Sample records for qs signaling molecules

  1. Identification of Quorum Sensing Signal Molecule of Lactobacillus delbrueckii subsp. bulgaricus.

    PubMed

    Pang, Xiaoyang; Liu, Cuiping; Lyu, Pengcheng; Zhang, Shuwen; Liu, Lu; Lu, Jing; Ma, Changlu; Lv, Jiaping

    2016-12-14

    Many bacteria in nature use quorum sensing (QS) to regulate gene expression. The quorum sensing system plays critical roles in the adaptation of bacteria to the surrounding environment. Previous studies have shown that during high-density fermentation, the autolysis of lactic acid bacteria was regulated by the QS system, and the two-component system (TCS, LBUL_RS00115/LBUL_RS00110) is involved in the autolysis of Lactobacillus delbrueckii subsp. bulgaricus. However, the QS signal molecule, which regulates this pathway, has not been identified. In this study, we compared the genome of Lactobacillus bulgaricus ATCC BAA-365 with the locus of seven lactobacillus QS systems; the position of the QS signal molecule of Lactobacillus bulgaricus ATCC BAA-365 was predicted by bioinformatics tool. Its function was identified by in vitro experiments. Construction of TCS mutant by gene knockout of LBUL_RS00115 confirmed that the signal molecule regulates the density of the flora by the TCS (LBUL_RS00115/LBUL_RS00110). This study indicated that quorum quenching and inhibition based on the signal molecule might serve as an approach to reduce the rate of autolysis of LAB and increase the number of live bacteria in fermentation.

  2. Functional Amyloids Keep Quorum-sensing Molecules in Check*

    PubMed Central

    Seviour, Thomas; Hansen, Susan Hove; Yang, Liang; Yau, Yin Hoe; Wang, Victor Bochuan; Stenvang, Marcel R.; Christiansen, Gunna; Marsili, Enrico; Givskov, Michael; Chen, Yicai; Otzen, Daniel E.; Nielsen, Per Halkjær; Geifman-Shochat, Susana; Kjelleberg, Staffan; Dueholm, Morten S.

    2015-01-01

    The mechanism by which extracellular metabolites, including redox mediators and quorum-sensing signaling molecules, traffic through the extracellular matrix of biofilms is poorly explored. We hypothesize that functional amyloids, abundant in natural biofilms and possessing hydrophobic domains, retain these metabolites. Using surface plasmon resonance, we demonstrate that the quorum-sensing (QS) molecules, 2-heptyl-3-hydroxy-4(1H)-quinolone and N-(3-oxododecanoyl)-l-homoserine lactone, and the redox mediator pyocyanin bind with transient affinity to functional amyloids from Pseudomonas (Fap). Their high hydrophobicity predisposes them to signal-amyloid interactions, but specific interactions also play a role. Transient interactions allow for rapid association and dissociation kinetics, which make the QS molecules bioavailable and at the same time secure within the extracellular matrix as a consequence of serial bindings. Retention of the QS molecules was confirmed using Pseudomonas aeruginosa PAO1-based 2-heptyl-3-hydroxy-4(1H)-quinolone and N-(3-oxododecanoyl)-l-homoserine lactone reporter assays, showing that Fap fibrils pretreated with the QS molecules activate the reporters even after sequential washes. Pyocyanin retention was validated by electrochemical analysis of pyocyanin-pretreated Fap fibrils subjected to the same washing process. Results suggest that QS molecule-amyloid interactions are probably important in the turbulent environments commonly encountered in natural habitats. PMID:25586180

  3. Shoot the Message, Not the Messenger—Combating Pathogenic Virulence in Plants by Inhibiting Quorum Sensing Mediated Signaling Molecules

    PubMed Central

    Alagarasan, Ganesh; Aswathy, Kumar S.; Madhaiyan, Munusamy

    2017-01-01

    Immunity, virulence, biofilm formation, and survival in the host environment are regulated by the versatile nature of density dependent microbial cell signaling, also called quorum sensing (QS). The QS molecules can associate with host plant tissues and, at times, cause a change in its gene expression at the downstream level through inter-kingdom cross talking. Progress in controlling QS through fungicide/bactericide in pathogenic microscopic organisms has lead to a rise of antibiotic resistance pathogens. Here, we review the application of selective quorum quenching (QQ) endophytes to control phytopathogens that are shared by most, if not all, terrestrial plant species as well as aquatic plants. Allowing the plants to posses endophytic colonies through biotization will be an additional and a sustainable encompassing methodology resulting in attenuated virulence rather than killing the pathogens. Furthermore, the introduced endophytes could serve as a potential biofertilizer and bioprotection agent, which in turn increases the PAMP- triggered immunity and hormonal systemic acquired resistance (SAR) in plants through SA-JA-ET signaling systems. This paper discusses major challenges imposed by QS and QQ application in biotechnology. PMID:28446917

  4. Identification of QS-21 as an Inflammasome-activating Molecular Component of Saponin Adjuvants*

    PubMed Central

    Marty-Roix, Robyn; Vladimer, Gregory I.; Pouliot, Kimberly; Weng, Dan; Buglione-Corbett, Rachel; West, Kim; MacMicking, John D.; Chee, Jonathan D.; Wang, Shixia; Lu, Shan; Lien, Egil

    2016-01-01

    Many immunostimulants act as vaccine adjuvants via activation of the innate immune system, although in many cases it is unclear which specific molecules contribute to the stimulatory activity. QS-21 is a defined, highly purified, and soluble saponin adjuvant currently used in licensed and exploratory vaccines, including vaccines against malaria, cancer, and HIV-1. However, little is known about the mechanisms of cellular activation induced by QS-21. We observed QS-21 to elicit caspase-1-dependent IL-1β and IL-18 release in antigen-presenting cells such as macrophages and dendritic cells when co-stimulated with the TLR4-agonist adjuvant monophosphoryl lipid A. Furthermore, our data suggest that the ASC-NLRP3 inflammasome is responsible for QS-21-induced IL-1β/IL-18 release. At higher concentrations, QS-21 induced macrophage and dendritic cell death in a caspase-1-, ASC-, and NLRP3-independent manner, whereas the presence of cholesterol rescued cell viability. A nanoparticulate adjuvant that contains QS-21 as part of a heterogeneous mixture of saponins also induced IL-1β in an NLRP3-dependent manner. Interestingly, despite the role NLRP3 plays for cellular activation in vitro, NLRP3-deficient mice immunized with HIV-1 gp120 and QS-21 showed significantly higher levels of Th1 and Th2 antigen-specific T cell responses and increased IgG1 and IgG2c compared with wild type controls. Thus, we have identified QS-21 as a nonparticulate single molecular saponin that activates the NLRP3 inflammasome, but this signaling pathway may contribute to decreased antigen-specific responses in vivo. PMID:26555265

  5. Programmed Lab Experiments for Biochemical Investigation of Quorum-Sensing Signal Molecules in Rhizospheric Soil Bacteria.

    PubMed

    Nievas, Fiorela L; Bogino, Pablo C; Giordano, Walter

    2016-05-06

    Biochemistry courses in the Department of Molecular Biology at the National University of Río Cuarto, Argentina, are designed for undergraduate students in biology, microbiology, chemistry, agronomy, and veterinary medicine. Microbiology students typically have previous coursework in general, analytical, and organic chemistry. Programmed sequences of lab experiments allow these students to investigate biochemical problems whose solution is feasible within the context of their knowledge and experience. We previously designed and reported a programmed lab experiment that familiarizes microbiology students with techniques for detection and characterization of quorum-sensing (QS) and quorum-quenching (QQ) signal molecules. Here, we describe a sequence of experiments designed to expand the understanding and capabilities of biochemistry students using techniques for extraction and identification of QS and QQ signal molecules from peanut rhizospheric soil bacteria, including culturing and manipulation of bacteria under sterile conditions. The program provides students with an opportunity to perform useful assays, draw conclusions from their results, and discuss possible extensions of the study. © 2016 by The International Union of Biochemistry and Molecular Biology, 44:256-262, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  6. Identification of QS-21 as an Inflammasome-activating Molecular Component of Saponin Adjuvants.

    PubMed

    Marty-Roix, Robyn; Vladimer, Gregory I; Pouliot, Kimberly; Weng, Dan; Buglione-Corbett, Rachel; West, Kim; MacMicking, John D; Chee, Jonathan D; Wang, Shixia; Lu, Shan; Lien, Egil

    2016-01-15

    Many immunostimulants act as vaccine adjuvants via activation of the innate immune system, although in many cases it is unclear which specific molecules contribute to the stimulatory activity. QS-21 is a defined, highly purified, and soluble saponin adjuvant currently used in licensed and exploratory vaccines, including vaccines against malaria, cancer, and HIV-1. However, little is known about the mechanisms of cellular activation induced by QS-21. We observed QS-21 to elicit caspase-1-dependent IL-1β and IL-18 release in antigen-presenting cells such as macrophages and dendritic cells when co-stimulated with the TLR4-agonist adjuvant monophosphoryl lipid A. Furthermore, our data suggest that the ASC-NLRP3 inflammasome is responsible for QS-21-induced IL-1β/IL-18 release. At higher concentrations, QS-21 induced macrophage and dendritic cell death in a caspase-1-, ASC-, and NLRP3-independent manner, whereas the presence of cholesterol rescued cell viability. A nanoparticulate adjuvant that contains QS-21 as part of a heterogeneous mixture of saponins also induced IL-1β in an NLRP3-dependent manner. Interestingly, despite the role NLRP3 plays for cellular activation in vitro, NLRP3-deficient mice immunized with HIV-1 gp120 and QS-21 showed significantly higher levels of Th1 and Th2 antigen-specific T cell responses and increased IgG1 and IgG2c compared with wild type controls. Thus, we have identified QS-21 as a nonparticulate single molecular saponin that activates the NLRP3 inflammasome, but this signaling pathway may contribute to decreased antigen-specific responses in vivo. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Semisynthesis of Analogues of the Saponin Immunoadjuvant QS-21.

    PubMed

    Fernández-Tejada, Alberto; Walkowicz, William E; Tan, Derek S; Gin, David Y

    2017-01-01

    Saponins are triterpene glycoside natural products that exhibit many different biological properties, including activation and modulation of the immune system, and have therefore attracted significant interest as immunological adjuvants for use in vaccines. QS-21 is the most widely used and promising saponin adjuvant but suffers from several liabilities, such as scarcity, dose-limiting toxicity, and hydrolytic instability. Chemical synthesis has emerged as a powerful approach to obtain homogeneous, pure samples of QS-21 and to improve its properties and therapeutic profile by providing access to optimized, synthetic saponin variants. Herein, we describe a general method for the semisynthesis of these molecules from QS-21, with detailed synthetic protocols for two saponin variants developed in our recent work.

  8. Semisynthesis of Analogues of the Saponin Immunoadjuvant QS-21

    PubMed Central

    Fernández-Tejada, Alberto; Walkowicz, William E.; Tan, Derek S.; Gin, David Y.

    2016-01-01

    Saponins are triterpene glycoside natural products that exhibit many different biological properties, including activation and modulation of the immune system, and have therefore attracted significant interest as immunological adjuvants for use in vaccines. QS-21 is the most widely used and promising saponin adjuvant but suffers from several liabilities, such as scarcity, dose-limiting toxicity, and hydrolytic instability. Chemical synthesis has emerged as a powerful approach to obtain homogeneous, pure samples of QS-21 and to improve its properties and therapeutic profile by providing access to optimized, synthetic saponin variants. Herein, we describe a general method for the semisynthesis of these molecules from QS-21, with detailed synthetic protocols for two saponin variants developed in our recent work. PMID:27718185

  9. Natural and synthetic saponin adjuvant QS-21 for vaccines against cancer

    PubMed Central

    Ragupathi, Govind; Gardner, Jeffrey R; Livingston, Philip O; Gin, David Y

    2013-01-01

    One of the most widely used and potent immunological adjuvants is a mixture of soluble triterpene glycosides purified from the soap bark tree (Quillaja saponaria). Despite challenges in production, quality control, stability and toxicity, the QS-21 fraction from this extract has exhibited exceptional adjuvant properties for a range of antigens. It possesses an ability to augment clinically significant antibody and T-cell responses to vaccine antigens against a variety of infectious diseases, degenerative disorders and cancers. The recent synthesis of active molecules of QS-21 has provided a robust method to produce this leading vaccine adjuvant in high purity as well as to produce novel synthetic QS-21 congeners designed to induce increased immune responsiveness and decreased toxicity. PMID:21506644

  10. Indole-based novel small molecules for the modulation of bacterial signalling pathways.

    PubMed

    Biswas, Nripendra Nath; Kutty, Samuel K; Barraud, Nicolas; Iskander, George M; Griffith, Renate; Rice, Scott A; Willcox, Mark; Black, David StC; Kumar, Naresh

    2015-01-21

    Gram-negative bacteria such as Pseudomonas aeruginosa use N-acylated L-homoserine lactones (AHLs) as autoinducers (AIs) for quorum sensing (QS), a major regulatory and cell-to-cell communication system for social adaptation, virulence factor production, biofilm formation and antibiotic resistance. Some bacteria use indole moieties for intercellular signaling and as regulators of various bacterial phenotypes important for evading the innate host immune response and antimicrobial resistance. A range of natural and synthetic indole derivatives have been found to act as inhibitors of QS-dependent bacterial phenotypes, complementing the bactericidal ability of traditional antibiotics. In this work, various indole-based AHL mimics were designed and synthesized via the 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC·HCl) and N,N'-dicyclohexylcarbodiimide (DCC) mediated coupling reactions of a variety of substituted or unsubstituted aminoindoles with different alkanoic acids. All synthesized compounds were tested for QS inhibition using a P. aeruginosa QS reporter strain by measuring the amount of green fluorescent protein (GFP) production. Docking studies were performed to examine their potential to bind and therefore inhibit the target QS receptor protein. The most potent compounds 11a, 11d and 16a showed 44 to 65% inhibition of QS activity at 250 μM concentration, and represent promising drug leads for the further development of anti-QS antimicrobial compounds.

  11. Use of Whole-Cell Bioassays for Screening Quorum Signaling, Quorum Interference, and Biofilm Dispersion.

    PubMed

    Thornhill, Starla G; McLean, Robert J C

    2018-01-01

    In most bacteria, a global level of regulation, termed quorum sensing (QS), exists involving intercellular communication via the production and response to cell density-dependent signal molecules. QS has been associated with a number of important features in bacteria including virulence regulation and biofilm formation. Consequently, there is considerable interest in understanding, detecting, and inhibiting QS. N-acylated homoserine lactones (AHLs) are used as extracellular QS signals by a variety of Gram-negative bacteria. Chromobacterium violaceum, commonly found in soil and water, produces the characteristic purple pigment violacein, regulated by AHL-mediated QS. Based on this readily observed pigmentation phenotype, C. violaceum strains can be used to detect various aspects of AHL-mediated QS activity. In another commonly used bioassay organism, Agrobacterium tumefaciens, QS can be detected by the use of a reporter gene such as lacZ. Here, we describe several commonly used approaches incorporating C. violaceum and A. tumefaciens that can be used to detect AHL and QS inhibitors. Due to the inherent low susceptibility of biofilm bacteria to antimicrobial agents, biofilm dispersion, whereby bacteria reenter the planktonic community, is another increasingly important area of research. At least one signal, distinct from traditional QS, has been identified and there are a variety of other environmental factors that also trigger dispersion. We describe a microtiter-based experimental strategy whereby potential biofilm dispersion compounds can be screened.

  12. Intercellular and intracellular signalling systems that globally control the expression of virulence genes in plant pathogenic bacteria.

    PubMed

    Ham, Jong Hyun

    2013-04-01

    Plant pathogenic bacteria utilize complex signalling systems to control the expression of virulence genes at the cellular level and within populations. Quorum sensing (QS), an important intercellular communication mechanism, is mediated by different types of small molecules, including N-acyl homoserine lactones (AHLs), fatty acids and small proteins. AHL-mediated signalling systems dependent on the LuxI and LuxR family proteins play critical roles in the virulence of a wide range of Gram-negative plant pathogenic bacteria belonging to the Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria. Xanthomonas spp. and Xylella fastidiosa, members of the Gammaproteobacteria, however, possess QS systems that are mediated by fatty acid-type diffusible signal factors (DSFs). Recent studies have demonstrated that Ax21, a 194-amino-acid protein in Xanthomonas oryzae pv. oryzae, plays dual functions in activating a rice innate immune pathway through binding to the rice XA21 pattern recognition receptor and in regulating bacterial virulence and biofilm formation as a QS signal molecule. In xanthomonads, DSF-mediated QS systems are connected with the signalling pathways mediated by cyclic diguanosine monophosphate (c-di-GMP), which functions as a second messenger for the control of virulence gene expression in these bacterial pathogens. © 2012 BSPP AND BLACKWELL PUBLISHING LTD.

  13. 50 CFR 680.40 - Crab Quota Share (QS), Processor QS (PQS), Individual Fishing Quota (IFQ), and Individual...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Crab Quota Share (QS), Processor QS (PQS... established based on the regional designations determined on August 1, 2005. QS or PQS issued after this date... information is true, correct, and complete to the best of his/her knowledge and belief. If the application is...

  14. 50 CFR Table 8 to Part 680 - Initial QS and PQS Pool for Each Crab QS Fishery

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Crab QS Fishery Crab QS Fishery Initial QS Pool Initial PQS Pool BBR Bristol Bay red king crab 400,000... 200,000,000 PIK Pribilof Islands red and blue king crab 30,000,000 30,000,000 SMB St. Matthew blue... Western Aleutian Islands red king crab 60,000,000 60,000,000 WBT Western Bering Sea Tanner crab (C. bairdi...

  15. 50 CFR Table 8 to Part 680 - Initial QS and PQS Pool for Each Crab QS Fishery

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Crab QS Fishery Crab QS Fishery Initial QS Pool Initial PQS Pool BBR Bristol Bay red king crab 400,000... 200,000,000 PIK Pribilof Islands red and blue king crab 30,000,000 30,000,000 SMB St. Matthew blue... Western Aleutian Islands red king crab 60,000,000 60,000,000 WBT Western Bering Sea Tanner crab (C. bairdi...

  16. Quorum sensing signal molecules produced by Pseudomonas aeruginosa cause inflammation and escape host factors in murine model of urinary tract infection.

    PubMed

    Gupta, Parul; Gupta, Ravi Kumar; Harjai, Kusum

    2013-10-01

    Quorum sensing (QS) is well established for its role in pathogenesis of various infections of Pseudomonas aeruginosa. However, its role in local tissue damage during urinary tract infection (UTI) is not yet fully established. To have insight in this, the present study was planned. UTI was established in mice using standard strain PAO1 and its isogenic QS mutant JP2. One group was challenged only with QS signals. Damage was assessed in terms of histopathology and pathology markers, malondialdehyde (MDA) and reactive nitrogen intermediates (RNI). Effect on pathogen motility, uroepithelial adhesion, and host serum sensitivity was also ascertained. PAO1-infected mice showed severe inflammation and tissue destruction, while mice infected with JP2 showed no significant destruction. JP2 was also unable to mount any tissue pathology markers, MDA and RNI, whereas PAO1 showed significantly higher levels of these two. Presence of only QS signals also showed considerable renal pathology. Strain JP2 also showed less motility, reduced uroepithelial cell adhesion, and increased serum sensitivity. Result highlights that QS signals induce local tissue pathology along with interference of host protective mechanisms during UTI.

  17. 50 CFR 679.40 - Sablefish and halibut QS.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., landing, or reporting. State catch reports are Alaska, Washington, Oregon, or California fish tickets... years of the 7-year halibut QS base period 1984 through 1990. The sum of all halibut QS for an IFQ... the 6-year sablefish QS base period 1985 through 1990. The sum of all sablefish QS for an IFQ...

  18. Quorum-quenching limits quorum-sensing exploitation by signal-negative invaders

    NASA Astrophysics Data System (ADS)

    Tannières, Mélanie; Lang, Julien; Barnier, Claudie; Shykoff, Jacqui A.; Faure, Denis

    2017-01-01

    Some bacteria produce and perceive quorum-sensing (QS) signals that coordinate several behaviours, including the costly processes that are exoenzyme production and plasmid transfer. In the case of plasmid transfer, the emergence of QS signal-altered invaders and their policing are poorly documented. In Agrobacterium tumefaciens, the virulence Ti-plasmid encodes both synthesis and sensing of QS-signals, which promote its transfer from a donor to a recipient cell. Here, we reported that QS-altered A. tumefaciens mutants arose during experimental evolution. All showed improved growth compared to their ancestor. Genome sequencing revealed that, though some had lost the Ti-plasmid, most were defective for QS-signal synthesis and Ti-plasmid conjugation (traR mutations) and one exhibited a QS-signal exploitation behaviour, using signal produced by other cells to enhance its own Ti-plasmid transfer. We explored mechanisms that can limit this QS-hijacking. We showed that the A. tumefaciens capacity to inactivate QS-signals by expressing QS-degrading enzyme could attenuate dissemination of the QS signal-negative Ti-plasmids. This work shows that enzymatic QS-disruption whether encoded by the QS-producing Ti-plasmid itself, by a companion plasmid in the same donor cells, or by one in the recipient cells, in all cases can serve as a mechanism for controlling QS exploitation by QS signal-negative mutants.

  19. 50 CFR Table 7 to Part 680 - Initial Issuance of Crab QS by Crab QS Fishery

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... used to calculate QS for each QS fishery is: 1. Bristol Bay red king crab (BBR) 4 years of the 5-year..., Western Aleutian Island golden (brown) king crab, Bering Sea snow crab, or Bristol Bay red king crab fisheries. 4 years 5. Pribilof red king and blue king crab (PIK) 4 years of the 5-year period beginning on...

  20. The Pseudomonas aeruginosa quorum sensing signal molecule N-(3-oxododecanoyl) homoserine lactone enhances keratinocyte migration and induces Mmp13 gene expression in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paes, Camila, E-mail: camilaquinetti@gmail.com; Nakagami, Gojiro, E-mail: gojiron-tky@umin.ac.jp; Minematsu, Takeo, E-mail: tminematsu-tky@umin.ac.jp

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer An evidence of the positive effect of AHL on epithelialization process is provided. Black-Right-Pointing-Pointer AHL enhances keratinocyte's ability to migrate in an in vitro scratch wound model. Black-Right-Pointing-Pointer AHL induces the expression of Mmp13. Black-Right-Pointing-Pointer Topical application of AHL represents a possible strategy to treat chronic wounds. -- Abstract: Re-epithelialization is an essential step of wound healing involving three overlapping keratinocyte functions: migration, proliferation and differentiation. While quorum sensing (QS) is a cell density-dependent signaling system that enables bacteria to regulate the expression of certain genes, the QS molecule N-(3-oxododecanoyl) homoserine lactone (AHL) exerts effects also on mammalianmore » cells in a process called inter-kingdom signaling. Recent studies have shown that AHL improves epithelialization in in vivo wound healing models but detailed understanding of the molecular and cellular mechanisms are needed. The present study focused on the AHL as a candidate reagent to improve wound healing through direct modulation of keratinocyte's activity in the re-epithelialization process. Results indicated that AHL enhances the keratinocyte's ability to migrate in an in vitro scratch wound healing model probably due to the high Mmp13 gene expression analysis after AHL treatment that was revealed by real-time RT-PCR. Inhibition of activator protein 1 (AP-1) signaling pathway completely prevented the migration of keratinocytes, and also resulted in a diminished Mmp13 gene expression, suggesting that AP-1 might be essential in the AHL-induced migration. Taken together, these results imply that AHL is a promising candidate molecule to improve re-epithelialization through the induction of migration of keratinocytes. Further investigation is needed to clarify the mechanism of action and molecular pathway of AHL on the keratinocyte migration process.« less

  1. The Multiple DSF-family QS Signals are Synthesized from Carbohydrate and Branched-chain Amino Acids via the FAS Elongation Cycle

    PubMed Central

    Zhou, Lian; Yu, Yonghong; Chen, Xiping; Diab, Abdelgader Abdeen; Ruan, Lifang; He, Jin; Wang, Haihong; He, Ya-Wen

    2015-01-01

    Members of the diffusible signal factor (DSF) family are a novel class of quorum sensing (QS) signals in diverse Gram-negative bacteria. Although previous studies have identified RpfF as a key enzyme for the biosynthesis of DSF family signals, many questions in their biosynthesis remain to be addressed. In this study with the phytopathogen Xanthomonas campestris pv. campestris (Xcc), we show that Xcc produces four DSF-family signals (DSF, BDSF, CDSF and IDSF) during cell culture, and that IDSF is a new functional signal characterized as cis-10-methyl-2-dodecenoic acid. Using a range of defined media, we further demonstrate that Xcc mainly produces BDSF in the presence of carbohydrates; leucine and valine are the primary precursor for DSF biosynthesis; isoleucine is the primary precursor for IDSF biosynthesis. Furthermore, our biochemical analyses show that the key DSF synthase RpfF has both thioesterase and dehydratase activities, and uses 3-hydroxydedecanoyl-ACP as a substrate to produce BDSF. Finally, our results show that the classic fatty acid synthesis elongation cycle is required for the biosynthesis of DSF-family signals. Taken all together, these findings establish a general biosynthetic pathway for the DSF-family quorum sensing signals. PMID:26289160

  2. Vibrio vulnificus quorum-sensing molecule cyclo(Phe-Pro) inhibits RIG-I-mediated antiviral innate immunity.

    PubMed

    Lee, Wooseong; Lee, Seung-Hoon; Kim, Minwoo; Moon, Jae-Su; Kim, Geon-Woo; Jung, Hae-Gwang; Kim, In Hwang; Oh, Ji Eun; Jung, Hi Eun; Lee, Heung Kyu; Ku, Keun Bon; Ahn, Dae-Gyun; Kim, Seong-Jun; Kim, Kun-Soo; Oh, Jong-Won

    2018-04-23

    The recognition of pathogen-derived ligands by pattern recognition receptors activates the innate immune response, but the potential interaction of quorum-sensing (QS) signaling molecules with host anti-viral defenses remains largely unknown. Here we show that the Vibrio vulnificus QS molecule cyclo(Phe-Pro) (cFP) inhibits interferon (IFN)-β production by interfering with retinoic-acid-inducible gene-I (RIG-I) activation. Binding of cFP to the RIG-I 2CARD domain induces a conformational change in RIG-I, preventing the TRIM25-mediated ubiquitination to abrogate IFN production. cFP enhances susceptibility to hepatitis C virus (HCV), as well as Sendai and influenza viruses, each known to be sensed by RIG-I but did not affect the melanoma-differentiation-associated gene 5 (MDA5)-recognition of norovirus. Our results reveal an inter-kingdom network between bacteria, viruses and host that dysregulates host innate responses via a microbial quorum-sensing molecule modulating the response to viral infection.

  3. Quasi-Particle Self-Consistent GW for Molecules.

    PubMed

    Kaplan, F; Harding, M E; Seiler, C; Weigend, F; Evers, F; van Setten, M J

    2016-06-14

    We present the formalism and implementation of quasi-particle self-consistent GW (qsGW) and eigenvalue only quasi-particle self-consistent GW (evGW) adapted to standard quantum chemistry packages. Our implementation is benchmarked against high-level quantum chemistry computations (coupled-cluster theory) and experimental results using a representative set of molecules. Furthermore, we compare the qsGW approach for five molecules relevant for organic photovoltaics to self-consistent GW results (scGW) and analyze the effects of the self-consistency on the ground state density by comparing calculated dipole moments to their experimental values. We show that qsGW makes a significant improvement over conventional G0W0 and that partially self-consistent flavors (in particular evGW) can be excellent alternatives.

  4. Expedient construction of small molecule macroarrays via sequential palladium- and copper-mediated reactions and their ex situ biological testing.

    PubMed

    Frei, Reto; Breitbach, Anthony S; Blackwell, Helen E

    2012-05-01

    We report the highly efficient syntheses of a series of focused libraries in the small molecule macroarray format using Suzuki-Miyaura and copper-catalyzed azide-alkyne cycloaddition (or "click") reactions. The libraries were based on stilbene and triazole scaffolds, which are known to have a broad range of biological activities, including quorum-sensing (QS) modulation in bacteria. The library products were generated in parallel on the macroarray in extremely short reaction times (~10-20 min) and isolated in excellent purities. Biological testing of one macroarray library post-cleavage (ex situ) revealed several potent agonists of the QS receptor, LuxR, in Vibrio fischeri. These synthetic agonists, in contrast to others that we have reported, were only active in the presence of the native QS signal in V. fischeri, which is suggestive of a different mode of activity. Notably, the results presented herein showcase the ready compatibility of the macroarray platform with chemical reactions that are commonly utilized in small molecule probe and drug discovery today. As such, this work serves to expand the utility of the small molecule macroarray as a rapid and operationally straightforward approach toward the synthesis and screening of bioactive agents.

  5. Proteomic analysis reveals novel extracellular virulence-associated proteins and functions regulated by the diffusible signal factor (DSF) in Xanthomonas oryzae pv. oryzicola.

    PubMed

    Qian, Guoliang; Zhou, Yijing; Zhao, Yancun; Song, Zhiwei; Wang, Suyan; Fan, Jiaqin; Hu, Baishi; Venturi, Vittorio; Liu, Fengquan

    2013-07-05

    Quorum sensing (QS) in Xanthomonas oryzae pv. oryzicola (Xoc), the causal agent of bacterial leaf streak, is mediated by the diffusible signal factor (DSF). DSF-mediating QS has been shown to control virulence and a set of virulence-related functions; however, the expression profiles and functions of extracellular proteins controlled by DSF signal remain largely unclear. In the present study, 33 DSF-regulated extracellular proteins, whose functions include small-protein mediating QS, oxidative adaptation, macromolecule metabolism, cell structure, biosynthesis of small molecules, intermediary metabolism, cellular process, protein catabolism, and hypothetical function, were identified by proteomics in Xoc. Of these, 15 protein encoding genes were in-frame deleted, and 4 of them, including three genes encoding type II secretion system (T2SS)-dependent proteins and one gene encoding an Ax21 (activator of XA21-mediated immunity)-like protein (a novel small-protein type QS signal) were determined to be required for full virulence in Xoc. The contributions of these four genes to important virulence-associated functions, including bacterial colonization, extracellular polysaccharide, cell motility, biofilm formation, and antioxidative ability, are presented. To our knowledge, our analysis is the first complete list of DSF-regulated extracellular proteins and functions in a Xanthomonas species. Our results show that DSF-type QS played critical roles in regulation of T2SS and Ax21-mediating QS, which sheds light on the role of DSF signaling in Xanthomonas.

  6. Single-Molecule Imaging of Cellular Signaling

    NASA Astrophysics Data System (ADS)

    De Keijzer, Sandra; Snaar-Jagalska, B. Ewa; Spaink, Herman P.; Schmidt, Thomas

    Single-molecule microscopy is an emerging technique to understand the function of a protein in the context of its natural environment. In our laboratory this technique has been used to study the dynamics of signal transduction in vivo. A multitude of signal transduction cascades are initiated by interactions between proteins in the plasma membrane. These cascades start by binding a ligand to its receptor, thereby activating downstream signaling pathways which finally result in complex cellular responses. To fully understand these processes it is important to study the initial steps of the signaling cascades. Standard biological assays mostly call for overexpression of the proteins and high concentrations of ligand. This sets severe limits to the interpretation of, for instance, the time-course of the observations, given the large temporal spread caused by the diffusion-limited binding processes. Methods and limitations of single-molecule microscopy for the study of cell signaling are discussed on the example of the chemotactic signaling of the slime-mold Dictyostelium discoideum. Single-molecule studies, as reviewed in this chapter, appear to be one of the essential methodologies for the full spatiotemporal clarification of cellular signaling, one of the ultimate goals in cell biology.

  7. Signalling molecules in the urothelium.

    PubMed

    Winder, Michael; Tobin, Gunnar; Zupančič, Daša; Romih, Rok

    2014-01-01

    The urothelium was long considered to be a silent barrier protecting the body from the toxic effects of urine. However, today a number of dynamic abilities of the urothelium are well recognized, including its ability to act as a sensor of the intravesical environment. During recent years several pathways of these urothelial abilities have been proposed and a major part of these pathways includes release of signalling molecules. It is now evident that the urothelium represents only one part of the sensory web. Urinary bladder signalling is finely tuned machinery of signalling molecules, acting in autocrine and paracrine manner, and their receptors are specifically distributed among different types of cells in the urinary bladder. In the present review the current knowledge of the formation, release, and signalling effects of urothelial acetylcholine, ATP, adenosine, and nitric oxide in health and disease is discussed.

  8. Signalling Molecules in the Urothelium

    PubMed Central

    Winder, Michael; Tobin, Gunnar; Zupančič, Daša; Romih, Rok

    2014-01-01

    The urothelium was long considered to be a silent barrier protecting the body from the toxic effects of urine. However, today a number of dynamic abilities of the urothelium are well recognized, including its ability to act as a sensor of the intravesical environment. During recent years several pathways of these urothelial abilities have been proposed and a major part of these pathways includes release of signalling molecules. It is now evident that the urothelium represents only one part of the sensory web. Urinary bladder signalling is finely tuned machinery of signalling molecules, acting in autocrine and paracrine manner, and their receptors are specifically distributed among different types of cells in the urinary bladder. In the present review the current knowledge of the formation, release, and signalling effects of urothelial acetylcholine, ATP, adenosine, and nitric oxide in health and disease is discussed. PMID:25177686

  9. Inhibition of biofilm development and spoilage potential of Shewanella baltica by quorum sensing signal in cell-free supernatant from Pseudomonas fluorescens.

    PubMed

    Zhao, Aifei; Zhu, Junli; Ye, Xiaofeng; Ge, Yangyang; Li, Jianrong

    2016-08-02

    The objective of this study was to in vitro evaluate the effect of a cell-free supernatant (CFS) containing quorum sensing (QS) signal of Pseudomonas fluorescens on the growth, biofilm development and spoilage potential of Shewanella baltica, and preliminarily assess the interactive influences of various chemically synthesized autoinducers on spoilage phenotypes of S. baltica. PF01 strain isolated from spoiled Pseudosciaen crocea was identified P. fluorescens. The addition of 25% and 50% CFS to S. baltica culture had no effect on the growth rate during the lag and exponential phase, however, caused cell decline during the stationary phase. The presence of CFS from P. fluorescens significantly inhibited biofilm development, and greatly decreased the production of trimethylamine (TMA) and biogenic amino in S. baltica. Various signal molecules of QS in the CFS of P. fluorescens culture were detected, including seven N-acyl-l-homoserine lactones (AHLs), autoinducer-2 (AI-2) and two diketopiperazines (DKPs). Exogenous supplement of synthesized seven AHLs containing in the CFS decreased biofilm formation and TMA production in S. baltica, while exposure to exogenous cyclo-(l-Pro-l-Leu) was showed to promote spoilage potential, which revealed that S. baltica also sense the two QS molecules. Furthermore, the stimulating effect of cyclo-(l-Pro-l-Leu) was affected when AHL was simultaneously added, suggesting that the inhibitory activity of spoilage phenotypes in S. baltica might be attributed to a competitive effect of these QS compounds in the CFS of P. fluorescens. The present studies provide a good basis for future research on the role of QS in the regulation of spoilage microbial flora. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Lysosome-Dependent Activation of Human Dendritic Cells by the Vaccine Adjuvant QS-21

    PubMed Central

    Welsby, Iain; Detienne, Sophie; N’Kuli, Francisca; Thomas, Séverine; Wouters, Sandrine; Bechtold, Viviane; De Wit, Dominique; Gineste, Romain; Reinheckel, Thomas; Elouahabi, Abdelatif; Courtoy, Pierre J.; Didierlaurent, Arnaud M.; Goriely, Stanislas

    2017-01-01

    The adjuvant properties of the saponin QS-21 have been known for decades. It is a component of the Adjuvant System AS01 that is used in several vaccine candidates. QS-21 strongly potentiates both cellular and humoral immune responses to purified antigens, yet how it activates immune cells is largely unknown. Here, we report that QS-21 directly activated human monocyte-derived dendritic cells (moDCs) and promoted a pro-inflammatory transcriptional program. Cholesterol-dependent QS-21 endocytosis followed by lysosomal destabilization and Syk kinase activation were prerequisites for this response. Cathepsin B, a lysosomal cysteine protease, was essential for moDC activation in vitro and contributed to the adjuvant effects of QS-21 in vivo. Collectively, these findings provide new insights into the pathways involved in the direct activation of antigen-presenting cells by a clinically relevant QS-21 formulation. PMID:28105029

  11. 50 CFR 679.80 - Allocation and transfer of rockfish QS.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... from which that LLP license was derived during the calendar years 2000 and 2001, unless clear and...) Determine the Total Entry Level Trawl Fishery Transition Rockfish QS pool for each rockfish primary species... Rockfish QS pools. (v) Multiply the Percentage of the Total Entry Level Trawl Fishery Transition Rockfish...

  12. 50 CFR 679.80 - Allocation and transfer of rockfish QS.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... from which that LLP license was derived during the calendar years 2000 and 2001, unless clear and...) Determine the Total Entry Level Trawl Fishery Transition Rockfish QS pool for each rockfish primary species... Rockfish QS pools. (v) Multiply the Percentage of the Total Entry Level Trawl Fishery Transition Rockfish...

  13. 50 CFR 679.80 - Allocation and transfer of rockfish QS.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... from which that LLP license was derived during the calendar years 2000 and 2001, unless clear and...) Determine the Total Entry Level Trawl Fishery Transition Rockfish QS pool for each rockfish primary species... Rockfish QS pools. (v) Multiply the Percentage of the Total Entry Level Trawl Fishery Transition Rockfish...

  14. Eavesdropping and crosstalk between secreted quorum sensing peptide signals that regulate bacteriocin production in Streptococcus pneumoniae.

    PubMed

    Miller, Eric L; Kjos, Morten; Abrudan, Monica I; Roberts, Ian S; Veening, Jan-Willem; Rozen, Daniel E

    2018-06-13

    Quorum sensing (QS), where bacteria secrete and respond to chemical signals to coordinate population-wide behaviors, has revealed that bacteria are highly social. Here, we investigate how diversity in QS signals and receptors can modify social interactions controlled by the QS system regulating bacteriocin secretion in Streptococcus pneumoniae, encoded by the blp operon (bacteriocin-like peptide). Analysis of 4096 pneumococcal genomes detected nine blp QS signals (BlpC) and five QS receptor groups (BlpH). Imperfect concordance between signals and receptors suggested widespread social interactions between cells, specifically eavesdropping (where cells respond to signals that they do not produce) and crosstalk (where cells produce signals that non-clones detect). This was confirmed in vitro by measuring the response of reporter strains containing six different blp QS receptors to cognate and non-cognate peptides. Assays between pneumococcal colonies grown adjacent to one another provided further evidence that crosstalk and eavesdropping occur at endogenous levels of signal secretion. Finally, simulations of QS strains producing bacteriocins revealed that eavesdropping can be evolutionarily beneficial even when the affinity for non-cognate signals is very weak. Our results highlight that social interactions can mediate intraspecific competition among bacteria and reveal that competitive interactions can be modified by polymorphic QS systems.

  15. Polypetide signaling molecules in plant development

    USDA-ARS?s Scientific Manuscript database

    Intercellular communication mediated by small signaling molecules is a key mechanism for coordinating plant growth and development. In the past few years, polypeptide signals have been shown to play prominent roles in processes as diverse as shoot and root meristem maintenance, vascular differentiat...

  16. Signaling gateway molecule pages—a data model perspective

    PubMed Central

    Dinasarapu, Ashok Reddy; Saunders, Brian; Ozerlat, Iley; Azam, Kenan; Subramaniam, Shankar

    2011-01-01

    Summary: The Signaling Gateway Molecule Pages (SGMP) database provides highly structured data on proteins which exist in different functional states participating in signal transduction pathways. A molecule page starts with a state of a native protein, without any modification and/or interactions. New states are formed with every post-translational modification or interaction with one or more proteins, small molecules or class molecules and with each change in cellular location. State transitions are caused by a combination of one or more modifications, interactions and translocations which then might be associated with one or more biological processes. In a characterized biological state, a molecule can function as one of several entities or their combinations, including channel, receptor, enzyme, transcription factor and transporter. We have also exported SGMP data to the Biological Pathway Exchange (BioPAX) and Systems Biology Markup Language (SBML) as well as in our custom XML. Availability: SGMP is available at www.signaling-gateway.org/molecule. Contact: shankar@ucsd.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:21505029

  17. DataQs analyst guide : best practices for federal and state agency users.

    DOT National Transportation Integrated Search

    2014-12-01

    The DataQs Analyst Guide provides practical guidance and : best practices to address and resolve Requests for Data : Reviews (RDRs) submitted electronically to FMCSA by motor : carriers, commercial drivers, and other persons using the : DataQs system...

  18. 50 CFR 680.41 - Transfer of QS, PQS, IFQ and IPQ.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... use thereof in the form of IFQ or IPQ, to pass from one person to another, permanently or for a fixed... or IPQ for that crab QS fishery. (2) Notification of application approval or disapproval. Persons..., IFQ, or IPQ by transfer. Persons, other than persons initially issued QS or PQS, must establish...

  19. 50 CFR 680.41 - Transfer of QS, PQS, IFQ and IPQ.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...://alaskafisheries.noaa.gov, or by contacting NMFS at: 800-304-4846, Option 2. (c) Eligibility to receive QS, PQS... to any person on request or on the Internet at http://www.fakr.noaa.gov/. (ii) Contents. A complete... permit is issued and the QS holder must re-apply for any subsequent transfers. (iii) NMFS will not...

  20. 50 CFR 680.41 - Transfer of QS, PQS, IFQ and IPQ.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...://alaskafisheries.noaa.gov, or by contacting NMFS at: 800-304-4846, Option 2. (c) Eligibility to receive QS, PQS... to any person on request or on the Internet at http://www.fakr.noaa.gov/. (ii) Contents. A complete... permit is issued and the QS holder must re-apply for any subsequent transfers. (iii) NMFS will not...

  1. Quorum-quenching limits quorum-sensing exploitation by signal-negative invaders

    USDA-ARS?s Scientific Manuscript database

    Some bacteria produce and perceive quorum-sensing (QS) signals that coordinate several behaviors, including the physiologically costly processes of exoenzyme production and plasmid transfer. In the case of plasmid transfer, the emergence of QS signal-altered invaders and their policing are poorly do...

  2. QS-21: a potent vaccine adjuvant

    USDA-ARS?s Scientific Manuscript database

    QS-21 is an potent adjuvant derived from the bark of a Chilean tree, Quillaja saponaria. One of the advantages of this adjuvant is that it promotes a balanced humoral and cell-mediaed immune response and can be widely applicable to a variety of vaccines. This adjuvant has used for some veterinary va...

  3. Pseudomonas cremoricolorata Strain ND07 Produces N-acyl Homoserine Lactones as Quorum Sensing Molecules

    PubMed Central

    Yunos, Nina Yusrina Muhamad; Tan, Wen-Si; Koh, Chong-Lek; Sam, Choon-Kook; Mohamad, Nur Izzati; Tan, Pui-Wan; Adrian, Tan-Guan-Sheng; Yin, Wai-Fong; Chan, Kok-Gan

    2014-01-01

    Quorum sensing (QS) is a bacterial cell-to-cell communication system controlling QS-mediated genes which is synchronized with the population density. The regulation of specific gene activity is dependent on the signaling molecules produced, namely N-acyl homoserine lactones (AHLs). We report here the identification and characterization of AHLs produced by bacterial strain ND07 isolated from a Malaysian fresh water sample. Molecular identification showed that strain ND07 is clustered closely to Pseudomonas cremoricolorata. Spent culture supernatant extract of P. cremoricolorata strain ND07 activated the AHL biosensor Chromobacterium violaceum CV026. Using high resolution triple quadrupole liquid chromatography-mass spectrometry, it was confirmed that P. cremoricolorata strain ND07 produced N-octanoyl-l-homoserine lactone (C8-HSL) and N-decanoyl-l-homoserine lactone (C10-HSL). To the best of our knowledge, this is the first documentation on the production of C10-HSL in P. cremoricolorata strain ND07. PMID:24984061

  4. Simple Signaling Molecules for Inductive Bone Regenerative Engineering

    PubMed Central

    Nelson, Stephen J.; Deng, Meng; Sethuraman, Swaminathan; Doty, Stephen B.; Lo, Kevin W. H.; Khan, Yusuf M.; Laurencin, Cato T.

    2014-01-01

    With greater than 500,000 orthopaedic procedures performed in the United States each year requiring a bone graft, the development of novel graft materials is necessary. We report that some porous polymer/ceramic composite scaffolds possess intrinsic osteoinductivity as shown through their capacity to induce in vivo host osteoid mineralization and in vitro stem cell osteogenesis making them attractive synthetic bone graft substitutes. It was discovered that certain low crystallinity ceramics partially dissociate into simple signaling molecules (i.e., calcium and phosphate ions) that induce stem cells to endogenously produce their own osteoinductive proteins. Review of the literature has uncovered a variety of simple signaling molecules (i.e., gases, ions, and redox reagents) capable of inducing other desirable stem cell differentiation through endogenous growth factor production. Inductive simple signaling molecules, which we have termed inducerons, represent a paradigm shift in the field of regenerative engineering where they can be utilized in place of recombinant protein growth factors. PMID:25019622

  5. Gluconacetobacter diazotrophicus PAL5 possesses an active quorum sensing regulatory system.

    PubMed

    Bertini, Elisa V; Nieto Peñalver, Carlos G; Leguina, Ana C; Irazusta, Verónica P; de Figueroa, Lucía I C

    2014-09-01

    The endophytic bacterium Gluconacetobacter diazotrophicus colonizes a broad range of host plants. Its plant growth-promoting capability is related to the capacity to perform biological nitrogen fixation, the biosynthesis of siderophores, antimicrobial substances and the solubilization of mineral nutrients. Colonization of and survival in these endophytic niche requires a complex regulatory network. Among these, quorum sensing systems (QS) are signaling mechanisms involved in the control of several genes related to microbial interactions, host colonization and stress survival. G. diazotrophicus PAL5 possesses a QS composed of a luxR and a luxI homolog, and produces eight molecules from the AHL family as QS signals. In this report data are provided showing that glucose concentration modifies the relative levels of these signal molecules. The activity of G. diazotrophicus PAL5 QS is also altered in presence of other carbon sources and under saline stress conditions. Inactivation of the QS system of G. diazotrophicus PAL5 by means of a quorum quenching strategy allowed the identification of extracellular and intracellular proteins under the control of this regulatory mechanism.

  6. Conformation-based signal transfer and processing at the single-molecule level

    NASA Astrophysics Data System (ADS)

    Li, Chao; Wang, Zhongping; Lu, Yan; Liu, Xiaoqing; Wang, Li

    2017-11-01

    Building electronic components made of individual molecules is a promising strategy for the miniaturization and integration of electronic devices. However, the practical realization of molecular devices and circuits for signal transmission and processing at room temperature has proven challenging. Here, we present room-temperature intermolecular signal transfer and processing using SnCl2Pc molecules on a Cu(100) surface. The in-plane orientations of the molecules are effectively coupled via intermolecular interaction and serve as the information carrier. In the coupled molecular arrays, the signal can be transferred from one molecule to another in the in-plane direction along predesigned routes and processed to realize logical operations. These phenomena enable the use of molecules displaying intrinsic bistable states as complex molecular devices and circuits with novel functions.

  7. Cell signaling molecules as drug targets in lung cancer: an overview.

    PubMed

    Mukherjee, Tapan K; Paul, Karan; Mukhopadhyay, Srirupa

    2011-07-01

    Lung being one of the vital and essential organs in the body, lung cancer is a major cause of mortality in the modern human society. Lung cancer can be broadly subdivided into nonsmall cell lung cancer (NSCLC) and small cell lung cancer (SCLC). Although NSCLC is sometimes treated with surgery, the advanced and metastatic NSCLC and SCLC usually respond better to chemotherapy and radiation. The most important targets of these chemotherapeutic agents are various intracellular signaling molecules. The primary focus of this review article is to summarize the description of various cell signaling molecules involved in lung cancer development and their regulation by chemotherapeutic agents. Extensive research work in recent years has identified several cellular signaling molecules that may be intricately involved in the complexity of lung cancer. Some of these cell signaling molecules are epidermal growth factor receptors, vascular endothelial growth factor receptors, mammalian target of rapamycin, mitogen-activated protein kinase phosphatase-1, peroxisome proliferator-activated receptor-gamma, matrix metalloproteinases and receptor for advanced glycation end-products. The present review will strengthen our current knowledge regarding the efficacy of the above-mentioned cell signaling molecules as potential beneficial drug targets against lung cancer.

  8. TSH Receptor Signaling Abrogation by a Novel Small Molecule

    PubMed Central

    Latif, Rauf; Realubit, Ronald B.; Karan, Charles; Mezei, Mihaly; Davies, Terry F.

    2016-01-01

    Pathological activation of the thyroid-stimulating hormone receptor (TSHR) is caused by thyroid-stimulating antibodies in patients with Graves’ disease (GD) or by somatic and rare genomic mutations that enhance constitutive activation of the receptor influencing both G protein and non-G protein signaling. Potential selective small molecule antagonists represent novel therapeutic compounds for abrogation of such abnormal TSHR signaling. In this study, we describe the identification and in vitro characterization of a novel small molecule antagonist by high-throughput screening (HTS). The identification of the TSHR antagonist was performed using a transcription-based TSH-inhibition bioassay. TSHR-expressing CHO cells, which also expressed a luciferase-tagged CRE response element, were optimized using bovine TSH as the activator, in a 384 well plate format, which had a Z score of 0.3–0.6. Using this HTS assay, we screened a diverse library of ~80,000 compounds at a final concentration of 16.7 μM. The selection criteria for a positive hit were based on a mean signal threshold of ≥50% inhibition of control TSH stimulation. The screening resulted in 450 positive hits giving a hit ratio of 0.56%. A secondary confirmation screen against TSH and forskolin – a post receptor activator of adenylyl cyclase – confirmed one TSHR-specific candidate antagonist molecule (named VA-K-14). This lead molecule had an IC50 of 12.3 μM and a unique chemical structure. A parallel analysis for cell viability indicated that the lead inhibitor was non-cytotoxic at its effective concentrations. In silico docking studies performed using a TSHR transmembrane model showed the hydrophobic contact locations and the possible mode of inhibition of TSHR signaling. Furthermore, this molecule was capable of inhibiting TSHR stimulation by GD patient sera and monoclonal-stimulating TSHR antibodies. In conclusion, we report the identification of a novel small molecule TSHR inhibitor, which has

  9. Development of a minimal saponin vaccine adjuvant based on QS-21

    NASA Astrophysics Data System (ADS)

    Fernández-Tejada, Alberto; Chea, Eric K.; George, Constantine; Pillarsetty, Nagavarakishore; Gardner, Jeffrey R.; Livingston, Philip O.; Ragupathi, Govind; Lewis, Jason S.; Tan, Derek S.; Gin, David Y.

    2014-07-01

    Adjuvants are materials added to vaccines to enhance the immunological response to an antigen. QS-21 is a natural product adjuvant under investigation in numerous vaccine clinical trials, but its use is constrained by scarcity, toxicity, instability and an enigmatic molecular mechanism of action. Herein we describe the development of a minimal QS-21 analogue that decouples adjuvant activity from toxicity and provides a powerful platform for mechanistic investigations. We found that the entire branched trisaccharide domain of QS-21 is dispensable for adjuvant activity and that the C4-aldehyde substituent, previously proposed to bind covalently to an unknown cellular target, is also not required. Biodistribution studies revealed that active adjuvants were retained preferentially at the injection site and the nearest draining lymph nodes compared with the attenuated variants. Overall, these studies have yielded critical insights into saponin structure-function relationships, provided practical synthetic access to non-toxic adjuvants, and established a platform for detailed mechanistic studies.

  10. Development of a minimal saponin vaccine adjuvant based on QS-21

    PubMed Central

    Fernández-Tejada, Alberto; Chea, Eric K.; George, Constantine; Pillarsetty, NagaVaraKishore; Gardner, Jeffrey R.; Livingston, Philip O.; Ragupathi, Govind; Lewis, Jason S.; Tan, Derek S.; Gin, David Y.

    2014-01-01

    Adjuvants are materials added to vaccines to enhance the immunological response to an antigen. QS-21 is a natural product adjuvant under investigation in numerous vaccine clinical trials, but its use is constrained by scarcity, toxicity, instability, and an enigmatic molecular mechanism of action. Herein, we describe the development of a minimal QS-21 analogue that decouples adjuvant activity from toxicity and provides a powerful platform for mechanistic investigations. We found that the entire branched trisaccharide domain of QS-21 is dispensable for adjuvant activity and that the C4-aldehyde substituent, previously proposed to bind covalently to an unknown cellular target, is also not required. Biodistribution studies revealed that active adjuvants were retained at the injection site and nearest draining lymph nodes preferentially compared to attenuated variants. Overall, these studies have yielded critical insights into saponin structure–function relationships, provided practical synthetic access to non-toxic adjuvants, and established a platform for detailed mechanistic studies. PMID:24950335

  11. The Quantified Self (QS) Movement and Some Emerging Opportunities for the Educational Technology Field

    ERIC Educational Resources Information Center

    Lee, Victor R.

    2013-01-01

    The Quantified Self (QS) movement is a growing global effort to use new mobile and wearable technologies to automatically obtain personal data about everyday activities. The social and material infrastructure associated with the Quantified Self (QS) movement provides a number of ideas that educational technologists should consider incorporating…

  12. Hydrogen Sulfide: A Signal Molecule in Plant Cross-Adaptation

    PubMed Central

    Li, Zhong-Guang; Min, Xiong; Zhou, Zhi-Hao

    2016-01-01

    For a long time, hydrogen sulfide (H2S) has been considered as merely a toxic by product of cell metabolism, but nowadays is emerging as a novel gaseous signal molecule, which participates in seed germination, plant growth and development, as well as the acquisition of stress tolerance including cross-adaptation in plants. Cross-adaptation, widely existing in nature, is the phenomenon in which plants expose to a moderate stress can induce the resistance to other stresses. The mechanism of cross-adaptation is involved in a complex signal network consisting of many second messengers such as Ca2+, abscisic acid, hydrogen peroxide and nitric oxide, as well as their crosstalk. The cross-adaptation signaling is commonly triggered by moderate environmental stress or exogenous application of signal molecules or their donors, which in turn induces cross-adaptation by enhancing antioxidant system activity, accumulating osmolytes, synthesizing heat shock proteins, as well as maintaining ion and nutrient balance. In this review, based on the current knowledge on H2S and cross-adaptation in plant biology, H2S homeostasis in plant cells under normal growth conditions; H2S signaling triggered by abiotic stress; and H2S-induced cross-adaptation to heavy metal, salt, drought, cold, heat, and flooding stress were summarized, and concluded that H2S might be a candidate signal molecule in plant cross-adaptation. In addition, future research direction also has been proposed. PMID:27833636

  13. Synthetic Studies of Complex Immunostimulants from Quillaja saponaria: Synthesis of the Potent Clinical Immunoadjuvant QS-21Aapi

    PubMed Central

    Kim, Yong-Jae; Wang, Pengfei; Navarro-Villalobos, Mauricio; Rohde, Bridget D.; Derryberry, JohnMark; Gin, David Y.

    2008-01-01

    QS-21 is one of the most promising new adjuvants for immune response potentiation and dose-sparing in vaccine therapy given its exceedingly high level of potency and its favorable toxicity profile. Melanoma, breast cancer, small cell lung cancer, prostate cancer, HIV-1, and malaria are among the numerous maladies targeted in more than 80 recent and ongoing vaccine therapy clinical trials involving QS-21 as a critical adjuvant component for immune response augmentation. QS-21 is a natural product immunostimulatory adjuvant, eliciting both T-cell- and antibody-mediated immune responses with microgram doses. Herein is reported the synthesis of QS-21Aapi in a highly modular strategy, applying novel glycosylation methodologies to a convergent construction of the potent saponin immunostimulant. The chemical synthesis of QS-21 offers unique opportunities to probe its mode of biological action through the preparation of otherwise unattainable nonnatural saponin analogues. PMID:16953631

  14. Role of chrysin on expression of insulin signaling molecules

    PubMed Central

    Satyanarayana, Kottireddy; Sravanthi, Koora; Shaker, Ivvala Anand; Ponnulakshmi, Rajagopal; Selvaraj, Jayaraman

    2015-01-01

    Background: Currently available drugs are unsuccessful for the treatment of tye-2 diabetes due to their adverseside-effects. Hence, a search for novel drugs, especially ofplant origin, continues. Chrysin (5,7-dihydroxyflavone) is a flavonoid, natural component of traditional medicinal herbs, present in honey, propolis and many plant extracts that hasbeen used in traditional medicine around the world to treat numerous ailments. Objective: The present study was aimed to identify the protective role of chrysin on the expression of insulin-signaling molecules in the skeletal muscle of high fat and sucrose-induced type-2 diabetic adult male rats. Materials and Methods: The oral effective dose of chrysin (100 mg/kg body weight) was given once a day until the end of the study (30 days post-induction of diabetes) to high fat diet-induced diabetic rats. At the end of the experimental period, fasting blood glucose, oral glucose tolerance, serum lipid profile, lipid peroxidation (LPO) and free radical generation, as well as the levels of insulin signaling molecules and tissue glycogen in the gastrocnemius muscle were assessed. Results: Diabetic rats showed impaired glucose tolerance and impairment in insulin signaling molecules (IR, IRS-1, p-IRS-1Tyr632, p- AktThr308), glucose transporter subtype 4 [GLUT4] proteins and glycogen concentration. Serum insulin, lipid profile, LPO and free radical generation were found to be increased in diabetic control rats. The treatment with chrysin normalized the altered levels of blood glucose, serum insulin, lipid profile, LPO and insulin signaling molecules as well as GLUT4 proteins. Conclusion: Our present findings indicate that chrysin improves glycemic control through activation of insulin signal transduction in the gastrocnemius muscle of high fat and sucrose-induced type-2 diabetic male rats. PMID:26834424

  15. Detection and imaging of quorum sensing in Pseudomonas aeruginosa biofilm communities by surface-enhanced resonance Raman scattering

    PubMed Central

    Bodelón, Gustavo; Montes-García, Verónica; López-Puente, Vanesa; Hill, Eric H.; Hamon, Cyrille; Sanz-Ortiz, Marta N.; Rodal-Cedeira, Sergio; Costas, Celina; Celiksoy, Sirin; Pérez-Juste, Ignacio; Scarabelli, Leonardo; Porta, Andrea La; Pérez-Juste, Jorge; Pastoriza-Santos, Isabel

    2016-01-01

    Most bacteria in nature exist as biofilms, which support intercellular signaling processes such as quorum sensing (QS), a cell-to-cell communication mechanism that allows bacteria to monitor and respond to cell density and changes in the environment. Because QS and biofilms are involved in the ability of bacteria to cause disease, there is a need for the development of methods for the non-invasive analysis of QS in natural bacterial populations. Here, by using surface-enhanced resonance Raman scattering spectroscopy, we report rationally designed nanostructured plasmonic substrates for the in-situ, label-free detection of a QS signaling metabolite in growing Pseudomonas aeruginosa biofilms and microcolonies. The in situ, non-invasive plasmonic imaging of QS in biofilms provides a powerful analytical approach for studying intercellular communication on the basis of secreted molecules as signals. PMID:27500808

  16. Observation of an electrical signal from a single molecule

    NASA Astrophysics Data System (ADS)

    Aslan, Arooj; Shaheen, Noor; Dobiszewski, Kyle; Kanwal, Alokik; Farrow, Reginald; Thomas, Gordon

    We have attached a folded protein molecule to the tip of a carbon nanotube using electrophoresis. We have then measured the electrons produced when the protein catalyzes a series of reactions. As an initial example of the reactions, we have used the catalysis by glucose-oxidase of glucose. We can show that the characteristic dynamic signals from the molecule scale with the glucose concentration. The molecule on the carbon nanotube tip is stable with respect to time under controlled conditions. The signals also indicate the glucose diffusion as its concentration is locally depleted at the nanotube by the catalysis. We use a second carbon nanotube with a laccase molecule on its tip to complete the circuit with an oxygen reaction. In a previous stage of this process, the other end of the nanotube is attached with a low-impedance electrical connection to a Ti thin film and the measuring circuitry. This work is an early step toward investigating the feasibility of an implantable glucose monitor to help treat diabetes.

  17. Single molecule analysis of B cell receptor motion during signaling activation

    NASA Astrophysics Data System (ADS)

    Rey Suarez, Ivan; Koo, Peter; Zhou, Shu; Wheatley, Brittany; Song, Wenxia; Mochrie, Simon; Upadhyaya, Arpita

    B cells are an essential part of the adaptive immune system. They patrol the body for signs of infection in the form of antigen on the surface of antigen presenting cells. B cell receptor (BCR) binding to antigen induces a signaling cascade that leads to B cell activation and spreading. During activation, BCR form signaling microclusters that later coalesce as the cell contracts. We have studied the dynamics of BCRs on activated murine primary B cells using single particle tracking. The tracks are analyzed using perturbation expectation-maximization (pEM), a systems-level analysis, which allows identification of different short-time diffusive states from single molecule tracks. We identified four dominant diffusive states, two of which correspond to BCRs interacting with signaling molecules. For wild-type cells, the number of BCR in signaling states increases as the cell spreads and then decreases during cell contraction. In contrast, cells lacking the actin regulatory protein, N-WASP, are unable to contract and BCRs remain in the signaling states for longer times. These observations indicate that actin cytoskeleton dynamics modulate BCR diffusion and clustering. Our results provide novel information regarding the timescale of interaction between BCR and signaling molecules.

  18. Synthetic Small Molecule Inhibitors of Hh Signaling As Anti-Cancer Chemotherapeutics

    PubMed Central

    Maschinot, C.A.; Pace, J.R.; Hadden, M.K.

    2016-01-01

    The hedgehog (Hh) pathway is a developmental signaling pathway that is essential to the proper embryonic development of many vertebrate systems. Dysregulation of Hh signaling has been implicated as a causative factor in the development and progression of several forms of human cancer. As such, the development of small molecule inhibitors of Hh signaling as potential anti-cancer chemotherapeutics has been a major area of research interest in both academics and industry over the past ten years. Through these efforts, synthetic small molecules that target multiple components of the Hh pathway have been identified and advanced to preclinical or clinical development. The goal of this review is to provide an update on the current status of several synthetic small molecule Hh pathway inhibitors and explore the potential of several recently disclosed inhibitory scaffolds. PMID:26310919

  19. QsMYB1 expression is modulated in response to heat and drought stresses and during plant recovery in Quercus suber.

    PubMed

    Almeida, Tânia; Pinto, Glória; Correia, Barbara; Santos, Conceição; Gonçalves, Sónia

    2013-12-01

    Cork oak is an economically important forest species showing a great tolerance to high temperatures and shortage of water. However, the mechanisms underlying this plasticity are still poorly understood. Among the stress regulators, transcription factors (TFs) are especially important since they can control a wide range of stress-inducible genes, which make them powerful targets for genetic engineering of stress tolerance. Here we evaluated the influence of increasing temperatures (up to 55 °C) or drought (18% field capacity, FC) on the expression profile of an R2R3-MYB transcription factor of cork oak, the QsMYB1. QsMYB1 was previously identified as being preferentially expressed in cork tissues and as having an associated alternative splicing mechanism, which results in two different transcripts (QsMYB1.1 and QsMYB1.2). Expression analysis by reverse transcription quantitative PCR (RT-qPCR) revealed that increasing temperatures led to a gradual down-regulation of QsMYB1 transcripts with more effect on QsMYB1.1 abundance. On the other hand, under drought condition, expression of QsMYB1 variants, mainly the QsMYB1.2, was transiently up-regulated shortly after the stress imposition. Recovery from each stress has also resulted in a differential response by both QsMYB1 transcripts. Several physiological and biochemical parameters (plant water status, chlorophyll fluorescence, lipid peroxidation and proline content) were determined in order to monitor the plant performance under stress and recovery. In conclusion, this report provides the first evidence that QsMYB1 TF may have a putative function in the regulatory network of cork oak response to heat and drought stresses and during plant recovery. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  20. Identification, synthesis and regulatory function of the N-acylated homoserine lactone signals produced by Pseudomonas chlororaphis HT66.

    PubMed

    Peng, Huasong; Ouyang, Yi; Bilal, Muhammad; Wang, Wei; Hu, Hongbo; Zhang, Xuehong

    2018-01-22

    Pseudomonas chlororaphis HT66 isolated from the rice rhizosphere is an important plant growth-promoting rhizobacteria that produce phenazine-1-carboxamide (PCN) in high yield. Phenazine production is regulated by a quorum sensing (QS) system that involves the N-acylated homoserine lactones (AHLs)-a prevalent type of QS molecule. Three QS signals were detected by thin layer chromatography (TLC) and high-performance liquid chromatography-mass spectrometry (HPLC-MS/MS), which identified to be N-(3-hydroxy hexanoyl)-L-homoserine lactone (3-OH-C6-HSL), N-(3-hydroxy octanoyl)-L-homoserine lactone (3-OH-C8-HSL) and N-(3-hydroxy decanoyl)-L-homoserine lactone (3-OH-C10-HSL). The signal types and methods of synthesis were different from that in other phenazine-producing Pseudomonas strains. By non-scar deletion and heterologous expression techniques, the biosynthesis of the AHL-signals was confirmed to be only catalyzed by PhzI, while other AHLs synthases i.e., CsaI and HdtS were not involved in strain HT66. In comparison to wild-type HT66, PCN production was 2.3-folds improved by over-expression of phzI, however, phzI or phzR mutant did not produce PCN. The cell growth of HT66∆phzI mutant was significantly decreased, and the biofilm formation in phzI or phzR inactivated strains of HT66 decreased to various extents. In conclusion, the results demonstrate that PhzI-PhzR system plays a critical role in numerous biological processes including phenazine production.

  1. Role of the DIP Molecules in DCC Signaling

    DTIC Science & Technology

    2001-03-01

    DIP13 interacts with AKT , a key molecule for cell survival. Our results suggest that the DCC apoptotic signal is mediated by DIP13 that interferes with... AKT cell survival pathway, resulting in cell death. Finally, we have cloned DIP13 beta, suggesting that DIP13 represents a family of molecules with at...interacts with DCC through its PTB domain (Fig. 4). Interestingly, Mitsuuchi et al. (1999) identified a gene dubbed APPL that interacts with AKT , a key

  2. Meta-Analysis on Randomized Controlled Trials of Vaccines with QS-21 or ISCOMATRIX Adjuvant: Safety and Tolerability.

    PubMed

    Bigaeva, Emilia; Doorn, Eva van; Liu, Heng; Hak, Eelko

    2016-01-01

    QS-21 shows in vitro hemolytic effect and causes side effects in vivo. New saponin adjuvant formulations with better toxicity profiles are needed. This study aims to evaluate the safety and tolerability of QS-21 and the improved saponin adjuvants (ISCOM, ISCOMATRIX and Matrix-M™) from vaccine trials. A systematic literature search was conducted from MEDLINE, EMBASE, Cochrane library and Clinicaltrials.gov. We selected for the meta-analysis randomized controlled trials (RCTs) of vaccines adjuvanted with QS-21, ISCOM, ISCOMATRIX or Matrix-M™, which included a placebo control group and reported safety outcomes. Pooled risk ratios (RRs) and their 95% confidence intervals (CIs) were calculated using a random-effects model. Jadad scale was used to assess the study quality. Nine RCTs were eligible for the meta-analysis: six trials on QS-21-adjuvanted vaccines and three trials on ISCOMATRIX-adjuvanted, with 907 patients in total. There were no studies on ISCOM or Matrix-M™ adjuvanted vaccines matching the inclusion criteria. Meta-analysis identified an increased risk for diarrhea in patients receiving QS21-adjuvanted vaccines (RR 2.55, 95% CI 1.04-6.24). No increase in the incidence of the reported systemic AEs was observed for ISCOMATRIX-adjuvanted vaccines. QS-21- and ISCOMATRIX-adjuvanted vaccines caused a significantly higher incidence of injection site pain (RR 4.11, 95% CI 1.10-15.35 and RR 2.55, 95% CI 1.41-4.59, respectively). ISCOMATRIX-adjuvanted vaccines also increased the incidence of injection site swelling (RR 3.43, 95% CI 1.08-10.97). Our findings suggest that vaccines adjuvanted with either QS-21 or ISCOMATRIX posed no specific safety concern. Furthermore, our results indicate that the use of ISCOMATRIX enables a better systemic tolerability profile when compared to the use of QS-21. However, no better local tolerance was observed for ISCOMATRIX-adjuvanted vaccines in immunized non-healthy subjects. This meta-analysis is limited by the relatively

  3. Attenuation of Vibrio fischeri quorum sensing using rationally designed polymers.

    PubMed

    Piletska, Elena V; Stavroulakis, Georgios; Karim, Kal; Whitcombe, Michael J; Chianella, Iva; Sharma, Anant; Eboigbodin, Kevin E; Robinson, Gary K; Piletsky, Sergey A

    2010-04-12

    A first attempt to attenuate the quorum sensing (QS) of a marine heterotroph microorganism, Vibrio fischeri , using signal molecule-sequestering polymers (SSPs) is presented. A set of rationally designed polymers with affinity toward a signal molecule of V. fischeri , N-(beta-ketocaproyl)-l-homoserine lactone (3-oxo-C6-AHL) was produced. It is reported that computationally designed polymers could sequester a signal molecule of V. fischeri and prevent QS-controlled phenotypes (in this case, bioluminescence) from being up-regulated. It was proven that the attenuation of bioluminescence of V. fischeri was due to sequestration of the signal molecule by specific polymers and not due to the toxicity of polymer or nonspecific depletion of nutrients. The ability to disrupt the bacterial communication using easy to synthesize and chemically inert polymers could provide a new concept for the development of pharmaceuticals and susceptible device coatings such as catheters.

  4. Synthesis and Preclinical Evaluation of QS-21 Variants Leading to Simplified Vaccine Adjuvants and Mechanistic Probes

    PubMed Central

    Chea, Eric K.; Fernández-Tejada, Alberto; Damani, Payal; Adams, Michelle M.; Gardner, Jeffrey R.; Livingston, Philip O.; Ragupathi, Govind; Gin, David Y.

    2012-01-01

    QS-21 is a potent immunostimulatory saponin that is currently under clinical investigation as an adjuvant in various vaccines to treat infectious diseases, cancers, and congnitive disorders. Herein we report the design, synthesis, and preclinical evaluation of simplified QS-21 congeners to define key structural features that are critical for adjuvant activity. Truncation of the linear tetrasaccharide domain revealed that a trisaccharide variant is equipotent to QS-21 while the corresponding disaccharide and monosaccharide congeners are more toxic or less potent, respectively. Modification of the acyl domain in the trisaccharide series revealed that a terminal carboxylic acid is well-tolerated while a terminal amine results in reduced adjuvant activity. Acylation of the terminal amine can restore adjuvant activity and enables the synthesis of fluorescently-labeled QS-21 variants. Cellular studies with these probes revealed that, contrary to conventional wisdom, the most highly adjuvant active of these fluorescently-labeled saponins does not simply associate with the plasma membrane, but rather is internalized by dendritic cells. PMID:22866694

  5. The Crowded Magnetosphere Of The Post-Common-Envelope Binary QS Virginis

    NASA Astrophysics Data System (ADS)

    Hill, Colin

    2016-06-01

    We present high-speed photometry and high-resolution spectroscopy of the short-period (Prot = 3.6 h) eclipsing post-common-envelope binary QS Virginis (QS Vir). Our UVES spectra span in excess of 6 orbits, over more than a year, and reveal the presence of several large prominences passing in front of both the M star and its white dwarf (WD) companion. Despite showing small variations on a time-scale of days, they persist for more than a year and may last decades. Roche tomography reveals a heavily spotted M star, with long-lived spots remaining in fixed locations, preferentially found on the hemisphere facing the WD. We find the 14,220 ± 350 K WD is relatively massive at 0.782 ± 0.013 M(_{odot}),with a radius of0.01068 ± 0.00007 R(_{odot}), consistent with evolutionary models. The tidally distorted M star has a mass of 0.382 ± 0.006 M(_{odot})and a radius of0.381 ± 0.003 R(_{odot}), also consistent with evolutionary models. Since the M star's radius is still within its Roche lobe and there is no evidence that it is overinflated, we conclude that QS Vir is most likely a pre-cataclysmic binary just about to become semidetached.

  6. Production of Cell-Cell Signaling Molecules by Bacteria Isolated From Human Chronic Wounds

    PubMed Central

    Rickard, Alexander H.; Colacino, Katelyn R.; Manton, Katelynn M.; Morton, Robert I.; Pulcini, Elinor; Pfeil, Joanne; Rhoads, Daniel; Wolcott, Randall D.; James, Garth

    2009-01-01

    AIM To (i) identify chronic wound bacteria and to test their ability to produce acyl-homoserine-lactones (AHLs) and autoinducer-2 (AI-2) cell-cell signaling molecules and (ii) determine if chronic wound debridement samples might contain these molecules. METHODS AND RESULTS Partial 16S rRNA gene sequencing revealed the identity of 46 chronic wound strains as belonging to nine genera. Using bio-reporter assays, 69.6% of the chronic wound strains were inferred to produce AI-2 while 19.6% were inferred to produced AHL molecules. At-least one strain from every genus, except those belonging to the genera Acinetobacter and Pseudomonas, were indicated to produce AI-2. Production of AI-2 in batch-cultures was growth-phase-dependent. Cross-feeding assays demonstrated that AHLs were produced by Acinetobacter spp., Pseudomonas aeruginosa and Serratia marcescens. Independent from studies of the bacterial species isolated from wounds, AHL and/or AI-2 signaling molecules were detected in 21 of 30 debridement samples of unknown microbial composition. CONCLUSION Chronic wound bacteria produce cell-cell signaling molecules. Resident species generally produce AI-2 molecules and aggressive transient species associated with chronic wounds typically produce AHLs. Both these classes of cell-cell signals are present in human chronic wounds. SIGNIFICANCE AND IMPACT OF STUDY Inter-bacterial cell-cell signaling may be an important factor influencing wound development and the presence of AHLs and AI-2 could be used as a predictor of wound severity. Manipulation of cell −cell signaling may provide a novel strategy for improving wound healing. PMID:19840177

  7. Meta-Analysis on Randomized Controlled Trials of Vaccines with QS-21 or ISCOMATRIX Adjuvant: Safety and Tolerability

    PubMed Central

    Bigaeva, Emilia; van Doorn, Eva; Liu, Heng; Hak, Eelko

    2016-01-01

    Background and Objectives QS-21 shows in vitro hemolytic effect and causes side effects in vivo. New saponin adjuvant formulations with better toxicity profiles are needed. This study aims to evaluate the safety and tolerability of QS-21 and the improved saponin adjuvants (ISCOM, ISCOMATRIX and Matrix-M™) from vaccine trials. Methods A systematic literature search was conducted from MEDLINE, EMBASE, Cochrane library and Clinicaltrials.gov. We selected for the meta-analysis randomized controlled trials (RCTs) of vaccines adjuvanted with QS-21, ISCOM, ISCOMATRIX or Matrix-M™, which included a placebo control group and reported safety outcomes. Pooled risk ratios (RRs) and their 95% confidence intervals (CIs) were calculated using a random-effects model. Jadad scale was used to assess the study quality. Results Nine RCTs were eligible for the meta-analysis: six trials on QS-21-adjuvanted vaccines and three trials on ISCOMATRIX-adjuvanted, with 907 patients in total. There were no studies on ISCOM or Matrix-M™ adjuvanted vaccines matching the inclusion criteria. Meta-analysis identified an increased risk for diarrhea in patients receiving QS21-adjuvanted vaccines (RR 2.55, 95% CI 1.04–6.24). No increase in the incidence of the reported systemic AEs was observed for ISCOMATRIX-adjuvanted vaccines. QS-21- and ISCOMATRIX-adjuvanted vaccines caused a significantly higher incidence of injection site pain (RR 4.11, 95% CI 1.10–15.35 and RR 2.55, 95% CI 1.41–4.59, respectively). ISCOMATRIX-adjuvanted vaccines also increased the incidence of injection site swelling (RR 3.43, 95% CI 1.08–10.97). Conclusions Our findings suggest that vaccines adjuvanted with either QS-21 or ISCOMATRIX posed no specific safety concern. Furthermore, our results indicate that the use of ISCOMATRIX enables a better systemic tolerability profile when compared to the use of QS-21. However, no better local tolerance was observed for ISCOMATRIX-adjuvanted vaccines in immunized non

  8. Calibrating accelerometer sensor on android phone with Accelerograph TDL 303 QS for earthquake online recorder

    NASA Astrophysics Data System (ADS)

    Riantana, R.; Darsono, D.; Triyono, A.; Azimut, H. B.

    2016-11-01

    Calibration of the android censor was done by placing the device in a mounting at side of accelerograph TDL 303 QS that will be a means of comparison. Leveling of both devices was set same, so that the state of the device can be assumed same anyway. Then applied vibrations in order to have the maximum amplitude value of both censor, so it can be found equality of the coefficient of proportionality both of them. The results on both devices obtain the Peak Ground Acceleration (PGA) as follows, on the x axis (EW) android censor is obtained PGA -2.4478145 gal than at TDL 303 QS obtained PGA -2.5504 gal, the y-axis (NS) on the censor android obtained PGA 3.0066964 gal than at TDL 303 QS obtained PGA 3.2073 gal, the z-axis (UD) on the android censor obtained PGA -14.0702377 gal than at TDL 303 QS obtained PGA -13.2927 gal, A correction value for android accelerometer censor is ± 0.1 gal for the x-axis (EW), ± 0.2 gal for the y-axis (NS), and ± 0.7 gal for the z-axis (UD).

  9. One step preparation and electrochemical analysis of IQS, a cell-cell communication signal in the nosocomial pathogen Pseudomonas aeruginosa.

    PubMed

    Shang, Fengjun; Muimhneacháin, Eoin Ó; Jerry Reen, F; Buzid, Alyah; O'Gara, Fergal; Luong, John H T; Glennon, Jeremy D; McGlacken, Gerard P

    2014-10-01

    Pseudomonas aeruginosa uses a hierarchical cell-cell communication system consisting of a number of regulatory elements to coordinate the expression of bacterial virulence genes. Sensitive detection of quorum sensing (QS) molecules has the potential for early identification of P. aeruginosa facilitating early medical intervention. A recently isolated cell-cell communication molecule, a thiazole termed IQS, can bypass the las QS system of P. aeruginosa under times of stress, activating a subset of QS-controlled genes. This compound offers a new target for pathogen detection and has been prepared in a one step protocol. A simple electrochemical strategy was employed for its sensitive detection using boron-doped diamond and glassy carbon electrodes by cyclic voltammetry and amperometry. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Bacterial biofilms and quorum sensing: fidelity in bioremediation technology.

    PubMed

    Mangwani, Neelam; Kumari, Supriya; Das, Surajit

    Increased contamination of the environment with toxic pollutants has paved the way for efficient strategies which can be implemented for environmental restoration. The major problem with conventional methods used for cleaning of pollutants is inefficiency and high economic costs. Bioremediation is a growing technology having advanced potential of cleaning pollutants. Biofilm formed by various micro-organisms potentially provide a suitable microenvironment for efficient bioremediation processes. High cell density and stress resistance properties of the biofilm environment provide opportunities for efficient metabolism of number of hydrophobic and toxic compounds. Bacterial biofilm formation is often regulated by quorum sensing (QS) which is a population density-based cell-cell communication process via signaling molecules. Numerous signaling molecules such as acyl homoserine lactones, peptides, autoinducer-2, diffusion signaling factors, and α-hydroxyketones have been studied in bacteria. Genetic alteration of QS machinery can be useful to modulate vital characters valuable for environmental applications such as biofilm formation, biosurfactant production, exopolysaccharide synthesis, horizontal gene transfer, catabolic gene expression, motility, and chemotaxis. These qualities are imperative for bacteria during degradation or detoxification of any pollutant. QS signals can be used for the fabrication of engineered biofilms with enhanced degradation kinetics. This review discusses the connection between QS and biofilm formation by bacteria in relation to bioremediation technology.

  11. Quorum Sensing in Marine Microbial Environments.

    PubMed

    Hmelo, Laura R

    2017-01-03

    Quorum sensing (QS) is a form of chemical communication used by certain bacteria that regulates a wide range of biogeochemically important bacterial behaviors. Although QS was first observed in a marine bacterium nearly four decades ago, only in the past decade has there been a rise in interest in the role that QS plays in the ocean. It has become clear that QS, regulated by signals such as acylated homoserine lactones (AHLs) or furanosyl-borate diesters [autoinducer-2 (AI-2) molecules], is involved in important processes within the marine carbon cycle, in the health of coral reef ecosystems, and in trophic interactions between a range of eukaryotes and their bacterial associates. The most well-studied QS systems in the ocean occur in surface-attached (biofilm) communities and rely on AHL signaling. AHL-QS is highly sensitive to the chemical and biological makeup of the environment and may respond to anthropogenic change, including ocean acidification and rising sea surface temperatures.

  12. Quorum Sensing in Marine Microbial Environments

    NASA Astrophysics Data System (ADS)

    Hmelo, Laura R.

    2017-01-01

    Quorum sensing (QS) is a form of chemical communication used by certain bacteria that regulates a wide range of biogeochemically important bacterial behaviors. Although QS was first observed in a marine bacterium nearly four decades ago, only in the past decade has there been a rise in interest in the role that QS plays in the ocean. It has become clear that QS, regulated by signals such as acylated homoserine lactones (AHLs) or furanosyl-borate diesters [autoinducer-2 (AI-2) molecules], is involved in important processes within the marine carbon cycle, in the health of coral reef ecosystems, and in trophic interactions between a range of eukaryotes and their bacterial associates. The most well-studied QS systems in the ocean occur in surface-attached (biofilm) communities and rely on AHL signaling. AHL-QS is highly sensitive to the chemical and biological makeup of the environment and may respond to anthropogenic change, including ocean acidification and rising sea surface temperatures.

  13. Hypopigmentation Induced by Frequent Low-Fluence, Large-Spot-Size QS Nd:YAG Laser Treatments.

    PubMed

    Wong, Yisheng; Lee, Siong See Joyce; Goh, Chee Leok

    2015-12-01

    The Q-switched 1064-nm neodymium-doped yttrium aluminum garnet (QS 1064-nm Nd:YAG) laser is increasingly used for nonablative skin rejuvenation or "laser toning" for melasma. Multiple and frequent low-fluence, large-spot-size treatments are used to achieve laser toning, and these treatments are associated with the development of macular hypopigmentation as a complication. We present a case series of three patients who developed guttate hypomelanotic macules on the face after receiving laser toning treatment with QS 1064-nm Nd:YAG.

  14. Host cell-induced signaling causes Clostridium perfringens to upregulate production of toxins important for intestinal infections

    PubMed Central

    Chen, Jianming; Ma, Menglin; Uzal, Francisco A; McClane, Bruce A

    2014-01-01

    Clostridium perfringens causes enteritis and enterotoxemia in humans and livestock due to prolific toxin production. In broth culture, C. perfringens uses the Agr-like quorum sensing (QS) system to regulate production of toxins important for enteritis/enterotoxemia, including beta toxin (CPB), enterotoxin, and epsilon toxin (ETX). The VirS/VirR two-component regulatory system (TCRS) also controls CPB production in broth cultures. Both the Agr-like QS and VirS/VirR systems are important when C. perfringens senses enterocyte-like Caco-2 cells and responds by upregulating CPB production; however, only the Agr-like QS system is needed for host cell-induced ETX production. These in vitro observations have pathophysiologic relevance since both the VirS/VirR and Agr-like QS signaling systems are required for C. perfringens strain CN3685 to produce CPB in vivo and to cause enteritis or enterotoxemia. Thus, apparently upon sensing its presence in the intestines, C. perfringens utilizes QS and TCRS signaling to produce toxins necessary for intestinal virulence. PMID:24061146

  15. Two bodies with high eccentricity around the cataclysmic variable QS Vir

    NASA Astrophysics Data System (ADS)

    Almeida, Leonardo A.; Jablonski, Francisco

    2011-11-01

    QS Vir is an eclipsing cataclysmic variable with 3.618 hrs orbital period. This system has the interesting characteristics that it does not show mass transfer between the components through the L1 Lagrangian point and shows a complex orbital period variation history. Qian et al. (2010) associated the orbital period variations to the presence of a giant planet in the system plus angular momentum loss via magnetic braking. Parsons et al. (2010) obtained new eclipse timings and observed that the orbital period variations associated to a hypothetical giant planet disagree with their measurements and concluded that the decrease in orbital period is part of a cyclic variation with period ~16 yrs. In this work, we present 28 new eclipse timings of QS Vir and suggest that the orbital period variations can be explained by a model with two circumbinary bodies. The best fitting gives the lower limit to the masses M1 sin(i) ~ 0.0086 M⊙ and M2 sin(i) ~ 0.054 M⊙ orbital periods P1 ~ 14.4 yrs and P2 ~ 16.99 yrs, and eccentricities e1 ~ 0.62 and e2~0.92 for the two external bodies. Under the assumption of coplanarity among the two external bodies and the inner binary, we obtain a giant planet with ~0.009 M⊙ and a brown dwarf with ~ 0.056 M⊙ around the eclipsing binary QS Vir.

  16. A Chemical Biology Approach to Interrogate Quorum Sensing Regulated Behaviors at the Molecular and Cellular Level

    PubMed Central

    Lowery, Colin A.; Matamouros, Susana; Niessen, Sherry; Zhu, Jie; Scolnick, Jonathan A.; Mee, Jenny M.; Cravatt, Benjamin F.; Miller, Samuel I.; Kaufmann, Gunnar F.; Janda, Kim D.

    2013-01-01

    SUMMARY Small molecule probes have been employed extensively to explore biological systems and elucidate cellular signaling pathways. In this study, we utilize an inhibitor of bacterial communication to monitor changes in the proteome of Salmonella enterica serovar Typhimurium with the aim of discovering new processes regulated by AI-2-based quorum sensing (QS), a mechanism of bacterial intracellular communication that allows for the coordination of gene expression in a cell density-dependent manner. In S. typhimurium, this system regulates the uptake and catabolism of intracellular signals and has been implicated in pathogenesis, including the invasion of host epithelial cells. We demonstrate that our QS antagonist is capable of selectively inhibiting the expression of known QS-regulated proteins in S. typhimurium, thus attesting that QS inhibitors may be used to confirm proposed and elucidate previously unidentified QS pathways without relying on genetic manipulation. PMID:23890008

  17. The Fe(III) and Ga(III) coordination chemistry of 3-(1-hydroxymethylidene) and 3-(1-hydroxydecylidene)-5-(2-hydroxyethyl)pyrrolidine-2,4-dione: Novel tetramic acid degradation products of homoserine lactone bacterial quorum sensing molecules

    PubMed Central

    Romano, Ariel A.; Hahn, Tobias; Davis, Nicole; Lowery, Colin A.; Struss, Anjali K.; Janda, Kim D.; Böttger, Lars H.; Matzanke, Berthold F.; Carrano, Carl J.

    2011-01-01

    Bacteria use small diffusible molecules to exchange information in a process called quorum sensing (QS). An important class of quorum sensing molecules used by Gram-negative bacteria is the family of N-acylhomoserine lactones (HSL). It was recently discovered that a degradation product of the QS molecule 3-oxo-C12-homoserine lactone, the tetramic acid 3-(1-hydroxydecylidene)-5-(2-hydroxyethyl)pyrrolidine-2,4-dione, is a potent antibacterial agent, thus implying roles for QS outside of simply communication. Because these tetramic acids also appear to bind iron with appreciable affinity it was suggested that metal binding might contribute to their biological activity. Here, using a variety of spectroscopic tools, we describe the coordination chemistry of both the methylidene and decylidene tetramic acid derivatives with Fe(III) and Ga(III) and discuss the potential biological significance of such metal binding. PMID:22178671

  18. Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography

    PubMed Central

    Shaw, Paul D.; Ping, Gao; Daly, Sean L.; Cha, Chung; Cronan, John E.; Rinehart, Kenneth L.; Farrand, Stephen K.

    1997-01-01

    Many Gram-negative bacteria regulate gene expression in response to their population size by sensing the level of acyl-homoserine lactone signal molecules which they produce and liberate to the environment. We have developed an assay for these signals that couples separation by thin-layer chromatography with detection using Agrobacterium tumefaciens harboring lacZ fused to a gene that is regulated by autoinduction. With the exception of N-butanoyl-l-homoserine lactone, the reporter detected acyl-homoserine lactones with 3-oxo-, 3-hydroxy-, and 3-unsubstituted side chains of all lengths tested. The intensity of the response was proportional to the amount of the signal molecule chromatographed. Each of the 3-oxo- and the 3-unsubstituted derivatives migrated with a unique mobility. Using the assay, we showed that some bacteria produce as many as five detectable signal molecules. Structures could be assigned tentatively on the basis of mobility and spot shape. The dominant species produced by Pseudomonas syringae pv. tabaci chromatographed with the properties of N-(3-oxohexanoyl)-l-homoserine lactone, a structure that was confirmed by mass spectrometry. An isolate of Pseudomonas fluorescens produced five detectable species, three of which had novel chromatographic properties. These were identified as the 3-hydroxy- forms of N-hexanoyl-, N-octanoyl-, and N-decanoyl-l-homoserine lactone. The assay can be used to screen cultures of bacteria for acyl-homoserine lactones, for quantifying the amounts of these molecules produced, and as an analytical and preparative aid in determining the structures of these signal molecules. PMID:9177164

  19. Bioassays of quorum sensing compounds using Agrobacterium tumefaciens and Chromobacterium violaceum.

    PubMed

    Chu, Weihua; Vattem, Dhiraj A; Maitin, Vatsala; Barnes, Mary B; McLean, Robert J C

    2011-01-01

    In most bacteria, a global level of regulation exists involving intercellular communication via the production and response to cell density-dependent signal molecules. This cell density-dependent regulation has been termed quorum sensing (QS). QS is a global regulator, which has been associated with a number of important features in bacteria including virulence regulation and biofilm formation. Consequently, there is considerable interest in understanding, detecting, and inhibiting QS. Acyl homoserine lactones (acyl HSLs) are used as extracellular QS signals by a variety of Gram-negative bacteria. Chromobacterium violaceum, a Gram-negative bacterium commonly found in soil and water, produces the characteristic purple pigment violacein, the production of which is regulated by acyl HSL-mediated QS. Based on this readily observed pigmentation phenotype, C. violaceum strains can be used to detect various aspects of acyl HSL-mediated QS activity. In another commonly used bioassay organism, Agrobacterium tumefaciens, QS can be detected by the use of a reporter gene such as lacZ. Here, we describe several commonly used approaches incorporating C. violaceum and A. tumefaciens that can be used to detect acyl HSLs and QS inhibition.

  20. Losing the Warning Signal: Drought Compromises the Cross-Talk of Signaling Molecules in Quercus ilex Exposed to Ozone.

    PubMed

    Cotrozzi, Lorenzo; Pellegrini, Elisa; Guidi, Lucia; Landi, Marco; Lorenzini, Giacomo; Massai, Rossano; Remorini, Damiano; Tonelli, Mariagrazia; Trivellini, Alice; Vernieri, Paolo; Nali, Cristina

    2017-01-01

    Understanding the interactions between drought and acute ozone (O 3 ) stress in terms of signaling molecules and cell death would improve the predictions of plant responses to climate change. The aim was to investigate whether drought stress influences the responses of plants to acute episodes of O 3 exposure. In this study, the behavior of 84 Mediterranean evergreen Quercus ilex plants was evaluated in terms of cross-talk responses among signaling molecules. Half of the sample was subjected to drought (20% of the effective daily evapotranspiration, for 15 days) and was later exposed to an acute O 3 exposure (200 nL L -1 for 5 h). First, our results indicate that in well-water conditions, O 3 induced a signaling pathway specific to O 3 -sensitive behavior. Second, different trends and consequently different roles of phytohormones and signaling molecules (ethylene, ET; abscisic acid, ABA; salycilic acid, SA and jasmonic acid, JA) were observed in relation to water stress and O 3 . A spatial and functional correlation between these signaling molecules was observed in modulating O 3 -induced responses in well-watered plants. In contrast, in drought-stressed plants, these compounds were not involved either in O 3 -induced signaling mechanisms or in leaf senescence (a response observed in water-stressed plants before the O 3 -exposure). Third, these differences were ascribable to the fact that in drought conditions, most defense processes induced by O 3 were compromised and/or altered. Our results highlight how Q. ilex plants suffering from water deprivation respond differently to an acute O 3 episode compared to well-watered plants, and suggest new effect to be considered in plant responses to environmental changes. This poses the serious question as to whether or not multiple high-magnitude O 3 events (as predicted) can change these cross-talk responses, thus opening it up possible further investigations.

  1. Cationic Conjugated Polymers-Induced Quorum Sensing of Bacteria Cells.

    PubMed

    Zhang, Pengbo; Lu, Huan; Chen, Hui; Zhang, Jiangyan; Liu, Libing; Lv, Fengting; Wang, Shu

    2016-03-15

    Bacteria quorum sensing (QS) has attracted significant interest for understanding cell-cell communication and regulating biological functions. In this work, we demonstrate that water-soluble cationic conjugated polymers (PFP-G2) can interact with bacteria to form aggregates through electrostatic interactions. With bacteria coated in the aggregate, PFP-G2 can induce the bacteria QS system and prolong the time duration of QS signal molecules (autoinducer-2 (AI-2)) production. The prolonged AI-2 can bind with specific protein and continuously regulate downstream gene expression. Consequently, the bacteria show a higher survival rate against antibiotics, resulting in decreased antimicrobial susceptibility. Also, AI-2 induced by PFP-G2 can stimulate 55.54 ± 12.03% more biofilm in E. coli. This method can be used to understand cell-cell communication and regulate biological functions, such as the production of signaling molecules, antibiotics, other microbial metabolites, and even virulence.

  2. Articular cartilage tissue engineering: the role of signaling molecules

    PubMed Central

    Kwon, Heenam; Paschos, Nikolaos K.; Hu, Jerry C.; Athanasiou, Kyriacos

    2017-01-01

    Effective early disease modifying options for osteoarthritis remain lacking. Tissue engineering approach to generate cartilage in vitro has emerged as a promising option for articular cartilage repair and regeneration. Signaling molecules and matrix modifying agents, derived from knowledge of cartilage development and homeostasis, have been used as biochemical stimuli toward cartilage tissue engineering and have led to improvements in the functionality of engineered cartilage. Clinical translation of neocartilage faces challenges, such as phenotypic instability of the engineered cartilage, poor integration, inflammation, and catabolic factors in the arthritic environment; these can all contribute to failure of implanted neocartilage. A comprehensive understanding of signaling molecules involved in osteoarthritis pathogenesis and their actions on engineered cartilage will be crucial. Thus, while it is important to continue deriving inspiration from cartilage development and homeostasis, it has become increasing necessary to incorporate knowledge from osteoarthritis pathogenesis into cartilage tissue engineering. PMID:26811234

  3. Arachidonic Acid: An Evolutionarily Conserved Signaling Molecule Modulates Plant Stress Signaling Networks[C][W

    PubMed Central

    Savchenko, Tatyana; Walley, Justin W.; Chehab, E. Wassim; Xiao, Yanmei; Kaspi, Roy; Pye, Matthew F.; Mohamed, Maged E.; Lazarus, Colin M.; Bostock, Richard M.; Dehesh, Katayoon

    2010-01-01

    Fatty acid structure affects cellular activities through changes in membrane lipid composition and the generation of a diversity of bioactive derivatives. Eicosapolyenoic acids are released into plants upon infection by oomycete pathogens, suggesting they may elicit plant defenses. We exploited transgenic Arabidopsis thaliana plants (designated EP) producing eicosadienoic, eicosatrienoic, and arachidonic acid (AA), aimed at mimicking pathogen release of these compounds. We also examined their effect on biotic stress resistance by challenging EP plants with fungal, oomycete, and bacterial pathogens and an insect pest. EP plants exhibited enhanced resistance to all biotic challenges, except they were more susceptible to bacteria than the wild type. Levels of jasmonic acid (JA) were elevated and levels of salicylic acid (SA) were reduced in EP plants. Altered expression of JA and SA pathway genes in EP plants shows that eicosapolyenoic acids effectively modulate stress-responsive transcriptional networks. Exogenous application of various fatty acids to wild-type and JA-deficient mutants confirmed AA as the signaling molecule. Moreover, AA treatment elicited heightened expression of general stress-responsive genes. Importantly, tomato (Solanum lycopersicum) leaves treated with AA exhibited reduced susceptibility to Botrytis cinerea infection, confirming AA signaling in other plants. These studies support the role of AA, an ancient metazoan signaling molecule, in eliciting plant stress and defense signaling networks. PMID:20935246

  4. Identification of cell density signal molecule

    DOEpatents

    Schwarz, R.I.

    1998-04-21

    Disclosed herein is a novel proteinaceous cell density signal molecule (CDS) between 25 and 35 kD, which is secreted by fibroblastic primary avian tendon cells in culture, and causes the cells to self-regulate their proliferation and the expression of differentiated function. It effects an increase of procollagen production in avian tendon cell cultures of ten fold while proliferation rates are decreased. CDS, and the antibodies which recognize them, are important for the development of diagnostics and treatments for injuries and diseases involving connective tissues, particularly tendon. Also disclosed are methods of production and use. 2 figs.

  5. Identification of cell density signal molecule

    DOEpatents

    Schwarz, Richard I.

    1998-01-01

    Disclosed herein is a novel proteinaceous cell density signal molecule (CDS) between 25 and 35 kD, which is secreted by fibroblastic primary avian tendon cells in culture, and causes the cells to self-regulate their proliferation and the expression of differentiated function. It effects an increase of procollagen production in avian tendon cell cultures of ten fold while proliferation rates are decreased. CDS, and the antibodies which recognize them, are important for the development of diagnostics and treatments for injuries and diseases involving connective tissues, particularly tendon. Also disclosed are methods of production and use.

  6. The effect of CD4 receptor downregulation and its downstream signaling molecules on HIV-1 latency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kyung-Chang; School of Life Science and Biotechnology, Korea University, Seoul; Kim, Hyeon Guk

    2011-01-14

    Research highlights: {yields} CD4 receptors were downregulated on the surface of HIV-1 latently infected cells. {yields} CD4 downstream signaling molecules were suppressed in HIV-1 latently infected cells. {yields} HIV-1 progeny can be reactivated by induction of T-cell activation signal molecules. {yields} H3K4me3 and H3K9ac were highly enriched in CD4 downstream signaling molecules. {yields} HIV-1 latency can be maintained by the reduction of downstream signaling molecules. -- Abstract: HIV-1 can establish a latent infection in memory CD4 + T cells to evade the host immune response. CD4 molecules can act not only as the HIV-1 receptor for entry but also asmore » the trigger in an intracellular signaling cascade for T-cell activation and proliferation via protein tyrosine kinases. Novel chronic HIV-1-infected A3.01-derived (NCHA) cells were used to examine the involvement of CD4 downstream signaling in HIV-1 latency. CD4 receptors in NCHA cells were dramatically downregulated on its surface but were slightly decreased in whole-cell lysates. The expression levels of CD4 downstream signaling molecules, including P56{sup Lck}, ZAP-70, LAT, and c-Jun, were sharply decreased in NCHA cells. The lowered histone modifications of H3K4me3 and H3K9ac correlated with the downregulation of P56{sup Lck}, ZAP-70, and LAT in NCHA cells. AP-1 binding activity was also reduced in NCHA cells. LAT and c-Jun suppressed in NCHA cells were highly induced after PMA treatment. In epigenetic analysis, other signal transduction molecules which are associated with active and/or latent HIV-1 infection showed normal states in HIV-1 latently infected cells compared to A3.01 cells. In conclusion, we demonstrated that the HIV-1 latent state is sustained by the reduction of downstream signaling molecules via the downregulation of CD4 and the attenuated activity of transcription factor as AP-1. The HIV-1 latency model via T-cell deactivation may provide some clues for the development of the new

  7. Mechanism of agonism and antagonism of the Pseudomonas aeruginosa quorum sensing regulator QscR with non-native ligands.

    PubMed

    Wysoczynski-Horita, Christina L; Boursier, Michelle E; Hill, Ryan; Hansen, Kirk; Blackwell, Helen E; Churchill, Mair E A

    2018-05-01

    Pseudomonas aeruginosa is an opportunistic pathogen that uses the process of quorum sensing (QS) to coordinate the expression of many virulence genes. During quorum sensing, N-acyl-homoserine lactone (AHL) signaling molecules regulate the activity of three LuxR-type transcription factors, LasR, RhlR and QscR. To better understand P. aeruginosa QS signal reception, we examined the mechanism underlying the response of QscR to synthetic agonists and antagonists using biophysical and structural approaches. The structure of QscR bound to a synthetic agonist reveals a novel mode of ligand binding supporting a general mechanism for agonist activity. In turn, antagonists of QscR with partial agonist activity were found to destabilize and greatly impair QscR dimerization and DNA binding. These results highlight the diversity of LuxR-type receptor responses to small molecule agonists and antagonists and demonstrate the potential for chemical strategies for the selective targeting of individual QS systems. © 2018 John Wiley & Sons Ltd.

  8. 50 CFR Table 29 to Part 679 - Initial Rockfish QS Pools

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Initial Rockfish QS Pools 29 Table 29 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OF THE EXCLUSIVE ECONOMIC ZONE OFF ALASKA Pt. 679...

  9. 50 CFR 679.42 - Limitations on use of QS and IFQ.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., Juneau, AK 99802-1668. A complete application must include: (A) The applicant's (transferor's) identity... community of Adak, AK, individually or collectively, may use more than 3,229,721 units of sablefish QS... of Adak, AK, after March 17, 2019. (9) A CQE representing an eligible community in the Aleutian...

  10. A Comparative Analysis of Synthetic Quorum Sensing Modulators in Pseudomonas aeruginosa: New Insights into Mechanism, Active Efflux Susceptibility, Phenotypic Response, and Next-Generation Ligand Design.

    PubMed

    Moore, Joseph D; Rossi, Francis M; Welsh, Michael A; Nyffeler, Kayleigh E; Blackwell, Helen E

    2015-11-25

    Quorum sensing (QS) is a chemical signaling mechanism that allows bacterial populations to coordinate gene expression in response to social and environmental cues. Many bacterial pathogens use QS to initiate infection at high cell densities. Over the past two decades, chemical antagonists of QS in pathogenic bacteria have attracted substantial interest for use both as tools to further elucidate QS mechanisms and, with further development, potential anti-infective agents. Considerable recent research has been devoted to the design of small molecules capable of modulating the LasR QS receptor in the opportunistic pathogen Pseudomonas aeruginosa. These molecules hold significant promise in a range of contexts; however, as most compounds have been developed independently, comparative activity data for these compounds are scarce. Moreover, the mechanisms by which the bulk of these compounds act are largely unknown. This paucity of data has stalled the choice of an optimal chemical scaffold for further advancement. Herein, we submit the best-characterized LasR modulators to standardized cell-based reporter and QS phenotypic assays in P. aeruginosa, and we report the first comprehensive set of comparative LasR activity data for these compounds. Our experiments uncovered multiple interesting mechanistic phenomena (including a potential alternative QS-modulatory ligand binding site/partner) that provide new, and unexpected, insights into the modes by which many of these LasR ligands act. The lead compounds, data trends, and mechanistic insights reported here will significantly aid the design of new small molecule QS inhibitors and activators in P. aeruginosa, and in other bacteria, with enhanced potencies and defined modes of action.

  11. Systemic Synthesis Questions [SSynQs] as Tools to Help Students to Build Their Cognitive Structures in a Systemic Manner

    NASA Astrophysics Data System (ADS)

    Hrin, Tamara N.; Fahmy, Ameen F. M.; Segedinac, Mirjana D.; Milenković, Dušica D.

    2016-08-01

    Many studies dedicated to the teaching and learning of organic chemistry courses have emphasized that high school students have shown significant difficulties in mastering the concepts of this discipline. Therefore, the aim of our study was to help students to overcome these difficulties by applying systemic synthesis questions, [SSynQs], as the instructional method in our intervention. This work shows that students from the group exposed to the new teaching method achieved higher scores on final testing than students from the control group, who were taught by the traditional method, when students' achievements in conventional, linear questions [LQs] and in [SSynQs] were studied. These results were followed by observation of lower levels of mental effort by students from the intervention group, and higher levels of mental effort in the control group, invested during solving both types of questions. This correlation between achievement and mental effort resulted in high instructional efficiency for the applied method in the intervention group, [SSynQs], and low instructional efficiency for the traditional teaching and learning method applied in the control group. A systemic triangular relation between achievement, mental effort, and instructional efficiency, established by each group and gender, emphasized that the application of [SSynQs] was more suited to female students than for male students because of [SSynQs] characteristics as teaching and learning tools and because of learning style and ability differences between genders.

  12. Recent progresses on AI-2 bacterial quorum sensing inhibitors.

    PubMed

    Zhu, Peng; Li, Minyong

    2012-01-01

    Quorum sensing (QS) is a communication procedure that predominates gene expression in response to cell density and fluctuations in the neighboring environment as a result of discerning molecules termed autoinducers (AIs). It has been embroiled that QS can govern bacterial behaviors such as the secretion of virulence factors, biofilm formation, bioluminescence production, conjugation, sporulation and swarming motility. Autoinducer 2 (AI-2), a QS signaling molecule brought up to be involved in interspecies communication, exists in both gram-negative and -positive bacteria. Therefore, novel approaches to interrupt AI-2 quorum sensing are being recognized as next generation antimicrobials. In the present review article, we summarized recent progresses on AI-2 bacterial quorum sensing inhibitors and discussed their potential as the antibacterial agents.

  13. 50 CFR 680.41 - Transfer of QS, PQS, IFQ and IPQ.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Eligible crab community right of first refusal (ROFR)—(1) Applicability—(i) Exempt Fisheries. PQS and IPQ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Transfer of QS, PQS, IFQ and IPQ. 680.41 Section 680.41 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND...

  14. Identification of quorum sensing-controlled genes in Burkholderia ambifaria

    PubMed Central

    Chapalain, Annelise; Vial, Ludovic; Laprade, Natacha; Dekimpe, Valérie; Perreault, Jonathan; Déziel, Eric

    2013-01-01

    The Burkholderia cepacia complex (Bcc) comprises strains with a virulence potential toward immunocompromised patients as well as plant growth–promoting rhizobacteria (PGPR). Owing to the link between quorum sensing (QS) and virulence, most studies among Bcc species have been directed toward QS of pathogenic bacteria. We have investigated the QS of B. ambifaria, a PGPR only infrequently recovered from patients. The cepI gene, responsible for the synthesis of the main signaling molecule N-octanoylhomoserine lactone (C8-HSL), was inactivated. Phenotypes of the B. ambifaria cepI mutant we observed, such as increased production of siderophores and decreased proteolytic and antifungal activities, are in agreement with those of other Bcc cepI mutants. The cepI mutant was then used as background strain for a whole-genome transposon-insertion mutagenesis strategy, allowing the identification of 20 QS-controlled genes, corresponding to 17 loci. The main functions identified are linked to antifungal and antimicrobial properties, as we have identified QS-controlled genes implicated in the production of pyrrolnitrin, burkholdines (occidiofungin-like molecules), and enacyloxins. This study provides insights in the QS-regulated functions of a PGPR, which could lead to beneficial potential biotechnological applications. PMID:23382083

  15. Carbon Monoxide: An Essential Signalling Molecule

    NASA Astrophysics Data System (ADS)

    Mann, Brian E.

    Carbon monoxide (CO), like nitric oxide (NO), is an essential signalling molecule in humans. It is active in the cardiovascular system as a vasodilator. In addition, CO possesses anti-inflammatory, anti-apoptotic and anti-proliferative properties and protects tissues from hypoxia and reperfusion injury. Some of its applications in animal models include suppression of organ graft rejection and safeguarding the heart during reperfusion after cardiopulmonary bypass surgery. CO also suppresses arteriosclerotic lesions following angioplasty, reverses established pulmonary hypertension and mitigates the development of post-operative ileus in the murine small intestine and the development of cerebral malaria in mice as well as graft-induced intimal hyperplasia in pigs. There have been several clinical trials using air-CO mixtures for the treatment of lung-, heart-, kidney- and abdominal-related diseases. This review examines the research involving the development of classes of compounds (with particular emphasis on metal carbonyls) that release CO, which could be used in clinically relevant conditions. The review is drawn not only from published papers in the chemical literature but also from the extensive biological literature and patents on CO-releasing molecules (CO-RMs).

  16. Intermediates of Metabolism: From Bystanders to Signalling Molecules.

    PubMed

    Haas, Robert; Cucchi, Danilo; Smith, Joanne; Pucino, Valentina; Macdougall, Claire Elizabeth; Mauro, Claudio

    2016-05-01

    The integration of biochemistry into immune cell biology has contributed immensely to our understanding of immune cell function and the associated pathologies. So far, most studies have focused on the regulation of metabolic pathways during an immune response and their contribution to its success. More recently, novel signalling functions of metabolic intermediates are being discovered that might play important roles in the regulation of immunity. Here we describe the three long-known small metabolites lactate, acetyl-CoA, and succinate in the context of immunometabolic signalling. Functions of these ubiquitous molecules are largely dependent on their intra- and extracellular concentrations as well as their subcompartmental localisation. Importantly, the signalling functions of these metabolic intermediates extend beyond self-regulatory roles and include cell-to-cell communication and sensing of microenvironmental conditions to elicit stress responses and cellular adaptation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Quorum Sensing Signaling and Quenching in the Multidrug-Resistant Pathogen Stenotrophomonas maltophilia

    PubMed Central

    Huedo, Pol; Coves, Xavier; Daura, Xavier; Gibert, Isidre; Yero, Daniel

    2018-01-01

    Stenotrophomonas maltophilia is an opportunistic Gram-negative pathogen with increasing incidence in clinical settings. The most critical aspect of S. maltophilia is its frequent resistance to a majority of the antibiotics of clinical use. Quorum Sensing (QS) systems coordinate bacterial populations and act as major regulatory mechanisms of pathogenesis in both pure cultures and poly-microbial communities. Disruption of QS systems, a phenomenon known as Quorum Quenching (QQ), represents a new promising paradigm for the design of novel antimicrobial strategies. In this context, we review the main advances in the field of QS in S. maltophilia by paying special attention to Diffusible Signal Factor (DSF) signaling, Acyl Homoserine Lactone (AHL) responses and the controversial Ax21 system. Advances in the DSF system include regulatory aspects of DSF synthesis and perception by both rpf-1 and rpf-2 variant systems, as well as their reciprocal communication. Interaction via DSF of S. maltophilia with unrelated organisms including bacteria, yeast and plants is also considered. Finally, an overview of the different QQ mechanisms involving S. maltophilia as quencher and as object of quenching is presented, revealing the potential of this species for use in QQ applications. This review provides a comprehensive snapshot of the interconnected QS network that S. maltophilia uses to sense and respond to its surrounding biotic or abiotic environment. Understanding such cooperative and competitive communication mechanisms is essential for the design of effective anti QS strategies. PMID:29740543

  18. Composition for detection of cell density signal molecule

    DOEpatents

    Schwarz, Richard I.

    2001-01-01

    Disclosed herein is a novel proteinaceous cell density signal molecule (CDS), which is secreted by fibroblastic cells in culture, preferably tendon cells, and which provides a means by which the cells self-regulate their proliferation and the expression of differentiated function. CDS, and the antibodies which recognize them, are important for the development of diagnostics and treatments for injuries and diseases involving connective tissues, particularly tendon. Also disclosed are methods of production and use.

  19. The crowded magnetosphere of the post-common-envelope binary QS Virginis

    NASA Astrophysics Data System (ADS)

    Parsons, S. G.; Hill, C. A.; Marsh, T. R.; Gänsicke, B. T.; Watson, C. A.; Steeghs, D.; Dhillon, V. S.; Littlefair, S. P.; Copperwheat, C. M.; Schreiber, M. R.; Zorotovic, M.

    2016-05-01

    We present high-speed photometry and high-resolution spectroscopy of the eclipsing post-common-envelope binary QS Virginis (QS Vir). Our Ultraviolet and Visual Echelle Spectrograph (UVES) spectra span multiple orbits over more than a year and reveal the presence of several large prominences passing in front of both the M star and its white dwarf companion, allowing us to triangulate their positions. Despite showing small variations on a time-scale of days, they persist for more than a year and may last decades. One large prominence extends almost three stellar radii from the M star. Roche tomography reveals that the M star is heavily spotted and that these spots are long-lived and in relatively fixed locations, preferentially found on the hemisphere facing the white dwarf. We also determine precise binary and physical parameters for the system. We find that the 14 220 ± 350 K white dwarf is relatively massive, 0.782 ± 0.013 M⊙, and has a radius of 0.010 68 ± 0.000 07 R⊙, consistent with evolutionary models. The tidally distorted M star has a mass of 0.382 ± 0.006 M⊙ and a radius of 0.381 ± 0.003 R⊙, also consistent with evolutionary models. We find that the magnesium absorption line from the white dwarf is broader than expected. This could be due to rotation (implying a spin period of only ˜700 s), or due to a weak (˜100 kG) magnetic field, we favour the latter interpretation. Since the M star's radius is still within its Roche lobe and there is no evidence that it is overinflated, we conclude that QS Vir is most likely a pre-cataclysmic binary just about to become semidetached.

  20. Xanthomonas campestris cell–cell signalling molecule DSF (diffusible signal factor) elicits innate immunity in plants and is suppressed by the exopolysaccharide xanthan

    PubMed Central

    Kakkar, Akanksha; Nizampatnam, Narasimha Rao; Kondreddy, Anil; Pradhan, Binod Bihari; Chatterjee, Subhadeep

    2015-01-01

    Several secreted and surface-associated conserved microbial molecules are recognized by the host to mount the defence response. One such evolutionarily well-conserved bacterial process is the production of cell–cell signalling molecules which regulate production of multiple virulence functions by a process known as quorum sensing. Here it is shown that a bacterial fatty acid cell–cell signalling molecule, DSF (diffusible signal factor), elicits innate immunity in plants. The DSF family of signalling molecules are highly conserved among many phytopathogenic bacteria belonging to the genus Xanthomonas as well as in opportunistic animal pathogens. Using Arabidopsis, Nicotiana benthamiana, and rice as model systems, it is shown that DSF induces a hypersensitivity reaction (HR)-like response, programmed cell death, the accumulation of autofluorescent compounds, hydrogen peroxide production, and the expression of the PATHOGENESIS-RELATED1 (PR-1) gene. Furthermore, production of the DSF signalling molecule in Pseudomonas syringae, a non-DSF-producing plant pathogen, induces the innate immune response in the N. benthamiana host plant and also affects pathogen growth. By pre- and co-inoculation of DSF, it was demonstrated that the DSF-induced plant defence reduces disease severity and pathogen growth in the host plant. In this study, it was further demonstrated that wild-type Xanthomonas campestris suppresses the DSF-induced innate immunity by secreting xanthan, the main component of extracellular polysaccharide. The results indicate that plants have evolved to recognize a widely conserved bacterial communication system and may have played a role in the co-evolution of host recognition of the pathogen and the communication machinery. PMID:26248667

  1. Beneficial effects of bacteria-plant communication based on quorum sensing molecules of the N-acyl homoserine lactone group.

    PubMed

    Schikora, Adam; Schenk, Sebastian T; Hartmann, Anton

    2016-04-01

    Bacterial quorum sensing (QS) mechanisms play a crucial role in the proper performance and ecological fitness of bacterial populations. Many key physiological processes are regulated in a QS-dependent manner by auto-inducers, like the N-acyl homoserine lactones (AHLs) in numerous Gram-negative bacteria. In addition, also the interaction between bacteria and eukaryotic hosts can be regulated by AHLs. Those mechanisms gained much attention, because of the positive effects of different AHL molecules on plants. This positive impact ranges from growth promotion to induced resistance and is quite contrasting to the rather negative effects observed in the interactions between bacterial AHL molecules and animals. Only very recently, we began to understand the molecular mechanisms underpinning plant responses to AHL molecules. In this review, we gathered the latest information in this research field. The first part gives an overview of the bacterial aspects of quorum sensing. Later we focus on the impact of AHLs on plant growth and AHL-priming, as one of the most understood phenomena in respect to the inter-kingdom interactions based on AHL-quorum sensing molecules. Finally, we discuss the potential benefits of the understanding of bacteria-plant interaction for the future agricultural applications.

  2. Colostrum Hexasaccharide, a Novel Staphylococcus aureus Quorum-Sensing Inhibitor

    PubMed Central

    Srivastava, A.; Deepak, D.; Singh, B. R.

    2015-01-01

    The discovery of quorum-sensing (QS) systems regulating antibiotic resistance and virulence factors (VFs) has afforded a novel opportunity to prevent bacterial pathogenicity. Dietary molecules have been demonstrated to attenuate QS circuits of bacteria. But, to our knowledge, no study exploring the potential of colostrum hexasaccharide (CHS) in regulating QS systems has been published. In this study, we analyzed CHS for inhibiting QS signaling in Staphylococcus aureus. We isolated and characterized CHS from mare colostrum by high-performance thin-layer chromatography (HPTLC), reverse-phase high-performance liquid chromatography evaporative light-scattering detection (RP-HPLC-ELSD), 1H and 13C nuclear magnetic resonance (NMR), and electrospray ionization mass spectrometry (ESI-MS). Antibiofilm activity of CHS against S. aureus and its possible interference with bacterial QS systems were determined. The inhibition and eradication potentials of the biofilms were studied by microscopic analyses and quantified by 96-well-microtiter-plate assays. Also, the ability of CHS to interfere in bacterial QS by degrading acyl-homoserine lactones (AHLs), one of the most studied signal molecules for Gram-negative bacteria, was evaluated. The results revealed that CHS exhibited promising inhibitory activities against QS-regulated secretion of VFs, including spreading ability, hemolysis, protease, and lipase activities, when applied at a rate of 5 mg/ml. The results of biofilm experiments indicated that CHS is a strong inhibitor of biofilm formation and also has the ability to eradicate it. The potential of CHS to interfere with bacterial QS systems was also examined by degradation of AHLs. Furthermore, it was documented that CHS decreased antibiotic resistance in S. aureus. The results thus give a lead that mare colostrum can be a promising source for isolating a next-generation antibacterial. PMID:25645850

  3. Small protein-mediated quorum sensing in a gram-negative bacterium: novel targets for control of infectious disease.

    PubMed

    Ronald, Pamela C

    2011-12-01

    Control of Gram-negative bacterial infections of plants and animals remains a major challenge because conventional approaches are often not sufficient to eradicate these infections. One major reason for their persistence seems to be the capability of the bacteria to grow within biofilms that protect them from adverse environmental factors. Quorum sensing (QS) plays an important role in the formation of biofilms. In QS, small molecules serve as signals to recognize bacterial cell population size, leading to changes in expression of specific genes when a signal has accumulated to some threshold concentration. The small protein Ax21 (Activator of XA21-mediated immunity), serves as a QS factor that regulates biofilm formation and virulence in the Gram-negative bacterium, Xanthomonas oryzae pv. oryzae. Knowledge of small protein-mediated QS in Gram-negative bacteria can be used to develop new methods to control persistent Gram-negative infections. © Discovery Medicine

  4. A chemical biology approach to interrogate quorum-sensing regulated behaviors at the molecular and cellular level.

    PubMed

    Lowery, Colin A; Matamouros, Susana; Niessen, Sherry; Zhu, Jie; Scolnick, Jonathan; Lively, Jenny M; Cravatt, Benjamin F; Miller, Samuel I; Kaufmann, Gunnar F; Janda, Kim D

    2013-07-25

    Small molecule probes have been used extensively to explore biologic systems and elucidate cellular signaling pathways. In this study, we use an inhibitor of bacterial communication to monitor changes in the proteome of Salmonella enterica serovar Typhimurium with the aim of discovering unrecognized processes regulated by AI-2-based quorum-sensing (QS), a mechanism of bacterial intercellular communication that allows for the coordination of gene expression in a cell density-dependent manner. In S. typhimurium, this system regulates the uptake and catabolism of intercellular signals and has been implicated in pathogenesis, including the invasion of host epithelial cells. We demonstrate that our QS antagonist is capable of selectively inhibiting the expression of known QS-regulated proteins in S. typhimurium, thus attesting that QS inhibitors may be used to confirm proposed and elucidate previously unidentified QS pathways without relying on genetic manipulation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Inhibition of Protein-Protein Interactions and Signaling by Small Molecules

    NASA Astrophysics Data System (ADS)

    Freire, Ernesto

    2010-03-01

    Protein-protein interactions are at the core of cell signaling pathways as well as many bacterial and viral infection processes. As such, they define critical targets for drug development against diseases such as cancer, arthritis, obesity, AIDS and many others. Until now, the clinical inhibition of protein-protein interactions and signaling has been accomplished with the use of antibodies or soluble versions of receptor molecules. Small molecule replacements of these therapeutic agents have been extremely difficult to develop; either the necessary potency has been hard to achieve or the expected biological effect has not been obtained. In this presentation, we show that a rigorous thermodynamic approach that combines differential scanning calorimetry (DSC) and isothermal titration calorimetry (ITC) provides a unique platform for the identification and optimization of small molecular weight inhibitors of protein-protein interactions. Recent advances in the development of cell entry inhibitors of HIV-1 using this approach will be discussed.

  6. Dissecting single-molecule signal transduction in carbon nanotube circuits with protein engineering

    PubMed Central

    Choi, Yongki; Olsen, Tivoli J.; Sims, Patrick C.; Moody, Issa S.; Corso, Brad L.; Dang, Mytrang N.; Weiss, Gregory A.; Collins, Philip G.

    2013-01-01

    Single molecule experimental methods have provided new insights into biomolecular function, dynamic disorder, and transient states that are all invisible to conventional measurements. A novel, non-fluorescent single molecule technique involves attaching single molecules to single-walled carbon nanotube field-effective transistors (SWNT FETs). These ultrasensitive electronic devices provide long-duration, label-free monitoring of biomolecules and their dynamic motions. However, generalization of the SWNT FET technique first requires design rules that can predict the success and applicability of these devices. Here, we report on the transduction mechanism linking enzymatic processivity to electrical signal generation by a SWNT FET. The interaction between SWNT FETs and the enzyme lysozyme was systematically dissected using eight different lysozyme variants synthesized by protein engineering. The data prove that effective signal generation can be accomplished using a single charged amino acid, when appropriately located, providing a foundation to widely apply SWNT FET sensitivity to other biomolecular systems. PMID:23323846

  7. Beat-to-beat estimation of LVET and QS2 indices of cardiac mechanics from wearable seismocardiography in ambulant subjects.

    PubMed

    Di Rienzo, Marco; Vaini, Emanuele; Castiglioni, Paolo; Meriggi, Paolo; Rizzo, Francesco

    2013-01-01

    Seismocardiogram (SCG) is the measure of the minute vibrations produced by the beating heart. We previously demonstrated that SCG, ECG and respiration could be recorded over the 24 h during spontaneous behavior by a smart garment, the MagIC-SCG system. In the present case study we explored the feasibility of a beat-to-beat estimation of two indices of heart contractility, the Left Ventricular Ejection Time (LVET) and the electromechanical systole (QS2) from SCG and ECG recordings obtained by the MagIC-SCG device in one subject. We considered data collected during outdoor spontaneous behavior (while sitting in the metro and in the office) and in a laboratory setting (in supine and sitting posture, and during recovery after 100 W and 140 W cycling). LVET was estimated from SCG as the time interval between the opening and closure of the aortic valve, QS2 as the time interval between the Q wave of the ECG and the closure of the aortic valve. In every condition, LVET and QS2 could be estimated on a beat-to-beat basis from the SCG collected by the smart garment. LVET and QS2 are characterized by important beat-to-beat fluctuations, with standard deviations in the same order of magnitude of RR Interval. In all settings, spectral profiles are different for LVET, QS2 and RR Interval. This suggests that the biological mechanisms impinging on the heart exert a differentiated influence on the variability of each of these three indices.

  8. Xanthomonas campestris cell-cell signalling molecule DSF (diffusible signal factor) elicits innate immunity in plants and is suppressed by the exopolysaccharide xanthan.

    PubMed

    Kakkar, Akanksha; Nizampatnam, Narasimha Rao; Kondreddy, Anil; Pradhan, Binod Bihari; Chatterjee, Subhadeep

    2015-11-01

    Several secreted and surface-associated conserved microbial molecules are recognized by the host to mount the defence response. One such evolutionarily well-conserved bacterial process is the production of cell-cell signalling molecules which regulate production of multiple virulence functions by a process known as quorum sensing. Here it is shown that a bacterial fatty acid cell-cell signalling molecule, DSF (diffusible signal factor), elicits innate immunity in plants. The DSF family of signalling molecules are highly conserved among many phytopathogenic bacteria belonging to the genus Xanthomonas as well as in opportunistic animal pathogens. Using Arabidopsis, Nicotiana benthamiana, and rice as model systems, it is shown that DSF induces a hypersensitivity reaction (HR)-like response, programmed cell death, the accumulation of autofluorescent compounds, hydrogen peroxide production, and the expression of the PATHOGENESIS-RELATED1 (PR-1) gene. Furthermore, production of the DSF signalling molecule in Pseudomonas syringae, a non-DSF-producing plant pathogen, induces the innate immune response in the N. benthamiana host plant and also affects pathogen growth. By pre- and co-inoculation of DSF, it was demonstrated that the DSF-induced plant defence reduces disease severity and pathogen growth in the host plant. In this study, it was further demonstrated that wild-type Xanthomonas campestris suppresses the DSF-induced innate immunity by secreting xanthan, the main component of extracellular polysaccharide. The results indicate that plants have evolved to recognize a widely conserved bacterial communication system and may have played a role in the co-evolution of host recognition of the pathogen and the communication machinery. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  9. [Enzymes for disrupting bacterial communication, an alternative to antibiotics?

    PubMed

    Rémy, B; Plener, L; Elias, M; Daudé, D; Chabrière, E

    2016-11-01

    Quorum sensing (QS) is used by bacteria to communicate and synchronize their actions according to the cell density. In this way, they produce and secrete in the surrounding environment small molecules dubbed autoinducers (AIs) that regulate the expression of certain genes. The phenotypic traits regulated by QS are diverse and include pathogenicity, biofilm formation or resistance to anti-microbial treatments. The strategy, aiming at disrupting QS, known as quorum quenching (QQ), has emerged to counteract bacterial virulence and involves QS-inhibitors (QSI) or QQ-enzymes degrading AIs. Differently from antibiotics, QQ aims at blocking cell signaling and does not alter bacterial survival. This considerably decreases the selection pressure as compared to bactericide treatments and may reduce the occurrence of resistance mechanisms. QQ-enzymes are particularly appealing as they may disrupt molecular QS-signal without entering the cell and in a catalytic way. This review covers several aspects of QQ-based medical applications and the potential subsequent emergence of resistance is discussed. Copyright © 2016 Académie Nationale de Pharmacie. All rights reserved.

  10. Vascular Cell Adhesion Molecule-1 Expression and Signaling During Disease: Regulation by Reactive Oxygen Species and Antioxidants

    PubMed Central

    Marchese, Michelle E.; Abdala-Valencia, Hiam

    2011-01-01

    Abstract The endothelium is immunoregulatory in that inhibiting the function of vascular adhesion molecules blocks leukocyte recruitment and thus tissue inflammation. The function of endothelial cells during leukocyte recruitment is regulated by reactive oxygen species (ROS) and antioxidants. In inflammatory sites and lymph nodes, the endothelium is stimulated to express adhesion molecules that mediate leukocyte binding. Upon leukocyte binding, these adhesion molecules activate endothelial cell signal transduction that then alters endothelial cell shape for the opening of passageways through which leukocytes can migrate. If the stimulation of this opening is blocked, inflammation is blocked. In this review, we focus on the endothelial cell adhesion molecule, vascular cell adhesion molecule-1 (VCAM-1). Expression of VCAM-1 is induced on endothelial cells during inflammatory diseases by several mediators, including ROS. Then, VCAM-1 on the endothelium functions as both a scaffold for leukocyte migration and a trigger of endothelial signaling through NADPH oxidase-generated ROS. These ROS induce signals for the opening of intercellular passageways through which leukocytes migrate. In several inflammatory diseases, inflammation is blocked by inhibition of leukocyte binding to VCAM-1 or by inhibition of VCAM-1 signal transduction. VCAM-1 signal transduction and VCAM-1-dependent inflammation are blocked by antioxidants. Thus, VCAM-1 signaling is a target for intervention by pharmacological agents and by antioxidants during inflammatory diseases. This review discusses ROS and antioxidant functions during activation of VCAM-1 expression and VCAM-1 signaling in inflammatory diseases. Antioxid. Redox Signal. 15, 1607–1638. PMID:21050132

  11. Detection of Accretion X-Rays from QS Vir: Cataclysmic or a Lot of Hot Air?

    NASA Astrophysics Data System (ADS)

    Matranga, Marco; Drake, Jeremy J.; Kashyap, Vinay; Steeghs, Danny

    2012-03-01

    An XMM-Newton observation of the nearby "pre-cataclysmic" short-period (P orb = 3.62 hr) binary QS Vir (EC 13471-1258) revealed regular narrow X-ray eclipses when the white dwarf passed behind its M2-4 dwarf companion. The X-ray emission provides a clear signature of mass transfer and accretion onto the white dwarf. The low-resolution XMM-Newton EPIC spectra are consistent with a cooling flow model and indicate an accretion rate of \\dot{M} = 1.7 \\times 10^{-13} \\,M_\\odot yr-1. At 48 pc distant, QS Vir is then the second nearest accreting cataclysmic variable known, with one of the lowest accretion rates found to date for a non-magnetic system. To feed this accretion through a wind would require a wind mass-loss rate of \\dot{M}\\sim 2\\times 10^{-12}\\,M_\\odot yr-1 if the accretion efficiency is of the order of 10%. Consideration of likely mass-loss rates for M dwarfs suggests this is improbably high and pure wind accretion unlikely. A lack of accretion disk signatures also presents some difficulties for direct Roche lobe overflow. We speculate that QS Vir is on the verge of Roche lobe overflow, and that the observed mass transfer could be supplemented by upward chromospheric flows on the M dwarf, analogous to spicules and mottles on the Sun, that escape the Roche surface to be subsequently swept up into the white dwarf Roche lobe. If so, QS Vir would be in a rare evolutionary phase lasting only a million years. The X-ray luminosity of the M dwarf estimated during primary eclipse is LX = 3 × 1028 erg s-1, which is consistent with that of rapidly rotating "saturated" K and M dwarfs.

  12. 6-Gingerol reduces Pseudomonas aeruginosa biofilm formation and virulence via quorum sensing inhibition.

    PubMed

    Kim, Han-Shin; Lee, Sang-Hoon; Byun, Youngjoo; Park, Hee-Deung

    2015-03-02

    Pseudomonas aeruginosa is a well-known pathogenic bacterium that forms biofilms and produces virulence factors via quorum sensing (QS). Interfering with normal QS interactions between signal molecules and their cognate receptors is a developing strategy for attenuating its virulence. Here we tested the hypothesis that 6-gingerol, a pungent oil of fresh ginger, reduces biofilm formation and virulence by antagonistically binding to P. aeruginosa QS receptors. In silico studies demonstrated molecular binding occurs between 6-gingerol and the QS receptor LasR through hydrogen bonding and hydrophobic interactions. Experimentally 6-gingerol reduced biofilm formation, several virulence factors (e.g., exoprotease, rhamnolipid, and pyocyanin), and mice mortality. Further transcriptome analyses demonstrated that 6-gingerol successfully repressed QS-induced genes, specifically those related to the production of virulence factors. These results strongly support our hypothesis and offer insight into the molecular mechanism that caused QS gene repression.

  13. 6-Gingerol reduces Pseudomonas aeruginosa biofilm formation and virulence via quorum sensing inhibition

    PubMed Central

    Kim, Han-Shin; Lee, Sang-Hoon; Byun, Youngjoo; Park, Hee-Deung

    2015-01-01

    Pseudomonas aeruginosa is a well-known pathogenic bacterium that forms biofilms and produces virulence factors via quorum sensing (QS). Interfering with normal QS interactions between signal molecules and their cognate receptors is a developing strategy for attenuating its virulence. Here we tested the hypothesis that 6-gingerol, a pungent oil of fresh ginger, reduces biofilm formation and virulence by antagonistically binding to P. aeruginosa QS receptors. In silico studies demonstrated molecular binding occurs between 6-gingerol and the QS receptor LasR through hydrogen bonding and hydrophobic interactions. Experimentally 6-gingerol reduced biofilm formation, several virulence factors (e.g., exoprotease, rhamnolipid, and pyocyanin), and mice mortality. Further transcriptome analyses demonstrated that 6-gingerol successfully repressed QS-induced genes, specifically those related to the production of virulence factors. These results strongly support our hypothesis and offer insight into the molecular mechanism that caused QS gene repression. PMID:25728862

  14. Plant phenolic volatiles inhibit quorum sensing in pectobacteria and reduce their virulence by potential binding to ExpI and ExpR proteins

    NASA Astrophysics Data System (ADS)

    Joshi, Janak Raj; Khazanov, Netaly; Senderowitz, Hanoch; Burdman, Saul; Lipsky, Alexander; Yedidia, Iris

    2016-12-01

    Quorum sensing (QS) is a population density-dependent regulatory system in bacteria that couples gene expression to cell density through accumulation of diffusible signaling molecules. Pectobacteria are causal agents of soft rot disease in a range of economically important crops. They rely on QS to coordinate their main virulence factor, production of plant cell wall degrading enzymes (PCWDEs). Plants have evolved an array of antimicrobial compounds to anticipate and cope with pathogens, of which essential oils (EOs) are widely recognized. Here, volatile EOs, carvacrol and eugenol, were shown to specifically interfere with QS, the master regulator of virulence in pectobacteria, resulting in strong inhibition of QS genes, biofilm formation and PCWDEs, thereby leading to impaired infection. Accumulation of the signal molecule N-acylhomoserine lactone declined upon treatment with EOs, suggesting direct interaction of EOs with either homoserine lactone synthase (ExpI) or with the regulatory protein (ExpR). Homology models of both proteins were constructed and docking simulations were performed to test the above hypotheses. The resulting binding modes and docking scores of carvacrol and eugenol support potential binding to ExpI/ExpR, with stronger interactions than previously known inhibitors of both proteins. The results demonstrate the potential involvement of phytochemicals in the control of Pectobacterium.

  15. Differential targeting of Gbetagamma-subunit signaling with small molecules.

    PubMed

    Bonacci, Tabetha M; Mathews, Jennifer L; Yuan, Chujun; Lehmann, David M; Malik, Sundeep; Wu, Dianqing; Font, Jose L; Bidlack, Jean M; Smrcka, Alan V

    2006-04-21

    G protein betagamma subunits have potential as a target for therapeutic treatment of a number of diseases. We performed virtual docking of a small-molecule library to a site on Gbetagamma subunits that mediates protein interactions. We hypothesized that differential targeting of this surface could allow for selective modulation of Gbetagamma subunit functions. Several compounds bound to Gbetagamma subunits with affinities from 0.1 to 60 muM and selectively modulated functional Gbetagamma-protein-protein interactions in vitro, chemotactic peptide signaling pathways in HL-60 leukocytes, and opioid receptor-dependent analgesia in vivo. These data demonstrate an approach for modulation of G protein-coupled receptor signaling that may represent an important therapeutic strategy.

  16. Crosstalk Regulates the Capacity for Robust Collective Decision Making in Heterogeneous Microbial Communities

    NASA Astrophysics Data System (ADS)

    Yusufaly, Tahir; Boedicker, James

    Microbial communities frequently communicate via quorum sensing (QS), where cells produce, secrete, and respond to a threshold level of an autoinducer (AI) molecule, thereby modulating density-dependent gene expression. However, the biology of QS remains incompletely understood in heterogeneous communities, where crosstalk between distinct QS systems leads to novel effects. Such knowledge is necessary both for understanding signaling in real microbial communities, and for the rational design of synthetic communities with designer properties. As a step towards this goal, we investigate the effects of crosstalk between Gram-negative bacteria communicating via LuxI/LuxR-type QS systems, with acyl-homoserine lactone (AHL) AI molecules. After mapping QS in a heterogeneous community onto an artificial neural network model, we systematically analyze how heterogeneity regulates the community's capability for stable yet flexible decision making. We find that there are preferred distributions of interactions which provide optimal tradeoffs between capacity, or the number of different decisions a population can make, and robustness, or the tolerance of the community to disturbances. We compare our results to inferences made from experimental data, and critically discuss implications for the biological significance of crosstalk.

  17. Silicon technology compatible photonic molecules for compact optical signal processing

    NASA Astrophysics Data System (ADS)

    Barea, Luis A. M.; Vallini, Felipe; Jarschel, Paulo F.; Frateschi, Newton C.

    2013-11-01

    Photonic molecules (PMs) based on multiple inner coupled microring resonators allow to surpass the fundamental constraint between the total quality factor (QT), free spectral range (FSR), and resonator size. In this work, we use a PM that presents doublets and triplets resonance splitting, all with high QT. We demonstrate the use of the doublet splitting for 34.2 GHz signal extraction by filtering the sidebands of a modulated optical signal. We also demonstrate that very compact optical modulators operating 2.75 times beyond its resonator linewidth limit may be obtained using the PM triplet splitting, with separation of ˜55 GHz.

  18. 50 CFR Table 32 to Part 679 - Amendment 80 Initial QS Pool

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Amendment 80 Initial QS Pool 32 Table 32 to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OF THE EXCLUSIVE ECONOMIC ZONE OFF ALASKA Pt. 679, Table 32 Table 32 to Part 679—...

  19. Intracellular Action of a Secreted Peptide Required for Fungal Virulence.

    PubMed

    Homer, Christina M; Summers, Diana K; Goranov, Alexi I; Clarke, Starlynn C; Wiesner, Darin L; Diedrich, Jolene K; Moresco, James J; Toffaletti, Dena; Upadhya, Rajendra; Caradonna, Ippolito; Petnic, Sarah; Pessino, Veronica; Cuomo, Christina A; Lodge, Jennifer K; Perfect, John; Yates, John R; Nielsen, Kirsten; Craik, Charles S; Madhani, Hiten D

    2016-06-08

    Quorum sensing (QS) is a bacterial communication mechanism in which secreted signaling molecules impact population function and gene expression. QS-like phenomena have been reported in eukaryotes with largely unknown contributing molecules, functions, and mechanisms. We identify Qsp1, a secreted peptide, as a central signaling molecule that regulates virulence in the fungal pathogen Cryptococcus neoformans. QSP1 is a direct target of three transcription factors required for virulence, and qsp1Δ mutants exhibit attenuated infection, slowed tissue accumulation, and greater control by primary macrophages. Qsp1 mediates autoregulatory signaling that modulates secreted protease activity and promotes cell wall function at high cell densities. Peptide production requires release from a secreted precursor, proQsp1, by a cell-associated protease, Pqp1. Qsp1 sensing requires an oligopeptide transporter, Opt1, and remarkably, cytoplasmic expression of mature Qsp1 complements multiple phenotypes of qsp1Δ. Thus, C. neoformans produces an autoregulatory peptide that matures extracellularly but functions intracellularly to regulate virulence. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Small Molecule Inhibition of Ligand-Stimulated RAGE-DIAPH1 Signal Transduction

    PubMed Central

    Manigrasso, Michaele B.; Pan, Jinhong; Rai, Vivek; Zhang, Jinghua; Reverdatto, Sergey; Quadri, Nosirudeen; DeVita, Robert J.; Ramasamy, Ravichandran; Shekhtman, Alexander; Schmidt, Ann Marie

    2016-01-01

    The receptor for advanced glycation endproducts (RAGE) binds diverse ligands linked to chronic inflammation and disease. NMR spectroscopy and x-ray crystallization studies of the extracellular domains of RAGE indicate that RAGE ligands bind by distinct charge- and hydrophobicity-dependent mechanisms. The cytoplasmic tail (ct) of RAGE is essential for RAGE ligand-mediated signal transduction and consequent modulation of gene expression and cellular properties. RAGE signaling requires interaction of ctRAGE with the intracellular effector, mammalian diaphanous 1 or DIAPH1. We screened a library of 58,000 small molecules and identified 13 small molecule competitive inhibitors of ctRAGE interaction with DIAPH1. These compounds, which exhibit in vitro and in vivo inhibition of RAGE-dependent molecular processes, present attractive molecular scaffolds for the development of therapeutics against RAGE-mediated diseases, such as those linked to diabetic complications, Alzheimer’s disease, and chronic inflammation, and provide support for the feasibility of inhibition of protein-protein interaction (PPI). PMID:26936329

  1. Aberrant Expression of Retinoic Acid Signaling Molecules Influences Patient Survival in Astrocytic Gliomas

    PubMed Central

    Campos, Benito; Centner, Franz-Simon; Bermejo, Justo Lorenzo; Ali, Ramadan; Dorsch, Katharina; Wan, Feng; Felsberg, Jörg; Ahmadi, Rezvan; Grabe, Niels; Reifenberger, Guido; Unterberg, Andreas; Burhenne, Jürgen; Herold-Mende, Christel

    2011-01-01

    Undifferentiated cell populations may influence tumor growth in malignant glioma. We investigated potential disruptions in the retinoic acid (RA) differentiation pathway that could lead to a loss of differentiation capacity, influencing patient prognosis. Expression of key molecules belonging to the RA differentiation pathway was analyzed in 283 astrocytic gliomas and was correlated with tumor proliferation, tumor differentiation, and patient survival. In addition, in situ concentrations of retinoids were measured in tumors, and RA signaling events were studied in vitro. Unlike other tumors, in gliomas expression of most RA signaling molecules increased with malignancy and was associated with augmented intratumoral retinoid levels in high-grade gliomas. Aberrantly expressed RA signaling molecules included i) the retinol-binding protein CRBP1, which facilitates cellular retinoid uptake; ii) ALDH1A1, capable of activating RA precursors; iii) the RA-degrading enzyme CYP26B1; and iv) the RA-binding protein FABP5, which can inhibit RA-induced differentiation. In contrast, expression of the RA-binding protein CRABP2, which fosters differentiation, was decreased in high-grade tumors. Moreover, expression of CRBP1 correlated with tumor proliferation, and FABP5 expression correlated with an undifferentiated tumor phenotype. CRBP1 and ALDH1A1 were independent prognostic markers for adverse patient survival. Our data indicate a complex and clinically relevant deregulation of RA signaling, which seems to be a central event in glioma pathogenesis. PMID:21514413

  2. Small Molecule Signaling Agents: The Integrated Chemistry and Biochemistry of Nitrogen Oxides, Oxides of Carbon, Dioxygen, Hydrogen Sulfide, and Their Derived Species

    PubMed Central

    Fukuto, Jon M.; Carrington, Samantha J.; Tantillo, Dean J.; Harrison, Jason G.; Ignarro, Louis J.; Freeman, Bruce A.; Chen, Andrew; Wink, David A.

    2014-01-01

    Several small molecule species formally known primarily as toxic gases have, over the past 20 years, been shown to be endogenously generated signaling molecules. The biological signaling associated with the small molecules NO, CO, H2S (and the nonendogenously generated O2), and their derived species have become a topic of extreme interest. It has become increasingly clear that these small molecule signaling agents form an integrated signaling web that affects/regulates numerous physiological processes. The chemical interactions between these species and each other or biological targets is an important factor in their roles as signaling agents. Thus, a fundamental understanding of the chemistry of these molecules is essential to understanding their biological/physiological utility. This review focuses on this chemistry and attempts to establish the chemical basis for their signaling functions. PMID:22263838

  3. Small Molecules Affect Human Dental Pulp Stem Cell Properties Via Multiple Signaling Pathways

    PubMed Central

    Al-Habib, Mey; Yu, Zongdong

    2013-01-01

    One fundamental issue regarding stem cells for regenerative medicine is the maintenance of stem cell stemness. The purpose of the study was to test whether small molecules can enhance stem cell properties of mesenchymal stem cells (MSCs) derived from human dental pulp (hDPSCs), which have potential for multiple clinical applications. We identified the effects of small molecules (Pluripotin (SC1), 6-bromoindirubin-3-oxime and rapamycin) on the maintenance of hDPSC properties in vitro and the mechanisms involved in exerting the effects. Primary cultures of hDPSCs were exposed to optimal concentrations of these small molecules. Treated hDPSCs were analyzed for their proliferation, the expression levels of pluripotent and MSC markers, differentiation capacities, and intracellular signaling activations. We found that small molecule treatments decreased cell proliferation and increased the expression of STRO-1, NANOG, OCT4, and SOX2, while diminishing cell differentiation into odonto/osteogenic, adipogenic, and neurogenic lineages in vitro. These effects involved Ras-GAP-, ERK1/2-, and mTOR-signaling pathways, which may preserve the cell self-renewal capacity, while suppressing differentiation. We conclude that small molecules appear to enhance the immature state of hDPSCs in culture, which may be used as a strategy for adult stem cell maintenance and extend their capacity for regenerative applications. PMID:23573877

  4. Role and regulation of the orphan AphA protein of quorum sensing in pathogenic Vibrios.

    PubMed

    Lu, Renfei; Osei-Adjei, George; Huang, Xinxiang; Zhang, Yiquan

    2018-03-01

    Quorum sensing (QS), a cell-to-cell communication process, is widely distributed in the bacterial kingdom. Bacteria use QS to control gene expression in response to cell density by detecting the signal molecules called autoinducers. AphA protein is the master QS regulator of vibrios operating at low cell density. It regulates the expression of a variety of genes, especially those encoding virulence factors, flagella/motility and biofilm formation. The role and regulation of AphA in vibrios, especially in human pathogenic vibrios, are summarized in this review. Clarification of the roles of AphA will help us to understand the pathogenesis of vibrios.

  5. Coherent (photon) vs incoherent (current) detection of multidimensional optical signals from single molecules in open junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwalla, Bijay Kumar; Hua, Weijie; Zhang, Yu

    2015-06-07

    The nonlinear optical response of a current-carrying single molecule coupled to two metal leads and driven by a sequence of impulsive optical pulses with controllable phases and time delays is calculated. Coherent (stimulated, heterodyne) detection of photons and incoherent detection of the optically induced current are compared. Using a diagrammatic Liouville space superoperator formalism, the signals are recast in terms of molecular correlation functions which are then expanded in the many-body molecular states. Two dimensional signals in benzene-1,4-dithiol molecule show cross peaks involving charged states. The correlation between optical and charge current signal is also observed.

  6. Modeling quorum sensing trade-offs between bacterial cell density and system extension from open boundaries

    NASA Astrophysics Data System (ADS)

    Marenda, Mattia; Zanardo, Marina; Trovato, Antonio; Seno, Flavio; Squartini, Andrea

    2016-12-01

    Bacterial communities undergo collective behavioural switches upon producing and sensing diffusible signal molecules; a mechanism referred to as Quorum Sensing (QS). Exemplarily, biofilm organic matrices are built concertedly by bacteria in several environments. QS scope in bacterial ecology has been debated for over 20 years. Different perspectives counterpose the role of density reporter for populations to that of local environment diffusivity probe for individual cells. Here we devise a model system where tubes of different heights contain matrix-embedded producers and sensors. These tubes allow non-limiting signal diffusion from one open end, thereby showing that population spatial extension away from an open boundary can be a main critical factor in QS. Experimental data, successfully recapitulated by a comprehensive mathematical model, demonstrate how tube height can overtake the role of producer density in triggering sensor activation. The biotic degradation of the signal is found to play a major role and to be species-specific and entirely feedback-independent.

  7. Modeling quorum sensing trade-offs between bacterial cell density and system extension from open boundaries.

    PubMed

    Marenda, Mattia; Zanardo, Marina; Trovato, Antonio; Seno, Flavio; Squartini, Andrea

    2016-12-14

    Bacterial communities undergo collective behavioural switches upon producing and sensing diffusible signal molecules; a mechanism referred to as Quorum Sensing (QS). Exemplarily, biofilm organic matrices are built concertedly by bacteria in several environments. QS scope in bacterial ecology has been debated for over 20 years. Different perspectives counterpose the role of density reporter for populations to that of local environment diffusivity probe for individual cells. Here we devise a model system where tubes of different heights contain matrix-embedded producers and sensors. These tubes allow non-limiting signal diffusion from one open end, thereby showing that population spatial extension away from an open boundary can be a main critical factor in QS. Experimental data, successfully recapitulated by a comprehensive mathematical model, demonstrate how tube height can overtake the role of producer density in triggering sensor activation. The biotic degradation of the signal is found to play a major role and to be species-specific and entirely feedback-independent.

  8. Quorum sensing is a language of chemical signals and plays an ecological role in algal-bacterial interactions

    PubMed Central

    Zhou, Jin; Lyu, Yihua; Richlen, Mindy; Anderson, Donald M.; Cai, Zhonghua

    2017-01-01

    Algae are ubiquitous in the marine environment, and the ways in which they interact with bacteria are of particular interest in marine ecology field. The interactions between primary producers and bacteria impact the physiology of both partners, alter the chemistry of their environment, and shape microbial diversity. Although algal-bacterial interactions are well known and studied, information regarding the chemical-ecological role of this relationship remains limited, particularly with respect to quorum sensing (QS), which is a system of stimuli and response correlated to population density. In the microbial biosphere, QS is pivotal in driving community structure and regulating behavioral ecology, including biofilm formation, virulence, antibiotic resistance, swarming motility, and secondary metabolite production. Many marine habitats, such as the phycosphere, harbour diverse populations of microorganisms and various signal languages (such as QS-based autoinducers). QS-mediated interactions widely influence algal-bacterial symbiotic relationships, which in turn determine community organization, population structure, and ecosystem functioning. Understanding infochemicals-mediated ecological processes may shed light on the symbiotic interactions between algae host and associated microbes. In this review, we summarize current achievements about how QS modulates microbial behavior, affects symbiotic relationships, and regulates phytoplankton chemical ecological processes. Additionally, we present an overview of QS-modulated co-evolutionary relationships between algae and bacterioplankton, and consider the potential applications and future perspectives of QS. PMID:28966438

  9. Interference in Bacterial Quorum Sensing: A Biopharmaceutical Perspective

    PubMed Central

    Rémy, Benjamin; Mion, Sonia; Plener, Laure; Elias, Mikael; Chabrière, Eric; Daudé, David

    2018-01-01

    Numerous bacteria utilize molecular communication systems referred to as quorum sensing (QS) to synchronize the expression of certain genes regulating, among other aspects, the expression of virulence factors and the synthesis of biofilm. To achieve this process, bacteria use signaling molecules, known as autoinducers (AIs), as chemical messengers to share information. Naturally occurring strategies that interfere with bacterial signaling have been extensively studied in recent years, examining their potential to control bacteria. To interfere with QS, bacteria use quorum sensing inhibitors (QSIs) to block the action of AIs and quorum quenching (QQ) enzymes to degrade signaling molecules. Recent studies have shown that these strategies are promising routes to decrease bacterial pathogenicity and decrease biofilms, potentially enhancing bacterial susceptibility to antimicrobial agents including antibiotics and bacteriophages. The efficacy of QSIs and QQ enzymes has been demonstrated in various animal models and are now considered in the development of new medical devices against bacterial infections, including dressings, and catheters for enlarging the therapeutic arsenal against bacteria. PMID:29563876

  10. Signaling molecules involved in the transition of growth to development of Dictyostelium discoideum.

    PubMed

    Mir, Hina A; Rajawat, Jyotika; Pradhan, Shalmali; Begum, Rasheedunnisa

    2007-03-01

    The social amoeba Dictyostelium discoideum, a powerful paradigm provides clear insights into the regulation of growth and development. In addition to possessing complex individual cellular functions like a unicellular eukaryote, D. discoideum cells face the challenge of multicellular development. D. discoideum undergoes a relatively simple differentiation process mainly by cAMP mediated pathway. Despite this relative simplicity, the regulatory signaling pathways are as complex as those seen in metazoan development. However, the introduction of restriction-enzyme-mediated integration (REMI) technique to produce developmental gene knockouts has provided novel insights into the discovery of signaling molecules and their role in D. discoideum development. Cell cycle phase is an important aspect for differentiation of D. discoideum, as cells must reach a specific stage to enter into developmental phase and specific cell cycle regulators are involved in arresting growth phase genes and inducing the developmental genes. In this review, we present an overview of the signaling molecules involved in the regulation of growth to differentiation transition (GDT), molecular mechanism of early developmental events leading to generation of cAMP signal and components of cAMP relay system that operate in this paradigm.

  11. Enhancement of Raman scattering signal of a few molecules using photonic nanojet mediated SERS technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, G. M.; Parit, M. K.; Laha, R.

    2016-05-06

    Now a days, single molecule surface enhanced Raman spectroscopy (SMSERS) has become a fascinating tool for studying the structural properties, static and dynamic events of single molecules (instead of ensemble average), with the help of efficient plasmonic nanostructures. This is extremely useful in the field of proteomics because the structural properties of protein molecules are heterogeneous. Even though, SMSERS provides wealthy information about single molecules, it demands high quality surface enhanced Raman scattering (SERS) substrates. So far, a very few researchers succeeded in demonstrating the single molecule Raman scattering using conventional SERS technique. However, the experimental S/N of the Ramanmore » signal has been found to be very poor. Recently, with the help of photonic nanojet of an optical microsphere, we were able to enhance the SERS signal of a few molecules adsorbed on the SERS substrates (gold symmetric and asymmetric nanodimers and trimers dispersed on a glass slide). Herein, we report a few details about photonic nanojet mediated SERS technique, a few experimental results and a detailed theoretical study on symmetric and asymmetric nanosphere dimers to understand the dependence of localised surface plasmon resonance (LSPR) wavelength of a nanodimer on the nanogap size and polarization of the excitation light.« less

  12. TRAF molecules in cell signaling and in human diseases

    PubMed Central

    2013-01-01

    The tumor necrosis factor receptor (TNF-R)-associated factor (TRAF) family of intracellular proteins were originally identified as signaling adaptors that bind directly to the cytoplasmic regions of receptors of the TNF-R superfamily. The past decade has witnessed rapid expansion of receptor families identified to employ TRAFs for signaling. These include Toll-like receptors (TLRs), NOD-like receptors (NLRs), RIG-I-like receptors (RLRs), T cell receptor, IL-1 receptor family, IL-17 receptors, IFN receptors and TGFβ receptors. In addition to their role as adaptor proteins, most TRAFs also act as E3 ubiquitin ligases to activate downstream signaling events. TRAF-dependent signaling pathways typically lead to the activation of nuclear factor-κBs (NF-κBs), mitogen-activated protein kinases (MAPKs), or interferon-regulatory factors (IRFs). Compelling evidence obtained from germ-line and cell-specific TRAF-deficient mice demonstrates that each TRAF plays indispensable and non-redundant physiological roles, regulating innate and adaptive immunity, embryonic development, tissue homeostasis, stress response, and bone metabolism. Notably, mounting evidence implicates TRAFs in the pathogenesis of human diseases such as cancers and autoimmune diseases, which has sparked new appreciation and interest in TRAF research. This review presents an overview of the current knowledge of TRAFs, with an emphasis on recent findings concerning TRAF molecules in signaling and in human diseases. PMID:23758787

  13. Signal-enhancer molecules encapsulated liposome as a valuable sensing and amplification platform combining the aptasensor for ultrasensitive ECL immunoassay.

    PubMed

    Mao, Li; Yuan, Ruo; Chai, Yaqin; Zhuo, Ying; Xiang, Yun

    2011-06-15

    An innovatory ECL immunoassay strategy was proposed to detect the newly developing heart failure biomarker N-terminal pro-brain natriuretic peptide (NT-proBNP). Firstly, this strategy used small molecules encapsulated liposome as immune label to construct a sandwich immune sensing platform for NT-proBNP. Then the ECL aptasensor was prepared to collect and detect the small molecules released from the liposome. Finally, based on the ECL signal changes caused by the small molecules, the ECL signal indirectly reflected the level of NT-proBNP antigen. In this experiment, the cocaine was chosen as the proper small molecule that can act as signal-enhancer to enhance the ECL of Ru(bpy)(3)(2+). The cocaine-encapsulated liposomes were successfully characterized by TEM. The quantificational calculation proved the ∼5.3×10(3) cocaine molecules per liposome enough to perform the assignment of signal amplification. The cocaine-binding ECL aptasensor further promoted the work aimed at amplifying signal. The performance of NT-proBNP assay by the proposed strategy exhibited high sensitivity and high specificities with a linear relationship over 0.01-500 ng mL(-1) range, and a detection limit down to 0.77 pg mL(-1). Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Differential Targeting of Gβγ-Subunit Signaling with Small Molecules

    NASA Astrophysics Data System (ADS)

    Bonacci, Tabetha M.; Mathews, Jennifer L.; Yuan, Chujun; Lehmann, David M.; Malik, Sundeep; Wu, Dianqing; Font, Jose L.; Bidlack, Jean M.; Smrcka, Alan V.

    2006-04-01

    G protein βγ subunits have potential as a target for therapeutic treatment of a number of diseases. We performed virtual docking of a small-molecule library to a site on Gβγ subunits that mediates protein interactions. We hypothesized that differential targeting of this surface could allow for selective modulation of Gβγ subunit functions. Several compounds bound to Gβγ subunits with affinities from 0.1 to 60 μM and selectively modulated functional Gβγ-protein-protein interactions in vitro, chemotactic peptide signaling pathways in HL-60 leukocytes, and opioid receptor-dependent analgesia in vivo. These data demonstrate an approach for modulation of G protein-coupled receptor signaling that may represent an important therapeutic strategy.

  15. Modeling the role of quorum sensing in interspecies competition in biofilms

    NASA Astrophysics Data System (ADS)

    Narla, Avaneesh V.; Wingreen, Ned S.; Borenstein, David B.

    Bacteria grow on surfaces in complex immobile communities known as biofilms, composed of cells embedded in an extracellular matrix. Within biofilms, bacteria often communicate, cooperate, and compete within their own species and with other species using Quorum Sensing (QS). QS refers to the process by which bacteria produce, secrete, and subsequently detect small molecules called autoinducers as a way to assess the local population density of their species, or of other species. QS is known to regulate the production of extracellular matrix. We investigated the possible benefit of QS in regulating matrix production to best gain access to a nutrient that diffuses from a source positioned away from the surface on which the biofilm grows. We employed Agent-Based Modeling (ABM), a form of simulation that allows cells to modify their behavior based on local inputs, e.g. nutrient and QS concentrations. We first determined the optimal fixed strategies (that do not use QS) for pairwise competitions, and then demonstrated that simple QS-based strategies can be superior to any fixed strategy. In nature, species can compete by sensing and/or interfering with each other's QS signals, and we explore approaches for targeting specific species via QS-interference. A.V.N. and N.S.W. contributed equally to this project.

  16. Signaling lymphocytic activation molecules Slam and cancers: friends or foes?

    PubMed

    Fouquet, Gregory; Marcq, Ingrid; Debuysscher, Véronique; Bayry, Jagadeesh; Rabbind Singh, Amrathlal; Bengrine, Abderrahmane; Nguyen-Khac, Eric; Naassila, Mickael; Bouhlal, Hicham

    2018-03-23

    Signaling Lymphocytic Activation Molecules (SLAM) family receptors are initially described in immune cells. These receptors recruit both activating and inhibitory SH2 domain containing proteins through their Immunoreceptor Tyrosine based Switch Motifs (ITSMs). Accumulating evidence suggest that the members of this family are intimately involved in different physiological and pathophysiological events such as regulation of immune responses and entry pathways of certain viruses. Recently, other functions of SLAM, principally in the pathophysiology of neoplastic transformations have also been deciphered. These new findings may prompt SLAM to be considered as new tumor markers, diagnostic tools or potential therapeutic targets for controlling the tumor progression. In this review, we summarize the major observations describing the implications and features of SLAM in oncology and discuss the therapeutic potential attributed to these molecules.

  17. Estimation of spatial distribution of quorum sensing signaling in sequencing batch biofilm reactor (SBBR) biofilms.

    PubMed

    Wang, Jinfeng; Ding, Lili; Li, Kan; Huang, Hui; Hu, Haidong; Geng, Jinju; Xu, Ke; Ren, Hongqiang

    2018-01-15

    Quorum sensing (QS) signaling, plays a significant role in regulating formation of biofilms in the nature; however, little information about the occurrence and distribution of quorum sensing molecular in the biofilm of carriers has been reported. In this study, distribution of QS signaling molecules (the acylated homoserine lactones-AHLs, and AI-2), extracellular polymeric substances (EPS) and the mechanical properties in sequencing batch biofilm reactor (SBBR) biofilms have been investigated. Using increased centrifugal force, the biofilms were detached into different fractions. The AHLs ranged from 5.2ng/g to 98.3ng/g in different fractions of biofilms, and N-decanoyl-dl-homoserine lactone (C10-HSL) and N-dodecanoyl-dl-homoserine lactone (C12-HSL) in the biofilms obtained at various centrifugal forces displayed significant differences (p<0.01). Interspecies communication signal autoinducer-2(AI-2) in the biofilms ranged from 79.2ng/g to 98.3ng/g. Soluble EPS and loosely bound EPS content in the different fractions of biofilms displayed significant positive relationship with the distribution of C12-HSL (r=0.86, p<0.05). Furthermore, 49.62% of bacteria in the biofilms were positively related with AHLs with 22.76% was significantly positively (p<0.05) related with AHLs. Biofilm adhesion and compliance was the strongest in the tightly-bound biofilm, the weakest in the supernatant/surface biofilm, which was in accordance with the distribution of C12 HSL(r=0.77, p<0.05) and C10-HSL(r=0.75, p<0.05), respectively. This study addressed on better understanding of possible methods for the improvement of wastewater bio-treatment through biofilm application. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Composition, anti-quorum sensing and antimicrobial activity of essential oils from Lippia alba.

    PubMed

    Olivero-Verbel, Jesus; Barreto-Maya, Ana; Bertel-Sevilla, Angela; Stashenko, Elena E

    2014-01-01

    Many Gram-negative pathogens have the ability to produce N-acylhomoserine lactones (AHLs) as signal molecules for quorum sensing (QS). This cell-cell communication system allows them to coordinate gene expression and regulate virulence. Strategies to inhibit QS are promising for the control of infectious diseases or antibiotic resistant bacterial pathogens. The aim of the present study was to evaluate the anti-quorum sensing (anti-QS) and antibacterial potential of five essential oils isolated from Lippia alba on the Tn-5 mutant of Chromobacterium violaceum CV026, and on the growth of the gram-positive bacteria S. aureus ATCC 25923. The anti-QS activity was detected through the inhibition of the QS-controlled violacein pigment production by the sensor bacteria. Results showed that two essential oils from L. alba, one containing the greatest geranial:neral and the other the highest limonene:carvone concentrations, were the most effective QS inhibitors. Both oils also had small effects on cell growth. Moreover, the geranial/neral chemotype oil also produced the maximum zone of growth inhibition against S. aureus ATCC 25923. These data suggest essential oils from L. alba have promising properties as QS modulators, and present antibacterial activity on S. aureus.

  19. Quorum Sensing Signaling Molecules Produced by Reference and Emerging Soft-Rot Bacteria (Dickeya and Pectobacterium spp.)

    PubMed Central

    Crépin, Alexandre; Barbey, Corinne; Beury-Cirou, Amélie; Hélias, Valérie; Taupin, Laure; Reverchon, Sylvie; Nasser, William; Faure, Denis; Dufour, Alain; Orange, Nicole; Feuilloley, Marc; Heurlier, Karin; Burini, Jean-François; Latour, Xavier

    2012-01-01

    Background Several small diffusible molecules are involved in bacterial quorum sensing and virulence. The production of autoinducers-1 and -2, quinolone, indole and γ-amino butyrate signaling molecules was investigated in a set of soft-rot bacteria belonging to six Dickeya or Pectobacterium species including recent or emerging potato isolates. Methodology/Principal Findings Using bacterial biosensors, immunoassay, and chromatographic analysis, we showed that soft-rot bacteria have the common ability to produce transiently during their exponential phase of growth the N-3-oxo-hexanoyl- or the N-3-oxo-octanoyl-l-homoserine lactones and a molecule of the autoinducer-2 family. Dickeya spp. produced in addition the indole-3-acetic acid in tryptophan-rich conditions. All these signaling molecules have been identified for the first time in the novel Dickeya solani species. In contrast, quinolone and γ-amino butyrate signals were not identified and the corresponding synthases are not present in the available genomes of soft-rot bacteria. To determine if the variations of signal production according to growth phase could result from expression modifications of the corresponding synthase gene, the respective mRNA levels were estimated by reverse transcriptase-PCR. While the N-acyl-homoserine lactone production is systematically correlated to the synthase expression, that of the autoinducer-2 follows the expression of an enzyme upstream in the activated methyl cycle and providing its precursor, rather than the expression of its own synthase. Conclusions/Significance Despite sharing the S-adenosylmethionine precursor, no strong link was detected between the production kinetics or metabolic pathways of autoinducers-1 and -2. In contrast, the signaling pathway of autoinducer-2 seems to be switched off by the indole-3-acetic acid pathway under tryptophan control. It therefore appears that the two genera of soft-rot bacteria have similarities but also differences in the

  20. Structure-Function Analysis of Peptide Signaling in the Clostridium perfringens Agr-Like Quorum Sensing System

    PubMed Central

    Ma, Menglin; Li, Jihong

    2015-01-01

    ABSTRACT The accessory growth regulator (Agr)-like quorum sensing (QS) system of Clostridium perfringens controls the production of many toxins, including beta toxin (CPB). We previously showed (J. E. Vidal, M. Ma, J. Saputo, J. Garcia, F. A. Uzal, and B. A. McClane, Mol Microbiol 83:179–194, 2012, http://dx.doi.org/10.1111/j.1365-2958.2011.07925.x) that an 8-amino-acid, AgrD-derived peptide named 8-R upregulates CPB production by this QS system. The current study synthesized a series of small signaling peptides corresponding to sequences within the C. perfringens AgrD polypeptide to investigate the C. perfringens autoinducing peptide (AIP) structure-function relationship. When both linear and cyclic ring forms of these peptides were added to agrB null mutants of type B strain CN1795 or type C strain CN3685, the 5-amino-acid peptides, whether in a linear or ring (thiolactone or lactone) form, induced better signaling (more CPB production) than peptide 8-R for both C. perfringens strains. The 5-mer thiolactone ring peptide induced faster signaling than the 5-mer linear peptide. Strain-related variations in sensing these peptides were detected, with CN3685 sensing the synthetic peptides more strongly than CN1795. Consistent with those synthetic peptide results, Transwell coculture experiments showed that CN3685 exquisitely senses native AIP signals from other isolates (types A, B, C, and D), while CN1795 barely senses even its own AIP. Finally, a C. perfringens AgrD sequence-based peptide with a 6-amino-acid thiolactone ring interfered with CPB production by several C. perfringens strains, suggesting potential therapeutic applications. These results indicate that AIP signaling sensitivity and responsiveness vary among C. perfringens strains and suggest C. perfringens prefers a 5-mer AIP to initiate Agr signaling. IMPORTANCE Clostridium perfringens possesses an Agr-like quorum sensing (QS) system that regulates virulence, sporulation, and toxin production. The

  1. Signaling Lymphocytic Activation Molecule Family Receptor Homologs in New World Monkey Cytomegaloviruses.

    PubMed

    Pérez-Carmona, Natàlia; Farré, Domènec; Martínez-Vicente, Pablo; Terhorst, Cox; Engel, Pablo; Angulo, Ana

    2015-11-01

    Throughout evolution, large DNA viruses have been usurping genes from their hosts to equip themselves with proteins that restrain host immune defenses. Signaling lymphocytic activation molecule (SLAM) family (SLAMF) receptors are involved in the regulation of both innate and adaptive immunity, which occurs upon engagement with their ligands via homotypic or heterotypic interactions. Here we report a total of seven SLAMF genes encoded by the genomes of two cytomegalovirus (CMV) species, squirrel monkey CMV (SMCMV) and owl monkey CMV (OMCMV), that infect New World monkeys. Our results indicate that host genes were captured by retrotranscription at different stages of the CMV-host coevolution. The most recent acquisition led to S1 in SMCMV. S1 is a SLAMF6 homolog with an amino acid sequence identity of 97% to SLAMF6 in its ligand-binding N-terminal Ig domain. We demonstrate that S1 is a cell surface glycoprotein capable of binding to host SLAMF6. Furthermore, the OMCMV genome encodes A33, an LY9 (SLAMF3) homolog, and A43, a CD48 (SLAMF2) homolog, two soluble glycoproteins which recognize their respective cellular counterreceptors and thus are likely to be viral SLAMF decoy receptors. In addition, distinct copies of further divergent CD48 homologs were found to be encoded by both CMV genomes. Remarkably, all these molecules display a number of unique features, including cytoplasmic tails lacking characteristic SLAMF signaling motifs. Taken together, our findings indicate a novel immune evasion mechanism in which incorporation of host SLAMF receptors that retain their ligand-binding properties enables viruses to interfere with SLAMF functions and to supply themselves with convenient structural molds for expanding their immunomodulatory repertoires. The way in which viruses shape their genomes under the continual selective pressure exerted by the host immune system is central for their survival. Here, we report that New World monkey cytomegaloviruses have broadly

  2. Secretion of Pseudomonas aeruginosa type III cytotoxins is dependent on pseudomonas quinolone signal concentration.

    PubMed

    Singh, G; Wu, B; Baek, M S; Camargo, A; Nguyen, A; Slusher, N A; Srinivasan, R; Wiener-Kronish, J P; Lynch, S V

    2010-10-01

    Pseudomonas aeruginosa is an opportunistic pathogen that can, like other bacterial species, exist in antimicrobial resistant sessile biofilms and as free-swimming, planktonic cells. Specific virulence factors are typically associated with each lifestyle and several two component response regulators have been shown to reciprocally regulate transition between biofilm-associated chronic, and free-swimming acute infections. Quorum sensing (QS) signal molecules belonging to the las and rhl systems are known to regulate virulence gene expression by P. aeruginosa. However the impact of a recently described family of novel quorum sensing signals produced by the Pseudomonas Quinolone Signal (PQS) biosynthetic pathway, on the transition between these modes of infection is less clear. Using clonal isolates from a patient developing ventilator-associated pneumonia, we demonstrated that clinical observations were mirrored by an in vitro temporal shift in isolate phenotype from a non-secreting, to a Type III cytotoxin secreting (TTSS) phenotype and further, that this phenotypic change was PQS-dependent. While intracellular type III cytotoxin levels were unaffected by PQS concentration, cytotoxin secretion was dependent on this signal molecule. Elevated PQS concentrations were associated with inhibition of cytotoxin secretion coincident with expression of virulence factors such as elastase and pyoverdin. In contrast, low concentrations or the inability to biosynthesize PQS resulted in a reversal of this phenotype. These data suggest that expression of specific P. aeruginosa virulence factors appears to be reciprocally regulated and that an additional level of PQS-dependent post-translational control, specifically governing type III cytotoxin secretion, exists in this species. Copyright 2010 Elsevier Ltd. All rights reserved.

  3. Anti-quorum sensing activity of AgCl-TiO2 nanoparticles with potential use as active food packaging material.

    PubMed

    Naik, K; Kowshik, M

    2014-10-01

    To study the anti-quorum sensing (anti-QS) activity of AgCl-TiO2 nanoparticles (ATNPs) and its mechanism. Anti-QS activity of ATNPs was evaluated using the bacterial model Chromobacterium violaceum. Silver present in ATNPs significantly reduced violacein production in a concentration-dependent manner, indicating inhibition of QS. Anti-QS activity was confirmed by the absence of signalling molecule, oxo-octanoyl homoserine lactone during growth in the presence of ATNPs. TiO2 acted as a good supporting matrix facilitating controlled release of silver with prolonged residual activity. ATNPs are proposed as QS inhibitors with potential for use as an antipathogenic but nontoxic bioactive material. Although silver is well known for its bioactive potential of antibacterial, antifungal and antiviral properties, this study adds further note on its anti-QS activity and its potential use in food packaging industry. Food spoilage is a major socio-economic problem, and the potential role of QS in food spoilage and food safety has been indicated. Anti-QS materials such as ATNPs are proposed as efficient models for controlling food spoilage. ATNPs incorporated in food packaging materials could play an important role in food preservation and ensure safety of food by prolonging their shelf life. © 2014 The Society for Applied Microbiology.

  4. Dissection of the cis-2-decenoic acid signaling network in Pseudomonas aeruginosa using microarray technique

    PubMed Central

    Rahmani-Badi, Azadeh; Sepehr, Shayesteh; Fallahi, Hossein; Heidari-Keshel, Saeed

    2015-01-01

    Many bacterial pathogens use quorum-sensing (QS) signaling to regulate the expression of factors contributing to virulence and persistence. Bacteria produce signals of different chemical classes. The signal molecule, known as diffusible signal factor (DSF), is a cis-unsaturated fatty acid that was first described in the plant pathogen Xanthomonas campestris. Previous works have shown that human pathogen, Pseudomonas aeruginosa, also synthesizes a structurally related molecule, characterized as cis-2-decenoic acid (C10: Δ2, CDA) that induces biofilm dispersal by multiple types of bacteria. Furthermore, CDA has been shown to be involved in inter-kingdom signaling that modulates fungal behavior. Therefore, an understanding of its signaling mechanism could suggest strategies for interference, with consequences for disease control. To identify the components of CDA signaling pathway in this pathogen, a comparative transcritpome analysis was conducted, in the presence and absence of CDA. A protein-protein interaction (PPI) network for differentially expressed (DE) genes with known function was then constructed by STRING and Cytoscape. In addition, the effects of CDA in combination with antimicrobial agents on the biofilm surface area and bacteria viability were evaluated using fluorescence microscopy and digital image analysis. Microarray analysis identified 666 differentially expressed genes in the presence of CDA and gene ontology (GO) analysis revealed that in P. aeruginosa, CDA mediates dispersion of biofilms through signaling pathways, including enhanced motility, metabolic activity, virulence as well as persistence at different temperatures. PPI data suggested that a cluster of five genes (PA4978, PA4979, PA4980, PA4982, PA4983) is involved in the CDA synthesis and perception. Combined treatments using both CDA and antimicrobial agents showed that following exposure of the biofilms to CDA, remaining cells on the surface were easily removed and killed by

  5. Interaction of plant cell signaling molecules, salicylic acid and jasmonic acid, with the mitochondria of Helicoverpa armigera.

    PubMed

    Akbar, S M D; Sharma, H C; Jayalakshmi, S K; Sreeramulu, K

    2012-02-01

    The cotton bollworm, Helicoverpa armigera is a polyphagous pest in Asia, Africa, and the Mediterranean Europe. Salicylic acid (SA) and jasmonic acid (JA) are the cell signaling molecules produced in response to insect attack in plants. The effect of these signaling molecules was investigated on the oxidative phosphorylation and oxidative stress of H. armigera. SA significantly inhibited the state III and state IV respiration, respiratory control index (RCI), respiratory complexes I and II, induced mitochondrial swelling, and cytochrome c release in vitro. Under in vivo conditions, SA induced state IV respiration as well as oxidative stress in time- and dose-dependent manner, and also inhibited the larval growth. In contrast, JA did not affect the mitochondrial respiration and oxidative stress. SA affected the growth and development of H. armigera, in addition to its function as signaling molecules involved in both local defense reactions at feeding sites and the induction of systemic acquired resistance in plants.

  6. Identification of Quorum-Sensing Inhibitors Disrupting Signaling between Rgg and Short Hydrophobic Peptides in Streptococci

    PubMed Central

    Aggarwal, Chaitanya; Jimenez, Juan Cristobal; Lee, Hyun; Chlipala, George E.; Ratia, Kiira

    2015-01-01

    ABSTRACT Bacteria coordinate a variety of social behaviors, important for both environmental and pathogenic bacteria, through a process of intercellular chemical signaling known as quorum sensing (QS). As microbial resistance to antibiotics grows more common, a critical need has emerged to develop novel anti-infective therapies, such as an ability to attenuate bacterial pathogens by means of QS interference. Rgg quorum-sensing pathways, widespread in the phylum Firmicutes, employ cytoplasmic pheromone receptors (Rgg transcription factors) that directly bind and elicit gene expression responses to imported peptide signals. In the human-restricted pathogen Streptococcus pyogenes, the Rgg2/Rgg3 regulatory circuit controls biofilm development in response to the short hydrophobic peptides SHP2 and SHP3. Using Rgg-SHP as a model receptor-ligand target, we sought to identify chemical compounds that could specifically inhibit Rgg quorum-sensing circuits. Individual compounds from a diverse library of known drugs and drug-like molecules were screened for their ability to disrupt complexes of Rgg and FITC (fluorescein isothiocyanate)-conjugated SHP using a fluorescence polarization (FP) assay. The best hits were found to bind Rgg3 in vitro with submicromolar affinities, to specifically abolish transcription of Rgg2/3-controlled genes, and to prevent biofilm development in S. pyogenes without affecting bacterial growth. Furthermore, the top hit, cyclosporine A, as well as its nonimmunosuppressive analog, valspodar, inhibited Rgg-SHP pathways in multiple species of Streptococcus. The Rgg-FITC-peptide-based screen provides a platform to identify inhibitors specific for each Rgg type. Discovery of Rgg inhibitors constitutes a step toward the goal of manipulating bacterial behavior for purposes of improving health. PMID:25968646

  7. Hsp90α forms a stable complex at the cilium neck for the interaction of signalling molecules in IGF-1 receptor signalling.

    PubMed

    Wang, Hongzhong; Zou, Xinle; Wei, Zhuang; Wu, Yuan; Li, Rongxia; Zeng, Rong; Chen, Zhengjun; Liao, Kan

    2015-01-01

    The primary cilium is composed of an axoneme that protrudes from the cell surface, a basal body beneath the membrane and a transition neck in between. It is a sensory organelle on the plasma membrane, involved in mediating extracellular signals. In the transition neck region of the cilium, the microtubules change from triplet to doublet microtubules. This region also contains the transition fibres that crosslink the axoneme with the membrane and the necklace proteins that regulate molecules being transported into and out of the cilium. In this protein-enriched, complex area it is important to maintain the correct assembly of all of these proteins. Here, through immunofluorescent staining and protein isolation, we identify the molecular chaperone Hsp90α clustered at the periciliary base. At the transition neck region, phosphorylated Hsp90α forms a stable ring around the axoneme. Heat shock treatment causes Hsp90α to dissipate and induces resorption of cilia. We further identify that Hsp90α at the transition neck region represents a signalling platform on which IRS-1 interacts with intracellular downstream signalling molecules involved in IGF-1 receptor signalling. © 2015. Published by The Company of Biologists Ltd.

  8. Simpson's Paradox and Confounding Factors in University Rankings: A Demonstration Using QS 2011-12 Data

    ERIC Educational Resources Information Center

    Soh, Kay Cheng

    2012-01-01

    University ranking has become ritualistic in higher education. Ranking results are taken as bona fide by rank users. Ranking systems usually use large data sets from highly heterogeneous universities of varied backgrounds. This poses the problem of Simpson's Paradox and the lurking variables causing it. Using QS 2011-2012 Ranking data, the dual…

  9. Commensal bacteria produce GPCR ligands that mimic human signaling molecules

    PubMed Central

    Cohen, Louis J.; Esterhazy, Daria; Kim, Seong-Hwan; Lemetre, Christophe; Aguilar, Rhiannon R.; Gordon, Emma A.; Pickard, Amanda J.; Cross, Justin R.; Emiliano, Ana B.; Han, Sun M.; Chu, John; Vila-Farres, Xavier; Kaplitt, Jeremy; Rogoz, Aneta; Calle, Paula Y.; Hunter, Craig; Bitok, J. Kipchirchir; Brady, Sean F.

    2017-01-01

    Summary Statement Commensal bacteria are believed to play important roles in human health. The mechanisms by which they affect mammalian physiology are poorly understood; however, bacterial metabolites are likely to be key components of host interactions. Here, we use bioinformatics and synthetic biology to mine the human microbiota for N-acyl amides that interact with G-protein-coupled receptors (GPCRs). We found that N-acyl amide synthase genes are enriched in gastrointestinal bacteria and the lipids they encode interact with GPCRs that regulate gastrointestinal tract physiology. Mouse and cell-based models demonstrate that commensal GPR119 agonists regulate metabolic hormones and glucose homeostasis as efficiently as human ligands although future studies are needed to define their potential physiologic role in humans. This work suggests that chemical mimicry of eukaryotic signaling molecules may be common among commensal bacteria and that manipulation of microbiota genes encoding metabolites that elicit host cellular responses represents a new small molecule therapeutic modality (microbiome-biosynthetic-gene-therapy). PMID:28854168

  10. Inhibition of Coenzyme Qs Accumulation in Engineered Escherichia coli by High Concentration of Farnesyl Diphosphate.

    PubMed

    Samoudi, Mojtaba; Omid Yeganeh, Negar; Shahbani Zahiri, Hossein; Shariati, Parvin; Hajhosseini, Reza

    2015-01-01

    Coenzyme Q 10 (CoQ 10 ) is an isoprenoid component used widely in nutraceutical industries. Farnesyl diphosphate synthase (FPPS) is a responsible enzyme for biosynthesis of farnesyl diphosphate (FPP), a key precursor for CoQs production. This research involved investigating the effect of FPPS over-expression on CoQs production in engineered CoQ 10 -producing Escherichia coli (E. coli). Two CoQ 10 -producing strains, as referred to E. coli Ba and E. coli Br, were transformed by the encoding gene for FPPS (ispA) under the control of either the trc or P BAD promoters. Over-expression of ispA under the control of P BAD promoter led to a relative increase in CoQ 10 production only in recombinant E. coli Br although induction by arabinose resulted in partial reduction of CoQ 10 production in both recombinant E. coli Ba and E. coli Br strains. Over-expression of ispA under the control of stronger trc promoter, however, led to a severe decrease in CoQ 10 production in both recombinant E. coli Ba and E. coli Br strains, as reflected by reductions from 629±40 to 30±13 and 564±28 to 80±14 μg/g Dried Cell Weight (DCW), respectively. The results showed high level of FPP reduces endogenous CoQ 8 production as well and that CoQs are produced in a complimentary manner, as the increase in production of one decreases the production of the other. The reduction in CoQ 10 production can be a result of Dds inhibition by high FPP concentration. Therefore, more effort is needed to verify the role of intermediate metabolite concentration and to optimize production of CoQ 10 .

  11. Inhibition of Coenzyme Qs Accumulation in Engineered Escherichia coli by High Concentration of Farnesyl Diphosphate

    PubMed Central

    Samoudi, Mojtaba; Omid Yeganeh, Negar; Shahbani Zahiri, Hossein; Shariati, Parvin; Hajhosseini, Reza

    2015-01-01

    Background: Coenzyme Q 10 (CoQ 10 ) is an isoprenoid component used widely in nutraceutical industries. Farnesyl diphosphate synthase (FPPS) is a responsible enzyme for biosynthesis of farnesyl diphosphate (FPP), a key precursor for CoQs production. This research involved investigating the effect of FPPS over-expression on CoQs production in engineered CoQ 10 -producing Escherichia coli (E. coli). Methods: Two CoQ 10 -producing strains, as referred to E. coli Ba and E. coli Br, were transformed by the encoding gene for FPPS (ispA) under the control of either the trc or P BAD promoters. Results: Over-expression of ispA under the control of P BAD promoter led to a relative increase in CoQ 10 production only in recombinant E. coli Br although induction by arabinose resulted in partial reduction of CoQ 10 production in both recombinant E. coli Ba and E. coli Br strains. Over-expression of ispA under the control of stronger trc promoter, however, led to a severe decrease in CoQ 10 production in both recombinant E. coli Ba and E. coli Br strains, as reflected by reductions from 629±40 to 30±13 and 564±28 to 80±14 μg/g Dried Cell Weight (DCW), respectively. The results showed high level of FPP reduces endogenous CoQ 8 production as well and that CoQs are produced in a complimentary manner, as the increase in production of one decreases the production of the other. Conclusion: The reduction in CoQ 10 production can be a result of Dds inhibition by high FPP concentration. Therefore, more effort is needed to verify the role of intermediate metabolite concentration and to optimize production of CoQ 10 . PMID:26306151

  12. A pathway to bone: signaling molecules and transcription factors involved in chondrocyte development and maturation

    PubMed Central

    Kozhemyakina, Elena; Lassar, Andrew B.; Zelzer, Elazar

    2015-01-01

    Decades of work have identified the signaling pathways that regulate the differentiation of chondrocytes during bone formation, from their initial induction from mesenchymal progenitor cells to their terminal maturation into hypertrophic chondrocytes. Here, we review how multiple signaling molecules, mechanical signals and morphological cell features are integrated to activate a set of key transcription factors that determine and regulate the genetic program that induces chondrogenesis and chondrocyte differentiation. Moreover, we describe recent findings regarding the roles of several signaling pathways in modulating the proliferation and maturation of chondrocytes in the growth plate, which is the ‘engine’ of bone elongation. PMID:25715393

  13. Composition, anti-quorum sensing and antimicrobial activity of essential oils from Lippia alba

    PubMed Central

    Olivero-Verbel, Jesus; Barreto-Maya, Ana; Bertel-Sevilla, Angela; Stashenko, Elena E.

    2014-01-01

    Many Gram-negative pathogens have the ability to produce N-acylhomoserine lactones (AHLs) as signal molecules for quorum sensing (QS). This cell-cell communication system allows them to coordinate gene expression and regulate virulence. Strategies to inhibit QS are promising for the control of infectious diseases or antibiotic resistant bacterial pathogens. The aim of the present study was to evaluate the anti-quorum sensing (anti-QS) and antibacterial potential of five essential oils isolated from Lippia alba on the Tn-5 mutant of Chromobacterium violaceum CV026, and on the growth of the gram-positive bacteria S. aureus ATCC 25923. The anti-QS activity was detected through the inhibition of the QS-controlled violacein pigment production by the sensor bacteria. Results showed that two essential oils from L. alba, one containing the greatest geranial:neral and the other the highest limonene:carvone concentrations, were the most effective QS inhibitors. Both oils also had small effects on cell growth. Moreover, the geranial/neral chemotype oil also produced the maximum zone of growth inhibition against S. aureus ATCC 25923. These data suggest essential oils from L. alba have promising properties as QS modulators, and present antibacterial activity on S. aureus. PMID:25477905

  14. Mapping quorum sensing onto neural networks to understand collective decision making in heterogeneous microbial communities

    NASA Astrophysics Data System (ADS)

    Yusufaly, Tahir I.; Boedicker, James Q.

    2017-08-01

    Microbial communities frequently communicate via quorum sensing (QS), where cells produce, secrete, and respond to a threshold level of an autoinducer (AI) molecule, thereby modulating gene expression. However, the biology of QS remains incompletely understood in heterogeneous communities, where variant bacterial strains possess distinct QS systems that produce chemically unique AIs. AI molecules bind to ‘cognate’ receptors, but also to ‘non-cognate’ receptors found in other strains, resulting in inter-strain crosstalk. Understanding these interactions is a prerequisite for deciphering the consequences of crosstalk in real ecosystems, where multiple AIs are regularly present in the same environment. As a step towards this goal, we map crosstalk in a heterogeneous community of variant QS strains onto an artificial neural network model. This formulation allows us to systematically analyze how crosstalk regulates the community’s capacity for flexible decision making, as quantified by the Boltzmann entropy of all QS gene expression states of the system. In a mean-field limit of complete cross-inhibition between variant strains, the model is exactly solvable, allowing for an analytical formula for the number of variants that maximize capacity as a function of signal kinetics and activation parameters. An analysis of previous experimental results on the Staphylococcus aureus two-component Agr system indicates that the observed combination of variant numbers, gene expression rates and threshold concentrations lies near this critical regime of parameter space where capacity peaks. The results are suggestive of a potential evolutionary driving force for diversification in certain QS systems.

  15. Development of A Cell-Based Assay to Identify Small Molecule Inhibitors of FGF23 Signaling.

    PubMed

    Diener, Susanne; Schorpp, Kenji; Strom, Tim-Matthias; Hadian, Kamyar; Lorenz-Depiereux, Bettina

    2015-10-01

    Fibroblast growth factor 23 (FGF23) is a bone-derived endocrine key regulator of phosphate homeostasis. It inhibits renal tubular phosphate reabsorption by activating receptor complexes composed of FGF receptor 1c (FGFR1c) and the co-receptor Klotho. As a major signaling pathway mitogen-activated protein kinase (MAPK) pathway is employed. In this study, we established an FGF23-inducible cell model by stably expressing human Klotho in HEK293 cells (HEK293-KL cells) containing endogenous FGF receptors. To identify novel small molecule compounds that modulate FGF23/FGFR1c/Klotho signaling, we developed and optimized a cell-based assay that is suited for high-throughput screening. The assay monitors the phosphorylation of endogenous extracellular signal-regulated kinase 1 and 2 in cellular lysates of HEK293-KL cells after induction with FGF23. This cell-based assay was highly robust (Z' factor >0.5) and the induction of the system is strictly dependent on the presence of FGF23. The inhibitor response curves generated using two known MAPK pathway inhibitors correlate well with data obtained by another assay format. This assay was further used to identify small molecule modulators of the FGF23 signaling cascade by screening the 1,280 food and drug administration-approved small molecule library of Prestwick Chemical. The primary hit rate was 2% and false positives were efficiently identified by retesting the hits in primary and secondary validation screening assays and in western blot analysis. Intriguingly, by using a basic FGF (bFGF)/FGFR counterscreening approach, one validated hit compound retained specificity toward FGF23 signaling, while bFGF signaling was not affected. Since increased plasma concentrations of FGF23 are the main cause of many hypophosphatemic disorders, a modulation of its effect could be a potential novel strategy for therapeutic intervention. Moreover, this strategy may be valuable for other disorders affecting phosphate homeostasis.

  16. Label-free molecular imaging of bacterial communities of the opportunistic pathogen Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Baig, Nameera; Polisetti, Sneha; Morales-Soto, Nydia; Dunham, Sage J. B.; Sweedler, Jonathan V.; Shrout, Joshua D.; Bohn, Paul W.

    2016-09-01

    Biofilms, such as those formed by the opportunistic human pathogen Pseudomonas aeruginosa are complex, matrix enclosed, and surface-associated communities of cells. Bacteria that are part of a biofilm community are much more resistant to antibiotics and the host immune response than their free-floating counterparts. P. aeruginosa biofilms are associated with persistent and chronic infections in diseases such as cystic fibrosis and HIV-AIDS. P. aeruginosa synthesizes and secretes signaling molecules such as the Pseudomonas quinolone signal (PQS) which are implicated in quorum sensing (QS), where bacteria regulate gene expression based on population density. Processes such as biofilms formation and virulence are regulated by QS. This manuscript describes the powerful molecular imaging capabilities of confocal Raman microscopy (CRM) and surface enhanced Raman spectroscopy (SERS) in conjunction with multivariate statistical tools such as principal component analysis (PCA) for studying the spatiotemporal distribution of signaling molecules, secondary metabolites and virulence factors in biofilm communities of P. aeruginosa. Our observations reveal that the laboratory strain PAO1C synthesizes and secretes 2-alkyl-4-hydroxyquinoline N-oxides and 2-alkyl-4-hydroxyquinolones in high abundance, while the isogenic acyl homoserine lactone QS-deficient mutant (ΔlasIΔrhlI) strain produces predominantly 2-alkyl-quinolones during biofilm formation. This study underscores the use of CRM, along with traditional biological tools such as genetics, for studying the behavior of microbial communities at the molecular level.

  17. A small molecule sensor for fluoride based on an autoinductive, colorimetric signal amplification reaction.

    PubMed

    Baker, Matthew S; Phillips, Scott T

    2012-05-14

    This article describes a small molecule reagent that is capable of detecting fluoride down to 0.12 mM (2.3 ppm) in water. The reagent reveals this level of fluoride through a novel autoinductive signal amplification reaction that produces an unambiguous colorimetric readout.

  18. Revealing strategies of quorum sensing in Azospirillum brasilense strains Ab-V5 and Ab-V6.

    PubMed

    Fukami, Josiane; Abrantes, Julia Laura Fernandes; Del Cerro, Pablo; Nogueira, Marco Antonio; Ollero, Francisco Javier; Megías, Manuel; Hungria, Mariangela

    2018-01-01

    Azospirillum brasilense is an important plant-growth promoting bacterium (PGPB) that requires several critical steps for root colonization, including biofilm and exopolysaccharide (EPS) synthesis and cell motility. In several bacteria these mechanisms are mediated by quorum sensing (QS) systems that regulate the expression of specific genes mediated by the autoinducers N-acyl-homoserine lactones (AHLs). We investigated QS mechanisms in strains Ab-V5 and Ab-V6 of A. brasilense, which are broadly used in commercial inoculants in Brazil. Neither of these strains carries a luxI gene, but there are several luxR solos that might perceive AHL molecules. By adding external AHLs we verified that biofilm and EPS production and cell motility (swimming and swarming) were regulated via QS in Ab-V5, but not in Ab-V6. Differences were observed not only between strains, but also in the specificity of LuxR-type receptors to AHL molecules. However, Ab-V6 was outstanding in indole acetic acid (IAA) synthesis and this molecule might mimic AHL signals. We also applied the quorum quenching (QQ) strategy, obtaining transconjugants of Ab-V5 and Ab-V6 carrying a plasmid with acyl-homoserine lactonase. When maize (Zea mays L.) was inoculated with the wild-type and transconjugant strains, plant growth was decreased with the transconjugant of Ab-V5-confirming the importance of an AHL-mediated QS system-but did not affect plant growth promotion by Ab-V6.

  19. The Molecule Pages database

    PubMed Central

    Saunders, Brian; Lyon, Stephen; Day, Matthew; Riley, Brenda; Chenette, Emily; Subramaniam, Shankar

    2008-01-01

    The UCSD-Nature Signaling Gateway Molecule Pages (http://www.signaling-gateway.org/molecule) provides essential information on more than 3800 mammalian proteins involved in cellular signaling. The Molecule Pages contain expert-authored and peer-reviewed information based on the published literature, complemented by regularly updated information derived from public data source references and sequence analysis. The expert-authored data includes both a full-text review about the molecule, with citations, and highly structured data for bioinformatics interrogation, including information on protein interactions and states, transitions between states and protein function. The expert-authored pages are anonymously peer reviewed by the Nature Publishing Group. The Molecule Pages data is present in an object-relational database format and is freely accessible to the authors, the reviewers and the public from a web browser that serves as a presentation layer. The Molecule Pages are supported by several applications that along with the database and the interfaces form a multi-tier architecture. The Molecule Pages and the Signaling Gateway are routinely accessed by a very large research community. PMID:17965093

  20. The Molecule Pages database.

    PubMed

    Saunders, Brian; Lyon, Stephen; Day, Matthew; Riley, Brenda; Chenette, Emily; Subramaniam, Shankar; Vadivelu, Ilango

    2008-01-01

    The UCSD-Nature Signaling Gateway Molecule Pages (http://www.signaling-gateway.org/molecule) provides essential information on more than 3800 mammalian proteins involved in cellular signaling. The Molecule Pages contain expert-authored and peer-reviewed information based on the published literature, complemented by regularly updated information derived from public data source references and sequence analysis. The expert-authored data includes both a full-text review about the molecule, with citations, and highly structured data for bioinformatics interrogation, including information on protein interactions and states, transitions between states and protein function. The expert-authored pages are anonymously peer reviewed by the Nature Publishing Group. The Molecule Pages data is present in an object-relational database format and is freely accessible to the authors, the reviewers and the public from a web browser that serves as a presentation layer. The Molecule Pages are supported by several applications that along with the database and the interfaces form a multi-tier architecture. The Molecule Pages and the Signaling Gateway are routinely accessed by a very large research community.

  1. Structure of the Repulsive Guidance Molecule (RGM)—Neogenin Signaling Hub

    PubMed Central

    Bell, Christian H.; Bishop, Benjamin; Tang, Chenxiang; Gilbert, Robert J.C.; Aricescu, A. Radu; Pasterkamp, R. Jeroen; Siebold, Christian

    2016-01-01

    Repulsive guidance molecule family members (RGMs) control fundamental and diverse cellular processes, including motility and adhesion, immune cell regulation, and systemic iron metabolism. However, it is not known how RGMs initiate signaling through their common cell-surface receptor, neogenin (NEO1). Here, we present crystal structures of the NEO1 RGM-binding region and its complex with human RGMB (also called dragon). The RGMB structure reveals a previously unknown protein fold and a functionally important autocatalytic cleavage mechanism and provides a framework to explain numerous disease-linked mutations in RGMs. In the complex, two RGMB ectodomains conformationally stabilize the juxtamembrane regions of two NEO1 receptors in a pH-dependent manner. We demonstrate that all RGM-NEO1 complexes share this architecture, which therefore represents the core of multiple signaling pathways. PMID:23744777

  2. SASH1 is a scaffold molecule in endothelial TLR4 signaling.

    PubMed

    Dauphinee, Shauna M; Clayton, Ashley; Hussainkhel, Angela; Yang, Cindy; Park, Yoo-Jin; Fuller, Megan E; Blonder, Josip; Veenstra, Timothy D; Karsan, Aly

    2013-07-15

    Recognition of microbial products by TLRs is critical for mediating innate immune responses to invading pathogens. In this study, we identify a novel scaffold protein in TLR4 signaling called SAM and SH3 domain containing protein 1 (SASH1). Sash1 is expressed across all microvascular beds and functions as a scaffold molecule to independently bind TRAF6, TAK1, IκB kinase α, and IκB kinase β. This interaction fosters ubiquitination of TRAF6 and TAK1 and promotes LPS-induced NF-κB, JNK, and p38 activation, culminating in increased production of proinflammatory cytokines and increased LPS-induced endothelial migration. Our findings suggest that SASH1 acts to assemble a signaling complex downstream of TLR4 to activate early endothelial responses to receptor activation.

  3. Hydrogen sulphide in cardiovascular system: A cascade from interaction between sulphur atoms and signalling molecules.

    PubMed

    Wang, Ming-Jie; Cai, Wen-Jie; Zhu, Yi-Chun

    2016-05-15

    As a gasotransmitter, hydrogen sulphide exerts its extensive physiological and pathophysiological effects in mammals. The interaction between sulphur atoms and signalling molecules forms a cascade that modulates cellular functions and homeostasis. In this review, we focus on the signalling mechanism underlying the effect of hydrogen sulphide in the cardiovascular system and metabolism as well as the biological relevance to human diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Quorum quenching quandary: resistance to antivirulence compounds

    PubMed Central

    Maeda, Toshinari; García-Contreras, Rodolfo; Pu, Mingming; Sheng, Lili; Garcia, Luis Rene; Tomás, Maria; Wood, Thomas K

    2012-01-01

    Quorum sensing (QS) is the regulation of gene expression in response to the concentration of small signal molecules, and its inactivation has been suggested to have great potential to attenuate microbial virulence. It is assumed that unlike antimicrobials, inhibition of QS should cause less Darwinian selection pressure for bacterial resistance. Using the opportunistic pathogen Pseudomonas aeruginosa, we demonstrate here that bacterial resistance arises rapidly to the best-characterized compound that inhibits QS (brominated furanone C-30) due to mutations that increase the efflux of C-30. Critically, the C-30-resistant mutant mexR was more pathogenic to Caenorhabditis elegans in the presence of C-30, and the same mutation arises in bacteria responsible for chronic cystic fibrosis infections. Therefore, bacteria may evolve resistance to many new pharmaceuticals thought impervious to resistance. PMID:21918575

  5. Repulsive Guidance Molecules (RGMs) and Neogenin in Bone Morphogenetic Protein (BMP) signaling

    PubMed Central

    Tian, Chenxi; Liu, Jun

    2015-01-01

    Summary Bone morphogenetic proteins (BMPs) belong to the transforming growth factor-beta (TGFβ) superfamily. BMPs mediate a highly conserved signal transduction cascade through the type I and type II serine/threonine kinase receptors and intracellular Smad proteins. The BMP pathway regulates multiple developmental and homeostatic processes. Mutations in this pathway can cause various diseases in humans, such as skeletal disorders, cardiovascular diseases and various cancers. Multiple levels of regulation, including extracellular regulation, help to ensure proper spatiotemporal control of BMP signaling in the right cellular context. The family of repulsive guidance molecules (RGMs) and the type I trans-membrane protein neogenin, a paralog of DCC (Deleted in Colorectal Cancer), have been implicated in modulating the BMP pathway. In this review, we discuss the properties and functions of RGM proteins and neogenin, focusing on their roles in the modulation of BMP signal transduction. PMID:23740870

  6. Investigation of Pseudomonas aeruginosa quorum-sensing signaling system for identifying multiple inhibitors using molecular docking and structural analysis methodology.

    PubMed

    Soheili, Vahid; Bazzaz, Bibi Sedigheh Fazly; Abdollahpour, Nooshin; Hadizadeh, Farzin

    2015-12-01

    Pseudomonas aeruginosa is an opportunistic human pathogen and a common Gram-negative bacterium in hospital-acquired infections. It causes death in many burn victims, cystic-fibrosis and neutropenic-cancer patients. It is known that P. aeruginosa biofilm maturation and production of cell-associated and extracellular virulence factors such as pyocyanin, elastase and rhamnolipids are under the control of a quorum-sensing (QS) system. Among several proteins involved in the Pseudomonas QS mechanism, LasR and PqsE play an important role in its cascade signaling system. They can cause increases in QS factors, biofilm maturation, and the production of virulence factors. Therefore, inhibition of these proteins can reduce the pathogenicity of P. aeruginosa. According to the structure of corresponding auto-inducers bound to these proteins, in silico calculations were performed with some non-steroidal anti-inflammatory drugs (NSAIDs) to estimate possible interactions and find the co-inhibitors of LasR and PqsE. The results showed that oxicams (Piroxicam and Meloxicam) can interact well with active sites of both proteins with the Ki of 119.43 nM and 4.0 μM for Meloxicam and 201.39 nM and 4.88 μM against LasR and PqsE, respectively. These findings suggested that Piroxicam and Meloxicam can be used as potential inhibitors for control of the P. aeruginosa QS signaling system and biofilm formation, and may be used in the design of multiple inhibitors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Small Molecule Inhibitors of AI-2 Signaling in Bacteria: State-of-the-Art and Future Perspectives for Anti-Quorum Sensing Agents

    PubMed Central

    Guo, Min; Gamby, Sonja; Zheng, Yue; Sintim, Herman O.

    2013-01-01

    Bacteria respond to different small molecules that are produced by other neighboring bacteria. These molecules, called autoinducers, are classified as intraspecies (i.e., molecules produced and perceived by the same bacterial species) or interspecies (molecules that are produced and sensed between different bacterial species). AI-2 has been proposed as an interspecies autoinducer and has been shown to regulate different bacterial physiology as well as affect virulence factor production and biofilm formation in some bacteria, including bacteria of clinical relevance. Several groups have embarked on the development of small molecules that could be used to perturb AI-2 signaling in bacteria, with the ultimate goal that these molecules could be used to inhibit bacterial virulence and biofilm formation. Additionally, these molecules have the potential to be used in synthetic biology applications whereby these small molecules are used as inputs to switch on and off AI-2 receptors. In this review, we highlight the state-of-the-art in the development of small molecules that perturb AI-2 signaling in bacteria and offer our perspective on the future development and applications of these classes of molecules. PMID:23994835

  8. The adaptor molecule RIAM integrates signaling events critical for integrin-mediated control of immune function and cancer progression.

    PubMed

    Patsoukis, Nikolaos; Bardhan, Kankana; Weaver, Jessica D; Sari, Duygu; Torres-Gomez, Alvaro; Li, Lequn; Strauss, Laura; Lafuente, Esther M; Boussiotis, Vassiliki A

    2017-08-22

    Lymphocyte activation requires adhesion to antigen-presenting cells. This is a critical event linking innate and adaptive immunity. Lymphocyte adhesion is accomplished through LFA-1, which must be activated by a process referred to as inside-out integrin signaling. Among the few signaling molecules that have been implicated in inside-out integrin activation in hematopoietic cells are the small guanosine triphosphatase (GTPase) Rap1 and its downstream effector Rap1-interacting molecule (RIAM), a multidomain protein that defined the Mig10-RIAM-lamellipodin (MRL) class of adaptor molecules. Through its various domains, RIAM is a critical node of signal integration for activation of T cells, recruits monomeric and polymerized actin to drive actin remodeling and cytoskeletal reorganization, and promotes inside-out integrin signaling in T cells. As a regulator of inside-out integrin activation, RIAM affects multiple functions of innate and adaptive immunity. The effects of RIAM on cytoskeletal reorganization and integrin activation have implications in cell migration and trafficking of cancer cells. We provide an overview of the structure and interactions of RIAM, and we discuss the implications of RIAM functions in innate and adaptive immunity and cancer. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  9. Excitation spectra of aromatic molecules within a real-space G W -BSE formalism: Role of self-consistency and vertex corrections

    DOE PAGES

    Hung, Linda; da Jornada, Felipe H.; Souto-Casares, Jaime; ...

    2016-08-15

    Here, we present first-principles calculations on the vertical ionization potentials (IPs), electron affinities (EAs), and singlet excitation energies on an aromatic-molecule test set (benzene, thiophene, 1,2,5-thiadiazole, naphthalene, benzothiazole, and tetrathiafulvalene) within the GW and Bethe-Salpeter equation (BSE) formalisms. Our computational framework, which employs a real-space basis for ground-state and a transition-space basis for excited-state calculations, is well suited for high-accuracy calculations on molecules, as we show by comparing against G0W0 calculations within a plane-wave-basis formalism. We then generalize our framework to test variants of the GW approximation that include a local density approximation (LDA)–derived vertex function (Γ LDA ) andmore » quasiparticle-self-consistent (QS) iterations. We find that Γ LDA and quasiparticle self-consistency shift IPs and EAs by roughly the same magnitude, but with opposite sign for IPs and the same sign for EAs. G0W0 and QS GWΓ LDA are more accurate for IPs, while G 0W 0Γ LDA and QS GW are best for EAs. For optical excitations, we find that perturbative GW-BSE underestimates the singlet excitation energy, while self-consistent GW-BSE results in good agreement with previous best-estimate values for both valence and Rydberg excitations. Finally, our work suggests that a hybrid approach, in which G0W0 energies are used for occupied orbitals and G0W0Γ LDA for unoccupied orbitals, also yields optical excitation energies in good agreement with experiment but at a smaller computational cost.« less

  10. Excitation spectra of aromatic molecules within a real-space G W -BSE formalism: Role of self-consistency and vertex corrections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hung, Linda; da Jornada, Felipe H.; Souto-Casares, Jaime

    Here, we present first-principles calculations on the vertical ionization potentials (IPs), electron affinities (EAs), and singlet excitation energies on an aromatic-molecule test set (benzene, thiophene, 1,2,5-thiadiazole, naphthalene, benzothiazole, and tetrathiafulvalene) within the GW and Bethe-Salpeter equation (BSE) formalisms. Our computational framework, which employs a real-space basis for ground-state and a transition-space basis for excited-state calculations, is well suited for high-accuracy calculations on molecules, as we show by comparing against G0W0 calculations within a plane-wave-basis formalism. We then generalize our framework to test variants of the GW approximation that include a local density approximation (LDA)–derived vertex function (Γ LDA ) andmore » quasiparticle-self-consistent (QS) iterations. We find that Γ LDA and quasiparticle self-consistency shift IPs and EAs by roughly the same magnitude, but with opposite sign for IPs and the same sign for EAs. G0W0 and QS GWΓ LDA are more accurate for IPs, while G 0W 0Γ LDA and QS GW are best for EAs. For optical excitations, we find that perturbative GW-BSE underestimates the singlet excitation energy, while self-consistent GW-BSE results in good agreement with previous best-estimate values for both valence and Rydberg excitations. Finally, our work suggests that a hybrid approach, in which G0W0 energies are used for occupied orbitals and G0W0Γ LDA for unoccupied orbitals, also yields optical excitation energies in good agreement with experiment but at a smaller computational cost.« less

  11. 50 CFR Table 9 to Part 680 - Initial Issuance of Crab PQS by Crab QS Fishery

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... fisheries for any... Bristol Bay red king crab (BBR) 3 years of the 3-year QS base period beginning on: (1... Bristol Bay red king crab fishery during the qualifying years established for that fishery. Pribilof Islands red and blue king crab (PIK) 3 years of the 3-year period beginning on: (1) September 15-26, 1996...

  12. 50 CFR Table 9 to Part 680 - Initial Issuance of Crab PQS by Crab QS Fishery

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... fisheries for any... Bristol Bay red king crab (BBR) 3 years of the 3-year QS base period beginning on: (1... Bristol Bay red king crab fishery during the qualifying years established for that fishery. Pribilof Islands red and blue king crab (PIK) 3 years of the 3-year period beginning on: (1) September 15-26, 1996...

  13. More Efficient Media Design for Enhanced Biofouling Control in a Membrane Bioreactor: Quorum Quenching Bacteria Entrapping Hollow Cylinder.

    PubMed

    Lee, Sang H; Lee, Seonki; Lee, Kibaek; Nahm, Chang H; Kwon, Hyeokpil; Oh, Hyun-Suk; Won, Young-June; Choo, Kwang-Ho; Lee, Chung-Hak; Park, Pyung-Kyu

    2016-08-16

    Recently, membrane bioreactors (MBRs) with quorum quenching (QQ) bacteria entrapping beads have been reported as a new paradigm in biofouling control because, unlike conventional post-biofilm control methods, bacterial QQ can inhibit biofilm formation through its combined effects of physical scouring of the membrane and inhibition of quorum sensing (QS). In this study, using a special reporter strain (Escherichia coli JB525), the interaction between QS signal molecules and quorum quenching bacteria entrapping beads (QQ-beads) was elucidated through visualization of the QS signal molecules within a QQ-bead using a fluorescence microscope. As a result, under the conditions considered in this study, the surface area of QQ-media was likely to be a dominant parameter in enhancing QQ activity over total mass of entrapped QQ bacteria because QQ bacteria located near the core of a QQ-bead were unable to display their QQ activities. On the basis of this information, a more efficient QQ-medium, a QQ hollow cylinder (QQ-HC), was designed and prepared. In batch experiments, QQ-HCs showed greater QQ activity than QQ-beads as a result of their higher surface area and enhanced physical washing effect because of their larger impact area against the membrane surface. Furthermore, it was shown that such advantages of QQ-HCs resulted in more effective mitigation of membrane fouling than from QQ-beads in lab-scale continuous MBRs.

  14. Plant Pathogenic Microbial Communication Affected by Elevated Temperature in Pectobacterium carotovorum subsp. carotovorum.

    PubMed

    Saha, N D; Chaudhary, A; Singh, S D; Singh, D; Walia, S; Das, T K

    2015-11-01

    Gram-negative plant pathogenic bacteria regulate specific gene expression in a population density-dependent manner by sensing level of Acyl-Homoserine Lactone (HSL) molecules which they produce and liberate to the environment, called Quorum Sensing (QS). The production of virulence factors (extracellular enzyme viz. cellulase, pectinase, etc.) in Pectobacterium carotovorum subsp. carotovorum (Pcc) is under strong regulation of QS. The QS signal molecule, N-(3-oxohexanoyl)-L-Homoserine Lactone (OHHL) was found as the central regulatory system for the virulence factor production in Pcc and is also under strict regulation of external environmental temperature. Under seven different incubation temperatures (24, 26, 28, 30, 33, 35, and 37 °C) in laboratory condition, highest amount of OHHL (804 violacein unit) and highest (79 %) Disease Severity Index (DSI) were measured at 33 °C. The OHHL production kinetics showed accumulation of highest concentration of OHHL at late log phase of the growth but diminution in the concentration occurred during stationary phase onwards to death phase. At higher temperature (35 and 37 °C) exposure, OHHL was not at detectable range. The effect of temperature on virulence factor production is the concomitant effect of HSL production and degradation which justifies less disease severity index in cross-inoculated tomato fruits incubated at 35 and 37 °C. The nondetection of the OHHL in the elevated temperature may because of degradation as these signal molecules are quite sensitive and prone to get degraded under different physical factors. This result provides the rationale behind the highest disease severity up to certain elevated temperature and leaves opportunities for investigation on mutation, co-evolution of superior plant pathogen with more stable HSL signals-mediated pathogenesis under global warming context.

  15. Freshwater-Borne Bacteria Isolated from a Malaysian Rainforest Waterfall Exhibiting Quorum Sensing Properties

    PubMed Central

    Tan, Wen-Si; Yunos, Nina Yusrina Muhamad; Tan, Pui-Wan; Mohamad, Nur Izzati; Adrian, Tan-Guan-Sheng; Yin, Wai-Fong; Chan, Kok-Gan

    2014-01-01

    One obvious requirement for concerted action by a bacterial population is for an individual to be aware of and respond to the other individuals of the same species in order to form a response in unison. The term “quorum sensing” (QS) was coined to describe bacterial communication that is able to stimulate expression of a series of genes when the concentration of the signaling molecules has reached a threshold level. Here we report the isolation from aquatic environment of a bacterium that was later identified as Enterobacter sp.. Chromobacterium violaceum CV026 and Escherichia coli [pSB401] were used for preliminary screening of N-acyl homoserine lactone (AHL) production. The Enterobacter sp. isolated was shown to produce two types of AHLs as confirmed by analysis using high resolution tandem mass spectrometry. To the best of our knowledge, this is the first documentation of an Enterobacter sp. that produced both 3-oxo-C6-HSL and 3-oxo-C8-HSL as QS signaling molecules. PMID:24932870

  16. What radiologists need to know about the pulmonary-systemic flow ratio (Qp/Qs): what it is, how to calculate it, and what it is for.

    PubMed

    Marín Rodríguez, C; Sánchez Alegre, M L; Lancharro Zapata, Á; Alarcón Rodríguez, J

    2015-01-01

    Cardiac magnetic resonance imaging (cMRI) provides abundant morphological and functional information in the study of congenital heart disease. The functional information includes pulmonary output and systemic output; the ratio between these two (Qp/Qs) is the shunt fraction. After birth, in normal conditions the pulmonary output is practically identical to the systemic output, so Qp/Qs = 1. In patients with « shunts » between the systemic and pulmonary circulations, the ratio changes, and the interpretation of these findings varies in function of the location of the shunt (intracardiac or extracardiac) and of the associated structural or postsurgical changes. We review the concept of Qp/Qs; the methods to calculate it, with special emphasis on cMRI; and the meaning of the results obtained. We place special emphasis on the relevance of these findings depending on the underlying disease and the treatment the patient has undergone. Copyright © 2015 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  17. [Activation of the bioluminescence of the sensor Escherichia coli strains used for detecting N-acyl-homoserine lactones in the presence of nitrofurans and NO generators].

    PubMed

    Zaĭtseva, Iu V; Granik, V G; Belik, A S; Koksharova, O A; Khmel', I A

    2010-01-01

    Nitrofurans (nitrofurazone, nitrofurantoin, furazidin, nifuroxazide), and nitric oxide generators (sodium nitroprusside and isosorbide mononitrate) in subinhibitory concentrations were shown to significantly increase the bioluminescence of the sensor Escherichia coli strains used for detecting N-acyl-homoserine lactones, signaling molecules of Quorum Sensing (QS) regulatory systems. The highest activation of bioluminescence (up to 250-400 fold) was observed in the presence of nitrofurazone on E. coli DH5alpha biosensors containing lux-reporter plasmids pSB401 or pSB536. However, this activation was not specifically associated with the functioning of QS systems. We suggest that the effect observed results from a direct action of nitrofurans and NO donors on the process of bioluminescence. The data indicate the necessity of using the biosensors that make it possible to detect specific effects of substances tested on QS regulation.

  18. Sediment Transport Variability in Global Rivers: Implications for the Interpretation of Paleoclimate Signals

    NASA Astrophysics Data System (ADS)

    Syvitski, J. P.; Hutton, E. W.

    2001-12-01

    A new numerical approach (HydroTrend, v.2) allows the daily flux of sediment to be estimated for any river, whether gauged or not. The model can be driven by actual climate measurements (precipitation, temperature) or with statistical estimates of climate (modeled climate, remotely-sensed climate). In both cases, the character (e.g. soil depth, relief, vegetation index) of the drainage terrain is needed to complete the model domain. The HydroTrend approach allows us to examine the effects of climate on the supply of sediment to continental margins, and the nature of supply variability. A new relationship is defined as: $Qs = f (Psi) Qs-bar (Q/Q-bar)c+-σ where Qs-bar is the long-term sediment load, Q-bar is the long-term discharge, c and sigma are mean and standard deviation of the inter-annual variability of the rating coefficient, and Psi captures the measurement errors associated with Q and Qs, and the annual transients, affecting the supply of sediment including sediment and water source, and river (flood wave) dynamics. F = F(Psi, s). Smaller-discharge rivers have larger values of s, and s asymptotes to a small but consistent value for larger-discharge rivers. The coefficient c is directly proportional to the long-term suspended load (Qs-bar) and basin relief (R), and inversely proportional to mean annual temperature (T). sigma is directly proportional to the mean annual discharge. The long-term sediment load is given by: Qs-bar = a R1.5 A0.5 TT $ where a is a global constant, A is basin area; and TT is a function of mean annual temperature. This new approach provides estimates of sediment flux at the dynamic (daily) level and provides us a means to experiment on the sensitivity of marine sedimentary deposits in recording a paleoclimate signal. In addition the method provides us with spatial estimates for the flux of sediment to the coastal zone at the global scale.

  19. A Novel Signal Transduction Pathway that Modulates rhl Quorum Sensing and Bacterial Virulence in Pseudomonas aeruginosa

    PubMed Central

    Chen, Feifei; Xia, Yongjie; Lou, Jingyu; Zhang, Xue; Yang, Nana; Sun, Xiaoxu; Zhang, Qin; Zhuo, Chao; Huang, Xi; Deng, Xin; Yang, Cai-Guang; Ye, Yan; Zhao, Jing; Wu, Min; Lan, Lefu

    2014-01-01

    The rhl quorum-sensing (QS) system plays critical roles in the pathogenesis of P. aeruginosa. However, the regulatory effects that occur directly upstream of the rhl QS system are poorly understood. Here, we show that deletion of gene encoding for the two-component sensor BfmS leads to the activation of its cognate response regulator BfmR, which in turn directly binds to the promoter and decreases the expression of the rhlR gene that encodes the QS regulator RhlR, causing the inhibition of the rhl QS system. In the absence of bfmS, the Acka-Pta pathway can modulate the regulatory activity of BfmR. In addition, BfmS tunes the expression of 202 genes that comprise 3.6% of the P. aeruginosa genome. We further demonstrate that deletion of bfmS causes substantially reduced virulence in lettuce leaf, reduced cytotoxicity, enhanced invasion, and reduced bacterial survival during acute mouse lung infection. Intriguingly, specific missense mutations, which occur naturally in the bfmS gene in P. aeruginosa cystic fibrosis (CF) isolates such as DK2 strains and RP73 strain, can produce BfmS variants (BfmSL181P, BfmSL181P/E376Q, and BfmSR393H) that no longer repress, but instead activate BfmR. As a result, BfmS variants, but not the wild-type BfmS, inhibit the rhl QS system. This study thus uncovers a previously unexplored signal transduction pathway, BfmS/BfmR/RhlR, for the regulation of rhl QS in P. aeruginosa. We propose that BfmRS TCS may have an important role in the regulation and evolution of P. aeruginosa virulence during chronic infection in CF lungs. PMID:25166864

  20. A novel signal transduction pathway that modulates rhl quorum sensing and bacterial virulence in Pseudomonas aeruginosa.

    PubMed

    Cao, Qiao; Wang, Yue; Chen, Feifei; Xia, Yongjie; Lou, Jingyu; Zhang, Xue; Yang, Nana; Sun, Xiaoxu; Zhang, Qin; Zhuo, Chao; Huang, Xi; Deng, Xin; Yang, Cai-Guang; Ye, Yan; Zhao, Jing; Wu, Min; Lan, Lefu

    2014-08-01

    The rhl quorum-sensing (QS) system plays critical roles in the pathogenesis of P. aeruginosa. However, the regulatory effects that occur directly upstream of the rhl QS system are poorly understood. Here, we show that deletion of gene encoding for the two-component sensor BfmS leads to the activation of its cognate response regulator BfmR, which in turn directly binds to the promoter and decreases the expression of the rhlR gene that encodes the QS regulator RhlR, causing the inhibition of the rhl QS system. In the absence of bfmS, the Acka-Pta pathway can modulate the regulatory activity of BfmR. In addition, BfmS tunes the expression of 202 genes that comprise 3.6% of the P. aeruginosa genome. We further demonstrate that deletion of bfmS causes substantially reduced virulence in lettuce leaf, reduced cytotoxicity, enhanced invasion, and reduced bacterial survival during acute mouse lung infection. Intriguingly, specific missense mutations, which occur naturally in the bfmS gene in P. aeruginosa cystic fibrosis (CF) isolates such as DK2 strains and RP73 strain, can produce BfmS variants (BfmSL181P, BfmSL181P/E376Q, and BfmSR393H) that no longer repress, but instead activate BfmR. As a result, BfmS variants, but not the wild-type BfmS, inhibit the rhl QS system. This study thus uncovers a previously unexplored signal transduction pathway, BfmS/BfmR/RhlR, for the regulation of rhl QS in P. aeruginosa. We propose that BfmRS TCS may have an important role in the regulation and evolution of P. aeruginosa virulence during chronic infection in CF lungs.

  1. Non-thermal Plasma Exposure Rapidly Attenuates Bacterial AHL-Dependent Quorum Sensing and Virulence.

    PubMed

    Flynn, Padrig B; Busetti, Alessandro; Wielogorska, Ewa; Chevallier, Olivier P; Elliott, Christopher T; Laverty, Garry; Gorman, Sean P; Graham, William G; Gilmore, Brendan F

    2016-05-31

    The antimicrobial activity of atmospheric pressure non-thermal plasma has been exhaustively characterised, however elucidation of the interactions between biomolecules produced and utilised by bacteria and short plasma exposures are required for optimisation and clinical translation of cold plasma technology. This study characterizes the effects of non-thermal plasma exposure on acyl homoserine lactone (AHL)-dependent quorum sensing (QS). Plasma exposure of AHLs reduced the ability of such molecules to elicit a QS response in bacterial reporter strains in a dose-dependent manner. Short exposures (30-60 s) produce of a series of secondary compounds capable of eliciting a QS response, followed by the complete loss of AHL-dependent signalling following longer exposures. UPLC-MS analysis confirmed the time-dependent degradation of AHL molecules and their conversion into a series of by-products. FT-IR analysis of plasma-exposed AHLs highlighted the appearance of an OH group. In vivo assessment of the exposure of AHLs to plasma was examined using a standard in vivo model. Lettuce leaves injected with the rhlI/lasI mutant PAO-MW1 alongside plasma treated N-butyryl-homoserine lactone and n-(3-oxo-dodecanoyl)-homoserine lactone, exhibited marked attenuation of virulence. This study highlights the capacity of atmospheric pressure non-thermal plasma to modify and degrade AHL autoinducers thereby attenuating QS-dependent virulence in P. aeruginosa.

  2. Non-thermal Plasma Exposure Rapidly Attenuates Bacterial AHL-Dependent Quorum Sensing and Virulence

    PubMed Central

    Flynn, Padrig B.; Busetti, Alessandro; Wielogorska, Ewa; Chevallier, Olivier P.; Elliott, Christopher T.; Laverty, Garry; Gorman, Sean P.; Graham, William G.; Gilmore, Brendan F.

    2016-01-01

    The antimicrobial activity of atmospheric pressure non-thermal plasma has been exhaustively characterised, however elucidation of the interactions between biomolecules produced and utilised by bacteria and short plasma exposures are required for optimisation and clinical translation of cold plasma technology. This study characterizes the effects of non-thermal plasma exposure on acyl homoserine lactone (AHL)-dependent quorum sensing (QS). Plasma exposure of AHLs reduced the ability of such molecules to elicit a QS response in bacterial reporter strains in a dose-dependent manner. Short exposures (30–60 s) produce of a series of secondary compounds capable of eliciting a QS response, followed by the complete loss of AHL-dependent signalling following longer exposures. UPLC-MS analysis confirmed the time-dependent degradation of AHL molecules and their conversion into a series of by-products. FT-IR analysis of plasma-exposed AHLs highlighted the appearance of an OH group. In vivo assessment of the exposure of AHLs to plasma was examined using a standard in vivo model. Lettuce leaves injected with the rhlI/lasI mutant PAO-MW1 alongside plasma treated N-butyryl-homoserine lactone and n-(3-oxo-dodecanoyl)-homoserine lactone, exhibited marked attenuation of virulence. This study highlights the capacity of atmospheric pressure non-thermal plasma to modify and degrade AHL autoinducers thereby attenuating QS-dependent virulence in P. aeruginosa. PMID:27242335

  3. T wave abnormalities, high body mass index, current smoking and high lipoprotein (a) levels predict the development of major abnormal Q/QS patterns 20 years later. A population-based study

    PubMed Central

    Moller, Christina Strom; Byberg, Liisa; Sundstrom, Johan; Lind, Lars

    2006-01-01

    Background Most studies on risk factors for development of coronary heart disease (CHD) have been based on the clinical outcome of CHD. Our aim was to identify factors that could predict the development of ECG markers of CHD, such as abnormal Q/QS patterns, ST segment depression and T wave abnormalities, in 70-year-old men, irrespective of clinical outcome. Methods Predictors for development of different ECG abnormalities were identified in a population-based study using stepwise logistic regression. Anthropometrical and metabolic factors, ECG abnormalities and vital signs from a health survey of men at age 50 were related to ECG abnormalities identified in the same cohort 20 years later. Results At the age of 70, 9% had developed a major abnormal Q/QS pattern, but 63% of these subjects had not been previously hospitalized due to MI, while 57% with symptomatic MI between age 50 and 70 had no major Q/QS pattern at age 70. T wave abnormalities (Odds ratio 3.11, 95% CI 1.18–8.17), high lipoprotein (a) levels, high body mass index (BMI) and smoking were identified as significant independent predictors for the development of abnormal major Q/QS patterns. T wave abnormalities and high fasting glucose levels were significant independent predictors for the development of ST segment depression without abnormal Q/QS pattern. Conclusion T wave abnormalities on resting ECG should be given special attention and correlated with clinical information. Risk factors for major Q/QS patterns need not be the same as traditional risk factors for clinically recognized CHD. High lipoprotein (a) levels may be a stronger risk factor for silent myocardial infarction (MI) compared to clinically recognized MI. PMID:16519804

  4. S-aryl-L-cysteine sulphoxides and related organosulphur compounds alter oral biofilm development and AI-2-based cell-cell communication.

    PubMed

    Kasper, S H; Samarian, D; Jadhav, A P; Rickard, A H; Musah, R A; Cady, N C

    2014-11-01

    To design and synthesize a library of structurally related, small molecules related to homologues of compounds produced by the plant Petiveria alliacea and determine their ability to interfere with AI-2 cell-cell communication and biofilm formation by oral bacteria. Many human diseases are associated with persistent bacterial biofilms. Oral biofilms (dental plaque) are problematic as they are often associated with tooth decay, periodontal disease and systemic disorders such as heart disease and diabetes. Using a microplate-based approach, a bio-inspired small molecule library was screened for anti-biofilm activity against the oral species Streptococcus mutans UA159, Streptococcus sanguis 10556 and Actinomyces oris MG1. To complement the static screen, a flow-based BioFlux microfluidic system screen was also performed under conditions representative of the human oral cavity. Several compounds were found to display biofilm inhibitory activity in all three of the oral bacteria tested. These compounds were also shown to inhibit bioluminescence by Vibrio harveyi and were thus inferred to be quorum sensing (QS) inhibitors. Due to the structural similarity of these compounds to each other, and to key molecules in AI-2 biosynthetic pathways, we propose that these molecules potentially reduce biofilm formation via antagonism of QS or QS-related pathways. This study highlights the potential for a non-antimicrobial-based strategy, focused on AI-2 cell-cell signalling, to control the development of dental plaque. Considering that many bacterial species use AI-2 cell-cell signalling, as well as the increased concern of the use of antimicrobials in healthcare products, such an anti-biofilm approach could also be used to control biofilms in environments beyond the human oral cavity. © 2014 The Society for Applied Microbiology.

  5. A small molecule inhibitor of Rheb selectively targets mTORC1 signaling.

    PubMed

    Mahoney, Sarah J; Narayan, Sridhar; Molz, Lisa; Berstler, Lauren A; Kang, Seong A; Vlasuk, George P; Saiah, Eddine

    2018-02-07

    The small G-protein Rheb activates the mechanistic target of rapamycin complex 1 (mTORC1) in response to growth factor signals. mTORC1 is a master regulator of cellular growth and metabolism; aberrant mTORC1 signaling is associated with fibrotic, metabolic, and neurodegenerative diseases, cancers, and rare disorders. Point mutations in the Rheb switch II domain impair its ability to activate mTORC1. Here, we report the discovery of a small molecule (NR1) that binds Rheb in the switch II domain and selectively blocks mTORC1 signaling. NR1 potently inhibits mTORC1 driven phosphorylation of ribosomal protein S6 kinase beta-1 (S6K1) but does not inhibit phosphorylation of AKT or ERK. In contrast to rapamycin, NR1 does not cause inhibition of mTORC2 upon prolonged treatment. Furthermore, NR1 potently and selectively inhibits mTORC1 in mouse kidney and muscle in vivo. The data presented herein suggest that pharmacological inhibition of Rheb is an effective approach for selective inhibition of mTORC1 with therapeutic potential.

  6. CELL SURFACE SIGNALING MOLECULES IN THE CONTROL OF IMMUNE RESPONSES: A TIDE MODEL

    PubMed Central

    Zhu, Yuwen; Yao, Sheng; Chen, Lieping

    2011-01-01

    Summary A large numbers of cell surface signaling molecules (CSSMs) have been molecularly identified and functionally characterized in recent years and, via these studies, our knowledge in the control of immune response has increased exponentially. Two major lines of evidence emerge. First, the majority of immune cells rely on one or few CSSMs to deliver a primary triggering signal to sense their environment, leading to initiation of an immune response. Second, both costimulatory CSSMs that promote the response, and coinhibitory CSSMs that inhibit the response, are required to control direction and magnitude of a given immune response. With such tight feedback, immune responses are tuned and returned to baseline. These findings extend well beyond our previous observation in the requirement for lymphocyte activation and argue a revisit of the traditional “two-signal model” for activation and tolerance of lymphocytes. Here we propose a “tide” model to accommodate and interpret current experimental findings. PMID:21511182

  7. Antagonistic Rgg regulators mediate quorum sensing via competitive DNA binding in Streptococcus pyogenes.

    PubMed

    Lasarre, Breah; Aggarwal, Chaitanya; Federle, Michael J

    2013-01-02

    Recent studies have established the fact that multiple members of the Rgg family of transcriptional regulators serve as key components of quorum sensing (QS) pathways that utilize peptides as intercellular signaling molecules. We previously described a novel QS system in Streptococcus pyogenes which utilizes two Rgg-family regulators (Rgg2 and Rgg3) that respond to neighboring signaling peptides (SHP2 and SHP3) to control gene expression and biofilm formation. We have shown that Rgg2 is a transcriptional activator of target genes, whereas Rgg3 represses expression of these genes, and that SHPs function to activate the QS system. The mechanisms by which Rgg proteins regulate both QS-dependent and QS-independent processes remain poorly defined; thus, we sought to further elucidate how Rgg2 and Rgg3 mediate gene regulation. Here we provide evidence that S. pyogenes employs a unique mechanism of direct competition between the antagonistic, peptide-responsive proteins Rgg2 and Rgg3 for binding at target promoters. The highly conserved, shared binding sites for Rgg2 and Rgg3 are located proximal to the -35 nucleotide in the target promoters, and the direct competition between the two regulators results in concentration-dependent, exclusive occupation of the target promoters that can be skewed in favor of Rgg2 in vitro by the presence of SHP. These results suggest that exclusionary binding of target promoters by Rgg3 may prevent Rgg2 binding under SHP-limiting conditions, thereby preventing premature induction of the quorum sensing circuit. Rgg-family transcriptional regulators are widespread among low-G+C Gram-positive bacteria and in many cases contribute to bacterial physiology and virulence. Only recently was it discovered that several Rgg proteins function in cell-to-cell communication (quorum sensing [QS]) via direct interaction with signaling peptides. The mechanism(s) by which Rgg proteins mediate regulation is poorly understood, and further insight into Rgg

  8. Identification of N-acyl homoserine lactones produced by Gluconacetobacter diazotrophicus PAL5 cultured in complex and synthetic media.

    PubMed

    Nieto-Peñalver, Carlos G; Bertini, Elisa V; de Figueroa, Lucía I C

    2012-07-01

    The endophytic diazotrophic Gluconacetobacter diazotrophicus PAL5 was originally isolated from sugarcane (Saccharum officinarum). The biological nitrogen fixation, phytohormones secretion, solubilization of mineral nutrients and phytopathogen antagonism allow its classification as a plant growth-promoting bacterium. The recent genomic sequence of PAL5 unveiled the presence of a quorum sensing (QS) system. QS are regulatory mechanisms that, through the production of signal molecules or autoinducers, permit a microbial population the regulation of the physiology in a coordinated manner. The most studied autoinducers in gram-negative bacteria are the N-acyl homoserine lactones (AHLs). The usage of biosensor strains evidenced the presence of AHL-like molecules in cultures of G. diazotrophicus PAL5 grown in complex and synthetic media. Analysis of AHLs performed by LC-APCI-MS permitted the identification of eight different signal molecules, including C6-, C8-, C10-, C12- and C14-HSL. Mass spectra confirmed that this diazotrophic strain also synthesizes autoinducers with carbonyl substitutions in the acyl chain. No differences in the profile of AHLs could be determined under both culture conditions. However, although the level of short-chain AHLs was not affected, a decrease of 30% in the production of long-chain AHLs could be measured in synthetic medium.

  9. Small molecule stabilization of the KSR inactive state antagonizes oncogenic Ras signalling

    PubMed Central

    Dhawan, Neil S.; scopton, Alex P.; Dar, Arvin C.

    2016-01-01

    Deregulation of the Ras–mitogen activated protein kinase (MAPK) pathway is an early event in many different cancers and a key driver of resistance to targeted therapies1. Sustained signalling through this pathway is caused most often by mutations in K-Ras, which biochemically favours the stabilization of active RAF signalling complexes2. Kinase suppressor of Ras (KSR) is a MAPK scaffold3–5 that is subject to allosteric regulation through dimerization with RAF6,7. Direct targeting of KSR could have important therapeutic implications for cancer; however, testing this hypothesis has been difficult owing to a lack of small-molecule antagonists of KSR function. Guided by KSR mutations that selectively suppress oncogenic, but not wild-type, Ras signalling, we developed a class of compounds that stabilize a previously unrecognized inactive state of KSR. These compounds, exemplified by APS-2-79, modulate KSR-dependent MAPK signalling by antagonizing RAF heterodimerization as well as the conformational changes required for phosphorylation and activation of KSR-bound MEK (mitogen-activated protein kinase kinase). Furthermore, APS-2-79 increased the potency of several MEK inhibitors specifically within Ras-mutant cell lines by antagonizing release of negative feedback signalling, demonstrating the potential of targeting KSR to improve the efficacy of current MAPK inhibitors. These results reveal conformational switching in KSR as a druggable regulator of oncogenic Ras, and further suggest co-targeting of enzymatic and scaffolding activities within Ras–MAPK signalling complexes as a therapeutic strategy for overcoming Ras-driven cancers. PMID:27556948

  10. Focal Activation of Cells by Plasmon Resonance Assisted Optical Injection of Signaling Molecules

    PubMed Central

    2015-01-01

    Experimental methods for single cell intracellular delivery are essential for probing cell signaling dynamics within complex cellular networks, such as those making up the tumor microenvironment. Here, we show a quantitative and general method of interrogation of signaling pathways. We applied highly focused near-infrared laser light to optically inject gold-coated liposomes encapsulating bioactive molecules into single cells for focal activation of cell signaling. For this demonstration, we encapsulated either inositol trisphosphate (IP3), an endogenous cell signaling second messenger, or adenophostin A (AdA), a potent analogue of IP, within 100 nm gold-coated liposomes, and injected these gold-coated liposomes and their contents into the cytosol of single ovarian carcinoma cells to initiate calcium (Ca2+) release from intracellular stores. Upon optical injection of IP3 or AdA at doses above the activation threshold, we observed increases in cytosolic Ca2+ concentration within the injected cell initiating the propagation of a Ca2+ wave throughout nearby cells. As confirmed by octanol-induced inhibition, the intercellular Ca2+ wave traveled via gap junctions. Optical injection of gold-coated liposomes represents a quantitative method of focal activation of signaling cascades of broad interest in biomedical research. PMID:24877558

  11. Predicting receptor functionality of signaling lymphocyte activation molecule for measles virus hemagglutinin by docking simulation.

    PubMed

    Suzuki, Yoshiyuki

    2017-05-01

    Predicting susceptibility of various species to a virus assists assessment of risk of interspecies transmission. Evaluation of receptor functionality may be useful in screening for susceptibility. In this study, docking simulation was conducted for measles virus hemagglutinin (MV-H) and immunoglobulin-like variable domain of signaling lymphocyte activation molecule (SLAM-V). It was observed that the docking scores for MV-H and SLAM-V correlated with the activity of SLAM as an MV receptor. These results suggest that the receptor functionality may be predicted from the docking scores of virion surface proteins and cellular receptor molecules. © 2017 The Societies and John Wiley & Sons Australia, Ltd.

  12. Attenuation of virulence in pathogenic bacteria using synthetic quorum-sensing modulators under native conditions on plant hosts

    PubMed Central

    Palmer, Andrew G.; Streng, Evan; Blackwell, Helen E.

    2011-01-01

    Quorum sensing (QS) is often critical in both pathogenic and mutualistic relationships between bacteria and their eukaryotic hosts. Gram-negative bacteria typically use N-acylated L-homoserine lactone (AHL) signals for QS. We have identified a number of synthetic AHL analogues that are able to strongly modulate QS in culture-based, reporter gene assays. While informative, these assays represent idealized systems and their relevance to QS under native conditions is often unclear. As one of our goals is to utilize synthetic QS modulators to study bacterial communication under native conditions, identifying robust host-bacteria model systems for their evaluation is crucial. We reasoned that the host-pathogen interaction between Solanum tuberosum (potato) and the Gram-negative pathogen Pectobacterium carotovora would be ideal for such studies as we have identified several potent, synthetic QS modulators for this pathogen, and infection assays in potato are facile. Herein, we report on our development of this host-pathogen system, and another in Phaseolus vulgaris (green bean), as a means for monitoring the ability of abiotic AHLs to modulate QS-regulated virulence in host infection assays. Our assays confirmed that QS modulators previously identified through culture-based assays largely retained their activity profiles when introduced into the plant host. However, inhibition of virulence in wild-type infections was highly dependent on the timing of compound dosing. This study is the first to demonstrate that our AHL analogs are active in wild-type bacteria in their native eukaryotic hosts, and provides compelling evidence for the application of these molecules as probes to study QS in a range of organisms and environments. PMID:21932837

  13. Protective effect of bioflavonoid myricetin enhances carbohydrate metabolic enzymes and insulin signaling molecules in streptozotocin-cadmium induced diabetic nephrotoxic rats.

    PubMed

    Kandasamy, Neelamegam; Ashokkumar, Natarajan

    2014-09-01

    Diabetic nephropathy is the kidney disease that occurs as a result of diabetes. The present study was aimed to evaluate the therapeutic potential of myricetin by assaying the activities of key enzymes of carbohydrate metabolism, insulin signaling molecules and renal function markers in streptozotocin (STZ)-cadmium (Cd) induced diabetic nephrotoxic rats. After myricetin treatment schedule, blood and tissue samples were collected to determine plasma glucose, insulin, hemoglobin, glycosylated hemoglobin and renal function markers, carbohydrate metabolic enzymes in the liver and insulin signaling molecules in the pancreas and skeletal muscle. A significant increase of plasma glucose, glycosylated hemoglobin, urea, uric acid, creatinine, blood urea nitrogen (BUN), urinary albumin, glycogen phosphorylase, glucose-6-phosphatase, and fructose-1,6-bisphosphatase and a significant decrease of plasma insulin, hemoglobin, hexokinase, glucose-6-phosphate dehydrogenase, glycogen and glycogen synthase with insulin signaling molecule expression were found in the STZ-Cd induced diabetic nephrotoxic rats. The administration of myricetin significantly normalizes the carbohydrate metabolic products like glucose, glycated hemoglobin, glycogen phosphorylase and gluconeogenic enzymes and renal function markers with increase insulin, glycogen, glycogen synthase and insulin signaling molecule expression like glucose transporter-2 (GLUT-2), glucose transporter-4 (GLUT-4), insulin receptor-1 (IRS-1), insulin receptor-2 (IRS-2) and protein kinase B (PKB). Based on the data, the protective effect of myricetin was confirmed by its histological annotation of the pancreas, liver and kidney tissues. These findings suggest that myricetin improved carbohydrate metabolism which subsequently enhances glucose utilization and renal function in STZ-Cd induced diabetic nephrotoxic rats. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. I. Development of Metal-Mediated SPOT-Synthesis Methods for the Efficient Construction of Small-Molecule Macroarrays. II. Design and Synthesis of Novel Bacterial Biofilm Inhibitors

    NASA Astrophysics Data System (ADS)

    Frei, Reto

    I. The use of small molecule probes to explore biological phenomena has become a valuable tool in chemical biology. As a result, methods that permit the rapid synthesis and biological evaluation of such compounds are highly sought-after. The small molecule macroarray represents one such approach for the synthesis and identification of novel bioactive agents. Macroarrays are readily constructed via the SPOT-synthesis technique on planar cellulose membranes, yielding spatially addressed libraries of ˜10-1000 unique compounds. We sought to expand the arsenal of chemical reactions compatible with this solid-phase platform, and developed highly efficient SPOT-synthesis protocols for the Mizoroki-Heck, Suzuki-Miyaura, and copper-catalyzed azide-alkyne cycloaddition reaction. We demonstrated that these metal-mediated reactions can be implemented, either individually or sequentially, for the efficient construction of small molecules in high purity on rapid time scales. Utilizing these powerful C-C and C-N bond forming coupling reactions, we constructed a series of macroarrays based on novel stilbene, phenyl-naphthalene, and triazole scaliblds. Subsequent biological testing of the stilbene and phenyl-naphthalene libraries revealed several potent antagonists and agonists, respectively, of the quorum sensing (QS) receptor LuxR in Vibrio fischeri. II. Bacteria living within biofilms are notorious for their resistance to known antibiotic agents, and constitute a major human health threat. Methods to attenuate biofilm growth would have a significant impact on the management of bacterial infections. Despite intense research efforts, small molecules capable of either inhibiting or dispersing biolilms remain scarce. We utilized natural products with purported anti-biofilm or QS inhibitory activity as sources of structural insight to guide the synthesis of novel biofilm modulators with improved activities. These studies revealed 2-aminobenzimidazole derivatives as highly potent

  15. Detection of single-molecule H2O2 signalling from epidermal growth factor receptor using fluorescent single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Jin, Hong; Heller, Daniel A.; Kalbacova, Marie; Kim, Jong-Ho; Zhang, Jingqing; Boghossian, Ardemis A.; Maheshri, Narendra; Strano, Michael S.

    2010-04-01

    An emerging concept in cell signalling is the natural role of reactive oxygen species such as hydrogen peroxide (H2O2) as beneficial messengers in redox signalling pathways. The nature of H2O2 signalling is confounded, however, by difficulties in tracking it in living systems, both spatially and temporally, at low concentrations. Here, we develop an array of fluorescent single-walled carbon nanotubes that can selectively record, in real time, the discrete, stochastic quenching events that occur as H2O2 molecules are emitted from individual human epidermal carcinoma cells stimulated by epidermal growth factor. We show mathematically that such arrays can distinguish between molecules originating locally on the cell membrane from other contributions. We find that epidermal growth factor induces 2 nmol H2O2 locally over a period of 50 min. This platform promises a new approach to understanding the signalling of reactive oxygen species at the cellular level.

  16. Reflection coefficient of qP, qS and SH at a plane boundary between viscoelastic TTI media

    NASA Astrophysics Data System (ADS)

    Wang, Hongwei; Peng, Suping

    2016-01-01

    This paper introduces a calculation method for the effective elastic stiffness tensor matrix of the viscous-elastic TTI medium based on the Chapman theory. We then obtain the phase velocity formula and seismic wave polarization formula of the viscous-elastic TTI medium, by solving the Christoffel equation; solve the phase angle of reflection and transmission wave through the numerical method in accordance with the wave slowness ellipsoid; on the basis of this assumption, and assuming that qP, qS and SH waves occurred simultaneously at the viscous-elastic anisotropic interface, establish the sixth-order Zoeppritz equation in accordance with the boundary conditions; establish the models for the upper and lower media which are viscous-elastic HTI, TTI, etc., on the basis of the sixth-order Zoeppritz equation; and study the impact of fracture dip angle, azimuth angle and frequency on the reflection coefficient. From this we obtain the following conclusions: the reflection coefficient can identify the fracture strike and dip when any information pertaining to the media is unknown; dispersion phenomenon is obvious on the axial plane of symmetry and weakened in the plane vertical to the axial plane of symmetry; the vertical-incidence longitudinal wave can stimulate the qS wave when the dip angle is not 0° or 90° under the condition of coincidence between the symmetry planes of the upper and lower media; when the symmetry planes of the upper and lower media do not coincide and the dip angle is not 0° or 90°, then the vertical-incidence qP will stimulate the qS and SH waves at the same time; the dip angle can cause the reflection coefficient curve to have a more obvious dispersion phenomenon, while the included angle between the symmetry planes of the upper and lower media will weaken the dispersion except SH; and the intercept of reflection coefficient is affected by the fracture dip and included angle between the symmetry planes of the upper and lower media.

  17. Two signaling molecules share a phosphotyrosine-containing binding site in the platelet-derived growth factor receptor.

    PubMed

    Nishimura, R; Li, W; Kashishian, A; Mondino, A; Zhou, M; Cooper, J; Schlessinger, J

    1993-11-01

    Autophosphorylation sites of growth factor receptors with tyrosine kinase activity function as specific binding sites for Src homology 2 (SH2) domains of signaling molecules. This interaction appears to be a crucial step in a mechanism by which receptor tyrosine kinases relay signals to downstream signaling pathways. Nck is a widely expressed protein consisting exclusively of SH2 and SH3 domains, the overexpression of which causes cell transformation. It has been shown that various growth factors stimulate the phosphorylation of Nck and its association with autophosphorylated growth factor receptors. A panel of platelet-derived growth factor (PDGF) receptor mutations at tyrosine residues has been used to identify the Nck binding site. Here we show that mutation at Tyr-751 of the PDGF beta-receptor eliminates Nck binding both in vitro and in living cells. Moreover, the Y751F PDGF receptor mutant failed to mediate PDGF-stimulated phosphorylation of Nck in intact cells. A phosphorylated Tyr-751 is also required for binding of phosphatidylinositol-3 kinase to the PDGF receptor. Hence, the SH2 domains of p85 and Nck share a binding site in the PDGF receptor. Competition experiments with different phosphopeptides derived from the PDGF receptor suggest that binding of Nck and p85 is influenced by different residues around Tyr-751. Thus, a single tyrosine autophosphorylation site is able to link the PDGF receptor to two distinct SH2 domain-containing signaling molecules.

  18. Model of the initiation of signal transduction by ligands in a cell culture: Simulation of molecules near a plane membrane comprising receptors

    NASA Astrophysics Data System (ADS)

    Plante, Ianik; Cucinotta, Francis A.

    2011-11-01

    Cell communication is a key mechanism in tissue responses to radiation. Several molecules are implicated in radiation-induced signaling between cells, but their contributions to radiation risk are poorly understood. Meanwhile, Green's functions for diffusion-influenced reactions have appeared in the literature, which are applied to describe the diffusion of molecules near a plane membrane comprising bound receptors with the possibility of reversible binding of a ligand and activation of signal transduction proteins by the ligand-receptor complex. We have developed Brownian dynamics algorithms to simulate particle histories in this system which can accurately reproduce the theoretical distribution of distances of a ligand from the membrane, the number of reversibly bound particles, and the number of receptor complexes activating signaling proteins as a function of time, regardless of the number of time steps used for the simulation. These simulations will be of great importance to model interactions at low doses where stochastic effects induced by a small number of molecules or interactions come into play.

  19. Systemic Synthesis Questions [SSynQs] as Tools to Help Students to Build Their Cognitive Structures in a Systemic Manner

    ERIC Educational Resources Information Center

    Hrin, Tamara N.; Fahmy, Ameen F. M.; Segedinac, Mirjana D.; Milenkovic, Dušica D.

    2016-01-01

    Many studies dedicated to the teaching and learning of organic chemistry courses have emphasized that high school students have shown significant difficulties in mastering the concepts of this discipline. Therefore, the aim of our study was to help students to overcome these difficulties by applying systemic synthesis questions, [SSynQs], as the…

  20. High-throughput screening identifies small molecules that bind to the RAS:SOS:RAS complex and perturb RAS signaling.

    PubMed

    Burns, Michael C; Howes, Jennifer E; Sun, Qi; Little, Andrew J; Camper, DeMarco V; Abbott, Jason R; Phan, Jason; Lee, Taekyu; Waterson, Alex G; Rossanese, Olivia W; Fesik, Stephen W

    2018-05-01

    K-RAS is mutated in approximately 30% of human cancers, resulting in increased RAS signaling and tumor growth. Thus, RAS is a highly validated therapeutic target, especially in tumors of the pancreas, lung and colon. Although directly targeting RAS has proven to be challenging, it may be possible to target other proteins involved in RAS signaling, such as the guanine nucleotide exchange factor Son of Sevenless (SOS). We have previously reported on the discovery of small molecules that bind to SOS1, activate SOS-mediated nucleotide exchange on RAS, and paradoxically inhibit ERK phosphorylation (Burns et al., PNAS, 2014). Here, we describe the discovery of additional, structurally diverse small molecules that also bind to SOS1 in the same pocket and elicit similar biological effects. We tested >160,000 compounds in a fluorescence-based assay to assess their effects on SOS-mediated nucleotide exchange. X-Ray structures revealed that these small molecules bind to the CDC25 domain of SOS1. Compounds that elicited high levels of nucleotide exchange activity in vitro increased RAS-GTP levels in cells, and inhibited phospho ERK levels at higher treatment concentrations. The identification of structurally diverse SOS1 binding ligands may assist in the discovery of new molecules designed to target RAS-driven tumors. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Amplitude of Sdiff across Asia: effects of velocity gradient and Qs in the D'' region and the asphericity of the mantle

    NASA Astrophysics Data System (ADS)

    Kuo, Ban-Yuan

    1999-11-01

    The amplitudes of diffracted SH (S diff) normalized to SKS, together with the S diff-SKS times, were analyzed to constrain the structure of the D" region beneath Asia and the northernmost Indian Ocean. While the S diff-SKS residuals (δt; relative to the Preliminary Reference Earth model, or PREM) are consistently negative from 95° to 120°, the amplitude residuals of S diff/SKS (δ A) show two trends of distance dependence, corresponding to distinct seismic structures in two adjacent zones in D". In zone A, δ A increases significantly with distance, suggesting the presence of a negative velocity gradient in the base of the mantle. The travel time residuals independently require that the average velocity of zone A be faster than that of PREM. One-dimensional structures that reconcile both sets of constraints were sought through systematic forwarding modeling. Models with negative gradients that satisfy δt's match δ A's to an acceptable degree only if a high-quality factor ( Qs) is assumed. The preferred model for zone A has a 400-500 km thick negative gradient layer, with a ~4% velocity discontinuity at the top and Qs = 1000, an about three-fold increase from the PREM value. In zone B, the amplitude-distance curve is virtually flat, and a 200-300 km thick high-velocity layer with PREM-like gradient and Qs explains both observations well. To assess the role of mantle asphericity in δ A, we estimate the strength of focusing of the S waves into the Fresnel zone at the onset of diffraction in vertical cross-sections of 3-D tomographic models SAW12D and SKS12WM13. Both models predict stronger focusing in zone A than in zone B. The focusing effect is translated to a positive base-line shift in δ A, which, if applied to the model predictions, alleviates the need for an extremely high Qs in zone A. The simple 2-D experiment suggests that velocity gradient and the anelastic attenuation of the D" layer as well as the mantle heterogeneity all probably contribute to the

  2. Discovering Small Molecule Inhibitors Targeted to Ligand-Stimulated RAGE-DIAPH1 Signaling Transduction

    NASA Astrophysics Data System (ADS)

    Pan, Jinhong

    The receptor of advanced glycation end product (RAGE) is a multiligand receptor of the immunoglobulin superfamily of cell surface molecules, which plays an important role in immune responses. Full-length RAGE includes three extracellular immunoglobulin domains, a transmembrane domain and an intracellular domain. It is a pattern recognition receptor that can bind diverse ligands. NMR spectroscopy and x-ray crystallization studies of the extracellular domains of RAGE indicate that RAGE ligands bind by distinct charge- and hydrophobicity-dependent mechanisms. It is found that calgranulin binding to the C1C2 domain or AGEs binding to the V domain activates extracellular signaling, which triggers interactions of the RAGE cytoplasmic tail (ctRAGE) with intracellular effector, such as diaphanous 1 (DIAPH1), to initiate signal transduction cascades. ctRAGE is essential for RAGE-ligand-mediated signal transduction and consequent modulation of gene expression and cellular properties. RAGE is over-expressed in diseased tissues of most RAGE-associated pathogenic conditions, such as complications of Alzheimer's diseases, diabetes, vascular diseases, inflammation, cancers and neurodegeneration. They are the major diseases affecting a large population worldwide. RAGE can function as a biomarker or drug target for these diseases. The cytoplasmic tail of RAGE can be used as a drug target to inhibit RAGE-induced intracellular signaling by small molecule inhibitors to treat RAGE-associated diseases. We developed a high throughput screening assay with which we probed a small molecule library of 58,000 compounds to find that 777 small molecules displayed 50% inhibition and 97 compounds demonstrated dose-dependent inhibition of the binding of ctRAGE-DIAPH1. Eventually, there were 13 compounds which displayed dose-dependent inhibition of ctRAGE binding to DIAPH1 and direct binding to ctRAGE analyzed by 15N HSQC-NMR and native tryptophan fluorescence titration experiments; thus, they were

  3. Effect of troxerutin on insulin signaling molecules in the gastrocnemius muscle of high fat and sucrose-induced type-2 diabetic adult male rat.

    PubMed

    Sampath, Sathish; Karundevi, Balasubramanian

    2014-10-01

    Troxerutin is a trihydroxyethylated derivative of the flavonoid, rutin. It has been reported to possess the hepatoprotective, nephroprotective, antioxidant, anti-inflammatory, and antihyperlipidemic activities. Troxerutin treatment reduced the blood glucose and glycosylated hemoglobin levels in high-cholesterol-induced insulin-resistant mice and in type-2 diabetic patients. However, the mechanism by which it exhibits antidiabetic property was unknown. Therefore, the present study was designed to evaluate the effect of troxerutin on insulin signaling molecules in gastrocnemius muscle of high fat and sucrose-induced type-2 diabetic rats. Wistar male albino rats were selected and divided into five groups. Group I: Control. Group II: High fat and sucrose-induced type-2 diabetic rats. Group III: Type-2 diabetic rats treated with troxerutin (150 mg/kg body weight/day orally). Group IV: Type-2 diabetic rats treated with metformin (50 mg/kg body weight/day orally). Group V: Normal rats treated with troxerutin (150 mg/kg body weight/day orally). After 30 days of treatment, fasting blood glucose, oral glucose tolerance, serum lipid profile, and the levels of insulin signaling molecules, glycogen, glucose uptake, and oxidation in gastrocnemius muscle were assessed. Diabetic rats showed impairment in insulin signaling molecules (IR, p-IRS-1(Tyr632), p-Akt(Ser473), β-arrestin-2, c-Src, p-AS160(Thr642), and GLUT4 proteins), glycogen concentration, glucose uptake, and oxidation. Oral administration of troxerutin showed near normal levels of blood glucose, serum insulin, lipid profile, and insulin signaling molecules as well as GLUT4 proteins in type-2 diabetic rats. It is concluded from the present study that troxerutin may play a significant role in the management of type-2 diabetes mellitus, by improving the insulin signaling molecules and glucose utilization in the skeletal muscle.

  4. [Down-regulatory effect of Nucleostemin expression on signal molecule of PI3K/AKT/mTOR pathway in HL-60 cells].

    PubMed

    Jia, Yu; Wei, Yuan-Yu; Zhang, Fan; Li, Zhao-Bo; Liu, Shuai; Yue, Bao-Hong

    2014-02-01

    This study was purpose to explore the down-regulatory effect of nucleostemin (NS) expression on signal molecules of PI3K/AKT/mTOR pathway belonged to candidate ways of p53-independent signal pathway in the leukemia cells. The expression of NS was interfered by using recombinant lentivirus expression vector NS-RNAi-GV248 to transfect HL-60 cells of p53 deficiency. The expression of NS and signal molecules of PI3K/AKT/mTOR pathway were detected by using Real-time PCR. The results of showed that the HL-60 cells were transfected by recombinant lentivirus vector NS-RNAi-GV248 successfully and with transfection rate up to 80%. According to results of Real-time PCR detection, the inhibition rate of NS gene was 56.5% in HL-60 cells. And the expression levels of PI3K,AKT and GβL mRNA (0.491 ± 0.084,0.398 ± 0.164, 0.472 ± 0.097 respectively) were obviously down-regulated by silencing NS, and showed statistical difference (P < 0.05) in comparison with control (1.002 ± 0.171, 1.000 ± 0.411, 1.001 ± 0.206 respectively) . It is concluded that the changes of signal molecules of PI3K/AKT/mTOR pathway positively correlate with NS down-regulation, which provides evidence for confirming PI3K/AKT/mTOR signal pathway possible as a type of NS p53-independent pathway.

  5. c-di-AMP: An Essential Molecule in the Signaling Pathways that Regulate the Viability and Virulence of Gram-Positive Bacteria

    PubMed Central

    Fahmi, Tazin; Port, Gary C.

    2017-01-01

    Signal transduction pathways enable organisms to monitor their external environment and adjust gene regulation to appropriately modify their cellular processes. Second messenger nucleotides including cyclic adenosine monophosphate (c-AMP), cyclic guanosine monophosphate (c-GMP), cyclic di-guanosine monophosphate (c-di-GMP), and cyclic di-adenosine monophosphate (c-di-AMP) play key roles in many signal transduction pathways used by prokaryotes and/or eukaryotes. Among the various second messenger nucleotides molecules, c-di-AMP was discovered recently and has since been shown to be involved in cell growth, survival, and regulation of virulence, primarily within Gram-positive bacteria. The cellular level of c-di-AMP is maintained by a family of c-di-AMP synthesizing enzymes, diadenylate cyclases (DACs), and degradation enzymes, phosphodiesterases (PDEs). Genetic manipulation of DACs and PDEs have demonstrated that alteration of c-di-AMP levels impacts both growth and virulence of microorganisms. Unlike other second messenger molecules, c-di-AMP is essential for growth in several bacterial species as many basic cellular functions are regulated by c-di-AMP including cell wall maintenance, potassium ion homeostasis, DNA damage repair, etc. c-di-AMP follows a typical second messenger signaling pathway, beginning with binding to receptor molecules to subsequent regulation of downstream cellular processes. While c-di-AMP binds to specific proteins that regulate pathways in bacterial cells, c-di-AMP also binds to regulatory RNA molecules that control potassium ion channel expression in Bacillus subtilis. c-di-AMP signaling also occurs in eukaryotes, as bacterially produced c-di-AMP stimulates host immune responses during infection through binding of innate immune surveillance proteins. Due to its existence in diverse microorganisms, its involvement in crucial cellular activities, and its stimulating activity in host immune responses, c-di-AMP signaling pathway has become an

  6. Protective effect of bioflavonoid myricetin enhances carbohydrate metabolic enzymes and insulin signaling molecules in streptozotocin–cadmium induced diabetic nephrotoxic rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kandasamy, Neelamegam; Ashokkumar, Natarajan, E-mail: npashokkumar1@gmail.com

    Diabetic nephropathy is the kidney disease that occurs as a result of diabetes. The present study was aimed to evaluate the therapeutic potential of myricetin by assaying the activities of key enzymes of carbohydrate metabolism, insulin signaling molecules and renal function markers in streptozotocin (STZ)–cadmium (Cd) induced diabetic nephrotoxic rats. After myricetin treatment schedule, blood and tissue samples were collected to determine plasma glucose, insulin, hemoglobin, glycosylated hemoglobin and renal function markers, carbohydrate metabolic enzymes in the liver and insulin signaling molecules in the pancreas and skeletal muscle. A significant increase of plasma glucose, glycosylated hemoglobin, urea, uric acid, creatinine,more » blood urea nitrogen (BUN), urinary albumin, glycogen phosphorylase, glucose-6-phosphatase, and fructose-1,6-bisphosphatase and a significant decrease of plasma insulin, hemoglobin, hexokinase, glucose-6-phosphate dehydrogenase, glycogen and glycogen synthase with insulin signaling molecule expression were found in the STZ–Cd induced diabetic nephrotoxic rats. The administration of myricetin significantly normalizes the carbohydrate metabolic products like glucose, glycated hemoglobin, glycogen phosphorylase and gluconeogenic enzymes and renal function markers with increase insulin, glycogen, glycogen synthase and insulin signaling molecule expression like glucose transporter-2 (GLUT-2), glucose transporter-4 (GLUT-4), insulin receptor-1 (IRS-1), insulin receptor-2 (IRS-2) and protein kinase B (PKB). Based on the data, the protective effect of myricetin was confirmed by its histological annotation of the pancreas, liver and kidney tissues. These findings suggest that myricetin improved carbohydrate metabolism which subsequently enhances glucose utilization and renal function in STZ–Cd induced diabetic nephrotoxic rats. - Highlights: • Diabetic rats are more susceptible to cadmium nephrotoxicity. • Cadmium plays as a

  7. Ocean acidification affects marine chemical communication by changing structure and function of peptide signalling molecules.

    PubMed

    Roggatz, Christina C; Lorch, Mark; Hardege, Jörg D; Benoit, David M

    2016-12-01

    Ocean acidification is a global challenge that faces marine organisms in the near future with a predicted rapid drop in pH of up to 0.4 units by the end of this century. Effects of the change in ocean carbon chemistry and pH on the development, growth and fitness of marine animals are well documented. Recent evidence also suggests that a range of chemically mediated behaviours and interactions in marine fish and invertebrates will be affected. Marine animals use chemical cues, for example, to detect predators, for settlement, homing and reproduction. But, while effects of high CO 2 conditions on these behaviours are described across many species, little is known about the underlying mechanisms, particularly in invertebrates. Here, we investigate the direct influence of future oceanic pH conditions on the structure and function of three peptide signalling molecules with an interdisciplinary combination of methods. NMR spectroscopy and quantum chemical calculations were used to assess the direct molecular influence of pH on the peptide cues, and we tested the functionality of the cues in different pH conditions using behavioural bioassays with shore crabs (Carcinus maenas) as a model system. We found that peptide signalling cues are susceptible to protonation in future pH conditions, which will alter their overall charge. We also show that structure and electrostatic properties important for receptor binding differ significantly between the peptide forms present today and the protonated signalling peptides likely to be dominating in future oceans. The bioassays suggest an impaired functionality of the signalling peptides at low pH. Physiological changes due to high CO 2 conditions were found to play a less significant role in influencing the investigated behaviour. From our results, we conclude that the change of charge, structure and consequently function of signalling molecules presents one possible mechanism to explain altered behaviour under future oceanic p

  8. Microwave oscillator with reduced phase noise by negative feedback incorporating microwave signals with suppressed carrier

    NASA Technical Reports Server (NTRS)

    Dick, G. J.; Saunders, J.

    1989-01-01

    Oscillator configurations which reduce the effect of 1/f noise sources for both direct feedback and stabilized local oscillator (STALO) circuits are developed and analyzed. By appropriate use of carrier suppression, a small signal is generated which suffers no loss of loop phase information or signal-to-noise ratio. This small signal can be amplified without degradation by multiplicative amplifier noise, and can be detected without saturation of the detector. Together with recent advances in microwave resonator Qs, these circuit improvements will make possible lower phase noise than can be presently achieved without the use of cryogenic devices.

  9. A Modular Library of Small Molecule Signals Regulates Social Behaviors in Caenorhabditis elegans

    PubMed Central

    Bose, Neelanjan; Zaslaver, Alon; Mahanti, Parag; Ho, Margaret C.; O'Doherty, Oran G.; Edison, Arthur S.; Sternberg, Paul W.; Schroeder, Frank C.

    2012-01-01

    The nematode C. elegans is an important model for the study of social behaviors. Recent investigations have shown that a family of small molecule signals, the ascarosides, controls population density sensing and mating behavior. However, despite extensive studies of C. elegans aggregation behaviors, no intraspecific signals promoting attraction or aggregation of wild-type hermaphrodites have been identified. Using comparative metabolomics, we show that the known ascarosides are accompanied by a series of derivatives featuring a tryptophan-derived indole moiety. Behavioral assays demonstrate that these indole ascarosides serve as potent intraspecific attraction and aggregation signals for hermaphrodites, in contrast to ascarosides lacking the indole group, which are repulsive. Hermaphrodite attraction to indole ascarosides depends on the ASK amphid sensory neurons. Downstream of the ASK sensory neuron, the interneuron AIA is required for mediating attraction to indole ascarosides instead of the RMG interneurons, which previous studies have shown to integrate attraction and aggregation signals from ASK and other sensory neurons. The role of the RMG interneuron in mediating aggregation and attraction is thought to depend on the neuropeptide Y-like receptor NPR-1, because solitary and social C. elegans strains are distinguished by different npr-1 variants. We show that indole ascarosides promote attraction and aggregation in both solitary and social C. elegans strains. The identification of indole ascarosides as aggregation signals reveals unexpected complexity of social signaling in C. elegans, which appears to be based on a modular library of ascarosides integrating building blocks derived from lipid β-oxidation and amino-acid metabolism. Variation of modules results in strongly altered signaling content, as addition of a tryptophan-derived indole unit to repellent ascarosides produces strongly attractive indole ascarosides. Our findings show that the library of

  10. IP-FCM measures physiologic protein-protein interactions modulated by signal transduction and small-molecule drug inhibition.

    PubMed

    Smith, Stephen E P; Bida, Anya T; Davis, Tessa R; Sicotte, Hugues; Patterson, Steven E; Gil, Diana; Schrum, Adam G

    2012-01-01

    Protein-protein interactions (PPI) mediate the formation of intermolecular networks that control biological signaling. For this reason, PPIs are of outstanding interest in pharmacology, as they display high specificity and may represent a vast pool of potentially druggable targets. However, the study of physiologic PPIs can be limited by conventional assays that often have large sample requirements and relatively low sensitivity. Here, we build on a novel method, immunoprecipitation detected by flow cytometry (IP-FCM), to assess PPI modulation during either signal transduction or pharmacologic inhibition by two different classes of small-molecule compounds. First, we showed that IP-FCM can detect statistically significant differences in samples possessing a defined PPI change as low as 10%. This sensitivity allowed IP-FCM to detect a PPI that increases transiently during T cell signaling, the antigen-inducible interaction between ZAP70 and the T cell antigen receptor (TCR)/CD3 complex. In contrast, IP-FCM detected no ZAP70 recruitment when T cells were stimulated with antigen in the presence of the src-family kinase inhibitor, PP2. Further, we tested whether IP-FCM possessed sufficient sensitivity to detect the effect of a second, rare class of compounds called SMIPPI (small-molecule inhibitor of PPI). We found that the first-generation non-optimized SMIPPI, Ro-26-4550, inhibited the IL-2:CD25 interaction detected by IP-FCM. This inhibition was detectable using either a recombinant CD25-Fc chimera or physiologic full-length CD25 captured from T cell lysates. Thus, we demonstrate that IP-FCM is a sensitive tool for measuring physiologic PPIs that are modulated by signal transduction and pharmacologic inhibition.

  11. Oleamide: a fatty acid amide signaling molecule in the cardiovascular system?

    PubMed

    Hiley, C Robin; Hoi, Pui Man

    2007-01-01

    Oleamide (cis-9,10-octadecenoamide), a fatty acid primary amide discovered in the cerebrospinal fluid of sleep-deprived cats, has a variety of actions that give it potential as a signaling molecule, although these actions have not been extensively investigated in the cardiovascular system. The synthetic pathway probably involves synthesis of oleoylglycine and then conversion to oleamide by peptidylglycine alpha-amidating monooxygenase (PAM); breakdown of oleamide is by fatty acid amide hydrolase (FAAH). Oleamide interacts with voltage-gated Na(+) channels and allosterically with GABA(A) and 5-HT(7) receptors as well as having cannabinoid-like actions. The latter have been suggested to be due to potentiation of the effects of endocannabinoids such as anandamide by inhibiting FAAH-mediated hydrolysis. This might underlie an "entourage effect" whereby co-released endogenous nonagonist congeners of endocannabinoids protect the active molecule from hydrolysis by FAAH. However, oleamide has direct agonist actions at CB(1) cannabinoid receptors and also activates the TRPV1 vanilloid receptor. Other actions include inhibition of gap-junctional communication, and this might give oleamide a role in myocardial development. Many of these actions are absent from the trans isomer of 9,10-octadecenoamide. One of the most potent actions of oleamide is vasodilation. In rat small mesenteric artery the response does not involve CB(1) cannabinoid receptors but another pertussis toxin-sensitive, G protein-coupled receptor, as yet unidentified. This receptor is sensitive to rimonabant and O-1918, an antagonist at the putative "abnormal-cannabidiol" or endothelial "anandamide" receptors. Vasodilation is mediated by endothelium-derived nitric oxide, endothelium-dependent hyperpolarization, and also through activation of TRPV1 receptors. A physiological role for oleamide in the heart and circulation has yet to be demonstrated, as has production by cells of the cardiovascular system, but

  12. Diverse profiles of N-acyl-homoserine lactones in biofilm forming strains of Cronobacter sakazakii.

    PubMed

    Singh, Niharika; Patil, Amrita; Prabhune, Asmita A; Raghav, Mamta; Goel, Gunjan

    2017-04-03

    The present study investigates the role of quorum sensing (QS) molecules expressed by C. sakazakii in biofilm formation and extracellular polysaccharide expression. The QS signaling was detected using Chromobacterium violaceum 026 and Agrobacterium tumefaciens NTL4(pZLR4) based bioassay. Long chain N-acyl-homoserine lactones (AHLs) with C6- C18 chain length were identified using High Performance Liquid Chromatography and Liquid Chromatography-High Resolution Mass Spectrometry. A higher Specific Biofilm Formation (SBF) index (p < 0.05) with the presence of genes associated with cellulose biosynthesis (bcsA, bcsC and bcsG) was observed in the strains. AHLs and their mechanisms can serve as novel targets for developing technologies to eradicate and prevent biofilm formation by C. sakazakii.

  13. Transcriptome of the quorum-sensing signal-degrading Rhodococcus erythropolis responds differentially to virulent and avirulent Pectobacterium atrosepticum

    PubMed Central

    Kwasiborski, A; Mondy, S; Chong, T-M; Barbey, C; Chan, K-G; Beury-Cirou, A; Latour, X; Faure, D

    2015-01-01

    Social bacteria use chemical communication to coordinate and synchronize gene expression via the quorum-sensing (QS) regulatory pathway. In Pectobacterium, a causative agent of the blackleg and soft-rot diseases on potato plants and tubers, expression of the virulence factors is collectively controlled by the QS-signals N-acylhomoserine lactones (NAHLs). Several soil bacteria, such as the actinobacterium Rhodococcus erythropolis, are able to degrade NAHLs, hence quench the chemical communication and virulence of Pectobacterium. Here, next-generation sequencing was used to investigate structural and functional genomics of the NAHL-degrading R. erythropolis strain R138. The R. erythropolis R138 genome (6.7 Mbp) contained a single circular chromosome, one linear (250 kbp) and one circular (84 kbp) plasmid. Growth of R. erythropolis and P. atrosepticum was not altered in mixed-cultures as compared with monocultures on potato tuber slices. HiSeq-transcriptomics revealed that no R. erythropolis genes were differentially expressed when R. erythropolis was cultivated in the presence vs absence of the avirulent P. atrosepticum mutant expI, which is defective for QS-signal synthesis. By contrast 50 genes (<1% of the R. erythropolis genome) were differentially expressed when R. erythropolis was cultivated in the presence vs absence of the NAHL-producing virulent P. atrosepticum. Among them, quantitative real-time reverse-transcriptase–PCR confirmed that the expression of some alkyl-sulfatase genes decreased in the presence of a virulent P. atrosepticum, as well as deprivation of organic sulfur such as methionine, which is a key precursor in the synthesis of NAHL by P. atrosepticum. PMID:25585922

  14. Synemin acts as a regulator of signalling molecules during skeletal muscle hypertrophy.

    PubMed

    Li, Zhenlin; Parlakian, Ara; Coletti, Dario; Alonso-Martin, Sonia; Hourdé, Christophe; Joanne, Pierre; Gao-Li, Jacqueline; Blanc, Jocelyne; Ferry, Arnaud; Paulin, Denise; Xue, Zhigang; Agbulut, Onnik

    2014-11-01

    Synemin, a type IV intermediate filament (IF) protein, forms a bridge between IFs and cellular membranes. As an A-kinase-anchoring protein, it also provides temporal and spatial targeting of protein kinase A (PKA). However, little is known about its functional roles in either process. To better understand its functions in muscle tissue, we generated synemin-deficient (Synm(-) (/-)) mice. Synm(-) (/-) mice displayed normal development and fertility but showed a mild degeneration and regeneration phenotype in myofibres and defects in sarcolemma membranes. Following mechanical overload, Synm(-) (/-) mice muscles showed a higher hypertrophic capacity with increased maximal force and fatigue resistance compared with control mice. At the molecular level, increased remodelling capacity was accompanied by decreased myostatin (also known as GDF8) and atrogin (also known as FBXO32) expression, and increased follistatin expression. Furthermore, the activity of muscle-mass control molecules (the PKA RIIα subunit, p70S6K and CREB1) was increased in mutant mice. Finally, analysis of muscle satellite cell behaviour suggested that the absence of synemin could affect the balance between self-renewal and differentiation of these cells. Taken together, our results show that synemin is necessary to maintain membrane integrity and regulates signalling molecules during muscle hypertrophy. © 2014. Published by The Company of Biologists Ltd.

  15. Adhesion molecules and receptors

    USDA-ARS?s Scientific Manuscript database

    Adhesion molecules are necessary for leukocyte trafficking and differentiation. They serve to initiate cell-cell interactions under conditions of shear, and they sustain the cell-cell and cell-matrix interactions needed for cellular locomotion. They also can serve directly as signaling molecules act...

  16. Quantitative Aspects of Single Molecule Microscopy

    PubMed Central

    Ober, Raimund J.; Tahmasbi, Amir; Ram, Sripad; Lin, Zhiping; Ward, E. Sally

    2015-01-01

    Single molecule microscopy is a relatively new optical microscopy technique that allows the detection of individual molecules such as proteins in a cellular context. This technique has generated significant interest among biologists, biophysicists and biochemists, as it holds the promise to provide novel insights into subcellular processes and structures that otherwise cannot be gained through traditional experimental approaches. Single molecule experiments place stringent demands on experimental and algorithmic tools due to the low signal levels and the presence of significant extraneous noise sources. Consequently, this has necessitated the use of advanced statistical signal and image processing techniques for the design and analysis of single molecule experiments. In this tutorial paper, we provide an overview of single molecule microscopy from early works to current applications and challenges. Specific emphasis will be on the quantitative aspects of this imaging modality, in particular single molecule localization and resolvability, which will be discussed from an information theoretic perspective. We review the stochastic framework for image formation, different types of estimation techniques and expressions for the Fisher information matrix. We also discuss several open problems in the field that demand highly non-trivial signal processing algorithms. PMID:26167102

  17. Cloning, expression and characterization of two S-ribosylhomocysteine lyases from Lactobacillus plantarum YM-4-3: Implication of conserved and divergent roles in quorum sensing.

    PubMed

    Song, Xiao-Dong; Liu, Chen-Jian; Huang, Shi-Hao; Li, Xiao-Ran; Yang, En; Luo, Yi-Yong

    2018-05-01

    Quorum sensing (QS) is a means of cell-to-cell communication that regulates, via small signalling molecules, expression of a series of genes and controls multicellular behaviour in many bacterial species. The enzyme S-ribosylhomocysteine lyase (LuxS) transforms S-ribosylhomocysteine (SRH) into 4, 5-dihydroxy-2, 3-pentanedione (DPD), the precursor of the interspecies QS signalling molecule autoinducer-2 (AI-2). In this study, two LuxS-coding genes, luxS1 and luxS2, with 70% sequence identity were isolated from Lactobacillus plantarum YM-4-3, and overexpressed in Escherichia coli BL21 (DE3), and the protein products were purified successfully. After incubation of LuxS1 or LuxS2 with SRH, the reaction products were able to induce Vibrio harveyi BB170 bioluminescence, clearly demonstrating that both LuxS1 and LuxS2 synthesize AI-2 from SRH in vitro. Ellman's assay results revealed optimal temperatures for LuxS1 and LuxS2 of 45 and 37 °C, respectively, and their activities were stimulated or inhibited by several metal ions and chemical reagents. In addition, enzyme kinetics data showed that K m , V max and K cat value of LuxS1 for the substrate (SRH) were higher than that of LuxS2. These results suggest that LuxS1 and LuxS2 mediate QS in a temperature-dependent manner and may play conserved roles in AI-2 synthesis but exhibit different activities in response to external environmental stress. To our knowledge, this paper is the first report of two luxS genes present in one bacterial genome and the subsequent comparative elucidation of their functions in AI-2 production. Collectively, our study provides a solid basis for future research concerning the AI-2/LuxS QS system in L. plantarum YM-4-3. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. A ligation-triggered DNAzyme cascade for amplified fluorescence detection of biological small molecules with zero-background signal.

    PubMed

    Lu, Li-Min; Zhang, Xiao-Bing; Kong, Rong-Mei; Yang, Bin; Tan, Weihong

    2011-08-03

    Many types of fluorescent sensing systems have been reported for biological small molecules. Particularly, several methods have been developed for the recognition of ATP or NAD(+), but they only show moderate sensitivity, and they cannot discriminate either ATP or NAD(+) from their respective analogues. We have addressed these limitations and report here a dual strategy which combines split DNAzyme-based background reduction with catalytic and molecular beacon (CAMB)-based amplified detection to develop a ligation-triggered DNAzyme cascade, resulting in ultrahigh sensitivity. First, the 8-17 DNAzyme is split into two separate oligonucleotide fragments as the building blocks for the DNA ligation reaction, thereby providing a zero-background signal to improve overall sensitivity. Next, a CAMB strategy is further employed for amplified signal detection achieved through cycling and regenerating the DNAzyme to realize the true enzymatic multiple turnover (one enzyme catalyzes the cleavage of several substrates) of catalytic beacons. This combination of zero-background signal and signal amplification significantly improves the sensitivity of the sensing systems, resulting in detection limits of 100 and 50 pM for ATP and NAD(+), respectively, much lower than those of previously reported biosensors. Moreover, by taking advantage of the highly specific biomolecule-dependence of the DNA ligation reaction, the developed DNAzyme cascades show significantly high selectivity toward the target cofactor (ATP or NAD(+)), and the target biological small molecule can be distinguished from its analogues. Therefore, as a new and universal platform for the design of DNA ligation reaction-based sensing systems, this novel ligation-triggered DNAzyme cascade method may find a broad spectrum of applications in both environmental and biomedical fields.

  19. Unravelling the genome of long chain N-acylhomoserine lactone-producing Acinetobacter sp. strain GG2 and identification of its quorum sensing synthase gene

    PubMed Central

    How, Kah Yan; Hong, Kar-Wai; Sam, Choon-Kook; Koh, Chong-Lek; Yin, Wai-Fong; Chan, Kok-Gan

    2015-01-01

    Myriad proteobacteria use N-acyl homoserine lactone (AHL) molecules as quorum sensing (QS) signals to regulate different physiological functions, including virulence, antibiotic production, and biofilm formation. Many of these proteobacteria possess LuxI/LuxR system as the QS mechanism. Recently, we reported the 3.89 Mb genome of Acinetobacter sp. strain GG2. In this work, the genome of this long chain AHL-producing bacterium was unravelled which led to the molecular characterization of luxI homologue, designated as aciI. This 552 bp gene was cloned and overexpressed in Escherichia coli BL21(DE3). The purified protein was ∼20.5 kDa and is highly similar to several autoinducer proteins of LuxI family among Acinetobacter species. To verify the AHL synthesis activity of this protein, high-resolution liquid chromatography–mass spectrometry analysis revealed the production of 3-oxo-dodecanoyl-homoserine lactone and 3-hydroxy-dodecanoyl-homoserine lactone from induced E. coli harboring the recombinant AciI. Our data show for the first time, the cloning and characterization of the luxI homologue from Acinetobacter sp. strain GG2, and confirmation of its AHLs production. These data are of great significance as the annotated genome of strain GG2 has provided a valuable insight in the study of autoinducer molecules and its roles in QS mechanism of the bacterium. PMID:25926817

  20. Stenotrophomonas maltophilia responds to exogenous AHL signals through the LuxR solo SmoR (Smlt1839).

    PubMed

    Martínez, Paula; Huedo, Pol; Martinez-Servat, Sònia; Planell, Raquel; Ferrer-Navarro, Mario; Daura, Xavier; Yero, Daniel; Gibert, Isidre

    2015-01-01

    Quorum Sensing (QS) mediated by Acyl Homoserine Lactone (AHL) molecules are probably the most widespread and studied among Gram-negative bacteria. Canonical AHL systems are composed by a synthase (LuxI family) and a regulator element (LuxR family), whose genes are usually adjacent in the genome. However, incomplete AHL-QS machinery lacking the synthase LuxI is frequently observed in Proteobacteria, and the regulator element is then referred as LuxR solo. It has been shown that certain LuxR solos participate in interspecific communication by detecting signals produced by different organisms. In the case of Stenotrophomonas maltophilia, a preliminary genome sequence analysis revealed numerous putative luxR genes, none of them associated to a luxI gene. From these, the hypothetical LuxR solo Smlt1839, here designated SmoR, presents a conserved AHL binding domain and a helix-turn-helix DNA binding motif. Its genomic organization-adjacent to hchA gene-indicate that SmoR belongs to the new family "LuxR regulator chaperone HchA-associated." AHL-binding assays revealed that SmoR binds to AHLs in-vitro, at least to oxo-C8-homoserine lactone, and it regulates operon transcription, likely by recognizing a conserved palindromic regulatory box in the hchA upstream region. Supplementation with concentrated supernatants from Pseudomonas aeruginosa, which contain significant amounts of AHLs, promoted swarming motility in S. maltophilia. Contrarily, no swarming stimulation was observed when the P. aeruginosa supernatant was treated with the lactonase AiiA from Bacillus subtilis, confirming that AHL contributes to enhance the swarming ability of S. maltophilia. Finally, mutation of smoR resulted in a swarming alteration and an apparent insensitivity to the exogenous AHLs provided by P. aeruginosa. In conclusion, our results demonstrate that S. maltophilia senses AHLs produced by neighboring bacteria through the LuxR solo SmoR, regulating population behaviors such as swarming

  1. Ajoene, a Sulfur-Rich Molecule from Garlic, Inhibits Genes Controlled by Quorum Sensing

    PubMed Central

    Jakobsen, Tim Holm; van Gennip, Maria; Phipps, Richard Kerry; Shanmugham, Meenakshi Sundaram; Christensen, Louise Dahl; Alhede, Morten; Skindersoe, Mette Eline; Rasmussen, Thomas Bovbjerg; Friedrich, Karlheinz; Uthe, Friedrich; Jensen, Peter Østrup; Moser, Claus; Nielsen, Kristian Fog; Eberl, Leo; Larsen, Thomas Ostenfeld; Tanner, David; Høiby, Niels; Bjarnsholt, Thomas

    2012-01-01

    In relation to emerging multiresistant bacteria, development of antimicrobials and new treatment strategies of infections should be expected to become a high-priority research area. Quorum sensing (QS), a communication system used by pathogenic bacteria like Pseudomonas aeruginosa to synchronize the expression of specific genes involved in pathogenicity, is a possible drug target. Previous in vitro and in vivo studies revealed a significant inhibition of P. aeruginosa QS by crude garlic extract. By bioassay-guided fractionation of garlic extracts, we determined the primary QS inhibitor present in garlic to be ajoene, a sulfur-containing compound with potential as an antipathogenic drug. By comprehensive in vitro and in vivo studies, the effect of synthetic ajoene toward P. aeruginosa was elucidated. DNA microarray studies of ajoene-treated P. aeruginosa cultures revealed a concentration-dependent attenuation of a few but central QS-controlled virulence factors, including rhamnolipid. Furthermore, ajoene treatment of in vitro biofilms demonstrated a clear synergistic, antimicrobial effect with tobramycin on biofilm killing and a cease in lytic necrosis of polymorphonuclear leukocytes. Furthermore, in a mouse model of pulmonary infection, a significant clearing of infecting P. aeruginosa was detected in ajoene-treated mice compared to a nontreated control group. This study adds to the list of examples demonstrating the potential of QS-interfering compounds in the treatment of bacterial infections. PMID:22314537

  2. Quorum Sensing versus Quenching Bacterial Isolates Obtained from MBR Plants Treating Leachates from Municipal Solid Waste

    PubMed Central

    Arregui, Lucía; Arroyo, Miguel; Mendoza, José Antonio; Álvarez, Cristina; García-Vera, Cristina; Marquina, Domingo; Santos, Antonio; Serrano, Susana

    2018-01-01

    Quorum sensing (QS) is a mechanism dependent on bacterial density. This coordinated process is mediated by the synthesis and the secretion of signal molecules, called autoinducers (AIs). N-acyl-homoserine lactones (AHLs) are the most common AIs that are used by Gram-negative bacteria and are involved in biofilm formation. Quorum Quenching (QQ) is the interference of QS by producing hydrolyzing enzymes, among other strategies. The main objective of the present study was to identify QS and QQ strains from MBR wastewater treatment plants. A total of 99 strains were isolated from two Spanish plants that were intended to treat leachate from municipal solid waste. Five AHL producers were detected using AHL biosensor strains (Chromobacterium violaceum CV026 and Agrobacterium tumefaciens NT1). Fifteen strains of seventy-one Gram-positive were capable of eliminating or reducing at least one AHL activity. The analysis of 16S rRNA gene sequence showed the importance of the Pseudomonas genus in the production of biofilms and the relevance of the genus Bacillus in the disruption of the QS mechanism, in which the potential activity of lactonase or acylase enzymes was investigated with the aim to contribute to solve biofouling problems and to increase the useful lifespan of membranes. PMID:29783658

  3. Quorum Sensing versus Quenching Bacterial Isolates Obtained from MBR Plants Treating Leachates from Municipal Solid Waste.

    PubMed

    Soler, Albert; Arregui, Lucía; Arroyo, Miguel; Mendoza, José Antonio; Muras, Andrea; Álvarez, Cristina; García-Vera, Cristina; Marquina, Domingo; Santos, Antonio; Serrano, Susana

    2018-05-18

    Quorum sensing (QS) is a mechanism dependent on bacterial density. This coordinated process is mediated by the synthesis and the secretion of signal molecules, called autoinducers (AIs). N -acyl-homoserine lactones (AHLs) are the most common AIs that are used by Gram-negative bacteria and are involved in biofilm formation. Quorum Quenching (QQ) is the interference of QS by producing hydrolyzing enzymes, among other strategies. The main objective of the present study was to identify QS and QQ strains from MBR wastewater treatment plants. A total of 99 strains were isolated from two Spanish plants that were intended to treat leachate from municipal solid waste. Five AHL producers were detected using AHL biosensor strains ( Chromobacterium violaceum CV026 and Agrobacterium tumefaciens NT1). Fifteen strains of seventy-one Gram-positive were capable of eliminating or reducing at least one AHL activity. The analysis of 16S rRNA gene sequence showed the importance of the Pseudomonas genus in the production of biofilms and the relevance of the genus Bacillus in the disruption of the QS mechanism, in which the potential activity of lactonase or acylase enzymes was investigated with the aim to contribute to solve biofouling problems and to increase the useful lifespan of membranes.

  4. Quorum Sensing and Phytochemicals

    PubMed Central

    Nazzaro, Filomena; Fratianni, Florinda; Coppola, Raffaele

    2013-01-01

    Most infectious diseases are caused by bacteria, which proliferate within quorum sensing (QS)-mediated biofilms. Efforts to block QS in bacteria and disrupt biofilms have enabled the identification of bioactive molecules that are also produced by plants. This mini review primarily focuses on natural QS inhibitors, which display potential for treating bacterial infections and also enhance the safety of food supply. PMID:23774835

  5. Evidence of link between quorum sensing and sugar metabolism in Escherichia coli revealed via cocrystal structures of LsrK and HPr

    PubMed Central

    Eo, Yumi; Ma, Xiaochu; Stephens, Kristina; Jeong, Migyeong; Bentley, William E.

    2018-01-01

    Quorum sensing (QS), a bacterial process that regulates population-scale behavior, is mediated by small signaling molecules, called autoinducers (AIs), that are secreted and perceived, modulating a “collective” phenotype. Because the autoinducer AI-2 is secreted by a wide variety of bacterial species, its “perception” cues bacterial behavior. This response is mediated by the lsr (LuxS-regulated) operon that includes the AI-2 transporter LsrACDB and the kinase LsrK. We report that HPr, a phosphocarrier protein central to the sugar phosphotransferase system of Escherichia coli, copurifies with LsrK. Cocrystal structures of an LsrK/HPr complex were determined, and the effects of HPr and phosphorylated HPr on LsrK activity were assessed. LsrK activity is inhibited when bound to HPr, revealing new linkages between QS activity and sugar metabolism. These findings help shed new light on the abilities of bacteria to rapidly respond to changing nutrient levels at the population scale. They also suggest new means of manipulating QS activity among bacteria and within various niches. PMID:29868643

  6. Differences of immunophenotypic markers and signaling molecules between adenocarcinomas of gastric cardia and distal stomach.

    PubMed

    Xue, Liying; Zhang, Xianghong; Li, Yuehong; Yang, Haiyan; Li, Xuemin; Mi, Jianmin; Wang, Hengshu; Wang, Junling; Yan, Xia

    2011-04-01

    During the past decades, the subsites of gastric carcinoma underwent significant changes. The incidence of the adenocarcinoma at distal stomach has been decreased, whereas cardiac adenocarcinoma remained increasing in many countries. The aim of this study was to investigate the differences between gastric cardiac and distal adenocarcinomas. We detected expressions of cytokeratins (cytokeratins 7, 14, 19, and 20) and mucins (mucins 1, 2, and 5AC) by immunohistochemistry and signaling molecules (p38, mitogen-activated protein kinase-interacting kinase 1 (MNK1), extracellular signal-regulated kinase, Jun N-terminal kinase, and phosphoinositide 3 kinase) by reverse transcription-polymerase chain reaction in both groups. The incidence of mucin 2 expression was lower in total (50.0%) and advanced-stage cases (52.0%) with cardiac adenocarcinomas than those in distal cases with total (70.2%) and advanced stage (71.4%), respectively. However, the staining for cytokeratin 14 was also significantly higher in total or advanced-stage tumors from the cardia. Our data showed no significant difference of cytokeratin 7/cytokeratin 20 pattern between 2 groups, but cytokeratin 20 expression was significantly higher in advanced-stage carcinomas of the cardia (58.7%) than in distal ones with advanced stage (38.3%). A multivariate analysis demonstrated different relationships between immunophenotypic markers and pathologic parameters in adenocarcinomas of the cardia and distal stomach. Moreover, significantly lower expressions of MNK1 and p38 in cardiac tumors were also detected. In summary, we found significant differences in patterns of immunophenotypic markers and expressions of signaling molecules between the 2 groups. It is indicated that adenocarcinoma of the cardia was different in histotype and histologic origin from distal adenocarcinoma. The cardiac adenocarcinoma might be a special subtype or an independent entity of gastric carcinoma in China. Copyright © 2011 Elsevier Inc

  7. Global and Phylogenetic Distribution of Quorum Sensing Signals, Acyl Homoserine Lactones, in the Family of Vibrionaceae

    PubMed Central

    Barker Rasmussen, Bastian; Fog Nielsen, Kristian; Machado, Henrique; Melchiorsen, Jette; Gram, Lone; Sonnenschein, Eva C.

    2014-01-01

    Bacterial quorum sensing (QS) and the corresponding signals, acyl homoserine lactones (AHLs), were first described for a luminescent Vibrio species. Since then, detailed knowledge has been gained on the functional level of QS; however, the abundance of AHLs in the family of Vibrionaceae in the environment has remained unclear. Three hundred and one Vibrionaceae strains were collected on a global research cruise and the prevalence and profile of AHL signals in this global collection were determined. AHLs were detected in 32 of the 301 strains using Agrobacterium tumefaciens and Chromobacterium violaceum reporter strains. Ethyl acetate extracts of the cultures were analysed by ultra-high performance liquid chromatography-high resolution mass spectrometry (MS) with automated tandem MS confirmation for AHLs. N-(3-hydroxy-hexanoyl) (OH-C6) and N-(3-hydroxy-decanoyl) (OH-C10) homoserine lactones were the most common AHLs found in 17 and 12 strains, respectively. Several strains produced a diversity of different AHLs, including N-heptanoyl (C7) HL. AHL-producing Vibrionaceae were found in polar, temperate and tropical waters. The AHL profiles correlated with strain phylogeny based on gene sequence homology, however not with geographical location. In conclusion, a wide range of AHL signals are produced by a number of clades in the Vibrionaceae family and these results will allow future investigations of inter- and intra-species interactions within this cosmopolitan family of marine bacteria. PMID:25419995

  8. p38 Mitogen-Activated Protein Kinase/Signal Transducer and Activator of Transcription-3 Pathway Signaling Regulates Expression of Inhibitory Molecules in T Cells Activated by HIV-1–Exposed Dendritic Cells

    PubMed Central

    Che, Karlhans Fru; Shankar, Esaki Muthu; Muthu, Sundaram; Zandi, Sasan; Sigvardsson, Mikael; Hinkula, Jorma; Messmer, Davorka; Larsson, Marie

    2012-01-01

    Human immunodeficiency virus type 1 (HIV-1) infection enhances the expression of inhibitory molecules on T cells, leading to T-cell impairment. The signaling pathways underlying the regulation of inhibitory molecules and subsequent onset of T-cell impairment remain elusive. We showed that both autologous and allogeneic T cells exposed to HIV-pulsed dendritic cells (DCs) upregulated cytotoxic T-lymphocyte antigen (CTLA-4), tumor-necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), lymphocyte-activation gene-3 (LAG3), T-cell immunoglobulin mucin-3 (TIM-3), CD160 and certain suppression-associated transcription factors, such as B-lymphocyte induced maturation protein-1 (BLIMP-1), deltex homolog 1 protein (DTX1) and forkhead box P3 (FOXP3), leading to T-cell suppression. This induction was regulated by p38 mitogen-activated protein kinase/signal transducer and activator of transcription-3 (P38MAPK/STAT3) pathways, because their blockade significantly abrogated expression of all the inhibitory molecules studied and a subsequent recovery in T-cell proliferation. Neither interleukin-6 (IL-6) nor IL-10 nor growth factors known to activate STAT3 signaling events were responsible for STAT3 activation. Involvement of the P38MAPK/STAT3 pathways was evident because these proteins had a higher level of phosphorylation in the HIV-1–primed cells. Furthermore, blockade of viral CD4 binding and fusion significantly reduced the negative effects DCs imposed on primed T cells. In conclusion, HIV-1 interaction with DCs modulated their functionality, causing them to trigger the activation of the P38MAPK/STAT3 pathway in T cells, which was responsible for the upregulation of inhibitory molecules. PMID:22777388

  9. Programmed Pathogen Sense and Destroy Circuits

    DTIC Science & Technology

    2009-02-18

    detection and the peptide-mediated Com QS system of Bacillus subtilis for gram-positive detection. Together these two prototype sentinel circuits cover a...and E. coli. We are currently in the process of constructing receivers for a gram-positive pathogen, Bacillus subtilis . Gram-negative...QS signals. Figure 11: Gram positive QS systems. Agr QS of Staphylococcus aureus (left) and Com QS of Bacillus subtilis . Following the successful

  10. BASH, a novel signaling molecule preferentially expressed in B cells of the bursa of Fabricius.

    PubMed

    Goitsuka, R; Fujimura, Y; Mamada, H; Umeda, A; Morimura, T; Uetsuka, K; Doi, K; Tsuji, S; Kitamura, D

    1998-12-01

    The bursa of Fabricius is a gut-associated lymphoid organ that is essential for the generation of a diversified B cell repertoire in the chicken. We describe here a novel gene preferentially expressed in bursal B cells. The gene encodes an 85-kDa protein, designated BASH (B cell adaptor containing SH2 domain), that contains N-terminal acidic domains with SH2 domain-binding phosphotyrosine-based motifs, a proline-rich domain, and a C-terminal SH2 domain. BASH shows a substantial sequence similarity to SLP-76, an adaptor protein functioning in TCR-signal transduction. BASH becomes tyrosine-phosphorylated with the B cell Ag receptor (BCR) cross-link or by coexpression with Syk and Lyn and associates with signaling molecules including Syk and a putative chicken Shc homologue. Overexpression of BASH results in suppression of the NF-AT activation induced by BCR-cross-linking. These findings suggest that BASH is involved in BCR-mediated signal transduction and could play a critical role in B cell development in the bursa.

  11. Pantoea sp. Isolated from Tropical Fresh Water Exhibiting N-Acyl Homoserine Lactone Production

    PubMed Central

    Tan, Wen-Si; Tan, Pui-Wan; Adrian, Tan-Guan-Sheng; Yin, Wai-Fong; Chan, Kok-Gan

    2014-01-01

    N-Acyl homoserine lactone (AHL) serves as signaling molecule for quorum sensing (QS) in Gram-negative bacteria to regulate various physiological activities including pathogenicity. With the aim of isolating freshwater-borne bacteria that can cause outbreak of disease in plants and portrayed QS properties, environmental water sampling was conducted. Here we report the preliminary screening of AHL production using Chromobacterium violaceum CV026 and Escherichia coli [pSB401] as AHL biosensors. The 16S rDNA gene sequence of isolate M009 showed the highest sequence similarity to Pantoea stewartii S9-116, which is a plant pathogen. The isolated Pantoea sp. was confirmed to produce N-3-oxohexanoyl-L-HSL (3-oxo-C6-HSL) through analysis of high resolution mass tandem mass spectrometry. PMID:25197715

  12. Repulsive guidance molecule B (RGMB) plays negative roles in breast cancer by coordinating BMP signaling.

    PubMed

    Li, Jin; Ye, Lin; Sanders, Andrew J; Jiang, Wen G

    2012-07-01

    Repulsive guidance molecules (RGMs) coordinate axon formation and iron homestasis. These molecules are also known as co-receptors of bone morphogenetic proteins (BMPs). However, the role played by RGMs in breast cancer remains unclear. The present study investigated the impact of RGMB on functions of breast cancer cells and corresponding mechanisms. RGMB was knocked down in breast cancer cells by way of an anti-RGMB ribozyme transgene. Knockdown of RGMB resulted in enhanced capacities of proliferation, adhesion, and migration in breast cancer cells. Further investigations demonstrated RGMB knockdown resulted in a reduced expression and activity of Caspase-3, accompanied with better survival in RGMB knockdown cells under serum starvation, which might be induced by its repression on MAPK JNK pathway. Up-regulations of Snai1, Twist, FAK, and Paxillin via enhanced Smad dependent sigaling led to increased capacities of adhesion and migration. Our current data firstly revealed that RGMB may act as a negative regulator in breast cancer through BMP signaling. Copyright © 2012 Wiley Periodicals, Inc.

  13. Probing Prokaryotic Social Behaviors with Bacterial “Lobster Traps”

    PubMed Central

    Connell, Jodi L.; Wessel, Aimee K.; Parsek, Matthew R.; Ellington, Andrew D.; Whiteley, Marvin; Shear, Jason B.

    2010-01-01

    Bacteria are social organisms that display distinct behaviors/phenotypes when present in groups. These behaviors include the abilities to construct antibiotic-resistant sessile biofilm communities and to communicate with small signaling molecules (quorum sensing [QS]). Our understanding of biofilms and QS arises primarily from in vitro studies of bacterial communities containing large numbers of cells, often greater than 108 bacteria; however, in nature, bacteria often reside in dense clusters (aggregates) consisting of significantly fewer cells. Indeed, bacterial clusters containing 101 to 105 cells are important for transmission of many bacterial pathogens. Here, we describe a versatile strategy for conducting mechanistic studies to interrogate the molecular processes controlling antibiotic resistance and QS-mediated virulence factor production in high-density bacterial clusters. This strategy involves enclosing a single bacterium within three-dimensional picoliter-scale microcavities (referred to as bacterial “lobster traps”) defined by walls that are permeable to nutrients, waste products, and other bioactive small molecules. Within these traps, bacteria divide normally into extremely dense (1012 cells/ml) clonal populations with final population sizes similar to that observed in naturally occurring bacterial clusters. Using these traps, we provide strong evidence that within low-cell-number/high-density bacterial clusters, QS is modulated not only by bacterial density but also by population size and flow rate of the surrounding medium. We also demonstrate that antibiotic resistance develops as cell density increases, with as few as ~150 confined bacteria exhibiting an antibiotic-resistant phenotype similar to biofilm bacteria. Together, these findings provide key insights into clinically relevant phenotypes in low-cell-number/high-density bacterial populations. PMID:21060734

  14. A small molecule p75NTR ligand normalizes signalling and reduces Huntington’s disease phenotypes in R6/2 and BACHD mice

    PubMed Central

    Belichenko, Nadia P.; Ford, Ellen C.; Semaan, Sarah; Monbureau, Marie; Aiyaswamy, Sruti; Holman, Cameron M.; Condon, Christina; Shamloo, Mehrdad; Massa, Stephen M.; Longo, Frank M.

    2016-01-01

    Abstract Decreases in the ratio of neurotrophic versus neurodegenerative signalling play a critical role in Huntington’s disease (HD) pathogenesis and recent evidence suggests that the p75 neurotrophin receptor (NTR) contributes significantly to disease progression. p75NTR signalling intermediates substantially overlap with those promoting neuronal survival and synapse integrity and with those affected by the mutant huntingtin (muHtt) protein. MuHtt increases p75NTR-associated deleterious signalling and decreases survival signalling suggesting that p75NTR could be a valuable therapeutic target. This hypothesis was investigated by examining the effects of an orally bioavailable, small molecule p75NTR ligand, LM11A-31, on HD-related neuropathology in HD mouse models (R6/2, BACHD). LM11A-31 restored striatal AKT and other pro-survival signalling while inhibiting c-Jun kinase (JNK) and other degenerative signalling. Normalizing p75NTR signalling with LM11A-31 was accompanied by reduced Htt aggregates and striatal cholinergic interneuron degeneration as well as extended survival in R6/2 mice. The p75NTR ligand also decreased inflammation, increased striatal and hippocampal dendritic spine density, and improved motor performance and cognition in R6/2 and BACHD mice. These results support small molecule modulation of p75NTR as an effective HD therapeutic strategy. LM11A-31 has successfully completed Phase I safety and pharmacokinetic clinical trials and is therefore a viable candidate for clinical studies in HD. PMID:28171570

  15. Signaling cascades modulate the speed of signal propagation through space.

    PubMed

    Govern, Christopher C; Chakraborty, Arup K

    2009-01-01

    Cells are not mixed bags of signaling molecules. As a consequence, signals must travel from their origin to distal locations. Much is understood about the purely diffusive propagation of signals through space. Many signals, however, propagate via signaling cascades. Here, we show that, depending on their kinetics, cascades speed up or slow down the propagation of signals through space, relative to pure diffusion. We modeled simple cascades operating under different limits of Michaelis-Menten kinetics using deterministic reaction-diffusion equations. Cascades operating far from enzyme saturation speed up signal propagation; the second mobile species moves more quickly than the first through space, on average. The enhanced speed is due to more efficient serial activation of a downstream signaling module (by the signaling molecule immediately upstream in the cascade) at points distal from the signaling origin, compared to locations closer to the source. Conversely, cascades operating under saturated kinetics, which exhibit zero-order ultrasensitivity, can slow down signals, ultimately localizing them to regions around the origin. Signal speed modulation may be a fundamental function of cascades, affecting the ability of signals to penetrate within a cell, to cross-react with other signals, and to activate distant targets. In particular, enhanced speeds provide a way to increase signal penetration into a cell without needing to flood the cell with large numbers of active signaling molecules; conversely, diminished speeds in zero-order ultrasensitive cascades facilitate strong, but localized, signaling.

  16. Cell adhesion molecules in context

    PubMed Central

    2011-01-01

    Cell adhesion molecules (CAMs) are now known to mediate much more than adhesion between cells and between cells and the extracellular matrix. Work by many researchers has illuminated their roles in modulating activation of molecules such as receptor tyrosine kinases, with subsequent effects on cell survival, migration and process extension. CAMs are also known to serve as substrates for proteases that can create diffusible fragments capable of signaling independently from the CAM. The diversity of interactions is further modulated by membrane rafts, which can co-localize or separate potential signaling partners to affect the likelihood of a given signaling pathway being activated. Given the ever-growing number of known CAMs and the fact that their heterophilic binding in cis or in trans can affect their interactions with other molecules, including membrane-bound receptors, one would predict a wide range of effects attributable to a particular CAM in a particular cell at a particular stage of development. The function(s) of a given CAM must therefore be considered in the context of the history of the cell expressing it and the repertoire of molecules expressed both by that cell and its neighbors. PMID:20948304

  17. Small-molecule pheromones and hormones controlling nematode development.

    PubMed

    Butcher, Rebecca A

    2017-05-17

    The existence of small-molecule signals that influence development in Caenorhabditis elegans has been known for several decades, but only in recent years have the chemical structures of several of these signals been established. The identification of these signals has enabled connections to be made between these small molecules and fundamental signaling pathways in C. elegans that influence not only development but also metabolism, fertility, and lifespan. Spurred by these important discoveries and aided by recent advances in comparative metabolomics and NMR spectroscopy, the field of nematode chemistry has the potential to expand dramatically in the coming years. This Perspective will focus on small-molecule pheromones and hormones that influence developmental events in the nematode life cycle (ascarosides, dafachronic acids, and nemamides), will cover more recent work regarding the biosynthesis of these signals, and will explore how the discovery of these signals is transforming our understanding of nematode development and physiology.

  18. [Minimal provider volume in total knee replacement : an analysis of the external quality assurance program of North Rhine-Westphalia (QS-NRW)].

    PubMed

    Kostuj, T; Schulze-Raestrup, U; Noack, M; Buckup, K; Smektala, R

    2011-05-01

    A minimal provider volume for total knee replacement (TKR) was introduced in 2006. Does this lead to an improvenment in quality or not? The records of treatment in the compulsory external quality assurance program of the Land of North Rhine-Westphalia (QS-NRW) were evaluated. A total of 125,324 comparable records from the QS-NRW program were available to determine the appearance of general and surgical complications. In a logistical regression model the risk factors age, gender, ASA classification, comorbidity and duration were taken into account. A significant reduction could only be shown for pneumonia, thrombotic events and lung embolisms as well as vascular injury. In 2006 and 2007 malpositioning of implants was significantly higher and from 2005 to 2008 the number of fractures rose compared to 2004. Deep infections and reoperations did not change significantly during the whole study period. This evaluation could not show an improvement in quality due to the minimal provider volume. Thus the minimal provider volume should not be taken into account as a main criterion to improve quality. Further outcome studies and creating an arthroplasty register in Germany are more useful.

  19. Preliminary study on an innovative, simple mast cell-based electrochemical method for detecting foodborne pathogenic bacterial quorum signaling molecules (N-acyl-homoserine-lactones).

    PubMed

    Jiang, Donglei; Feng, Dongdong; Jiang, Hui; Yuan, Limin; Yongqi, Yin; Xu, Xin; Fang, Weiming

    2017-04-15

    This paper reports the a novel and simple mast cell-based electrochemical method for detecting of bacterial quorum signaling molecules, N-acylhomoserine lactones (AHLs), which can be utilized to preliminarily evaluate the toxicity of food-borne pathogenic bacteria. Rat basophilic leukemia (RBL-2H3) mast cells encapsulated in alginate/graphene oxide hydrogel were immobilized on a gold electrode, while mast cells as recognition elements were cultured in a 3D cell culture system. Electrochemical impedance spectroscopy (EIS) was utilized to record the cell impedance signal as-influenced by Pseudomonas aeruginosa quorum-sensing molecule, N-3-oxododecanoyl homoserine lactone (3OC 12 -HSL). The results indicated that cellular activities such as cell viability, apoptosis, intracellular calcium, and degranulation were markedly influenced by the AHLs. Importantly, the exposure of 3OC 12 -HSL to mast cells induced a marked decrease in the electrochemical impedance signal in a dose-dependent manner. The detection limit for 3OC 12 -HSL was 0.034μM with a linear range of 0.1-1μM. These results were confirmed via conventional cell assay and transmission electron microscope (TEM) analysis. Altogether, the proposed method appears to be an innovative and effective approach to the quantitative measurement of Gram-negative bacterial quorum signaling molecules; to this effect, it also may serve as a primary evaluation of the cytotoxicity of food-borne pathogens. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Enhancement of neuronal differentiation by using small molecules modulating Nodal/Smad, Wnt/β-catenin, and FGF signaling.

    PubMed

    Song, Yonghee; Lee, Somyung; Jho, Eek-Hoon

    2018-06-08

    Pluripotent embryonic stem cells are one of the best modalities for the disease treatment due to their potential for self-renewal and differentiation into various cell types. Induction of stem cell differentiation into specific cell lineages has been investigated for decades, especially in vitro neuronal differentiation of embryonic stem cells. However, in vitro differentiation methods do not yield sufficient amounts of neurons for use in the therapeutic treatment of neurological disorders. Here, we provide an improved neuronal differentiation method based on a combination of small regulatory molecules for specific signaling pathways (FGF4 for FGF signaling, SB431542 for Nodal/Smad signaling, and XAV939 and BIO for Wnt signaling) in N2B27 media. We found that FGF4 was required for neural induction, SB431542 accelerated neural precursor differentiation, and treatment with XAV939 and BIO at different periods enhanced neuronal differentiation. These optimized neuronal differentiation conditions may allow a greater neuron cell yield within a shorter time than current methods and be the basis for treatment of neurological dysfunction using stem cells. Copyright © 2018. Published by Elsevier Inc.

  1. Effect of short peptides on expression of signaling molecules in organotypic pineal cell culture.

    PubMed

    Khavinson, V Kh; Linkova, N S; Chalisova, N I; Dudkov, A V; Koncevaya, E A

    2011-11-01

    We demonstrated the influence of short peptides on the expression of signaling molecules in organotypic culture of the pineal gland from 3-month-old rats. Peptides Ala-Glu-Asp-Gly and Lys-Glu-Asp stimulate the expression of proliferative protein Ki-67 in pineal gland culture. These peptides as well as Glu-Asp-Arg and Lys-Glu do not affect the expression of apoptosis marker AIF. The synthesis of transcription factor CGRP by pinealocytes was stimulated only by Ala-Glu-Asp-Gly. Thus, peptide Ala-Glu-Asp-Gly tissue-specifically stimulates proliferative and secretory activities of pinealocytes, which can be used for recovery of pineal gland functions at the molecular level.

  2. Novel approaches to mitigating bacterial biofilm formation and intercellular communication

    NASA Astrophysics Data System (ADS)

    Kasper, Stephen H.

    Long thought of as solitary single-cell organisms, it is now widely accepted that bacteria can act and cooperate as social organisms. Phenomena such as biofilm formation and quorum sensing (QS) are two intimately intertwined cooperative behaviors that significantly contribute to the pathogenesis of many bacteria. Biofilms are surface associated communities of bacteria encased in a secreted extracellular matrix, which provides several advantages over an individualized lifestyle, such as increased protection from antimicrobial agents as well as enhanced opportunity for the exchange of genetic material. Bacterial QS is a system of population-based communication through the production, sensing, and response to chemical signals, often controlling the expression of diverse virulence factors (e.g. toxins, proteases). Biofilm formation and QS are cooperative processes that are often leveraged as bacteria coordinate infection processes, and can therefore be novel targets for anti-infective treatments that differ from conventional antibiotic treatment. Our lab has previously identified a novel class of small molecules that inhibit biofilm formation and disrupt QS by the pathogenic bacterium Pseudomonas aeruginosa. These organosulfur-based compounds are either natural products or related derivatives of the tropical plant Petiveria alliacea. Because oral biofilm (e.g. dental plaque) is a major conduit of oral and systemic disease, and is also a site for horizontal transfer for genes encoding antibiotic resistance, there exists a need for novel strategies for inhibiting oral biofilm development. Therefore, a small library (˜50 compounds) of structural derivatives was developed and screened for their ability to inhibit biofilm formation by multiple orally associated bacteria. The screening effort uncovered several related compounds that inhibited oral biofilm development. To determine how natural product-based organosulfur compounds could be inducing QS inhibitory effects, an

  3. Molecular envelope and atomic model of an anti-terminated glyQS T-box regulator in complex with tRNAGly

    PubMed Central

    Chetnani, Bhaskar

    2017-01-01

    Abstract A T-box regulator or riboswitch actively monitors the levels of charged/uncharged tRNA and participates in amino acid homeostasis by regulating genes involved in their utilization or biosynthesis. It has an aptamer domain for cognate tRNA recognition and an expression platform to sense the charge state and modulate gene expression. These two conserved domains are connected by a variable linker that harbors additional secondary structural elements, such as Stem III. The structural basis for specific tRNA binding is known, but the structural basis for charge sensing and the role of other elements remains elusive. To gain new structural insights on the T-box mechanism, a molecular envelope was calculated from small angle X-ray scattering data for the Bacillus subtilis glyQS T-box riboswitch in complex with an uncharged tRNAGly. A structural model of an anti-terminated glyQS T-box in complex with its cognate tRNAGly was derived based on the molecular envelope. It shows the location and relative orientation of various secondary structural elements. The model was validated by comparing the envelopes of the wild-type complex and two variants. The structural model suggests that in addition to a possible regulatory role, Stem III could aid in preferential stabilization of the T-box anti-terminated state allowing read-through of regulated genes. PMID:28531275

  4. Kinetics of the initial steps of G protein-coupled receptor-mediated cellular signaling revealed by single-molecule imaging.

    PubMed

    Lill, Yoriko; Martinez, Karen L; Lill, Markus A; Meyer, Bruno H; Vogel, Horst; Hecht, Bert

    2005-08-12

    We report on an in vivo single-molecule study of the signaling kinetics of G protein-coupled receptors (GPCR) performed using the neurokinin 1 receptor (NK1R) as a representative member. The NK1R signaling cascade is triggered by the specific binding of a fluorescently labeled agonist, substance P (SP). The diffusion of single receptor-ligand complexes in plasma membrane of living HEK 293 cells is imaged using fast single-molecule wide-field fluorescence microscopy at 100 ms time resolution. Diffusion trajectories are obtained which show intra- and intertrace heterogeneity in the diffusion mode. To investigate universal patterns in the diffusion trajectories we take the ligand-binding event as the common starting point. This synchronization allows us to observe changes in the character of the ligand-receptor-complex diffusion. Specifically, we find that the diffusion of ligand-receptor complexes is slowed down significantly and becomes more constrained as a function of time during the first 1000 ms. The decelerated and more constrained diffusion is attributed to an increasing interaction of the GPCR with cellular structures after the ligand-receptor complex is formed.

  5. Cardiac-Specific SOCS3 Deletion Prevents In Vivo Myocardial Ischemia Reperfusion Injury through Sustained Activation of Cardioprotective Signaling Molecules.

    PubMed

    Nagata, Takanobu; Yasukawa, Hideo; Kyogoku, Sachiko; Oba, Toyoharu; Takahashi, Jinya; Nohara, Shoichiro; Minami, Tomoko; Mawatari, Kazutoshi; Sugi, Yusuke; Shimozono, Koutatsu; Pradervand, Sylvain; Hoshijima, Masahiko; Aoki, Hiroki; Fukumoto, Yoshihiro; Imaizumi, Tsutomu

    2015-01-01

    Myocardial ischemia reperfusion injury (IRI) adversely affects cardiac performance and the prognosis of patients with acute myocardial infarction. Although myocardial signal transducer and activator of transcription (STAT) 3 is potently cardioprotective during IRI, the inhibitory mechanism responsible for its activation is largely unknown. The present study aimed to investigate the role of the myocardial suppressor of cytokine signaling (SOCS)-3, an intrinsic negative feedback regulator of the Janus kinase (JAK)-STAT signaling pathway, in the development of myocardial IRI. Myocardial IRI was induced in mice by ligating the left anterior descending coronary artery for 1 h, followed by different reperfusion times. One hour after reperfusion, the rapid expression of JAK-STAT-activating cytokines was observed. We precisely evaluated the phosphorylation of cardioprotective signaling molecules and the expression of SOCS3 during IRI and then induced myocardial IRI in wild-type and cardiac-specific SOCS3 knockout mice (SOCS3-CKO). The activation of STAT3, AKT, and ERK1/2 rapidly peaked and promptly decreased during IRI. This decrease correlated with the induction of SOCS3 expression up to 24 h after IRI in wild-type mice. The infarct size 24 h after reperfusion was significantly reduced in SOCS3-CKO compared with wild-type mice. In SOCS3-CKO mice, STAT3, AKT, and ERK1/2 phosphorylation was sustained, myocardial apoptosis was prevented, and the expression of anti-apoptotic Bcl-2 family member myeloid cell leukemia-1 (Mcl-1) was augmented. Cardiac-specific SOCS3 deletion led to the sustained activation of cardioprotective signaling molecules including and prevented myocardial apoptosis and injury during IRI. Our findings suggest that SOCS3 may represent a key factor that exacerbates the development of myocardial IRI.

  6. Cardiac-Specific SOCS3 Deletion Prevents In Vivo Myocardial Ischemia Reperfusion Injury through Sustained Activation of Cardioprotective Signaling Molecules

    PubMed Central

    Nagata, Takanobu; Yasukawa, Hideo; Kyogoku, Sachiko; Oba, Toyoharu; Takahashi, Jinya; Nohara, Shoichiro; Minami, Tomoko; Mawatari, Kazutoshi; Sugi, Yusuke; Shimozono, Koutatsu; Pradervand, Sylvain; Hoshijima, Masahiko; Aoki, Hiroki; Fukumoto, Yoshihiro; Imaizumi, Tsutomu

    2015-01-01

    Myocardial ischemia reperfusion injury (IRI) adversely affects cardiac performance and the prognosis of patients with acute myocardial infarction. Although myocardial signal transducer and activator of transcription (STAT) 3 is potently cardioprotective during IRI, the inhibitory mechanism responsible for its activation is largely unknown. The present study aimed to investigate the role of the myocardial suppressor of cytokine signaling (SOCS)-3, an intrinsic negative feedback regulator of the Janus kinase (JAK)-STAT signaling pathway, in the development of myocardial IRI. Myocardial IRI was induced in mice by ligating the left anterior descending coronary artery for 1 h, followed by different reperfusion times. One hour after reperfusion, the rapid expression of JAK-STAT–activating cytokines was observed. We precisely evaluated the phosphorylation of cardioprotective signaling molecules and the expression of SOCS3 during IRI and then induced myocardial IRI in wild-type and cardiac-specific SOCS3 knockout mice (SOCS3-CKO). The activation of STAT3, AKT, and ERK1/2 rapidly peaked and promptly decreased during IRI. This decrease correlated with the induction of SOCS3 expression up to 24 h after IRI in wild-type mice. The infarct size 24 h after reperfusion was significantly reduced in SOCS3-CKO compared with wild-type mice. In SOCS3-CKO mice, STAT3, AKT, and ERK1/2 phosphorylation was sustained, myocardial apoptosis was prevented, and the expression of anti-apoptotic Bcl-2 family member myeloid cell leukemia-1 (Mcl-1) was augmented. Cardiac-specific SOCS3 deletion led to the sustained activation of cardioprotective signaling molecules including and prevented myocardial apoptosis and injury during IRI. Our findings suggest that SOCS3 may represent a key factor that exacerbates the development of myocardial IRI. PMID:26010537

  7. Intracellular redox status controls membrane localization of pro- and anti-migratory signaling molecules.

    PubMed

    Hempel, Nadine; Melendez, J Andres

    2014-01-01

    Shifts in intracellular Reactive Oxygen Species (ROS) have been shown to contribute to carcinogenesis and to tumor progression. In addition to DNA and cell damage by surges in ROS, sub-lethal increases in ROS are implicated in regulating cellular signaling that enhances pro-metastatic behavior. We previously showed that subtle increases in endogenous H2O2 regulate migratory and invasive behavior of metastatic bladder cancer cells through phosphatase inhibition and consequential phosphorylation of p130cas, an adapter of the FAK signaling pathway. We further showed that enhanced redox status contributed to enhanced localization of p130cas to the membrane of metastatic cells. Here we show that this signaling complex can similarly be induced in a redox-engineered cell culture model that enables regulation of intracellular steady state H2O2 level by enforced expression of superoxide dismutase 2 (Sod2) and catalase. Expression of Sod2 leads to enhanced p130cas phosphorylation in HT-1080 fibrosarcoma and UM-UC-6 bladder cancer cells. These changes are mediated by H2O2, as co-expression of Catalase abrogates p130cas phosphorylation and its interaction with the adapter protein Crk. Importantly, we establish that the redox environment influence the localization of the tumor suppressor and phosphatase PTEN, in both redox-engineered and metastatic bladder cancer cells that display endogenous increases in H2O2. Importantly, PTEN oxidation leads to its dissociation from the plasma membrane. This indicates that oxidation of PTEN not only influences its activity, but also regulates its cellular localization, effectively removing it from its primary site of lipid phosphatase activity. These data introduce hitherto unappreciated paradigms whereby ROS can reciprocally regulate the cellular localization of pro- and anti-migratory signaling molecules, p130cas and PTEN, respectively. These data further confirm that altering antioxidant status and the intracellular ROS environment can

  8. A novel screen-printed mast cell-based electrochemical sensor for detecting spoilage bacterial quorum signaling molecules (N-acyl-homoserine-lactones) in freshwater fish.

    PubMed

    Jiang, Donglei; Liu, Yan; Jiang, Hui; Rao, Shengqi; Fang, Wu; Wu, Mangang; Yuan, Limin; Fang, Weiming

    2018-04-15

    A novel screen-printed cell-based electrochemical sensor was developed to assess bacterial quorum signaling molecules, N-acylhomoserine lactones (AHLs). Screen-printed carbon electrode (SPCE), which possesses excellent properties such as low-cost, disposable and energy-efficient, was modified with multi-walled carbon nanotubes (MWNTs) to improve electrochemical signals and enhance the sensitivity. Rat basophilic leukemia (RBL-2H3) mast cells encapsulated in alginate/graphene oxide (NaAgl/GO) hydrogel were immobilized on the MWNTs/SPCE to serve as recognition element. Electrochemical impedance spectroscopy (EIS) was employed to record the cell impedance signal as-influenced by Pseudomonas aeruginosa quorum-sensing molecule, N-3-oxododecanoyl homoserine lactone (3OC 12 -HSL). Experimental results show that 3OC 12 -HSL caused a significant decrease in cell viability in a dose dependent manner. The EIS value decreased with concentrations of 3OC 12 -HSL in the range of 0.1-1μM, and the detection limit for 3OC 12 -HSL was calculated to be 0.094μM. These results were confirmed via cell viability, SEM, TEM analysis. Next, the sensor was successfully applied to monitoring the production of AHLs by spoilage bacteria in three different freshwater fish juice samples which efficiently proved the practicability of this cell based method. Therefore, the proposed cell sensor may serve as an innovative and effective approach to the measurement of quorum signaling molecule and thus provides a new avenue for real-time monitoring the spoilage bacteria in freshwater fish production. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Origins location of the outflow tract ventricular arrhythmias exhibiting qrS pattern or QS pattern with a notch on the descending limb in lead V1.

    PubMed

    Lin, Cong; Zheng, Cheng; Zhou, De-Pu; Li, Xiao-Wei; Wu, Shu-Jie; Lin, Jia-Feng

    2017-05-15

    Ventricular outflow tract(VOT) ventricular arrhythmias(VAs) presenting qrS pattern or QS pattern with a notch on the descending limb in lead V1 were consistently thought of arising from the commissure between left and right coronary cusp (L-RCC) by previous studies. However, we found they could originate from other anatomic structures in VOT. This study aimed to investigate the exact origin of this kind VAs. Forty-nine patients of VOT premature ventricular contrations/ventricular tachycardia(PVCs/VT) with lead V1 presenting qrS pattern or QS pattern with a notch on the descending limb undergoing successful radiofrequency catheter ablation(RFCA) in our center were analyzed. 12-lead electrocardiogram(ECG) of these PVCs/VT were summarized. Among these PVCs/VT, 37 cases exhibited qrS morphology in lead V1, 12 cases presented QS pattern with a notch on the descending limb in the same lead. Based on the successful ablation sites, these PVCs/VT were divided into 2 groups: (1)Right ventricular outflow tract(RVOT) group (26 cases), and (2) Left ventricular outflow tract (LVOT) group(23 cases, 4 cases originating from the left coronary cusp(LCC), 2 from the right coronary cusp(RCC), 16 from the L-RCC, 1 from the area inferior to LCC(ILCC)). The ECG characteristics of each PVCs/VT were analyzed. Among these PVCs/VT, applying the precordial transitional zone index(TZ index) < 0 to predict LVOT origin was demonstrated with sensitivity of 95.65%, specificity of 96.15%, positive predicting value(PPV) of 95.65% and negative predicting value(NPV) of 96.15%. In LVOT group, further applying the r, R, m,or Rs morphology in lead I to predict L-RCC and RCC origin was demonstrated with sensitivity of 94.44%, specificity of 60.00%, PPV of 89.47% and NPV of 75.00%. Ventricular outflow tract PVCs/VT with lead V1 presenting qrS pattern or QS pattern with a notch on descending limb not only arising from L-RCC, but also RVOT, LCC, RCC and ILCC. Combining TZ index and QRS morphology in lead I

  10. Lipo-chitin oligosaccharides, plant symbiosis signalling molecules that modulate mammalian angiogenesis in vitro.

    PubMed

    Djordjevic, Michael A; Bezos, Anna; Susanti; Marmuse, Laurence; Driguez, Hugues; Samain, Eric; Vauzeilles, Boris; Beau, Jean-Marie; Kordbacheh, Farzaneh; Rolfe, Barry G; Schwörer, Ralf; Daines, Alison M; Gresshoff, Peter M; Parish, Christopher R

    2014-01-01

    Lipochitin oligosaccharides (LCOs) are signaling molecules required by ecologically and agronomically important bacteria and fungi to establish symbioses with diverse land plants. In plants, oligo-chitins and LCOs can differentially interact with different lysin motif (LysM) receptors and affect innate immunity responses or symbiosis-related pathways. In animals, oligo-chitins also induce innate immunity and other physiological responses but LCO recognition has not been demonstrated. Here LCO and LCO-like compounds are shown to be biologically active in mammals in a structure dependent way through the modulation of angiogenesis, a tightly-regulated process involving the induction and growth of new blood vessels from existing vessels. The testing of 24 LCO, LCO-like or oligo-chitin compounds resulted in structure-dependent effects on angiogenesis in vitro leading to promotion, or inhibition or nil effects. Like plants, the mammalian LCO biological activity depended upon the presence and type of terminal substitutions. Un-substituted oligo-chitins of similar chain lengths were unable to modulate angiogenesis indicating that mammalian cells, like plant cells, can distinguish between LCOs and un-substituted oligo-chitins. The cellular mode-of-action of the biologically active LCOs in mammals was determined. The stimulation or inhibition of endothelial cell adhesion to vitronectin or fibronectin correlated with their pro- or anti-angiogenic activity. Importantly, novel and more easily synthesised LCO-like disaccharide molecules were also biologically active and de-acetylated chitobiose was shown to be the primary structural basis of recognition. Given this, simpler chitin disaccharides derivatives based on the structure of biologically active LCOs were synthesised and purified and these showed biological activity in mammalian cells. Since important chronic disease states are linked to either insufficient or excessive angiogenesis, LCO and LCO-like molecules may have the

  11. The Variation of Universally Acknowledged World-Class Universities (UAWCUs) between 2010 and 2015: An Empirical Study by the Ranks of THEs, QS and ARWU

    ERIC Educational Resources Information Center

    Liu, Lu; Liu, Zhimin

    2016-01-01

    Due to certainty recognition in ranking systems, the commonly included top 100 universities are regarded as the Universally Acknowledged World-Class Universities (UAWCUs). From three university rankings-THEs, QS and ARWU from 2010 to 2015, the following conclusions can be drawn from this study: Firstly, 56 universities are commonly ranked in the…

  12. Bacterial quorum sensing: the progress and promise of an emerging research area

    PubMed Central

    Whiteley, Marvin; Diggle, Stephen P.; Greenberg, E. Peter

    2018-01-01

    Preface This review highlights how we can build upon the relatively new and rapidly developing field of bacterial communication or quorum sensing (QS). We now have a depth of knowledge about how bacteria use QS signals to communicate with each other and coordinate activities. There have been extraordinary advances in QS genetics, genomics, biochemistry, and diversity of signaling systems. We are beginning to understand the connections between QS and bacterial sociality. This foundation places us at the precipice of a new era where researchers can advance towards development of new medicines to treat devastating infectious diseases, and in parallel use bacteria to understand the biology of sociality. PMID:29144467

  13. Molecular Rotation Signals: Molecule Chemistry and Particle Physics

    NASA Astrophysics Data System (ADS)

    Grabow, Jens-Uwe

    2015-06-01

    Molecules - large or small - are attractive academic resources, with numerous questions on their chemical behaviour as well as problems in fundamental physics now (or still) waiting to be answered: Targeted by high-resolution spectroscopy, a rotating molecular top can turn into a laboratory for molecule chemistry or a laboratory for particle physics. Once successfully entrained (many species - depending on size and chemical composition - have insufficient vapour pressures or are of transient nature, such that specifically designed pulsed-jet sources are required for their transfer into the gas phase or in-situ generation) into the collision-free environment of a supersonic-jet expansion, each molecular top comes with its own set of challenges, theoretically and experimentally: Multiple internal interactions are causing complicated energy level schemes and the resulting spectra will be rather difficult to predict theoretically. Experimentally, these spectra are difficult to assess and assign. With today's broad-banded chirp microwave techniques, finding and identifying such spectral features have lost their major drawback of being very time consuming for many molecules. For other molecules, the unrivalled resolution and sensitivity of the narrow-banded impulse microwave techniques provide a window to tackle - at the highest precision available to date - fundamental questions in physics, even particle physics - potentially beyond the standard model. Molecular charge distribution, properties of the chemical bond, details on internal dynamics and intermolecular interaction, the (stereo-chemical) molecular structure (including the possibility of their spatial separation) as well as potential evidence for tiny yet significant interactions encode their signature in pure molecular rotation subjected to time-domain microwave spectroscopic techniques. Ongoing exciting technical developments promise rapid progress. We present recent examples from Hannover, new directions, and

  14. A diketopiperazine factor from Rheinheimera aquimaris QSI02 exhibits anti-quorum sensing activity.

    PubMed

    Sun, Shiwei; Dai, Xiaoyun; Sun, Jiao; Bu, Xiangguo; Weng, Caihong; Li, Hui; Zhu, Hu

    2016-12-21

    An ethyl acetate (EtOAc) extract isolated from the marine bacterium, Rheinheimera aquimaris QSI02, was found to exhibit anti-quorum sensing (anti-QS) activity. A subsequent bioassay-guided isolation protocol led to the detection of an active diketopiperazine factor, cyclo(Trp-Ser). Biosensor assay data showed that the minimum inhibitory concentration (MIC) of cyclo(Trp-Ser) ranged from 3.2 mg/ml to 6.4 mg/m for several microorganisms, including Escherichia coli, Chromobacterium violaceum CV026, Pseudomonas aeruginosa PA01, Staphylococcus aureus, and Candida albicans. Additionally, sub-MICs of cyclo(Trp-Ser) decreased the QS-regulated violacein production in C. violaceum CV026 by 67%. Furthermore, cyclo(Trp-Ser) can decrease QS-regulated pyocyanin production, elastase activity and biofilm formation in P. aeruginosa PA01 by 65%, 40% and 59.9%, respectively. Molecular docking results revealed that cyclo(Trp-Ser) binds to CviR receptor more rigidly than C 6 HSL with lower docking energy -8.68 kcal/mol, while with higher binding energy of -8.40 kcal/mol than 3-oxo-C 12 HSL in LasR receptor. Molecular dynamics simulation suggested that cyclo(Trp-Ser) is more easy to bind to CviR receptor than natural signaling molecule, but opposite in LasR receptor. These results suggest that cyclo(Trp-Ser) can be used as a potential inhibitor to control QS systems of C. violaceum and P. aeruginosa and provide increased the understanding of molecular mechanism that influences QS-regulated behaviors.

  15. A diketopiperazine factor from Rheinheimera aquimaris QSI02 exhibits anti-quorum sensing activity

    PubMed Central

    Sun, Shiwei; Dai, Xiaoyun; Sun, Jiao; Bu, Xiangguo; Weng, Caihong; Li, Hui; Zhu, Hu

    2016-01-01

    An ethyl acetate (EtOAc) extract isolated from the marine bacterium, Rheinheimera aquimaris QSI02, was found to exhibit anti-quorum sensing (anti-QS) activity. A subsequent bioassay-guided isolation protocol led to the detection of an active diketopiperazine factor, cyclo(Trp-Ser). Biosensor assay data showed that the minimum inhibitory concentration (MIC) of cyclo(Trp-Ser) ranged from 3.2 mg/ml to 6.4 mg/m for several microorganisms, including Escherichia coli, Chromobacterium violaceum CV026, Pseudomonas aeruginosa PA01, Staphylococcus aureus, and Candida albicans. Additionally, sub-MICs of cyclo(Trp-Ser) decreased the QS-regulated violacein production in C. violaceum CV026 by 67%. Furthermore, cyclo(Trp-Ser) can decrease QS-regulated pyocyanin production, elastase activity and biofilm formation in P. aeruginosa PA01 by 65%, 40% and 59.9%, respectively. Molecular docking results revealed that cyclo(Trp-Ser) binds to CviR receptor more rigidly than C6HSL with lower docking energy −8.68 kcal/mol, while with higher binding energy of −8.40 kcal/mol than 3-oxo-C12HSL in LasR receptor. Molecular dynamics simulation suggested that cyclo(Trp-Ser) is more easy to bind to CviR receptor than natural signaling molecule, but opposite in LasR receptor. These results suggest that cyclo(Trp-Ser) can be used as a potential inhibitor to control QS systems of C. violaceum and P. aeruginosa and provide increased the understanding of molecular mechanism that influences QS-regulated behaviors. PMID:28000767

  16. Acyl-homoserine lactone quorum sensing: from evolution to application.

    PubMed

    Schuster, Martin; Sexton, D Joseph; Diggle, Stephen P; Greenberg, E Peter

    2013-01-01

    Quorum sensing (QS) is a widespread process in bacteria that employs autoinducing chemical signals to coordinate diverse, often cooperative activities such as bioluminescence, biofilm formation, and exoenzyme secretion. Signaling via acyl-homoserine lactones is the paradigm for QS in Proteobacteria and is particularly well understood in the opportunistic pathogen Pseudomonas aeruginosa. Despite thirty years of mechanistic research, empirical studies have only recently addressed the benefits of QS and provided support for the traditional assumptions regarding its social nature and its role in optimizing cell-density-dependent group behaviors. QS-controlled public-goods production has served to investigate principles that explain the evolution and stability of cooperation, including kin selection, pleiotropic constraints, and metabolic prudence. With respect to medical application, appreciating social dynamics is pertinent to understanding the efficacy of QS-inhibiting drugs and the evolution of resistance. Future work will provide additional insight into the foundational assumptions of QS and relate laboratory discoveries to natural ecosystems.

  17. Molecular envelope and atomic model of an anti-terminated glyQS T-box regulator in complex with tRNAGly.

    PubMed

    Chetnani, Bhaskar; Mondragón, Alfonso

    2017-07-27

    A T-box regulator or riboswitch actively monitors the levels of charged/uncharged tRNA and participates in amino acid homeostasis by regulating genes involved in their utilization or biosynthesis. It has an aptamer domain for cognate tRNA recognition and an expression platform to sense the charge state and modulate gene expression. These two conserved domains are connected by a variable linker that harbors additional secondary structural elements, such as Stem III. The structural basis for specific tRNA binding is known, but the structural basis for charge sensing and the role of other elements remains elusive. To gain new structural insights on the T-box mechanism, a molecular envelope was calculated from small angle X-ray scattering data for the Bacillus subtilis glyQS T-box riboswitch in complex with an uncharged tRNAGly. A structural model of an anti-terminated glyQS T-box in complex with its cognate tRNAGly was derived based on the molecular envelope. It shows the location and relative orientation of various secondary structural elements. The model was validated by comparing the envelopes of the wild-type complex and two variants. The structural model suggests that in addition to a possible regulatory role, Stem III could aid in preferential stabilization of the T-box anti-terminated state allowing read-through of regulated genes. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. An EAL domain protein and cyclic AMP contribute to the interaction between the two quorum sensing systems in Escherichia coli.

    PubMed

    Zhou, Xianxuan; Meng, Xiaoming; Sun, Baolin

    2008-09-01

    Quorum sensing (QS) is a bacterial cell-cell communication process by which bacteria communicate using extracellular signals called autoinducers. Two QS systems have been identified in Escherichia coli K-12, including an intact QS system 2 that is stimulated by the cyclic AMP (cAMP)-cAMP receptor protein (CRP) complex and a partial QS system 1 that consists of SdiA (suppressor of cell division inhibitor) responding to signals generated by other microbial species. The relationship between QS system 1 and system 2 in E. coli, however, remains obscure. Here, we show that an EAL domain protein, encoded by ydiV, and cAMP are involved in the interaction between the two QS systems in E. coli. Expression of sdiA and ydiV is inhibited by glucose. SdiA binds to the ydiV promoter region in a dose-dependent, but nonspecific, manner; extracellular autoinducer 1 from other species stimulates ydiV expression in an sdiA-dependent manner. Furthermore, we discovered that the double sdiA-ydiV mutation, but not the single mutation, causes a 2-fold decrease in intracellular cAMP concentration that leads to the inhibition of QS system 2. These results indicate that signaling pathways that respond to important environmental cues, such as autoinducers and glucose, are linked together for their control in E. coli.

  19. Resilience of bacterial quorum sensing against fluid flow

    NASA Astrophysics Data System (ADS)

    Emge, Philippe; Moeller, Jens; Jang, Hongchul; Rusconi, Roberto; Yawata, Yutaka; Stocker, Roman; Vogel, Viola

    2016-09-01

    Quorum sensing (QS) is a population-density dependent chemical process that enables bacteria to communicate based on the production, secretion and sensing of small inducer molecules. While recombinant constructs have been widely used to decipher the molecular details of QS, how those findings translate to natural QS systems has remained an open question. Here, we compare the activation of natural and synthetic Pseudomonas aeruginosa LasI/R QS systems in bacteria exposed to quiescent conditions and controlled flows. Quantification of QS-dependent GFP expression in suspended cultures and in surface-attached microcolonies revealed that QS onset in both systems was similar under quiescent conditions but markedly differed under flow. Moderate flow (Pe > 25) was sufficient to suppress LasI/R QS recombinantly expressed in Escherichia coli, whereas only high flow (Pe > 102) suppressed QS in wild-type P. aeruginosa. We suggest that this difference stems from the differential production of extracellular matrix and that the matrix confers resilience against moderate flow to QS in wild-type organisms. These results suggest that the expression of a biofilm matrix extends the environmental conditions under which QS-based cell-cell communication is effective and that findings from synthetic QS circuits cannot be directly translated to natural systems.

  20. The Influence of Lead on Generation of Signalling Molecules and Accumulation of Flavonoids in Pea Seedlings in Response to Pea Aphid Infestation.

    PubMed

    Woźniak, Agnieszka; Drzewiecka, Kinga; Kęsy, Jacek; Marczak, Łukasz; Narożna, Dorota; Grobela, Marcin; Motała, Rafał; Bocianowski, Jan; Morkunas, Iwona

    2017-08-24

    The aim of this study was to investigate the effect of an abiotic factor, i.e., lead at various concentrations (low causing a hormesis effect and causing high toxicity effects), on the generation of signalling molecules in pea ( Pisum sativum L. cv. Cysterski) seedlings and then during infestation by the pea aphid ( Acyrthosiphon pisum Harris). The second objective was to verify whether the presence of lead in pea seedling organs and induction of signalling pathways dependent on the concentration of this metal trigger defense responses to A. pisum . Therefore, the profile of flavonoids and expression levels of genes encoding enzymes of the flavonoid biosynthesis pathway (phenylalanine ammonialyase and chalcone synthase) were determined. A significant accumulation of total salicylic acid (TSA) and abscisic acid (ABA) was recorded in the roots and leaves of pea seedlings growing on lead-supplemented medium and next during infestation by aphids. Increased generation of these phytohormones strongly enhanced the biosynthesis of flavonoids, including a phytoalexin, pisatin. This research provides insights into the cross-talk between the abiotic (lead) and biotic factor (aphid infestation) on the level of the generation of signalling molecules and their role in the induction of flavonoid biosynthesis.

  1. Regulation Involved in Colonization of Intercellular Spaces of Host Plants in Ralstonia solanacearum

    PubMed Central

    Hikichi, Yasufumi; Mori, Yuka; Ishikawa, Shiho; Hayashi, Kazusa; Ohnishi, Kouhei; Kiba, Akinori; Kai, Kenji

    2017-01-01

    A soil-borne bacterium Ralstonia solanacearum invading plant roots first colonizes the intercellular spaces of the root, and eventually enters xylem vessels, where it replicates at high levels leading to wilting symptoms. After invasion into intercellular spaces, R. solanacearum strain OE1-1 attaches to host cells and expression of the hrp genes encoding components of the type III secretion system (T3SS). OE1-1 then constructs T3SS and secrets effectors into host cells, inducing expression of the host gene encoding phosphatidic acid phosphatase. This leads to suppressing plant innate immunity. Then, OE1-1 grows on host cells, inducing quorum sensing (QS). The QS contributes to regulation of OE1-1 colonization of intercellular spaces including mushroom-type biofilm formation on host cells, leading to its virulence. R. solanacearum strains AW1 and K60 produce methyl 3-hydroxypalmitate (3-OH PAME) as a QS signal. The methyltransferase PhcB synthesizes 3-OH PAME. When 3-OH PAME reaches a threshold level, it increases the ability of the histidine kinase PhcS to phosphorylate the response regulator PhcR. This results in elevated levels of functional PhcA, the global virulence regulator. On the other hand, strains OE1-1 and GMI1000 produce methyl 3-hydroxymyristate (3-OH MAME) as a QS signal. Among R. solanacearum strains, the deduced PhcB and PhcS amino acid sequences are related to the production of QS signals. R. solanacearum produces aryl-furanone secondary metabolites, ralfuranones, which are extracellularly secreted and required for its virulence, dependent on the QS. Interestingly, ralfuranones affect the QS feedback loop. Taken together, integrated signaling via ralfuranones influences the QS, contributing to pathogen virulence. PMID:28642776

  2. Legume receptors perceive the rhizobial lipochitin oligosaccharide signal molecules by direct binding

    PubMed Central

    Broghammer, Angelique; Krusell, Lene; Blaise, Mickaël; Sauer, Jørgen; Sullivan, John T.; Maolanon, Nicolai; Vinther, Maria; Lorentzen, Andrea; Madsen, Esben B.; Jensen, Knud J.; Roepstorff, Peter; Thirup, Søren; Ronson, Clive W.; Thygesen, Mikkel B.; Stougaard, Jens

    2012-01-01

    Lipochitin oligosaccharides called Nod factors function as primary rhizobial signal molecules triggering legumes to develop new plant organs: root nodules that host the bacteria as nitrogen-fixing bacteroids. Here, we show that the Lotus japonicus Nod factor receptor 5 (NFR5) and Nod factor receptor 1 (NFR1) bind Nod factor directly at high-affinity binding sites. Both receptor proteins were posttranslationally processed when expressed as fusion proteins and extracted from purified membrane fractions of Nicotiana benthamiana or Arabidopsis thaliana. The N-terminal signal peptides were cleaved, and NFR1 protein retained its in vitro kinase activity. Processing of NFR5 protein was characterized by determining the N-glycosylation patterns of the ectodomain. Two different glycan structures with identical composition, Man3XylFucGlcNAc4, were identified by mass spectrometry and located at amino acid positions N68 and N198. Receptor–ligand interaction was measured by using ligands that were labeled or immobilized by application of chemoselective chemistry at the anomeric center. High-affinity ligand binding was demonstrated with both solid-phase and free solution techniques. The Kd values obtained for Nod factor binding were in the nanomolar range and comparable to the concentration range sufficient for biological activity. Structure-dependent ligand specificity was shown by using chitin oligosaccharides. Taken together, our results suggest that ligand recognition through direct ligand binding is a key step in the receptor-mediated activation mechanism leading to root nodule development in legumes. PMID:22859506

  3. 2-Heptyl-4-Quinolone, a Precursor of the Pseudomonas Quinolone Signal Molecule, Modulates Swarming Motility in Pseudomonas aeruginosa▿

    PubMed Central

    Ha, Dae-Gon; Merritt, Judith H.; Hampton, Thomas H.; Hodgkinson, James T.; Janecek, Matej; Spring, David R.; Welch, Martin; O'Toole, George A.

    2011-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen capable of group behaviors, including biofilm formation and swarming motility. These group behaviors are regulated by both the intracellular signaling molecule c-di-GMP and acylhomoserine lactone quorum-sensing systems. Here, we show that the Pseudomonas quinolone signal (PQS) system also contributes to the regulation of swarming motility. Specifically, our data indicate that 2-heptyl-4-quinolone (HHQ), a precursor of PQS, likely induces the production of the phenazine-1-carboxylic acid (PCA), which in turn acts via an as-yet-unknown downstream mechanism to repress swarming motility. We show that this HHQ- and PCA-dependent swarming repression is apparently independent of changes in global levels of c-di-GMP, suggesting complex regulation of this group behavior. PMID:21965567

  4. Disruption of Cell-to-Cell Signaling Does Not Abolish the Antagonism of Phaeobacter gallaeciensis toward the Fish Pathogen Vibrio anguillarum in Algal Systems

    PubMed Central

    Prol García, M. J.; D'Alvise, P. W.

    2013-01-01

    Quorum sensing (QS) regulates Phaeobacter gallaeciensis antagonism in broth systems; however, we demonstrate here that QS is not important for antagonism in algal cultures. QS mutants reduced Vibrio anguillarum to the same extent as the wild type. Consequently, a combination of probiotic Phaeobacter and QS inhibitors is a feasible strategy for aquaculture disease control. PMID:23811510

  5. Endogenous Nod-Factor-Like Signal Molecules Promote Early Somatic Embryo Development in Norway Spruce1

    PubMed Central

    Dyachok, Julia V.; Wiweger, Malgorzata; Kenne, Lennart; von Arnold, Sara

    2002-01-01

    Embryogenic cultures of Norway spruce (Picea abies) are composed of pro-embryogenic masses (PEMs) and somatic embryos of various developmental stages. Auxin is important for PEM formation and proliferation. In this report we show that depletion of auxin blocks PEM development and causes large-scale cell death. Extracts of the media conditioned by embryogenic cultures stimulate development of PEM aggregates in auxin-deficient cultures. Partial characterization of the conditioning factor shows that it is a lipophilic, low-molecular-weight molecule, which is sensitive to chitinase and contains GlcNAc residues. On the basis of this information, we propose that the factor is a lipophilic chitin oligosaccharide (LCO). The amount of LCO correlates to the developmental stages of PEMs and embryos, with the highest level in the media conditioned by developmentally blocked cultures. LCO is not present in nonembryogenic cultures. Cell death, induced by withdrawal of auxin, is suppressed by extra supply of endogenous LCO or Nod factor from Rhizobium sp. NGR234. The effect can be mimicked by a chitotetraose or chitinase from Streptomyces griseus. Taken together, our data suggest that endogenous LCO acts as a signal molecule stimulating PEM and early embryo development in Norway spruce. PMID:11842156

  6. Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: Implications for therapy

    PubMed Central

    Tovar, Christian; Rosinski, James; Filipovic, Zoran; Higgins, Brian; Kolinsky, Kenneth; Hilton, Holly; Zhao, Xiaolan; Vu, Binh T.; Qing, Weiguo; Packman, Kathryn; Myklebost, Ola; Heimbrook, David C.; Vassilev, Lyubomir T.

    2006-01-01

    The p53 tumor suppressor retains its wild-type conformation and transcriptional activity in half of all human tumors, and its activation may offer a therapeutic benefit. However, p53 function could be compromised by defective signaling in the p53 pathway. Using a small-molecule MDM2 antagonist, nutlin-3, to probe downstream p53 signaling we find that the cell-cycle arrest function of the p53 pathway is preserved in multiple tumor-derived cell lines expressing wild-type p53, but many have a reduced ability to undergo p53-dependent apoptosis. Gene array analysis revealed attenuated expression of multiple apoptosis-related genes. Cancer cells with mdm2 gene amplification were most sensitive to nutlin-3 in vitro and in vivo, suggesting that MDM2 overexpression may be the only abnormality in the p53 pathway of these cells. Nutlin-3 also showed good efficacy against tumors with normal MDM2 expression, suggesting that many of the patients with wild-type p53 tumors may benefit from antagonists of the p53–MDM2 interaction. PMID:16443686

  7. Preface: Special Topic on Single-Molecule Biophysics

    NASA Astrophysics Data System (ADS)

    Makarov, Dmitrii E.; Schuler, Benjamin

    2018-03-01

    Single-molecule measurements are now almost routinely used to study biological systems and processes. The scope of this special topic emphasizes the physics side of single-molecule observations, with the goal of highlighting new developments in physical techniques as well as conceptual insights that single-molecule measurements bring to biophysics. This issue also comprises recent advances in theoretical physical models of single-molecule phenomena, interpretation of single-molecule signals, and fundamental areas of statistical mechanics that are related to single-molecule observations. A particular goal is to illustrate the increasing synergy between theory, simulation, and experiment in single-molecule biophysics.

  8. Quorum-Quenching and Matrix-Degrading Enzymes in Multilayer Coatings Synergistically Prevent Bacterial Biofilm Formation on Urinary Catheters.

    PubMed

    Ivanova, Kristina; Fernandes, Margarida M; Francesko, Antonio; Mendoza, Ernest; Guezguez, Jamil; Burnet, Michael; Tzanov, Tzanko

    2015-12-16

    Bacteria often colonize in-dwelling medical devices and grow as complex biofilm communities of cells embedded in a self-produced extracellular polymeric matrix, which increases their resistance to antibiotics and the host immune system. During biofilm growth, bacterial cells cooperate through specific quorum-sensing (QS) signals. Taking advantage of this mechanism of biofilm formation, we hypothesized that interrupting the communication among bacteria and simultaneously degrading the extracellular matrix would inhibit biofilm growth. To this end, coatings composed of the enzymes acylase and α-amylase, able to degrade bacterial QS molecules and polysaccharides, respectively, were built on silicone urinary catheters using a layer-by-layer deposition technique. Multilayer coatings of either acylase or amylase alone suppressed the biofilm formation of corresponding Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus. Further assembly of both enzymes in hybrid nanocoatings resulted in stronger biofilm inhibition as a function of acylase or amylase position in the layers. Hybrid coatings, with the QS-signal-degrading acylase as outermost layer, demonstrated 30% higher antibiofilm efficiency against medically relevant Gram-negative bacteria compared to that of the other assemblies. These nanocoatings significantly reduced the occurrence of single-species (P. aeruginosa) and mixed-species (P. aeruginosa and Escherichia coli) biofilms on silicone catheters under both static and dynamic conditions. Moreover, in an in vivo animal model, the quorum quenching and matrix degrading enzyme assemblies delayed the biofilm growth up to 7 days.

  9. Microenvironment Influences Interaction of Signaling Molecules | Center for Cancer Research

    Cancer.gov

    Tumor progression depends not only on events that occur within cancer cells but also on the interaction of cancer cells with their environment, which can regulate tumor growth and metastasis and modulate the formation of new blood vessels to nourish the tumor. All cells communicate with other cells around them, including endothelial cells (the cells that make up blood vessels). They also interact with the extracellular matrix (ECM), a network of sugars and proteins that supports cells. Communication between neighboring cells and molecules often occurs through interaction among and between molecules on the cell surface and molecules of the ECM. Defining these interactions should facilitate the development of novel approaches to limit tumor progression.

  10. Signal transduction molecules in gliomas of all grades.

    PubMed

    Ermoian, Ralph P; Kaprealian, Tania; Lamborn, Kathleen R; Yang, Xiaodong; Jelluma, Nannette; Arvold, Nils D; Zeidman, Ruth; Berger, Mitchel S; Stokoe, David; Haas-Kogan, Daphne A

    2009-01-01

    To interrogate grade II, III, and IV gliomas and characterize the critical effectors within the PI3-kinase pathway upstream and downstream of mTOR. Experimental design Tissues from 87 patients who were treated at UCSF between 1990 and 2004 were analyzed. Twenty-eight grade II, 17 grade III glioma, 26 grade IV gliomas, and 16 non-tumor brain specimens were analyzed. Protein levels were assessed by immunoblots; RNA levels were determined by polymerase chain reaction amplification. To address the multiple comparisons, first an overall analysis was done comparing the four groups using Spearman's Correlation Coefficient. Only if this analysis was statistically significant were individual pairwise comparisons done. Multiple comparison analyses revealed a significant correlation with grade for all variables examined, except phosphorylated-S6. Expression of phosphorylated-4E-BP1, phosphorylated-PKB/Akt, PTEN, TSC1, and TSC2 correlated with grade (P < 0.01 for all). We extended our analyses to ask whether decreases in TSC proteins levels were due to changes in mRNA levels, or due to changes in post-transcriptional alterations. We found significantly lower levels of TSC1 and TSC2 mRNA in GBMs than in grade II gliomas or non-tumor brain (P < 0.01). Expression levels of critical signaling molecules upstream and downstream of mTOR differ between non-tumor brain and gliomas of any grade. The single variable whose expression did not differ between non-tumor brain and gliomas was phosphorylated-S6, suggesting that other protein kinases, in addition to mTOR, contribute significantly to S6 phosphorylation. mTOR provides a rational therapeutic target in gliomas of all grades, and clinical benefit may emerge as mTOR inhibitors are combined with additional agents.

  11. Flagellar dynamics reveal the distribution of chemotactic signaling molecule CheY-P in E. coli

    NASA Astrophysics Data System (ADS)

    Bano, Roshni; Mears, Patrick; Chemla, Yann; Golding, Ido

    E. colicells swim in a random walk consisting of ''runs'' - during which the flagella that propel the cell rotate counter-clockwise (CCW) - and ''tumbles''- during which one or more flagella rotate clockwise (CW). The tumbling frequency is modulated by the phosphorylation state of the signaling molecule CheY, which depends on the cell's environment. Phosphorylated CheY (CheY-P) binds to a flagellar motor and engenders a change in rotation state from CCW to CW. Despite advances in methods used to observe chemotactic signaling, it remains a challenge to measure the CheY-P level in cells directly. Here, we used an optical trap assay coupled with fluorescence microscopy to observe the dynamics of fluorescently labelled flagella in individual cells. By measuring the distribution of flagellar states in multi-flagellated cells and using our recent finding that each flagellar motor independently measures the cellular CheY-P concentration, we are able to extract the probability distribution of the CheY-P level in the cell. This analysis reveals the magnitude of fluctuations in chemotactic signaling in the live cell. We further investigate how this CheY-P distribution changes when cells encounter chemical gradients and perform chemotaxis. This work was supported by the National Science Foundation (NSF) through the Centre for Physics of Living Cells (CPLC).

  12. T Cell Cosignaling Molecules in Transplantation.

    PubMed

    Ford, Mandy L

    2016-05-17

    The ultimate outcome of alloreactivity versus tolerance following transplantation is potently influenced by the constellation of cosignaling molecules expressed by immune cells during priming with alloantigen, and the net sum of costimulatory and coinhibitory signals transmitted via ligation of these molecules. Intense investigation over the last two decades has yielded a detailed understanding of the kinetics, cellular distribution, and intracellular signaling networks of cosignaling molecules such as the CD28, TNF, and TIM families of receptors in alloimmunity. More recent work has better defined the cellular and molecular mechanisms by which engagement of cosignaling networks serve to either dampen or augment alloimmunity. These findings will likely aid in the rational development of novel immunomodulatory strategies to prolong graft survival and improve outcomes following transplantation. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Discovery of Novel Small-molecule Inhibitors of Nuclear Factor-κB Signaling with Anti-inflammatory and Anti-cancer Properties.

    PubMed

    Zhang, Lei; Shi, Lei; Soars, Shafer; Kamps, Joshua; Yin, Hang Hubert

    2018-06-05

    Excessive NF-κB activation contributes to the pathogenesis of numerous diseases. Small-molecule inhibitors of NF-κB signaling have significant therapeutic potential especially in treating inflammatory diseases and cancers. In this study, we performed a cell-based high-throughput screening to discover novel agents capable of inhibiting NF-κB signaling. Based on two hit scaffolds from the screening, we synthesized 69 derivatives to optimize the potency for inhibition of NF-κB activation, leading to successful discovery of the most potent compound Z9j with over 170-fold enhancement of inhibitory activity. Preliminary mechanistic studies revealed that Z9j inhibited NF-κB signaling via suppression of Src/Syk, PI3K/Akt and IKK/IκB pathways. This novel compound also demonstrated anti-inflammatory and anti-cancer activities, warranting its further development as a potential multifunctional agent to treat inflammatory diseases and cancers.

  14. Role of Ethylene and Its Cross Talk with Other Signaling Molecules in Plant Responses to Heavy Metal Stress1

    PubMed Central

    Thao, Nguyen Phuong; Khan, M. Iqbal R.; Thu, Nguyen Binh Anh; Hoang, Xuan Lan Thi; Asgher, Mohd; Khan, Nafees A.; Tran, Lam-Son Phan

    2015-01-01

    Excessive heavy metals (HMs) in agricultural lands cause toxicities to plants, resulting in declines in crop productivity. Recent advances in ethylene biology research have established that ethylene is not only responsible for many important physiological activities in plants but also plays a pivotal role in HM stress tolerance. The manipulation of ethylene in plants to cope with HM stress through various approaches targeting either ethylene biosynthesis or the ethylene signaling pathway has brought promising outcomes. This review covers ethylene production and signal transduction in plant responses to HM stress, cross talk between ethylene and other signaling molecules under adverse HM stress conditions, and approaches to modify ethylene action to improve HM tolerance. From our current understanding about ethylene and its regulatory activities, it is believed that the optimization of endogenous ethylene levels in plants under HM stress would pave the way for developing transgenic crops with improved HM tolerance. PMID:26246451

  15. Gamma-butyrolactone and furan signaling systems in Streptomyces.

    PubMed

    Sidda, John D; Corre, Christophe

    2012-01-01

    Streptomyces bacteria produce different classes of diffusible signaling molecules that trigger secondary metabolite production and/or morphological development within the cell population. The biosynthesis of gamma-butyrolactones (GBLs) and 2-alkyl-4-hydroxymethylfuran-3-carboxylic acids (AHFCAs) signaling molecules is related and involves an essential AfsA-like butenolide synthase. This chapter first describes the catalytic role of AfsA-like enzyme then provides details about methods for the discovery and characterization of potentially novel signaling molecules. In section 4, one approach for establishing the biological role of these signaling molecules is presented. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. The Inflammasome and Danger Molecule Signaling: At the Crossroads of Inflammation and Pathogen Persistence in the Oral Cavity

    PubMed Central

    Yilmaz, Özlem; Lee, Kyu Lim

    2014-01-01

    Inflammasomes are an oligomeric assembly of multiprotein complexes that activate the caspase-1-dependent maturation and the subsequent secretion of inflammatory interleukin-1β and interleukin-18 cytokines in response to a ‘danger signal’ in vertebrates. The assessment of their significance continues to grow rapidly as the complex biology of various chronic inflammatory conditions are better dissected. Increasing evidence links inflammasomes and host-derived small ‘danger molecule ATP’-signaling strongly with the modulation of the host immune response by microbial colonizers as well as potential altering of the microbiome structure and inter-microbial interactions in host. All of these factors eventually lead to the destructive chronic inflammatory disease state. In the oral cavity, a highly dynamic and multifaceted interplay takes place between the endogenous danger molecule signaling and colonizing microbes on the mucosal surfaces. This interaction may redirect the local microenvironment to favor the conversion of the resident microbiome towards pathogenicity. This review outlines the major components of the known inflammasome complexes/mechanisms and highlights their regulation, in particular, by oral microorganisms in relation to the periodontal disease pathology. Better characterizations of the cellular and molecular biology of the inflammasome will likely present important potential therapeutic targets in the treatment and prevention of periodontal disease as well as other debilitating chronic diseases. PMID:26252403

  17. Soluble adhesion molecules in human cancers: sources and fates.

    PubMed

    van Kilsdonk, Jeroen W J; van Kempen, Léon C L T; van Muijen, Goos N P; Ruiter, Dirk J; Swart, Guido W M

    2010-06-01

    Adhesion molecules endow tumor cells with the necessary cell-cell contacts and cell-matrix interactions. As such, adhesion molecules are involved in cell signalling, proliferation and tumor growth. Rearrangements in the adhesion repertoire allow tumor cells to migrate, invade and form metastases. Besides these membrane-bound adhesion molecules several soluble adhesion molecules are detected in the supernatant of tumor cell lines and patient body fluids. Truncated soluble adhesion molecules can be generated by several conventional mechanisms, including alternative splicing of mRNA transcripts, chromosomal translocation, and extracellular proteolytic ectodomain shedding. Secretion of vesicles (ectosomes and exosomes) is an alternative mechanism mediating the release of full-length adhesion molecules. Soluble adhesion molecules function as modulators of cell adhesion, induce proteolytic activity and facilitate cell signalling. Additionally, adhesion molecules present on secreted vesicles might be involved in the vesicle-target cell interaction. Based on currently available data, released soluble adhesion molecules contribute to cancer progression and therefore should not be regarded as unrelated and non-functional side products of tumor progression. 2010 Elsevier GmbH. All rights reserved.

  18. Adjuvant ganglioside GM2-KLH/QS-21 vaccination versus observation after resection of primary tumor > 1.5 mm in patients with stage II melanoma: results of the EORTC 18961 randomized phase III trial.

    PubMed

    Eggermont, Alexander M M; Suciu, Stefan; Rutkowski, Piotr; Marsden, Jeremy; Santinami, Mario; Corrie, Philippa; Aamdal, Steinar; Ascierto, Paolo A; Patel, Poulam M; Kruit, Wim H; Bastholt, Lars; Borgognoni, Lorenzo; Bernengo, Maria Grazia; Davidson, Neville; Polders, Larissa; Praet, Michel; Spatz, Alan

    2013-10-20

    The GM2 ganglioside is an antigen expressed in the majority of melanomas. The GM2-KLH/QS-21 vaccine induces high immunoglobulin M (IgM) and IgG antibody responses. The EORTC 18961 trial compared the efficacy of GM2-KLH/QS-21 vaccination versus observation. A total of 1,314 patients with a primary tumor > 1.50 mm in thickness (T3-4N0M0; American Joint Committee on Cancer stage II) were randomly assigned to GM2-KLH/QS-21 vaccination (n = 657) or observation (n = 657). Treatment consisted of subcutaneous injections once per week from week 1 to 4, then every 3 months for the first 2 years and every 6 months during the third year. Primary end point was relapse-free survival (RFS). Secondary end points were distant metastasis-free survival (DMFS) and overall survival (OS). Analyses were by intent to treat. After a median follow-up of 1.8 years, the trial was stopped at the second interim analysis for futility regarding RFS (hazard ratio [HR], 1.00; P = .99) and detrimental outcome regarding OS (HR, 1.66; P = .02). After a median follow-up of 4.2 years, we had recorded 400 relapses, nine deaths without relapse, a total of 236 deaths. At 4 years, the vaccination arm showed a decreased RFS rate of 1.2% (HR, 1.03; 95% CI, 0.84 to 1.25) and OS rate of 2.1% (HR, 1.16; 95% CI, 0.90 to 1.51). Toxicity was acceptable, with 4.6% of patients ending study participation because of toxicity. GM2-KLH/QS-21 vaccination does not improve outcome for patients with stage II melanoma.

  19. Analysis of binding site for the novel small-molecule TLR4 signal transduction inhibitor TAK-242 and its therapeutic effect on mouse sepsis model

    PubMed Central

    Takashima, K; Matsunaga, N; Yoshimatsu, M; Hazeki, K; Kaisho, T; Uekata, M; Hazeki, O; Akira, S; Iizawa, Y; Ii, M

    2009-01-01

    Background and purpose: TAK-242, a novel synthetic small-molecule, suppresses production of multiple cytokines by inhibiting Toll-like receptor (TLR) 4 signalling. In this study, we investigated the target molecule of TAK-242 and examined its therapeutic effect in a mouse sepsis model. Experimental approach: Binding assay with [3H]-TAK-242 and nuclear factor-κB reporter assay were used to identify the target molecule and binding site of TAK-242. Bacillus calmette guerin (BCG)-primed mouse sepsis model using live Escherichia coli was used to estimate the efficacy of TAK-242 in sepsis. Key results: TAK-242 strongly bound to TLR4, but binding to TLR2, 3, 5, 9, TLR-related adaptor molecules and MD-2 was either not observed or marginal. Mutational analysis using TLR4 mutants indicated that TAK-242 inhibits TLR4 signalling by binding to Cys747 in the intracellular domain of TLR4. TAK-242 inhibited MyD88-independent pathway as well as MyD88-dependent pathway and its inhibitory effect was largely unaffected by lipopolysaccharide (LPS) concentration and types of TLR4 ligands. TAK-242 had no effect on the LPS-induced conformational change of TLR4-MD-2 and TLR4 homodimerization. In mouse sepsis model, although TAK-242 alone did not affect bacterial counts in blood, if co-administered with ceftazidime it inhibited the increases in serum cytokine levels and improved survival of mice. Conclusions and implications: TAK-242 suppressed TLR4 signalling by binding directly to a specific amino acid Cys747 in the intracellular domain of TLR4. When co-administered with antibiotics, TAK-242 showed potent therapeutic effects in an E. coli-induced sepsis model using BCG-primed mice. Thus, TAK-242 may be a promising therapeutic agent for sepsis. PMID:19563534

  20. Cell division and turgor mediate enhanced plant growth in Arabidopsis plants treated with the bacterial signalling molecule lumichrome.

    PubMed

    Pholo, Motlalepula; Coetzee, Beatrix; Maree, Hans J; Young, Philip R; Lloyd, James R; Kossmann, Jens; Hills, Paul N

    2018-05-17

    Transcriptomic analysis indicates that the bacterial signalling molecule lumichrome enhances plant growth through a combination of enhanced cell division and cell enlargement, and possibly enhances photosynthesis. Lumichrome (7,8 dimethylalloxazine), a novel multitrophic signal molecule produced by Sinorhizobium meliloti bacteria, has previously been shown to elicit growth promotion in different plant species (Phillips et al. in Proc Natl Acad Sci USA 96:12275-12280, https://doi.org/10.1073/pnas.96.22.12275 , 1999). However, the molecular mechanisms that underlie this plant growth promotion remain obscure. Global transcript profiling using RNA-seq suggests that lumichrome enhances growth by inducing genes impacting on turgor driven growth and mitotic cell cycle that ensures the integration of cell division and expansion of developing leaves. The abundance of XTH9 and XPA4 transcripts was attributed to improved mediation of cell-wall loosening to allow turgor-driven cell enlargement. Mitotic CYCD3.3, CYCA1.1, SP1L3, RSW7 and PDF1 transcripts were increased in lumichrome-treated Arabidopsis thaliana plants, suggesting enhanced growth was underpinned by increased cell differentiation and expansion with a consequential increase in biomass. Synergistic ethylene-auxin cross-talk was also observed through reciprocal over-expression of ACO1 and SAUR54, in which ethylene activates the auxin signalling pathway and regulates Arabidopsis growth by both stimulating auxin biosynthesis and modulating the auxin transport machinery to the leaves. Decreased transcription of jasmonate biosynthesis and responsive-related transcripts (LOX2; LOX3; LOX6; JAL34; JR1) might contribute towards suppression of the negative effects of methyl jasmonate (MeJa) such as chlorophyll loss and decreases in RuBisCO and photosynthesis. This work contributes towards a deeper understanding of how lumichrome enhances plant growth and development.

  1. Regulation of acylated homoserine lactones (AHLs) in beef by spice marination.

    PubMed

    Gopu, Venkadesaperumal; Shetty, Prathapkumar Halady

    2016-06-01

    Quorum sensing (QS) is a signaling mechanism used by bacteria to communicate each other through the release of auto-inducing signaling molecules. Despite the fact that bacteria regulate its phenotypes by QS mechanism, their potential role in meat spoilage is not yet elucidated. In the current study, beef samples were analyzed for its microbial association and for the presence of N-acyl-homoserine-lactone (AHLs) throughout the storage experiments. Isolates were screened for AHLs production and selected spices were screened for their quorum sensing inhibitory (QSI) activity. In addition, effect of spices on AHLs production of Y. enterocolitica was quantified through high performance thin layer chromatography (HP-TLC). Outcome showed that microbial association of beef mainly consists of lactic acid bacteria (LAB) and Enterobacteriaceae. Samples stored at both aerobic and modified atmospheric packaging (MAP) exhibited higher counts whereas; marinated samples stored at MAP exhibited the lowest. It was found that out of 35 isolates Y. enterocolitica induced reporter strain CV026 and its cell-free supernatant contained 26.36 nM/100 ml of AHLs when compared to standard. Among the tested spices, C. cyminum exhibited pronounced results by significantly reducing the AHLs concentration up to 47.75 %. Findings revealed the presence of quorum molecules (AHLs) in beef meat throughout the spoilage process and spices can acts as quorum quenchers to influence the spoilage rate by reducing AHLs production.

  2. Reactive oxygen species, essential molecules, during plant-pathogen interactions.

    PubMed

    Camejo, Daymi; Guzmán-Cedeño, Ángel; Moreno, Alexander

    2016-06-01

    Reactive oxygen species (ROS) are continually generated as a consequence of the normal metabolism in aerobic organisms. Accumulation and release of ROS into cell take place in response to a wide variety of adverse environmental conditions including salt, temperature, cold stresses and pathogen attack, among others. In plants, peroxidases class III, NADPH oxidase (NOX) locates in cell wall and plasma membrane, respectively, may be mainly enzymatic systems involving ROS generation. It is well documented that ROS play a dual role into cells, acting as important signal transduction molecules and as toxic molecules with strong oxidant power, however some aspects related to its function during plant-pathogen interactions remain unclear. This review focuses on the principal enzymatic systems involving ROS generation addressing the role of ROS as signal molecules during plant-pathogen interactions. We described how the chloroplasts, mitochondria and peroxisomes perceive the external stimuli as pathogen invasion, and trigger resistance response using ROS as signal molecule. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Role of biphasic calcium phosphate ceramic-mediated secretion of signaling molecules by macrophages in migration and osteoblastic differentiation of MSCs.

    PubMed

    Wang, Jing; Liu, Dan; Guo, Bo; Yang, Xiao; Chen, Xuening; Zhu, Xiangdong; Fan, Yujiang; Zhang, Xingdong

    2017-03-15

    The inflammatory reaction initiates fracture healing and could play a role in the osteoinductive effect of calcium phosphate (CaP) ceramics, which has been widely confirmed; however, the underlying mechanism has not been fully elucidated. In this study, various signaling molecules from macrophages under the stimulation of osteoinductive biphasic calcium phosphate (BCP) ceramic and its degradation products were examined and evaluated for their influence on the migration and osteoblastic differentiation of mesenchymal stem cells (MSCs). The results of cellular experiments confirmed that the gene expression of most inflammatory factors (IL-1, IL-6 and MCP-1) and growth factors (VEGF, PDGF and EGF) by macrophages were up-regulated to varying degrees by BCP ceramic and its degradation products. Cell migration tests demonstrated that the conditioned media (CMs), which contained abundant signaling molecules secreted by macrophages cultured on BCP ceramic and its degradation products, promoted the migration of MSCs. qRT-PCR analysis indicated that CMs promoted the gene expression of osteogenic markers (ALP, COL-I, OSX, BSP and OPN) in MSCs. ALP activity and mineralization staining further confirmed that CMs promoted the osteoblastic differentiation of MSCs. The present study confirmed the correlation between the inflammatory reaction and osteoinductive capacity of BCP ceramic. The ceramic itself and its degradation products can induce macrophages to express and secrete various signaling molecules, which then recruit and promote the MSCs to differentiate into osteoblasts. Compared with BCP conditioned media, degradation particles played a more substantial role in this process. Thus, inflammation initiated by BCP ceramic and its degradation products could be necessary for osteoinduction by the ceramic. It is known that the inflammatory reaction initiates fracture healing. The aim of this study was to examine whether osteoinductive BCP ceramics could cause macrophages to

  4. A Strategy for Minimizing Background Signal in Autoinductive Signal Amplification Reactions for Point-of-Need Assays.

    PubMed

    Brooks, Adam D; Yeung, Kimy; Lewis, Gregory G; Phillips, Scott T

    2015-09-07

    Rapid point-of-need assays are used to detect abundant biomarkers. The development of in situ signal amplification reactions could extend these assays to screening and triaging of patients for trace levels of biomarkers, even in resource-limited settings. We, and others, have developed small molecule-based in situ signal amplification reactions that eventually may be useful in this context. Herein we describe a design strategy for minimizing background signal that may occur in the absence of the target analyte, thus moving this in situ signal amplification approach one step closer to practical applications. Specifically, we describe allylic ethers as privileged connectors for linking detection and propagating functionality in a small molecule signal amplification reagent. Allylic ethers minimize background reactions while still enabling controlled release of a propagating signal in order to continue the signal amplification reaction. This paper characterizes the ability of allylic ethers to provide an amplified response, and offers insight into additional design considerations that are needed before in situ small molecule-based signal amplification becomes a viable strategy for point-of-need diagnostics.

  5. A Strategy for Minimizing Background Signal in Autoinductive Signal Amplification Reactions for Point-of-Need Assays

    PubMed Central

    Brooks, Adam D.; Yeung, Kimy; Lewis, Gregory G.

    2015-01-01

    Rapid point-of-need assays are used to detect abundant biomarkers. The development of in situ signal amplification reactions could extend these assays to screening and triaging of patients for trace levels of biomarkers, even in resource-limited settings. We, and others, have developed small molecule-based in situ signal amplification reactions that eventually may be useful in this context. Herein we describe a design strategy for minimizing background signal that may occur in the absence of the target analyte, thus moving this in situ signal amplification approach one step closer to practical applications. Specifically, we describe allylic ethers as privileged connectors for linking detection and propagating functionality in a small molecule signal amplification reagent. Allylic ethers minimize background reactions while still enabling controlled release of a propagating signal in order to continue the signal amplification reaction. This paper characterizes the ability of allylic ethers to provide an amplified response, and offers insight into additional design considerations that are needed before in situ small molecule-based signal amplification becomes a viable strategy for point-of-need diagnostics. PMID:26604988

  6. Nonadiabatic Dynamics May Be Probed through Electronic Coherence in Time-Resolved Photoelectron Spectroscopy.

    PubMed

    Bennett, Kochise; Kowalewski, Markus; Mukamel, Shaul

    2016-02-09

    We present a hierarchy of Fermi golden rules (FGRs) that incorporate strongly coupled electronic/nuclear dynamics in time-resolved photoelectron spectroscopy (TRPES) signals at different levels of theory. Expansion in the joint electronic and nuclear eigenbasis yields the numerically most challenging exact FGR (eFGR). The quasistatic Fermi Golden Rule (qsFGR) neglects nuclear motion during the photoionization process but takes into account electronic coherences as well as populations initially present in the pumped matter as well as those generated internally by coupling between electronic surfaces. The standard semiclassical Fermi Golden Rule (scFGR) neglects the electronic coherences and the nuclear kinetic energy during the ionizing pulse altogether, yielding the classical Condon approximation. The coherence contributions depend on the phase-profile of the ionizing field, allowing coherent control of TRPES signals. The photoelectron spectrum from model systems is simulated using these three levels of theory. The eFGR and the qsFGR show temporal oscillations originating from the electronic or vibrational coherences generated as the nuclear wave packet traverses a conical intersection. These oscillations, which are missed by the scFGR, directly reveal the time-evolving splitting between electronic states of the neutral molecule in the curve-crossing regime.

  7. Analysis of two potential long-distance signaling molecules, LjCLE-RS1/2 and jasmonic acid, in a hypernodulating mutant too much love.

    PubMed

    Magori, Shimpei; Kawaguchi, Masayoshi

    2010-04-01

    Legume plants tightly control the number and development of root nodules. This is partly regulated by a long-distance signaling known as auto-regulation of nodulation (AON). AON signaling involves at least two potential long-distance signals: root-derived signal and shoot-derived signal. However, their molecular characteristics and the mode of action remain unclear. In our recent study, we isolated a novel Lotus japonicus hypernodulating mutant too much love (tml). Based on several grafting experiments, we concluded that its causative gene TML functions as a receptor of the shoot-derived signal. This finding prompted us to ask how the candidates of the long-distance signal molecules, LjCLE-RS1/2 and jasmonic acid (JA), are affected in tml mutants. Expression analysis revealed that rapid induction of LjCLE-RS1/2 upon rhizobial inoculation is still intact in tml, supporting that TML plays a role in reception of the shoot-derived signal but not in generation of the root-derived signal. Furthermore, physiological analysis showed that JA, a candidate of the shoot-derived signal, can suppress tml hypernodulation. Therefore, contrary to the previous report, JA might not be a component of AON signaling.

  8. Impact of exogenous lipase supplementation on growth, intestinal function, mucosal immune and physical barrier, and related signaling molecules mRNA expression of young grass carp (Ctenopharyngodon idella).

    PubMed

    Liu, Sen; Feng, Lin; Jiang, Wei-Dan; Liu, Yang; Jiang, Jun; Wu, Pei; Zeng, Yun-Yun; Xu, Shu-De; Kuang, Sheng-Yao; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Zhou, Xiao-Qiu

    2016-08-01

    This study investigated the effects of exogenous lipase supplementation on the growth performance, intestinal growth and function, immune response and physical barrier function, and related signaling molecules mRNA expression of young grass carp (Ctenopharyngodon idella). A total of 450 grass carp (255.02 ± 0.34 g) were fed five diets for 60 days. There were 5 dietary treatments that included a normal protein and lipid diet containing 30% crude protein (CP) with 5% ether extract (EE), and the low-protein and high-lipid diets (28% CP, 6% EE) supplemented with graded levels of exogenous lipase supplementation activity at 0, 1193, 2560 and 3730 U/kg diet. The results indicated that compared with a normal protein and lipid diet (30% CP, 5% EE), a low-protein and high-lipid diet (28% CP, 6% EE) (un-supplemented lipase) improved lysozyme activities and complement component 3 contents in the distal intestine (DI), interleukin 10 mRNA expression in the proximal intestine (PI), and glutathione S-transferases activity and glutathione content in the intestine of young grass carp. In addition, in low-protein and high-lipid diets, optimal exogenous lipase supplementation significantly increased acid phosphatase (ACP) activities and complement component 3 (C3) contents (P < 0.05), up-regulated the relative mRNA levels of antimicrobial peptides (liver expressed antimicrobial peptide 2 and hepcidin) and anti-inflammatory cytokines (interleukin 10 and transforming growth factor β1) and signaling molecules inhibitor protein-κBα (IκBα) and target of rapamycin (TOR) (P < 0.05), down-regulated the mRNA levels of pro-inflammatory cytokines (tumor necrosis factor α, interleukin 8, interferon γ2, and interleukin 1β), and signaling molecules (nuclear factor kappa B p65, IκB kinase β, IκB kinase γ) (P < 0.05) in the intestine of young grass carp. Moreover, optimal exogenous lipase supplementation significantly decreased reactive oxygen species (ROS), malondialdehyde

  9. Bardoxolone methyl prevents high-fat diet-induced alterations in prefrontal cortex signalling molecules involved in recognition memory.

    PubMed

    Camer, Danielle; Yu, Yinghua; Szabo, Alexander; Fernandez, Francesca; Dinh, Chi H L; Huang, Xu-Feng

    2015-06-03

    High fat (HF) diets are known to induce changes in synaptic plasticity in the forebrain leading to learning and memory impairments. Previous studies of oleanolic acid derivatives have found that these compounds can cross the blood-brain barrier to prevent neuronal cell death. We examined the hypothesis that the oleanolic acid derivative, bardoxolone methyl (BM) would prevent diet-induced cognitive deficits in mice fed a HF diet. C57BL/6J male mice were fed a lab chow (LC) (5% of energy as fat), a HF (40% of energy as fat), or a HF diet supplemented with 10mg/kg/day BM orally for 21weeks. Recognition memory was assessed by performing a novel object recognition test on the treated mice. Downstream brain-derived neurotrophic factor (BDNF) signalling molecules were examined in the prefrontal cortex (PFC) and hippocampus of mice via Western blotting and N-methyl-d-aspartate (NMDA) receptor binding. BM treatment prevented HF diet-induced impairment in recognition memory (p<0.001). In HF diet fed mice, BM administration attenuated alterations in the NMDA receptor binding density in the PFC (p<0.05), however, no changes were seen in the hippocampus (p>0.05). In the PFC and hippocampus of the HF diet fed mice, BM administration improved downstream BDNF signalling as indicated by increased protein levels of BDNF, phosphorylated tropomyosin related kinase B (pTrkB) and phosphorylated protein kinase B (pAkt), and increased phosphorylated AMP-activated protein kinase (pAMPK) (p<0.05). BM administration also prevented the HF diet-induced increase in the protein levels of inflammatory molecules, phosphorylated c-Jun N-terminal kinase (pJNK) in the PFC, and protein tyrosine phosphatase 1B (PTP1B) in both the PFC and hippocampus. In summary, these findings suggest that BM prevents HF diet-induced impairments in recognition memory by improving downstream BDNF signal transduction, increasing pAMPK, and reducing inflammation in the PFC and hippocampus. Copyright © 2015 Elsevier Inc

  10. Acyl-homoserine lactone-based quorum sensing and quorum quenching hold promise to determine the performance of biological wastewater treatments: An overview.

    PubMed

    Huang, Jinhui; Shi, Yahui; Zeng, Guangming; Gu, Yanling; Chen, Guiqiu; Shi, Lixiu; Hu, Yi; Tang, Bi; Zhou, Jianxin

    2016-08-01

    Quorum sensing (QS) is a communication process between cells, in which bacteria secrete and sense the specific chemicals, and regulate gene expression in response to population density. Quorum quenching (QQ) blocks QS system, and inhibits gene expression mediating bacterial behaviors. Given the extensive research of acyl-homoserine lactone (AHL) signals, existences and effects of AHL-based QS and QQ in biological wastewater treatments are being subject to high concern. This review summarizes AHL structure, synthesis mode, degradation mechanisms, analytical methods, environmental factors, AHL-based QS and QQ mechanisms. The existences and roles of AHL-based QS and QQ in biomembrane processes, activated sludge processes and membrane bioreactors are summarized and discussed, and corresponding exogenous regulation strategy by selective enhancement of AHL-based QS or QQ coexisting in biological wastewater treatments is suggested. Such strategies including the addition of AHL signals, AHL-producing bacteria as well as quorum quenching enzyme or bacteria can effectively improve wastewater treatment performance without killing or limiting bacterial survival and growth. This review will present the theoretical and practical cognition for bacterial AHL-based QS and QQ, suggest the feasibility of exogenous regulation strategies in biological wastewater treatments, and provide useful information to scientists and engineers who work in this field. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. TGF-β signaling controls FSHR signaling-reduced ovarian granulosa cell apoptosis through the SMAD4/miR-143 axis.

    PubMed

    Du, Xing; Zhang, Lifan; Li, Xinyu; Pan, Zengxiang; Liu, Honglin; Li, Qifa

    2016-11-24

    Follicle-stimulating hormone receptor (FSHR) and its intracellular signaling control mammalian follicular development and female infertility. Our previous study showed that FSHR is downregulated during follicular atresia of porcine ovaries. However, its role and regulation in follicular atresia remain unclear. Here, we showed that FSHR knockdown induced porcine granulosa cell (pGC) apoptosis and follicular atresia, and attenuated the levels of intracellular signaling molecules such as PKA, AKT and p-AKT. FSHR was identified as a target of miR-143, a microRNA that was upregulated during porcine follicular atresia. miR-143 enhanced pGC apoptosis by targeting FSHR, and reduced the levels of intracellular signaling molecules. SMAD4, the final molecule in transforming growth factor (TGF)-β signaling, bound to the promoter and induced significant downregulation of miR-143 in vitro and in vivo. Activated TGF-β signaling rescued miR-143-reduced FSHR and intracellular signaling molecules, and miR-143-induced pGC apoptosis. Overall, our findings offer evidence to explain how TGF-β signaling influences and FSHR signaling for regulation of pGC apoptosis and follicular atresia by a specific microRNA, miR-143.

  12. TGF-β signaling controls FSHR signaling-reduced ovarian granulosa cell apoptosis through the SMAD4/miR-143 axis

    PubMed Central

    Du, Xing; Zhang, Lifan; Li, Xinyu; Pan, Zengxiang; Liu, Honglin; Li, Qifa

    2016-01-01

    Follicle-stimulating hormone receptor (FSHR) and its intracellular signaling control mammalian follicular development and female infertility. Our previous study showed that FSHR is downregulated during follicular atresia of porcine ovaries. However, its role and regulation in follicular atresia remain unclear. Here, we showed that FSHR knockdown induced porcine granulosa cell (pGC) apoptosis and follicular atresia, and attenuated the levels of intracellular signaling molecules such as PKA, AKT and p-AKT. FSHR was identified as a target of miR-143, a microRNA that was upregulated during porcine follicular atresia. miR-143 enhanced pGC apoptosis by targeting FSHR, and reduced the levels of intracellular signaling molecules. SMAD4, the final molecule in transforming growth factor (TGF)-β signaling, bound to the promoter and induced significant downregulation of miR-143 in vitro and in vivo. Activated TGF-β signaling rescued miR-143-reduced FSHR and intracellular signaling molecules, and miR-143-induced pGC apoptosis. Overall, our findings offer evidence to explain how TGF-β signaling influences and FSHR signaling for regulation of pGC apoptosis and follicular atresia by a specific microRNA, miR-143. PMID:27882941

  13. Exogenous adenosine 5'-phosphoramidate behaves as a signal molecule in plants; it augments metabolism of phenylpropanoids and salicylic acid in Arabidopsis thaliana seedlings.

    PubMed

    Pietrowska-Borek, Małgorzata; Nuc, Katarzyna; Guranowski, Andrzej

    2015-09-01

    Cells contain various congeners of the canonical nucleotides. Some of these accumulate in cells under stress and may function as signal molecules. Their cellular levels are enzymatically controlled. Previously, we demonstrated a signaling function for diadenosine polyphosphates and cyclic nucleotides in Arabidopsis thaliana and grape, Vitis vinifera. These compounds increased the expression of genes for and the specific activity of enzymes of phenylpropanoid pathways resulting in the accumulation of certain products of these pathways. Here, we show that adenosine 5'-phosphoramidate, whose level can be controlled by HIT-family proteins, induced similar effects. This natural nucleotide, when added to A. thaliana seedlings, activated the genes for phenylalanine:ammonia lyase, 4-coumarate:coenzyme A ligase, cinnamate-4-hydroxylase, chalcone synthase, cinnamoyl-coenzyme A:NADP oxidoreductase and isochorismate synthase, which encode proteins catalyzing key reactions of phenylpropanoid pathways, and caused accumulation of lignins, anthocyanins and salicylic acid. Adenosine 5'-phosphofluoridate, a synthetic congener of adenosine 5'-phosphoramidate, behaved similarly. The results allow us to postulate that adenosine 5'-phosphoramidate should be considered as a novel signaling molecule. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  14. Identification of Ras-degrading small molecules that inhibit the transformation of colorectal cancer cells independent of β-catenin signaling.

    PubMed

    Shin, Wookjin; Lee, Sang-Kyu; Hwang, Jeong-Ha; Park, Jong-Chan; Cho, Yong-Hee; Ro, Eun Ji; Song, Yeonhwa; Seo, Haeng Ran; Choi, Kang-Yell

    2018-06-06

    Although the development of drugs that control Ras is an emerging topic in cancer therapy, no clinically applicable drug is currently available. We have previously utilized knowledge of the Wnt/β-catenin signaling-dependent mechanism of Ras protein stability regulation to identify small molecules that inhibit the proliferation and transformation of various colorectal cancer (CRC) cells via degradation of both β-catenin and Ras. Due to the absence of Ras degradation in cells expressing a nondegradable mutant form of β-catenin and the need to determine an alternative mechanism of Ras degradation, we designed a cell-based system to screen compounds that degrade Ras independent of the Wnt/β-catenin signaling pathway. A cell-based high-content screening (HCS) system that monitors the levels of EGFP-K-Ras G12V was established using HCT-116 cells harboring a nondegradable mutant CTNNB1 (ΔS45). Through HCS of a chemical library composed of 10,000 compounds and subsequent characterization of hits, we identified several compounds that degrade Ras without affecting the β-catenin levels. KY7749, one of the most effective compounds, inhibited the proliferation and transformation of CRC cells, especially KRAS-mutant cells that are resistant to the EGFR monoclonal antibody cetuximab. Small molecules that degrade Ras independent of β-catenin may able to be used in treatments for cancers caused by aberrant EGFR and Ras.

  15. Differential Equations Models to Study Quorum Sensing.

    PubMed

    Pérez-Velázquez, Judith; Hense, Burkhard A

    2018-01-01

    Mathematical models to study quorum sensing (QS) have become an important tool to explore all aspects of this type of bacterial communication. A wide spectrum of mathematical tools and methods such as dynamical systems, stochastics, and spatial models can be employed. In this chapter, we focus on giving an overview of models consisting of differential equations (DE), which can be used to describe changing quantities, for example, the dynamics of one or more signaling molecule in time and space, often in conjunction with bacterial growth dynamics. The chapter is divided into two sections: ordinary differential equations (ODE) and partial differential equations (PDE) models of QS. Rates of change are represented mathematically by derivatives, i.e., in terms of DE. ODE models allow describing changes in one independent variable, for example, time. PDE models can be used to follow changes in more than one independent variable, for example, time and space. Both types of models often consist of systems (i.e., more than one equation) of equations, such as equations for bacterial growth and autoinducer concentration dynamics. Almost from the onset, mathematical modeling of QS using differential equations has been an interdisciplinary endeavor and many of the works we revised here will be placed into their biological context.

  16. Antioxidant role of glutathione S-transferases: 4-Hydroxynonenal, a key molecule in stress-mediated signaling.

    PubMed

    Singhal, Sharad S; Singh, Sharda P; Singhal, Preeti; Horne, David; Singhal, Jyotsana; Awasthi, Sanjay

    2015-12-15

    4-Hydroxy-2-trans-nonenal (4HNE), one of the major end products of lipid peroxidation (LPO), has been shown to induce apoptosis in a variety of cell lines. It appears to modulate signaling processes in more than one way because it has been suggested to have a role in signaling for differentiation and proliferation. It has been known that glutathione S-transferases (GSTs) can reduce lipid hydroperoxides through their Se-independent glutathione-peroxidase activity and that these enzymes can also detoxify LPO end-products such as 4HNE. Available evidence from earlier studies together with results of recent studies in our laboratories strongly suggests that LPO products, particularly hydroperoxides and 4HNE, are involved in the mechanisms of stress-mediated signaling and that it can be modulated by the alpha-class GSTs through the regulation of the intracellular concentrations of 4HNE. We demonstrate that 4HNE induced apoptosis in various cell lines is accompanied with c-Jun-N-terminal kinase (JNK) and caspase-3 activation. Cells exposed to mild, transient heat or oxidative stress acquire the capacity to exclude intracellular 4HNE at a faster rate by inducing GSTA4-4 which conjugates 4HNE to glutathione (GSH), and RLIP76 which mediates the ATP-dependent transport of the GSH-conjugate of 4HNE (GS-HNE). The balance between formation and exclusion promotes different cellular processes - higher concentrations of 4HNE promote apoptosis; whereas, lower concentrations promote proliferation. In this article, we provide a brief summary of the cellular effects of 4HNE, followed by a review of its GST-catalyzed detoxification, with an emphasis on the structural attributes that play an important role in the interactions with alpha-class GSTA4-4. Taken together, 4HNE is a key signaling molecule and that GSTs being determinants of its intracellular concentrations, can regulate stress-mediated signaling, are reviewed in this article. Copyright © 2015 Elsevier Inc. All rights

  17. MomL, a Novel Marine-Derived N-Acyl Homoserine Lactonase from Muricauda olearia

    PubMed Central

    Tang, Kaihao; Su, Ying; Brackman, Gilles; Cui, Fangyuan; Zhang, Yunhui; Shi, Xiaochong; Coenye, Tom

    2014-01-01

    Gram-negative bacteria use N-acyl homoserine lactones (AHLs) as quorum sensing (QS) signaling molecules for interspecies communication, and AHL-dependent QS is related with virulence factor production in many bacterial pathogens. Quorum quenching, the enzymatic degradation of the signaling molecule, would attenuate virulence rather than kill the pathogens, and thereby reduce the potential for evolution of drug resistance. In a previous study, we showed that Muricauda olearia Th120, belonging to the class Flavobacteriia, has strong AHL degradative activity. In this study, an AHL lactonase (designated MomL), which could degrade both short- and long-chain AHLs with or without a substitution of oxo-group at the C-3 position, was identified from Th120. Liquid chromatography-mass spectrometry analysis demonstrated that MomL functions as an AHL lactonase catalyzing AHL degradation through lactone hydrolysis. MomL is an AHL lactonase belonging to the metallo-β-lactamase superfamily that harbors an N-terminal signal peptide. The overall catalytic efficiency of MomL for C6-HSL is ∼2.9 × 105 s−1 M−1. Metal analysis and site-directed mutagenesis showed that, compared to AiiA, MomL has a different metal-binding capability and requires the histidine and aspartic acid residues for activity, while it shares the “HXHXDH” motif with other AHL lactonases belonging to the metallo-β-lactamase superfamily. This suggests that MomL is a representative of a novel type of secretory AHL lactonase. Furthermore, MomL significantly attenuated the virulence of Pseudomonas aeruginosa in a Caenorhabditis elegans infection model, which suggests that MomL has the potential to be used as a therapeutic agent. PMID:25398866

  18. Gaseous signalling molecule SO2 via Hippo-MST pathway to improve myocardial fibrosis of diabetic rats

    PubMed Central

    Liu, Maojun; Liu, Shengquan; Tan, Wenting; Tang, Fen; Long, Junrong; Li, Zining; Liang, Biao; Chu, Chun; Yang, Jun

    2017-01-01

    Recent studies have indicated the existence of an endogenous sulfur dioxide (SO2)-generating system in the cardiovascular system. The present study aimed to discuss the function and regulatory mechanism of gaseous signal molecule SO2 in inhibiting apoptosis and endoplasmic reticulum stress (ERS) via the Hippo-MST signaling pathway to improve myocardial fibrosis of diabetic rats. A total of 40 male Sprague-Dawley rats were randomly divided into four groups (10 rats per group): Normal control group (control group), diabetic rats group [streptozotocin (STZ) group], SO2 intervention group (STZ+SO2 group) and diabetes mellitus rats treated with L-Aspartic acid β-hydroxamate (HDX) group (HDX group). Diabetic rats models were established by intra-peritoneal injection of STZ (40 mg/kg) Following model establishment, intra-peritoneal injection of Na2SO3/NaHSO3 solution (0.54 mmol/kg) was administered in the STZ+SO2 group, and HDX solution (25 mg/kg/week) was administered in the HDX group. A total of 4 weeks later, echocardiography was performed to evaluate rats' cardiac function; Masson staining, terminal deoxynucleotidyl transferase dUTP nick end labeling staining and transmission electron microscopy examinations were performed to observe myocardial morphological changes. ELISA was employed to determine the SO2 content. Western blot analysis was performed to detect the expression of proteins associated with apoptosis, ERS and the Hippo-MST signalling pathway. Compared with the control group, the STZ group and HDX group had a disordered arrangement of myocardial cells with apparent myocardial fibrosis, and echocardiography indicated that the cardiac function was lowered, there was an obvious increase of apoptosis in myocardial tissue, the expression levels of apoptosis-associated protein B-cell lymphoma associated protein X, caspase-3 and caspase-9 were upregulated, and Bcl-2 expression was downregulated. The expression of ERS and Hippo-MST pathway-associated proteins

  19. Gaseous signalling molecule SO2 via Hippo‑MST pathway to improve myocardial fibrosis of diabetic rats.

    PubMed

    Liu, Maojun; Liu, Shengquan; Tan, Wenting; Tang, Fen; Long, Junrong; Li, Zining; Liang, Biao; Chu, Chun; Yang, Jun

    2017-12-01

    Recent studies have indicated the existence of an endogenous sulfur dioxide (SO2)‑generating system in the cardiovascular system. The present study aimed to discuss the function and regulatory mechanism of gaseous signal molecule SO2 in inhibiting apoptosis and endoplasmic reticulum stress (ERS) via the Hippo‑MST signaling pathway to improve myocardial fibrosis of diabetic rats. A total of 40 male Sprague‑Dawley rats were randomly divided into four groups (10 rats per group): Normal control group (control group), diabetic rats group [streptozotocin (STZ) group], SO2 intervention group (STZ+SO2 group) and diabetes mellitus rats treated with L‑Aspartic acid β‑hydroxamate (HDX) group (HDX group). Diabetic rats models were established by intra‑peritoneal injection of STZ (40 mg/kg) Following model establishment, intra‑peritoneal injection of Na2SO3/NaHSO3 solution (0.54 mmol/kg) was administered in the STZ+SO2 group, and HDX solution (25 mg/kg/week) was administered in the HDX group. A total of 4 weeks later, echocardiography was performed to evaluate rats' cardiac function; Masson staining, terminal deoxynucleotidyl transferase dUTP nick end labeling staining and transmission electron microscopy examinations were performed to observe myocardial morphological changes. ELISA was employed to determine the SO2 content. Western blot analysis was performed to detect the expression of proteins associated with apoptosis, ERS and the Hippo‑MST signalling pathway. Compared with the control group, the STZ group and HDX group had a disordered arrangement of myocardial cells with apparent myocardial fibrosis, and echocardiography indicated that the cardiac function was lowered, there was an obvious increase of apoptosis in myocardial tissue, the expression levels of apoptosis‑associated protein B‑cell lymphoma associated protein X, caspase‑3 and caspase‑9 were upregulated, and Bcl‑2 expression was downregulated. The expression of ERS and Hippo

  20. Identification of potential genetic components involved in the deviant quorum-sensing signaling pathways of Burkholderia glumae through a functional genomics approach

    PubMed Central

    Chen, Ruoxi; Barphagha, Inderjit K.; Ham, Jong Hyun

    2015-01-01

    Burkholderia glumae is the chief causal agent for bacterial panicle blight of rice. The acyl-homoserine lactone (AHL)-mediated quorum-sensing (QS) system dependent on a pair of luxI and luxR homologs, tofI and tofR, is the primary cell-to-cell signaling mechanism determining the virulence of this bacterium. Production of toxoflavin, a major virulence factor of B. glumae, is known to be dependent on the tofI/tofR QS system. In our previous study, however, it was observed that B. glumae mutants defective in tofI or tofR produced toxoflavin if they grew on the surface of a solid medium, suggesting that alternative signaling pathways independent of tofI or tofR are activated in that growth condition for the production of toxoflavin. In this study, potential genetic components involved in the tofI- and tofR-independent signaling pathways for toxoflavin production were sought through screening random mini-Tn5 mutants of B. glumae to better understand the intercellular signaling pathways of this pathogen. Fifteen and three genes were initially identified as the potential genetic elements of the tofI- and tofR-independent pathways, respectively. Especially, the ORF (bglu_2g06320) divergently transcribed from toxJ, which encodes an orphan LuxR protein and controls toxoflavin biosynthesis, was newly identified in this study as a gene required for the tofR-independent toxoflavin production and named as toxK. Among those genes, flhD, dgcB, and wzyB were further studied to validate their functions in the tofI-independent toxoflavin production, and similar studies were also conducted with qsmR and toxK for their functions in the tofR-independent toxoflavin production. This work provides a foundation for future comprehensive studies of the intercellular signaling systems of B. glumae and other related pathogenic bacteria. PMID:25806356

  1. Modulation of opiate-related signaling molecules in morphine-dependent conditioned behavior: conditioned place preference to morphine induces CREB phosphorylation.

    PubMed

    Morón, José A; Gullapalli, Srinivas; Taylor, Chirisse; Gupta, Achla; Gomes, Ivone; Devi, Lakshmi A

    2010-03-01

    Opiate addiction is a chronic, relapsing behavioral disorder where learned associations that develop between the abused opiate and the environment in which it is consumed are brought about through Pavlovian (classical) conditioning processes. However, the signaling mechanisms/pathways regulating the mechanisms that underlie the responses to opiate-associated cues or the development of sensitization as a consequence of repeated context-independent administration of opiates are unknown. In this study we examined the phosphorylation levels of various classic signaling molecules in brain regions implicated in addictive behaviors after acute and repeated morphine administration. An unbiased place conditioning protocol was used to examine changes in phosphorylation that are associated with (1) the expression of the rewarding effects of morphine and (2) the sensitization that develops to this effect. We also examined the effects of a delta-receptor antagonist on morphine-induced conditioned behavior and on the phosphorylation of classic signaling molecules in view of data showing that blockade of delta-opioid receptor (deltaOR) prevents the development of sensitization to the rewarding effects of morphine. We find that CREB phosphorylation is specifically induced upon the expression of a sensitized response to morphine-induced conditioned behavior in brain areas related to memory consolidation, such as the hippocampus and cortex. A similar effect is also observed, albeit to a lesser extent, in the case of the GluR1 subunit of AMPA glutamate receptor. These increases in the phosphorylation levels of CREB and pGluR1 are significantly blocked by pretreatment with a deltaOR antagonist. These results indicate a critical role for phospho-CREB, AMPA, and deltaOR activities in mediating the expression of a sensitized response to morphine-dependent conditioned behavior.

  2. The IRS-1 signaling system.

    PubMed

    White, M F

    1994-02-01

    IRS-1 is a principal substrate of the insulin receptor tyrosine kinase. It undergoes multi-site tyrosine phosphorylation and mediates the insulin signal by associating with various signaling molecules containing Src homology 2 domains. Interleukin-4 also stimulates IRS-1 phosphorylation, and it is suspected that a few more growth factors or cytokines will be added to form a select group of receptors that utilize the IRS-1 signaling pathway. More IRS-1-like adapter molecules, such as 4PS (IRS-2), may remain to be found.

  3. PvdQ Quorum Quenching Acylase Attenuates Pseudomonas aeruginosa Virulence in a Mouse Model of Pulmonary Infection

    PubMed Central

    Utari, Putri D.; Setroikromo, Rita; Melgert, Barbro N.; Quax, Wim J.

    2018-01-01

    Pseudomonas aeruginosa is the predominant pathogen in pulmonary infections associated with cystic fibrosis. Quorum sensing (QS) systems regulate the production of virulence factors and play an important role in the establishment of successful P. aeruginosa infections. Inhibition of the QS system (termed quorum quenching) renders the bacteria avirulent thus serving as an alternative approach in the development of novel antibiotics. Quorum quenching in Gram negative bacteria can be achieved by preventing the accumulation of N-acyl homoserine lactone (AHL) signaling molecule via enzymatic degradation. Previous work by us has shown that PvdQ acylase hydrolyzes AHL signaling molecules irreversibly, thereby inhibiting QS in P. aeruginosa in vitro and in a Caenorhabditis elegans model of P. aeruginosa infection. The aim of the present study is to assess the therapeutic efficacy of intranasally instilled PvdQ acylase in a mouse model of pulmonary P. aeruginosa infection. First, we evaluated the deposition pattern of intranasally administered fluorochrome-tagged PvdQ (PvdQ-VT) in mice at different stages of pulmonary infection by in vivo imaging studies. Following intranasal instillation, PvdQ-VT could be traced in all lung lobes with 42 ± 7.5% of the delivered dose being deposited at 0 h post-bacterial-infection, and 34 ± 5.2% at 72 h post bacterial-infection. We then treated mice with PvdQ during lethal P. aeruginosa pulmonary infection and that resulted in a 5-fold reduction of lung bacterial load and a prolonged survival of the infected animals with the median survival time of 57 hin comparison to 42 h for the PBS-treated group. In a sublethal P. aeruginosa pulmonary infection, PvdQ treatment resulted in less lung inflammation as well as decrease of CXCL2 and TNF-α levels at 24 h post-bacterial-infection by 15 and 20%, respectively. In conclusion, our study has shown therapeutic efficacy of PvdQ acylase as a quorum quenching agent during P. aeruginosa infection. PMID

  4. Defining the Mode of Action of Tetramic Acid Antibacterials Derived from Pseudomonas aeruginosa Quorum Sensing Signals

    PubMed Central

    Lowery, Colin A.; Park, Junguk; Gloeckner, Christian; Meijler, Michael M.; Mueller, Ryan S.; Boshoff, Helena I.; Ulrich, Ricky L.; Barry, Clifton E.; Bartlett, Douglas H.; Kravchenko, Vladimir V.; Kaufmann, Gunnar F.; Janda, Kim D.

    2009-01-01

    In Nature, bacteria rarely exist as single, isolated entities, but rather as communities comprised of many other species including higher host organisms. To survive in these competitive environments, microorganisms have developed elaborate tactics such as the formation of biofilms and the production of antimicrobial toxins. Recently, it was discovered that the Gram-negative bacterium Pseudomonas aeruginosa, an opportunistic human pathogen, produces an antibiotic, 3-(1-hydroxydecylidene)-5-(2-hydroxyethyl)pyrrolidine-2,4-dione (C12-TA), derived from one of its quorum sensing molecules. Here, we present a comprehensive study of the expanded spectrum of C12-TA antibacterial activity against microbial competitors encountered by P. aeruginosa in Nature as well as significant human pathogens. The mechanism of action of C12-TA was also elucidated and C12-TA was found to dissipate both the membrane potential and pH gradient of Gram-positive bacteria, correlating well with cell death. Notably, in stark contrast to its parent molecule 3-oxo-dodecanoyl homoserine lactone (3-oxo-C12-HSL), neither activation of cellular stress pathways nor cytotoxicity was observed in human cells treated with C12-TA. Our results suggest that the QS machinery of P. aeruginosa has evolved for a dual-function, both to signal others of the same species, and also to defend against both host immunity and competing bacteria. Because of the broad-spectrum antibacterial activity, established mode of action, lack of rapid resistance development, and tolerance by human cells, the C12-TA scaffold may also serve as a new lead compound for the development of antimicrobial therapeutics. PMID:19807189

  5. Melatonin as a signal molecule triggering defense responses against pathogen attack in Arabidopsis and tobacco.

    PubMed

    Lee, Hyoung Yool; Byeon, Yeong; Back, Kyoungwhan

    2014-10-01

    Melatonin plays pleiotropic roles in both animals and plants. The possible role of melatonin in plant innate immune responses was recently discovered. As an initial study, we employed Arabidopsis to determine whether melatonin is involved in defense against the virulent bacterial pathogen Pseudomonas syringae DC3000. The application of a 10 μM concentration of melatonin on Arabidopsis and tobacco leaves induced various pathogenesis-related (PR) genes, as well as a series of defense genes activated by salicylic acid (SA) and ethylene (ET), two key factors involved in plant defense response, compared to mock-treated leaves. The induction of these defense-related genes in melatonin-treated Arabidopsis matched an increase in resistance against the bacterium by suppressing its multiplication about ten-fold relative to the mock-treated Arabidopsis. Like melatonin, N-acetylserotonin also plays a role in inducing a series of defense genes, although serotonin does not. Furthermore, melatonin-induced PR genes were almost completely or partially suppressed in the npr1, ein2, and mpk6 Arabidopsis mutants, indicative of SA and ET dependency in melatonin-induced plant defense signaling. This suggests that melatonin may be a novel defense signaling molecule in plant-pathogen interactions. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Small molecules targeting heterotrimeric G proteins.

    PubMed

    Ayoub, Mohammed Akli

    2018-05-05

    G protein-coupled receptors (GPCRs) represent the largest family of cell surface receptors regulating many human and animal physiological functions. Their implication in human pathophysiology is obvious with almost 30-40% medical drugs commercialized today directly targeting GPCRs as molecular entities. However, upon ligand binding GPCRs signal inside the cell through many key signaling, adaptor and regulatory proteins, including various classes of heterotrimeric G proteins. Therefore, G proteins are considered interesting targets for the development of pharmacological tools that are able to modulate their interaction with the receptors, as well as their activation/deactivation processes. In this review, old attempts and recent advances in the development of small molecules that directly target G proteins will be described with an emphasis on their utilization as pharmacological tools to dissect the mechanisms of activation of GPCR-G protein complexes. These molecules constitute a further asset for research in the "hot" areas of GPCR biology, areas such as multiple G protein coupling/signaling, GPCR-G protein preassembly, and GPCR functional selectivity or bias. Moreover, this review gives a particular focus on studies in vitro and in vivo supporting the potential applications of such small molecules in various GPCR/G protein-related diseases. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Structural and Mechanistic Roles of Novel Chemical Ligands on the SdiA Quorum-Sensing Transcription Regulator

    DOE PAGES

    Nguyen, Y.; Nguyen, Nam X.; Rogers, Jamie L.; ...

    2015-05-19

    Bacteria engage in chemical signaling, termed quorum sensing (QS), to mediate intercellular communication, mimicking multicellular organisms. The LuxR family of QS transcription factors regulates gene expression, coordinating population behavior by sensing endogenous acyl homoserine lactones (AHLs). However, some bacteria (such as Escherichia coli) do not produce AHLs. These LuxR orphans sense exogenous AHLs but also regulate transcription in the absence of AHLs. Importantly, this AHL-independent regulatory mechanism is still largely unknown. Here we present several structures of one such orphan LuxR-type protein, SdiA, from enterohemorrhagic E. coli (EHEC), in the presence and absence of AHL. SdiA is actually not inmore » an apo state without AHL but is regulated by a previously unknown endogenous ligand, 1-octanoyl-rac-glycerol (OCL), which is ubiquitously found throughout the tree of life and serves as an energy source, signaling molecule, and substrate for membrane biogenesis. While exogenous AHL renders to SdiA higher stability and DNA binding affinity, OCL may function as a chemical chaperone placeholder that stabilizes SdiA, allowing for basal activity. Structural comparison between SdiA-AHL and SdiA-OCL complexes provides crucial mechanistic insights into the ligand regulation of AHL-dependent and -independent function of LuxR-type proteins. Importantly, in addition to its contribution to basic science, this work has implications for public health, inasmuch as the SdiA signaling system aids the deadly human pathogen EHEC to adapt to a commensal lifestyle in the gastrointestinal (GI) tract of cattle, its main reservoir. These studies open exciting and novel avenues to control shedding of this human pathogen in the environment. IMPORTANCE Quorum sensing refers to bacterial chemical signaling. The QS acyl homoserine lactone (AHL) signals are recognized by LuxR-type receptors that regulate gene transcription. However, some bacteria have orphan Lux

  8. Microgravity and Signaling Molecules in Rat Osteoblasts: Downstream of Receptor Tyrosine Kinase, G-Protein-Coupled Receptor, and Small GTP-Binding Proteins

    NASA Technical Reports Server (NTRS)

    Kumel, Yasuhiro; Shimokawa, Hitoyata; Morita, Sadao; Katano, Hisako; Akiyama, Hideo; Hirano, Masahiko; Ohya, Keiichi; Sams, Clarence F.; Whitson, Peggy A.

    2005-01-01

    Rat osteoblasts were cultured for 4 and 5 days aboard Space Shuttle and solubilized on board. The mRNA levels of the post-receptor signaling molecules were analyzed by quantitative RT-PCR. The G-protein alpha subunit G(alpha)q mRNA levels were elevated 3-fold by microgravity. G(alpha)q stimulates PLC(beta), and then PKC. PKC(delta) and PKC(theta) mRNA levels were increased 2- to 5-fold by microgravity The mRNA levels of SOS and Ras GRF were increased 4 to 5-fold by microgravity, while Ras GAP was not altered. Spaceflight-induced bone loss might be attributed to microgravity modulation of the signaling pathway in osteoblasts.

  9. Identification of small molecule compounds that inhibit the HIF-1 signaling pathway

    PubMed Central

    2009-01-01

    Background Hypoxia-inducible factor-1 (HIF-1) is the major hypoxia-regulated transcription factor that regulates cellular responses to low oxygen environments. HIF-1 is composed of two subunits: hypoxia-inducible HIF-1α and constitutively-expressed HIF-1β. During hypoxic conditions, HIF-1α heterodimerizes with HIF-1β and translocates to the nucleus where the HIF-1 complex binds to the hypoxia-response element (HRE) and activates expression of target genes implicated in cell growth and survival. HIF-1α protein expression is elevated in many solid tumors, including those of the cervix and brain, where cells that are the greatest distance from blood vessels, and therefore the most hypoxic, express the highest levels of HIF-1α. Therapeutic blockade of the HIF-1 signaling pathway in cancer cells therefore provides an attractive strategy for development of anticancer drugs. To identify small molecule inhibitors of the HIF-1 pathway, we have developed a cell-based reporter gene assay and screened a large compound library by using a quantitative high-throughput screening (qHTS) approach. Results The assay is based upon a β-lactamase reporter under the control of a HRE. We have screened approximate 73,000 compounds by qHTS, with each compound tested over a range of seven to fifteen concentrations. After qHTS we have rapidly identified three novel structural series of HIF-1 pathway Inhibitors. Selected compounds in these series were also confirmed as inhibitors in a HRE β-lactamase reporter gene assay induced by low oxygen and in a VEGF secretion assay. Three of the four selected compounds tested showed significant inhibition of hypoxia-induced HIF-1α accumulation by western blot analysis. Conclusion The use of β-lactamase reporter gene assays, in combination with qHTS, enabled the rapid identification and prioritization of inhibitors specific to the hypoxia induced signaling pathway. PMID:20003191

  10. Development and Psychometric Validation of the EDE-QS, a 12 Item Short Form of the Eating Disorder Examination Questionnaire (EDE-Q)

    PubMed Central

    Gideon, Nicole; Hawkes, Nick; Mond, Jonathan; Saunders, Rob; Tchanturia, Kate; Serpell, Lucy

    2016-01-01

    Objective The aim of this study was to develop and validate a short form of the Eating Disorder Examination Questionnaire (EDE-Q) for routine, including session by session, outcome assessment. Method The current, 28-item version (6.0) of the EDE-Q was completed by 489 individuals aged 18–72 with various eating disorders recruited from three UK specialist eating disorder services. Rasch analysis was carried out on factors identified by means of principal component analysis, which in combination with expert ratings informed the development of an EDE-Q short form. The shortened questionnaire’s reliability, validity and sensitivity was assessed based on online data collected from students of a UK university and volunteers with a history of eating disorders recruited from a national eating disorders charity aged 18–74 (N = 559). Results A 12-item short form, the Eating Disorder Examination Questionnaire Short (EDE-QS) was derived. The new measure showed high internal consistency (Cronbach’s α = .913) and temporal stability (ICC = .93; p < .001). It was highly correlated with the original EDE-Q (r = .91 for people without ED; r = .82 for people with ED) and other measures of eating disorder and comorbid psychopathology. It was sufficiently sensitive to distinguish between people with and without eating disorders. Discussion The EDE-QS is a brief, reliable and valid measure of eating disorder symptom severity that performs similarly to the EDE-Q and that lends itself for the use of sessional outcome monitoring in treatment and research. PMID:27138364

  11. ω-Hydroxyemodin limits staphylococcus aureus quorum sensing-mediated pathogenesis and inflammation.

    PubMed

    Daly, Seth M; Elmore, Bradley O; Kavanaugh, Jeffrey S; Triplett, Kathleen D; Figueroa, Mario; Raja, Huzefa A; El-Elimat, Tamam; Crosby, Heidi A; Femling, Jon K; Cech, Nadja B; Horswill, Alexander R; Oberlies, Nicholas H; Hall, Pamela R

    2015-04-01

    Antibiotic-resistant pathogens are a global health threat. Small molecules that inhibit bacterial virulence have been suggested as alternatives or adjuncts to conventional antibiotics, as they may limit pathogenesis and increase bacterial susceptibility to host killing. Staphylococcus aureus is a major cause of invasive skin and soft tissue infections (SSTIs) in both the hospital and community settings, and it is also becoming increasingly antibiotic resistant. Quorum sensing (QS) mediated by the accessory gene regulator (agr) controls virulence factor production essential for causing SSTIs. We recently identified ω-hydroxyemodin (OHM), a polyhydroxyanthraquinone isolated from solid-phase cultures of Penicillium restrictum, as a suppressor of QS and a compound sought for the further characterization of the mechanism of action. At concentrations that are nontoxic to eukaryotic cells and subinhibitory to bacterial growth, OHM prevented agr signaling by all four S. aureus agr alleles. OHM inhibited QS by direct binding to AgrA, the response regulator encoded by the agr operon, preventing the interaction of AgrA with the agr P2 promoter. Importantly, OHM was efficacious in a mouse model of S. aureus SSTI. Decreased dermonecrosis with OHM treatment was associated with enhanced bacterial clearance and reductions in inflammatory cytokine transcription and expression at the site of infection. Furthermore, OHM treatment enhanced the immune cell killing of S. aureus in vitro in an agr-dependent manner. These data suggest that bacterial disarmament through the suppression of S. aureus QS may bolster the host innate immune response and limit inflammation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. Visual Map Development: Bidirectional Signaling, Bifunctional Guidance Molecules, and Competition

    PubMed Central

    Feldheim, David A.; O’Leary, Dennis D. M.

    2010-01-01

    Topographic maps are a two-dimensional representation of one neural structure within another and serve as the main strategy to organize sensory information. The retina’s projection via axons of retinal ganglion cells to midbrain visual centers, the optic tectum/superior colliculus, is the leading model to elucidate mechanisms of topographic map formation. Each axis of the retina is mapped independently using different mechanisms and sets of axon guidance molecules expressed in gradients to achieve the goal of representing a point in the retina onto a point within the target. An axon’s termination along the temporal-nasal mapping axis is determined by opposing gradients of EphAs and ephrin-As that act through their forward and reverse signaling, respectively, within the projecting axons, each of which inhibits interstitial branching, cooperating with a branch-promoting activity, to generate topographic specific branching along the shaft of the parent axons that overshoot their correct termination zone along the anterior-posterior axis of the target. The dorsal-ventral termination position is then determined using a gradient of ephrin-B that can act as a repellent or attractant depending on the ephrin-B concentration relative to EphB levels on the interstitial branches to guide them along the medial-lateral axis of the target to their correct termination zone, where they arborize. In both cases, axon-axon competition results in axon mapping based on relative rather than absolute levels of repellent or attractant activity. The map is subsequently refined through large-scale pruning driven in large part by patterned retinal activity. PMID:20880989

  13. Effect of the synthetic cannabinoid HU-210 on quorum sensing and on the production of quorum sensing-mediated virulence factors by Vibrio harveyi.

    PubMed

    Soni, Divya; Smoum, Reem; Breuer, Aviva; Mechoulam, Raphael; Steinberg, Doron

    2015-08-12

    Bacterial populations communicate through the cell density-dependent mechanism of quorum sensing (QS). Vibrio harveyi, one of the best studied model organisms for QS, was used to explore effects of the synthetic cannabinoid HU-210 on QS and different QS-regulated physiological processes in bacteria. Analysis of QS-regulated bioluminescence in wild-type and mutant strains of V. harveyi revealed that HU-210 affects the autoinducer-2 (AI-2) pathway, one of three known QS cascades of V. harveyi. Furthermore, QS-mediated biofilm formation and swimming motility in the mutant strain BB152 (AI-1(-), AI-2(+)) were significantly reduced in the presence of HU-210. HU-210 inhibited QS-mediated virulence factor production without any inhibitory effect on bacterial growth. It also alters the expression of several genes, which are regulated by QS, specifically downregulating the genes of the AI-2 QS cascade. First evidence is being provided for interference of bacterial signal-transduction systems by a synthetic cannabinoid. The effect of HU-210 was specific to the AI-2 cascade in V. harveyi. AI-2 is known as a "universal autoinducer" and interference with its activity opens a broad spectrum of applications for synthetic cannabinoids in future research as a potential anti-QS agent.

  14. An optical conveyor for molecules.

    PubMed

    Weinert, Franz M; Braun, Dieter

    2009-12-01

    Trapping single ions under vacuum allows for precise spectroscopy in atomic physics. The confinement of biological molecules in bulk water is hindered by the lack of comparably strong forces. Molecules have been immobilized to surfaces, however often with detrimental effects on their function. Here, we optically trap molecules by creating the microscale analogue of a conveyor belt: a bidirectional flow is combined with a perpendicular thermophoretic molecule drift. Arranged in a toroidal geometry, the conveyor accumulates a hundredfold excess of 5-base DNA within seconds. The concentrations of the trapped DNA scale exponentially with length, reaching trapping potential depths of 14 kT for 50 bases. The mechanism does not require microfluidics, electrodes, or surface modifications. As a result, the trap can be dynamically relocated. The optical conveyor can be used to enhance diffusion-limited surface reactions, redirect cellular signaling, observe individual biomolecules over a prolonged time, or approach single-molecule chemistry in bulk water.

  15. Nitrogen modulation of legume root architecture signaling pathways involves phytohormones and small regulatory molecules.

    PubMed

    Mohd-Radzman, Nadiatul A; Djordjevic, Michael A; Imin, Nijat

    2013-10-01

    Nitrogen, particularly nitrate is an important yield determinant for crops. However, current agricultural practice with excessive fertilizer usage has detrimental effects on the environment. Therefore, legumes have been suggested as a sustainable alternative for replenishing soil nitrogen. Legumes can uniquely form nitrogen-fixing nodules through symbiotic interaction with specialized soil bacteria. Legumes possess a highly plastic root system which modulates its architecture according to the nitrogen availability in the soil. Understanding how legumes regulate root development in response to nitrogen availability is an important step to improving root architecture. The nitrogen-mediated root development pathway starts with sensing soil nitrogen level followed by subsequent signal transduction pathways involving phytohormones, microRNAs and regulatory peptides that collectively modulate the growth and shape of the root system. This review focuses on the current understanding of nitrogen-mediated legume root architecture including local and systemic regulations by different N-sources and the modulations by phytohormones and small regulatory molecules.

  16. Ultrasensitive detection and characterization of molecules with infrared plasmonic metamaterials

    PubMed Central

    Cheng, Fei; Yang, Xiaodong; Gao, Jie

    2015-01-01

    Infrared vibrational spectroscopy is an effective technique which enables the direct probe of molecular fingerprints, and such detection can be further enhanced by the emerging engineered plasmonic metamaterials. Here we experimentally demonstrate ultrasensitive detection and characterization of polymer molecules based on an asymmetric infrared plasmonic metamaterial, and quantitatively analyze the molecule detection sensitivity and molecule-structure interactions. A sharp, non-radiative Fano resonance supported by the plasmonic metamaterial exhibits strongly enhanced near-field, and the resonance frequency is tailored to match the vibrational fingerprint of the target molecule. By utilizing the near-field nature of the plasmonic excitation, significantly enhanced absorption signal of molecules in the infrared spectroscopy are obtained, enabling ultrasensitive detection of only minute quantities of organic molecules. The enhancement of molecular absorption up to 105 fold is obtained, and sensitive detection of molecules at zeptomole levels (corresponding to a few tens of molecules within a unit cell) is achieved with high signal-to-noise ratio in our experiment. The demonstrated infrared plasmonic metamaterial sensing platform offers great potential for improving the specificity and sensitivity of label-free, biochemical detection. PMID:26388404

  17. Antioxidant role of glutathione S-transferases: 4-Hydroxynonenal, a key molecule in stress-mediated signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singhal, Sharad S., E-mail: ssinghal@coh.org; Singh, Sharda P.; Singhal, Preeti

    2015-12-15

    4-Hydroxy-2-trans-nonenal (4HNE), one of the major end products of lipid peroxidation (LPO), has been shown to induce apoptosis in a variety of cell lines. It appears to modulate signaling processes in more than one way because it has been suggested to have a role in signaling for differentiation and proliferation. It has been known that glutathione S-transferases (GSTs) can reduce lipid hydroperoxides through their Se-independent glutathione-peroxidase activity and that these enzymes can also detoxify LPO end-products such as 4HNE. Available evidence from earlier studies together with results of recent studies in our laboratories strongly suggests that LPO products, particularly hydroperoxidesmore » and 4HNE, are involved in the mechanisms of stress-mediated signaling and that it can be modulated by the alpha-class GSTs through the regulation of the intracellular concentrations of 4HNE. We demonstrate that 4HNE induced apoptosis in various cell lines is accompanied with c-Jun-N-terminal kinase (JNK) and caspase-3 activation. Cells exposed to mild, transient heat or oxidative stress acquire the capacity to exclude intracellular 4HNE at a faster rate by inducing GSTA4-4 which conjugates 4HNE to glutathione (GSH), and RLIP76 which mediates the ATP-dependent transport of the GSH-conjugate of 4HNE (GS-HNE). The balance between formation and exclusion promotes different cellular processes — higher concentrations of 4HNE promote apoptosis; whereas, lower concentrations promote proliferation. In this article, we provide a brief summary of the cellular effects of 4HNE, followed by a review of its GST-catalyzed detoxification, with an emphasis on the structural attributes that play an important role in the interactions with alpha-class GSTA4-4. Taken together, 4HNE is a key signaling molecule and that GSTs being determinants of its intracellular concentrations, can regulate stress-mediated signaling, are reviewed in this article. - Highlights: • GSTs are the major

  18. N-Acyl-Homoserine Lactone Primes Plants for Cell Wall Reinforcement and Induces Resistance to Bacterial Pathogens via the Salicylic Acid/Oxylipin Pathway[C][W][OPEN

    PubMed Central

    Schenk, Sebastian T.; Hernández-Reyes, Casandra; Samans, Birgit; Stein, Elke; Neumann, Christina; Schikora, Marek; Reichelt, Michael; Mithöfer, Axel; Becker, Annette; Kogel, Karl-Heinz; Schikora, Adam

    2014-01-01

    The ability of plants to monitor their surroundings, for instance the perception of bacteria, is of crucial importance. The perception of microorganism-derived molecules and their effector proteins is the best understood of these monitoring processes. In addition, plants perceive bacterial quorum sensing (QS) molecules used for cell-to-cell communication between bacteria. Here, we propose a mechanism for how N-acyl-homoserine lactones (AHLs), a group of QS molecules, influence host defense and fortify resistance in Arabidopsis thaliana against bacterial pathogens. N-3-oxo-tetradecanoyl-l-homoserine lactone (oxo-C14-HSL) primed plants for enhanced callose deposition, accumulation of phenolic compounds, and lignification of cell walls. Moreover, increased levels of oxylipins and salicylic acid favored closure of stomata in response to Pseudomonas syringae infection. The AHL-induced resistance seems to differ from the systemic acquired and the induced systemic resistances, providing new insight into inter-kingdom communication. Consistent with the observation that short-chain AHLs, unlike oxo-C14-HSL, promote plant growth, treatments with C6-HSL, oxo-C10-HSL, or oxo-C14-HSL resulted in different transcriptional profiles in Arabidopsis. Understanding the priming induced by bacterial QS molecules augments our knowledge of plant reactions to bacteria and suggests strategies for using beneficial bacteria in plant protection. PMID:24963057

  19. Immunological Functions of the Membrane Proximal Region of MHC Class II Molecules

    PubMed Central

    Harton, Jonathan; Jin, Lei; Hahn, Amy; Drake, Jim

    2016-01-01

    Major histocompatibility complex (MHC) class II molecules present exogenously derived antigen peptides to CD4 T cells, driving activation of naïve T cells and supporting CD4-driven immune functions. However, MHC class II molecules are not inert protein pedestals that simply bind and present peptides. These molecules also serve as multi-functional signaling molecules delivering activation, differentiation, or death signals (or a combination of these) to B cells, macrophages, as well as MHC class II-expressing T cells and tumor cells. Although multiple proteins are known to associate with MHC class II, interaction with STING (stimulator of interferon genes) and CD79 is essential for signaling. In addition, alternative transmembrane domain pairing between class II α and β chains influences association with membrane lipid sub-domains, impacting both signaling and antigen presentation. In contrast to the membrane-distal region of the class II molecule responsible for peptide binding and T-cell receptor engagement, the membrane-proximal region (composed of the connecting peptide, transmembrane domain, and cytoplasmic tail) mediates these “non-traditional” class II functions. Here, we review the literature on the function of the membrane-proximal region of the MHC class II molecule and discuss the impact of this aspect of class II immunobiology on immune regulation and human disease. PMID:27006762

  20. Generalized extracellular molecule sensor platform for programming cellular behavior.

    PubMed

    Scheller, Leo; Strittmatter, Tobias; Fuchs, David; Bojar, Daniel; Fussenegger, Martin

    2018-04-23

    Strategies for expanding the sensor space of designer receptors are urgently needed to tailor cell-based therapies to respond to any type of medically relevant molecules. Here, we describe a universal approach to designing receptor scaffolds that enables antibody-specific molecular input to activate JAK/STAT, MAPK, PLCG or PI3K/Akt signaling rewired to transgene expression driven by synthetic promoters. To demonstrate its scope, we equipped the GEMS (generalized extracellular molecule sensor) platform with antibody fragments targeting a synthetic azo dye, nicotine, a peptide tag and the PSA (prostate-specific antigen) biomarker, thereby covering inputs ranging from small molecules to proteins. These four GEMS devices provided robust signaling and transgene expression with high signal-to-noise ratios in response to their specific ligands. The sensitivity of the nicotine- and PSA-specific GEMS devices matched the clinically relevant concentration ranges, and PSA-specific GEMS were able to detect pathological PSA levels in the serum of patients diagnosed with prostate cancer.

  1. Quorum Sensing and Quorum Quenching in Agrobacterium: A "Go/No Go System"?

    PubMed

    Dessaux, Yves; Faure, Denis

    2018-04-16

    The pathogen Agrobacterium induces gall formation on a wide range of dicotyledonous plants. In this bacteria, most pathogenicity determinants are borne on the tumour inducing (Ti) plasmid. The conjugative transfer of this plasmid between agrobacteria is regulated by quorum sensing (QS). However, processes involved in the disturbance of QS also occur in this bacteria under the molecular form of a protein, TraM, inhibiting the sensing of the QS signals, and two lactonases BlcC (AttM) and AiiB that degrade the acylhomoserine lactone (AHL) QS signal. In the model Agrobacterium fabrum strain C58, several data, once integrated, strongly suggest that the QS regulation may not be reacting only to cell concentration. Rather, these QS elements in association with the quorum quenching (QQ) activities may constitute an integrated and complex “go/no go system” that finely controls the biologically costly transfer of the Ti plasmid in response to multiple environmental cues. This decision mechanism permits the bacteria to sense whether it is in a gall or not, in a living or decaying tumor, in stressed plant tissues, etc. In this scheme, the role of the lactonases selected and maintained in the course of Ti plasmid and agrobacterial evolution appears to be pivotal.

  2. Baicalin inhibits biofilm formation, attenuates the quorum sensing-controlled virulence and enhances Pseudomonas aeruginosa clearance in a mouse peritoneal implant infection model

    PubMed Central

    Wang, Ke; Cai, Shuangqi; Liu, Tangjuan; Cheng, Xiaojing; Lei, Danqing; Chen, Yanling; Li, Yanan; Kong, Jinliang; Chen, Yiqiang

    2017-01-01

    The quorum sensing (QS) circuit plays a role in the precise regulation of genes controlling virulence factors and biofilm formation in Pseudomonas aeruginosa. QS-controlled biofilm formation by Pseudomonas aeruginosa in clinical settings has remained controversial due to emerging drug resistance; therefore, screening diverse compounds for anti-biofilm or anti-QS activities is important. This study demonstrates the ability of sub-minimum inhibitory concentrations (sub-MICs) of baicalin, an active natural compound extracted from the traditional Chinese medicinal Scutellaria baicalensis, to inhibit the formation of Pseudomonas aeruginosa biofilms and enhance the bactericidal effects of various conventional antibiotics in vitro. In addition, baicalin exerted dose-dependent inhibitory effects on virulence phenotypes (LasA protease, LasB elastase, pyocyanin, rhamnolipid, motilities and exotoxin A) regulated by QS in Pseudomonas aeruginosa. Moreover, the expression levels of QS-regulatory genes, including lasI, lasR, rhlI, rhlR, pqsR and pqsA, were repressed after sub-MIC baicalin treatment, resulting in significant decreases in the QS signaling molecules 3-oxo-C12-HSL and C4-HSL, confirming the ability of baicalin-mediated QS inhibition to alter gene and protein expression. In vivo experiments indicated that baicalin treatment reduces Pseudomonas aeruginosa pathogenicity in Caenorhabditis elegans. Greater worm survival in the baicalin-treated group manifested as an increase in the LT50 from 24 to 96 h. In a mouse peritoneal implant infection model, baicalin treatment enhanced the clearance of Pseudomonas aeruginosa from the implants of mice infected with Pseudomonas aeruginosa compared with the control group. Moreover, the combination of baicalin and antibiotics significantly reduced the numbers of colony-forming units in the implants to a significantly greater degree than antibiotic treatment alone. Pathological and histological analyses revealed mitigation of the

  3. Lipid rafts generate digital-like signal transduction in cell plasma membranes.

    PubMed

    Suzuki, Kenichi G N

    2012-06-01

    Lipid rafts are meso-scale (5-200 nm) cell membrane domains where signaling molecules assemble and function. However, due to their dynamic nature, it has been difficult to unravel the mechanism of signal transduction in lipid rafts. Recent advanced imaging techniques have revealed that signaling molecules are frequently, but transiently, recruited to rafts with the aid of protein-protein, protein-lipid, and/or lipid-lipid interactions. Individual signaling molecules within the raft are activated only for a short period of time. Immobilization of signaling molecules by cytoskeletal actin filaments and scaffold proteins may facilitate more efficient signal transmission from rafts. In this review, current opinions of how the transient nature of molecular interactions in rafts generates digital-like signal transduction in cell membranes, and the benefits this phenomenon provides, are discussed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Adaptive Significance of Quorum Sensing-Dependent Regulation of Rhamnolipids by Integration of Growth Rate in Burkholderia glumae: A Trade-Off between Survival and Efficiency.

    PubMed

    Nickzad, Arvin; Déziel, Eric

    2016-01-01

    Quorum sensing (QS) is a cell density-dependent mechanism which enables a population of bacteria to coordinate cooperative behaviors in response to the accumulation of self-produced autoinducer signals in their local environment. An emerging framework is that the adaptive significance of QS in the regulation of production of costly extracellular metabolites ("public goods") is to maintain the homeostasis of cooperation. We investigated this model using the phytopathogenic bacterium Burkholderia glumae, which we have previously demonstrated uses QS to regulate the production of rhamnolipids, extracellular surface-active glycolipids promoting the social behavior called "swarming motility." Using mass spectrometric quantification and chromosomal lux-based gene expression, we made the unexpected finding that when unrestricted nutrient resources are provided, production of rhamnolipids is carried out completely independently of QS regulation. This is a unique observation among known QS-controlled factors in bacteria. On the other hand, under nutrient-limited conditions, QS then becomes the main regulating mechanism, significantly enhancing the specific rhamnolipids yield. Accordingly, decreasing nutrient concentrations amplifies rhamnolipid biosynthesis gene expression, revealing a system where QS-dependent regulation is specifically triggered by the growth rate of the population, rather than by its cell density. Furthermore, a gradual increase in QS signal specific concentration upon decrease of specific growth rate suggests a reduction in quorum threshold, which reflects an increase in cellular demand for production of QS-dependent target gene product at low density populations. Integration of growth rate with QS as a decision-making mechanism for biosynthesis of costly metabolites, such as rhamnolipids, could serve to assess the demand and timing for expanding the carrying capacity of a population through spatial expansion mechanisms, such as swarming motility, thus

  5. Four-Wave Mixing Spectroscopy of Quantum Dot Molecules

    NASA Astrophysics Data System (ADS)

    Sitek, A.; Machnikowski, P.

    2007-08-01

    We study theoretically the nonlinear four-wave mixing response of an ensemble of coupled pairs of quantum dots (quantum dot molecules). We discuss the shape of the echo signal depending on the parameters of the ensemble: the statistics of transition energies and the degree of size correlations between the dots forming the molecules.

  6. Heme as a danger molecule in pathogen recognition.

    PubMed

    Wegiel, Barbara; Hauser, Carl J; Otterbein, Leo E

    2015-12-01

    Appropriate control of redox mechanisms are critical for and effective innate immune response, which employs multiple cell types, receptors and molecules that recognize danger signals when they reach the host. Recognition of pathogen-associated pattern molecules (PAMPs) is a fundamental host survival mechanism for efficient elimination of invading pathogens and resolution of the infection and inflammation. In addition to PAMPs, eukaryotic cells contain a plethora of intracellular molecules that are normally secured within the confines of the plasma membrane, but if liberated and encountered in the extracellular milieu can provoke rapid cell activation. These are known as Alarmins or Danger-Associated Molecular Patterns (DAMPs) and can be released actively by cells or passively as a result of sterile cellular injury after trauma, ischemia, or toxin-induced cell rupture. Both PAMPs and DAMPs are recognized by a series of cognate receptors that increase the generation of free radicals and activate specific signaling pathways that result in regulation of a variety of stress response, redox sensitive genes. Multiple mediators released, as cells die include, but are not limited to ATP, hydrogen peroxide, heme, formyl peptides, DNA or mitochondria provide the second signal to amplify immune responses. In this review, we will focus on how sterile and infective stimuli activate the stress response gene heme oxygenase-1 (Hmox1, HO-1), a master gene critical to an appropriate host response that is now recognized as one with enormous therapeutic potential. HO-1 gene expression is regulated in large part by redox-sensitive proteins including but not limited to nrf2. Both PAMPs and DAMPs increase the activation of nrf2 and HO-1. Heme is a powerful pro-oxidant and as such should be qualified as a DAMP. With its degradation by HO-1a molecule of carbon monoxide (CO) is generated that in turn serves as a bioactive signaling molecule. PAMPs such as bacterial endotoxin activate HO-1

  7. Bioactive Molecules in Soil Ecosystems: Masters of the Underground

    PubMed Central

    Zhuang, Xuliang; Gao, Jie; Ma, Anzhou; Fu, Shenglei; Zhuang, Guoqiang

    2013-01-01

    Complex biological and ecological processes occur in the rhizosphere through ecosystem-level interactions between roots, microorganisms and soil fauna. Over the past decade, studies of the rhizosphere have revealed that when roots, microorganisms and soil fauna physically contact one another, bioactive molecular exchanges often mediate these interactions as intercellular signal, which prepare the partners for successful interactions. Despite the importance of bioactive molecules in sustainable agriculture, little is known of their numerous functions, and improving plant health and productivity by altering ecological processes remains difficult. In this review, we describe the major bioactive molecules present in below-ground ecosystems (i.e., flavonoids, exopolysaccharides, antibiotics and quorum-sensing signals), and we discuss how these molecules affect microbial communities, nutrient availability and plant defense responses. PMID:23615474

  8. A Small Molecule Inverse Agonist for the Human Thyroid-Stimulating Hormone Receptor

    PubMed Central

    Neumann, Susanne; Huang, Wenwei; Eliseeva, Elena; Titus, Steve; Thomas, Craig J.; Gershengorn, Marvin C.

    2010-01-01

    Small molecule inverse agonists for the TSH receptor (TSHR) may be used as probes of the role of basal (or agonist-independent or constitutive) signaling and may have therapeutic potential as orally active drugs to inhibit basal signaling in patients with thyroid cancer and in some patients with hyperthyroidism. We describe the first small-molecule ligand [1;2-(3-((2,6-dimethylphenoxy)methyl)-4-methoxyphenyl)-3-(furan-2-ylmethyl)-2,3-dihydroquinazolin-4(1H)-one] that exhibits inverse agonist properties at TSHR. 1 inhibits basal and TSH-stimulated signaling, measured as cAMP production, by TSHRs in HEK-EM 293 cells stably expressing wild-type TSHRs; the antagonism of TSH-mediated signaling is competitive. 1 also inhibits basal signaling by wild-type TSHRs, and four constitutively active mutants of TSHR expressed transiently in HEK-EM 293 cells. 1 was active under more physiologically relevant conditions in primary cultures of human thyrocytes expressing endogenous TSHRs where it inhibited basal levels of mRNA transcripts for thyroglobulin, thyroperoxidase, sodium iodide symporter, and TSHR. These data serve as proof of principle that small, drug-like molecules can inhibit basal signaling by TSHR. We suggest that this small molecule is a lead compound for the development of higher-potency inverse agonists that can be used as probes of TSHR biology with therapeutic potential. PMID:20427476

  9. Inhibition of quorum sensing in gram-negative bacteria by alkylamine-modified cyclodextrins.

    PubMed

    Morohoshi, Tomohiro; Tokita, Kazuho; Ito, Satoshi; Saito, Yuki; Maeda, Saki; Kato, Norihiro; Ikeda, Tsukasa

    2013-08-01

    N-Acylhomoserine lactones (AHLs) are used as quorum-sensing (QS) signals by gram-negative bacteria. We have reported that the cyclic oligosaccharides known as cyclodextrins (CDs) form inclusion complexes with AHLs and disrupt QS signaling. In this study, a series of CD derivatives were designed and synthesized to improve the QS inhibitory activity over that of native CDs. The production of the red pigment prodigiosin by Serratia marcescens AS-1, which is regulated by AHL-mediated QS, was drastically decreased by adding 10 mg/ml 6-alkylacylamino-β-CD with an alkyl chain ranging from C7 to C12. An improvement in the QS inhibitory activity was also observed for 6-alkylamino-α- or γ-CDs and 2-alkylamino-CDs. Furthermore, 6,6'-dioctylamino-β-CD, which contains two octylamino groups, exhibited greater inhibitory activity than 6-monooctylamino-β-CD. The synthesized CD derivatives also had strong inhibitory effects on QS by other gram-negative bacteria, including Chromobacterium violaceum and Pseudomonas aeruginosa. The synthetic alkylamine-modified CD derivatives had higher equilibrium binding constants for binding with AHL than the native CDs did, consistent with the improved QS inhibition. ¹H NMR measurements suggested that the alkyl side chains of 6-alkylacylamino-β-CDs with alkyl chains up to 6 carbon atoms long could form self-inclusion complexes with the CD unit. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. MomL, a novel marine-derived N-acyl homoserine lactonase from Muricauda olearia.

    PubMed

    Tang, Kaihao; Su, Ying; Brackman, Gilles; Cui, Fangyuan; Zhang, Yunhui; Shi, Xiaochong; Coenye, Tom; Zhang, Xiao-Hua

    2015-01-01

    Gram-negative bacteria use N-acyl homoserine lactones (AHLs) as quorum sensing (QS) signaling molecules for interspecies communication, and AHL-dependent QS is related with virulence factor production in many bacterial pathogens. Quorum quenching, the enzymatic degradation of the signaling molecule, would attenuate virulence rather than kill the pathogens, and thereby reduce the potential for evolution of drug resistance. In a previous study, we showed that Muricauda olearia Th120, belonging to the class Flavobacteriia, has strong AHL degradative activity. In this study, an AHL lactonase (designated MomL), which could degrade both short- and long-chain AHLs with or without a substitution of oxo-group at the C-3 position, was identified from Th120. Liquid chromatography-mass spectrometry analysis demonstrated that MomL functions as an AHL lactonase catalyzing AHL degradation through lactone hydrolysis. MomL is an AHL lactonase belonging to the metallo-β-lactamase superfamily that harbors an N-terminal signal peptide. The overall catalytic efficiency of MomL for C6-HSL is ∼2.9 × 10(5) s(-1) M(-1). Metal analysis and site-directed mutagenesis showed that, compared to AiiA, MomL has a different metal-binding capability and requires the histidine and aspartic acid residues for activity, while it shares the "HXHXDH" motif with other AHL lactonases belonging to the metallo-β-lactamase superfamily. This suggests that MomL is a representative of a novel type of secretory AHL lactonase. Furthermore, MomL significantly attenuated the virulence of Pseudomonas aeruginosa in a Caenorhabditis elegans infection model, which suggests that MomL has the potential to be used as a therapeutic agent. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. The RNA chaperone, Hfq, controls two luxR-type regulators and plays a key role in pathogenesis and production of antibiotics in Serratia sp. ATCC 39006.

    PubMed

    Wilf, Nabil M; Williamson, Neil R; Ramsay, Joshua P; Poulter, Simon; Bandyra, Kasia J; Salmond, George P C

    2011-10-01

    Serratia sp. ATCC 39006 (S39006) is a Gram-negative bacterium that is virulent in plant (potato) and animal (Caenorhabditis elegans) models. It produces two secondary metabolite antibiotics, a prodigiosin and a carbapenem, and the exoenzymes, pectate lyase and cellulase. A complex regulatory network that includes quorum sensing (QS) controls production of prodigiosin. While many aspects of the regulation of the metabolites and exoenzymes are well understood, the potential role in this network of the RNA chaperone Hfq and dependent small regulatory RNAs has not been characterized. Hfq is an RNA chaperone involved in post-transcriptional regulation that plays a key role in stress response and virulence in diverse bacterial species. To explore whether Hfq-dependent processes might contribute to the regulation of antibiotic production we constructed an S39006 Δhfq mutant. Production of prodigiosin and carbapenem was abolished in this mutant strain, while production of the QS signalling molecule, butanoyl homoserine lactone (BHL), was unaffected. Using transcriptional fusions, we found that Hfq regulates the QS response regulators, SmaR and CarR. Additionally, exoenzyme production and swimming motility were decreased in a Δhfq mutant, and virulence was attenuated in potato and C. elegans models. These results suggest that an Hfq-dependent pathway is involved in the regulation of virulence and secondary metabolite production in S39006. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  12. Gab-family adapter molecules in signal transduction of cytokine and growth factor receptors, and T and B cell antigen receptors.

    PubMed

    Hibi, M; Hirano, T

    2000-04-01

    Gab1 and Gab2 (Grb2 associated binder 1 and 2) are scaffolding adapter molecules that display sequence similarity with Drosophila DOS (daughter of sevenless), which is a potential substrate for the protein tyrosine phosphatase, Corkscrew, Both Gab1 and Gab2, like DOS, have a pleckstrin homology domain and potential binding sites for SH2 and SH3 domains. Gab1 and Gab2 are phosphorylated on tyrosine upon the stimulation of various cytokines, growth factors, and antigen receptors, and interact with signaling molecules, such as Grb2, SHP-2, and PI-3 kinase. Overexpression of Gab1 or Gab2 mimics or enhances growth factor or cytokine-mediated biological processes and activates ERK MAP kinase. These data imply that Gab1 and Gab2 act downstream of a broad range of cytokine and growth factor receptors, as well as T and B antigen receptors, and link these receptors to ERK MAP kinase and biological actions.

  13. Gasotransmitter Heterocellular Signaling

    PubMed Central

    Kolluru, Gopi K.; Shen, Xinggui; Yuan, Shuai; Kevil, Christopher G.

    2017-01-01

    Abstract Significance: The family of gasotransmitter molecules, nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S), has emerged as an important mediator of numerous cellular signal transduction and pathophysiological responses. As such, these molecules have been reported to influence a diverse array of biochemical, molecular, and cell biology events often impacting one another. Recent Advances: Discrete regulation of gasotransmitter molecule formation, movement, and reaction is critical to their biological function. Due to the chemical nature of these molecules, they can move rapidly throughout cells and tissues acting on targets through reactions with metal groups, reactive chemical species, and protein amino acids. Critical Issues: Given the breadth and complexity of gasotransmitter reactions, this field of research is expanding into exciting, yet sometimes confusing, areas of study with significant promise for understanding health and disease. The precise amounts of tissue and cellular gasotransmitter levels and where they are formed, as well as how they react with molecular targets or themselves, all remain poorly understood. Future Directions: Elucidation of specific molecular targets, characteristics of gasotransmitter molecule heterotypic interactions, and spatiotemporal formation and metabolism are all important to better understand their true pathophysiological importance in various organ systems. Antioxid. Redox Signal. 26, 936–960. PMID:28068782

  14. Chirality-sensitive microwave spectroscopy - application to terpene molecules

    NASA Astrophysics Data System (ADS)

    Schnell, Melanie

    Most molecules of biochemical relevance are chiral. Even though the physical properties of two enantiomers are nearly identical, they might exhibit completely different biochemical effects, such as different odor in the case of carvone. In nature and as products of chemical syntheses, chiral molecules often exist in mixtures with other chiral molecules. The analysis of these complex mixtures to identify the molecular components, to determine which enantiomers are present, and to measure the enantiomeric excesses (ee) is still one of the challenging and very important tasks of analytical chemistry. We recently experimentally demonstrated a new method of differentiating enantiomeric pairs of chiral molecules in the gas phase. It is based on broadband rotational spectroscopy and is a three-wave mixing process that involves a closed cycle of three rotational transitions. The phase of the acquired signal bares the signature of the enantiomer, as it depends upon the product of the transition dipole moments. Furthermore, because the signal amplitude is proportional to the ee, this technique allows not only for determining which enantiomer is in excess, but also by how much. A unique advantage of our technique is that it can also be applied to mixtures of chiral molecules, even when the molecules are very similar. In my lecture, I will introduce the technique and give an update on the recent developments.

  15. Role of the DIP Molecules in DCC Signaling

    DTIC Science & Technology

    1999-09-01

    to policies of applicable Federal Law 45 CFR 46. N/A In conducting research utilizing recombinant DNA technology , the investigator(s) adhered to...for 1 h, then with 0.1 mg/ml of proteinase K, 0.1% SDS at 50’C Ihle, 1995; Fraser and Evan, 1996). These molecules overnight. Samples were extracted ...incubated with 20 yg/ml of anti-DCC antibody diluted in PBS-0.1% saponin for 1 h, washed with PBS, blocked Western blotting with 5% normal donkey serum for 1

  16. Single molecule views of Nature's nano-machines

    NASA Astrophysics Data System (ADS)

    Ha, Taekjip

    2006-03-01

    We are interested in the perturbational analysis of biological molecules to better understand their mechanisms. Our readout is the fluorescence signal from individual biomolecules, mainly in the form of single molecule fluorescence resonance energy transfer (FRET). We are pioneering approaches to perturb and control biomolecular conformations using external force (combination of single molecule FRET and optical trap) or other biological motifs (DNA hybridization, G-quadruplex, aptamers,.). In this talk, I will present our latest results on mapping the conformational energy landscape of the Holliday junction through simultaneous fluorescence and force measurements. In addition, a new nanomechanical device called single molecule nano-metronome will be discussed with an outlook toward controlling protein conformations using nucleic acids motifs.

  17. Codon-Anticodon Recognition in the Bacillus subtilis glyQS T Box Riboswitch

    PubMed Central

    Caserta, Enrico; Liu, Liang-Chun; Grundy, Frank J.; Henkin, Tina M.

    2015-01-01

    Many amino acid-related genes in Gram-positive bacteria are regulated by the T box riboswitch. The leader RNA of genes in the T box family controls the expression of downstream genes by monitoring the aminoacylation status of the cognate tRNA. Previous studies identified a three-nucleotide codon, termed the “Specifier Sequence,” in the riboswitch that corresponds to the amino acid identity of the downstream genes. Pairing of the Specifier Sequence with the anticodon of the cognate tRNA is the primary determinant of specific tRNA recognition. This interaction mimics codon-anticodon pairing in translation but occurs in the absence of the ribosome. The goal of the current study was to determine the effect of a full range of mismatches for comparison with codon recognition in translation. Mutations were individually introduced into the Specifier Sequence of the glyQS leader RNA and tRNAGly anticodon to test the effect of all possible pairing combinations on tRNA binding affinity and antitermination efficiency. The functional role of the conserved purine 3′ of the Specifier Sequence was also verifiedin this study. We found that substitutions at the Specifier Sequence resulted in reduced binding, the magnitude of which correlates well with the predicted stability of the RNA-RNA pairing. However, the tolerance for specific mismatches in antitermination was generally different from that during decoding, which reveals a unique tRNA recognition pattern in the T box antitermination system. PMID:26229106

  18. Expression of GABA signaling molecules KCC2, NKCC1, and GAD1 in cortical development and schizophrenia.

    PubMed

    Hyde, Thomas M; Lipska, Barbara K; Ali, Towhid; Mathew, Shiny V; Law, Amanda J; Metitiri, Ochuko E; Straub, Richard E; Ye, Tianzhang; Colantuoni, Carlo; Herman, Mary M; Bigelow, Llewellyn B; Weinberger, Daniel R; Kleinman, Joel E

    2011-07-27

    GABA signaling molecules are critical for both human brain development and the pathophysiology of schizophrenia. We examined the expression of transcripts derived from three genes related to GABA signaling [GAD1 (GAD67 and GAD25), SLC12A2 (NKCC1), and SLC12A5 (KCC2)] in the prefrontal cortex (PFC) and hippocampal formation of a large cohort of nonpsychiatric control human brains (n = 240) across the lifespan (from fetal week 14 to 80 years) and in patients with schizophrenia (n = 30-31), using quantitative RT-PCR. We also examined whether a schizophrenia risk-associated promoter SNP in GAD1 (rs3749034) is related to expression of these transcripts. Our studies revealed that development and maturation of both the PFC and hippocampal formation are characterized by progressive switches in expression from GAD25 to GAD67 and from NKCC1 to KCC2. Previous studies have demonstrated that the former leads to GABA synthesis, and the latter leads to switching from excitatory to inhibitory neurotransmission. In the hippocampal formation, GAD25/GAD67 and NKCC1/KCC2 ratios are increased in patients with schizophrenia, reflecting a potentially immature GABA physiology. Remarkably, GAD25/GAD67 and NKCC1/KCC2 expression ratios are associated with rs3749034 genotype, with risk alleles again predicting a relatively less mature pattern. These findings suggest that abnormalities in GABA signaling critical to brain development contribute to genetic risk for schizophrenia.

  19. Hydrogen sulfide in plants: from dissipation of excess sulfur to signaling molecule.

    PubMed

    Calderwood, Alexander; Kopriva, Stanislav

    2014-09-15

    Sulfur is essential in all organisms for the synthesis of amino acids cysteine and methionine and as an active component of numerous co-factors and prosthetic groups. However, only plants, algae, fungi, and some prokaryotes are capable of using the abundant inorganic source of sulfur, sulfate. Plants take sulfate up, reduce it, and assimilate into organic compounds with cysteine being the first product of the pathway and a donor of reduced sulfur for synthesis of other S-containing compounds. Cysteine is formed in a reaction between sulfide, derived from reduction of sulfite and an activated amino acid acceptor, O-acetylserine. Sulfide is thus an important intermediate in sulfur metabolism, but numerous other functions in plants has been revealed. Hydrogen sulfide can serve as an alternative source of sulfur for plants, which may be significant in anaerobic conditions of waterlogged soils. On the other hand, emissions of hydrogen sulfide have been detected from many plant species. Since the amount of H2S discharged correlated with sulfate supply to the plants, the emissions were considered a mechanism for dissipation of excess sulfur. Significant hydrogen sulfide emissions were also observed in plants infected with pathogens, particularly with fungi. H2S thus seems to be part of the widely discussed sulfur-induced-resistance/sulfur-enhanced-defense. Recently, however, more evidence has emerged for a role for H2S in regulation and signaling. Sulfide stabilizes the cysteine synthase complex, increasing so the synthesis of its acceptor O-acetylserine. H2S has been implicating in regulation of plant stress response, particularly draught stress. There are more and more examples of processes regulated by H2S in plants being discovered, and hydrogen sulfide is emerging as an important signaling molecule, similar to its role in the animal and human world. How similar the functions, and homeostasis of H2S are in these diverse organisms, however, remains to be elucidated

  20. Mitogenic signals and transforming potential of Nyk, a newly identified neural cell adhesion molecule-related receptor tyrosine kinase.

    PubMed Central

    Ling, L; Kung, H J

    1995-01-01

    Nyk/Mer is a recently identified receptor tyrosine kinase with neural cell adhesion molecule-like structure (two immunoglobulin G-like domains and two fibronectin III-like domains) in its extracellular region and belongs to the Ufo/Axl family of receptors. The ligand for Nyk/Mer is presently unknown, as are the signal transduction pathways mediated by this receptor. We constructed and expressed a chimeric receptor (Fms-Nyk) composed of the extracellular domain of the human colony-stimulating factor 1 receptor (Fms) and the transmembrane and cytoplasmic domains of human Nyk/Mer in NIH 3T3 fibroblasts in order to investigate the mitogenic signaling and biochemical properties of Nyk/Mer. Colony-stimulating factor 1 stimulation of the Fms-Nyk chimeric receptor in transfected NIH 3T3 fibroblasts leads to a transformed phenotype and generates a proliferative response in the absence of other growth factors. We show that phospholipase C gamma, phosphatidylinositol 3-kinase/p70 S6 kinase, Shc, Grb2, Raf-1, and mitogen-activated protein kinase are downstream components of the Nyk/Mer signal transduction pathways. In addition, Nyk/Mer weakly activates p90rsk, while stress-activated protein kinase, Ras GTPase-activating protein (GAP), and GAP-associated p62 and p190 proteins are not activated or tyrosine phosphorylated by Nyk/Mer. An analysis comparing the Nyk/Mer signal cascade with that of the epidermal growth factor receptor indicates substrate preferences by these two receptors. Our results provide a detailed description of the Nyk/Mer signaling pathways. Given the structural similarity between the Ufo/Axl family receptors, some of the information may also be applied to other members of this receptor tyrosine kinase family. PMID:8524223

  1. Potato plants genetically modified to produce N-acylhomoserine lactones increase susceptibility to soft rot erwiniae.

    PubMed

    Toth, I K; Newton, J A; Hyman, L J; Lees, A K; Daykin, M; Ortori, C; Williams, P; Fray, R G

    2004-08-01

    Many gram-negative bacteria employ N-acylhomoserine lactones (AHL) to regulate diverse physiological processes in concert with cell population density (quorum sensing [QS]). In the plant pathogen Erwinia carotovora, the AHL synthesized via the carI/expI genes are responsible for regulating the production of secreted plant cell wall-degrading exoenzymes and the antibiotic carbapen-3-em carboxylic acid. We have previously shown that targeting the product of an AHL synthase gene (yenI) from Yersinia enterocolitica to the chloroplasts of transgenic tobacco plants caused the synthesis in planta of the cognate AHL signaling molecules N-(3-oxohexanoyl)-L-homoserine lactone (3-oxo-C6-HSL) and N-hexanoylhomoserine lactone (C6-HSL), which in turn, were able to complement a carI-QS mutant. In the present study, we demonstrate that transgenic potato plants containing the yenI gene are also able to express AHL and that the presence and level of these AHL in the plant increases susceptibility to infection by E. carotovora. Susceptibility is further affected by both the bacterial level and the plant tissue under investigation.

  2. Investigation of N-acyl homoserine lactone (AHL) molecule production in Gram-negative bacteria isolated from cooling tower water and biofilm samples.

    PubMed

    Haslan, Ezgi; Kimiran-Erdem, Ayten

    2013-09-01

    In this study, 99 Gram-negative rod bacteria were isolated from cooling tower water, and biofilm samples were examined for cell-to-cell signaling systems, N-acyl homoserine lactone (AHL) signal molecule types, and biofilm formation capacity. Four of 39 (10 %) strains isolated from water samples and 14 of 60 (23 %) strains isolated from biofilm samples were found to be producing a variety of AHL signal molecules. It was determined that the AHL signal molecule production ability and the biofilm formation capacity of sessile bacteria is higher than planktonic bacteria, and there was a statistically significant difference between the AHL signal molecule production of these two groups (p < 0.05). In addition, it was found that bacteria belonging to the same species isolated from cooling tower water and biofilm samples produced different types of AHL signal molecules and that there were different types of AHL signal molecules in an AHL extract of bacteria. In the present study, it was observed that different isolates of the same strains did not produce the same AHLs or did not produce AHL molecules, and bacteria known as AHL producers did not produce AHL. These findings suggest that detection of signal molecules in bacteria isolated from cooling towers may contribute to prevention of biofilm formation, elimination of communication among bacteria in water systems, and blockage of quorum-sensing controlled virulence of these bacteria.

  3. Continuous diffraction of molecules and disordered molecular crystals

    PubMed Central

    Yefanov, Oleksandr M.; Ayyer, Kartik; White, Thomas A.; Barty, Anton; Morgan, Andrew; Mariani, Valerio; Oberthuer, Dominik; Pande, Kanupriya

    2017-01-01

    The intensities of far-field diffraction patterns of orientationally aligned molecules obey Wilson statistics, whether those molecules are in isolation (giving rise to a continuous diffraction pattern) or arranged in a crystal (giving rise to Bragg peaks). Ensembles of molecules in several orientations, but uncorrelated in position, give rise to the incoherent sum of the diffraction from those objects, modifying the statistics in a similar way as crystal twinning modifies the distribution of Bragg intensities. This situation arises in the continuous diffraction of laser-aligned molecules or translationally disordered molecular crystals. This paper develops the analysis of the intensity statistics of such continuous diffraction to obtain parameters such as scaling, beam coherence and the number of contributing independent object orientations. When measured, continuous molecular diffraction is generally weak and accompanied by a background that far exceeds the strength of the signal. Instead of just relying upon the smallest measured intensities or their mean value to guide the subtraction of the background, it is shown how all measured values can be utilized to estimate the background, noise and signal, by employing a modified ‘noisy Wilson’ distribution that explicitly includes the background. Parameters relating to the background and signal quantities can be estimated from the moments of the measured intensities. The analysis method is demonstrated on previously published continuous diffraction data measured from crystals of photosystem II [Ayyer et al. (2016 ▸), Nature, 530, 202–206]. PMID:28808434

  4. Structural Requirements for Outside-In and Inside-Out Signaling by Drosophila Neuroglian, a Member of the L1 Family of Cell Adhesion Molecules

    PubMed Central

    Hortsch, Michael; Homer, Diahann; Malhotra, Jyoti Dhar; Chang, Sherry; Frankel, Jason; Jefford, Gregory; Dubreuil, Ronald R.

    1998-01-01

    Expression of the Drosophila cell adhesion molecule neuroglian in S2 cells leads to cell aggregation and the intracellular recruitment of ankyrin to cell contact sites. We localized the region of neuroglian that interacts with ankyrin and investigated the mechanism that limits this interaction to cell contact sites. Yeast two-hybrid analysis and expression of neuroglian deletion constructs in S2 cells identified a conserved 36-amino acid sequence that is required for ankyrin binding. Mutation of a conserved tyrosine residue within this region reduced ankyrin binding and extracellular adhesion. However, residual recruitment of ankyrin by this mutant neuroglian molecule was still limited to cell contacts, indicating that the lack of ankyrin binding at noncontact sites is not caused by tyrosine phosphorylation. A chimeric molecule, in which the extracellular domain of neuroglian was replaced with the corresponding domain from the adhesion molecule fasciclin II, also selectively recruited ankyrin to cell contacts. Thus, outside-in signaling by neuroglian in S2 cells depends on extracellular adhesion, but does not depend on any unique property of its extracellular domain. We propose that the recruitment of ankyrin to cell contact sites depends on a physical rearrangement of neuroglian in response to cell adhesion, and that ankyrin binding plays a reciprocal role in stabilizing the adhesive interaction. PMID:9660878

  5. Structural requirements for outside-in and inside-out signaling by Drosophila neuroglian, a member of the L1 family of cell adhesion molecules.

    PubMed

    Hortsch, M; Homer, D; Malhotra, J D; Chang, S; Frankel, J; Jefford, G; Dubreuil, R R

    1998-07-13

    Expression of the Drosophila cell adhesion molecule neuroglian in S2 cells leads to cell aggregation and the intracellular recruitment of ankyrin to cell contact sites. We localized the region of neuroglian that interacts with ankyrin and investigated the mechanism that limits this interaction to cell contact sites. Yeast two-hybrid analysis and expression of neuroglian deletion constructs in S2 cells identified a conserved 36-amino acid sequence that is required for ankyrin binding. Mutation of a conserved tyrosine residue within this region reduced ankyrin binding and extracellular adhesion. However, residual recruitment of ankyrin by this mutant neuroglian molecule was still limited to cell contacts, indicating that the lack of ankyrin binding at noncontact sites is not caused by tyrosine phosphorylation. A chimeric molecule, in which the extracellular domain of neuroglian was replaced with the corresponding domain from the adhesion molecule fasciclin II, also selectively recruited ankyrin to cell contacts. Thus, outside-in signaling by neuroglian in S2 cells depends on extracellular adhesion, but does not depend on any unique property of its extracellular domain. We propose that the recruitment of ankyrin to cell contact sites depends on a physical rearrangement of neuroglian in response to cell adhesion, and that ankyrin binding plays a reciprocal role in stabilizing the adhesive interaction.

  6. Single Molecule Spectral Diffusion in a Solid Detected Via Fluorescence Spectroscopy

    DTIC Science & Technology

    1991-10-15

    other local fields) at the position of the molecule, the spectral jumps may occur because the class II pentacene molecules are coupled to an...and identify by block number) FIELD jGROUP SUB-GROUP_ Single molecule spectroscopy Precision detection Spectral diffusion, Pentacene in p-terphenyl 19...significant increases in detection sensitivity for single pentacene molecules in crystals of p-terphenyl at low temperatures. With the increased signal to

  7. A Drug-Repositioning Screening Identifies Pentetic Acid as a Potential Therapeutic Agent for Suppressing the Elastase-Mediated Virulence of Pseudomonas aeruginosa

    PubMed Central

    Gi, Mia; Jeong, Junhui; Lee, Keehoon; Lee, Kang-Mu; Toyofuku, Masanori; Yong, Dong Eun

    2014-01-01

    Pseudomonas aeruginosa, a Gram-negative bacterium of clinical significance, produces elastase as a predominant exoprotease. Here, we screened a library of chemical compounds currently used for human medication and identified diethylene triamine penta-acetic acid (DTPA, pentetic acid) as an agent that suppresses the production of elastase. Elastase activity found in the prototype P. aeruginosa strain PAO1 was significantly decreased when grown with a concentration as low as 20 μM DTPA. Supplementation with Zn2+ or Mn2+ ions restored the suppressive effect of DTPA, suggesting that the DTPA-mediated decrease in elastase activity is associated with ion-chelating activity. In DTPA-treated PAO1 cells, transcription of the elastase-encoding lasB gene and levels of the Pseudomonas quinolone signal (PQS), a molecule that mediates P. aeruginosa quorum sensing (QS), were significantly downregulated, reflecting the potential involvement of the PQS QS system in DTPA-mediated elastase suppression. Biofilm formation was also decreased by DTPA treatment. When A549 alveolar type II-like adenocarcinoma cells were infected with PAO1 cells in the presence of DTPA, A549 cell viability was substantially increased. Furthermore, the intranasal delivery of DTPA to PAO1-infected mice alleviated the pathogenic effects of PAO1 cells in the animals. Together, our results revealed a novel function for a known molecule that may help treat P. aeruginosa airway infection. PMID:25246397

  8. Differential Expression of Osteo-Modulatory Molecules in Periodontal Ligament Stem Cells in Response to Modified Titanium Surfaces

    PubMed Central

    Kim, So Yeon; Yoo, Ji-Yeon; Ohe, Joo-Young; Lee, Jung-Woo; Moon, Ji-Hoi; Kwon, Yong-Dae; Heo, Jung Sun

    2014-01-01

    This study assessed differential gene expression of signaling molecules involved in osteogenic differentiation of periodontal ligament stem cells (PDLSCs) subjected to different titanium (Ti) surface types. PDLSCs were cultured on tissue culture polystyrene (TCPS), and four types of Ti discs (PT, SLA, hydrophilic PT (pmodPT), and hydrophilic SLA (modSLA)) with no osteoinductive factor and then osteogenic activity, including alkaline phosphatase (ALP) activity, mRNA expression of runt-related gene 2, osterix, FOSB, FRA1, and protein levels of osteopontin and collagen type IA, were examined. The highest osteogenic activity appeared in PDLSCs cultured on SLA, compared with the TCPS and other Ti surfaces. The role of surface properties in affecting signaling molecules to modulate PDLSC behavior was determined by examining the regulation of Wnt pathways. mRNA expression of the canonical Wnt signaling molecules, Wnt3a and β-catenin, was higher on SLA and modSLA than on smooth surfaces, but gene expression of the calcium-dependent Wnt signaling molecules Wnt5a, calmodulin, and NFATc1 was increased significantly on PT and pmodPT. Moreover, integrin α2/β1, sonic hedgehog, and Notch signaling molecules were affected differently by each surface modification. In conclusion, surface roughness and hydrophilicity can affect differential Wnt pathways and signaling molecules, targeting the osteogenic differentiation of PDLSCs. PMID:25057487

  9. Differential expression of osteo-modulatory molecules in periodontal ligament stem cells in response to modified titanium surfaces.

    PubMed

    Kim, So Yeon; Yoo, Ji-Yeon; Ohe, Joo-Young; Lee, Jung-Woo; Moon, Ji-Hoi; Kwon, Yong-Dae; Heo, Jung Sun

    2014-01-01

    This study assessed differential gene expression of signaling molecules involved in osteogenic differentiation of periodontal ligament stem cells (PDLSCs) subjected to different titanium (Ti) surface types. PDLSCs were cultured on tissue culture polystyrene (TCPS), and four types of Ti discs (PT, SLA, hydrophilic PT (pmodPT), and hydrophilic SLA (modSLA)) with no osteoinductive factor and then osteogenic activity, including alkaline phosphatase (ALP) activity, mRNA expression of runt-related gene 2, osterix, FOSB, FRA1, and protein levels of osteopontin and collagen type IA, were examined. The highest osteogenic activity appeared in PDLSCs cultured on SLA, compared with the TCPS and other Ti surfaces. The role of surface properties in affecting signaling molecules to modulate PDLSC behavior was determined by examining the regulation of Wnt pathways. mRNA expression of the canonical Wnt signaling molecules, Wnt3a and β-catenin, was higher on SLA and modSLA than on smooth surfaces, but gene expression of the calcium-dependent Wnt signaling molecules Wnt5a, calmodulin, and NFATc1 was increased significantly on PT and pmodPT. Moreover, integrin α2/β1, sonic hedgehog, and Notch signaling molecules were affected differently by each surface modification. In conclusion, surface roughness and hydrophilicity can affect differential Wnt pathways and signaling molecules, targeting the osteogenic differentiation of PDLSCs.

  10. Histone-poly(A) hybrid molecules as tools to block nuclear pores.

    PubMed

    Cremer, G; Wojtech, E; Kalbas, M; Agutter, P S; Prochnow, D

    1995-04-01

    Histone-poly(A) hybrid molecules were used for transport experiments with resealed nuclear envelopes and after attachment of a cleavable cross-linker (SASD) to identify nuclear proteins. In contrast to histones, the hybrid molecules cannot be accumulated in resealed nuclear envelopes, and in contrast to poly(A), the export of hybrids from preloaded nuclear envelopes is completely impaired. The experiments strongly confirm the existence of poly(A) as an export signal in mRNA which counteracts the nuclear location signals (NLS) in histones. The contradicting transport signals in the hybrid molecules impair translocation through the nuclear pore complex. The failure to accumulate hybrid molecules into resealed nuclear envelopes results from the covalent attachment of polyadenylic acid to histones in a strict 1:1 molar ratio. This was demonstrated in control transport experiments where radiolabeled histones were simply mixed with nonlabeled poly(A) or radiolabeled poly(A) mixed with nonlabeled histones. In comparison, control uptake experiments with histones covalently linked to a single UMP-mononucleotide are strongly enhanced. Such controls exclude the conceivable possibility of a simple masking of the nuclear location signal in the histones by the covalent attached poly(A) moiety. Photoreactive histone-poly(A) hybrid analogs serve to identify nuclear envelope proteins--presumably in the nuclear pore--with molecular weights of 110, 80, and 71.4 kDa.

  11. Chiral Molecules Revisited by Broadband Microwave Spectroscopy

    NASA Astrophysics Data System (ADS)

    Schnell, Melanie

    2014-06-01

    Chiral molecules have fascinated chemists for more than 150 years. While their physical properties are to a very good approximation identical, the two enantiomers of a chiral molecule can have completely different (bio)chemical activities. For example, the right-handed enantiomer of carvone smells of spearmint while the left-handed one smells of caraway. In addition, the active components of many drugs are of one specific handedness, such as in the case of ibuprofen. However, in nature as well as in pharmaceutical applications, chiral molecules often exist in mixtures with other chiral molecules. The analysis of these complex mixtures to identify the molecular components, to determine which enantiomers are present, and to measure the enantiomeric excesses (ee) remains a challenging task for analytical chemistry, despite its importance for modern drug development. We present here a new method of differentiating enantiomers of chiral molecules in the gas phase based on broadband rotational spectroscopy. The phase of the acquired signal bares the signature of the enantiomer, as it depends upon the combined quantity, μ_a μ_b μ_c, which is of opposite sign between enantiomers. It thus also provides information on the absolute configuration of the particular enantiomer. Furthermore, the signal amplitude is proportional to the ee. A significant advantage of our technique is its inherent mixture compatibility due to the fingerprint-like character of rotational spectra. In this contribution, we will introduce the technique and present our latest results on chiral molecule spectroscopy and enantiomer differentiation. D. Patterson, M. Schnell, J.M. Doyle, Nature 497 (2013) 475-477 V.A. Shubert, D. Schmitz, D. Patterson, J.M. Doyle, M. Schnell, Angewandte Chemie International Edition 53 (2014) 1152-1155

  12. Conserved nematode signaling molecules elicit plant defenses and pathogen resistance

    USDA-ARS?s Scientific Manuscript database

    Nematodes, which are ubiquitous in soil and are estimated to cause $100 B of agricultural damage annually, produce novel, highly conserved small sugar-based molecules call ascarosides. Ascarosides play critical roles in nematode development and behavior. We report here that plants recognize these un...

  13. NBBA, a synthetic small molecule, inhibits TNF-{alpha}-induced angiogenesis by suppressing the NF-{kappa}B signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Nam Hee; Jung, Hye Jin; Shibasaki, Futoshi

    2010-01-15

    Nuclear factor-{kappa}B (NF-{kappa}B) is a crucial transcription factor that contributes to cancer development by regulating a number of genes involved in angiogenesis and tumorigenesis. Here, we describe (Z)-N-(3-(7-nitro-3-oxobenzo[d][1,2]selenazol-2(3H)-yl)benzylidene) propan-2-amine oxide (NBBA) as a new anti-angiogenic small molecule that targets NF-{kappa}B activity. NBBA showed stronger growth inhibition on human umbilical vein endothelial cells (HUVECs) than on the cancer cell lines we tested. Moreover, NBBA inhibited tumor necrosis factor-alpha (TNF-{alpha})-induced tube formation and invasion of HUVECs. In addition, NBBA suppressed the neovascularization of chorioallantonic membrane from growing chick embryos in vivo. To address the mode of action of the compound, the effectmore » of NBBA on TNF-{alpha}-induced NF-{kappa}B transcription activity was investigated. NBBA suppressed TNF-{alpha}-induced c-Jun N-terminal kinase phosphorylation, which resulted in suppression of transcription of NF-{kappa}B and its target genes, including interleukin-8, interleukin-1{alpha}, and epidermal growth factor. Collectively, these results demonstrated that NBBA is a new anti-angiogenic small molecule that targets the NF-{kappa}B signaling pathway.« less

  14. Deep learning for single-molecule science

    NASA Astrophysics Data System (ADS)

    Albrecht, Tim; Slabaugh, Gregory; Alonso, Eduardo; Al-Arif, SM Masudur R.

    2017-10-01

    Exploring and making predictions based on single-molecule data can be challenging, not only due to the sheer size of the datasets, but also because a priori knowledge about the signal characteristics is typically limited and poor signal-to-noise ratio. For example, hypothesis-driven data exploration, informed by an expectation of the signal characteristics, can lead to interpretation bias or loss of information. Equally, even when the different data categories are known, e.g., the four bases in DNA sequencing, it is often difficult to know how to make best use of the available information content. The latest developments in machine learning (ML), so-called deep learning (DL) offer interesting, new avenues to address such challenges. In some applications, such as speech and image recognition, DL has been able to outperform conventional ML strategies and even human performance. However, to date DL has not been applied much in single-molecule science, presumably in part because relatively little is known about the ‘internal workings’ of such DL tools within single-molecule science as a field. In this Tutorial, we make an attempt to illustrate in a step-by-step guide how one of those, a convolutional neural network (CNN), may be used for base calling in DNA sequencing applications. We compare it with a SVM as a more conventional ML method, and discuss some of the strengths and weaknesses of the approach. In particular, a ‘deep’ neural network has many features of a ‘black box’, which has important implications on how we look at and interpret data.

  15. Molecular locks and keys: the role of small molecules in phytohormone research

    PubMed Central

    Fonseca, Sandra; Rosado, Abel; Vaughan-Hirsch, John; Bishopp, Anthony; Chini, Andrea

    2014-01-01

    Plant adaptation, growth and development rely on the integration of many environmental and endogenous signals that collectively determine the overall plant phenotypic plasticity. Plant signaling molecules, also known as phytohormones, are fundamental to this process. These molecules act at low concentrations and regulate multiple aspects of plant fitness and development via complex signaling networks. By its nature, phytohormone research lies at the interface between chemistry and biology. Classically, the scientific community has always used synthetic phytohormones and analogs to study hormone functions and responses. However, recent advances in synthetic and combinational chemistry, have allowed a new field, plant chemical biology, to emerge and this has provided a powerful tool with which to study phytohormone function. Plant chemical biology is helping to address some of the most enduring questions in phytohormone research such as: Are there still undiscovered plant hormones? How can we identify novel signaling molecules? How can plants activate specific hormone responses in a tissue-specific manner? How can we modulate hormone responses in one developmental context without inducing detrimental effects on other processes? The chemical genomics approaches rely on the identification of small molecules modulating different biological processes and have recently identified active forms of plant hormones and molecules regulating many aspects of hormone synthesis, transport and response. We envision that the field of chemical genomics will continue to provide novel molecules able to elucidate specific aspects of hormone-mediated mechanisms. In addition, compounds blocking specific responses could uncover how complex biological responses are regulated. As we gain information about such compounds we can design small alterations to the chemical structure to further alter specificity, enhance affinity or modulate the activity of these compounds. PMID:25566283

  16. A Phenotypic Screen in Zebrafish Identifies a Novel Small-Molecule Inducer of Ectopic Tail Formation Suggestive of Alterations in Non-Canonical Wnt/PCP Signaling

    PubMed Central

    Gebruers, Evelien; Cordero-Maldonado, María Lorena; Gray, Alexander I.; Clements, Carol; Harvey, Alan L.; Edrada-Ebel, Ruangelie; de Witte, Peter A. M.; Crawford, Alexander D.; Esguerra, Camila V.

    2013-01-01

    Zebrafish have recently emerged as an attractive model for the in vivo bioassay-guided isolation and characterization of pharmacologically active small molecules of natural origin. We carried out a zebrafish-based phenotypic screen of over 3000 plant-derived secondary metabolite extracts with the goal of identifying novel small-molecule modulators of the BMP and Wnt signaling pathways. One of the bioactive plant extracts identified in this screen – Jasminum gilgianum, an Oleaceae species native to Papua New Guinea – induced ectopic tails during zebrafish embryonic development. As ectopic tail formation occurs when BMP or non-canonical Wnt signaling is inhibited during the tail protrusion process, we suspected a constituent of this extract to act as a modulator of these pathways. A bioassay-guided isolation was carried out on the basis of this zebrafish phenotype, identifying para-coumaric acid methyl ester (pCAME) as the active compound. We then performed an in-depth phenotypic analysis of pCAME-treated zebrafish embryos, including a tissue-specific marker analysis of the secondary tails. We found pCAME to synergize with the BMP-inhibitors dorsomorphin and LDN-193189 in inducing ectopic tails, and causing convergence-extension defects in compound-treated embryos. These results indicate that pCAME may interfere with non-canonical Wnt signaling. Inhibition of Jnk, a downstream target of Wnt/PCP signaling (via morpholino antisense knockdown and pharmacological inhibition with the kinase inhibitor SP600125) phenocopied pCAME-treated embryos. However, immunoblotting experiments revealed pCAME to not directly inhibit Jnk-mediated phosphorylation of c-Jun, suggesting additional targets of SP600125, and/or other pathways, as possibly being involved in the ectopic tail formation activity of pCAME. Further investigation of pCAME’s mechanism of action will help determine this compound’s pharmacological utility. PMID:24349481

  17. Paracrine signaling in a bacterium.

    PubMed

    López, Daniel; Vlamakis, Hera; Losick, Richard; Kolter, Roberto

    2009-07-15

    Cellular differentiation is triggered by extracellular signals that cause target cells to adopt a particular fate. Differentiation in bacteria typically involves autocrine signaling in which all cells in the population produce and respond to the same signal. Here we present evidence for paracrine signaling in bacterial populations-some cells produce a signal to which only certain target cells respond. Biofilm formation in Bacillus involves two centrally important signaling molecules, ComX and surfactin. ComX triggers the production of surfactin. In turn, surfactin causes a subpopulation of cells to produce an extracellular matrix. Cells that produced surfactin were themselves unable to respond to it. Likewise, once surfactin-responsive cells commenced matrix production, they no longer responded to ComX and could not become surfactin producers. Insensitivity to ComX was the consequence of the extracellular matrix as mutant cells unable to make matrix responded to both ComX and surfactin. Our results demonstrate that extracellular signaling was unidirectional, with one subpopulation producing a signal and a different subpopulation responding to it. Paracrine signaling in a bacterial population ensures the maintenance, over generations, of particular cell types even in the presence of molecules that would otherwise cause those cells to differentiate into other cell types.

  18. Biomedical application of MALDI mass spectrometry for small-molecule analysis.

    PubMed

    van Kampen, Jeroen J A; Burgers, Peter C; de Groot, Ronald; Gruters, Rob A; Luider, Theo M

    2011-01-01

    Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is an emerging analytical tool for the analysis of molecules with molar masses below 1,000 Da; that is, small molecules. This technique offers rapid analysis, high sensitivity, low sample consumption, a relative high tolerance towards salts and buffers, and the possibility to store sample on the target plate. The successful application of the technique is, however, hampered by low molecular weight (LMW) matrix-derived interference signals and by poor reproducibility of signal intensities during quantitative analyses. In this review, we focus on the biomedical application of MALDI-MS for the analysis of small molecules and discuss its favorable properties and its challenges as well as strategies to improve the performance of the technique. Furthermore, practical aspects and applications are presented. © 2010 Wiley Periodicals, Inc.

  19. Interplay between sugar and hormone signaling pathways modulate floral signal transduction

    PubMed Central

    Matsoukas, Ianis G.

    2014-01-01

    NOMENCLATURE The following nomenclature will be used in this article: Names of genes are written in italicized upper-case letters, e.g., ABI4.Names of proteins are written in non-italicized upper-case letters, e.g., ABI4.Names of mutants are written in italicized lower-case letters, e.g., abi4. The juvenile-to-adult and vegetative-to-reproductive phase transitions are major determinants of plant reproductive success and adaptation to the local environment. Understanding the intricate molecular genetic and physiological machinery by which environment regulates juvenility and floral signal transduction has significant scientific and economic implications. Sugars are recognized as important regulatory molecules that regulate cellular activity at multiple levels, from transcription and translation to protein stability and activity. Molecular genetic and physiological approaches have demonstrated different aspects of carbohydrate involvement and its interactions with other signal transduction pathways in regulation of the juvenile-to-adult and vegetative-to-reproductive phase transitions. Sugars regulate juvenility and floral signal transduction through their function as energy sources, osmotic regulators and signaling molecules. Interestingly, sugar signaling has been shown to involve extensive connections with phytohormone signaling. This includes interactions with phytohormones that are also important for the orchestration of developmental phase transitions, including gibberellins, abscisic acid, ethylene, and brassinosteroids. This article highlights the potential roles of sugar-hormone interactions in regulation of floral signal transduction, with particular emphasis on Arabidopsis thaliana mutant phenotypes, and suggests possible directions for future research. PMID:25165468

  20. Interplay between sugar and hormone signaling pathways modulate floral signal transduction.

    PubMed

    Matsoukas, Ianis G

    2014-01-01

    NOMENCLATURE The following nomenclature will be used in this article: Names of genes are written in italicized upper-case letters, e.g., ABI4.Names of proteins are written in non-italicized upper-case letters, e.g., ABI4.Names of mutants are written in italicized lower-case letters, e.g., abi4. The juvenile-to-adult and vegetative-to-reproductive phase transitions are major determinants of plant reproductive success and adaptation to the local environment. Understanding the intricate molecular genetic and physiological machinery by which environment regulates juvenility and floral signal transduction has significant scientific and economic implications. Sugars are recognized as important regulatory molecules that regulate cellular activity at multiple levels, from transcription and translation to protein stability and activity. Molecular genetic and physiological approaches have demonstrated different aspects of carbohydrate involvement and its interactions with other signal transduction pathways in regulation of the juvenile-to-adult and vegetative-to-reproductive phase transitions. Sugars regulate juvenility and floral signal transduction through their function as energy sources, osmotic regulators and signaling molecules. Interestingly, sugar signaling has been shown to involve extensive connections with phytohormone signaling. This includes interactions with phytohormones that are also important for the orchestration of developmental phase transitions, including gibberellins, abscisic acid, ethylene, and brassinosteroids. This article highlights the potential roles of sugar-hormone interactions in regulation of floral signal transduction, with particular emphasis on Arabidopsis thaliana mutant phenotypes, and suggests possible directions for future research.

  1. On the Teneurin track: a new synaptic organization molecule emerges

    PubMed Central

    Mosca, Timothy J.

    2015-01-01

    To achieve proper synaptic development and function, coordinated signals must pass between the pre- and postsynaptic membranes. Such transsynaptic signals can be comprised of receptors and secreted ligands, membrane associated receptors, and also pairs of synaptic cell adhesion molecules. A critical open question bridging neuroscience, developmental biology, and cell biology involves identifying those signals and elucidating how they function. Recent work in Drosophila and vertebrate systems has implicated a family of proteins, the Teneurins, as a new transsynaptic signal in both the peripheral and central nervous systems. The Teneurins have established roles in neuronal wiring, but studies now show their involvement in regulating synaptic connections between neurons and bridging the synaptic membrane and the cytoskeleton. This review will examine the Teneurins as synaptic cell adhesion molecules, explore how they regulate synaptic organization, and consider how some consequences of human Teneurin mutations may have synaptopathic origins. PMID:26074772

  2. Homebuilt single-molecule scanning confocal fluorescence microscope studies of single DNA/protein interactions.

    PubMed

    Zheng, Haocheng; Goldner, Lori S; Leuba, Sanford H

    2007-03-01

    Many technical improvements in fluorescence microscopy over the years have focused on decreasing background and increasing the signal to noise ratio (SNR). The scanning confocal fluorescence microscope (SCFM) represented a major improvement in these efforts. The SCFM acquires signal from a thin layer of a thick sample, rejecting light whose origin is not in the focal plane thereby dramatically decreasing the background signal. A second major innovation was the advent of high quantum-yield, low noise, single-photon counting detectors. The superior background rejection of SCFM combined with low-noise, high-yield detectors makes it possible to detect the fluorescence from single-dye molecules. By labeling a DNA molecule or a DNA/protein complex with a donor/acceptor dye pair, fluorescence resonance energy transfer (FRET) can be used to track conformational changes in the molecule/complex itself, on a single molecule/complex basis. In this methods paper, we describe the core concepts of SCFM in the context of a study that uses FRET to reveal conformational fluctuations in individual Holliday junction DNA molecules and nucleosomal particles. We also discuss data processing methods for SCFM.

  3. Acyl-Homoserine Lactone Production in Nitrifying Bacteria of the Genera Nitrosospira, Nitrobacter, and Nitrospira Identified via a Survey of Putative Quorum-Sensing Genes.

    PubMed

    Mellbye, Brett L; Spieck, Eva; Bottomley, Peter J; Sayavedra-Soto, Luis A

    2017-11-15

    The genomes of many bacteria that participate in nitrogen cycling through the process of nitrification contain putative genes associated with acyl-homoserine lactone (AHL) quorum sensing (QS). AHL QS or bacterial cell-cell signaling is a method of bacterial communication and gene regulation and may be involved in nitrogen oxide fluxes or other important phenotypes in nitrifying bacteria. Here, we carried out a broad survey of AHL production in nitrifying bacteria in three steps. First, we analyzed the evolutionary history of AHL synthase and AHL receptor homologs in sequenced genomes and metagenomes of nitrifying bacteria to identify AHL synthase homologs in ammonia-oxidizing bacteria (AOB) of the genus Nitrosospira and nitrite-oxidizing bacteria (NOB) of the genera Nitrococcus , Nitrobacter , and Nitrospira Next, we screened cultures of both AOB and NOB with uncharacterized AHL synthase genes and AHL synthase-negative nitrifiers by a bioassay. Our results suggest that an AHL synthase gene is required for, but does not guarantee, cell density-dependent AHL production under the conditions tested. Finally, we utilized mass spectrometry to identify the AHLs produced by the AOB Nitrosospira multiformis and Nitrosospira briensis and the NOB Nitrobacter vulgaris and Nitrospira moscoviensis as N -decanoyl-l-homoserine lactone (C 10 -HSL), N -3-hydroxy-tetradecanoyl-l-homoserine lactone (3-OH-C 14 -HSL), a monounsaturated AHL (C 10:1 -HSL), and N -octanoyl-l-homoserine lactone (C 8 -HSL), respectively. Our survey expands the list of AHL-producing nitrifiers to include a representative of Nitrospira lineage II and suggests that AHL production is widespread in nitrifying bacteria. IMPORTANCE Nitrification, the aerobic oxidation of ammonia to nitrate via nitrite by nitrifying microorganisms, plays an important role in environmental nitrogen cycling from agricultural fertilization to wastewater treatment. The genomes of many nitrifying bacteria contain genes associated with

  4. Bacterial quorum sensing and nitrogen cycling in rhizosphere soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeAngelis, K.M.; Lindow, S.E.; Firestone, M.K.

    2008-10-01

    Plant photosynthate fuels carbon-limited microbial growth and activity, resulting in increased rhizosphere nitrogen (N)-mineralization. Most soil organic N is macromolecular (chitin, protein, nucleotides); enzymatic depolymerization is likely rate-limiting for plant N accumulation. Analyzing Avena (wild oat) planted in microcosms containing sieved field soil, we observed increased rhizosphere chitinase and protease specific activities, bacterial cell densities, and dissolved organic nitrogen (DON) compared to bulk soil. Low-molecular weight DON (<3000 Da) was undetectable in bulk soil but comprised 15% of rhizosphere DON. Extracellular enzyme production in many bacteria requires quorum sensing (QS), cell-density dependent group behavior. Because proteobacteria are considered major rhizospheremore » colonizers, we assayed the proteobacterial QS signals acyl-homoserine lactones (AHLs), which were significantly increased in the rhizosphere. To investigate the linkage between soil signaling and N cycling, we characterized 533 bacterial isolates from Avena rhizosphere: 24% had chitinase or protease activity and AHL production; disruption of QS in 7 of 8 eight isolates disrupted enzyme activity. Many {alpha}-Proteobacteria were newly found with QS-controlled extracellular enzyme activity. Enhanced specific activities of N-cycling enzymes accompanied by bacterial density-dependent behaviors in rhizosphere soil gives rise to the hypothesis that QS could be a control point in the complex process of rhizosphere N-mineralization.« less

  5. Two-colour dip spectroscopy of jet-cooled molecules

    NASA Astrophysics Data System (ADS)

    Ito, Mitsuo

    In optical-optical double resonance spectroscopy, the resonance transition from an intermediate state to a final state can be detected by a dip of the signal (fluorescence or ion) associated with the intermediate state. This method probing the signal of the intermediate state may be called `two-colour dip spectroscopy'. Various kinds of two-colour dip spectroscopy such as two-colour fluorescence/ion dip spectroscopy, two-colour ionization dip spectroscopy employing stimulated emission, population labelling spectroscopy and mass-selected ion dip spectroscopy with dissociation were briefly described, paying special attention to their characteristics in excitation, detection and application. They were extensively and successfully applied to jet-cooled large molecules and provided us with new useful information on the energy and dynamics of excited molecules.

  6. Connexin Channel Permeability to Cytoplasmic Molecules

    PubMed Central

    Harris, Andrew L.

    2007-01-01

    Connexin channels are known to be permeable to a variety of cytoplasmic molecules. The first observation of second messenger junctional permeability, made ∼30 years ago, sparked broad interest in gap junction channels as mediators of intercellular molecular signaling. Since then, much has been learned about the diversity of connexin channels with regard to isoform diversity, tissue and developmental distribution, modes of channel regulation, assembly and expression, biochemical modification and permeability, all of which appear to be dynamically regulated. This information has expanded the potential roles of connexin channels in development, physiology and disease, and made their elucidation much more complex - 30 years ago such an orchestra of junctional dynamics was unanticipated. Only recently, however, have investigators been able to directly address, in this more complex framework, the key issue: What specific biological molecules, second messengers and others, are able to permeate the various types of connexin channels, and how well? An important related issue, given the ever-growing list of connexin-related pathologies, is how these permeabilities are altered by disease-causing connexin mutations. Together, many studies show that a variety of cytoplasmic molecules can permeate the different types of connexin channels. A few studies reveal differences in permeation by different molecules through a particular type of connexin channel, and differences in permeation by a particular molecule through different types of connexin channels. This article describes and evaluates the various methods used to obtain these data, presents an annotated compilation of the results, and discusses the findings in the context of what can be inferred about mechanism of selectivity and potential relevance to signaling. The data strongly suggest that highly specific interactions take place between connexin pores and specific biological molecular permeants, and that those

  7. Optimal Background Estimators in Single-Molecule FRET Microscopy.

    PubMed

    Preus, Søren; Hildebrandt, Lasse L; Birkedal, Victoria

    2016-09-20

    Single-molecule total internal reflection fluorescence (TIRF) microscopy constitutes an umbrella of powerful tools that facilitate direct observation of the biophysical properties, population heterogeneities, and interactions of single biomolecules without the need for ensemble synchronization. Due to the low signal/noise ratio in single-molecule TIRF microscopy experiments, it is important to determine the local background intensity, especially when the fluorescence intensity of the molecule is used quantitatively. Here we compare and evaluate the performance of different aperture-based background estimators used particularly in single-molecule Förster resonance energy transfer. We introduce the general concept of multiaperture signatures and use this technique to demonstrate how the choice of background can affect the measured fluorescence signal considerably. A new, to our knowledge, and simple background estimator is proposed, called the local statistical percentile (LSP). We show that the LSP background estimator performs as well as current background estimators at low molecular densities and significantly better in regions of high molecular densities. The LSP background estimator is thus suited for single-particle TIRF microscopy of dense biological samples in which the intensity itself is an observable of the technique. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. Pseudomonas aeruginosa quorum sensing molecules correlate with clinical status in cystic fibrosis.

    PubMed

    Barr, Helen L; Halliday, Nigel; Cámara, Miguel; Barrett, David A; Williams, Paul; Forrester, Douglas L; Simms, Rebecca; Smyth, Alan R; Honeybourne, David; Whitehouse, Joanna L; Nash, Edward F; Dewar, Jane; Clayton, Andrew; Knox, Alan J; Fogarty, Andrew W

    2015-10-01

    Pseudomonas aeruginosa produces quorum sensing signal molecules that are potential biomarkers for infection.A prospective study of 60 cystic fibrosis patients with chronic P. aeruginosa, who required intravenous antibiotics for pulmonary exacerbations, was undertaken. Clinical measurements and biological samples were obtained at the start and end of the treatment period. Additional data were available for 29 of these patients when they were clinically stable.Cross-sectionally, quorum sensing signal molecules were detectable in the sputum, plasma and urine of 86%, 75% and 83% patients, respectively. They were positively correlated between the three biofluids. Positive correlations were observed for most quorum sensing signal molecules in sputum, plasma and urine, with quantitative measures of pulmonary P. aeruginosa load at the start of a pulmonary exacerbation. Plasma concentrations of 2-nonyl-4-hydroxy-quinoline (NHQ) were significantly higher at the start of a pulmonary exacerbation compared to clinical stability (p<0.01). Following the administration of systemic antibiotics, plasma 2-heptyl-4-hydroxyquinoline (p=0.02) and NHQ concentrations (p<0.01) decreased significantly.In conclusion, quorum sensing signal molecules are detectable in cystic fibrosis patients with pulmonary P. aeruginosa infection and are positively correlated with quantitative measures of P. aeruginosa. NHQ correlates with clinical status and has potential as a novel biomarker for P. aeruginosa infection. Copyright ©ERS 2015.

  9. Pseudomonas aeruginosa quorum sensing molecules correlate with clinical status in cystic fibrosis

    PubMed Central

    Halliday, Nigel; Cámara, Miguel; Barrett, David A.; Williams, Paul; Forrester, Douglas L.; Simms, Rebecca; Smyth, Alan R.; Honeybourne, David; Whitehouse, Joanna L.; Nash, Edward F.; Dewar, Jane; Clayton, Andrew; Knox, Alan J.; Fogarty, Andrew W.

    2015-01-01

    Pseudomonas aeruginosa produces quorum sensing signal molecules that are potential biomarkers for infection. A prospective study of 60 cystic fibrosis patients with chronic P. aeruginosa, who required intravenous antibiotics for pulmonary exacerbations, was undertaken. Clinical measurements and biological samples were obtained at the start and end of the treatment period. Additional data were available for 29 of these patients when they were clinically stable. Cross-sectionally, quorum sensing signal molecules were detectable in the sputum, plasma and urine of 86%, 75% and 83% patients, respectively. They were positively correlated between the three biofluids. Positive correlations were observed for most quorum sensing signal molecules in sputum, plasma and urine, with quantitative measures of pulmonary P. aeruginosa load at the start of a pulmonary exacerbation. Plasma concentrations of 2-nonyl-4-hydroxy-quinoline (NHQ) were significantly higher at the start of a pulmonary exacerbation compared to clinical stability (p<0.01). Following the administration of systemic antibiotics, plasma 2-heptyl-4-hydroxyquinoline (p=0.02) and NHQ concentrations (p<0.01) decreased significantly. In conclusion, quorum sensing signal molecules are detectable in cystic fibrosis patients with pulmonary P. aeruginosa infection and are positively correlated with quantitative measures of P. aeruginosa. NHQ correlates with clinical status and has potential as a novel biomarker for P. aeruginosa infection. PMID:26022946

  10. Extracellular Matrix and Redox Signaling in Cellular Responses to Stress.

    PubMed

    Roberts, David D

    2017-10-20

    Cells in multicellular organisms communicate extensively with neighboring cells and distant organs using a variety of secreted proteins and small molecules. Cells also reside in a structural extracellular matrix (ECM), and changes in its composition, mechanical properties, and post-translational modifications provide additional layers of communication. This Forum addresses emerging mechanisms by which redox signaling controls and is controlled by changes in the ECM, focusing on the roles of matricellular proteins. These proteins engage specific cell surface signaling receptors, integrins, and proteoglycans to regulate the biosynthesis and catabolism of redox signaling molecules and the activation of their signal transducers. These signaling pathways, in turn, regulate the composition of ECM and its function. Covalent post-translational modifications of ECM by redox molecules further regulate its structure and function. Recent studies of acute injuries and chronic disease have identified important pathophysiological roles for this cross-talk and new therapeutic opportunities. Antioxid. Redox Signal. 27, 771-773.

  11. Approach for targeting Ras with small molecules that activate SOS-mediated nucleotide exchange.

    PubMed

    Burns, Michael C; Sun, Qi; Daniels, R Nathan; Camper, DeMarco; Kennedy, J Phillip; Phan, Jason; Olejniczak, Edward T; Lee, Taekyu; Waterson, Alex G; Rossanese, Olivia W; Fesik, Stephen W

    2014-03-04

    Aberrant activation of the small GTPase Ras by oncogenic mutation or constitutively active upstream receptor tyrosine kinases results in the deregulation of cellular signals governing growth and survival in ∼30% of all human cancers. However, the discovery of potent inhibitors of Ras has been difficult to achieve. Here, we report the identification of small molecules that bind to a unique pocket on the Ras:Son of Sevenless (SOS):Ras complex, increase the rate of SOS-catalyzed nucleotide exchange in vitro, and modulate Ras signaling pathways in cells. X-ray crystallography of Ras:SOS:Ras in complex with these molecules reveals that the compounds bind in a hydrophobic pocket in the CDC25 domain of SOS adjacent to the Switch II region of Ras. The structure-activity relationships exhibited by these compounds can be rationalized on the basis of multiple X-ray cocrystal structures. Mutational analyses confirmed the functional relevance of this binding site and showed it to be essential for compound activity. These molecules increase Ras-GTP levels and disrupt MAPK and PI3K signaling in cells at low micromolar concentrations. These small molecules represent tools to study the acute activation of Ras and highlight a pocket on SOS that may be exploited to modulate Ras signaling.

  12. Discovery and development of small molecule SHIP phosphatase modulators.

    PubMed

    Viernes, Dennis R; Choi, Lydia B; Kerr, William G; Chisholm, John D

    2014-07-01

    Inositol phospholipids play an important role in the transfer of signaling information across the cell membrane in eukaryotes. These signals are often governed by the phosphorylation patterns on the inositols, which are mediated by a number of inositol kinases and phosphatases. The src homology 2 (SH2) containing inositol 5-phosphatase (SHIP) plays a central role in these processes, influencing signals delivered through the PI3K/Akt/mTOR pathway. SHIP modulation by small molecules has been implicated as a treatment in a number of human disease states, including cancer, inflammatory diseases, diabetes, atherosclerosis, and Alzheimer's disease. In addition, alteration of SHIP phosphatase activity may provide a means to facilitate bone marrow transplantation and increase blood cell production. This review discusses the cellular signaling pathways and protein-protein interactions that provide the molecular basis for targeting the SHIP enzyme in these disease states. In addition, a comprehensive survey of small molecule modulators of SHIP1 and SHIP2 is provided, with a focus on the structure, potency, selectivity, and solubility properties of these compounds. © 2013 Wiley Periodicals, Inc.

  13. ROS-dependent signal transduction

    PubMed Central

    Reczek, Colleen R; Chandel, Navdeep S

    2014-01-01

    Reactive oxygen species (ROS) are no longer viewed as just a toxic by-product of mitochondrial respiration, but are now appreciated for their role in regulating a myriad of cellular signaling pathways. H2O2, a type of ROS, is a signaling molecule that confers target specificity through thiol oxidation. Although redox-dependent signaling has been implicated in numerous cellular processes, the mechanism by which the ROS signal is transmitted to its target protein in the face of highly reactive and abundant antioxidants is not fully understood. In this review of redox-signaling biology, we discuss the possible mechanisms for H2O2-dependent signal transduction. PMID:25305438

  14. Combining nanofluidics and plasmonics for single molecule detection

    NASA Astrophysics Data System (ADS)

    West, Melanie M.

    Single molecule detection is limited by the small scattering cross-section of molecules which leads to weak optical signals that can be obscured by background noise. The combination of plasmonics and nanofluidics in an integrated nano-device has the potential to provide the signal enhancement necessary for the detection of single molecules. The purpose of this investigation was to optimize the fabrication of an optofluidic device that integrates a nanochannel with a plasmonic bowtie antenna. The fluidic structure of the device was fabricated using UV-nanoimprint lithography, and the gold plasmonic antennas were fabricated using a shadow evaporation and lift-off process. The effect of electron beam lithography doses on the resolution of antenna-nanochannel configurations was studied to minimize antenna gap size while maintaining the integrity of the imprinted features. The smallest antenna gap size that was achieved was 46 nm. The antennas were characterized using dark field spectroscopy to find the resonance shift, which indicated the appropriate range for optical signal enhancement. The dark field scattering results showed antennas with a broad and well-defined resonance shift that ranged from 650--800 nm. The Raman scattering results showed the highest enhancement factor (EF = 2) for antennas with an "inverted configuration," which involved having the triangles of the antenna facing back-to-back rather than the more conventional tip-to-tip bowtie arrangement.

  15. Attenuation of Pseudomonas aeruginosa virulence by marine invertebrate-derived Streptomyces sp.

    PubMed

    Naik, D N; Wahidullah, S; Meena, R M

    2013-03-01

    The study aimed to discover quorum sensing (QS) inhibitors from marine sponge-derived actinomycetes and analyse its inhibitory activities against QS-mediated virulence factors in Pseudomonas aeruginosa. Seventy-two actinomycetes isolated from marine invertebrates collected from the western coast of India were screened against the QS indicator strain Chromobacterium violaceum CV12472. Methanol extracts of 12 actinomycetes showing inhibition of violacein production were accessed for downregulation of QS-mediated virulence factors like swarming, biofilm formation, pyocyanin, rhamnolipid and LasA production in Ps. aeruginosa ATCC 27853. The isolates NIO 10068, NIO 10058 and NIO 10090 exhibited very good anti-QS activity, with NIO 10068 being the most promising one. Mass spectrometric analysis of NIO 10068 methanol extract revealed the presence of cinnamic acid and linear dipeptides proline-glycine and N-amido-α-proline in the active extract. Detailed investigation suggested that although linear dipeptide Pro-Gly is to some extent responsible for the observed biological activity, cinnamic acid seems to be the main compound responsible for it. Marine-derived actinomycetes are a potential storehouse for QS inhibitors. This is the first report not only on marine sponge-associated Streptomyces for anti-QS in Ps. aeruginosa but also on cinnamic acid and proline-derived linear dipeptides proline-glycine as QS inhibitors. The results reveal that marine-derived actinomycetes may not only play a role in the defensive mechanism of their host but also lead to new molecules useful in the development of novel antivirulence drugs. © 2012 The Society for Applied Microbiology.

  16. Targeting of adhesion molecules as a therapeutic strategy in multiple myeloma.

    PubMed

    Neri, Paola; Bahlis, Nizar J

    2012-09-01

    Multiple myeloma (MM) is a clonal disorder of plasma cells that remains, for the most part, incurable despite the advent of several novel therapeutic agents. Tumor cells in this disease are cradled within the bone marrow (BM) microenvironment by an array of adhesive interactions between the BM cellular residents, the surrounding extracellular matrix (ECM) components such as fibronectin (FN), laminin, vascular cell adhesion molecule-1 (VCAM-1), proteoglycans, collagens and hyaluronan, and a variety of adhesion molecules on the surface of MM cells including integrins, hyaluronan receptors (CD44 and RHAMM) and heparan sulfate proteoglycans. Several signaling responses are activated by these interactions, affecting the survival, proliferation and migration of MM cells. An important consequence of these direct adhesive interactions between the BM/ECM and MM cells is the development of drug resistance. This phenomenon is termed "cell adhesion-mediated drug resistance" (CAM-DR) and it is thought to be one of the major mechanisms by which MM cells escape the cytotoxic effects of therapeutic agents. This review will focus on the adhesion molecules involved in the cross-talk between MM cells and components of the BM microenvironment. The complex signaling networks downstream of these adhesive molecules mediated by direct ligand binding or inside-out soluble factors signaling will also be reviewed. Finally, novel therapeutic strategies targeting these molecules will be discussed. Identification of the mediators of MM-BM interaction is essential to understand MM biology and to elucidate novel therapeutic targets for this disease.

  17. IL-6 signaling contributes to cisplatin resistance in non-small cell lung cancer via the up-regulation of anti-apoptotic and DNA repair associated molecules.

    PubMed

    Duan, Shanzhou; Tsai, Ying; Keng, Peter; Chen, Yongbing; Lee, Soo Ok; Chen, Yuhchyau

    2015-09-29

    Cisplatin-based chemotherapy is currently the most effective treatment regimen for non-small cell lung cancer (NSCLC), but eventually tumor resistance develops which limits its success. The potential implication of IL-6 signaling in the cisplatin resistance of NSCLC was explored by testing whether NSCLC cells with different levels of intracellular IL-6 show different responses to the cytotoxic treatment of cisplatin. When the cisplatin cytotoxicity of the IL-6 knocked down human NSCLC cells (A549IL-6si and H157IL-6si) were compared with their corresponding scramble control cells (A549sc and H157sc), higher cisplatin cytotoxicity was found in IL-6 si cells than sc cells. Subcutaneous xenograft mouse models were developed using a pair of A549sc and A549IL-6si cells. When the tumor grew to about 400 mm2, mice were treated with cisplatin and tumor regression was monitored. Higher tumor regression was detected in the A549IL-6si xenografts compared to A549sc xenografts following cisplatin treatment. Immunostaining study results from tumor tissues also supported this finding. Expression of anti-apoptotic proteins Bcl-2 and Mcl-1 and DNA repair associated molecules ATM, CHK1, TP73, p53, and ERCC1 were significantly up regulated in cisplatin-treated A549sc and H157sc cells, but no increase was detected in A549IL-6si and H157IL-6si cells. Further inhibitor studies revealed that up regulation of these molecules by IL-6 may be through activation of IL-6 downstream signaling pathways like Akt, MAPK, Stat3, and Erk. These results provide potential for combining cisplatin and inhibitors of IL-6 signaling or its downstream signaling pathway as a future therapeutic approach in preventing development of cisplatin resistant NSCLC tumors.

  18. Mitochondrial reactive oxygen species (ROS) as signaling molecules of intracellular pathways triggered by the cardiac renin-angiotensin II-aldosterone system (RAAS)

    PubMed Central

    De Giusti, V. C.; Caldiz, C. I.; Ennis, I. L.; Pérez, N. G.; Cingolani, H. E.; Aiello, E. A.

    2013-01-01

    Mitochondria represent major sources of basal reactive oxygen species (ROS) production of the cardiomyocyte. The role of ROS as signaling molecules that mediate different intracellular pathways has gained increasing interest among physiologists in the last years. In our lab, we have been studying the participation of mitochondrial ROS in the intracellular pathways triggered by the renin-angiotensin II-aldosterone system (RAAS) in the myocardium during the past few years. We have demonstrated that acute activation of cardiac RAAS induces mitochondrial ATP-dependent potassium channel (mitoKATP) opening with the consequent enhanced production of mitochondrial ROS. These oxidant molecules, in turn, activate membrane transporters, as sodium/hydrogen exchanger (NHE-1) and sodium/bicarbonate cotransporter (NBC) via the stimulation of the ROS-sensitive MAPK cascade. The stimulation of such effectors leads to an increase in cardiac contractility. In addition, it is feasible to suggest that a sustained enhanced production of mitochondrial ROS induced by chronic cardiac RAAS, and hence, chronic NHE-1 and NBC stimulation, would also result in the development of cardiac hypertrophy. PMID:23755021

  19. Mitochondrial reactive oxygen species (ROS) as signaling molecules of intracellular pathways triggered by the cardiac renin-angiotensin II-aldosterone system (RAAS).

    PubMed

    De Giusti, V C; Caldiz, C I; Ennis, I L; Pérez, N G; Cingolani, H E; Aiello, E A

    2013-01-01

    Mitochondria represent major sources of basal reactive oxygen species (ROS) production of the cardiomyocyte. The role of ROS as signaling molecules that mediate different intracellular pathways has gained increasing interest among physiologists in the last years. In our lab, we have been studying the participation of mitochondrial ROS in the intracellular pathways triggered by the renin-angiotensin II-aldosterone system (RAAS) in the myocardium during the past few years. We have demonstrated that acute activation of cardiac RAAS induces mitochondrial ATP-dependent potassium channel (mitoKATP) opening with the consequent enhanced production of mitochondrial ROS. These oxidant molecules, in turn, activate membrane transporters, as sodium/hydrogen exchanger (NHE-1) and sodium/bicarbonate cotransporter (NBC) via the stimulation of the ROS-sensitive MAPK cascade. The stimulation of such effectors leads to an increase in cardiac contractility. In addition, it is feasible to suggest that a sustained enhanced production of mitochondrial ROS induced by chronic cardiac RAAS, and hence, chronic NHE-1 and NBC stimulation, would also result in the development of cardiac hypertrophy.

  20. Discovery of small molecule inhibitors of the Wnt/β-catenin signaling pathway by targeting β-catenin/Tcf4 interactions.

    PubMed

    Yan, Maocai; Li, Guanqun; An, Jing

    2017-06-01

    The Wnt/β-catenin signaling pathway typically shows aberrant activation in various cancer cells, especially colorectal cancer cells. This signaling pathway regulates the expression of a variety of tumor-related proteins, including c-myc and cyclin D1, and plays essential roles in tumorigenesis and in the development of many cancers. Small molecules that block the interactions between β-catenin and Tcf4, a downstream stage of activation of the Wnt/β-catenin signaling pathway, could efficiently cut off this signal transduction and thereby act as a novel class of anticancer drugs. This paper reviews the currently reported inhibitors that target β-catenin/Tcf4 interactions, focusing on the discovery approaches taken in the design of these inhibitors and their bioactivities. A brief perspective is then shared on the future discovery and development of this class of inhibitors. Impact statement This mini-review summarized the current knowledge of inhibitors of interactions of beta-catenin/Tcf4 published to date according to their discovery approaches, and discussed their in vitro and in vivo activities, selectivities, and pharmacokinetic properties. Several reviews presently available now in this field describe modulators of the Wnt/beta-catenin pathway, but are generally focused on the bioactivities of these inhibitors. By contrast, this review focused on the drug discovery approaches taken in identifying these types of inhibitors and provided our perspective on further strategies for future drug discoveries. This review also integrated many recently published and important works on highly selective inhibitors as well as rational drug design. We believe that the findings and strategies summarized in this review have broad implications and will be of interest throughout the biochemical and pharmaceutical research community.

  1. Meat and Livestock Association Plenary Lecture 2005. Oocyte signalling molecules and their effects on reproduction in ruminants.

    PubMed

    McNatty, Kenneth P; Lawrence, Stephen; Groome, Nigel P; Meerasahib, Mohammed F; Hudson, Norma L; Whiting, Lynda; Heath, Derek A; Juengel, Jennifer L

    2006-01-01

    signalling molecules have profound effects on reproduction in mammals, including rodents, humans and ruminants. Moreover, in vivo manipulation of these oocyte signalling molecules provides new opportunities for the management of the fertility of ruminants.

  2. Theory of Microwave 5-WAVE Mixing of Chiral Molecules

    NASA Astrophysics Data System (ADS)

    Lehmann, Kevin

    2016-06-01

    Microwave three-wave mixing spectroscopy produces a Free Induction Decay Field that is proportional to the enantiomeric excess ( ee ) of a sample of chiral molecules. However, since there is an unavoidable loss of measured signal strength due to dephasing of the molecular emission, it is not possible to quantitate this ee unless one has an enantiomeric pure sample of the same molecule with which to compare the amplitude of the signal of a sample of unknown ee. In this talk, I will demonstrate that it is in principle possible to use a 5 wave mixing experiment, based upon AC Stark shifts produced by nearly resonant fields, to produce a differential splitting of a transition such that one has frequency resolved peaks for the two enantiomers. The peaks corresponding to the two enantiomers can be switched by phase cycling of the fields. This method is promising to allow the quantitative measurement of molecular ee's by microwave spectroscopy. There are experimental issues that make such an experiment difficult. It will likely be required to use of skimmed molecular beam (which will substantially reduce the number of molecular emitters and thus signal level) in order to reduce the field amplitude and phase inhomogeneity of the excited molecules.

  3. Protist predation can favour cooperation within bacterial species

    PubMed Central

    Friman, Ville-Petri; Diggle, Stephen P.; Buckling, Angus

    2013-01-01

    Here, we studied how protist predation affects cooperation in the opportunistic pathogen bacterium Pseudomonas aeruginosa, which uses quorum sensing (QS) cell-to-cell signalling to regulate the production of public goods. By competing wild-type bacteria with QS mutants (cheats), we show that a functioning QS system confers an elevated resistance to predation. Surprisingly, cheats were unable to exploit this resistance in the presence of cooperators, which suggests that resistance does not appear to result from activation of QS-regulated public goods. Instead, elevated resistance of wild-type bacteria was related to the ability to form more predation-resistant biofilms. This could be explained by the expression of QS-regulated resistance traits in densely populated biofilms and floating cell aggregations, or alternatively, by a pleiotropic cost of cheating where less resistant cheats are selectively removed from biofilms. These results show that trophic interactions among species can maintain cooperation within species, and have further implications for P. aeruginosa virulence in environmental reservoirs by potentially enriching the cooperative and highly infective strains with functional QS system. PMID:23945212

  4. Glycosylation Alters Dimerization Properties of a Cell-surface Signaling Protein, Carcinoembryonic Antigen-related Cell Adhesion Molecule 1 (CEACAM1)*

    PubMed Central

    Zhuo, You; Yang, Jeong-Yeh; Moremen, Kelley W.; Prestegard, James H.

    2016-01-01

    Human carcinoembryonic antigen-related cell adhesion molecule 1 (C?/Au: EACAM1) is a cell-surface signaling molecule involved in cell adhesion, proliferation, and immune response. It is also implicated in cancer angiogenesis, progression, and metastasis. This diverse set of effects likely arises as a result of the numerous homophilic and heterophilic interactions that CEACAM1 can have with itself and other molecules. Its N-terminal Ig variable (IgV) domain has been suggested to be a principal player in these interactions. Previous crystal structures of the β-sandwich-like IgV domain have been produced using Escherichia coli-expressed material, which lacks native glycosylation. These have led to distinctly different proposals for dimer interfaces, one involving interactions of ABED β-strands and the other involving GFCC′C″ β-strands, with the former burying one prominent glycosylation site. These structures raise questions as to which form may exist in solution and what the effect of glycosylation may have on this form. Here, we use NMR cross-correlation measurements to examine the effect of glycosylation on CEACAM1-IgV dimerization and use residual dipolar coupling (RDC) measurements to characterize the solution structure of the non-glycosylated form. Our findings demonstrate that even addition of a single N-linked GlcNAc at potential glycosylation sites inhibits dimer formation. Surprisingly, RDC data collected on E. coli expressed material in solution indicate that a dimer using the non-glycosylated GFCC′C″ interface is preferred even in the absence of glycosylation. The results open new questions about what other factors may facilitate dimerization of CEACAM1 in vivo, and what roles glycosylation may play in heterophylic interactions. PMID:27471271

  5. Chromosomal Rainbows detect Oncogenic Rearrangements of Signaling Molecules in Thyroid Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, Benjamin; Jossart, Gregg H.; Ito, Yuko

    2010-08-19

    Altered signal transduction can be considered a hallmark of many solid tumors. In thyroid cancers the receptor tyrosine kinase (rtk) genes NTRK1 (Online Mendelian Inheritance in Man = OMIM *191315, also known as 'TRKA'), RET ('Rearranged during Transfection protooncogene', OMIM *164761) and MET (OMIM *164860) have been reported as activated, rearranged or overexpressed. In many cases, a combination of cytogenetic and molecular techniques allows elucidation of cellular changes that initiate tumor development and progression. While the mechanisms leading to overexpression of the rtk MET gene remain largely unknown, a variety of chromosomal rearrangements of the RET or NTKR1 gene couldmore » be demonstrated in thyroid cancer. Abnormal expressions in these tumors seem to follow a similar pattern: the rearrangement translocates the 3'-end of the rtk gene including the entire catalytic domain to an expressed gene leading to a chimeric RNA and protein with kinase activity. Our research was prompted by an increasing number of reports describing translocations involving ret and previously unknown translocation partners. We developed a high resolution technique based on fluorescence in situ hybridization (FISH) to allow rapid screening for cytogenetic rearrangements which complements conventional chromosome banding analysis. Our technique applies simultaneous hybridization of numerous probes labeled with different reporter molecules which are distributed along the target chromosome allowing the detection of cytogenetic changes at near megabase-pair (Mbp) resolution. Here, we report our results using a probe set specific for human chromosome 10, which is altered in a significant portion of human thyroid cancers (TC's). While rendering accurate information about the cytogenetic location of rearranged elements, our multi-locus, multi-color analysis was developed primarily to overcome limitations of whole chromosome painting (WCP) and chromosome banding techniques for fine

  6. Liposomes containing monophosphoryl lipid A and QS-21 serve as an effective adjuvant for soluble circumsporozoite protein malaria vaccine FMP013.

    PubMed

    Genito, Christopher J; Beck, Zoltan; Phares, Timothy W; Kalle, Fanta; Limbach, Keith J; Stefaniak, Maureen E; Patterson, Noelle B; Bergmann-Leitner, Elke S; Waters, Norman C; Matyas, Gary R; Alving, Carl R; Dutta, Sheetij

    2017-07-05

    Malaria caused by Plasmodium falciparum continues to threaten millions of people living in the tropical parts of the world. A vaccine that confers sterile and life-long protection remains elusive despite more than 30years of effort and resources invested in solving this problem. Antibodies to a malaria vaccine candidate circumsporozoite protein (CSP) can block invasion and can protect humans against malaria. We have manufactured the Falciparum Malaria Protein-013 (FMP013) vaccine based on the nearly full-length P. falciparum CSP 3D7 strain sequence. We report here immunogenicity and challenge data on FMP013 antigen in C57BL/6 mice formulated with two novel adjuvants of the Army Liposome Formulation (ALF) series and a commercially available adjuvant Montanide ISA 720 (Montanide) as a control. ALF is a liposomal adjuvant containing a synthetic monophosphoryl lipid A (3D-PHAD®). In our study, FMP013 was adjuvanted with ALF alone, ALF containing aluminum hydroxide (ALFA) or ALF containing QS-21 (ALFQ). Adjuvants ALF and ALFA induced similar antibody titers and protection against transgenic parasite challenge that were comparable to Montanide. ALFQ was superior to the other three adjuvants as it induced higher antibody titers with improved boosting after the third immunization, higher serum IgG2c titers, and enhanced protection. FMP013+ALFQ also augmented the numbers of splenic germinal center-derived activated B-cells and antibody secreting cells compared to Montanide. Further, FMP013+ALFQ induced antigen-specific IFN-γ ELISPOT activity, CD4 + T-cells and a T H 1-biased cytokine profile. These results demonstrate that soluble CSP can induce a potent and sterile protective immune response when formulated with the QS-21 containing adjuvant ALFQ. Comparative mouse immunogenicity data presented here were used as the progression criteria for an ongoing non-human primate study and a regulatory toxicology study in preparation for a controlled human malaria infection (CHMI

  7. The quality of health care and patient satisfaction: an exploratory investigation of the 5Qs model at some Egyptian and Jordanian medical clinics.

    PubMed

    Zineldin, Mosad

    2006-01-01

    To examine the major factors affecting patients' perception of cumulative satisfaction and to address the question whether patients in Egypt and Jordan evaluate quality of health care similarly or differently. A conceptual model including behavioural dimensions of patient-physician relationships and patient satisfaction has been developed. As the empirical research setting, this study concerns three hospitals in Egypt and Jordan. The survey instrument in a questionnaire form was designed to achieve the research objectives. A total of 48 items (attributes) of the newly developed five quality dimensions were identified to be the most relevant. A total of 224 complete and usable questionnaires were received from the in-patients. Hospital C has above-average total and dimensional qualities and patients are the most satisfied in accordance with all dimensions of services. Hospitals A and B have under-average total qualities as the majority of patients are not satisfied with services. Comparing hospitals A and B, in the majority of dimensions (with the exception of Q5), the quality in hospital B is higher than in hospital A. Patients' satisfaction with different service quality dimensions is correlated with their willingness to recommend the hospital to others. A cure to improve the quality for health-care services can be an application of total relationship management and the 5Qs model together with customer orientation strategy. The result can be used by the hospitals to reengineer and redesign creatively their quality management processes and the future direction of their more effective health-care quality strategies. In this research a study is described involving a new instrument and a new method which assure a reasonable level of relevance, validity and reliability, while being explicitly change-oriented. This study argues that a patient's satisfaction is a cumulative construct, summing satisfaction with five different qualities (5Qs) of the hospital: quality of

  8. ROS-dependent signal transduction.

    PubMed

    Reczek, Colleen R; Chandel, Navdeep S

    2015-04-01

    Reactive oxygen species (ROS) are no longer viewed as just a toxic by-product of mitochondrial respiration, but are now appreciated for their role in regulating a myriad of cellular signaling pathways. H2O2, a type of ROS, is a signaling molecule that confers target specificity through thiol oxidation. Although redox-dependent signaling has been implicated in numerous cellular processes, the mechanism by which the ROS signal is transmitted to its target protein in the face of highly reactive and abundant antioxidants is not fully understood. In this review of redox-signaling biology, we discuss the possible mechanisms for H2O2-dependent signal transduction. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Signal Transduction Pathways of TNAP: Molecular Network Analyses.

    PubMed

    Négyessy, László; Györffy, Balázs; Hanics, János; Bányai, Mihály; Fonta, Caroline; Bazsó, Fülöp

    2015-01-01

    Despite the growing body of evidence pointing on the involvement of tissue non-specific alkaline phosphatase (TNAP) in brain function and diseases like epilepsy and Alzheimer's disease, our understanding about the role of TNAP in the regulation of neurotransmission is severely limited. The aim of our study was to integrate the fragmented knowledge into a comprehensive view regarding neuronal functions of TNAP using objective tools. As a model we used the signal transduction molecular network of a pyramidal neuron after complementing with TNAP related data and performed the analysis using graph theoretic tools. The analyses show that TNAP is in the crossroad of numerous pathways and therefore is one of the key players of the neuronal signal transduction network. Through many of its connections, most notably with molecules of the purinergic system, TNAP serves as a controller by funnelling signal flow towards a subset of molecules. TNAP also appears as the source of signal to be spread via interactions with molecules involved among others in neurodegeneration. Cluster analyses identified TNAP as part of the second messenger signalling cascade. However, TNAP also forms connections with other functional groups involved in neuronal signal transduction. The results indicate the distinct ways of involvement of TNAP in multiple neuronal functions and diseases.

  10. Chemical modulation of glycerolipid signaling and metabolic pathways

    PubMed Central

    Scott, Sarah A.; Mathews, Thomas P.; Ivanova, Pavlina T.; Lindsley, Craig W.; Brown, H. Alex

    2014-01-01

    Thirty years ago, glycerolipids captured the attention of biochemical researchers as novel cellular signaling entities. We now recognize that these biomolecules occupy signaling nodes critical to a number of physiological and pathological processes. Thus, glycerolipid-metabolizing enzymes present attractive targets for new therapies. A number of fields—ranging from neuroscience and cancer to diabetes and obesity—have elucidated the signaling properties of glycerolipids. The biochemical literature teems with newly emerging small molecule inhibitors capable of manipulating glycerolipid metabolism and signaling. This ever-expanding pool of chemical modulators appears daunting to those interested in exploiting glycerolipid-signaling pathways in their model system of choice. This review distills the current body of literature surrounding glycerolipid metabolism into a more approachable format, facilitating the application of small molecule inhibitors to novel systems. PMID:24440821

  11. The effects of WW2/WW3 domains of Smurf2 molecule on TGF-β signaling and arginase I gene expression.

    PubMed

    Ganji, Ali; Roshan, Hani Mosayebzadeh; Varasteh, Abdolreza; Moghadam, Malihe; Sankian, Mojtaba

    2015-06-01

    Smad ubiquitination regulatory factor 2 (Smurf2) consists of multiple WW domains which can interact with Smad7 molecule and inhibit signaling of transforming growth factor-beta (TGF-β) cytokine. Arginase I (ArgI) is one of the main products of TGF-β signaling that plays important roles in tumor escape and airway tissue fibrosis and remodeling in asthma. In this study, the effects of TAT fused to WW2/WW3 (TAT-WW2/WW3) recombinant protein on TGF-β signaling and ArgI gene expression were evaluated on J774A.1 cell culture. For this purpose, interaction of TAT-WW2/WW3 with Smad7, mRNA expression of ArgI, and phosphorylated Smad3 (P-Smad3) were analyzed in TAT-WW2/WW3-treated J774A.1 cell. The results showed interaction of TAT-WW2/WW3 with Smad7, downregulation of ArgI gene expression (P < 0.05), and higher amount of P-Smad3 in the TAT-WW2/WW3-treated cells. In conclusion, we suggest that TAT-WW2/WW3 could interfere with TGF-β signaling and reduce ArgI gene expression. Since, ArgI has important effects on tissue remodeling in asthma and cancer progression, so these findings could be used to develop a new approach in the treatment of asthma and cancers. © 2015 International Federation for Cell Biology.

  12. Regulation of ITAM adaptor molecules and their receptors by inhibition of calcineurin-NFAT signalling during late stage osteoclast differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zawawi, M.S.F.; Discipline of Anatomy and Pathology, School of Medical Sciences, University of Adelaide, Adelaide, SA 5005; Dharmapatni, A.A.S.S.K.

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer Calcineurin/NFAT inhibitors FK506 and VIVIT treated human PBMC derived osteoclasts in vitro. Black-Right-Pointing-Pointer Differential regulation of ITAM receptors and adaptor molecules by calcineurin/NFAT inhibitors. Black-Right-Pointing-Pointer FK506 and VIVIT suppress ITAM factors during late phase osteoclast differentiation. -- Abstract: Osteoclasts are specialised bone resorptive cells responsible for both physiological and pathological bone loss. Osteoclast differentiation and activity is dependent upon receptor activator NF-kappa-B ligand (RANKL) interacting with its receptor RANK to induce the transcription factor, nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1). The immunoreceptor tyrosine-based activation motif (ITAM)-dependent pathway has been identified as a co-stimulatory pathway inmore » osteoclasts. Osteoclast-associated receptor (OSCAR) and triggering receptor expressed in myeloid cells (TREM2) are essential receptors that pair with adaptor molecules Fc receptor common gamma chain (FcR{gamma}) and DNAX-activating protein 12 kDa (DAP12) respectively to induce calcium signalling. Treatment with calcineurin-NFAT inhibitors, Tacrolimus (FK506) and the 11R-VIVIT (VIVIT) peptide, reduces NFATc1 expression consistent with a reduction in osteoclast differentiation and activity. This study aimed to investigate the effects of inhibiting calcineurin-NFAT signalling on the expression of ITAM factors and late stage osteoclast genes including cathepsin K (CathK), Beta 3 integrin ({beta}3) and Annexin VIII (AnnVIII). Human peripheral blood mononuclear cells (PBMCs) were differentiated with RANKL and macrophage-colony stimulating factor (M-CSF) over 10 days in the presence or absence of FK506 or VIVIT. Osteoclast formation (as assessed by tartrate resistant acid phosphatase (TRAP)) and activity (assessed by dentine pit resorption) were significantly reduced with treatment. Quantitative

  13. Cucurbituril mediated single molecule detection and identification via recognition tunneling.

    PubMed

    Xiao, Bohuai; Liang, Feng; Liu, Simin; Im, JongOne; Li, Yunchuan; Liu, Jing; Zhang, Bintian; Zhou, Jianghao; He, Jin; Chang, Shuai

    2018-06-08

    Recognition tunneling (RT) is an emerging technique for investigating single molecules in a tunnel junction. We have previously demonstrated its capability of single molecule detection and identification, as well as probing the dynamics of intermolecular bonding at the single molecule level. Here by introducing cucurbituril as a new class of recognition molecule, we demonstrate a powerful platform for electronically investigating the host-guest chemistry at single molecule level. In this report, we first investigated the single molecule electrical properties of cucurbituril in a tunnel junction. Then we studied two model guest molecules, aminoferrocene and amantadine, which were encapsulated by cucurbituril. Small differences in conductance and lifetime can be recognized between the host-guest complexes with the inclusion of different guest molecules. By using a machine learning algorithm to classify the RT signals in a hyper dimensional space, the accuracy of guest molecule recognition can be significantly improved, suggesting the possibility of using cucurbituril molecule for single molecule identification. This work enables a new class of recognition molecule for RT technique and opens the door for detecting a vast variety of small molecules by electrical measurements.

  14. Small Molecule DFPM Derivative-Activated Plant Resistance Protein Signaling in Roots Is Unaffected by EDS1 Subcellular Targeting Signal and Chemical Genetic Isolation of victr R-Protein Mutants

    PubMed Central

    Mevers, Emily; García, Ana V.; Highhouse, Samantha; Gerwick, William H.; Parker, Jane E.; Schroeder, Julian I.

    2016-01-01

    The small molecule DFPM ([5-(3,4-dichlorophenyl)furan-2-yl]-piperidine-1-ylmethanethione) was recently shown to trigger signal transduction via early effector-triggered immunity signaling genes including EDS1 and PAD4 in Arabidopsis thaliana accession Col-0. Chemical genetic analyses of A. thaliana natural variants identified the plant Resistance protein-like Toll/Interleukin1 Receptor (TIR)-Nucleotide Binding (NB)-Leucine-Rich Repeat (LRR) protein VICTR as required for DFPM-mediated root growth arrest. Here a chemical genetic screen for mutants which disrupt DFPM-mediated root growth arrest in the Col-0 accession identified new mutant alleles of the TIR-NB-LRR gene VICTR. One allele, victr-6, carries a Gly216-to-Asp mutation in the Walker A domain supporting an important function of the VICTR nucleotide binding domain in DFPM responses consistent with VICTR acting as a canonical Resistance protein. The essential nucleo-cytoplasmic regulator of TIR-NB-LRR-mediated effector-triggered immunity, EDS1, was reported to have both nuclear and cytoplasmic actions in pathogen resistance. DFPM was used to investigate the requirements for subcellular EDS1 localization in DFPM-mediated root growth arrest. EDS1-YFP fusions engineered to localize mainly in the cytoplasm or the nucleus by tagging with a nuclear export signal (NES) or a nuclear localization signal (NLS), respectively, were tested. We found that wild-type EDS1-YFP and both the NES and NLS-tagged EDS1 variants were induced by DFPM treatments and fully complemented eds1 mutant plants in root responses to DFPM, suggesting that enrichment of EDS1 in either compartment could confer DFPM-mediated root growth arrest. We further found that a light and O2-dependent modification of DFPM is necessary to mediate DFPM signaling in roots. Chemical analyses including Liquid Chromatography-Mass Spectrometry and High-Resolution Atmospheric Pressure Chemical Ionization Mass Spectrometry identified a DFPM modification product that is

  15. Single Molecules as Optical Probes for Structure and Dynamics

    NASA Astrophysics Data System (ADS)

    Orrit, Michel

    Single molecules and single nanoparticles are convenient links between the nanoscale world and the laboratory. We discuss the limits for their optical detection by three different methods: fluorescence, direct absorption, and photothermal detection. We briefly review some recent illustrations of qualitatively new information gathered from single-molecule signals: intermittency of the fluorescence intensity, acoustic vibrations of nanoparticles (1-100 GHz) or of extended defects in molecular crystals (0.1-1 MHz), and dynamical heterogeneity in glass-forming molecular liquids. We conclude with an outlook of future uses of single-molecule methods in physical chemistry, soft matter, and material science.

  16. Non-ribosomal Peptide Synthases from Pseudomonas aeruginosa Play a Role in Cyclodipeptide Biosynthesis, Quorum-Sensing Regulation, and Root Development in a Plant Host.

    PubMed

    González, Omar; Ortíz-Castro, Randy; Díaz-Pérez, César; Díaz-Pérez, Alma L; Magaña-Dueñas, Viridiana; López-Bucio, José; Campos-García, Jesús

    2017-04-01

    Diverse molecules mediate cross-kingdom communication between bacteria and their eukaryotic partners and determine pathogenic or symbiotic relationships. N-acyl-L-homoserine lactone-dependent quorum-sensing signaling represses the biosynthesis of bacterial cyclodipeptides (CDPs) that act as auxin signal mimics in the host plant Arabidopsis thaliana. In this work, we performed bioinformatics, biochemical, and plant growth analyses to identify non-ribosomal peptide synthase (NRPS) proteins of Pseudomonas aeruginosa, which are involved in CDP synthesis. A reverse genetics strategy allowed the identification of the genes encoding putative multi-modular-NRPS (MM-NRPS). Mutations in these genes affected the synthesis of the CDPs cyclo(L-Pro-L-Val), cyclo(L-Pro-L-Leu), and cyclo(L-Pro-L-Tyr), while showing wild-type-like levels of virulence factors, such as violacein, elastase, and pyocyanin. When analyzing the bioactivity of purified, naturally produced CDPs, it was found that cyclo(L-Pro-L-Tyr) and cyclo(L-Pro-L-Val) were capable of antagonizing quorum-sensing-LasR (QS-LasR)-dependent signaling in a contrasting manner in the cell-free supernatants of the selected NRPS mutants, which showed QS induction. Using a bacteria-plant interaction system, we further show that the pvdJ, ambB, and pchE P. aeruginosa mutants failed to repress primary root growth, but improved root branching in A. thaliana seedlings. These results indicated that the CDP production in P. aeruginosa depended on the functional MM-NRPS, which influences quorum-sensing of bacteria and plays a role in root architecture remodeling.

  17. A generalizable platform for interrogating target- and signal-specific consequences of electrophilic modifications in redox-dependent cell signaling.

    PubMed

    Lin, Hong-Yu; Haegele, Joseph A; Disare, Michael T; Lin, Qishan; Aye, Yimon

    2015-05-20

    Despite the known propensity of small-molecule electrophiles to react with numerous cysteine-active proteins, biological actions of individual signal inducers have emerged to be chemotype-specific. To pinpoint and quantify the impacts of modifying one target out of the whole proteome, we develop a target-protein-personalized "electrophile toolbox" with which specific intracellular targets can be selectively modified at a precise time by specific reactive signals. This general methodology, T-REX (targetable reactive electrophiles and oxidants), is established by (1) constructing a platform that can deliver a range of electronic and sterically different bioactive lipid-derived signaling electrophiles to specific proteins in cells; (2) probing the kinetics of targeted delivery concept, which revealed that targeting efficiency in cells is largely driven by initial on-rate of alkylation; and (3) evaluating the consequences of protein-target- and small-molecule-signal-specific modifications on the strength of downstream signaling. These data show that T-REX allows quantitative interrogations into the extent to which the Nrf2 transcription factor-dependent antioxidant response element (ARE) signaling is activated by selective electrophilic modifications on Keap1 protein, one of several redox-sensitive regulators of the Nrf2-ARE axis. The results document Keap1 as a promiscuous electrophile-responsive sensor able to respond with similar efficiencies to discrete electrophilic signals, promoting comparable strength of Nrf2-ARE induction. T-REX is also able to elicit cell activation in cases in which whole-cell electrophile flooding fails to stimulate ARE induction prior to causing cytotoxicity. The platform presents a previously unavailable opportunity to elucidate the functional consequences of small-molecule-signal- and protein-target-specific electrophilic modifications in an otherwise unaffected cellular background.

  18. Orchestrating rapid long-distance signaling in plants with Ca2+ , ROS and electrical signals.

    PubMed

    Choi, Won-Gyu; Miller, Gad; Wallace, Ian; Harper, Jeffrey; Mittler, Ron; Gilroy, Simon

    2017-05-01

    Plants show a rapid systemic response to a wide range of environmental stresses, where the signals from the site of stimulus perception are transmitted to distal organs to elicit plant-wide responses. A wide range of signaling molecules are trafficked through the plant, but a trio of potentially interacting messengers, reactive oxygen species (ROS), Ca 2+ and electrical signaling ('trio signaling') appear to form a network supporting rapid signal transmission. The molecular components underlying this rapid communication are beginning to be identified, such as the ROS producing NAPDH oxidase RBOHD, the ion channel two pore channel 1 (TPC1), and glutamate receptor-like channels GLR3.3 and GLR3.6. The plant cell wall presents a plant-specific route for possible propagation of signals from cell to cell. However, the degree to which the cell wall limits information exchange between cells via transfer of small molecules through an extracellular route, or whether it provides an environment to facilitate transmission of regulators such as ROS or H + remains to be determined. Similarly, the role of plasmodesmata as both conduits and gatekeepers for the propagation of rapid cell-to-cell signaling remains a key open question. Regardless of how signals move from cell to cell, they help prepare distant parts of the plant for impending challenges from specific biotic or abiotic stresses. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  19. [The Effect of Introduction of the Heterologous Gene Encoding the N-acyl-homoserine Lactonase (aiiA) on the Properties of Burkholderia cenocepacia 370].

    PubMed

    Plyuta, V A; Lipasova, V A; Koksharova, O A; Veselova, M A; Kuznetsov, A E; Khmel, I A

    2015-08-01

    To study the role of Quorum Sensing (QS) regulation in the control of the cellular processes of Burkholderia cenocepacia 370, plasmid pME6863 was transferred into its cells. The plasmid contains a heterologous gene encoding for AiiA N-acyl-homoserine lactonase, which degrades the signaling molecules of the QS system of N-acyl-homoserine lactones (AHL). An absence or reduction of AHL in the culture was revealed with the biosensors Chromobacterium violaceum CV026 and Agrobacterium tumifaciens NT1/pZLR4, respectively. The presence of the aiiA gene, which was cloned from Bacillus sp. A24 in the cells of B. cenocepacia 370, resulted in a lack of hemolytic activity, which reduced the extracellular proteolytic activity and decreased the cells' ability to migration in swarms on the surface of the agar medium. The introduction of the aiiA gene did not affect lipase activity, fatty acids synthesis, HCN synthesis, or biofilm formation. Hydrogen peroxide was shown to stimulate biofilm formation by B. cenocepacia 370 in concentrations that inhibited or weakly suppressed bacterial growth. The introduction of the aiiA gene into the cells did not eliminate this effect but it did reduce it.

  20. Differential Effects of Exposure to Maternal Obesity or Maternal Weight Loss during the Periconceptional Period in the Sheep on Insulin Signalling Molecules in Skeletal Muscle of the Offspring at 4 Months of Age

    PubMed Central

    Nicholas, Lisa M.; Morrison, Janna L.; Rattanatray, Leewen; Ozanne, Susan E.; Kleemann, Dave O.; Walker, Simon K.; MacLaughlin, Severence M.; Zhang, Song; Martin-Gronert, Malgorzata S.; McMillen, Isabella C.

    2013-01-01

    Exposure to maternal obesity before and/or throughout pregnancy may increase the risk of obesity and insulin resistance in the offspring in childhood and adult life, therefore, resulting in its transmission into subsequent generations. We have previously shown that exposure to maternal obesity around the time of conception alone resulted in increased adiposity in female lambs. Changes in the abundance of insulin signalling molecules in skeletal muscle and adipose tissue precede the development of insulin resistance and type 2 diabetes. It is not clear, however, whether exposure to maternal obesity results in insulin resistance in her offspring as a consequence of the impact of increased adiposity on skeletal muscle or as a consequence of the programming of specific changes in the abundance of insulin signalling molecules in this tissue. We have used an embryo transfer model in the sheep to investigate the effects of exposure to either maternal obesity or to weight loss in normal and obese mothers preceding and for one week after conception on the expression and abundance of insulin signalling molecules in muscle in the offspring. We found that exposure to maternal obesity resulted in lower muscle GLUT-4 and Ser 9 phospho-GSK3α and higher muscle GSK3α abundance in lambs when compared to lambs conceived in normally nourished ewes. Exposure to maternal weight loss in normal or obese mothers, however, resulted in lower muscle IRS1, PI3K, p110β, aPKCζ, Thr 642 phospho-AS160 and GLUT-4 abundance in the offspring. In conclusion, maternal obesity or weight loss around conception have each programmed specific changes on subsets of molecules in the insulin signalling, glucose transport and glycogen synthesis pathways in offspring. There is a need for a stronger evidence base to ensure that weight loss regimes in obese women seeking to become pregnant minimize the metabolic costs for the next generation. PMID:24386400

  1. The Effects of Chinese Herbal Medicines on the Quorum Sensing-Regulated Virulence in Pseudomonas aeruginosa PAO1.

    PubMed

    Chong, Yee Meng; How, Kah Yan; Yin, Wai Fong; Chan, Kok Gan

    2018-04-21

    The quorum sensing (QS) system has been used by many opportunistic pathogenic bacteria to coordinate their virulence determinants in relation to cell-population density. As antibiotic-resistant bacteria are on the rise, interference with QS has been regarded as a novel way to control bacterial infections. As such, many plant-based natural products have been widely explored for their therapeutic roles. These natural products may contain anti-QS compounds that could block QS signals generation or transmission to combat QS pathogens. In this study, we report the anti-QS activities of four different Chinese herbal plant extracts: Poria cum Radix pini , Angelica dahurica , Rhizoma cibotii and Schizonepeta tenuifolia , on Pseudomonas aeruginosa PAO1. All the plants extracted using hexane, chloroform and methanol were tested and found to impair swarming motility and pyocyanin production in P. aeruginosa PAO1, particularly by Poria cum Radix pini . In addition, all the plant extracts also inhibited violacein production in C. violaceum CV026 up to 50% while bioluminescence activities were reduced in lux -based E. coli biosensors, pSB401 and pSB1075, up to about 57%. These anti-QS properties of the four medicinal plants are the first documentation that demonstrates a potential approach to attenuate pathogens’ virulence determinants.

  2. Signaling Role of Fructose Mediated by FINS1/FBP in Arabidopsis thaliana

    PubMed Central

    Cho, Young-Hee; Yoo, Sang-Dong

    2011-01-01

    Sugars are evolutionarily conserved signaling molecules that regulate the growth and development of both unicellular and multicellular organisms. As sugar-producing photosynthetic organisms, plants utilize glucose as one of their major signaling molecules. However, the details of other sugar signaling molecules and their regulatory factors have remained elusive, due to the complexity of the metabolite and hormone interactions that control physiological and developmental programs in plants. We combined information from a gain-of-function cell-based screen and a loss-of-function reverse-genetic analysis to demonstrate that fructose acts as a signaling molecule in Arabidopsis thaliana. Fructose signaling induced seedling developmental arrest and interacted with plant stress hormone signaling in a manner similar to that of glucose. For fructose signaling responses, the plant glucose sensor HEXOKINASE1 (HXK1) was dispensable, while FRUCTOSE INSENSITIVE1 (FINS1), a putative FRUCTOSE-1,6-BISPHOSPHATASE, played a crucial role. Interestingly, FINS1 function in fructose signaling appeared to be independent of its catalytic activity in sugar metabolism. Genetic analysis further indicated that FINS1–dependent fructose signaling may act downstream of the abscisic acid pathway, in spite of the fact that HXK1–dependent glucose signaling works upstream of hormone synthesis. Our findings revealed that multiple layers of controls by fructose, glucose, and abscisic acid finely tune the plant autotrophic transition and modulate early seedling establishment after seed germination. PMID:21253566

  3. SRS in the single molecule limit (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Potma, Eric O.; Crampton, Kevin T.; Fast, Alexander; Apkarian, Vartkess A.

    2017-02-01

    We present combined surface-enhanced stimulated Raman scattering (SE-SRS) and surface-enhanced coherent anti-Stokes Raman scattering (SE-CARS) measurements on individual plasmonic antennas dressed with bipyridyl-ethylene molecules. By carefully optimizing the conditions for performing SE-SRS experiments, we have obtained stable and reproducible molecular surface-enhanced SRS spectra from single nano-antennas. Using surface-enhanced Raman scattering (SERS) and transmission electron microscopy of the same antennas, we confirm that the observed SE-SRS signals originate from only one or a few molecules. We highlight the physics of surface enhancement in the context of coherent Raman scattering and derive sensitivity parameters under the relevant conditions. The implications of single molecule SRS measurements are discussed.

  4. Glycosylation Alters Dimerization Properties of a Cell-surface Signaling Protein, Carcinoembryonic Antigen-related Cell Adhesion Molecule 1 (CEACAM1).

    PubMed

    Zhuo, You; Yang, Jeong-Yeh; Moremen, Kelley W; Prestegard, James H

    2016-09-16

    Human carcinoembryonic antigen-related cell adhesion molecule 1 (C?/Au: EACAM1) is a cell-surface signaling molecule involved in cell adhesion, proliferation, and immune response. It is also implicated in cancer angiogenesis, progression, and metastasis. This diverse set of effects likely arises as a result of the numerous homophilic and heterophilic interactions that CEACAM1 can have with itself and other molecules. Its N-terminal Ig variable (IgV) domain has been suggested to be a principal player in these interactions. Previous crystal structures of the β-sandwich-like IgV domain have been produced using Escherichia coli-expressed material, which lacks native glycosylation. These have led to distinctly different proposals for dimer interfaces, one involving interactions of ABED β-strands and the other involving GFCC'C″ β-strands, with the former burying one prominent glycosylation site. These structures raise questions as to which form may exist in solution and what the effect of glycosylation may have on this form. Here, we use NMR cross-correlation measurements to examine the effect of glycosylation on CEACAM1-IgV dimerization and use residual dipolar coupling (RDC) measurements to characterize the solution structure of the non-glycosylated form. Our findings demonstrate that even addition of a single N-linked GlcNAc at potential glycosylation sites inhibits dimer formation. Surprisingly, RDC data collected on E. coli expressed material in solution indicate that a dimer using the non-glycosylated GFCC'C″ interface is preferred even in the absence of glycosylation. The results open new questions about what other factors may facilitate dimerization of CEACAM1 in vivo, and what roles glycosylation may play in heterophylic interactions. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Correlating folding and signaling in a photoreceptor by single molecule measurements and energy landscape calculations

    NASA Astrophysics Data System (ADS)

    Hoff, Wouter

    2007-03-01

    Receptor activation is a fundamental process in biological signaling. We study the structural changes during activation of photoactive yellow protein (PYP). This is triggered by photoisomerization of the p-coumaric acid (pCA) chromophore of PYP, which converts the initial pG state into the activated pB state. Mechanical unfolding of Cys-linked PYP multimers probed by atomic force microscopy (AFM) in the presence and absence of illumination reveals that the core of the protein is extended by 3 nm and destabilized by 30 percent in pB. These results establish a generally applicable single molecule approach for mapping functional conformational changes to selected regions of a protein and indicate that stimulus-induced partial protein unfolding can be employed as a signaling mechanism. Comparative measurements, Jarzynski-Hummer-Szabo analysis of the data, and steered MD simulations of two double-Cys PYP mutants reveal strong anisotropy in the unfolding mechanism along the two axes defined by the Cys residues. Unfolding along one axis exhibits a transition-state-like feature where six hydrogen bonds break simultaneously. The other axis displays an unpeaked force profile reflecting a non-cooperative transition, challenging the notion that cooperative unfolding is a universal feature in protein stability. MD simulations with a coarse-grained protein model show that the folding of pG is two-state, consistent with experimental observations. In contrast, the folding free energy surface of a coarse-grained model of pB involves an on-pathway partially unfolded intermediate that closely matches experimental data. The results reveal that interactions between the pCA and its binding pocket can switch the energy landscape for PYP from two- to three-state folding, and show how this can be exploited to trigger large functionally important protein conformational changes.

  6. AHL signaling molecules with a large acyl chain enhance biofilm formation on sulfur and metal sulfides by the bioleaching bacterium Acidithiobacillus ferrooxidans.

    PubMed

    González, Alex; Bellenberg, Sören; Mamani, Sigde; Ruiz, Lina; Echeverría, Alex; Soulère, Laurent; Doutheau, Alain; Demergasso, Cecilia; Sand, Wolfgang; Queneau, Yves; Vera, Mario; Guiliani, Nicolas

    2013-04-01

    Biofilm formation plays a pivotal role in bioleaching activities of bacteria in both industrial and natural environments. Here, by visualizing attached bacterial cells on energetic substrates with different microscopy techniques, we obtained the first direct evidence that it is possible to positively modulate biofilm formation of the extremophilic bacterium Acidithiobacillus ferrooxidans on sulfur and pyrite surfaces by using Quorum Sensing molecules of the N-acylhomoserine lactone type (AHLs). Our results revealed that AHL-signaling molecules with a long acyl chain (12 or 14 carbons) increased the adhesion of A. ferrooxidans cells to these substrates. In addition, Card-Fish experiments demonstrated that C14-AHL improved the adhesion of indigenous A. ferrooxidans cells from a mixed bioleaching community to pyrite. Finally, we demonstrated that this improvement of cell adhesion is correlated with an increased production of extracellular polymeric substances. Our results open up a promising means to develop new strategies for the improvement of bioleaching efficiency and metal recovery, which could also be used to control environmental damage caused by acid mine/rock drainage.

  7. SPLINTS: small-molecule protein ligand interface stabilizers.

    PubMed

    Fischer, Eric S; Park, Eunyoung; Eck, Michael J; Thomä, Nicolas H

    2016-04-01

    Regulatory protein-protein interactions are ubiquitous in biology, and small molecule protein-protein interaction inhibitors are an important focus in drug discovery. Remarkably little attention has been given to the opposite strategy-stabilization of protein-protein interactions, despite the fact that several well-known therapeutics act through this mechanism. From a structural perspective, we consider representative examples of small molecules that induce or stabilize the association of protein domains to inhibit, or alter, signaling for nuclear hormone, GTPase, kinase, phosphatase, and ubiquitin ligase pathways. These SPLINTS (small-molecule protein ligand interface stabilizers) drive interactions that are in some cases physiologically relevant, and in others entirely adventitious. The diverse structural mechanisms employed suggest approaches for a broader and systematic search for such compounds in drug discovery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Complex small-molecule architectures regulate phenotypic plasticity in a nematode.

    PubMed

    Bose, Neelanjan; Ogawa, Akira; von Reuss, Stephan H; Yim, Joshua J; Ragsdale, Erik J; Sommer, Ralf J; Schroeder, Frank C

    2012-12-07

    Chemistry the worm's way: The nematode Pristionchus pacificus constructs elaborate small molecules from modified building blocks of primary metabolism, including an unusual xylopyranose-based nucleoside (see scheme). These compounds act as signaling molecules to control adult phenotypic plasticity and dauer development and provide examples of modular generation of structural diversity in metazoans. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Role of two adaptor molecules SLP-76 and LAT in the PI3K signaling pathway in activated T cells.

    PubMed

    Shim, Eun Kyung; Jung, Seung Hee; Lee, Jong Ran

    2011-03-01

    Previously, we identified p85, a subunit of PI3K, as one of the molecules that interacts with the N-terminal region of Src homology 2 domain-containing leukocyte protein of 76 kDa (SLP-76). We also demonstrated that tyrosine phosphorylation either at the 113 and/or 128 position is sufficient for the association of SLP-76 with the Src homology 2 domain near the N terminus of p85. The present study further examines the role of the association of these two molecules on the activation of PI3K signaling cascade. Experiments were done to determine the role of SLP-76, either wild-type, tyrosine mutants, or membrane-targeted forms of various SLP-76 constructs, on the membrane localization and phosphorylation of Akt, which is an event downstream of PI3K activation. Reconstitution studies with these various SLP-76 constructs in a Jurkat variant cell line that lacks SLP-76 or linker for activation of T cells (LAT) show that the activation of PI3K pathway following TCR ligation requires both SLP-76 and LAT adaptor proteins. The results suggest that SLP-76 associates with p85 after T cell activation and that LAT recruits this complex to the membrane, leading to Akt activation.

  10. A Generalizable Platform for Interrogating Target- and Signal-Specific Consequences of Electrophilic Modifications in Redox-Dependent Cell Signaling

    PubMed Central

    Lin, Hong-Yu; Haegele, Joseph A.; Disare, Michael T.; Lin, Qishan; Aye, Yimon

    2015-01-01

    Despite the known propensity of small-molecule electrophiles to react with numerous cysteine-active proteins, biological actions of individual signal inducers have emerged to be chemotype-specific. To pinpoint and quantify the impacts of modifying one target out of the whole proteome, we develop a target-protein-personalized “electrophile toolbox” with which specific intracellular targets can be selectively modified at a precise time by specific reactive signals. This general methodology—T-REX (targetable reactive electrophiles & oxidants)—is established by: (1) constructing a platform that can deliver a range of electronic and sterically different bioactive lipid-derived signaling electrophiles to specific proteins in cells; (2) probing the kinetics of targeted delivery concept which revealed that targeting efficiency in cells is largely driven by initial on-rate of alkylation; and (3) evaluating the consequences of protein-target- and small-molecule-signal-specific modifications on the strength of downstream signaling. These data show that T-REX allows quantitative interrogations into the extent to which the Nrf2 transcription factor-dependent antioxidant response element (ARE) signaling is activated by selective electrophilic modifications on Keap1 protein—one of several redox-sensitive regulators of the Nrf2–ARE axis. The results document Keap1 as a promiscuous electrophile-responsive sensor able to respond with similar efficiencies to discrete electrophilic signals, promoting comparable strength of Nrf2–ARE induction. T-REX is also able to elicit cell activation in cases in which whole-cell electrophile flooding fails to stimulate ARE induction prior to causing cytotoxicity. The platform presents a previously unavailable opportunity to elucidate the functional consequences of small-molecule-signal- and protein-target-specific electrophilic modifications in an otherwise unaffected cellular background. PMID:25909755

  11. The Vps27/Hrs/STAM (VHS) Domain of the Signal-transducing Adaptor Molecule (STAM) Directs Associated Molecule with the SH3 Domain of STAM (AMSH) Specificity to Longer Ubiquitin Chains and Dictates the Position of Cleavage*

    PubMed Central

    Baiady, Nardeen; Padala, Prasanth; Mashahreh, Bayan; Cohen-Kfir, Einav; Todd, Emily A.; Du Pont, Kelly E.; Berndsen, Christopher E.; Wiener, Reuven

    2016-01-01

    The deubiquitinating enzyme associated molecule with the SH3 domain of STAM (AMSH) is crucial for the removal of ubiquitin molecules during receptor-mediated endocytosis and lysosomal receptor sorting. AMSH interacts with signal transducing adapter molecule (STAM) 1 or 2, which enhances the activity of AMSH through an unknown mechanism. This stimulation is dependent on the ubiquitin-interacting motif of STAM. Here we investigate the specific mechanism of AMSH stimulation by STAM proteins and the role of the STAM Vps27/Hrs/STAM domain. We show that, in the presence of STAM, the length of the ubiquitin chains affects the apparent cleavage rate. Through measurement of the chain cleavage kinetics, we found that, although the kcat of Lys63-linked ubiquitin chain cleavage was comparable for di- and tri-ubiquitin, the Km value was lower for tri-ubiquitin. This increased affinity for longer chains was dependent on the Vps27/Hrs/STAM domain of STAM and required that the substrate ubiquitin chain contain homogenous Lys63-linkages. In addition, STAM directed AMSH cleavage toward the distal isopeptide bond in tri-ubiquitin chains. Finally, we generated a structural model of AMSH-STAM to show how the complex binds Lys63-linked ubiquitin chains and cleaves at the distal end. These data show how a deubiquitinating enzyme-interacting protein dictates the efficiency and specificity of substrate cleavage. PMID:26601948

  12. A facile approach to construct versatile signal amplification system for bacterial detection.

    PubMed

    Qi, Peng; Zhang, Dun; Wan, Yi; Lv, Dandan

    2014-01-01

    In this work, a facile approach to design versatile signal amplification system for bacterial detection has been presented. Bio-recognition elements and signaling molecules can be immobilized on the surface of Fe₃O₄@MnO₂ nanomaterials with the help of bioinspired polydopamine (PDA). Fe₃O₄@MnO₂ nanoplates were chosen as carrier for bio-recognizing and signaling molecules because this kind of nanomaterial was superparamagnetic and the existence of MnO₂ could enhance the polymerization of dopamine due to its strong oxidative ability. This nanocomposite system was versatile because PDA around Fe₃O₄@MnO₂ nanoplates provided a stable and convenient platform for immobilization of biological and chemical materials, and various kinds of bio-recognizing and signaling molecules could be immobilized by reaction with pendant amino groups of dopamine to meet different detection requirements. Since a substantial amount of signaling molecules were immobilized on the surface of the nanocomposites, so the sensitivity of detection would be improved when the prepared nanocomposites were selectively conjugated with target pathogen. In the experimental section, a sandwich-type electrochemical biosensor was developed to verify the amplified bacterial detection sensitivity. Concanavalin A (conA) and ferrocene (Fc) were chosen as bio-recognition elements and signaling molecules for detection of Desulforibrio caledoiensis, respectively. The conA and Fc modified nanocomposites were conjugated on electrode by the selective recognition between conA and target bacteria, and the bacterial population was obtained by quantification of the electrochemical signal of Fc moieties. The experimental results showed that the detection sensitivity for D. caledoiensis was improved by taking advantage of this signal amplification system. © 2013 Elsevier B.V. All rights reserved.

  13. Quantitative Investigation of the Role of Intra-/Intercellular Dynamics in Bacterial Quorum Sensing.

    PubMed

    Leaman, Eric J; Geuther, Brian Q; Behkam, Bahareh

    2018-04-20

    Bacteria utilize diffusible signals to regulate population density-dependent coordinated gene expression in a process called quorum sensing (QS). While the intracellular regulatory mechanisms of QS are well-understood, the effect of spatiotemporal changes in the population configuration on the sensitivity and robustness of the QS response remains largely unexplored. Using a microfluidic device, we quantitatively characterized the emergent behavior of a population of swimming E. coli bacteria engineered with the lux QS system and a GFP reporter. We show that the QS activation time follows a power law with respect to bacterial population density, but this trend is disrupted significantly by microscale variations in population configuration and genetic circuit noise. We then developed a computational model that integrates population dynamics with genetic circuit dynamics to enable accurate (less than 7% error) quantitation of the bacterial QS activation time. Through modeling and experimental analyses, we show that changes in spatial configuration of swimming bacteria can drastically alter the QS activation time, by up to 22%. The integrative model developed herein also enables examination of the performance robustness of synthetic circuits with respect to growth rate, circuit sensitivity, and the population's initial size and spatial structure. Our framework facilitates quantitative tuning of microbial systems performance through rational engineering of synthetic ribosomal binding sites. We have demonstrated this through modulation of QS activation time over an order of magnitude. Altogether, we conclude that predictive engineering of QS-based bacterial systems requires not only the precise temporal modulation of gene expression (intracellular dynamics) but also accounting for the spatiotemporal changes in population configuration (intercellular dynamics).

  14. Analyte sensing mediated by adapter/carrier molecules

    DOEpatents

    Bayley, Hagan; Braha, Orit; Gu, LiQun

    2002-07-30

    This invention relates to an improved method and system for sensing of one or more analytes. A host molecule, which serves as an adapter/carrier, is used to facilitate interaction between the analyte and the sensor element. A detectable signal is produced reflecting the identity and concentration of analyte present.

  15. Production of Pseudomonas aeruginosa Intercellular Small Signaling Molecules in Human Burn Wounds

    PubMed Central

    Que, Yok-Ai; Hazan, Ronen; Ryan, Colleen M.; Milot, Sylvain; Lépine, François; Lydon, Martha; Rahme, Laurence G.

    2011-01-01

    Pseudomonas aeruginosa has developed a complex cell-to-cell communication system that relies on low-molecular weight excreted molecules to control the production of its virulence factors. We previously characterized the transcriptional regulator MvfR, that controls a major network of acute virulence functions in P. aeruginosa through the control of its ligands, the 4-hydroxy-2-alkylquinolines (HAQs)—4-hydroxy-2-heptylquinoline (HHQ) and 3,4-dihydroxy-2-heptylquinoline (PQS). Though HHQ and PQS are produced in infected animals, their ratios differ from those in bacterial cultures. Because these molecules are critical for the potency of activation of acute virulence functions, here we investigated whether they are also produced during human P. aeruginosa acute wound infection and whether their ratio is similar to that observed in P. aeruginosa-infected mice. We found that a clinically relevant P. aeruginosa isolate produced detectable levels of HAQs with ratios of HHQ and PQS that were similar to those produced in burned and infected animals, and not resembling ratios in bacterial cultures. These molecules could be isolated from wound tissue as well as from drainage liquid. These results demonstrate for the first time that HAQs can be isolated and quantified from acute human wound infection sites and validate the relevance of previous studies conducted in mammalian models of infection. PMID:23533774

  16. Misfolding of major histocompatibility complex class I molecules in activated T cells allows cis-interactions with receptors and signaling molecules and is associated with tyrosine phosphorylation.

    PubMed

    Santos, Susana G; Powis, Simon J; Arosa, Fernando A

    2004-12-17

    Knowledge of the origin and biochemical status of beta(2)-microglobulin-free or misfolded major histocompatibility complex (MHC)-I molecules is essential for understanding their pleiotropic properties. Here we show that in normal human T cells, misfolding of MHC-I molecules is turned on upon activation and cell division and is proportional to the level of proliferation. Immunoprecipitation showed that a number of proteins are associated with MHC-I heavy chains at the surface of activated T cells, including the CD8alphabeta receptor and the chaperone tandem calreticulin/ERp57, associations that rely upon the existence of a pool of HC-10-reactive molecules. Biochemical analysis showed that misfolded MHC-I molecules present at the cell surface are fully glycosylated mature molecules. Importantly, misfolded MHC-I molecules are tyrosine phosphorylated and are associated with kinase activity. In vitro kinase assays followed by reprecipitation indicated that tyrosine phosphorylation of the class I heavy chain is probably mediated by a Src tyrosine kinase because Lck was found associated with HC-10 immunocomplexes. Finally, we show that inhibition of tyrosine phosphorylation by using the Src-family tyrosine kinase inhibitor PP2 resulted in enhanced release of MHC-I heavy chains from the cell surface of activated T cells and a slight down-regulation of cell surface W6/32-reactive molecules. This study provides new insights into the biology of MHC-I molecules and suggests that tyrosine phosphorylation may be involved in the regulation of MHC-I misfolding and expression.

  17. Search for complex organic molecules in space

    NASA Astrophysics Data System (ADS)

    Ohishi, Masatoshi

    2016-07-01

    It was 1969 when the first organic molecule in space, H2CO, was discovered. Since then many organic molecules were discovered by using the NRAO 11 m (upgraded later to 12 m), Nobeyama 45 m, IRAM 30 m, and other highly sensitive radio telescopes as a result of close collaboration between radio astronomers and microwave spectroscopists. It is noteworthy that many famous organic molecules such as CH3OH, C2H5OH, (CH3)2O and CH3NH2 were detected by 1975. Organic molecules were found in so-called hot cores where molecules were thought to form on cold dust surfaces and then to evaporate by the UV photons emitted from the central star. These days organic molecules are known to exist not only in hot cores but in hot corinos (a warm, compact molecular clump found in the inner envelope of a class 0 protostar) and even protoplanetary disks. As was described above, major organic molecules were known since 1970s. It was very natural that astronomers considered a relationship between organic molecules in space and the origin of life. Several astronomers challenged to detect glycine and other prebiotic molecules without success. ALMA is expected to detect such important materials to further consider the gexogenous deliveryh hypothesis. In this paper I summarize the history in searching for complex organic molecules together with difficulties in observing very weak signals from larger species. The awfully long list of references at the end of this article may be the most useful part for readers who want to feel the exciting discovery stories.

  18. Thyroid Hormone Supplementation Restores Spatial Memory, Hippocampal Markers of Neuroinflammation, Plasticity-Related Signaling Molecules, and β-Amyloid Peptide Load in Hypothyroid Rats.

    PubMed

    Chaalal, Amina; Poirier, Roseline; Blum, David; Laroche, Serge; Enderlin, Valérie

    2018-05-23

    Hypothyroidism is a condition that becomes more prevalent with age. Patients with untreated hypothyroidism have consistently reported symptoms of severe cognitive impairments. In patients suffering hypothyroidism, thyroid hormone supplementation offers the prospect to alleviate the cognitive consequences of hypothyroidism; however, the therapeutic value of TH supplementation remains at present uncertain and the link between cellular modifications associated with hypothyroidism and neurodegeneration remains to be elucidated. In the present study, we therefore evaluated the molecular and behavioral consequences of T3 hormone replacement in an animal model of hypothyroidism. We have previously reported that the antithyroid molecule propylthiouracil (PTU) given in the drinking water favors cerebral atrophy, brain neuroinflammation, Aβ production, Tau hyperphosphorylation, and altered plasticity-related cell-signaling pathways in the hippocampus in association with hippocampal-dependent spatial memory deficits. In the present study, our aim was to explore, in this model, the effect of hippocampal T3 signaling normalization on various molecular mechanisms involved in learning and memory that goes awry under conditions of hypothyroidism and to evaluate its potential for recovery of hippocampal-dependent memory deficits. We report that T3 supplementation can alleviate hippocampal-dependent memory impairments displayed by hypothyroid rats and normalize key markers of thyroid status in the hippocampus, of neuroinflammation, Aβ production, and of cell-signaling pathways known to be involved in synaptic plasticity and memory function. Together, these findings suggest that normalization of hippocampal T3 signaling is sufficient to reverse molecular and cognitive dysfunctions associated with hypothyroidism.

  19. Single-molecule dataset (SMD): a generalized storage format for raw and processed single-molecule data.

    PubMed

    Greenfeld, Max; van de Meent, Jan-Willem; Pavlichin, Dmitri S; Mabuchi, Hideo; Wiggins, Chris H; Gonzalez, Ruben L; Herschlag, Daniel

    2015-01-16

    Single-molecule techniques have emerged as incisive approaches for addressing a wide range of questions arising in contemporary biological research [Trends Biochem Sci 38:30-37, 2013; Nat Rev Genet 14:9-22, 2013; Curr Opin Struct Biol 2014, 28C:112-121; Annu Rev Biophys 43:19-39, 2014]. The analysis and interpretation of raw single-molecule data benefits greatly from the ongoing development of sophisticated statistical analysis tools that enable accurate inference at the low signal-to-noise ratios frequently associated with these measurements. While a number of groups have released analysis toolkits as open source software [J Phys Chem B 114:5386-5403, 2010; Biophys J 79:1915-1927, 2000; Biophys J 91:1941-1951, 2006; Biophys J 79:1928-1944, 2000; Biophys J 86:4015-4029, 2004; Biophys J 97:3196-3205, 2009; PLoS One 7:e30024, 2012; BMC Bioinformatics 288 11(8):S2, 2010; Biophys J 106:1327-1337, 2014; Proc Int Conf Mach Learn 28:361-369, 2013], it remains difficult to compare analysis for experiments performed in different labs due to a lack of standardization. Here we propose a standardized single-molecule dataset (SMD) file format. SMD is designed to accommodate a wide variety of computer programming languages, single-molecule techniques, and analysis strategies. To facilitate adoption of this format we have made two existing data analysis packages that are used for single-molecule analysis compatible with this format. Adoption of a common, standard data file format for sharing raw single-molecule data and analysis outcomes is a critical step for the emerging and powerful single-molecule field, which will benefit both sophisticated users and non-specialists by allowing standardized, transparent, and reproducible analysis practices.

  20. [Formation of the Pseudomonas aeruginosa PAO1 biofilms in the presence of hydrogen peroxide; the effect of the AiiA gene].

    PubMed

    Pliuta, V A; Andreenko, Iu V; Kuznetsov, A E; Khmel', I A

    2013-01-01

    In the natural ecosystems, most bacteria exist as specifically organized biofilms attached to various surfaces; the biofilms have a complex architecture and are surrounded by an exopolymeric matrix. The bacteria in the biofilms are extremely resistant to antibacterial agents. The ability of the pathogenic bacteria to produce biofilms causes serious problems in medicine. Therefore, the study of the action of different compounds with antibacterial activity is of great interest. In this work, we studied the effect of the hydrogen peroxide (H2O2) on the formation of biofilms by Pseudomonas aeruginosa PAO1. It was shown that H2O2 in concentrations that do not suppress bacterial growth (or suppress it only weakly) stimulates the formation of the biofilms. At higher concentrations, H2O2 inhibits the formation of the biofilms. In order to determine if the stimulation of the biofilm formation depends on Quorum Sensing (QS) regulation, the plasmid pME6863 containing the heterologous gene aiiA encoding the N-acyl-homoserine lactonase AiiA was introduced into P. aeruginosa PAO1. The synthesis by cells of this enzyme degrading N-acyl-homoserine lactones (AHL), signaling molecules of the QS systems, led to the absence of the stimulation of the biofilm formation by the action of H2O2. This fact indicates that the stimulation of the biofilm formation in the presence of H2O2 depends on the functioning of the QS systems of the gene expression regulation of P. aeruginosa PAO1.

  1. A small diffusible signal molecule is responsible for the global control of virulence and exoenzyme production in the plant pathogen Erwinia carotovora.

    PubMed Central

    Pirhonen, M; Flego, D; Heikinheimo, R; Palva, E T

    1993-01-01

    Virulence of the plant pathogen Erwinia carotovora subsp. carotovora is dependent on the production and secretion of a complex arsenal of plant cell wall-degrading enzymes. Production of these exoenzymes is controlled by a global regulatory mechanism. A virulent mutants in one of the regulatory loci, expI, show a pleiotropic defect in the growth phase-dependent transcriptional activation of exoenzyme gene expression. The expI gene encodes a 26 kDa polypeptide that is structurally and functionally related to the luxI gene product of Vibrio fischeri. Functional similarity of expI and luxI has been demonstrated by reciprocal genetic complementation experiments. LuxI controls bioluminescence in V.fischeri in a growth phase-dependent manner by directing the synthesis of the diffusible autoinducer, N-(3-oxohexanoyl) homoserine lactone. E.c. subsp. carotovora expI+ strains or Escherichia coli harboring the cloned expI gene excrete a small diffusible signal molecule that complements the expI mutation of Erwinia as well as a luxI mutation of V.fischeri. This extracellular complementation can also be achieved by E.coli harboring the luxI gene from V.fischeri or by adding the synthetic V.fischeri autoinducer. Both the production of the plant tissue-macerating exoenzymes and the ability of the bacteria to propagate in planta are restored in expI mutants by autoinducer addition. These data suggest that the same signal molecule is employed in control of such diverse processes as virulence in a plant pathogen and bioluminescence in a marine bacterium, and may represent a general mechanism by which bacteria modulate gene expression in response to changing environmental conditions. Images PMID:8508772

  2. A small diffusible signal molecule is responsible for the global control of virulence and exoenzyme production in the plant pathogen Erwinia carotovora.

    PubMed

    Pirhonen, M; Flego, D; Heikinheimo, R; Palva, E T

    1993-06-01

    Virulence of the plant pathogen Erwinia carotovora subsp. carotovora is dependent on the production and secretion of a complex arsenal of plant cell wall-degrading enzymes. Production of these exoenzymes is controlled by a global regulatory mechanism. A virulent mutants in one of the regulatory loci, expI, show a pleiotropic defect in the growth phase-dependent transcriptional activation of exoenzyme gene expression. The expI gene encodes a 26 kDa polypeptide that is structurally and functionally related to the luxI gene product of Vibrio fischeri. Functional similarity of expI and luxI has been demonstrated by reciprocal genetic complementation experiments. LuxI controls bioluminescence in V.fischeri in a growth phase-dependent manner by directing the synthesis of the diffusible autoinducer, N-(3-oxohexanoyl) homoserine lactone. E.c. subsp. carotovora expI+ strains or Escherichia coli harboring the cloned expI gene excrete a small diffusible signal molecule that complements the expI mutation of Erwinia as well as a luxI mutation of V.fischeri. This extracellular complementation can also be achieved by E.coli harboring the luxI gene from V.fischeri or by adding the synthetic V.fischeri autoinducer. Both the production of the plant tissue-macerating exoenzymes and the ability of the bacteria to propagate in planta are restored in expI mutants by autoinducer addition. These data suggest that the same signal molecule is employed in control of such diverse processes as virulence in a plant pathogen and bioluminescence in a marine bacterium, and may represent a general mechanism by which bacteria modulate gene expression in response to changing environmental conditions.

  3. Extracellular signaling and multicellularity in Bacillus subtilis.

    PubMed

    Shank, Elizabeth Anne; Kolter, Roberto

    2011-12-01

    Bacillus subtilis regulates its ability to differentiate into distinct, co-existing cell types in response to extracellular signaling molecules produced either by itself, or present in its environment. The production of molecules by B. subtilis cells, as well as their response to these signals, is not uniform across the population. There is specificity and heterogeneity both within genetically identical populations as well as at the strain-level and species-level. This review will discuss how extracellular signaling compounds influence B. subtilis multicellularity with regard to matrix-producing cannibal differentiation, germination, and swarming behavior, as well as the specificity of the quorum-sensing peptides ComX and CSF. It will also highlight how imaging mass spectrometry can aid in identifying signaling compounds and contribute to our understanding of the functional relationship between such compounds and multicellular behavior. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Plant peptide hormone signalling.

    PubMed

    Motomitsu, Ayane; Sawa, Shinichiro; Ishida, Takashi

    2015-01-01

    The ligand-receptor-based cell-to-cell communication system is one of the most important molecular bases for the establishment of complex multicellular organisms. Plants have evolved highly complex intercellular communication systems. Historical studies have identified several molecules, designated phytohormones, that function in these processes. Recent advances in molecular biological analyses have identified phytohormone receptors and signalling mediators, and have led to the discovery of numerous peptide-based signalling molecules. Subsequent analyses have revealed the involvement in and contribution of these peptides to multiple aspects of the plant life cycle, including development and environmental responses, similar to the functions of canonical phytohormones. On the basis of this knowledge, the view that these peptide hormones are pivotal regulators in plants is becoming increasingly accepted. Peptide hormones are transcribed from the genome and translated into peptides. However, these peptides generally undergo further post-translational modifications to enable them to exert their function. Peptide hormones are expressed in and secreted from specific cells or tissues. Apoplastic peptides are perceived by specialized receptors that are located at the surface of target cells. Peptide hormone-receptor complexes activate intracellular signalling through downstream molecules, including kinases and transcription factors, which then trigger cellular events. In this chapter we provide a comprehensive summary of the biological functions of peptide hormones, focusing on how they mature and the ways in which they modulate plant functions. © 2015 Authors; published by Portland Press Limited.

  5. [Controlling effect of bushen huatan compound on the insulin signal conducting molecule inside ovaries in polycystic ovary syndrome model rats].

    PubMed

    Liang, Chen; Cong, Jing; Chang, Hui

    2011-12-01

    To study the effects of Bushen Huatan Compound (BHC) on the glycolipid metabolism and the expressions of the insulin signal conducting molecules inside ovaries in polycystic ovary syndrome (PCOS) model rats. Female Wistar rats were subcutaneously injected with 2.5 mg/kg testosterone propionate (Their female offspring were randomly divided into the medication group and the model group, 10 in each.) or neutral tea oil of the same dose (Ten female offspring was taken as the control group.) on the 16th day of pregnancy, once daily, for 3 successive days. BHC was given to rats in the medication group by gastrogavage, while equal volume of distilled water was given to rats in the model group and the control group by gastrogavage, both once daily for 20 successive days. The body weight and ovary weight were weighed to calculate the ratio of wet fat weight/body weight. The blood glucose levels were detected at 0, 0.5, 1, and 2 h using oral glucose tolerance test (OGTT). The serum concentrations of high-density lipoprotein cholesterol (HDL-C), triglyceride (TG), fasting blood glucose (FBG), and insulin were detected to calculate homeostasis model assessment of insulin resistance (HOMA-IR). The expressions of protein kinase B (AKT2), glycogen synthase kinase-3beta (GSK3beta), glucose transporter-4 (GLUT4), extracellular signal regulated kinase-1 (ERK1) protein, P-AKT2, P-GSK3beta, and P-ERK1 in ovaries were detected using Western blot. Compared with the control group, the ratio of wet fat weight/ body weight, the blood glucose levels at 0.5 and 2 h in OGTT, and HOMA-IR all obviously increased, and the HDL-C level obviously decreased in the model group (P < 0.05). Compared with the model group, the ratio of wet fat weight/body weight and the blood glucose levels at 2 h in OGTT obviously decreased, and the HDL-C level obviously increased in the medication group (P < 0.05). The expressions of AKT2, P-AKT2, GSK3beta, P-GSK3beta, GLUT4, and ERK1 in the ovary tissue were obviously

  6. Comparative efficacy of benthic biotic indices in assessing the Ecological Quality Status (EcoQS) of the stressed Ulhas estuary, India.

    PubMed

    Mulik, Jyoti; Sukumaran, Soniya; Srinivas, Tatiparthi; Vijapure, Tejal

    2017-07-15

    Ecostatus of Ulhas estuary, one of the most polluted estuaries along the industrialized and urbanized northwest coast of India, was evaluated by six widely accepted benthic indices viz. H'(log 2 ), AMBI, M-AMBI, BENTIX, BOPA and BO2A to test their efficiency in a tropical setting. The mesohaline zone, which presented eutrophic conditions, was classified as 'bad' by all indices due to the azoic status. Despite significant correlations obtained between indices, there were discrepancies in the accurate level of EcoQS assigned to each station. AMBI was observed to be most efficient in indicating a clear spatial variability from a 'poor' to 'bad' ecological quality status in the middle and upstream zones to an improved status in the downstream region. Limitations of all indices are discussed in light of their suitability for assessing the estuarine environmental condition. The present results could provide a fillip to environmental improvement initiatives currently being undertaken in the estuary. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. mRNA Molecules Containing Murine Leukemia Virus Packaging Signals Are Encapsidated as Dimers

    PubMed Central

    Hibbert, Catherine S.; Mirro, Jane; Rein, Alan

    2004-01-01

    Prior work by others has shown that insertion of ψ (i.e., leader) sequences from the Moloney murine leukemia virus (MLV) genome into the 3′ untranslated region of a nonviral mRNA leads to the specific encapsidation of this RNA in MLV particles. We now report that these RNAs are, like genomic RNAs, encapsidated as dimers. These dimers have the same thermostability as MLV genomic RNA dimers; like them, these dimers are more stable if isolated from mature virions than from immature virions. We characterized encapsidated mRNAs containing deletions or truncations of MLV ψ or with ψ sequences from MLV-related acute transforming viruses. The results indicate that the dimeric linkage in genomic RNA can be completely attributed to the ψ region of the genome. While this conclusion agrees with earlier electron microscopic studies on mature MLV dimers, it is the first evidence as to the site of the linkage in immature dimers for any retrovirus. Since the Ψ+ mRNA is not encapsidated as well as genomic RNA, it is only present in a minority of virions. The fact that it is nevertheless dimeric argues strongly that two of these molecules are packaged into particles together. We also found that the kissing loop is unnecessary for this coencapsidation or for the stability of mature dimers but makes a major contribution to the stability of immature dimers. Our results are consistent with the hypothesis that the packaging signal involves a dimeric structure in which the RNAs are joined by intermolecular interactions between GACG loops. PMID:15452213

  8. Inhibitor of PI3K/Akt Signaling Pathway Small Molecule Promotes Motor Neuron Differentiation of Human Endometrial Stem Cells Cultured on Electrospun Biocomposite Polycaprolactone/Collagen Scaffolds.

    PubMed

    Ebrahimi-Barough, Somayeh; Hoveizi, Elham; Yazdankhah, Meysam; Ai, Jafar; Khakbiz, Mehrdad; Faghihi, Faezeh; Tajerian, Roksana; Bayat, Neda

    2017-05-01

    Small molecules as useful chemical tools can affect cell differentiation and even change cell fate. It is demonstrated that LY294002, a small molecule inhibitor of phosphatidylinositol 3-kinase (PI3K)/Akt signal pathway, can inhibit proliferation and promote neuronal differentiation of mesenchymal stem cells (MSCs). The purpose of this study was to investigate the differentiation effect of Ly294002 small molecule on the human endometrial stem cells (hEnSCs) into motor neuron-like cells on polycaprolactone (PCL)/collagen scaffolds. hEnSCs were cultured in a neurogenic inductive medium containing 1 μM LY294002 on the surface of PCL/collagen electrospun fibrous scaffolds. Cell attachment and viability of cells on scaffolds were characterized by scanning electron microscope (SEM) and 3-(4,5-dimethylthiazoyl-2-yl)2,5-diphenyltetrazolium bromide (MTT) assay. The expression of neuron-specific markers was assayed by real-time PCR and immunocytochemistry analysis after 15 days post induction. Results showed that attachment and differentiation of hEnSCs into motor neuron-like cells on the scaffolds with Ly294002 small molecule were higher than that of the cells on tissue culture plates as control group. In conclusion, PCL/collagen electrospun scaffolds with Ly294002 have potential for being used in neural tissue engineering because of its bioactive and three-dimensional structure which enhances viability and differentiation of hEnSCs into neurons through inhibition of the PI3K/Akt pathway. Thus, manipulation of this pathway by small molecules can enhance neural differentiation.

  9. Triplin, a small molecule, reveals copper ion transport in ethylene signaling from ATX1 to RAN1

    PubMed Central

    Li, Wenbo; Ye, Yajin; Lu, Juan; Yeh, Kuo-Chen; Xiao, Youli; Li, Laigeng; Binder, Brad M.

    2017-01-01

    Copper ions play an important role in ethylene receptor biogenesis and proper function. The copper transporter RESPONSIVE-TO-ANTAGONIST1 (RAN1) is essential for copper ion transport in Arabidopsis thaliana. However it is still unclear how copper ions are delivered to RAN1 and how copper ions affect ethylene receptors. There is not a specific copper chelator which could be used to explore these questions. Here, by chemical genetics, we identified a novel small molecule, triplin, which could cause a triple response phenotype on dark-grown Arabidopsis seedlings through ethylene signaling pathway. ran1-1 and ran1-2 are hypersensitive to triplin. Adding copper ions in growth medium could partially restore the phenotype on plant caused by triplin. Mass spectrometry analysis showed that triplin could bind copper ion. Compared to the known chelators, triplin acts more specifically to copper ion and it suppresses the toxic effects of excess copper ions on plant root growth. We further showed that mutants of ANTIOXIDANT PROTEIN1 (ATX1) are hypersensitive to tiplin, but with less sensitivity comparing with the ones of ran1-1 and ran1-2. Our study provided genetic evidence for the first time that, copper ions necessary for ethylene receptor biogenesis and signaling are transported from ATX1 to RAN1. Considering that triplin could chelate copper ions in Arabidopsis, and copper ions are essential for plant and animal, we believe that, triplin not only could be useful for studying copper ion transport of plants, but also could be useful for copper metabolism study in animal and human. PMID:28388654

  10. Triplin, a small molecule, reveals copper ion transport in ethylene signaling from ATX1 to RAN1.

    PubMed

    Li, Wenbo; Lacey, Randy F; Ye, Yajin; Lu, Juan; Yeh, Kuo-Chen; Xiao, Youli; Li, Laigeng; Wen, Chi-Kuang; Binder, Brad M; Zhao, Yang

    2017-04-01

    Copper ions play an important role in ethylene receptor biogenesis and proper function. The copper transporter RESPONSIVE-TO-ANTAGONIST1 (RAN1) is essential for copper ion transport in Arabidopsis thaliana. However it is still unclear how copper ions are delivered to RAN1 and how copper ions affect ethylene receptors. There is not a specific copper chelator which could be used to explore these questions. Here, by chemical genetics, we identified a novel small molecule, triplin, which could cause a triple response phenotype on dark-grown Arabidopsis seedlings through ethylene signaling pathway. ran1-1 and ran1-2 are hypersensitive to triplin. Adding copper ions in growth medium could partially restore the phenotype on plant caused by triplin. Mass spectrometry analysis showed that triplin could bind copper ion. Compared to the known chelators, triplin acts more specifically to copper ion and it suppresses the toxic effects of excess copper ions on plant root growth. We further showed that mutants of ANTIOXIDANT PROTEIN1 (ATX1) are hypersensitive to tiplin, but with less sensitivity comparing with the ones of ran1-1 and ran1-2. Our study provided genetic evidence for the first time that, copper ions necessary for ethylene receptor biogenesis and signaling are transported from ATX1 to RAN1. Considering that triplin could chelate copper ions in Arabidopsis, and copper ions are essential for plant and animal, we believe that, triplin not only could be useful for studying copper ion transport of plants, but also could be useful for copper metabolism study in animal and human.

  11. Germinal Center T Follicular Helper Cell IL-4 Production Is Dependent on Signaling Lymphocytic Activation Molecule Receptor (CD150)

    PubMed Central

    Yusuf, Isharat; Kageyama, Robin; Monticelli, Laurel; Johnston, Robert J.; DiToro, Daniel; Hansen, Kyle; Barnett, Burton; Crotty, Shane

    2010-01-01

    CD4 T cell help is critical for the generation and maintenance of germinal centers (GCs), and T follicular helper (TFH) cells are the CD4 T cell subset required for this process. Signaling lymphocytic activation molecule (SLAM)-associated protein (SAP [SH2D1A]) expression in CD4 T cells is essential for GC development. However, SAP-deficient mice have only a moderate defect in TFH differentiation, as defined by common TFH surface markers. CXCR5+ TFH cells are found within the GC, as well as along the boundary regions of T/B cell zones. In this study, we show that GC-associated T follicular helper (GC TFH) cells can be identified by their coexpression of CXCR5 and the GL7 epitope, allowing for phenotypic and functional analysis of TFH and GC TFH populations. GC TFH cells are a functionally discrete subset of further polarized TFH cells, with enhanced B cell help capacity and a specialized ability to produce IL-4 in a TH2-independent manner. Strikingly, SAP-deficient mice have an absence of the GC TFH cell subset and SAP− TFH cells are defective in IL-4 and IL-21 production. We further demonstrate that SLAM (Slamf1, CD150), a surface receptor that uses SAP signaling, is specifically required for IL-4 production by GC TFH cells. GC TFH cells require IL-4 and -21 production for optimal help to B cells. These data illustrate complexities of SAP-dependent SLAM family receptor signaling, revealing a prominent role for SLAM receptor ligation in IL-4 production by GC CD4 T cells but not in TFH cell and GC TFH cell differentiation. PMID:20525889

  12. Quantitative single-molecule imaging by confocal laser scanning microscopy.

    PubMed

    Vukojevic, Vladana; Heidkamp, Marcus; Ming, Yu; Johansson, Björn; Terenius, Lars; Rigler, Rudolf

    2008-11-25

    A new approach to quantitative single-molecule imaging by confocal laser scanning microscopy (CLSM) is presented. It relies on fluorescence intensity distribution to analyze the molecular occurrence statistics captured by digital imaging and enables direct determination of the number of fluorescent molecules and their diffusion rates without resorting to temporal or spatial autocorrelation analyses. Digital images of fluorescent molecules were recorded by using fast scanning and avalanche photodiode detectors. In this way the signal-to-background ratio was significantly improved, enabling direct quantitative imaging by CLSM. The potential of the proposed approach is demonstrated by using standard solutions of fluorescent dyes, fluorescently labeled DNA molecules, quantum dots, and the Enhanced Green Fluorescent Protein in solution and in live cells. The method was verified by using fluorescence correlation spectroscopy. The relevance for biological applications, in particular, for live cell imaging, is discussed.

  13. Cell Adhesion Molecules and Ubiquitination—Functions and Significance

    PubMed Central

    Homrich, Mirka; Gotthard, Ingo; Wobst, Hilke; Diestel, Simone

    2015-01-01

    Cell adhesion molecules of the immunoglobulin (Ig) superfamily represent the biggest group of cell adhesion molecules. They have been analyzed since approximately 40 years ago and most of them have been shown to play a role in tumor progression and in the nervous system. All members of the Ig superfamily are intensively posttranslationally modified. However, many aspects of their cellular functions are not yet known. Since a few years ago it is known that some of the Ig superfamily members are modified by ubiquitin. Ubiquitination has classically been described as a proteasomal degradation signal but during the last years it became obvious that it can regulate many other processes including internalization of cell surface molecules and lysosomal sorting. The purpose of this review is to summarize the current knowledge about the ubiquitination of cell adhesion molecules of the Ig superfamily and to discuss its potential physiological roles in tumorigenesis and in the nervous system. PMID:26703751

  14. A supramolecular gel electrolyte formed from amide based co-gelator for quasi-solid-state dye-sensitized solar cell with boosted electron kinetic processes

    NASA Astrophysics Data System (ADS)

    Huo, Zhipeng; Wang, Lu; Tao, Li; Ding, Yong; Yi, Jinxin; Alsaedi, Ahmed; Hayat, Tasawar; Dai, Songyuan

    2017-08-01

    A supramolecular gel electrolyte (Tgel > 100 °C) is formed from N,N‧-1,8-octanediylbis-dodecanamide and iodoacetamide as two-component co-gelator, and introduced into the quasi-solid-state dye-sensitized solar cells (QS-DSSCs). The different morphologies of microscopic network between two-component and single-component gel electrolytes have influence on the diffusion of redox couple in gel electrolytes and further affect the electron kinetic processes in QS-DSSCs. Compared with the single-component gel electrolyte, the two-component gel electrolyte has less compact gel network and weaker steric hindrance effect, which provides more effective charge transport channel for the diffusion of I3/I- redox couple. Meanwhile, the sbnd NH2 groups of iodoacetamide molecules interact with Li+ and I3-, which also accelerate the transport of I3-/I- and decrease in the I3- concentration in the TiO2/electrolyte interface. As a result, nearly a 12% improvement in short-circuit photocurrent density (Jsc) and much higher open circuit potential (Voc) are found in the two-component gel electrolyte based QS-DSSC. Consequently, the QS-DSSC based on the supramolecular gel electrolyte obtains a 17% enhancement in the photoelectric conversion efficiency (7.32%) in comparison with the QS-DSSC based on the single-component gel electrolyte (6.24%). Furthermore, the degradations of these QS-DSSCs are negligible after one sun light soaking with UV cutoff filter at 50 °C for 1000 h.

  15. Molecular Electronic Devices Based On Electrooptical Behavior Of Heme-Like Molecules

    NASA Astrophysics Data System (ADS)

    Simic-Glavaski, B.

    1986-02-01

    This paper discusses application of the electrically modulated and unusually strong Raman emitted light produced by an adsorbed monolayer of phthalocyanine molecules on silver electrode or silver bromide substrates and on neural membranes. The analysis of electronic energy levels in semiconducting silver bromide and the adsorbed phthalocyanine molecules suggests a lasing mechanism as a possible origin of the high enhancement factor in surface enhanced Raman scattering. Electrically modulated Raman scattering may be used as a carrier of information which is drawn fran the fast intramolecular electron transfer aN,the multiplicity of quantum wells in phthalocyanine molecules. Fast switching times on the order of 10-13 seconds have been measured at room temperature. Multilevel and multioutput optical signals have also been obtained fran such an electrically modulated adsorbed monolayer of phthalocyanine molecules which can be precisely addressed and interrogated. This may be of practical use to develop Nlecular electronic devices with high density memory and fast parallel processing systems with a typical 1020 gate Hz/cm2 capacity at room temperature for use in optical computers. The paper also discusses the electrooptical modulation of Raman signals obtained from adsorbed bio-compatible phthalocyanine molecules on nerve membranes. This optical probe of neural systems can be used in studies of complex information processing in neural nets and provides a possible method for interfacing natural and man-made information processing devices.

  16. Communication: atomic force detection of single-molecule nonlinear optical vibrational spectroscopy.

    PubMed

    Saurabh, Prasoon; Mukamel, Shaul

    2014-04-28

    Atomic Force Microscopy (AFM) allows for a highly sensitive detection of spectroscopic signals. This has been first demonstrated for NMR of a single molecule and recently extended to stimulated Raman in the optical regime. We theoretically investigate the use of optical forces to detect time and frequency domain nonlinear optical signals. We show that, with proper phase matching, the AFM-detected signals closely resemble coherent heterodyne-detected signals. Applications are made to AFM-detected and heterodyne-detected vibrational resonances in Coherent Anti-Stokes Raman Spectroscopy (χ((3))) and sum or difference frequency generation (χ((2))).

  17. High sensitivity fluorescent single particle and single molecule detection apparatus and method

    DOEpatents

    Mathies, Richard A.; Peck, Konan; Stryer, Lubert

    1990-01-01

    Apparatus is described for ultrasensitive detection of single fluorescent particles down to the single fluorescent molecule limit in a fluid or on a substrate comprising means for illuminating a predetermined volume of the fluid or area of the substrate whereby to emit light including background light from the fluid and burst of photons from particles residing in the area. The photon burst is detected in real time to generate output representative signal. The signal is received and the burst of energy from the fluorescent particles is distinguished from the background energy to provide an indication of the number, location or concentration of the particles or molecules.

  18. Sequential pattern formation governed by signaling gradients

    NASA Astrophysics Data System (ADS)

    Jörg, David J.; Oates, Andrew C.; Jülicher, Frank

    2016-10-01

    Rhythmic and sequential segmentation of the embryonic body plan is a vital developmental patterning process in all vertebrate species. However, a theoretical framework capturing the emergence of dynamic patterns of gene expression from the interplay of cell oscillations with tissue elongation and shortening and with signaling gradients, is still missing. Here we show that a set of coupled genetic oscillators in an elongating tissue that is regulated by diffusing and advected signaling molecules can account for segmentation as a self-organized patterning process. This system can form a finite number of segments and the dynamics of segmentation and the total number of segments formed depend strongly on kinetic parameters describing tissue elongation and signaling molecules. The model accounts for existing experimental perturbations to signaling gradients, and makes testable predictions about novel perturbations. The variety of different patterns formed in our model can account for the variability of segmentation between different animal species.

  19. New developments in microbial interspecies signaling.

    PubMed

    Shank, Elizabeth Anne; Kolter, Roberto

    2009-04-01

    There is a growing appreciation that in addition to well-documented intraspecies quorum sensing systems, small molecules act as signals between microbes of different species. This review will focus on how bacterial small molecules modulate these interspecies interactions. We will particularly emphasize complex relationships such as those between microbes and insects, interactions resulting in non-antagonistic outcomes (i.e. developmental and morphological processes), how co-culture can lead to the discovery of new small molecules, and the use of known compounds to evoke unexpected responses and mediate crosstalk between microbes.

  20. Two Different rpf Clusters Distributed among a Population of Stenotrophomonas maltophilia Clinical Strains Display Differential Diffusible Signal Factor Production and Virulence Regulation

    PubMed Central

    Huedo, Pol; Yero, Daniel; Martínez-Servat, Sònia; Estibariz, Iratxe; Planell, Raquel; Martínez, Paula; Ruyra, Àngels; Roher, Nerea; Roca, Ignasi; Vila, Jordi

    2014-01-01

    The quorum-sensing (QS) system present in the emerging nosocomial pathogen Stenotrophomonas maltophilia is based on the signaling molecule diffusible signal factor (DSF). Production and detection of DSF are governed by the rpf cluster, which encodes the synthase RpfF and the sensor RpfC, among other components. Despite a well-studied system, little is known about its implication in virulence regulation in S. maltophilia. Here, we have analyzed the rpfF gene from 82 S. maltophilia clinical isolates. Although rpfF was found to be present in all of the strains, it showed substantial variation, with two populations (rpfF-1 and rpfF-2) clearly distinguishable by the N-terminal region of the protein. Analysis of rpfC in seven complete genome sequences revealed a corresponding variability in the N-terminal transmembrane domain of its product, suggesting that each RpfF variant has an associated RpfC variant. We show that only RpfC–RpfF-1 variant strains display detectable DSF production. Heterologous rpfF complementation of ΔrpfF mutants of a representative strain of each variant suggests that RpfF-2 is, however, functional and that the observed DSF-deficient phenotype of RpfC–RpfF-2 variant strains is due to permanent repression of RpfF-2 by RpfC-2. This is corroborated by the ΔrpfC mutant of the RpfC–RpfF-2 representative strain. In line with this observations, deletion of rpfF from the RpfC–RpfF-1 strain leads to an increase in biofilm formation, a decrease in swarming motility, and relative attenuation in the Caenorhabditis elegans and zebrafish infection models, whereas deletion of the same gene from the representative RpfC–RpfF-2 strain has no significant effect on these virulence-related phenotypes. PMID:24769700

  1. The emerging role of Hippo signaling pathway in regulating osteoclast formation.

    PubMed

    Yang, Wanlei; Han, Weiqi; Qin, An; Wang, Ziyi; Xu, Jiake; Qian, Yu

    2018-06-01

    A delicate balance between osteoblastic bone formation and osteoclastic bone resorption is crucial for bone homeostasis. This process is regulated by the Hippo signaling pathway including key regulatory molecules RASSF2, NF2, MST1/2, SAV1, LATS1/2, MOB1, YAP, and TAZ. It is well established that the Hippo signaling pathway plays an important part in regulating osteoblast differentiation, but its role in osteoclast formation and activation remains poorly understood. In this review, we discuss the emerging role of Hippo-signaling pathway in osteoclast formation and bone homeostasis. It is revealed that specific molecules of the Hippo-signaling pathway take part in a stage specific regulation in pre-osteoclast proliferation, osteoclast differentiation and osteoclast apoptosis and survival. Upon activation, MST and LAST, transcriptional co-activators YAP and TAZ bind to the members of the TEA domain (TEAD) family transcription factors, and influence osteoclast differentiation via regulating the expression of downstream target genes such as connective tissue growth factor (CTGF/CCN2) and cysteine-rich protein 61 (CYR61/CCN1). In addition, through interacting or cross talking with RANKL-mediated signaling cascades including NF-κB, MAPKs, AP1, and NFATc1, Hippo-signaling molecules such as YAP/TAZ/TEAD complex, RASSF2, MST2, and Ajuba could also potentially modulate osteoclast differentiation and function. Elucidating the roles of the Hippo-signaling pathway in osteoclast development and specific molecules involved is important for understanding the mechanism of bone homeostasis and diseases. © 2017 Wiley Periodicals, Inc.

  2. Microbial small molecules - weapons of plant subversion.

    PubMed

    Stringlis, Ioannis A; Zhang, Hao; Pieterse, Corné M J; Bolton, Melvin D; de Jonge, Ronnie

    2018-05-25

    Covering: up to 2018 Plants live in close association with a myriad of microbes that are generally harmless. However, the minority of microbes that are pathogens can severely impact crop quality and yield, thereby endangering food security. By contrast, beneficial microbes provide plants with important services, such as enhanced nutrient uptake and protection against pests and diseases. Like pathogens, beneficial microbes can modulate host immunity to efficiently colonize the nutrient-rich niches within and around the roots and aerial tissues of a plant, a phenomenon mirroring the establishment of commensal microbes in the human gut. Numerous ingenious mechanisms have been described by which pathogenic and beneficial microbes in the plant microbiome communicate with their host, including the delivery of immune-suppressive effector proteins and the production of phytohormones, toxins and other bioactive molecules. Plants signal to their associated microbes via exudation of photosynthetically fixed carbon sources, quorum-sensing mimicry molecules and selective secondary metabolites such as strigolactones and flavonoids. Molecular communication thus forms an integral part of the establishment of both beneficial and pathogenic plant-microbe relations. Here, we review the current knowledge on microbe-derived small molecules that can act as signalling compounds to stimulate plant growth and health by beneficial microbes on the one hand, but also as weapons for plant invasion by pathogens on the other. As an exemplary case, we used comparative genomics to assess the small molecule biosynthetic capabilities of the Pseudomonas genus; a genus rich in both plant pathogenic and beneficial microbes. We highlight the biosynthetic potential of individual microbial genomes and the population at large, providing evidence for the hypothesis that the distinction between detrimental and beneficial microbes is increasingly fading. Knowledge on the biosynthesis and molecular activity of

  3. Lactation Biology Symposium: Lactocrine signaling and developmental programming

    USDA-ARS?s Scientific Manuscript database

    Lactocrine signaling is defined as transmission of bioactive factors from mother to offspring as a consequence of nursing. Lactocrine transmission of signaling molecules may be an evolutionarily conserved process through which bioactive factors necessary for support of neonatal development are deliv...

  4. A New Small-Molecule Antagonist Inhibits Graves' Disease Antibody Activation of the TSH Receptor

    PubMed Central

    Eliseeva, Elena; McCoy, Joshua G.; Napolitano, Giorgio; Giuliani, Cesidio; Monaco, Fabrizio; Huang, Wenwei; Gershengorn, Marvin C.

    2011-01-01

    Context: Graves' disease (GD) is caused by persistent, unregulated stimulation of thyrocytes by thyroid-stimulating antibodies (TSAbs) that activate the TSH receptor (TSHR). We previously reported the first small-molecule antagonist of human TSHR and showed that it inhibited receptor signaling stimulated by sera from four patients with GD. Objective: Our objective was to develop a better TSHR antagonist and use it to determine whether inhibition of TSAb activation of TSHR is a general phenomenon. Design: We aimed to chemically modify a previously reported small-molecule TSHR ligand to develop a better antagonist and determine whether it inhibits TSHR signaling by 30 GD sera. TSHR signaling was measured in two in vitro systems: model HEK-EM293 cells stably overexpressing human TSHRs and primary cultures of human thyrocytes. TSHR signaling was measured as cAMP production and by effects on thyroid peroxidase mRNA. Results: We tested analogs of a previously reported small-molecule TSHR inverse agonist and selected the best NCGC00229600 for further study. In the model system, NCGC00229600 inhibited basal and TSH-stimulated cAMP production. NCGC00229600 inhibition of TSH signaling was competitive even though it did not compete for TSH binding; that is, NCGC00229600 is an allosteric inverse agonist. NCGC00229600 inhibited cAMP production by 39 ± 2.6% by all 30 GD sera tested. In primary cultures of human thyrocytes, NCGC00229600 inhibited TSHR-mediated basal and GD sera up-regulation of thyroperoxidase mRNA levels by 65 ± 2.0%. Conclusion: NCGC00229600, a small-molecule allosteric inverse agonist of TSHR, is a general antagonist of TSH receptor activation by TSAbs in GD patient sera. PMID:21123444

  5. A new small-molecule antagonist inhibits Graves' disease antibody activation of the TSH receptor.

    PubMed

    Neumann, Susanne; Eliseeva, Elena; McCoy, Joshua G; Napolitano, Giorgio; Giuliani, Cesidio; Monaco, Fabrizio; Huang, Wenwei; Gershengorn, Marvin C

    2011-02-01

    Graves' disease (GD) is caused by persistent, unregulated stimulation of thyrocytes by thyroid-stimulating antibodies (TSAbs) that activate the TSH receptor (TSHR). We previously reported the first small-molecule antagonist of human TSHR and showed that it inhibited receptor signaling stimulated by sera from four patients with GD. Our objective was to develop a better TSHR antagonist and use it to determine whether inhibition of TSAb activation of TSHR is a general phenomenon. We aimed to chemically modify a previously reported small-molecule TSHR ligand to develop a better antagonist and determine whether it inhibits TSHR signaling by 30 GD sera. TSHR signaling was measured in two in vitro systems: model HEK-EM293 cells stably overexpressing human TSHRs and primary cultures of human thyrocytes. TSHR signaling was measured as cAMP production and by effects on thyroid peroxidase mRNA. We tested analogs of a previously reported small-molecule TSHR inverse agonist and selected the best NCGC00229600 for further study. In the model system, NCGC00229600 inhibited basal and TSH-stimulated cAMP production. NCGC00229600 inhibition of TSH signaling was competitive even though it did not compete for TSH binding; that is, NCGC00229600 is an allosteric inverse agonist. NCGC00229600 inhibited cAMP production by 39 ± 2.6% by all 30 GD sera tested. In primary cultures of human thyrocytes, NCGC00229600 inhibited TSHR-mediated basal and GD sera up-regulation of thyroperoxidase mRNA levels by 65 ± 2.0%. NCGC00229600, a small-molecule allosteric inverse agonist of TSHR, is a general antagonist of TSH receptor activation by TSAbs in GD patient sera.

  6. Dynamic and diverse sugar signaling

    PubMed Central

    Li, Lei; Sheen, Jen

    2016-01-01

    Sugars fuel life and exert numerous regulatory actions that are fundamental to all life forms. There are two principal mechanisms underlie sugar “perception and signal transduction” in biological systems. Direct sensing and signaling is triggered via sugar-binding sensors with a broad range of affinity and specificity, whereas sugar-derived bioenergetic molecules and metabolites modulate signaling proteins and indirectly relay sugar signals. This review discusses the emerging sugar signals and potential sugar sensors discovered in plant systems. The findings leading to informative understanding of physiological regulation by sugars are considered and assessed. Comparative transcriptome analyses highlight the primary and dynamic sugar responses and reveal the convergent and specific regulators of key biological processes in the sugar-signaling network. PMID:27423125

  7. Electrostatic melting in a single-molecule field-effect transistor with applications in genomic identification

    PubMed Central

    Vernick, Sefi; Trocchia, Scott M.; Warren, Steven B.; Young, Erik F.; Bouilly, Delphine; Gonzalez, Ruben L.; Nuckolls, Colin; Shepard, Kenneth L.

    2017-01-01

    The study of biomolecular interactions at the single-molecule level holds great potential for both basic science and biotechnology applications. Single-molecule studies often rely on fluorescence-based reporting, with signal levels limited by photon emission from single optical reporters. The point-functionalized carbon nanotube transistor, known as the single-molecule field-effect transistor, is a bioelectronics alternative based on intrinsic molecular charge that offers significantly higher signal levels for detection. Such devices are effective for characterizing DNA hybridization kinetics and thermodynamics and enabling emerging applications in genomic identification. In this work, we show that hybridization kinetics can be directly controlled by electrostatic bias applied between the device and the surrounding electrolyte. We perform the first single-molecule experiments demonstrating the use of electrostatics to control molecular binding. Using bias as a proxy for temperature, we demonstrate the feasibility of detecting various concentrations of 20-nt target sequences from the Ebolavirus nucleoprotein gene in a constant-temperature environment. PMID:28516911

  8. Notch signalling coordinates tissue growth and wing fate specification in Drosophila.

    PubMed

    Rafel, Neus; Milán, Marco

    2008-12-01

    During the development of a given organ, tissue growth and fate specification are simultaneously controlled by the activity of a discrete number of signalling molecules. Here, we report that these two processes are extraordinarily coordinated in the Drosophila wing primordium, which extensively proliferates during larval development to give rise to the dorsal thoracic body wall and the adult wing. The developmental decision between wing and body wall is defined by the opposing activities of two secreted signalling molecules, Wingless and the EGF receptor ligand Vein. Notch signalling is involved in the determination of a variety of cell fates, including growth and cell survival. We present evidence that growth of the wing primordium mediated by the activity of Notch is required for wing fate specification. Our data indicate that tissue size modulates the activity range of the signalling molecules Wingless and Vein. These results highlight a crucial role of Notch in linking proliferation and fate specification in the developing wing primordium.

  9. Ephrin-B reverse signaling controls septation events at the embryonic midline through separate tyrosine phosphorylation-independent signaling avenues.

    PubMed

    Dravis, Christopher; Henkemeyer, Mark

    2011-07-01

    We report that the disruption of bidirectional signaling between ephrin-B2 and EphB receptors impairs morphogenetic cell-cell septation and closure events during development of the embryonic midline. A novel role for reverse signaling is identified in tracheoesophageal foregut septation, as animals lacking the cytoplasmic domain of ephrin-B2 present with laryngotracheoesophageal cleft (LTEC), while both EphB2/EphB3 forward signaling and ephrin-B2 reverse signaling are shown to be required for midline fusion of the palate. In a third midline event, EphB2/EphB3 are shown to mediate ventral abdominal wall closure by acting principally as ligands to stimulate ephrin-B reverse signaling. Analysis of new ephrin-B2(6YFΔV) and ephrin-B2(ΔV) mutants that specifically ablate ephrin-B2 tyrosine phosphorylation- and/or PDZ domain-mediated signaling indicates there are at least two distinct phosphorylation-independent components of reverse signaling. These involve both PDZ domain interactions and a non-canonical SH2/PDZ-independent form of reverse signaling that may utilize associations with claudin family tetraspan molecules, as EphB2 and activated ephrin-B2 molecules are specifically co-localized with claudins in epithelia at the point of septation. Finally, the developmental phenotypes described here mirror common human midline birth defects found with the VACTERL association, suggesting a molecular link to bidirectional signaling through B-subclass Ephs and ephrins. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Analysis of noise in quorum sensing.

    PubMed

    Cox, Chris D; Peterson, Gregory D; Allen, Michael S; Lancaster, Joseph M; McCollum, James M; Austin, Derek; Yan, Ling; Sayler, Gary S; Simpson, Michael L

    2003-01-01

    Noise may play a pivotal role in gene circuit functionality, as demonstrated for the genetic switch in the bacterial phage lambda. Like the lambda switch, bacterial quorum sensing (QS) systems operate within a population and contain a bistable switching element, making it likely that noise plays a functional role in QS circuit operation. Therefore, a detailed analysis of the noise behavior of QS systems is needed. We have developed a set of tools generally applicable to the analysis of gene circuits, with an emphasis on investigations in the frequency domain (FD), that we apply here to the QS system in the marine bacterium Vibrio fischeri. We demonstrate that a tight coupling between exact stochastic simulation and FD analysis provides insights into the structure/function relationships in the QS circuit. Furthermore, we argue that a noise analysis is incomplete without consideration of the power spectral densities (PSDs) of the important molecular output signals. As an example we consider reversible reactions in the QS circuit, and show through analysis and exact stochastic simulation that these circuits make significant and dynamic modifications to the noise spectra. In particular, we demonstrate a "whitening" effect, which occurs as the noise is processed through these reversible reactions.

  11. Salicylic acid signaling inhibits apoplastic reactive oxygen species signaling.

    PubMed

    Xu, Enjun; Brosché, Mikael

    2014-06-04

    Reactive oxygen species (ROS) are used by plants as signaling molecules during stress and development. Given the amount of possible challenges a plant face from their environment, plants need to activate and prioritize between potentially conflicting defense signaling pathways. Until recently, most studies on signal interactions have focused on phytohormone interaction, such as the antagonistic relationship between salicylic acid (SA)-jasmonic acid and cytokinin-auxin. In this study, we report an antagonistic interaction between SA signaling and apoplastic ROS signaling. Treatment with ozone (O3) leads to a ROS burst in the apoplast and induces extensive changes in gene expression and elevation of defense hormones. However, Arabidopsis thaliana dnd1 (defense no death1) exhibited an attenuated response to O3. In addition, the dnd1 mutant displayed constitutive expression of defense genes and spontaneous cell death. To determine the exact process which blocks the apoplastic ROS signaling, double and triple mutants involved in various signaling pathway were generated in dnd1 background. Simultaneous elimination of SA-dependent and SA-independent signaling components from dnd1 restored its responsiveness to O3. Conversely, pre-treatment of plants with SA or using mutants that constitutively activate SA signaling led to an attenuation of changes in gene expression elicited by O3. Based upon these findings, we conclude that plants are able to prioritize the response between ROS and SA via an antagonistic action of SA and SA signaling on apoplastic ROS signaling.

  12. Salicylic acid signaling inhibits apoplastic reactive oxygen species signaling

    PubMed Central

    2014-01-01

    Background Reactive oxygen species (ROS) are used by plants as signaling molecules during stress and development. Given the amount of possible challenges a plant face from their environment, plants need to activate and prioritize between potentially conflicting defense signaling pathways. Until recently, most studies on signal interactions have focused on phytohormone interaction, such as the antagonistic relationship between salicylic acid (SA)-jasmonic acid and cytokinin-auxin. Results In this study, we report an antagonistic interaction between SA signaling and apoplastic ROS signaling. Treatment with ozone (O3) leads to a ROS burst in the apoplast and induces extensive changes in gene expression and elevation of defense hormones. However, Arabidopsis thaliana dnd1 (defense no death1) exhibited an attenuated response to O3. In addition, the dnd1 mutant displayed constitutive expression of defense genes and spontaneous cell death. To determine the exact process which blocks the apoplastic ROS signaling, double and triple mutants involved in various signaling pathway were generated in dnd1 background. Simultaneous elimination of SA-dependent and SA-independent signaling components from dnd1 restored its responsiveness to O3. Conversely, pre-treatment of plants with SA or using mutants that constitutively activate SA signaling led to an attenuation of changes in gene expression elicited by O3. Conclusions Based upon these findings, we conclude that plants are able to prioritize the response between ROS and SA via an antagonistic action of SA and SA signaling on apoplastic ROS signaling. PMID:24898702

  13. New Modeling Approaches to Investigate Cell Signaling in Radiation Response

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Cucinotta, Francis A.; Ponomarev, Artem L.

    2011-01-01

    Ionizing radiation damages individual cells and tissues leading to harmful biological effects. Among many radiation-induced lesions, DNA double-strand breaks (DSB) are considered the key precursors of most early and late effects [1] leading to direct mutation or aberrant signal transduction processes. In response to damage, a flow of information is communicated to cells not directly hit by the radiation through signal transduction pathways [2]. Non-targeted effects (NTE), which includes bystander effects and genomic instability in the progeny of irradiated cells and tissues, may be particularly important for space radiation risk assessment [1], because astronauts are exposed to a low fluence of heavy ions and only a small fraction of cells are traversed by an ion. NTE may also have important consequences clinical radiotherapy [3]. In the recent years, new simulation tools and modeling approaches have become available to study the tissue response to radiation. The simulation of signal transduction pathways require many elements such as detailed track structure calculations, a tissue or cell culture model, knowledge of biochemical pathways and Brownian Dynamics (BD) propagators of the signaling molecules in their micro-environment. Recently, the Monte-Carlo simulation code of radiation track structure RITRACKS was used for micro and nano-dosimetry calculations [4]. RITRACKS will be used to calculate the fraction of cells traversed by an ion and delta-rays and the energy deposited in cells in a tissue model. RITRACKS also simulates the formation of chemical species by the radiolysis of water [5], notably the .OH radical. This molecule is implicated in DNA damage and in the activation of the transforming growth factor beta (TGF), a signaling molecule involved in NTE. BD algorithms for a particle near a membrane comprising receptors were also developed and will be used to simulate trajectories of signaling molecules in the micro-environment and characterize autocrine

  14. Chalcogenide glass sensors for bio-molecule detection

    NASA Astrophysics Data System (ADS)

    Lucas, Pierre; Coleman, Garrett J.; Cantoni, Christopher; Jiang, Shibin; Luo, Tao; Bureau, Bruno; Boussard-Pledel, Catherine; Troles, Johann; Yang, Zhiyong

    2017-02-01

    Chalcogenide glasses constitute the only class of materials that remain fully amorphous while exhibiting broad optical transparency over the full infrared region from 2-20 microns. As such, they can be shaped into complex optical elements while retaining a clear optical window that encompass the vibrational signals of virtually any molecules. Chalcogenide glasses are therefore ideal materials for designing biological and chemical sensors based on vibrational spectroscopy. In this paper we review the properties of these glasses and the corresponding design of optical elements for bio-chemical sensing. Amorphous chalcogenides offer a very wide compositional landscape that permit to tune their physical properties to match specific demands for the production of optical devices. This includes tailoring the infrared window over specific ranges of wavelength such as the long-wave infrared region to capture important vibrational signal including the "signature region" of micro-organisms or the bending mode of CO2 molecules. Additionally, compositional engineering enables tuning the viscosity-temperature dependence of the glass melt in order to control the rheological properties that are fundamental to the production of glass elements. Indeed, exquisite control of the viscosity is key to the fabrication process of many optical elements such as fiber drawing, lens molding, surface embossing or reflow of microresonators. Optimal control of these properties then enables the design and fabrication of optimized infrared sensors such as Fiber Evanescent Wave Spectroscopy (FEWS) sensors, Whispering Gallery Modes (WGM) micro-resonator sensors, nanostructured surfaces for integrated optics and surface-enhanced processes, or lens molding for focused collection of infrared signals. Many of these sensor designs can be adapted to collect and monitor the vibrational signal of live microorganisms to study their metabolism in controlled environmental conditions. Further materials

  15. Extrasynaptic exocytosis and its mechanisms: a source of molecules mediating volume transmission in the nervous system.

    PubMed

    Trueta, Citlali; De-Miguel, Francisco F

    2012-01-01

    We review the evidence of exocytosis from extrasynaptic sites in the soma, dendrites, and axonal varicosities of central and peripheral neurons of vertebrates and invertebrates, with emphasis on somatic exocytosis, and how it contributes to signaling in the nervous system. The finding of secretory vesicles in extrasynaptic sites of neurons, the presence of signaling molecules (namely transmitters or peptides) in the extracellular space outside synaptic clefts, and the mismatch between exocytosis sites and the location of receptors for these molecules in neurons and glial cells, have long suggested that in addition to synaptic communication, transmitters are released, and act extrasynaptically. The catalog of these molecules includes low molecular weight transmitters such as monoamines, acetylcholine, glutamate, gama-aminobutiric acid (GABA), adenosine-5-triphosphate (ATP), and a list of peptides including substance P, brain-derived neurotrophic factor (BDNF), and oxytocin. By comparing the mechanisms of extrasynaptic exocytosis of different signaling molecules by various neuron types we show that it is a widespread mechanism for communication in the nervous system that uses certain common mechanisms, which are different from those of synaptic exocytosis but similar to those of exocytosis from excitable endocrine cells. Somatic exocytosis has been measured directly in different neuron types. It starts after high-frequency electrical activity or long experimental depolarizations and may continue for several minutes after the end of stimulation. Activation of L-type calcium channels, calcium release from intracellular stores and vesicle transport towards the plasma membrane couple excitation and exocytosis from small clear or large dense core vesicles in release sites lacking postsynaptic counterparts. The presence of synaptic and extrasynaptic exocytosis endows individual neurons with a wide variety of time- and space-dependent communication possibilities

  16. Dietary choline deficiency and excess induced intestinal inflammation and alteration of intestinal tight junction protein transcription potentially by modulating NF-κB, STAT and p38 MAPK signaling molecules in juvenile Jian carp.

    PubMed

    Wu, Pei; Jiang, Wei-Dan; Jiang, Jun; Zhao, Juan; Liu, Yang; Zhang, Yong-An; Zhou, Xiao-Qiu; Feng, Lin

    2016-11-01

    This study investigated the effects of choline on intestinal mucosal immune and the possible mechanisms in fish by feeding juvenile Jian carp (Cyprinus carpio var. Jian) with graded levels of dietary choline (165-1820 mg/kg diet) for 65 days. The results firstly showed that choline deficiency induced inflammatory infiltration in the proximal intestine (PI), mid intestine (MI) and distal intestine (DI) of fish. Meanwhile, compared with the optimal choline group, choline deficiency decreased the activities of lysozyme and acid phosphatase, contents of complement 3 and IgM in the intestine, downregulated the mRNA levels of antimicrobial peptides (liver-expressed antimicrobial peptide (LEAP) 2A and defensin-3 in the PI and MI, LEAP-2B and hepcidin in the PI, MI and DI), anti-inflammatory cytokines (interleukin (IL) 10 and transforming growth factor β2 in the PI, MI and DI), and signaling molecule IκB in the PI, MI and DI; while upregulated the mRNA levels of pro-inflammatory cytokines (IL-6a and tumor necrosis factor α in the MI and DI, interferon γ2b in the PI and MI, IL-1β and IL-6b in the PI, MI and DI), and signaling molecules (Toll-like receptor 4 in the MI, myeloid differentiation primary response 88 in the PI and MI, Janus kinase 3 and tyrosine kinase 2 in the MI and DI, nuclear factor kappa B (NF-κB), signal transducers and activators of transcription (STAT) 4 and STAT5 in the PI, MI and DI) of juvenile Jian carp, further indicating that choline deficiency caused inflammation and immunity depression in the intestine of fish. But choline deficiency decreased the PI IL-6a mRNA level, and increased the DI LEAP-2A and defensin-3 mRNA levels with unknown reasons. Furthermore, dietary choline deficiency downregulated mRNA levels of tight junction (TJ) proteins (claudin 3c in the PI and MI, claudin 7, claudin 11 and occludin in the PI, MI and DI) and signaling molecule mitogen-activated protein kinases p38 in the PI, MI and DI of juvenile Jian carp, whereas

  17. Small molecule inhibition of fibroblast growth factor receptors in cancer.

    PubMed

    Liang, Guang; Chen, Gaozhi; Wei, Xiaoyan; Zhao, Yunjie; Li, Xiaokun

    2013-10-01

    Fibroblast growth factors (FGFs) signal through FGF receptors (FGFRs), which are a sub-family of the superfamily of receptor tyrosine kinases, to regulate human development and metabolism. Uncontrolled FGF signaling is responsible for diverse array of developmental disorders, most notably skeletal syndromes due to FGFR gain-of-function mutations. Studies in the last few years have provided significant evidence for the importance of FGF signaling in the pathogenesis of diverse cancers, including endometrial and bladder cancers. FGFs are both potent mitogenic and angiogenic factors and can contribute to carcinogenesis by stimulating cell proliferation and tumor angiogenesis. Gene knockout and pharmacological inhibition of FGFRs in in vivo and in vitro models validate FGFRs as a target for cancer treatment. Considerable efforts are being expended to develop specific, small-molecule inhibitors for treating FGFR-driven cancers. Recent reviews on the FGF/FGFR system have focused primarily on signaling, pathophysiology, and functions in cancer. In this article, we review the key roles of FGFR in cancer, provide an update on the status of clinical trials with small-molecule FGFR inhibitors, and discuss how the current structural data on FGFR kinases guide the design and characterization of new FGFR inhibitors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Cell biology symposium: Membrane trafficking and signal transduction

    USDA-ARS?s Scientific Manuscript database

    In general, membrane trafficking is a broad group of processes where proteins and other large molecules are distributed throughout the cell as well as adjacent extracellular spaces. Whereas signal transduction is a process where signals are transmitted through a series of chemical or molecular event...

  19. Signaling Molecules Governing Pluripotency and Early Lineage Commitments in Human Pluripotent Stem Cells

    PubMed Central

    Fathi, Ali; Eisa-Beygi, Shahram; Baharvand, Hossein

    2017-01-01

    Signaling in pluripotent stem cells is a complex and dynamic process involving multiple mediators, finely tuned to balancing pluripotency and differentiation states. Characterizing and modifying the necessary signaling pathways to attain desired cell types is required for stem-cell applications in various fields of regenerative medicine. These signals may help enhance the differentiation potential of pluripotent cells towards each of the embryonic lineages and enable us to achieve pure in vitro cultures of various cell types. This review provides a timely synthesis of recent advances into how maintenance of pluripotency in hPSCs is regulated by extrinsic cues, such as the fibroblast growth factor (FGF) and ACTIVIN signaling pathways, their interplay with other signaling pathways, namely, wingless- type MMTV integration site family (WNT) and mammalian target of rapamycin (mTOR), and the pathways governing the determination of multiple lineages. PMID:28670512

  20. Multidimensional optical spectroscopy of a single molecule in a current-carrying state

    NASA Astrophysics Data System (ADS)

    Rahav, S.; Mukamel, S.

    2010-12-01

    The nonlinear optical signals from an open system consisting of a molecule connected to metallic leads, in response to a sequence of impulsive pulses, are calculated using a superoperator formalism. Two detection schemes are considered: coherent stimulated emission and incoherent fluorescence. The two provide similar but not identical information. The necessary superoperator correlation functions are evaluated either by converting them to ordinary (Hilbert space) operators which are then expanded in many-body states, or by using Wick's theorem for superoperators to factorize them into nonequilibrium two point Green's functions. As an example we discuss a stimulated Raman process that shows resonances involving two different charge states of the molecule in the same signal.

  1. Proanthocyanidins-Will they effectively restrain conspicuous bacterial strains devolving on urinary tract infection?

    PubMed

    Jagannathan, Venkataseshan; Viswanathan, Pragasam

    2018-05-18

    Struvite or infection stones are one of the major clinical burdens among urinary tract infection, which occur due to the interaction between microbes and urine mineral components. Numerous urinary tract infection (UTI) causing microbes regulate through biofilm formation for survival from host defense, it is often found difficult in its eradication with simple anti-microbial agents and also the chance of recurrence and resistance development is significantly high. Cranberry consumption and maintenance of urinary tract health have been supported by clinical, epidemiological, and mechanistic studies. It predominantly contains proanthocyanidins that belong to the class of polyphenols with repeating catechin and epicatechin monomeric units. Numerous studies have correlated proanthocyanidin consumption and prevention of bacterial adhesion to uroepithelial cells. Quorum sensing (QS) is the prime mechanism that drives bacteria to coordinate biofilm development and virulence expression. Reports have shown that proanthocyanidins are effective in disrupting cell-cell communication by quenching signal molecules. Overall, this review assesses the merits of proanthocyanidins and its effective oppression on adherence, motility, QS, and biofilm formation of major UTI strains such as Escherichia coli, Pseudomonas aeruginosa, and Proteus mirabilis by comparing and evaluating results from many significant findings. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Quorum Sensing Influences Burkholderia thailandensis Biofilm Development and Matrix Production.

    PubMed

    Tseng, Boo Shan; Majerczyk, Charlotte D; Passos da Silva, Daniel; Chandler, Josephine R; Greenberg, E Peter; Parsek, Matthew R

    2016-10-01

    Members of the genus Burkholderia are known to be adept at biofilm formation, which presumably assists in the survival of these organisms in the environment and the host. Biofilm formation has been linked to quorum sensing (QS) in several bacterial species. In this study, we characterized Burkholderia thailandensis biofilm development under flow conditions and sought to determine whether QS contributes to this process. B. thailandensis biofilm formation exhibited an unusual pattern: the cells formed small aggregates and then proceeded to produce mature biofilms characterized by "dome" structures filled with biofilm matrix material. We showed that this process was dependent on QS. B. thailandensis has three acyl-homoserine lactone (AHL) QS systems (QS-1, QS-2, and QS-3). An AHL-negative strain produced biofilms consisting of cell aggregates but lacking the matrix-filled dome structures. This phenotype was rescued via exogenous addition of the three AHL signals. Of the three B. thailandensis QS systems, we show that QS-1 is required for proper biofilm development, since a btaR1 mutant, which is defective in QS-1 regulation, forms biofilms without these dome structures. Furthermore, our data show that the wild-type biofilm biomass, as well as the material inside the domes, stains with a fucose-binding lectin. The btaR1 mutant biofilms, however, are negative for fucose staining. This suggests that the QS-1 system regulates the production of a fucose-containing exopolysaccharide in wild-type biofilms. Finally, we present data showing that QS ability during biofilm development produces a biofilm that is resistant to dispersion under stress conditions. The saprophyte Burkholderia thailandensis is a close relative of the pathogenic bacterium Burkholderia pseudomallei, the causative agent of melioidosis, which is contracted from its environmental reservoir. Since most bacteria in the environment reside in biofilms, B. thailandensis is an ideal model organism for

  3. Engineering quorum sensing signaling of Pseudomonas for enhanced wastewater treatment and electricity harvest: A review.

    PubMed

    Yong, Yang-Chun; Wu, Xiang-Yang; Sun, Jian-Zhong; Cao, Ying-Xiu; Song, Hao

    2015-12-01

    Cell-cell communication that enables synchronized population behaviors in microbial communities dictates various biological processes. It is of great interest to unveil the underlying mechanisms of fine-tuning cell-cell communication to achieve environmental and energy applications. Pseudomonas is a ubiquitous microbe in environments that had wide applications in bioremediation and bioenergy generation. The quorum sensing (QS, a generic cell-cell communication mechanism) systems of Pseudomonas underlie the aromatics biodegradation, denitrification and electricity harvest. Here, we reviewed the recent progresses of the genetic strategies in engineering QS circuits to improve efficiency of wastewater treatment and the performance of microbial fuel cells. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. The LDL receptor gene family: signaling functions during development.

    PubMed

    Howell, B W; Herz, J

    2001-02-01

    The traditional views regarding the biological functions of the low-density lipoprotein (LDL) receptor gene family have been revisited recently with new evidence that at least some of the members of this receptor family act as signal-transduction molecules. Known for their role in endocytosis, particularly of their namesake the LDLs, and for their role in the prevention of atherosclerosis, these receptors belong to an ancient family with numerous ligands, effector molecules and functions. Recent evidence implicates this family of receptors in diverse signaling pathways, long-term potentiation and neuronal degeneration.

  5. Frontier of Epilepsy Research - mTOR signaling pathway

    PubMed Central

    2011-01-01

    Studies of epilepsy have mainly focused on the membrane proteins that control neuronal excitability. Recently, attention has been shifting to intracellular proteins and their interactions, signaling cascades and feedback regulation as they relate to epilepsy. The mTOR (mammalian target of rapamycin) signal transduction pathway, especially, has been suggested to play an important role in this regard. These pathways are involved in major physiological processes as well as in numerous pathological conditions. Here, involvement of the mTOR pathway in epilepsy will be reviewed by presenting; an overview of the pathway, a brief description of key signaling molecules, a summary of independent reports and possible implications of abnormalities of those molecules in epilepsy, a discussion of the lack of experimental data, and questions raised for the understanding its epileptogenic mechanism. PMID:21467839

  6. Visualizing single molecules interacting with nuclear pore complexes by narrow-field epifluorescence microscopy

    PubMed Central

    Yang, Weidong; Musser, Siegfried M.

    2008-01-01

    The utility of single molecule fluorescence (SMF) for understanding biological reactions has been amply demonstrated by a diverse series of studies over the last decade. In large part, the molecules of interest have been limited to those within a small focal volume or near a surface to achieve the high sensitivity required for detecting the inherently weak signals arising from individual molecules. Consequently, the investigation of molecular behavior with high time and spatial resolution deep within cells using SMF has remained challenging. Recently, we demonstrated that narrow-field epifluorescence microscopy allows visualization of nucleocytoplasmic transport at the single cargo level. We describe here the methodological approach that yields 2 ms and ∼15 nm resolution for a stationary particle. The spatial resolution for a mobile particle is inherently worse, and depends on how fast the particle is moving. The signal-to-noise ratio is sufficiently high to directly measure the time a single cargo molecule spends interacting with the nuclear pore complex. Particle tracking analysis revealed that cargo molecules randomly diffuse within the nuclear pore complex, exiting as a result of a single rate-limiting step. We expect that narrow-field epifluorescence microscopy will be useful for elucidating other binding and trafficking events within cells. PMID:16879979

  7. Active transport improves the precision of linear long distance molecular signalling

    NASA Astrophysics Data System (ADS)

    Godec, Aljaž; Metzler, Ralf

    2016-09-01

    Molecular signalling in living cells occurs at low copy numbers and is thereby inherently limited by the noise imposed by thermal diffusion. The precision at which biochemical receptors can count signalling molecules is intimately related to the noise correlation time. In addition to passive thermal diffusion, messenger RNA and vesicle-engulfed signalling molecules can transiently bind to molecular motors and are actively transported across biological cells. Active transport is most beneficial when trafficking occurs over large distances, for instance up to the order of 1 metre in neurons. Here we explain how intermittent active transport allows for faster equilibration upon a change in concentration triggered by biochemical stimuli. Moreover, we show how intermittent active excursions induce qualitative changes in the noise in effectively one-dimensional systems such as dendrites. Thereby they allow for significantly improved signalling precision in the sense of a smaller relative deviation in the concentration read-out by the receptor. On the basis of linear response theory we derive the exact mean field precision limit for counting actively transported molecules. We explain how intermittent active excursions disrupt the recurrence in the molecular motion, thereby facilitating improved signalling accuracy. Our results provide a deeper understanding of how recurrence affects molecular signalling precision in biological cells and novel medical-diagnostic devices.

  8. Effect of molecule-particle binding on the reduction in the mixed-frequency alternating current magnetic susceptibility of magnetic bio-reagents

    NASA Astrophysics Data System (ADS)

    Yang, C. C.; Yang, S. Y.; Chen, H. H.; Weng, W. L.; Horng, H. E.; Chieh, J. J.; Hong, C. Y.; Yang, H. C.

    2012-07-01

    By specifically bio-functionalizing magnetic nanoparticles, magnetic nanoparticles are able to label target bio-molecules. This property can be applied to quantitatively detect molecules invitro by measuring the related magnetic signals of nanoparticles bound with target molecules. One of the magnetic signals is the reduction in the mixed-frequency ac magnetic susceptibility of suspended magnetic nanoparticles due to the molecule-particle association. Many experimental results show empirically that the molecular-concentration dependent reduction in ac magnetic susceptibility follows the logistic function. In this study, it has been demonstrated that the logistic behavior is originated from the growth of particle sizes due to the molecule-particle association. The analytic relationship between the growth of particle sizes and the reduction in ac magnetic susceptibility is developed.

  9. Voltage-Driven Conformational Switching with Distinct Raman Signature in a Single-Molecule Junction.

    PubMed

    Bi, Hai; Palma, Carlos-Andres; Gong, Yuxiang; Hasch, Peter; Elbing, Mark; Mayor, Marcel; Reichert, Joachim; Barth, Johannes V

    2018-04-11

    Precisely controlling well-defined, stable single-molecule junctions represents a pillar of single-molecule electronics. Early attempts to establish computing with molecular switching arrays were partly challenged by limitations in the direct chemical characterization of metal-molecule-metal junctions. While cryogenic scanning probe studies have advanced the mechanistic understanding of current- and voltage-induced conformational switching, metal-molecule-metal conformations are still largely inferred from indirect evidence. Hence, the development of robust, chemically sensitive techniques is instrumental for advancement in the field. Here we probe the conformation of a two-state molecular switch with vibrational spectroscopy, while simultaneously operating it by means of the applied voltage. Our study emphasizes measurements of single-molecule Raman spectra in a room-temperature stable single-molecule switch presenting a signal modulation of nearly 2 orders of magnitude.

  10. Morphofunctional and signaling molecules overlap of the pineal gland and thymus: role and significance in aging.

    PubMed

    Paltsev, Michael A; Polyakova, Victoria O; Kvetnoy, Igor M; Anderson, George; Kvetnaia, Tatiana V; Linkova, Natalia S; Paltseva, Ekaterina M; Rubino, Rosa; De Cosmo, Salvatore; De Cata, Angelo; Mazzoccoli, Gianluigi

    2016-03-15

    Deficits in neuroendocrine-immune system functioning, including alterations in pineal and thymic glands, contribute to aging-associated diseases. This study looks at ageing-associated alterations in pineal and thymic gland functioning evaluating common signaling molecules present in both human and animal pinealocytes and thymocytes: endocrine cell markers (melatonin, serotonin, pCREB, AANAT, CGRP, VIP, chromogranin А); cell renovation markers (p53, AIF, Ki67), matrix metalloproteinases (MMP2, MMP9) and lymphocytes markers (CD4, CD5, CD8, CD20). Pineal melatonin is decreased, as is one of the melatonin pathway synthesis enzymes in the thymic gland. A further similarity is the increased MMPs levels evident over age in both glands. Significant differences are evident in cell renovation processes, which deteriorate more quickly in the aged thymus versus the pineal gland. Decreases in the number of pineal B-cells and thymic T-cells were also observed over aging. Collected data indicate that cellular involution of the pineal gland and thymus show many commonalities, but also significant changes in aging-associated proteins. It is proposed that such ageing-associated alterations in these two glands provide novel pharmaceutical targets for the wide array of medical conditions that are more likely to emerge over the course of ageing.

  11. Morphofunctional and signaling molecules overlap of the pineal gland and thymus: role and significance in aging

    PubMed Central

    Paltsev, Michael A.; Polyakova, Victoria O.; Kvetnoy, Igor M.; Anderson, George; Kvetnaia, Tatiana V.; Linkova, Natalia S.; Paltseva, Ekaterina M.; Rubino, Rosa; De Cosmo, Salvatore; De Cata, Angelo; Mazzoccoli, Gianluigi

    2016-01-01

    Deficits in neuroendocrine-immune system functioning, including alterations in pineal and thymic glands, contribute to aging-associated diseases. This study looks at ageing-associated alterations in pineal and thymic gland functioning evaluating common signaling molecules present in both human and animal pinealocytes and thymocytes: endocrine cell markers (melatonin, serotonin, pCREB, AANAT, CGRP, VIP, chromogranin A); cell renovation markers (p53, AIF, Ki67), matrix metalloproteinases (MMP2, MMP9) and lymphocytes markers (CD4, CD5, CD8, CD20). Pineal melatonin is decreased, as is one of the melatonin pathway synthesis enzymes in the thymic gland. A further similarity is the increased MMPs levels evident over age in both glands. Significant differences are evident in cell renovation processes, which deteriorate more quickly in the aged thymus versus the pineal gland. Decreases in the number of pineal B-cells and thymic T-cells were also observed over aging. Collected data indicate that cellular involution of the pineal gland and thymus show many commonalities, but also significant changes in aging-associated proteins. It is proposed that such ageing-associated alterations in these two glands provide novel pharmaceutical targets for the wide array of medical conditions that are more likely to emerge over the course of ageing. PMID:26943046

  12. Specificity, cross-talk and adaptation in Interferon signaling

    NASA Astrophysics Data System (ADS)

    Zilman, Anton

    Innate immune system is the first line of defense of higher organisms against pathogens. It coordinates the behavior of millions of cells of multiple types, achieved through numerous signaling molecules. This talk focuses on the signaling specificity of a major class of signaling molecules - Type I Interferons - which are also used therapeutically in the treatment of a number of diseases, such as Hepatitis C, multiple sclerosis and some cancers. Puzzlingly, different Interferons act through the same cell surface receptor but have different effects on the target cells. They also exhibit a strange pattern of temporal cross-talk resulting in a serious clinical problem - loss of response to Interferon therapy. We combined mathematical modeling with quantitative experiments to develop a quantitative model of specificity and adaptation in the Interferon signaling pathway. The model resolves several outstanding experimental puzzles and directly affects the clinical use of Type I Interferons in treatment of viral hepatitis and other diseases.

  13. A family of tissue-specific resistin-like molecules

    PubMed Central

    Steppan, Claire M.; Brown, Elizabeth J.; Wright, Christopher M.; Bhat, Savitha; Banerjee, Ronadip R.; Dai, Charlotte Y.; Enders, Gregory H.; Silberg, Debra G.; Wen, Xiaoming; Wu, Gary D.; Lazar, Mitchell A.

    2001-01-01

    We have identified a family of resistin-like molecules (RELMs) in rodents and humans. Resistin is a hormone produced by fat cells. RELMα is a secreted protein that has a restricted tissue distribution with highest levels in adipose tissue. Another family member, RELMβ, is a secreted protein expressed only in the gastrointestinal tract, particularly the colon, in both mouse and human. RELMβ gene expression is highest in proliferative epithelial cells and is markedly increased in tumors, suggesting a role in intestinal proliferation. Resistin and the RELMs share a cysteine composition and other signature features. Thus, the RELMs together with resistin comprise a class of tissue-specific signaling molecules. PMID:11209052

  14. A family of tissue-specific resistin-like molecules.

    PubMed

    Steppan, C M; Brown, E J; Wright, C M; Bhat, S; Banerjee, R R; Dai, C Y; Enders, G H; Silberg, D G; Wen, X; Wu, G D; Lazar, M A

    2001-01-16

    We have identified a family of resistin-like molecules (RELMs) in rodents and humans. Resistin is a hormone produced by fat cells. RELMalpha is a secreted protein that has a restricted tissue distribution with highest levels in adipose tissue. Another family member, RELMbeta, is a secreted protein expressed only in the gastrointestinal tract, particularly the colon, in both mouse and human. RELMbeta gene expression is highest in proliferative epithelial cells and is markedly increased in tumors, suggesting a role in intestinal proliferation. Resistin and the RELMs share a cysteine composition and other signature features. Thus, the RELMs together with resistin comprise a class of tissue-specific signaling molecules.

  15. Potential Use of Dimethyl Sulfoxide in Treatment of Infections Caused by Pseudomonas aeruginosa

    PubMed Central

    Guo, Qiao; Wu, Qiaolian; Bai, Dangdang; Liu, Yang; Chen, Lin; Jin, Sheng; Wu, Yuting

    2016-01-01

    Dimethyl sulfoxide (DMSO) is commonly used as a solvent to dissolve water-insoluble drugs or other test samples in both in vivo and in vitro experiments. It was observed during our experiment that DMSO at noninhibitory concentrations could significantly inhibit pyocyanin production in the human pathogen Pseudomonas aeruginosa. Pyocyanin is an important pathogenic factor whose production is controlled by a cell density-dependent quorum-sensing (QS) system. Investigation of the effect of DMSO on QS showed that DMSO has significant QS antagonistic activities and concentrations of DMSO in the micromolar range attenuated a battery of QS-controlled virulence factors, including rhamnolipid, elastase, and LasA protease production and biofilm formation. Further study indicated that DMSO inhibition of biofilm formation and pyocyanin production was attained by reducing the level of production of an autoinducer molecule of the rhl QS system, N-butanoyl-l-homoserine lactone (C4-HSL). In a mouse model of a burn wound infection with P. aeruginosa, treatment with DMSO significantly decreased mouse mortality compared with that for mice in the control group. The capacity of DMSO to attenuate the pathogenicity of P. aeruginosa points to the potential use of DMSO as an antipathogenic agent for the treatment of P. aeruginosa infection. As a commonly used solvent, however, DMSO's impact on bacterial virulence calls for cautionary attention in its usage in biological, medicinal, and clinical studies. PMID:27645245

  16. Single-Molecule Electrical Random Resequencing of DNA and RNA

    NASA Astrophysics Data System (ADS)

    Ohshiro, Takahito; Matsubara, Kazuki; Tsutsui, Makusu; Furuhashi, Masayuki; Taniguchi, Masateru; Kawai, Tomoji

    2012-07-01

    Two paradigm shifts in DNA sequencing technologies--from bulk to single molecules and from optical to electrical detection--are expected to realize label-free, low-cost DNA sequencing that does not require PCR amplification. It will lead to development of high-throughput third-generation sequencing technologies for personalized medicine. Although nanopore devices have been proposed as third-generation DNA-sequencing devices, a significant milestone in these technologies has been attained by demonstrating a novel technique for resequencing DNA using electrical signals. Here we report single-molecule electrical resequencing of DNA and RNA using a hybrid method of identifying single-base molecules via tunneling currents and random sequencing. Our method reads sequences of nine types of DNA oligomers. The complete sequence of 5'-UGAGGUA-3' from the let-7 microRNA family was also identified by creating a composite of overlapping fragment sequences, which was randomly determined using tunneling current conducted by single-base molecules as they passed between a pair of nanoelectrodes.

  17. Binding configurations and intramolecular strain in single-molecule devices.

    PubMed

    Rascón-Ramos, Habid; Artés, Juan Manuel; Li, Yuanhui; Hihath, Joshua

    2015-05-01

    The development of molecular-scale electronic devices has made considerable progress over the past decade, and single-molecule transistors, diodes and wires have all been demonstrated. Despite this remarkable progress, the agreement between theoretically predicted conductance values and those measured experimentally remains limited. One of the primary reasons for these discrepancies lies in the difficulty to experimentally determine the contact geometry and binding configuration of a single-molecule junction. In this Article, we apply a small-amplitude, high-frequency, sinusoidal mechanical signal to a series of single-molecule devices during junction formation and breakdown. By measuring the current response at this frequency, it is possible to determine the most probable binding and contact configurations for the molecular junction at room temperature in solution, and to obtain information about how an applied strain is distributed within the molecular junction. These results provide insight into the complex configuration of single-molecule devices, and are in excellent agreement with previous predictions from theoretical models.

  18. RsaM: a transcriptional regulator of Burkholderia spp. with novel fold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michalska, Karolina; Chhor, Gekleng; Clancy, Shonda

    2014-07-04

    Burkholderia cepacia complex (Bcc) is a set of closely related bacterial species that are notorious pathogens of cystic fibrosis patients, responsible for life-threatening lung infections. Expression of several virulence factors of Bcc is controlled by a mechanism known as quorum sensing (QS). QS is a means of bacterial communication used to coordinate gene expression in a cell-density-dependent manner. The system involves the production of diffusible signaling molecules (N-acyl-L-homoserine lactones, AHLs), that bind to cognate transcriptional regulators and influence their ability to regulate gene expression. One such system that is highly conserved in Bcc consists of CepI and CepR. CepI ismore » AHL synthase, while CepR is an AHL-dependent transcription factor. In most members of the Bcc group, the cepI and cepR genes are divergently transcribed and separated by additional genes. One of them, bcam1869, encodes the BcRsaM protein, which was recently postulated to modulate the abundance or activity of CepI or CepR. Here we show the crystal structure of BcRsaM from B. cenocepacia J2315. It is a single-domain protein with unique topology and presents a novel fold. The protein is a dimer in the crystal and in solution. This regulator has no known DNA binding motifs and direct binding of BcRsaM to the cepI promoter could not be detected in in vitro assays. Therefore, we propose that the modulatory action of RsaM might result from interactions with other components of the QS machinery rather than from direct association with the DNA promoter.« less

  19. Evolution of neuronal signalling: transmitters and receptors.

    PubMed

    Hoyle, Charles H V

    2011-11-16

    Evolution is a dynamic process during which the genome should not be regarded as a static entity. Molecular and morphological information yield insights into the evolution of species and their phylogenetic relationships, and molecular information in particular provides information into the evolution of signalling processes. Many signalling systems have their origin in primitive, even unicellular, organisms. Through time, and as organismal complexity increased, certain molecules were employed as intercellular signal molecules. In the autonomic nervous system the basic unit of chemical transmission is a ligand and its cognate receptor. The general mechanisms underlying evolution of signal molecules and their cognate receptors have their basis in the alteration of the genome. In the past this has occurred in large-scale events, represented by two or more doublings of the whole genome, or large segments of the genome, early in the deuterostome lineage, after the emergence of urochordates and cephalochordates, and before the emergence of vertebrates. These duplications were followed by extensive remodelling involving subsequent small-scale changes, ranging from point mutations to exon duplication. Concurrent with these processes was multiple gene loss so that the modern genome contains roughly the same number of genes as in early deuterostomes despite the large-scale genomic duplications. In this review, the principles that underlie evolution that have led to large and small families of autonomic neurotransmitters and their receptors are discussed, with emphasis on G protein-coupled receptors. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Another expert system rule inference based on DNA molecule logic gates

    NASA Astrophysics Data System (ADS)

    WÄ siewicz, Piotr

    2013-10-01

    With the help of silicon industry microfluidic processors were invented utilizing nano membrane valves, pumps and microreactors. These so called lab-on-a-chips combined together with molecular computing create molecular-systems-ona- chips. This work presents a new approach to implementation of molecular inference systems. It requires the unique representation of signals by DNA molecules. The main part of this work includes the concept of logic gates based on typical genetic engineering reactions. The presented method allows for constructing logic gates with many inputs and for executing them at the same quantity of elementary operations, regardless of a number of input signals. Every microreactor of the lab-on-a-chip performs one unique operation on input molecules and can be connected by dataflow output-input connections to other ones.

  1. Utilization of Microwave Spectroscopy to Identify and Probe Reaction Dynamics of Hsno, a Crucial Biological Signaling Molecule

    NASA Astrophysics Data System (ADS)

    Nava, Matthew; Martin-Drumel, Marie-Aline; Stanton, John F.; Cummins, Christopher; McCarthy, Michael C.

    2016-06-01

    Thionitrous acid (HSNO), a potential key intermediate in biological signaling pathways, has been proposed to link NO and H2S biochemistries. Its existence and stability in vivo, however, remain controversial. By means of Fourier-transform microwave spectroscopy, we establish that HSNO is spontaneously formed in high concentration when NO and H2S gases are simply mixed at room temperature in the presence of metallic surfaces. Our measurements reveal that HSNO is formed with high efficiency by the reaction H2S and N2O3 to produce HSNO and HNO2, where N2O3 is a product of NO disproportionation. These studies also suggest that further reaction of HSNO with H2S may form HNO and HSSH. The length of the S--N bond has been derived to high precision from isotopic studies, and is found to be unusually long, 1.84 Å -- the longest S--N bond reported to date for an SNO compound. The present structural and reactivity investigations of this elusive molecule provide a firm fundation to better understand its physiological chemistry and propensity to undergo S--N bond homolysis in vivo.

  2. Superradiance Effects in the Linear and Nonlinear Optical Response of Quantum Dot Molecules

    NASA Astrophysics Data System (ADS)

    Sitek, A.; Machnikowski, P.

    2008-11-01

    We calculate the linear optical response from a single quantum dot molecule and the nonlinear, four-wave-mixing response from an inhomogeneously broadened ensemble of such molecules. We show that both optical signals are affected by the coupling-dependent superradiance effect and by optical interference between the two polarizations. As a result, the linear and nonlinear responses are not identical.

  3. Transient alkylaminium radicals in n-hexane. Condensed-phase ion-molecule reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Werst, D.W.; Trifunac, A.D.

    Time-resolved fluorescence detected magnetic resonance (FDMR) is used to observe alkylaminium radicals formed in n-hexane solutions by electron pulse radiolysis. The ease of observation of aminium radical FDMR signals increases with increasing alkyl substitution of the amine solutes. The results are discussed in terms of the ion-molecule reactions, such as proton transfer, which compete with the electron-transfer processes, i.e, the electron transfer from solute molecules to n-hexane radical cations and geminate recombination.

  4. Chemotactic Signaling by Single-Chain Chemoreceptors

    PubMed Central

    Mowery, Patricia; Ames, Peter; Reiser, Rebecca H.; Parkinson, John S.

    2015-01-01

    Bacterial chemoreceptors of the methyl-accepting chemotaxis protein (MCP) family operate in commingled clusters that enable cells to detect and track environmental chemical gradients with high sensitivity and precision. MCP homodimers of different detection specificities form mixed trimers of dimers that facilitate inter-receptor communication in core signaling complexes, which in turn assemble into a large signaling network. The two subunits of each homodimeric receptor molecule occupy different locations in the core complexes. One subunit participates in trimer-stabilizing interactions at the trimer axis, the other lies on the periphery of the trimer, where it can interact with two cytoplasmic proteins: CheA, a signaling autokinase, and CheW, which couples CheA activity to receptor control. As a possible tool for independently manipulating receptor subunits in these two structural environments, we constructed and characterized fused genes for the E. coli serine chemoreceptor Tsr that encoded single-chain receptor molecules in which the C-terminus of the first Tsr subunit was covalently connected to the N-terminus of the second with a polypeptide linker. We showed with soft agar assays and with a FRET-based in vivo CheA kinase assay that single-chain Tsr~Tsr molecules could promote serine sensing and chemotaxis responses. The length of the connection between the joined subunits was critical. Linkers nine residues or shorter locked the receptor in a kinase-on state, most likely by distorting the native structure of the receptor HAMP domain. Linkers 22 or more residues in length permitted near-normal Tsr function. Few single-chain molecules were found as monomer-sized proteolytic fragments in cells, indicating that covalently joined receptor subunits were responsible for mediating the signaling responses we observed. However, cysteine-directed crosslinking, spoiling by dominant-negative Tsr subunits, and rearrangement of ligand-binding site lesions revealed subunit

  5. Quantitative measures for redox signaling.

    PubMed

    Pillay, Ché S; Eagling, Beatrice D; Driscoll, Scott R E; Rohwer, Johann M

    2016-07-01

    Redox signaling is now recognized as an important regulatory mechanism for a number of cellular processes including the antioxidant response, phosphokinase signal transduction and redox metabolism. While there has been considerable progress in identifying the cellular machinery involved in redox signaling, quantitative measures of redox signals have been lacking, limiting efforts aimed at understanding and comparing redox signaling under normoxic and pathogenic conditions. Here we have outlined some of the accepted principles for redox signaling, including the description of hydrogen peroxide as a signaling molecule and the role of kinetics in conferring specificity to these signaling events. Based on these principles, we then develop a working definition for redox signaling and review a number of quantitative methods that have been employed to describe signaling in other systems. Using computational modeling and published data, we show how time- and concentration- dependent analyses, in particular, could be used to quantitatively describe redox signaling and therefore provide important insights into the functional organization of redox networks. Finally, we consider some of the key challenges with implementing these methods. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Detectors for single-molecule fluorescence imaging and spectroscopy

    PubMed Central

    MICHALET, X.; SIEGMUND, O.H.W.; VALLERGA, J.V.; JELINSKY, P.; MILLAUD, J.E.; WEISS, S.

    2010-01-01

    Single-molecule observation, characterization and manipulation techniques have recently come to the forefront of several research domains spanning chemistry, biology and physics. Due to the exquisite sensitivity, specificity, and unmasking of ensemble averaging, single-molecule fluorescence imaging and spectroscopy have become, in a short period of time, important tools in cell biology, biochemistry and biophysics. These methods led to new ways of thinking about biological processes such as viral infection, receptor diffusion and oligomerization, cellular signaling, protein-protein or protein-nucleic acid interactions, and molecular machines. Such achievements require a combination of several factors to be met, among which detector sensitivity and bandwidth are crucial. We examine here the needed performance of photodetectors used in these types of experiments, the current state of the art for different categories of detectors, and actual and future developments of single-photon counting detectors for single-molecule imaging and spectroscopy. PMID:20157633

  7. Flavonoids from Piper delineatum modulate quorum-sensing-regulated phenotypes in Vibrio harveyi.

    PubMed

    Martín-Rodríguez, Alberto J; Ticona, Juan C; Jiménez, Ignacio A; Flores, Ninoska; Fernández, José J; Bazzocchi, Isabel L

    2015-09-01

    Quorum sensing (QS), or bacterial cell-to-cell communication, is a key process for bacterial colonization of substrata through biofilm formation, infections, and production of virulence factors. In an ongoing investigation of bioactive secondary metabolites from Piper species, four new flavonoids (1-4), along with five known ones (5-9) were isolated from the leaves of Piper delineatum. Their stereostructures were established by spectroscopic and spectrometric methods, including 1D and 2D NMR experiments, and comparison with data reported in the literature. The compounds were screened for their ability to interfere with QS signaling in the bacterial model Vibrio harveyi. Four compounds from this series (2, 3, 6, and 7) exhibited remarkable activity in the micromolar range, being compounds 3 and 7 particularly attractive since they did not affect bacterial growth. The results suggest that these flavonoids disrupt QS-mediated bioluminescence by interaction with elements downstream LuxO in the QS circuit of V. harveyi, and also, they exhibited a strong dose-dependent inhibition of biofilm formation. The present findings shed light on the QS inhibition mechanisms of flavonoids, underlining their potential applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Precisely and Accurately Inferring Single-Molecule Rate Constants

    PubMed Central

    Kinz-Thompson, Colin D.; Bailey, Nevette A.; Gonzalez, Ruben L.

    2017-01-01

    The kinetics of biomolecular systems can be quantified by calculating the stochastic rate constants that govern the biomolecular state versus time trajectories (i.e., state trajectories) of individual biomolecules. To do so, the experimental signal versus time trajectories (i.e., signal trajectories) obtained from observing individual biomolecules are often idealized to generate state trajectories by methods such as thresholding or hidden Markov modeling. Here, we discuss approaches for idealizing signal trajectories and calculating stochastic rate constants from the resulting state trajectories. Importantly, we provide an analysis of how the finite length of signal trajectories restrict the precision of these approaches, and demonstrate how Bayesian inference-based versions of these approaches allow rigorous determination of this precision. Similarly, we provide an analysis of how the finite lengths and limited time resolutions of signal trajectories restrict the accuracy of these approaches, and describe methods that, by accounting for the effects of the finite length and limited time resolution of signal trajectories, substantially improve this accuracy. Collectively, therefore, the methods we consider here enable a rigorous assessment of the precision, and a significant enhancement of the accuracy, with which stochastic rate constants can be calculated from single-molecule signal trajectories. PMID:27793280

  9. The Alternative Sigma Factor SigX Controls Bacteriocin Synthesis and Competence, the Two Quorum Sensing Regulated Traits in Streptococcus mutans

    PubMed Central

    Reck, Michael; Tomasch, Jürgen; Wagner-Döbler, Irene

    2015-01-01

    Two small quorum sensing (QS) peptides regulate competence in S. mutans in a cell density dependent manner: XIP (sigX inducing peptide) and CSP (competence stimulating peptide). Depending on the environmental conditions isogenic S. mutans cells can split into a competent and non-competent subpopulation. The origin of this population heterogeneity has not been experimentally determined and it is unknown how the two QS systems are connected. We developed a toolbox of single and dual fluorescent reporter strains and systematically knocked out key genes of the competence signaling cascade in the reporter strain backgrounds. By following signal propagation on the single cell level we discovered that the master regulator of competence, the alternative sigma factor SigX, directly controls expression of the response regulator for bacteriocin synthesis ComE. Consequently, a SigX binding motif (cin-box) was identified in the promoter region of comE. Overexpressing the genetic components involved in competence development demonstrated that ComRS represents the origin of bimodality and determines the modality of the downstream regulators SigX and ComE. Moreover these analysis showed that there is no direct regulatory link between the two QS signaling cascades. Competence is induced through a hierarchical XIP signaling cascade, which has no regulatory input from the CSP cascade. CSP exclusively regulates bacteriocin synthesis. We suggest renaming it mutacin inducing peptide (MIP). Finally, using phosphomimetic comE mutants we show that unimodal bacteriocin production is controlled posttranslationally, thus solving the puzzling observation that in complex media competence is observed in a subpopulation only, while at the same time all cells produce bacteriocins. The control of both bacteriocin synthesis and competence through the alternative sigma-factor SigX suggests that S. mutans increases its genetic repertoire via QS controlled predation on neighboring species in its

  10. Signal focusing through active transport

    NASA Astrophysics Data System (ADS)

    Godec, Aljaž; Metzler, Ralf

    2015-07-01

    The accuracy of molecular signaling in biological cells and novel diagnostic devices is ultimately limited by the counting noise floor imposed by the thermal diffusion. Motivated by the fact that messenger RNA and vesicle-engulfed signaling molecules transiently bind to molecular motors and are actively transported in biological cells, we show here that the random active delivery of signaling particles to within a typical diffusion distance to the receptor generically reduces the correlation time of the counting noise. Considering a variety of signaling particle sizes from mRNA to vesicles and cell sizes from prokaryotic to eukaryotic cells, we show that the conditions for active focusing—faster and more precise signaling—are indeed compatible with observations in living cells. Our results improve the understanding of molecular cellular signaling and novel diagnostic devices.

  11. Dual-Color Luciferase Complementation for Chemokine Receptor Signaling.

    PubMed

    Luker, Kathryn E; Luker, Gary D

    2016-01-01

    Chemokine receptors may share common ligands, setting up potential competition for ligand binding, and association of activated receptors with downstream signaling molecules such as β-arrestin. Determining the "winner" of competition for shared effector molecules is essential for understanding integrated functions of chemokine receptor signaling in normal physiology, disease, and response to therapy. We describe a dual-color click beetle luciferase complementation assay for cell-based analysis of interactions of two different chemokine receptors, CXCR4 and ACKR3, with the intracellular scaffolding protein β-arrestin 2. This assay provides real-time quantification of receptor activation and signaling in response to chemokine CXCL12. More broadly, this general imaging strategy can be applied to quantify interactions of any set of two proteins that interact with a common binding partner. © 2016 Elsevier Inc. All rights reserved.

  12. Polylactic acid promotes healing of photodegraded disperse orange 11 molecules

    NASA Astrophysics Data System (ADS)

    Stubbs, Najee; Bridgewater, Mauricio; Stubbs, Micheala; Kabir, Amin; Crescimanno, Michael; Kuzyk, Mark G.; Dawson, Nathan J.

    2018-02-01

    We report on the recovery of a photodegraded organic molecule mediated by a biopolymer. Amplified spontaneous emission (ASE) from disperse orange 11 (DO11) dye-doped polylactic acid (PLA) was used to monitor photodegradation while the material was being damaged by a strong pump laser. The ASE signal fully recovers over two hours time when the pump beam is blocked. The fluorescence spectra was also observed to recover after partial photobleaching the dye-doped polymer. PLA is the first biopolymer known to mediate the recovery of a photodegraded organic dye molecule.

  13. Anti-Quorum Sensing Potential of Crude Kigelia africana Fruit Extracts

    PubMed Central

    Chenia, Hafizah Y.

    2013-01-01

    The increasing incidence of multidrug-resistant pathogens has stimulated the search for novel anti-virulence compounds. Although many phytochemicals show promising antimicrobial activity, their power lies in their anti-virulence properties. Thus the quorum sensing (QS) inhibitory activity of four crude Kigelia africana fruit extracts was assessed qualitatively and quantitatively using the Chromobacterium violaceum and Agrobacterium tumefaciens biosensor systems. Inhibition of QS-controlled violacein production in C. violaceum was assayed using the qualitative agar diffusion assay as well as by quantifying violacein inhibition using K. africana extracts ranging from 0.31–8.2 mg/mL. Qualitative modulation of QS activity was investigated using the agar diffusion double ring assay. All four extracts showed varying levels of anti-QS activity with zones of violacein inhibition ranging from 9–10 mm. The effect on violacein inhibition was significant in the following order: hexane > dichloromethane > ethyl acetate > methanol. Inhibition was concentration-dependent, with the ≥90% inhibition being obtained with ≥1.3 mg/mL of the hexane extract. Both LuxI and LuxR activity were affected by crude extracts suggesting that the phytochemicals target both QS signal and receptor. K. africana extracts with their anti-QS activity, have the potential to be novel therapeutic agents, which might be important in reducing virulence and pathogenicity of drug-resistant bacteria in vivo. PMID:23447012

  14. Detection of Single Molecules Illuminated by a Light-Emitting Diode

    PubMed Central

    Gerhardt, Ilja; Mai, Lijian; Lamas-Linares, Antía; Kurtsiefer, Christian

    2011-01-01

    Optical detection and spectroscopy of single molecules has become an indispensable tool in biological imaging and sensing. Its success is based on fluorescence of organic dye molecules under carefully engineered laser illumination. In this paper we demonstrate optical detection of single molecules on a wide-field microscope with an illumination based on a commercially available, green light-emitting diode. The results are directly compared with laser illumination in the same experimental configuration. The setup and the limiting factors, such as light transfer to the sample, spectral filtering and the resulting signal-to-noise ratio are discussed. A theoretical and an experimental approach to estimate these parameters are presented. The results can be adapted to other single emitter and illumination schemes. PMID:22346610

  15. Akt/GSK3 signaling in the action of psychotropic drugs.

    PubMed

    Beaulieu, Jean-Martin; Gainetdinov, Raul R; Caron, Marc G

    2009-01-01

    Psychotropic drugs acting on monoamine neurotransmission are major pharmacological treatments for neuropsychiatric conditions such as schizophrenia, depression, bipolar disorder, Tourette syndrome, ADHD, and Alzheimer disease. Independent lines of research involving biochemical and behavioral approaches in normal and/or genetically modified mice provide converging evidence for an involvement of the signaling molecules Akt and glycogen synthase kinase-3 (GSK3) in the regulation of behavior by dopamine and serotonin (5-HT). These signaling molecules have also received attention for their role in the actions of psychoactive drugs such as antidepressants, antipsychotics, lithium, and other mood stabilizers. Furthermore, investigations of the mechanism by which D2 dopamine receptors regulate Akt/GSK3 signaling strongly support the physiological relevance of a new modality of G protein-coupled receptor (GPCR) signaling involving the multifunctional scaffolding protein beta-arrestin 2. Elucidation of the contribution of multiple signaling pathways to the action of psychotropic drugs may provide a better biological understanding of psychiatric disorders and lead to more efficient therapeutics.

  16. Carbon Nanotube Biosensors for Space Molecule Detection and Clinical Molecular Diagnostics

    NASA Technical Reports Server (NTRS)

    Han, Jie

    2001-01-01

    Both space molecule detection and clinical molecule diagnostics need to develop ultra sensitive biosensors for detection of less than attomole molecules such as amino acids for DNA. However all the electrode sensor systems including those fabricated from the existing carbon nanotubes, have a background level of nA (nanoAmp). This has limited DNA or other molecule detection to nA level or molecules whose concentration is, much higher than attomole level. A program has been created by NASA and NCI (National Cancer Institute) to exploit the possibility of carbon nanotube based biosensors to solve this problem for both's interest. In this talk, I will present our effort on the evaluation and novel design of carbon nanotubes as electrode biosensors with strategies to minimize background currents while maximizing signal intensity.The fabrication of nanotube electrode arrays, immobilization of molecular probes on nanotube electrodes and in vitro biosensor testing will also be discussed.

  17. Single molecule photobleaching (SMPB) technology for counting of RNA, DNA, protein and other molecules in nanoparticles and biological complexes by TIRF instrumentation.

    PubMed

    Zhang, Hui; Guo, Peixuan

    2014-05-15

    Direct counting of biomolecules within biological complexes or nanomachines is demanding. Single molecule counting using optical microscopy is challenging due to the diffraction limit. The single molecule photobleaching (SMPB) technology for direct counting developed by our team (Shu et al., 2007 [18]; Zhang et al., 2007 [19]) offers a simple and straightforward method to determine the stoichiometry of molecules or subunits within biocomplexes or nanomachines at nanometer scales. Stoichiometry is determined by real-time observation of the number of descending steps resulted from the photobleaching of individual fluorophore. This technology has now been used extensively for single molecule counting of protein, RNA, and other macromolecules in a variety of complexes or nanostructures. Here, we elucidate the SMPB technology, using the counting of RNA molecules within a bacteriophage phi29 DNA-packaging biomotor as an example. The method described here can be applied to the single molecule counting of other molecules in other systems. The construction of a concise, simple and economical single molecule total internal reflection fluorescence (TIRF) microscope combining prism-type and objective-type TIRF is described. The imaging system contains a deep-cooled sensitive EMCCD camera with single fluorophore detection sensitivity, a laser combiner for simultaneous dual-color excitation, and a Dual-View™ imager to split the multiple outcome signals to different detector channels based on their wavelengths. Methodology of the single molecule photobleaching assay used to elucidate the stoichiometry of RNA on phi29 DNA packaging motor and the mechanism of protein/RNA interaction are described. Different methods for single fluorophore labeling of RNA molecules are reviewed. The process of statistical modeling to reveal the true copy number of the biomolecules based on binomial distribution is also described. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Neural Cell Adhesion Molecule Potentiates the Growth of Murine Melanoma via β-Catenin Signaling by Association with Fibroblast Growth Factor Receptor and Glycogen Synthase Kinase-3β

    PubMed Central

    Liu, Rui; Shi, Yu; Yang, Hai Jie; Wang, Lei; Zhang, Si; Xia, Yin Yan; Wong, Jing Lin Jack; Feng, Zhi Wei

    2011-01-01

    The neural cell adhesion molecule (NCAM) was recently shown to be involved in the progression of various tumors with diverse effects. We previously demonstrated that NCAM potentiates the cellular invasion and metastasis of melanoma. Here we further report that the growth of melanoma is obviously retarded when the expression of NCAM is silenced. We found that the proliferation of murine B16F0 melanoma cells, their colony formation on soft agar, and growth of transplanted melanoma in vivo are clearly inhibited by the introduction of NCAM siRNA. Interestingly, change of NCAM expression level is shown to regulate the activity of Wnt signaling molecule, β-catenin, markedly. This novel machinery requires the function of FGF receptor and glycogen synthase kinase-3β but is independent of the Wnt receptors, MAPK-Erk and PI3K/Akt pathways. In addition, NCAM is found to form a functional complex with β-catenin, FGF receptor, and glycogen synthase kinase-3β. Moreover, up-regulation of NCAM140 and NCAM180 appears more potent than NCAM120 in activation of β-catenin, suggesting that the intracellular domain of NCAM is required for facilitating the β-catenin signaling. Furthermore, the melanoma cells also exhibit distinct differentiation phenotypes with the NCAM silencing. Our findings reveal a novel regulatory role of NCAM in the progression of melanoma that might serve as a new therapeutic target for the treatment of melanoma. PMID:21628472

  19. Neural cell adhesion molecule potentiates the growth of murine melanoma via β-catenin signaling by association with fibroblast growth factor receptor and glycogen synthase kinase-3β.

    PubMed

    Liu, Rui; Shi, Yu; Yang, Hai Jie; Wang, Lei; Zhang, Si; Xia, Yin Yan; Wong, Jing Lin Jack; Feng, Zhi Wei

    2011-07-22

    The neural cell adhesion molecule (NCAM) was recently shown to be involved in the progression of various tumors with diverse effects. We previously demonstrated that NCAM potentiates the cellular invasion and metastasis of melanoma. Here we further report that the growth of melanoma is obviously retarded when the expression of NCAM is silenced. We found that the proliferation of murine B16F0 melanoma cells, their colony formation on soft agar, and growth of transplanted melanoma in vivo are clearly inhibited by the introduction of NCAM siRNA. Interestingly, change of NCAM expression level is shown to regulate the activity of Wnt signaling molecule, β-catenin, markedly. This novel machinery requires the function of FGF receptor and glycogen synthase kinase-3β but is independent of the Wnt receptors, MAPK-Erk and PI3K/Akt pathways. In addition, NCAM is found to form a functional complex with β-catenin, FGF receptor, and glycogen synthase kinase-3β. Moreover, up-regulation of NCAM140 and NCAM180 appears more potent than NCAM120 in activation of β-catenin, suggesting that the intracellular domain of NCAM is required for facilitating the β-catenin signaling. Furthermore, the melanoma cells also exhibit distinct differentiation phenotypes with the NCAM silencing. Our findings reveal a novel regulatory role of NCAM in the progression of melanoma that might serve as a new therapeutic target for the treatment of melanoma.

  20. PhotoGate microscopy: tracking single molecules in a cytoplasm (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yildiz, Ahmet

    2016-02-01

    Tracking single molecules inside cells reveals the dynamics of biological processes, including receptor trafficking, signaling and cargo transport. However, individual molecules often cannot be resolved inside cells due to their high density in the cellular environment. We developed a photobleaching gate assay, which controls the number of fluorescent particles in a region of interest by repeatedly photobleaching its boundary. Using this method, we tracked single particles at surface densities two orders of magnitude higher than the single-molecule detection limit. We observed ligand-induced dimerization of epidermal growth factor receptors (EGFR) on a live cell membrane. In addition, we tracked individual intraflagellar transport (IFT) trains along the length of a cilium and observed their remodeling at the ciliary tip.