan, K.K.

    2010-01-01

    We developed a novel PCR–fingerprinting system for differentiation of enterobacterial strains using a single oligonucleotide primer IS1tr that matches the inverted terminal repeats of the IS1 insertion element. Compared to widely used BOX–PCR and ribotyping methods, our system features higher resolution allowing differentiation of closely related isolates that appear identical in BOX–PCR and ribotyping but differ in their phage sensitivity. The IS1–profiling system is less sensitive to the quality of the material and equipment used. At the same time, BOX–PCR is more universal and suitable for bacterial strain grouping and reconstruction of the low–distance phylogeny. Thus, our system represents an important supplement to the existing set of tools for bacterial strain differentiation; it is particularly valuable for a detailed investigation of highly divergent and rapidly evolving natural bacterial populations and for studies on coliphage ecology. However, some isolates could not be reliably differentiated by IS1–PCR, because of the low number of bands in their patterns. For improvement of IS1–fingerprinting characteristics, we offer to modify the system by introducing the second primer TR8834 hybridizing to the sequence of a transposase gene that is widely spread in enterobacterial genomes. PMID:22649631

  12. Molecular characterization of Toxocara spp. eggs isolated from public parks and playgrounds in Shiraz, Iran.

    PubMed

    Choobineh, M; Mikaeili, F; Sadjjadi, S M; Ebrahimi, S; Iranmanesh, S

    2018-05-07

    Human toxocariasis, a worldwide parasitic disease, is caused by the larval stage of intestinal nematodes of dogs and cats, namely Toxocara canis and Toxocara cati. Human infection occurs by the accidental ingestion of embryonated eggs present in the soil, vegetables or on other contaminated surfaces, as well as via consumption of uncooked paratenic hosts, such as bird meat and giblets. The objective of this study was to evaluate the contamination of soil in public parks and playgrounds in Shiraz using microscopy and molecular methods. A total of 150 soil samples were collected from public parks and playgrounds in various areas of Shiraz, southern Iran. The samples were treated with saturated zinc sulphate solution, and Toxocara spp. eggs were detected by microscopic observation followed by nested polymerase chain reaction (PCR). To differentiate T. canis and T. cati eggs from each other, PCR restriction fragment length polymorphism (RFLP) of the internal transcribed spacer (ITS)-rDNA region by SalI endonuclease enzyme was used. PCR-sequencing was performed to confirm the results of the PCR-RFLP method. Based on the flotation results of the 150 soil samples, six (4%) were found to be positive for Toxocara spp. eggs, whereas nested-PCR showed 24 samples to be positive (16%). Based on the PCR-RFLP method and the sequence of the ITS-rDNA region, a total of 23 out of 24 isolates were confirmed as T. cati and one out of 24 as T. canis. The results showed a higher number of soil samples to be positive for Toxocara by the molecular method than microscopy, and higher T. cati infection in soil samples, which could have an important role in human infection with toxocariasis in this region.

  13. Quantitative Expression and Immunogenicity of MAGE-3 and -6 in Upper Aerodigestive Tract Cancer

    PubMed Central

    Andrade Filho, Pedro A.; López-Albaitero, Andrés; Xi, Liqiang; Gooding, William; Godfrey, Tony; Ferris, Robert L.

    2009-01-01

    The MAGE antigens are frequently expressed cancer vaccine targets. However, quantitative analysis of MAGE expression in upper aero-digestive tract (UADT) tumor cells and its association with T cell recognition has not been performed, hindering the selection of appropriate candidates for MAGE specific immunotherapy. Using quantitative RT-PCR (QRT-PCR), we evaluated the expression of MAGE-3/6 in 65 UADT cancers, 48 normal samples from tumor matched sites and 7 HLA-A*0201+squamous cell carcinoma of the head and neck (SCCHN) cell lines. Expression results were confirmed using western blot. HLA-A*0201:MAGE-3(271–279) specific cytotoxic T lymphocytes (MAGE-CTL) from SCCHN patients and healthy donors showed that MAGE-3/6 expression was highly associated with CTL recognition in vitro. Based on MAGE-3/6 expression we could identify 31 (47%) of the 65 UADT tumors which appeared to express MAGE-3/6 at levels that correlated with efficient CTL recognition. To confirm that the level of MAGE-3 expression was responsible for CTL recognition, two MAGE-3/6 mRNAhigh SCCHN cell lines, PCI-13 and PCI-30, were subjected to MAGE-3/6 specific knockdown. RNAi–transfected cells showed that MAGE expression, and MAGE-CTL recognition, were significantly reduced. Furthermore, treatment of cells expressing low MAGE-3/6 mRNA with a demethylating agent, 5-aza-2'-deoxycytidine (DAC), increased the expression of MAGE-3/6 and CTL recognition. Thus, using QRT-PCR UADT cancers frequently express MAGE-3/6 at levels sufficient for CTL recognition, supporting the use of a QRT-PCR based assay for the selection of candidates likely to respond to MAGE-3/6 immunotherapy. Demethylating agents could increase the number of patients amenable for targeting epigenetically modified tumor antigens in vaccine trials. PMID:19610063

  14. Quantitative expression and immunogenicity of MAGE-3 and -6 in upper aerodigestive tract cancer.

    PubMed

    Filho, Pedro A Andrade; López-Albaitero, Andrés; Xi, Liqiang; Gooding, William; Godfrey, Tony; Ferris, Robert L

    2009-10-15

    The MAGE antigens are frequently expressed cancer vaccine targets. However, quantitative analysis of MAGE expression in upper aerodigestive tract (UADT) tumor cells and its association with T-cell recognition has not been performed, hindering the selection of appropriate candidates for MAGE-specific immunotherapy. Using quantitative RT-PCR (QRT-PCR), we evaluated the expression of MAGE-3/6 in 65 UADT cancers, 48 normal samples from tumor matched sites and 7 HLA-A*0201+ squamous cell carcinoma of the head and neck (SCCHN) cell lines. Expression results were confirmed using Western blot. HLA-A*0201:MAGE-3- (271-279) specific cytotoxic T lymphocytes (MAGE-CTL) from SCCHN patients and healthy donors showed that MAGE-3/6 expression was highly associated with CTL recognition in vitro. On the basis of the MAGE-3/6 expression, we could identify 31 (47%) of the 65 UADT tumors, which appeared to express MAGE-3/6 at levels that correlated with efficient CTL recognition. To confirm that the level of MAGE-3 expression was responsible for CTL recognition, 2 MAGE-3/6 mRNA(high) SCCHN cell lines, PCI-13 and PCI-30, were subjected to MAGE-3/6-specific knockdown. RNAi-transfected cells showed that MAGE expression and MAGE-CTL recognition were significantly reduced. Furthermore, treatment of cells expressing low MAGE-3/6 mRNA with a demethylating agent, 5-aza-2'-deoxycytidine (DAC), increased the expression of MAGE-3/6 and CTL recognition. Thus, using QRT-PCR UADT cancers frequently express MAGE-3/6 at levels sufficient for CTL recognition, supporting the use of a QRT-PCR-based assay for the selection of candidates likely to respond to MAGE-3/6 immunotherapy. Demethylating agents could increase the number of patients amenable for targeting epigenetically modified tumor antigens in vaccine trials.

  15. Competitive allele-specific TaqMan PCR (Cast-PCR) is a sensitive, specific and fast method for BRAF V600 mutation detection in Melanoma patients

    PubMed Central

    Barbano, Raffaela; Pasculli, Barbara; Coco, Michelina; Fontana, Andrea; Copetti, Massimiliano; Rendina, Michelina; Valori, Vanna Maria; Graziano, Paolo; Maiello, Evaristo; Fazio, Vito Michele; Parrella, Paola

    2015-01-01

    BRAF codon 600 mutation testing of melanoma patients is mandatory for the choice of the most appropriate therapy in the clinical setting. Competitive allele specific TaqMan PCR (Cast-PCR) technology allows not only the selective amplification of minor alleles, but it also blocks the amplification of non-mutant allele. We genotyped codon 600 of the BRAF gene in 54 patients’ samples by Cast-PCR and bidirectional direct sequence analysis. All the mutations detected by sequencing were also identified by Cast-PCR. In addition, Cast-PCR assay detected four samples carrying mutations and was able to clearly identify two mutations of uncertain interpretation by Sanger sequencing. The limit of detection of Cast-PCR was evaluated by constructing dilution curves of BRAFV600E and BRAFV600K mutated clinical samples mixed with a not-mutated specimens. Both mutations could be detected until a 1:100 mutated/not mutated ratio. Cloning and sequencing of the clones was used to confirm mutations on representative discrepant cases. Cast PCR performances were not affected by intratumour heterogeneity, and less affected by melanin content. Our results indicate that Cast-PCR is a reliable diagnostic tool for the identification of melanoma patients as eligible to be treated with TKIs and might be implemented in the clinical setting as elective screening method. PMID:26690267

  16. Study of the bacterial diversity of foods: PCR-DGGE versus LH-PCR.

    PubMed

    Garofalo, Cristiana; Bancalari, Elena; Milanović, Vesna; Cardinali, Federica; Osimani, Andrea; Sardaro, Maria Luisa Savo; Bottari, Benedetta; Bernini, Valentina; Aquilanti, Lucia; Clementi, Francesca; Neviani, Erasmo; Gatti, Monica

    2017-02-02

    The present study compared two culture-independent methods, polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) and length-heterogeneity polymerase chain reaction (LH-PCR), for their ability to reveal food bacterial microbiota. Total microbial DNA and RNA were extracted directly from fourteen fermented and unfermented foods, and domain A of the variable regions V1 and V2 of the 16S rRNA gene was analyzed through LH-PCR and PCR-DGGE. Finally, the outline of these analyses was compared with bacterial viable counts obtained after bacterial growth on suitable selective media. For the majority of the samples, RNA-based PCR-DGGE revealed species that the DNA-based PCR-DGGE was not able to highlight. When analyzing either DNA or RNA, LH-PCR identified several lactic acid bacteria (LAB) and coagulase negative cocci (CCN) species that were not identified by PCR-DGGE. This phenomenon was particularly evident in food samples with viable loads<5.0 Logcfug -1 . Furthermore, LH-PCR was able to detect a higher number of peaks in the analyzed food matrices relative to species identified by PCR-DGGE. In light of these findings, it may be suggested that LH-PCR shows greater sensitivity than PCR-DGGE. However, PCR-DGGE detected some other species (LAB included) that were not detected by LH-PCR. Therefore, certain LH-PCR peaks not attributed to known species within the LH-PCR database could be solved by comparing them with species identified by PCR-DGGE. Overall, this study also showed that LH-PCR is a promising method for use in the food microbiology field, indicating the necessity to expand the LH-PCR database, which is based, up to now, mainly on LAB isolates from dairy products. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Diversity of Cronobacter spp. isolates from the vegetables in the middle-east coastline of China.

    PubMed

    Chen, Wanyi; Yang, Jielin; You, Chunping; Liu, Zhenmin

    2016-06-01

    Cronobacter spp. has caused life-threatening neonatal infections mainly resulted from consumption of contaminated powdered infant formula. A total of 102 vegetable samples from retail markets were evaluated for the presence of Cronobacter spp. Thirty-five presumptive Cronobacter isolates were isolated and identified using API 20E and 16S rDNA sequencing analyses. All isolates and type strains were characterized using enterobacterial repetitive intergenic consensus sequence PCR (ERIC-PCR), and genetic profiles of cluster analysis from this molecular typing test clearly showed that there were differences among isolates from different vegetables. A polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) based on the amplification of the gyrB gene (1258 bp) was developed to differentiate among Cronobacter species. A new PCR-RFLP assay based on the amplification of the gyrB gene using Alu I and Hinf I endonuclease combination is established and it has been confirmed an accurate and rapid subtyping method to differentiate Cronobacter species. Sequence analysis of the gyrB gene was proven to be suitable for the phylogenetic analysis of the Cronobacter strains, which has much better resolution based on SNPs in the identification of Cronobacter species specificity than PCR-RFLP and ERIC-PCR. Our study further confirmed that vegetables are one of the most common habitats or sources of Cronobacter spp. contamination in the middle-east coastline of China.

  18. A Novel High-Throughput Method for Molecular Detection of Human Pathogenic Viruses Using a Nanofluidic Real-Time PCR System

    PubMed Central

    Coudray-Meunier, Coralie; Fraisse, Audrey; Martin-Latil, Sandra; Delannoy, Sabine; Fach, Patrick; Perelle, Sylvie

    2016-01-01

    Human enteric viruses are recognized as the main causes of food- and waterborne diseases worldwide. Sensitive and quantitative detection of human enteric viruses is typically achieved through quantitative RT-PCR (RT-qPCR). A nanofluidic real-time PCR system was used to develop novel high-throughput methods for qualitative molecular detection (RT-qPCR array) and quantification of human pathogenic viruses by digital RT-PCR (RT-dPCR). The performance of high-throughput PCR methods was investigated for detecting 19 human pathogenic viruses and two main process controls used in food virology. The conventional real-time PCR system was compared to the RT-dPCR and RT-qPCR array. Based on the number of genome copies calculated by spectrophotometry, sensitivity was found to be slightly better with RT-qPCR than with RT-dPCR for 14 viruses by a factor range of from 0.3 to 1.6 log10. Conversely, sensitivity was better with RT-dPCR than with RT-qPCR for seven viruses by a factor range of from 0.10 to 1.40 log10. Interestingly, the number of genome copies determined by RT-dPCR was always from 1 to 2 log10 lower than the expected copy number calculated by RT-qPCR standard curve. The sensitivity of the RT-qPCR and RT-qPCR array assays was found to be similar for two viruses, and better with RT-qPCR than with RT-qPCR array for eighteen viruses by a factor range of from 0.7 to 3.0 log10. Conversely, sensitivity was only 0.30 log10 better with the RT-qPCR array than with conventional RT-qPCR assays for norovirus GIV detection. Finally, the RT-qPCR array and RT-dPCR assays were successfully used together to screen clinical samples and quantify pathogenic viruses. Additionally, this method made it possible to identify co-infection in clinical samples. In conclusion, given the rapidity and potential for large numbers of viral targets, this nanofluidic RT-qPCR assay should have a major impact on human pathogenic virus surveillance and outbreak investigations and is likely to be of benefit

  19. Clinical evaluation of β-tubulin real-time PCR for rapid diagnosis of dermatophytosis, a comparison with mycological methods.

    PubMed

    Motamedi, Marjan; Mirhendi, Hossein; Zomorodian, Kamiar; Khodadadi, Hossein; Kharazi, Mahboobeh; Ghasemi, Zeinab; Shidfar, Mohammad Reza; Makimura, Koichi

    2017-10-01

    Following our previous report on evaluation of the beta tubulin real-time PCR for detection of dermatophytosis, this study aimed to compare the real-time PCR assay with conventional methods for the clinical assessment of its diagnostic performance. Samples from a total of 853 patients with suspected dermatophyte lesions were subjected to direct examination (all samples), culture (499 samples) and real-time PCR (all samples). Fungal DNA was extracted directly from clinical samples using a conical steel bullet, followed by purification with a commercial kit and subjected to the Taq-Man probe-based real-time PCR. The study showed that among the 499 specimens for which all three methods were used, 156 (31.2%), 128 (25.6%) and 205 (41.0%) were found to be positive by direct microscopy, culture and real-time PCR respectively. Real-time PCR significantly increased the detection rate of dermatophytes compared with microscopy (288 vs 229) with 87% concordance between the two methods. The sensitivity, specificity, positive predictive value, and negative predictive value of the real-time PCR was 87.5%, 85%, 66.5% and 95.2% respectively. Although real-time PCR performed better on skin than on nail samples, it should not yet fully replace conventional diagnosis. © 2017 Blackwell Verlag GmbH.

  20. Screening of cytoplasmic DNA diversity between and within Lupinus mutabilis Sweet and Lupinus albus sensu lato by restriction fragment length polymorphism (RFLP).

    PubMed

    Olczak, T; Rurek, M; Jańska, H; Augustyniak, H; Sawicka-Sienkiewicz, E J

    2001-01-01

    Seven populations and five mutant lines of the Andean lupin and four species from the section Albus were screened for their mitochondrial and chloroplast polymorphisms. For this purpose the RFLP method with EcoRI as a restriction enzyme was used. Lupinus luteus, Lupinus albus and Phaseolus vulgaris organellar clones as well as amplified fragments were used as probes. We found that mitochondrial probes were more suitable than chloroplast probes for identification of inter- and intra-specific variations within the examined material. Most mitochondrial probes differentiate the two species investigated. A high level of mitochondrial polymorphism was observed among the populations of L. mutabilis in contrast to monomorphism among the species in the section Albus. A limited polymorphism was detected between the mutant lines of L. mutabilis. We conclude from this study that the mitochondrial RFLP analysis is a valuable tool for identification of variability among Andean lupin populations.

  1. Indel analysis by droplet digital PCR: a sensitive method for DNA mixture detection and chimerism analysis.

    PubMed

    Santurtún, Ana; Riancho, José A; Arozamena, Jana; López-Duarte, Mónica; Zarrabeitia, María T

    2017-01-01

    Several methods have been developed to determinate genetic profiles from a mixed samples and chimerism analysis in transplanted patients. The aim of this study was to explore the effectiveness of using the droplet digital PCR (ddPCR) for mixed chimerism detection (a mixture of genetic profiles resulting after allogeneic hematopoietic stem cell transplantation (HSCT)). We analyzed 25 DNA samples from patients who had undergone HSCT and compared the performance of ddPCR and two established methods for chimerism detection, based upon the Indel and STRs analysis, respectively. Additionally, eight artificial mixture DNA samples were created to evaluate the sensibility of ddPCR. Our results show that the chimerism percentages estimated by the analysis of a single Indel using ddPCR were very similar to those calculated by the amplification of 15 STRs (r 2  = 0.970) and with the results obtained by the amplification of 38 Indels (r 2  = 0.975). Moreover, the amplification of a single Indel by ddPCR was sensitive enough to detect a minor DNA contributor comprising down to 0.5 % of the sample. We conclude that ddPCR can be a powerful tool for the determination of a genetic profile of forensic mixtures and clinical chimerism analysis when traditional techniques are not sensitive enough.

  2. A microsampling method for genotyping coral symbionts

    NASA Astrophysics Data System (ADS)

    Kemp, D. W.; Fitt, W. K.; Schmidt, G. W.

    2008-06-01

    Genotypic characterization of Symbiodinium symbionts in hard corals has routinely involved coring, or the removal of branches or a piece of the coral colony. These methods can potentially underestimate the complexity of the Symbiodinium community structure and may produce lesions. This study demonstrates that microscale sampling of individual coral polyps provided sufficient DNA for identifying zooxanthellae clades by RFLP analyses, and subclades through the use of PCR amplification of the ITS-2 region of rDNA and denaturing-gradient gel electrophoresis. Using this technique it was possible to detect distinct ITS-2 types of Symbiodinium from two or three adjacent coral polyps. These methods can be used to intensely sample coral-symbiont population/communities while causing minimal damage. The effectiveness and fine scale capabilities of these methods were demonstrated by sampling and identifying phylotypes of Symbiodinium clades A, B, and C that co-reside within a single Montastraea faveolata colony.

  3. Direct PCR - A rapid method for multiplexed detection of different serotypes of Salmonella in enriched pork meat samples.

    PubMed

    Chin, Wai Hoe; Sun, Yi; Høgberg, Jonas; Quyen, Than Linh; Engelsmann, Pia; Wolff, Anders; Bang, Dang Duong

    2017-04-01

    Salmonellosis, an infectious disease caused by Salmonella spp., is one of the most common foodborne diseases. Isolation and identification of Salmonella by conventional bacterial culture method is time consuming. In response to the demand for rapid on line or at site detection of pathogens, in this study, we developed a multiplex Direct PCR method for rapid detection of different Salmonella serotypes directly from pork meat samples without any DNA purification steps. An inhibitor-resistant Phusion Pfu DNA polymerase was used to overcome PCR inhibition. Four pairs of primers including a pair of newly designed primers targeting Salmonella spp. at subtype level were incorporated in the multiplex Direct PCR. To maximize the efficiency of the Direct PCR, the ratio between sample and dilution buffer was optimized. The sensitivity and specificity of the multiplex Direct PCR were tested using naturally contaminated pork meat samples for detecting and subtyping of Salmonella spp. Conventional bacterial culture methods were used as reference to evaluate the performance of the multiplex Direct PCR. Relative accuracy, sensitivity and specificity of 98.8%; 97.6% and 100%, respectively, were achieved by the method. Application of the multiplex Direct PCR to detect Salmonella in pork meat at slaughter reduces the time of detection from 5 to 6 days by conventional bacterial culture and serotyping methods to 14 h (including 12 h enrichment time). Furthermore, the method poses a possibility of miniaturization and integration into a point-of-need Lab-on-a-chip system for rapid online pathogen detection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Genotypic characterization of psittacid herpesvirus isolates from Brazil.

    PubMed

    Luppi, Marcela Miranda; Luiz, Ana Paula Moreira Franco; Coelho, Fabiana Magalhães; Ecco, Roselene; da Fonseca, Flávio Guimarães; Resende, Mauricio

    2016-01-01

    Thirty-six isolates of psittacid herpesvirus (PsHV), obtained from 12 different species of psittacids in Brazil, were genotypically characterized by restriction fragment length polymorphism (RFLP) analysis and PCR amplification. RFLP analysis with the PstI enzyme revealed four distinct restriction patterns (A1, X, W and Y), of which only A1 (corresponding to PsHV-1) had previously been described. To study PCR amplification patterns, six pairs of primers were used. Using this method, six variants were identified, of which, variants 10, 8, and 9 (in this order) were most prevalent, followed by variants 1, 4, and 5. It was not possible to correlate the PCR and RFLP patterns. Twenty-nine of the 36 isolates were shown to contain a 419bp fragment of the UL16 gene, displaying high similarity to the PsHV-1 sequences available in GenBank. Comparison of the results with the literature data suggests that the 36 Brazilian isolates from this study belong to genotype 1 and serotype 1. Copyright © 2015 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  5. [Evaluation of the usefulness of various PCR method variations and nucleic acid hybridization for CMV infection in immunosuppressed patients].

    PubMed

    Siennicka, J; Trzcińska, A; Litwińska, B; Durlik, M; Seferyńska, I; Pałynyczko, G; Kańtoch, M

    2000-01-01

    In diagnosis of CMV infection various laboratory methods are used. The methods based on detection of viral nucleic acids have been introduced routinely in many laboratories. The aim of this study was to compare nucleic acid hybridisation method and various variants of PCR methods with respect to their ability to detect CMV DNA. The studied material comprised 60 blood samples from 19 patients including 13 renal transplant recipients and 6 with acute leukaemia. The samples were subjected to hybridisation (Murex Hybrid Capture System CMV DNA) and PCR carried out in 3 variants: with one pair of primers (single PCR), nested PCR and Digene SHARP System with detection of PCR product using a genetic probe in ELISA system. The sensitivity of the variants ranged from 10(0) particles of viral DNA in nested PCR to 10(2) in single PCR. The producer claimed the sensitivity of the hybridisation test to be 3 x 10(5) and it seems to be sufficient for detection of CMV infection. The obtained results show that sensitivity of hybridisation was comparable to that of single PCR and the possibility of obtaining quantitative results makes it superior, on efficacy of antiviral therapy, especially in monitoring CMV infection in immunossuppressed patients and in following the efficacy of antiviral treatment.

  6. Comparison of methods for identifying causative bacterial microorganisms in presumed acute endophthalmitis: conventional culture, blood culture, and PCR.

    PubMed

    Pongsachareonnont, Pear; Honglertnapakul, Worawalun; Chatsuwan, Tanittha

    2017-02-21

    Identification of bacterial pathogens in endophthalmitis is important to inform antibiotic selection and treatment decisions. Hemoculture bottles and polymerase chain reaction (PCR) analysis have been proposed to offer good detection sensitivity. This study compared the sensitivity and accuracy of a blood culture system, a PCR approach, and conventional culture methods for identification of causative bacteria in cases of acute endophthalmitis. Twenty-nine patients with a diagnosis of presumed acute bacterial endophthalmitis who underwent vitreous specimen collection at King Chulalongkorn Memorial Hospital were enrolled in this study. Forty-one specimens were collected. Each specimen was divided into three parts, and each part was analyzed using one of three microbial identification techniques: conventional plate culture, blood culture, and polymerase chain reaction and sequencing. The results of the three methods were then compared. Bacteria were identified in 15 of the 41 specimens (36.5%). Five (12.2%) specimens were positive by conventional culture methods, 11 (26.8%) were positive by hemoculture, and 11 (26.8%) were positive by PCR. Cohen's kappa analysis revealed p-values for conventional methods vs. hemoculture, conventional methods vs. PCR, and hemoculture vs. PCR of 0.057, 0.33, and 0.009, respectively. Higher detection rates of Enterococcus faecalis were observed for hemoculture and PCR than for conventional methods. Blood culture bottles and PCR detection may facilitate bacterial identification in cases of presumed acute endophthalmitis. These techniques should be used in addition to conventional plate culture methods because they provide a greater degree of sensitivity than conventional plate culture alone for the detection of specific microorganisms such as E. faecalis. Thai Clinical Trial Register No. TCTR20110000024 .

  7. Development and Evaluation of Event-Specific Quantitative PCR Method for Genetically Modified Soybean MON87701.

    PubMed

    Tsukahara, Keita; Takabatake, Reona; Masubuchi, Tomoko; Futo, Satoshi; Minegishi, Yasutaka; Noguchi, Akio; Kondo, Kazunari; Nishimaki-Mogami, Tomoko; Kurashima, Takeyo; Mano, Junichi; Kitta, Kazumi

    2016-01-01

    A real-time PCR-based analytical method was developed for the event-specific quantification of a genetically modified (GM) soybean event, MON87701. First, a standard plasmid for MON87701 quantification was constructed. The conversion factor (C f ) required to calculate the amount of genetically modified organism (GMO) was experimentally determined for a real-time PCR instrument. The determined C f for the real-time PCR instrument was 1.24. For the evaluation of the developed method, a blind test was carried out in an inter-laboratory trial. The trueness and precision were evaluated as the bias and reproducibility of relative standard deviation (RSDr), respectively. The determined biases and the RSDr values were less than 30 and 13%, respectively, at all evaluated concentrations. The limit of quantitation of the method was 0.5%, and the developed method would thus be applicable for practical analyses for the detection and quantification of MON87701.

  8. PCR-based methods for the detection of L1014 kdr mutation in Anopheles culicifacies sensu lato

    PubMed Central

    Singh, Om P; Bali, Prerna; Hemingway, Janet; Subbarao, Sarala K; Dash, Aditya P; Adak, Tridibes

    2009-01-01

    Background Anopheles culicifacies s.l., a major malaria vector in India, has developed widespread resistance to DDT and is becoming resistant to pyrethroids–the only insecticide class recommended for the impregnation of bed nets. Knock-down resistance due to a point mutation in the voltage gated sodium channel at L1014 residue (kdr) is a common mechanism of resistance to DDT and pyrethroids. The selection of this resistance may pose a serious threat to the success of the pyrethroid-impregnated bed net programme. This study reports the presence of kdr mutation (L1014F) in a field population of An. culicifacies s.l. and three new PCR-based methods for kdr genotyping. Methods The IIS4-IIS5 linker to IIS6 segments of the para type voltage gated sodium channel gene of DDT and pyrethroid resistant An. culicifacies s.l. population from the Surat district of India was sequenced. This revealed the presence of an A-to-T substitution at position 1014 leading to a leucine-phenylalanine mutation (L1014F) in a few individuals. Three molecular methods viz. Allele Specific PCR (AS-PCR), an Amplification Refractory Mutation System (ARMS) and Primer Introduced Restriction Analysis-PCR (PIRA-PCR) were developed and tested for kdr genotyping. The specificity of the three assays was validated following DNA sequencing of the samples genotyped. Results The genotyping of this An. culicifacies s.l. population by the three PCR based assays provided consistent result and were in agreement with DNA sequencing result. A low frequency of the kdr allele mostly in heterozygous condition was observed in the resistant population. Frequencies of the different genotypes were in Hardy-Weinberg equilibrium. Conclusion The Leu-Phe mutation, which generates the kdr phenotype in many insects, was detected in a pyrethroid and DDT resistant An. culicifacies s.l. population. Three PCR-based methods were developed for kdr genotyping. All the three assays were specific. The ARMS method was refractory to non

  9. A new source of cytoplasmic male sterility in pearl millet: RFLP analysis of mitochondrial DNA.

    PubMed

    Sujata, V; Sivaramakrishnan, S; Rai, K N; Seetha, K

    1994-06-01

    A new source of cytoplasmic male sterility (cms) in pearl millet (Pennisetum glaucum (L.) R.Br.) derived from a half-sib progeny of the Early Gene Pool (EGP 261) and used in a male-sterile line, ICMA 90111, was compared with other known cms sources for RFLP of mitochondrial (mt) DNA. Southern blot hybridization of mtDNA from ICMA 90111 digested with several restriction enzymes and probed with homologous mtDNA clones from pearl millet and heterologous gene clones from maize and wheat revealed the RFLP patterns of ICMA 90111 distinct from others studied so far. The dendrogram of male-sterile lines constructed from the Southern blot hybridization patterns indicated that ICMA 90111 represents a separate group. Our results suggest that this source of cms is unique in several respects.

  10. [Development and validation of event-specific quantitative PCR method for genetically modified maize LY038].

    PubMed

    Mano, Junichi; Masubuchi, Tomoko; Hatano, Shuko; Futo, Satoshi; Koiwa, Tomohiro; Minegishi, Yasutaka; Noguchi, Akio; Kondo, Kazunari; Akiyama, Hiroshi; Teshima, Reiko; Kurashima, Takeyo; Takabatake, Reona; Kitta, Kazumi

    2013-01-01

    In this article, we report a novel real-time PCR-based analytical method for quantitation of the GM maize event LY038. We designed LY038-specific and maize endogenous reference DNA-specific PCR amplifications. After confirming the specificity and linearity of the LY038-specific PCR amplification, we determined the conversion factor required to calculate the weight-based content of GM organism (GMO) in a multilaboratory evaluation. Finally, in order to validate the developed method, an interlaboratory collaborative trial according to the internationally harmonized guidelines was performed with blind DNA samples containing LY038 at the mixing levels of 0, 0.5, 1.0, 5.0 and 10.0%. The precision of the method was evaluated as the RSD of reproducibility (RSDR), and the values obtained were all less than 25%. The limit of quantitation of the method was judged to be 0.5% based on the definition of ISO 24276 guideline. The results from the collaborative trial suggested that the developed quantitative method would be suitable for practical testing of LY038 maize.

  11. Application of real-time PCR for total airborne bacterial assessment: Comparison with epifluorescence microscopy and culture-dependent methods

    NASA Astrophysics Data System (ADS)

    Rinsoz, Thomas; Duquenne, Philippe; Greff-Mirguet, Guylaine; Oppliger, Anne

    Traditional culture-dependent methods to quantify and identify airborne microorganisms are limited by factors such as short-duration sampling times and inability to count non-culturable or non-viable bacteria. Consequently, the quantitative assessment of bioaerosols is often underestimated. Use of the real-time quantitative polymerase chain reaction (Q-PCR) to quantify bacteria in environmental samples presents an alternative method, which should overcome this problem. The aim of this study was to evaluate the performance of a real-time Q-PCR assay as a simple and reliable way to quantify the airborne bacterial load within poultry houses and sewage treatment plants, in comparison with epifluorescence microscopy and culture-dependent methods. The estimates of bacterial load that we obtained from real-time PCR and epifluorescence methods, are comparable, however, our analysis of sewage treatment plants indicate these methods give values 270-290 fold greater than those obtained by the "impaction on nutrient agar" method. The culture-dependent method of air impaction on nutrient agar was also inadequate in poultry houses, as was the impinger-culture method, which gave a bacterial load estimate 32-fold lower than obtained by Q-PCR. Real-time quantitative PCR thus proves to be a reliable, discerning, and simple method that could be used to estimate airborne bacterial load in a broad variety of other environments expected to carry high numbers of airborne bacteria.

  12. Isolation and RFLP genotyping of Toxoplasma gondii from the mongoose (Herpestes auropunctatus) in Grenada, West Indies.

    PubMed

    Choudhary, Shanti; Zieger, Ulrike; Sharma, Ravindra N; Chikweto, Alfred; Tiwari, Keshaw P; Ferreira, Leandra R; Oliveira, Solange; Barkley, Lovell J; Verma, Shiv Kumar; Kwok, Oliver C H; Su, Chunlei; Dubey, J P

    2013-12-01

    Little is known of the genetic diversity and epidemiology of Toxoplasma gondii infection in wildlife in Caribbean Islands. The prevalence and genetic diversity of T. gondii in mongooses (Herpestes auropunctatus) was investigated. During 2011 and 2012, 91 mongooses were trapped in different parts of Grenada, bled, euthanized, and examined at necropsy. Antibodies to T. gondii were found in 27 mongooses tested by the modified agglutination test (cut-off titer 25). Muscles (heart, tongue, neck) of 25 of the seropositive mongooses were bioassayed for T. gondii infection in mice. Viable T. gondii was isolated by bioassay in mice from four mongooses with MAT titers of 1:50 in two, 1:200 for one, and 1:400 for one mongoose. The four T. gondii isolates were further propagated in cell culture. Strain typing of T. gondii DNA extracted from cell-cultured tachyzoites using the 10 PCR-restriction fragment length polymorphism (RFLP) markers SAG1, SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1, and Apico revealed one isolate belongs to the Type III (ToxoDB #2) lineage, two to ToxoDB#7 lineage, and one to the ToxoDB #216 lineage. This is the first report of T. gondii isolation and genotyping in H. auropunctatus worldwide.

  13. Design, synthesis, and anti-inflammatory activity of caffeoyl salicylate analogs as NO production inhibitors.

    PubMed

    Yu, Pan; Xia, Chao-Jie; Li, Dong-Dong; Ni, Jun-Jun; Zhao, Lin-Guo; Ding, Gang; Wang, Zhen-Zhong; Xiao, Wei

    2018-05-28

    Chlorogenic acid (CGA) has been reported to exhibit potent anti-inflammatory activity. However, the development of anti-inflammatory agent based on CGA has not been investigated. In this paper, a series of caffeoyl salicylate compounds derived from CGA were designed, synthesized, and evaluated by LPS-induced nitric oxide synthase inhibition and QRT-PCR technique. Most compounds showed modest activity to inhibit production of nitric oxide (NO) in RAW 264.7 cells induced by lipopolysaccharides (LPS). Among these compounds, QRT-PCR and western blotting results indicated that compounds 6b, 6c, 6f, 6g and D104 that possess 5-member ring or 6-member ring caused a significant inhibition against expression of the iNOS2 in LPS-induced macrophages. In addition, cytotoxic assay displayed most derivatives have good safety in vitro. This new promising scaffold could be further exploited for the development of anti-inflammatory agent in the future. Copyright © 2017. Published by Elsevier B.V.

  14. MRPrimer: a MapReduce-based method for the thorough design of valid and ranked primers for PCR

    PubMed Central

    Kim, Hyerin; Kang, NaNa; Chon, Kang-Wook; Kim, Seonho; Lee, NaHye; Koo, JaeHyung; Kim, Min-Soo

    2015-01-01

    Primer design is a fundamental technique that is widely used for polymerase chain reaction (PCR). Although many methods have been proposed for primer design, they require a great deal of manual effort to generate feasible and valid primers, including homology tests on off-target sequences using BLAST-like tools. That approach is inconvenient for many target sequences of quantitative PCR (qPCR) due to considering the same stringent and allele-invariant constraints. To address this issue, we propose an entirely new method called MRPrimer that can design all feasible and valid primer pairs existing in a DNA database at once, while simultaneously checking a multitude of filtering constraints and validating primer specificity. Furthermore, MRPrimer suggests the best primer pair for each target sequence, based on a ranking method. Through qPCR analysis using 343 primer pairs and the corresponding sequencing and comparative analyses, we showed that the primer pairs designed by MRPrimer are very stable and effective for qPCR. In addition, MRPrimer is computationally efficient and scalable and therefore useful for quickly constructing an entire collection of feasible and valid primers for frequently updated databases like RefSeq. Furthermore, we suggest that MRPrimer can be utilized conveniently for experiments requiring primer design, especially real-time qPCR. PMID:26109350

  15. Development of a novel hexa-plex PCR method for identification and serotyping of Salmonella species.

    PubMed

    Li, Ruichao; Wang, Yang; Shen, Jianzhong; Wu, Congming

    2014-01-01

    Salmonella is one of the most important foodborne pathogens, which causes a huge economic burden worldwide. To detect Salmonella rapidly is very meaningful in preventing salmonellosis and decreasing economic losses. Currently, isolation of Salmonella is confirmed by biochemical and serobased serotyping methods, which are time consuming, labor intensive, and complicated. To solve this problem, a hexa-plex polymerase chain reaction (PCR) method was developed using comparative genomics analysis and multiplex PCR technology to detect Salmonella and Salmonella Typhimurium, Salmonella Enteritidis, Salmonella Agona, Salmonella Choleraesuis, and Salmonella Pullorum simultaneously. The accuracy of this method was tested by a collection of 142 Salmonella. Furthermore, the strategy described in this article to mine serovar-specific fragments for Salmonella could be used to find specific fragments for other Salmonella serotypes and bacteria. The combination of this strategy and multiplex PCR is promising in the rapid identification of foodborne pathogens.

  16. Differentiation of strains from the Bacillus cereus group by RFLP-PFGE genomic fingerprinting.

    PubMed

    Otlewska, Anna; Oltuszak-Walczak, Elzbieta; Walczak, Piotr

    2013-11-01

    Bacillus mycoides, Bacillus pseudomycoides, Bacillus weihenstephanensis, Bacillus anthracis, Bacillus thuringiensis, and Bacillus cereus belong to the B. cereus group. The last three species are characterized by different phenotype features and pathogenicity spectrum, but it has been shown that these species are genetically closely related. The macrorestriction analysis of the genomic DNA with the NotI enzyme was used to generate polymorphism of restriction profiles for 39 food-borne isolates (B. cereus, B. mycoides) and seven reference strains (B. mycoides, B. thuringiensis, B. weihenstephanensis, and B. cereus). The PFGE method was applied to differentiate the examined strains of the B. cereus group. On the basis of the unweighted pair group method with the arithmetic mean method and Dice coefficient, the strains were divided into five clusters (types A-E), and the most numerous group was group A (25 strains). A total of 21 distinct pulsotypes were observed. The RFLP-PFGE analysis was successfully used for the differentiation and characterization of B. cereus and B. mycoides strains isolated from different food products. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Duplex Real-Time PCR Method for the Differentiation of Cronobacter sakazakii and Cronobacter malonaticus.

    PubMed

    Li, Xiaofang; Cui, Jinghua; Du, Xiaoli; Cui, Zhigang; Huang, Yibing; Kan, Biao

    2017-01-01

    Cronobacter sakazakii and Cronobacter malonaticus are the most common species of Cronobacter , so it is necessary to detect the two species as soon as possible in surveillance programs. We developed a real-time PCR method for identifying C. sakazakii and C. malonaticus from the genus Cronobacter . In this study, the two pairs of primers and probes were designed, targeting 16S rRNA and fusA, respectively. The specificity of the real-time PCR assay was validated with 112 strains of Cronobacter , including 56 C. sakazakii , 32 C. malonaticus , 16 Cronobacter dublinensis , 6 Cronobacter turicensis , and 2 Cronobacter muytjensii . The results showed that C. sakazakii and C. malonaticus were all correctly identified, consistent with the results of another method by analyzing the clustering of the fusA sequence. The detection limit for pure culture was 10 2 CFU/ml and 10 3 CFU/g for artificially contaminated rehydrated powdered infant formula. Therefore, the developed real-time PCR was a rapid, sensitive, and reliable method for the identification of C. sakazakii and C. malonaticus .

  18. Evaluation of a PCR melting profile method for intraspecies differentiation of Trichophyton rubrum and Trichophyton interdigitale.

    PubMed

    Leibner-Ciszak, Justyna; Dobrowolska, Anita; Krawczyk, Beata; Kaszuba, Aleksandra; Staczek, Paweł

    2010-02-01

    In order to identify the source of infections caused by dermatophytes, as well as the pathogen transmission pathway, there is a need to determine methods that allow detailed genetic differentiation of the strains within the dermatophyte genera. In this work, a PCR melting profile (PCR-MP) technique based on the ligation of adaptors and the difference in melting temperatures of DNA restriction fragments was used for the first time for intraspecies genotyping of dermatophytes. Clinical isolates and reference strains of dermatophytes isolated from skin, scalp, toenails and fingernails were used for this study. PCR-MP and random amplification of polymorphic DNA (RAPD) were used to type 11 isolates of Trichophyton rubrum, 40 isolates of Trichophyton interdigitale and 14 isolates of Microsporum canis. The results distinguished five types (containing one subtype) characteristic for T. rubrum and seven types characteristic for T. interdigitale using the PCR-MP technique. Analysis conducted using RAPD revealed five types for T. rubrum and four types for T. interdigitale isolates. No differentiation was observed for the M. canis isolates with either method. These results demonstrate that PCR-MP is a reliable method for the differentiation of T. rubrum and T. interdigitale strains and yields a discriminatory power that is at least equal to that of RAPD.

  19. PCR Methods for Rapid Identification and Characterization of Actinobacillus seminis Strains

    PubMed Central

    Appuhamy, S.; Coote, J. G.; Low, J. C.; Parton, R.

    1998-01-01

    Twenty-four isolates of Actinobacillus seminis were typed by PCR ribotyping, repetitive extragenic palindromic element (REP)-based PCR, and enterobacterial repetitive intergenic consensus (ERIC)-based PCR. Five types were distinguished by REP-PCR, and nine types were distinguished by ERIC-PCR. PCR ribotyping produced the simplest pattern and could be useful for identification of A. seminis and for its differentiation from related species. REP- and ERIC-PCR could be used for strain differentiation in epidemiological studies of A. seminis. PMID:9508320

  20. European validation of Real-Time PCR method for detection of Salmonella spp. in pork meat.

    PubMed

    Delibato, Elisabetta; Rodriguez-Lazaro, David; Gianfranceschi, Monica; De Cesare, Alessandra; Comin, Damiano; Gattuso, Antonietta; Hernandez, Marta; Sonnessa, Michele; Pasquali, Frédérique; Sreter-Lancz, Zuzsanna; Saiz-Abajo, María-José; Pérez-De-Juan, Javier; Butrón, Javier; Prukner-Radovcic, Estella; Horvatek Tomic, Danijela; Johannessen, Gro S; Jakočiūnė, Džiuginta; Olsen, John E; Chemaly, Marianne; Le Gall, Francoise; González-García, Patricia; Lettini, Antonia Anna; Lukac, Maja; Quesne, Segolénè; Zampieron, Claudia; De Santis, Paola; Lovari, Sarah; Bertasi, Barbara; Pavoni, Enrico; Proroga, Yolande T R; Capuano, Federico; Manfreda, Gerardo; De Medici, Dario

    2014-08-01

    The classical microbiological method for detection of Salmonella spp. requires more than five days for final confirmation, and consequently there is a need for an alternative methodology for detection of this pathogen particularly in those food categories with a short shelf-life. This study presents an international (at European level) ISO 16140-based validation study of a non-proprietary Real-Time PCR-based method that can generate final results the day following sample analysis. It is based on an ISO compatible enrichment coupled to an easy and inexpensive DNA extraction and a consolidated Real-Time PCR assay. Thirteen laboratories from seven European Countries participated to this trial, and pork meat was selected as food model. The limit of detection observed was down to 10 CFU per 25 g of sample, showing excellent concordance and accordance values between samples and laboratories (100%). In addition, excellent values were obtained for relative accuracy, specificity and sensitivity (100%) when the results obtained for the Real-Time PCR-based methods were compared to those of the ISO 6579:2002 standard method. The results of this international trial demonstrate that the evaluated Real-Time PCR-based method represents an excellent alternative to the ISO standard. In fact, it shows an equal and solid performance as well as it reduces dramatically the extent of the analytical process, and can be easily implemented routinely by the Competent Authorities and Food Industry laboratories. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. A PCR-Based Method for RNA Probes and Applications in Neuroscience.

    PubMed

    Hua, Ruifang; Yu, Shanshan; Liu, Mugen; Li, Haohong

    2018-01-01

    In situ hybridization (ISH) is a powerful technique that is used to detect the localization of specific nucleic acid sequences for understanding the organization, regulation, and function of genes. However, in most cases, RNA probes are obtained by in vitro transcription from plasmids containing specific promoter elements and mRNA-specific cDNA. Probes originating from plasmid vectors are time-consuming and not suitable for the rapid gene mapping. Here, we introduce a simplified method to prepare digoxigenin (DIG)-labeled non-radioactive RNA probes based on polymerase chain reaction (PCR) amplification and applications in free-floating mouse brain sections. Employing a transgenic reporter line, we investigate the expression of the somatostatin (SST) mRNA in the adult mouse brain. The method can be applied to identify the colocalization of SST mRNA and proteins including corticotrophin-releasing hormone (CRH) and protein kinase C delta type (PKC-δ) using double immunofluorescence, which is useful for understanding the organization of complex brain nuclei. Moreover, the method can also be incorporated with retrograde tracing to visualize the functional connection in the neural circuitry. Briefly, the PCR-based method for non-radioactive RNA probes is a useful tool that can be substantially utilized in neuroscience studies.

  2. Detection of canine distemper virus (CDV) through one step RT-PCR combined with nested PCR.

    PubMed

    Kim, Y H; Cho, K W; Youn, H Y; Yoo, H S; Han, H R

    2001-04-01

    A one step reverse transcription PCR (RT-PCR) combined nested PCR was set up to increase efficiency in the diagnosis of canine distemper virus (CDV) infection after developement of nested PCR. Two PCR primer sets were designed based on the sequence of nucleocapsid gene of CDV Onderstepoort strain. One-step RT-PCR with the outer primer pair was revealed to detect 10(2) PFU/ml. The sensitivity was increased hundredfold using the one-step RT-PCR combined with the nested PCR. Specificity of the PCR was also confirmed using other related canine virus and peripheral blood mononuclear cells (PBMC) and body secretes of healthy dogs. Of the 51 blood samples from dogs clinically suspected of CD, 45 samples were revealed as positive by one-step RT-PCR combined with nested PCR. However, only 15 samples were identified as positive with a single one step RT-PCR. Therefore approximately 60% increase in the efficiency of the diagnosis was observed by the combined method. These results suggested that one step RT-PCR combined with nested PCR could be a sensitive, specific, and practical method for diagnosis of CDV infection.

  3. Identification of Lactobacillus alimentarius and Lactobacillus farciminis with 16S-23S rDNA intergenic spacer region polymorphism and PCR amplification using species-specific oligonucleotide.

    PubMed

    Rachman, C N; Kabadjova, P; Prévost, H; Dousset, X

    2003-01-01

    The restriction fragment length polymorphism (RFLP) method was used to differentiate Lactobacillus species having closely related identities in the 16S-23S rDNA intergenic spacer region (ISR). Species-specific primers for Lact. farciminis and Lact. alimentarius were designed and allowed rapid identification of these species. The 16S-23S rDNA spacer region was amplified by primers tAla and 23S/p10, then digested by HinfI and TaqI enzymes and analysed by electrophoresis. Digestion by HinfI was not sufficient to differentiate Lact. sakei, Lact. curvatus, Lact. farciminis, Lact. alimentarius, Lact. plantarum and Lact. paraplantarum. In contrast, digestion carried out by TaqI revealed five different patterns allowing these species to be distinguished, except for Lact. plantarum from Lact. paraplantarum. The 16S-23S rDNA spacer region of Lact. farciminis and Lact. alimentarius were amplified and then cloned into vector pCR(R)2.1 and sequenced. The DNA sequences obtained were analysed and species-specific primers were designed from these sequences. The specificity of these primers was positively demonstrated as no response was obtained for 14 other species tested. The species-specific primers for Lact. farciminis and Lact. alimentarius were shown to be useful for identifying these species among other lactobacilli. The RFLP profile obtained upon digestion with HinfI and TaqI enzymes can be used to discriminate Lact. farciminis, Lact. alimentarius, Lact. sakei, Lact. curvatus and Lact. plantarum. In this paper, we have established the first species-specific primer for PCR identification of Lact. farciminis and Lact. alimentarius. Both species-specific primer and RFLP, could be used as tools for rapid identification of lactobacilli up to species level.

  4. A rapid and reliable PCR method for genotyping the ABO blood group.

    PubMed

    O'Keefe, D S; Dobrovic, A

    1993-01-01

    The ABO blood group has been used extensively as a marker in population studies, epidemiology, and forensic work. However, until the cloning of the gene, it was not possible to determine the genotype of group A and B individuals without recourse to family studies. We have developed a method to determine the ABO genotype directly from human DNA using multiplex PCR and restriction enzyme analysis. Two PCR fragments spanning positions 258 and 700 of the cDNA sequence are amplified. The site at position 258 allows us to differentiate the O allele from the A and B alleles. The site at position 700 allows us to distinguish the B allele from the A and O alleles. Analysis at the two sites thus allows us to distinguish the three alleles. The multiplex PCR product is digested separately with four enzymes, two for each of the sites. The pair of enzymes for each site cut in a reciprocal fashion. Whereas one enzyme for each site is theoretically sufficient for genotyping, the use of complementary pairs of enzymes prevents the assignment of a false genotype as a result of false negative or partial digestion. This method is fast and reliable, does not rely on probing of blots, and should be widely applicable.

  5. Real-time PCR method combined with immunomagnetic separation for detecting healthy and heat-injured Salmonella Typhimurium on raw duck wings.

    PubMed

    Zheng, Qianwang; Mikš-Krajnik, Marta; Yang, Yishan; Xu, Wang; Yuk, Hyun-Gyun

    2014-09-01

    Conventional culture detection methods are time consuming and labor-intensive. For this reason, an alternative rapid method combining real-time PCR and immunomagnetic separation (IMS) was investigated in this study to detect both healthy and heat-injured Salmonella Typhimurium on raw duck wings. Firstly, the IMS method was optimized by determining the capture efficiency of Dynabeads(®) on Salmonella cells on raw duck wings with different bead incubation (10, 30 and 60 min) and magnetic separation (3, 10 and 30 min) times. Secondly, three Taqman primer sets, Sal, invA and ttr, were evaluated to optimize the real-time PCR protocol by comparing five parameters: inclusivity, exclusivity, PCR efficiency, detection probability and limit of detection (LOD). Thirdly, the optimized real-time PCR, in combination with IMS (PCR-IMS) assay, was compared with a standard ISO and a real-time PCR (PCR) method by analyzing artificially inoculated raw duck wings with healthy and heat-injured Salmonella cells at 10(1) and 10(0) CFU/25 g. Finally, the optimized PCR-IMS assay was validated for Salmonella detection in naturally contaminated raw duck wing samples. Under optimal IMS conditions (30 min bead incubation and 3 min magnetic separation times), approximately 85 and 64% of S. Typhimurium cells were captured by Dynabeads® from pure culture and inoculated raw duck wings, respectively. Although Sal and ttr primers exhibited 100% inclusivity and exclusivity for 16 Salmonella spp. and 36 non-Salmonella strains, the Sal primer showed lower LOD (10(3) CFU/ml) and higher PCR efficiency (94.1%) than the invA and ttr primers. Moreover, for Sal and invA primers, 100% detection probability on raw duck wings suspension was observed at 10(3) and 10(4) CFU/ml with and without IMS, respectively. Thus, the Sal primer was chosen for further experiments. The optimized PCR-IMS method was significantly (P=0.0011) better at detecting healthy Salmonella cells after 7-h enrichment than traditional PCR

  6. European validation of a real-time PCR-based method for detection of Listeria monocytogenes in soft cheese.

    PubMed

    Gianfranceschi, Monica Virginia; Rodriguez-Lazaro, David; Hernandez, Marta; González-García, Patricia; Comin, Damiano; Gattuso, Antonietta; Delibato, Elisabetta; Sonnessa, Michele; Pasquali, Frederique; Prencipe, Vincenza; Sreter-Lancz, Zuzsanna; Saiz-Abajo, María-José; Pérez-De-Juan, Javier; Butrón, Javier; Kozačinski, Lidija; Tomic, Danijela Horvatek; Zdolec, Nevijo; Johannessen, Gro S; Jakočiūnė, Džiuginta; Olsen, John Elmerdahl; De Santis, Paola; Lovari, Sarah; Bertasi, Barbara; Pavoni, Enrico; Paiusco, Antonella; De Cesare, Alessandra; Manfreda, Gerardo; De Medici, Dario

    2014-08-01

    The classical microbiological method for detection of Listeria monocytogenes requires around 7 days for final confirmation, and due to perishable nature of RTE food products, there is a clear need for an alternative methodology for detection of this pathogen. This study presents an international (at European level) ISO 16140-based validation trial of a non-proprietary real-time PCR-based methodology that can generate final results in the following day of the analysis. This methodology is based on an ISO compatible enrichment coupled to a bacterial DNA extraction and a consolidated real-time PCR assay. Twelve laboratories from six European countries participated in this trial, and soft cheese was selected as food model since it can represent a difficult matrix for the bacterial DNA extraction and real-time PCR amplification. The limit of detection observed was down to 10 CFU per 25 of sample, showing excellent concordance and accordance values between samples and laboratories (>75%). In addition, excellent values were obtained for relative accuracy, specificity and sensitivity (82.75%, 96.70% and 97.62%, respectively) when the results obtained for the real-time PCR-based methods were compared to those of the ISO 11290-1 standard method. An interesting observation was that the L. monocytogenes detection by the real-time PCR method was less affected in the presence of Listeria innocua in the contaminated samples, proving therefore to be more reliable than the reference method. The results of this international trial demonstrate that the evaluated real-time PCR-based method represents an excellent alterative to the ISO standard since it shows a higher performance as well as reduce the extent of the analytical process, and can be easily implemented routinely by the competent authorities and food industry laboratories. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. How Do the Metabolic Effects of Chronic Stress Influence Breast Cancer Biology?

    DTIC Science & Technology

    2012-04-01

    mammary fat , suggesting adipocyte secreted proteins /metabolites are linked to the increased tumor burden observed in vivo. 11 Reportable...Tag gene expression analysis. A summary of the raw Q-RT- PCR data obtained from isolated and grouped SV40-Tag animals’ gonadal fat and from cells...the raw Q-RT-PCR data obtained from isolated and grouped FVB/N-WT and CD-1 animals’ mammary glands and gonadal fat and depicted in figure 3

  8. SYBR Green Real-Time PCR Method To Detect Clostridium botulinum Type A▿

    PubMed Central

    Fenicia, Lucia; Anniballi, Fabrizio; De Medici, Dario; Delibato, Elisabetta; Aureli, Paolo

    2007-01-01

    Botulinum toxins (BoNTs) are classically produced by Clostridium botulinum but rarely also from neurotoxigenic strains of Clostridium baratii and Clostridium butyricum. BoNT type A (BoNT/A), BoNT/B, BoNT/E, and very rarely BoNT/F are mainly responsible for human botulism. Standard microbiological methods take into consideration only the detection of C. botulinum. The presumptive identification of the toxigenic strains together with the typing of BoNT has to be performed by mouse bioassay. The development of PCR-based methods for the detection and typing of BoNT-producing clostridia would be an ideal alternative to the mouse bioassay. The objective of this study was to develop a rapid and robust real-time PCR method for detecting C. botulinum type A. Four different techniques for the extraction and purification of DNA from cultured samples were initially compared. Of the techniques used, Chelex 100, DNeasy tissue kit, InstaGene matrix DNA, and boiling, the boiling technique was significantly less efficient than the other three. These did not give statistically different results, and Chelex 100 was chosen because it was less expensive than the others. In order to eliminate any false-negative results, an internal amplification control was synthesized and included in the amplification mixture according to ISO 22174. The specificity of the method was tested against 75 strains of C. botulinum type A, 4 strains of C. botulinum type Ab, and 101 nontarget strains. The detection limit of the reaction was less than 6 × 101 copies of C. botulinum type A DNA. The robustness of the method was confirmed using naturally contaminated stool specimens to evaluate the tolerance of inhibitor substances. SYBR green real-time PCR showed very high specificity for the detection of C. botulinum types A and Ab (inclusivity and exclusivity, 100%). PMID:17369349

  9. Melatonin promotes goat spermatogonia stem cells (SSCs) proliferation by stimulating glial cell line-derived neurotrophic factor (GDNF) production in Sertoli cells.

    PubMed

    Niu, Bowen; Li, Bo; Wu, Chongyang; Wu, Jiang; Yan, Yuan; Shang, Rui; Bai, Chunling; Li, Guangpeng; Hua, Jinlian

    2016-11-22

    Melatonin has been reported to be an important endogenous hormone for regulating neurogenesis, immunityand the biological clock. Recently, the effects of melatonin on neural stem cells (NSCs), mesenchymal stem cells(MSCs), and induced pluripotent stem cells(iPSCs) have been reported; however, the effects of melatonin on spermatogonia stem cells (SSCs) are not clear. Here, 1μM and 1nM melatonin was added to medium when goat SSCs were cultured in vitro, the results showed that melatonin could increase the formation and size of SSC colonies. Real-time quantitative PCR (QRT-PCR) and western blot analysis showed that the expression levels of SSC proliferation and self-renewal markers were up-regulated. Meanwhile, QRT-PCR results showed that melatonin inhibit the mRNA expression level of SSC differentiation markers. ELISA analysis showed an obvious increase in the concentration of GDNF (a niche factor secreted by Sertoli cells) in the medium when treated with melatonin. Meanwhile, the phosphorylation level of AKT, a downstream of GDNF-GFRa1-RET pathway was activated. In conclusion, melatonin promotes goat SSC proliferation by stimulating GDNF production in Sertoli cells.

  10. Most Probable Number Rapid Viability PCR Method to Detect Viable Spores of Bacillus anthracis in Swab Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Letant, S E; Kane, S R; Murphy, G A

    2008-05-30

    This note presents a comparison of Most-Probable-Number Rapid Viability (MPN-RV) PCR and traditional culture methods for the quantification of Bacillus anthracis Sterne spores in macrofoam swabs generated by the Centers for Disease Control and Prevention (CDC) for a multi-center validation study aimed at testing environmental swab processing methods for recovery, detection, and quantification of viable B. anthracis spores from surfaces. Results show that spore numbers provided by the MPN RV-PCR method were in statistical agreement with the CDC conventional culture method for all three levels of spores tested (10{sup 4}, 10{sup 2}, and 10 spores) even in the presence ofmore » dirt. In addition to detecting low levels of spores in environmental conditions, the MPN RV-PCR method is specific, and compatible with automated high-throughput sample processing and analysis protocols.« less

  11. MRPrimer: a MapReduce-based method for the thorough design of valid and ranked primers for PCR.

    PubMed

    Kim, Hyerin; Kang, NaNa; Chon, Kang-Wook; Kim, Seonho; Lee, NaHye; Koo, JaeHyung; Kim, Min-Soo

    2015-11-16

    Primer design is a fundamental technique that is widely used for polymerase chain reaction (PCR). Although many methods have been proposed for primer design, they require a great deal of manual effort to generate feasible and valid primers, including homology tests on off-target sequences using BLAST-like tools. That approach is inconvenient for many target sequences of quantitative PCR (qPCR) due to considering the same stringent and allele-invariant constraints. To address this issue, we propose an entirely new method called MRPrimer that can design all feasible and valid primer pairs existing in a DNA database at once, while simultaneously checking a multitude of filtering constraints and validating primer specificity. Furthermore, MRPrimer suggests the best primer pair for each target sequence, based on a ranking method. Through qPCR analysis using 343 primer pairs and the corresponding sequencing and comparative analyses, we showed that the primer pairs designed by MRPrimer are very stable and effective for qPCR. In addition, MRPrimer is computationally efficient and scalable and therefore useful for quickly constructing an entire collection of feasible and valid primers for frequently updated databases like RefSeq. Furthermore, we suggest that MRPrimer can be utilized conveniently for experiments requiring primer design, especially real-time qPCR. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Somatic Mutation Allelic Ratio Test Using ddPCR (SMART-ddPCR): An Accurate Method for Assessment of Preferential Allelic Imbalance in Tumor DNA.

    PubMed

    de Smith, Adam J; Walsh, Kyle M; Hansen, Helen M; Endicott, Alyson A; Wiencke, John K; Metayer, Catherine; Wiemels, Joseph L

    2015-01-01

    The extent to which heritable genetic variants can affect tumor development has yet to be fully elucidated. Tumor selection of single nucleotide polymorphism (SNP) risk alleles, a phenomenon called preferential allelic imbalance (PAI), has been demonstrated in some cancer types. We developed a novel application of digital PCR termed Somatic Mutation Allelic Ratio Test using Droplet Digital PCR (SMART-ddPCR) for accurate assessment of tumor PAI, and have applied this method to test the hypothesis that heritable SNPs associated with childhood acute lymphoblastic leukemia (ALL) may demonstrate tumor PAI. These SNPs are located at CDKN2A (rs3731217) and IKZF1 (rs4132601), genes frequently lost in ALL, and at CEBPE (rs2239633), ARID5B (rs7089424), PIP4K2A (rs10764338), and GATA3 (rs3824662), genes located on chromosomes gained in high-hyperdiploid ALL. We established thresholds of AI using constitutional DNA from SNP heterozygotes, and subsequently measured allelic copy number in tumor DNA from 19-142 heterozygote samples per SNP locus. We did not find significant tumor PAI at these loci, though CDKN2A and IKZF1 SNPs showed a trend towards preferential selection of the risk allele (p = 0.17 and p = 0.23, respectively). Using a genomic copy number control ddPCR assay, we investigated somatic copy number alterations (SCNA) underlying AI at CDKN2A and IKZF1, revealing a complex range of alterations including homozygous and hemizygous deletions and copy-neutral loss of heterozygosity, with varying degrees of clonality. Copy number estimates from ddPCR showed high agreement with those from multiplex ligation-dependent probe amplification (MLPA) assays. We demonstrate that SMART-ddPCR is a highly accurate method for investigation of tumor PAI and for assessment of the somatic alterations underlying AI. Furthermore, analysis of publicly available data from The Cancer Genome Atlas identified 16 recurrent SCNA loci that contain heritable cancer risk SNPs associated with a

  13. A PCR detection method for rapid identification of Melissococcus pluton in honeybee larvae.

    PubMed

    Govan, V A; Brözel, V; Allsopp, M H; Davison, S

    1998-05-01

    Melissococcus pluton is the causative agent of European foulbrood, a disease of honeybee larvae. This bacterium is particularly difficult to isolate because of its stringent growth requirements and competition from other bacteria. PCR was used selectively to amplify specific rRNA gene sequences of M. pluton from pure culture, from crude cell lysates, and directly from infected bee larvae. The PCR primers were designed from M. pluton 16S rRNA sequence data. The PCR products were visualized by agarose gel electrophoresis and confirmed as originating from M. pluton by sequencing in both directions. Detection was highly specific, and the probes did not hybridize with DNA from other bacterial species tested. This method enabled the rapid and specific detection and identification of M. pluton from pure cultures and infected bee larvae.

  14. A PCR Detection Method for Rapid Identification of Melissococcus pluton in Honeybee Larvae

    PubMed Central

    Govan, V. A.; Brözel, V.; Allsopp, M. H.; Davison, S.

    1998-01-01

    Melissococcus pluton is the causative agent of European foulbrood, a disease of honeybee larvae. This bacterium is particularly difficult to isolate because of its stringent growth requirements and competition from other bacteria. PCR was used selectively to amplify specific rRNA gene sequences of M. pluton from pure culture, from crude cell lysates, and directly from infected bee larvae. The PCR primers were designed from M. pluton 16S rRNA sequence data. The PCR products were visualized by agarose gel electrophoresis and confirmed as originating from M. pluton by sequencing in both directions. Detection was highly specific, and the probes did not hybridize with DNA from other bacterial species tested. This method enabled the rapid and specific detection and identification of M. pluton from pure cultures and infected bee larvae. PMID:9572987

  15. Specific detection of Echinococcus spp. from the Tibetan fox (Vulpes ferrilata) and the red fox (V. vulpes) using copro-DNA PCR analysis.

    PubMed

    Jiang, Weibin; Liu, Nan; Zhang, Gaotian; Renqing, Pengcuo; Xie, Fei; Li, Tiaoying; Wang, Zhenghuan; Wang, Xiaoming

    2012-10-01

    There are three Echinococcus species, Echinococcus granulosus, E. multilocularis, and E. shiquicus, which are distributed on the vast area of pastureland on the eastern Tibetan plateau in China. Tibetan foxes (Vulpes ferrilata) have been determined to be the main wild definitive host of E. multilocularis and E. shiquicus, but little information is available on the prevalence of these two parasites in Tibetan foxes. Consequently, the copro-prevalence of these parasites in foxes from the eastern Tibetan plateau was evaluated in this study. For each copro-DNA sample extracted from fox feces, a 133-bp segment of EgG1 Hae III was used to screen for infection with E. granulosus. Multiplex nested polymerase chain reaction (PCR) analysis was used to target an 874-bp segment of the mitochondrial COI gene to distinguish E. multilocularis and E. shiquicus. Among 184 fecal samples, 120 were from Tibetan foxes and six from red foxes (Vulpes vulpes). Of the fecal samples from Tibetan foxes, 74 (giving a copro-prevalence of 62%) showed the presence of Echinococcus spp.: 23 (19%) were found to contain E. multilocularis, 32 (27%) E. shiquicus, and 19 (16%) showed mixed infection with both E. multilocularis and E. shiquicus. Two fecal samples from red foxes were found to be infected with E. multilocularis. No fox feces were found to be infected with E. granulosus. Tests on zinc finger protein genes and a 105-bp fragment of the Sry gene found no significant difference in the prevalence of the two parasites between sexes. The efficiency of our multiplex nested PCR methods were compared with previous polymerase chain reaction-based restriction fragment length polymorphism (PCR-RFLP) methods and some problems associated with the copro-PCR were discussed.

  16. Colorimetric Sensor for Label Free Detection of Porcine PCR Product (ID: 18)

    NASA Astrophysics Data System (ADS)

    Ali, M. E.; Hashim, U.; Bari, M. F.; Dhahi, Th. S.

    2011-05-01

    This report described the use of 40±5 nm in diameter citrate-coated gold nanoparticles (GNPs) as colorimetric sensor to visually detect the presence of a 17-base swine specific conserved sequence and nucleotide mismatch in the mixed PCR products of pig, deer and shad cytochrome b genes. The size of these PCR amplicons was 109 base-pair and was amplified with a pair of common primers. Colloidal GNPs changed color from pinkish- red to purple-gray in 2 mM PBS buffer by losing its characteristic surface plasmon resonance peak at 530 nm and gaining new features between 620 and 800 nm in the absorption spectrum indicating strong aggregation. The particles were stabilized against salt induced aggregation, retained spectral features and characteristic color upon adsorption of single-stranded DNA. The PCR products without any additional processing were hybridized with a 17-nucleotide swine probe prior to exposure to GNPs. At a critical annealing temperature (55° C) that differentiated between the match and mismatch pairing, the probe was hybridized with the pig PCR product and dehybridized from the deer's and shad's. The interaction of dehybridized probe to GNPs prevented them from salt-induced aggregation, retaining their characteristic red color. The assay did not need any surface modification chemistry or labeling steps. The results were determined visually and validated by absorption spectroscopy. The entire assay (hybridization plus visual detection) was performed in less than 10 min. The assay obviated the need of complex RFLP, sequencing or blotting to differentiate the same size PCR products. We find the application of the assay for species assignment in food analysis, mismatch detection in genetic screening and homology study among closely related species.

  17. Discriminative potential of some PCR-based and biochemical methods at Scedosporium strains.

    PubMed

    Kraková, Lucia; Pangallo, Domenico; Piecková, Elena; Majorošová, Mária

    2016-02-01

    Three innovative PCR-based methods (fluorescent-ITS, fluorescent-CBH and ITS-PCR DGGE) were tested using a reference set of nine strains of Scedosporium from the CBS fungal collection. Cellulolytic, lipolytic and proteolytic potential and the ability to dissolve CaCO3 of the strains were evaluated in vitro by means of agar assays. f-ITS profiles almost recognized main species, although included "Pseudallescheria" ellipsoidea and the Scedosporium boydii CBS 117432 and CBS 120157 in the same cluster. All strains successfully produced DNA polymorphisms by f-CBH amplification which divided them into three different groups. The DGGE approach separated the strains studied into other five clusters which in some case were not matching with species. Strains tested were monomorphic in possessing strong proteolytic and lipolytic activities. The comparison of the three PCR-based genotyping approaches, together with biodegradation ability screening, displayed an intraspecies variability in S. boydii, interfering with unambiguous species delimitation. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  18. Detection of Yersinia Enterocolitica Species in Pig Tonsils and Raw Pork Meat by the Real-Time Pcr and Culture Methods.

    PubMed

    Stachelska, M A

    2017-09-26

    The aim of the present study was to establish a rapid and accurate real-time PCR method to detect pathogenic Yersinia enterocolitica in pork. Yersinia enterocolitica is considered to be a crucial zoonosis, which can provoke diseases both in humans and animals. The classical culture methods designated to detect Y. enterocolitica species in food matrices are often very time-consuming. The chromosomal locus _tag CH49_3099 gene, that appears in pathogenic Y. enterocolitica strains, was applied as DNA target for the 5' nuclease PCR protocol. The probe was labelled at the 5' end with the fluorescent reporter dye (FAM) and at the 3' end with the quencher dye (TAMRA). The real-time PCR cycling parameters included 41 cycles. A Ct value which reached a value higher than 40 constituted a negative result. The developed for the needs of this study qualitative real-time PCR method appeared to give very specific and reliable results. The detection rate of locus _tag CH49_3099 - positive Y. enterocolitica in 150 pig tonsils was 85 % and 32 % with PCR and culture methods, respectively. Both the Real-time PCR results and culture method results were obtained from material that was enriched during overnight incubation. The subject of the study were also raw pork meat samples. Among 80 samples examined, 7 ones were positive when real-time PCR was applied, and 6 ones were positive when classical culture method was applied. The application of molecular techniques based on the analysis of DNA sequences such as the Real-time PCR enables to detect this pathogenic bacteria very rapidly and with higher specificity, sensitivity and reliability in comparison to classical culture methods.

  19. Comparison of PCR-based methods for the simultaneous detection of Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae in clinical samples.

    PubMed

    de Filippis, Ivano; de Andrade, Claudia Ferreira; Caldeira, Nathalia; de Azevedo, Aline Carvalho; de Almeida, Antonio Eugenio

    2016-01-01

    Several in-house PCR-based assays have been described for the detection of bacterial meningitis caused by Neisseria meningitidis, Streptococcus pneumoniae, and Haemophilus influenzae from clinical samples. PCR-based methods targeting different bacterial genes are frequently used by different laboratories worldwide, but no standard method has ever been established. The aim of our study was to compare different in-house and a commercial PCR-based tests for the detection of bacterial pathogens causing meningitis and invasive disease in humans. A total of 110 isolates and 134 clinical samples (99 cerebrospinal fluid and 35 blood samples) collected from suspected cases of invasive disease were analyzed. Specific sets of primers frequently used for PCR-diagnosis of the three pathogens were used and compared with the results achieved using the multiplex approach described here. Several different gene targets were used for each microorganism, namely ctrA, crgA and nspA for N. meningitidis, ply for S. pneumoniae, P6 and bexA for H. influenzae. All used methods were fast, specific and sensitive, while some of the targets used for the in-house PCR assay detected lower concentrations of genomic DNA than the commercial method. An additional PCR reaction is described for the differentiation of capsulated and non-capsulated H. influenzae strains, the while commercial method only detects capsulated strains. The in-house PCR methods here compared showed to be rapid, sensitive, highly specific, and cheaper than commercial methods. The in-house PCR methods could be easily adopted by public laboratories of developing countries for diagnostic purposes. The best results were achieved using primers targeting the genes nspA, ply, and P6 which were able to detect the lowest DNA concentrations for each specific target. Copyright © 2016 Elsevier Editora Ltda. All rights reserved.

  20. Application of rDNA-PCR amplification and DGGE fingerprinting for detection of microbial diversity in a Malaysian crude oil.

    PubMed

    Liew, Pauline Woanying; Jong, Bor Chyan

    2008-05-01

    Two culture-independent methods, namely ribosomal DNA libraries and denaturing gradient gel electrophoresis (DGGE), were adopted to examine the microbial community of a Malaysian light crude oil. In this study, both 16S and 18S rDNAs were PCR-amplified from bulk DNA of crude oil samples, cloned, and sequenced. Analyses of restriction fragment length polymorphism (RFLP) and phylogenetics clustered the 16S and 18S rDNA sequences into seven and six groups, respectively. The ribosomal DNA sequences obtained showed sequence similarity between 90 to 100% to those available in the GenBank database. The closest relatives documented for the 16S rDNAs include member species of Thermoincola and Rhodopseudomonas, whereas the closest fungal relatives include Acremonium, Ceriporiopsis, Xeromyces, Lecythophora, and Candida. Others were affiliated to uncultured bacteria and uncultured ascomycete. The 16S rDNA library demonstrated predomination by a single uncultured bacterial type by >80% relative abundance. The predomination was confirmed by DGGE analysis.

  1. PCR-based polymorphisms in neurofibromatosis type 1 (NFI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, P.S.; Chee, S.; Low, P.S.

    Neurofibromatosis type 1 (NF1) is one of the most common genetic disorders in humans with an incidence of 1 in 3,000. The NF1 gene is located on chromosome 17q 11.2 and encodes an ubiquitously expressed transcript of about 13kb. Direct mutation detection is difficult in this disorder due to the large gene size, high mutation rate and variety of mutations. We have studied the allele frequencies of seven PCR-based polymorphisms. Six of the probes used flank the NF1 gene, namely p11.3C4.2/Msp I (proximal), pEW206/Msp I (distal), p2.f9.8/Rsa I (distal), pEW207/Bgl II (distal), pEW207/Hind III (distal) and pHHH202/Rsa I (proximal). Anmore » intragenic RFLP, pEvi 2B-B/Eco R1 polymorphism in intron 27, was also analyzed by PCR. Allele frequencies for 48 normal unrelated individuals were obtained as follows: A1 = 0.40, A2 = 0.6 (p11.3C4.2/Msp I), A1 = 0.44, A2 = 0.56 (pEW206/Msp I), A1 = 0.17, A2 = 0.83 (p2.F9.8/Rsa I), A1 = 0.64, A2 = 0.36 (pEW207/Bgl I), A1 = 0.45, A2 = 0.55 (pEvi 2B-B/Eco RI). Heterozygosity rates of the alleles ranged from 20.8% to 51.7%. Using a combination of these markers, seven local families with NF1 were studied. Normal Mendelian segregation of alleles was observed in these families and no recombination was detected so far. These PCR-based markers were found to be useful for linkage analysis in our families.« less

  2. Design of primers and probes for quantitative real-time PCR methods.

    PubMed

    Rodríguez, Alicia; Rodríguez, Mar; Córdoba, Juan J; Andrade, María J

    2015-01-01

    Design of primers and probes is one of the most crucial factors affecting the success and quality of quantitative real-time PCR (qPCR) analyses, since an accurate and reliable quantification depends on using efficient primers and probes. Design of primers and probes should meet several criteria to find potential primers and probes for specific qPCR assays. The formation of primer-dimers and other non-specific products should be avoided or reduced. This factor is especially important when designing primers for SYBR(®) Green protocols but also in designing probes to ensure specificity of the developed qPCR protocol. To design primers and probes for qPCR, multiple software programs and websites are available being numerous of them free. These tools often consider the default requirements for primers and probes, although new research advances in primer and probe design should be progressively added to different algorithm programs. After a proper design, a precise validation of the primers and probes is necessary. Specific consideration should be taken into account when designing primers and probes for multiplex qPCR and reverse transcription qPCR (RT-qPCR). This chapter provides guidelines for the design of suitable primers and probes and their subsequent validation through the development of singlex qPCR, multiplex qPCR, and RT-qPCR protocols.

  3. Pros and Cons of Ion-Torrent Next Generation Sequencing versus Terminal Restriction Fragment Length Polymorphism T-RFLP for Studying the Rumen Bacterial Community

    PubMed Central

    de la Fuente, Gabriel; Belanche, Alejandro; Girwood, Susan E.; Pinloche, Eric; Wilkinson, Toby; Newbold, C. Jamie

    2014-01-01

    The development of next generation sequencing has challenged the use of other molecular fingerprinting methods used to study microbial diversity. We analysed the bacterial diversity in the rumen of defaunated sheep following the introduction of different protozoal populations, using both next generation sequencing (NGS: Ion Torrent PGM) and terminal restriction fragment length polymorphism (T-RFLP). Although absolute number differed, there was a high correlation between NGS and T-RFLP in terms of richness and diversity with R values of 0.836 and 0.781 for richness and Shannon-Wiener index, respectively. Dendrograms for both datasets were also highly correlated (Mantel test = 0.742). Eighteen OTUs and ten genera were significantly impacted by the addition of rumen protozoa, with an increase in the relative abundance of Prevotella, Bacteroides and Ruminobacter, related to an increase in free ammonia levels in the rumen. Our findings suggest that classic fingerprinting methods are still valuable tools to study microbial diversity and structure in complex environments but that NGS techniques now provide cost effect alternatives that provide a far greater level of information on the individual members of the microbial population. PMID:25051490

  4. Direct PCR Offers a Fast and Reliable Alternative to Conventional DNA Isolation Methods for Gut Microbiomes.

    PubMed

    Videvall, Elin; Strandh, Maria; Engelbrecht, Anel; Cloete, Schalk; Cornwallis, Charlie K

    2017-01-01

    The gut microbiome of animals is emerging as an important factor influencing ecological and evolutionary processes. A major bottleneck in obtaining microbiome data from large numbers of samples is the time-consuming laboratory procedures required, specifically the isolation of DNA and generation of amplicon libraries. Recently, direct PCR kits have been developed that circumvent conventional DNA extraction steps, thereby streamlining the laboratory process by reducing preparation time and costs. However, the reliability and efficacy of direct PCR for measuring host microbiomes have not yet been investigated other than in humans with 454 sequencing. Here, we conduct a comprehensive evaluation of the microbial communities obtained with direct PCR and the widely used Mo Bio PowerSoil DNA extraction kit in five distinct gut sample types (ileum, cecum, colon, feces, and cloaca) from 20 juvenile ostriches, using 16S rRNA Illumina MiSeq sequencing. We found that direct PCR was highly comparable over a range of measures to the DNA extraction method in cecal, colon, and fecal samples. However, the two methods significantly differed in samples with comparably low bacterial biomass: cloacal and especially ileal samples. We also sequenced 100 replicate sample pairs to evaluate repeatability during both extraction and PCR stages and found that both methods were highly consistent for cecal, colon, and fecal samples ( r s > 0.7) but had low repeatability for cloacal ( r s = 0.39) and ileal ( r s = -0.24) samples. This study indicates that direct PCR provides a fast, cheap, and reliable alternative to conventional DNA extraction methods for retrieving 16S rRNA data, which can aid future gut microbiome studies. IMPORTANCE The microbial communities of animals can have large impacts on their hosts, and the number of studies using high-throughput sequencing to measure gut microbiomes is rapidly increasing. However, the library preparation procedure in microbiome research is both

  5. Development and Validation of a Real-Time PCR Assay for Rapid Detection of Two-Spotted Spider Mite, Tetranychus urticae (Acari: Tetranychidae)

    PubMed Central

    Li, Dongmei; Fan, Qing-Hai; Waite, David W.; Gunawardana, Disna; George, Sherly; Kumarasinghe, Lalith

    2015-01-01

    Spider mites of the genus Tetranychus are difficult to identify due to their limited diagnostic characters. Many of them are morphologically similar and males are needed for species-level identification. Tetranychus urticae is a common interception and non-regulated pest at New Zealand’s borders, however, most of the intercepted specimens are females and the identification was left at Tetranychus sp. Consequently, the shipments need to be fumigated. DNA sequencing and PCR-restriction fragment length polymorphism (PCR-RFLP) protocols could be used to facilitate the accurate identification. However, in the context of border security practiced in New Zealand, insect identifications are required to be provided within four hours of receiving the samples; thus, those molecular methods are not sufficient to meet this requirement. Therefore, a real-time PCR TaqMan assay was developed for identification of T. urticae by amplification of a 142 bp Internal Transcribed Spacer (ITS) 1 sequence. The developed assay is rapid, detects all life stages of T. urticae within three hours, and does not react with closely related species. Plasmid DNA containing ITS1 sequence of T. uritcae was serially diluted and used as standards in the real-time PCR assay. The quantification cycle (Cq) value of the assay depicted a strong linear relationship with T. urticae DNA content, with a regression coefficient of 0.99 and efficiency of 98%. The detection limit was estimated to be ten copies of the T. urticae target region. The assay was validated against a range of T. urticae specimens from various countries and hosts in a blind panel test. Therefore the application of the assay at New Zealand will reduce the unnecessary fumigation and be beneficial to both the importers and exporters. It is expected that the implementation of this real-time PCR assay would have wide applications in diagnostic and research agencies worldwide. PMID:26147599

  6. Diagnosis of Cetacean morbillivirus: A sensitive one step real time RT fast-PCR method based on SYBR(®) Green.

    PubMed

    Sacristán, Carlos; Carballo, Matilde; Muñoz, María Jesús; Bellière, Edwige Nina; Neves, Elena; Nogal, Verónica; Esperón, Fernando

    2015-12-15

    Cetacean morbillivirus (CeMV) (family Paramyxoviridae, genus Morbillivirus) is considered the most pathogenic virus of cetaceans. It was first implicated in the bottlenose dolphin (Tursiops truncatus) mass stranding episode along the Northwestern Atlantic coast in the late 1980s, and in several more recent worldwide epizootics in different Odontoceti species. This study describes a new one step real-time reverse transcription fast polymerase chain reaction (real-time RT-fast PCR) method based on SYBR(®) Green to detect a fragment of the CeMV fusion protein gene. This primer set also works for conventional RT-PCR diagnosis. This method detected and identified all three well-characterized strains of CeMV: porpoise morbillivirus (PMV), dolphin morbillivirus (DMV) and pilot whale morbillivirus (PWMV). Relative sensitivity was measured by comparing the results obtained from 10-fold dilution series of PMV and DMV positive controls and a PWMV field sample, to those obtained by the previously described conventional phosphoprotein gene based RT-PCR method. Both the conventional and real-time RT-PCR methods involving the fusion protein gene were 100- to 1000-fold more sensitive than the previously described conventional RT-PCR method. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Comparative study of diagnostic accuracy of established PCR assays and in-house developed sdaA PCR method for detection of Mycobacterium tuberculosis in symptomatic patients with pulmonary tuberculosis.

    PubMed

    Nimesh, Manoj; Joon, Deepali; Pathak, Anil Kumar; Saluja, Daman

    2013-11-01

    Indian contribution to global burden of tuberculosis is about 26%. In the present study we have developed an in-house PCR assay using primers for sdaA gene of Mycobacterium tuberculosis and evaluated against already established primers devR, IS6110, MPB64, rpoB primers for diagnosis of pulmonary tuberculosis. Using universal sample preparation (USP) method, DNA was extracted from sputum specimens of 412 symptomatic patients from Delhi, India. The DNA so extracted was used as template for PCR amplification using primers targeting sdaA, devR, IS6110, MPB64 and rpoB genes. Out of 412, 149 specimens were considered positive based on composite reference standard (CRS) criteria. The in-house designed sdaA PCR showed high specificity (96.5%), the high positive likelihood ratio (28), the high sensitivity (95.9%), and the very low negative likelihood ratio (0.04) in comparison to CRS. Based on our results, the sdaA PCR assay can be considered as one of the most reliable diagnostic tests in comparison to other PCR based detection methods. Copyright © 2013 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  8. Multiplex PCR method to discriminate Artemisia iwayomogi from other Artemisia plants.

    PubMed

    Doh, Eui Jeong; Oh, Seung-Eun

    2012-01-01

    Some plants in the genus Artemisia have been used for medicinal purposes. Among them, Artemisia iwayomogi, commonly referred to as "Haninjin," is one of the major medicinal materials used in traditional Korean medicine. By contrast, Artemisia capillaris and both Artemisia argyi and Artemisia princeps, referred to as "Injinho" and "Aeyup," respectively, are used to treat diseases different from those for which "Haninjin" is prescribed. Therefore, the development of a reliable method to differentiate each Artemisia herb is necessary. We found that a random amplified polymorphic DNA (RAPD) method can be used to efficiently discriminate a few Artemisia plants from one another. To improve the reliability of RAPD amplification, we designed primer sets based on the nucleotide sequences of RAPD products to amplify a sequence-characterized amplified region (SCAR) marker of A. iwayomogi. In addition, we designed two other primer sets to amplify SCAR markers of "Aeyup" (A. argyi and A. princeps) along with "Injinho" (A. capillaris) and Artemisia japonica, which are also traded in Korean herbal markets. Using these three primer sets, we developed a multiplex PCR method concurrently not only to discriminate A. iwayomogi from other Artemisia plants, but also to identify Artemisia plants using a single PCR process.

  9. [The establishment of a novel method of nano-immunomagnetic separation and Real-time PCR for detecting Vibrio cholerae from seafood].

    PubMed

    Cheng, Jinxia; Zeng, Jing; Liu, Li; Wei, Haiyan; Zhao, Xiaojuan; Zhang, Ximeng; Zhang, Lei; Zhang, Haiyu

    2014-02-01

    A novel method of Nano-Immunomagnetic Separation (Nano-IMS) plus Real-time PCR was established for detecting Vibrio cholerae. The Nano-Immunomagnetic Beads were created by using the monoclonal antibody of Vibrio cholerae, which was named Nano-IMB-Vc. Nano-IMB-Vc has specific adsorption of Vibrio cholerae, combined with Real-time PCR technology, a method for rapid detection of Vibrio cholerae was established. The capture specificity of Nano-IMB-Vc was tested by using 15 bacteria strains. The specificity of Real-time PCR method was tested by using 102 targets and 101 non-targets bacteria strains. The sensitivity of Nano-IMS plus Real-time PCR were tested in pure culture and in artificial samples and compared with NMKL No.156. The capture ratio of Nano-IMB-Vc was reached 70.2% at the level of 10(3) CFU/ml. In pure culture, the sensitivity of Nano-IMS plus Real-time PCR was reached at 5.4×10(2) CFU/ml. The specific of Real-time PCR method was tested by using 102 targets and 101 non-targets bacteria. The results showed that 102 strains of Vibrio cholerae test results were all positive, and the rest of the 101 strains of non-target bacteria test results were negative. No cross-reaction was founded. Add 1 CFU vibrio cholerae per 25 g sample, it could be detect with Nano-IMS plus Real-time PCR method after 8 hours enrichment. The Nano-IMS plus Real-time PCR method of Vibrio cholerae established in this study has good specificity and sensitivity, which could be applied to the rapid detection of Vibrio cholerae.

  10. Actuation method and apparatus, micropump, and PCR enhancement method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ullakko, Kari; Mullner, Peter; Hampikian, Greg

    An actuation apparatus includes at least one magnetic shape memory (MSM) element containing a material configured to expand and/or contract in response to exposure to a magnetic field. Among other things, the MSM element may be configured to pump fluid through a micropump by expanding and/or contracting in response to the magnetic field. The magnetic field may rotate about an axis of rotation and exhibit a distribution having a component substantially perpendicular to the axis of rotation. Further, the magnetic field distribution may include at least two components substantially orthogonal to one another lying in one or more planes perpendicularmore » to the axis of rotation. The at least one MSM element may contain nickel, manganese, and gallium. A polymerase chain reaction (PCR) may be enhanced by contacting a PCR reagent and DNA material with the MSM element.« less

  11. Efficacy of a novel PCR- and microarray-based method in diagnosis of a prosthetic joint infection

    PubMed Central

    2014-01-01

    Background and purpose Polymerase chain reaction (PCR) methods enable detection and species identification of many pathogens. We assessed the efficacy of a new PCR and microarray-based platform for detection of bacteria in prosthetic joint infections (PJIs). Methods This prospective study involved 61 suspected PJIs in hip and knee prostheses and 20 negative controls. 142 samples were analyzed by Prove-it Bone and Joint assay. The laboratory staff conducting the Prove-it analysis were not aware of the results of microbiological culture and clinical findings. The results of the analysis were compared with diagnosis of PJIs defined according to the Musculoskeletal Infection Society (MSIS) criteria and with the results of microbiological culture. Results 38 of 61 suspected PJIs met the definition of PJI according to the MSIS criteria. Of the 38 patients, the PCR detected bacteria in 31 whereas bacterial culture was positive in 28 patients. 15 of the PJI patients were undergoing antimicrobial treatment as the samples for analysis were obtained. When antimicrobial treatment had lasted 4 days or more, PCR detected bacteria in 6 of the 9 patients, but positive cultures were noted in only 2 of the 9 patients. All PCR results for the controls were negative. Of the 61 suspected PJIs, there were false-positive PCR results in 6 cases. Interpretation The Prove-it assay was helpful in PJI diagnostics during ongoing antimicrobial treatment. Without preceding treatment with antimicrobials, PCR and microarray-based assay did not appear to give any additional information over culture. PMID:24564748

  12. [Comparison between conventional methods, ChromAgar Candida® and PCR method for the identification of Candida species in clinical isolates].

    PubMed

    Estrada-Barraza, Deyanira; Dávalos Martínez, Arturo; Flores-Padilla, Luis; Mendoza-De Elias, Roberto; Sánchez-Vargas, Luis Octavio

    2011-01-01

    The increase in the incidence of yeast species causing fungemia in susceptible immunocompromised patients in the last two decades and the low sensitivity of conventional blood culture has led to the need to develop alternative approaches for the early detection and identification of causative species. The aim of this study was to compare the usefulness of molecular testing by the polymerase chain reaction (PCR) and conventional methods to identify clinical isolates of different species, using the ID32C ATB system (bioMérieux, France), chromogenic culture Chromagar Candida® (CHROMagar, France) and morphogenesis in corn meal agar. We studied 79 isolates, in which the most prevalent species using the system ID32C and PCR was C. albicans, followed by C. tropicalis, C. glabrata and C .krusei. PCR patterns obtained for the identification of clinical isolates were stable and consistent in the various independent studies and showed good reproducibility, concluding that PCR with species-specific primers that amplify genes ITS1 and ITS2 for rRNA or topoisomerase II primers is a very specific and sensitive method for the identification of C. glabrata, C. krusei, C. albicans, and with less specificity for C. tropicalis. Copyright © 2010 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  13. Efficacy of the detection of Legionella in hot and cold water samples by culture and PCR. I. Standardization of methods.

    PubMed

    Wójcik-Fatla, Angelina; Stojek, Nimfa Maria; Dutkiewicz, Jacek

    2012-01-01

    The aim of the present study was: - to compare methods for concentration and isolation of Legionella DNA from water; - to examine the efficacy of various modifications of PCR test (PCR, semi-nested PCR, and real-time PCR) for the detection of known numbers of Legionella pneumophila in water samples artificially contaminated with the strain of this bacterium and in randomly selected samples of environmental water, in parallel with examination by culture. It was found that filtration is much more effective than centrifugation for the concentration of DNA in water samples, and that the Qiamp DNA Mini-Kit is the most efficient for isolation of Legionella DNA from water. The semi-nested PCR and real-time PCR proved to be the most sensitive methods for detection of Legionella DNA in water samples. Both PCR modifications showed a high correlation with recovery of Legionella by culture (p<0.01), while no correlation occurred between the results of one-stage PCR and culture (p>0.1).

  14. Incidence of pulmonary aspergillosis and correlation of conventional diagnostic methods with nested PCR and real-time PCR assay using BAL fluid in intensive care unit patients.

    PubMed

    Zarrinfar, Hossein; Makimura, Koichi; Satoh, Kazuo; Khodadadi, Hossein; Mirhendi, Hossein

    2013-05-01

    Although the incidence of invasive aspergillosis in the intensive care unit (ICU) is scarce, it has emerged as major problems in critically ill patients. In this study, the incidence of pulmonary aspergillosis (PA) in ICU patients has evaluated and direct microscopy and culture has compared with nested polymerase chain reaction (PCR) and real-time PCR for detection of Aspergillus fumigatus and A. flavus in bronchoalveolar lavage (BAL) samples of the patients. Thirty BAL samples obtained from ICU patients during a 16-month period were subjected to direct examinations on 20% potassium hydroxide (KOH) and culture on two culture media. Nested PCR targeting internal transcribed spacer ribosomal DNA and TaqMan real-time PCR assay targeting β-tubulin gene were used for the detection of A. fumigatus and A. flavus. Of 30 patients, 60% were men and 40% were women. The diagnosis of invasive PA was probable in 1 (3%), possible in 11 (37%), and not IPA in 18 (60%). Nine samples were positive in nested PCR including seven samples by A. flavus and two by A. fumigatus specific primers. The lowest amount of DNA that TaqMan real-time PCR could detect was ≥40 copy numbers. Only one of the samples had a positive result of A. flavus real-time PCR with Ct value of 37.5. Although a significant number of specimens were positive in nested PCR, results of this study showed that establishment of a correlation between the conventional methods with nested PCR and real-time PCR needs more data confirmed by a prospective study with a larger sample group. © 2013 Wiley Periodicals, Inc.

  15. Comparison of a real-time PCR method with a culture method for the detection of Salmonella enterica serotype enteritidis in naturally contaminated environmental samples from integrated poultry houses.

    PubMed

    Lungu, Bwalya; Waltman, W Douglas; Berghaus, Roy D; Hofacre, Charles L

    2012-04-01

    Conventional culture methods have traditionally been considered the "gold standard" for the isolation and identification of foodborne bacterial pathogens. However, culture methods are labor-intensive and time-consuming. A Salmonella enterica serotype Enteritidis-specific real-time PCR assay that recently received interim approval by the National Poultry Improvement Plan for the detection of Salmonella Enteritidis was evaluated against a culture method that had also received interim National Poultry Improvement Plan approval for the analysis of environmental samples from integrated poultry houses. The method was validated with 422 field samples collected by either the boot sock or drag swab method. The samples were cultured by selective enrichment in tetrathionate broth followed by transfer onto a modified semisolid Rappaport-Vassiliadis medium and then plating onto brilliant green with novobiocin and xylose lysine brilliant Tergitol 4 plates. One-milliliter aliquots of the selective enrichment broths from each sample were collected for DNA extraction by the commercial PrepSEQ nucleic acid extraction assay and analysis by the Salmonella Enteritidis-specific real-time PCR assay. The real-time PCR assay detected no significant differences between the boot sock and drag swab samples. In contrast, the culture method detected a significantly higher number of positive samples from boot socks. The diagnostic sensitivity of the real-time PCR assay for the field samples was significantly higher than that of the culture method. The kappa value obtained was 0.46, indicating moderate agreement between the real-time PCR assay and the culture method. In addition, the real-time PCR method had a turnaround time of 2 days compared with 4 to 8 days for the culture method. The higher sensitivity as well as the reduction in time and labor makes this real-time PCR assay an excellent alternative to conventional culture methods for diagnostic purposes, surveillance, and research studies

  16. Comparing real-time and conventional PCR to culture-based methods for detecting and quantifying Escherichia coli O157 in cattle feces.

    PubMed

    Jacob, M E; Bai, J; Renter, D G; Rogers, A T; Shi, X; Nagaraja, T G

    2014-02-01

    Detection of Escherichia coli O157 in cattle feces has traditionally used culture-based methods; PCR-based methods have been suggested as an alternative. We aimed to determine if multiplex real-time (mq) or conventional PCR methods could reliably detect cattle naturally shedding high (≥10(4) CFU/g of feces) and low (∼10(2) CFU/g of feces) concentrations of E. coli O157. Feces were collected from pens of feedlot cattle and evaluated for E. coli O157 by culture methods. Samples were categorized as (i) high shedders, (ii) immunomagnetic separation (IMS) positive after enrichment, or (iii) culture negative. DNA was extracted pre- and postenrichment from 100 fecal samples from each category (high shedder, IMS positive, culture negative) and subjected to mqPCR and conventional PCR assays based on detecting three genes, rfbE, stx1, and stx2. In feces from cattle determined to be E. coli O157 high shedders by culture, 37% were positive by mqPCR prior to enrichment; 85% of samples were positive after enrichment. In IMS-positive samples, 4% were positive by mqPCR prior to enrichment, while 43% were positive after enrichment. In culture-negative feces, 7% were positive by mqPCR prior to enrichment, and 40% were positive after enrichment. The proportion of high shedder-positive and culture-positive (high shedder and IMS) samples were significantly different from mqPCR-positive samples before and after enrichment (P < 0.01). Similar results were observed for conventional PCR. Our data suggest that mqPCR and conventional PCR are most useful in identifying high shedder animals and may not be an appropriate substitute to culture-based methods for detection of E. coli O157 in cattle feces.

  17. Comparison of droplet digital PCR with quantitative real-time PCR for determination of zygosity in transgenic maize.

    PubMed

    Xu, Xiaoli; Peng, Cheng; Wang, Xiaofu; Chen, Xiaoyun; Wang, Qiang; Xu, Junfeng

    2016-12-01

    This study evaluated the applicability of droplet digital PCR (ddPCR) as a tool for maize zygosity determination using quantitative real-time PCR (qPCR) as a reference technology. Quantitative real-time PCR is commonly used to determine transgene copy number or GMO zygosity characterization. However, its effectiveness is based on identical reaction efficiencies for the transgene and the endogenous reference gene. Additionally, a calibrator sample should be utilized for accuracy. Droplet digital PCR is a DNA molecule counting technique that directly counts the absolute number of target and reference DNA molecules in a sample, independent of assay efficiency or external calibrators. The zygosity of the transgene can be easily determined using the ratio of the quantity of the target gene to the reference single copy endogenous gene. In this study, both the qPCR and ddPCR methods were used to determine insect-resistant transgenic maize IE034 zygosity. Both methods performed well, but the ddPCR method was more convenient because of its absolute quantification property.

  18. Use of PCR-Based Methods for Rapid Differentiation of Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis

    PubMed Central

    Torriani, Sandra; Zapparoli, Giacomo; Dellaglio, Franco

    1999-01-01

    Two PCR-based methods, specific PCR and randomly amplified polymorphic DNA PCR (RAPD-PCR), were used for rapid and reliable differentiation of Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis. PCR with a single combination of primers which targeted the proline iminopeptidase (pepIP) gene of L. delbrueckii subsp. bulgaricus allowed amplification of genomic fragments specific for the two subspecies when either DNA from a single colony or cells extracted from dairy products were used. A numerical analysis of the RAPD-PCR patterns obtained with primer M13 gave results that were consistent with the results of specific PCR for all strains except L. delbrueckii subsp. delbrueckii LMG 6412T, which clustered with L. delbrueckii subsp. lactis strains. In addition, RAPD-PCR performed with primer 1254 provided highly polymorphic profiles and thus was superior for distinguishing individual L. delbrueckii strains. PMID:10508059

  19. Use of PCR-based methods for rapid differentiation of Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis.

    PubMed

    Torriani, S; Zapparoli, G; Dellaglio, F

    1999-10-01

    Two PCR-based methods, specific PCR and randomly amplified polymorphic DNA PCR (RAPD-PCR), were used for rapid and reliable differentiation of Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis. PCR with a single combination of primers which targeted the proline iminopeptidase (pepIP) gene of L. delbrueckii subsp. bulgaricus allowed amplification of genomic fragments specific for the two subspecies when either DNA from a single colony or cells extracted from dairy products were used. A numerical analysis of the RAPD-PCR patterns obtained with primer M13 gave results that were consistent with the results of specific PCR for all strains except L. delbrueckii subsp. delbrueckii LMG 6412(T), which clustered with L. delbrueckii subsp. lactis strains. In addition, RAPD-PCR performed with primer 1254 provided highly polymorphic profiles and thus was superior for distinguishing individual L. delbrueckii strains.

  20. High throughput sequencing analysis of RNA libraries reveals the influences of initial library and PCR methods on SELEX efficiency.

    PubMed

    Takahashi, Mayumi; Wu, Xiwei; Ho, Michelle; Chomchan, Pritsana; Rossi, John J; Burnett, John C; Zhou, Jiehua

    2016-09-22

    The systemic evolution of ligands by exponential enrichment (SELEX) technique is a powerful and effective aptamer-selection procedure. However, modifications to the process can dramatically improve selection efficiency and aptamer performance. For example, droplet digital PCR (ddPCR) has been recently incorporated into SELEX selection protocols to putatively reduce the propagation of byproducts and avoid selection bias that result from differences in PCR efficiency of sequences within the random library. However, a detailed, parallel comparison of the efficacy of conventional solution PCR versus the ddPCR modification in the RNA aptamer-selection process is needed to understand effects on overall SELEX performance. In the present study, we took advantage of powerful high throughput sequencing technology and bioinformatics analysis coupled with SELEX (HT-SELEX) to thoroughly investigate the effects of initial library and PCR methods in the RNA aptamer identification. Our analysis revealed that distinct "biased sequences" and nucleotide composition existed in the initial, unselected libraries purchased from two different manufacturers and that the fate of the "biased sequences" was target-dependent during selection. Our comparison of solution PCR- and ddPCR-driven HT-SELEX demonstrated that PCR method affected not only the nucleotide composition of the enriched sequences, but also the overall SELEX efficiency and aptamer efficacy.

  1. High throughput sequencing analysis of RNA libraries reveals the influences of initial library and PCR methods on SELEX efficiency

    PubMed Central

    Takahashi, Mayumi; Wu, Xiwei; Ho, Michelle; Chomchan, Pritsana; Rossi, John J.; Burnett, John C.; Zhou, Jiehua

    2016-01-01

    The systemic evolution of ligands by exponential enrichment (SELEX) technique is a powerful and effective aptamer-selection procedure. However, modifications to the process can dramatically improve selection efficiency and aptamer performance. For example, droplet digital PCR (ddPCR) has been recently incorporated into SELEX selection protocols to putatively reduce the propagation of byproducts and avoid selection bias that result from differences in PCR efficiency of sequences within the random library. However, a detailed, parallel comparison of the efficacy of conventional solution PCR versus the ddPCR modification in the RNA aptamer-selection process is needed to understand effects on overall SELEX performance. In the present study, we took advantage of powerful high throughput sequencing technology and bioinformatics analysis coupled with SELEX (HT-SELEX) to thoroughly investigate the effects of initial library and PCR methods in the RNA aptamer identification. Our analysis revealed that distinct “biased sequences” and nucleotide composition existed in the initial, unselected libraries purchased from two different manufacturers and that the fate of the “biased sequences” was target-dependent during selection. Our comparison of solution PCR- and ddPCR-driven HT-SELEX demonstrated that PCR method affected not only the nucleotide composition of the enriched sequences, but also the overall SELEX efficiency and aptamer efficacy. PMID:27652575

  2. The influence of temperature pH and water immersion on the high hydrostatic pressure inactivation of GI.1 and GII.4 human noroviruses

    USDA-ARS?s Scientific Manuscript database

    Detection of human norovirus (HuNoV) usually relies on molecular biology techniques, such as qRT PCR. Since histo-blood group antigens (HBGAs) are the functional receptors for HuNoV, HuNoV can bind to porcine gastric mucin (PGM), which contains HBGA-like antigens. In this study, PGM conjugated magn...

  3. Molecular surveillance of Theileria ovis, Theileria lestoquardi and Theileria annulata infection in sheep and ixodid ticks in Iran.

    PubMed

    Razmi, Gholamreza; Yaghfoori, Saeed

    2013-01-01

    . turanicus could be a possible vector for T. ovis and T. lestoquardi. Finally, the PCR-RFLP based on Msp1 restriction enzyme is a simple method for differentiation of Theileria species in sheep and ixodid ticks.

  4. Comparison of PCR-Based Diagnosis with Centrifuged-Based Enrichment Method for Detection of Borrelia persica in Animal Blood Samples.

    PubMed

    Naddaf, S R; Kishdehi, M; Siavashi, Mr

    2011-01-01

    The mainstay of diagnosis of relapsing fever (RF) is demonstration of the spirochetes in Giemsa-stained thick blood smears, but during non fever periods the bacteria are very scanty and rarely detected in blood smears by microscopy. This study is aimed to evaluate the sensitivity of different methods developed for detection of low-grade spirochetemia. Animal blood samples with low degrees of spirochetemia were tested with two PCRs and a nested PCR targeting flaB, GlpQ, and rrs genes. Also, a centrifuged-based enrichment method and Giemsa staining were performed on blood samples with various degrees of spirochetemia. The flaB-PCR and nested rrs-PCR turned positive with various degrees of spirochetemia including the blood samples that turned negative with dark-field microscopy. The GlpQ-PCR was positive as far as at least one spirochete was seen in 5-10 microscopic fields. The sensitivity of GlpQ-PCR increased when DNA from Buffy Coat Layer (BCL) was used as template. The centrifuged-based enrichment method turned positive with as low concentration as 50 bacteria/ml blood, while Giemsa thick staining detected bacteria with concentrations ≥ 25000 bacteria/ml. Centrifuged-based enrichment method appeared as much as 500-fold more sensitive than thick smears, which makes it even superior to some PCR assays. Due to simplicity and minimal laboratory requirements, this method can be considered a valuable tool for diagnosis of RF in rural health centers.

  5. Lactobacillus strain diversity based on partial hsp60 gene sequences and design of PCR-restriction fragment length polymorphism assays for species identification and differentiation.

    PubMed

    Blaiotta, Giuseppe; Fusco, Vincenzina; Ercolini, Danilo; Aponte, Maria; Pepe, Olimpia; Villani, Francesco

    2008-01-01

    A phylogenetic tree showing diversities among 116 partial (499-bp) Lactobacillus hsp60 (groEL, encoding a 60-kDa heat shock protein) nucleotide sequences was obtained and compared to those previously described for 16S rRNA and tuf gene sequences. The topology of the tree produced in this study showed a Lactobacillus species distribution similar, but not identical, to those previously reported. However, according to the most recent systematic studies, a clear differentiation of 43 single-species clusters was detected/identified among the sequences analyzed. The slightly higher variability of the hsp60 nucleotide sequences than of the 16S rRNA sequences offers better opportunities to design or develop molecular assays allowing identification and differentiation of either distant or very closely related Lactobacillus species. Therefore, our results suggest that hsp60 can be considered an excellent molecular marker for inferring the taxonomy and phylogeny of members of the genus Lactobacillus and that the chosen primers can be used in a simple PCR procedure allowing the direct sequencing of the hsp60 fragments. Moreover, in this study we performed a computer-aided restriction endonuclease analysis of all 499-bp hsp60 partial sequences and we showed that the PCR-restriction fragment length polymorphism (RFLP) patterns obtainable by using both endonucleases AluI and TacI (in separate reactions) can allow identification and differentiation of all 43 Lactobacillus species considered, with the exception of the pair L. plantarum/L. pentosus. However, the latter species can be differentiated by further analysis with Sau3AI or MseI. The hsp60 PCR-RFLP approach was efficiently applied to identify and to differentiate a total of 110 wild Lactobacillus strains (including closely related species, such as L. casei and L. rhamnosus or L. plantarum and L. pentosus) isolated from cheese and dry-fermented sausages.

  6. Introduction to digital PCR.

    PubMed

    Bizouarn, Francisco

    2014-01-01

    Digital PCR (dPCR) is a molecular biology technique going through a renaissance. With the arrival of new instrumentation dPCR can now be performed as a routine molecular biology assay. This exciting new technique provides quantitative and detection capabilities that by far surpass other methods currently used. This chapter is an overview of some of the applications currently being performed using dPCR as well as the fundamental concepts and techniques this technology is based on.

  7. A method for quantitative analysis of standard and high-throughput qPCR expression data based on input sample quantity.

    PubMed

    Adamski, Mateusz G; Gumann, Patryk; Baird, Alison E

    2014-01-01

    Over the past decade rapid advances have occurred in the understanding of RNA expression and its regulation. Quantitative polymerase chain reactions (qPCR) have become the gold standard for quantifying gene expression. Microfluidic next generation, high throughput qPCR now permits the detection of transcript copy number in thousands of reactions simultaneously, dramatically increasing the sensitivity over standard qPCR. Here we present a gene expression analysis method applicable to both standard polymerase chain reactions (qPCR) and high throughput qPCR. This technique is adjusted to the input sample quantity (e.g., the number of cells) and is independent of control gene expression. It is efficiency-corrected and with the use of a universal reference sample (commercial complementary DNA (cDNA)) permits the normalization of results between different batches and between different instruments--regardless of potential differences in transcript amplification efficiency. Modifications of the input quantity method include (1) the achievement of absolute quantification and (2) a non-efficiency corrected analysis. When compared to other commonly used algorithms the input quantity method proved to be valid. This method is of particular value for clinical studies of whole blood and circulating leukocytes where cell counts are readily available.

  8. Sampling and Pooling Methods for Capturing Herd Level Antibiotic Resistance in Swine Feces using qPCR and CFU Approaches

    PubMed Central

    Mellerup, Anders; Ståhl, Marie

    2015-01-01

    The aim of this article was to define the sampling level and method combination that captures antibiotic resistance at pig herd level utilizing qPCR antibiotic resistance gene quantification and culture-based quantification of antibiotic resistant coliform indicator bacteria. Fourteen qPCR assays for commonly detected antibiotic resistance genes were developed, and used to quantify antibiotic resistance genes in total DNA from swine fecal samples that were obtained using different sampling and pooling methods. In parallel, the number of antibiotic resistant coliform indicator bacteria was determined in the same swine fecal samples. The results showed that the qPCR assays were capable of detecting differences in antibiotic resistance levels in individual animals that the coliform bacteria colony forming units (CFU) could not. Also, the qPCR assays more accurately quantified antibiotic resistance genes when comparing individual sampling and pooling methods. qPCR on pooled samples was found to be a good representative for the general resistance level in a pig herd compared to the coliform CFU counts. It had significantly reduced relative standard deviations compared to coliform CFU counts in the same samples, and therefore differences in antibiotic resistance levels between samples were more readily detected. To our knowledge, this is the first study to describe sampling and pooling methods for qPCR quantification of antibiotic resistance genes in total DNA extracted from swine feces. PMID:26114765

  9. Detection of Giardia in environmental waters by immuno-PCR amplification methods.

    PubMed

    Mahbubani, M H; Schaefer, F W; Jones, D D; Bej, A K

    1998-02-01

    Genomic DNA was extracted either directly from Giardia muris cysts seeded into environmental surface waters or from cysts isolated by immunomagnetic beads (IMB). A 0.171-kbp segment of the giardin gene was PCR-amplified following "direct extraction" of Giardia DNA from seeded Cahaba river water concentrate with moderate turbidity (780 JTU's), but DNA purified from seeded Colorado river water concentrates with high turbidity (2 x 10(5) JTUs) failed to amplify. However, if the cysts were first separated by the IMB approach from seeded Cahaba or Colorado river waters, and the DNA released by a freeze-boil Chelex(R)100 treatment, detection of G. muris by PCR amplification could be achieved at a sensitivity of 3 x 10(0) or 3 x 10(1) cysts/ml, respectively. If, however, the G. muris cysts used to seed even moderately turbid river waters (780 JTUs) were formalin treated (which is conventionally used for microscopic examination), neither direct extraction nor IMB purification methods yielded amplifiable DNA. Use of immunomagnetic beads to separate Giardia cysts from complex matrices of environmental surface waters followed by DNA release and PCR amplification of the target giardin gene improved the reliability of detection of this pathogen with the required sensitivity.

  10. Application of Reverse Transcriptase-PCR-DGGE as a rapid method for routine determination of Vibrio spp. in foods.

    PubMed

    Chahorm, Kanchana; Prakitchaiwattana, Cheunjit

    2018-01-02

    The aim of this research was to evaluate the feasibility of PCR-DGGE and Reverse Transcriptase-PCR-DGGE techniques for rapid detection of Vibrio species in foods. Primers GC567F and 680R were initially evaluated for amplifying DNA and cDNA of ten references Vibrio species by PCR method. The GC-clamp PCR amplicons were separated according to their sequences by the DGGE using 10% (w/v) polyacrylamide gel containing 45-70% urea and formamide denaturants. Two pair of Vibrio species, which could not be differentiated on the gel, was Vibrio fluvialis - Vibrio furnissii and Vibrio parahaemolyticus - Vibrio harveyi. To determine the detection limit, in the community of 10 reference strains containing the same viable population, distinct DNA bands of 3 species; Vibrio cholerae, Vibrio mimicus and Vibrio alginolyticus were consistently observed by PCR-DGGE technique. In fact, 5 species; Vibrio cholerae, Vibrio mimicus, Vibrio alginolyticus, Vibrio parahaemolyticus and Vibrio fluvialis consistently observed by Reverse Transcriptase-PCR-DGGE. In the community containing different viable population increasing from 10 2 to 10 5 CFU/mL, PCR-DGGE analysis only detected the two most prevalent species, while RT-PCR-DGGE detected the five most prevalent species. Therefore, Reverse Transcriptase-PCR-DGGE was also selected for detection of various Vibrio cell conditions, including viable cell (VC), injured cells from frozen cultures (IVC) and injured cells from frozen cultures with pre-enrichment (PIVC). It was found that cDNA band of all cell conditions gave the same migratory patterns, except that multiple cDNA bands of Plesiomonas shigelloides under IVC and PIVC conditions were found. When Reverse Transcriptase-PCR-DGGE was used for detecting Vibrio parahaemolyticus in the pathogen-spiked food samples, Vibrio parahaemolyticus could be detected in the spiked samples containing at least 10 2 CFU/g of this pathogen. The results obtained also corresponded to standard method (USFDA, 2004

  11. Molecular typing of uropathogenic E. coli strains by the ERIC-PCR method.

    PubMed

    Ardakani, Maryam Afkhami; Ranjbar, Reza

    2016-04-01

    Escherichia coli (E. coli) is the most common cause of urinary infections in hospitals. The aim of this study was to evaluate the ERIC-PCR method for molecular typing of uropathogenic E. coli strains isolated from hospitalized patients. In a cross sectional study, 98 E. coli samples were collected from urine samples taken from patients admitted to Baqiyatallah Hospital from June 2014 to January 2015. The disk agar diffusion method was used to determine antibiotic sensitivity. DNA proliferation based on repetitive intergenic consensus was used to classify the E. coli strains. The products of proliferation were electrophoresed on 1.5% agarose gel, and their dendrograms were drawn. The data were analyzed by online Insillico software. The method used in this research proliferated numerous bands (4-17 bands), ranging from 100 to 3000 base pairs. The detected strains were classified into six clusters (E1-E6) with 70% similarity between them. In this study, uropathogenic E. coli strains belonged to different genotypic clusters. It was found that ERIC-PCR had good differentiation power for molecular typing of uropathogenic E. coli strains isolated from the patients in the study.

  12. An evaluation of the PCR-RFLP technique to aid molecular-based monitoring of felids and canids in India

    PubMed Central

    2010-01-01

    Background The order Carnivora is well represented in India, with 58 of the 250 species found globally, occurring here. However, small carnivores figure very poorly in research and conservation policies in India. This is mainly due to the dearth of tested and standardized techniques that are both cost effective and conducive to small carnivore studies in the field. In this paper we present a non-invasive genetic technique standardized for the study of Indian felids and canids with the use of PCR amplification and restriction enzyme digestion of scat collected in the field. Findings Using existing sequences of felids and canids from GenBank, we designed primers from the 16S rRNA region of the mitochondrial genome and tested these on ten species of felids and five canids. We selected restriction enzymes that would cut the selected region differentially for various species within each family. We produced a restriction digestion profile for the potential differentiation of species based on fragment patterns. To test our technique, we used felid PCR primers on scats collected from various habitats in India, representing varied environmental conditions. Amplification success with field collected scats was 52%, while 86% of the products used for restriction digestion could be accurately assigned to species. We verified this through sequencing. A comparison of costs across the various techniques currently used for scat assignment showed that this technique was the most practical and cost effective. Conclusions The species-specific key developed in this paper provides a means for detailed investigations in the future that focus on elusive carnivores in India and this approach provides a model for other studies in areas of Asia where many small carnivores co-occur. PMID:20525407

  13. Comparison and optimization of detection methods for noroviruses in frozen strawberries containing different amounts of RT-PCR inhibitors.

    PubMed

    Bartsch, Christina; Szabo, Kathrin; Dinh-Thanh, Mai; Schrader, Christina; Trojnar, Eva; Johne, Reimar

    2016-12-01

    Frozen berries have been repeatedly identified as vehicles for norovirus (NoV) transmission causing large gastroenteritis outbreaks. However, virus detection in berries is often hampered by the presence of RT-PCR-inhibiting substances. Here, several virus extraction methods for subsequent real-time RT-PCR-based NoV-RNA detection in strawberries were compared and optimized. NoV recovery rates (RRs) between 0.21 ± 0.13% and 10.29 ± 6.03% were found when five different artificially contaminated strawberry batches were analyzed by the ISO/TS15216-2 method indicating the presence of different amounts of RT-PCR inhibitors. A comparison of five different virus extraction methods using artificially contaminated strawberries containing high amounts of RT-PCR inhibitors revealed the best NoV RRs for the ISO/TS15216 method. Further improvement of NoV RRs from 2.83 ± 2.92% to 15.28 ± 9.73% was achieved by the additional use of Sephacryl(®)-based columns for RNA purification. Testing of 22 frozen strawberry samples from a batch involved in a gastroenteritis outbreak resulted in 5 vs. 13 NoV GI-positive and in 9 vs. 20 NoV GII-positive samples using the original ISO/TS15216 method vs. the extended protocol, respectively. It can be concluded that the inclusion of an additional RNA purification step can increase NoV detection by the ISO/TS15216-2 method in frozen berries containing high amounts of RT-PCR inhibitors. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Yeast microbiota associated with spontaneous sourdough fermentations in the production of traditional wheat sourdough breads of the Abruzzo region (Italy).

    PubMed

    Valmorri, Sara; Tofalo, Rosanna; Settanni, Luca; Corsetti, Aldo; Suzzi, Giovanna

    2010-02-01

    The aims of this study were to describe the yeast community of 20 sourdoughs collected from central Italy and to characterize the sourdoughs based on chemical properties. A polyphasic approach consisting of traditional culture-based tests (spore-forming and physiological tests) and molecular techniques (PCR-RFLP, RAPD-PCR, PCR-DGGE) and chemical analysis (total acidity, acids, and sugar contents), was utilized to describe the yeast population and to investigate the chemical composition of the doughs. PCR-RFLP analysis identified 85% of the isolates as Saccharomyces cerevisiae, with the other dominant species being Candida milleri (11%), Candida krusei (2.5%), and Torulaspora delbrueckii (1%). RAPD-PCR analysis, performed with primers M13 and LA1, highlighted intraspecific polymorphism among the S. cerevisiae strains. The diversity of the sourdoughs from the Abruzzo region is reflected in the chemical composition, yeast species, and strain polymorphism. Our approach using a combination of phenotypic and genotypic methods identified the yeast species in the 20 sourdough samples and provided a complete overview of the yeast populations found in sourdoughs from the Abruzzo region.

  15. Rapid detection method for fusaric acid-producing species of Fusarium by PCR

    USDA-ARS?s Scientific Manuscript database

    Fusaric acid is a mycotoxin produced by species of the fungus Fusarium and can act synergistically with other Fusarium toxins. In order to develop a specific detection method for fusaric acid-producing fungus, PCR prim¬ers were designed to amplify FUB10, a transcription factor gene in fusaric acid ...

  16. Rapid and Inexpensive Screening of Genomic Copy Number Variations Using a Novel Quantitative Fluorescent PCR Method

    PubMed Central

    Han, Joan C.; Elsea, Sarah H.; Pena, Heloísa B.; Pena, Sérgio Danilo Junho

    2013-01-01

    Detection of human microdeletion and microduplication syndromes poses significant burden on public healthcare systems in developing countries. With genome-wide diagnostic assays frequently inaccessible, targeted low-cost PCR-based approaches are preferred. However, their reproducibility depends on equally efficient amplification using a number of target and control primers. To address this, the recently described technique called Microdeletion/Microduplication Quantitative Fluorescent PCR (MQF-PCR) was shown to reliably detect four human syndromes by quantifying DNA amplification in an internally controlled PCR reaction. Here, we confirm its utility in the detection of eight human microdeletion syndromes, including the more common WAGR, Smith-Magenis, and Potocki-Lupski syndromes with 100% sensitivity and 100% specificity. We present selection, design, and performance evaluation of detection primers using variety of approaches. We conclude that MQF-PCR is an easily adaptable method for detection of human pathological chromosomal aberrations. PMID:24288428

  17. A PCR method for the detection and differentiation of Lentinus edodes and Trametes versicolor in defined-mixed cultures used for wastewater treatment.

    PubMed

    García-Mena, Jaime; Cano-Ramirez, Claudia; Garibay-Orijel, Claudio; Ramirez-Canseco, Sergio; Poggi-Varaldo, Héctor M

    2005-06-01

    A PCR-based method for the quantitative detection of Lentinus edodes and Trametes versicolor, two ligninolytic fungi applied for wastewater treatment and bioremediation, was developed. Genomic DNA was used to optimize a PCR method targeting the conserved copper-binding sequence of laccase genes. The method allowed the quantitative detection and differentiation of these fungi in single and defined-mixed cultures after fractionation of the PCR products by electrophoresis in agarose gels. Amplified products of about 150 bp for L. edodes, and about 200 bp for T. versicolor were purified and cloned. The PCR method showed a linear detection response in the 1.0 microg-1 ng range. The same method was tested with genomic DNA from a third fungus (Phanerochaete chrysosporium), yielding a fragment of about 400 bp. Southern-blot and DNA sequence analysis indicated that a specific PCR product was amplified from each genome, and that these corresponded to sequences of laccase genes. This PCR protocol permits the detection and differentiation of three ligninolytic fungi by amplifying DNA fragments of different sizes using a single pair of primers, without further enzymatic restriction of the PCR products. This method has potential use in the monitoring, evaluation, and improvement of fungal cultures used in wastewater treatment processes.

  18. A multiplex PCR method for rapid identification of Brachionus rotifers.

    PubMed

    Vasileiadou, Kalliopi; Papakostas, Spiros; Triantafyllidis, Alexander; Kappas, Ilias; Abatzopoulos, Theodore J

    2009-01-01

    Cryptic species are increasingly being recognized in many organisms. In Brachionus rotifers, many morphologically similar yet genetically distinct species/biotypes have been described. A number of Brachionus cryptic species have been recognized among hatchery strains. In this study, we present a simple, one-step genetic method to detect the presence of those Brachionus sp. rotifers that have been found in hatcheries. With the proposed technique, each of the B. plicatilis sensu stricto, B. ibericus, Brachionus sp. Nevada, Brachionus sp. Austria, Brachionus sp. Manjavacas, and Brachionus sp. Cayman species and/or biotypes can be identified with polymerase chain reaction (PCR) analysis. Based on 233 cytochrome c oxidase subunit I sequences, we reviewed all the available cryptic Brachionus sp. genetic polymorphisms, and we designed six nested primers. With these primers, a specific amplicon of distinct size is produced for every one of the involved species/biotypes. Two highly sensitive protocols were developed for using the primers. Many of the primers can be combined in the same PCR. The proposed method has been found to be an effective and practical tool to investigate the presence of the above six cryptic species/biotypes in both individual and communal (bulk) rotifer deoxyribonucleic acid extractions from hatcheries. With this technique, hatchery managers could easily determine their rotifer composition at the level of cryptic species and monitor their cultures more efficiently.

  19. International Study to Evaluate PCR Methods for Detection of Trypanosoma cruzi DNA in Blood Samples from Chagas Disease Patients

    PubMed Central

    Schijman, Alejandro G.; Bisio, Margarita; Orellana, Liliana; Sued, Mariela; Duffy, Tomás; Mejia Jaramillo, Ana M.; Cura, Carolina; Auter, Frederic; Veron, Vincent; Qvarnstrom, Yvonne; Deborggraeve, Stijn; Hijar, Gisely; Zulantay, Inés; Lucero, Raúl Horacio; Velazquez, Elsa; Tellez, Tatiana; Sanchez Leon, Zunilda; Galvão, Lucia; Nolder, Debbie; Monje Rumi, María; Levi, José E.; Ramirez, Juan D.; Zorrilla, Pilar; Flores, María; Jercic, Maria I.; Crisante, Gladys; Añez, Néstor; De Castro, Ana M.; Gonzalez, Clara I.; Acosta Viana, Karla; Yachelini, Pedro; Torrico, Faustino; Robello, Carlos; Diosque, Patricio; Triana Chavez, Omar; Aznar, Christine; Russomando, Graciela; Büscher, Philippe; Assal, Azzedine; Guhl, Felipe; Sosa Estani, Sergio; DaSilva, Alexandre; Britto, Constança; Luquetti, Alejandro; Ladzins, Janis

    2011-01-01

    Background A century after its discovery, Chagas disease still represents a major neglected tropical threat. Accurate diagnostics tools as well as surrogate markers of parasitological response to treatment are research priorities in the field. The purpose of this study was to evaluate the performance of PCR methods in detection of Trypanosoma cruzi DNA by an external quality evaluation. Methodology/Findings An international collaborative study was launched by expert PCR laboratories from 16 countries. Currently used strategies were challenged against serial dilutions of purified DNA from stocks representing T. cruzi discrete typing units (DTU) I, IV and VI (set A), human blood spiked with parasite cells (set B) and Guanidine Hidrochloride-EDTA blood samples from 32 seropositive and 10 seronegative patients from Southern Cone countries (set C). Forty eight PCR tests were reported for set A and 44 for sets B and C; 28 targeted minicircle DNA (kDNA), 13 satellite DNA (Sat-DNA) and the remainder low copy number sequences. In set A, commercial master mixes and Sat-DNA Real Time PCR showed better specificity, but kDNA-PCR was more sensitive to detect DTU I DNA. In set B, commercial DNA extraction kits presented better specificity than solvent extraction protocols. Sat-DNA PCR tests had higher specificity, with sensitivities of 0.05–0.5 parasites/mL whereas specific kDNA tests detected 5.10−3 par/mL. Sixteen specific and coherent methods had a Good Performance in both sets A and B (10 fg/µl of DNA from all stocks, 5 par/mL spiked blood). The median values of sensitivities, specificities and accuracies obtained in testing the Set C samples with the 16 tests determined to be good performing by analyzing Sets A and B samples varied considerably. Out of them, four methods depicted the best performing parameters in all three sets of samples, detecting at least 10 fg/µl for each DNA stock, 0.5 par/mL and a sensitivity between 83.3–94.4%, specificity of 85–95

  20. Development and evaluation of event-specific quantitative PCR method for genetically modified soybean A2704-12.

    PubMed

    Takabatake, Reona; Akiyama, Hiroshi; Sakata, Kozue; Onishi, Mari; Koiwa, Tomohiro; Futo, Satoshi; Minegishi, Yasutaka; Teshima, Reiko; Mano, Junichi; Furui, Satoshi; Kitta, Kazumi

    2011-01-01

    A novel real-time PCR-based analytical method was developed for the event-specific quantification of a genetically modified (GM) soybean event; A2704-12. During the plant transformation, DNA fragments derived from pUC19 plasmid were integrated in A2704-12, and the region was found to be A2704-12 specific. The pUC19-derived DNA sequences were used as primers for the specific detection of A2704-12. We first tried to construct a standard plasmid for A2704-12 quantification using pUC19. However, non-specific signals appeared with both qualitative and quantitative PCR analyses using the specific primers with pUC19 as a template, and we then constructed a plasmid using pBR322. The conversion factor (C(f)), which is required to calculate the amount of the genetically modified organism (GMO), was experimentally determined with two real-time PCR instruments, the Applied Biosystems 7900HT and the Applied Biosystems 7500. The determined C(f) values were both 0.98. The quantitative method was evaluated by means of blind tests in multi-laboratory trials using the two real-time PCR instruments. The limit of quantitation for the method was estimated to be 0.1%. The trueness and precision were evaluated as the bias and reproducibility of relative standard deviation (RSD(R)), and the determined bias and RSD(R) values for the method were each less than 20%. These results suggest that the developed method would be suitable for practical analyses for the detection and quantification of A2704-12.

  1. Molecular methods (digital PCR and real-time PCR) for the quantification of low copy DNA of Phytophthora nicotianae in environmental samples.

    PubMed

    Blaya, Josefa; Lloret, Eva; Santísima-Trinidad, Ana B; Ros, Margarita; Pascual, Jose A

    2016-04-01

    Currently, real-time polymerase chain reaction (qPCR) is the technique most often used to quantify pathogen presence. Digital PCR (dPCR) is a new technique with the potential to have a substantial impact on plant pathology research owing to its reproducibility, sensitivity and low susceptibility to inhibitors. In this study, we evaluated the feasibility of using dPCR and qPCR to quantify Phytophthora nicotianae in several background matrices, including host tissues (stems and roots) and soil samples. In spite of the low dynamic range of dPCR (3 logs compared with 7 logs for qPCR), this technique proved to have very high precision applicable at very low copy numbers. The dPCR was able to detect accurately the pathogen in all type of samples in a broad concentration range. Moreover, dPCR seems to be less susceptible to inhibitors than qPCR in plant samples. Linear regression analysis showed a high correlation between the results obtained with the two techniques in soil, stem and root samples, with R(2) = 0.873, 0.999 and 0.995 respectively. These results suggest that dPCR is a promising alternative for quantifying soil-borne pathogens in environmental samples, even in early stages of the disease. © 2015 Society of Chemical Industry.

  2. Quantitative Real-Time PCR using the Thermo Scientific Solaris qPCR Assay

    PubMed Central

    Ogrean, Christy; Jackson, Ben; Covino, James

    2010-01-01

    The Solaris qPCR Gene Expression Assay is a novel type of primer/probe set, designed to simplify the qPCR process while maintaining the sensitivity and accuracy of the assay. These primer/probe sets are pre-designed to >98% of the human and mouse genomes and feature significant improvements from previously available technologies. These improvements were made possible by virtue of a novel design algorithm, developed by Thermo Scientific bioinformatics experts. Several convenient features have been incorporated into the Solaris qPCR Assay to streamline the process of performing quantitative real-time PCR. First, the protocol is similar to commonly employed alternatives, so the methods used during qPCR are likely to be familiar. Second, the master mix is blue, which makes setting the qPCR reactions easier to track. Third, the thermal cycling conditions are the same for all assays (genes), making it possible to run many samples at a time and reducing the potential for error. Finally, the probe and primer sequence information are provided, simplifying the publication process. Here, we demonstrate how to obtain the appropriate Solaris reagents using the GENEius product search feature found on the ordering web site (www.thermo.com/solaris) and how to use the Solaris reagents for performing qPCR using the standard curve method. PMID:20567213

  3. Ultra-fast DNA-based multiplex convection PCR method for meat species identification with possible on-site applications.

    PubMed

    Song, Kyung-Young; Hwang, Hyun Jin; Kim, Jeong Hee

    2017-08-15

    The aim of this study was to develop an ultra-fast molecular detection method for meat identification using convection Palm polymerase chain reaction (PCR). The mitochondrial cytochrome b (Cyt b) gene was used as a target gene. Amplicon size was designed to be different for beef, lamb, and pork. When these primer sets were used, each species-specific set specifically detected the target meat species in singleplex and multiplex modes in a 24min PCR run. The detection limit was 1pg of DNA for each meat species. The convection PCR method could detect as low as 1% of meat adulteration. The stability of the assay was confirmed using thermal processed meats. We also showed that direct PCR can be successfully performed with mixed meats and food samples. These results suggest that the developed assay may be useful in the authentication of meats and meat products in laboratory and rapid on-site applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Lactobacillus Strain Diversity Based on Partial hsp60 Gene Sequences and Design of PCR-Restriction Fragment Length Polymorphism Assays for Species Identification and Differentiation▿ †

    PubMed Central

    Blaiotta, Giuseppe; Fusco, Vincenzina; Ercolini, Danilo; Aponte, Maria; Pepe, Olimpia; Villani, Francesco

    2008-01-01

    A phylogenetic tree showing diversities among 116 partial (499-bp) Lactobacillus hsp60 (groEL, encoding a 60-kDa heat shock protein) nucleotide sequences was obtained and compared to those previously described for 16S rRNA and tuf gene sequences. The topology of the tree produced in this study showed a Lactobacillus species distribution similar, but not identical, to those previously reported. However, according to the most recent systematic studies, a clear differentiation of 43 single-species clusters was detected/identified among the sequences analyzed. The slightly higher variability of the hsp60 nucleotide sequences than of the 16S rRNA sequences offers better opportunities to design or develop molecular assays allowing identification and differentiation of either distant or very closely related Lactobacillus species. Therefore, our results suggest that hsp60 can be considered an excellent molecular marker for inferring the taxonomy and phylogeny of members of the genus Lactobacillus and that the chosen primers can be used in a simple PCR procedure allowing the direct sequencing of the hsp60 fragments. Moreover, in this study we performed a computer-aided restriction endonuclease analysis of all 499-bp hsp60 partial sequences and we showed that the PCR-restriction fragment length polymorphism (RFLP) patterns obtainable by using both endonucleases AluI and TacI (in separate reactions) can allow identification and differentiation of all 43 Lactobacillus species considered, with the exception of the pair L. plantarum/L. pentosus. However, the latter species can be differentiated by further analysis with Sau3AI or MseI. The hsp60 PCR-RFLP approach was efficiently applied to identify and to differentiate a total of 110 wild Lactobacillus strains (including closely related species, such as L. casei and L. rhamnosus or L. plantarum and L. pentosus) isolated from cheese and dry-fermented sausages. PMID:17993558

  5. GSK3 Inhibitor-BIO Regulates Proliferation of Immortalized Pancreatic Mesenchymal Stem Cells (iPMSCs)

    PubMed Central

    Cao, Hui; Chu, Yuankui; Lv, Xiao; Qiu, Pubin; Liu, Chao; Zhang, Huiru; Li, Dan; Peng, Sha; Dou, Zhongying; Hua, Jinlian

    2012-01-01

    Background The small molecule 6-bromoindirubin-30-oxime (BIO), a glycogen synthase kinase 3 (GSK3) inhibitor, is a pharmacological agent known to maintain self-renewal in human and mouse embryonic stem cells (ESCs). However, the precise role of GSK3 in immortalized pancreatic mesenchymal stem cells (iPMSCs) growth and survival is not completely understood at present. Results To determine whether this molecule is involved in controlling the proliferation of iPMSCs, we examined the effect of BIO on iPMSCs. We found that the inactivation of GSK3 by BIO can robustly stimulate iPMSCs proliferation and mass formation as shown by QRT-PCR, western blotting, 5-Bromo-2-deoxyuridine (BrdU) immunostaining assay and tunel assay. However, we did not find the related roles of BIO on β cell differentiation by immunostaining, QRT-PCR assay, glucose-stimulated insulin release and C-peptide content analysis. Conclusions These results suggest that BIO plays a key role in the regulation of cell mass proliferation and maintenance of the undifferentiated state of iPMSCs. PMID:22384031

  6. Real-time PCR (qPCR) primer design using free online software.

    PubMed

    Thornton, Brenda; Basu, Chhandak

    2011-01-01

    Real-time PCR (quantitative PCR or qPCR) has become the preferred method for validating results obtained from assays which measure gene expression profiles. The process uses reverse transcription polymerase chain reaction (RT-PCR), coupled with fluorescent chemistry, to measure variations in transcriptome levels between samples. The four most commonly used fluorescent chemistries are SYBR® Green dyes and TaqMan®, Molecular Beacon or Scorpion probes. SYBR® Green is very simple to use and cost efficient. As SYBR® Green dye binds to any double-stranded DNA product, its success depends greatly on proper primer design. Many types of online primer design software are available, which can be used free of charge to design desirable SYBR® Green-based qPCR primers. This laboratory exercise is intended for those who have a fundamental background in PCR. It addresses the basic fluorescent chemistries of real-time PCR, the basic rules and pitfalls of primer design, and provides a step-by-step protocol for designing SYBR® Green-based primers with free, online software. Copyright © 2010 Wiley Periodicals, Inc.

  7. A new double digestion ligation mediated suppression PCR method for simultaneous bacteria DNA-typing and confirmation of species: an Acinetobacter sp. model.

    PubMed

    Stojowska, Karolina; Krawczyk, Beata

    2014-01-01

    We have designed a new ddLMS PCR (double digestion Ligation Mediated Suppression PCR) method based on restriction site polymorphism upstream from the specific target sequence for the simultaneous identification and differentiation of bacterial strains. The ddLMS PCR combines a simple PCR used for species or genus identification and the LM PCR strategy for strain differentiation. The bacterial identification is confirmed in the form of the PCR product(s), while the length of the PCR product makes it possible to differentiate between bacterial strains. If there is a single copy of the target sequence within genomic DNA, one specific PCR product is created (simplex ddLMS PCR), whereas for multiple copies of the gene the fingerprinting patterns can be obtained (multiplex ddLMS PCR). The described ddLMS PCR method is designed for rapid and specific strain differentiation in medical and microbiological studies. In comparison to other LM PCR it has substantial advantages: enables specific species' DNA-typing without the need for pure bacterial culture selection, is not sensitive to contamination with other cells or genomic DNA, and gives univocal "band-based" results, which are easy to interpret. The utility of ddLMS PCR was shown for Acinetobacter calcoaceticus-baumannii (Acb) complex, the genetically closely related and phenotypically similar species and also important nosocomial pathogens, for which currently, there are no recommended methods for screening, typing and identification. In this article two models are proposed: 3' recA-ddLMS PCR-MaeII/RsaI for Acb complex interspecific typing and 5' rrn-ddLMS PCR-HindIII/ApaI for Acinetobacter baumannii intraspecific typing. ddLMS PCR allows not only for DNA-typing but also for confirmation of species in one reaction. Also, practical guidelines for designing a diagnostic test based on ddLMS PCR for genotyping different species of bacteria are provided.

  8. A New Double Digestion Ligation Mediated Suppression PCR Method for Simultaneous Bacteria DNA-Typing and Confirmation of Species: An Acinetobacter sp. Model

    PubMed Central

    Stojowska, Karolina; Krawczyk, Beata

    2014-01-01

    We have designed a new ddLMS PCR (double digestion Ligation Mediated Suppression PCR) method based on restriction site polymorphism upstream from the specific target sequence for the simultaneous identification and differentiation of bacterial strains. The ddLMS PCR combines a simple PCR used for species or genus identification and the LM PCR strategy for strain differentiation. The bacterial identification is confirmed in the form of the PCR product(s), while the length of the PCR product makes it possible to differentiate between bacterial strains. If there is a single copy of the target sequence within genomic DNA, one specific PCR product is created (simplex ddLMS PCR), whereas for multiple copies of the gene the fingerprinting patterns can be obtained (multiplex ddLMS PCR). The described ddLMS PCR method is designed for rapid and specific strain differentiation in medical and microbiological studies. In comparison to other LM PCR it has substantial advantages: enables specific species' DNA-typing without the need for pure bacterial culture selection, is not sensitive to contamination with other cells or genomic DNA, and gives univocal “band-based” results, which are easy to interpret. The utility of ddLMS PCR was shown for Acinetobacter calcoaceticus-baumannii (Acb) complex, the genetically closely related and phenotypically similar species and also important nosocomial pathogens, for which currently, there are no recommended methods for screening, typing and identification. In this article two models are proposed: 3′ recA-ddLMS PCR-MaeII/RsaI for Acb complex interspecific typing and 5′ rrn-ddLMS PCR-HindIII/ApaI for Acinetobacter baumannii intraspecific typing. ddLMS PCR allows not only for DNA-typing but also for confirmation of species in one reaction. Also, practical guidelines for designing a diagnostic test based on ddLMS PCR for genotyping different species of bacteria are provided. PMID:25522278

  9. Efficacy of species-specific recA PCR tests in the identification of Burkholderia cepacia complex environmental isolates.

    PubMed

    Dalmastri, Claudia; Pirone, Luisa; Tabacchioni, Silvia; Bevivino, Annamaria; Chiarini, Luigi

    2005-05-01

    In this study, we evaluated if recA species-specific PCR assays could be successfully applied to identify environmental isolates of the widespread Burkholderia cepacia complex (Bcc) species. A total of 729 Bcc rhizosphere isolates collected in different samplings were assigned to the species B. cepacia genomovar I (61), B. cenocepacia recA lineage IIIB (514), B. ambifaria (124) and B. pyrrocinia (30), by means of recA (RFLP) analysis, and PCR tests were performed to assess sensitivity and specificity of recA species-specific primers pairs. B. cepacia genomovar I specific primers produced the expected amplicon with all isolates of the corresponding species (sensitivity, 100%), and cross-reacted with all B. pyrrocinia isolates. On the contrary, B. cenocepacia IIIB primers did not give the expected amplicon in 164 B. cenocepacia IIIB isolates (sensitivity, 68.1%), and isolates of distinct populations showed different sensitivity. B. ambifaria primers failed to amplify a recA-specific fragment only in a few isolates of this species (sensitivity, 93.5%). The absence of specific amplification in a high number of B. cenocepacia rhizosphere isolates indicates that recA specific PCR assays can lead to an underestimation of environmental microorganisms belonging to this bacterial species.

  10. A RAPID DNA EXTRACTION METHOD FOR PCR IDENTIFICATION OF FUNGAL INDOOR AIR CONTAMINANTS

    EPA Science Inventory

    Following air sampling, fungal DNA needs to be extracted and purified to a state suitable for laboratory use. Our laboratory has developed a simple method of extraction and purification of fungal DNA appropriate for enzymatic manipulation and polymerase chain reaction (PCR) appli...

  11. Preliminary Identification and Typing of Pathogenic and Toxigenic Fusarium Species Using Restriction Digestion of ITS1-5.8S rDNA-ITS2 Region.

    PubMed

    Mirhendi, H; Ghiasian, A; Vismer, Hf; Asgary, Mr; Jalalizand, N; Arendrup, Mc; Makimura, K

    2010-01-01

    Fusarium species are capable of causing a wide range of crop plants infections as well as uncommon human infections. Many species of the genus produce mycotoxins, which are responsible for acute or chronic diseases in animals and humans. Identification of Fusaria to the species level is necessary for biological, epidemiological, pathological, and toxicological purposes. In this study, we undertook a computer-based analysis of ITS1-5.8SrDNA-ITS2 in 192 GenBank sequences from 36 Fusarium species to achieve data for establishing a molecular method for specie-specific identification. Sequence data and 610 restriction enzymes were analyzed for choosing RFLP profiles, and subsequently designed and validated a PCR-restriction enzyme system for identification and typing of species. DNA extracted from 32 reference strains of 16 species were amplified using ITS1 and ITS4 universal primers followed by sequencing and restriction enzyme digestion of PCR products. The following 3 restriction enzymes TasI, ItaI and CfoI provide the best discriminatory power. Using ITS1 and ITS4 primers a product of approximately 550bp was observed for all Fusarium strains, as expected regarding the sequence analyses. After RFLP of the PCR products, some species were definitely identified by the method and some strains had different patterns in same species. Our profile has potential not only for identification of species, but also for genotyping of strains. On the other hand, some Fusarium species were 100% identical in their ITS-5.8SrDNA-ITS2 sequences, therefore differentiation of these species is impossible regarding this target alone. ITS-PCR-RFLP method might be useful for preliminary differentiation and typing of most common Fusarium species.

  12. Improving Leishmania Species Identification in Different Types of Samples from Cutaneous Lesions

    PubMed Central

    Cruz-Barrera, Mónica L.; Ovalle-Bracho, Clemencia; Ortegon-Vergara, Viviana; Pérez-Franco, Jairo E.

    2015-01-01

    The discrimination of Leishmania species from patient samples has epidemiological and clinical relevance. In this study, different gene target PCR-restriction fragment length polymorphism (RFLP) protocols were evaluated for their robustness as Leishmania species discriminators in 61 patients with cutaneous leishmaniasis. We modified the hsp70-PCR-RFLP protocol and found it to be the most reliable protocol for species identification. PMID:25609727

  13. Quantitative PCR Method for Diagnosis of Citrus Bacterial Canker†

    PubMed Central

    Cubero, J.; Graham, J. H.; Gottwald, T. R.

    2001-01-01

    For diagnosis of citrus bacterial canker by PCR, an internal standard is employed to ensure the quality of the DNA extraction and that proper requisites exist for the amplification reaction. The ratio of PCR products from the internal standard and bacterial target is used to estimate the initial bacterial concentration in citrus tissues with lesions. PMID:11375206

  14. [Investigation of Coxiella burnetii contamination in commercial milk and PCR method for the detection of C. burnetii in egg].

    PubMed

    Hirai, Akihiko; Kaneko, Seiji; Nakama, Akiko; Ishizaki, Naoto; Odagiri, Megumi; Kai, Akemi; Sadamasu, Kenji; Shinkai, Takayuki; Yano, Kazuyoshi; Morozumi, Satoshi

    2005-06-01

    A total of 244 milk samples collected from supermarkets in Tokyo were examined for contamination with Coxiella burnetii. C. burnetii DNA was detected in 131 (53.7%) of the samples by nested PCR. PCR-positive samples were injected into immunosuppressed A/J strain mice. Of the 22 PCR-positive milk samples tested, none resulted in isolation of C. burnetii from the mice. Heat-treatment was sufficient to inactivate C. burnetii in commercial milk. In addition, a PCR detection method for C. burnetii in chicken egg was developed. Egg yolk was added to an equal volume of 1 mol/L of NaCl phosphate buffer and homogenized for removal of protein and lipid. After centrifugal separation, the supernatant was removed, and template DNA in the precipitate was extracted using SDS, proteinase K and NaI. Using such prepared samples, 3.2 x 10(1) C. burnetii particles in 1 g of egg yolk could be detected by nested PCR. All of 200 chicken egg samples collected from supermarkets in Tokyo were negative for C. burnetii by the nested PCR method.

  15. PCR method for detection and identification of Lactobacillus casei/paracasei bacteriophages in dairy products.

    PubMed

    Binetti, Ana G; Capra, M Luján; Alvarez, Miguel A; Reinheimer, Jorge A

    2008-05-31

    Bacteriophage infections of starter lactic acid bacteria (LAB) pose a serious risk to the dairy industry. Nowadays, the expanding use of valuable Lactobacillus strains as probiotic starters determines an increase in the frequency of specific bacteriophage infections in dairy plants. This work describes a simple and rapid Polymerase Chain Reaction (PCR) method that detects and identifies bacteriophages infecting Lactobacillus casei/paracasei, the main bacterial species used as probiotic. Based on a highly conserved region of the NTP-binding genes belonging to the replication module of L. casei phages phiA2 and phiAT3 (the only two whose genomes are completely sequenced), a pair of primers was designed to generate a specific fragment. Furthermore, this PCR detection method proved to be a useful tool for monitoring and identifying L. casei/paracasei phages in industrial samples since specific PCR signals were obtained from phage contaminated milk (detection limit: 10(4) PFU/mL milk) and other commercial samples (fermented milks and cheese whey) that include L. casei/paracasei as probiotic starter (detection limit: 10(6) PFU/mL fermented milk). Since this method can detect the above phages in industrial samples and can be easily incorporated into dairy industry routines, it might be readily used to earmark contaminated milk for use in processes that do not involve susceptible starter organisms, or processes which involve phage-deactivating conditions.

  16. Comparison of droplet digital PCR and conventional quantitative PCR for measuring EGFR gene mutation

    PubMed Central

    ZHANG, BO; XU, CHUN-WEI; SHAO, YUN; WANG, HUAI-TAO; WU, YONG-FANG; SONG, YE-YING; LI, XIAO-BING; ZHANG, ZHE; WANG, WEN-JING; LI, LI-QIONG; CAI, CONG-LI

    2015-01-01

    Early detection of epidermal growth factor receptor (EGFR) mutation, particularly EGFR T790M mutation, is of clinical significance. The aim of the present study was to compare the performances of amplification refractory mutation system-based quantitative polymerase chain reaction (ARMS-qPCR) and droplet digital polymerase chain reaction (ddPCR) approaches in the detection of EGFR mutation and explore the feasibility of using ddPCR in the detection of samples with low mutation rates. EGFR gene mutations in plasmid samples with different T790M mutation rates (0.1–5%) and 10 clinical samples were detected using the ARMS-qPCR and ddPCR approaches. The results demonstrated that the ARMS-qPCR method stably detected the plasmid samples (6,000 copies) with 5 and 1% mutation rates, while the ddPCR approach reliably detected those with 5% (398 copies), 1% (57 copies), 0.5% (24 copies) and 0.1% (average 6 copies) mutation rates. For the 10 clinical samples, the results for nine samples by the ARMS-qPCR and ddPCR methods were consistent; however, the sample N006, indicated to be EGFR wild-type by ARMS-qPCR, was revealed to have a clear EGFR T790M mutation with seven copies of mutant alleles in a background of 6,000 wild-type copies using ddPCR technology. This study demonstrates the feasibility of applying the ddPCR system to detect EGFR mutation and identified the advantage of ddPCR in the detection of samples with a low EGFR mutation abundance, particularly the secondary EGFR T790M resistance mutation, which enables early diagnosis before acquired resistance to tyrosine kinase inhibitors becomes clinically detectable. PMID:25780439

  17. Use of SCW4 gene primers in PCR methods for the identification of six medically important Aspergillus species.

    PubMed

    Arancia, Silvia; Sandini, Silvia; De Carolis, Elena; Vella, Antonietta; Sanguinetti, Maurizio; Norelli, Sandro; De Bernardis, Flavia

    2016-10-01

    Aspergillus species are the cause of invasive mold infections in immunocompromised patients: Aspergillus fumigatus, A. flavus and A. terreus account for most cases of invasive aspergillosis (IA). As certain species are associated with higher mortality and vary in their resistance to antifungal therapy, diagnosis requires increasingly rapid molecular methods that enable sensitive detection and species discrimination. We have developed PCR and Multiplex PCR assays for the detection of six medically important Aspergillus spp. species DNA in bronchoalveolar lavage (BAL) specimens from hematology and intensive care unit (ICU) patients at risk of IA, using different species and genus-specific PCR primers, selected within the SCW4 gene, encoding a cell wall glucanase of A. fumigatus, similar to mannoprotein Mp65 of Candida albicans. The genus-specific PCR primers were able to amplify only Aspergillus DNAs but not that belonging to other fungal genera tested. The species-specific PCR primers allowed differentiation of each Aspergillus species by the amplicon length produced. The methods described in this study are rapid (less than 4 h), reproducible, simple and specific and demonstrate potential application in the clinical laboratory.

  18. Analytical Validation of Quantitative Real-Time PCR Methods for Quantification of Trypanosoma cruzi DNA in Blood Samples from Chagas Disease Patients

    PubMed Central

    Ramírez, Juan Carlos; Cura, Carolina Inés; Moreira, Otacilio da Cruz; Lages-Silva, Eliane; Juiz, Natalia; Velázquez, Elsa; Ramírez, Juan David; Alberti, Anahí; Pavia, Paula; Flores-Chávez, María Delmans; Muñoz-Calderón, Arturo; Pérez-Morales, Deyanira; Santalla, José; Guedes, Paulo Marcos da Matta; Peneau, Julie; Marcet, Paula; Padilla, Carlos; Cruz-Robles, David; Valencia, Edward; Crisante, Gladys Elena; Greif, Gonzalo; Zulantay, Inés; Costales, Jaime Alfredo; Alvarez-Martínez, Miriam; Martínez, Norma Edith; Villarroel, Rodrigo; Villarroel, Sandro; Sánchez, Zunilda; Bisio, Margarita; Parrado, Rudy; Galvão, Lúcia Maria da Cunha; da Câmara, Antonia Cláudia Jácome; Espinoza, Bertha; de Noya, Belkisyole Alarcón; Puerta, Concepción; Riarte, Adelina; Diosque, Patricio; Sosa-Estani, Sergio; Guhl, Felipe; Ribeiro, Isabela; Aznar, Christine; Britto, Constança; Yadón, Zaida Estela; Schijman, Alejandro G.

    2015-01-01

    An international study was performed by 26 experienced PCR laboratories from 14 countries to assess the performance of duplex quantitative real-time PCR (qPCR) strategies on the basis of TaqMan probes for detection and quantification of parasitic loads in peripheral blood samples from Chagas disease patients. Two methods were studied: Satellite DNA (SatDNA) qPCR and kinetoplastid DNA (kDNA) qPCR. Both methods included an internal amplification control. Reportable range, analytical sensitivity, limits of detection and quantification, and precision were estimated according to international guidelines. In addition, inclusivity and exclusivity were estimated with DNA from stocks representing the different Trypanosoma cruzi discrete typing units and Trypanosoma rangeli and Leishmania spp. Both methods were challenged against 156 blood samples provided by the participant laboratories, including samples from acute and chronic patients with varied clinical findings, infected by oral route or vectorial transmission. kDNA qPCR showed better analytical sensitivity than SatDNA qPCR with limits of detection of 0.23 and 0.70 parasite equivalents/mL, respectively. Analyses of clinical samples revealed a high concordance in terms of sensitivity and parasitic loads determined by both SatDNA and kDNA qPCRs. This effort is a major step toward international validation of qPCR methods for the quantification of T. cruzi DNA in human blood samples, aiming to provide an accurate surrogate biomarker for diagnosis and treatment monitoring for patients with Chagas disease. PMID:26320872

  19. Evaluation of Legionella pneumophila contamination in Italian hotel water systems by quantitative real-time PCR and culture methods.

    PubMed

    Bonetta, Sa; Bonetta, Si; Ferretti, E; Balocco, F; Carraro, E

    2010-05-01

    This study was designed to define the extent of water contamination by Legionella pneumophila of certain Italian hotels and to compare quantitative real-time PCR with the conventional culture method. Nineteen Italian hotels of different sizes were investigated. In each hotel three hot water samples (boiler, room showers, recycling) and one cold water sample (inlet) were collected. Physico-chemical parameters were also analysed. Legionella pneumophila was detected in 42% and 74% of the hotels investigated by the culture method and by real-time PCR, respectively. In 21% of samples analysed by the culture method, a concentration of >10(4) CFU l(-1) was found, and Leg. pneumophila serogroup 1 was isolated from 10.5% of the hotels. The presence of Leg. pneumophila was significantly influenced by water sample temperature, while no association with water hardness or residual-free chlorine was found. This study showed a high percentage of buildings colonized by Leg. pneumophila. Moreover, real-time PCR proved to be sensitive enough to detect lower levels of contamination than the culture method. This study indicates that the Italian hotels represent a possible source of risk for Legionnaires' disease and confirms the sensitivity of the molecular method. To our knowledge, this is the first report to demonstrate Legionella contamination in Italian hotels using real-time PCR and culture methods.

  20. Investigation of Legionella Contamination in Bath Water Samples by Culture, Amoebic Co-Culture, and Real-Time Quantitative PCR Methods.

    PubMed

    Edagawa, Akiko; Kimura, Akio; Kawabuchi-Kurata, Takako; Adachi, Shinichi; Furuhata, Katsunori; Miyamoto, Hiroshi

    2015-10-19

    We investigated Legionella contamination in bath water samples, collected from 68 bathing facilities in Japan, by culture, culture with amoebic co-culture, real-time quantitative PCR (qPCR), and real-time qPCR with amoebic co-culture. Using the conventional culture method, Legionella pneumophila was detected in 11 samples (11/68, 16.2%). Contrary to our expectation, the culture method with the amoebic co-culture technique did not increase the detection rate of Legionella (4/68, 5.9%). In contrast, a combination of the amoebic co-culture technique followed by qPCR successfully increased the detection rate (57/68, 83.8%) compared with real-time qPCR alone (46/68, 67.6%). Using real-time qPCR after culture with amoebic co-culture, more than 10-fold higher bacterial numbers were observed in 30 samples (30/68, 44.1%) compared with the same samples without co-culture. On the other hand, higher bacterial numbers were not observed after propagation by amoebae in 32 samples (32/68, 47.1%). Legionella was not detected in the remaining six samples (6/68, 8.8%), irrespective of the method. These results suggest that application of the amoebic co-culture technique prior to real-time qPCR may be useful for the sensitive detection of Legionella from bath water samples. Furthermore, a combination of amoebic co-culture and real-time qPCR might be useful to detect viable and virulent Legionella because their ability to invade and multiply within free-living amoebae is considered to correlate with their pathogenicity for humans. This is the first report evaluating the efficacy of the amoebic co-culture technique for detecting Legionella in bath water samples.

  1. Investigation of Legionella Contamination in Bath Water Samples by Culture, Amoebic Co-Culture, and Real-Time Quantitative PCR Methods

    PubMed Central

    Edagawa, Akiko; Kimura, Akio; Kawabuchi-Kurata, Takako; Adachi, Shinichi; Furuhata, Katsunori; Miyamoto, Hiroshi

    2015-01-01

    We investigated Legionella contamination in bath water samples, collected from 68 bathing facilities in Japan, by culture, culture with amoebic co-culture, real-time quantitative PCR (qPCR), and real-time qPCR with amoebic co-culture. Using the conventional culture method, Legionella pneumophila was detected in 11 samples (11/68, 16.2%). Contrary to our expectation, the culture method with the amoebic co-culture technique did not increase the detection rate of Legionella (4/68, 5.9%). In contrast, a combination of the amoebic co-culture technique followed by qPCR successfully increased the detection rate (57/68, 83.8%) compared with real-time qPCR alone (46/68, 67.6%). Using real-time qPCR after culture with amoebic co-culture, more than 10-fold higher bacterial numbers were observed in 30 samples (30/68, 44.1%) compared with the same samples without co-culture. On the other hand, higher bacterial numbers were not observed after propagation by amoebae in 32 samples (32/68, 47.1%). Legionella was not detected in the remaining six samples (6/68, 8.8%), irrespective of the method. These results suggest that application of the amoebic co-culture technique prior to real-time qPCR may be useful for the sensitive detection of Legionella from bath water samples. Furthermore, a combination of amoebic co-culture and real-time qPCR might be useful to detect viable and virulent Legionella because their ability to invade and multiply within free-living amoebae is considered to correlate with their pathogenicity for humans. This is the first report evaluating the efficacy of the amoebic co-culture technique for detecting Legionella in bath water samples. PMID:26492259

  2. Combination of culture-independent and culture-dependent molecular methods for the determination of bacterial community of iru, a fermented Parkia biglobosa seeds.

    PubMed

    Adewumi, Gbenga A; Oguntoyinbo, Folarin A; Keisam, Santosh; Romi, Wahengbam; Jeyaram, Kumaraswamy

    2012-01-01

    In this study, bacterial composition of iru produced by natural, uncontrolled fermentation of Parkia biglobosa seeds was assessed using culture-independent method in combination with culture-based genotypic typing techniques. PCR-denaturing gradient gel electrophoresis (DGGE) revealed similarity in DNA fragments with the two DNA extraction methods used and confirmed bacterial diversity in the 16 iru samples from different production regions. DNA sequencing of the highly variable V3 region of the 16S rRNA genes obtained from PCR-DGGE identified species related to Bacillus subtilis as consistent bacterial species in the fermented samples, while other major bands were identified as close relatives of Staphylococcus vitulinus, Morganella morganii, B. thuringiensis, S. saprophyticus, Tetragenococcus halophilus, Ureibacillus thermosphaericus, Brevibacillus parabrevis, Salinicoccus jeotgali, Brevibacterium sp. and uncultured bacteria clones. Bacillus species were cultured as potential starter cultures and clonal relationship of different isolates determined using amplified ribosomal DNA restriction analysis (ARDRA) combined with 16S-23S rRNA gene internal transcribed spacer (ITS) PCR amplification, restriction analysis (ITS-PCR-RFLP), and randomly amplified polymorphic DNA (RAPD-PCR). This further discriminated B. subtilis and its variants from food-borne pathogens such as B. cereus and suggested the need for development of controlled fermentation processes and good manufacturing practices (GMP) for iru production to achieve product consistency, safety quality, and improved shelf life.

  3. Development of Nested PCR, Multiplex PCR, and Loop-Mediated Isothermal Amplification Assays for Rapid Detection of Cylindrocladium scoparium on Eucalyptus.

    PubMed

    Qiao, Tian-Min; Zhang, Jing; Li, Shu-Jiang; Han, Shan; Zhu, Tian-Hui

    2016-10-01

    Eucalyptus dieback disease, caused by Cylindrocladium scoparium , has occurred in last few years in large Eucalyptus planting areas in China and other countries. Rapid, simple, and reliable diagnostic techniques are desired for the early detection of Eucalyptus dieback of C. scoparium prior to formulation of efficient control plan. For this purpose, three PCR-based methods of nested PCR, multiplex PCR, loop-mediated isothermal amplification (LAMP) were developed for detection of C. scoparium based on factor 1-alpha (tef1) and beta-tubulin gene in this study. All of the three methods showed highly specific to C. scoparium . The sensitivities of the nested PCR and LAMP were much higher than the multiplex PCR. The sensitivity of multiplex PCR was also higher than regular PCR. C. scoparium could be detected within 60 min from infected Eucalyptus plants by LAMP, while at least 2 h was needed by the rest two methods. Using different Eucalyptus tissues as samples for C. scoparium detection, all of the three PCR-based methods showed much better detection results than regular PCR. Base on the results from this study, we concluded that any of the three PCR-based methods could be used as diagnostic technology for the development of efficient strategies of Eucalyptus dieback disease control. Particularly, LAMP was the most practical method in field application because of its one-step and rapid reaction, simple operation, single-tube utilization, and simple visualization of amplification products.

  4. Development of Nested PCR, Multiplex PCR, and Loop-Mediated Isothermal Amplification Assays for Rapid Detection of Cylindrocladium scoparium on Eucalyptus

    PubMed Central

    Qiao, Tian-Min; Zhang, Jing; Li, Shu-Jiang; Han, Shan; Zhu, Tian-Hui

    2016-01-01

    Eucalyptus dieback disease, caused by Cylindrocladium scoparium, has occurred in last few years in large Eucalyptus planting areas in China and other countries. Rapid, simple, and reliable diagnostic techniques are desired for the early detection of Eucalyptus dieback of C. scoparium prior to formulation of efficient control plan. For this purpose, three PCR-based methods of nested PCR, multiplex PCR, loop-mediated isothermal amplification (LAMP) were developed for detection of C. scoparium based on factor 1-alpha (tef1) and beta-tubulin gene in this study. All of the three methods showed highly specific to C. scoparium. The sensitivities of the nested PCR and LAMP were much higher than the multiplex PCR. The sensitivity of multiplex PCR was also higher than regular PCR. C. scoparium could be detected within 60 min from infected Eucalyptus plants by LAMP, while at least 2 h was needed by the rest two methods. Using different Eucalyptus tissues as samples for C. scoparium detection, all of the three PCR-based methods showed much better detection results than regular PCR. Base on the results from this study, we concluded that any of the three PCR-based methods could be used as diagnostic technology for the development of efficient strategies of Eucalyptus dieback disease control. Particularly, LAMP was the most practical method in field application because of its one-step and rapid reaction, simple operation, single-tube utilization, and simple visualization of amplification products. PMID:27721691

  5. Molecular Strain Typing of Mycobacterium tuberculosis: a Review of Frequently Used Methods

    PubMed Central

    2016-01-01

    Tuberculosis, caused by the bacterium Mycobacterium tuberculosis, remains one of the most serious global health problems. Molecular typing of M. tuberculosis has been used for various epidemiologic purposes as well as for clinical management. Currently, many techniques are available to type M. tuberculosis. Choosing the most appropriate technique in accordance with the existing laboratory conditions and the specific features of the geographic region is important. Insertion sequence IS6110-based restriction fragment length polymorphism (RFLP) analysis is considered the gold standard for the molecular epidemiologic investigations of tuberculosis. However, other polymerase chain reaction-based methods such as spacer oligonucleotide typing (spoligotyping), which detects 43 spacer sequence-interspersing direct repeats (DRs) in the genomic DR region; mycobacterial interspersed repetitive units–variable number tandem repeats, (MIRU-VNTR), which determines the number and size of tandem repetitive DNA sequences; repetitive-sequence-based PCR (rep-PCR), which provides high-throughput genotypic fingerprinting of multiple Mycobacterium species; and the recently developed genome-based whole genome sequencing methods demonstrate similar discriminatory power and greater convenience. This review focuses on techniques frequently used for the molecular typing of M. tuberculosis and discusses their general aspects and applications. PMID:27709842

  6. Molecular Strain Typing of Mycobacterium tuberculosis: a Review of Frequently Used Methods.

    PubMed

    Ei, Phyu Win; Aung, Wah Wah; Lee, Jong Seok; Choi, Go Eun; Chang, Chulhun L

    2016-11-01

    Tuberculosis, caused by the bacterium Mycobacterium tuberculosis, remains one of the most serious global health problems. Molecular typing of M. tuberculosis has been used for various epidemiologic purposes as well as for clinical management. Currently, many techniques are available to type M. tuberculosis. Choosing the most appropriate technique in accordance with the existing laboratory conditions and the specific features of the geographic region is important. Insertion sequence IS6110-based restriction fragment length polymorphism (RFLP) analysis is considered the gold standard for the molecular epidemiologic investigations of tuberculosis. However, other polymerase chain reaction-based methods such as spacer oligonucleotide typing (spoligotyping), which detects 43 spacer sequence-interspersing direct repeats (DRs) in the genomic DR region; mycobacterial interspersed repetitive units-variable number tandem repeats, (MIRU-VNTR), which determines the number and size of tandem repetitive DNA sequences; repetitive-sequence-based PCR (rep-PCR), which provides high-throughput genotypic fingerprinting of multiple Mycobacterium species; and the recently developed genome-based whole genome sequencing methods demonstrate similar discriminatory power and greater convenience. This review focuses on techniques frequently used for the molecular typing of M. tuberculosis and discusses their general aspects and applications.

  7. PALATAL DYSMORPHOGENESIS: QUANTITATIVE RT-PCR

    EPA Science Inventory

    ABSTRACT

    Palatal Dysmorphogenesis : Quantitative RT-PCR

    Gary A. Held and Barbara D. Abbott

    Reverse transcription PCR (RT-PCR) is a very sensitive method for detecting mRNA in tissue samples. However, as it is usually performed it is does not yield quantitativ...

  8. Empirical evaluation of humpback whale telomere length estimates; quality control and factors causing variability in the singleplex and multiplex qPCR methods.

    PubMed

    Olsen, Morten Tange; Bérubé, Martine; Robbins, Jooke; Palsbøll, Per J

    2012-09-06

    Telomeres, the protective cap of chromosomes, have emerged as powerful markers of biological age and life history in model and non-model species. The qPCR method for telomere length estimation is one of the most common methods for telomere length estimation, but has received recent critique for being too error-prone and yielding unreliable results. This critique coincides with an increasing awareness of the potentials and limitations of the qPCR technique in general and the proposal of a general set of guidelines (MIQE) for standardization of experimental, analytical, and reporting steps of qPCR. In order to evaluate the utility of the qPCR method for telomere length estimation in non-model species, we carried out four different qPCR assays directed at humpback whale telomeres, and subsequently performed a rigorous quality control to evaluate the performance of each assay. Performance differed substantially among assays and only one assay was found useful for telomere length estimation in humpback whales. The most notable factors causing these inter-assay differences were primer design and choice of using singleplex or multiplex assays. Inferred amplification efficiencies differed by up to 40% depending on assay and quantification method, however this variation only affected telomere length estimates in the worst performing assays. Our results suggest that seemingly well performing qPCR assays may contain biases that will only be detected by extensive quality control. Moreover, we show that the qPCR method for telomere length estimation can be highly precise and accurate, and thus suitable for telomere measurement in non-model species, if effort is devoted to optimization at all experimental and analytical steps. We conclude by highlighting a set of quality controls which may serve for further standardization of the qPCR method for telomere length estimation, and discuss some of the factors that may cause variation in qPCR experiments.

  9. Real-time PCR-based method for the rapid detection of extended RAS mutations using bridged nucleic acids in colorectal cancer.

    PubMed

    Iida, Takao; Mizuno, Yukie; Kaizaki, Yasuharu

    2017-10-27

    Mutations in RAS and BRAF are predictors of the efficacy of anti-epidermal growth factor receptor (EGFR) therapy in patients with metastatic colorectal cancer (mCRC). Therefore, simple, rapid, cost-effective methods to detect these mutations in the clinical setting are greatly needed. In the present study, we evaluated BNA Real-time PCR Mutation Detection Kit Extended RAS (BNA Real-time PCR), a real-time PCR method that uses bridged nucleic acid clamping technology to rapidly detect mutations in RAS exons 2-4 and BRAF exon 15. Genomic DNA was extracted from 54 formalin-fixed paraffin-embedded (FFPE) tissue samples obtained from mCRC patients. Among the 54 FFPE samples, BNA Real-time PCR detected 21 RAS mutations (38.9%) and 5 BRAF mutations (9.3%), and the reference assay (KRAS Mutation Detection Kit and MEBGEN™ RASKET KIT) detected 22 RAS mutations (40.7%). The concordance rate of detected RAS mutations between the BNA Real-time PCR assay and the reference assays was 98.2% (53/54). The BNA Real-time PCR assay proved to be a more simple, rapid, and cost-effective method for detecting KRAS and RAS mutations compared with existing assays. These findings suggest that BNA Real-time PCR is a valuable tool for predicting the efficacy of early anti-EGFR therapy in mCRC patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Detection methods for biotech cotton MON 15985 and MON 88913 by PCR.

    PubMed

    Lee, Seong-Hun; Kim, Jin-Kug; Yi, Bu-Young

    2007-05-02

    Plants derived through agricultural biotechnology, or genetically modified organisms (GMOs), may affect human health and ecological environment. A living GMO is also called a living modified organism (LMO). Biotech cotton is a GMO in food or feed and also an LMO in the environment. Recently, two varieties of biotech cotton, MON 15985 and MON 88913, were developed by Monsanto Co. The detection method is an essential element for the GMO labeling system or LMO management of biotech plants. In this paper, two primer pairs and probes were designed for specific amplification of 116 and 120 bp PCR products from MON 15985 and MON 88913, respectively, with no amplification from any other biotech cotton. Limits of detection of the qualitative method were all 0.05% for MON 15985 and MON 88913. The quantitative method was developed using a TaqMan real-time PCR. A synthetic plasmid, as a reference molecule, was constructed from a taxon-specific DNA sequence of cotton and two construct-specific DNA sequences of MON 15985 and MON 88913. The quantitative method was validated using six samples that contained levels of biotech cotton mixed with conventional cotton ranging from 0.1 to 10.0%. As a result, the biases from the true value and the relative deviations were all within the range of +/-20%. Limits of quantitation of the quantitative method were all 0.1%. Consequently, it is reported that the proposed detection methods were applicable for qualitative and quantitative analyses for biotech cotton MON 15985 and MON 88913.

  11. pcr: an R package for quality assessment, analysis and testing of qPCR data

    PubMed Central

    Ahmed, Mahmoud

    2018-01-01

    Background Real-time quantitative PCR (qPCR) is a broadly used technique in the biomedical research. Currently, few different analysis models are used to determine the quality of data and to quantify the mRNA level across the experimental conditions. Methods We developed an R package to implement methods for quality assessment, analysis and testing qPCR data for statistical significance. Double Delta CT and standard curve models were implemented to quantify the relative expression of target genes from CT in standard qPCR control-group experiments. In addition, calculation of amplification efficiency and curves from serial dilution qPCR experiments are used to assess the quality of the data. Finally, two-group testing and linear models were used to test for significance of the difference in expression control groups and conditions of interest. Results Using two datasets from qPCR experiments, we applied different quality assessment, analysis and statistical testing in the pcr package and compared the results to the original published articles. The final relative expression values from the different models, as well as the intermediary outputs, were checked against the expected results in the original papers and were found to be accurate and reliable. Conclusion The pcr package provides an intuitive and unified interface for its main functions to allow biologist to perform all necessary steps of qPCR analysis and produce graphs in a uniform way. PMID:29576953

  12. An Efficient Multistrategy DNA Decontamination Procedure of PCR Reagents for Hypersensitive PCR Applications

    PubMed Central

    Pruvost, Mélanie; Bennett, E. Andrew; Grange, Thierry; Geigl, Eva-Maria

    2010-01-01

    Background PCR amplification of minute quantities of degraded DNA for ancient DNA research, forensic analyses, wildlife studies and ultrasensitive diagnostics is often hampered by contamination problems. The extent of these problems is inversely related to DNA concentration and target fragment size and concern (i) sample contamination, (ii) laboratory surface contamination, (iii) carry-over contamination, and (iv) contamination of reagents. Methodology/Principal Findings Here we performed a quantitative evaluation of current decontamination methods for these last three sources of contamination, and developed a new procedure to eliminate contaminating DNA contained in PCR reagents. We observed that most current decontamination methods are either not efficient enough to degrade short contaminating DNA molecules, rendered inefficient by the reagents themselves, or interfere with the PCR when used at doses high enough to eliminate these molecules. We also show that efficient reagent decontamination can be achieved by using a combination of treatments adapted to different reagent categories. Our procedure involves γ- and UV-irradiation and treatment with a mutant recombinant heat-labile double-strand specific DNase from the Antarctic shrimp Pandalus borealis. Optimal performance of these treatments is achieved in narrow experimental conditions that have been precisely analyzed and defined herein. Conclusions/Significance There is not a single decontamination method valid for all possible contamination sources occurring in PCR reagents and in the molecular biology laboratory and most common decontamination methods are not efficient enough to decontaminate short DNA fragments of low concentration. We developed a versatile multistrategy decontamination procedure for PCR reagents. We demonstrate that this procedure allows efficient reagent decontamination while preserving the efficiency of PCR amplification of minute quantities of DNA. PMID:20927390

  13. Multiplex digital PCR: breaking the one target per color barrier of quantitative PCR.

    PubMed

    Zhong, Qun; Bhattacharya, Smiti; Kotsopoulos, Steven; Olson, Jeff; Taly, Valérie; Griffiths, Andrew D; Link, Darren R; Larson, Jonathan W

    2011-07-07

    Quantitative polymerase chain reactions (qPCR) based on real-time PCR constitute a powerful and sensitive method for the analysis of nucleic acids. However, in qPCR, the ability to multiplex targets using differently colored fluorescent probes is typically limited to 4-fold by the spectral overlap of the fluorophores. Furthermore, multiplexing qPCR assays requires expensive instrumentation and most often lengthy assay development cycles. Digital PCR (dPCR), which is based on the amplification of single target DNA molecules in many separate reactions, is an attractive alternative to qPCR. Here we report a novel and easy method for multiplexing dPCR in picolitre droplets within emulsions-generated and read out in microfluidic devices-that takes advantage of both the very high numbers of reactions possible within emulsions (>10(6)) as well as the high likelihood that the amplification of only a single target DNA molecule will initiate within each droplet. By varying the concentration of different fluorogenic probes of the same color, it is possible to identify the different probes on the basis of fluorescence intensity. Adding multiple colors increases the number of possible reactions geometrically, rather than linearly as with qPCR. Accurate and precise copy numbers of up to sixteen per cell were measured using a model system. A 5-plex assay for spinal muscular atrophy was demonstrated with just two fluorophores to simultaneously measure the copy number of two genes (SMN1 and SMN2) and to genotype a single nucleotide polymorphism (c.815A>G, SMN1). Results of a pilot study with SMA patients are presented. This journal is © The Royal Society of Chemistry 2011

  14. Allele-specific methylated multiplex real-time quantitative PCR (ASMM RTQ-PCR), a powerful method for diagnosing loss of imprinting of the 11p15 region in Russell Silver and Beckwith Wiedemann syndromes.

    PubMed

    Azzi, Salah; Steunou, Virginie; Rousseau, Alexandra; Rossignol, Sylvie; Thibaud, Nathalie; Danton, Fabienne; Le Jule, Marilyne; Gicquel, Christine; Le Bouc, Yves; Netchine, Irène

    2011-02-01

    Many human syndromes involve a loss of imprinting (LOI) due to a loss (LOM) or a gain of DNA methylation (GOM). Most LOI occur as mosaics and can therefore be difficult to detect with conventional methods. The human imprinted 11p15 region is crucial for the control of fetal growth, and LOI at this locus is associated with two clinical disorders with opposite phenotypes: Beckwith-Wiedemann syndrome (BWS), characterized by fetal overgrowth and a high risk of tumors, and Russell-Silver syndrome (RSS), characterized by intrauterine and postnatal growth restriction. Until recently, we have been using Southern blotting for the diagnosis of RSS and BWS. We describe here a powerful quantitative technique, allele-specific methylated multiplex real-time quantitative PCR (ASMM RTQ-PCR), for the diagnosis of these two complex disorders. We first checked the specificity of the probes and primers used for ASMM RTQ-PCR. We then carried out statistical validation for this method, on both retrospective and prospective populations of patients. This analysis demonstrated that ASMM RTQ-PCR is more sensitive than Southern blotting for detecting low degree of LOI. Moreover, ASMM RTQ-PCR is a very rapid, reliable, simple, safe, and cost effective method. © 2011 Wiley-Liss, Inc.

  15. Detection of Mycobacterium tuberculosis in extrapulmonary biopsy samples using PCR targeting IS6110, rpoB, and nested-rpoB PCR Cloning

    PubMed Central

    Meghdadi, Hossein; Khosravi, Azar D.; Ghadiri, Ata A.; Sina, Amir H.; Alami, Ameneh

    2015-01-01

    Present study was aimed to examine the diagnostic utility of polymerase chain reaction (PCR) and nested PCR techniques for the detection of Mycobacterium tuberculosis (MTB) DNA in samples from patients with extra pulmonary tuberculosis (EPTB). In total 80 formalin-fixed, paraffin-embedded (FFPE) samples comprising 70 samples with definite diagnosis of EPTB and 10 samples from known non- EPTB on the basis of histopathology examination, were included in the study. PCR amplification targeting IS6110, rpoB gene and nested PCR targeting the rpoB gene were performed on the extracted DNAs from 80 FFPE samples. The strong positive samples were directly sequenced. For negative samples and those with weak band in nested-rpoB PCR, TA cloning was performed by cloning the products into the plasmid vector with subsequent sequencing. The 95% confidence intervals (CI) for the estimates of sensitivity and specificity were calculated for each method. Fourteen (20%), 34 (48.6%), and 60 (85.7%) of the 70 positive samples confirmed by histopathology, were positive by rpoB-PCR, IS6110-PCR, and nested-rpoB PCR, respectively. By performing TA cloning on samples that yielded weak (n = 8) or negative results (n = 10) in the PCR methods, we were able to improve their quality for later sequencing. All samples with weak band and 7 out of 10 negative samples, showed strong positive results after cloning. So nested-rpoB PCR cloning revealed positivity in 67 out of 70 confirmed samples (95.7%). The sensitivity of these combination methods was calculated as 95.7% in comparison with histopathology examination. The CI for sensitivity of the PCR methods were calculated as 11.39–31.27% for rpoB-PCR, 36.44–60.83% for IS6110- PCR, 75.29–92.93% for nested-rpoB PCR, and 87.98–99.11% for nested-rpoB PCR cloning. The 10 true EPTB negative samples by histopathology, were negative by all tested methods including cloning and were used to calculate the specificity of the applied methods. The CI for 100

  16. Detection of Mycobacterium tuberculosis in extrapulmonary biopsy samples using PCR targeting IS6110, rpoB, and nested-rpoB PCR Cloning.

    PubMed

    Meghdadi, Hossein; Khosravi, Azar D; Ghadiri, Ata A; Sina, Amir H; Alami, Ameneh

    2015-01-01

    Present study was aimed to examine the diagnostic utility of polymerase chain reaction (PCR) and nested PCR techniques for the detection of Mycobacterium tuberculosis (MTB) DNA in samples from patients with extra pulmonary tuberculosis (EPTB). In total 80 formalin-fixed, paraffin-embedded (FFPE) samples comprising 70 samples with definite diagnosis of EPTB and 10 samples from known non- EPTB on the basis of histopathology examination, were included in the study. PCR amplification targeting IS6110, rpoB gene and nested PCR targeting the rpoB gene were performed on the extracted DNAs from 80 FFPE samples. The strong positive samples were directly sequenced. For negative samples and those with weak band in nested-rpoB PCR, TA cloning was performed by cloning the products into the plasmid vector with subsequent sequencing. The 95% confidence intervals (CI) for the estimates of sensitivity and specificity were calculated for each method. Fourteen (20%), 34 (48.6%), and 60 (85.7%) of the 70 positive samples confirmed by histopathology, were positive by rpoB-PCR, IS6110-PCR, and nested-rpoB PCR, respectively. By performing TA cloning on samples that yielded weak (n = 8) or negative results (n = 10) in the PCR methods, we were able to improve their quality for later sequencing. All samples with weak band and 7 out of 10 negative samples, showed strong positive results after cloning. So nested-rpoB PCR cloning revealed positivity in 67 out of 70 confirmed samples (95.7%). The sensitivity of these combination methods was calculated as 95.7% in comparison with histopathology examination. The CI for sensitivity of the PCR methods were calculated as 11.39-31.27% for rpoB-PCR, 36.44-60.83% for IS6110- PCR, 75.29-92.93% for nested-rpoB PCR, and 87.98-99.11% for nested-rpoB PCR cloning. The 10 true EPTB negative samples by histopathology, were negative by all tested methods including cloning and were used to calculate the specificity of the applied methods. The CI for 100

  17. A multiplex PCR method for the identification of commercially important salmon and trout species (Oncorhynchus and Salmo) in North America.

    PubMed

    Rasmussen Hellberg, Rosalee S; Morrissey, Michael T; Hanner, Robert H

    2010-09-01

    The purpose of this study was to develop a species-specific multiplex polymerase chain reaction (PCR) method that allows for the detection of salmon species substitution on the commercial market. Species-specific primers and TaqMan® probes were developed based on a comprehensive collection of mitochondrial 5' cytochrome c oxidase subunit I (COI) deoxyribonucleic acid (DNA) "barcode" sequences. Primers and probes were combined into multiplex assays and tested for specificity against 112 reference samples representing 25 species. Sensitivity and linearity tests were conducted using 10-fold serial dilutions of target DNA (single-species samples) and DNA admixtures containing the target species at levels of 10%, 1.0%, and 0.1% mixed with a secondary species. The specificity tests showed positive signals for the target DNA in both real-time and conventional PCR systems. Nonspecific amplification in both systems was minimal; however, false positives were detected at low levels (1.2% to 8.3%) in conventional PCR. Detection levels were similar for admixtures and single-species samples based on a 30 PCR cycle cut-off, with limits of 0.25 to 2.5 ng (1% to 10%) in conventional PCR and 0.05 to 5.0 ng (0.1% to 10%) in real-time PCR. A small-scale test with food samples showed promising results, with species identification possible even in heavily processed food items. Overall, this study presents a rapid, specific, and sensitive method for salmon species identification that can be applied to mixed-species and heavily processed samples in either conventional or real-time PCR formats. This study provides a newly developed method for salmon and trout species identification that will assist both industry and regulatory agencies in the detection and prevention of species substitution. This multiplex PCR method allows for rapid, high-throughput species identification even in heavily processed and mixed-species samples. An inter-laboratory study is currently being carried out to

  18. S182 and STM2 gene missense mutations in sporadic alzheimer disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higuchi, Susumu; Matsushita, Sachio; Hasegawa, Yoshio

    1996-07-26

    The linkage of genes S182 and STM2 to early-onset or late-onset sporadic Alzheimer disease (AD) was not found in a group of 97 clinically-diagnosed AD patients and 46 autopsy-confirmed AD cases, using PCR-RFLP methods. 7 refs.

  19. Performance of human fecal anaerobe-associated PCR-based assays in a multi-laboratory method evaluation study

    EPA Science Inventory

    A number of PCR-based methods for detecting human fecal material in environmental waters have been developed over the past decade, but these methods have rarely received independent comparative testing. Here, we evaluated ten of these methods (BacH, BacHum-UCD, B. thetaiotaomic...

  20. Pneumocystis PCR: It Is Time to Make PCR the Test of Choice

    PubMed Central

    Doyle, Laura; Vogel, Sherilynn

    2017-01-01

    Abstract Background The testing strategy for Pneumocystis at the Cleveland Clinic changed from toluidine blue staining to polymerase chain reaction (PCR). We studied the differences in positivity rates for these assays and compared each with the detection of Pneumocystis in companion specimens by cytology and surgical pathology. Methods We reviewed the results of all Pneumocystis test orders 1 year before and 1 year after the implementation of a Pneumocystis-specific PCR. We also reviewed the corresponding cytology and surgical pathology results, if performed. Finally, we reviewed the medical records of patients with rare Pneumocystis detected by PCR in an effort to differentiate colonization vs true disease. Results Toluidine blue staining and surgical pathology had similar sensitivities and negative predictive values, both of which were superior to cytology. There was a >4-fold increase in the annual detection of Pneumocystis by PCR compared with toluidine blue staining (toluidine blue staining: 11/1583 [0.69%] vs PCR: 44/1457 [3.0%]; chi-square P < .001). PCR detected 1 more case than surgical pathology and was far more sensitive than cytology. Chart review demonstrated that the vast majority of patients with rare Pneumocystis detected were immunosuppressed, had radiologic findings supportive of this infection, had no other pathogens detected, and were treated for pneumocystosis by the clinical team. Conclusion PCR was the most sensitive method for the detection of Pneumocystis and should be considered the diagnostic test of choice. Correlation with clinical and radiologic findings affords discrimination of early true disease from the far rarer instances of colonization. PMID:29062861

  1. A rapid method for the identification and differentiation of Helicoverpa nucleopolyhedroviruses (NPV Baculoviridae) isolated from the environment.

    PubMed

    Christian, P D; Gibb, N; Kasprzak, A B; Richards, A

    2001-07-01

    A diagnostic method is described for the identification and differentiation of nucleopolyhedrovirus (NPV) pathogens of Helicoverpa species (Lepidoptera: Noctuidae) isolated from the environment. The method is based on the polymerase chain reaction (PCR) used in conjunction with restriction fragment length polymorphism (RFLP) analysis and comprises three parts. The first part describes procedures for obtaining PCR quality viral DNA from individual diseased H. armigera cadavers recovered during bioassay analyses of soil and other types of environmental sample. These procedures were modified from standard techniques used for the routine purification and dissolution of NPV polyhedra and provided an overall PCR success rate of 95% (n=60). The second part describes the design of several sets of PCR primers for generating DNA amplification products from closely and distantly related NPVs. These PCR primers were designed from published DNA sequence data and from randomly cloned genomic DNA fragments isolated from a reference H. armigera SNPV (HaSNPV) isolate. The final part of the method describes how specific PCR products when digested with specific restriction endonuclease enzymes, can be used to generate diagnostic DNA profiles (haplotypes) that can be used both to identify heterologous NPVs e.g. Autographa californica MNPV and related viruses, and to differentiate genotypic variants of Helicoverpa SNPV. In the latter case, only two PCR products and four restriction digests were required to differentiate a reference set of 10 Helicoverpa SNPV isolates known to differ 0.1--3.5% at the nucleotide level. The diagnostic method described below marks the second part of a two-phase quantitative-diagnostic protocol that is now being applied to a variety of ecological investigations. In particular, its application should lead to a significant improvement in our understanding of the distribution and population genetics of Helicoverpa SNPVs in the Australian environment, as well

  2. USE OF BACTEROIDES PCR-BASED METHODS TO EXAMINE FECAL CONTAMINATION SOURCES IN TROPICAL COASTAL WATERS

    EPA Science Inventory

    Several library independent Microbial Source Tracking methods have been developed to rapidly determine the source of fecal contamination. Thus far, none of these methods have been tested in tropical marine waters. In this study, we used a Bacteroides 16S rDNA PCR-based...

  3. Molecular detection of Toxoplasma gondii in house sparrow (Passer domesticus) by LAMP and PCR methods in Tehran, Iran.

    PubMed

    Abdoli, Amir; Dalimi, Abdolhossein; Soltanghoraee, Haleh; Ghaffarifar, Fatemeh

    2016-12-01

    Toxoplasma gondii is one of the most common zoonotic parasitic diseases in human and warm-blooded animals worldwide. Birds are one of important intermediate hosts of T. gondii . The aim of this study is molecular detection of T. gondii in the house sparrow by LAMP and PCR methods in Tehran, Iran. A total 200 sparrows were captured in different regions of Tehran. DNA was extracted from tissue samples of each sparrow. LAMP and conventional PCR assays were carried out with a set of primers to detect the 529 bp fragment of T. gondii . LAMP and PCR were detected T. gondii from 17 (8.5 %) and 15 (7.5 %) of 200 sparrows respectively. These results indicated that sensitivity of LAMP was higher than conventional PCR. In our knowledge, this study is the first report of detection of T. gondii by LAMP method in bird hosts. Also, these findings provided an insight into epidemiological pattern of T. gondii infection in sparrow in Iran.

  4. Dasytricha dominance in Surti buffalo rumen revealed by 18S rRNA sequences and real-time PCR assay.

    PubMed

    Singh, K M; Tripathi, A K; Pandya, P R; Rank, D N; Kothari, R K; Joshi, C G

    2011-09-01

    The genetic diversity of protozoa in Surti buffalo rumen was studied by amplified ribosomal DNA restriction analysis, 18S rDNA sequence homology and phylogenetic and Real-time PCR analysis methods. Three animals were fed diet comprised green fodder Napier bajra 21 (Pennisetum purpureum), mature pasture grass (Dicanthium annulatum) and concentrate mixture (20% crude protein, 65% total digestible nutrients). A protozoa-specific primer (P-SSU-342f) and a eukarya-specific primer (Medlin B) were used to amplify a 1,360 bp fragment of DNA encoding protozoal small subunit (SSU) ribosomal RNA from rumen fluid. A total of 91 clones were examined and identified 14 different 18S RNA sequences based on PCR-RFLP pattern. These 14 phylotypes were distributed into four genera-based 18S rDNA database sequences and identified as Dasytricha (57 clones), Isotricha (14 clones), Ostracodinium (11 clones) and Polyplastron (9 clones). Phylogenetic analyses were also used to infer the makeup of protozoa communities in the rumen of Surti buffalo. Out of 14 sequences, 8 sequences (69 clones) clustered with the Dasytricha ruminantium-like clone and 4 sequences (13 clones) were also phylogenetically placed with the Isotricha prostoma-like clone. Moreover, 2 phylotypes (9 clones) were related to Polyplastron multivesiculatum-like clone. In addition, the number of 18S rDNA gene copies of Dasytricha ruminantium (0.05% to ciliate protozoa) was higher than Entodinium sp. (2.0 × 10(5) vs. 1.3 × 10(4)) in per ml ruminal fluid.

  5. A comparison of restriction fragment length polymorphism, tetra primer amplification refractory mutation system PCR and unlabeled probe melting analysis for LTA+252 C>T SNP genotyping.

    PubMed

    Soler, Stephan; Rittore, Cécile; Touitou, Isabelle; Philibert, Laurent

    2011-02-20

    From the wide range of methods currently available for genotyping, we wished to identify a quick, reliable and affordable approach for routine use in our laboratory for LTA+252 C>T SNP screening. We set up and compared three genotyping methods for SNP detection: restriction fragment length polymorphism (RFLP), tetra primer amplification refractory mutation system PCR (TPAP) and unlabeled probe melting analysis (UPMA). The SNP model used was LTA+252 C>T, a cytokine gene polymorphism that has been associated with response to treatment in rheumatoid arthritis. The study was performed using 46 samples from healthy Caucasian volunteers. Allele and genotype distribution was similar to that previously described in the same population. All three genotyping methods showed good reproducibility and are suitable for a medium scale throughput molecular platform. UPMA was the most cost effective, reliable and safe method since it required the shortest technician time, could be performed in a single closed tube and involved automatic data analysis. This work is the first to compare these three genotyping techniques and provides evidence for UPMA being the method of choice for LTA+252 C>T SNP genotyping. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Application of Reverse Transcriptase -PCR (RT-PCR) for rapid detection of viable Escherichia coli in drinking water samples.

    PubMed

    Molaee, Neda; Abtahi, Hamid; Ghannadzadeh, Mohammad Javad; Karimi, Masoude; Ghaznavi-Rad, Ehsanollah

    2015-01-01

    Polymerase chain reaction (PCR) is preferred to other methods for detecting Escherichia coli (E. coli) in water in terms of speed, accuracy and efficiency. False positive result is considered as the major disadvantages of PCR. For this reason, reverse transcriptase-polymerase chain reaction (RT-PCR) can be used to solve this problem. The aim of present study was to determine the efficiency of RT-PCR for rapid detection of viable Escherichia coli in drinking water samples and enhance its sensitivity through application of different filter membranes. Specific primers were designed for 16S rRNA and elongation Factor II genes. Different concentrations of bacteria were passed through FHLP and HAWP filters. Then, RT-PCR was performed using 16srRNA and EF -Tu primers. Contamination of 10 wells was determined by RT-PCR in Arak city. To evaluate RT-PCR efficiency, the results were compared with most probable number (MPN) method. RT-PCR is able to detect bacteria in different concentrations. Application of EF II primers reduced false positive results compared to 16S rRNA primers. The FHLP hydrophobic filters have higher ability to absorb bacteria compared with HAWB hydrophilic filters. So the use of hydrophobic filters will increase the sensitivity of RT-PCR. RT-PCR shows a higher sensitivity compared to conventional water contamination detection method. Unlike PCR, RT-PCR does not lead to false positive results. The use of EF-Tu primers can reduce the incidence of false positive results. Furthermore, hydrophobic filters have a higher ability to absorb bacteria compared to hydrophilic filters.

  7. The LAM-PCR Method to Sequence LV Integration Sites.

    PubMed

    Wang, Wei; Bartholomae, Cynthia C; Gabriel, Richard; Deichmann, Annette; Schmidt, Manfred

    2016-01-01

    Integrating viral gene transfer vectors are commonly used gene delivery tools in clinical gene therapy trials providing stable integration and continuous gene expression of the transgene in the treated host cell. However, integration of the reverse-transcribed vector DNA into the host genome is a potentially mutagenic event that may directly contribute to unwanted side effects. A comprehensive and accurate analysis of the integration site (IS) repertoire is indispensable to study clonality in transduced cells obtained from patients undergoing gene therapy and to identify potential in vivo selection of affected cell clones. To date, next-generation sequencing (NGS) of vector-genome junctions allows sophisticated studies on the integration repertoire in vitro and in vivo. We have explored the use of the Illumina MiSeq Personal Sequencer platform to sequence vector ISs amplified by non-restrictive linear amplification-mediated PCR (nrLAM-PCR) and LAM-PCR. MiSeq-based high-quality IS sequence retrieval is accomplished by the introduction of a double-barcode strategy that substantially minimizes the frequency of IS sequence collisions compared to the conventionally used single-barcode protocol. Here, we present an updated protocol of (nr)LAM-PCR for the analysis of lentiviral IS using a double-barcode system and followed by deep sequencing using the MiSeq device.

  8. Diagnostic performance of swab PCR as an alternative to tissue culture methods for diagnosing infections associated with fracture fixation devices.

    PubMed

    Omar, Mohamed; Suero, Eduardo M; Liodakis, Emmanouil; Reichling, Moritz; Guenther, Daniel; Decker, Sebastian; Stiesch, Meike; Krettek, Christian; Eberhard, Jörg

    2016-07-01

    Molecular procedures could potentially improve diagnoses of orthopaedic implant-related infections, but are not yet clinically implemented. Analysis of sonication fluid shows the highest sensitivity for diagnosing implant infections in cases of revision surgery with implant removal. However, there remains controversy regarding the best method for obtaining specimens in cases of revision surgery with implant retention. Tissue culture is the most common diagnostic method for pathogen identification in such cases. Here we aimed to assess the diagnostic performance of swab PCR analysis compared to tissue culture from patients undergoing revision surgery of fracture fixation devices. We prospectively investigated 62 consecutive subjects who underwent revision surgery of fracture fixation devices during a two-year period. Tissue samples were collected for cultures, and swabs from the implant surface were obtained for 16S rRNA PCR analysis. Subjects were classified as having an implant-related infection if (1) they presented with a sinus tract or open wound in communication with the implant; or (2) purulence was encountered intraoperatively; or (3) two out of three tissue cultures tested positive for the presence of the same pathogen. Tissue culture and swab PCR results from the subjects were used to calculate the sensitivity, specificity, accuracy, positive predictive value (PPV), negative predictive value (NPV), and area under the ROC curve (AUC) for identifying an orthopaedic implant-related infection. Orthopaedic implant-related infections were detected in 51 subjects. Tissue culture identified infections in 47 cases, and swab PCR in 35 cases. Among the 11 aseptic cases, tissue culture was positive in 2 cases and swab PCR in 4 cases. Tissue culture showed a significantly higher area under the ROC curve for diagnosing infection (AUC=0.89; 95% CI, 0.67-0.96) compared to swab PCR (AUC=0.66; 95% CI, 0.46-0.80) (p=0.033). Compared to swab PCR, tissue culture showed better

  9. A multiplex PCR method of detecting recombinant DNAs from five lines of genetically modified maize.

    PubMed

    Matsuoka, T; Kuribara, H; Akiyama, H; Miura, H; Goda, Y; Kusakabe, Y; Isshiki, K; Toyoda, M; Hino, A

    2001-02-01

    Seven lines of genetically modified (GM) maize have been authorized in Japan as foods and feeds imported from the USA. We improved a multiplex PCR method described in the previous report in order to distinguish the five lines of GM maize. Genomic DNA was extracted from GM maize with a silica spin column kit, which could reduce experimental time and improve safety in the laboratory and potentially in the environment. We sequenced recombinant DNA (r-DNA) introduced into GM maize, and re-designed new primer pairs to increase the specificity of PCR to distinguish five lines of GM maize by multiplex PCR. A primer pair for the maize intrinsic zein gene (Ze1) was also designed to confirm the presence of amplifiable maize DNA. The lengths of PCR products using these six primer pairs were different. The Ze1 and the r-DNAs from the five lines of GM maize were qualitatively detected in one tube. The specific PCR bands were distinguishable from each other on the basis of the expected length. The r-DNA could be detected from maize samples containing 0.5% of each of the five lines of GM maize. The sensitivity would be acceptable to secure the verification of non-GMO materials and to monitor the reliability of the labeling system.

  10. Comparative evaluation of the sensitivity of LAMP, PCR and in vitro culture methods for the diagnosis of equine piroplasmosis.

    PubMed

    Alhassan, Andy; Govind, Yadav; Tam, Nguyen Thanh; Thekisoe, Oriel M M; Yokoyama, Naoaki; Inoue, Noboru; Igarashi, Ikuo

    2007-04-01

    The sensitivity of LAMP, PCR and in vitro culture methods for the detection of Theileria equi and Babesia caballi was evaluated using tenfold serially diluted culture parasites. On day 1 post-culture, both T. equi and B. caballi parasites could only be observed at 1% parasite dilution from the in vitro culture method, whereas LAMP could detect up to 1 x 10(-3)% of both T. equi and B. caballi parasite dilutions, whilst PCR could detect 1 x 10(-3)% T. equi and 1 x 10(-1)% B. caballi parasite dilutions. On day 7 post-culture, the detection limit for T. equi and B. caballi in the in vitro culture increased up to 1 x 10(-6)%, whereas LAMP detection limit increased to 1 x 10(-10)% for both parasites, whilst the PCR detection limit increased to 1 x 10(-10)% and 1 x 10(-6)% for T. equi and B. caballi, respectively. Furthermore, LAMP and PCR amplified the T. equi DNA extracted from the organs of an experimentally infected horse. This study further validates LAMP as an alternative molecular diagnostic tool, which can be used in the diagnosis of early infections of equine piroplasmosis and together with PCR can also be used as supplementary methods during post-mortems.

  11. A survey of tools for the analysis of quantitative PCR (qPCR) data.

    PubMed

    Pabinger, Stephan; Rödiger, Stefan; Kriegner, Albert; Vierlinger, Klemens; Weinhäusel, Andreas

    2014-09-01

    Real-time quantitative polymerase-chain-reaction (qPCR) is a standard technique in most laboratories used for various applications in basic research. Analysis of qPCR data is a crucial part of the entire experiment, which has led to the development of a plethora of methods. The released tools either cover specific parts of the workflow or provide complete analysis solutions. Here, we surveyed 27 open-access software packages and tools for the analysis of qPCR data. The survey includes 8 Microsoft Windows, 5 web-based, 9 R-based and 5 tools from other platforms. Reviewed packages and tools support the analysis of different qPCR applications, such as RNA quantification, DNA methylation, genotyping, identification of copy number variations, and digital PCR. We report an overview of the functionality, features and specific requirements of the individual software tools, such as data exchange formats, availability of a graphical user interface, included procedures for graphical data presentation, and offered statistical methods. In addition, we provide an overview about quantification strategies, and report various applications of qPCR. Our comprehensive survey showed that most tools use their own file format and only a fraction of the currently existing tools support the standardized data exchange format RDML. To allow a more streamlined and comparable analysis of qPCR data, more vendors and tools need to adapt the standardized format to encourage the exchange of data between instrument software, analysis tools, and researchers.

  12. Probe-based real-time PCR method for multilocus melt typing of Xylella fastidiosa strains.

    PubMed

    Brady, Jeff A; Faske, Jennifer B; Ator, Rebecca A; Castañeda-Gill, Jessica M; Mitchell, Forrest L

    2012-04-01

    Epidemiological studies of Pierce's disease (PD) can be confounded by a lack of taxonomic detail on the bacterial causative agent, Xylella fastidiosa (Xf). PD in grape is caused by strains of Xylella fastidiosa subsp. fastidiosa, but is not caused by other subspecies of Xf that typically colonize plants other than grape. Detection assays using ELISA and qPCR are effective at detecting and quantifying Xf presence or absence, but offer no information on Xf subspecies or strain identity. Surveying insects or host plants for Xf by current ELISA or qPCR methods provides only presence/absence and quantity information for any and all Xf subspecies, potentially leading to false assessments of disease threat. This study uses a series of adjacent-hybridizing DNA melt analysis probes that are capable of efficiently discriminating Xf subspecies and strain relationships in rapid real-time PCR reactions. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. A simple, rapid, high-fidelity and cost-effective PCR-based two-step DNA synthesis method for long gene sequences.

    PubMed

    Xiong, Ai-Sheng; Yao, Quan-Hong; Peng, Ri-He; Li, Xian; Fan, Hui-Qin; Cheng, Zong-Ming; Li, Yi

    2004-07-07

    Chemical synthesis of DNA sequences provides a powerful tool for modifying genes and for studying gene function, structure and expression. Here, we report a simple, high-fidelity and cost-effective PCR-based two-step DNA synthesis (PTDS) method for synthesis of long segments of DNA. The method involves two steps. (i) Synthesis of individual fragments of the DNA of interest: ten to twelve 60mer oligonucleotides with 20 bp overlap are mixed and a PCR reaction is carried out with high-fidelity DNA polymerase Pfu to produce DNA fragments that are approximately 500 bp in length. (ii) Synthesis of the entire sequence of the DNA of interest: five to ten PCR products from the first step are combined and used as the template for a second PCR reaction using high-fidelity DNA polymerase pyrobest, with the two outermost oligonucleotides as primers. Compared with the previously published methods, the PTDS method is rapid (5-7 days) and suitable for synthesizing long segments of DNA (5-6 kb) with high G + C contents, repetitive sequences or complex secondary structures. Thus, the PTDS method provides an alternative tool for synthesizing and assembling long genes with complex structures. Using the newly developed PTDS method, we have successfully obtained several genes of interest with sizes ranging from 1.0 to 5.4 kb.

  14. Length polymorphism scanning is an efficient approach for revealing chloroplast DNA variation.

    Treesearch

    Matthew E. Horning; Richard C. Cronn

    2006-01-01

    Phylogeographic and population genetic screens of chloroplast DNA (cpDNA) provide insights into seedbased gene flow in angiosperms, yet studies are frequently hampered by the low mutation rate of this genome. Detection methods for intraspecific variation can be either direct (DNA sequencing) or indirect (PCR-RFLP), although no single method incorporates the best...

  15. Intra-laboratory validation of chronic bee paralysis virus quantitation using an accredited standardised real-time quantitative RT-PCR method.

    PubMed

    Blanchard, Philippe; Regnault, Julie; Schurr, Frank; Dubois, Eric; Ribière, Magali

    2012-03-01

    Chronic bee paralysis virus (CBPV) is responsible for chronic bee paralysis, an infectious and contagious disease in adult honey bees (Apis mellifera L.). A real-time RT-PCR assay to quantitate the CBPV load is now available. To propose this assay as a reference method, it was characterised further in an intra-laboratory study during which the reliability and the repeatability of results and the performance of the assay were confirmed. The qPCR assay alone and the whole quantitation method (from sample RNA extraction to analysis) were both assessed following the ISO/IEC 17025 standard and the recent XP U47-600 standard issued by the French Standards Institute. The performance of the qPCR assay and of the overall CBPV quantitation method were validated over a 6 log range from 10(2) to 10(8) with a detection limit of 50 and 100 CBPV RNA copies, respectively, and the protocol of the real-time RT-qPCR assay for CBPV quantitation was approved by the French Accreditation Committee. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Empirical evaluation of humpback whale telomere length estimates; quality control and factors causing variability in the singleplex and multiplex qPCR methods

    PubMed Central

    2012-01-01

    Background Telomeres, the protective cap of chromosomes, have emerged as powerful markers of biological age and life history in model and non-model species. The qPCR method for telomere length estimation is one of the most common methods for telomere length estimation, but has received recent critique for being too error-prone and yielding unreliable results. This critique coincides with an increasing awareness of the potentials and limitations of the qPCR technique in general and the proposal of a general set of guidelines (MIQE) for standardization of experimental, analytical, and reporting steps of qPCR. In order to evaluate the utility of the qPCR method for telomere length estimation in non-model species, we carried out four different qPCR assays directed at humpback whale telomeres, and subsequently performed a rigorous quality control to evaluate the performance of each assay. Results Performance differed substantially among assays and only one assay was found useful for telomere length estimation in humpback whales. The most notable factors causing these inter-assay differences were primer design and choice of using singleplex or multiplex assays. Inferred amplification efficiencies differed by up to 40% depending on assay and quantification method, however this variation only affected telomere length estimates in the worst performing assays. Conclusion Our results suggest that seemingly well performing qPCR assays may contain biases that will only be detected by extensive quality control. Moreover, we show that the qPCR method for telomere length estimation can be highly precise and accurate, and thus suitable for telomere measurement in non-model species, if effort is devoted to optimization at all experimental and analytical steps. We conclude by highlighting a set of quality controls which may serve for further standardization of the qPCR method for telomere length estimation, and discuss some of the factors that may cause variation in qPCR experiments

  17. Methods for multiplex template sampling in digital PCR assays.

    PubMed

    Petriv, Oleh I; Heyries, Kevin A; VanInsberghe, Michael; Walker, David; Hansen, Carl L

    2014-01-01

    The efficient use of digital PCR (dPCR) for precision copy number analysis requires high concentrations of target molecules that may be difficult or impossible to obtain from clinical samples. To solve this problem we present a strategy, called Multiplex Template Sampling (MTS), that effectively increases template concentrations by detecting multiple regions of fragmented target molecules. Three alternative assay approaches are presented for implementing MTS analysis of chromosome 21, providing a 10-fold concentration enhancement while preserving assay precision.

  18. mcrA-Targeted Real-Time Quantitative PCR Method To Examine Methanogen Communities▿

    PubMed Central

    Steinberg, Lisa M.; Regan, John M.

    2009-01-01

    Methanogens are of great importance in carbon cycling and alternative energy production, but quantitation with culture-based methods is time-consuming and biased against methanogen groups that are difficult to cultivate in a laboratory. For these reasons, methanogens are typically studied through culture-independent molecular techniques. We developed a SYBR green I quantitative PCR (qPCR) assay to quantify total numbers of methyl coenzyme M reductase α-subunit (mcrA) genes. TaqMan probes were also designed to target nine different phylogenetic groups of methanogens in qPCR assays. Total mcrA and mcrA levels of different methanogen phylogenetic groups were determined from six samples: four samples from anaerobic digesters used to treat either primarily cow or pig manure and two aliquots from an acidic peat sample stored at 4°C or 20°C. Only members of the Methanosaetaceae, Methanosarcina, Methanobacteriaceae, and Methanocorpusculaceae and Fen cluster were detected in the environmental samples. The three samples obtained from cow manure digesters were dominated by members of the genus Methanosarcina, whereas the sample from the pig manure digester contained detectable levels of only members of the Methanobacteriaceae. The acidic peat samples were dominated by both Methanosarcina spp. and members of the Fen cluster. In two of the manure digester samples only one methanogen group was detected, but in both of the acidic peat samples and two of the manure digester samples, multiple methanogen groups were detected. The TaqMan qPCR assays were successfully able to determine the environmental abundance of different phylogenetic groups of methanogens, including several groups with few or no cultivated members. PMID:19447957

  19. Identification of Lactobacillus delbrueckii and Streptococcus thermophilus Strains Present in Artisanal Raw Cow Milk Cheese Using Real-time PCR and Classic Plate Count Methods.

    PubMed

    Stachelska, Milena A

    2017-12-04

    The aim of this paper was to detect Lactobacillus delbrueckii and Streptococcus thermophilus using real-time quantitative PCR assay in 7-day ripening cheese produced from unpasteurised milk. Real-time quantitative PCR assays were designed to identify and enumerate the chosen species of lactic acid bacteria (LAB) in ripened cheese. The results of molecular quantification and classic bacterial enumeration showed a high level of similarity proving that DNA extraction was carried out in a proper way and that genomic DNA solutions were free of PCR inhibitors. These methods revealed the presence of L. delbrueckii and S. thermophilus. The real-time PCR enabled quantification with a detection of 101-103 CFU/g of product. qPCR-standard curves were linear over seven log units down to 101 copies per reaction; efficiencies ranged from 77.9% to 93.6%. Cheese samples were analysed with plate count method and qPCR in parallel. Compared with the classic plate count method, the newly developed qPCR method provided faster and species specific identification of two dairy LAB and yielded comparable quantitative results.

  20. Quantitative real-time PCR method with internal amplification control to quantify cyclopiazonic acid producing molds in foods.

    PubMed

    Rodríguez, Alicia; Werning, María L; Rodríguez, Mar; Bermúdez, Elena; Córdoba, Juan J

    2012-12-01

    A quantitative TaqMan real-time PCR (qPCR) method that includes an internal amplification control (IAC) to quantify cyclopiazonic acid (CPA)-producing molds in foods has been developed. A specific primer pair (dmaTF/dmaTR) and a TaqMan probe (dmaTp) were designed on the basis of dmaT gene which encodes the enzyme dimethylallyl tryptophan synthase involved in the biosynthesis of CPA. The IAC consisted of a 105 bp chimeric DNA fragment containing a region of the hly gene of Listeria monocytogenes. Thirty-two mold reference strains representing CPA producers and non-producers of different mold species were used in this study. All strains were tested for CPA production by high-performance liquid chromatography-mass spectrometry (HPLC-MS). The functionality of the designed qPCR method was demonstrated by the high linear relationship of the standard curves relating to the dmaT gene copy numbers and the Ct values obtained from the different CPA producers tested. The ability of the qPCR protocol to quantify CPA-producing molds was evaluated in different artificially inoculated foods. A good linear correlation was obtained over the range 1-4 log cfu/g in the different food matrices. The detection limit in all inoculated foods ranged from 1 to 2 log cfu/g. This qPCR protocol including an IAC showed good efficiency to quantify CPA-producing molds in naturally contaminated foods avoiding false negative results. This method could be used to monitor the CPA producers in the HACCP programs to prevent the risk of CPA formation throughout the food chain. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Comparison of PCR methods for the detection of genetic variants of carp edema virus.

    PubMed

    Adamek, Mikolaj; Matras, Marek; Jung-Schroers, Verena; Teitge, Felix; Heling, Max; Bergmann, Sven M; Reichert, Michal; Way, Keith; Stone, David M; Steinhagen, Dieter

    2017-09-20

    The infection of common carp and its ornamental variety, koi, with the carp edema virus (CEV) is often associated with the occurrence of a clinical disease called 'koi sleepy disease'. The disease may lead to high mortality in both koi and common carp populations. To prevent further spread of the infection and the disease, a reliable detection method for this virus is required. However, the high genetic variability of the CEV p4a gene used for PCR-based diagnostics could be a serious obstacle for successful and reliable detection of virus infection in field samples. By analysing 39 field samples from different geographical origins obtained from koi and farmed carp and from all 3 genogroups of CEV, using several recently available PCR protocols, we investigated which of the protocols would allow the detection of CEV from all known genogroups present in samples from Central European carp or koi populations. The comparison of 5 different PCR protocols showed that the PCR assays (both end-point and quantitative) developed in the Centre for Environment, Fisheries and Aquaculture Science exhibited the highest analytical inclusivity and diagnostic sensitivity. Currently, this makes them the most suitable protocols for detecting viruses from all known CEV genogroups.

  2. Homopolymer tail-mediated ligation PCR: a streamlined and highly efficient method for DNA cloning and library construction.

    PubMed

    Lazinski, David W; Camilli, Andrew

    2013-01-01

    The amplification of DNA fragments, cloned between user-defined 5' and 3' end sequences, is a prerequisite step in the use of many current applications including massively parallel sequencing (MPS). Here we describe an improved method, called homopolymer tail-mediated ligation PCR (HTML-PCR), that requires very little starting template, minimal hands-on effort, is cost-effective, and is suited for use in high-throughput and robotic methodologies. HTML-PCR starts with the addition of homopolymer tails of controlled lengths to the 3' termini of a double-stranded genomic template. The homopolymer tails enable the annealing-assisted ligation of a hybrid oligonucleotide to the template's recessed 5' ends. The hybrid oligonucleotide has a user-defined sequence at its 5' end. This primer, together with a second primer composed of a longer region complementary to the homopolymer tail and fused to a second 5' user-defined sequence, are used in a PCR reaction to generate the final product. The user-defined sequences can be varied to enable compatibility with a wide variety of downstream applications. We demonstrate our new method by constructing MPS libraries starting from nanogram and sub-nanogram quantities of Vibrio cholerae and Streptococcus pneumoniae genomic DNA.

  3. Methods for applying accurate digital PCR analysis on low copy DNA samples.

    PubMed

    Whale, Alexandra S; Cowen, Simon; Foy, Carole A; Huggett, Jim F

    2013-01-01

    Digital PCR (dPCR) is a highly accurate molecular approach, capable of precise measurements, offering a number of unique opportunities. However, in its current format dPCR can be limited by the amount of sample that can be analysed and consequently additional considerations such as performing multiplex reactions or pre-amplification can be considered. This study investigated the impact of duplexing and pre-amplification on dPCR analysis by using three different assays targeting a model template (a portion of the Arabidopsis thaliana alcohol dehydrogenase gene). We also investigated the impact of different template types (linearised plasmid clone and more complex genomic DNA) on measurement precision using dPCR. We were able to demonstrate that duplex dPCR can provide a more precise measurement than uniplex dPCR, while applying pre-amplification or varying template type can significantly decrease the precision of dPCR. Furthermore, we also demonstrate that the pre-amplification step can introduce measurement bias that is not consistent between experiments for a sample or assay and so could not be compensated for during the analysis of this data set. We also describe a model for estimating the prevalence of molecular dropout and identify this as a source of dPCR imprecision. Our data have demonstrated that the precision afforded by dPCR at low sample concentration can exceed that of the same template post pre-amplification thereby negating the need for this additional step. Our findings also highlight the technical differences between different templates types containing the same sequence that must be considered if plasmid DNA is to be used to assess or control for more complex templates like genomic DNA.

  4. Methods for Applying Accurate Digital PCR Analysis on Low Copy DNA Samples

    PubMed Central

    Whale, Alexandra S.; Cowen, Simon; Foy, Carole A.; Huggett, Jim F.

    2013-01-01

    Digital PCR (dPCR) is a highly accurate molecular approach, capable of precise measurements, offering a number of unique opportunities. However, in its current format dPCR can be limited by the amount of sample that can be analysed and consequently additional considerations such as performing multiplex reactions or pre-amplification can be considered. This study investigated the impact of duplexing and pre-amplification on dPCR analysis by using three different assays targeting a model template (a portion of the Arabidopsis thaliana alcohol dehydrogenase gene). We also investigated the impact of different template types (linearised plasmid clone and more complex genomic DNA) on measurement precision using dPCR. We were able to demonstrate that duplex dPCR can provide a more precise measurement than uniplex dPCR, while applying pre-amplification or varying template type can significantly decrease the precision of dPCR. Furthermore, we also demonstrate that the pre-amplification step can introduce measurement bias that is not consistent between experiments for a sample or assay and so could not be compensated for during the analysis of this data set. We also describe a model for estimating the prevalence of molecular dropout and identify this as a source of dPCR imprecision. Our data have demonstrated that the precision afforded by dPCR at low sample concentration can exceed that of the same template post pre-amplification thereby negating the need for this additional step. Our findings also highlight the technical differences between different templates types containing the same sequence that must be considered if plasmid DNA is to be used to assess or control for more complex templates like genomic DNA. PMID:23472156

  5. Rapid single nucleotide polymorphism based method for hematopoietic chimerism analysis and monitoring using high-speed droplet allele-specific PCR and allele-specific quantitative PCR.

    PubMed

    Taira, Chiaki; Matsuda, Kazuyuki; Yamaguchi, Akemi; Uehara, Masayuki; Sugano, Mitsutoshi; Okumura, Nobuo; Honda, Takayuki

    2015-05-20

    Chimerism analysis is important for the evaluation of engraftment and predicting relapse following hematopoietic stem cell transplantation (HSCT). We developed a chimerism analysis for single nucleotide polymorphisms (SNPs), including rapid screening of the discriminable donor/recipient alleles using droplet allele-specific PCR (droplet-AS-PCR) pre-HSCT and quantitation of recipient DNA using AS-quantitative PCR (AS-qPCR) following HSCT. SNP genotyping of 20 donor/recipient pairs via droplet-AS-PCR and the evaluation of the informativity of 5 SNP markers for chimerism analysis were performed. Samples from six follow-up patients were analyzed to assess the chimerism via AS-qPCR. These results were compared with that determined by short tandem repeat PCR (STR-PCR). Droplet-AS-PCR could determine genotypes within 8min. The total informativity using all 5 loci was 95% (19/20). AS-qPCR provided the percentage of recipient DNA in all 6 follow-up patients without influence of the stutter peak or the amplification efficacy, which affected the STR-PCR results. The droplet-AS-PCR had an advantage over STR-PCR in terms of rapidity and simplicity for screening before HSCT. Furthermore, AS-qPCR had better accuracy than STR-PCR for quantification of recipient DNA following HSCT. The present chimerism assay compensates for the disadvantages of STR-PCR and is readily performable in clinical laboratories. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Virtual PCR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, S N; Clague, D S; Vandersall, J A

    2006-02-23

    The polymerase chain reaction (PCR) stands among the keystone technologies for analysis of biological sequence data. PCR is used to amplify DNA, to generate many copies from as little as a single template. This is essential, for example, in processing forensic DNA samples, pathogen detection in clinical or biothreat surveillance applications, and medical genotyping for diagnosis and treatment of disease. It is used in virtually every laboratory doing molecular, cellular, genetic, ecologic, forensic, or medical research. Despite its ubiquity, we lack the precise predictive capability that would enable detailed optimization of PCR reaction dynamics. In this LDRD, we proposed tomore » develop Virtual PCR (VPCR) software, a computational method to model the kinetic, thermodynamic, and biological processes of PCR reactions. Given a successful completion, these tools will allow us to predict both the sequences and concentrations of all species that are amplified during PCR. The ability to answer the following questions will allow us both to optimize the PCR process and interpret the PCR results: What products are amplified when sequence mixtures are present, containing multiple, closely related targets and multiplexed primers, which may hybridize with sequence mismatches? What are the effects of time, temperature, and DNA concentrations on the concentrations of products? A better understanding of these issues will improve the design and interpretation of PCR reactions. The status of the VPCR project after 1.5 years of funding is consistent with the goals of the overall project which was scoped for 3 years of funding. At half way through the projected timeline of the project we have an early beta version of the VPCR code. We have begun investigating means to improve the robustness of the code, performed preliminary experiments to test the code and begun drafting manuscripts for publication. Although an experimental protocol for testing the code was developed, the

  7. Development of an in situ magnetic beads based RT-PCR method for electrochemiluminescent detection of rotavirus

    NASA Astrophysics Data System (ADS)

    Zhan, Fangfang; Zhou, Xiaoming

    2012-12-01

    Rotaviruses are double-stranded RNA viruses belonging to the family of enteric pathogens. It is a major cause of diarrhoeal disease in infants and young children worldwide. Consequently, rapid and accurate detection of rotaviruses is of great importance in controlling and preventing food- and waterborne diseases and outbreaks. Reverse transcription-polymerase chain reaction (RT-PCR) is a reliable method that possesses high specificity and sensitivity. It has been widely used to detection of viruses. Electrochemiluminescence (ECL) can be considered as an important and powerful tool in analytical and clinical application with high sensitivity, excellent specificity, and low cost. Here we have developed a method for the detection of rotavirus by combining in situ magnetic beads (MBs) based RT-PCR with ECL. RT of rotavirus RNA was carried out in a traditional way and the resulting cDNA was directly amplified on MBs. Forward primers were covalently bounded to MBs and reverse primers were labeled with tris-(2, 2'-bipyridyl) ruthenium (TBR). During the PCR cycling, the TBR labeled products were directly loaded and enriched on the surface of MBs. Then the MBs-TBR complexes could be analyzed by a magnetic ECL platform without any post-modification or post-incubation which avoid some laborious manual operations and achieve rapid yet sensitive detection. In this study, rotavirus from fecal specimens was successfully detected within 2 h, and the limit of detection was estimated to be 104copies/μL. This novel in situ MBs based RT-PCR with ECL detection method can be used for pathogen detection in food safety field and clinical diagnosis.

  8. Genetic relationships among strains of Xanthomonas fragariae based on random amplified polymorphic DNA PCR, repetitive extragenic palindromic PCR, and enterobacterial repetitive intergenic consensus PCR data and generation of multiplexed PCR primers useful for the identification of this phytopathogen.

    PubMed Central

    Pooler, M R; Ritchie, D F; Hartung, J S

    1996-01-01

    Genetic relationships among 25 isolates of Xanthomonas fragariae from diverse geographic regions were determined by three PCR methods that rely on different amplification priming strategies: random amplified polymorphic DNA (RAPD) PCR, repetitive extragenic palindromic (REP) PCR, and enterobacterial repetitive intergenic consensus (ERIC) PCR. The results of these assays are mutually consistent and indicate that pathogenic strains are very closely related to each other. RAPD, ERIC, and REP PCR assays identified nine, four, and two genotypes, respectively, within X. fragariae isolates. A single nonpathogenic isolate of X. fragariae was not distinguishable by these methods. The results of the PCR assays were also fully confirmed by physiological tests. There was no correlation between DNA amplification product patterns and geographic sites of isolation, suggesting that this bacterium has spread largely through exchange of infected plant germ plasm. Sequences identified through the RAPD assays were used to develop three primer pairs for standard PCR assays to identify X. fragariae. In addition, we developed a stringent multiplexed PCR assay to identify X. fragariae by simultaneously using the three independently derived sets of primers specific for pathogenic strains of the bacteria. PMID:8795198

  9. Species Identification of Fox-, Mink-, Dog-, and Rabbit-Derived Ingredients by Multiplex PCR and Real-Time PCR Assay.

    PubMed

    Wu, Qingqing; Xiang, Shengnan; Wang, Wenjun; Zhao, Jinyan; Xia, Jinhua; Zhen, Yueran; Liu, Bang

    2018-05-01

    Various detection methods have been developed to date for identification of animal species. New techniques based on PCR approach have raised the hope of developing better identification methods, which can overcome the limitations of the existing methods. PCR-based methods used the mitochondrial DNA (mtDNA) as well as nuclear DNA sequences. In this study, by targeting nuclear DNA, multiplex PCR and real-time PCR methods were developed to assist with qualitative and quantitative analysis. The multiplex PCR was found to simultaneously and effectively distinguish four species (fox, dog, mink, and rabbit) ingredients by the different sizes of electrophoretic bands: 480, 317, 220, and 209 bp. Real-time fluorescent PCR's amplification profiles and standard curves showed good quantitative measurement responses and linearity, as indicated by good repeatability and coefficient of determination R 2  > 0.99. The quantitative results of quaternary DNA mixtures including mink, fox, dog, and rabbit DNA are in line with our expectations: R.D. (relative deviation) varied between 1.98 and 12.23% and R.S.D. (relative standard deviation) varied between 3.06 and 11.51%, both of which are well within the acceptance criterion of ≤ 25%. Combining the two methods is suitable for the rapid identification and accurate quantification of fox-, dog-, mink-, and rabbit-derived ingredients in the animal products.

  10. Comparison of microfluidic digital PCR and conventional quantitative PCR for measuring copy number variation.

    PubMed

    Whale, Alexandra S; Huggett, Jim F; Cowen, Simon; Speirs, Valerie; Shaw, Jacqui; Ellison, Stephen; Foy, Carole A; Scott, Daniel J

    2012-06-01

    One of the benefits of Digital PCR (dPCR) is the potential for unparalleled precision enabling smaller fold change measurements. An example of an assessment that could benefit from such improved precision is the measurement of tumour-associated copy number variation (CNV) in the cell free DNA (cfDNA) fraction of patient blood plasma. To investigate the potential precision of dPCR and compare it with the established technique of quantitative PCR (qPCR), we used breast cancer cell lines to investigate HER2 gene amplification and modelled a range of different CNVs. We showed that, with equal experimental replication, dPCR could measure a smaller CNV than qPCR. As dPCR precision is directly dependent upon both the number of replicate measurements and the template concentration, we also developed a method to assist the design of dPCR experiments for measuring CNV. Using an existing model (based on Poisson and binomial distributions) to derive an expression for the variance inherent in dPCR, we produced a power calculation to define the experimental size required to reliably detect a given fold change at a given template concentration. This work will facilitate any future translation of dPCR to key diagnostic applications, such as cancer diagnostics and analysis of cfDNA.

  11. Methods for Multiplex Template Sampling in Digital PCR Assays

    PubMed Central

    Petriv, Oleh I.; Heyries, Kevin A.; VanInsberghe, Michael; Walker, David; Hansen, Carl L.

    2014-01-01

    The efficient use of digital PCR (dPCR) for precision copy number analysis requires high concentrations of target molecules that may be difficult or impossible to obtain from clinical samples. To solve this problem we present a strategy, called Multiplex Template Sampling (MTS), that effectively increases template concentrations by detecting multiple regions of fragmented target molecules. Three alternative assay approaches are presented for implementing MTS analysis of chromosome 21, providing a 10-fold concentration enhancement while preserving assay precision. PMID:24854517

  12. Real-time PCR detection chemistry.

    PubMed

    Navarro, E; Serrano-Heras, G; Castaño, M J; Solera, J

    2015-01-15

    Real-time PCR is the method of choice in many laboratories for diagnostic and food applications. This technology merges the polymerase chain reaction chemistry with the use of fluorescent reporter molecules in order to monitor the production of amplification products during each cycle of the PCR reaction. Thus, the combination of excellent sensitivity and specificity, reproducible data, low contamination risk and reduced hand-on time, which make it a post-PCR analysis unnecessary, has made real-time PCR technology an appealing alternative to conventional PCR. The present paper attempts to provide a rigorous overview of fluorescent-based methods for nucleic acid analysis in real-time PCR described in the literature so far. Herein, different real-time PCR chemistries have been classified into two main groups; the first group comprises double-stranded DNA intercalating molecules, such as SYBR Green I and EvaGreen, whereas the second includes fluorophore-labeled oligonucleotides. The latter, in turn, has been divided into three subgroups according to the type of fluorescent molecules used in the PCR reaction: (i) primer-probes (Scorpions, Amplifluor, LUX, Cyclicons, Angler); (ii) probes; hydrolysis (TaqMan, MGB-TaqMan, Snake assay) and hybridization (Hybprobe or FRET, Molecular Beacons, HyBeacon, MGB-Pleiades, MGB-Eclipse, ResonSense, Yin-Yang or displacing); and (iii) analogues of nucleic acids (PNA, LNA, ZNA, non-natural bases: Plexor primer, Tiny-Molecular Beacon). In addition, structures, mechanisms of action, advantages and applications of such real-time PCR probes and analogues are depicted in this review. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Exoenzyme activity and possibility identification of Candida dubliniensis among Candida albicans species isolated from vaginal candidiasis.

    PubMed

    Jafari, Maryam; Salari, Samira; Pakshir, Keyvan; Zomorodian, Kamiar

    2017-09-01

    Vulvovaginal candidiasis (VVC) or vaginal candidiasis is a common fungal infection of the genitals causing inflammation, irritation, itching, and vaginal discharge. Common yeast infections are caused by the yeast species C. albicans. However, there are other species of Candida such as C. dubliniensis which are considered as the causative agents of this infection. Hydrolytic enzymes such as proteinase and coagulase are known as virulence factors. The aim of this study was the molecular confirmation and differentiation of C. dubliniensis among C. albicans strains isolated from women with vulvovaginal candidiasis by PCR-Restriction Fragment Length Polymorphism (PCR-RFLP) and the evaluation of proteinase and coagulase activities. A total of 100 C. albicans strains isolated from women with vulvovaginal candidiasis referred to Shiraz medical clinics were enrolled in the study. All the isolates were primarily identified by conventional methods. PCR-RFLP method was used for the confirmation and identification of C. albicans and C. dubliniensis. Moreover, in vitro proteinase and coagulase activities of these isolates were evaluated using bovine serum albumin media and classical rabbit plasma tube test. As a result, PCR-RFLP identified 100% of the isolates as C. albicans, and no C. dubliniensis could be identified in this study. 84% of the isolates showed proteinase activity, whereas coagulase activity was only detected in 5% of the isolates. This study reveals that C. dubliniensis plays no role in vaginal candidiasis in Iranian patients. Proteinase production could be an essential virulence factor in C. albicans pathogenicity, but coagulase activity has less potential in this matter. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Development of Cross-Assembly Phage PCR-Based Methods ...

    EPA Pesticide Factsheets

    Technologies that can characterize human fecal pollution in environmental waters offer many advantages over traditional general indicator approaches. However, many human-associated methods cross-react with non-human animal sources and lack suitable sensitivity for fecal source identification applications. The genome of a newly discovered bacteriophage (~97 kbp), the Cross-Assembly phage or “crAssphage”, assembled from a human gut metagenome DNA sequence library is predicted to be both highly abundant and predominately occur in human feces suggesting that this double stranded DNA virus may be an ideal human fecal pollution indicator. We report the development of two human-associated crAssphage endpoint PCR methods (crAss056 and crAss064). A shotgun strategy was employed where 384 candidate primers were designed to cover ~41 kbp of the crAssphage genome deemed favorable for method development based on a series of bioinformatics analyses. Candidate primers were subjected to three rounds of testing to evaluate assay optimization, specificity, limit of detection (LOD95), geographic variability, and performance in environmental water samples. The top two performing candidate primer sets exhibited 100% specificity (n = 70 individual samples from 8 different animal species), >90% sensitivity (n = 10 raw sewage samples from different geographic locations), LOD95 of 0.01 ng/µL of total DNA per reaction, and successfully detected human fecal pollution in impaired envi

  15. Real-time PCR assay is superior to other methods for the detection of mycoplasma contamination in the cell lines of the National Cell Bank of Iran.

    PubMed

    Molla Kazemiha, Vahid; Bonakdar, Shahin; Amanzadeh, Amir; Azari, Shahram; Memarnejadian, Arash; Shahbazi, Shirin; Shokrgozar, Mohammad Ali; Mahdian, Reza

    2016-08-01

    Mycoplasmas are the most important contaminants of cell cultures throughout the world. They are considered as a major problem in biological studies and biopharmaceutical economic issues. In this study, our aim was to find the best standard technique as a rapid method with high sensitivity, specificity and accuracy for the detection of mycoplasma contamination in the cell lines of the National Cell Bank of Iran. Thirty cell lines suspected to mycoplasma contamination were evaluated by five different techniques including microbial culture, indirect DNA DAPI staining, enzymatic mycoalert(®) assay, conventional PCR and real-time PCR. Five mycoplasma-contaminated cell lines were assigned as positive controls and five mycoplasma-free cell lines as negative controls. The enzymatic method was performed using the mycoalert(®) mycoplasma detection kit. Real-time PCR technique was conducted by PromoKine diagnostic kits. In the conventional PCR method, mycoplasma genus-specific primers were designed to analyze the sequences based on a fixed and common region on 16S ribosomal RNA with PCR product size of 425 bp. Mycoplasma contamination was observed in 60, 56.66, 53.33, 46.66 and 33.33 % of 30 different cell cultures by real-time PCR, PCR, enzymatic mycoalert(®), indirect DNA DAPI staining and microbial culture methods, respectively. The analysis of the results of the different methods showed that the real-time PCR assay was superior the other methods with the sensitivity, specificity, accuracy, predictive value of positive and negative results of 100 %. These values were 94.44, 100, 96.77, 100 and 92.85 % for the conventional PCR method, respectively. Therefore, this study showed that real-time PCR and PCR assays based on the common sequences in the 16S ribosomal RNA are reliable methods with high sensitivity, specificity and accuracy for detection of mycoplasma contamination in cell cultures and other biological products.

  16. Linear and exponential TAIL-PCR: a method for efficient and quick amplification of flanking sequences adjacent to Tn5 transposon insertion sites.

    PubMed

    Jia, Xianbo; Lin, Xinjian; Chen, Jichen

    2017-11-02

    Current genome walking methods are very time consuming, and many produce non-specific amplification products. To amplify the flanking sequences that are adjacent to Tn5 transposon insertion sites in Serratia marcescens FZSF02, we developed a genome walking method based on TAIL-PCR. This PCR method added a 20-cycle linear amplification step before the exponential amplification step to increase the concentration of the target sequences. Products of the linear amplification and the exponential amplification were diluted 100-fold to decrease the concentration of the templates that cause non-specific amplification. Fast DNA polymerase with a high extension speed was used in this method, and an amplification program was used to rapidly amplify long specific sequences. With this linear and exponential TAIL-PCR (LETAIL-PCR), we successfully obtained products larger than 2 kb from Tn5 transposon insertion mutant strains within 3 h. This method can be widely used in genome walking studies to amplify unknown sequences that are adjacent to known sequences.

  17. Evaluation of Two Multiplex PCR-High-Resolution Melt Curve Analysis Methods for Differentiation of Campylobacter jejuni and Campylobacter coli Intraspecies.

    PubMed

    Banowary, Banya; Dang, Van Tuan; Sarker, Subir; Connolly, Joanne H; Chenu, Jeremy; Groves, Peter; Raidal, Shane; Ghorashi, Seyed Ali

    2018-03-01

    Campylobacter infection is a common cause of bacterial gastroenteritis in humans and remains a significant global public health issue. The capability of two multiplex PCR (mPCR)-high-resolution melt (HRM) curve analysis methods (i.e., mPCR1-HRM and mPCR2-HRM) to detect and differentiate 24 poultry isolates and three reference strains of Campylobacter jejuni and Campylobacter coli was investigated. Campylobacter jejuni and C. coli were successfully differentiated in both assays, but the differentiation power of mPCR2-HRM targeting the cadF gene was found superior to that of mPCR1-HRM targeting the gpsA gene or a hypothetical protein gene. However, higher intraspecies variation within C. coli and C. jejuni isolates was detected in mPCR1-HRM when compared with mPCR2-HRM. Both assays were rapid and required minimum interpretation skills for discrimination between and within Campylobacter species when using HRM curve analysis software.

  18. Development of a rapid diagnostic method for identification of Staphylococcus aureus and antimicrobial resistance in positive blood culture bottles using a PCR-DNA-chromatography method.

    PubMed

    Ohshiro, Takeya; Miyagi, Chihiro; Tamaki, Yoshikazu; Mizuno, Takuya; Ezaki, Takayuki

    2016-06-01

    Blood culturing and the rapid reporting of results are essential for infectious disease clinics to obtain bacterial information that can affect patient prognosis. When gram-positive coccoid cells are observed in blood culture bottles, it is important to determine whether the strain is Staphylococcus aureus and whether the strain has resistance genes, such as mecA and blaZ, for proper antibiotic selection. Previous work led to the development of a PCR method that is useful for rapid identification of bacterial species and antimicrobial susceptibility. However, that method has not yet been adopted in community hospitals due to the high cost and methodological complexity. We report here the development of a quick PCR and DNA-chromatography test, based on single-tag hybridization chromatography, that permits detection of S. aureus and the mecA and blaZ genes; results can be obtained within 1 h for positive blood culture bottles. We evaluated this method using 42 clinical isolates. Detection of S. aureus and the resistance genes by the PCR-DNA-chromatography method was compared with that obtained via the conventional identification method and actual antimicrobial susceptibility testing. Our method had a sensitivity of 97.0% and a specificity of 100% for the identification of the bacterial species. For the detection of the mecA gene of S. aureus, the sensitivity was 100% and the specificity was 95.2%. For the detection of the blaZ gene of S. aureus, the sensitivity was 100% and the specificity was 88.9%. The speed and simplicity of this PCR-DNA-chromatography method suggest that our method will facilitate rapid diagnoses. Copyright © 2016 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  19. A Multiplex Real-Time PCR Assay to Diagnose and Separate Helicoverpa armigera and H. zea (Lepidoptera: Noctuidae) in the New World

    PubMed Central

    Gilligan, Todd M.; Tembrock, Luke R.; Farris, Roxanne E.; Barr, Norman B.; van der Straten, Marja J.; van de Vossenberg, Bart T. L. H.; Metz-Verschure, Eveline

    2015-01-01

    The Old World bollworm, Helicoverpa armigera (Hübner), and the corn earworm, H. zea (Boddie), are two of the most important agricultural pests in the world. Diagnosing these two species is difficult—adults can only be separated with a complex dissection, and larvae cannot be identified to species using morphology, necessitating the use of geographic origin for identification in most instances. With the discovery of H. armigera in the New World, identification of immature Helicoverpa based on origin is no longer possible because H. zea also occurs in all of the geographic regions where H. armigera has been discovered. DNA barcoding and restriction fragment length polymorphism (RFLP) analyses have been reported in publications to distinguish these species, but these methods both require post-PCR processing (i.e., DNA sequencing or restriction digestion) to complete. We report the first real-time PCR assay to distinguish these pests based on two hydrolysis probes that bind to a segment of the internal transcribed spacer region 2 (ITS2) amplified using a single primer pair. One probe targets H. armigera, the second probe targets H. zea, and a third probe that targets a conserved segment of 18S rDNA is used as a control of DNA quality. The assay can be completed in 50 minutes when using isolated DNA and is successfully tested on larvae intercepted at ports of entry and adults captured during domestic surveys. We demonstrate that the assay can be run in triplex with no negative effects on sensitivity, can be run using alternative real-time PCR reagents and instruments, and does not cross react with other New World Heliothinae. PMID:26558366

  20. A Multiplex Real-Time PCR Assay to Diagnose and Separate Helicoverpa armigera and H. zea (Lepidoptera: Noctuidae) in the New World.

    PubMed

    Gilligan, Todd M; Tembrock, Luke R; Farris, Roxanne E; Barr, Norman B; van der Straten, Marja J; van de Vossenberg, Bart T L H; Metz-Verschure, Eveline

    2015-01-01

    The Old World bollworm, Helicoverpa armigera (Hübner), and the corn earworm, H. zea (Boddie), are two of the most important agricultural pests in the world. Diagnosing these two species is difficult-adults can only be separated with a complex dissection, and larvae cannot be identified to species using morphology, necessitating the use of geographic origin for identification in most instances. With the discovery of H. armigera in the New World, identification of immature Helicoverpa based on origin is no longer possible because H. zea also occurs in all of the geographic regions where H. armigera has been discovered. DNA barcoding and restriction fragment length polymorphism (RFLP) analyses have been reported in publications to distinguish these species, but these methods both require post-PCR processing (i.e., DNA sequencing or restriction digestion) to complete. We report the first real-time PCR assay to distinguish these pests based on two hydrolysis probes that bind to a segment of the internal transcribed spacer region 2 (ITS2) amplified using a single primer pair. One probe targets H. armigera, the second probe targets H. zea, and a third probe that targets a conserved segment of 18S rDNA is used as a control of DNA quality. The assay can be completed in 50 minutes when using isolated DNA and is successfully tested on larvae intercepted at ports of entry and adults captured during domestic surveys. We demonstrate that the assay can be run in triplex with no negative effects on sensitivity, can be run using alternative real-time PCR reagents and instruments, and does not cross react with other New World Heliothinae.

  1. Real-time PCR: Advanced technologies and applications

    USDA-ARS?s Scientific Manuscript database

    This book brings together contributions from 20 experts in the field of PCR, providing a broad perspective of the applications of quantitative real-time PCR (qPCR). The editors state in the preface that the aim is to provide detailed insight into underlying principles and methods of qPCR to provide ...

  2. Three new sensitive and specific heat-shock protein 70 PCRs for global Leishmania species identification.

    PubMed

    Montalvo, A M; Fraga, J; Maes, I; Dujardin, J-C; Van der Auwera, G

    2012-07-01

    The heat-shock protein 70 gene (hsp70) has been exploited for Leishmania species identification in the New and Old World, using PCR followed by restriction fragment length polymorphism (RFLP) analysis. Current PCR presents limitations in terms of sensitivity, which hampers its use for analyzing clinical and biological samples, and specificity, which makes it inappropriate to discriminate between Leishmania and other trypanosomatids. The aim of the study was to improve the sensitivity and specificity of a previously reported hsp70 PCR using alternative PCR primers and RFLPs. Following in silico analysis of available sequences, three new PCR primer sets and restriction digest schemes were tested on a globally representative panel of 114 Leishmania strains, various other infectious agents, and clinical samples. The largest new PCR fragment retained the discriminatory power from RFLP, while two smaller fragments discriminated less species. The detection limit of the new PCRs was between 0.05 and 0.5 parasite genomes, they amplified clinical samples more efficiently, and were Leishmania specific. We succeeded in significantly improving the specificity and sensitivity of the PCRs for hsp70 Leishmania species typing. The improved PCR-RFLP assays can impact diagnosis, treatment, and epidemiological studies of leishmaniasis in any setting worldwide.

  3. Improved group-specific primers based on the full SILVA 16S rRNA gene reference database.

    PubMed

    Pfeiffer, Stefan; Pastar, Milica; Mitter, Birgit; Lippert, Kathrin; Hackl, Evelyn; Lojan, Paul; Oswald, Andreas; Sessitsch, Angela

    2014-08-01

    Quantitative PCR (qPCR) and community fingerprinting methods, such as the Terminal Restriction Fragment Length Polymorphism (T-RFLP) analysis,are well-suited techniques for the examination of microbial community structures. The use of phylum and class-specific primers can provide enhanced sensitivity and phylogenetic resolution as compared with domain-specific primers. To date, several phylum- and class-specific primers targeting the 16S ribosomal RNA gene have been published. However, many of these primers exhibit low discriminatory power against non-target bacteria in PCR. In this study, we evaluated the precision of certain published primers in silico and via specific PCR. We designed new qPCR and T-RFLP primer pairs (for the classes Alphaproteobacteria and Betaproteobacteria, and the phyla Bacteroidetes, Firmicutes and Actinobacteria) by combining the sequence information from a public dataset (SILVA SSU Ref 102 NR) with manual primer design. We evaluated the primer pairs via PCR using isolates of the above-mentioned groups and via screening of clone libraries from environmental soil samples and human faecal samples. As observed through theoretical and practical evaluation, the primers developed in this study showed a higher level of precision than previously published primers, thus allowing a deeper insight into microbial community dynamics.

  4. Novel Degenerate PCR Method for Whole-Genome Amplification Applied to Peru Margin (ODP Leg 201) Subsurface Samples

    PubMed Central

    Martino, Amanda J.; Rhodes, Matthew E.; Biddle, Jennifer F.; Brandt, Leah D.; Tomsho, Lynn P.; House, Christopher H.

    2011-01-01

    A degenerate polymerase chain reaction (PCR)-based method of whole-genome amplification, designed to work fluidly with 454 sequencing technology, was developed and tested for use on deep marine subsurface DNA samples. While optimized here for use with Roche 454 technology, the general framework presented may be applicable to other next generation sequencing systems as well (e.g., Illumina, Ion Torrent). The method, which we have called random amplification metagenomic PCR (RAMP), involves the use of specific primers from Roche 454 amplicon sequencing, modified by the addition of a degenerate region at the 3′ end. It utilizes a PCR reaction, which resulted in no amplification from blanks, even after 50 cycles of PCR. After efforts to optimize experimental conditions, the method was tested with DNA extracted from cultured E. coli cells, and genome coverage was estimated after sequencing on three different occasions. Coverage did not vary greatly with the different experimental conditions tested, and was around 62% with a sequencing effort equivalent to a theoretical genome coverage of 14.10×. The GC content of the sequenced amplification product was within 2% of the predicted values for this strain of E. coli. The method was also applied to DNA extracted from marine subsurface samples from ODP Leg 201 site 1229 (Peru Margin), and results of a taxonomic analysis revealed microbial communities dominated by Proteobacteria, Chloroflexi, Firmicutes, Euryarchaeota, and Crenarchaeota, among others. These results were similar to those obtained previously for those samples; however, variations in the proportions of taxa identified illustrates well the generally accepted view that community analysis is sensitive to both the amplification technique used and the method of assigning sequences to taxonomic groups. Overall, we find that RAMP represents a valid methodology for amplifying metagenomes from low-biomass samples. PMID:22319519

  5. One-step multiplex PCR method for the determination of pecan and Brazil nut allergens in food products.

    PubMed

    Hubalkova, Zora; Rencova, Eva

    2011-10-01

    A one-step polymerase chain reaction (PCR) method for the simultaneous detection of the major allergens of pecan and Brazil nuts was developed. Primer pairs for the amplification of partial sequences of genes encoding the allergens were designed and tested for their specificity on a range of food components. The targeted amplicon size was 173 bp of Ber e 1 gene of Brazil nuts and 72 bp of vicilin-like seed storage protein gene in pecan nuts. The primer pair detecting the noncoding region of the chloroplast DNA was used as the internal control of amplification. The intrinsic detection limit of the PCR method was 100 pg mL(-1) pecan or Brazil nuts DNA. The practical detection limit was 0.1% w/w (1 g kg(-1)). The method was applied for the investigation of 63 samples with the declaration of pecans, Brazil nuts, other different nut species or nuts generally. In 15 food samples pecans and Brazil nuts allergens were identified in the conformity with the food declaration. The presented multiplex PCR method is specific enough and can be used as a fast approach for the detection of major allergens of pecan or Brazil nuts in food. Copyright © 2011 Society of Chemical Industry.

  6. Proposed methods for testing and selecting the ERCC external RNA controls

    PubMed Central

    2005-01-01

    The External RNA Control Consortium (ERCC) is an ad-hoc group with approximately 70 members from private, public, and academic organizations. The group is developing a set of external RNA control transcripts that can be used to assess technical performance in gene expression assays. The ERCC is now initiating the Testing Phase of the project, during which candidate external RNA controls will be evaluated in both microarray and QRT-PCR gene expression platforms. This document describes the proposed experiments and informatics process that will be followed to test and qualify individual controls. The ERCC is distributing this description of the proposed testing process in an effort to gain consensus and to encourage feedback from the scientific community. On October 4–5, 2005, the ERCC met to further review the document, clarify ambiguities, and plan next steps. A summary of this meeting and changes to the test plan are provided as an appendix to this manuscript. PMID:16266432

  7. Detection and Identification of Free-living Amoeba from Environmental Water in Taiwan by PCR Method

    NASA Astrophysics Data System (ADS)

    Tsai, H. F.; Hsu, B. M.; Huang, K. H.; She, C. Y.; Kao, P. M.; Shen, S. M.; Tseng, S. F.; Chen, J. S.

    2012-04-01

    Acanthamoeba, Naegleria, Balamuthia and Hartmannella all belong to free-living amoebae that are present ubiquitously in the environment including water, soil, and air. Free-living amoebae are parasites which can infect humans and can lead to serious illness and even death. The aim of this study is to investigate the presence of free-living amoebae in aquatic environment in Taiwan, and to compare the differences between Acanthamoeba and Naegleria in diverse cultivation methods and conditions. In this study, we used molecular method by PCR amplification with specific primers to analyze the occurrence of free-living amoebae. We collected 176 samples from environmental water including drinking water treatment plants, stream water, and hot spring recreational areas in Taiwan. Based on the results of PCR, 43 water samples (24.4%) were detected positive for free-living amoebae. The most common Acanthamoeba genotype isolated from samples including T2, T4, T5, T12, and T15. N. australiensis and N. lovaniensis were also identified by molecular biology techniques. Furthermore, we found that both Acanthamoeba and Naegleria can be cultured by PYG in 30° C, but not all free-living amoebae can be isolated and enriched by using storage-cultivation method. Because of the widespread presence of Acanthamoeba and Naegleria in aquatic environments, the water quality and safety of aquatic environments should be more conscious in Taiwan and worldwide. Keywords: free-living amoebae; Acanthamoeba; Naegleria; Balamuthia; Hartmannella; PCR

  8. Development and validation of an event-specific quantitative PCR method for genetically modified maize MIR162.

    PubMed

    Takabatake, Reona; Masubuchi, Tomoko; Futo, Satoshi; Minegishi, Yasutaka; Noguchi, Akio; Kondo, Kazunari; Teshima, Reiko; Kurashima, Takeyo; Mano, Junichi; Kitta, Kazumi

    2014-01-01

    A novel real-time PCR-based analytical method was developed for the event-specific quantification of a genetically modified (GM) maize event, MIR162. We first prepared a standard plasmid for MIR162 quantification. The conversion factor (Cf) required to calculate the genetically modified organism (GMO) amount was empirically determined for two real-time PCR instruments, the Applied Biosystems 7900HT (ABI7900) and the Applied Biosystems 7500 (ABI7500) for which the determined Cf values were 0.697 and 0.635, respectively. To validate the developed method, a blind test was carried out in an interlaboratory study. The trueness and precision were evaluated as the bias and reproducibility of relative standard deviation (RSDr). The determined biases were less than 25% and the RSDr values were less than 20% at all evaluated concentrations. These results suggested that the limit of quantitation of the method was 0.5%, and that the developed method would thus be suitable for practical analyses for the detection and quantification of MIR162.

  9. Homopolymer tail-mediated ligation PCR: a streamlined and highly efficient method for DNA cloning and library construction

    PubMed Central

    Lazinski, David W.; Camilli, Andrew

    2013-01-01

    The amplification of DNA fragments, cloned between user-defined 5′ and 3′ end sequences, is a prerequisite step in the use of many current applications including massively parallel sequencing (MPS). Here we describe an improved method, called homopolymer tail-mediated ligation PCR (HTML-PCR), that requires very little starting template, minimal hands-on effort, is cost-effective, and is suited for use in high-throughput and robotic methodologies. HTML-PCR starts with the addition of homopolymer tails of controlled lengths to the 3′ termini of a double-stranded genomic template. The homopolymer tails enable the annealing-assisted ligation of a hybrid oligonucleotide to the template's recessed 5′ ends. The hybrid oligonucleotide has a user-defined sequence at its 5′ end. This primer, together with a second primer composed of a longer region complementary to the homopolymer tail and fused to a second 5′ user-defined sequence, are used in a PCR reaction to generate the final product. The user-defined sequences can be varied to enable compatibility with a wide variety of downstream applications. We demonstrate our new method by constructing MPS libraries starting from nanogram and sub-nanogram quantities of Vibrio cholerae and Streptococcus pneumoniae genomic DNA. PMID:23311318

  10. Differentiation of Cannabis subspecies by THCA synthase gene analysis using RFLP.

    PubMed

    Cirovic, Natasa; Kecmanovic, Miljana; Keckarevic, Dusan; Keckarevic Markovic, Milica

    2017-10-01

    Cannabis sativa subspecies, known as industrial hemp (C. sativa sativa) and marijuana (C. sativa indica) show no evident morphological distinctions, but they contain different levels of psychoactive Δ-9-tetrahidrocanabinol (THC), with considerably higher concentration in marijuana than in hemp. C. sativa subspecies differ in sequence of tetrahydrocannabinolic acid (THCA) synthase gene, responsible for THC production, and only one active copy of the gene, distinctive for marijuana, is capable of producing THC in concentration more then 0,3% in dried plants, usually punishable by the law. Twenty different samples of marijuana that contain THC in concentration more then 0,3% and three varieties of industrial hemp were analyzed for presence of an active copy of THCA synthase gene using in-house developed restriction fragment length polymorphism (RFLP) method All twenty samples of marijuana were positive for the active copy of THCA synthase gene, 16 of them heterozygous. All three varieties of industrial hemp were homozygous for inactive copy. An algorithm for the fast and accurate forensic analysis of samples suspected to be marijuana was constructed, answering the question if an analyzed sample is capable of producing THC in concentrations higher than 0.3%. Copyright © 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  11. Evaluation of a real-time quantitative PCR method with propidium monazide treatment for analyses of viable fecal indicator bacteria in wastewater samples

    EPA Science Inventory

    The U.S. EPA is currently evaluating rapid, real-time quantitative PCR (qPCR) methods for determining recreational water quality based on measurements of fecal indicator bacteria DNA sequences. In order to potentially use qPCR for other Clean Water Act needs, such as updating cri...

  12. Novel method to detect microRNAs using chip-based QuantStudio 3D digital PCR.

    PubMed

    Conte, Davide; Verri, Carla; Borzi, Cristina; Suatoni, Paola; Pastorino, Ugo; Sozzi, Gabriella; Fortunato, Orazio

    2015-10-23

    Research efforts for the management of cancer, in particular for lung cancer, are directed to identify new strategies for its early detection. MicroRNAs (miRNAs) are a new promising class of circulating biomarkers for cancer detection, but lack of consensus on data normalization methods has affected the diagnostic potential of circulating miRNAs. There is a growing interest in techniques that allow an absolute quantification of miRNAs which could be useful for early diagnosis. Recently, digital PCR, mainly based on droplets generation, emerged as an affordable technology for precise and absolute quantification of nucleic acids. In this work, we described a new interesting approach for profiling circulating miRNAs in plasma samples using a chip-based platform, the QuantStudio 3D digital PCR. The proposed method was validated using synthethic oligonucleotide at serial dilutions in plasma samples of lung cancer patients and in lung tissues and cell lines. Given its reproducibility and reliability, our approach could be potentially applied for the identification and quantification of miRNAs in other biological samples such as circulating exosomes or protein complexes. As chip-digital PCR becomes more established, it would be a robust tool for quantitative assessment of miRNA copy number for diagnosis of lung cancer and other diseases.

  13. Performance of two quantitative PCR methods for microbial source tracking of human sewage and implications for microbial risk assessment in recreational waters

    EPA Science Inventory

    Before new, rapid quantitative PCR (qPCR) methods for recreational water quality assessment and microbial source tracking (MST) can be useful in a regulatory context, an understanding of the ability of the method to detect a DNA target (marker) when the contaminant soure has been...

  14. Detection and enumeration of Salmonella enteritidis in homemade ice cream associated with an outbreak: comparison of conventional and real-time PCR methods.

    PubMed

    Seo, K H; Valentin-Bon, I E; Brackett, R E

    2006-03-01

    Salmonellosis caused by Salmonella Enteritidis (SE) is a significant cause of foodborne illnesses in the United States. Consumption of undercooked eggs and egg-containing products has been the primary risk factor for the disease. The importance of the bacterial enumeration technique has been enormously stressed because of the quantitative risk analysis of SE in shell eggs. Traditional enumeration methods mainly depend on slow and tedious most-probable-number (MPN) methods. Therefore, specific, sensitive, and rapid methods for SE quantitation are needed to collect sufficient data for risk assessment and food safety policy development. We previously developed a real-time quantitative PCR assay for the direct detection and enumeration of SE and, in this study, applied it to naturally contaminated ice cream samples with and without enrichment. The detection limit of the real-time PCR assay was determined with artificially inoculated ice cream. When applied to the direct detection and quantification of SE in ice cream, the real-time PCR assay was as sensitive as the conventional plate count method in frequency of detection. However, populations of SE derived from real-time quantitative PCR were approximately 1 log higher than provided by MPN and CFU values obtained by conventional culture methods. The detection and enumeration of SE in naturally contaminated ice cream can be completed in 3 h by this real-time PCR method, whereas the cultural enrichment method requires 5 to 7 days. A commercial immunoassay for the specific detection of SE was also included in the study. The real-time PCR assay proved to be a valuable tool that may be useful to the food industry in monitoring its processes to improve product quality and safety.

  15. Assessment of Clinically Suspected Tubercular Lymphadenopathy by Real-Time PCR Compared to Non-Molecular Methods on Lymph Node Aspirates.

    PubMed

    Gupta, Vivek; Bhake, Arvind

    2018-01-01

    The diagnosis of tubercular lymphadenitis (TBLN) is challenging. This study assesses the role of diagnostic intervention with real-time PCR in clinically suspected tubercular lymphadenopathy in relation to cytology and microbiological methods. The cross-sectional study involved 214 patients, and PCR, cytology, and Ziehl-Neelsen (ZN) staining was performed on aspirates. The findings were compared with culture on Lowenstein-Jensen medium. The overall concordance of cytology and PCR, both individually and combined, was calculated. χ2 and Phi values were assessed between cytology, PCR, and culture. A cytological diagnosis of tuberculosis (TB), reactive lymphoid hyperplasia, and suppurative lymphadenitis was made in 71, 112, and 6 patients, respectively. PCR and culture were positive in 40% of the cases. Among the TBLN patients, PCR showed higher positivity in necrosis and culture showed higher positivity in necrotizing granuloma. Positive ZN staining was observed in 29.6% of the TBLN cases, with an overall positivity of 11%. PCR could additionally detect 82 cases missed by ZN staining. The overall concordance rate for either diagnostic modality, i.e., PCR or cytology, was highest (75%), and for PCR alone was 74%. Phi values were observed to be 0.47 between PCR and culture. Real-time PCR for Mycobacterium tuberculosis complex on aspirates offers a definitive and comparable diagnosis of TBLN. Including this approach as the primary investigation in the work-up of TBLN could reduce the burden of TB. © 2017 S. Karger AG, Basel.

  16. Detection of fungi by conventional methods and semi-nested PCR in patients with presumed fungal keratitis.

    PubMed

    Haghani, I; Amirinia, F; Nowroozpoor-Dailami, K; Shokohi, T

    2015-06-01

    Fungal keratitis is a suppurative, ulcerative, and sight-threatening infection of the cornea that sometimes leads to blindness. The aims of this study were: recuperating facilities for laboratory diagnosis, determining the causative microorganisms, and comparing conventional laboratory diagnostic tools and semi-nested PCR. Sampling was conducted in patients with suspected fungal keratitis. Two corneal scrapings specimens, one for direct smear and culture and the other for semi- nested PCR were obtained. Of the 40 expected cases of mycotic keratitis, calcofluor white staining showed positivity in 25%, culture in 17.5%, KOH in 10%, and semi-nested PCR in 27.5%. The sensitivities of semi-nested PCR, KOH, and CFW were 57.1%, 28.5%, and 42% while the specificities were 78.7%, 94%, and 78.7%, respectively. The time taken for PCR assay was 4 to 8 hours, whereas positive fungal cultures took at least 5 to 7 days. Due to the increasing incidence of fungal infections in people with weakened immune systems, uninformed using of topical corticosteroids and improper use of contact lens, fast diagnosis and accurate treatment of keratomycosis seems to be essential . Therefore, according to the current study, molecular methods can detect mycotic keratitis early and correctly leading to appropriate treatment.

  17. [Rapid diagnosis of the most common fetal aneuploidies with the QF-PCR method--a study of 100 cases].

    PubMed

    Łaczmańska, Izabela; Gil, Justyna; Stembalska, Agnieszka; Makowska, Izabela; Kozłowska, Joanna; Skiba, Paweł; Czemarmazowicz, Halina; Pesz, Karolina; Slęzak, Ryszard; Smigiel, Robert; Jakubiak, Aleksandra; Doraczyńska-Kowalik, Anna; Sąsiadek, Maria M

    2015-09-01

    The aim of the study was to assess whether commercial kit QF-PCR can be used as the only method for rapic prenatal dia gnosis of chromosomes 13, 18, 21, X and Y aneuploidies, omitting cell culture and complete cyt6genetik analysis of fetal chromosomes. DNA from amniocytes (94 cases) and trophoblast cells (6 cases) was analyzed witt QF-PCR according to the manufacturer's protocol. The obtained products were separated using ABI 310 Genetic Analyzer and the resulting data were analyzed using GeneMarker software. The results of QF-PCR were obtained in 95 out of 100 cases (95%). Abnormalities were found in 28 casea (29.5%). All these results were confirmed in subsequent cytogenetic analysis. Normal results were obtained in 62 patients (70.5%). However in that group, we found three chromosomal aberrations other than those analyzed b3 QF-PCR. Additionally two abnormal and three normal karyotypes were found in patients with inconclusive QF-POF results. QF-PCR is a fast and reliable tool for chromosomal aneuploidy analysis and can be used as the only method without a full analysis of the karyotype, but only in cases of suspected fetal 13, 18, 21 trisomy or numerica aberrations of X chromosome. In other cases, fetal karyotype analysis from cells obtained after cell culture should be offered to the patient.

  18. [Contribution of Leishmania identification using polymerase chain reaction--restriction fragment length polymerase for epidemiological studies of cutaneous leishmaniasis in Tunisia].

    PubMed

    Bousslimi, N; Ben Abda, I; Ben Mously, R; Siala, E; Harrat, Z; Zallagua, N; Bouratbine, A; Aoun, K

    2014-02-01

    Three forms of cutaneous leishmaniasis (CL) are endemic in Tunisia. The identification of the causative species is useful to complete epidemiological data and to manage the cases. The aim of this study is to assess PCR-RFLP technique in the identification of Leishmania species responsible of CL in Tunisia and to compare the results of this technique to those of isoenzyme analysis. Sixty-one CL lesions were sampled. Dermal samples were tested by culture on NNN medium and analyzed by PCR-RFLP assay targeting the ITS1 region of ribosomal DNA. Species identification was performed by both iso-enzymatic typing for positive cultures and analysis of restriction profiles after enzymatic digestion by HaeIII of the obtained amplicons. Thirty-eight (62%) samples were positive by culture. The iso-enzymatic typing of 32 isolates identified 3 L. infantum, 23 L. major MON-25 and 6 L. tropica MON-8. Sixty samples were positive by PCR. The PCR-RFLP digestion profiles of the 56 PCR products identified 12 L. infantum, 38 L. major and 6 L. tropica. The results of both techniques were concordant in the 32 strains identified by both techniques. Species identification correlated with the geographical distribution of CL forms endemic in Tunisia. Results of PCR-RFLP revealed highly concordant with those of isoenzyme electrophoresis. Thanks to its simplicity, rapidity and ability to be performed directly on biological samples, this technique appears as an interesting alternative for the identification of Leishmania strains responsible of CL in Tunisia. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  19. Molecular analysis of dolphin morbillivirus: A new sensitive detection method based on nested RT-PCR.

    PubMed

    Centelleghe, Cinzia; Beffagna, Giorgia; Zanetti, Rossella; Zappulli, Valentina; Di Guardo, Giovanni; Mazzariol, Sandro

    2016-09-01

    Cetacean Morbillivirus (CeMV) has been identified as the most pathogenic virus for cetaceans. Over the past three decades, this RNA virus has caused several outbreaks of lethal disease in odontocetes and mysticetes worldwide. Isolation and identification of CeMV RNA is very challenging in whales because of the poor preservation status frequently shown by tissues from stranded animals. Nested reverse transcription polymerase chain reaction (nested RT-PCR) is used instead of conventional RT-PCR when it is necessary to increase the sensitivity and the specificity of the reaction. This study describes a new nested RT-PCR technique useful to amplify small amounts of the cDNA copy of Cetacean morbillivirus (CeMV) when it is present in scant quantity in whales' biological specimens. This technique was used to analyze different tissues (lung, brain, spleen and other lymphoid tissues) from one under human care seal and seven cetaceans stranded along the Italian coastline between October 2011 and September 2015. A well-characterized, 200 base pair (bp) fragment of the dolphin Morbillivirus (DMV) haemagglutinin (H) gene, obtained by nested RT-PCR, was sequenced and used to confirm DMV positivity in all the eight marine mammals under study. In conclusion, this nested RT-PCR protocol can represent a sensitive detection method to identify CeMV-positive, poorly preserved tissue samples. Furthermore, this is also a rather inexpensive molecular technique, relatively easy to apply. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Comparison of chlamydia infection prevalence between patients with and without ectopic pregnancy using the PCR method.

    PubMed

    Naderi, Tayebeh; Kazerani, Fatemeh; Bahraminpoor, Abbas

    2012-11-01

    Damage of the fallopian tube after sexually transmitted diseases like Chlamydia trachomatis, is an important risk factor for ectopic pregnancy (EP). The study was designed to assess the prevalence of C. trachomatis infection in patients with EP in the southeastern part of Iran. The polymerase chain reaction (PCR) on fallopian tube tissue was applied to detect Chlamydia DNA in 42 patients with EP (EP group) and 87 patients without EP (control group) who underwent tubal ligation. The same protocol was performed with urine samples taken from the husbands in both groups. Out of all studied females, 5 patients in the EP group were PCR-positive for C. trachomatis and none of the control group subjects was PCR-positive for C. trachomatis infection (P<0.05). Among the husbands, the PCR result was positive in the urine of 19 males (9 in the EP group and 10 in the control group). All PCR-positive women had husbands with PCR positive urine samples. No significant difference was found between Chlamydia infection in the EP and the control groups regarding age, duration of marriage, contraceptive method and history of infertility surgery and pelvic pain. There was no significant difference between prevalence of EP in women based on the PCR outcome in the husbands. The Chlamydia infection in men did not show any relation to the number of marriages. Based on our findings, it can be concluded that Chlamydia is an important risk factor of the fallopian tube damage and EP in our society. Therefore, screening programs and treatment of Chlamydia infection are recommended in young women and high risk women and men.

  1. A genomic library-based amplification approach (GL-PCR) for the mapping of multiple IS6110 insertion sites and strain differentiation of Mycobacterium tuberculosis.

    PubMed

    Namouchi, Amine; Mardassi, Helmi

    2006-11-01

    Evidence suggests that insertion of the IS6110 element is not without consequence to the biology of Mycobacterium tuberculosis complex strains. Thus, mapping of multiple IS6110 insertion sites in the genome of biomedically relevant clinical isolates would result in a better understanding of the role of this mobile element, particularly with regard to transmission, adaptability and virulence. In the present paper, we describe a versatile strategy, referred to as GL-PCR, that amplifies IS6110-flanking sequences based on the construction of a genomic library. M. tuberculosis chromosomal DNA is fully digested with HincII and then ligated into a plasmid vector between T7 and T3 promoter sequences. The ligation reaction product is transformed into Escherichia coli and selective PCR amplification targeting both 5' and 3' IS6110-flanking sequences are performed on the plasmid library DNA. For this purpose, four separate PCR reactions are performed, each combining an outward primer specific for one IS6110 end with either T7 or T3 primer. Determination of the nucleotide sequence of the PCR products generated from a single ligation reaction allowed mapping of 21 out of the 24 IS6110 copies of two 12 banded M. tuberculosis strains, yielding an overall sensitivity of 87,5%. Furthermore, by simply comparing the migration pattern of GL-PCR-generated products, the strategy proved to be as valuable as IS6110 RFLP for molecular typing of M. tuberculosis complex strains. Importantly, GL-PCR was able to discriminate between strains differing by a single IS6110 band.

  2. Evaluation of the repeatability and reproducibility of a suite of qPCR based microbial source tracking methods

    EPA Science Inventory

    Many PCR-based methods for microbial source tracking (MST) have been developed and validated within individual research laboratories. Inter-laboratory validation of these methods, however, has been minimal, and the effects of protocol standardization regimes have not been thor...

  3. Enhanced analysis of real-time PCR data by using a variable efficiency model: FPK-PCR

    PubMed Central

    Lievens, Antoon; Van Aelst, S.; Van den Bulcke, M.; Goetghebeur, E.

    2012-01-01

    Current methodology in real-time Polymerase chain reaction (PCR) analysis performs well provided PCR efficiency remains constant over reactions. Yet, small changes in efficiency can lead to large quantification errors. Particularly in biological samples, the possible presence of inhibitors forms a challenge. We present a new approach to single reaction efficiency calculation, called Full Process Kinetics-PCR (FPK-PCR). It combines a kinetically more realistic model with flexible adaptation to the full range of data. By reconstructing the entire chain of cycle efficiencies, rather than restricting the focus on a ‘window of application’, one extracts additional information and loses a level of arbitrariness. The maximal efficiency estimates returned by the model are comparable in accuracy and precision to both the golden standard of serial dilution and other single reaction efficiency methods. The cycle-to-cycle changes in efficiency, as described by the FPK-PCR procedure, stay considerably closer to the data than those from other S-shaped models. The assessment of individual cycle efficiencies returns more information than other single efficiency methods. It allows in-depth interpretation of real-time PCR data and reconstruction of the fluorescence data, providing quality control. Finally, by implementing a global efficiency model, reproducibility is improved as the selection of a window of application is avoided. PMID:22102586

  4. A method of multiplex PCR for detection of field released Beauveria bassiana, a fungal entomopathogen applied for pest management in jute (Corchorus olitorius).

    PubMed

    Biswas, Chinmay; Dey, Piyali; Gotyal, B S; Satpathy, Subrata

    2015-04-01

    The fungal entomopathogen Beauveria bassiana is a promising biocontrol agent for many pests. Some B. bassiana strains have been found effective against jute pests. To monitor the survival of field released B. bassiana a rapid and efficient detection technique is essential. Conventional methods such as plating method or direct culture method which are based on cultivation on selective media followed by microscopy are time consuming and not so sensitive. PCR based methods are rapid, sensitive and reliable. A single primer PCR may fail to amplify some of the strains. However, multiplex PCR increases the possibility of detection as it uses multiple primers. Therefore, in the present investigation a multiplex PCR protocol was developed by multiplexing three primers SCA 14, SCA 15 and SCB 9 to detect field released B. bassiana strains from soil as well as foliage of jute field. Using our multiplex PCR protocol all the five B. bassiana strains could be detected from soil and three strains viz., ITCC 6063, ITCC 4563 and ITCC 4796 could be detected even from the crop foliage after 45 days of spray.

  5. Rapid detection of Salmonella in pet food: design and evaluation of integrated methods based on real-time PCR detection.

    PubMed

    Balachandran, Priya; Friberg, Maria; Vanlandingham, V; Kozak, K; Manolis, Amanda; Brevnov, Maxim; Crowley, Erin; Bird, Patrick; Goins, David; Furtado, Manohar R; Petrauskene, Olga V; Tebbs, Robert S; Charbonneau, Duane

    2012-02-01

    Reducing the risk of Salmonella contamination in pet food is critical for both companion animals and humans, and its importance is reflected by the substantial increase in the demand for pathogen testing. Accurate and rapid detection of foodborne pathogens improves food safety, protects the public health, and benefits food producers by assuring product quality while facilitating product release in a timely manner. Traditional culture-based methods for Salmonella screening are laborious and can take 5 to 7 days to obtain definitive results. In this study, we developed two methods for the detection of low levels of Salmonella in pet food using real-time PCR: (i) detection of Salmonella in 25 g of dried pet food in less than 14 h with an automated magnetic bead-based nucleic acid extraction method and (ii) detection of Salmonella in 375 g of composite dry pet food matrix in less than 24 h with a manual centrifugation-based nucleic acid preparation method. Both methods included a preclarification step using a novel protocol that removes food matrix-associated debris and PCR inhibitors and improves the sensitivity of detection. Validation studies revealed no significant differences between the two real-time PCR methods and the standard U.S. Food and Drug Administration Bacteriological Analytical Manual (chapter 5) culture confirmation method.

  6. Determining the prevalence of inv-positive and ail-positive Yersinia enterocolitica in pig tonsils using PCR and culture methods.

    PubMed

    Stachelska, Milena Alicja

    2017-01-01

    Yersiniosis is believed to be the third most common intestinal zoonosis in the European Union, after campylobacteriosis and salmonellosis. Yersinia enterocolitica is the most common species responsible for human infections. Pigs are regarded as the biggest reservoir of pathogenic Y. enterocolitica strains, which are mainly isolated from pig tonsils. The aim of this paper is to examine the prevalence of inv-positive and ail-positive Y. enterocolitica in pigs which were slaughtered in a Polish abattoir. Real-time PCR and culture methods were used to assess the prevalence of patho- genic Y. enterocolitica strains in pig tonsils. Real-time PCR was applied to detect inv-positive and ail-positive Y. enterocolitica. Y. enterocolitica was also isolated by applying direct plating, unselective (tryptic soy broth) and selective (irgasan-ticarcillin-potassium chlorate bouillon) enrichment. A total of 180 pigs were studied, of which 85% and 32% respectively were found to be infected with inv-positive and ail-positive Y. enterocolitica. The 92 inv-positive and ail-positive isolates, from 57 culture- positive tonsils, underwent bio- and serotyping. The most common was bioserotype 4/O:3, which was found in 53 (93%) out of 57 culture-positive tonsils. Strains of bioserotypes 2/O:5, 2/O:9 and 2/O:5.27 occurred in significantly lower numbers. The prevalence of inv-positive and ail-positive Y. enterocolitica was found to be high in the ton- sils of slaughtered pigs, using real-time PCR. The real-time PCR method for the detection and identification of pathogenic Y. enterocolitica is sensitive and specific, which has been verified by specificity and sensitivity tests using the pure cultures. Serotypes were distinguished from each other using PCR serotyping. The PCR method was essential in forming our conclusions.

  7. An insulated isothermal PCR method on a field-deployable device for rapid and sensitive detection of canine parvovirus type 2 at points of need.

    PubMed

    Wilkes, Rebecca P; Lee, Pei-Yu A; Tsai, Yun-Long; Tsai, Chuan-Fu; Chang, Hsiu-Hui; Chang, Hsiao-Fen G; Wang, Hwa-Tang T

    2015-08-01

    Canine parvovirus type 2 (CPV-2), including subtypes 2a, 2b and 2c, causes an acute enteric disease in both domestic and wild animals. Rapid and sensitive diagnosis aids effective disease management at points of need (PON). A commercially available, field-deployable and user-friendly system, designed with insulated isothermal PCR (iiPCR) technology, displays excellent sensitivity and specificity for nucleic acid detection. An iiPCR method was developed for on-site detection of all circulating CPV-2 strains. Limit of detection was determined using plasmid DNA. CPV-2a, 2b and 2c strains, a feline panleukopenia virus (FPV) strain, and nine canine pathogens were tested to evaluate assay specificity. Reaction sensitivity and performance were compared with an in-house real-time PCR using serial dilutions of a CPV-2b strain and 100 canine fecal clinical samples collected from 2010 to 2014, respectively. The 95% limit of detection of the iiPCR method was 13 copies of standard DNA and detection limits for CPV-2b DNA were equivalent for iiPCR and real-time PCR. The iiPCR reaction detected CPV-2a, 2b and 2c and FPV. Non-targeted pathogens were not detected. Test results of real-time PCR and iiPCR from 99 fecal samples agreed with each other, while one real-time PCR-positive sample tested negative by iiPCR. Therefore, excellent agreement (k = 0.98) with sensitivity of 98.41% and specificity of 100% in detecting CPV-2 in feces was found between the two methods. In conclusion, the iiPCR system has potential to serve as a useful tool for rapid and accurate PON, molecular detection of CPV-2. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Human Papillomavirus DNA Detection in Menstrual Blood from Patients with Cervical Intraepithelial Neoplasia and Condyloma Acuminatum ▿

    PubMed Central

    Wong, Sze Chuen Cesar; Au, Thomas Chi Chuen; Chan, Sammy Chung Sum; Chan, Charles Ming Lok; Lam, Money Yan Yee; Zee, Benny Chung Ying; Pong, Wei Mei; Chan, Anthony Tak Cheung

    2010-01-01

    The Papanicolaou test generates pain and embarrassment, and cytology screening has limited sensitivity for detection of cervical neoplasia. These factors urge the use of another screening test that can overcome these limitations. We explore a completely noninvasive method using detection of human papillomavirus (HPV) DNA in women's menstrual blood (MB). The participants were divided into 3 cohorts: (i) 235 patients with cervical intraepithelial neoplasia 3 (CIN 3) (n = 48), CIN 2 (n = 60), CIN 1 (n = 58), or condyloma acuminatum (CAC) (n = 69) before treatment or remission; (ii) from the first cohort of patients, 108 CIN 3 or CIN 2 patients after treatment and 62 CIN 1 or CAC patients after remission; and (iii) 323 apparently normal subjects (ANS) without any cervical disease. The HPV genotypes of the infected patients were confirmed by direct sequencing. Quantitative real-time PCR (QRT-PCR) was used to measure the MB HPV16 load for 15 infected patients. Results showed that the sensitivity, specificity, and positive and negative predictive values for detection of MB HPV DNA in samples from patients with CIN or CAC were 82.8%, 93.1%, 90.0%, and 87.9%, respectively. Moreover, MB HPV DNA was found in samples from 22.2% of CIN 3 or CIN 2 patients after treatment, 0.0% of CIN 1 or CAC patients after remission, and 8.1% of ANS, 4 of whom were found to have CIN 1 or CAC. Furthermore, QRT-PCR showed that the normalized MB HPV16 DNA copy numbers in samples from patients with CIN 1 to CIN 3 were significantly increased. These preliminary results suggested that MB HPV DNA is a potential noninvasive marker for these premalignant cervical diseases. PMID:20089764

  9. Human papillomavirus DNA detection in menstrual blood from patients with cervical intraepithelial neoplasia and condyloma acuminatum.

    PubMed

    Wong, Sze Chuen Cesar; Au, Thomas Chi Chuen; Chan, Sammy Chung Sum; Chan, Charles Ming Lok; Lam, Money Yan Yee; Zee, Benny Chung Ying; Pong, Wei Mei; Chan, Anthony Tak Cheung

    2010-03-01

    The Papanicolaou test generates pain and embarrassment, and cytology screening has limited sensitivity for detection of cervical neoplasia. These factors urge the use of another screening test that can overcome these limitations. We explore a completely noninvasive method using detection of human papillomavirus (HPV) DNA in women's menstrual blood (MB). The participants were divided into 3 cohorts: (i) 235 patients with cervical intraepithelial neoplasia 3 (CIN 3) (n = 48), CIN 2 (n = 60), CIN 1 (n = 58), or condyloma acuminatum (CAC) (n = 69) before treatment or remission; (ii) from the first cohort of patients, 108 CIN 3 or CIN 2 patients after treatment and 62 CIN 1 or CAC patients after remission; and (iii) 323 apparently normal subjects (ANS) without any cervical disease. The HPV genotypes of the infected patients were confirmed by direct sequencing. Quantitative real-time PCR (QRT-PCR) was used to measure the MB HPV16 load for 15 infected patients. Results showed that the sensitivity, specificity, and positive and negative predictive values for detection of MB HPV DNA in samples from patients with CIN or CAC were 82.8%, 93.1%, 90.0%, and 87.9%, respectively. Moreover, MB HPV DNA was found in samples from 22.2% of CIN 3 or CIN 2 patients after treatment, 0.0% of CIN 1 or CAC patients after remission, and 8.1% of ANS, 4 of whom were found to have CIN 1 or CAC. Furthermore, QRT-PCR showed that the normalized MB HPV16 DNA copy numbers in samples from patients with CIN 1 to CIN 3 were significantly increased. These preliminary results suggested that MB HPV DNA is a potential noninvasive marker for these premalignant cervical diseases.

  10. Validated reverse transcription droplet digital PCR serves as a higher order method for absolute quantification of Potato virus Y strains.

    PubMed

    Mehle, Nataša; Dobnik, David; Ravnikar, Maja; Pompe Novak, Maruša

    2018-05-03

    RNA viruses have a great potential for high genetic variability and rapid evolution that is generated by mutation and recombination under selection pressure. This is also the case of Potato virus Y (PVY), which comprises a high diversity of different recombinant and non-recombinant strains. Consequently, it is hard to develop reverse transcription real-time quantitative PCR (RT-qPCR) with the same amplification efficiencies for all PVY strains which would enable their equilibrate quantification; this is specially needed in mixed infections and other studies of pathogenesis. To achieve this, we initially transferred the PVY universal RT-qPCR assay to a reverse transcription droplet digital PCR (RT-ddPCR) format. RT-ddPCR is an absolute quantification method, where a calibration curve is not needed, and it is less prone to inhibitors. The RT-ddPCR developed and validated in this study achieved a dynamic range of quantification over five orders of magnitude, and in terms of its sensitivity, it was comparable to, or even better than, RT-qPCR. RT-ddPCR showed lower measurement variability. We have shown that RT-ddPCR can be used as a reference tool for the evaluation of different RT-qPCR assays. In addition, it can be used for quantification of RNA based on in-house reference materials that can then be used as calibrators in diagnostic laboratories.

  11. Droplet digital PCR (ddPCR) vs quantitative real-time PCR (qPCR) approach for detection and quantification of Merkel cell polyomavirus (MCPyV) DNA in formalin fixed paraffin embedded (FFPE) cutaneous biopsies.

    PubMed

    Arvia, Rosaria; Sollai, Mauro; Pierucci, Federica; Urso, Carmelo; Massi, Daniela; Zakrzewska, Krystyna

    2017-08-01

    Merkel cell polyomavirus (MCPyV) is associated with Merkel cell carcinoma and high viral load in the skin was proposed as a risk factor for the occurrence of this tumour. MCPyV DNA was detected, with lower frequency, in different skin cancers but since the viral load was usually low, the real prevalence of viral DNA could be underestimated. To evaluate the performance of two assays (qPCR and ddPCR) for MCPyV detection and quantification in formalin fixed paraffin embedded (FFPE) tissue samples. Both assays were designed to simultaneous detection and quantification of both MCPyV as well as house-keeping DNA in clinical samples. The performance of MCPyV quantification was investigated using serial dilutions of cloned target DNA. We also evaluated the applicability of both tests for the analysis of 76 FFPE cutaneous biopsies. The two approaches resulted equivalent with regard to the reproducibility and repeatability and showed a high degree of linearity in the dynamic range tested in the present study. Moreover, qPCR was able to quantify ≥10 5 copies per reaction, while the upper limit of ddPCR was 10 4 copies. There was not significant difference between viral load measured by the two methods The detection limit of both tests was 0,15 copies per reaction, however, the number of positive samples obtained by ddPCR was higher than that obtained by qPCR (45% and 37% respectively). The ddPCR represents a better method for detection of MCPyV in FFPE biopsies, mostly these containing low copies number of viral genome. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Is "dried stool spots on filter paper method (DSSFP)" more sensitive and effective for detecting Blastocystis spp. and their subtypes by PCR and sequencing?

    PubMed

    Seyer, Ayse; Karasartova, Djursun; Ruh, Emrah; Güreser, Ayse Semra; Imir, Turgut; Taylan-Ozkan, Aysegul

    2016-12-01

    PCR and DNA sequencing are currently the diagnostic methods of choice for detection of Blastocystis spp. and their suptypes. Fresh or frozen stool samples have disadvantages in terms of several aspects such as transportation, storage, and existence of PCR inhibitors. Filter paper technology may provide a solution to these issues. The aim of the present study was to detect Blastocystis spp. and their subtypes by employing two different preservation methods: conventional frozen stool (FS) and dried stool spots on filter paper (DSSFP). Concentration and purity of DNA, sensitivity of PCR, and DNA sequencing results obtained from the two methods were also compared. A total of 230 fecal samples were included and separated into two parts: one part of the fecal samples were directly frozen and stored at -20 °C. The remaining portion of the specimens were homogenized with saline and spread onto the filter papers as thin layer with a diameter of approximately 3 cm. After air-dried, the filter papers were stored at room temperature. DSSFP samples were collected by scraping from the filter papers. DNA were extracted by EURx Stool DNA Extraction Kit from both samples. Concentration and purity were measured with Nano-Drop, then PCR and sequencing were conducted for detection of Blastocystis spp. and its genotypes. Pure DNA was obtained with a A260/A280 ratio of 1.7-2.2 in both methods. DNA yield from FS was 25-405 ng/μl and average DNA concentration was 151 ng/μl, while these were 7-339 and 122 ng/μl for DSSFP, respectively. No PCR inhibition was observed in two methods. DNA from DSSFP were found to be stable and PCR were reproducible for at least 1 year. FS-PCR- and DSSFP-PCR-positive samples were 49 (21.3 %) and 58 (25.3 %), respectively (p = 0.078). The 43 specimens were concordantly positive by both FS-PCR and DSSFP-PCR. When the microscopy was taken as the gold standard, sensitivity of DSSFP-PCR and FS-PCR was 95.5 and 86.4 %, while specificity of both

  13. Evaluation and Comparison of Multiple Test Methods, Including Real-time PCR, for Legionella Detection in Clinical Specimens

    PubMed Central

    Peci, Adriana; Winter, Anne-Luise; Gubbay, Jonathan B.

    2016-01-01

    Legionella is a Gram-negative bacterium that can cause Pontiac fever, a mild upper respiratory infection and Legionnaire’s disease, a more severe illness. We aimed to compare the performance of urine antigen, culture, and polymerase chain reaction (PCR) test methods and to determine if sputum is an acceptable alternative to the use of more invasive bronchoalveolar lavage (BAL). Data for this study included specimens tested for Legionella at Public Health Ontario Laboratories from 1st January, 2010 to 30th April, 2014, as part of routine clinical testing. We found sensitivity of urinary antigen test (UAT) compared to culture to be 87%, specificity 94.7%, positive predictive value (PPV) 63.8%, and negative predictive value (NPV) 98.5%. Sensitivity of UAT compared to PCR was 74.7%, specificity 98.3%, PPV 77.7%, and NPV 98.1%. Out of 146 patients who had a Legionella-positive result by PCR, only 66 (45.2%) also had a positive result by culture. Sensitivity for culture was the same using either sputum or BAL (13.6%); sensitivity for PCR was 10.3% for sputum and 12.8% for BAL. Both sputum and BAL yield similar results regardless testing methods (Fisher Exact p-values = 1.0, for each test). In summary, all test methods have inherent weaknesses in identifying Legionella; therefore, more than one testing method should be used. Obtaining a single specimen type from patients with pneumonia limits the ability to diagnose Legionella, particularly when urine is the specimen type submitted. Given ease of collection and similar sensitivity to BAL, clinicians are encouraged to submit sputum in addition to urine when BAL submission is not practical from patients being tested for Legionella. PMID:27630979

  14. DNA Extraction Method Affects the Detection of a Fungal Pathogen in Formalin-Fixed Specimens Using qPCR.

    PubMed

    Adams, Andrea J; LaBonte, John P; Ball, Morgan L; Richards-Hrdlicka, Kathryn L; Toothman, Mary H; Briggs, Cheryl J

    2015-01-01

    Museum collections provide indispensable repositories for obtaining information about the historical presence of disease in wildlife populations. The pathogenic amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) has played a significant role in global amphibian declines, and examining preserved specimens for Bd can improve our understanding of its emergence and spread. Quantitative PCR (qPCR) enables Bd detection with minimal disturbance to amphibian skin and is significantly more sensitive to detecting Bd than histology; therefore, developing effective qPCR methodologies for detecting Bd DNA in formalin-fixed specimens can provide an efficient and effective approach to examining historical Bd emergence and prevalence. Techniques for detecting Bd in museum specimens have not been evaluated for their effectiveness in control specimens that mimic the conditions of animals most likely to be encountered in museums, including those with low pathogen loads. We used American bullfrogs (Lithobates catesbeianus) of known infection status to evaluate the success of qPCR to detect Bd in formalin-fixed specimens after three years of ethanol storage. Our objectives were to compare the most commonly used DNA extraction method for Bd (PrepMan, PM) to Macherey-Nagel DNA FFPE (MN), test optimizations for Bd detection with PM, and provide recommendations for maximizing Bd detection. We found that successful detection is relatively high (80-90%) when Bd loads before formalin fixation are high, regardless of the extraction method used; however, at lower infection levels, detection probabilities were significantly reduced. The MN DNA extraction method increased Bd detection by as much as 50% at moderate infection levels. Our results indicate that, for animals characterized by lower pathogen loads (i.e., those most commonly encountered in museum collections), current methods may underestimate the proportion of Bd-infected amphibians. Those extracting DNA from archived museum

  15. ReadqPCR and NormqPCR: R packages for the reading, quality checking and normalisation of RT-qPCR quantification cycle (Cq) data.

    PubMed

    Perkins, James R; Dawes, John M; McMahon, Steve B; Bennett, David L H; Orengo, Christine; Kohl, Matthias

    2012-07-02

    Measuring gene transcription using real-time reverse transcription polymerase chain reaction (RT-qPCR) technology is a mainstay of molecular biology. Technologies now exist to measure the abundance of many transcripts in parallel. The selection of the optimal reference gene for the normalisation of this data is a recurring problem, and several algorithms have been developed in order to solve it. So far nothing in R exists to unite these methods, together with other functions to read in and normalise the data using the chosen reference gene(s). We have developed two R/Bioconductor packages, ReadqPCR and NormqPCR, intended for a user with some experience with high-throughput data analysis using R, who wishes to use R to analyse RT-qPCR data. We illustrate their potential use in a workflow analysing a generic RT-qPCR experiment, and apply this to a real dataset. Packages are available from http://www.bioconductor.org/packages/release/bioc/html/ReadqPCR.htmland http://www.bioconductor.org/packages/release/bioc/html/NormqPCR.html These packages increase the repetoire of RT-qPCR analysis tools available to the R user and allow them to (amongst other things) read their data into R, hold it in an ExpressionSet compatible R object, choose appropriate reference genes, normalise the data and look for differential expression between samples.

  16. ReadqPCR and NormqPCR: R packages for the reading, quality checking and normalisation of RT-qPCR quantification cycle (Cq) data

    PubMed Central

    2012-01-01

    Background Measuring gene transcription using real-time reverse transcription polymerase chain reaction (RT-qPCR) technology is a mainstay of molecular biology. Technologies now exist to measure the abundance of many transcripts in parallel. The selection of the optimal reference gene for the normalisation of this data is a recurring problem, and several algorithms have been developed in order to solve it. So far nothing in R exists to unite these methods, together with other functions to read in and normalise the data using the chosen reference gene(s). Results We have developed two R/Bioconductor packages, ReadqPCR and NormqPCR, intended for a user with some experience with high-throughput data analysis using R, who wishes to use R to analyse RT-qPCR data. We illustrate their potential use in a workflow analysing a generic RT-qPCR experiment, and apply this to a real dataset. Packages are available from http://www.bioconductor.org/packages/release/bioc/html/ReadqPCR.htmland http://www.bioconductor.org/packages/release/bioc/html/NormqPCR.html Conclusions These packages increase the repetoire of RT-qPCR analysis tools available to the R user and allow them to (amongst other things) read their data into R, hold it in an ExpressionSet compatible R object, choose appropriate reference genes, normalise the data and look for differential expression between samples. PMID:22748112

  17. Identification of single nucleotide polymorphism in protein phosphatase 1 regulatory subunit 11 gene in Murrah bulls

    PubMed Central

    Jain, Varsha; Patel, Brijesh; Umar, Farhat Paul; Ajithakumar, H. M.; Gurjar, Suraj K.; Gupta, I. D.; Verma, Archana

    2017-01-01

    Aim: This study was conducted with the objective to identify single nucleotide polymorphism (SNP) in protein phosphatase 1 regulatory subunit 11 (PPP1R11) gene in Murrah bulls. Materials and Methods: Genomic DNA was isolated by phenol–chloroform extraction method from the frozen semen samples of 65 Murrah bulls maintained at Artificial Breeding Research Centre, ICAR-National Dairy Research Institute, Karnal. The quality and concentration of DNA was checked by spectrophotometer reading and agarose gel electrophoresis. The target region of PPP1R11 gene was amplified using four sets of primer designed based on Bos taurus reference sequence. The amplified products were sequenced and aligned using Clustal Omega for identification of SNPs. Animals were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) using EcoNI restriction enzyme. Results: The sequences in the NCBI accession number NW_005785016.1 for Bubalus bubalis were compared and aligned with the edited sequences of Murrah bulls with Clustal Omega software. A total of 10 SNPs were found, out of which 1 at 5’UTR, 3 at intron 1, and 6 at intron 2 region. PCR-RFLP using restriction enzyme EcoNI revealed only AA genotype indicating monomorphism in PPP1R11 gene of all Murrah animals included in the study. Conclusion: A total of 10 SNPs were found. PCR-RFLP revealed only AA genotype indicating monomorphism in PPP1R11 gene of all Murrah animals included in the study, due to which association analysis with conception rate was not feasible. PMID:28344410

  18. Evaluation of an Improved U.S. Food and Drug Administration Method for the Detection of Cyclospora cayetanensis in Produce Using Real-Time PCR.

    PubMed

    Murphy, Helen R; Lee, Seulgi; da Silva, Alexandre J

    2017-07-01

    Cyclospora cayetanensis is a protozoan parasite that causes human diarrheal disease associated with the consumption of fresh produce or water contaminated with C. cayetanensis oocysts. In the United States, foodborne outbreaks of cyclosporiasis have been linked to various types of imported fresh produce, including cilantro and raspberries. An improved method was developed for identification of C. cayetanensis in produce at the U.S. Food and Drug Administration. The method relies on a 0.1% Alconox produce wash solution for efficient recovery of oocysts, a commercial kit for DNA template preparation, and an optimized TaqMan real-time PCR assay with an internal amplification control for molecular detection of the parasite. A single laboratory validation study was performed to assess the method's performance and compare the optimized TaqMan real-time PCR assay and a reference nested PCR assay by examining 128 samples. The samples consisted of 25 g of cilantro or 50 g of raspberries seeded with 0, 5, 10, or 200 C. cayetanensis oocysts. Detection rates for cilantro seeded with 5 and 10 oocysts were 50.0 and 87.5%, respectively, with the real-time PCR assay and 43.7 and 94.8%, respectively, with the nested PCR assay. Detection rates for raspberries seeded with 5 and 10 oocysts were 25.0 and 75.0%, respectively, with the real-time PCR assay and 18.8 and 68.8%, respectively, with the nested PCR assay. All unseeded samples were negative, and all samples seeded with 200 oocysts were positive. Detection rates using the two PCR methods were statistically similar, but the real-time PCR assay is less laborious and less prone to amplicon contamination and allows monitoring of amplification and analysis of results, making it more attractive to diagnostic testing laboratories. The improved sample preparation steps and the TaqMan real-time PCR assay provide a robust, streamlined, and rapid analytical procedure for surveillance, outbreak response, and regulatory testing of foods for

  19. COMPARISON BETWEEN AUTOMATED SYSTEM AND PCR-BASED METHOD FOR IDENTIFICATION AND ANTIMICROBIAL SUSCEPTIBILITY PROFILE OF CLINICAL Enterococcus spp

    PubMed Central

    Furlaneto-Maia, Luciana; Rocha, Kátia Real; Siqueira, Vera Lúcia Dias; Furlaneto, Márcia Cristina

    2014-01-01

    Enterococci are increasingly responsible for nosocomial infections worldwide. This study was undertaken to compare the identification and susceptibility profile using an automated MicrosScan system, PCR-based assay and disk diffusion assay of Enterococcus spp. We evaluated 30 clinical isolates of Enterococcus spp. Isolates were identified by MicrosScan system and PCR-based assay. The detection of antibiotic resistance genes (vancomycin, gentamicin, tetracycline and erythromycin) was also determined by PCR. Antimicrobial susceptibilities to vancomycin (30 µg), gentamicin (120 µg), tetracycline (30 µg) and erythromycin (15 µg) were tested by the automated system and disk diffusion method, and were interpreted according to the criteria recommended in CLSI guidelines. Concerning Enterococcus identification the general agreement between data obtained by the PCR method and by the automatic system was 90.0% (27/30). For all isolates of E. faecium and E. faecalis we observed 100% agreement. Resistance frequencies were higher in E. faecium than E. faecalis. The resistance rates obtained were higher for erythromycin (86.7%), vancomycin (80.0%), tetracycline (43.35) and gentamicin (33.3%). The correlation between disk diffusion and automation revealed an agreement for the majority of the antibiotics with category agreement rates of > 80%. The PCR-based assay, the van(A) gene was detected in 100% of vancomycin resistant enterococci. This assay is simple to conduct and reliable in the identification of clinically relevant enterococci. The data obtained reinforced the need for an improvement of the automated system to identify some enterococci. PMID:24626409

  20. Detection and typing of low-risk human papillomavirus genotypes HPV 6, HPV 11, HPV 42, HPV 43 and HPV 44 by polymerase chain reaction and restriction fragment length polymorphism.

    PubMed

    Maver, Polona J; Poljak, Mario; Seme, Katja; Kocjan, Bostjan J

    2010-10-01

    A novel PCR-restriction fragment length polymorphism assay (PCR-RFLP) was developed for sensitive detection and reliable differentiation of five low-risk human papillomavirus (lr-HPV) genotypes: HPV 6, HPV 11, HPV 42, HPV 43 and HPV 44, as well as differentiation of prototypic and non-prototypic HPV 6 genomic variants. The assay is based on the amplification of a 320-bp fragment of the HPV E1 gene and subsequent analysis of PCR-products with BsaJI and HinFI. Testing on plasmid standards showed that PCR-RFLP enabled simple and reliable identification and differentiation of five targeted lr-HPV genotypes and could detect reproducibly down to 10 copies of viral genome equivalents per PCR. The PCR-RFLP showed almost complete agreement with previously obtained genotyping results on 42 HPV-DNA negative samples and 223 HPV-DNA positive samples (45 HPV 6, 34 HPV 11, 35 HPV 42, 10 HPV 43, 24 HPV 44 positive samples and 75 samples containing 28 non-targeted HPV genotypes). The novel assay is simple and robust, does not require any sophisticated equipment and can be of great value for epidemiological studies, particularly in settings in which financial resources are limited. Copyright (c) 2010 Elsevier B.V. All rights reserved.