Nano-QSPR Modelling of Carbon-Based Nanomaterials Properties.
Salahinejad, Maryam
2015-01-01
Evaluation of chemical and physical properties of nanomaterials is of critical importance in a broad variety of nanotechnology researches. There is an increasing interest in computational methods capable of predicting properties of new and modified nanomaterials in the absence of time-consuming and costly experimental studies. Quantitative Structure- Property Relationship (QSPR) approaches are progressive tools in modelling and prediction of many physicochemical properties of nanomaterials, which are also known as nano-QSPR. This review provides insight into the concepts, challenges and applications of QSPR modelling of carbon-based nanomaterials. First, we try to provide a general overview of QSPR implications, by focusing on the difficulties and limitations on each step of the QSPR modelling of nanomaterials. Then follows with the most significant achievements of QSPR methods in modelling of carbon-based nanomaterials properties and their recent applications to generate predictive models. This review specifically addresses the QSPR modelling of physicochemical properties of carbon-based nanomaterials including fullerenes, single-walled carbon nanotube (SWNT), multi-walled carbon nanotube (MWNT) and graphene.
Predicting p Ka values from EEM atomic charges
2013-01-01
The acid dissociation constant p Ka is a very important molecular property, and there is a strong interest in the development of reliable and fast methods for p Ka prediction. We have evaluated the p Ka prediction capabilities of QSPR models based on empirical atomic charges calculated by the Electronegativity Equalization Method (EEM). Specifically, we collected 18 EEM parameter sets created for 8 different quantum mechanical (QM) charge calculation schemes. Afterwards, we prepared a training set of 74 substituted phenols. Additionally, for each molecule we generated its dissociated form by removing the phenolic hydrogen. For all the molecules in the training set, we then calculated EEM charges using the 18 parameter sets, and the QM charges using the 8 above mentioned charge calculation schemes. For each type of QM and EEM charges, we created one QSPR model employing charges from the non-dissociated molecules (three descriptor QSPR models), and one QSPR model based on charges from both dissociated and non-dissociated molecules (QSPR models with five descriptors). Afterwards, we calculated the quality criteria and evaluated all the QSPR models obtained. We found that QSPR models employing the EEM charges proved as a good approach for the prediction of p Ka (63% of these models had R2 > 0.9, while the best had R2 = 0.924). As expected, QM QSPR models provided more accurate p Ka predictions than the EEM QSPR models but the differences were not significant. Furthermore, a big advantage of the EEM QSPR models is that their descriptors (i.e., EEM atomic charges) can be calculated markedly faster than the QM charge descriptors. Moreover, we found that the EEM QSPR models are not so strongly influenced by the selection of the charge calculation approach as the QM QSPR models. The robustness of the EEM QSPR models was subsequently confirmed by cross-validation. The applicability of EEM QSPR models for other chemical classes was illustrated by a case study focused on carboxylic acids. In summary, EEM QSPR models constitute a fast and accurate p Ka prediction approach that can be used in virtual screening. PMID:23574978
Abramov, Yuriy A
2015-06-01
The main purpose of this study is to define the major limiting factor in the accuracy of the quantitative structure-property relationship (QSPR) models of the thermodynamic intrinsic aqueous solubility of the drug-like compounds. For doing this, the thermodynamic intrinsic aqueous solubility property was suggested to be indirectly "measured" from the contributions of solid state, ΔGfus, and nonsolid state, ΔGmix, properties, which are estimated by the corresponding QSPR models. The QSPR models of ΔGfus and ΔGmix properties were built based on a set of drug-like compounds with available accurate measurements of fusion and thermodynamic solubility properties. For consistency ΔGfus and ΔGmix models were developed using similar algorithms and descriptor sets, and validated against the similar test compounds. Analysis of the relative performances of these two QSPR models clearly demonstrates that it is the solid state contribution which is the limiting factor in the accuracy and predictive power of the QSPR models of the thermodynamic intrinsic solubility. The performed analysis outlines a necessity of development of new descriptor sets for an accurate description of the long-range order (periodicity) phenomenon in the crystalline state. The proposed approach to the analysis of limitations and suggestions for improvement of QSPR-type models may be generalized to other applications in the pharmaceutical industry.
Luilo, G B; Cabaniss, S E
2011-10-01
Chlorinating water which contains dissolved organic matter (DOM) produces disinfection byproducts, the majority of unknown structure. Hence, the total organic halide (TOX) measurement is used as a surrogate for toxic disinfection byproducts. This work derives a robust quantitative structure-property relationship (QSPR) for predicting the TOX formation potential of model compounds. Literature data for 49 compounds were used to train the QSPR in moles of chlorine per mole of compound (Cp) (mol-Cl/mol-Cp). The resulting QSPR has four descriptors, calibration [Formula: see text] of 0.72 and standard deviation of estimation of 0.43 mol-Cl/mol-Cp. Internal and external validation indicate that the QSPR has good predictive power and low bias (<1%). Applying this QSPR to predict TOX formation by DOM surrogates - tannic acid, two model fulvic acids and two agent-based model assemblages - gave a predicted TOX range of 136-184 µg-Cl/mg-C, consistent with experimental data for DOM, which ranged from 78 to 192 µg-Cl/mg-C. However, the limited structural variation in the training data may limit QSPR applicability; studies of more sulfur-containing compounds, heterocyclic compounds and high molecular weight compounds could lead to a more widely applicable QSPR.
QSPR using MOLGEN-QSPR: the challenge of fluoroalkane boiling points.
Rücker, Christoph; Meringer, Markus; Kerber, Adalbert
2005-01-01
By means of the new software MOLGEN-QSPR, a multilinear regression model for the boiling points of lower fluoroalkanes is established. The model is based exclusively on simple descriptors derived directly from molecular structure and nevertheless describes a broader set of data more precisely than previous attempts that used either more demanding (quantum chemical) descriptors or more demanding (nonlinear) statistical methods such as neural networks. The model's internal consistency was confirmed by leave-one-out cross-validation. The model was used to predict all unknown boiling points of fluorobutanes, and the quality of predictions was estimated by means of comparison with boiling point predictions for fluoropentanes.
QSPR modeling: graph connectivity indices versus line graph connectivity indices
Basak; Nikolic; Trinajstic; Amic; Beslo
2000-07-01
Five QSPR models of alkanes were reinvestigated. Properties considered were molecular surface-dependent properties (boiling points and gas chromatographic retention indices) and molecular volume-dependent properties (molar volumes and molar refractions). The vertex- and edge-connectivity indices were used as structural parameters. In each studied case we computed connectivity indices of alkane trees and alkane line graphs and searched for the optimum exponent. Models based on indices with an optimum exponent and on the standard value of the exponent were compared. Thus, for each property we generated six QSPR models (four for alkane trees and two for the corresponding line graphs). In all studied cases QSPR models based on connectivity indices with optimum exponents have better statistical characteristics than the models based on connectivity indices with the standard value of the exponent. The comparison between models based on vertex- and edge-connectivity indices gave in two cases (molar volumes and molar refractions) better models based on edge-connectivity indices and in three cases (boiling points for octanes and nonanes and gas chromatographic retention indices) better models based on vertex-connectivity indices. Thus, it appears that the edge-connectivity index is more appropriate to be used in the structure-molecular volume properties modeling and the vertex-connectivity index in the structure-molecular surface properties modeling. The use of line graphs did not improve the predictive power of the connectivity indices. Only in one case (boiling points of nonanes) a better model was obtained with the use of line graphs.
Dyekjaer, Jane Dannow; Jónsdóttir, Svava Osk
2004-01-22
Quantitative Structure-Property Relationships (QSPR) have been developed for a series of monosaccharides, including the physical properties of partial molar heat capacity, heat of solution, melting point, heat of fusion, glass-transition temperature, and solid state density. The models were based on molecular descriptors obtained from molecular mechanics and quantum chemical calculations, combined with other types of descriptors. Saccharides exhibit a large degree of conformational flexibility, therefore a methodology for selecting the energetically most favorable conformers has been developed, and was used for the development of the QSPR models. In most cases good correlations were obtained for monosaccharides. For five of the properties predictions were made for disaccharides, and the predicted values for the partial molar heat capacities were in excellent agreement with experimental values.
QSPR for predicting chloroform formation in drinking water disinfection.
Luilo, G B; Cabaniss, S E
2011-01-01
Chlorination is the most widely used technique for water disinfection, but may lead to the formation of chloroform (trichloromethane; TCM) and other by-products. This article reports the first quantitative structure-property relationship (QSPR) for predicting the formation of TCM in chlorinated drinking water. Model compounds (n = 117) drawn from 10 literature sources were divided into training data (n = 90, analysed by five-way leave-many-out internal cross-validation) and external validation data (n = 27). QSPR internal cross-validation had Q² = 0.94 and root mean square error (RMSE) of 0.09 moles TCM per mole compound, consistent with external validation Q2 of 0.94 and RMSE of 0.08 moles TCM per mole compound, and met criteria for high predictive power and robustness. In contrast, log TCM QSPR performed poorly and did not meet the criteria for predictive power. The QSPR predictions were consistent with experimental values for TCM formation from tannic acid and for model fulvic acid structures. The descriptors used are consistent with a relatively small number of important TCM precursor structures based upon 1,3-dicarbonyls or 1,3-diphenols.
Carbó-Dorca, Ramon; Gallegos, Ana; Sánchez, Angel J
2009-05-01
Classical quantitative structure-properties relationship (QSPR) statistical techniques unavoidably present an inherent paradoxical computational context. They rely on the definition of a Gram matrix in descriptor spaces, which is used afterwards to reduce the original dimension via several possible kinds of algebraic manipulations. From there, effective models for the computation of unknown properties of known molecular structures are obtained. However, the reduced descriptor dimension causes linear dependence within the set of discrete vector molecular representations, leading to positive semi-definite Gram matrices in molecular spaces. To resolve this QSPR dimensionality paradox (QSPR DP) here is proposed to adopt as starting point the quantum QSPR (QQSPR) computational framework perspective, where density functions act as infinite dimensional descriptors. The fundamental QQSPR equation, deduced from employing quantum expectation value numerical evaluation, can be approximately solved in order to obtain models exempt of the QSPR DP. The substitution of the quantum similarity matrix by an empirical Gram matrix in molecular spaces, build up with the original non manipulated discrete molecular descriptor vectors, permits to obtain classical QSPR models with the same characteristics as in QQSPR, that is: possessing a certain degree of causality and explicitly independent of the descriptor dimension. 2008 Wiley Periodicals, Inc.
Cern, Ahuva; Barenholz, Yechezkel; Tropsha, Alexander; Goldblum, Amiram
2014-01-10
Previously we have developed and statistically validated Quantitative Structure Property Relationship (QSPR) models that correlate drugs' structural, physical and chemical properties as well as experimental conditions with the relative efficiency of remote loading of drugs into liposomes (Cern et al., J. Control. Release 160 (2012) 147-157). Herein, these models have been used to virtually screen a large drug database to identify novel candidate molecules for liposomal drug delivery. Computational hits were considered for experimental validation based on their predicted remote loading efficiency as well as additional considerations such as availability, recommended dose and relevance to the disease. Three compounds were selected for experimental testing which were confirmed to be correctly classified by our previously reported QSPR models developed with Iterative Stochastic Elimination (ISE) and k-Nearest Neighbors (kNN) approaches. In addition, 10 new molecules with known liposome remote loading efficiency that were not used by us in QSPR model development were identified in the published literature and employed as an additional model validation set. The external accuracy of the models was found to be as high as 82% or 92%, depending on the model. This study presents the first successful application of QSPR models for the computer-model-driven design of liposomal drugs. © 2013.
Cern, Ahuva; Barenholz, Yechezkel; Tropsha, Alexander; Goldblum, Amiram
2014-01-01
Previously we have developed and statistically validated Quantitative Structure Property Relationship (QSPR) models that correlate drugs’ structural, physical and chemical properties as well as experimental conditions with the relative efficiency of remote loading of drugs into liposomes (Cern et al, Journal of Controlled Release, 160(2012) 14–157). Herein, these models have been used to virtually screen a large drug database to identify novel candidate molecules for liposomal drug delivery. Computational hits were considered for experimental validation based on their predicted remote loading efficiency as well as additional considerations such as availability, recommended dose and relevance to the disease. Three compounds were selected for experimental testing which were confirmed to be correctly classified by our previously reported QSPR models developed with Iterative Stochastic Elimination (ISE) and k-nearest neighbors (kNN) approaches. In addition, 10 new molecules with known liposome remote loading efficiency that were not used in QSPR model development were identified in the published literature and employed as an additional model validation set. The external accuracy of the models was found to be as high as 82% or 92%, depending on the model. This study presents the first successful application of QSPR models for the computer-model-driven design of liposomal drugs. PMID:24184343
Computational modeling of human oral bioavailability: what will be next?
Cabrera-Pérez, Miguel Ángel; Pham-The, Hai
2018-06-01
The oral route is the most convenient way of administrating drugs. Therefore, accurate determination of oral bioavailability is paramount during drug discovery and development. Quantitative structure-property relationship (QSPR), rule-of-thumb (RoT) and physiologically based-pharmacokinetic (PBPK) approaches are promising alternatives to the early oral bioavailability prediction. Areas covered: The authors give insight into the factors affecting bioavailability, the fundamental theoretical framework and the practical aspects of computational methods for predicting this property. They also give their perspectives on future computational models for estimating oral bioavailability. Expert opinion: Oral bioavailability is a multi-factorial pharmacokinetic property with its accurate prediction challenging. For RoT and QSPR modeling, the reliability of datasets, the significance of molecular descriptor families and the diversity of chemometric tools used are important factors that define model predictability and interpretability. Likewise, for PBPK modeling the integrity of the pharmacokinetic data, the number of input parameters, the complexity of statistical analysis and the software packages used are relevant factors in bioavailability prediction. Although these approaches have been utilized independently, the tendency to use hybrid QSPR-PBPK approaches together with the exploration of ensemble and deep-learning systems for QSPR modeling of oral bioavailability has opened new avenues for development promising tools for oral bioavailability prediction.
Daga, Pankaj R; Bolger, Michael B; Haworth, Ian S; Clark, Robert D; Martin, Eric J
2018-03-05
When medicinal chemists need to improve bioavailability (%F) within a chemical series during lead optimization, they synthesize new series members with systematically modified properties mainly by following experience and general rules of thumb. More quantitative models that predict %F of proposed compounds from chemical structure alone have proven elusive. Global empirical %F quantitative structure-property (QSPR) models perform poorly, and projects have too little data to train local %F QSPR models. Mechanistic oral absorption and physiologically based pharmacokinetic (PBPK) models simulate the dissolution, absorption, systemic distribution, and clearance of a drug in preclinical species and humans. Attempts to build global PBPK models based purely on calculated inputs have not achieved the <2-fold average error needed to guide lead optimization. In this work, local GastroPlus PBPK models are instead customized for individual medchem series. The key innovation was building a local QSPR for a numerically fitted effective intrinsic clearance (CL loc ). All inputs are subsequently computed from structure alone, so the models can be applied in advance of synthesis. Training CL loc on the first 15-18 rat %F measurements gave adequate predictions, with clear improvements up to about 30 measurements, and incremental improvements beyond that.
Application of the QSPR approach to the boiling points of azeotropes.
Katritzky, Alan R; Stoyanova-Slavova, Iva B; Tämm, Kaido; Tamm, Tarmo; Karelson, Mati
2011-04-21
CODESSA Pro derivative descriptors were calculated for a data set of 426 azeotropic mixtures by the centroid approximation and the weighted-contribution-factor approximation. The two approximations produced almost identical four-descriptor QSPR models relating the structural characteristic of the individual components of azeotropes to the azeotropic boiling points. These models were supported by internal and external validations. The descriptors contributing to the QSPR models are directly related to the three components of the enthalpy (heat) of vaporization.
The QSPR-THESAURUS: the online platform of the CADASTER project.
Brandmaier, Stefan; Peijnenburg, Willie; Durjava, Mojca K; Kolar, Boris; Gramatica, Paola; Papa, Ester; Bhhatarai, Barun; Kovarich, Simona; Cassani, Stefano; Roy, Partha Pratim; Rahmberg, Magnus; Öberg, Tomas; Jeliazkova, Nina; Golsteijn, Laura; Comber, Mike; Charochkina, Larisa; Novotarskyi, Sergii; Sushko, Iurii; Abdelaziz, Ahmed; D'Onofrio, Elisa; Kunwar, Prakash; Ruggiu, Fiorella; Tetko, Igor V
2014-03-01
The aim of the CADASTER project (CAse Studies on the Development and Application of in Silico Techniques for Environmental Hazard and Risk Assessment) was to exemplify REACH-related hazard assessments for four classes of chemical compound, namely, polybrominated diphenylethers, per and polyfluorinated compounds, (benzo)triazoles, and musks and fragrances. The QSPR-THESAURUS website (http: / /qspr-thesaurus.eu) was established as the project's online platform to upload, store, apply, and also create, models within the project. We overview the main features of the website, such as model upload, experimental design and hazard assessment to support risk assessment, and integration with other web tools, all of which are essential parts of the QSPR-THESAURUS. 2014 FRAME.
Batool, Fozia; Iqbal, Shahid; Akbar, Jamshed
2018-04-03
The present study describes Quantitative Structure Property Relationship (QSPR) modeling to relate metal ions characteristics with adsorption potential of Ficus carica leaves for 13 selected metal ions (Ca +2 , Cr +3 , Co +2 , Cu +2 , Cd +2 , K +1 , Mg +2 , Mn +2 , Na +1 , Ni +2 , Pb +2 , Zn +2 , and Fe +2 ) to generate QSPR model. A set of 21 characteristic descriptors were selected and relationship of these metal characteristics with adsorptive behavior of metal ions was investigated. Stepwise Multiple Linear Regression (SMLR) analysis and Artificial Neural Network (ANN) were applied for descriptors selection and model generation. Langmuir and Freundlich isotherms were also applied on adsorption data to generate proper correlation for experimental findings. Model generated indicated covalent index as the most significant descriptor, which is responsible for more than 90% predictive adsorption (α = 0.05). Internal validation of model was performed by measuring [Formula: see text] (0.98). The results indicate that present model is a useful tool for prediction of adsorptive behavior of different metal ions based on their ionic characteristics.
NASA Astrophysics Data System (ADS)
Manoharan, Prabu; Vijayan, R. S. K.; Ghoshal, Nanda
2010-10-01
The ability to identify fragments that interact with a biological target is a key step in FBDD. To date, the concept of fragment based drug design (FBDD) is increasingly driven by bio-physical methods. To expand the boundaries of QSAR paradigm, and to rationalize FBDD using In silico approach, we propose a fragment based QSAR methodology referred here in as FB-QSAR. The FB-QSAR methodology was validated on a dataset consisting of 52 Hydroxy ethylamine (HEA) inhibitors, disclosed by GlaxoSmithKline Pharmaceuticals as potential anti-Alzheimer agents. To address the issue of target selectivity, a major confounding factor in the development of selective BACE1 inhibitors, FB-QSSR models were developed using the reported off target activity values. A heat map constructed, based on the activity and selectivity profile of the individual R-group fragments, and was in turn used to identify superior R-group fragments. Further, simultaneous optimization of multiple properties, an issue encountered in real-world drug discovery scenario, and often overlooked in QSAR approaches, was addressed using a Multi Objective (MO-QSPR) method that balances properties, based on the defined objectives. MO-QSPR was implemented using Derringer and Suich desirability algorithm to identify the optimal level of independent variables ( X) that could confer a trade-off between selectivity and activity. The results obtained from FB-QSAR were further substantiated using MIF (Molecular Interaction Fields) studies. To exemplify the potentials of FB-QSAR and MO-QSPR in a pragmatic fashion, the insights gleaned from the MO-QSPR study was reverse engineered using Inverse-QSAR in a combinatorial fashion to enumerate some prospective novel, potent and selective BACE1 inhibitors.
Manoharan, Prabu; Vijayan, R S K; Ghoshal, Nanda
2010-10-01
The ability to identify fragments that interact with a biological target is a key step in FBDD. To date, the concept of fragment based drug design (FBDD) is increasingly driven by bio-physical methods. To expand the boundaries of QSAR paradigm, and to rationalize FBDD using In silico approach, we propose a fragment based QSAR methodology referred here in as FB-QSAR. The FB-QSAR methodology was validated on a dataset consisting of 52 Hydroxy ethylamine (HEA) inhibitors, disclosed by GlaxoSmithKline Pharmaceuticals as potential anti-Alzheimer agents. To address the issue of target selectivity, a major confounding factor in the development of selective BACE1 inhibitors, FB-QSSR models were developed using the reported off target activity values. A heat map constructed, based on the activity and selectivity profile of the individual R-group fragments, and was in turn used to identify superior R-group fragments. Further, simultaneous optimization of multiple properties, an issue encountered in real-world drug discovery scenario, and often overlooked in QSAR approaches, was addressed using a Multi Objective (MO-QSPR) method that balances properties, based on the defined objectives. MO-QSPR was implemented using Derringer and Suich desirability algorithm to identify the optimal level of independent variables (X) that could confer a trade-off between selectivity and activity. The results obtained from FB-QSAR were further substantiated using MIF (Molecular Interaction Fields) studies. To exemplify the potentials of FB-QSAR and MO-QSPR in a pragmatic fashion, the insights gleaned from the MO-QSPR study was reverse engineered using Inverse-QSAR in a combinatorial fashion to enumerate some prospective novel, potent and selective BACE1 inhibitors.
Quantitative property-structural relation modeling on polymeric dielectric materials
NASA Astrophysics Data System (ADS)
Wu, Ke
Nowadays, polymeric materials have attracted more and more attention in dielectric applications. But searching for a material with desired properties is still largely based on trial and error. To facilitate the development of new polymeric materials, heuristic models built using the Quantitative Structure Property Relationships (QSPR) techniques can provide reliable "working solutions". In this thesis, the application of QSPR on polymeric materials is studied from two angles: descriptors and algorithms. A novel set of descriptors, called infinite chain descriptors (ICD), are developed to encode the chemical features of pure polymers. ICD is designed to eliminate the uncertainty of polymer conformations and inconsistency of molecular representation of polymers. Models for the dielectric constant, band gap, dielectric loss tangent and glass transition temperatures of organic polymers are built with high prediction accuracy. Two new algorithms, the physics-enlightened learning method (PELM) and multi-mechanism detection, are designed to deal with two typical challenges in material QSPR. PELM is a meta-algorithm that utilizes the classic physical theory as guidance to construct the candidate learning function. It shows better out-of-domain prediction accuracy compared to the classic machine learning algorithm (support vector machine). Multi-mechanism detection is built based on a cluster-weighted mixing model similar to a Gaussian mixture model. The idea is to separate the data into subsets where each subset can be modeled by a much simpler model. The case study on glass transition temperature shows that this method can provide better overall prediction accuracy even though less data is available for each subset model. In addition, the techniques developed in this work are also applied to polymer nanocomposites (PNC). PNC are new materials with outstanding dielectric properties. As a key factor in determining the dispersion state of nanoparticles in the polymer matrix, the surface tension components of polymers are modeled using ICD. Compared to the 3D surface descriptors used in a previous study, the model with ICD has a much improved prediction accuracy and stability particularly for the polar component. In predicting the enhancement effect of grafting functional groups on the breakdown strength of PNC, a simple local charge transfer model is proposed where the electron affinity (EA) and ionization energy (IE) determines the main charge trap depth in the system. This physical model is supported by first principle computation. QSPR models for EA and IE are also built, decreasing the computation time of EA and IE for a single molecule from several hours to less than one second. Furthermore, the designs of two web-based tools are introduced. The tools represent two commonly used applications for QSPR studies: data inquiry and prediction. Making models and data public available and easy to use is particularly crucial for QSPR research. The web tools described in this work should provide a good guidance and starting point for the further development of information tools enabling more efficient cooperation between computational and experimental communities.
Ramsay, Eva; Ruponen, Marika; Picardat, Théo; Tengvall, Unni; Tuomainen, Marjo; Auriola, Seppo; Toropainen, Elisa; Urtti, Arto; Del Amo, Eva M
2017-09-01
Conjunctiva occupies most of the ocular surface area, and conjunctival permeability affects ocular and systemic drug absorption of topical ocular medications. Therefore, the aim of this study was to obtain a computational in silico model for structure-based prediction of conjunctival drug permeability. This was done by employing cassette dosing and quantitative structure-property relationship (QSPR) approach. Permeability studies were performed ex vivo across fresh porcine conjunctiva and simultaneous dosing of a cassette mixture composed of 32 clinically relevant drug molecules with wide chemical space. The apparent permeability values were obtained using drug concentrations that were quantified with liquid chromatography tandem-mass spectrometry. The experimental data were utilized for building a QSPR model for conjunctival permeability predictions. The conjunctival permeability values presented a 17-fold range (0.63-10.74 × 10 -6 cm/s). The final QSPR had a Q 2 value of 0.62 and predicted the external test set with a mean fold error of 1.34. The polar surface area, hydrogen bond donor, and halogen ratio were the most relevant descriptors for defining conjunctival permeability. This work presents for the first time a predictive QSPR model of conjunctival drug permeability and a comprehensive description on conjunctival isolation from the porcine eye. The model can be used for developing new ocular drugs. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Ivanova, A A; Ivanov, A A; Oliferenko, A A; Palyulin, V A; Zefirov, N S
2005-06-01
An improved strategy of quantitative structure-property relationship (QSPR) studies of diverse and inhomogeneous organic datasets has been proposed. A molecular connectivity term was successively corrected for different structural features encoded in fragmental descriptors. The so-called solvation index 1chis (a weighted Randic index) was used as a "leading" variable and standardized molecular fragments were employed as "corrective" class-specific variables. Performance of the new approach was illustrated by modelling a dataset of experimental normal boiling points of 833 organic compounds belonging to 20 structural classes. Firstly, separate QSPR models were derived for each class and for eight groups of structurally similar classes. Finally, a general model formed by combining all the classes together was derived (r2=0.957, s=12.9degreesC). The strategy outlined can find application in QSPR analyses of massive, highly diverse databases of organic compounds.
Liu, Fengping; Cao, Chenzhong; Cheng, Bin
2011-01-01
A quantitative structure–property relationship (QSPR) analysis of aliphatic alcohols is presented. Four physicochemical properties were studied: boiling point (BP), n-octanol–water partition coefficient (lg POW), water solubility (lg W) and the chromatographic retention indices (RI) on different polar stationary phases. In order to investigate the quantitative structure–property relationship of aliphatic alcohols, the molecular structure ROH is divided into two parts, R and OH to generate structural parameter. It was proposed that the property is affected by three main factors for aliphatic alcohols, alkyl group R, substituted group OH, and interaction between R and OH. On the basis of the polarizability effect index (PEI), previously developed by Cao, the novel molecular polarizability effect index (MPEI) combined with odd-even index (OEI), the sum eigenvalues of bond-connecting matrix (SX1CH) previously developed in our team, were used to predict the property of aliphatic alcohols. The sets of molecular descriptors were derived directly from the structure of the compounds based on graph theory. QSPR models were generated using only calculated descriptors and multiple linear regression techniques. These QSPR models showed high values of multiple correlation coefficient (R > 0.99) and Fisher-ratio statistics. The leave-one-out cross-validation demonstrated the final models to be statistically significant and reliable. PMID:21731451
CADASTER QSPR Models for Predictions of Melting and Boiling Points of Perfluorinated Chemicals.
Bhhatarai, Barun; Teetz, Wolfram; Liu, Tao; Öberg, Tomas; Jeliazkova, Nina; Kochev, Nikolay; Pukalov, Ognyan; Tetko, Igor V; Kovarich, Simona; Papa, Ester; Gramatica, Paola
2011-03-14
Quantitative structure property relationship (QSPR) studies on per- and polyfluorinated chemicals (PFCs) on melting point (MP) and boiling point (BP) are presented. The training and prediction chemicals used for developing and validating the models were selected from Syracuse PhysProp database and literatures. The available experimental data sets were split in two different ways: a) random selection on response value, and b) structural similarity verified by self-organizing-map (SOM), in order to propose reliable predictive models, developed only on the training sets and externally verified on the prediction sets. Individual linear and non-linear approaches based models developed by different CADASTER partners on 0D-2D Dragon descriptors, E-state descriptors and fragment based descriptors as well as consensus model and their predictions are presented. In addition, the predictive performance of the developed models was verified on a blind external validation set (EV-set) prepared using PERFORCE database on 15 MP and 25 BP data respectively. This database contains only long chain perfluoro-alkylated chemicals, particularly monitored by regulatory agencies like US-EPA and EU-REACH. QSPR models with internal and external validation on two different external prediction/validation sets and study of applicability-domain highlighting the robustness and high accuracy of the models are discussed. Finally, MPs for additional 303 PFCs and BPs for 271 PFCs were predicted for which experimental measurements are unknown. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Raevsky, O; Andreeva, E; Raevskaja, O; Skvortsov, V; Schaper, K
2005-01-01
QSPR analyses of the solubility in water of 558 vapors, 786 liquids and 2045 solid organic neutral chemicals and drugs are presented. Simultaneous consideration of H-bond acceptor and donor factors leads to a good description of the solubility of vapors and liquids. A volume-related term was found to have an essential negative contribution to the solubility of liquids. Consideration of polarizability, H-bond acceptor and donor factors and indicators for a few functional groups, as well as the experimental solubility values of structurally nearest neighbors yielded good correlations for liquids. The application of Yalkowsky's "General Solubility Equation" to 1063 solid chemicals and drugs resulted in a correlation of experimental vs calculated log S values with only modest statistical criteria. Two approaches to derive predictive models for solubility of solid chemicals and drugs were tested. The first approach was based on the QSPR for liquids together with indicator variables for different functional groups. Furthermore, a calculation of enthalpies for intermolecular complexes in crystal lattices, based on new H-bond potentials, was carried out for the better consideration of essential solubility- decreasing effects in the solid state, as compared with the liquid state. The second approach was based on a combination of similarity considerations and traditional QSPR. Both approaches lead to high quality predictions with average absolute errors on the level of experimental log S determination.
Predictive modeling: Solubility of C60 and C70 fullerenes in diverse solvents.
Gupta, Shikha; Basant, Nikita
2018-06-01
Solubility of fullerenes imposes a major limitation to further advanced research and technological development using these novel materials. There have been continued efforts to discover better solvents and their properties that influence the solubility of fullerenes. Here, we have developed QSPR (quantitative structure-property relationship) models based on structural features of diverse solvents and large experimental data for predicting the solubility of C 60 and C 70 fullerenes. The developed models identified most relevant features of the solvents that encode the polarizability, polarity and lipophilicity properties which largely influence the solubilizing potential of the solvent for the fullerenes. We also established Inter-moieties solubility correlations (IMSC) based quantitative property-property relationship (QPPR) models for predicting solubility of C 60 and C 70 fullerenes. The QSPR and QPPR models were internally and externally validated deriving the most stringent statistical criteria and predicted C 60 and C 70 solubility values in different solvents were in close agreement with the experimental values. In test sets, the QSPR models yielded high correlations (R 2 > 0.964) and low root mean squared error of prediction errors (RMSEP< 0.25). Results of comparison with other studies indicated that the proposed models could effectively improve the accuracy and ability for predicting solubility of C 60 and C 70 fullerenes in solvents with diverse structures and would be useful in development of more effective solvents. Copyright © 2018 Elsevier Ltd. All rights reserved.
Marrero-Ponce, Yovani; Martínez-Albelo, Eugenio R; Casañola-Martín, Gerardo M; Castillo-Garit, Juan A; Echevería-Díaz, Yunaimy; Zaldivar, Vicente Romero; Tygat, Jan; Borges, José E Rodriguez; García-Domenech, Ramón; Torrens, Francisco; Pérez-Giménez, Facundo
2010-11-01
Novel bond-level molecular descriptors are proposed, based on linear maps similar to the ones defined in algebra theory. The kth edge-adjacency matrix (E(k)) denotes the matrix of bond linear indices (non-stochastic) with regard to canonical basis set. The kth stochastic edge-adjacency matrix, ES(k), is here proposed as a new molecular representation easily calculated from E(k). Then, the kth stochastic bond linear indices are calculated using ES(k) as operators of linear transformations. In both cases, the bond-type formalism is developed. The kth non-stochastic and stochastic total linear indices are calculated by adding the kth non-stochastic and stochastic bond linear indices, respectively, of all bonds in molecule. First, the new bond-based molecular descriptors (MDs) are tested for suitability, for the QSPRs, by analyzing regressions of novel indices for selected physicochemical properties of octane isomers (first round). General performance of the new descriptors in this QSPR studies is evaluated with regard to the well-known sets of 2D/3D MDs. From the analysis, we can conclude that the non-stochastic and stochastic bond-based linear indices have an overall good modeling capability proving their usefulness in QSPR studies. Later, the novel bond-level MDs are also used for the description and prediction of the boiling point of 28 alkyl-alcohols (second round), and to the modeling of the specific rate constant (log k), partition coefficient (log P), as well as the antibacterial activity of 34 derivatives of 2-furylethylenes (third round). The comparison with other approaches (edge- and vertices-based connectivity indices, total and local spectral moments, and quantum chemical descriptors as well as E-state/biomolecular encounter parameters) exposes a good behavior of our method in this QSPR studies. Finally, the approach described in this study appears to be a very promising structural invariant, useful not only for QSPR studies but also for similarity/diversity analysis and drug discovery protocols.
Wu, Wensheng; Zhang, Canyang; Lin, Wenjing; Chen, Quan; Guo, Xindong; Qian, Yu; Zhang, Lijuan
2015-01-01
Self-assembled nano-micelles of amphiphilic polymers represent a novel anticancer drug delivery system. However, their full clinical utilization remains challenging because the quantitative structure-property relationship (QSPR) between the polymer structure and the efficacy of micelles as a drug carrier is poorly understood. Here, we developed a series of QSPR models to account for the drug loading capacity of polymeric micelles using the genetic function approximation (GFA) algorithm. These models were further evaluated by internal and external validation and a Y-randomization test in terms of stability and generalization, yielding an optimization model that is applicable to an expanded materials regime. As confirmed by experimental data, the relationship between microstructure and drug loading capacity can be well-simulated, suggesting that our models are readily applicable to the quantitative evaluation of the drug-loading capacity of polymeric micelles. Our work may offer a pathway to the design of formulation experiments.
Lin, Wenjing; Chen, Quan; Guo, Xindong; Qian, Yu; Zhang, Lijuan
2015-01-01
Self-assembled nano-micelles of amphiphilic polymers represent a novel anticancer drug delivery system. However, their full clinical utilization remains challenging because the quantitative structure-property relationship (QSPR) between the polymer structure and the efficacy of micelles as a drug carrier is poorly understood. Here, we developed a series of QSPR models to account for the drug loading capacity of polymeric micelles using the genetic function approximation (GFA) algorithm. These models were further evaluated by internal and external validation and a Y-randomization test in terms of stability and generalization, yielding an optimization model that is applicable to an expanded materials regime. As confirmed by experimental data, the relationship between microstructure and drug loading capacity can be well-simulated, suggesting that our models are readily applicable to the quantitative evaluation of the drug-loading capacity of polymeric micelles. Our work may offer a pathway to the design of formulation experiments. PMID:25780923
Ajmani, Subhash; Rogers, Stephen C; Barley, Mark H; Burgess, Andrew N; Livingstone, David J
2010-09-17
In our earlier work, we have demonstrated that it is possible to characterize binary mixtures using single component descriptors by applying various mixing rules. We also showed that these methods were successful in building predictive QSPR models to study various mixture properties of interest. Here in, we developed a QSPR model of an excess thermodynamic property of binary mixtures i.e. excess molar volume (V(E) ). In the present study, we use a set of mixture descriptors which we earlier designed to specifically account for intermolecular interactions between the components of a mixture and applied successfully to the prediction of infinite-dilution activity coefficients using neural networks (part 1 of this series). We obtain a significant QSPR model for the prediction of excess molar volume (V(E) ) using consensus neural networks and five mixture descriptors. We find that hydrogen bond and thermodynamic descriptors are the most important in determining excess molar volume (V(E) ), which is in line with the theory of intermolecular forces governing excess mixture properties. The results also suggest that the mixture descriptors utilized herein may be sufficient to model a wide variety of properties of binary and possibly even more complex mixtures. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gupta, Shikha; Basant, Nikita
2017-11-01
Designing of advanced oxidation process (AOP) requires knowledge of the aqueous phase hydroxyl radical ( ● OH) reactions rate constants (k OH ), which are strictly dependent upon the pH and temperature of the medium. In this study, pH- and temperature-dependent quantitative structure-property relationship (QSPR) models based on the decision tree boost (DTB) approach were developed for the prediction of k OH of diverse organic contaminants following the OECD guidelines. Experimental datasets (n = 958) pertaining to the k OH values of aqueous phase reactions at different pH (n = 470; 1.4 × 10 6 to 3.8 × 10 10 M -1 s -1 ) and temperature (n = 171; 1.0 × 10 7 to 2.6 × 10 10 M -1 s -1 ) were considered and molecular descriptors of the compounds were derived. The Sanderson scale electronegativity, topological polar surface area, number of double bonds, and halogen atoms in the molecule, in addition to the pH and temperature, were found to be the relevant predictors. The models were validated and their external predictivity was evaluated in terms of most stringent criteria parameters derived on the test data. High values of the coefficient of determination (R 2 ) and small root mean squared error (RMSE) in respective training (> 0.972, ≤ 0.12) and test (≥ 0.936, ≤ 0.16) sets indicated high generalization and predictivity of the developed QSPR model. Other statistical parameters derived from the training and test data also supported the robustness of the models and their suitability for screening new chemicals within the defined chemical space. The developed QSPR models provide a valuable tool for predicting the ● OH reaction rate constants of emerging new water contaminants for their susceptibility to AOPs.
Hemmateenejad, Bahram; Yazdani, Mahdieh
2009-02-16
Steroids are widely distributed in nature and are found in plants, animals, and fungi in abundance. A data set consists of a diverse set of steroids have been used to develop quantitative structure-electrochemistry relationship (QSER) models for their half-wave reduction potential. Modeling was established by means of multiple linear regression (MLR) and principle component regression (PCR) analyses. In MLR analysis, the QSPR models were constructed by first grouping descriptors and then stepwise selection of variables from each group (MLR1) and stepwise selection of predictor variables from the pool of all calculated descriptors (MLR2). Similar procedure was used in PCR analysis so that the principal components (or features) were extracted from different group of descriptors (PCR1) and from entire set of descriptors (PCR2). The resulted models were evaluated using cross-validation, chance correlation, application to prediction reduction potential of some test samples and accessing applicability domain. Both MLR approaches represented accurate results however the QSPR model found by MLR1 was statistically more significant. PCR1 approach produced a model as accurate as MLR approaches whereas less accurate results were obtained by PCR2 approach. In overall, the correlation coefficients of cross-validation and prediction of the QSPR models resulted from MLR1, MLR2 and PCR1 approaches were higher than 90%, which show the high ability of the models to predict reduction potential of the studied steroids.
Computational modeling of in vitro biological responses on polymethacrylate surfaces
Ghosh, Jayeeta; Lewitus, Dan Y; Chandra, Prafulla; Joy, Abraham; Bushman, Jared; Knight, Doyle; Kohn, Joachim
2011-01-01
The objective of this research was to examine the capabilities of QSPR (Quantitative Structure Property Relationship) modeling to predict specific biological responses (fibrinogen adsorption, cell attachment and cell proliferation index) on thin films of different polymethacrylates. Using 33 commercially available monomers it is theoretically possible to construct a library of over 40,000 distinct polymer compositions. A subset of these polymers were synthesized and solvent cast surfaces were prepared in 96 well plates for the measurement of fibrinogen adsorption. NIH 3T3 cell attachment and proliferation index were measured on spin coated thin films of these polymers. Based on the experimental results of these polymers, separate models were built for homo-, co-, and terpolymers in the library with good correlation between experiment and predicted values. The ability to predict biological responses by simple QSPR models for large numbers of polymers has important implications in designing biomaterials for specific biological or medical applications. PMID:21779132
Vucicevic, J; Popovic, M; Nikolic, K; Filipic, S; Obradovic, D; Agbaba, D
2017-03-01
For this study, 31 compounds, including 16 imidazoline/α-adrenergic receptor (IRs/α-ARs) ligands and 15 central nervous system (CNS) drugs, were characterized in terms of the retention factors (k) obtained using biopartitioning micellar and classical reversed phase chromatography (log k BMC and log k wRP , respectively). Based on the retention factor (log k wRP ) and slope of the linear curve (S) the isocratic parameter (φ 0 ) was calculated. Obtained retention factors were correlated with experimental log BB values for the group of examined compounds. High correlations were obtained between logarithm of biopartitioning micellar chromatography (BMC) retention factor and effective permeability (r(log k BMC /log BB): 0.77), while for RP-HPLC system the correlations were lower (r(log k wRP /log BB): 0.58; r(S/log BB): -0.50; r(φ 0 /P e ): 0.61). Based on the log k BMC retention data and calculated molecular parameters of the examined compounds, quantitative structure-permeability relationship (QSPR) models were developed using partial least squares, stepwise multiple linear regression, support vector machine and artificial neural network methodologies. A high degree of structural diversity of the analysed IRs/α-ARs ligands and CNS drugs provides wide applicability domain of the QSPR models for estimation of blood-brain barrier penetration of the related compounds.
Prediction of Environmental Impact of High-Energy Materials with Atomistic Computer Simulations
2010-11-01
from a training set of compounds. Other methods include Quantitative Struc- ture-Activity Relationship ( QSAR ) and Quantitative Structure-Property...26 28 the development of QSPR/ QSAR models, in contrast to boiling points and critical parameters derived from empirical correlations, to improve...Quadratic Configuration Interaction Singles Doubles QSAR Quantitative Structure-Activity Relationship QSPR Quantitative Structure-Property
Qin, Li-Tang; Liu, Shu-Shen; Liu, Hai-Ling
2010-02-01
A five-variable model (model M2) was developed for the bioconcentration factors (BCFs) of nonpolar organic compounds (NPOCs) by using molecular electronegativity distance vector (MEDV) to characterize the structures of NPOCs and variable selection and modeling based on prediction (VSMP) to select the optimum descriptors. The estimated correlation coefficient (r (2)) and the leave-one-out cross-validation correlation coefficients (q (2)) of model M2 were 0.9271 and 0.9171, respectively. The model was externally validated by splitting the whole data set into a representative training set of 85 chemicals and a validation set of 29 chemicals. The results show that the main structural factors influencing the BCFs of NPOCs are -cCc, cCcc, -Cl, and -Br (where "-" refers to a single bond and "c" refers to a conjugated bond). The quantitative structure-property relationship (QSPR) model can effectively predict the BCFs of NPOCs, and the predictions of the model can also extend the current BCF database of experimental values.
NASA Astrophysics Data System (ADS)
Basant, Nikita; Gupta, Shikha
2018-03-01
The reactions of molecular ozone (O3), hydroxyl (•OH) and nitrate (NO3) radicals are among the major pathways of removal of volatile organic compounds (VOCs) in the atmospheric environment. The gas-phase kinetic rate constants (kO3, kOH, kNO3) are thus, important in assessing the ultimate fate and exposure risk of atmospheric VOCs. Experimental data for rate constants are not available for many emerging VOCs and the computational methods reported so far address a single target modeling only. In this study, we have developed a multi-target (mt) QSPR model for simultaneous prediction of multiple kinetic rate constants (kO3, kOH, kNO3) of diverse organic chemicals considering an experimental data set of VOCs for which values of all the three rate constants are available. The mt-QSPR model identified and used five descriptors related to the molecular size, degree of saturation and electron density in a molecule, which were mechanistically interpretable. These descriptors successfully predicted three rate constants simultaneously. The model yielded high correlations (R2 = 0.874-0.924) between the experimental and simultaneously predicted endpoint rate constant (kO3, kOH, kNO3) values in test arrays for all the three systems. The model also passed all the stringent statistical validation tests for external predictivity. The proposed multi-target QSPR model can be successfully used for predicting reactivity of new VOCs simultaneously for their exposure risk assessment.
Multiphase, multicomponent phase behavior prediction
NASA Astrophysics Data System (ADS)
Dadmohammadi, Younas
Accurate prediction of phase behavior of fluid mixtures in the chemical industry is essential for designing and operating a multitude of processes. Reliable generalized predictions of phase equilibrium properties, such as pressure, temperature, and phase compositions offer an attractive alternative to costly and time consuming experimental measurements. The main purpose of this work was to assess the efficacy of recently generalized activity coefficient models based on binary experimental data to (a) predict binary and ternary vapor-liquid equilibrium systems, and (b) characterize liquid-liquid equilibrium systems. These studies were completed using a diverse binary VLE database consisting of 916 binary and 86 ternary systems involving 140 compounds belonging to 31 chemical classes. Specifically the following tasks were undertaken: First, a comprehensive assessment of the two common approaches (gamma-phi (gamma-ϕ) and phi-phi (ϕ-ϕ)) used for determining the phase behavior of vapor-liquid equilibrium systems is presented. Both the representation and predictive capabilities of these two approaches were examined, as delineated form internal and external consistency tests of 916 binary systems. For the purpose, the universal quasi-chemical (UNIQUAC) model and the Peng-Robinson (PR) equation of state (EOS) were used in this assessment. Second, the efficacy of recently developed generalized UNIQUAC and the nonrandom two-liquid (NRTL) for predicting multicomponent VLE systems were investigated. Third, the abilities of recently modified NRTL model (mNRTL2 and mNRTL1) to characterize liquid-liquid equilibria (LLE) phase conditions and attributes, including phase stability, miscibility, and consolute point coordinates, were assessed. The results of this work indicate that the ϕ-ϕ approach represents the binary VLE systems considered within three times the error of the gamma-ϕ approach. A similar trend was observed for the for the generalized model predictions using quantitative structure-property parameter generalizations (QSPR). For ternary systems, where all three constituent binary systems were available, the NRTL-QSPR, UNIQUAC-QSPR, and UNIFAC-6 models produce comparable accuracy. For systems where at least one constituent binary is missing, the UNIFAC-6 model produces larger errors than the QSPR generalized models. In general, the LLE characterization results indicate the accuracy of the modified models in reproducing the findings of the original NRTL model.
Toxico-Cheminformatics and QSPR Modeling of the Carcinogenic Potency Database
Report on the development of a tiered, confirmatory scheme for prediction of chemical carcinogenicity based on QSAR studies of compounds with available mutagenic and carcinogenic data. For 693 such compounds from the Carcinogenic Potency Database characterized molecular topologic...
Di Tullio, Maurizio; Maccallini, Cristina; Ammazzalorso, Alessandra; Giampietro, Letizia; Amoroso, Rosa; De Filippis, Barbara; Fantacuzzi, Marialuigia; Wiczling, Paweł; Kaliszan, Roman
2012-07-01
A series of 27 analogues of clofibric acid, mostly heteroarylalkanoic derivatives, have been analyzed by a novel high-throughput reversed-phase HPLC method employing combined gradient of eluent's pH and organic modifier content. The such determined hydrophobicity (lipophilicity) parameters, log kw , and acidity constants, pKa , were subjected to multiple regression analysis to get a QSRR (Quantitative StructureRetention Relationships) and a QSPR (Quantitative Structure-Property Relationships) equation, respectively, describing these pharmacokinetics-determining physicochemical parameters in terms of the calculation chemistry derived structural descriptors. The previously determined in vitro log EC50 values - transactivation activity towards PPARα (human Peroxisome Proliferator-Activated Receptor α) - have also been described in a QSAR (Quantitative StructureActivity Relationships) equation in terms of the 3-D-MoRSE descriptors (3D-Molecule Representation of Structures based on Electron diffraction descriptors). The QSAR model derived can serve for an a priori prediction of bioactivity in vitro of any designed analogue, whereas the QSRR and the QSPR models can be used to evaluate lipophilicity and acidity, respectively, of the compounds, and hence to rational guide selection of structures of proper pharmacokinetics. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
González-Díaz, Humberto; Arrasate, Sonia; Gómez-SanJuan, Asier; Sotomayor, Nuria; Lete, Esther; Besada-Porto, Lina; Ruso, Juan M
2013-01-01
In general perturbation methods starts with a known exact solution of a problem and add "small" variation terms in order to approach to a solution for a related problem without known exact solution. Perturbation theory has been widely used in almost all areas of science. Bhor's quantum model, Heisenberg's matrix mechanincs, Feyman diagrams, and Poincare's chaos model or "butterfly effect" in complex systems are examples of perturbation theories. On the other hand, the study of Quantitative Structure-Property Relationships (QSPR) in molecular complex systems is an ideal area for the application of perturbation theory. There are several problems with exact experimental solutions (new chemical reactions, physicochemical properties, drug activity and distribution, metabolic networks, etc.) in public databases like CHEMBL. However, in all these cases, we have an even larger list of related problems without known solutions. We need to know the change in all these properties after a perturbation of initial boundary conditions. It means, when we test large sets of similar, but different, compounds and/or chemical reactions under the slightly different conditions (temperature, time, solvents, enzymes, assays, protein targets, tissues, partition systems, organisms, etc.). However, to the best of our knowledge, there is no QSPR general-purpose perturbation theory to solve this problem. In this work, firstly we review general aspects and applications of both perturbation theory and QSPR models. Secondly, we formulate a general-purpose perturbation theory for multiple-boundary QSPR problems. Last, we develop three new QSPR-Perturbation theory models. The first model classify correctly >100,000 pairs of intra-molecular carbolithiations with 75-95% of Accuracy (Ac), Sensitivity (Sn), and Specificity (Sp). The model predicts probabilities of variations in the yield and enantiomeric excess of reactions due to at least one perturbation in boundary conditions (solvent, temperature, temperature of addition, or time of reaction). The model also account for changes in chemical structure (connectivity structure and/or chirality paterns in substrate, product, electrophile agent, organolithium, and ligand of the asymmetric catalyst). The second model classifies more than 150,000 cases with 85-100% of Ac, Sn, and Sp. The data contains experimental shifts in up to 18 different pharmacological parameters determined in >3000 assays of ADMET (Absorption, Distribution, Metabolism, Elimination, and Toxicity) properties and/or interactions between 31723 drugs and 100 targets (metabolizing enzymes, drug transporters, or organisms). The third model classifies more than 260,000 cases of perturbations in the self-aggregation of drugs and surfactants to form micelles with Ac, Sn, and Sp of 94-95%. The model predicts changes in 8 physicochemical and/or thermodynamics output parameters (critic micelle concentration, aggregation number, degree of ionization, surface area, enthalpy, free energy, entropy, heat capacity) of self-aggregation due to perturbations. The perturbations refers to changes in initial temperature, solvent, salt, salt concentration, solvent, and/or structure of the anion or cation of more than 150 different drugs and surfactants. QSPR-Perturbation Theory models may be useful for multi-objective optimization of organic synthesis, physicochemical properties, biological activity, metabolism, and distribution profiles towards the design of new drugs, surfactants, asymmetric ligands for catalysts, and other materials.
Li, Li; Wang, Qiang; Qiu, Xinghua; Dong, Yian; Jia, Shenglan; Hu, Jianxin
2014-07-15
Characterizing pseudo equilibrium-status soil/vegetation partition coefficient KSV, the quotient of respective concentrations in soil and vegetation of a certain substance at remote background areas, is essential in ecological risk assessment, however few previous attempts have been made for field determination and developing validated and reproducible structure-based estimates. In this study, KSV was calculated based on measurements of seventeen 2,3,7,8-substituted PCDD/F congeners in soil and moss (Dicranum angustum), and rouzi grass (Thylacospermum caespitosum) of two background sites, Ny-Ålesund of the Arctic and Zhangmu-Nyalam region of the Tibet Plateau, respectively. By both fugacity modeling and stepwise regression of field data, the air-water partition coefficient (KAW) and aqueous solubility (SW) were identified as the influential physicochemical properties. Furthermore, validated quantitative structure-property relationship (QSPR) model was developed to extrapolate the KSV prediction to all 210 PCDD/F congeners. Molecular polarizability, molecular size and molecular energy demonstrated leading effects on KSV. Copyright © 2014 Elsevier B.V. All rights reserved.
Ponec, R; Amat, L; Carbó-Dorca, R
1999-05-01
Since the dawn of quantitative structure-properties relationships (QSPR), empirical parameters related to structural, electronic and hydrophobic molecular properties have been used as molecular descriptors to determine such relationships. Among all these parameters, Hammett sigma constants and the logarithm of the octanol-water partition coefficient, log P, have been massively employed in QSPR studies. In the present paper, a new molecular descriptor, based on quantum similarity measures (QSM), is proposed as a general substitute of these empirical parameters. This work continues previous analyses related to the use of QSM to QSPR, introducing molecular quantum self-similarity measures (MQS-SM) as a single working parameter in some cases. The use of MQS-SM as a molecular descriptor is first confirmed from the correlation with the aforementioned empirical parameters. The Hammett equation has been examined using MQS-SM for a series of substituted carboxylic acids. Then, for a series of aliphatic alcohols and acetic acid esters, log P values have been correlated with the self-similarity measure between density functions in water and octanol of a given molecule. And finally, some examples and applications of MQS-SM to determine QSAR are presented. In all studied cases MQS-SM appeared to be excellent molecular descriptors usable in general QSPR applications of chemical interest.
NASA Astrophysics Data System (ADS)
Ponec, Robert; Amat, Lluís; Carbó-dorca, Ramon
1999-05-01
Since the dawn of quantitative structure-properties relationships (QSPR), empirical parameters related to structural, electronic and hydrophobic molecular properties have been used as molecular descriptors to determine such relationships. Among all these parameters, Hammett σ constants and the logarithm of the octanol- water partition coefficient, log P, have been massively employed in QSPR studies. In the present paper, a new molecular descriptor, based on quantum similarity measures (QSM), is proposed as a general substitute of these empirical parameters. This work continues previous analyses related to the use of QSM to QSPR, introducing molecular quantum self-similarity measures (MQS-SM) as a single working parameter in some cases. The use of MQS-SM as a molecular descriptor is first confirmed from the correlation with the aforementioned empirical parameters. The Hammett equation has been examined using MQS-SM for a series of substituted carboxylic acids. Then, for a series of aliphatic alcohols and acetic acid esters, log P values have been correlated with the self-similarity measure between density functions in water and octanol of a given molecule. And finally, some examples and applications of MQS-SM to determine QSAR are presented. In all studied cases MQS-SM appeared to be excellent molecular descriptors usable in general QSPR applications of chemical interest.
NASA Astrophysics Data System (ADS)
Wyrzykowska, Ewelina; Mikolajczyk, Alicja; Sikorska, Celina; Puzyn, Tomasz
2016-11-01
Once released into the aquatic environment, nanoparticles (NPs) are expected to interact (e.g. dissolve, agglomerate/aggregate, settle), with important consequences for NP fate and toxicity. A clear understanding of how internal and environmental factors influence the NP toxicity and fate in the environment is still in its infancy. In this study, a quantitative structure-property relationship (QSPR) approach was employed to systematically explore factors that affect surface charge (zeta potential) under environmentally realistic conditions. The nano-QSPR model developed with multiple linear regression (MLR) was characterized by high robustness ({{{Q}}{{2}}}{{CV}}=0.90) and external predictivity ({{{Q}}{{2}}}{{EXT}}=0.93). The results clearly showed that zeta potential values varied markedly as functions of the ionic radius of the metal atom in the metal oxides, confirming that agglomeration and the extent of release of free MexOy largely depend on their intrinsic properties. A developed nano-QSPR model was successfully applied to predict zeta potential in an ionized solution of NPs for which experimentally determined values of response have been unavailable. Hence, the application of our model is possible when the values of zeta potential in the ionized solution for metal oxide nanoparticles are undetermined, without the necessity of performing more time consuming and expensive experiments. We believe that our studies will be helpful in predicting the conditions under which MexOy is likely to become problematic for the environment and human health.
Yuan, Jintao; Yu, Shuling; Zhang, Ting; Yuan, Xuejie; Cao, Yunyuan; Yu, Xingchen; Yang, Xuan; Yao, Wu
2016-06-01
Octanol/water (K(OW)) and octanol/air (K(OA)) partition coefficients are two important physicochemical properties of organic substances. In current practice, K(OW) and K(OA) values of some polychlorinated biphenyls (PCBs) are measured using generator column method. Quantitative structure-property relationship (QSPR) models can serve as a valuable alternative method of replacing or reducing experimental steps in the determination of K(OW) and K(OA). In this paper, two different methods, i.e., multiple linear regression based on dragon descriptors and hologram quantitative structure-activity relationship, were used to predict generator-column-derived log K(OW) and log K(OA) values of PCBs. The predictive ability of the developed models was validated using a test set, and the performances of all generated models were compared with those of three previously reported models. All results indicated that the proposed models were robust and satisfactory and can thus be used as alternative models for the rapid assessment of the K(OW) and K(OA) of PCBs. Copyright © 2016 Elsevier Inc. All rights reserved.
Estimation of hydrolysis rate constants for carbamates ...
Cheminformatics based tools, such as the Chemical Transformation Simulator under development in EPA’s Office of Research and Development, are being increasingly used to evaluate chemicals for their potential to degrade in the environment or be transformed through metabolism. Hydrolysis represents a major environmental degradation pathway; unfortunately, only a small fraction of hydrolysis rates for about 85,000 chemicals on the Toxic Substances Control Act (TSCA) inventory are in public domain, making it critical to develop in silico approaches to estimate hydrolysis rate constants. In this presentation, we compare three complementary approaches to estimate hydrolysis rates for carbamates, an important chemical class widely used in agriculture as pesticides, herbicides and fungicides. Fragment-based Quantitative Structure Activity Relationships (QSARs) using Hammett-Taft sigma constants are widely published and implemented for relatively simple functional groups such as carboxylic acid esters, phthalate esters, and organophosphate esters, and we extend these to carbamates. We also develop a pKa based model and a quantitative structure property relationship (QSPR) model, and evaluate them against measured rate constants using R square and root mean square (RMS) error. Our work shows that for our relatively small sample size of carbamates, a Hammett-Taft based fragment model performs best, followed by a pKa and a QSPR model. This presentation compares three comp
Nolte, Tom M; Ragas, Ad M J
2017-03-22
Many organic chemicals are ionizable by nature. After use and release into the environment, various fate processes determine their concentrations, and hence exposure to aquatic organisms. In the absence of suitable data, such fate processes can be estimated using Quantitative Structure-Property Relationships (QSPRs). In this review we compiled available QSPRs from the open literature and assessed their applicability towards ionizable organic chemicals. Using quantitative and qualitative criteria we selected the 'best' QSPRs for sorption, (a)biotic degradation, and bioconcentration. The results indicate that many suitable QSPRs exist, but some critical knowledge gaps remain. Specifically, future focus should be directed towards the development of QSPR models for biodegradation in wastewater and sediment systems, direct photolysis and reaction with singlet oxygen, as well as additional reactive intermediates. Adequate QSPRs for bioconcentration in fish exist, but more accurate assessments can be achieved using pharmacologically based toxicokinetic (PBTK) models. No adequate QSPRs exist for bioconcentration in non-fish species. Due to the high variability of chemical and biological species as well as environmental conditions in QSPR datasets, accurate predictions for specific systems and inter-dataset conversions are problematic, for which standardization is needed. For all QSPR endpoints, additional data requirements involve supplementing the current chemical space covered and accurately characterizing the test systems used.
Zeng, Xiao-Lan; Wang, Hong-Jun; Wang, Yan
2012-02-01
The possible molecular geometries of 134 halogenated methyl-phenyl ethers were optimized at B3LYP/6-31G(*) level with Gaussian 98 program. The calculated structural parameters were taken as theoretical descriptors to establish two new novel QSPR models for predicting aqueous solubility (-lgS(w,l)) and n-octanol/water partition coefficient (lgK(ow)) of halogenated methyl-phenyl ethers. The two models achieved in this work both contain three variables: energy of the lowest unoccupied molecular orbital (E(LUMO)), most positive atomic partial charge in molecule (q(+)), and quadrupole moment (Q(yy) or Q(zz)), of which R values are 0.992 and 0.970 respectively, their standard errors of estimate in modeling (SD) are 0.132 and 0.178, respectively. The results of leave-one-out (LOO) cross-validation for training set and validation with external test sets both show that the models obtained exhibited optimum stability and good predictive power. We suggests that two QSPR models derived here can be used to predict S(w,l) and K(ow) accurately for non-tested halogenated methyl-phenyl ethers congeners. Copyright © 2011 Elsevier Ltd. All rights reserved.
Ivanciuc, Ovidiu
2013-06-01
Chemical and molecular graphs have fundamental applications in chemoinformatics, quantitative structureproperty relationships (QSPR), quantitative structure-activity relationships (QSAR), virtual screening of chemical libraries, and computational drug design. Chemoinformatics applications of graphs include chemical structure representation and coding, database search and retrieval, and physicochemical property prediction. QSPR, QSAR and virtual screening are based on the structure-property principle, which states that the physicochemical and biological properties of chemical compounds can be predicted from their chemical structure. Such structure-property correlations are usually developed from topological indices and fingerprints computed from the molecular graph and from molecular descriptors computed from the three-dimensional chemical structure. We present here a selection of the most important graph descriptors and topological indices, including molecular matrices, graph spectra, spectral moments, graph polynomials, and vertex topological indices. These graph descriptors are used to define several topological indices based on molecular connectivity, graph distance, reciprocal distance, distance-degree, distance-valency, spectra, polynomials, and information theory concepts. The molecular descriptors and topological indices can be developed with a more general approach, based on molecular graph operators, which define a family of graph indices related by a common formula. Graph descriptors and topological indices for molecules containing heteroatoms and multiple bonds are computed with weighting schemes based on atomic properties, such as the atomic number, covalent radius, or electronegativity. The correlation in QSPR and QSAR models can be improved by optimizing some parameters in the formula of topological indices, as demonstrated for structural descriptors based on atomic connectivity and graph distance.
Patel, H C; Tokarski, J S; Hopfinger, A J
1997-10-01
The purpose of this study was to identify the key physicochemical molecular properties of polymeric materials responsible for gaseous diffusion in the polymers. Quantitative structure-property relationships, QSPRs were constructed using a genetic algorithm on a training set of 16 polymers for which CO2, N2, O2 diffusion constants were measured. Nine physicochemical properties of each of the polymers were used in the trial basis set for QSPR model construction. The linear cross-correlation matrices were constructed and investigated for colinearity among the members of the training sets. Common water diffusion measures for a limited training set of six polymers was used to construct a "semi-QSPR" model. The bulk modulus of the polymer was overwhelmingly found to be the dominant physicochemical polymer property that governs CO2, N2 and O2 diffusion. Some secondary physicochemical properties controlling diffusion, including conformational entropy, were also identified as correlation descriptors. Very significant QSPR diffusion models were constructed for all three gases. Cohesive energy was identified as the main correlation physicochemical property with aqueous diffusion measures. The dominant role of polymer bulk modulus on gaseous diffusion makes it difficult to develop criteria for selective transport of gases through polymers. Moreover, high bulk moduli are predicted to be necessary for effective gas barrier materials. This property requirement may limit the processing and packaging features of the material. Aqueous diffusion in polymers may occur by a different mechanism than gaseous diffusion since bulk modulus does not correlate with aqueous diffusion, but rather cohesive energy of the polymer.
Fernandez, Michael; Boyd, Peter G; Daff, Thomas D; Aghaji, Mohammad Zein; Woo, Tom K
2014-09-04
In this work, we have developed quantitative structure-property relationship (QSPR) models using advanced machine learning algorithms that can rapidly and accurately recognize high-performing metal organic framework (MOF) materials for CO2 capture. More specifically, QSPR classifiers have been developed that can, in a fraction of a section, identify candidate MOFs with enhanced CO2 adsorption capacity (>1 mmol/g at 0.15 bar and >4 mmol/g at 1 bar). The models were tested on a large set of 292 050 MOFs that were not part of the training set. The QSPR classifier could recover 945 of the top 1000 MOFs in the test set while flagging only 10% of the whole library for compute intensive screening. Thus, using the machine learning classifiers as part of a high-throughput screening protocol would result in an order of magnitude reduction in compute time and allow intractably large structure libraries and search spaces to be screened.
Liang, Yuzhen; Torralba-Sanchez, Tifany L; Di Toro, Dominic M
2018-04-18
Polyparameter Linear Free Energy Relationships (pp-LFERs) using Abraham system parameters have many useful applications. However, developing the Abraham system parameters depends on the availability and quality of the Abraham solute parameters. Using Quantum Chemically estimated Abraham solute Parameters (QCAP) is shown to produce pp-LFERs that have lower root mean square errors (RMSEs) of predictions for solvent-water partition coefficients than parameters that are estimated using other presently available methods. pp-LFERs system parameters are estimated for solvent-water, plant cuticle-water systems, and for novel compounds using QCAP solute parameters and experimental partition coefficients. Refitting the system parameter improves the calculation accuracy and eliminates the bias. Refitted models for solvent-water partition coefficients using QCAP solute parameters give better results (RMSE = 0.278 to 0.506 log units for 24 systems) than those based on ABSOLV (0.326 to 0.618) and QSPR (0.294 to 0.700) solute parameters. For munition constituents and munition-like compounds not included in the calibration of the refitted model, QCAP solute parameters produce pp-LFER models with much lower RMSEs for solvent-water partition coefficients (RMSE = 0.734 and 0.664 for original and refitted model, respectively) than ABSOLV (4.46 and 5.98) and QSPR (2.838 and 2.723). Refitting plant cuticle-water pp-LFER including munition constituents using QCAP solute parameters also results in lower RMSE (RMSE = 0.386) than that using ABSOLV (0.778) and QSPR (0.512) solute parameters. Therefore, for fitting a model in situations for which experimental data exist and system parameters can be re-estimated, or for which system parameters do not exist and need to be developed, QCAP is the quantum chemical method of choice.
Prediction of boiling points of organic compounds by QSPR tools.
Dai, Yi-min; Zhu, Zhi-ping; Cao, Zhong; Zhang, Yue-fei; Zeng, Ju-lan; Li, Xun
2013-07-01
The novel electro-negativity topological descriptors of YC, WC were derived from molecular structure by equilibrium electro-negativity of atom and relative bond length of molecule. The quantitative structure-property relationships (QSPR) between descriptors of YC, WC as well as path number parameter P3 and the normal boiling points of 80 alkanes, 65 unsaturated hydrocarbons and 70 alcohols were obtained separately. The high-quality prediction models were evidenced by coefficient of determination (R(2)), the standard error (S), average absolute errors (AAE) and predictive parameters (Qext(2),RCV(2),Rm(2)). According to the regression equations, the influences of the length of carbon backbone, the size, the degree of branching of a molecule and the role of functional groups on the normal boiling point were analyzed. Comparison results with reference models demonstrated that novel topological descriptors based on the equilibrium electro-negativity of atom and the relative bond length were useful molecular descriptors for predicting the normal boiling points of organic compounds. Copyright © 2013 Elsevier Inc. All rights reserved.
Lin, Yi; Cai, Fu-Ying; Zhang, Guang-Ya
2007-01-01
A quantitative structure-property relationship (QSPR) model in terms of amino acid composition and the activity of Bacillus thuringiensis insecticidal crystal proteins was established. Support vector machine (SVM) is a novel general machine-learning tool based on the structural risk minimization principle that exhibits good generalization when fault samples are few; it is especially suitable for classification, forecasting, and estimation in cases where small amounts of samples are involved such as fault diagnosis; however, some parameters of SVM are selected based on the experience of the operator, which has led to decreased efficiency of SVM in practical application. The uniform design (UD) method was applied to optimize the running parameters of SVM. It was found that the average accuracy rate approached 73% when the penalty factor was 0.01, the epsilon 0.2, the gamma 0.05, and the range 0.5. The results indicated that UD might be used an effective method to optimize the parameters of SVM and SVM and could be used as an alternative powerful modeling tool for QSPR studies of the activity of Bacillus thuringiensis (Bt) insecticidal crystal proteins. Therefore, a novel method for predicting the insecticidal activity of Bt insecticidal crystal proteins was proposed by the authors of this study.
Tuppurainen, Kari; Viisas, Marja; Laatikainen, Reino; Peräkylä, Mikael
2002-01-01
A novel electronic eigenvalue (EEVA) descriptor of molecular structure for use in the derivation of predictive QSAR/QSPR models is described. Like other spectroscopic QSAR/QSPR descriptors, EEVA is also invariant as to the alignment of the structures concerned. Its performance was tested with respect to the CBG (corticosteroid binding globulin) affinity of 31 benchmark steroids. It appeared that the electronic structure of the steroids, i.e., the "spectra" derived from molecular orbital energies, is directly related to the CBG binding affinities. The predictive ability of EEVA is compared to other QSAR approaches, and its performance is discussed in the context of the Hammett equation. The good performance of EEVA is an indication of the essential quantum mechanical nature of QSAR. The EEVA method is a supplement to conventional 3D QSAR methods, which employ fields or surface properties derived from Coulombic and van der Waals interactions.
Toropov, A A; Toropova, A P; Raska, I
2008-04-01
Simplified molecular input line entry system (SMILES) has been utilized in constructing quantitative structure-property relationships (QSPR) for octanol/water partition coefficient of vitamins and organic compounds of different classes by optimal descriptors. Statistical characteristics of the best model (vitamins) are the following: n=17, R(2)=0.9841, s=0.634, F=931 (training set); n=7, R(2)=0.9928, s=0.773, F=690 (test set). Using this approach for modeling octanol/water partition coefficient for a set of organic compounds gives a model that is statistically characterized by n=69, R(2)=0.9872, s=0.156, F=5184 (training set) and n=70, R(2)=0.9841, s=0.179, F=4195 (test set).
2010-11-01
estimate the pharmacokinetics of potential drugs (Horning and Klamt 2005). QSPR/ QSARs also have potential applications in the fuel science field...group contribution methods, and (2) quantitative structure-property/activity relationships (QSPR/ QSAR ). The group contribution methods are primarily...development of QSPR/ QSARs is the identification of the ap- propriate set of descriptors that allow the desired attribute of the compound to be adequately
Kinetics and equilibrium of solute diffusion into human hair.
Wang, Liming; Chen, Longjian; Han, Lujia; Lian, Guoping
2012-12-01
The uptake kinetics of five molecules by hair has been measured and the effects of pH and physical chemical properties of molecules were investigated. A theoretical model is proposed to analyze the experimental data. The results indicate that the binding affinity of solute to hair, as characterized by hair-water partition coefficient, scales to the hydrophobicity of the solute and decreases dramatically as the pH increases to the dissociation constant. The effective diffusion coefficient of solute depended not only on the molecular size as most previous studies suggested, but also on the binding affinity as well as solute dissociation. It appears that the uptake of molecules by hair is due to both hydrophobic interaction and ionic charge interaction. Based on theoretical considerations of the cellular structure, composition and physical chemical properties of hair, quantitative-structure-property-relationships (QSPR) have been proposed to predict the hair-water partition coefficient (PC) and the effective diffusion coefficient (D (e)) of solute. The proposed QSPR models fit well with the experimental data. This paper could be taken as a reference for investigating the adsorption properties for polymeric materials, fibres, and biomaterials.
Mirkhani, Seyyed Alireza; Gharagheizi, Farhad; Sattari, Mehdi
2012-03-01
Evaluation of diffusion coefficients of pure compounds in air is of great interest for many diverse industrial and air quality control applications. In this communication, a QSPR method is applied to predict the molecular diffusivity of chemical compounds in air at 298.15K and atmospheric pressure. Four thousand five hundred and seventy nine organic compounds from broad spectrum of chemical families have been investigated to propose a comprehensive and predictive model. The final model is derived by Genetic Function Approximation (GFA) and contains five descriptors. Using this dedicated model, we obtain satisfactory results quantified by the following statistical results: Squared Correlation Coefficient=0.9723, Standard Deviation Error=0.003 and Average Absolute Relative Deviation=0.3% for the predicted properties from existing experimental values. Copyright © 2011 Elsevier Ltd. All rights reserved.
Barigye, S J; Marrero-Ponce, Y; Martínez López, Y; Martínez Santiago, O; Torrens, F; García Domenech, R; Galvez, J
2013-01-01
Versatile event-based approaches for the definition of novel information theory-based indices (IFIs) are presented. An event in this context is the criterion followed in the "discovery" of molecular substructures, which in turn serve as basis for the construction of the generalized incidence and relations frequency matrices, Q and F, respectively. From the resultant F, Shannon's, mutual, conditional and joint entropy-based IFIs are computed. In previous reports, an event named connected subgraphs was presented. The present study is an extension of this notion, in which we introduce other events, namely: terminal paths, vertex path incidence, quantum subgraphs, walks of length k, Sach's subgraphs, MACCs, E-state and substructure fingerprints and, finally, Ghose and Crippen atom-types for hydrophobicity and refractivity. Moreover, we define magnitude-based IFIs, introducing the use of the magnitude criterion in the definition of mutual, conditional and joint entropy-based IFIs. We also discuss the use of information-theoretic parameters as a measure of the dissimilarity of codified structural information of molecules. Finally, a comparison of the statistics for QSPR models obtained with the proposed IFIs and DRAGON's molecular descriptors for two physicochemical properties log P and log K of 34 derivatives of 2-furylethylenes demonstrates similar to better predictive ability than the latter.
Redmond, Haley; Thompson, Jonathan E
2011-04-21
In this work we describe and evaluate a simple scheme by which the refractive index (λ = 589 nm) of non-absorbing components common to secondary organic aerosols (SOA) may be predicted from molecular formula and density (g cm(-3)). The QSPR approach described is based on three parameters linked to refractive index-molecular polarizability, the ratio of mass density to molecular weight, and degree of unsaturation. After computing these quantities for a training set of 111 compounds common to atmospheric aerosols, multi-linear regression analysis was conducted to establish a quantitative relationship between the parameters and accepted value of refractive index. The resulting quantitative relationship can often estimate refractive index to ±0.01 when averaged across a variety of compound classes. A notable exception is for alcohols for which the model consistently underestimates refractive index. Homogenous internal mixtures can conceivably be addressed through use of either the volume or mole fraction mixing rules commonly used in the aerosol community. Predicted refractive indices reconstructed from chemical composition data presented in the literature generally agree with previous reports of SOA refractive index. Additionally, the predicted refractive indices lie near measured values we report for λ = 532 nm for SOA generated from vapors of α-pinene (R.I. 1.49-1.51) and toluene (R.I. 1.49-1.50). We envision the QSPR method may find use in reconstructing optical scattering of organic aerosols if mass composition data is known. Alternatively, the method described could be incorporated into in models of organic aerosol formation/phase partitioning to better constrain organic aerosol optical properties.
Yang, Senpei; Li, Lingyi; Chen, Tao; Han, Lujia; Lian, Guoping
2018-05-14
Sebum is an important shunt pathway for transdermal permeation and targeted delivery, but there have been limited studies on its permeation properties. Here we report a measurement and modelling study of solute partition to artificial sebum. Equilibrium experiments were carried out for the sebum-water partition coefficients of 23 neutral, cationic and anionic compounds at different pH. Sebum-water partition coefficients not only depend on the hydrophobicity of the chemical but also on pH. As pH increases from 4.2 to 7.4, the partition of cationic chemicals to sebum increased rapidly. This appears to be due to increased electrostatic attraction between the cationic chemical and the fatty acids in sebum. Whereas for anionic chemicals, their sebum partition coefficients are negligibly small, which might result from their electrostatic repulsion to fatty acids. Increase in pH also resulted in a slight decrease of sebum partition of neutral chemicals. Based on the observed pH impact on the sebum-water partition of neutral, cationic and anionic compounds, a new quantitative structure-property relationship (QSPR) model has been proposed. This mathematical model considers the hydrophobic interaction and electrostatic interaction as the main mechanisms for the partition of neutral, cationic and anionic chemicals to sebum.
Quantitative Structure – Property Relationship Modeling of Remote Liposome Loading Of Drugs
Cern, Ahuva; Golbraikh, Alexander; Sedykh, Aleck; Tropsha, Alexander; Barenholz, Yechezkel; Goldblum, Amiram
2012-01-01
Remote loading of liposomes by trans-membrane gradients is used to achieve therapeutically efficacious intra-liposome concentrations of drugs. We have developed Quantitative Structure Property Relationship (QSPR) models of remote liposome loading for a dataset including 60 drugs studied in 366 loading experiments internally or elsewhere. Both experimental conditions and computed chemical descriptors were employed as independent variables to predict the initial drug/lipid ratio (D/L) required to achieve high loading efficiency. Both binary (to distinguish high vs. low initial D/L) and continuous (to predict real D/L values) models were generated using advanced machine learning approaches and five-fold external validation. The external prediction accuracy for binary models was as high as 91–96%; for continuous models the mean coefficient R2 for regression between predicted versus observed values was 0.76–0.79. We conclude that QSPR models can be used to identify candidate drugs expected to have high remote loading capacity while simultaneously optimizing the design of formulation experiments. PMID:22154932
Hou, Tingjun; Xu, Xiaojie
2002-12-01
In this study, the relationships between the brain-blood concentration ratio of 96 structurally diverse compounds with a large number of structurally derived descriptors were investigated. The linear models were based on molecular descriptors that can be calculated for any compound simply from a knowledge of its molecular structure. The linear correlation coefficients of the models were optimized by genetic algorithms (GAs), and the descriptors used in the linear models were automatically selected from 27 structurally derived descriptors. The GA optimizations resulted in a group of linear models with three or four molecular descriptors with good statistical significance. The change of descriptor use as the evolution proceeds demonstrates that the octane/water partition coefficient and the partial negative solvent-accessible surface area multiplied by the negative charge are crucial to brain-blood barrier permeability. Moreover, we found that the predictions using multiple QSPR models from GA optimization gave quite good results in spite of the diversity of structures, which was better than the predictions using the best single model. The predictions for the two external sets with 37 diverse compounds using multiple QSPR models indicate that the best linear models with four descriptors are sufficiently effective for predictive use. Considering the ease of computation of the descriptors, the linear models may be used as general utilities to screen the blood-brain barrier partitioning of drugs in a high-throughput fashion.
Raevsky, O A; Grigor'ev, V J; Raevskaja, O E; Schaper, K-J
2006-06-01
QSPR analyses of a data set containing experimental partition coefficients in the three systems octanol-water, water-gas, and octanol-gas for 98 chemicals have shown that it is possible to calculate any partition coefficient in the system 'gas phase/octanol/water' by three different approaches: (1) from experimental partition coefficients obtained in the corresponding two other subsystems. However, in many cases these data may not be available. Therefore, a solution may be approached (2), a traditional QSPR analysis based on e.g. HYBOT descriptors (hydrogen bond acceptor and donor factors, SigmaCa and SigmaCd, together with polarisability alpha, a steric bulk effect descriptor) and supplemented with substructural indicator variables. (3) A very promising approach which is a combination of the similarity concept and QSPR based on HYBOT descriptors. In this approach observed partition coefficients of structurally nearest neighbours of a compound-of-interest are used. In addition, contributions arising from differences in alpha, SigmaCa, and SigmaCd values between the compound-of-interest and its nearest neighbour(s), respectively, are considered. In this investigation highly significant relationships were obtained by approaches (1) and (3) for the octanol/gas phase partition coefficient (log Log).
Puri, Swati; Chickos, James S; Welsh, William J
2002-01-01
Three-dimensional Quantitative Structure-Property Relationship (QSPR) models have been derived using Comparative Molecular Field Analysis (CoMFA) to correlate the vaporization enthalpies of a representative set of polychlorinated biphenyls (PCBs) at 298.15 K with their CoMFA-calculated physicochemical properties. Various alignment schemes, such as inertial, as is, and atom fit, were employed in this study. The CoMFA models were also developed using different partial charge formalisms, namely, electrostatic potential (ESP) charges and Gasteiger-Marsili (GM) charges. The most predictive model for vaporization enthalpy (Delta(vap)H(m)(298.15 K)), with atom fit alignment and Gasteiger-Marsili charges, yielded r2 values 0.852 (cross-validated) and 0.996 (conventional). The vaporization enthalpies of PCBs increased with the number of chlorine atoms and were found to be larger for the meta- and para-substituted isomers. This model was used to predict Delta(vap)H(m)(298.15 K) of the entire set of 209 PCB congeners.
Oberg, T
2007-01-01
The vapour pressure is the most important property of an anthropogenic organic compound in determining its partitioning between the atmosphere and the other environmental media. The enthalpy of vaporisation quantifies the temperature dependence of the vapour pressure and its value around 298 K is needed for environmental modelling. The enthalpy of vaporisation can be determined by different experimental methods, but estimation methods are needed to extend the current database and several approaches are available from the literature. However, these methods have limitations, such as a need for other experimental results as input data, a limited applicability domain, a lack of domain definition, and a lack of predictive validation. Here we have attempted to develop a quantitative structure-property relationship (QSPR) that has general applicability and is thoroughly validated. Enthalpies of vaporisation at 298 K were collected from the literature for 1835 pure compounds. The three-dimensional (3D) structures were optimised and each compound was described by a set of computationally derived descriptors. The compounds were randomly assigned into a calibration set and a prediction set. Partial least squares regression (PLSR) was used to estimate a low-dimensional QSPR model with 12 latent variables. The predictive performance of this model, within the domain of application, was estimated at n=560, q2Ext=0.968 and s=0.028 (log transformed values). The QSPR model was subsequently applied to a database of 100,000+ structures, after a similar 3D optimisation and descriptor generation. Reliable predictions can be reported for compounds within the previously defined applicability domain.
Yang, Fen; Wang, Meng; Wang, Zunyao
2013-09-01
This work studies the sorption behaviors of phthalic acid esters (PAEs) on three soils by batch equilibration experiments and quantitative structure property relationship (QSPR) methodology. Firstly, the effects of soil type, dissolved organic matter and pH on the sorption of four PAEs (DMP, DEP, DAP, DBP) are investigated. The results indicate that the soil organic carbon content has a crucial influence on sorption progress. In addition, a negative correlation between pH values and the sorption capacities was found for these four PAEs. However, the effect of DOM on PAEs sorption may be more complicated. The sorption of four PAEs was promoted by low concentrations of DOM, while, in the case of high concentrations, the influence of DOM on the sorption was complicated. Then the organic carbon content normalized sorption coefficient (logKoc) values of 17 PAEs on three soils were measured, and the mean values ranged from 1.50 to 7.57. The logKoc values showed good correlation with the corresponding logKow values. Finally, two QSPR models were developed with 13 theoretical parameters to get reliable logKoc predictions. The leave-one-out cross validation (CV-LOO) indicated that the internal predictive power of the two models was satisfactory. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Lam, Lun Tak; Sun, Yi; Davey, Neil; Adams, Rod; Prapopoulou, Maria; Brown, Marc B; Moss, Gary P
2010-06-01
The aim was to employ Gaussian processes to assess mathematically the nature of a skin permeability dataset and to employ these methods, particularly feature selection, to determine the key physicochemical descriptors which exert the most significant influence on percutaneous absorption, and to compare such models with established existing models. Gaussian processes, including automatic relevance detection (GPRARD) methods, were employed to develop models of percutaneous absorption that identified key physicochemical descriptors of percutaneous absorption. Using MatLab software, the statistical performance of these models was compared with single linear networks (SLN) and quantitative structure-permeability relationships (QSPRs). Feature selection methods were used to examine in more detail the physicochemical parameters used in this study. A range of statistical measures to determine model quality were used. The inherently nonlinear nature of the skin data set was confirmed. The Gaussian process regression (GPR) methods yielded predictive models that offered statistically significant improvements over SLN and QSPR models with regard to predictivity (where the rank order was: GPR > SLN > QSPR). Feature selection analysis determined that the best GPR models were those that contained log P, melting point and the number of hydrogen bond donor groups as significant descriptors. Further statistical analysis also found that great synergy existed between certain parameters. It suggested that a number of the descriptors employed were effectively interchangeable, thus questioning the use of models where discrete variables are output, usually in the form of an equation. The use of a nonlinear GPR method produced models with significantly improved predictivity, compared with SLN or QSPR models. Feature selection methods were able to provide important mechanistic information. However, it was also shown that significant synergy existed between certain parameters, and as such it was possible to interchange certain descriptors (i.e. molecular weight and melting point) without incurring a loss of model quality. Such synergy suggested that a model constructed from discrete terms in an equation may not be the most appropriate way of representing mechanistic understandings of skin absorption.
Quantitative structure-property relationship modeling of remote liposome loading of drugs.
Cern, Ahuva; Golbraikh, Alexander; Sedykh, Aleck; Tropsha, Alexander; Barenholz, Yechezkel; Goldblum, Amiram
2012-06-10
Remote loading of liposomes by trans-membrane gradients is used to achieve therapeutically efficacious intra-liposome concentrations of drugs. We have developed Quantitative Structure Property Relationship (QSPR) models of remote liposome loading for a data set including 60 drugs studied in 366 loading experiments internally or elsewhere. Both experimental conditions and computed chemical descriptors were employed as independent variables to predict the initial drug/lipid ratio (D/L) required to achieve high loading efficiency. Both binary (to distinguish high vs. low initial D/L) and continuous (to predict real D/L values) models were generated using advanced machine learning approaches and 5-fold external validation. The external prediction accuracy for binary models was as high as 91-96%; for continuous models the mean coefficient R(2) for regression between predicted versus observed values was 0.76-0.79. We conclude that QSPR models can be used to identify candidate drugs expected to have high remote loading capacity while simultaneously optimizing the design of formulation experiments. Copyright © 2011 Elsevier B.V. All rights reserved.
Wang, Xueding; Xu, Yilian; Yang, Lu; Lu, Xiang; Zou, Hao; Yang, Weiqing; Zhang, Yuanyuan; Li, Zicheng; Ma, Menglin
2018-03-01
A series of 1,3,5-triazines were synthesized and their UV absorption properties were tested. The computational chemistry methods were used to construct quantitative structure-property relationship (QSPR), which was used to computer aided design of new 1,3,5-triazines ultraviolet rays absorber compounds. The experimental UV absorption data are in good agreement with those predicted data using the Time-dependent density functional theory (TD-DFT) [B3LYP/6-311 + G(d,p)]. A suitable forecasting model (R > 0.8, P < 0.0001) was revealed. Predictive three-dimensional quantitative structure-property relationship (3D-QSPR) model was established using multifit molecular alignment rule of Sybyl program, which conclusion is consistent with the TD-DFT calculation. The exceptional photostability mechanism of such ultraviolet rays absorber compounds was studied and confirmed as principally banked upon their ability to undergo excited-state deactivation via an ultrafast excited-state proton transfer (ESIPT). The intramolecular hydrogen bond (IMHB) of 1,3,5-triazines compounds is the basis for the excited state proton transfer, which was explored by IR spectroscopy, UV spectra, structural and energetic aspects of different conformers and frontier molecular orbitals analysis.
For QSAR and QSPR modeling of biological and physicochemical properties, estimating the accuracy of predictions is a critical problem. The “distance to model” (DM) can be defined as a metric that defines the similarity between the training set molecules and the test set compound ...
Ashrafi, Parivash; Sun, Yi; Davey, Neil; Adams, Roderick G; Wilkinson, Simon C; Moss, Gary Patrick
2018-03-01
The aim of this study was to investigate how to improve predictions from Gaussian Process models by optimising the model hyperparameters. Optimisation methods, including Grid Search, Conjugate Gradient, Random Search, Evolutionary Algorithm and Hyper-prior, were evaluated and applied to previously published data. Data sets were also altered in a structured manner to reduce their size, which retained the range, or 'chemical space' of the key descriptors to assess the effect of the data range on model quality. The Hyper-prior Smoothbox kernel results in the best models for the majority of data sets, and they exhibited significantly better performance than benchmark quantitative structure-permeability relationship (QSPR) models. When the data sets were systematically reduced in size, the different optimisation methods generally retained their statistical quality, whereas benchmark QSPR models performed poorly. The design of the data set, and possibly also the approach to validation of the model, is critical in the development of improved models. The size of the data set, if carefully controlled, was not generally a significant factor for these models and that models of excellent statistical quality could be produced from substantially smaller data sets. © 2018 Royal Pharmaceutical Society.
NASA Astrophysics Data System (ADS)
Goudarzi, Nasser
2016-04-01
In this work, two new and powerful chemometrics methods are applied for the modeling and prediction of the 19F chemical shift values of some fluorinated organic compounds. The radial basis function-partial least square (RBF-PLS) and random forest (RF) are employed to construct the models to predict the 19F chemical shifts. In this study, we didn't used from any variable selection method and RF method can be used as variable selection and modeling technique. Effects of the important parameters affecting the ability of the RF prediction power such as the number of trees (nt) and the number of randomly selected variables to split each node (m) were investigated. The root-mean-square errors of prediction (RMSEP) for the training set and the prediction set for the RBF-PLS and RF models were 44.70, 23.86, 29.77, and 23.69, respectively. Also, the correlation coefficients of the prediction set for the RBF-PLS and RF models were 0.8684 and 0.9313, respectively. The results obtained reveal that the RF model can be used as a powerful chemometrics tool for the quantitative structure-property relationship (QSPR) studies.
Harmony Search as a Powerful Tool for Feature Selection in QSPR Study of the Drugs Lipophilicity.
Bahadori, Behnoosh; Atabati, Morteza
2017-01-01
Aims & Scope: Lipophilicity represents one of the most studied and most frequently used fundamental physicochemical properties. In the present work, harmony search (HS) algorithm is suggested to feature selection in quantitative structure-property relationship (QSPR) modeling to predict lipophilicity of neutral, acidic, basic and amphotheric drugs that were determined by UHPLC. Harmony search is a music-based metaheuristic optimization algorithm. It was affected by the observation that the aim of music is to search for a perfect state of harmony. Semi-empirical quantum-chemical calculations at AM1 level were used to find the optimum 3D geometry of the studied molecules and variant descriptors (1497 descriptors) were calculated by the Dragon software. The selected descriptors by harmony search algorithm (9 descriptors) were applied for model development using multiple linear regression (MLR). In comparison with other feature selection methods such as genetic algorithm and simulated annealing, harmony search algorithm has better results. The root mean square error (RMSE) with and without leave-one out cross validation (LOOCV) were obtained 0.417 and 0.302, respectively. The results were compared with those obtained from the genetic algorithm and simulated annealing methods and it showed that the HS is a helpful tool for feature selection with fine performance. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
QSPR prediction of the hydroxyl radical rate constant of water contaminants.
Borhani, Tohid Nejad Ghaffar; Saniedanesh, Mohammadhossein; Bagheri, Mehdi; Lim, Jeng Shiun
2016-07-01
In advanced oxidation processes (AOPs), the aqueous hydroxyl radical (HO) acts as a strong oxidant to react with organic contaminants. The hydroxyl radical rate constant (kHO) is important for evaluating and modelling of the AOPs. In this study, quantitative structure-property relationship (QSPR) method is applied to model the hydroxyl radical rate constant for a diverse dataset of 457 water contaminants from 27 various chemical classes. The constricted binary particle swarm optimization and multiple-linear regression (BPSO-MLR) are used to obtain the best model with eight theoretical descriptors. An optimized feed forward neural network (FFNN) is developed to investigate the complex performance of the selected molecular parameters with kHO. Although the FFNN prediction results are more accurate than those obtained using BPSO-MLR, the application of the latter is much more convenient. Various internal and external validation techniques indicate that the obtained models could predict the logarithmic hydroxyl radical rate constants of a large number of water contaminants with less than 4% absolute relative error. Finally, the above-mentioned proposed models are compared to those reported earlier and the structural factors contributing to the AOP degradation efficiency are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.
A quantitative structure-property relationship (QSPR) was developed and combined with the Polanyi-Dubinin-Manes model to predict adsorption isotherms of emerging contaminants on activated carbons with a wide range of physico-chemical properties. Affinity coefficients (βl
Chemical structures and their properties are important for determining their potential toxicological effects, toxicokinetics, and route of exposure. These data are needed to prioritize thousands of environmental chemicals, but are often lacking. In order to fill data gaps, robust...
Visual analytics in cheminformatics: user-supervised descriptor selection for QSAR methods.
Martínez, María Jimena; Ponzoni, Ignacio; Díaz, Mónica F; Vazquez, Gustavo E; Soto, Axel J
2015-01-01
The design of QSAR/QSPR models is a challenging problem, where the selection of the most relevant descriptors constitutes a key step of the process. Several feature selection methods that address this step are concentrated on statistical associations among descriptors and target properties, whereas the chemical knowledge is left out of the analysis. For this reason, the interpretability and generality of the QSAR/QSPR models obtained by these feature selection methods are drastically affected. Therefore, an approach for integrating domain expert's knowledge in the selection process is needed for increase the confidence in the final set of descriptors. In this paper a software tool, which we named Visual and Interactive DEscriptor ANalysis (VIDEAN), that combines statistical methods with interactive visualizations for choosing a set of descriptors for predicting a target property is proposed. Domain expertise can be added to the feature selection process by means of an interactive visual exploration of data, and aided by statistical tools and metrics based on information theory. Coordinated visual representations are presented for capturing different relationships and interactions among descriptors, target properties and candidate subsets of descriptors. The competencies of the proposed software were assessed through different scenarios. These scenarios reveal how an expert can use this tool to choose one subset of descriptors from a group of candidate subsets or how to modify existing descriptor subsets and even incorporate new descriptors according to his or her own knowledge of the target property. The reported experiences showed the suitability of our software for selecting sets of descriptors with low cardinality, high interpretability, low redundancy and high statistical performance in a visual exploratory way. Therefore, it is possible to conclude that the resulting tool allows the integration of a chemist's expertise in the descriptor selection process with a low cognitive effort in contrast with the alternative of using an ad-hoc manual analysis of the selected descriptors. Graphical abstractVIDEAN allows the visual analysis of candidate subsets of descriptors for QSAR/QSPR. In the two panels on the top, users can interactively explore numerical correlations as well as co-occurrences in the candidate subsets through two interactive graphs.
A quantitative structure-property relationship (QSPR) was developed and combined with the Polanyi-Dubinin-Manes model to predict adsorption isotherms of emerging contaminants on activated carbons with a wide range of physico-chemical properties. Affinity coefficients (βl
Vucicevic, Jelica; Nikolic, Katarina; Dobričić, Vladimir; Agbaba, Danica
2015-02-20
Imidazoline receptor ligands are a numerous family of biologically active compounds known to produce central hypotensive effect by interaction with both α2-adrenoreceptors (α2-AR) and imidazoline receptors (IRs). Recent hypotheses connect those ligands with several neurological disorders. Therefore some IRs ligands are examined as novel centrally acting antihypertensives and drug candidates for treatment of various neurological diseases. Effective Blood-Brain Barrier (BBB) permeability (P(e)) of 18 IRs/α-ARs ligands and 22 Central Nervous System (CNS) drugs was experimentally determined using Parallel Artificial Membrane Permeability Assay (PAMPA) and studied by the Quantitative-Structure-Permeability Relationship (QSPR) methodology. The dominant molecules/cations species of compounds have been calculated at pH = 7.4. The analyzed ligands were optimized using Density Functional Theory (B3LYP/6-31G(d,p)) included in ChemBio3D Ultra 13.0 program and molecule descriptors for optimized compounds were calculated using ChemBio3D Ultra 13.0, Dragon 6.0 and ADMET predictor 6.5 software. Effective permeability of compounds was used as dependent variable (Y), while calculated molecular parametres were used as independent variables (X) in the QSPR study. SIMCA P+ 12.0 was used for Partial Least Square (PLS) analysis, while the stepwise Multiple Linear Regression (MLR) and Artificial Neural Networks (ANN) modeling were performed using STASTICA Neural Networks 4.0. Predictive potential of the formed models was confirmed by Leave-One-Out Cross- and external-validation and the most reliable models were selected. The descriptors that are important for model building are identified as well as their influence on BBB permeability. Results of the QSPR studies could be used as time and cost efficient screening tools for evaluation of BBB permeation of novel α-adrenergic/imidazoline receptor ligands, as promising drug candidates for treatment of hypertension or neurological diseases. Copyright © 2014 Elsevier B.V. All rights reserved.
The interplay between QSAR/QSPR studies and partial order ranking and formal concept analyses.
Carlsen, Lars
2009-04-17
The often observed scarcity of physical-chemical and well as toxicological data hampers the assessment of potentially hazardous chemicals released to the environment. In such cases Quantitative Structure-Activity Relationships/Quantitative Structure-Property Relationships (QSAR/QSPR) constitute an obvious alternative for rapidly, effectively and inexpensively generatng missing experimental values. However, typically further treatment of the data appears necessary, e.g., to elucidate the possible relations between the single compounds as well as implications and associations between the various parameters used for the combined characterization of the compounds under investigation. In the present paper the application of QSAR/QSPR in combination with Partial Order Ranking (POR) methodologies will be reviewed and new aspects using Formal Concept Analysis (FCA) will be introduced. Where POR constitutes an attractive method for, e.g., prioritizing a series of chemical substances based on a simultaneous inclusion of a range of parameters, FCA gives important information on the implications associations between the parameters. The combined approach thus constitutes an attractive method to a preliminary assessment of the impact on environmental and human health by primary pollutants or possibly by a primary pollutant well as a possible suite of transformation subsequent products that may be both persistent in and bioaccumulating and toxic. The present review focus on the environmental - and human health impact by residuals of the rocket fuel 1,1-dimethylhydrazine (heptyl) and its transformation products as an illustrative example.
Tansel, Berrin; Lee, Mengshan; Tansel, Derya Z
2013-08-15
First order removal rates for 15 polyaromatic hydrocarbons (PAHs) in soil, sediments and mangrove leaves were compared in relation to the parameters used in fate transport analyses (i.e., octanol-water partition coefficient, organic carbon-water partition coefficient, solubility, diffusivity in water, HOMO-LUMO gap, molecular size, molecular aspect ratio). The quantitative structure activity relationships (QSAR) and quantitative structure property relationships (QSPR) showed that the rate of disappearance of PAHs is correlated with their diffusivities in water as well as molecular volumes in different media. Strong correlations for the rate of disappearance of PAHs in sediments could not be obtained in relation to most of the parameters evaluated. The analyses showed that the QSAR and QSPR correlations developed for removal rates of PAHs in soils would not be adequate for sediments and plant tissues. Copyright © 2013 Elsevier Ltd. All rights reserved.
Toropov, Andrey A; Toropova, Alla P; Raska, Ivan; Benfenati, Emilio
2010-04-01
Three different splits into the subtraining set (n = 22), the set of calibration (n = 21), and the test set (n = 12) of 55 antineoplastic agents have been examined. By the correlation balance of SMILES-based optimal descriptors quite satisfactory models for the octanol/water partition coefficient have been obtained on all three splits. The correlation balance is the optimization of a one-variable model with a target function that provides both the maximal values of the correlation coefficient for the subtraining and calibration set and the minimum of the difference between the above-mentioned correlation coefficients. Thus, the calibration set is a preliminary test set. Copyright (c) 2009 Elsevier Masson SAS. All rights reserved.
Murrell, Daniel S; Cortes-Ciriano, Isidro; van Westen, Gerard J P; Stott, Ian P; Bender, Andreas; Malliavin, Thérèse E; Glen, Robert C
2015-01-01
In silico predictive models have proved to be valuable for the optimisation of compound potency, selectivity and safety profiles in the drug discovery process. camb is an R package that provides an environment for the rapid generation of quantitative Structure-Property and Structure-Activity models for small molecules (including QSAR, QSPR, QSAM, PCM) and is aimed at both advanced and beginner R users. camb's capabilities include the standardisation of chemical structure representation, computation of 905 one-dimensional and 14 fingerprint type descriptors for small molecules, 8 types of amino acid descriptors, 13 whole protein sequence descriptors, filtering methods for feature selection, generation of predictive models (using an interface to the R package caret), as well as techniques to create model ensembles using techniques from the R package caretEnsemble). Results can be visualised through high-quality, customisable plots (R package ggplot2). Overall, camb constitutes an open-source framework to perform the following steps: (1) compound standardisation, (2) molecular and protein descriptor calculation, (3) descriptor pre-processing and model training, visualisation and validation, and (4) bioactivity/property prediction for new molecules. camb aims to speed model generation, in order to provide reproducibility and tests of robustness. QSPR and proteochemometric case studies are included which demonstrate camb's application.Graphical abstractFrom compounds and data to models: a complete model building workflow in one package.
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Savić, Jelena; Dobričić, Vladimir; Nikolic, Katarina; Vladimirov, Sote; Dilber, Sanda; Brborić, Jasmina
2017-03-30
Prediction of gastrointestinal absorption of thirteen newly synthesized β-hydroxy-β-arylalkanoic acids (HAA) and ibuprofen was performed using PAMPA test. The highest values of PAMPA parameters (%T and P app ) were calculated for 1C, 1B and 2C and these parameters were significantly lower in comparison to ibuprofen. QSPR analysis was performed in order to identify molecular descriptors with the highest influence on %T and -logP app and to create models which could be used for the design of novel HAA with improved gastrointestinal absorption. Obtained results indicate that introduction of branched side chain, as well as introduction of substituents on one phenyl ring (which disturb symmetry of the molecule) could have positive impact on gastrointestinal absorption. On the basis of these results, six novel HAA were designed and PAMPA parameters %T and -logP app were predicted by use of selected QSPR models. Designed derivatives should have better gastrointestinal absorption than HAA tested in this study. Copyright © 2017 Elsevier B.V. All rights reserved.
Redox Polypharmacology as an Emerging Strategy to Combat Malarial Parasites.
Sidorov, Pavel; Desta, Israel; Chessé, Matthieu; Horvath, Dragos; Marcou, Gilles; Varnek, Alexandre; Davioud-Charvet, Elisabeth; Elhabiri, Mourad
2016-06-20
3-Benzylmenadiones are potent antimalarial agents that are thought to act through their 3-benzoylmenadione metabolites as redox cyclers of two essential targets: the NADPH-dependent glutathione reductases (GRs) of Plasmodium-parasitized erythrocytes and methemoglobin. Their physicochemical properties were characterized in a coupled assay using both targets and modeled with QSPR predictive tools built in house. The substitution pattern of the west/east aromatic parts that controls the oxidant character of the electrophore was highlighted and accurately predicted by QSPR models. The effects centered on the benz(o)yl chain, induced by drug bioactivation, markedly influenced the oxidant character of the reduced species through a large anodic shift of the redox potentials that correlated with the redox cycling of both targets in the coupled assay. Our approach demonstrates that the antimalarial activity of 3-benz(o)ylmenadiones results from a subtle interplay between bioactivation, fine-tuned redox properties, and interactions with crucial targets of P. falciparum. Plasmodione and its analogues give emphasis to redox polypharmacology, which constitutes an innovative approach to antimalarial therapy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sun, Lili; Zhou, Liping; Yu, Yu; Lan, Yukun; Li, Zhiliang
2007-01-01
Polychlorinated diphenyl ethers (PCDEs) have received more and more concerns as a group of ubiquitous potential persistent organic pollutants (POPs). By using molecular electronegativity distance vector (MEDV-4), multiple linear regression (MLR) models are developed for sub-cooled liquid vapor pressures (P(L)), n-octanol/water partition coefficients (K(OW)) and sub-cooled liquid water solubilities (S(W,L)) of 209 PCDEs and diphenyl ether. The correlation coefficients (R) and the leave-one-out cross-validation (LOO) correlation coefficients (R(CV)) of all the 6-descriptor models for logP(L), logK(OW) and logS(W,L) are more than 0.98. By using stepwise multiple regression (SMR), the descriptors are selected and the resulting models are 5-descriptor model for logP(L), 4-descriptor model for logK(OW), and 6-descriptor model for logS(W,L), respectively. All these models exhibit excellent estimate capabilities for internal sample set and good predictive capabilities for external samples set. The consistency between observed and estimated/predicted values for logP(L) is the best (R=0.996, R(CV)=0.996), followed by logK(OW) (R=0.992, R(CV)=0.992) and logS(W,L) (R=0.983, R(CV)=0.980). By using MEDV-4 descriptors, the QSPR models can be used for prediction and the model predictions can hence extend the current database of experimental values.
Sosnowska, Anita; Barycki, Maciej; Gajewicz, Agnieszka; Bobrowski, Maciej; Freza, Sylwia; Skurski, Piotr; Uhl, Stefanie; Laux, Edith; Journot, Tony; Jeandupeux, Laure; Keppner, Herbert; Puzyn, Tomasz
2016-06-03
This work focuses on determining the influence of both ionic-liquid (IL) type and redox couple concentration on Seebeck coefficient values of such a system. The quantitative structure-property relationship (QSPR) and read-across techniques are proposed as methods to identify structural features of ILs (mixed with LiI/I2 redox couple), which have the most influence on the Seebeck coefficient (Se ) values of the system. ILs consisting of small, symmetric cations and anions with high values of vertical electron binding energy are recognized as those with the highest values of Se . In addition, the QSPR model enables the values of Se to be predicted for each IL that belongs to the applicability domain of the model. The influence of the redox-couple concentration on values of Se is also quantitatively described. Thus, it is possible to calculate how the value of Se will change with changing redox-couple concentration. The presence of the LiI/I2 redox couple in lower concentrations increases the values of Se , as expected. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Puzyn, T; Haranczyk, M; Suzuki, N; Sakurai, T
2011-02-01
We have estimated degradation half-lives of both brominated and chlorinated dibenzo-p-dioxins (PBDDs and PCDDs), furans (PBDFs and PCDFs), biphenyls (PBBs and PCBs), naphthalenes (PBNs and PCNs), diphenyl ethers (PBDEs and PCDEs) as well as selected unsubstituted polycyclic aromatic hydrocarbons (PAHs) in air, surface water, surface soil, and sediments (in total of 1,431 compounds in four compartments). Next, we compared the persistence between chloro- (relatively well-studied) and bromo- (less studied) analogs. The predictions have been performed based on the quantitative structure-property relationship (QSPR) scheme with use of k-nearest neighbors (kNN) classifier and the semi-quantitative system of persistence classes. The classification models utilized principal components derived from the principal component analysis of a set of 24 constitutional and quantum mechanical descriptors as input variables. Accuracies of classification (based on an external validation) were 86, 85, 87, and 75% for air, surface water, surface soil, and sediments, respectively. The persistence of all chlorinated species increased with increasing halogenation degree. In the case of brominated organic pollutants (Br-OPs), the trend was the same for air and sediments. However, we noticed that the opposite trend for persistence in surface water and soil. The results suggest that, due to high photoreactivity of C-Br chemical bonds, photolytic processes occurring in surface water and soil are able to play significant role in transforming and removing Br-OPs from these compartments. This contribution is the first attempt of classifying together Br-OPs and Cl-OPs according to their persistence, in particular, environmental compartments.
The Interplay between QSAR/QSPR Studies and Partial Order Ranking and Formal Concept Analyses
Carlsen, Lars
2009-01-01
The often observed scarcity of physical-chemical and well as toxicological data hampers the assessment of potentially hazardous chemicals released to the environment. In such cases Quantitative Structure-Activity Relationships/Quantitative Structure-Property Relationships (QSAR/QSPR) constitute an obvious alternative for rapidly, effectively and inexpensively generatng missing experimental values. However, typically further treatment of the data appears necessary, e.g., to elucidate the possible relations between the single compounds as well as implications and associations between the various parameters used for the combined characterization of the compounds under investigation. In the present paper the application of QSAR/QSPR in combination with Partial Order Ranking (POR) methodologies will be reviewed and new aspects using Formal Concept Analysis (FCA) will be introduced. Where POR constitutes an attractive method for, e.g., prioritizing a series of chemical substances based on a simultaneous inclusion of a range of parameters, FCA gives important information on the implications associations between the parameters. The combined approach thus constitutes an attractive method to a preliminary assessment of the impact on environmental and human health by primary pollutants or possibly by a primary pollutant well as a possible suite of transformation subsequent products that may be both persistent in and bioaccumulating and toxic. The present review focus on the environmental – and human health impact by residuals of the rocket fuel 1,1-dimethylhydrazine (heptyl) and its transformation products as an illustrative example. PMID:19468330
Gupta, Shikha; Basant, Nikita; Rai, Premanjali; Singh, Kunwar P
2015-11-01
Binding affinity of chemical to carbon is an important characteristic as it finds vast industrial applications. Experimental determination of the adsorption capacity of diverse chemicals onto carbon is both time and resource intensive, and development of computational approaches has widely been advocated. In this study, artificial intelligence (AI)-based ten different qualitative and quantitative structure-property relationship (QSPR) models (MLPN, RBFN, PNN/GRNN, CCN, SVM, GEP, GMDH, SDT, DTF, DTB) were established for the prediction of the adsorption capacity of structurally diverse chemicals to activated carbon following the OECD guidelines. Structural diversity of the chemicals and nonlinear dependence in the data were evaluated using the Tanimoto similarity index and Brock-Dechert-Scheinkman statistics. The generalization and prediction abilities of the constructed models were established through rigorous internal and external validation procedures performed employing a wide series of statistical checks. In complete dataset, the qualitative models rendered classification accuracies between 97.04 and 99.93%, while the quantitative models yielded correlation (R(2)) values of 0.877-0.977 between the measured and the predicted endpoint values. The quantitative prediction accuracies for the higher molecular weight (MW) compounds (class 4) were relatively better than those for the low MW compounds. Both in the qualitative and quantitative models, the Polarizability was the most influential descriptor. Structural alerts responsible for the extreme adsorption behavior of the compounds were identified. Higher number of carbon and presence of higher halogens in a molecule rendered higher binding affinity. Proposed QSPR models performed well and outperformed the previous reports. A relatively better performance of the ensemble learning models (DTF, DTB) may be attributed to the strengths of the bagging and boosting algorithms which enhance the predictive accuracies. The proposed AI models can be useful tools in screening the chemicals for their binding affinities toward carbon for their safe management.
Ehresmann, Bernd; de Groot, Marcel J; Alex, Alexander; Clark, Timothy
2004-01-01
New molecular descriptors based on statistical descriptions of the local ionization potential, local electron affinity, and the local polarizability at the surface of the molecule are proposed. The significance of these descriptors has been tested by calculating them for the Maybridge database in addition to our set of 26 descriptors reported previously. The new descriptors show little correlation with those already in use. Furthermore, the principal components of the extended set of descriptors for the Maybridge data show that especially the descriptors based on the local electron affinity extend the variance in our set of descriptors, which we have previously shown to be relevant to physical properties. The first nine principal components are shown to be most significant. As an example of the usefulness of the new descriptors, we have set up a QSPR model for boiling points using both the old and new descriptors.
Toropova, A P; Toropov, A A; Benfenati, E
2015-01-01
Most quantitative structure-property/activity relationships (QSPRs/QSARs) predict various endpoints related to organic compounds. Gradually, the variety of organic compounds has been extended to inorganic, organometallic compounds and polymers. However, the so-called molecular descriptors cannot be defined for super-complex substances such as different nanomaterials and peptides, since there is no simple and clear representation of their molecular structure. Some possible ways to define approaches for a predictive model in the case of super-complex substances are discussed. The basic idea of the approach is to change the traditionally used paradigm 'the endpoint is a mathematical function of the molecular structure' with another paradigm 'the endpoint is a mathematical function of available eclectic information'. The eclectic data can be (i) conditions of a synthesis, (ii) technological attributes, (iii) size of nanoparticles, (iv) concentration, (v) attributes related to cell membranes, and so on. Two examples of quasi-QSPR/QSAR analyses are presented and discussed. These are (i) photocatalytic decolourization rate constants (DRC) (10(-5)/s) of different nanopowders; and (ii) the cellular viability under the effect of nano-SiO(2).
3D-QSPR Method of Computational Technique Applied on Red Reactive Dyes by Using CoMFA Strategy
Mahmood, Uzma; Rashid, Sitara; Ali, S. Ishrat; Parveen, Rasheeda; Zaheer-ul-Haq; Ambreen, Nida; Khan, Khalid Mohammed; Perveen, Shahnaz; Voelter, Wolfgang
2011-01-01
Cellulose fiber is a tremendous natural resource that has broad application in various productions including the textile industry. The dyes, which are commonly used for cellulose printing, are “reactive dyes” because of their high wet fastness and brilliant colors. The interaction of various dyes with the cellulose fiber depends upon the physiochemical properties that are governed by specific features of the dye molecule. The binding pattern of the reactive dye with cellulose fiber is called the ligand-receptor concept. In the current study, the three dimensional quantitative structure property relationship (3D-QSPR) technique was applied to understand the red reactive dyes interactions with the cellulose by the Comparative Molecular Field Analysis (CoMFA) method. This method was successfully utilized to predict a reliable model. The predicted model gives satisfactory statistical results and in the light of these, it was further analyzed. Additionally, the graphical outcomes (contour maps) help us to understand the modification pattern and to correlate the structural changes with respect to the absorptivity. Furthermore, the final selected model has potential to assist in understanding the charachteristics of the external test set. The study could be helpful to design new reactive dyes with better affinity and selectivity for the cellulose fiber. PMID:22272108
Li, Linnan; Xie, Shaodong; Cai, Hao; Bai, Xuetao; Xue, Zhao
2008-08-01
Theoretical molecular descriptors were tested against logK(OW) values for polybrominated diphenyl ethers (PBDEs) using the Partial Least-Squares Regression method which can be used to analyze data with many variables and few observations. A quantitative structure-property relationship (QSPR) model was successfully developed with a high cross-validated value (Q(cum)(2)) of 0.961, indicating a good predictive ability and stability of the model. The predictive power of the QSPR model was further cross-validated. The values of logK(OW) for PBDEs are mainly governed by molecular surface area, energy of the lowest unoccupied molecular orbital and the net atomic charges on the oxygen atom. All these descriptors have been discussed to interpret the partitioning mechanism of PBDE chemicals. The bulk property of the molecules represented by molecular surface area is the leading factor, and K(OW) values increase with the increase of molecular surface area. Higher energy of the lowest unoccupied molecular orbital and higher net atomic charge on the oxygen atom of PBDEs result in smaller K(OW). The energy of the lowest unoccupied molecular orbital and the net atomic charge on PBDEs oxygen also play important roles in affecting the partition of PBDEs between octanol and water by influencing the interactions between PBDEs and solvent molecules.
Teixeira, Ana L; Falcao, Andre O
2014-07-28
Structurally similar molecules tend to have similar properties, i.e. closer molecules in the molecular space are more likely to yield similar property values while distant molecules are more likely to yield different values. Based on this principle, we propose the use of a new method that takes into account the high dimensionality of the molecular space, predicting chemical, physical, or biological properties based on the most similar compounds with measured properties. This methodology uses ordinary kriging coupled with three different molecular similarity approaches (based on molecular descriptors, fingerprints, and atom matching) which creates an interpolation map over the molecular space that is capable of predicting properties/activities for diverse chemical data sets. The proposed method was tested in two data sets of diverse chemical compounds collected from the literature and preprocessed. One of the data sets contained dihydrofolate reductase inhibition activity data, and the second molecules for which aqueous solubility was known. The overall predictive results using kriging for both data sets comply with the results obtained in the literature using typical QSPR/QSAR approaches. However, the procedure did not involve any type of descriptor selection or even minimal information about each problem, suggesting that this approach is directly applicable to a large spectrum of problems in QSAR/QSPR. Furthermore, the predictive results improve significantly with the similarity threshold between the training and testing compounds, allowing the definition of a confidence threshold of similarity and error estimation for each case inferred. The use of kriging for interpolation over the molecular metric space is independent of the training data set size, and no reparametrizations are necessary when more compounds are added or removed from the set, and increasing the size of the database will consequentially improve the quality of the estimations. Finally it is shown that this model can be used for checking the consistency of measured data and for guiding an extension of the training set by determining the regions of the molecular space for which new experimental measurements could be used to maximize the model's predictive performance.
NASA Astrophysics Data System (ADS)
Alencar Filho, Edilson B.; Santos, Aline A.; Oliveira, Boaz G.
2017-04-01
The proposal of this work includes the use of quantum chemical methods and cheminformatics strategies in order to understand the structural profile and reactivity of α-nucleophiles compounds such as oximes, amidoximes and hydroxamic acids, related to hydrolysis rate of organophosphates. Theoretical conformational study of 41 compounds were carried out through the PM3 semiempirical Hamiltonian, followed by the geometry optimization at the B3LYP/6-31+G(d,p) level of theory, complemented by Polarized Continuum Model (PCM) to simulate the aqueous environment. In line with the experimental hypothesis about hydrolytic power, the strength of the Intramolecular Hydrogen Bonds (IHBs) at light of the Bader's Quantum Theory of Atoms in Molecules (QTAIM) is related to the preferential conformations of α-nucleophiles. A set of E-Dragon descriptors (1,666) were submitted to a variable selection through Ordered Predictor Selection (OPS) algorithm. Five descriptors, including atomic charges obtained from the Natural Bond Orbitals (NBO) protocol jointly with a fragment index associated to the presence/absence of IHBs, provided a Quantitative Structure-Property Relationship (QSPR) model via Multiple Linear Regression (MLR). This model showed good validation parameters (R2 = 0.80, Qloo2 = 0.67 and Qext2 = 0.81) and allowed the identification of significant physicochemical features on the molecular scaffold in order to design compounds potentially more active against organophosphorus poisoning.
OPERA models for predicting physicochemical properties and environmental fate endpoints.
Mansouri, Kamel; Grulke, Chris M; Judson, Richard S; Williams, Antony J
2018-03-08
The collection of chemical structure information and associated experimental data for quantitative structure-activity/property relationship (QSAR/QSPR) modeling is facilitated by an increasing number of public databases containing large amounts of useful data. However, the performance of QSAR models highly depends on the quality of the data and modeling methodology used. This study aims to develop robust QSAR/QSPR models for chemical properties of environmental interest that can be used for regulatory purposes. This study primarily uses data from the publicly available PHYSPROP database consisting of a set of 13 common physicochemical and environmental fate properties. These datasets have undergone extensive curation using an automated workflow to select only high-quality data, and the chemical structures were standardized prior to calculation of the molecular descriptors. The modeling procedure was developed based on the five Organization for Economic Cooperation and Development (OECD) principles for QSAR models. A weighted k-nearest neighbor approach was adopted using a minimum number of required descriptors calculated using PaDEL, an open-source software. The genetic algorithms selected only the most pertinent and mechanistically interpretable descriptors (2-15, with an average of 11 descriptors). The sizes of the modeled datasets varied from 150 chemicals for biodegradability half-life to 14,050 chemicals for logP, with an average of 3222 chemicals across all endpoints. The optimal models were built on randomly selected training sets (75%) and validated using fivefold cross-validation (CV) and test sets (25%). The CV Q 2 of the models varied from 0.72 to 0.95, with an average of 0.86 and an R 2 test value from 0.71 to 0.96, with an average of 0.82. Modeling and performance details are described in QSAR model reporting format and were validated by the European Commission's Joint Research Center to be OECD compliant. All models are freely available as an open-source, command-line application called OPEn structure-activity/property Relationship App (OPERA). OPERA models were applied to more than 750,000 chemicals to produce freely available predicted data on the U.S. Environmental Protection Agency's CompTox Chemistry Dashboard.
Comba, Peter; Martin, Bodo; Sanyal, Avik; Stephan, Holger
2013-08-21
A QSPR scheme for the computation of lipophilicities of ⁶⁴Cu complexes was developed with a training set of 24 tetraazamacrocylic and bispidine-based Cu(II) compounds and their experimentally available 1-octanol-water distribution coefficients. A minimum number of physically meaningful parameters were used in the scheme, and these are primarily based on data available from molecular mechanics calculations, using an established force field for Cu(II) complexes and a recently developed scheme for the calculation of fluctuating atomic charges. The developed model was also applied to an independent validation set and was found to accurately predict distribution coefficients of potential ⁶⁴Cu PET (positron emission tomography) systems. A possible next step would be the development of a QSAR-based biodistribution model to track the uptake of imaging agents in different organs and tissues of the body. It is expected that such simple, empirical models of lipophilicity and biodistribution will be very useful in the design and virtual screening of positron emission tomography (PET) imaging agents.
Tavares, Leoberto Costa; do Amaral, Antonia Tavares
2004-03-15
It was determined, with a systematic mode, the carbonyl group frequency in the region of the infrared of N-[(dimethylamine)methyl] benzamides 4-substituted (set A) and their hydrochlorides (set B), that had its local anesthetical activity evaluated. The application of the Hammett equation considering the values of the absorption frequency of carbonyl group, nu(C=O,) using the electronic constants sigma, sigma(I), sigma(R), I and R leads to meaningful correlation. The nature and the contribution of substituent group electronic effects on the polarity of the carbonyl group was also analyzed. The use of the nu(C=O) as an experimental electronic parameter for QSPR studies was validated.
Long, Jiang; Youli, Qiu; Yu, Li
2017-11-01
Twelve substituent descriptors, 17 quantum chemical descriptors and 1/T were selected to establish a quantitative structure-property relationship (QSPR) model of Henry's law constants for 7 polybrominated diphenyl ethers (PBDEs) at five different temperatures. Then, the lgH of 202 congeners at different temperatures were predicted. The variation rule and regulating mechanism of lgH was studied from the perspectives of both quantum chemical descriptors and substituent characteristics. The R 2 for modeling and testing sets of the final QSPR model are 0.977 and 0.979, respectively, thus indicating good fitness and predictive ability for Henry' law constants of PBDEs at different temperatures. The favorable hydrogen binding sites are the 5,5',6,6'-positions for high substituent congeners and the O atom of the ether bond for low substituent congeners, which affects the interaction between PBDEs and water molecules. lgH is negatively and linearly correlated with 1/T, and the variation trends of lgH with temperature are primarily regulated by individual substituent characteristics, wherein: the more substituents involved, the smaller the lgH. The significant sequence for the main effect of substituent positions is para>meta>ortho, where the ortho-positions are mainly involved in second-order interaction effect (64.01%). Having two substituents in the same ring also provides a significant effect, with 81.36% of second-order interaction effects, particularly where there is an adjacent distribution (55.02%). Copyright © 2017 Elsevier Inc. All rights reserved.
Daré, Joyce K; Silva, Cristina F; Freitas, Matheus P
2017-10-01
Soil sorption of insecticides employed in agriculture is an important parameter to probe the environmental fate of organic chemicals. Therefore, methods for the prediction of soil sorption of new agrochemical candidates, as well as for the rationalization of the molecular characteristics responsible for a given sorption profile, are extremely beneficial for the environment. A quantitative structure-property relationship method based on chemical structure images as molecular descriptors provided a reliable model for the soil sorption prediction of 24 widely used organophosphorus insecticides. By means of contour maps obtained from the partial least squares regression coefficients and the variable importance in projection scores, key molecular moieties were targeted for possible structural modification, in order to obtain novel and more environmentally friendly insecticide candidates. The image-based descriptors applied encode molecular arrangement, atoms connectivity, groups size, and polarity; consequently, the findings in this work cannot be achieved by a simple relationship with hydrophobicity, usually described by the octanol-water partition coefficient. Copyright © 2017 Elsevier Inc. All rights reserved.
Ward, Richard A; Anderton, Mark J; Ashton, Susan; Bethel, Paul A; Box, Matthew; Butterworth, Sam; Colclough, Nicola; Chorley, Christopher G; Chuaqui, Claudio; Cross, Darren A E; Dakin, Les A; Debreczeni, Judit É; Eberlein, Cath; Finlay, M Raymond V; Hill, George B; Grist, Matthew; Klinowska, Teresa C M; Lane, Clare; Martin, Scott; Orme, Jonathon P; Smith, Peter; Wang, Fengjiang; Waring, Michael J
2013-09-12
A novel series of small-molecule inhibitors has been developed to target the double mutant form of the epidermal growth factor receptor (EGFR) tyrosine kinase, which is resistant to treatment with gefitinib and erlotinib. Our reported compounds also show selectivity over wild-type EGFR. Guided by molecular modeling, this series was evolved to target a cysteine residue in the ATP binding site via covalent bond formation and demonstrates high levels of activity in cellular models of the double mutant form of EGFR. In addition, these compounds show significant activity against the activating mutations, which gefitinib and erlotinib target and inhibition of which gives rise to their observed clinical efficacy. A glutathione (GSH)-based assay was used to measure thiol reactivity toward the electrophilic functionality of the inhibitor series, enabling both the identification of a suitable reactivity window for their potency and the development of a reactivity quantitative structure-property relationship (QSPR) to support design.
Villaverde, Juan José; Sevilla-Morán, Beatriz; López-Goti, Carmen; Alonso-Prados, José Luis; Sandín-España, Pilar
2018-09-01
The European market for pesticides is currently legislated through the well-developed Regulation (EC) No. 1107/2009. This regulation promotes the competitiveness of European agriculture, recognizing the necessity of safe pesticides for human and animal health and the environment to protect crops against pests, diseases and weeds. In this sense, nanotechnology can provide a tremendous opportunity to achieve a more rational use of pesticides. However, the lack of information regarding nanopesticides and their fate and behavior in the environment and their effects on human and animal health is inhibiting rapid nanopesticide incorporation into European Union agriculture. This review analyzes the recent state of knowledge on nanopesticide risk assessment, highlighting the challenges that need to be overcame to accelerate the arrival of these new tools for plant protection to European agricultural professionals. Novel nano-Quantitative Structure-Activity/Structure-Property Relationship (nano-QSAR/QSPR) tools for risk assessment are analyzed, including modeling methods and validation procedures towards the potential of these computational instruments to meet the current requirements for authorization of nanoformulations. Future trends on these issues, of pressing importance within the context of the current European pesticide legislative framework, are also discussed. Standard protocols to make high-quality and well-described datasets for the series of related but differently sized nanoparticles/nanopesticides are required. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ghavami, Raouf; Sadeghi, Faridoon; Rasouli, Zolikha; Djannati, Farhad
2012-12-01
Experimental values for the 13C NMR chemical shifts (ppm, TMS = 0) at 300 K ranging from 96.28 ppm (C4' of indole derivative 17) to 159.93 ppm (C4' of indole derivative 23) relative to deuteride chloroform (CDCl3, 77.0 ppm) or dimethylsulfoxide (DMSO, 39.50 ppm) as internal reference in CDCl3 or DMSO-d6 solutions have been collected from literature for thirty 2-functionalized 5-(methylsulfonyl)-1-phenyl-1H-indole derivatives containing different substituted groups. An effective quantitative structure-property relationship (QSPR) models were built using hybrid method combining genetic algorithm (GA) based on stepwise selection multiple linear regression (SWS-MLR) as feature-selection tools and correlation models between each carbon atom of indole derivative and calculated descriptors. Each compound was depicted by molecular structural descriptors that encode constitutional, topological, geometrical, electrostatic, and quantum chemical features. The accuracy of all developed models were confirmed using different types of internal and external procedures and various statistical tests. Furthermore, the domain of applicability for each model which indicates the area of reliable predictions was defined.
Herrero-Martínez, José Manuel; Izquierdo, Pere; Sales, Joaquim; Rosés, Martí; Bosch, Elisabeth
2008-10-01
The retention behavior of a series of fat-soluble vitamins has been established on the basis of a polarity retention model: log k = (log k)(0) + p (P(m) (N) - P(s) (N)), with p being the polarity of the solute, P(m) (N) the mobile phase polarity, and (log k)(0) and P(m) (N) two parameters for the characterization of the stationary phase. To estimate the p-values of solutes, two approaches have been considered. The first one is based on the application of a QSPR model, derived from the molecular structure of solutes and their log P(o/w), while in the second one, the p-values are obtained from several experimental measurements. The quality of prediction of both approaches has also been evaluated, with the second one giving more accurate results for the most lipophilic vitamins. This model allows establishing the best conditions to separate and determine simultaneously some fat-soluble vitamins in dairy foods.
Random forest models to predict aqueous solubility.
Palmer, David S; O'Boyle, Noel M; Glen, Robert C; Mitchell, John B O
2007-01-01
Random Forest regression (RF), Partial-Least-Squares (PLS) regression, Support Vector Machines (SVM), and Artificial Neural Networks (ANN) were used to develop QSPR models for the prediction of aqueous solubility, based on experimental data for 988 organic molecules. The Random Forest regression model predicted aqueous solubility more accurately than those created by PLS, SVM, and ANN and offered methods for automatic descriptor selection, an assessment of descriptor importance, and an in-parallel measure of predictive ability, all of which serve to recommend its use. The prediction of log molar solubility for an external test set of 330 molecules that are solid at 25 degrees C gave an r2 = 0.89 and RMSE = 0.69 log S units. For a standard data set selected from the literature, the model performed well with respect to other documented methods. Finally, the diversity of the training and test sets are compared to the chemical space occupied by molecules in the MDL drug data report, on the basis of molecular descriptors selected by the regression analysis.
ADME-Space: a new tool for medicinal chemists to explore ADME properties.
Bocci, Giovanni; Carosati, Emanuele; Vayer, Philippe; Arrault, Alban; Lozano, Sylvain; Cruciani, Gabriele
2017-07-25
We introduce a new chemical space for drugs and drug-like molecules, exclusively based on their in silico ADME behaviour. This ADME-Space is based on self-organizing map (SOM) applied to 26,000 molecules. Twenty accurate QSPR models, describing important ADME properties, were developed and, successively, used as new molecular descriptors not related to molecular structure. Applications include permeability, active transport, metabolism and bioavailability studies, but the method can be even used to discuss drug-drug interactions (DDIs) or it can be extended to additional ADME properties. Thus, the ADME-Space opens a new framework for the multi-parametric data analysis in drug discovery where all ADME behaviours of molecules are condensed in one map: it allows medicinal chemists to simultaneously monitor several ADME properties, to rapidly select optimal ADME profiles, retrieve warning on potential ADME problems and DDIs or select proper in vitro experiments.
Developing descriptors to predict mechanical properties of nanotubes.
Borders, Tammie L; Fonseca, Alexandre F; Zhang, Hengji; Cho, Kyeongjae; Rusinko, Andrew
2013-04-22
Descriptors and quantitative structure property relationships (QSPR) were investigated for mechanical property prediction of carbon nanotubes (CNTs). 78 molecular dynamics (MD) simulations were carried out, and 20 descriptors were calculated to build quantitative structure property relationships (QSPRs) for Young's modulus and Poisson's ratio in two separate analyses: vacancy only and vacancy plus methyl functionalization. In the first analysis, C(N2)/C(T) (number of non-sp2 hybridized carbons per the total carbons) and chiral angle were identified as critical descriptors for both Young's modulus and Poisson's ratio. Further analysis and literature findings indicate the effect of chiral angle is negligible at larger CNT radii for both properties. Raman spectroscopy can be used to measure C(N2)/C(T), providing a direct link between experimental and computational results. Poisson's ratio approaches two different limiting values as CNT radii increases: 0.23-0.25 for chiral and armchair CNTs and 0.10 for zigzag CNTs (surface defects <3%). In the second analysis, the critical descriptors were C(N2)/C(T), chiral angle, and M(N)/C(T) (number of methyl groups per total carbons). These results imply new types of defects can be represented as a new descriptor in QSPR models. Finally, results are qualified and quantified against experimental data.
NASA Astrophysics Data System (ADS)
Hemmateenejad, Bahram; Emami, Leila; Sharghi, Hashem
2010-01-01
The acidity constants of some newly synthesized Schiff base derivatives were determined by hard-model based multivariate data analysis of the spectrophotometric data in the course of pH-metric titration in 50% (v/v) methanol-water binary solvent. The employed data analysis method was also able to extract the pure spectra and pH-dependent concentration profiles of the acid-base species. The molecules that possess different substituents (both electron donating and withdrawing) on the ortho-, meta- and para-positions of one of the phenyl ring showed variable acidity constants ranging from 8.77 to 11.07 whereas the parent molecule had an acidity constant of 10.25. To investigate the quantitative effects of changing of substitution pattern on the acidity constant, a quantitative structure-property relation analysis was conducted using substituent constants and molecular descriptor. Some models with high statistical quality (measured by cross-validation Q2) were obtained. It was found that the acidity constant of the studied molecules in the methanol-water mixed solvent not only is affected by electronic features of the solutes but also by the lipophilic interaction between methanol part of solvent and the deprotonated solutes.
Marrero-Ponce, Yovani
2004-01-01
This report describes a new set of molecular descriptors of relevance to QSAR/QSPR studies and drug design, atom linear indices fk(xi). These atomic level chemical descriptors are based on the calculation of linear maps on Rn[fk(xi): Rn--> Rn] in canonical basis. In this context, the kth power of the molecular pseudograph's atom adjacency matrix [Mk(G)] denotes the matrix of fk(xi) with respect to the canonical basis. In addition, a local-fragment (atom-type) formalism was developed. The kth atom-type linear indices are calculated by summing the kth atom linear indices of all atoms of the same atom type in the molecules. Moreover, total (whole-molecule) linear indices are also proposed. This descriptor is a linear functional (linear form) on Rn. That is, the kth total linear indices is a linear map from Rn to the scalar R[ fk(x): Rn --> R]. Thus, the kth total linear indices are calculated by summing the atom linear indices of all atoms in the molecule. The features of the kth total and local linear indices are illustrated by examples of various types of molecular structures, including chain-lengthening, branching, heteroatoms-content, and multiple bonds. Additionally, the linear independence of the local linear indices to other 0D, 1D, 2D, and 3D molecular descriptors is demonstrated by using principal component analysis for 42 very heterogeneous molecules. Much redundancy and overlapping was found among total linear indices and most of the other structural indices presently in use in the QSPR/QSAR practice. On the contrary, the information carried by atom-type linear indices was strikingly different from that codified in most of the 229 0D-3D molecular descriptors used in this study. It is concluded that the local linear indices are an independent indices containing important structural information to be used in QSPR/QSAR and drug design studies. In this sense, atom, atom-type, and total linear indices were used for the prediction of pIC50 values for the cleavage process of a set of flavone derivatives inhibitors of HIV-1 integrase. Quantitative models found are significant from a statistical point of view (R of 0.965, 0.902, and 0.927, respectively) and permit a clear interpretation of the studied properties in terms of the structural features of molecules. A LOO cross-validation procedure revealed that the regression models had a fairly good predictability (q2 of 0.679, 0.543, and 0.721, respectively). The comparison with other approaches reveals good behavior of the method proposed. The approach described in this paper appears to be an excellent alternative or guides for discovery and optimization of new lead compounds.
NASA Astrophysics Data System (ADS)
Shevade, Abhijit V.; Ryan, Margaret A.; Homer, Margie L.; Zhou, Hanying; Manfreda, Allison M.; Lara, Liana M.; Yen, Shiao-Pin S.; Jewell, April D.; Manatt, Kenneth S.; Kisor, Adam K.
We have developed a Quantitative Structure-Activity Relationships (QSAR) based approach to correlate the response of chemical sensors in an array with molecular descriptors. A novel molecular descriptor set has been developed; this set combines descriptors of sensing film-analyte interactions, representing sensor response, with a basic analyte descriptor set commonly used in QSAR studies. The descriptors are obtained using a combination of molecular modeling tools and empirical and semi-empirical Quantitative Structure-Property Relationships (QSPR) methods. The sensors under investigation are polymer-carbon sensing films which have been exposed to analyte vapors at parts-per-million (ppm) concentrations; response is measured as change in film resistance. Statistically validated QSAR models have been developed using Genetic Function Approximations (GFA) for a sensor array for a given training data set. The applicability of the sensor response models has been tested by using it to predict the sensor activities for test analytes not considered in the training set for the model development. The validated QSAR sensor response models show good predictive ability. The QSAR approach is a promising computational tool for sensing materials evaluation and selection. It can also be used to predict response of an existing sensing film to new target analytes.
Essential Set of Molecular Descriptors for ADME Prediction in Drug and Environmental Chemical Space
Historically, the disciplines of pharmacology and toxicology have embraced quantitative structure-activity relationships (QSAR) and quantitative structure-property relationships (QSPR) to predict ADME properties or biological activities of untested chemicals. The question arises ...
Prediction of solvation enthalpy of gaseous organic compounds in propanol
NASA Astrophysics Data System (ADS)
Golmohammadi, Hassan; Dashtbozorgi, Zahra
2016-09-01
The purpose of this paper is to present a novel way for developing quantitative structure-property relationship (QSPR) models to predict the gas-to-propanol solvation enthalpy (Δ H solv) of 95 organic compounds. Different kinds of descriptors were calculated for each compound using the Dragon software package. The variable selection technique of replacement method (RM) was employed to select the optimal subset of solute descriptors. Our investigation reveals that the dependence of physical chemistry properties of solution on solvation enthalpy is nonlinear and that the RM method is unable to model the solvation enthalpy accurately. The results established that the calculated Δ H solv values by SVM were in good agreement with the experimental ones, and the performances of the SVM models were superior to those obtained by RM model.
Compound analysis via graph kernels incorporating chirality.
Brown, J B; Urata, Takashi; Tamura, Takeyuki; Arai, Midori A; Kawabata, Takeo; Akutsu, Tatsuya
2010-12-01
High accuracy is paramount when predicting biochemical characteristics using Quantitative Structural-Property Relationships (QSPRs). Although existing graph-theoretic kernel methods combined with machine learning techniques are efficient for QSPR model construction, they cannot distinguish topologically identical chiral compounds which often exhibit different biological characteristics. In this paper, we propose a new method that extends the recently developed tree pattern graph kernel to accommodate stereoisomers. We show that Support Vector Regression (SVR) with a chiral graph kernel is useful for target property prediction by demonstrating its application to a set of human vitamin D receptor ligands currently under consideration for their potential anti-cancer effects.
Characterization and prediction of chemical functions and weight fractions in consumer products.
Isaacs, Kristin K; Goldsmith, Michael-Rock; Egeghy, Peter; Phillips, Katherine; Brooks, Raina; Hong, Tao; Wambaugh, John F
2016-01-01
Assessing exposures from the thousands of chemicals in commerce requires quantitative information on the chemical constituents of consumer products. Unfortunately, gaps in available composition data prevent assessment of exposure to chemicals in many products. Here we propose filling these gaps via consideration of chemical functional role. We obtained function information for thousands of chemicals from public sources and used a clustering algorithm to assign chemicals into 35 harmonized function categories (e.g., plasticizers, antimicrobials, solvents). We combined these functions with weight fraction data for 4115 personal care products (PCPs) to characterize the composition of 66 different product categories (e.g., shampoos). We analyzed the combined weight fraction/function dataset using machine learning techniques to develop quantitative structure property relationship (QSPR) classifier models for 22 functions and for weight fraction, based on chemical-specific descriptors (including chemical properties). We applied these classifier models to a library of 10196 data-poor chemicals. Our predictions of chemical function and composition will inform exposure-based screening of chemicals in PCPs for combination with hazard data in risk-based evaluation frameworks. As new information becomes available, this approach can be applied to other classes of products and the chemicals they contain in order to provide essential consumer product data for use in exposure-based chemical prioritization.
Judycka-Proma, U; Bober, L; Gajewicz, A; Puzyn, T; Błażejowski, J
2015-03-05
Forty ampholytic compounds of biological and pharmaceutical relevance were subjected to chemometric analysis based on unsupervised and supervised learning algorithms. This enabled relations to be found between empirical spectral characteristics derived from electronic absorption data and structural and physicochemical parameters predicted by quantum chemistry methods or phenomenological relationships based on additivity rules. It was found that the energies of long wavelength absorption bands are correlated through multiparametric linear relationships with parameters reflecting the bulkiness features of the absorbing molecules as well as their nucleophilicity and electrophilicity. These dependences enable the quantitative analysis of spectral features of the compounds, as well as a comparison of their similarities and certain pharmaceutical and biological features. Three QSPR models to predict the energies of long-wavelength absorption in buffers with pH=2.5 and pH=7.0, as well as in methanol, were developed and validated in this study. These models can be further used to predict the long-wavelength absorption energies of untested substances (if they are structurally similar to the training compounds). Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yuan, Quan; Ma, Guangcai; Xu, Ting; Serge, Bakire; Yu, Haiying; Chen, Jianrong; Lin, Hongjun
2016-10-01
Poly-/perfluoroalkyl substances (PFASs) are a class of synthetic fluorinated organic substances that raise increasing concern because of their environmental persistence, bioaccumulation and widespread presence in various environment media and organisms. PFASs can be released into the atmosphere through both direct and indirect sources, and the gas/particle partition coefficient (KP) is an important parameter that helps us to understand their atmospheric behavior. In this study, we developed a temperature-dependent predictive model for log KP of PFASs and analyzed the molecular mechanism that governs their partitioning equilibrium between gas phase and particle phase. All theoretical computation was carried out at B3LYP/6-31G (d, p) level based on neutral molecular structures by Gaussian 09 program package. The regression model has a good statistical performance and robustness. The application domain has also been defined according to OECD guidance. The mechanism analysis shows that electrostatic interaction and dispersion interaction play the most important role in the partitioning equilibrium. The developed model can be used to predict log KP values of neutral fluorotelomer alcohols and perfluor sulfonamides/sulfonamidoethanols with different substitutions at nitrogen atoms, providing basic data for their ecological risk assessment.
Magnuson, Matthew L; Speth, Thomas F
2005-10-01
Granular activated carbon is a frequently explored technology for removing synthetic organic contaminants from drinking water sources. The success of this technology relies on a number of factors based not only on the adsorptive properties of the contaminant but also on properties of the water itself, notably the presence of substances in the water which compete for adsorption sites. Because it is impractical to perform field-scale evaluations for all possible contaminants, the pore surface diffusion model (PSDM) has been developed and used to predict activated carbon column performance using single-solute isotherm data as inputs. Many assumptions are built into this model to account for kinetics of adsorption and competition for adsorption sites. This work further evaluates and expands this model, through the use of quantitative structure-property relationships (QSPRs) to predict the effect of natural organic matter fouling on activated carbon adsorption of specific contaminants. The QSPRs developed are based on a combination of calculated topographical indices and quantum chemical parameters. The QSPRs were evaluated in terms of their statistical predictive ability,the physical significance of the descriptors, and by comparison with field data. The QSPR-enhanced PSDM was judged to give results better than what could previously be obtained.
Characterization and Prediction of Chemical Functions and ...
Assessing exposures from the thousands of chemicals in commerce requires quantitative information on the chemical constituents of consumer products. Unfortunately, gaps in available composition data prevent assessment of exposure to chemicals in many products. Here we propose filling these gaps via consideration of chemical functional role. We obtained function information for thousands of chemicals from public sources and used a clustering algorithm to assign chemicals into 35 harmonized function categories (e.g., plasticizers, antimicrobials, solvents). We combined these functions with weight fraction data for 4115 personal care products (PCPs) to characterize the composition of 66 different product categories (e.g., shampoos). We analyzed the combined weight fraction/function dataset using machine learning techniques to develop quantitative structure property relationship (QSPR) classifier models for 22 functions and for weight fraction, based on chemical-specific descriptors (including chemical properties). We applied these classifier models to a library of 10196 data-poor chemicals. Our predictions of chemical function and composition will inform exposure-based screening of chemicals in PCPs for combination with hazard data in risk-based evaluation frameworks. As new information becomes available, this approach can be applied to other classes of products and the chemicals they contain in order to provide essential consumer product data for use in exposure-b
NASA Astrophysics Data System (ADS)
Sushko, Iurii; Novotarskyi, Sergii; Körner, Robert; Pandey, Anil Kumar; Rupp, Matthias; Teetz, Wolfram; Brandmaier, Stefan; Abdelaziz, Ahmed; Prokopenko, Volodymyr V.; Tanchuk, Vsevolod Y.; Todeschini, Roberto; Varnek, Alexandre; Marcou, Gilles; Ertl, Peter; Potemkin, Vladimir; Grishina, Maria; Gasteiger, Johann; Schwab, Christof; Baskin, Igor I.; Palyulin, Vladimir A.; Radchenko, Eugene V.; Welsh, William J.; Kholodovych, Vladyslav; Chekmarev, Dmitriy; Cherkasov, Artem; Aires-de-Sousa, Joao; Zhang, Qing-You; Bender, Andreas; Nigsch, Florian; Patiny, Luc; Williams, Antony; Tkachenko, Valery; Tetko, Igor V.
2011-06-01
The Online Chemical Modeling Environment is a web-based platform that aims to automate and simplify the typical steps required for QSAR modeling. The platform consists of two major subsystems: the database of experimental measurements and the modeling framework. A user-contributed database contains a set of tools for easy input, search and modification of thousands of records. The OCHEM database is based on the wiki principle and focuses primarily on the quality and verifiability of the data. The database is tightly integrated with the modeling framework, which supports all the steps required to create a predictive model: data search, calculation and selection of a vast variety of molecular descriptors, application of machine learning methods, validation, analysis of the model and assessment of the applicability domain. As compared to other similar systems, OCHEM is not intended to re-implement the existing tools or models but rather to invite the original authors to contribute their results, make them publicly available, share them with other users and to become members of the growing research community. Our intention is to make OCHEM a widely used platform to perform the QSPR/QSAR studies online and share it with other users on the Web. The ultimate goal of OCHEM is collecting all possible chemoinformatics tools within one simple, reliable and user-friendly resource. The OCHEM is free for web users and it is available online at http://www.ochem.eu.
Binding of ring-substituted indole-3-acetic acids to human serum albumin.
Soskić, Milan; Magnus, Volker
2007-07-01
The plant hormone, indole-3-acetic acid (IAA), and its ring-substituted derivatives have recently attracted attention as promising pro-drugs in cancer therapy. Here we present relative binding constants to human serum albumin for IAA and 34 of its derivatives, as obtained using the immobilized protein bound to a support suitable for high-performance liquid chromatography. We also report their octanol-water partition coefficients (logK(ow)) computed from retention data on a C(18) coated silica gel column. A four-parameter QSPR (quantitative structure-property relationships) model, based on physico-chemical properties, is put forward, which accounts for more than 96% of the variations in the binding affinities of these compounds. The model confirms the importance of lipophilicity as a global parameter governing interaction with serum albumin, but also assigns significant roles to parameters specifically related to the molecular topology of ring-substituted IAAs. Bulky substituents at ring-position 6 increase affinity, those at position 2 obstruct binding, while no steric effects were noted at other ring-positions. Electron-withdrawing substituents at position 5 enhance binding, but have no obvious effect at other ring positions.
Winkler, David A; Le, Tu C
2017-01-01
Neural networks have generated valuable Quantitative Structure-Activity/Property Relationships (QSAR/QSPR) models for a wide variety of small molecules and materials properties. They have grown in sophistication and many of their initial problems have been overcome by modern mathematical techniques. QSAR studies have almost always used so-called "shallow" neural networks in which there is a single hidden layer between the input and output layers. Recently, a new and potentially paradigm-shifting type of neural network based on Deep Learning has appeared. Deep learning methods have generated impressive improvements in image and voice recognition, and are now being applied to QSAR and QSAR modelling. This paper describes the differences in approach between deep and shallow neural networks, compares their abilities to predict the properties of test sets for 15 large drug data sets (the kaggle set), discusses the results in terms of the Universal Approximation theorem for neural networks, and describes how DNN may ameliorate or remove troublesome "activity cliffs" in QSAR data sets. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
QSAR as a random event: modeling of nanoparticles uptake in PaCa2 cancer cells.
Toropov, Andrey A; Toropova, Alla P; Puzyn, Tomasz; Benfenati, Emilio; Gini, Giuseppina; Leszczynska, Danuta; Leszczynski, Jerzy
2013-06-01
Quantitative structure-property/activity relationships (QSPRs/QSARs) are a tool to predict various endpoints for various substances. The "classic" QSPR/QSAR analysis is based on the representation of the molecular structure by the molecular graph. However, simplified molecular input-line entry system (SMILES) gradually becomes most popular representation of the molecular structure in the databases available on the Internet. Under such circumstances, the development of molecular descriptors calculated directly from SMILES becomes attractive alternative to "classic" descriptors. The CORAL software (http://www.insilico.eu/coral) is provider of SMILES-based optimal molecular descriptors which are aimed to correlate with various endpoints. We analyzed data set on nanoparticles uptake in PaCa2 pancreatic cancer cells. The data set includes 109 nanoparticles with the same core but different surface modifiers (small organic molecules). The concept of a QSAR as a random event is suggested in opposition to "classic" QSARs which are based on the only one distribution of available data into the training and the validation sets. In other words, five random splits into the "visible" training set and the "invisible" validation set were examined. The SMILES-based optimal descriptors (obtained by the Monte Carlo technique) for these splits are calculated with the CORAL software. The statistical quality of all these models is good. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ou, Yu Heng; Chang, Chia Ming; Chen, Ying Shao
2016-06-05
In this study, solvent-induced frequency shifts (SIFS) in the infrared spectrum of acetone and dimethyl sulfoxide in organic solvents were investigated by using four types of quantum-chemical reactivity descriptors. The results showed that the SIFS of acetone is mainly affected by the electron-acceptance chemical potential and the maximum nucleophilic condensed local softness of organic solvents, which represent the electron flow and the polarization between acetone and solvent molecules. On the other hand, the SIFS of dimethyl sulfoxide changes with the maximum positive charge of hydrogen atom and the inverse of apolar surface area of solvent molecules, showing that the electrostatic and hydrophilic interactions are main mechanisms between dimethyl sulfoxide and solvent molecules. The introduction of the four-element theory model-based quantitative structure-property relationship approach improved the assessing quality and provided a basis for interpreting the solute-solvent interactions. Copyright © 2016 Elsevier B.V. All rights reserved.
Ren, Biye
2003-01-01
Structure-boiling point relationships are studied for a series of oxo organic compounds by means of multiple linear regression (MLR) analysis. Excellent MLR models based on the recently introduced Xu index and the atom-type-based AI indices are obtained for the two subsets containing respectively 77 ethers and 107 carbonyl compounds and a combined set of 184 oxo compounds. The best models are tested using the leave-one-out cross-validation and an external test set, respectively. The MLR model produces a correlation coefficient of r = 0.9977 and a standard error of s = 3.99 degrees C for the training set of 184 compounds, and r(cv) = 0.9974 and s(cv) = 4.16 degrees C for the cross-validation set, and r(pred) = 0.9949 and s(pred) = 4.38 degrees C for the prediction set of 21 compounds. For the two subsets containing respectively 77 ethers and 107 carbonyl compounds, the quality of the models is further improved. The standard errors are reduced to 3.30 and 3.02 degrees C, respectively. Furthermore, the results obtained from this study indicate that the boiling points of the studied oxo compound dominantly depend on molecular size and also depend on individual atom types, especially oxygen heteroatoms in molecules due to strong polar interactions between molecules. These excellent structure-boiling point models not only provide profound insights into the role of structural features in a molecule but also illustrate the usefulness of these indices in QSPR/QSAR modeling of complex compounds.
2014-01-01
We present four models of solution free-energy prediction for druglike molecules utilizing cheminformatics descriptors and theoretically calculated thermodynamic values. We make predictions of solution free energy using physics-based theory alone and using machine learning/quantitative structure–property relationship (QSPR) models. We also develop machine learning models where the theoretical energies and cheminformatics descriptors are used as combined input. These models are used to predict solvation free energy. While direct theoretical calculation does not give accurate results in this approach, machine learning is able to give predictions with a root mean squared error (RMSE) of ∼1.1 log S units in a 10-fold cross-validation for our Drug-Like-Solubility-100 (DLS-100) dataset of 100 druglike molecules. We find that a model built using energy terms from our theoretical methodology as descriptors is marginally less predictive than one built on Chemistry Development Kit (CDK) descriptors. Combining both sets of descriptors allows a further but very modest improvement in the predictions. However, in some cases, this is a statistically significant enhancement. These results suggest that there is little complementarity between the chemical information provided by these two sets of descriptors, despite their different sources and methods of calculation. Our machine learning models are also able to predict the well-known Solubility Challenge dataset with an RMSE value of 0.9–1.0 log S units. PMID:24564264
Šoškić, Milan; Porobić, Ivana
2016-01-01
Retention factors for 31 indole derivatives, most of them with auxin activity, were determined by high-performance liquid chromatography, using bonded β-cyclodextrin as a stationary phase. A three-parameter QSPR (quantitative structure-property relationship) model, based on physico-chemical and structural descriptors was derived, which accounted for about 98% variations in the retention factors. The model suggests that the indole nucleus occupies the relatively apolar cavity of β-cyclodextrin while the carboxyl group of the indole -3-carboxylic acids makes hydrogen bonds with the hydroxyl groups of β-cyclodextrin. The length and flexibility of the side chain containing carboxyl group strongly affect the binding of these compounds to β-cyclodextrin. Non-acidic derivatives, unlike the indole-3-carboxylic acids, are poorly retained on the column. A reasonably well correlation was found between the retention factors of the indole-3-acetic acids and their relative binding affinities for human serum albumin, a carrier protein in the blood plasma. A less satisfactory correlation was obtained when the retention factors of the indole derivatives were compared with their affinities for auxin-binding protein 1, a plant auxin receptor. PMID:27124734
Assessment of tautomer distribution using the condensed reaction graph approach
NASA Astrophysics Data System (ADS)
Gimadiev, T. R.; Madzhidov, T. I.; Nugmanov, R. I.; Baskin, I. I.; Antipin, I. S.; Varnek, A.
2018-03-01
We report the first direct QSPR modeling of equilibrium constants of tautomeric transformations (logK T ) in different solvents and at different temperatures, which do not require intermediate assessment of acidity (basicity) constants for all tautomeric forms. The key step of the modeling consisted in the merging of two tautomers in one sole molecular graph ("condensed reaction graph") which enables to compute molecular descriptors characterizing entire equilibrium. The support vector regression method was used to build the models. The training set consisted of 785 transformations belonging to 11 types of tautomeric reactions with equilibrium constants measured in different solvents and at different temperatures. The models obtained perform well both in cross-validation (Q2 = 0.81 RMSE = 0.7 logK T units) and on two external test sets. Benchmarking studies demonstrate that our models outperform results obtained with DFT B3LYP/6-311 ++ G(d,p) and ChemAxon Tautomerizer applicable only in water at room temperature.
Rasulev, Bakhtiyor; Kusić, Hrvoje; Leszczynska, Danuta; Leszczynski, Jerzy; Koprivanac, Natalija
2010-05-01
The goal of the study was to predict toxicity in vivo caused by aromatic compounds structured with a single benzene ring and the presence or absence of different substituent groups such as hydroxyl-, nitro-, amino-, methyl-, methoxy-, etc., by using QSAR/QSPR tools. A Genetic Algorithm and multiple regression analysis were applied to select the descriptors and to generate the correlation models. The most predictive model is shown to be the 3-variable model which also has a good ratio of the number of descriptors and their predictive ability to avoid overfitting. The main contributions to the toxicity were shown to be the polarizability weighted MATS2p and the number of certain groups C-026 descriptors. The GA-MLRA approach showed good results in this study, which allows the building of a simple, interpretable and transparent model that can be used for future studies of predicting toxicity of organic compounds to mammals.
Liagkouridis, Ioannis; Cousins, Anna Palm; Cousins, Ian T
2015-08-15
Several groups of flame retardants (FRs) have entered the market in recent years as replacements for polybrominated diphenyl ethers (PBDEs), but little is known about their physical-chemical properties or their environmental transport and fate. Here we make best estimates of the physical-chemical properties and undertake evaluative modelling assessments (indoors and outdoors) for 35 so-called 'novel' and 'emerging' brominated flame retardants (BFRs) and 22 organophosphorus flame retardants (OPFRs). A QSPR (Quantitative Structure-Property Relationship) based technique is used to reduce uncertainty in physical-chemical properties and to aid property selection for modelling, but it is evident that more, high quality property data are required for improving future assessments. Evaluative modelling results show that many of the alternative FRs, mainly alternative BFRs and some of the halogenated OPFRs, behave similarly to the PBDEs both indoors and outdoors. These alternative FRs exhibit high overall persistence (Pov), long-range transport potential (LRTP) and POP-like behaviour and on that basis cannot be regarded as suitable replacements to PBDEs. A group of low molecular weight alternative BFRs and non-halogenated OPFRs show a potentially better environmental performance based on Pov and LRTP metrics. Results must be interpreted with caution though since there are significant uncertainties and limited data to allow for thorough model evaluation. Additional environmental parameters such as toxicity and bioaccumulative potential as well as functionality issues should be considered in an industrial substitution strategy. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhao, Hongxia; Xie, Qing; Tan, Feng; Chen, Jingwen; Quan, Xie; Qu, Baocheng; Zhang, Xin; Li, Xiaona
2010-07-01
The octanol-air partition coefficient (K(OA)) of 19 hydroxylated polybrominated diphenyl ethers (OH-PBDEs) and 10 methoxylated polybrominated diphenyl ethers (MeO-PBDEs) were measured as a function of temperature using a gas chromatographic retention time technique. At room temperature (298.15K), log K(OA) ranged from 8.30 for monobrominated OH/MeO-PBDEs to 13.29 for hexabrominated OH/MeO-PBDEs. The internal energies of phase change from octanol to air (Delta(OA)U) for 29 OH/MeO-PBDE congeners ranged from 72 to 126 kJ mol(-1). Using partial least-squares (PLS) analysis, a statistically quantitative structure-property relationship (QSPR) model for logK(OA) of OH/MeO-PBDE congeners was developed based on the 16 fundamental quantum chemical descriptors computed by PM3 Hamiltonian, for which the Q(cum)(2) was about 0.937. The molecular weight (Mw) and energy of the lowest unoccupied molecular orbital (E(LUMO)) were found to be main factors governing the log K(OA). 2010 Elsevier Ltd. All rights reserved.
Moss, Gary P; Sun, Yi; Wilkinson, Simon C; Davey, Neil; Adams, Rod; Martin, Gary P; Prapopopolou, M; Brown, Marc B
2011-11-01
Predicting the rate of percutaneous absorption of a drug is an important issue with the increasing use of the skin as a means of moderating and controlling drug delivery. One key feature of this problem domain is that human skin permeability (as K(p)) has been shown to be inherently non-linear when mathematically related to the physicochemical parameters of penetrants. As such, the aims of this study were to apply and evaluate Gaussian process (GP) regression methods to datasets for membranes other than human skin, and to explore how the nature of the dataset may influence its analysis. Permeability data for absorption across rodent and pig skin, and artificial membranes (polydimethylsiloxane, PDMS, i.e. Silastic) membranes was collected from the literature. Two quantitative structure-permeability relationship (QSPR) models were used to compare with the GP models. Further performance metrics were computed in terms of all predictions, and a range of covariance functions were examined: the squared exponential (SE), neural network (NNone) and rational quadratic (QR) covariance functions, along with two simple cases of Matern covariance function (Matern3 and Matern5) where the polynomial order is set to 1 and 2, respectively. As measures of performance, the correlation coefficient (CORR), negative log estimated predictive density (NLL, or negative log loss) and mean squared error (MSE) were employed. The results demonstrated that GP models with different covariance functions outperform QSPR models for human, pig and rodent datasets. For the artificial membranes, GPs perform better in one instance, and give similar results in other experiments (where different covariance parameters produce similar results). In some cases, the GP predictions for some of the artificial membrane dataset are poorly correlated, suggesting that the physicochemical parameters employed in this study might not be appropriate for developing models that represent this membrane. While the results of this study indicate that permeation across rodent (mouse and rat) and pig skin is, in a statistical sense, similar, and that the artificial membranes are poor replacements of human or animal skin, the overriding issue raised in this study is the nature of the dataset and how it can influence the results, and subsequent interpretation, of any model produced for particular membranes. The size of the datasets, in both absolute and comparative senses, appears to influence model quality. Ideally, to generate viable cross-comparisons the datasets for different mammalian membranes should, wherever possible, exhibit as much commonality as possible. © 2011 The Authors. JPP © 2011 Royal Pharmaceutical Society.
Al-Fakih, A M; Algamal, Z Y; Lee, M H; Aziz, M
2018-05-01
A penalized quantitative structure-property relationship (QSPR) model with adaptive bridge penalty for predicting the melting points of 92 energetic carbocyclic nitroaromatic compounds is proposed. To ensure the consistency of the descriptor selection of the proposed penalized adaptive bridge (PBridge), we proposed a ridge estimator ([Formula: see text]) as an initial weight in the adaptive bridge penalty. The Bayesian information criterion was applied to ensure the accurate selection of the tuning parameter ([Formula: see text]). The PBridge based model was internally and externally validated based on [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], the Y-randomization test, [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] and the applicability domain. The validation results indicate that the model is robust and not due to chance correlation. The descriptor selection and prediction performance of PBridge for the training dataset outperforms the other methods used. PBridge shows the highest [Formula: see text] of 0.959, [Formula: see text] of 0.953, [Formula: see text] of 0.949 and [Formula: see text] of 0.959, and the lowest [Formula: see text] and [Formula: see text]. For the test dataset, PBridge shows a higher [Formula: see text] of 0.945 and [Formula: see text] of 0.948, and a lower [Formula: see text] and [Formula: see text], indicating its better prediction performance. The results clearly reveal that the proposed PBridge is useful for constructing reliable and robust QSPRs for predicting melting points prior to synthesizing new organic compounds.
Song, Shanjun; Ruan, Ting; Wang, Thanh; Liu, Runzeng; Jiang, Guibin
2012-12-18
Increasing attention has been paid to bisphenol A and bisphenol (BP) analogues due to high production volumes, wide usage and potential adverse effects. Bisphenol AF (BPAF) is considered a new bisphenol analogue which is used as raw material in plastic industry, but little is known about its occurrence in the environment and the potential associated risk. In this work, BPAF levels and environmental distribution were reported in samples collected around a manufacturing plant and a preliminary exposure risk assessment to local residents was conducted. BPAF was detected in most of the samples, with levels in river ranging between
Golmohammadi, Hassan
2009-11-30
A quantitative structure-property relationship (QSPR) study was performed to develop models those relate the structure of 141 organic compounds to their octanol-water partition coefficients (log P(o/w)). A genetic algorithm was applied as a variable selection tool. Modeling of log P(o/w) of these compounds as a function of theoretically derived descriptors was established by multiple linear regression (MLR), partial least squares (PLS), and artificial neural network (ANN). The best selected descriptors that appear in the models are: atomic charge weighted partial positively charged surface area (PPSA-3), fractional atomic charge weighted partial positive surface area (FPSA-3), minimum atomic partial charge (Qmin), molecular volume (MV), total dipole moment of molecule (mu), maximum antibonding contribution of a molecule orbital in the molecule (MAC), and maximum free valency of a C atom in the molecule (MFV). The result obtained showed the ability of developed artificial neural network to prediction of partition coefficients of organic compounds. Also, the results revealed the superiority of ANN over the MLR and PLS models. Copyright 2009 Wiley Periodicals, Inc.
Schröder, Bernd; Freire, Mara G; Varanda, Fatima R; Marrucho, Isabel M; Santos, Luís M N B F; Coutinho, João A P
2011-07-01
The aqueous solubility of hexafluorobenzene has been determined, at 298.15K, using a shake-flask method with a spectrophotometric quantification technique. Furthermore, the solubility of hexafluorobenzene in saline aqueous solutions, at distinct salt concentrations, has been measured. Both salting-in and salting-out effects were observed and found to be dependent on the nature of the cationic/anionic composition of the salt. COSMO-RS, the Conductor-like Screening Model for Real Solvents, has been used to predict the corresponding aqueous solubilities at conditions similar to those used experimentally. The prediction results showed that the COSMO-RS approach is suitable for the prediction of salting-in/-out effects. The salting-in/-out phenomena have been rationalized with the support of COSMO-RS σ-profiles. The prediction potential of COSMO-RS regarding aqueous solubilities and octanol-water partition coefficients has been compared with typically used QSPR-based methods. Up to now, the absence of accurate solubility data for hexafluorobenzene hampered the calculation of the respective partition coefficients. Combining available accurate vapor pressure data with the experimentally determined water solubility, a novel air-water partition coefficient has been derived. Copyright © 2011 Elsevier Ltd. All rights reserved.
Considering ionic state in modeling sorption of pharmaceuticals to sewage sludge.
Rybacka, Aleksandra; Andersson, Patrik L
2016-12-01
Information on the partitioning of chemicals between particulate matter and water in sewage treatment plants (STPs) can be used to predict their subsequent environmental fate. However, this information can be challenging to acquire, especially for pharmaceuticals that are frequently present in ionized forms. This study investigated the relationship between the ionization state of active pharmaceutical ingredients (APIs) and their partitioning between water and sludge in STPs. We also investigated the underlying mechanisms of sludge sorption by using chemical descriptors based on ionized structures, and evaluated the usefulness of these descriptors in quantitative structure-property relationship (QSPR) modeling. K D values were collected for 110 APIs, which were classified as neutral, positive, or negative at pH 7. The models with the highest performance had the R 2 Y and Q 2 values of above 0.75 and 0.65, respectively. We found that the dominant intermolecular forces governing the interactions of neutral and positively charged APIs with sludge are hydrophobic, pi-pi, and dipole-dipole interactions, whereas the interactions of negatively charged APIs with sludge were mainly governed by covalent bonding as well as ion-ion, ion-dipole, and dipole-dipole interactions; hydrophobicity-driven interactions were rather unimportant. Including charge-related descriptors improved the models' performance by 5-10%, underlining the importance of electrostatic interactions. The use of descriptors calculated for ionized structures did not improve the model statistics for positive and negative APIs, but slightly increased model performance for neutral APIs. We attribute this to a better description of neutral zwitterions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Rojas, Cristian; Duchowicz, Pablo R; Tripaldi, Piercosimo; Pis Diez, Reinaldo
2015-11-27
A quantitative structure-property relationship (QSPR) was developed for modeling the retention index of 1184 flavor and fragrance compounds measured using a Carbowax 20M glass capillary gas chromatography column. The 4885 molecular descriptors were calculated using Dragon software, and then were simultaneously analyzed through multivariable linear regression analysis using the replacement method (RM) variable subset selection technique. We proceeded in three steps, the first one by considering all descriptor blocks, the second one by excluding conformational descriptor blocks, and the last one by analyzing only 3D-descriptor families. The models were validated through an external test set of compounds. Cross-validation methods such as leave-one-out and leave-many-out were applied, together with Y-randomization and applicability domain analysis. The developed model was used to estimate the I of a set of 22 molecules. The results clearly suggest that 3D-descriptors do not offer relevant information for modeling the retention index, while a topological index such as the Randić-like index from reciprocal squared distance matrix has a high relevance for this purpose. Copyright © 2015 Elsevier B.V. All rights reserved.
Glavatskikh, Marta; Madzhidov, Timur; Solov'ev, Vitaly; Marcou, Gilles; Horvath, Dragos; Varnek, Alexandre
2016-12-01
In this work, we report QSPR modeling of the free energy ΔG of 1 : 1 hydrogen bond complexes of different H-bond acceptors and donors. The modeling was performed on a large and structurally diverse set of 3373 complexes featuring a single hydrogen bond, for which ΔG was measured at 298 K in CCl 4 . The models were prepared using Support Vector Machine and Multiple Linear Regression, with ISIDA fragment descriptors. The marked atoms strategy was applied at fragmentation stage, in order to capture the location of H-bond donor and acceptor centers. Different strategies of model validation have been suggested, including the targeted omission of individual H-bond acceptors and donors from the training set, in order to check whether the predictive ability of the model is not limited to the interpolation of H-bond strength between two already encountered partners. Successfully cross-validating individual models were combined into a consensus model, and challenged to predict external test sets of 629 and 12 complexes, in which donor and acceptor formed single and cooperative H-bonds, respectively. In all cases, SVM models outperform MLR. The SVM consensus model performs well both in 3-fold cross-validation (RMSE=1.50 kJ/mol), and on the external test sets containing complexes with single (RMSE=3.20 kJ/mol) and cooperative H-bonds (RMSE=1.63 kJ/mol). © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
The great descriptor melting pot: mixing descriptors for the common good of QSAR models.
Tseng, Yufeng J; Hopfinger, Anton J; Esposito, Emilio Xavier
2012-01-01
The usefulness and utility of QSAR modeling depends heavily on the ability to estimate the values of molecular descriptors relevant to the endpoints of interest followed by an optimized selection of descriptors to form the best QSAR models from a representative set of the endpoints of interest. The performance of a QSAR model is directly related to its molecular descriptors. QSAR modeling, specifically model construction and optimization, has benefited from its ability to borrow from other unrelated fields, yet the molecular descriptors that form QSAR models have remained basically unchanged in both form and preferred usage. There are many types of endpoints that require multiple classes of descriptors (descriptors that encode 1D through multi-dimensional, 4D and above, content) needed to most fully capture the molecular features and interactions that contribute to the endpoint. The advantages of QSAR models constructed from multiple, and different, descriptor classes have been demonstrated in the exploration of markedly different, and principally biological systems and endpoints. Multiple examples of such QSAR applications using different descriptor sets are described and that examined. The take-home-message is that a major part of the future of QSAR analysis, and its application to modeling biological potency, ADME-Tox properties, general use in virtual screening applications, as well as its expanding use into new fields for building QSPR models, lies in developing strategies that combine and use 1D through nD molecular descriptors.
Kłosowska-Chomiczewska, I E; Mędrzycka, K; Hallmann, E; Karpenko, E; Pokynbroda, T; Macierzanka, A; Jungnickel, C
2017-02-15
Relationships between the purity, pH, hydrophobicity (logK ow ) of the carbon substrate, and the critical micelle concentration (CMC) of rhamnolipid type biosurfactants (RL) were investigated using a quantitative structure-property relationship (QSPR) approach and are presented here for the first time. Measured and literature CMC values of 97 RLs, representing biosurfactants at different stages of purification, were considered. An arbitrary scale for RLs purity was proposed and used in the modelling. A modified evolutionary algorithm was used to create clusters of equations to optimally describe the relationship between CMC and logK ow , pH and purity (the optimal equation had an R 2 of 0.8366). It was found that hydrophobicity of the carbon substrate used for the biosynthesis of the RL had the most significant influence on the final CMC of the RL. Purity of the RLs was also found to have a significant impact, where generally the less pure the RL the higher the CMC. These results were in accordance with our experimental data. Therefore, our model equation may be used for controlling the biosynthesis of biosurfactants with properties targeted for specific applications. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Krein, Michael
After decades of development and use in a variety of application areas, Quantitative Structure Property Relationships (QSPRs) and related descriptor-based statistical learning methods have achieved a level of infamy due to their misuse. The field is rife with past examples of overtrained models, overoptimistic performance assessment, and outright cheating in the form of explicitly removing data to fit models. These actions do not serve the community well, nor are they beneficial to future predictions based on established models. In practice, in order to select combinations of descriptors and machine learning methods that might work best, one must consider the nature and size of the training and test datasets, be aware of existing hypotheses about the data, and resist the temptation to bias structure representation and modeling to explicitly fit the hypotheses. The definition and application of these best practices is important for obtaining actionable modeling outcomes, and for setting user expectations of modeling accuracy when predicting the endpoint values of unknowns. A wide variety of statistical learning approaches, descriptor types, and model validation strategies are explored herein, with the goals of helping end users understand the factors involved in creating and using QSPR models effectively, and to better understand relationships within the data, especially by looking at the problem space from multiple perspectives. Molecular relationships are commonly envisioned in a continuous high-dimensional space of numerical descriptors, referred to as chemistry space. Descriptor and similarity metric choice influence the partitioning of this space into regions corresponding to local structural similarity. These regions, known as domains of applicability, are most likely to be successfully modeled by a QSPR. In Chapter 2, the network topology and scaling relationships of several chemistry spaces are thoroughly investigated. Chemistry spaces studied include the ZINC data set, a qHTS PubChem bioassay, as well as the protein binding sites from the PDB. The characteristics of these networks are compared and contrasted with those of the bioassay Structure Activity Landscape Index (SALI) subnetwork, which maps discontinuities or cliffs in the structure activity landscape. Mapping this newly generated information over underlying chemistry space networks generated using different descriptors demonstrates local modeling capacity and can guide the choice of better local representations of chemistry space. Chapter 2 introduces and demonstrates this novel concept, which also enables future work in visualization and interpretation of chemical spaces. Initially, it was discovered that there were no community-available tools to leverage best-practice ideas to comprehensively build, compare, and interpret QSPRs. The Yet Another Modeling System (YAMS) tool performs a series of balanced, rational decisions in dataset preprocessing and parameter/feature selection over a choice of modeling methods. To date, YAMS is the only community-available informatics tool that performs such decisions consistently between methods while also providing multiple model performance comparisons and detailed descriptor importance information. The focus of the tool is thus to convey rich information about model quality and predictions that help to "close the loop" between modeling and experimental efforts, for example, in tailoring nanocomposite properties. Polymer nanocomposites (PNC) are complex material systems encompassing many potential structures, chemistries, and self assembled morphologies that could significantly impact commercial and military applications. There is a strong desire to characterize and understand the tradespace of nanocomposites, to identify the important factors relating nanostructure to materials properties and determine an effective way to control materials properties at the manufacturing scale. Due to the complexity of the systems, existing design approaches rely heavily on trial-and-error learning. By leveraging existing experimental data, Materials Quantitative Structure-Property Relationships (MQSPRs) relate molecular structures to the polar and dispersive components of corresponding surface tensions. In turn, existing theories relate polymer and nanofiller polar and dispersive surface tension components to the dispersion state and interfacial polymer relaxation times. These quantities may, in the future, be used as input to continuum mechanics approaches shown able to predict the thermomechanical response of nanocomposites. For a polymer dataset and a particle dataset, multiple structural representations and descriptor sets are benchmarked, including a set of high performance surface-property descriptors developed as part of this work. The systematic variation of structural representations as part of the informatics approach reveals important insight in modeling polymers, and should become common practice when defining new problem spaces.
Zhang, Xiuqing; Liu, Ting; Fan, Xiaohui; Ai, Ni
2017-08-01
In silico modeling of blood-brain barrier (BBB) permeability plays an important role in early discovery of central nervous system (CNS) drugs due to its high-throughput and cost-effectiveness. Natural products (NP) have demonstrated considerable therapeutic efficacy against several CNS diseases. However, BBB permeation property of NP is scarcely evaluated both experimentally and computationally. It is well accepted that significant difference in chemical spaces exists between NP and synthetic drugs, which calls into doubt on suitability of available synthetic chemical based BBB permeability models for the evaluation of NP. Herein poor discriminative performance on BBB permeability of NP are first confirmed using internal constructed and previously published drug-derived computational models, which warrants the need for NP-oriented modeling. Then a quantitative structure-property relationship (QSPR) study on a NP dataset was carried out using four different machine learning methods including support vector machine, random forest, Naïve Bayes and probabilistic neural network with 67 selected features. The final consensus model was obtained with approximate 90% overall accuracy for the cross-validation study, which is further taken to predict passive BBB permeability of a large dataset consisting of over 10,000 compounds from traditional Chinese medicine (TCM). For 32 selected TCM molecules, their predicted BBB permeability were evaluated by in vitro parallel artificial membrane permeability assay and overall accuracy for in vitro experimental validation is around 81%. Interestingly, our in silico model successfully predicted different BBB permeation potentials of parent molecules and their known in vivo metabolites. Finally, we found that the lipophilicity, the number of hydrogen bonds and molecular polarity were important molecular determinants for BBB permeability of NP. Our results suggest that the consensus model proposed in current work is a reliable tool for prioritizing potential CNS active NP across the BBB, which would accelerate their development and provide more understanding on their mechanisms, especially those with pharmacologically active metabolites. Copyright © 2017 Elsevier Inc. All rights reserved.
On Topological Indices of Certain Dendrimer Structures
NASA Astrophysics Data System (ADS)
Aslam, Adnan; Bashir, Yasir; Ahmad, Safyan; Gao, Wei
2017-05-01
A topological index can be considered as transformation of chemical structure in to real number. In QSAR/QSPR study, physicochemical properties and topological indices such as Randić, Zagreb, atom-bond connectivity ABC, and geometric-arithmetic GA index are used to predict the bioactivity of chemical compounds. Dendrimers are highly branched, star-shaped macromolecules with nanometer-scale dimensions. Dendrimers are defined by three components: a central core, an interior dendritic structure (the branches), and an exterior surface with functional surface groups. In this paper we determine generalised Randić, general Zagreb, general sum-connectivity indices of poly(propyl) ether imine, porphyrin, and zinc-Porphyrin dendrimers. We also compute ABC and GA indices of these families of dendrimers.
QSPR studies on the photoinduced-fluorescence behaviour of pharmaceuticals and pesticides.
López-Malo, D; Bueso-Bordils, J I; Duart, M J; Alemán-López, P A; Martín-Algarra, R V; Antón-Fos, G M; Lahuerta-Zamora, L; Martínez-Calatayud, J
2017-07-01
Fluorimetric analysis is still a growing line of research in the determination of a wide range of organic compounds, including pharmaceuticals and pesticides, which makes necessary the development of new strategies aimed at improving the performance of fluorescence determinations as well as the sensitivity and, especially, the selectivity of the newly developed analytical methods. In this paper are presented applications of a useful and growing tool suitable for fostering and improving research in the analytical field. Experimental screening, molecular connectivity and discriminant analysis are applied to organic compounds to predict their fluorescent behaviour after their photodegradation by UV irradiation in a continuous flow manifold (multicommutation flow assembly). The screening was based on online fluorimetric measurement and comprised pre-selected compounds with different molecular structures (pharmaceuticals and some pesticides with known 'native' fluorescent behaviour) to study their changes in fluorescent behaviour after UV irradiation. Theoretical predictions agree with the results from the experimental screening and could be used to develop selective analytical methods, as well as helping to reduce the need for expensive, time-consuming and trial-and-error screening procedures.
Martínez-Santiago, O; Marrero-Ponce, Y; Vivas-Reyes, R; Rivera-Borroto, O M; Hurtado, E; Treto-Suarez, M A; Ramos, Y; Vergara-Murillo, F; Orozco-Ugarriza, M E; Martínez-López, Y
2017-05-01
Graph derivative indices (GDIs) have recently been defined over N-atoms (N = 2, 3 and 4) simultaneously, which are based on the concept of derivatives in discrete mathematics (finite difference), metaphorical to the derivative concept in classical mathematical analysis. These molecular descriptors (MDs) codify topo-chemical and topo-structural information based on the concept of the derivative of a molecular graph with respect to a given event (S) over duplex, triplex and quadruplex relations of atoms (vertices). These GDIs have been successfully applied in the description of physicochemical properties like reactivity, solubility and chemical shift, among others, and in several comparative quantitative structure activity/property relationship (QSAR/QSPR) studies. Although satisfactory results have been obtained in previous modelling studies with the aforementioned indices, it is necessary to develop new, more rigorous analysis to assess the true predictive performance of the novel structure codification. So, in the present paper, an assessment and statistical validation of the performance of these novel approaches in QSAR studies are executed, as well as a comparison with those of other QSAR procedures reported in the literature. To achieve the main aim of this research, QSARs were developed on eight chemical datasets widely used as benchmarks in the evaluation/validation of several QSAR methods and/or many different MDs (fundamentally 3D MDs). Three to seven variable QSAR models were built for each chemical dataset, according to the original dissection into training/test sets. The models were developed by using multiple linear regression (MLR) coupled with a genetic algorithm as the feature wrapper selection technique in the MobyDigs software. Each family of GDIs (for duplex, triplex and quadruplex) behaves similarly in all modelling, although there were some exceptions. However, when all families were used in combination, the results achieved were quantitatively higher than those reported by other authors in similar experiments. Comparisons with respect to external correlation coefficients (q 2 ext ) revealed that the models based on GDIs possess superior predictive ability in seven of the eight datasets analysed, outperforming methodologies based on similar or more complex techniques and confirming the good predictive power of the obtained models. For the q 2 ext values, the non-parametric comparison revealed significantly different results to those reported so far, which demonstrated that the models based on DIVATI's indices presented the best global performance and yielded significantly better predictions than the 12 0-3D QSAR procedures used in the comparison. Therefore, GDIs are suitable for structure codification of the molecules and constitute a good alternative to build QSARs for the prediction of physicochemical, biological and environmental endpoints.
Idowu, Sunday Olakunle; Adeyemo, Morenikeji Ambali; Ogbonna, Udochi Ihechiluru
2009-01-01
Background Determination of lipophilicity as a tool for predicting pharmacokinetic molecular behavior is limited by the predictive power of available experimental models of the biomembrane. There is current interest, therefore, in models that accurately simulate the biomembrane structure and function. A novel bio-device; a lipid thin film, was engineered as an alternative approach to the previous use of hydrocarbon thin films in biomembrane modeling. Results Retention behavior of four structurally diverse model compounds; 4-amino-3,5-dinitrobenzoic acid (ADBA), naproxen (NPX), nabumetone (NBT) and halofantrine (HF), representing 4 broad classes of varying molecular polarities and aqueous solubility behavior, was investigated on the lipid film, liquid paraffin, and octadecylsilane layers. Computational, thermodynamic and image analysis confirms the peculiar amphiphilic configuration of the lipid film. Effect of solute-type, layer-type and variables interactions on retention behavior was delineated by 2-way analysis of variance (ANOVA) and quantitative structure property relationships (QSPR). Validation of the lipid film was implemented by statistical correlation of a unique chromatographic metric with Log P (octanol/water) and several calculated molecular descriptors of bulk and solubility properties. Conclusion The lipid film signifies a biomimetic artificial biological interface capable of both hydrophobic and specific electrostatic interactions. It captures the hydrophilic-lipophilic balance (HLB) in the determination of lipophilicity of molecules unlike the pure hydrocarbon film of the prior art. The potentials and performance of the bio-device gives the promise of its utility as a predictive analytic tool for early-stage drug discovery science. PMID:19735551
Ramsay, Eva; Del Amo, Eva M; Toropainen, Elisa; Tengvall-Unadike, Unni; Ranta, Veli-Pekka; Urtti, Arto; Ruponen, Marika
2018-07-01
On the surface of the eye, both the cornea and conjunctiva are restricting ocular absorption of topically applied drugs, but barrier contributions of these two membranes have not been systemically compared. Herein, we studied permeability of 32 small molecular drug compounds across an isolated porcine cornea and built a quantitative structure-property relationship (QSPR) model for the permeability. Corneal drug permeability (data obtained for 25 drug molecules) showed a 52-fold range in permeability (0.09-4.70 × 10 -6 cm/s) and the most important molecular descriptors in predicting the permeability were hydrogen bond donor, polar surface area and halogen ratio. Corneal permeability values were compared to their conjunctival drug permeability values. Ocular drug bioavailability and systemic absorption via conjunctiva were predicted for this drug set with pharmacokinetic calculations. Drug bioavailability in the aqueous humour was simulated to be <5% and trans-conjunctival systemic absorption was 34-79% of the dose. Loss of drug across the conjunctiva to the blood circulation restricts significantly ocular drug bioavailability and, therefore, ocular absorption does not increase proportionally with the increasing corneal drug permeability. Copyright © 2018 Elsevier B.V. All rights reserved.
Predicting drug loading in PLA-PEG nanoparticles.
Meunier, M; Goupil, A; Lienard, P
2017-06-30
Polymer nanoparticles present advantageous physical and biopharmaceutical properties as drug delivery systems compared to conventional liquid formulations. Active pharmaceutical ingredients (APIs) are often hydrophobic, thus not soluble in conventional liquid delivery. Encapsulating the drugs in polymer nanoparticles can improve their pharmacological and bio-distribution properties, preventing rapid clearance from the bloodstream. Such nanoparticles are commonly made of non-toxic amphiphilic self-assembling block copolymers where the core (poly-[d,l-lactic acid] or PLA) serves as a reservoir for the API and the external part (Poly-(Ethylene-Glycol) or PEG) serves as a stealth corona to avoid capture by macrophage. The present study aims to predict the drug affinity for PLA-PEG nanoparticles and their effective drug loading using in silico tools in order to virtually screen potential drugs for non-covalent encapsulation applications. To that end, different simulation methods such as molecular dynamics and Monte-Carlo have been used to estimate the binding of actives on model polymer surfaces. Initially, the methods and models are validated against a series of pigments molecules for which experimental data exist. The drug affinity for the core of the nanoparticles is estimated using a Monte-Carlo "docking" method. Drug miscibility in the polymer matrix, using the Hildebrand solubility parameter (δ), and the solvation free energy of the drug in the PLA polymer model is then estimated. Finally, existing published ALogP quantitative structure-property relationships (QSPR) are compared to this method. Our results demonstrate that adsorption energies modelled by docking atomistic simulations on PLA surfaces correlate well with experimental drug loadings, whereas simpler approaches based on Hildebrand solubility parameters and Flory-Huggins interaction parameters do not. More complex molecular dynamics techniques which use estimation of the solvation free energies both in PLA and in water led to satisfactory predictive models. In addition, experimental drug loadings and Log P are found to correlate well. This work can be used to improve the understanding of drug-polymer interactions, a key component to designing better delivery systems. Copyright © 2017 Elsevier B.V. All rights reserved.
Fernandez, Michael; Breedon, Michael; Cole, Ivan S; Barnard, Amanda S
2016-10-01
Traditionally many structural alloys are protected by primer coatings loaded with corrosion inhibiting additives. Strontium Chromate (or other chromates) have been shown to be extremely effectively inhibitors, and find extensive use in protective primer formulations. Unfortunately, hexavalent chromium which imbues these coatings with their corrosion inhibiting properties is also highly toxic, and their use is being increasingly restricted by legislation. In this work we explore a novel tridimensional Quantitative-Structure Property Relationship (3D-QSPR) approach, comparative molecular surface analysis (CoMSA), which was developed to recognize "high-performing" corrosion inhibitor candidates from the distributions of electronegativity, polarizability and van der Waals volume on the molecular surfaces of 28 small organic molecules. Multivariate statistical analysis identified five prototypes molecules, which are capable of explaining 71% of the variance within the inhibitor data set; whilst a further five molecules were also identified as archetypes, describing 75% of data variance. All active corrosion inhibitors, at a 80% threshold, were successfully recognized by the CoMSA model with adequate specificity and precision higher than 70% and 60%, respectively. The model was also capable of identifying structural patterns, that revealed reasonable starting points for where structural changes may augment corrosion inhibition efficacy. The presented methodology can be applied to other functional molecules and extended to cover structure-activity studies in a diverse range of areas such as drug design and novel material discovery. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tailoring surface properties of ArF resists thin films with functionally graded materials (FGM)
NASA Astrophysics Data System (ADS)
Takemoto, Ichiki; Ando, Nobuo; Edamatsu, Kunishige; Fuji, Yusuke; Kuwana, Koji; Hashimoto, Kazuhiko; Funase, Junji; Yokoyama, Hiroyuki
2007-03-01
Our recent research effort has been focused on new top coating-free 193nm immersion resists with regard to leaching of the resist components and lithographic performance. We have examined methacrylate-based resins that control the surface properties of ArF resists thin films by surface segregation behavior. For a better understanding of the surface properties of thin films, we prepared the six resins (Resin 1-6) that have three types fluorine containing monomers, a new monomer (Monomer A), Monomer B and Monomer C, respectively. We blended the base polymer (Resin 0) with Resin (1-6), respectively. We evaluated contact angles, surface properties and lithographic performances of the polymer blend resists. The static and receding contact angles of the resist that contains Resin (1-6) are greater than that of the base polymer (Resin 0) resist. The chemical composition of the surface of blend polymers was investigated with X-ray photoelectron spectroscopy (XPS). It was shown that there was significant segregation of the fluorine containing resins to the surface of the blend films. We analyzed Quantitative Structure-Property Relationships (QSPR) between the surface properties and the chemical composition of the surface of polymer blend resists. The addition of 10 wt% of the polymer (Resin 1-6) to the base polymer (Resin 0) did not influence the lithographic performance. Consequently, the surface properties of resist thin films can be tailored by the appropriate choice of fluorine containing polymer blends.
Howard, Philip H; Muir, Derek C G
2011-08-15
The goal of this study was to identify commercial pharmaceuticals that might be persistent and bioaccumulative (P&B) and that were not being considered in current wastewater and aquatic environmental measurement programs. We developed a database of 3193 pharmaceuticals from two U.S. Food and Drug Administration (FDA) databases and some lists of top ranked or selling drugs. Of the 3193 pharmaceuticals, 275 pharmaceuticals have been found in the environment and 399 pharmaceuticals were, based upon production volumes, designated as high production volume (HPV) pharmaceuticals. All pharmaceuticals that had reported chemical structures were evaluated for potential bioaccumulation (B) or persistence (P) using quantitative structure property relationships (QSPR) or scientific judgment. Of the 275 drugs detected in the environment, 92 were rated as potentially bioaccumulative, 121 were rated as potentially persistent, and 99 were HPV pharmaceuticals. After removing the 275 pharmaceuticals previously detected in the environment, 58 HPV compounds were identified that were both P&B and 48 were identified as P only. Of the non-HPV compounds, 364 pharmaceuticals were identified that were P&B. This study has yielded some interesting and probable P&B pharmaceuticals that should be considered for further study.
Wang, Qingzhi; Zhao, Hongxia; Wang, Yan; Xie, Qing; Chen, Jingwen; Quan, Xie
2017-09-08
Organophosphate flame retardants (OPFRs) are ubiquitous in the environment. To better understand and predict their environmental transport and fate, well-defined physicochemical properties are required. Vapor pressures ( P ) of 14 OPFRs were estimated as a function of temperature ( T ) by gas chromatography (GC), while 1,1,1-trichioro-2,2-bis (4-chlorophenyl) ethane ( p,p '-DDT) was acted as a reference substance. Their log P GC values and internal energies of phase transfer (△ vap H ) ranged from -6.17 to -1.25 and 74.1 kJ/mol to 122 kJ/mol, respectively. Substitution pattern and molar volume ( V M ) were found to be capable of influencing log P GC values of the OPFRs. The halogenated alkyl-OPFRs had lower log P GC values than aryl-or alkyl-OPFRs. The bigger the molar volume was, the smaller the log P GC value was. In addition, a quantitative structure-property relationship (QSPR) model of log P GC versus different relative retention times (RRTs) was developed with a high cross-validated value ( Q 2 cum ) of 0.946, indicating a good predictive ability and stability. Therefore, the log P GC values of the OPFRs without standard substance can be predicted by using their RRTs on different GC columns.
Bharate, Sonali S; Vishwakarma, Ram A
2015-04-01
An early prediction of solubility in physiological media (PBS, SGF and SIF) is useful to predict qualitatively bioavailability and absorption of lead candidates. Despite of the availability of multiple solubility estimation methods, none of the reported method involves simplified fixed protocol for diverse set of compounds. Therefore, a simple and medium-throughput solubility estimation protocol is highly desirable during lead optimization stage. The present work introduces a rapid method for assessment of thermodynamic equilibrium solubility of compounds in aqueous media using 96-well microplate. The developed protocol is straightforward to set up and takes advantage of the sensitivity of UV spectroscopy. The compound, in stock solution in methanol, is introduced in microgram quantities into microplate wells followed by drying at an ambient temperature. Microplates were shaken upon addition of test media and the supernatant was analyzed by UV method. A plot of absorbance versus concentration of a sample provides saturation point, which is thermodynamic equilibrium solubility of a sample. The established protocol was validated using a large panel of commercially available drugs and with conventional miniaturized shake flask method (r(2)>0.84). Additionally, the statistically significant QSPR models were established using experimental solubility values of 52 compounds. Copyright © 2015 Elsevier Ltd. All rights reserved.
Rapid experimental measurements of physicochemical properties to inform models and testing.
Nicolas, Chantel I; Mansouri, Kamel; Phillips, Katherine A; Grulke, Christopher M; Richard, Ann M; Williams, Antony J; Rabinowitz, James; Isaacs, Kristin K; Yau, Alice; Wambaugh, John F
2018-05-02
The structures and physicochemical properties of chemicals are important for determining their potential toxicological effects, toxicokinetics, and route(s) of exposure. These data are needed to prioritize the risk for thousands of environmental chemicals, but experimental values are often lacking. In an attempt to efficiently fill data gaps in physicochemical property information, we generated new data for 200 structurally diverse compounds, which were rigorously selected from the USEPA ToxCast chemical library, and whose structures are available within the Distributed Structure-Searchable Toxicity Database (DSSTox). This pilot study evaluated rapid experimental methods to determine five physicochemical properties, including the log of the octanol:water partition coefficient (known as log(K ow ) or logP), vapor pressure, water solubility, Henry's law constant, and the acid dissociation constant (pKa). For most compounds, experiments were successful for at least one property; log(K ow ) yielded the largest return (176 values). It was determined that 77 ToxPrint structural features were enriched in chemicals with at least one measurement failure, indicating which features may have played a role in rapid method failures. To gauge consistency with traditional measurement methods, the new measurements were compared with previous measurements (where available). Since quantitative structure-activity/property relationship (QSAR/QSPR) models are used to fill gaps in physicochemical property information, 5 suites of QSPRs were evaluated for their predictive ability and chemical coverage or applicability domain of new experimental measurements. The ability to have accurate measurements of these properties will facilitate better exposure predictions in two ways: 1) direct input of these experimental measurements into exposure models; and 2) construction of QSPRs with a wider applicability domain, as their predicted physicochemical values can be used to parameterize exposure models in the absence of experimental data. Published by Elsevier B.V.
O'Boyle, Noel M; Palmer, David S; Nigsch, Florian; Mitchell, John Bo
2008-10-29
We present a novel feature selection algorithm, Winnowing Artificial Ant Colony (WAAC), that performs simultaneous feature selection and model parameter optimisation for the development of predictive quantitative structure-property relationship (QSPR) models. The WAAC algorithm is an extension of the modified ant colony algorithm of Shen et al. (J Chem Inf Model 2005, 45: 1024-1029). We test the ability of the algorithm to develop a predictive partial least squares model for the Karthikeyan dataset (J Chem Inf Model 2005, 45: 581-590) of melting point values. We also test its ability to perform feature selection on a support vector machine model for the same dataset. Starting from an initial set of 203 descriptors, the WAAC algorithm selected a PLS model with 68 descriptors which has an RMSE on an external test set of 46.6 degrees C and R2 of 0.51. The number of components chosen for the model was 49, which was close to optimal for this feature selection. The selected SVM model has 28 descriptors (cost of 5, epsilon of 0.21) and an RMSE of 45.1 degrees C and R2 of 0.54. This model outperforms a kNN model (RMSE of 48.3 degrees C, R2 of 0.47) for the same data and has similar performance to a Random Forest model (RMSE of 44.5 degrees C, R2 of 0.55). However it is much less prone to bias at the extremes of the range of melting points as shown by the slope of the line through the residuals: -0.43 for WAAC/SVM, -0.53 for Random Forest. With a careful choice of objective function, the WAAC algorithm can be used to optimise machine learning and regression models that suffer from overfitting. Where model parameters also need to be tuned, as is the case with support vector machine and partial least squares models, it can optimise these simultaneously. The moving probabilities used by the algorithm are easily interpreted in terms of the best and current models of the ants, and the winnowing procedure promotes the removal of irrelevant descriptors.
On Topological Indices of Certain Families of Nanostar Dendrimers.
Husin, Mohamad Nazri; Hasni, Roslan; Arif, Nabeel Ezzulddin; Imran, Muhammad
2016-06-24
A topological index of graph G is a numerical parameter related to G which characterizes its molecular topology and is usually graph invariant. In the field of quantitative structure-activity (QSAR)/quantitative structure-activity structure-property (QSPR) research, theoretical properties of the chemical compounds and their molecular topological indices such as the Randić connectivity index, atom-bond connectivity (ABC) index and geometric-arithmetic (GA) index are used to predict the bioactivity of different chemical compounds. A dendrimer is an artificially manufactured or synthesized molecule built up from the branched units called monomers. In this paper, the fourth version of ABC index and the fifth version of GA index of certain families of nanostar dendrimers are investigated. We derive the analytical closed formulas for these families of nanostar dendrimers. The obtained results can be of use in molecular data mining, particularly in researching the uniqueness of tested (hyper-branched) molecular graphs.
NASA Astrophysics Data System (ADS)
Marrero-Ponce, Yovani; Santiago, Oscar Martínez; López, Yoan Martínez; Barigye, Stephen J.; Torrens, Francisco
2012-11-01
In this report, we present a new mathematical approach for describing chemical structures of organic molecules at atomic-molecular level, proposing for the first time the use of the concept of the derivative ( partial ) of a molecular graph (MG) with respect to a given event ( E), to obtain a new family of molecular descriptors (MDs). With this purpose, a new matrix representation of the MG, which generalizes graph's theory's traditional incidence matrix, is introduced. This matrix, denominated the generalized incidence matrix, Q, arises from the Boolean representation of molecular sub- graphs that participate in the formation of the graph molecular skeleton MG and could be complete (representing all possible connected sub-graphs) or constitute sub-graphs of determined orders or types as well as a combination of these. The Q matrix is a non-quadratic and unsymmetrical in nature, its columns ( n) and rows ( m) are conditions (letters) and collection of conditions (words) with which the event occurs. This non-quadratic and unsymmetrical matrix is transformed, by algebraic manipulation, to a quadratic and symmetric matrix known as relations frequency matrix, F, which characterizes the participation intensity of the conditions (letters) in the events (words). With F, we calculate the derivative over a pair of atomic nuclei. The local index for the atomic nuclei i, Δ i , can therefore be obtained as a linear combination of all the pair derivatives of the atomic nuclei i with all the rest of the j's atomic nuclei. Here, we also define new strategies that generalize the present form of obtaining global or local (group or atom-type) invariants from atomic contributions (local vertex invariants, LOVIs). In respect to this, metric (norms), means and statistical invariants are introduced. These invariants are applied to a vector whose components are the values Δ i for the atomic nuclei of the molecule or its fragments. Moreover, with the purpose of differentiating among different atoms, an atomic weighting scheme (atom-type labels) is used in the formation of the matrix Q or in LOVIs state. The obtained indices were utilized to describe the partition coefficient (Log P) and the reactivity index (Log K) of the 34 derivatives of 2-furylethylenes. In all the cases, our MDs showed better statistical results than those previously obtained using some of the most used families of MDs in chemometric practice. Therefore, it has been demonstrated to that the proposed MDs are useful in molecular design and permit obtaining easier and robust mathematical models than the majority of those reported in the literature. All this range of mentioned possibilities open "the doors" to the creation of a new family of MDs, using the graph derivative, and avail a new tool for QSAR/QSPR and molecular diversity/similarity studies.
Marrero-Ponce, Yovani; Santiago, Oscar Martínez; López, Yoan Martínez; Barigye, Stephen J; Torrens, Francisco
2012-11-01
In this report, we present a new mathematical approach for describing chemical structures of organic molecules at atomic-molecular level, proposing for the first time the use of the concept of the derivative ([Formula: see text]) of a molecular graph (MG) with respect to a given event (E), to obtain a new family of molecular descriptors (MDs). With this purpose, a new matrix representation of the MG, which generalizes graph's theory's traditional incidence matrix, is introduced. This matrix, denominated the generalized incidence matrix, Q, arises from the Boolean representation of molecular sub-graphs that participate in the formation of the graph molecular skeleton MG and could be complete (representing all possible connected sub-graphs) or constitute sub-graphs of determined orders or types as well as a combination of these. The Q matrix is a non-quadratic and unsymmetrical in nature, its columns (n) and rows (m) are conditions (letters) and collection of conditions (words) with which the event occurs. This non-quadratic and unsymmetrical matrix is transformed, by algebraic manipulation, to a quadratic and symmetric matrix known as relations frequency matrix, F, which characterizes the participation intensity of the conditions (letters) in the events (words). With F, we calculate the derivative over a pair of atomic nuclei. The local index for the atomic nuclei i, Δ(i), can therefore be obtained as a linear combination of all the pair derivatives of the atomic nuclei i with all the rest of the j's atomic nuclei. Here, we also define new strategies that generalize the present form of obtaining global or local (group or atom-type) invariants from atomic contributions (local vertex invariants, LOVIs). In respect to this, metric (norms), means and statistical invariants are introduced. These invariants are applied to a vector whose components are the values Δ(i) for the atomic nuclei of the molecule or its fragments. Moreover, with the purpose of differentiating among different atoms, an atomic weighting scheme (atom-type labels) is used in the formation of the matrix Q or in LOVIs state. The obtained indices were utilized to describe the partition coefficient (Log P) and the reactivity index (Log K) of the 34 derivatives of 2-furylethylenes. In all the cases, our MDs showed better statistical results than those previously obtained using some of the most used families of MDs in chemometric practice. Therefore, it has been demonstrated to that the proposed MDs are useful in molecular design and permit obtaining easier and robust mathematical models than the majority of those reported in the literature. All this range of mentioned possibilities open "the doors" to the creation of a new family of MDs, using the graph derivative, and avail a new tool for QSAR/QSPR and molecular diversity/similarity studies.
Jongeneelen, Frans; ten Berge, Wil
2012-08-01
A physiologically based toxicokinetic (PBTK) model can predict blood and urine concentrations, given a certain exposure scenario of inhalation, dermal and/or oral exposure. The recently developed PBTK-model IndusChemFate is a unified model that mimics the uptake, distribution, metabolism and elimination of a chemical in a reference human of 70 kg. Prediction of the uptake by inhalation is governed by pulmonary exchange to blood. Oral uptake is simulated as a bolus dose that is taken up at a first-order rate. Dermal uptake is estimated by the use of a novel dermal physiologically based module that considers dermal deposition rate and duration of deposition. Moreover, evaporation during skin contact is fully accounted for and related to the volatility of the substance. Partitioning of the chemical and metabolite(s) over blood and tissues is estimated by a Quantitative Structure-Property Relationship (QSPR) algorithm. The aim of this study was to test the generic PBTK-model by comparing measured urinary levels of 1-hydroxypyrene in various inhalation and dermal exposure scenarios with the result of model simulations. In the last three decades, numerous biomonitoring studies of PAH-exposed humans were published that used the bioindicator 1-hydroxypyrene (1-OH-pyrene) in urine. Longitudinal studies that encompass both dosimetry and biomonitoring with repeated sampling in time were selected to test the accuracy of the PBTK-model by comparing the reported concentrations of 1-OHP in urine with the model-predicted values. Two controlled human volunteer studies and three field studies of workers exposed to polycyclic aromatic hydrocarbons (PAH) were included. The urinary pyrene-metabolite levels of a controlled human inhalation study, a transdermal uptake study of bitumen fume, efficacy of respirator use in electrode paste workers, cokery workers in shale oil industry and a longitudinal study of five coke liquefaction workers were compared to the PBTK-predicted values. The simulations showed that the model-predicted concentrations of urinary pyrene and metabolites over time, as well as peak-concentrations and total excreted amount in different exposure scenarios of inhalation and transdermal exposure were in all comparisons within an order of magnitude. The model predicts that only a very small fraction is excreted in urine as parent pyrene and as free 1-OH-pyrene. The predominant urinary metabolite is 1-OH-pyrene-glucuronide. Enterohepatic circulation of 1-OH-pyrene-glucuronide seems the reason of the delayed release from the body. It appeared that urinary excretion of pyrene and pyrene-metabolites in humans is predictable with the PBTK-model. The model outcomes have a satisfying accuracy for early testing, in so-called 1st tier simulations and in range finding. This newly developed generic PBTK-model IndusChemFate is a tool that can be used to do early explorations of the significance of uptake of pyrene in the human body following industrial or environmental exposure scenarios. And it can be used to optimize the sampling time and urine sampling frequency of a biomonitoring program.
Karakashev, Stoyan I; Smoukov, Stoyan K
2017-09-01
The critical micelle concentration (CMC) of various surfactants is difficult to predict accurately, yet often necessary to do in both industry and science. Hence, quantum-chemical software packages for precise calculation of CMC were developed, but they are expensive and time consuming. We show here an easy method for calculating CMC with a reasonable accuracy. Firstly, CMC 0 (intrinsic CMC, absent added salt) was coupled with quantitative structure - property relationship (QSPR) with defined by us parameter "CMC predictor" f 1 . It can be easily calculated from a number of tabulated molecular parameters - the adsorption energy of surfactant's head, the adsorption energy of its methylene groups, its number of carbon atoms, the specific adsorption energy of its counter-ions, their valency and bare radius. We applied this method to determine CMC 0 to a test set of 11 ionic surfactants, yielding 7.5% accuracy. Furthermore, we calculated CMC in the presence of added salts using the advanced version of Corrin-Harkins equation, which accounts for both the intrinsic and the added counter-ions. Our salt-saturation multiplier, accounts for both the type and concentration of the added counter-ions. We applied our theory to a test set containing 11 anionic/cationic surfactant+salt systems, achieving 8% accuracy. Copyright © 2017 Elsevier Inc. All rights reserved.
Yu, Xianyong; Yang, Ying; Yao, Qing; Tao, Hongwen; Lu, Shiyu; Xie, Jian; Zhou, Hu; Yi, Pinggui
2012-10-01
The interaction between thiazolo[2,3-b]pyrimidine (TZPM) analogues and bovine serum albumin (BSA) was investigated by fluorescence spectroscopy and UV-Vis spectroscopy at two different temperatures (299 and 307K) under imitated physiological conditions. The results indicate that both static quenching and dynamic quenching contribute to the fluorescence quenching of BSA by TZPM. The binding constant (K(a)) and binding sites (n) were calculated from the obtained spectra. Based on the Förster non-radiation energy transfer theory, the average binding distance between BSA and TZPM was estimated. The synchronous fluorescence spectra indicate that the conformation of BSA has been changed. The comparison of binding potency of TZPM and BSA suggests that the substituents on the benzene ring enhance the binding affinity of TZPM and BSA. We investigated the possible sub-domains on BSA that bind TZPM by displacement experiments. Furthermore, to explore the effect of molecular structure on the binding, a study on quantitative structure-property relationship (QSPR) was performed, the quantitative relationship equation of R(0), r and K(a) were obtained. We observed that R(0), r and K(a) between BSA and TZPM is connected with the margin of the highest and the lowest occupied orbital energy (ΔE), dipole moment (μ), Molar Volume (V(m)), Mole Mass (M). Copyright © 2012 Elsevier B.V. All rights reserved.
DemQSAR: predicting human volume of distribution and clearance of drugs
NASA Astrophysics Data System (ADS)
Demir-Kavuk, Ozgur; Bentzien, Jörg; Muegge, Ingo; Knapp, Ernst-Walter
2011-12-01
In silico methods characterizing molecular compounds with respect to pharmacologically relevant properties can accelerate the identification of new drugs and reduce their development costs. Quantitative structure-activity/-property relationship (QSAR/QSPR) correlate structure and physico-chemical properties of molecular compounds with a specific functional activity/property under study. Typically a large number of molecular features are generated for the compounds. In many cases the number of generated features exceeds the number of molecular compounds with known property values that are available for learning. Machine learning methods tend to overfit the training data in such situations, i.e. the method adjusts to very specific features of the training data, which are not characteristic for the considered property. This problem can be alleviated by diminishing the influence of unimportant, redundant or even misleading features. A better strategy is to eliminate such features completely. Ideally, a molecular property can be described by a small number of features that are chemically interpretable. The purpose of the present contribution is to provide a predictive modeling approach, which combines feature generation, feature selection, model building and control of overtraining into a single application called DemQSAR. DemQSAR is used to predict human volume of distribution (VDss) and human clearance (CL). To control overtraining, quadratic and linear regularization terms were employed. A recursive feature selection approach is used to reduce the number of descriptors. The prediction performance is as good as the best predictions reported in the recent literature. The example presented here demonstrates that DemQSAR can generate a model that uses very few features while maintaining high predictive power. A standalone DemQSAR Java application for model building of any user defined property as well as a web interface for the prediction of human VDss and CL is available on the webpage of DemPRED: http://agknapp.chemie.fu-berlin.de/dempred/.
DemQSAR: predicting human volume of distribution and clearance of drugs.
Demir-Kavuk, Ozgur; Bentzien, Jörg; Muegge, Ingo; Knapp, Ernst-Walter
2011-12-01
In silico methods characterizing molecular compounds with respect to pharmacologically relevant properties can accelerate the identification of new drugs and reduce their development costs. Quantitative structure-activity/-property relationship (QSAR/QSPR) correlate structure and physico-chemical properties of molecular compounds with a specific functional activity/property under study. Typically a large number of molecular features are generated for the compounds. In many cases the number of generated features exceeds the number of molecular compounds with known property values that are available for learning. Machine learning methods tend to overfit the training data in such situations, i.e. the method adjusts to very specific features of the training data, which are not characteristic for the considered property. This problem can be alleviated by diminishing the influence of unimportant, redundant or even misleading features. A better strategy is to eliminate such features completely. Ideally, a molecular property can be described by a small number of features that are chemically interpretable. The purpose of the present contribution is to provide a predictive modeling approach, which combines feature generation, feature selection, model building and control of overtraining into a single application called DemQSAR. DemQSAR is used to predict human volume of distribution (VD(ss)) and human clearance (CL). To control overtraining, quadratic and linear regularization terms were employed. A recursive feature selection approach is used to reduce the number of descriptors. The prediction performance is as good as the best predictions reported in the recent literature. The example presented here demonstrates that DemQSAR can generate a model that uses very few features while maintaining high predictive power. A standalone DemQSAR Java application for model building of any user defined property as well as a web interface for the prediction of human VD(ss) and CL is available on the webpage of DemPRED: http://agknapp.chemie.fu-berlin.de/dempred/ .
O'Boyle, Noel M; Palmer, David S; Nigsch, Florian; Mitchell, John BO
2008-01-01
Background We present a novel feature selection algorithm, Winnowing Artificial Ant Colony (WAAC), that performs simultaneous feature selection and model parameter optimisation for the development of predictive quantitative structure-property relationship (QSPR) models. The WAAC algorithm is an extension of the modified ant colony algorithm of Shen et al. (J Chem Inf Model 2005, 45: 1024–1029). We test the ability of the algorithm to develop a predictive partial least squares model for the Karthikeyan dataset (J Chem Inf Model 2005, 45: 581–590) of melting point values. We also test its ability to perform feature selection on a support vector machine model for the same dataset. Results Starting from an initial set of 203 descriptors, the WAAC algorithm selected a PLS model with 68 descriptors which has an RMSE on an external test set of 46.6°C and R2 of 0.51. The number of components chosen for the model was 49, which was close to optimal for this feature selection. The selected SVM model has 28 descriptors (cost of 5, ε of 0.21) and an RMSE of 45.1°C and R2 of 0.54. This model outperforms a kNN model (RMSE of 48.3°C, R2 of 0.47) for the same data and has similar performance to a Random Forest model (RMSE of 44.5°C, R2 of 0.55). However it is much less prone to bias at the extremes of the range of melting points as shown by the slope of the line through the residuals: -0.43 for WAAC/SVM, -0.53 for Random Forest. Conclusion With a careful choice of objective function, the WAAC algorithm can be used to optimise machine learning and regression models that suffer from overfitting. Where model parameters also need to be tuned, as is the case with support vector machine and partial least squares models, it can optimise these simultaneously. The moving probabilities used by the algorithm are easily interpreted in terms of the best and current models of the ants, and the winnowing procedure promotes the removal of irrelevant descriptors. PMID:18959785
Advances in QSPR/QSTR models of ionic liquids for the design of greener solvents of the future.
Das, Rudra Narayan; Roy, Kunal
2013-02-01
In order to protect the life of all creatures living in the environment, the toxicity arising from various hazardous chemicals must be controlled. This imposes a serious responsibility on different chemical, pharmaceutical, and other biological industries to produce less harmful chemicals. Among various international initiatives on harmful aspects of chemicals, the 'Green Chemistry' ideology appears to be one of the most highlighted concepts that focus on the use of eco-friendly chemicals. Ionic liquids are a comparatively new addition to the huge garrison of chemical compounds released from the industry. Extensive research on ionic liquids in the past decade has shown them to be highly useful chemicals with a good degree of thermal and chemical stability, appreciable task specificity and minimal environmental release resulting in a notion of 'green chemical'. However, studies have also shown that ionic liquids are not intrinsically non-toxic agents and can pose severe degree of toxicity as well as the risk of bioaccumulation depending upon their structural components. Moreover, ionic liquids possess issues of waste generation during synthesis as well as separation problems. Predictive quantitative structure-activity relationship (QSAR) models constitute a rational opportunity to explore the structural attributes of ionic liquids towards various physicochemical and toxicological endpoints and thereby leading to the design of environmentally more benevolent analogues with higher process selectivity. Such studies on ionic liquids have been less extensive compared to other industrial chemicals. The present review attempts to summarize different QSAR studies performed on these chemicals and also highlights the safety, health and environmental issues along with the application specificity on the dogma of 'green chemistry'.
Density Functionals of Chemical Bonding
Putz, Mihai V.
2008-01-01
The behavior of electrons in general many-electronic systems throughout the density functionals of energy is reviewed. The basic physico-chemical concepts of density functional theory are employed to highlight the energy role in chemical structure while its extended influence in electronic localization function helps in chemical bonding understanding. In this context the energy functionals accompanied by electronic localization functions may provide a comprehensive description of the global-local levels electronic structures in general and of chemical bonds in special. Becke-Edgecombe and author’s Markovian electronic localization functions are discussed at atomic, molecular and solid state levels. Then, the analytical survey of the main workable kinetic, exchange, and correlation density functionals within local and gradient density approximations is undertaken. The hierarchy of various energy functionals is formulated by employing both the parabolic and statistical correlation degree of them with the electronegativity and chemical hardness indices by means of quantitative structure-property relationship (QSPR) analysis for basic atomic and molecular systems. PMID:19325846
NASA Astrophysics Data System (ADS)
Blanford, W. J.; Neil, L.
2017-12-01
To better evaluate the potential for toxic organic chemicals to migrate upward through the rock strata from hydraulic fracturing zones and into groundwater resources, a series of miscible displacement solute transport studies of cores of Berea Sandstone have been conducted using hydrostatic core holder. These tests involved passing aqueous solutions with natural background level of salts using a high pressure LC pump through 2 in wide by 3 in long unfractured cores held within the holder. Relative solute transport of 100 to 500ml pulses of target solutes including a series of chlorinated solvents and methylated benzenes was measured through in-line UV and fluorescence detectors and manual sampling and analysis with GCMS. The results found these sandstones to result in smooth ideal shaped breakthrough curves. Analysis with 1D transport models (CXTFIT) of the results found strong correlation with chemical parameters (diffusion coefficients, aqueous solubility, and octanol-water partitioning coefficients) showing that these parameter and QSPR relationships can be used to make accurate predictions for such a system. In addition to the results of the studies, lessons learned from this novel use of a coreholder for evaluation of porosity, water-saturated permeability, and solute transport of these sandstones (K = 1.5cm/day) and far less permeable sandstones samples (K = 0.15 cm/yr) from a hydraulic fracturing site in central Pennsylvania will be presented.
Marrero-Ponce, Yovani; Medina-Marrero, Ricardo; Castillo-Garit, Juan A; Romero-Zaldivar, Vicente; Torrens, Francisco; Castro, Eduardo A
2005-04-15
A novel approach to bio-macromolecular design from a linear algebra point of view is introduced. A protein's total (whole protein) and local (one or more amino acid) linear indices are a new set of bio-macromolecular descriptors of relevance to protein QSAR/QSPR studies. These amino-acid level biochemical descriptors are based on the calculation of linear maps on Rn[f k(xmi):Rn-->Rn] in canonical basis. These bio-macromolecular indices are calculated from the kth power of the macromolecular pseudograph alpha-carbon atom adjacency matrix. Total linear indices are linear functional on Rn. That is, the kth total linear indices are linear maps from Rn to the scalar R[f k(xm):Rn-->R]. Thus, the kth total linear indices are calculated by summing the amino-acid linear indices of all amino acids in the protein molecule. A study of the protein stability effects for a complete set of alanine substitutions in the Arc repressor illustrates this approach. A quantitative model that discriminates near wild-type stability alanine mutants from the reduced-stability ones in a training series was obtained. This model permitted the correct classification of 97.56% (40/41) and 91.67% (11/12) of proteins in the training and test set, respectively. It shows a high Matthews correlation coefficient (MCC=0.952) for the training set and an MCC=0.837 for the external prediction set. Additionally, canonical regression analysis corroborated the statistical quality of the classification model (Rcanc=0.824). This analysis was also used to compute biological stability canonical scores for each Arc alanine mutant. On the other hand, the linear piecewise regression model compared favorably with respect to the linear regression one on predicting the melting temperature (tm) of the Arc alanine mutants. The linear model explains almost 81% of the variance of the experimental tm (R=0.90 and s=4.29) and the LOO press statistics evidenced its predictive ability (q2=0.72 and scv=4.79). Moreover, the TOMOCOMD-CAMPS method produced a linear piecewise regression (R=0.97) between protein backbone descriptors and tm values for alanine mutants of the Arc repressor. A break-point value of 51.87 degrees C characterized two mutant clusters and coincided perfectly with the experimental scale. For this reason, we can use the linear discriminant analysis and piecewise models in combination to classify and predict the stability of the mutant Arc homodimers. These models also permitted the interpretation of the driving forces of such folding process, indicating that topologic/topographic protein backbone interactions control the stability profile of wild-type Arc and its alanine mutants.
NASA Astrophysics Data System (ADS)
Consonni, Viviana; Todeschini, Roberto
In the last decades, several scientific researches have been focused on studying how to encompass and convert - by a theoretical pathway - the information encoded in the molecular structure into one or more numbers used to establish quantitative relationships between structures and properties, biological activities, or other experimental properties. Molecular descriptors are formally mathematical representations of a molecule obtained by a well-specified algorithm applied to a defined molecular representation or a well-specified experimental procedure. They play a fundamental role in chemistry, pharmaceutical sciences, environmental protection policy, toxicology, ecotoxicology, health research, and quality control. Evidence of the interest of the scientific community in the molecular descriptors is provided by the huge number of descriptors proposed up today: more than 5000 descriptors derived from different theories and approaches are defined in the literature and most of them can be calculated by means of dedicated software applications. Molecular descriptors are of outstanding importance in the research fields of quantitative structure-activity relationships (QSARs) and quantitative structure-property relationships (QSPRs), where they are the independent chemical information used to predict the properties of interest. Along with the definition of appropriate molecular descriptors, the molecular structure representation and the mathematical tools for deriving and assessing models are other fundamental components of the QSAR/QSPR approach. The remarkable progress during the last few years in chemometrics and chemoinformatics has led to new strategies for finding mathematical meaningful relationships between the molecular structure and biological activities, physico-chemical, toxicological, and environmental properties of chemicals. Different approaches for deriving molecular descriptors here reviewed and some of the most relevant descriptors are presented in detail with numerical examples.
LOWER COST METHODS FOR IMPROVED OIL RECOVERY (IOR) VIA SURFACTANT FLOODING
DOE Office of Scientific and Technical Information (OSTI.GOV)
William A. Goddard III; Yongchun Tang; Patrick Shuler
2004-09-01
This report provides a summary of the work performed in this 3-year project sponsored by DOE. The overall objective of this project is to identify new, potentially more cost-effective surfactant formulations for improved oil recovery (IOR). The general approach is to use an integrated experimental and computational chemistry effort to improve our understanding of the link between surfactant structure and performance, and from this knowledge, develop improved IOR surfactant formulations. Accomplishments for the project include: (1) completion of a literature review to assemble current and new surfactant IOR ideas, (2) Development of new atomistic-level MD (molecular dynamic) modeling methodologies tomore » calculate IFT (interfacial tension) rigorously from first principles, (3) exploration of less computationally intensive mesoscale methods to estimate IFT, Quantitative Structure Property Relationship (QSPR), and cohesive energy density (CED) calculations, (4) experiments to screen many surfactant structures for desirable low IFT and solid adsorption behavior, and (5) further experimental characterization of the more promising new candidate formulations (based on alkyl polyglycosides (APG) and alkyl propoxy sulfate surfactants). Important findings from this project include: (1) the IFT between two pure substances may be calculated quantitatively from fundamental principles using Molecular Dynamics, the same approach can provide qualitative results for ternary systems containing a surfactant, (2) low concentrations of alkyl polyglycoside surfactants have potential for IOR (Improved Oil Recovery) applications from a technical standpoint (if formulated properly with a cosurfactant, they can create a low IFT at low concentration) and also are viable economically as they are available commercially, and (3) the alkylpropoxy sulfate surfactants have promising IFT performance also, plus these surfactants can have high optimal salinity and so may be attractive for use in higher salinity reservoirs. Alkylpropoxy sulfate surfactants are not yet available as large volume commercial products. The results presented herein can provide the needed industrial impetus for extending application (alkyl polyglycoside) or scaling up (alkylpropoxy sulfates) of these two promising surfactants for enhanced oil recovery. Furthermore, the advanced simulations tools presented here can be used to continue to uncover new types of surfactants with promising properties such as inherent low IFT and biodegradability.« less
2017-01-01
Electrospray ionization (ESI) is widely used in liquid chromatography coupled to mass spectrometry (LC–MS) for the analysis of biomolecules. However, the ESI process is still not completely understood, and it is often a matter of trial and error to enhance ESI efficiency and, hence, the response of a given set of compounds. In this work we performed a systematic study of the ESI response of 14 amino acids that were acylated with organic acid anhydrides of increasing chain length and with poly(ethylene glycol) (PEG) changing certain physicochemical properties in a predictable manner. By comparing the ESI response of 70 derivatives, we found that there was a strong correlation between the calculated molecular volume and the ESI response, while correlation with hydrophobicity (log P values), pKa, and the inverse calculated surface tension was significantly lower although still present, especially for individual derivatized amino acids with increasing acyl chain lengths. Acylation with PEG containing five ethylene glycol units led to the largest gain in ESI response. This response was maximal independent of the calculated physicochemical properties or the type of amino acid. Since no actual physicochemical data is available for most derivatized compounds, the responses were also used as input for a quantitative structure–property relationship (QSPR) model to find the best physicochemical descriptors relating to the ESI response from molecular structures using the amino acids and their derivatives as a reference set. A topological descriptor related to molecular size (SPAN) was isolated next to a descriptor related to the atomic composition and structural groups (BIC0). The validity of the model was checked with a test set of 43 additional compounds that were unrelated to amino acids. While prediction was generally good (R2 > 0.9), compounds containing halogen atoms or nitro groups gave a lower predicted ESI response. PMID:28737384
Linear and Branched PEIs (Polyethylenimines) and Their Property Space.
Lungu, Claudiu N; Diudea, Mircea V; Putz, Mihai V; Grudziński, Ireneusz P
2016-04-13
A chemical property space defines the adaptability of a molecule to changing conditions and its interaction with other molecular systems determining a pharmacological response. Within a congeneric molecular series (compounds with the same derivatization algorithm and thus the same brute formula) the chemical properties vary in a monotonic manner, i.e., congeneric compounds share the same chemical property space. The chemical property space is a key component in molecular design, where some building blocks are functionalized, i.e., derivatized, and eventually self-assembled in more complex systems, such as enzyme-ligand systems, of which (physico-chemical) properties/bioactivity may be predicted by QSPR/QSAR (quantitative structure-property/activity relationship) studies. The system structure is determined by the binding type (temporal/permanent; electrostatic/covalent) and is reflected in its local electronic (and/or magnetic) properties. Such nano-systems play the role of molecular devices, important in nano-medicine. In the present article, the behavior of polyethylenimine (PEI) macromolecules (linear LPEI and branched BPEI, respectively) with respect to the glucose oxidase enzyme GOx is described in terms of their (interacting) energy, geometry and topology, in an attempt to find the best shape and size of PEIs to be useful for a chosen (nanochemistry) purpose.
Linear and Branched PEIs (Polyethylenimines) and Their Property Space
Lungu, Claudiu N.; Diudea, Mircea V.; Putz, Mihai V.; Grudziński, Ireneusz P.
2016-01-01
A chemical property space defines the adaptability of a molecule to changing conditions and its interaction with other molecular systems determining a pharmacological response. Within a congeneric molecular series (compounds with the same derivatization algorithm and thus the same brute formula) the chemical properties vary in a monotonic manner, i.e., congeneric compounds share the same chemical property space. The chemical property space is a key component in molecular design, where some building blocks are functionalized, i.e., derivatized, and eventually self-assembled in more complex systems, such as enzyme-ligand systems, of which (physico-chemical) properties/bioactivity may be predicted by QSPR/QSAR (quantitative structure-property/activity relationship) studies. The system structure is determined by the binding type (temporal/permanent; electrostatic/covalent) and is reflected in its local electronic (and/or magnetic) properties. Such nano-systems play the role of molecular devices, important in nano-medicine. In the present article, the behavior of polyethylenimine (PEI) macromolecules (linear LPEI and branched BPEI, respectively) with respect to the glucose oxidase enzyme GOx is described in terms of their (interacting) energy, geometry and topology, in an attempt to find the best shape and size of PEIs to be useful for a chosen (nanochemistry) purpose. PMID:27089324
227 Views of RNA: Is RNA Unique in Its Chemical Isomer Space?
Meringer, Markus; Goodwin, Jay
2015-01-01
Abstract Ribonucleic acid (RNA) is one of the two nucleic acids used by extant biochemistry and plays a central role as the intermediary carrier of genetic information in transcription and translation. If RNA was involved in the origin of life, it should have a facile prebiotic synthesis. A wide variety of such syntheses have been explored. However, to date no one-pot reaction has been shown capable of yielding RNA monomers from likely prebiotically abundant starting materials, though this does not rule out the possibility that simpler, more easily prebiotically accessible nucleic acids may have preceded RNA. Given structural constraints, such as the ability to form complementary base pairs and a linear covalent polymer, a variety of structural isomers of RNA could potentially function as genetic platforms. By using structure-generation software, all the potential structural isomers of the ribosides (BC5H9O4, where B is nucleobase), as well as a set of simpler minimal analogues derived from them, that can potentially serve as monomeric building blocks of nucleic acid–like molecules are enumerated. Molecules are selected based on their likely stability under biochemically relevant conditions (e.g., moderate pH and temperature) and the presence of at least two functional groups allowing the monomers to be incorporated into linear polymers. The resulting structures are then evaluated by using molecular descriptors typically applied in quantitative structure–property relationship (QSPR) studies and predicted physicochemical properties. Several databases have been queried to determine whether any of the computed isomers had been synthesized previously. Very few of the molecules that emerge from this structure set have been previously described. We conclude that ribonucleosides may have competed with a multitude of alternative structures whose potential proto-biochemical roles and abiotic syntheses remain to be explored. Key Words: Evolution—Chemical evolution—Exobiology—Prebiotic chemistry—RNA world. Astrobiology 15, 538–558. PMID:26200431
Four new topological indices based on the molecular path code.
Balaban, Alexandru T; Beteringhe, Adrian; Constantinescu, Titus; Filip, Petru A; Ivanciuc, Ovidiu
2007-01-01
The sequence of all paths pi of lengths i = 1 to the maximum possible length in a hydrogen-depleted molecular graph (which sequence is also called the molecular path code) contains significant information on the molecular topology, and as such it is a reasonable choice to be selected as the basis of topological indices (TIs). Four new (or five partly new) TIs with progressively improved performance (judged by correctly reflecting branching, centricity, and cyclicity of graphs, ordering of alkanes, and low degeneracy) have been explored. (i) By summing the squares of all numbers in the sequence one obtains Sigmaipi(2), and by dividing this sum by one plus the cyclomatic number, a Quadratic TI is obtained: Q = Sigmaipi(2)/(mu+1). (ii) On summing the Square roots of all numbers in the sequence one obtains Sigmaipi(1/2), and by dividing this sum by one plus the cyclomatic number, the TI denoted by S is obtained: S = Sigmaipi(1/2)/(mu+1). (iii) On dividing terms in this sum by the corresponding topological distances, one obtains the Distance-reduced index D = Sigmai{pi(1/2)/[i(mu+1)]}. Two similar formulas define the next two indices, the first one with no square roots: (iv) distance-Attenuated index: A = Sigmai{pi/[i(mu + 1)]}; and (v) the last TI with two square roots: Path-count index: P = Sigmai{pi(1/2)/[i(1/2)(mu + 1)]}. These five TIs are compared for their degeneracy, ordering of alkanes, and performance in QSPR (for all alkanes with 3-12 carbon atoms and for all possible chemical cyclic or acyclic graphs with 4-6 carbon atoms) in correlations with six physical properties and one chemical property.
Newly Identified DDT-Related Compounds Accumulating in Southern California Bottlenose Dolphins.
Mackintosh, Susan A; Dodder, Nathan G; Shaul, Nellie J; Aluwihare, Lihini I; Maruya, Keith A; Chivers, Susan J; Danil, Kerri; Weller, David W; Hoh, Eunha
2016-11-15
Nontargeted GC×GC-TOF/MS analysis of blubber from 8 common bottlenose dolphins (Tursiops truncatus) inhabiting the Southern California Bight was performed to identify novel, bioaccumulative DDT-related compounds and to determine their abundance relative to the commonly studied DDT-related compounds. We identified 45 bioaccumulative DDT-related compounds of which the majority (80%) is not typically monitored in environmental media. Identified compounds include transformation products, technical mixture impurities such as tris(chlorophenyl)methane (TCPM), the presumed TCPM metabolite tris(chlorophenyl)methanol (TCPMOH), and structurally related compounds with unknown sources, such as hexa- to octachlorinated diphenylethene. To investigate impurities in pesticide mixtures as possible sources of these compounds, we analyzed technical DDT, the primary source of historical contamination in the region, and technical Dicofol, a current use pesticide that contains DDT-related compounds. The technical mixtures contained only 33% of the compounds identified in the blubber, suggesting that transformation products contribute to the majority of the load of DDT-related contaminants in these sentinels of ocean health. Quantitative analysis revealed that TCPM was the second most abundant compound class detected in the blubber, following DDE, and TCPMOH loads were greater than DDT. QSPR estimates verified 4,4',4″-TCPM and 4,4'4,″-TCPMOH are persistent and bioaccumulative.
NASA Astrophysics Data System (ADS)
Song, Dean; Sun, Huiqing; Jiang, Xiaohua; Kong, Fanyu; Qiang, Zhimin; Zhang, Aiqian; Liu, Huijuan; Qu, Jiuhui
2018-01-01
As an emerging environmental contaminant, the herbicide quinclorac has attracted much attention in recent years. However, a very fundamental issue, the acid dissociation of quinclorac has not yet to be studied in detail. Herein, the pKa value and the corresponding structures of quinclorac were systematically investigated using combined experimental and theoretical approaches. The experimental pKa of quinclorac was determined by the spectrophotometric method to be 2.65 at 25 °C with ionic strength of 0.05 M, and was corrected to be 2.56 at ionic strength of zero. The molecular structures of quinclorac were then located by employing the DFT calculation. The anionic quinclorac was directly located with the carboxylic group perpendicular to the aromatic ring, while neutral quinclorac was found to be the equivalent twin structures. The result was further confirmed by analyzing the UV/Vis and MS-MS2 spectra from both experimental and theoretical viewpoints. By employing the QSPR approach, the theoretical pKa of QCR was determined to be 2.50, which is excellent agreement with the experimental result obtained herein. The protonation of QCR at the carboxylic group instead of the quinoline structure was attributed to the weak electronegative property of nitrogen atom induced by the electron-withdrawing groups. It is anticipated that this work could not only help in gaining a deep insight into the acid dissociation of quinclorac but also offering the key information on its reaction and interaction with others.
Grid-based Continual Analysis of Molecular Interior for Drug Discovery, QSAR and QSPR.
Potemkin, Andrey V; Grishina, Maria A; Potemkin, Vladimir A
2017-01-01
In 1979, R.D.Cramer and M.Milne made a first realization of 3D comparison of molecules by aligning them in space and by mapping their molecular fields to a 3D grid. Further, this approach was developed as the DYLOMMS (Dynamic Lattice- Oriented Molecular Modelling System) approach. In 1984, H.Wold and S.Wold proposed the use of partial least squares (PLS) analysis, instead of principal component analysis, to correlate the field values with biological activities. Then, in 1988, the method which was called CoMFA (Comparative Molecular Field Analysis) was introduced and the appropriate software became commercially available. Since 1988, a lot of 3D QSAR methods, algorithms and their modifications are introduced for solving of virtual drug discovery problems (e.g., CoMSIA, CoMMA, HINT, HASL, GOLPE, GRID, PARM, Raptor, BiS, CiS, ConGO,). All the methods can be divided into two groups (classes):1. Methods studying the exterior of molecules; 2) Methods studying the interior of molecules. A series of grid-based computational technologies for Continual Molecular Interior analysis (CoMIn) are invented in the current paper. The grid-based analysis is fulfilled by means of a lattice construction analogously to many other grid-based methods. The further continual elucidation of molecular structure is performed in various ways. (i) In terms of intermolecular interactions potentials. This can be represented as a superposition of Coulomb, Van der Waals interactions and hydrogen bonds. All the potentials are well known continual functions and their values can be determined in all lattice points for a molecule. (ii) In the terms of quantum functions such as electron density distribution, Laplacian and Hamiltonian of electron density distribution, potential energy distribution, the highest occupied and the lowest unoccupied molecular orbitals distribution and their superposition. To reduce time of calculations using quantum methods based on the first principles, an original quantum free-orbital approach AlteQ is proposed. All the functions can be calculated using a quantum approach at a sufficient level of theory and their values can be determined in all lattice points for a molecule. Then, the molecules of a dataset can be superimposed in the lattice for the maximal coincidence (or minimal deviations) of the potentials (i) or the quantum functions (ii). The methods and criteria of the superimposition are discussed. After that a functional relationship between biological activity or property and characteristics of potentials (i) or functions (ii) is created. The methods of the quantitative relationship construction are discussed. New approaches for rational virtual drug design based on the intermolecular potentials and quantum functions are invented. All the invented methods are realized at www.chemosophia.com web page. Therefore, a set of 3D QSAR approaches for continual molecular interior study giving a lot of opportunities for virtual drug discovery, virtual screening and ligand-based drug design are invented. The continual elucidation of molecular structure is performed in the terms of intermolecular interactions potentials and in the terms of quantum functions such as electron density distribution, Laplacian and Hamiltonian of electron density distribution, potential energy distribution, the highest occupied and the lowest unoccupied molecular orbitals distribution and their superposition. To reduce time of calculations using quantum methods based on the first principles, an original quantum free-orbital approach AlteQ is proposed. The methods of the quantitative relationship construction are discussed. New approaches for rational virtual drug design based on the intermolecular potentials and quantum functions are invented. All the invented methods are realized at www.chemosophia.com web page. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Sahoo, Sagarika; Adhikari, Chandana; Kuanar, Minati; Mishra, Bijay K
2016-01-01
Synthesis of organic compounds with specific biological activity or physicochemical characteristics needs a thorough analysis of the enumerable data set obtained from literature. Quantitative structure property/activity relationships have made it simple by predicting the structure of the compound with any optimized activity. For that there is a paramount data set of molecular descriptors (MD). This review is a survey on the generation of the molecular descriptors and its probable applications in QSP/AR. Literatures have been collected from a wide class of research journals, citable web reports, seminar proceedings and books. The MDs were classified according to their generation. The applications of the MDs on the QSP/AR have also been reported in this review. The MDs can be classified into experimental and theoretical types, having a sub classification of the later into structural and quantum chemical descriptors. The structural parameters are derived from molecular graphs or topology of the molecules. Even the pixel of the molecular image can be used as molecular descriptor. In QSPR studies the physicochemical properties include boiling point, heat capacity, density, refractive index, molar volume, surface tension, heat of formation, octanol-water partition coefficient, solubility, chromatographic retention indices etc. Among biological activities toxicity, antimalarial activity, sensory irritant, potencies of local anesthetic, tadpole narcosis, antifungal activity, enzyme inhibiting activity are some important parameters in the QSAR studies. The classification of the MDs is mostly generic in nature. The application of the MDs in QSP/AR also has a generic link. Experimental MDs are more suitable in correlation analysis than the theoretical ones but are more expensive for generation. In advent of sophisticated computational tools and experimental design proliferation of MDs is inevitable, but for a highly optimized MD, studies on generation of MD is an unending process.
A demonstrative model of a lunar base simulation on a personal computer
NASA Technical Reports Server (NTRS)
1985-01-01
The initial demonstration model of a lunar base simulation is described. This initial model was developed on the personal computer level to demonstrate feasibility and technique before proceeding to a larger computer-based model. Lotus Symphony Version 1.1 software was used to base the demonstration model on an personal computer with an MS-DOS operating system. The personal computer-based model determined the applicability of lunar base modeling techniques developed at an LSPI/NASA workshop. In addition, the personnal computer-based demonstration model defined a modeling structure that could be employed on a larger, more comprehensive VAX-based lunar base simulation. Refinement of this personal computer model and the development of a VAX-based model is planned in the near future.
Model-based RSA of a femoral hip stem using surface and geometrical shape models.
Kaptein, Bart L; Valstar, Edward R; Spoor, Cees W; Stoel, Berend C; Rozing, Piet M
2006-07-01
Roentgen stereophotogrammetry (RSA) is a highly accurate three-dimensional measuring technique for assessing micromotion of orthopaedic implants. A drawback is that markers have to be attached to the implant. Model-based techniques have been developed to prevent using special marked implants. We compared two model-based RSA methods with standard marker-based RSA techniques. The first model-based RSA method used surface models, and the second method used elementary geometrical shape (EGS) models. We used a commercially available stem to perform experiments with a phantom as well as reanalysis of patient RSA radiographs. The data from the phantom experiment indicated the accuracy and precision of the elementary geometrical shape model-based RSA method is equal to marker-based RSA. For model-based RSA using surface models, the accuracy is equal to the accuracy of marker-based RSA, but its precision is worse. We found no difference in accuracy and precision between the two model-based RSA techniques in clinical data. For this particular hip stem, EGS model-based RSA is a good alternative for marker-based RSA.
Regional climate model downscaling may improve the prediction of alien plant species distributions
NASA Astrophysics Data System (ADS)
Liu, Shuyan; Liang, Xin-Zhong; Gao, Wei; Stohlgren, Thomas J.
2014-12-01
Distributions of invasive species are commonly predicted with species distribution models that build upon the statistical relationships between observed species presence data and climate data. We used field observations, climate station data, and Maximum Entropy species distribution models for 13 invasive plant species in the United States, and then compared the models with inputs from a General Circulation Model (hereafter GCM-based models) and a downscaled Regional Climate Model (hereafter, RCM-based models).We also compared species distributions based on either GCM-based or RCM-based models for the present (1990-1999) to the future (2046-2055). RCM-based species distribution models replicated observed distributions remarkably better than GCM-based models for all invasive species under the current climate. This was shown for the presence locations of the species, and by using four common statistical metrics to compare modeled distributions. For two widespread invasive taxa ( Bromus tectorum or cheatgrass, and Tamarix spp. or tamarisk), GCM-based models failed miserably to reproduce observed species distributions. In contrast, RCM-based species distribution models closely matched observations. Future species distributions may be significantly affected by using GCM-based inputs. Because invasive plants species often show high resilience and low rates of local extinction, RCM-based species distribution models may perform better than GCM-based species distribution models for planning containment programs for invasive species.
Representing Micro-Macro Linkages by Actor-Based Dynamic Network Models
ERIC Educational Resources Information Center
Snijders, Tom A. B.; Steglich, Christian E. G.
2015-01-01
Stochastic actor-based models for network dynamics have the primary aim of statistical inference about processes of network change, but may be regarded as a kind of agent-based models. Similar to many other agent-based models, they are based on local rules for actor behavior. Different from many other agent-based models, by including elements of…
Model-free and model-based reward prediction errors in EEG.
Sambrook, Thomas D; Hardwick, Ben; Wills, Andy J; Goslin, Jeremy
2018-05-24
Learning theorists posit two reinforcement learning systems: model-free and model-based. Model-based learning incorporates knowledge about structure and contingencies in the world to assign candidate actions with an expected value. Model-free learning is ignorant of the world's structure; instead, actions hold a value based on prior reinforcement, with this value updated by expectancy violation in the form of a reward prediction error. Because they use such different learning mechanisms, it has been previously assumed that model-based and model-free learning are computationally dissociated in the brain. However, recent fMRI evidence suggests that the brain may compute reward prediction errors to both model-free and model-based estimates of value, signalling the possibility that these systems interact. Because of its poor temporal resolution, fMRI risks confounding reward prediction errors with other feedback-related neural activity. In the present study, EEG was used to show the presence of both model-based and model-free reward prediction errors and their place in a temporal sequence of events including state prediction errors and action value updates. This demonstration of model-based prediction errors questions a long-held assumption that model-free and model-based learning are dissociated in the brain. Copyright © 2018 Elsevier Inc. All rights reserved.
NED-IIS: An Intelligent Information System for Forest Ecosystem Management
W.D. Potter; S. Somasekar; R. Kommineni; H.M. Rauscher
1999-01-01
We view Intelligent Information System (IIS) as composed of a unified knowledge base, database, and model base. The model base includes decision support models, forecasting models, and cvsualization models for example. In addition, we feel that the model base should include domain specific porblems solving modules as well as decision support models. This, then,...
A hybrid agent-based approach for modeling microbiological systems.
Guo, Zaiyi; Sloot, Peter M A; Tay, Joc Cing
2008-11-21
Models for systems biology commonly adopt Differential Equations or Agent-Based modeling approaches for simulating the processes as a whole. Models based on differential equations presuppose phenomenological intracellular behavioral mechanisms, while models based on Multi-Agent approach often use directly translated, and quantitatively less precise if-then logical rule constructs. We propose an extendible systems model based on a hybrid agent-based approach where biological cells are modeled as individuals (agents) while molecules are represented by quantities. This hybridization in entity representation entails a combined modeling strategy with agent-based behavioral rules and differential equations, thereby balancing the requirements of extendible model granularity with computational tractability. We demonstrate the efficacy of this approach with models of chemotaxis involving an assay of 10(3) cells and 1.2x10(6) molecules. The model produces cell migration patterns that are comparable to laboratory observations.
Cognitive components underpinning the development of model-based learning.
Potter, Tracey C S; Bryce, Nessa V; Hartley, Catherine A
2017-06-01
Reinforcement learning theory distinguishes "model-free" learning, which fosters reflexive repetition of previously rewarded actions, from "model-based" learning, which recruits a mental model of the environment to flexibly select goal-directed actions. Whereas model-free learning is evident across development, recruitment of model-based learning appears to increase with age. However, the cognitive processes underlying the development of model-based learning remain poorly characterized. Here, we examined whether age-related differences in cognitive processes underlying the construction and flexible recruitment of mental models predict developmental increases in model-based choice. In a cohort of participants aged 9-25, we examined whether the abilities to infer sequential regularities in the environment ("statistical learning"), maintain information in an active state ("working memory") and integrate distant concepts to solve problems ("fluid reasoning") predicted age-related improvements in model-based choice. We found that age-related improvements in statistical learning performance did not mediate the relationship between age and model-based choice. Ceiling performance on our working memory assay prevented examination of its contribution to model-based learning. However, age-related improvements in fluid reasoning statistically mediated the developmental increase in the recruitment of a model-based strategy. These findings suggest that gradual development of fluid reasoning may be a critical component process underlying the emergence of model-based learning. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Agent-Based vs. Equation-based Epidemiological Models:A Model Selection Case Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sukumar, Sreenivas R; Nutaro, James J
This paper is motivated by the need to design model validation strategies for epidemiological disease-spread models. We consider both agent-based and equation-based models of pandemic disease spread and study the nuances and complexities one has to consider from the perspective of model validation. For this purpose, we instantiate an equation based model and an agent based model of the 1918 Spanish flu and we leverage data published in the literature for our case- study. We present our observations from the perspective of each implementation and discuss the application of model-selection criteria to compare the risk in choosing one modeling paradigmmore » to another. We conclude with a discussion of our experience and document future ideas for a model validation framework.« less
Construction of dynamic stochastic simulation models using knowledge-based techniques
NASA Technical Reports Server (NTRS)
Williams, M. Douglas; Shiva, Sajjan G.
1990-01-01
Over the past three decades, computer-based simulation models have proven themselves to be cost-effective alternatives to the more structured deterministic methods of systems analysis. During this time, many techniques, tools and languages for constructing computer-based simulation models have been developed. More recently, advances in knowledge-based system technology have led many researchers to note the similarities between knowledge-based programming and simulation technologies and to investigate the potential application of knowledge-based programming techniques to simulation modeling. The integration of conventional simulation techniques with knowledge-based programming techniques is discussed to provide a development environment for constructing knowledge-based simulation models. A comparison of the techniques used in the construction of dynamic stochastic simulation models and those used in the construction of knowledge-based systems provides the requirements for the environment. This leads to the design and implementation of a knowledge-based simulation development environment. These techniques were used in the construction of several knowledge-based simulation models including the Advanced Launch System Model (ALSYM).
Practical Application of Model-based Programming and State-based Architecture to Space Missions
NASA Technical Reports Server (NTRS)
Horvath, Gregory; Ingham, Michel; Chung, Seung; Martin, Oliver; Williams, Brian
2006-01-01
A viewgraph presentation to develop models from systems engineers that accomplish mission objectives and manage the health of the system is shown. The topics include: 1) Overview; 2) Motivation; 3) Objective/Vision; 4) Approach; 5) Background: The Mission Data System; 6) Background: State-based Control Architecture System; 7) Background: State Analysis; 8) Overview of State Analysis; 9) Background: MDS Software Frameworks; 10) Background: Model-based Programming; 10) Background: Titan Model-based Executive; 11) Model-based Execution Architecture; 12) Compatibility Analysis of MDS and Titan Architectures; 13) Integrating Model-based Programming and Execution into the Architecture; 14) State Analysis and Modeling; 15) IMU Subsystem State Effects Diagram; 16) Titan Subsystem Model: IMU Health; 17) Integrating Model-based Programming and Execution into the Software IMU; 18) Testing Program; 19) Computationally Tractable State Estimation & Fault Diagnosis; 20) Diagnostic Algorithm Performance; 21) Integration and Test Issues; 22) Demonstrated Benefits; and 23) Next Steps
Model-Based Reasoning in Humans Becomes Automatic with Training.
Economides, Marcos; Kurth-Nelson, Zeb; Lübbert, Annika; Guitart-Masip, Marc; Dolan, Raymond J
2015-09-01
Model-based and model-free reinforcement learning (RL) have been suggested as algorithmic realizations of goal-directed and habitual action strategies. Model-based RL is more flexible than model-free but requires sophisticated calculations using a learnt model of the world. This has led model-based RL to be identified with slow, deliberative processing, and model-free RL with fast, automatic processing. In support of this distinction, it has recently been shown that model-based reasoning is impaired by placing subjects under cognitive load--a hallmark of non-automaticity. Here, using the same task, we show that cognitive load does not impair model-based reasoning if subjects receive prior training on the task. This finding is replicated across two studies and a variety of analysis methods. Thus, task familiarity permits use of model-based reasoning in parallel with other cognitive demands. The ability to deploy model-based reasoning in an automatic, parallelizable fashion has widespread theoretical implications, particularly for the learning and execution of complex behaviors. It also suggests a range of important failure modes in psychiatric disorders.
The LUE data model for representation of agents and fields
NASA Astrophysics Data System (ADS)
de Jong, Kor; Schmitz, Oliver; Karssenberg, Derek
2017-04-01
Traditionally, agents-based and field-based modelling environments use different data models to represent the state of information they manipulate. In agent-based modelling, involving the representation of phenomena as objects bounded in space and time, agents are often represented by classes, each of which represents a particular kind of agent and all its properties. Such classes can be used to represent entities like people, birds, cars and countries. In field-based modelling, involving the representation of the environment as continuous fields, fields are often represented by a discretization of space, using multidimensional arrays, each storing mostly a single attribute. Such arrays can be used to represent the elevation of the land-surface, the pH of the soil, or the population density in an area, for example. Representing a population of agents by class instances grouped in collections is an intuitive way of organizing information. A drawback, though, is that models in which class instances grouping properties are stored in collections are less efficient (execute slower) than models in which collections of properties are grouped. The field representation, on the other hand, is convenient for the efficient execution of models. Another drawback is that, because the data models used are so different, integrating agent-based and field-based models becomes difficult, since the model builder has to deal with multiple concepts, and often multiple modelling environments. With the development of the LUE data model [1] we aim at representing agents and fields within a single paradigm, by combining the advantages of the data models used in agent-based and field-based data modelling. This removes the barrier for writing integrated agent-based and field-based models. The resulting data model is intuitive to use and allows for efficient execution of models. LUE is both a high-level conceptual data model and a low-level physical data model. The LUE conceptual data model is a generalization of the data models used in agent-based and field-based modelling. The LUE physical data model [2] is an implementation of the LUE conceptual data model in HDF5. In our presentation we will provide details of our approach to organizing information about agents and fields. We will show examples of agent and field data represented by the conceptual and physical data model. References: [1] de Bakker, M.P., de Jong, K., Schmitz, O., Karssenberg, D., 2016. Design and demonstration of a data model to integrate agent-based and field-based modelling. Environmental Modelling and Software. http://dx.doi.org/10.1016/j.envsoft.2016.11.016 [2] de Jong, K., 2017. LUE source code. https://github.com/pcraster/lue
The Use of Modeling-Based Text to Improve Students' Modeling Competencies
ERIC Educational Resources Information Center
Jong, Jing-Ping; Chiu, Mei-Hung; Chung, Shiao-Lan
2015-01-01
This study investigated the effects of a modeling-based text on 10th graders' modeling competencies. Fifteen 10th graders read a researcher-developed modeling-based science text on the ideal gas law that included explicit descriptions and representations of modeling processes (i.e., model selection, model construction, model validation, model…
Building occupancy simulation and data assimilation using a graph-based agent-oriented model
NASA Astrophysics Data System (ADS)
Rai, Sanish; Hu, Xiaolin
2018-07-01
Building occupancy simulation and estimation simulates the dynamics of occupants and estimates their real-time spatial distribution in a building. It requires a simulation model and an algorithm for data assimilation that assimilates real-time sensor data into the simulation model. Existing building occupancy simulation models include agent-based models and graph-based models. The agent-based models suffer high computation cost for simulating large numbers of occupants, and graph-based models overlook the heterogeneity and detailed behaviors of individuals. Recognizing the limitations of existing models, this paper presents a new graph-based agent-oriented model which can efficiently simulate large numbers of occupants in various kinds of building structures. To support real-time occupancy dynamics estimation, a data assimilation framework based on Sequential Monte Carlo Methods is also developed and applied to the graph-based agent-oriented model to assimilate real-time sensor data. Experimental results show the effectiveness of the developed model and the data assimilation framework. The major contributions of this work are to provide an efficient model for building occupancy simulation that can accommodate large numbers of occupants and an effective data assimilation framework that can provide real-time estimations of building occupancy from sensor data.
Dhana, Klodian; Ikram, M Arfan; Hofman, Albert; Franco, Oscar H; Kavousi, Maryam
2015-03-01
Body mass index (BMI) has been used to simplify cardiovascular risk prediction models by substituting total cholesterol and high-density lipoprotein cholesterol. In the elderly, the ability of BMI as a predictor of cardiovascular disease (CVD) declines. We aimed to find the most predictive anthropometric measure for CVD risk to construct a non-laboratory-based model and to compare it with the model including laboratory measurements. The study included 2675 women and 1902 men aged 55-79 years from the prospective population-based Rotterdam Study. We used Cox proportional hazard regression analysis to evaluate the association of BMI, waist circumference, waist-to-hip ratio and a body shape index (ABSI) with CVD, including coronary heart disease and stroke. The performance of the laboratory-based and non-laboratory-based models was evaluated by studying the discrimination, calibration, correlation and risk agreement. Among men, ABSI was the most informative measure associated with CVD, therefore ABSI was used to construct the non-laboratory-based model. Discrimination of the non-laboratory-based model was not different than laboratory-based model (c-statistic: 0.680-vs-0.683, p=0.71); both models were well calibrated (15.3% observed CVD risk vs 16.9% and 17.0% predicted CVD risks by the non-laboratory-based and laboratory-based models, respectively) and Spearman rank correlation and the agreement between non-laboratory-based and laboratory-based models were 0.89 and 91.7%, respectively. Among women, none of the anthropometric measures were independently associated with CVD. Among middle-aged and elderly where the ability of BMI to predict CVD declines, the non-laboratory-based model, based on ABSI, could predict CVD risk as accurately as the laboratory-based model among men. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Yellepeddi, Venkata; Rower, Joseph; Liu, Xiaoxi; Kumar, Shaun; Rashid, Jahidur; Sherwin, Catherine M T
2018-05-18
Physiologically based pharmacokinetic modeling and simulation is an important tool for predicting the pharmacokinetics, pharmacodynamics, and safety of drugs in pediatrics. Physiologically based pharmacokinetic modeling is applied in pediatric drug development for first-time-in-pediatric dose selection, simulation-based trial design, correlation with target organ toxicities, risk assessment by investigating possible drug-drug interactions, real-time assessment of pharmacokinetic-safety relationships, and assessment of non-systemic biodistribution targets. This review summarizes the details of a physiologically based pharmacokinetic modeling approach in pediatric drug research, emphasizing reports on pediatric physiologically based pharmacokinetic models of individual drugs. We also compare and contrast the strategies employed by various researchers in pediatric physiologically based pharmacokinetic modeling and provide a comprehensive overview of physiologically based pharmacokinetic modeling strategies and approaches in pediatrics. We discuss the impact of physiologically based pharmacokinetic models on regulatory reviews and product labels in the field of pediatric pharmacotherapy. Additionally, we examine in detail the current limitations and future directions of physiologically based pharmacokinetic modeling in pediatrics with regard to the ability to predict plasma concentrations and pharmacokinetic parameters. Despite the skepticism and concern in the pediatric community about the reliability of physiologically based pharmacokinetic models, there is substantial evidence that pediatric physiologically based pharmacokinetic models have been used successfully to predict differences in pharmacokinetics between adults and children for several drugs. It is obvious that the use of physiologically based pharmacokinetic modeling to support various stages of pediatric drug development is highly attractive and will rapidly increase, provided the robustness and reliability of these techniques are well established.
A physical data model for fields and agents
NASA Astrophysics Data System (ADS)
de Jong, Kor; de Bakker, Merijn; Karssenberg, Derek
2016-04-01
Two approaches exist in simulation modeling: agent-based and field-based modeling. In agent-based (or individual-based) simulation modeling, the entities representing the system's state are represented by objects, which are bounded in space and time. Individual objects, like an animal, a house, or a more abstract entity like a country's economy, have properties representing their state. In an agent-based model this state is manipulated. In field-based modeling, the entities representing the system's state are represented by fields. Fields capture the state of a continuous property within a spatial extent, examples of which are elevation, atmospheric pressure, and water flow velocity. With respect to the technology used to create these models, the domains of agent-based and field-based modeling have often been separate worlds. In environmental modeling, widely used logical data models include feature data models for point, line and polygon objects, and the raster data model for fields. Simulation models are often either agent-based or field-based, even though the modeled system might contain both entities that are better represented by individuals and entities that are better represented by fields. We think that the reason for this dichotomy in kinds of models might be that the traditional object and field data models underlying those models are relatively low level. We have developed a higher level conceptual data model for representing both non-spatial and spatial objects, and spatial fields (De Bakker et al. 2016). Based on this conceptual data model we designed a logical and physical data model for representing many kinds of data, including the kinds used in earth system modeling (e.g. hydrological and ecological models). The goal of this work is to be able to create high level code and tools for the creation of models in which entities are representable by both objects and fields. Our conceptual data model is capable of representing the traditional feature data models and the raster data model, among many other data models. Our physical data model is capable of storing a first set of kinds of data, like omnipresent scalars, mobile spatio-temporal points and property values, and spatio-temporal rasters. With our poster we will provide an overview of the physical data model expressed in HDF5 and show examples of how it can be used to capture both object- and field-based information. References De Bakker, M, K. de Jong, D. Karssenberg. 2016. A conceptual data model and language for fields and agents. European Geosciences Union, EGU General Assembly, 2016, Vienna.
Cognitive Components Underpinning the Development of Model-Based Learning
Potter, Tracey C.S.; Bryce, Nessa V.; Hartley, Catherine A.
2016-01-01
Reinforcement learning theory distinguishes “model-free” learning, which fosters reflexive repetition of previously rewarded actions, from “model-based” learning, which recruits a mental model of the environment to flexibly select goal-directed actions. Whereas model-free learning is evident across development, recruitment of model-based learning appears to increase with age. However, the cognitive processes underlying the development of model-based learning remain poorly characterized. Here, we examined whether age-related differences in cognitive processes underlying the construction and flexible recruitment of mental models predict developmental increases in model-based choice. In a cohort of participants aged 9–25, we examined whether the abilities to infer sequential regularities in the environment (“statistical learning”), maintain information in an active state (“working memory”) and integrate distant concepts to solve problems (“fluid reasoning”) predicted age-related improvements in model-based choice. We found that age-related improvements in statistical learning performance did not mediate the relationship between age and model-based choice. Ceiling performance on our working memory assay prevented examination of its contribution to model-based learning. However, age-related improvements in fluid reasoning statistically mediated the developmental increase in the recruitment of a model-based strategy. These findings suggest that gradual development of fluid reasoning may be a critical component process underlying the emergence of model-based learning. PMID:27825732
Zsuga, Judit; Biro, Klara; Papp, Csaba; Tajti, Gabor; Gesztelyi, Rudolf
2016-02-01
Reinforcement learning (RL) is a powerful concept underlying forms of associative learning governed by the use of a scalar reward signal, with learning taking place if expectations are violated. RL may be assessed using model-based and model-free approaches. Model-based reinforcement learning involves the amygdala, the hippocampus, and the orbitofrontal cortex (OFC). The model-free system involves the pedunculopontine-tegmental nucleus (PPTgN), the ventral tegmental area (VTA) and the ventral striatum (VS). Based on the functional connectivity of VS, model-free and model based RL systems center on the VS that by integrating model-free signals (received as reward prediction error) and model-based reward related input computes value. Using the concept of reinforcement learning agent we propose that the VS serves as the value function component of the RL agent. Regarding the model utilized for model-based computations we turned to the proactive brain concept, which offers an ubiquitous function for the default network based on its great functional overlap with contextual associative areas. Hence, by means of the default network the brain continuously organizes its environment into context frames enabling the formulation of analogy-based association that are turned into predictions of what to expect. The OFC integrates reward-related information into context frames upon computing reward expectation by compiling stimulus-reward and context-reward information offered by the amygdala and hippocampus, respectively. Furthermore we suggest that the integration of model-based expectations regarding reward into the value signal is further supported by the efferent of the OFC that reach structures canonical for model-free learning (e.g., the PPTgN, VTA, and VS). (c) 2016 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Woodworth-Jefcoats, Phoebe A.; Polovina, Jeffrey J.; Howell, Evan A.; Blanchard, Julia L.
2015-11-01
We compare two ecosystem model projections of 21st century climate change and fishing impacts in the central North Pacific. Both a species-based and a size-based ecosystem modeling approach are examined. While both models project a decline in biomass across all sizes in response to climate change and a decline in large fish biomass in response to increased fishing mortality, the models vary significantly in their handling of climate and fishing scenarios. For example, based on the same climate forcing the species-based model projects a 15% decline in catch by the end of the century while the size-based model projects a 30% decline. Disparities in the models' output highlight the limitations of each approach by showing the influence model structure can have on model output. The aspects of bottom-up change to which each model is most sensitive appear linked to model structure, as does the propagation of interannual variability through the food web and the relative impact of combined top-down and bottom-up change. Incorporating integrated size- and species-based ecosystem modeling approaches into future ensemble studies may help separate the influence of model structure from robust projections of ecosystem change.
Model based design introduction: modeling game controllers to microprocessor architectures
NASA Astrophysics Data System (ADS)
Jungwirth, Patrick; Badawy, Abdel-Hameed
2017-04-01
We present an introduction to model based design. Model based design is a visual representation, generally a block diagram, to model and incrementally develop a complex system. Model based design is a commonly used design methodology for digital signal processing, control systems, and embedded systems. Model based design's philosophy is: to solve a problem - a step at a time. The approach can be compared to a series of steps to converge to a solution. A block diagram simulation tool allows a design to be simulated with real world measurement data. For example, if an analog control system is being upgraded to a digital control system, the analog sensor input signals can be recorded. The digital control algorithm can be simulated with the real world sensor data. The output from the simulated digital control system can then be compared to the old analog based control system. Model based design can compared to Agile software develop. The Agile software development goal is to develop working software in incremental steps. Progress is measured in completed and tested code units. Progress is measured in model based design by completed and tested blocks. We present a concept for a video game controller and then use model based design to iterate the design towards a working system. We will also describe a model based design effort to develop an OS Friendly Microprocessor Architecture based on the RISC-V.
Representing Micro-Macro Linkages by Actor-Based Dynamic Network Models
Snijders, Tom A.B.; Steglich, Christian E.G.
2014-01-01
Stochastic actor-based models for network dynamics have the primary aim of statistical inference about processes of network change, but may be regarded as a kind of agent-based models. Similar to many other agent-based models, they are based on local rules for actor behavior. Different from many other agent-based models, by including elements of generalized linear statistical models they aim to be realistic detailed representations of network dynamics in empirical data sets. Statistical parallels to micro-macro considerations can be found in the estimation of parameters determining local actor behavior from empirical data, and the assessment of goodness of fit from the correspondence with network-level descriptives. This article studies several network-level consequences of dynamic actor-based models applied to represent cross-sectional network data. Two examples illustrate how network-level characteristics can be obtained as emergent features implied by micro-specifications of actor-based models. PMID:25960578
Model compilation: An approach to automated model derivation
NASA Technical Reports Server (NTRS)
Keller, Richard M.; Baudin, Catherine; Iwasaki, Yumi; Nayak, Pandurang; Tanaka, Kazuo
1990-01-01
An approach is introduced to automated model derivation for knowledge based systems. The approach, model compilation, involves procedurally generating the set of domain models used by a knowledge based system. With an implemented example, how this approach can be used to derive models of different precision and abstraction is illustrated, and models are tailored to different tasks, from a given set of base domain models. In particular, two implemented model compilers are described, each of which takes as input a base model that describes the structure and behavior of a simple electromechanical device, the Reaction Wheel Assembly of NASA's Hubble Space Telescope. The compilers transform this relatively general base model into simple task specific models for troubleshooting and redesign, respectively, by applying a sequence of model transformations. Each transformation in this sequence produces an increasingly more specialized model. The compilation approach lessens the burden of updating and maintaining consistency among models by enabling their automatic regeneration.
EPR-based material modelling of soils
NASA Astrophysics Data System (ADS)
Faramarzi, Asaad; Alani, Amir M.
2013-04-01
In the past few decades, as a result of the rapid developments in computational software and hardware, alternative computer aided pattern recognition approaches have been introduced to modelling many engineering problems, including constitutive modelling of materials. The main idea behind pattern recognition systems is that they learn adaptively from experience and extract various discriminants, each appropriate for its purpose. In this work an approach is presented for developing material models for soils based on evolutionary polynomial regression (EPR). EPR is a recently developed hybrid data mining technique that searches for structured mathematical equations (representing the behaviour of a system) using genetic algorithm and the least squares method. Stress-strain data from triaxial tests are used to train and develop EPR-based material models for soil. The developed models are compared with some of the well-known conventional material models and it is shown that EPR-based models can provide a better prediction for the behaviour of soils. The main benefits of using EPR-based material models are that it provides a unified approach to constitutive modelling of all materials (i.e., all aspects of material behaviour can be implemented within a unified environment of an EPR model); it does not require any arbitrary choice of constitutive (mathematical) models. In EPR-based material models there are no material parameters to be identified. As the model is trained directly from experimental data therefore, EPR-based material models are the shortest route from experimental research (data) to numerical modelling. Another advantage of EPR-based constitutive model is that as more experimental data become available, the quality of the EPR prediction can be improved by learning from the additional data, and therefore, the EPR model can become more effective and robust. The developed EPR-based material models can be incorporated in finite element (FE) analysis.
Lorenzen, Nina Dyrberg; Stilling, Maiken; Jakobsen, Stig Storgaard; Gustafson, Klas; Søballe, Kjeld; Baad-Hansen, Thomas
2013-11-01
The stability of implants is vital to ensure a long-term survival. RSA determines micro-motions of implants as a predictor of early implant failure. RSA can be performed as a marker- or model-based analysis. So far, CAD and RE model-based RSA have not been validated for use in hip resurfacing arthroplasty (HRA). A phantom study determined the precision of marker-based and CAD and RE model-based RSA on a HRA implant. In a clinical study, 19 patients were followed with stereoradiographs until 5 years after surgery. Analysis of double-examination migration results determined the clinical precision of marker-based and CAD model-based RSA, and at the 5-year follow-up, results of the total translation (TT) and the total rotation (TR) for marker- and CAD model-based RSA were compared. The phantom study showed that comparison of the precision (SDdiff) in marker-based RSA analysis was more precise than model-based RSA analysis in TT (p CAD < 0.001; p RE = 0.04) and TR (p CAD = 0.01; p RE < 0.001). The clinical precision (double examination in 8 patients) comparing the precision SDdiff was better evaluating the TT using the marker-based RSA analysis (p = 0.002), but showed no difference between the marker- and CAD model-based RSA analysis regarding the TR (p = 0.91). Comparing the mean signed values regarding the TT and the TR at the 5-year follow-up in 13 patients, the TT was lower (p = 0.03) and the TR higher (p = 0.04) in the marker-based RSA compared to CAD model-based RSA. The precision of marker-based RSA was significantly better than model-based RSA. However, problems with occluded markers lead to exclusion of many patients which was not a problem with model-based RSA. HRA were stable at the 5-year follow-up. The detection limit was 0.2 mm TT and 1° TR for marker-based and 0.5 mm TT and 1° TR for CAD model-based RSA for HRA.
Model Documentation of Base Case Data | Regional Energy Deployment System
Model | Energy Analysis | NREL Documentation of Base Case Data Model Documentation of Base Case base case of the model. The base case was developed simply as a point of departure for other analyses Base Case derives many of its inputs from the Energy Information Administration's (EIA's) Annual Energy
Models-Based Practice: Great White Hope or White Elephant?
ERIC Educational Resources Information Center
Casey, Ashley
2014-01-01
Background: Many critical curriculum theorists in physical education have advocated a model- or models-based approach to teaching in the subject. This paper explores the literature base around models-based practice (MBP) and asks if this multi-models approach to curriculum planning has the potential to be the great white hope of pedagogical change…
Testing Strategies for Model-Based Development
NASA Technical Reports Server (NTRS)
Heimdahl, Mats P. E.; Whalen, Mike; Rajan, Ajitha; Miller, Steven P.
2006-01-01
This report presents an approach for testing artifacts generated in a model-based development process. This approach divides the traditional testing process into two parts: requirements-based testing (validation testing) which determines whether the model implements the high-level requirements and model-based testing (conformance testing) which determines whether the code generated from a model is behaviorally equivalent to the model. The goals of the two processes differ significantly and this report explores suitable testing metrics and automation strategies for each. To support requirements-based testing, we define novel objective requirements coverage metrics similar to existing specification and code coverage metrics. For model-based testing, we briefly describe automation strategies and examine the fault-finding capability of different structural coverage metrics using tests automatically generated from the model.
New approaches in agent-based modeling of complex financial systems
NASA Astrophysics Data System (ADS)
Chen, Ting-Ting; Zheng, Bo; Li, Yan; Jiang, Xiong-Fei
2017-12-01
Agent-based modeling is a powerful simulation technique to understand the collective behavior and microscopic interaction in complex financial systems. Recently, the concept for determining the key parameters of agent-based models from empirical data instead of setting them artificially was suggested. We first review several agent-based models and the new approaches to determine the key model parameters from historical market data. Based on the agents' behaviors with heterogeneous personal preferences and interactions, these models are successful in explaining the microscopic origination of the temporal and spatial correlations of financial markets. We then present a novel paradigm combining big-data analysis with agent-based modeling. Specifically, from internet query and stock market data, we extract the information driving forces and develop an agent-based model to simulate the dynamic behaviors of complex financial systems.
Cunningham, Albert R.; Trent, John O.
2012-01-01
Structure–activity relationship (SAR) models are powerful tools to investigate the mechanisms of action of chemical carcinogens and to predict the potential carcinogenicity of untested compounds. We describe the use of a traditional fragment-based SAR approach along with a new virtual ligand-protein interaction-based approach for modeling of nonmutagenic carcinogens. The ligand-based SAR models used descriptors derived from computationally calculated ligand-binding affinities for learning set agents to 5495 proteins. Two learning sets were developed. One set was from the Carcinogenic Potency Database, where chemicals tested for rat carcinogenesis along with Salmonella mutagenicity data were provided. The second was from Malacarne et al. who developed a learning set of nonalerting compounds based on rodent cancer bioassay data and Ashby’s structural alerts. When the rat cancer models were categorized based on mutagenicity, the traditional fragment model outperformed the ligand-based model. However, when the learning sets were composed solely of nonmutagenic or nonalerting carcinogens and noncarcinogens, the fragment model demonstrated a concordance of near 50%, whereas the ligand-based models demonstrated a concordance of 71% for nonmutagenic carcinogens and 74% for nonalerting carcinogens. Overall, these findings suggest that expert system analysis of virtual chemical protein interactions may be useful for developing predictive SAR models for nonmutagenic carcinogens. Moreover, a more practical approach for developing SAR models for carcinogenesis may include fragment-based models for chemicals testing positive for mutagenicity and ligand-based models for chemicals devoid of DNA reactivity. PMID:22678118
Cunningham, Albert R; Carrasquer, C Alex; Qamar, Shahid; Maguire, Jon M; Cunningham, Suzanne L; Trent, John O
2012-10-01
Structure-activity relationship (SAR) models are powerful tools to investigate the mechanisms of action of chemical carcinogens and to predict the potential carcinogenicity of untested compounds. We describe the use of a traditional fragment-based SAR approach along with a new virtual ligand-protein interaction-based approach for modeling of nonmutagenic carcinogens. The ligand-based SAR models used descriptors derived from computationally calculated ligand-binding affinities for learning set agents to 5495 proteins. Two learning sets were developed. One set was from the Carcinogenic Potency Database, where chemicals tested for rat carcinogenesis along with Salmonella mutagenicity data were provided. The second was from Malacarne et al. who developed a learning set of nonalerting compounds based on rodent cancer bioassay data and Ashby's structural alerts. When the rat cancer models were categorized based on mutagenicity, the traditional fragment model outperformed the ligand-based model. However, when the learning sets were composed solely of nonmutagenic or nonalerting carcinogens and noncarcinogens, the fragment model demonstrated a concordance of near 50%, whereas the ligand-based models demonstrated a concordance of 71% for nonmutagenic carcinogens and 74% for nonalerting carcinogens. Overall, these findings suggest that expert system analysis of virtual chemical protein interactions may be useful for developing predictive SAR models for nonmutagenic carcinogens. Moreover, a more practical approach for developing SAR models for carcinogenesis may include fragment-based models for chemicals testing positive for mutagenicity and ligand-based models for chemicals devoid of DNA reactivity.
Jiao, Y; Chen, R; Ke, X; Cheng, L; Chu, K; Lu, Z; Herskovits, E H
2011-01-01
Autism spectrum disorder (ASD) is a neurodevelopmental disorder, of which Asperger syndrome and high-functioning autism are subtypes. Our goal is: 1) to determine whether a diagnostic model based on single-nucleotide polymorphisms (SNPs), brain regional thickness measurements, or brain regional volume measurements can distinguish Asperger syndrome from high-functioning autism; and 2) to compare the SNP, thickness, and volume-based diagnostic models. Our study included 18 children with ASD: 13 subjects with high-functioning autism and 5 subjects with Asperger syndrome. For each child, we obtained 25 SNPs for 8 ASD-related genes; we also computed regional cortical thicknesses and volumes for 66 brain structures, based on structural magnetic resonance (MR) examination. To generate diagnostic models, we employed five machine-learning techniques: decision stump, alternating decision trees, multi-class alternating decision trees, logistic model trees, and support vector machines. For SNP-based classification, three decision-tree-based models performed better than the other two machine-learning models. The performance metrics for three decision-tree-based models were similar: decision stump was modestly better than the other two methods, with accuracy = 90%, sensitivity = 0.95 and specificity = 0.75. All thickness and volume-based diagnostic models performed poorly. The SNP-based diagnostic models were superior to those based on thickness and volume. For SNP-based classification, rs878960 in GABRB3 (gamma-aminobutyric acid A receptor, beta 3) was selected by all tree-based models. Our analysis demonstrated that SNP-based classification was more accurate than morphometry-based classification in ASD subtype classification. Also, we found that one SNP--rs878960 in GABRB3--distinguishes Asperger syndrome from high-functioning autism.
A Correlation-Based Transition Model using Local Variables. Part 1; Model Formation
NASA Technical Reports Server (NTRS)
Menter, F. R.; Langtry, R. B.; Likki, S. R.; Suzen, Y. B.; Huang, P. G.; Volker, S.
2006-01-01
A new correlation-based transition model has been developed, which is based strictly on local variables. As a result, the transition model is compatible with modern computational fluid dynamics (CFD) approaches, such as unstructured grids and massive parallel execution. The model is based on two transport equations, one for intermittency and one for the transition onset criteria in terms of momentum thickness Reynolds number. The proposed transport equations do not attempt to model the physics of the transition process (unlike, e.g., turbulence models) but from a framework for the implementation of correlation-based models into general-purpose CFD methods.
NASA Technical Reports Server (NTRS)
Robins, Robert E.; Delisi, Donald P.
2008-01-01
In Robins and Delisi (2008), a linear decay model, a new IGE model by Sarpkaya (2006), and a series of APA-Based models were scored using data from three airports. This report is a guide to the APA-based models.
Modeling of the radiation belt megnetosphere in decisional timeframes
Koller, Josef; Reeves, Geoffrey D; Friedel, Reiner H.W.
2013-04-23
Systems and methods for calculating L* in the magnetosphere with essentially the same accuracy as with a physics based model at many times the speed by developing a surrogate trained to be a surrogate for the physics-based model. The trained model can then beneficially process input data falling within the training range of the surrogate model. The surrogate model can be a feedforward neural network and the physics-based model can be the TSK03 model. Operatively, the surrogate model can use parameters on which the physics-based model was based, and/or spatial data for the location where L* is to be calculated. Surrogate models should be provided for each of a plurality of pitch angles. Accordingly, a surrogate model having a closed drift shell can be used from the plurality of models. The feedforward neural network can have a plurality of input-layer units, there being at least one input-layer unit for each physics-based model parameter, a plurality of hidden layer units and at least one output unit for the value of L*.
A logical model of cooperating rule-based systems
NASA Technical Reports Server (NTRS)
Bailin, Sidney C.; Moore, John M.; Hilberg, Robert H.; Murphy, Elizabeth D.; Bahder, Shari A.
1989-01-01
A model is developed to assist in the planning, specification, development, and verification of space information systems involving distributed rule-based systems. The model is based on an analysis of possible uses of rule-based systems in control centers. This analysis is summarized as a data-flow model for a hypothetical intelligent control center. From this data-flow model, the logical model of cooperating rule-based systems is extracted. This model consists of four layers of increasing capability: (1) communicating agents, (2) belief-sharing knowledge sources, (3) goal-sharing interest areas, and (4) task-sharing job roles.
A new region-edge based level set model with applications to image segmentation
NASA Astrophysics Data System (ADS)
Zhi, Xuhao; Shen, Hong-Bin
2018-04-01
Level set model has advantages in handling complex shapes and topological changes, and is widely used in image processing tasks. The image segmentation oriented level set models can be grouped into region-based models and edge-based models, both of which have merits and drawbacks. Region-based level set model relies on fitting to color intensity of separated regions, but is not sensitive to edge information. Edge-based level set model evolves by fitting to local gradient information, but can get easily affected by noise. We propose a region-edge based level set model, which considers saliency information into energy function and fuses color intensity with local gradient information. The evolution of the proposed model is implemented by a hierarchical two-stage protocol, and the experimental results show flexible initialization, robust evolution and precise segmentation.
NASA Technical Reports Server (NTRS)
Nieten, Joseph L.; Seraphine, Kathleen M.
1991-01-01
Procedural modeling systems, rule based modeling systems, and a method for converting a procedural model to a rule based model are described. Simulation models are used to represent real time engineering systems. A real time system can be represented by a set of equations or functions connected so that they perform in the same manner as the actual system. Most modeling system languages are based on FORTRAN or some other procedural language. Therefore, they must be enhanced with a reaction capability. Rule based systems are reactive by definition. Once the engineering system has been decomposed into a set of calculations using only basic algebraic unary operations, a knowledge network of calculations and functions can be constructed. The knowledge network required by a rule based system can be generated by a knowledge acquisition tool or a source level compiler. The compiler would take an existing model source file, a syntax template, and a symbol table and generate the knowledge network. Thus, existing procedural models can be translated and executed by a rule based system. Neural models can be provide the high capacity data manipulation required by the most complex real time models.
Friedel, Eva; Sebold, Miriam; Kuitunen-Paul, Sören; Nebe, Stephan; Veer, Ilya M.; Zimmermann, Ulrich S.; Schlagenhauf, Florian; Smolka, Michael N.; Rapp, Michael; Walter, Henrik; Heinz, Andreas
2017-01-01
Rationale: Advances in neurocomputational modeling suggest that valuation systems for goal-directed (deliberative) on one side, and habitual (automatic) decision-making on the other side may rely on distinct computational strategies for reinforcement learning, namely model-free vs. model-based learning. As a key theoretical difference, the model-based system strongly demands cognitive functions to plan actions prospectively based on an internal cognitive model of the environment, whereas valuation in the model-free system relies on rather simple learning rules from operant conditioning to retrospectively associate actions with their outcomes and is thus cognitively less demanding. Acute stress reactivity is known to impair model-based but not model-free choice behavior, with higher working memory capacity protecting the model-based system from acute stress. However, it is not clear which impact accumulated real life stress has on model-free and model-based decision systems and how this influence interacts with cognitive abilities. Methods: We used a sequential decision-making task distinguishing relative contributions of both learning strategies to choice behavior, the Social Readjustment Rating Scale questionnaire to assess accumulated real life stress, and the Digit Symbol Substitution Test to test cognitive speed in 95 healthy subjects. Results: Individuals reporting high stress exposure who had low cognitive speed showed reduced model-based but increased model-free behavioral control. In contrast, subjects exposed to accumulated real life stress with high cognitive speed displayed increased model-based performance but reduced model-free control. Conclusion: These findings suggest that accumulated real life stress exposure can enhance reliance on cognitive speed for model-based computations, which may ultimately protect the model-based system from the detrimental influences of accumulated real life stress. The combination of accumulated real life stress exposure and slower information processing capacities, however, might favor model-free strategies. Thus, the valence and preference of either system strongly depends on stressful experiences and individual cognitive capacities. PMID:28642696
Friedel, Eva; Sebold, Miriam; Kuitunen-Paul, Sören; Nebe, Stephan; Veer, Ilya M; Zimmermann, Ulrich S; Schlagenhauf, Florian; Smolka, Michael N; Rapp, Michael; Walter, Henrik; Heinz, Andreas
2017-01-01
Rationale: Advances in neurocomputational modeling suggest that valuation systems for goal-directed (deliberative) on one side, and habitual (automatic) decision-making on the other side may rely on distinct computational strategies for reinforcement learning, namely model-free vs. model-based learning. As a key theoretical difference, the model-based system strongly demands cognitive functions to plan actions prospectively based on an internal cognitive model of the environment, whereas valuation in the model-free system relies on rather simple learning rules from operant conditioning to retrospectively associate actions with their outcomes and is thus cognitively less demanding. Acute stress reactivity is known to impair model-based but not model-free choice behavior, with higher working memory capacity protecting the model-based system from acute stress. However, it is not clear which impact accumulated real life stress has on model-free and model-based decision systems and how this influence interacts with cognitive abilities. Methods: We used a sequential decision-making task distinguishing relative contributions of both learning strategies to choice behavior, the Social Readjustment Rating Scale questionnaire to assess accumulated real life stress, and the Digit Symbol Substitution Test to test cognitive speed in 95 healthy subjects. Results: Individuals reporting high stress exposure who had low cognitive speed showed reduced model-based but increased model-free behavioral control. In contrast, subjects exposed to accumulated real life stress with high cognitive speed displayed increased model-based performance but reduced model-free control. Conclusion: These findings suggest that accumulated real life stress exposure can enhance reliance on cognitive speed for model-based computations, which may ultimately protect the model-based system from the detrimental influences of accumulated real life stress. The combination of accumulated real life stress exposure and slower information processing capacities, however, might favor model-free strategies. Thus, the valence and preference of either system strongly depends on stressful experiences and individual cognitive capacities.
Misirli, Goksel; Cavaliere, Matteo; Waites, William; Pocock, Matthew; Madsen, Curtis; Gilfellon, Owen; Honorato-Zimmer, Ricardo; Zuliani, Paolo; Danos, Vincent; Wipat, Anil
2016-03-15
Biological systems are complex and challenging to model and therefore model reuse is highly desirable. To promote model reuse, models should include both information about the specifics of simulations and the underlying biology in the form of metadata. The availability of computationally tractable metadata is especially important for the effective automated interpretation and processing of models. Metadata are typically represented as machine-readable annotations which enhance programmatic access to information about models. Rule-based languages have emerged as a modelling framework to represent the complexity of biological systems. Annotation approaches have been widely used for reaction-based formalisms such as SBML. However, rule-based languages still lack a rich annotation framework to add semantic information, such as machine-readable descriptions, to the components of a model. We present an annotation framework and guidelines for annotating rule-based models, encoded in the commonly used Kappa and BioNetGen languages. We adapt widely adopted annotation approaches to rule-based models. We initially propose a syntax to store machine-readable annotations and describe a mapping between rule-based modelling entities, such as agents and rules, and their annotations. We then describe an ontology to both annotate these models and capture the information contained therein, and demonstrate annotating these models using examples. Finally, we present a proof of concept tool for extracting annotations from a model that can be queried and analyzed in a uniform way. The uniform representation of the annotations can be used to facilitate the creation, analysis, reuse and visualization of rule-based models. Although examples are given, using specific implementations the proposed techniques can be applied to rule-based models in general. The annotation ontology for rule-based models can be found at http://purl.org/rbm/rbmo The krdf tool and associated executable examples are available at http://purl.org/rbm/rbmo/krdf anil.wipat@newcastle.ac.uk or vdanos@inf.ed.ac.uk. © The Author 2015. Published by Oxford University Press.
Haplotype-Based Genome-Wide Prediction Models Exploit Local Epistatic Interactions Among Markers
Jiang, Yong; Schmidt, Renate H.; Reif, Jochen C.
2018-01-01
Genome-wide prediction approaches represent versatile tools for the analysis and prediction of complex traits. Mostly they rely on marker-based information, but scenarios have been reported in which models capitalizing on closely-linked markers that were combined into haplotypes outperformed marker-based models. Detailed comparisons were undertaken to reveal under which circumstances haplotype-based genome-wide prediction models are superior to marker-based models. Specifically, it was of interest to analyze whether and how haplotype-based models may take local epistatic effects between markers into account. Assuming that populations consisted of fully homozygous individuals, a marker-based model in which local epistatic effects inside haplotype blocks were exploited (LEGBLUP) was linearly transformable into a haplotype-based model (HGBLUP). This theoretical derivation formally revealed that haplotype-based genome-wide prediction models capitalize on local epistatic effects among markers. Simulation studies corroborated this finding. Due to its computational efficiency the HGBLUP model promises to be an interesting tool for studies in which ultra-high-density SNP data sets are studied. Applying the HGBLUP model to empirical data sets revealed higher prediction accuracies than for marker-based models for both traits studied using a mouse panel. In contrast, only a small subset of the traits analyzed in crop populations showed such a benefit. Cases in which higher prediction accuracies are observed for HGBLUP than for marker-based models are expected to be of immediate relevance for breeders, due to the tight linkage a beneficial haplotype will be preserved for many generations. In this respect the inheritance of local epistatic effects very much resembles the one of additive effects. PMID:29549092
Haplotype-Based Genome-Wide Prediction Models Exploit Local Epistatic Interactions Among Markers.
Jiang, Yong; Schmidt, Renate H; Reif, Jochen C
2018-05-04
Genome-wide prediction approaches represent versatile tools for the analysis and prediction of complex traits. Mostly they rely on marker-based information, but scenarios have been reported in which models capitalizing on closely-linked markers that were combined into haplotypes outperformed marker-based models. Detailed comparisons were undertaken to reveal under which circumstances haplotype-based genome-wide prediction models are superior to marker-based models. Specifically, it was of interest to analyze whether and how haplotype-based models may take local epistatic effects between markers into account. Assuming that populations consisted of fully homozygous individuals, a marker-based model in which local epistatic effects inside haplotype blocks were exploited (LEGBLUP) was linearly transformable into a haplotype-based model (HGBLUP). This theoretical derivation formally revealed that haplotype-based genome-wide prediction models capitalize on local epistatic effects among markers. Simulation studies corroborated this finding. Due to its computational efficiency the HGBLUP model promises to be an interesting tool for studies in which ultra-high-density SNP data sets are studied. Applying the HGBLUP model to empirical data sets revealed higher prediction accuracies than for marker-based models for both traits studied using a mouse panel. In contrast, only a small subset of the traits analyzed in crop populations showed such a benefit. Cases in which higher prediction accuracies are observed for HGBLUP than for marker-based models are expected to be of immediate relevance for breeders, due to the tight linkage a beneficial haplotype will be preserved for many generations. In this respect the inheritance of local epistatic effects very much resembles the one of additive effects. Copyright © 2018 Jiang et al.
Konovalov, Arkady; Krajbich, Ian
2016-01-01
Organisms appear to learn and make decisions using different strategies known as model-free and model-based learning; the former is mere reinforcement of previously rewarded actions and the latter is a forward-looking strategy that involves evaluation of action-state transition probabilities. Prior work has used neural data to argue that both model-based and model-free learners implement a value comparison process at trial onset, but model-based learners assign more weight to forward-looking computations. Here using eye-tracking, we report evidence for a different interpretation of prior results: model-based subjects make their choices prior to trial onset. In contrast, model-free subjects tend to ignore model-based aspects of the task and instead seem to treat the decision problem as a simple comparison process between two differentially valued items, consistent with previous work on sequential-sampling models of decision making. These findings illustrate a problem with assuming that experimental subjects make their decisions at the same prescribed time. PMID:27511383
Of goals and habits: age-related and individual differences in goal-directed decision-making.
Eppinger, Ben; Walter, Maik; Heekeren, Hauke R; Li, Shu-Chen
2013-01-01
In this study we investigated age-related and individual differences in habitual (model-free) and goal-directed (model-based) decision-making. Specifically, we were interested in three questions. First, does age affect the balance between model-based and model-free decision mechanisms? Second, are these age-related changes due to age differences in working memory (WM) capacity? Third, can model-based behavior be affected by manipulating the distinctiveness of the reward value of choice options? To answer these questions we used a two-stage Markov decision task in in combination with computational modeling to dissociate model-based and model-free decision mechanisms. To affect model-based behavior in this task we manipulated the distinctiveness of reward probabilities of choice options. The results show age-related deficits in model-based decision-making, which are particularly pronounced if unexpected reward indicates the need for a shift in decision strategy. In this situation younger adults explore the task structure, whereas older adults show perseverative behavior. Consistent with previous findings, these results indicate that older adults have deficits in the representation and updating of expected reward value. We also observed substantial individual differences in model-based behavior. In younger adults high WM capacity is associated with greater model-based behavior and this effect is further elevated when reward probabilities are more distinct. However, in older adults we found no effect of WM capacity. Moreover, age differences in model-based behavior remained statistically significant, even after controlling for WM capacity. Thus, factors other than decline in WM, such as deficits in the in the integration of expected reward value into strategic decisions may contribute to the observed impairments in model-based behavior in older adults.
Of goals and habits: age-related and individual differences in goal-directed decision-making
Eppinger, Ben; Walter, Maik; Heekeren, Hauke R.; Li, Shu-Chen
2013-01-01
In this study we investigated age-related and individual differences in habitual (model-free) and goal-directed (model-based) decision-making. Specifically, we were interested in three questions. First, does age affect the balance between model-based and model-free decision mechanisms? Second, are these age-related changes due to age differences in working memory (WM) capacity? Third, can model-based behavior be affected by manipulating the distinctiveness of the reward value of choice options? To answer these questions we used a two-stage Markov decision task in in combination with computational modeling to dissociate model-based and model-free decision mechanisms. To affect model-based behavior in this task we manipulated the distinctiveness of reward probabilities of choice options. The results show age-related deficits in model-based decision-making, which are particularly pronounced if unexpected reward indicates the need for a shift in decision strategy. In this situation younger adults explore the task structure, whereas older adults show perseverative behavior. Consistent with previous findings, these results indicate that older adults have deficits in the representation and updating of expected reward value. We also observed substantial individual differences in model-based behavior. In younger adults high WM capacity is associated with greater model-based behavior and this effect is further elevated when reward probabilities are more distinct. However, in older adults we found no effect of WM capacity. Moreover, age differences in model-based behavior remained statistically significant, even after controlling for WM capacity. Thus, factors other than decline in WM, such as deficits in the in the integration of expected reward value into strategic decisions may contribute to the observed impairments in model-based behavior in older adults. PMID:24399925
Using Data-Driven Model-Brain Mappings to Constrain Formal Models of Cognition
Borst, Jelmer P.; Nijboer, Menno; Taatgen, Niels A.; van Rijn, Hedderik; Anderson, John R.
2015-01-01
In this paper we propose a method to create data-driven mappings from components of cognitive models to brain regions. Cognitive models are notoriously hard to evaluate, especially based on behavioral measures alone. Neuroimaging data can provide additional constraints, but this requires a mapping from model components to brain regions. Although such mappings can be based on the experience of the modeler or on a reading of the literature, a formal method is preferred to prevent researcher-based biases. In this paper we used model-based fMRI analysis to create a data-driven model-brain mapping for five modules of the ACT-R cognitive architecture. We then validated this mapping by applying it to two new datasets with associated models. The new mapping was at least as powerful as an existing mapping that was based on the literature, and indicated where the models were supported by the data and where they have to be improved. We conclude that data-driven model-brain mappings can provide strong constraints on cognitive models, and that model-based fMRI is a suitable way to create such mappings. PMID:25747601
Model-based learning and the contribution of the orbitofrontal cortex to the model-free world
McDannald, Michael A.; Takahashi, Yuji K.; Lopatina, Nina; Pietras, Brad W.; Jones, Josh L.; Schoenbaum, Geoffrey
2012-01-01
Learning is proposed to occur when there is a discrepancy between reward prediction and reward receipt. At least two separate systems are thought to exist: one in which predictions are proposed to be based on model-free or cached values; and another in which predictions are model-based. A basic neural circuit for model-free reinforcement learning has already been described. In the model-free circuit the ventral striatum (VS) is thought to supply a common-currency reward prediction to midbrain dopamine neurons that compute prediction errors and drive learning. In a model-based system, predictions can include more information about an expected reward, such as its sensory attributes or current, unique value. This detailed prediction allows for both behavioral flexibility and learning driven by changes in sensory features of rewards alone. Recent evidence from animal learning and human imaging suggests that, in addition to model-free information, the VS also signals model-based information. Further, there is evidence that the orbitofrontal cortex (OFC) signals model-based information. Here we review these data and suggest that the OFC provides model-based information to this traditional model-free circuitry and offer possibilities as to how this interaction might occur. PMID:22487030
Model-based influences on humans’ choices and striatal prediction errors
Daw, Nathaniel D.; Gershman, Samuel J.; Seymour, Ben; Dayan, Peter; Dolan, Raymond J.
2011-01-01
Summary The mesostriatal dopamine system is prominently implicated in model-free reinforcement learning, with fMRI BOLD signals in ventral striatum notably covarying with model-free prediction errors. However, latent learning and devaluation studies show that behavior also shows hallmarks of model-based planning, and the interaction between model-based and model-free values, prediction errors and preferences is underexplored. We designed a multistep decision task in which model-based and model-free influences on human choice behavior could be distinguished. By showing that choices reflected both influences we could then test the purity of the ventral striatal BOLD signal as a model-free report. Contrary to expectations, the signal reflected both model-free and model-based predictions in proportions matching those that best explained choice behavior. These results challenge the notion of a separate model-free learner and suggest a more integrated computational architecture for high-level human decision-making. PMID:21435563
Compartmental and Data-Based Modeling of Cerebral Hemodynamics: Linear Analysis.
Henley, B C; Shin, D C; Zhang, R; Marmarelis, V Z
Compartmental and data-based modeling of cerebral hemodynamics are alternative approaches that utilize distinct model forms and have been employed in the quantitative study of cerebral hemodynamics. This paper examines the relation between a compartmental equivalent-circuit and a data-based input-output model of dynamic cerebral autoregulation (DCA) and CO2-vasomotor reactivity (DVR). The compartmental model is constructed as an equivalent-circuit utilizing putative first principles and previously proposed hypothesis-based models. The linear input-output dynamics of this compartmental model are compared with data-based estimates of the DCA-DVR process. This comparative study indicates that there are some qualitative similarities between the two-input compartmental model and experimental results.
A Logical Account of Diagnosis with Multiple Theories
NASA Technical Reports Server (NTRS)
Pandurang, P.; Lum, Henry Jr. (Technical Monitor)
1994-01-01
Model-based diagnosis is a powerful, first-principles approach to diagnosis. The primary drawback with model-based diagnosis is that it is based on a system model, and this model might be inappropriate. The inappropriateness of models usually stems from the fundamental tradeoff between completeness and efficiency. Recently, Struss has developed an elegant proposal for diagnosis with multiple models. Struss characterizes models as relations and develops a precise notion of abstraction. He defines relations between models and analyzes the effect of a model switch on the space of possible diagnoses. In this paper we extend Struss's proposal in three ways. First, our account of diagnosis with multiple models is based on representing models as more expressive first-order theories, rather than as relations. A key technical contribution is the use of a general notion of abstraction based on interpretations between theories. Second, Struss conflates component modes with models, requiring him to define models relations such as choices which result in non-relational models. We avoid this problem by differentiating component modes from models. Third, we present a more general account of simplifications that correctly handles situations where the simplification contradicts the base theory.
Agent-Based Modeling of Chronic Diseases: A Narrative Review and Future Research Directions
Lawley, Mark A.; Siscovick, David S.; Zhang, Donglan; Pagán, José A.
2016-01-01
The United States is experiencing an epidemic of chronic disease. As the US population ages, health care providers and policy makers urgently need decision models that provide systematic, credible prediction regarding the prevention and treatment of chronic diseases to improve population health management and medical decision-making. Agent-based modeling is a promising systems science approach that can model complex interactions and processes related to chronic health conditions, such as adaptive behaviors, feedback loops, and contextual effects. This article introduces agent-based modeling by providing a narrative review of agent-based models of chronic disease and identifying the characteristics of various chronic health conditions that must be taken into account to build effective clinical- and policy-relevant models. We also identify barriers to adopting agent-based models to study chronic diseases. Finally, we discuss future research directions of agent-based modeling applied to problems related to specific chronic health conditions. PMID:27236380
Agent-Based Modeling of Chronic Diseases: A Narrative Review and Future Research Directions.
Li, Yan; Lawley, Mark A; Siscovick, David S; Zhang, Donglan; Pagán, José A
2016-05-26
The United States is experiencing an epidemic of chronic disease. As the US population ages, health care providers and policy makers urgently need decision models that provide systematic, credible prediction regarding the prevention and treatment of chronic diseases to improve population health management and medical decision-making. Agent-based modeling is a promising systems science approach that can model complex interactions and processes related to chronic health conditions, such as adaptive behaviors, feedback loops, and contextual effects. This article introduces agent-based modeling by providing a narrative review of agent-based models of chronic disease and identifying the characteristics of various chronic health conditions that must be taken into account to build effective clinical- and policy-relevant models. We also identify barriers to adopting agent-based models to study chronic diseases. Finally, we discuss future research directions of agent-based modeling applied to problems related to specific chronic health conditions.
In defense of compilation: A response to Davis' form and content in model-based reasoning
NASA Technical Reports Server (NTRS)
Keller, Richard
1990-01-01
In a recent paper entitled 'Form and Content in Model Based Reasoning', Randy Davis argues that model based reasoning research aimed at compiling task specific rules from underlying device models is mislabeled, misguided, and diversionary. Some of Davis' claims are examined and his basic conclusions are challenged about the value of compilation research to the model based reasoning community. In particular, Davis' claim is refuted that model based reasoning is exempt from the efficiency benefits provided by knowledge compilation techniques. In addition, several misconceptions are clarified about the role of representational form in compilation. It is concluded that techniques have the potential to make a substantial contribution to solving tractability problems in model based reasoning.
Logic-Based Models for the Analysis of Cell Signaling Networks†
2010-01-01
Computational models are increasingly used to analyze the operation of complex biochemical networks, including those involved in cell signaling networks. Here we review recent advances in applying logic-based modeling to mammalian cell biology. Logic-based models represent biomolecular networks in a simple and intuitive manner without describing the detailed biochemistry of each interaction. A brief description of several logic-based modeling methods is followed by six case studies that demonstrate biological questions recently addressed using logic-based models and point to potential advances in model formalisms and training procedures that promise to enhance the utility of logic-based methods for studying the relationship between environmental inputs and phenotypic or signaling state outputs of complex signaling networks. PMID:20225868
Harlander, Niklas; Rosenkranz, Tobias; Hohmann, Volker
2012-08-01
Single channel noise reduction has been well investigated and seems to have reached its limits in terms of speech intelligibility improvement, however, the quality of such schemes can still be advanced. This study tests to what extent novel model-based processing schemes might improve performance in particular for non-stationary noise conditions. Two prototype model-based algorithms, a speech-model-based, and a auditory-model-based algorithm were compared to a state-of-the-art non-parametric minimum statistics algorithm. A speech intelligibility test, preference rating, and listening effort scaling were performed. Additionally, three objective quality measures for the signal, background, and overall distortions were applied. For a better comparison of all algorithms, particular attention was given to the usage of the similar Wiener-based gain rule. The perceptual investigation was performed with fourteen hearing-impaired subjects. The results revealed that the non-parametric algorithm and the auditory model-based algorithm did not affect speech intelligibility, whereas the speech-model-based algorithm slightly decreased intelligibility. In terms of subjective quality, both model-based algorithms perform better than the unprocessed condition and the reference in particular for highly non-stationary noise environments. Data support the hypothesis that model-based algorithms are promising for improving performance in non-stationary noise conditions.
Model-based Acceleration Control of Turbofan Engines with a Hammerstein-Wiener Representation
NASA Astrophysics Data System (ADS)
Wang, Jiqiang; Ye, Zhifeng; Hu, Zhongzhi; Wu, Xin; Dimirovsky, Georgi; Yue, Hong
2017-05-01
Acceleration control of turbofan engines is conventionally designed through either schedule-based or acceleration-based approach. With the widespread acceptance of model-based design in aviation industry, it becomes necessary to investigate the issues associated with model-based design for acceleration control. In this paper, the challenges for implementing model-based acceleration control are explained; a novel Hammerstein-Wiener representation of engine models is introduced; based on the Hammerstein-Wiener model, a nonlinear generalized minimum variance type of optimal control law is derived; the feature of the proposed approach is that it does not require the inversion operation that usually upsets those nonlinear control techniques. The effectiveness of the proposed control design method is validated through a detailed numerical study.
Not just the norm: exemplar-based models also predict face aftereffects.
Ross, David A; Deroche, Mickael; Palmeri, Thomas J
2014-02-01
The face recognition literature has considered two competing accounts of how faces are represented within the visual system: Exemplar-based models assume that faces are represented via their similarity to exemplars of previously experienced faces, while norm-based models assume that faces are represented with respect to their deviation from an average face, or norm. Face identity aftereffects have been taken as compelling evidence in favor of a norm-based account over an exemplar-based account. After a relatively brief period of adaptation to an adaptor face, the perceived identity of a test face is shifted toward a face with attributes opposite to those of the adaptor, suggesting an explicit psychological representation of the norm. Surprisingly, despite near universal recognition that face identity aftereffects imply norm-based coding, there have been no published attempts to simulate the predictions of norm- and exemplar-based models in face adaptation paradigms. Here, we implemented and tested variations of norm and exemplar models. Contrary to common claims, our simulations revealed that both an exemplar-based model and a version of a two-pool norm-based model, but not a traditional norm-based model, predict face identity aftereffects following face adaptation.
Not Just the Norm: Exemplar-Based Models also Predict Face Aftereffects
Ross, David A.; Deroche, Mickael; Palmeri, Thomas J.
2014-01-01
The face recognition literature has considered two competing accounts of how faces are represented within the visual system: Exemplar-based models assume that faces are represented via their similarity to exemplars of previously experienced faces, while norm-based models assume that faces are represented with respect to their deviation from an average face, or norm. Face identity aftereffects have been taken as compelling evidence in favor of a norm-based account over an exemplar-based account. After a relatively brief period of adaptation to an adaptor face, the perceived identity of a test face is shifted towards a face with opposite attributes to the adaptor, suggesting an explicit psychological representation of the norm. Surprisingly, despite near universal recognition that face identity aftereffects imply norm-based coding, there have been no published attempts to simulate the predictions of norm- and exemplar-based models in face adaptation paradigms. Here we implemented and tested variations of norm and exemplar models. Contrary to common claims, our simulations revealed that both an exemplar-based model and a version of a two-pool norm-based model, but not a traditional norm-based model, predict face identity aftereffects following face adaptation. PMID:23690282
Agent-based modeling of the spread of the 1918-1919 flu in three Canadian fur trading communities.
O'Neil, Caroline A; Sattenspiel, Lisa
2010-01-01
Previous attempts to study the 1918-1919 flu in three small communities in central Manitoba have used both three-community population-based and single-community agent-based models. These studies identified critical factors influencing epidemic spread, but they also left important questions unanswered. The objective of this project was to design a more realistic agent-based model that would overcome limitations of earlier models and provide new insights into these outstanding questions. The new model extends the previous agent-based model to three communities so that results can be compared to those from the population-based model. Sensitivity testing was conducted, and the new model was used to investigate the influence of seasonal settlement and mobility patterns, the geographic heterogeneity of the observed 1918-1919 epidemic in Manitoba, and other questions addressed previously. Results confirm outcomes from the population-based model that suggest that (a) social organization and mobility strongly influence the timing and severity of epidemics and (b) the impact of the epidemic would have been greater if it had arrived in the summer rather than the winter. New insights from the model suggest that the observed heterogeneity among communities in epidemic impact was not unusual and would have been the expected outcome given settlement structure and levels of interaction among communities. Application of an agent-based computer simulation has helped to better explain observed patterns of spread of the 1918-1919 flu epidemic in central Manitoba. Contrasts between agent-based and population-based models illustrate the advantages of agent-based models for the study of small populations. © 2010 Wiley-Liss, Inc.
ALC: automated reduction of rule-based models
Koschorreck, Markus; Gilles, Ernst Dieter
2008-01-01
Background Combinatorial complexity is a challenging problem for the modeling of cellular signal transduction since the association of a few proteins can give rise to an enormous amount of feasible protein complexes. The layer-based approach is an approximative, but accurate method for the mathematical modeling of signaling systems with inherent combinatorial complexity. The number of variables in the simulation equations is highly reduced and the resulting dynamic models show a pronounced modularity. Layer-based modeling allows for the modeling of systems not accessible previously. Results ALC (Automated Layer Construction) is a computer program that highly simplifies the building of reduced modular models, according to the layer-based approach. The model is defined using a simple but powerful rule-based syntax that supports the concepts of modularity and macrostates. ALC performs consistency checks on the model definition and provides the model output in different formats (C MEX, MATLAB, Mathematica and SBML) as ready-to-run simulation files. ALC also provides additional documentation files that simplify the publication or presentation of the models. The tool can be used offline or via a form on the ALC website. Conclusion ALC allows for a simple rule-based generation of layer-based reduced models. The model files are given in different formats as ready-to-run simulation files. PMID:18973705
Unifying Model-Based and Reactive Programming within a Model-Based Executive
NASA Technical Reports Server (NTRS)
Williams, Brian C.; Gupta, Vineet; Norvig, Peter (Technical Monitor)
1999-01-01
Real-time, model-based, deduction has recently emerged as a vital component in AI's tool box for developing highly autonomous reactive systems. Yet one of the current hurdles towards developing model-based reactive systems is the number of methods simultaneously employed, and their corresponding melange of programming and modeling languages. This paper offers an important step towards unification. We introduce RMPL, a rich modeling language that combines probabilistic, constraint-based modeling with reactive programming constructs, while offering a simple semantics in terms of hidden state Markov processes. We introduce probabilistic, hierarchical constraint automata (PHCA), which allow Markov processes to be expressed in a compact representation that preserves the modularity of RMPL programs. Finally, a model-based executive, called Reactive Burton is described that exploits this compact encoding to perform efficIent simulation, belief state update and control sequence generation.
Model-Based Learning: A Synthesis of Theory and Research
ERIC Educational Resources Information Center
Seel, Norbert M.
2017-01-01
This article provides a review of theoretical approaches to model-based learning and related research. In accordance with the definition of model-based learning as an acquisition and utilization of mental models by learners, the first section centers on mental model theory. In accordance with epistemology of modeling the issues of semantics,…
Research on light rail electric load forecasting based on ARMA model
NASA Astrophysics Data System (ADS)
Huang, Yifan
2018-04-01
The article compares a variety of time series models and combines the characteristics of power load forecasting. Then, a light load forecasting model based on ARMA model is established. Based on this model, a light rail system is forecasted. The prediction results show that the accuracy of the model prediction is high.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barua, Bipul; Mohanty, Subhasish; Listwan, Joseph T.
In this paper, a cyclic-plasticity based fully mechanistic fatigue modeling approach is presented. This is based on time-dependent stress-strain evolution of the material over the entire fatigue life rather than just based on the end of live information typically used for empirical S~N curve based fatigue evaluation approaches. Previously we presented constant amplitude fatigue test based related material models for 316 SS base, 508 LAS base and 316 SS- 316 SS weld which are used in nuclear reactor components such as pressure vessels, nozzles, and surge line pipes. However, we found that constant amplitude fatigue data based models have limitationmore » in capturing the stress-strain evolution under arbitrary fatigue loading. To address the above mentioned limitation, in this paper, we present a more advanced approach that can be used for modeling the cyclic stress-strain evolution and fatigue life not only under constant amplitude but also under any arbitrary (random/variable) fatigue loading. The related material model and analytical model results are presented for 316 SS base metal. Two methodologies (either based on time/cycle or based on accumulated plastic strain energy) to track the material parameters at a given time/cycle are discussed and associated analytical model results are presented. From the material model and analytical cyclic plasticity model results, it is found that the proposed cyclic plasticity model can predict all the important stages of material behavior during the entire fatigue life of the specimens with more than 90% accuracy« less
Barua, Bipul; Mohanty, Subhasish; Listwan, Joseph T.; ...
2017-12-05
In this paper, a cyclic-plasticity based fully mechanistic fatigue modeling approach is presented. This is based on time-dependent stress-strain evolution of the material over the entire fatigue life rather than just based on the end of live information typically used for empirical S~N curve based fatigue evaluation approaches. Previously we presented constant amplitude fatigue test based related material models for 316 SS base, 508 LAS base and 316 SS- 316 SS weld which are used in nuclear reactor components such as pressure vessels, nozzles, and surge line pipes. However, we found that constant amplitude fatigue data based models have limitationmore » in capturing the stress-strain evolution under arbitrary fatigue loading. To address the above mentioned limitation, in this paper, we present a more advanced approach that can be used for modeling the cyclic stress-strain evolution and fatigue life not only under constant amplitude but also under any arbitrary (random/variable) fatigue loading. The related material model and analytical model results are presented for 316 SS base metal. Two methodologies (either based on time/cycle or based on accumulated plastic strain energy) to track the material parameters at a given time/cycle are discussed and associated analytical model results are presented. From the material model and analytical cyclic plasticity model results, it is found that the proposed cyclic plasticity model can predict all the important stages of material behavior during the entire fatigue life of the specimens with more than 90% accuracy« less
Decker, Johannes H.; Otto, A. Ross; Daw, Nathaniel D.; Hartley, Catherine A.
2016-01-01
Theoretical models distinguish two decision-making strategies that have been formalized in reinforcement-learning theory. A model-based strategy leverages a cognitive model of potential actions and their consequences to make goal-directed choices, whereas a model-free strategy evaluates actions based solely on their reward history. Research in adults has begun to elucidate the psychological mechanisms and neural substrates underlying these learning processes and factors that influence their relative recruitment. However, the developmental trajectory of these evaluative strategies has not been well characterized. In this study, children, adolescents, and adults, performed a sequential reinforcement-learning task that enables estimation of model-based and model-free contributions to choice. Whereas a model-free strategy was evident in choice behavior across all age groups, evidence of a model-based strategy only emerged during adolescence and continued to increase into adulthood. These results suggest that recruitment of model-based valuation systems represents a critical cognitive component underlying the gradual maturation of goal-directed behavior. PMID:27084852
Petersen, Mark D.; Zeng, Yuehua; Haller, Kathleen M.; McCaffrey, Robert; Hammond, William C.; Bird, Peter; Moschetti, Morgan; Shen, Zhengkang; Bormann, Jayne; Thatcher, Wayne
2014-01-01
The 2014 National Seismic Hazard Maps for the conterminous United States incorporate additional uncertainty in fault slip-rate parameter that controls the earthquake-activity rates than was applied in previous versions of the hazard maps. This additional uncertainty is accounted for by new geodesy- and geology-based slip-rate models for the Western United States. Models that were considered include an updated geologic model based on expert opinion and four combined inversion models informed by both geologic and geodetic input. The two block models considered indicate significantly higher slip rates than the expert opinion and the two fault-based combined inversion models. For the hazard maps, we apply 20 percent weight with equal weighting for the two fault-based models. Off-fault geodetic-based models were not considered in this version of the maps. Resulting changes to the hazard maps are generally less than 0.05 g (acceleration of gravity). Future research will improve the maps and interpret differences between the new models.
Comparative evaluation of urban storm water quality models
NASA Astrophysics Data System (ADS)
Vaze, J.; Chiew, Francis H. S.
2003-10-01
The estimation of urban storm water pollutant loads is required for the development of mitigation and management strategies to minimize impacts to receiving environments. Event pollutant loads are typically estimated using either regression equations or "process-based" water quality models. The relative merit of using regression models compared to process-based models is not clear. A modeling study is carried out here to evaluate the comparative ability of the regression equations and process-based water quality models to estimate event diffuse pollutant loads from impervious surfaces. The results indicate that, once calibrated, both the regression equations and the process-based model can estimate event pollutant loads satisfactorily. In fact, the loads estimated using the regression equation as a function of rainfall intensity and runoff rate are better than the loads estimated using the process-based model. Therefore, if only estimates of event loads are required, regression models should be used because they are simpler and require less data compared to process-based models.
Satoshi Hirabayashi; Chuck Kroll; David Nowak
2011-01-01
The Urban Forest Effects-Deposition model (UFORE-D) was developed with a component-based modeling approach. Functions of the model were separated into components that are responsible for user interface, data input/output, and core model functions. Taking advantage of the component-based approach, three UFORE-D applications were developed: a base application to estimate...
ERIC Educational Resources Information Center
Issa, Ghassan; Hussain, Shakir M.; Al-Bahadili, Hussein
2014-01-01
In an effort to enhance the learning process in higher education, a new model for Competition-Based Learning (CBL) is presented. The new model utilizes two well-known learning models, namely, the Project-Based Learning (PBL) and competitions. The new model is also applied in a networked environment with emphasis on collective learning as well as…
Technical Note: Approximate Bayesian parameterization of a process-based tropical forest model
NASA Astrophysics Data System (ADS)
Hartig, F.; Dislich, C.; Wiegand, T.; Huth, A.
2014-02-01
Inverse parameter estimation of process-based models is a long-standing problem in many scientific disciplines. A key question for inverse parameter estimation is how to define the metric that quantifies how well model predictions fit to the data. This metric can be expressed by general cost or objective functions, but statistical inversion methods require a particular metric, the probability of observing the data given the model parameters, known as the likelihood. For technical and computational reasons, likelihoods for process-based stochastic models are usually based on general assumptions about variability in the observed data, and not on the stochasticity generated by the model. Only in recent years have new methods become available that allow the generation of likelihoods directly from stochastic simulations. Previous applications of these approximate Bayesian methods have concentrated on relatively simple models. Here, we report on the application of a simulation-based likelihood approximation for FORMIND, a parameter-rich individual-based model of tropical forest dynamics. We show that approximate Bayesian inference, based on a parametric likelihood approximation placed in a conventional Markov chain Monte Carlo (MCMC) sampler, performs well in retrieving known parameter values from virtual inventory data generated by the forest model. We analyze the results of the parameter estimation, examine its sensitivity to the choice and aggregation of model outputs and observed data (summary statistics), and demonstrate the application of this method by fitting the FORMIND model to field data from an Ecuadorian tropical forest. Finally, we discuss how this approach differs from approximate Bayesian computation (ABC), another method commonly used to generate simulation-based likelihood approximations. Our results demonstrate that simulation-based inference, which offers considerable conceptual advantages over more traditional methods for inverse parameter estimation, can be successfully applied to process-based models of high complexity. The methodology is particularly suitable for heterogeneous and complex data structures and can easily be adjusted to other model types, including most stochastic population and individual-based models. Our study therefore provides a blueprint for a fairly general approach to parameter estimation of stochastic process-based models.
Design of a component-based integrated environmental modeling framework
Integrated environmental modeling (IEM) includes interdependent science-based components (e.g., models, databases, viewers, assessment protocols) that comprise an appropriate software modeling system. The science-based components are responsible for consuming and producing inform...
ERIC Educational Resources Information Center
Xiang, Lin
2011-01-01
This is a collective case study seeking to develop detailed descriptions of how programming an agent-based simulation influences a group of 8th grade students' model-based inquiry (MBI) by examining students' agent-based programmable modeling (ABPM) processes and the learning outcomes. The context of the present study was a biology unit on…
SPARK: A Framework for Multi-Scale Agent-Based Biomedical Modeling.
Solovyev, Alexey; Mikheev, Maxim; Zhou, Leming; Dutta-Moscato, Joyeeta; Ziraldo, Cordelia; An, Gary; Vodovotz, Yoram; Mi, Qi
2010-01-01
Multi-scale modeling of complex biological systems remains a central challenge in the systems biology community. A method of dynamic knowledge representation known as agent-based modeling enables the study of higher level behavior emerging from discrete events performed by individual components. With the advancement of computer technology, agent-based modeling has emerged as an innovative technique to model the complexities of systems biology. In this work, the authors describe SPARK (Simple Platform for Agent-based Representation of Knowledge), a framework for agent-based modeling specifically designed for systems-level biomedical model development. SPARK is a stand-alone application written in Java. It provides a user-friendly interface, and a simple programming language for developing Agent-Based Models (ABMs). SPARK has the following features specialized for modeling biomedical systems: 1) continuous space that can simulate real physical space; 2) flexible agent size and shape that can represent the relative proportions of various cell types; 3) multiple spaces that can concurrently simulate and visualize multiple scales in biomedical models; 4) a convenient graphical user interface. Existing ABMs of diabetic foot ulcers and acute inflammation were implemented in SPARK. Models of identical complexity were run in both NetLogo and SPARK; the SPARK-based models ran two to three times faster.
Assessing College Students' Understanding of Acid Base Chemistry Concepts
ERIC Educational Resources Information Center
Wan, Yanjun Jean
2014-01-01
Typically most college curricula include three acid base models: Arrhenius', Bronsted-Lowry's, and Lewis'. Although Lewis' acid base model is generally thought to be the most sophisticated among these three models, and can be further applied in reaction mechanisms, most general chemistry curricula either do not include Lewis' acid base model, or…
An object-based storage model for distributed remote sensing images
NASA Astrophysics Data System (ADS)
Yu, Zhanwu; Li, Zhongmin; Zheng, Sheng
2006-10-01
It is very difficult to design an integrated storage solution for distributed remote sensing images to offer high performance network storage services and secure data sharing across platforms using current network storage models such as direct attached storage, network attached storage and storage area network. Object-based storage, as new generation network storage technology emerged recently, separates the data path, the control path and the management path, which solves the bottleneck problem of metadata existed in traditional storage models, and has the characteristics of parallel data access, data sharing across platforms, intelligence of storage devices and security of data access. We use the object-based storage in the storage management of remote sensing images to construct an object-based storage model for distributed remote sensing images. In the storage model, remote sensing images are organized as remote sensing objects stored in the object-based storage devices. According to the storage model, we present the architecture of a distributed remote sensing images application system based on object-based storage, and give some test results about the write performance comparison of traditional network storage model and object-based storage model.
Andasari, Vivi; Roper, Ryan T.; Swat, Maciej H.; Chaplain, Mark A. J.
2012-01-01
In this paper we present a multiscale, individual-based simulation environment that integrates CompuCell3D for lattice-based modelling on the cellular level and Bionetsolver for intracellular modelling. CompuCell3D or CC3D provides an implementation of the lattice-based Cellular Potts Model or CPM (also known as the Glazier-Graner-Hogeweg or GGH model) and a Monte Carlo method based on the metropolis algorithm for system evolution. The integration of CC3D for cellular systems with Bionetsolver for subcellular systems enables us to develop a multiscale mathematical model and to study the evolution of cell behaviour due to the dynamics inside of the cells, capturing aspects of cell behaviour and interaction that is not possible using continuum approaches. We then apply this multiscale modelling technique to a model of cancer growth and invasion, based on a previously published model of Ramis-Conde et al. (2008) where individual cell behaviour is driven by a molecular network describing the dynamics of E-cadherin and -catenin. In this model, which we refer to as the centre-based model, an alternative individual-based modelling technique was used, namely, a lattice-free approach. In many respects, the GGH or CPM methodology and the approach of the centre-based model have the same overall goal, that is to mimic behaviours and interactions of biological cells. Although the mathematical foundations and computational implementations of the two approaches are very different, the results of the presented simulations are compatible with each other, suggesting that by using individual-based approaches we can formulate a natural way of describing complex multi-cell, multiscale models. The ability to easily reproduce results of one modelling approach using an alternative approach is also essential from a model cross-validation standpoint and also helps to identify any modelling artefacts specific to a given computational approach. PMID:22461894
Model-based surgical planning and simulation of cranial base surgery.
Abe, M; Tabuchi, K; Goto, M; Uchino, A
1998-11-01
Plastic skull models of seven individual patients were fabricated by stereolithography from three-dimensional data based on computed tomography bone images. Skull models were utilized for neurosurgical planning and simulation in the seven patients with cranial base lesions that were difficult to remove. Surgical approaches and areas of craniotomy were evaluated using the fabricated skull models. In preoperative simulations, hand-made models of the tumors, major vessels and nerves were placed in the skull models. Step-by-step simulation of surgical procedures was performed using actual surgical tools. The advantages of using skull models to plan and simulate cranial base surgery include a better understanding of anatomic relationships, preoperative evaluation of the proposed procedure, increased understanding by the patient and family, and improved educational experiences for residents and other medical staff. The disadvantages of using skull models include the time and cost of making the models. The skull models provide a more realistic tool that is easier to handle than computer-graphic images. Surgical simulation using models facilitates difficult cranial base surgery and may help reduce surgical complications.
NASA Astrophysics Data System (ADS)
Roushangar, Kiyoumars; Mehrabani, Fatemeh Vojoudi; Shiri, Jalal
2014-06-01
This study presents Artificial Intelligence (AI)-based modeling of total bed material load through developing the accuracy level of the predictions of traditional models. Gene expression programming (GEP) and adaptive neuro-fuzzy inference system (ANFIS)-based models were developed and validated for estimations. Sediment data from Qotur River (Northwestern Iran) were used for developing and validation of the applied techniques. In order to assess the applied techniques in relation to traditional models, stream power-based and shear stress-based physical models were also applied in the studied case. The obtained results reveal that developed AI-based models using minimum number of dominant factors, give more accurate results than the other applied models. Nonetheless, it was revealed that k-fold test is a practical but high-cost technique for complete scanning of applied data and avoiding the over-fitting.
El-Diasty, Mohammed; Pagiatakis, Spiros
2009-01-01
In this paper, we examine the effect of changing the temperature points on MEMS-based inertial sensor random error. We collect static data under different temperature points using a MEMS-based inertial sensor mounted inside a thermal chamber. Rigorous stochastic models, namely Autoregressive-based Gauss-Markov (AR-based GM) models are developed to describe the random error behaviour. The proposed AR-based GM model is initially applied to short stationary inertial data to develop the stochastic model parameters (correlation times). It is shown that the stochastic model parameters of a MEMS-based inertial unit, namely the ADIS16364, are temperature dependent. In addition, field kinematic test data collected at about 17 °C are used to test the performance of the stochastic models at different temperature points in the filtering stage using Unscented Kalman Filter (UKF). It is shown that the stochastic model developed at 20 °C provides a more accurate inertial navigation solution than the ones obtained from the stochastic models developed at -40 °C, -20 °C, 0 °C, +40 °C, and +60 °C. The temperature dependence of the stochastic model is significant and should be considered at all times to obtain optimal navigation solution for MEMS-based INS/GPS integration.
Predictive representations can link model-based reinforcement learning to model-free mechanisms.
Russek, Evan M; Momennejad, Ida; Botvinick, Matthew M; Gershman, Samuel J; Daw, Nathaniel D
2017-09-01
Humans and animals are capable of evaluating actions by considering their long-run future rewards through a process described using model-based reinforcement learning (RL) algorithms. The mechanisms by which neural circuits perform the computations prescribed by model-based RL remain largely unknown; however, multiple lines of evidence suggest that neural circuits supporting model-based behavior are structurally homologous to and overlapping with those thought to carry out model-free temporal difference (TD) learning. Here, we lay out a family of approaches by which model-based computation may be built upon a core of TD learning. The foundation of this framework is the successor representation, a predictive state representation that, when combined with TD learning of value predictions, can produce a subset of the behaviors associated with model-based learning, while requiring less decision-time computation than dynamic programming. Using simulations, we delineate the precise behavioral capabilities enabled by evaluating actions using this approach, and compare them to those demonstrated by biological organisms. We then introduce two new algorithms that build upon the successor representation while progressively mitigating its limitations. Because this framework can account for the full range of observed putatively model-based behaviors while still utilizing a core TD framework, we suggest that it represents a neurally plausible family of mechanisms for model-based evaluation.
Predictive representations can link model-based reinforcement learning to model-free mechanisms
Botvinick, Matthew M.
2017-01-01
Humans and animals are capable of evaluating actions by considering their long-run future rewards through a process described using model-based reinforcement learning (RL) algorithms. The mechanisms by which neural circuits perform the computations prescribed by model-based RL remain largely unknown; however, multiple lines of evidence suggest that neural circuits supporting model-based behavior are structurally homologous to and overlapping with those thought to carry out model-free temporal difference (TD) learning. Here, we lay out a family of approaches by which model-based computation may be built upon a core of TD learning. The foundation of this framework is the successor representation, a predictive state representation that, when combined with TD learning of value predictions, can produce a subset of the behaviors associated with model-based learning, while requiring less decision-time computation than dynamic programming. Using simulations, we delineate the precise behavioral capabilities enabled by evaluating actions using this approach, and compare them to those demonstrated by biological organisms. We then introduce two new algorithms that build upon the successor representation while progressively mitigating its limitations. Because this framework can account for the full range of observed putatively model-based behaviors while still utilizing a core TD framework, we suggest that it represents a neurally plausible family of mechanisms for model-based evaluation. PMID:28945743
Stimulating Scientific Reasoning with Drawing-Based Modeling
ERIC Educational Resources Information Center
Heijnes, Dewi; van Joolingen, Wouter; Leenaars, Frank
2018-01-01
We investigate the way students' reasoning about evolution can be supported by drawing-based modeling. We modified the drawing-based modeling tool SimSketch to allow for modeling evolutionary processes. In three iterations of development and testing, students in lower secondary education worked on creating an evolutionary model. After each…
Video-Based Modeling: Differential Effects due to Treatment Protocol
ERIC Educational Resources Information Center
Mason, Rose A.; Ganz, Jennifer B.; Parker, Richard I.; Boles, Margot B.; Davis, Heather S.; Rispoli, Mandy J.
2013-01-01
Identifying evidence-based practices for individuals with disabilities requires specification of procedural implementation. Video-based modeling (VBM), consisting of both video self-modeling and video modeling with others as model (VMO), is one class of interventions that has frequently been explored in the literature. However, current information…
Learning of Chemical Equilibrium through Modelling-Based Teaching
ERIC Educational Resources Information Center
Maia, Poliana Flavia; Justi, Rosaria
2009-01-01
This paper presents and discusses students' learning process of chemical equilibrium from a modelling-based approach developed from the use of the "Model of Modelling" diagram. The investigation was conducted in a regular classroom (students 14-15 years old) and aimed at discussing how modelling-based teaching can contribute to students…
A 4DCT imaging-based breathing lung model with relative hysteresis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyawaki, Shinjiro; Choi, Sanghun; Hoffman, Eric A.
To reproduce realistic airway motion and airflow, the authors developed a deforming lung computational fluid dynamics (CFD) model based on four-dimensional (4D, space and time) dynamic computed tomography (CT) images. A total of 13 time points within controlled tidal volume respiration were used to account for realistic and irregular lung motion in human volunteers. Because of the irregular motion of 4DCT-based airways, we identified an optimal interpolation method for airway surface deformation during respiration, and implemented a computational solid mechanics-based moving mesh algorithm to produce smooth deforming airway mesh. In addition, we developed physiologically realistic airflow boundary conditions for bothmore » models based on multiple images and a single image. Furthermore, we examined simplified models based on one or two dynamic or static images. By comparing these simplified models with the model based on 13 dynamic images, we investigated the effects of relative hysteresis of lung structure with respect to lung volume, lung deformation, and imaging methods, i.e., dynamic vs. static scans, on CFD-predicted pressure drop. The effect of imaging method on pressure drop was 24 percentage points due to the differences in airflow distribution and airway geometry. - Highlights: • We developed a breathing human lung CFD model based on 4D-dynamic CT images. • The 4DCT-based breathing lung model is able to capture lung relative hysteresis. • A new boundary condition for lung model based on one static CT image was proposed. • The difference between lung models based on 4D and static CT images was quantified.« less
NASA Astrophysics Data System (ADS)
McConnell, William J.
Due to the call of current science education reform for the integration of engineering practices within science classrooms, design-based instruction is receiving much attention in science education literature. Although some aspect of modeling is often included in well-known design-based instructional methods, it is not always a primary focus. The purpose of this study was to better understand how design-based instruction with an emphasis on scientific modeling might impact students' spatial abilities and their model-based argumentation abilities. In the following mixed-method multiple case study, seven seventh grade students attending a secular private school in the Mid-Atlantic region of the United States underwent an instructional intervention involving design-based instruction, modeling and argumentation. Through the course of a lesson involving students in exploring the interrelatedness of the environment and an animal's form and function, students created and used multiple forms of expressed models to assist them in model-based scientific argument. Pre/post data were collected through the use of The Purdue Spatial Visualization Test: Rotation, the Mental Rotation Test and interviews. Other data included a spatial activities survey, student artifacts in the form of models, notes, exit tickets, and video recordings of students throughout the intervention. Spatial abilities tests were analyzed using descriptive statistics while students' arguments were analyzed using the Instrument for the Analysis of Scientific Curricular Arguments and a behavior protocol. Models were analyzed using content analysis and interviews and all other data were coded and analyzed for emergent themes. Findings in the area of spatial abilities included increases in spatial reasoning for six out of seven participants, and an immense difference in the spatial challenges encountered by students when using CAD software instead of paper drawings to create models. Students perceived 3D printed models to better assist them in scientific argumentation over paper drawing models. In fact, when given a choice, students rarely used paper drawing to assist in argument. There was also a difference in model utility between the two different model types. Participants explicitly used 3D printed models to complete gestural modeling, while participants rarely looked at 2D models when involved in gestural modeling. This study's findings added to current theory dealing with the varied spatial challenges involved in different modes of expressed models. This study found that depth, symmetry and the manipulation of perspectives are typically spatial challenges students will attend to using CAD while they will typically ignore them when drawing using paper and pencil. This study also revealed a major difference in model-based argument in a design-based instruction context as opposed to model-based argument in a typical science classroom context. In the context of design-based instruction, data revealed that design process is an important part of model-based argument. Due to the importance of design process in model-based argumentation in this context, trusted methods of argument analysis, like the coding system of the IASCA, was found lacking in many respects. Limitations and recommendations for further research were also presented.
Multiscale Modeling of Angiogenesis and Predictive Capacity
NASA Astrophysics Data System (ADS)
Pillay, Samara; Byrne, Helen; Maini, Philip
Tumors induce the growth of new blood vessels from existing vasculature through angiogenesis. Using an agent-based approach, we model the behavior of individual endothelial cells during angiogenesis. We incorporate crowding effects through volume exclusion, motility of cells through biased random walks, and include birth and death-like processes. We use the transition probabilities associated with the discrete model and a discrete conservation equation for cell occupancy to determine collective cell behavior, in terms of partial differential equations (PDEs). We derive three PDE models incorporating single, multi-species and no volume exclusion. By fitting the parameters in our PDE models and other well-established continuum models to agent-based simulations during a specific time period, and then comparing the outputs from the PDE models and agent-based model at later times, we aim to determine how well the PDE models predict the future behavior of the agent-based model. We also determine whether predictions differ across PDE models and the significance of those differences. This may impact drug development strategies based on PDE models.
Model-based influences on humans' choices and striatal prediction errors.
Daw, Nathaniel D; Gershman, Samuel J; Seymour, Ben; Dayan, Peter; Dolan, Raymond J
2011-03-24
The mesostriatal dopamine system is prominently implicated in model-free reinforcement learning, with fMRI BOLD signals in ventral striatum notably covarying with model-free prediction errors. However, latent learning and devaluation studies show that behavior also shows hallmarks of model-based planning, and the interaction between model-based and model-free values, prediction errors, and preferences is underexplored. We designed a multistep decision task in which model-based and model-free influences on human choice behavior could be distinguished. By showing that choices reflected both influences we could then test the purity of the ventral striatal BOLD signal as a model-free report. Contrary to expectations, the signal reflected both model-free and model-based predictions in proportions matching those that best explained choice behavior. These results challenge the notion of a separate model-free learner and suggest a more integrated computational architecture for high-level human decision-making. Copyright © 2011 Elsevier Inc. All rights reserved.
Klijn, Sven L; Weijenberg, Matty P; Lemmens, Paul; van den Brandt, Piet A; Lima Passos, Valéria
2017-10-01
Background and objective Group-based trajectory modelling is a model-based clustering technique applied for the identification of latent patterns of temporal changes. Despite its manifold applications in clinical and health sciences, potential problems of the model selection procedure are often overlooked. The choice of the number of latent trajectories (class-enumeration), for instance, is to a large degree based on statistical criteria that are not fail-safe. Moreover, the process as a whole is not transparent. To facilitate class enumeration, we introduce a graphical summary display of several fit and model adequacy criteria, the fit-criteria assessment plot. Methods An R-code that accepts universal data input is presented. The programme condenses relevant group-based trajectory modelling output information of model fit indices in automated graphical displays. Examples based on real and simulated data are provided to illustrate, assess and validate fit-criteria assessment plot's utility. Results Fit-criteria assessment plot provides an overview of fit criteria on a single page, placing users in an informed position to make a decision. Fit-criteria assessment plot does not automatically select the most appropriate model but eases the model assessment procedure. Conclusions Fit-criteria assessment plot is an exploratory, visualisation tool that can be employed to assist decisions in the initial and decisive phase of group-based trajectory modelling analysis. Considering group-based trajectory modelling's widespread resonance in medical and epidemiological sciences, a more comprehensive, easily interpretable and transparent display of the iterative process of class enumeration may foster group-based trajectory modelling's adequate use.
State-based versus reward-based motivation in younger and older adults.
Worthy, Darrell A; Cooper, Jessica A; Byrne, Kaileigh A; Gorlick, Marissa A; Maddox, W Todd
2014-12-01
Recent decision-making work has focused on a distinction between a habitual, model-free neural system that is motivated toward actions that lead directly to reward and a more computationally demanding goal-directed, model-based system that is motivated toward actions that improve one's future state. In this article, we examine how aging affects motivation toward reward-based versus state-based decision making. Participants performed tasks in which one type of option provided larger immediate rewards but the alternative type of option led to larger rewards on future trials, or improvements in state. We predicted that older adults would show a reduced preference for choices that led to improvements in state and a greater preference for choices that maximized immediate reward. We also predicted that fits from a hybrid reinforcement-learning model would indicate greater model-based strategy use in younger than in older adults. In line with these predictions, older adults selected the options that maximized reward more often than did younger adults in three of the four tasks, and modeling results suggested reduced model-based strategy use. In the task where older adults showed similar behavior to younger adults, our model-fitting results suggested that this was due to the utilization of a win-stay-lose-shift heuristic rather than a more complex model-based strategy. Additionally, within older adults, we found that model-based strategy use was positively correlated with memory measures from our neuropsychological test battery. We suggest that this shift from state-based to reward-based motivation may be due to age related declines in the neural structures needed for more computationally demanding model-based decision making.
Cardador, Laura; De Cáceres, Miquel; Bota, Gerard; Giralt, David; Casas, Fabián; Arroyo, Beatriz; Mougeot, François; Cantero-Martínez, Carlos; Moncunill, Judit; Butler, Simon J.; Brotons, Lluís
2014-01-01
European agriculture is undergoing widespread changes that are likely to have profound impacts on farmland biodiversity. The development of tools that allow an assessment of the potential biodiversity effects of different land-use alternatives before changes occur is fundamental to guiding management decisions. In this study, we develop a resource-based model framework to estimate habitat suitability for target species, according to simple information on species’ key resource requirements (diet, foraging habitat and nesting site), and examine whether it can be used to link land-use and local species’ distribution. We take as a study case four steppe bird species in a lowland area of the north-eastern Iberian Peninsula. We also compare the performance of our resource-based approach to that obtained through habitat-based models relating species’ occurrence and land-cover variables. Further, we use our resource-based approach to predict the effects that change in farming systems can have on farmland bird habitat suitability and compare these predictions with those obtained using the habitat-based models. Habitat suitability estimates generated by our resource-based models performed similarly (and better for one study species) than habitat based-models when predicting current species distribution. Moderate prediction success was achieved for three out of four species considered by resource-based models and for two of four by habitat-based models. Although, there is potential for improving the performance of resource-based models, they provide a structure for using available knowledge of the functional links between agricultural practices, provision of key resources and the response of organisms to predict potential effects of changing land-uses in a variety of context or the impacts of changes such as altered management practices that are not easily incorporated into habitat-based models. PMID:24667825
What are the Starting Points? Evaluating Base-Year Assumptions in the Asian Modeling Exercise
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaturvedi, Vaibhav; Waldhoff, Stephanie; Clarke, Leon E.
2012-12-01
A common feature of model inter-comparison efforts is that the base year numbers for important parameters such as population and GDP can differ substantially across models. This paper explores the sources and implications of this variation in Asian countries across the models participating in the Asian Modeling Exercise (AME). Because the models do not all have a common base year, each team was required to provide data for 2005 for comparison purposes. This paper compares the year 2005 information for different models, noting the degree of variation in important parameters, including population, GDP, primary energy, electricity, and CO2 emissions. Itmore » then explores the difference in these key parameters across different sources of base-year information. The analysis confirms that the sources provide different values for many key parameters. This variation across data sources and additional reasons why models might provide different base-year numbers, including differences in regional definitions, differences in model base year, and differences in GDP transformation methodologies, are then discussed in the context of the AME scenarios. Finally, the paper explores the implications of base-year variation on long-term model results.« less
Argumentation in Science Education: A Model-based Framework
NASA Astrophysics Data System (ADS)
Böttcher, Florian; Meisert, Anke
2011-02-01
The goal of this article is threefold: First, the theoretical background for a model-based framework of argumentation to describe and evaluate argumentative processes in science education is presented. Based on the general model-based perspective in cognitive science and the philosophy of science, it is proposed to understand arguments as reasons for the appropriateness of a theoretical model which explains a certain phenomenon. Argumentation is considered to be the process of the critical evaluation of such a model if necessary in relation to alternative models. Secondly, some methodological details are exemplified for the use of a model-based analysis in the concrete classroom context. Third, the application of the approach in comparison with other analytical models will be presented to demonstrate the explicatory power and depth of the model-based perspective. Primarily, the framework of Toulmin to structurally analyse arguments is contrasted with the approach presented here. It will be demonstrated how common methodological and theoretical problems in the context of Toulmin's framework can be overcome through a model-based perspective. Additionally, a second more complex argumentative sequence will also be analysed according to the invented analytical scheme to give a broader impression of its potential in practical use.
Simulating Cancer Growth with Multiscale Agent-Based Modeling
Wang, Zhihui; Butner, Joseph D.; Kerketta, Romica; Cristini, Vittorio; Deisboeck, Thomas S.
2014-01-01
There have been many techniques developed in recent years to in silico model a variety of cancer behaviors. Agent-based modeling is a specific discrete-based hybrid modeling approach that allows simulating the role of diversity in cell populations as well as within each individual cell; it has therefore become a powerful modeling method widely used by computational cancer researchers. Many aspects of tumor morphology including phenotype-changing mutations, the adaptation to microenvironment, the process of angiogenesis, the influence of extracellular matrix, reactions to chemotherapy or surgical intervention, the effects of oxygen and nutrient availability, and metastasis and invasion of healthy tissues have been incorporated and investigated in agent-based models. In this review, we introduce some of the most recent agent-based models that have provided insight into the understanding of cancer growth and invasion, spanning multiple biological scales in time and space, and we further describe several experimentally testable hypotheses generated by those models. We also discuss some of the current challenges of multiscale agent-based cancer models. PMID:24793698
Model-Based Diagnosis in a Power Distribution Test-Bed
NASA Technical Reports Server (NTRS)
Scarl, E.; McCall, K.
1998-01-01
The Rodon model-based diagnosis shell was applied to a breadboard test-bed, modeling an automated power distribution system. The constraint-based modeling paradigm and diagnostic algorithm were found to adequately represent the selected set of test scenarios.
Kashima, Saori; Yorifuji, Takashi; Sawada, Norie; Nakaya, Tomoki; Eboshida, Akira
2018-08-01
Typically, land use regression (LUR) models have been developed using campaign monitoring data rather than routine monitoring data. However, the latter have advantages such as low cost and long-term coverage. Based on the idea that LUR models representing regional differences in air pollution and regional road structures are optimal, the objective of this study was to evaluate the validity of LUR models for nitrogen dioxide (NO 2 ) based on routine and campaign monitoring data obtained from an urban area. We selected the city of Suita in Osaka (Japan). We built a model based on routine monitoring data obtained from all sites (routine-LUR-All), and a model based on campaign monitoring data (campaign-LUR) within the city. Models based on routine monitoring data obtained from background sites (routine-LUR-BS) and based on data obtained from roadside sites (routine-LUR-RS) were also built. The routine LUR models were based on monitoring networks across two prefectures (i.e., Osaka and Hyogo prefectures). We calculated the predictability of the each model. We then compared the predicted NO 2 concentrations from each model with measured annual average NO 2 concentrations from evaluation sites. The routine-LUR-All and routine-LUR-BS models both predicted NO 2 concentrations well: adjusted R 2 =0.68 and 0.76, respectively, and root mean square error=3.4 and 2.1ppb, respectively. The predictions from the routine-LUR-All model were highly correlated with the measured NO 2 concentrations at evaluation sites. Although the predicted NO 2 concentrations from each model were correlated, the LUR models based on routine networks, and particularly those based on all monitoring sites, provided better visual representations of the local road conditions in the city. The present study demonstrated that LUR models based on routine data could estimate local traffic-related air pollution in an urban area. The importance and usefulness of data from routine monitoring networks should be acknowledged. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ichii, K.; Kondo, M.; Wang, W.; Hashimoto, H.; Nemani, R. R.
2012-12-01
Various satellite-based spatial products such as evapotranspiration (ET) and gross primary productivity (GPP) are now produced by integration of ground and satellite observations. Effective use of these multiple satellite-based products in terrestrial biosphere models is an important step toward better understanding of terrestrial carbon and water cycles. However, due to the complexity of terrestrial biosphere models with large number of model parameters, the application of these spatial data sets in terrestrial biosphere models is difficult. In this study, we established an effective but simple framework to refine a terrestrial biosphere model, Biome-BGC, using multiple satellite-based products as constraints. We tested the framework in the monsoon Asia region covered by AsiaFlux observations. The framework is based on the hierarchical analysis (Wang et al. 2009) with model parameter optimization constrained by satellite-based spatial data. The Biome-BGC model is separated into several tiers to minimize the freedom of model parameter selections and maximize the independency from the whole model. For example, the snow sub-model is first optimized using MODIS snow cover product, followed by soil water sub-model optimized by satellite-based ET (estimated by an empirical upscaling method; Support Vector Regression (SVR) method; Yang et al. 2007), photosynthesis model optimized by satellite-based GPP (based on SVR method), and respiration and residual carbon cycle models optimized by biomass data. As a result of initial assessment, we found that most of default sub-models (e.g. snow, water cycle and carbon cycle) showed large deviations from remote sensing observations. However, these biases were removed by applying the proposed framework. For example, gross primary productivities were initially underestimated in boreal and temperate forest and overestimated in tropical forests. However, the parameter optimization scheme successfully reduced these biases. Our analysis shows that terrestrial carbon and water cycle simulations in monsoon Asia were greatly improved, and the use of multiple satellite observations with this framework is an effective way for improving terrestrial biosphere models.
Bridging process-based and empirical approaches to modeling tree growth
Harry T. Valentine; Annikki Makela; Annikki Makela
2005-01-01
The gulf between process-based and empirical approaches to modeling tree growth may be bridged, in part, by the use of a common model. To this end, we have formulated a process-based model of tree growth that can be fitted and applied in an empirical mode. The growth model is grounded in pipe model theory and an optimal control model of crown development. Together, the...
EMPIRE and pyenda: Two ensemble-based data assimilation systems written in Fortran and Python
NASA Astrophysics Data System (ADS)
Geppert, Gernot; Browne, Phil; van Leeuwen, Peter Jan; Merker, Claire
2017-04-01
We present and compare the features of two ensemble-based data assimilation frameworks, EMPIRE and pyenda. Both frameworks allow to couple models to the assimilation codes using the Message Passing Interface (MPI), leading to extremely efficient and fast coupling between models and the data-assimilation codes. The Fortran-based system EMPIRE (Employing Message Passing Interface for Researching Ensembles) is optimized for parallel, high-performance computing. It currently includes a suite of data assimilation algorithms including variants of the ensemble Kalman and several the particle filters. EMPIRE is targeted at models of all kinds of complexity and has been coupled to several geoscience models, eg. the Lorenz-63 model, a barotropic vorticity model, the general circulation model HadCM3, the ocean model NEMO, and the land-surface model JULES. The Python-based system pyenda (Python Ensemble Data Assimilation) allows Fortran- and Python-based models to be used for data assimilation. Models can be coupled either using MPI or by using a Python interface. Using Python allows quick prototyping and pyenda is aimed at small to medium scale models. pyenda currently includes variants of the ensemble Kalman filter and has been coupled to the Lorenz-63 model, an advection-based precipitation nowcasting scheme, and the dynamic global vegetation model JSBACH.
Abstracting event-based control models for high autonomy systems
NASA Technical Reports Server (NTRS)
Luh, Cheng-Jye; Zeigler, Bernard P.
1993-01-01
A high autonomy system needs many models on which to base control, management, design, and other interventions. These models differ in level of abstraction and in formalism. Concepts and tools are needed to organize the models into a coherent whole. The paper deals with the abstraction processes for systematic derivation of related models for use in event-based control. The multifaceted modeling methodology is briefly reviewed. The morphism concepts needed for application to model abstraction are described. A theory for supporting the construction of DEVS models needed for event-based control is then presented. An implemented morphism on the basis of this theory is also described.
Model Based Analysis and Test Generation for Flight Software
NASA Technical Reports Server (NTRS)
Pasareanu, Corina S.; Schumann, Johann M.; Mehlitz, Peter C.; Lowry, Mike R.; Karsai, Gabor; Nine, Harmon; Neema, Sandeep
2009-01-01
We describe a framework for model-based analysis and test case generation in the context of a heterogeneous model-based development paradigm that uses and combines Math- Works and UML 2.0 models and the associated code generation tools. This paradigm poses novel challenges to analysis and test case generation that, to the best of our knowledge, have not been addressed before. The framework is based on a common intermediate representation for different modeling formalisms and leverages and extends model checking and symbolic execution tools for model analysis and test case generation, respectively. We discuss the application of our framework to software models for a NASA flight mission.
A Research on the Generative Learning Model Supported by Context-Based Learning
ERIC Educational Resources Information Center
Ulusoy, Fatma Merve; Onen, Aysem Seda
2014-01-01
This study is based on the generative learning model which involves context-based learning. Using the generative learning model, we taught the topic of Halogens. This topic is covered in the grade 10 chemistry curriculum using activities which are designed in accordance with the generative learning model supported by context-based learning. The…
When Does Model-Based Control Pay Off?
Kool, Wouter; Cushman, Fiery A; Gershman, Samuel J
2016-08-01
Many accounts of decision making and reinforcement learning posit the existence of two distinct systems that control choice: a fast, automatic system and a slow, deliberative system. Recent research formalizes this distinction by mapping these systems to "model-free" and "model-based" strategies in reinforcement learning. Model-free strategies are computationally cheap, but sometimes inaccurate, because action values can be accessed by inspecting a look-up table constructed through trial-and-error. In contrast, model-based strategies compute action values through planning in a causal model of the environment, which is more accurate but also more cognitively demanding. It is assumed that this trade-off between accuracy and computational demand plays an important role in the arbitration between the two strategies, but we show that the hallmark task for dissociating model-free and model-based strategies, as well as several related variants, do not embody such a trade-off. We describe five factors that reduce the effectiveness of the model-based strategy on these tasks by reducing its accuracy in estimating reward outcomes and decreasing the importance of its choices. Based on these observations, we describe a version of the task that formally and empirically obtains an accuracy-demand trade-off between model-free and model-based strategies. Moreover, we show that human participants spontaneously increase their reliance on model-based control on this task, compared to the original paradigm. Our novel task and our computational analyses may prove important in subsequent empirical investigations of how humans balance accuracy and demand.
AGENT-BASED MODELS IN EMPIRICAL SOCIAL RESEARCH*
Bruch, Elizabeth; Atwell, Jon
2014-01-01
Agent-based modeling has become increasingly popular in recent years, but there is still no codified set of recommendations or practices for how to use these models within a program of empirical research. This article provides ideas and practical guidelines drawn from sociology, biology, computer science, epidemiology, and statistics. We first discuss the motivations for using agent-based models in both basic science and policy-oriented social research. Next, we provide an overview of methods and strategies for incorporating data on behavior and populations into agent-based models, and review techniques for validating and testing the sensitivity of agent-based models. We close with suggested directions for future research. PMID:25983351
Models of Quantitative Estimations: Rule-Based and Exemplar-Based Processes Compared
ERIC Educational Resources Information Center
von Helversen, Bettina; Rieskamp, Jorg
2009-01-01
The cognitive processes underlying quantitative estimations vary. Past research has identified task-contingent changes between rule-based and exemplar-based processes (P. Juslin, L. Karlsson, & H. Olsson, 2008). B. von Helversen and J. Rieskamp (2008), however, proposed a simple rule-based model--the mapping model--that outperformed the…
Control algorithms and applications of the wavefront sensorless adaptive optics
NASA Astrophysics Data System (ADS)
Ma, Liang; Wang, Bin; Zhou, Yuanshen; Yang, Huizhen
2017-10-01
Compared with the conventional adaptive optics (AO) system, the wavefront sensorless (WFSless) AO system need not to measure the wavefront and reconstruct it. It is simpler than the conventional AO in system architecture and can be applied to the complex conditions. Based on the analysis of principle and system model of the WFSless AO system, wavefront correction methods of the WFSless AO system were divided into two categories: model-free-based and model-based control algorithms. The WFSless AO system based on model-free-based control algorithms commonly considers the performance metric as a function of the control parameters and then uses certain control algorithm to improve the performance metric. The model-based control algorithms include modal control algorithms, nonlinear control algorithms and control algorithms based on geometrical optics. Based on the brief description of above typical control algorithms, hybrid methods combining the model-free-based control algorithm with the model-based control algorithm were generalized. Additionally, characteristics of various control algorithms were compared and analyzed. We also discussed the extensive applications of WFSless AO system in free space optical communication (FSO), retinal imaging in the human eye, confocal microscope, coherent beam combination (CBC) techniques and extended objects.
Testing the Predictive Power of Coulomb Stress on Aftershock Sequences
NASA Astrophysics Data System (ADS)
Woessner, J.; Lombardi, A.; Werner, M. J.; Marzocchi, W.
2009-12-01
Empirical and statistical models of clustered seismicity are usually strongly stochastic and perceived to be uninformative in their forecasts, since only marginal distributions are used, such as the Omori-Utsu and Gutenberg-Richter laws. In contrast, so-called physics-based aftershock models, based on seismic rate changes calculated from Coulomb stress changes and rate-and-state friction, make more specific predictions: anisotropic stress shadows and multiplicative rate changes. We test the predictive power of models based on Coulomb stress changes against statistical models, including the popular Short Term Earthquake Probabilities and Epidemic-Type Aftershock Sequences models: We score and compare retrospective forecasts on the aftershock sequences of the 1992 Landers, USA, the 1997 Colfiorito, Italy, and the 2008 Selfoss, Iceland, earthquakes. To quantify predictability, we use likelihood-based metrics that test the consistency of the forecasts with the data, including modified and existing tests used in prospective forecast experiments within the Collaboratory for the Study of Earthquake Predictability (CSEP). Our results indicate that a statistical model performs best. Moreover, two Coulomb model classes seem unable to compete: Models based on deterministic Coulomb stress changes calculated from a given fault-slip model, and those based on fixed receiver faults. One model of Coulomb stress changes does perform well and sometimes outperforms the statistical models, but its predictive information is diluted, because of uncertainties included in the fault-slip model. Our results suggest that models based on Coulomb stress changes need to incorporate stochastic features that represent model and data uncertainty.
Evidence for Model-based Computations in the Human Amygdala during Pavlovian Conditioning
Prévost, Charlotte; McNamee, Daniel; Jessup, Ryan K.; Bossaerts, Peter; O'Doherty, John P.
2013-01-01
Contemporary computational accounts of instrumental conditioning have emphasized a role for a model-based system in which values are computed with reference to a rich model of the structure of the world, and a model-free system in which values are updated without encoding such structure. Much less studied is the possibility of a similar distinction operating at the level of Pavlovian conditioning. In the present study, we scanned human participants while they participated in a Pavlovian conditioning task with a simple structure while measuring activity in the human amygdala using a high-resolution fMRI protocol. After fitting a model-based algorithm and a variety of model-free algorithms to the fMRI data, we found evidence for the superiority of a model-based algorithm in accounting for activity in the amygdala compared to the model-free counterparts. These findings support an important role for model-based algorithms in describing the processes underpinning Pavlovian conditioning, as well as providing evidence of a role for the human amygdala in model-based inference. PMID:23436990
Decker, Johannes H; Otto, A Ross; Daw, Nathaniel D; Hartley, Catherine A
2016-06-01
Theoretical models distinguish two decision-making strategies that have been formalized in reinforcement-learning theory. A model-based strategy leverages a cognitive model of potential actions and their consequences to make goal-directed choices, whereas a model-free strategy evaluates actions based solely on their reward history. Research in adults has begun to elucidate the psychological mechanisms and neural substrates underlying these learning processes and factors that influence their relative recruitment. However, the developmental trajectory of these evaluative strategies has not been well characterized. In this study, children, adolescents, and adults performed a sequential reinforcement-learning task that enabled estimation of model-based and model-free contributions to choice. Whereas a model-free strategy was apparent in choice behavior across all age groups, a model-based strategy was absent in children, became evident in adolescents, and strengthened in adults. These results suggest that recruitment of model-based valuation systems represents a critical cognitive component underlying the gradual maturation of goal-directed behavior. © The Author(s) 2016.
NASA Astrophysics Data System (ADS)
Utanto, Yuli; Widhanarto, Ghanis Putra; Maretta, Yoris Adi
2017-03-01
This study aims to develop a web-based portfolio model. The model developed in this study could reveal the effectiveness of the new model in experiments conducted at research respondents in the department of curriculum and educational technology FIP Unnes. In particular, the further research objectives to be achieved through this development of research, namely: (1) Describing the process of implementing a portfolio in a web-based model; (2) Assessing the effectiveness of web-based portfolio model for the final task, especially in Web-Based Learning courses. This type of research is the development of research Borg and Gall (2008: 589) says "educational research and development (R & D) is a process used to develop and validate educational production". The series of research and development carried out starting with exploration and conceptual studies, followed by testing and evaluation, and also implementation. For the data analysis, the technique used is simple descriptive analysis, analysis of learning completeness, which then followed by prerequisite test for normality and homogeneity to do T - test. Based on the data analysis, it was concluded that: (1) a web-based portfolio model can be applied to learning process in higher education; (2) The effectiveness of web-based portfolio model with field data from the respondents of large group trial participants (field trial), the number of respondents who reached mastery learning (a score of 60 and above) were 24 people (92.3%) in which it indicates that the web-based portfolio model is effective. The conclusion of this study is that a web-based portfolio model is effective. The implications of the research development of this model, the next researcher is expected to be able to use the guideline of the development model based on the research that has already been conducted to be developed on other subjects.
Hayenga, Heather N; Thorne, Bryan C; Peirce, Shayn M; Humphrey, Jay D
2011-11-01
There is a need to develop multiscale models of vascular adaptations to understand tissue-level manifestations of cellular level mechanisms. Continuum-based biomechanical models are well suited for relating blood pressures and flows to stress-mediated changes in geometry and properties, but less so for describing underlying mechanobiological processes. Discrete stochastic agent-based models are well suited for representing biological processes at a cellular level, but not for describing tissue-level mechanical changes. We present here a conceptually new approach to facilitate the coupling of continuum and agent-based models. Because of ubiquitous limitations in both the tissue- and cell-level data from which one derives constitutive relations for continuum models and rule-sets for agent-based models, we suggest that model verification should enforce congruency across scales. That is, multiscale model parameters initially determined from data sets representing different scales should be refined, when possible, to ensure that common outputs are consistent. Potential advantages of this approach are illustrated by comparing simulated aortic responses to a sustained increase in blood pressure predicted by continuum and agent-based models both before and after instituting a genetic algorithm to refine 16 objectively bounded model parameters. We show that congruency-based parameter refinement not only yielded increased consistency across scales, it also yielded predictions that are closer to in vivo observations.
PRESS-based EFOR algorithm for the dynamic parametrical modeling of nonlinear MDOF systems
NASA Astrophysics Data System (ADS)
Liu, Haopeng; Zhu, Yunpeng; Luo, Zhong; Han, Qingkai
2017-09-01
In response to the identification problem concerning multi-degree of freedom (MDOF) nonlinear systems, this study presents the extended forward orthogonal regression (EFOR) based on predicted residual sums of squares (PRESS) to construct a nonlinear dynamic parametrical model. The proposed parametrical model is based on the non-linear autoregressive with exogenous inputs (NARX) model and aims to explicitly reveal the physical design parameters of the system. The PRESS-based EFOR algorithm is proposed to identify such a model for MDOF systems. By using the algorithm, we built a common-structured model based on the fundamental concept of evaluating its generalization capability through cross-validation. The resulting model aims to prevent over-fitting with poor generalization performance caused by the average error reduction ratio (AERR)-based EFOR algorithm. Then, a functional relationship is established between the coefficients of the terms and the design parameters of the unified model. Moreover, a 5-DOF nonlinear system is taken as a case to illustrate the modeling of the proposed algorithm. Finally, a dynamic parametrical model of a cantilever beam is constructed from experimental data. Results indicate that the dynamic parametrical model of nonlinear systems, which depends on the PRESS-based EFOR, can accurately predict the output response, thus providing a theoretical basis for the optimal design of modeling methods for MDOF nonlinear systems.
Model-based learning and the contribution of the orbitofrontal cortex to the model-free world.
McDannald, Michael A; Takahashi, Yuji K; Lopatina, Nina; Pietras, Brad W; Jones, Josh L; Schoenbaum, Geoffrey
2012-04-01
Learning is proposed to occur when there is a discrepancy between reward prediction and reward receipt. At least two separate systems are thought to exist: one in which predictions are proposed to be based on model-free or cached values; and another in which predictions are model-based. A basic neural circuit for model-free reinforcement learning has already been described. In the model-free circuit the ventral striatum (VS) is thought to supply a common-currency reward prediction to midbrain dopamine neurons that compute prediction errors and drive learning. In a model-based system, predictions can include more information about an expected reward, such as its sensory attributes or current, unique value. This detailed prediction allows for both behavioral flexibility and learning driven by changes in sensory features of rewards alone. Recent evidence from animal learning and human imaging suggests that, in addition to model-free information, the VS also signals model-based information. Further, there is evidence that the orbitofrontal cortex (OFC) signals model-based information. Here we review these data and suggest that the OFC provides model-based information to this traditional model-free circuitry and offer possibilities as to how this interaction might occur. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Fundamental Algorithms of the Goddard Battery Model
NASA Technical Reports Server (NTRS)
Jagielski, J. M.
1985-01-01
The Goddard Space Flight Center (GSFC) is currently producing a computer model to predict Nickel Cadmium (NiCd) performance in a Low Earth Orbit (LEO) cycling regime. The model proper is currently still in development, but the inherent, fundamental algorithms (or methodologies) of the model are defined. At present, the model is closely dependent on empirical data and the data base currently used is of questionable accuracy. Even so, very good correlations have been determined between model predictions and actual cycling data. A more accurate and encompassing data base has been generated to serve dual functions: show the limitations of the current data base, and be inbred in the model properly for more accurate predictions. The fundamental algorithms of the model, and the present data base and its limitations, are described and a brief preliminary analysis of the new data base and its verification of the model's methodology are presented.
Model-Driven Useware Engineering
NASA Astrophysics Data System (ADS)
Meixner, Gerrit; Seissler, Marc; Breiner, Kai
User-oriented hardware and software development relies on a systematic development process based on a comprehensive analysis focusing on the users' requirements and preferences. Such a development process calls for the integration of numerous disciplines, from psychology and ergonomics to computer sciences and mechanical engineering. Hence, a correspondingly interdisciplinary team must be equipped with suitable software tools to allow it to handle the complexity of a multimodal and multi-device user interface development approach. An abstract, model-based development approach seems to be adequate for handling this complexity. This approach comprises different levels of abstraction requiring adequate tool support. Thus, in this chapter, we present the current state of our model-based software tool chain. We introduce the use model as the core model of our model-based process, transformation processes, and a model-based architecture, and we present different software tools that provide support for creating and maintaining the models or performing the necessary model transformations.
Effects of linking a soil-water-balance model with a groundwater-flow model
Stanton, Jennifer S.; Ryter, Derek W.; Peterson, Steven M.
2013-01-01
A previously published regional groundwater-flow model in north-central Nebraska was sequentially linked with the recently developed soil-water-balance (SWB) model to analyze effects to groundwater-flow model parameters and calibration results. The linked models provided a more detailed spatial and temporal distribution of simulated recharge based on hydrologic processes, improvement of simulated groundwater-level changes and base flows at specific sites in agricultural areas, and a physically based assessment of the relative magnitude of recharge for grassland, nonirrigated cropland, and irrigated cropland areas. Root-mean-squared (RMS) differences between the simulated and estimated or measured target values for the previously published model and linked models were relatively similar and did not improve for all types of calibration targets. However, without any adjustment to the SWB-generated recharge, the RMS difference between simulated and estimated base-flow target values for the groundwater-flow model was slightly smaller than for the previously published model, possibly indicating that the volume of recharge simulated by the SWB code was closer to actual hydrogeologic conditions than the previously published model provided. Groundwater-level and base-flow hydrographs showed that temporal patterns of simulated groundwater levels and base flows were more accurate for the linked models than for the previously published model at several sites, particularly in agricultural areas.
ERIC Educational Resources Information Center
Louzada, Alexandre Neves; Elia, Marcos da Fonseca; Sampaio, Fábio Ferrentini; Vidal, Andre Luiz Pestana
2014-01-01
The aim of this work is to adapt and test, in a Brazilian public school, the ACE model proposed by Borkulo for evaluating student performance as a teaching-learning process based on computational modeling systems. The ACE model is based on different types of reasoning involving three dimensions. In addition to adapting the model and introducing…
Promoting Evidence-Based Practice: Models and Mechanisms from Cross-Sector Review
ERIC Educational Resources Information Center
Nutley, Sandra; Walter, Isabel; Davies, Huw T. O.
2009-01-01
This article draws on both a cross-sector literature review of mechanisms to promote evidence-based practice and a specific review of ways of improving research use in social care. At the heart of the article is a discussion of three models of evidence-based practice: the research-based practitioner model, the embedded research model, and the…
A Model-based Approach to Reactive Self-Configuring Systems
NASA Technical Reports Server (NTRS)
Williams, Brian C.; Nayak, P. Pandurang
1996-01-01
This paper describes Livingstone, an implemented kernel for a self-reconfiguring autonomous system, that is reactive and uses component-based declarative models. The paper presents a formal characterization of the representation formalism used in Livingstone, and reports on our experience with the implementation in a variety of domains. Livingstone's representation formalism achieves broad coverage of hybrid software/hardware systems by coupling the concurrent transition system models underlying concurrent reactive languages with the discrete qualitative representations developed in model-based reasoning. We achieve a reactive system that performs significant deductions in the sense/response loop by drawing on our past experience at building fast prepositional conflict-based algorithms for model-based diagnosis, and by framing a model-based configuration manager as a prepositional, conflict-based feedback controller that generates focused, optimal responses. Livingstone automates all these tasks using a single model and a single core deductive engine, thus making significant progress towards achieving a central goal of model-based reasoning. Livingstone, together with the HSTS planning and scheduling engine and the RAPS executive, has been selected as the core autonomy architecture for Deep Space One, the first spacecraft for NASA's New Millennium program.
Comparison of an Agent-based Model of Disease Propagation with the Generalised SIR Epidemic Model
2009-08-01
has become a practical method for conducting Epidemiological Modelling. In the agent- based approach the whole township can be modelled as a system of...SIR system was initially developed based on a very simplified model of social interaction. For instance an assumption of uniform population mixing was...simulating the progress of a disease within a host and of transmission between hosts is based upon Transportation Analysis and Simulation System
A method for diagnosing time dependent faults using model-based reasoning systems
NASA Technical Reports Server (NTRS)
Goodrich, Charles H.
1995-01-01
This paper explores techniques to apply model-based reasoning to equipment and systems which exhibit dynamic behavior (that which changes as a function of time). The model-based system of interest is KATE-C (Knowledge based Autonomous Test Engineer) which is a C++ based system designed to perform monitoring and diagnosis of Space Shuttle electro-mechanical systems. Methods of model-based monitoring and diagnosis are well known and have been thoroughly explored by others. A short example is given which illustrates the principle of model-based reasoning and reveals some limitations of static, non-time-dependent simulation. This example is then extended to demonstrate representation of time-dependent behavior and testing of fault hypotheses in that environment.
Revisiting node-based SIR models in complex networks with degree correlations
NASA Astrophysics Data System (ADS)
Wang, Yi; Cao, Jinde; Alofi, Abdulaziz; AL-Mazrooei, Abdullah; Elaiw, Ahmed
2015-11-01
In this paper, we consider two growing networks which will lead to the degree-degree correlations between two nearest neighbors in the network. When the network grows to some certain size, we introduce an SIR-like disease such as pandemic influenza H1N1/09 to the population. Due to its rapid spread, the population size changes slowly, and thus the disease spreads on correlated networks with approximately fixed size. To predict the disease evolution on correlated networks, we first review two node-based SIR models incorporating degree correlations and an edge-based SIR model without considering degree correlation, and then compare the predictions of these models with stochastic SIR simulations, respectively. We find that the edge-based model, even without considering degree correlations, agrees much better than the node-based models incorporating degree correlations with stochastic SIR simulations in many respects. Moreover, simulation results show that for networks with positive correlation, the edge-based model provides a better upper bound of the cumulative incidence than the node-based SIR models, whereas for networks with negative correlation, it provides a lower bound of the cumulative incidence.
Hydrological modelling in forested systems | Science ...
This chapter provides a brief overview of forest hydrology modelling approaches for answering important global research and management questions. Many hundreds of hydrological models have been applied globally across multiple decades to represent and predict forest hydrological processes. The focus of this chapter is on process-based models and approaches, specifically 'forest hydrology models'; that is, physically based simulation tools that quantify compartments of the forest hydrological cycle. Physically based models can be considered those that describe the conservation of mass, momentum and/or energy. The purpose of this chapter is to provide a brief overview of forest hydrology modeling approaches for answering important global research and management questions. The focus of this chapter is on process-based models and approaches, specifically “forest hydrology models”, i.e., physically-based simulation tools that quantify compartments of the forest hydrological cycle.
Understanding Elementary Astronomy by Making Drawing-Based Models
NASA Astrophysics Data System (ADS)
van Joolingen, W. R.; Aukes, Annika V. A.; Gijlers, H.; Bollen, L.
2015-04-01
Modeling is an important approach in the teaching and learning of science. In this study, we attempt to bring modeling within the reach of young children by creating the SimSketch modeling system, which is based on freehand drawings that can be turned into simulations. This system was used by 247 children (ages ranging from 7 to 15) to create a drawing-based model of the solar system. The results show that children in the target age group are capable of creating a drawing-based model of the solar system and can use it to show the situations in which eclipses occur. Structural equation modeling predicting post-test knowledge scores based on learners' pre-test knowledge scores, the quality of their drawings and motivational aspects yielded some evidence that such drawing contributes to learning. Consequences for using modeling with young children are considered.
NASA Astrophysics Data System (ADS)
Kock, B. E.
2008-12-01
The increased availability and understanding of agent-based modeling technology and techniques provides a unique opportunity for water resources modelers, allowing them to go beyond traditional behavioral approaches from neoclassical economics, and add rich cognition to social-hydrological models. Agent-based models provide for an individual focus, and the easier and more realistic incorporation of learning, memory and other mechanisms for increased cognitive sophistication. We are in an age of global change impacting complex water resources systems, and social responses are increasingly recognized as fundamentally adaptive and emergent. In consideration of this, water resources models and modelers need to better address social dynamics in a manner beyond the capabilities of neoclassical economics theory and practice. However, going beyond the unitary curve requires unique levels of engagement with stakeholders, both to elicit the richer knowledge necessary for structuring and parameterizing agent-based models, but also to make sure such models are appropriately used. With the aim of encouraging epistemological and methodological convergence in the agent-based modeling of water resources, we have developed a water resources-specific cognitive model and an associated collaborative modeling process. Our cognitive model emphasizes efficiency in architecture and operation, and capacity to adapt to different application contexts. We describe a current application of this cognitive model and modeling process in the Arkansas Basin of Colorado. In particular, we highlight the potential benefits of, and challenges to, using more sophisticated cognitive models in agent-based water resources models.
Evaluating Emulation-based Models of Distributed Computing Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Stephen T.; Gabert, Kasimir G.; Tarman, Thomas D.
Emulation-based models of distributed computing systems are collections of virtual ma- chines, virtual networks, and other emulation components configured to stand in for oper- ational systems when performing experimental science, training, analysis of design alterna- tives, test and evaluation, or idea generation. As with any tool, we should carefully evaluate whether our uses of emulation-based models are appropriate and justified. Otherwise, we run the risk of using a model incorrectly and creating meaningless results. The variety of uses of emulation-based models each have their own goals and deserve thoughtful evaluation. In this paper, we enumerate some of these uses andmore » describe approaches that one can take to build an evidence-based case that a use of an emulation-based model is credible. Predictive uses of emulation-based models, where we expect a model to tell us something true about the real world, set the bar especially high and the principal evaluation method, called validation , is comensurately rigorous. We spend the majority of our time describing and demonstrating the validation of a simple predictive model using a well-established methodology inherited from decades of development in the compuational science and engineering community.« less
Voulgarelis, Dimitrios; Velayudhan, Ajoy; Smith, Frank
2017-01-01
Agent-based models provide a formidable tool for exploring complex and emergent behaviour of biological systems as well as accurate results but with the drawback of needing a lot of computational power and time for subsequent analysis. On the other hand, equation-based models can more easily be used for complex analysis in a much shorter timescale. This paper formulates an ordinary differential equations and stochastic differential equations model to capture the behaviour of an existing agent-based model of tumour cell reprogramming and applies it to optimization of possible treatment as well as dosage sensitivity analysis. For certain values of the parameter space a close match between the equation-based and agent-based models is achieved. The need for division of labour between the two approaches is explored. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
NASA Astrophysics Data System (ADS)
Yu, Bing; Shu, Wenjun; Cao, Can
2018-05-01
A novel modeling method for aircraft engine using nonlinear autoregressive exogenous (NARX) models based on wavelet neural networks is proposed. The identification principle and process based on wavelet neural networks are studied, and the modeling scheme based on NARX is proposed. Then, the time series data sets from three types of aircraft engines are utilized to build the corresponding NARX models, and these NARX models are validated by the simulation. The results show that all the best NARX models can capture the original aircraft engine's dynamic characteristic well with the high accuracy. For every type of engine, the relative identification errors of its best NARX model and the component level model are no more than 3.5 % and most of them are within 1 %.
Mosquito population dynamics from cellular automata-based simulation
NASA Astrophysics Data System (ADS)
Syafarina, Inna; Sadikin, Rifki; Nuraini, Nuning
2016-02-01
In this paper we present an innovative model for simulating mosquito-vector population dynamics. The simulation consist of two stages: demography and dispersal dynamics. For demography simulation, we follow the existing model for modeling a mosquito life cycles. Moreover, we use cellular automata-based model for simulating dispersal of the vector. In simulation, each individual vector is able to move to other grid based on a random walk. Our model is also capable to represent immunity factor for each grid. We simulate the model to evaluate its correctness. Based on the simulations, we can conclude that our model is correct. However, our model need to be improved to find a realistic parameters to match real data.
ERIC Educational Resources Information Center
Gu, X.; Blackmore, K. L.
2015-01-01
This paper presents the results of a systematic review of agent-based modelling and simulation (ABMS) applications in the higher education (HE) domain. Agent-based modelling is a "bottom-up" modelling paradigm in which system-level behaviour (macro) is modelled through the behaviour of individual local-level agent interactions (micro).…
ERIC Educational Resources Information Center
Carrejo, David; Robertson, William H.
2011-01-01
Computer-based mathematical modeling in physics is a process of constructing models of concepts and the relationships between them in the scientific characteristics of work. In this manner, computer-based modeling integrates the interactions of natural phenomenon through the use of models, which provide structure for theories and a base for…
Thomas W. Bonnot; Frank R. III Thompson; Joshua Millspaugh
2011-01-01
Landscape-based population models are potentially valuable tools in facilitating conservation planning and actions at large scales. However, such models have rarely been applied at ecoregional scales. We extended landscape-based population models to ecoregional scales for three species of concern in the Central Hardwoods Bird Conservation Region and compared model...
DOT National Transportation Integrated Search
2013-06-01
This report summarizes a research project aimed at developing degradation models for bridge decks in the state of Michigan based on durability mechanics. A probabilistic framework to implement local-level mechanistic-based models for predicting the c...
ABSTRACT
Proposed applications of increasingly sophisticated biologically-based computational models, such as physiologically-based pharmacokinetic (PBPK) models, raise the issue of how to evaluate whether the models are adequate for proposed uses including safety or risk ...
Technical Note: Approximate Bayesian parameterization of a complex tropical forest model
NASA Astrophysics Data System (ADS)
Hartig, F.; Dislich, C.; Wiegand, T.; Huth, A.
2013-08-01
Inverse parameter estimation of process-based models is a long-standing problem in ecology and evolution. A key problem of inverse parameter estimation is to define a metric that quantifies how well model predictions fit to the data. Such a metric can be expressed by general cost or objective functions, but statistical inversion approaches are based on a particular metric, the probability of observing the data given the model, known as the likelihood. Deriving likelihoods for dynamic models requires making assumptions about the probability for observations to deviate from mean model predictions. For technical reasons, these assumptions are usually derived without explicit consideration of the processes in the simulation. Only in recent years have new methods become available that allow generating likelihoods directly from stochastic simulations. Previous applications of these approximate Bayesian methods have concentrated on relatively simple models. Here, we report on the application of a simulation-based likelihood approximation for FORMIND, a parameter-rich individual-based model of tropical forest dynamics. We show that approximate Bayesian inference, based on a parametric likelihood approximation placed in a conventional MCMC, performs well in retrieving known parameter values from virtual field data generated by the forest model. We analyze the results of the parameter estimation, examine the sensitivity towards the choice and aggregation of model outputs and observed data (summary statistics), and show results from using this method to fit the FORMIND model to field data from an Ecuadorian tropical forest. Finally, we discuss differences of this approach to Approximate Bayesian Computing (ABC), another commonly used method to generate simulation-based likelihood approximations. Our results demonstrate that simulation-based inference, which offers considerable conceptual advantages over more traditional methods for inverse parameter estimation, can successfully be applied to process-based models of high complexity. The methodology is particularly suited to heterogeneous and complex data structures and can easily be adjusted to other model types, including most stochastic population and individual-based models. Our study therefore provides a blueprint for a fairly general approach to parameter estimation of stochastic process-based models in ecology and evolution.
Inadequacy representation of flamelet-based RANS model for turbulent non-premixed flame
NASA Astrophysics Data System (ADS)
Lee, Myoungkyu; Oliver, Todd; Moser, Robert
2017-11-01
Stochastic representations for model inadequacy in RANS-based models of non-premixed jet flames are developed and explored. Flamelet-based RANS models are attractive for engineering applications relative to higher-fidelity methods because of their low computational costs. However, the various assumptions inherent in such models introduce errors that can significantly affect the accuracy of computed quantities of interest. In this work, we develop an approach to represent the model inadequacy of the flamelet-based RANS model. In particular, we pose a physics-based, stochastic PDE for the triple correlation of the mixture fraction. This additional uncertain state variable is then used to construct perturbations of the PDF for the instantaneous mixture fraction, which is used to obtain an uncertain perturbation of the flame temperature. A hydrogen-air non-premixed jet flame is used to demonstrate the representation of the inadequacy of the flamelet-based RANS model. This work was supported by DARPA-EQUiPS(Enabling Quantification of Uncertainty in Physical Systems) program.
A Model-Based Expert System for Space Power Distribution Diagnostics
NASA Technical Reports Server (NTRS)
Quinn, Todd M.; Schlegelmilch, Richard F.
1994-01-01
When engineers diagnose system failures, they often use models to confirm system operation. This concept has produced a class of advanced expert systems that perform model-based diagnosis. A model-based diagnostic expert system for the Space Station Freedom electrical power distribution test bed is currently being developed at the NASA Lewis Research Center. The objective of this expert system is to autonomously detect and isolate electrical fault conditions. Marple, a software package developed at TRW, provides a model-based environment utilizing constraint suspension. Originally, constraint suspension techniques were developed for digital systems. However, Marple provides the mechanisms for applying this approach to analog systems such as the test bed, as well. The expert system was developed using Marple and Lucid Common Lisp running on a Sun Sparc-2 workstation. The Marple modeling environment has proved to be a useful tool for investigating the various aspects of model-based diagnostics. This report describes work completed to date and lessons learned while employing model-based diagnostics using constraint suspension within an analog system.
A simple computational algorithm of model-based choice preference.
Toyama, Asako; Katahira, Kentaro; Ohira, Hideki
2017-08-01
A broadly used computational framework posits that two learning systems operate in parallel during the learning of choice preferences-namely, the model-free and model-based reinforcement-learning systems. In this study, we examined another possibility, through which model-free learning is the basic system and model-based information is its modulator. Accordingly, we proposed several modified versions of a temporal-difference learning model to explain the choice-learning process. Using the two-stage decision task developed by Daw, Gershman, Seymour, Dayan, and Dolan (2011), we compared their original computational model, which assumes a parallel learning process, and our proposed models, which assume a sequential learning process. Choice data from 23 participants showed a better fit with the proposed models. More specifically, the proposed eligibility adjustment model, which assumes that the environmental model can weight the degree of the eligibility trace, can explain choices better under both model-free and model-based controls and has a simpler computational algorithm than the original model. In addition, the forgetting learning model and its variation, which assume changes in the values of unchosen actions, substantially improved the fits to the data. Overall, we show that a hybrid computational model best fits the data. The parameters used in this model succeed in capturing individual tendencies with respect to both model use in learning and exploration behavior. This computational model provides novel insights into learning with interacting model-free and model-based components.
Model-based Clustering of High-Dimensional Data in Astrophysics
NASA Astrophysics Data System (ADS)
Bouveyron, C.
2016-05-01
The nature of data in Astrophysics has changed, as in other scientific fields, in the past decades due to the increase of the measurement capabilities. As a consequence, data are nowadays frequently of high dimensionality and available in mass or stream. Model-based techniques for clustering are popular tools which are renowned for their probabilistic foundations and their flexibility. However, classical model-based techniques show a disappointing behavior in high-dimensional spaces which is mainly due to their dramatical over-parametrization. The recent developments in model-based classification overcome these drawbacks and allow to efficiently classify high-dimensional data, even in the "small n / large p" situation. This work presents a comprehensive review of these recent approaches, including regularization-based techniques, parsimonious modeling, subspace classification methods and classification methods based on variable selection. The use of these model-based methods is also illustrated on real-world classification problems in Astrophysics using R packages.
Model-based sensor-less wavefront aberration correction in optical coherence tomography.
Verstraete, Hans R G W; Wahls, Sander; Kalkman, Jeroen; Verhaegen, Michel
2015-12-15
Several sensor-less wavefront aberration correction methods that correct nonlinear wavefront aberrations by maximizing the optical coherence tomography (OCT) signal are tested on an OCT setup. A conventional coordinate search method is compared to two model-based optimization methods. The first model-based method takes advantage of the well-known optimization algorithm (NEWUOA) and utilizes a quadratic model. The second model-based method (DONE) is new and utilizes a random multidimensional Fourier-basis expansion. The model-based algorithms achieve lower wavefront errors with up to ten times fewer measurements. Furthermore, the newly proposed DONE method outperforms the NEWUOA method significantly. The DONE algorithm is tested on OCT images and shows a significantly improved image quality.
Testing the Digital Thread in Support of Model-Based Manufacturing and Inspection
Hedberg, Thomas; Lubell, Joshua; Fischer, Lyle; Maggiano, Larry; Feeney, Allison Barnard
2016-01-01
A number of manufacturing companies have reported anecdotal evidence describing the benefits of Model-Based Enterprise (MBE). Based on this evidence, major players in industry have embraced a vision to deploy MBE. In our view, the best chance of realizing this vision is the creation of a single “digital thread.” Under MBE, there exists a Model-Based Definition (MBD), created by the Engineering function, that downstream functions reuse to complete Model-Based Manufacturing and Model-Based Inspection activities. The ensemble of data that enables the combination of model-based definition, manufacturing, and inspection defines this digital thread. Such a digital thread would enable real-time design and analysis, collaborative process-flow development, automated artifact creation, and full-process traceability in a seamless real-time collaborative development among project participants. This paper documents the strengths and weaknesses in the current, industry strategies for implementing MBE. It also identifies gaps in the transition and/or exchange of data between various manufacturing processes. Lastly, this paper presents measured results from a study of model-based processes compared to drawing-based processes and provides evidence to support the anecdotal evidence and vision made by industry. PMID:27325911
Model-based choices involve prospective neural activity
Doll, Bradley B.; Duncan, Katherine D.; Simon, Dylan A.; Shohamy, Daphna; Daw, Nathaniel D.
2015-01-01
Decisions may arise via “model-free” repetition of previously reinforced actions, or by “model-based” evaluation, which is widely thought to follow from prospective anticipation of action consequences using a learned map or model. While choices and neural correlates of decision variables sometimes reflect knowledge of their consequences, it remains unclear whether this actually arises from prospective evaluation. Using functional MRI and a sequential reward-learning task in which paths contained decodable object categories, we found that humans’ model-based choices were associated with neural signatures of future paths observed at decision time, suggesting a prospective mechanism for choice. Prospection also covaried with the degree of model-based influences on neural correlates of decision variables, and was inversely related to prediction error signals thought to underlie model-free learning. These results dissociate separate mechanisms underlying model-based and model-free evaluation and support the hypothesis that model-based influences on choices and neural decision variables result from prospection. PMID:25799041
NASA Technical Reports Server (NTRS)
Langtry, R. B.; Menter, F. R.; Likki, S. R.; Suzen, Y. B.; Huang, P. G.; Volker, S.
2006-01-01
A new correlation-based transition model has been developed, which is built strictly on local variables. As a result, the transition model is compatible with modern computational fluid dynamics (CFD) methods using unstructured grids and massive parallel execution. The model is based on two transport equations, one for the intermittency and one for the transition onset criteria in terms of momentum thickness Reynolds number. The proposed transport equations do not attempt to model the physics of the transition process (unlike, e.g., turbulence models), but form a framework for the implementation of correlation-based models into general-purpose CFD methods.
Overcoming limitations of model-based diagnostic reasoning systems
NASA Technical Reports Server (NTRS)
Holtzblatt, Lester J.; Marcotte, Richard A.; Piazza, Richard L.
1989-01-01
The development of a model-based diagnostic system to overcome the limitations of model-based reasoning systems is discussed. It is noted that model-based reasoning techniques can be used to analyze the failure behavior and diagnosability of system and circuit designs as part of the system process itself. One goal of current research is the development of a diagnostic algorithm which can reason efficiently about large numbers of diagnostic suspects and can handle both combinational and sequential circuits. A second goal is to address the model-creation problem by developing an approach for using design models to construct the GMODS model in an automated fashion.
NASA Astrophysics Data System (ADS)
Seoud, Ahmed; Kim, Juhwan; Ma, Yuansheng; Jayaram, Srividya; Hong, Le; Chae, Gyu-Yeol; Lee, Jeong-Woo; Park, Dae-Jin; Yune, Hyoung-Soon; Oh, Se-Young; Park, Chan-Ha
2018-03-01
Sub-resolution assist feature (SRAF) insertion techniques have been effectively used for a long time now to increase process latitude in the lithography patterning process. Rule-based SRAF and model-based SRAF are complementary solutions, and each has its own benefits, depending on the objectives of applications and the criticality of the impact on manufacturing yield, efficiency, and productivity. Rule-based SRAF provides superior geometric output consistency and faster runtime performance, but the associated recipe development time can be of concern. Model-based SRAF provides better coverage for more complicated pattern structures in terms of shapes and sizes, with considerably less time required for recipe development, although consistency and performance may be impacted. In this paper, we introduce a new model-assisted template extraction (MATE) SRAF solution, which employs decision tree learning in a model-based solution to provide the benefits of both rule-based and model-based SRAF insertion approaches. The MATE solution is designed to automate the creation of rules/templates for SRAF insertion, and is based on the SRAF placement predicted by model-based solutions. The MATE SRAF recipe provides optimum lithographic quality in relation to various manufacturing aspects in a very short time, compared to traditional methods of rule optimization. Experiments were done using memory device pattern layouts to compare the MATE solution to existing model-based SRAF and pixelated SRAF approaches, based on lithographic process window quality, runtime performance, and geometric output consistency.
Automated extraction of knowledge for model-based diagnostics
NASA Technical Reports Server (NTRS)
Gonzalez, Avelino J.; Myler, Harley R.; Towhidnejad, Massood; Mckenzie, Frederic D.; Kladke, Robin R.
1990-01-01
The concept of accessing computer aided design (CAD) design databases and extracting a process model automatically is investigated as a possible source for the generation of knowledge bases for model-based reasoning systems. The resulting system, referred to as automated knowledge generation (AKG), uses an object-oriented programming structure and constraint techniques as well as internal database of component descriptions to generate a frame-based structure that describes the model. The procedure has been designed to be general enough to be easily coupled to CAD systems that feature a database capable of providing label and connectivity data from the drawn system. The AKG system is capable of defining knowledge bases in formats required by various model-based reasoning tools.
NASA Technical Reports Server (NTRS)
Pena, Joaquin; Hinchey, Michael G.; Sterritt, Roy; Ruiz-Cortes, Antonio; Resinas, Manuel
2006-01-01
Autonomic Computing (AC), self-management based on high level guidance from humans, is increasingly gaining momentum as the way forward in designing reliable systems that hide complexity and conquer IT management costs. Effectively, AC may be viewed as Policy-Based Self-Management. The Model Driven Architecture (MDA) approach focuses on building models that can be transformed into code in an automatic manner. In this paper, we look at ways to implement Policy-Based Self-Management by means of models that can be converted to code using transformations that follow the MDA philosophy. We propose a set of UML-based models to specify autonomic and autonomous features along with the necessary procedures, based on modification and composition of models, to deploy a policy as an executing system.
A two-stage stochastic rule-based model to determine pre-assembly buffer content
NASA Astrophysics Data System (ADS)
Gunay, Elif Elcin; Kula, Ufuk
2018-01-01
This study considers instant decision-making needs of the automobile manufactures for resequencing vehicles before final assembly (FA). We propose a rule-based two-stage stochastic model to determine the number of spare vehicles that should be kept in the pre-assembly buffer to restore the altered sequence due to paint defects and upstream department constraints. First stage of the model decides the spare vehicle quantities, where the second stage model recovers the scrambled sequence respect to pre-defined rules. The problem is solved by sample average approximation (SAA) algorithm. We conduct a numerical study to compare the solutions of heuristic model with optimal ones and provide following insights: (i) as the mismatch between paint entrance and scheduled sequence decreases, the rule-based heuristic model recovers the scrambled sequence as good as the optimal resequencing model, (ii) the rule-based model is more sensitive to the mismatch between the paint entrance and scheduled sequences for recovering the scrambled sequence, (iii) as the defect rate increases, the difference in recovery effectiveness between rule-based heuristic and optimal solutions increases, (iv) as buffer capacity increases, the recovery effectiveness of the optimization model outperforms heuristic model, (v) as expected the rule-based model holds more inventory than the optimization model.
Chappell, Michael A; Woolrich, Mark W; Petersen, Esben T; Golay, Xavier; Payne, Stephen J
2013-05-01
Amongst the various implementations of arterial spin labeling MRI methods for quantifying cerebral perfusion, the QUASAR method is unique. By using a combination of labeling with and without flow suppression gradients, the QUASAR method offers the separation of macrovascular and tissue signals. This permits local arterial input functions to be defined and "model-free" analysis, using numerical deconvolution, to be used. However, it remains unclear whether arterial spin labeling data are best treated using model-free or model-based analysis. This work provides a critical comparison of these two approaches for QUASAR arterial spin labeling in the healthy brain. An existing two-component (arterial and tissue) model was extended to the mixed flow suppression scheme of QUASAR to provide an optimal model-based analysis. The model-based analysis was extended to incorporate dispersion of the labeled bolus, generally regarded as the major source of discrepancy between the two analysis approaches. Model-free and model-based analyses were compared for perfusion quantification including absolute measurements, uncertainty estimation, and spatial variation in cerebral blood flow estimates. Major sources of discrepancies between model-free and model-based analysis were attributed to the effects of dispersion and the degree to which the two methods can separate macrovascular and tissue signal. Copyright © 2012 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Kim, Cheol-kyun; Kim, Jungchan; Choi, Jaeseung; Yang, Hyunjo; Yim, Donggyu; Kim, Jinwoong
2007-03-01
As the minimum transistor length is getting smaller, the variation and uniformity of transistor length seriously effect device performance. So, the importance of optical proximity effects correction (OPC) and resolution enhancement technology (RET) cannot be overemphasized. However, OPC process is regarded by some as a necessary evil in device performance. In fact, every group which includes process and design, are interested in whole chip CD variation trend and CD uniformity, which represent real wafer. Recently, design based metrology systems are capable of detecting difference between data base to wafer SEM image. Design based metrology systems are able to extract information of whole chip CD variation. According to the results, OPC abnormality was identified and design feedback items are also disclosed. The other approaches are accomplished on EDA companies, like model based OPC verifications. Model based verification will be done for full chip area by using well-calibrated model. The object of model based verification is the prediction of potential weak point on wafer and fast feed back to OPC and design before reticle fabrication. In order to achieve robust design and sufficient device margin, appropriate combination between design based metrology system and model based verification tools is very important. Therefore, we evaluated design based metrology system and matched model based verification system for optimum combination between two systems. In our study, huge amount of data from wafer results are classified and analyzed by statistical method and classified by OPC feedback and design feedback items. Additionally, novel DFM flow would be proposed by using combination of design based metrology and model based verification tools.
Trainer, Asa; Hedberg, Thomas; Feeney, Allison Barnard; Fischer, Kevin; Rosche, Phil
2016-01-01
Advances in information technology triggered a digital revolution that holds promise of reduced costs, improved productivity, and higher quality. To ride this wave of innovation, manufacturing enterprises are changing how product definitions are communicated - from paper to models. To achieve industry's vision of the Model-Based Enterprise (MBE), the MBE strategy must include model-based data interoperability from design to manufacturing and quality in the supply chain. The Model-Based Definition (MBD) is created by the original equipment manufacturer (OEM) using Computer-Aided Design (CAD) tools. This information is then shared with the supplier so that they can manufacture and inspect the physical parts. Today, suppliers predominantly use Computer-Aided Manufacturing (CAM) and Coordinate Measuring Machine (CMM) models for these tasks. Traditionally, the OEM has provided design data to the supplier in the form of two-dimensional (2D) drawings, but may also include a three-dimensional (3D)-shape-geometry model, often in a standards-based format such as ISO 10303-203:2011 (STEP AP203). The supplier then creates the respective CAM and CMM models and machine programs to produce and inspect the parts. In the MBE vision for model-based data exchange, the CAD model must include product-and-manufacturing information (PMI) in addition to the shape geometry. Today's CAD tools can generate models with embedded PMI. And, with the emergence of STEP AP242, a standards-based model with embedded PMI can now be shared downstream. The on-going research detailed in this paper seeks to investigate three concepts. First, that the ability to utilize a STEP AP242 model with embedded PMI for CAD-to-CAM and CAD-to-CMM data exchange is possible and valuable to the overall goal of a more efficient process. Second, the research identifies gaps in tools, standards, and processes that inhibit industry's ability to cost-effectively achieve model-based-data interoperability in the pursuit of the MBE vision. Finally, it also seeks to explore the interaction between CAD and CMM processes and determine if the concept of feedback from CAM and CMM back to CAD is feasible. The main goal of our study is to test the hypothesis that model-based-data interoperability from CAD-to-CAM and CAD-to-CMM is feasible through standards-based integration. This paper presents several barriers to model-based-data interoperability. Overall, the project team demonstrated the exchange of product definition data between CAD, CAM, and CMM systems using standards-based methods. While gaps in standards coverage were identified, the gaps should not stop industry's progress toward MBE. The results of our study provide evidence in support of an open-standards method to model-based-data interoperability, which would provide maximum value and impact to industry.
Simulating cancer growth with multiscale agent-based modeling.
Wang, Zhihui; Butner, Joseph D; Kerketta, Romica; Cristini, Vittorio; Deisboeck, Thomas S
2015-02-01
There have been many techniques developed in recent years to in silico model a variety of cancer behaviors. Agent-based modeling is a specific discrete-based hybrid modeling approach that allows simulating the role of diversity in cell populations as well as within each individual cell; it has therefore become a powerful modeling method widely used by computational cancer researchers. Many aspects of tumor morphology including phenotype-changing mutations, the adaptation to microenvironment, the process of angiogenesis, the influence of extracellular matrix, reactions to chemotherapy or surgical intervention, the effects of oxygen and nutrient availability, and metastasis and invasion of healthy tissues have been incorporated and investigated in agent-based models. In this review, we introduce some of the most recent agent-based models that have provided insight into the understanding of cancer growth and invasion, spanning multiple biological scales in time and space, and we further describe several experimentally testable hypotheses generated by those models. We also discuss some of the current challenges of multiscale agent-based cancer models. Copyright © 2014 Elsevier Ltd. All rights reserved.
Computational Modeling of Human Metabolism and Its Application to Systems Biomedicine.
Aurich, Maike K; Thiele, Ines
2016-01-01
Modern high-throughput techniques offer immense opportunities to investigate whole-systems behavior, such as those underlying human diseases. However, the complexity of the data presents challenges in interpretation, and new avenues are needed to address the complexity of both diseases and data. Constraint-based modeling is one formalism applied in systems biology. It relies on a genome-scale reconstruction that captures extensive biochemical knowledge regarding an organism. The human genome-scale metabolic reconstruction is increasingly used to understand normal cellular and disease states because metabolism is an important factor in many human diseases. The application of human genome-scale reconstruction ranges from mere querying of the model as a knowledge base to studies that take advantage of the model's topology and, most notably, to functional predictions based on cell- and condition-specific metabolic models built based on omics data.An increasing number and diversity of biomedical questions are being addressed using constraint-based modeling and metabolic models. One of the most successful biomedical applications to date is cancer metabolism, but constraint-based modeling also holds great potential for inborn errors of metabolism or obesity. In addition, it offers great prospects for individualized approaches to diagnostics and the design of disease prevention and intervention strategies. Metabolic models support this endeavor by providing easy access to complex high-throughput datasets. Personalized metabolic models have been introduced. Finally, constraint-based modeling can be used to model whole-body metabolism, which will enable the elucidation of metabolic interactions between organs and disturbances of these interactions as either causes or consequence of metabolic diseases. This chapter introduces constraint-based modeling and describes some of its contributions to systems biomedicine.
Evaluation of six NEHRP B/C crustal amplification models proposed for use in western North America
Boore, David; Campbell, Kenneth W.
2016-01-01
We evaluate six crustal amplification models based on National Earthquake Hazards Reduction Program (NEHRP) B/C crustal profiles proposed for use in western North America (WNA) and often used in other active crustal regions where crustal properties are unknown. One of the models is based on an interpolation of generic rock velocity profiles previously proposed for WNA and central and eastern North America (CENA), in conjunction with material densities based on an updated velocity–density relationship. A second model is based on the velocity profile used to develop amplification factors for the Next Generation Attenuation (NGA)‐West2 project. A third model is based on a near‐surface velocity profile developed from the NGA‐West2 site database. A fourth model is based on velocity and density profiles originally proposed for use in CENA but recently used to represent crustal properties in California. We propose two alternatives to this latter model that more closely represent WNA crustal properties. We adopt a value of site attenuation (κ0) for each model that is either recommended by the author of the model or proposed by us. Stochastic simulation is used to evaluate the Fourier amplification factors and their impact on response spectra associated with each model. Based on this evaluation, we conclude that among the available models evaluated in this study the NEHRP B/C amplification model of Boore (2016) best represents median crustal amplification in WNA, although the amplification models based on the crustal profiles of Kamai et al. (2013, 2016, unpublished manuscript, see Data and Resources) and Yenier and Atkinson (2015), the latter adjusted to WNA crustal properties, can be used to represent epistemic uncertainty.
NASA Astrophysics Data System (ADS)
Landeras, G.; López, J. J.; Kisi, O.; Shiri, J.
2012-04-01
The correct observation/estimation of surface incoming solar radiation (RS) is very important for many agricultural, meteorological and hydrological related applications. While most weather stations are provided with sensors for air temperature detection, the presence of sensors necessary for the detection of solar radiation is not so habitual and the data quality provided by them is sometimes poor. In these cases it is necessary to estimate this variable. Temperature based modeling procedures are reported in this study for estimating daily incoming solar radiation by using Gene Expression Programming (GEP) for the first time, and other artificial intelligence models such as Artificial Neural Networks (ANNs), and Adaptive Neuro-Fuzzy Inference System (ANFIS). Traditional temperature based solar radiation equations were also included in this study and compared with artificial intelligence based approaches. Root mean square error (RMSE), mean absolute error (MAE) RMSE-based skill score (SSRMSE), MAE-based skill score (SSMAE) and r2 criterion of Nash and Sutcliffe criteria were used to assess the models' performances. An ANN (a four-input multilayer perceptron with ten neurons in the hidden layer) presented the best performance among the studied models (2.93 MJ m-2 d-1 of RMSE). A four-input ANFIS model revealed as an interesting alternative to ANNs (3.14 MJ m-2 d-1 of RMSE). Very limited number of studies has been done on estimation of solar radiation based on ANFIS, and the present one demonstrated the ability of ANFIS to model solar radiation based on temperatures and extraterrestrial radiation. By the way this study demonstrated, for the first time, the ability of GEP models to model solar radiation based on daily atmospheric variables. Despite the accuracy of GEP models was slightly lower than the ANFIS and ANN models the genetic programming models (i.e., GEP) are superior to other artificial intelligence models in giving a simple explicit equation for the phenomenon which shows the relationship between the input and output parameters. This study provided new alternatives for solar radiation estimation based on temperatures.
Consequences of Base Time for Redundant Signals Experiments
Townsend, James T.; Honey, Christopher
2007-01-01
We report analytical and computational investigations into the effects of base time on the diagnosticity of two popular theoretical tools in the redundant signals literature: (1) the race model inequality and (2) the capacity coefficient. We show analytically and without distributional assumptions that the presence of base time decreases the sensitivity of both of these measures to model violations. We further use simulations to investigate the statistical power model selection tools based on the race model inequality, both with and without base time. Base time decreases statistical power, and biases the race model test toward conservatism. The magnitude of this biasing effect increases as we increase the proportion of total reaction time variance contributed by base time. We marshal empirical evidence to suggest that the proportion of reaction time variance contributed by base time is relatively small, and that the effects of base time on the diagnosticity of our model-selection tools are therefore likely to be minor. However, uncertainty remains concerning the magnitude and even the definition of base time. Experimentalists should continue to be alert to situations in which base time may contribute a large proportion of the total reaction time variance. PMID:18670591
Understanding photoluminescence of metal nanostructures based on an oscillator model.
Cheng, Yuqing; Zhang, Weidong; Zhao, Jingyi; Wen, Te; Hu, Aiqin; Gong, Qihuang; Lu, Guowei
2018-08-03
Scattering and absorption properties of metal nanostructures have been well understood based on the classic oscillator theory. Here, we demonstrate that photoluminescence of metal nanostructures can also be explained based on a classic model. The model shows that inelastic radiation of an oscillator resembles its resonance band after external excitation, and is related to the photoluminescence from metallic nanostructures. The understanding based on the classic oscillator model is in agreement with that predicted by a quantum electromagnetic cavity model. Moreover, by correlating a two-temperature model and the electron distributions, we demonstrate that both one-photon and two-photon luminescence of the metal nanostructures undergo the same mechanism. Furthermore, the model explains most of the emission characteristics of the metallic nanostructures, such as quantum yield, spectral shape, excitation polarization and power dependence. The model based on an oscillator provides an intuitive description of the photoluminescence process and may enable rapid optimization and exploration of the plasmonic properties.
Improving the FLORIS wind plant model for compatibility with gradient-based optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Jared J.; Gebraad, Pieter MO; Ning, Andrew
The FLORIS (FLOw Redirection and Induction in Steady-state) model, a parametric wind turbine wake model that predicts steady-state wake characteristics based on wind turbine position and yaw angle, was developed for optimization of control settings and turbine locations. This article provides details on changes made to the FLORIS model to make the model more suitable for gradient-based optimization. Changes to the FLORIS model were made to remove discontinuities and add curvature to regions of non-physical zero gradient. Exact gradients for the FLORIS model were obtained using algorithmic differentiation. A set of three case studies demonstrate that using exact gradients withmore » gradient-based optimization reduces the number of function calls by several orders of magnitude. The case studies also show that adding curvature improves convergence behavior, allowing gradient-based optimization algorithms used with the FLORIS model to more reliably find better solutions to wind farm optimization problems.« less
ERIC Educational Resources Information Center
Ginovart, Marta
2014-01-01
The general aim is to promote the use of individual-based models (biological agent-based models) in teaching and learning contexts in life sciences and to make their progressive incorporation into academic curricula easier, complementing other existing modelling strategies more frequently used in the classroom. Modelling activities for the study…
When Does Model-Based Control Pay Off?
2016-01-01
Many accounts of decision making and reinforcement learning posit the existence of two distinct systems that control choice: a fast, automatic system and a slow, deliberative system. Recent research formalizes this distinction by mapping these systems to “model-free” and “model-based” strategies in reinforcement learning. Model-free strategies are computationally cheap, but sometimes inaccurate, because action values can be accessed by inspecting a look-up table constructed through trial-and-error. In contrast, model-based strategies compute action values through planning in a causal model of the environment, which is more accurate but also more cognitively demanding. It is assumed that this trade-off between accuracy and computational demand plays an important role in the arbitration between the two strategies, but we show that the hallmark task for dissociating model-free and model-based strategies, as well as several related variants, do not embody such a trade-off. We describe five factors that reduce the effectiveness of the model-based strategy on these tasks by reducing its accuracy in estimating reward outcomes and decreasing the importance of its choices. Based on these observations, we describe a version of the task that formally and empirically obtains an accuracy-demand trade-off between model-free and model-based strategies. Moreover, we show that human participants spontaneously increase their reliance on model-based control on this task, compared to the original paradigm. Our novel task and our computational analyses may prove important in subsequent empirical investigations of how humans balance accuracy and demand. PMID:27564094
Learning-Based Just-Noticeable-Quantization- Distortion Modeling for Perceptual Video Coding.
Ki, Sehwan; Bae, Sung-Ho; Kim, Munchurl; Ko, Hyunsuk
2018-07-01
Conventional predictive video coding-based approaches are reaching the limit of their potential coding efficiency improvements, because of severely increasing computation complexity. As an alternative approach, perceptual video coding (PVC) has attempted to achieve high coding efficiency by eliminating perceptual redundancy, using just-noticeable-distortion (JND) directed PVC. The previous JNDs were modeled by adding white Gaussian noise or specific signal patterns into the original images, which were not appropriate in finding JND thresholds due to distortion with energy reduction. In this paper, we present a novel discrete cosine transform-based energy-reduced JND model, called ERJND, that is more suitable for JND-based PVC schemes. Then, the proposed ERJND model is extended to two learning-based just-noticeable-quantization-distortion (JNQD) models as preprocessing that can be applied for perceptual video coding. The two JNQD models can automatically adjust JND levels based on given quantization step sizes. One of the two JNQD models, called LR-JNQD, is based on linear regression and determines the model parameter for JNQD based on extracted handcraft features. The other JNQD model is based on a convolution neural network (CNN), called CNN-JNQD. To our best knowledge, our paper is the first approach to automatically adjust JND levels according to quantization step sizes for preprocessing the input to video encoders. In experiments, both the LR-JNQD and CNN-JNQD models were applied to high efficiency video coding (HEVC) and yielded maximum (average) bitrate reductions of 38.51% (10.38%) and 67.88% (24.91%), respectively, with little subjective video quality degradation, compared with the input without preprocessing applied.
Abstract: Two physically based and deterministic models, CASC2-D and KINEROS are evaluated and compared for their performances on modeling sediment movement on a small agricultural watershed over several events. Each model has different conceptualization of a watershed. CASC...
Some Statistics for Assessing Person-Fit Based on Continuous-Response Models
ERIC Educational Resources Information Center
Ferrando, Pere Joan
2010-01-01
This article proposes several statistics for assessing individual fit based on two unidimensional models for continuous responses: linear factor analysis and Samejima's continuous response model. Both models are approached using a common framework based on underlying response variables and are formulated at the individual level as fixed regression…
Two physically based watershed models, GSSHA and KINEROS-2 are evaluated and compared for their performances on modeling flow and sediment movement. Each model has a different watershed conceptualization. GSSHA divides the watershed into cells, and flow and sediments are routed t...
Using Video-Based Modeling to Promote Acquisition of Fundamental Motor Skills
ERIC Educational Resources Information Center
Obrusnikova, Iva; Rattigan, Peter J.
2016-01-01
Video-based modeling is becoming increasingly popular for teaching fundamental motor skills to children in physical education. Two frequently used video-based instructional strategies that incorporate modeling are video prompting (VP) and video modeling (VM). Both strategies have been used across multiple disciplines and populations to teach a…
Thermodynamics-based models of transcriptional regulation with gene sequence.
Wang, Shuqiang; Shen, Yanyan; Hu, Jinxing
2015-12-01
Quantitative models of gene regulatory activity have the potential to improve our mechanistic understanding of transcriptional regulation. However, the few models available today have been based on simplistic assumptions about the sequences being modeled or heuristic approximations of the underlying regulatory mechanisms. In this work, we have developed a thermodynamics-based model to predict gene expression driven by any DNA sequence. The proposed model relies on a continuous time, differential equation description of transcriptional dynamics. The sequence features of the promoter are exploited to derive the binding affinity which is derived based on statistical molecular thermodynamics. Experimental results show that the proposed model can effectively identify the activity levels of transcription factors and the regulatory parameters. Comparing with the previous models, the proposed model can reveal more biological sense.
NASA Astrophysics Data System (ADS)
Tiebin, Wu; Yunlian, Liu; Xinjun, Li; Yi, Yu; Bin, Zhang
2018-06-01
Aiming at the difficulty in quality prediction of sintered ores, a hybrid prediction model is established based on mechanism models of sintering and time-weighted error compensation on the basis of the extreme learning machine (ELM). At first, mechanism models of drum index, total iron, and alkalinity are constructed according to the chemical reaction mechanism and conservation of matter in the sintering process. As the process is simplified in the mechanism models, these models are not able to describe high nonlinearity. Therefore, errors are inevitable. For this reason, the time-weighted ELM based error compensation model is established. Simulation results verify that the hybrid model has a high accuracy and can meet the requirement for industrial applications.
Stimulating Scientific Reasoning with Drawing-Based Modeling
NASA Astrophysics Data System (ADS)
Heijnes, Dewi; van Joolingen, Wouter; Leenaars, Frank
2018-02-01
We investigate the way students' reasoning about evolution can be supported by drawing-based modeling. We modified the drawing-based modeling tool SimSketch to allow for modeling evolutionary processes. In three iterations of development and testing, students in lower secondary education worked on creating an evolutionary model. After each iteration, the user interface and instructions were adjusted based on students' remarks and the teacher's observations. Students' conversations were analyzed on reasoning complexity as a measurement of efficacy of the modeling tool and the instructions. These findings were also used to compose a set of recommendations for teachers and curriculum designers for using and constructing models in the classroom. Our findings suggest that to stimulate scientific reasoning in students working with a drawing-based modeling, tool instruction about the tool and the domain should be integrated. In creating models, a sufficient level of scaffolding is necessary. Without appropriate scaffolds, students are not able to create the model. With scaffolding that is too high, students may show reasoning that incorrectly assigns external causes to behavior in the model.
NASA Astrophysics Data System (ADS)
Barbaro, Alethea
2015-03-01
Agent-based models have been widely applied in theoretical ecology to explain migrations and other collective animal movements [2,5,8]. As D'Orsogna and Perc have expertly highlighted in [6], the recent emergence of crime modeling has opened another interesting avenue for mathematical investigation. The area of crime modeling is particularly suited to agent-based models, because these models offer a great deal of flexibility within the model and also ease of communication among criminologist, law enforcement and modelers.
Urban stormwater inundation simulation based on SWMM and diffusive overland-flow model.
Chen, Wenjie; Huang, Guoru; Zhang, Han
2017-12-01
With rapid urbanization, inundation-induced property losses have become more and more severe. Urban inundation modeling is an effective way to reduce these losses. This paper introduces a simplified urban stormwater inundation simulation model based on the United States Environmental Protection Agency Storm Water Management Model (SWMM) and a geographic information system (GIS)-based diffusive overland-flow model. SWMM is applied for computation of flows in storm sewer systems and flooding flows at junctions, while the GIS-based diffusive overland-flow model simulates surface runoff and inundation. One observed rainfall scenario on Haidian Island, Hainan Province, China was chosen to calibrate the model and the other two were used for validation. Comparisons of the model results with field-surveyed data and InfoWorks ICM (Integrated Catchment Modeling) modeled results indicated the inundation model in this paper can provide inundation extents and reasonable inundation depths even in a large study area.
Directivity models produced for the Next Generation Attenuation West 2 (NGA-West 2) project
Spudich, Paul A.; Watson-Lamprey, Jennie; Somerville, Paul G.; Bayless, Jeff; Shahi, Shrey; Baker, Jack W.; Rowshandel, Badie; Chiou, Brian
2012-01-01
Five new directivity models are being developed for the NGA-West 2 project. All are based on the NGA-West 2 data base, which is considerably expanded from the original NGA-West data base, containing about 3,000 more records from earthquakes having finite-fault rupture models. All of the new directivity models have parameters based on fault dimension in km, not normalized fault dimension. This feature removes a peculiarity of previous models which made them inappropriate for modeling large magnitude events on long strike-slip faults. Two models are explicitly, and one is implicitly, 'narrowband' models, in which the effect of directivity does not monotonically increase with spectral period but instead peaks at a specific period that is a function of earthquake magnitude. These narrowband models' functional forms are capable of simulating directivity over a wider range of earthquake magnitude than previous models. The functional forms of the five models are presented.
Model predictive control based on reduced order models applied to belt conveyor system.
Chen, Wei; Li, Xin
2016-11-01
In the paper, a model predictive controller based on reduced order model is proposed to control belt conveyor system, which is an electro-mechanics complex system with long visco-elastic body. Firstly, in order to design low-degree controller, the balanced truncation method is used for belt conveyor model reduction. Secondly, MPC algorithm based on reduced order model for belt conveyor system is presented. Because of the error bound between the full-order model and reduced order model, two Kalman state estimators are applied in the control scheme to achieve better system performance. Finally, the simulation experiments are shown that balanced truncation method can significantly reduce the model order with high-accuracy and model predictive control based on reduced-model performs well in controlling the belt conveyor system. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
A Coupled Simulation Architecture for Agent-Based/Geohydrological Modelling
NASA Astrophysics Data System (ADS)
Jaxa-Rozen, M.
2016-12-01
The quantitative modelling of social-ecological systems can provide useful insights into the interplay between social and environmental processes, and their impact on emergent system dynamics. However, such models should acknowledge the complexity and uncertainty of both of the underlying subsystems. For instance, the agent-based models which are increasingly popular for groundwater management studies can be made more useful by directly accounting for the hydrological processes which drive environmental outcomes. Conversely, conventional environmental models can benefit from an agent-based depiction of the feedbacks and heuristics which influence the decisions of groundwater users. From this perspective, this work describes a Python-based software architecture which couples the popular NetLogo agent-based platform with the MODFLOW/SEAWAT geohydrological modelling environment. This approach enables users to implement agent-based models in NetLogo's user-friendly platform, while benefiting from the full capabilities of MODFLOW/SEAWAT packages or reusing existing geohydrological models. The software architecture is based on the pyNetLogo connector, which provides an interface between the NetLogo agent-based modelling software and the Python programming language. This functionality is then extended and combined with Python's object-oriented features, to design a simulation architecture which couples NetLogo with MODFLOW/SEAWAT through the FloPy library (Bakker et al., 2016). The Python programming language also provides access to a range of external packages which can be used for testing and analysing the coupled models, which is illustrated for an application of Aquifer Thermal Energy Storage (ATES).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng Guoyan
2010-04-15
Purpose: The aim of this article is to investigate the feasibility of using a statistical shape model (SSM)-based reconstruction technique to derive a scaled, patient-specific surface model of the pelvis from a single standard anteroposterior (AP) x-ray radiograph and the feasibility of estimating the scale of the reconstructed surface model by performing a surface-based 3D/3D matching. Methods: Data sets of 14 pelvises (one plastic bone, 12 cadavers, and one patient) were used to validate the single-image based reconstruction technique. This reconstruction technique is based on a hybrid 2D/3D deformable registration process combining a landmark-to-ray registration with a SSM-based 2D/3D reconstruction.more » The landmark-to-ray registration was used to find an initial scale and an initial rigid transformation between the x-ray image and the SSM. The estimated scale and rigid transformation were used to initialize the SSM-based 2D/3D reconstruction. The optimal reconstruction was then achieved in three stages by iteratively matching the projections of the apparent contours extracted from a 3D model derived from the SSM to the image contours extracted from the x-ray radiograph: Iterative affine registration, statistical instantiation, and iterative regularized shape deformation. The image contours are first detected by using a semiautomatic segmentation tool based on the Livewire algorithm and then approximated by a set of sparse dominant points that are adaptively sampled from the detected contours. The unknown scales of the reconstructed models were estimated by performing a surface-based 3D/3D matching between the reconstructed models and the associated ground truth models that were derived from a CT-based reconstruction method. Such a matching also allowed for computing the errors between the reconstructed models and the associated ground truth models. Results: The technique could reconstruct the surface models of all 14 pelvises directly from the landmark-based initialization. Depending on the surface-based matching techniques, the reconstruction errors were slightly different. When a surface-based iterative affine registration was used, an average reconstruction error of 1.6 mm was observed. This error was increased to 1.9 mm, when a surface-based iterative scaled rigid registration was used. Conclusions: It is feasible to reconstruct a scaled, patient-specific surface model of the pelvis from single standard AP x-ray radiograph using the present approach. The unknown scale of the reconstructed model can be estimated by performing a surface-based 3D/3D matching.« less
Ekman, Björn; Borg, Johan
2017-08-01
The aim of this study is to provide evidence on the costs and health effects of two alternative hearing aid delivery models, a community-based and a centre-based approach. The study is set in Bangladesh and the study population is children between 12 and 18 years old. Data on resource use by participants and their caregivers were collected by a household survey. Follow-up data were collected after two months. Data on the costs to providers of the two approaches were collected by means of key informant interviews. The total cost per participant in the community-based model was BDT 6,333 (USD 79) compared with BDT 13,718 (USD 172) for the centre-based model. Both delivery models are found to be cost-effective with an estimated cost per DALY averted of BDT 17,611 (USD 220) for the community-based model and BDT 36,775 (USD 460) for the centre-based model. Using a community-based approach to deliver hearing aids to children in a resource constrained environment is a cost-effective alternative to the traditional centre-based approach. Further evidence is needed to draw conclusions for scale-up of approaches; rigorous analysis is possible using well-prepared data collection tools and working closely with sector professionals. Implications for Rehabilitation Delivery models vary by resources needed for their implementation. Community-based deliver models of hearing aids to children in low-income countries are a cost-effective alternative. The assessment of costs and effects of hearing aids delivery models in low-income countries is possible through planned collaboration between researchers and sector professionals.
CHENG, JIANLIN; EICKHOLT, JESSE; WANG, ZHENG; DENG, XIN
2013-01-01
After decades of research, protein structure prediction remains a very challenging problem. In order to address the different levels of complexity of structural modeling, two types of modeling techniques — template-based modeling and template-free modeling — have been developed. Template-based modeling can often generate a moderate- to high-resolution model when a similar, homologous template structure is found for a query protein but fails if no template or only incorrect templates are found. Template-free modeling, such as fragment-based assembly, may generate models of moderate resolution for small proteins of low topological complexity. Seldom have the two techniques been integrated together to improve protein modeling. Here we develop a recursive protein modeling approach to selectively and collaboratively apply template-based and template-free modeling methods to model template-covered (i.e. certain) and template-free (i.e. uncertain) regions of a protein. A preliminary implementation of the approach was tested on a number of hard modeling cases during the 9th Critical Assessment of Techniques for Protein Structure Prediction (CASP9) and successfully improved the quality of modeling in most of these cases. Recursive modeling can signicantly reduce the complexity of protein structure modeling and integrate template-based and template-free modeling to improve the quality and efficiency of protein structure prediction. PMID:22809379
Louis R. Iverson; Anantha M. Prasad; Davis Sydnor; Jonathan Bossenbroek; Mark W. Schwartz; Mark W. Schwartz
2006-01-01
We model the susceptibility and potential spread of the organism across the eastern United States and especially through Michigan and Ohio using Forest Inventory and Analysis (FIA) data. We are also developing a cell-based model for the potential spread of the organism. We have developed a web-based tool for public agencies and private individuals to enter the...
Background-Error Correlation Model Based on the Implicit Solution of a Diffusion Equation
2010-01-01
1 Background- Error Correlation Model Based on the Implicit Solution of a Diffusion Equation Matthew J. Carrier* and Hans Ngodock...4. TITLE AND SUBTITLE Background- Error Correlation Model Based on the Implicit Solution of a Diffusion Equation 5a. CONTRACT NUMBER 5b. GRANT...2001), which sought to model error correlations based on the explicit solution of a generalized diffusion equation. The implicit solution is
Oliveira, Roberta B; Pereira, Aledir S; Tavares, João Manuel R S
2017-10-01
The number of deaths worldwide due to melanoma has risen in recent times, in part because melanoma is the most aggressive type of skin cancer. Computational systems have been developed to assist dermatologists in early diagnosis of skin cancer, or even to monitor skin lesions. However, there still remains a challenge to improve classifiers for the diagnosis of such skin lesions. The main objective of this article is to evaluate different ensemble classification models based on input feature manipulation to diagnose skin lesions. Input feature manipulation processes are based on feature subset selections from shape properties, colour variation and texture analysis to generate diversity for the ensemble models. Three subset selection models are presented here: (1) a subset selection model based on specific feature groups, (2) a correlation-based subset selection model, and (3) a subset selection model based on feature selection algorithms. Each ensemble classification model is generated using an optimum-path forest classifier and integrated with a majority voting strategy. The proposed models were applied on a set of 1104 dermoscopic images using a cross-validation procedure. The best results were obtained by the first ensemble classification model that generates a feature subset ensemble based on specific feature groups. The skin lesion diagnosis computational system achieved 94.3% accuracy, 91.8% sensitivity and 96.7% specificity. The input feature manipulation process based on specific feature subsets generated the greatest diversity for the ensemble classification model with very promising results. Copyright © 2017 Elsevier B.V. All rights reserved.
Jin, Haomiao; Wu, Shinyi; Di Capua, Paul
2015-09-03
Depression is a common but often undiagnosed comorbid condition of people with diabetes. Mass screening can detect undiagnosed depression but may require significant resources and time. The objectives of this study were 1) to develop a clinical forecasting model that predicts comorbid depression among patients with diabetes and 2) to evaluate a model-based screening policy that saves resources and time by screening only patients considered as depressed by the clinical forecasting model. We trained and validated 4 machine learning models by using data from 2 safety-net clinical trials; we chose the one with the best overall predictive ability as the ultimate model. We compared model-based policy with alternative policies, including mass screening and partial screening, on the basis of depression history or diabetes severity. Logistic regression had the best overall predictive ability of the 4 models evaluated and was chosen as the ultimate forecasting model. Compared with mass screening, the model-based policy can save approximately 50% to 60% of provider resources and time but will miss identifying about 30% of patients with depression. Partial-screening policy based on depression history alone found only a low rate of depression. Two other heuristic-based partial screening policies identified depression at rates similar to those of the model-based policy but cost more in resources and time. The depression prediction model developed in this study has compelling predictive ability. By adopting the model-based depression screening policy, health care providers can use their resources and time better and increase their efficiency in managing their patients with depression.
Singh, Karandeep; Ahn, Chang-Won; Paik, Euihyun; Bae, Jang Won; Lee, Chun-Hee
2018-01-01
Artificial life (ALife) examines systems related to natural life, its processes, and its evolution, using simulations with computer models, robotics, and biochemistry. In this article, we focus on the computer modeling, or "soft," aspects of ALife and prepare a framework for scientists and modelers to be able to support such experiments. The framework is designed and built to be a parallel as well as distributed agent-based modeling environment, and does not require end users to have expertise in parallel or distributed computing. Furthermore, we use this framework to implement a hybrid model using microsimulation and agent-based modeling techniques to generate an artificial society. We leverage this artificial society to simulate and analyze population dynamics using Korean population census data. The agents in this model derive their decisional behaviors from real data (microsimulation feature) and interact among themselves (agent-based modeling feature) to proceed in the simulation. The behaviors, interactions, and social scenarios of the agents are varied to perform an analysis of population dynamics. We also estimate the future cost of pension policies based on the future population structure of the artificial society. The proposed framework and model demonstrates how ALife techniques can be used by researchers in relation to social issues and policies.
Machine Learning and Deep Learning Models to Predict Runoff Water Quantity and Quality
NASA Astrophysics Data System (ADS)
Bradford, S. A.; Liang, J.; Li, W.; Murata, T.; Simunek, J.
2017-12-01
Contaminants can be rapidly transported at the soil surface by runoff to surface water bodies. Physically-based models, which are based on the mathematical description of main hydrological processes, are key tools for predicting surface water impairment. Along with physically-based models, data-driven models are becoming increasingly popular for describing the behavior of hydrological and water resources systems since these models can be used to complement or even replace physically based-models. In this presentation we propose a new data-driven model as an alternative to a physically-based overland flow and transport model. First, we have developed a physically-based numerical model to simulate overland flow and contaminant transport (the HYDRUS-1D overland flow module). A large number of numerical simulations were carried out to develop a database containing information about the impact of various input parameters (weather patterns, surface topography, vegetation, soil conditions, contaminants, and best management practices) on runoff water quantity and quality outputs. This database was used to train data-driven models. Three different methods (Neural Networks, Support Vector Machines, and Recurrence Neural Networks) were explored to prepare input- output functional relations. Results demonstrate the ability and limitations of machine learning and deep learning models to predict runoff water quantity and quality.
A methodology for reduced order modeling and calibration of the upper atmosphere
NASA Astrophysics Data System (ADS)
Mehta, Piyush M.; Linares, Richard
2017-10-01
Atmospheric drag is the largest source of uncertainty in accurately predicting the orbit of satellites in low Earth orbit (LEO). Accurately predicting drag for objects that traverse LEO is critical to space situational awareness. Atmospheric models used for orbital drag calculations can be characterized either as empirical or physics-based (first principles based). Empirical models are fast to evaluate but offer limited real-time predictive/forecasting ability, while physics based models offer greater predictive/forecasting ability but require dedicated parallel computational resources. Also, calibration with accurate data is required for either type of models. This paper presents a new methodology based on proper orthogonal decomposition toward development of a quasi-physical, predictive, reduced order model that combines the speed of empirical and the predictive/forecasting capabilities of physics-based models. The methodology is developed to reduce the high dimensionality of physics-based models while maintaining its capabilities. We develop the methodology using the Naval Research Lab's Mass Spectrometer Incoherent Scatter model and show that the diurnal and seasonal variations can be captured using a small number of modes and parameters. We also present calibration of the reduced order model using the CHAMP and GRACE accelerometer-derived densities. Results show that the method performs well for modeling and calibration of the upper atmosphere.
Variable cycle control model for intersection based on multi-source information
NASA Astrophysics Data System (ADS)
Sun, Zhi-Yuan; Li, Yue; Qu, Wen-Cong; Chen, Yan-Yan
2018-05-01
In order to improve the efficiency of traffic control system in the era of big data, a new variable cycle control model based on multi-source information is presented for intersection in this paper. Firstly, with consideration of multi-source information, a unified framework based on cyber-physical system is proposed. Secondly, taking into account the variable length of cell, hysteresis phenomenon of traffic flow and the characteristics of lane group, a Lane group-based Cell Transmission Model is established to describe the physical properties of traffic flow under different traffic signal control schemes. Thirdly, the variable cycle control problem is abstracted into a bi-level programming model. The upper level model is put forward for cycle length optimization considering traffic capacity and delay. The lower level model is a dynamic signal control decision model based on fairness analysis. Then, a Hybrid Intelligent Optimization Algorithm is raised to solve the proposed model. Finally, a case study shows the efficiency and applicability of the proposed model and algorithm.
The Systems Biology Markup Language (SBML) Level 3 Package: Flux Balance Constraints.
Olivier, Brett G; Bergmann, Frank T
2015-09-04
Constraint-based modeling is a well established modelling methodology used to analyze and study biological networks on both a medium and genome scale. Due to their large size, genome scale models are typically analysed using constraint-based optimization techniques. One widely used method is Flux Balance Analysis (FBA) which, for example, requires a modelling description to include: the definition of a stoichiometric matrix, an objective function and bounds on the values that fluxes can obtain at steady state. The Flux Balance Constraints (FBC) Package extends SBML Level 3 and provides a standardized format for the encoding, exchange and annotation of constraint-based models. It includes support for modelling concepts such as objective functions, flux bounds and model component annotation that facilitates reaction balancing. The FBC package establishes a base level for the unambiguous exchange of genome-scale, constraint-based models, that can be built upon by the community to meet future needs (e. g. by extending it to cover dynamic FBC models).
The Systems Biology Markup Language (SBML) Level 3 Package: Flux Balance Constraints.
Olivier, Brett G; Bergmann, Frank T
2015-06-01
Constraint-based modeling is a well established modelling methodology used to analyze and study biological networks on both a medium and genome scale. Due to their large size, genome scale models are typically analysed using constraint-based optimization techniques. One widely used method is Flux Balance Analysis (FBA) which, for example, requires a modelling description to include: the definition of a stoichiometric matrix, an objective function and bounds on the values that fluxes can obtain at steady state. The Flux Balance Constraints (FBC) Package extends SBML Level 3 and provides a standardized format for the encoding, exchange and annotation of constraint-based models. It includes support for modelling concepts such as objective functions, flux bounds and model component annotation that facilitates reaction balancing. The FBC package establishes a base level for the unambiguous exchange of genome-scale, constraint-based models, that can be built upon by the community to meet future needs (e. g. by extending it to cover dynamic FBC models).
O'Connell, Dylan; Shaverdian, Narek; Kishan, Amar U; Thomas, David H; Dou, Tai H; Lewis, John H; Lamb, James M; Cao, Minsong; Tenn, Stephen; Percy, Lee P; Low, Daniel A
To compare lung tumor motion measured with a model-based technique to commercial 4-dimensional computed tomography (4DCT) scans and describe a workflow for using model-based 4DCT as a clinical simulation protocol. Twenty patients were imaged using a model-based technique and commercial 4DCT. Tumor motion was measured on each commercial 4DCT dataset and was calculated on model-based datasets for 3 breathing amplitude percentile intervals: 5th to 85th, 5th to 95th, and 0th to 100th. Internal target volumes (ITVs) were defined on the 4DCT and 5th to 85th interval datasets and compared using Dice similarity. Images were evaluated for noise and rated by 2 radiation oncologists for artifacts. Mean differences in tumor motion magnitude between commercial and model-based images were 0.47 ± 3.0, 1.63 ± 3.17, and 5.16 ± 4.90 mm for the 5th to 85th, 5th to 95th, and 0th to 100th amplitude intervals, respectively. Dice coefficients between ITVs defined on commercial and 5th to 85th model-based images had a mean value of 0.77 ± 0.09. Single standard deviation image noise was 11.6 ± 9.6 HU in the liver and 6.8 ± 4.7 HU in the aorta for the model-based images compared with 57.7 ± 30 and 33.7 ± 15.4 for commercial 4DCT. Mean model error within the ITV regions was 1.71 ± 0.81 mm. Model-based images exhibited reduced presence of artifacts at the tumor compared with commercial images. Tumor motion measured with the model-based technique using the 5th to 85th percentile breathing amplitude interval corresponded more closely to commercial 4DCT than the 5th to 95th or 0th to 100th intervals, which showed greater motion on average. The model-based technique tended to display increased tumor motion when breathing amplitude intervals wider than 5th to 85th were used because of the influence of unusually deep inhalations. These results suggest that care must be taken in selecting the appropriate interval during image generation when using model-based 4DCT methods. Copyright © 2017 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
Data-base development for water-quality modeling of the Patuxent River basin, Maryland
Fisher, G.T.; Summers, R.M.
1987-01-01
Procedures and rationale used to develop a data base and data management system for the Patuxent Watershed Nonpoint Source Water Quality Monitoring and Modeling Program of the Maryland Department of the Environment and the U.S. Geological Survey are described. A detailed data base and data management system has been developed to facilitate modeling of the watershed for water quality planning purposes; statistical analysis; plotting of meteorologic, hydrologic and water quality data; and geographic data analysis. The system is Maryland 's prototype for development of a basinwide water quality management program. A key step in the program is to build a calibrated and verified water quality model of the basin using the Hydrological Simulation Program--FORTRAN (HSPF) hydrologic model, which has been used extensively in large-scale basin modeling. The compilation of the substantial existing data base for preliminary calibration of the basin model, including meteorologic, hydrologic, and water quality data from federal and state data bases and a geographic information system containing digital land use and soils data is described. The data base development is significant in its application of an integrated, uniform approach to data base management and modeling. (Lantz-PTT)
Hayes, Brett K; Heit, Evan; Swendsen, Haruka
2010-03-01
Inductive reasoning entails using existing knowledge or observations to make predictions about novel cases. We review recent findings in research on category-based induction as well as theoretical models of these results, including similarity-based models, connectionist networks, an account based on relevance theory, Bayesian models, and other mathematical models. A number of touchstone empirical phenomena that involve taxonomic similarity are described. We also examine phenomena involving more complex background knowledge about premises and conclusions of inductive arguments and the properties referenced. Earlier models are shown to give a good account of similarity-based phenomena but not knowledge-based phenomena. Recent models that aim to account for both similarity-based and knowledge-based phenomena are reviewed and evaluated. Among the most important new directions in induction research are a focus on induction with uncertain premise categories, the modeling of the relationship between inductive and deductive reasoning, and examination of the neural substrates of induction. A common theme in both the well-established and emerging lines of induction research is the need to develop well-articulated and empirically testable formal models of induction. Copyright © 2010 John Wiley & Sons, Ltd. For further resources related to this article, please visit the WIREs website. Copyright © 2010 John Wiley & Sons, Ltd.
The galaxy clustering crisis in abundance matching
NASA Astrophysics Data System (ADS)
Campbell, Duncan; van den Bosch, Frank C.; Padmanabhan, Nikhil; Mao, Yao-Yuan; Zentner, Andrew R.; Lange, Johannes U.; Jiang, Fangzhou; Villarreal, Antonio
2018-06-01
Galaxy clustering on small scales is significantly underpredicted by sub-halo abundance matching (SHAM) models that populate (sub-)haloes with galaxies based on peak halo mass, Mpeak. SHAM models based on the peak maximum circular velocity, Vpeak, have had much better success. The primary reason for Mpeak-based models fail is the relatively low abundance of satellite galaxies produced in these models compared to those based on Vpeak. Despite success in predicting clustering, a simple Vpeak-based SHAM model results in predictions for galaxy growth that are at odds with observations. We evaluate three possible remedies that could `save' mass-based SHAM: (1) SHAM models require a significant population of `orphan' galaxies as a result of artificial disruption/merging of sub-haloes in modern high-resolution dark matter simulations; (2) satellites must grow significantly after their accretion; and (3) stellar mass is significantly affected by halo assembly history. No solution is entirely satisfactory. However, regardless of the particulars, we show that popular SHAM models based on Mpeak cannot be complete physical models as presented. Either Vpeak truly is a better predictor of stellar mass at z ˜ 0 and it remains to be seen how the correlation between stellar mass and Vpeak comes about, or SHAM models are missing vital component(s) that significantly affect galaxy clustering.
Model Based Mission Assurance: Emerging Opportunities for Robotic Systems
NASA Technical Reports Server (NTRS)
Evans, John W.; DiVenti, Tony
2016-01-01
The emergence of Model Based Systems Engineering (MBSE) in a Model Based Engineering framework has created new opportunities to improve effectiveness and efficiencies across the assurance functions. The MBSE environment supports not only system architecture development, but provides for support of Systems Safety, Reliability and Risk Analysis concurrently in the same framework. Linking to detailed design will further improve assurance capabilities to support failures avoidance and mitigation in flight systems. This also is leading new assurance functions including model assurance and management of uncertainty in the modeling environment. Further, the assurance cases, a structured hierarchal argument or model, are emerging as a basis for supporting a comprehensive viewpoint in which to support Model Based Mission Assurance (MBMA).
Sebold, Miriam; Nebe, Stephan; Garbusow, Maria; Guggenmos, Matthias; Schad, Daniel J; Beck, Anne; Kuitunen-Paul, Soeren; Sommer, Christian; Frank, Robin; Neu, Peter; Zimmermann, Ulrich S; Rapp, Michael A; Smolka, Michael N; Huys, Quentin J M; Schlagenhauf, Florian; Heinz, Andreas
2017-12-01
Addiction is supposedly characterized by a shift from goal-directed to habitual decision making, thus facilitating automatic drug intake. The two-step task allows distinguishing between these mechanisms by computationally modeling goal-directed and habitual behavior as model-based and model-free control. In addicted patients, decision making may also strongly depend upon drug-associated expectations. Therefore, we investigated model-based versus model-free decision making and its neural correlates as well as alcohol expectancies in alcohol-dependent patients and healthy controls and assessed treatment outcome in patients. Ninety detoxified, medication-free, alcohol-dependent patients and 96 age- and gender-matched control subjects underwent functional magnetic resonance imaging during the two-step task. Alcohol expectancies were measured with the Alcohol Expectancy Questionnaire. Over a follow-up period of 48 weeks, 37 patients remained abstinent and 53 patients relapsed as indicated by the Alcohol Timeline Followback method. Patients who relapsed displayed reduced medial prefrontal cortex activation during model-based decision making. Furthermore, high alcohol expectancies were associated with low model-based control in relapsers, while the opposite was observed in abstainers and healthy control subjects. However, reduced model-based control per se was not associated with subsequent relapse. These findings suggest that poor treatment outcome in alcohol dependence does not simply result from a shift from model-based to model-free control but is instead dependent on the interaction between high drug expectancies and low model-based decision making. Reduced model-based medial prefrontal cortex signatures in those who relapse point to a neural correlate of relapse risk. These observations suggest that therapeutic interventions should target subjective alcohol expectancies. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Dopamine selectively remediates 'model-based' reward learning: a computational approach.
Sharp, Madeleine E; Foerde, Karin; Daw, Nathaniel D; Shohamy, Daphna
2016-02-01
Patients with loss of dopamine due to Parkinson's disease are impaired at learning from reward. However, it remains unknown precisely which aspect of learning is impaired. In particular, learning from reward, or reinforcement learning, can be driven by two distinct computational processes. One involves habitual stamping-in of stimulus-response associations, hypothesized to arise computationally from 'model-free' learning. The other, 'model-based' learning, involves learning a model of the world that is believed to support goal-directed behaviour. Much work has pointed to a role for dopamine in model-free learning. But recent work suggests model-based learning may also involve dopamine modulation, raising the possibility that model-based learning may contribute to the learning impairment in Parkinson's disease. To directly test this, we used a two-step reward-learning task which dissociates model-free versus model-based learning. We evaluated learning in patients with Parkinson's disease tested ON versus OFF their dopamine replacement medication and in healthy controls. Surprisingly, we found no effect of disease or medication on model-free learning. Instead, we found that patients tested OFF medication showed a marked impairment in model-based learning, and that this impairment was remediated by dopaminergic medication. Moreover, model-based learning was positively correlated with a separate measure of working memory performance, raising the possibility of common neural substrates. Our results suggest that some learning deficits in Parkinson's disease may be related to an inability to pursue reward based on complete representations of the environment. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Model-Based Assurance Case+ (MBAC+): Tutorial on Modeling Radiation Hardness Assurance Activities
NASA Technical Reports Server (NTRS)
Austin, Rebekah; Label, Ken A.; Sampson, Mike J.; Evans, John; Witulski, Art; Sierawski, Brian; Karsai, Gabor; Mahadevan, Nag; Schrimpf, Ron; Reed, Robert A.
2017-01-01
This presentation will cover why modeling is useful for radiation hardness assurance cases, and also provide information on Model-Based Assurance Case+ (MBAC+), NASAs Reliability Maintainability Template, and Fault Propagation Modeling.
PID-based error signal modeling
NASA Astrophysics Data System (ADS)
Yohannes, Tesfay
1997-10-01
This paper introduces a PID based signal error modeling. The error modeling is based on the betterment process. The resulting iterative learning algorithm is introduced and a detailed proof is provided for both linear and nonlinear systems.
Ajelli, Marco; Gonçalves, Bruno; Balcan, Duygu; Colizza, Vittoria; Hu, Hao; Ramasco, José J; Merler, Stefano; Vespignani, Alessandro
2010-06-29
In recent years large-scale computational models for the realistic simulation of epidemic outbreaks have been used with increased frequency. Methodologies adapt to the scale of interest and range from very detailed agent-based models to spatially-structured metapopulation models. One major issue thus concerns to what extent the geotemporal spreading pattern found by different modeling approaches may differ and depend on the different approximations and assumptions used. We provide for the first time a side-by-side comparison of the results obtained with a stochastic agent-based model and a structured metapopulation stochastic model for the progression of a baseline pandemic event in Italy, a large and geographically heterogeneous European country. The agent-based model is based on the explicit representation of the Italian population through highly detailed data on the socio-demographic structure. The metapopulation simulations use the GLobal Epidemic and Mobility (GLEaM) model, based on high-resolution census data worldwide, and integrating airline travel flow data with short-range human mobility patterns at the global scale. The model also considers age structure data for Italy. GLEaM and the agent-based models are synchronized in their initial conditions by using the same disease parameterization, and by defining the same importation of infected cases from international travels. The results obtained show that both models provide epidemic patterns that are in very good agreement at the granularity levels accessible by both approaches, with differences in peak timing on the order of a few days. The relative difference of the epidemic size depends on the basic reproductive ratio, R0, and on the fact that the metapopulation model consistently yields a larger incidence than the agent-based model, as expected due to the differences in the structure in the intra-population contact pattern of the approaches. The age breakdown analysis shows that similar attack rates are obtained for the younger age classes. The good agreement between the two modeling approaches is very important for defining the tradeoff between data availability and the information provided by the models. The results we present define the possibility of hybrid models combining the agent-based and the metapopulation approaches according to the available data and computational resources.
Van Belle, Vanya; Pelckmans, Kristiaan; Van Huffel, Sabine; Suykens, Johan A K
2011-10-01
To compare and evaluate ranking, regression and combined machine learning approaches for the analysis of survival data. The literature describes two approaches based on support vector machines to deal with censored observations. In the first approach the key idea is to rephrase the task as a ranking problem via the concordance index, a problem which can be solved efficiently in a context of structural risk minimization and convex optimization techniques. In a second approach, one uses a regression approach, dealing with censoring by means of inequality constraints. The goal of this paper is then twofold: (i) introducing a new model combining the ranking and regression strategy, which retains the link with existing survival models such as the proportional hazards model via transformation models; and (ii) comparison of the three techniques on 6 clinical and 3 high-dimensional datasets and discussing the relevance of these techniques over classical approaches fur survival data. We compare svm-based survival models based on ranking constraints, based on regression constraints and models based on both ranking and regression constraints. The performance of the models is compared by means of three different measures: (i) the concordance index, measuring the model's discriminating ability; (ii) the logrank test statistic, indicating whether patients with a prognostic index lower than the median prognostic index have a significant different survival than patients with a prognostic index higher than the median; and (iii) the hazard ratio after normalization to restrict the prognostic index between 0 and 1. Our results indicate a significantly better performance for models including regression constraints above models only based on ranking constraints. This work gives empirical evidence that svm-based models using regression constraints perform significantly better than svm-based models based on ranking constraints. Our experiments show a comparable performance for methods including only regression or both regression and ranking constraints on clinical data. On high dimensional data, the former model performs better. However, this approach does not have a theoretical link with standard statistical models for survival data. This link can be made by means of transformation models when ranking constraints are included. Copyright © 2011 Elsevier B.V. All rights reserved.
Automated visualization of rule-based models
Tapia, Jose-Juan; Faeder, James R.
2017-01-01
Frameworks such as BioNetGen, Kappa and Simmune use “reaction rules” to specify biochemical interactions compactly, where each rule specifies a mechanism such as binding or phosphorylation and its structural requirements. Current rule-based models of signaling pathways have tens to hundreds of rules, and these numbers are expected to increase as more molecule types and pathways are added. Visual representations are critical for conveying rule-based models, but current approaches to show rules and interactions between rules scale poorly with model size. Also, inferring design motifs that emerge from biochemical interactions is an open problem, so current approaches to visualize model architecture rely on manual interpretation of the model. Here, we present three new visualization tools that constitute an automated visualization framework for rule-based models: (i) a compact rule visualization that efficiently displays each rule, (ii) the atom-rule graph that conveys regulatory interactions in the model as a bipartite network, and (iii) a tunable compression pipeline that incorporates expert knowledge and produces compact diagrams of model architecture when applied to the atom-rule graph. The compressed graphs convey network motifs and architectural features useful for understanding both small and large rule-based models, as we show by application to specific examples. Our tools also produce more readable diagrams than current approaches, as we show by comparing visualizations of 27 published models using standard graph metrics. We provide an implementation in the open source and freely available BioNetGen framework, but the underlying methods are general and can be applied to rule-based models from the Kappa and Simmune frameworks also. We expect that these tools will promote communication and analysis of rule-based models and their eventual integration into comprehensive whole-cell models. PMID:29131816
Modelling Students' Visualisation of Chemical Reaction
ERIC Educational Resources Information Center
Cheng, Maurice M. W.; Gilbert, John K.
2017-01-01
This paper proposes a model-based notion of "submicro representations of chemical reactions". Based on three structural models of matter (the simple particle model, the atomic model and the free electron model of metals), we suggest there are two major models of reaction in school chemistry curricula: (a) reactions that are simple…
A Gaussian random field model for similarity-based smoothing in Bayesian disease mapping.
Baptista, Helena; Mendes, Jorge M; MacNab, Ying C; Xavier, Miguel; Caldas-de-Almeida, José
2016-08-01
Conditionally specified Gaussian Markov random field (GMRF) models with adjacency-based neighbourhood weight matrix, commonly known as neighbourhood-based GMRF models, have been the mainstream approach to spatial smoothing in Bayesian disease mapping. In the present paper, we propose a conditionally specified Gaussian random field (GRF) model with a similarity-based non-spatial weight matrix to facilitate non-spatial smoothing in Bayesian disease mapping. The model, named similarity-based GRF, is motivated for modelling disease mapping data in situations where the underlying small area relative risks and the associated determinant factors do not vary systematically in space, and the similarity is defined by "similarity" with respect to the associated disease determinant factors. The neighbourhood-based GMRF and the similarity-based GRF are compared and accessed via a simulation study and by two case studies, using new data on alcohol abuse in Portugal collected by the World Mental Health Survey Initiative and the well-known lip cancer data in Scotland. In the presence of disease data with no evidence of positive spatial correlation, the simulation study showed a consistent gain in efficiency from the similarity-based GRF, compared with the adjacency-based GMRF with the determinant risk factors as covariate. This new approach broadens the scope of the existing conditional autocorrelation models. © The Author(s) 2016.
Reacting Chemistry Based Burn Model for Explosive Hydrocodes
NASA Astrophysics Data System (ADS)
Schwaab, Matthew; Greendyke, Robert; Steward, Bryan
2017-06-01
Currently, in hydrocodes designed to simulate explosive material undergoing shock-induced ignition, the state of the art is to use one of numerous reaction burn rate models. These burn models are designed to estimate the bulk chemical reaction rate. Unfortunately, these models are largely based on empirical data and must be recalibrated for every new material being simulated. We propose that the use of an equilibrium Arrhenius rate reacting chemistry model in place of these empirically derived burn models will improve the accuracy for these computational codes. Such models have been successfully used in codes simulating the flow physics around hypersonic vehicles. A reacting chemistry model of this form was developed for the cyclic nitramine RDX by the Naval Research Laboratory (NRL). Initial implementation of this chemistry based burn model has been conducted on the Air Force Research Laboratory's MPEXS multi-phase continuum hydrocode. In its present form, the burn rate is based on the destruction rate of RDX from NRL's chemistry model. Early results using the chemistry based burn model show promise in capturing deflagration to detonation features more accurately in continuum hydrocodes than previously achieved using empirically derived burn models.
Modeling marine oily wastewater treatment by a probabilistic agent-based approach.
Jing, Liang; Chen, Bing; Zhang, Baiyu; Ye, Xudong
2018-02-01
This study developed a novel probabilistic agent-based approach for modeling of marine oily wastewater treatment processes. It begins first by constructing a probability-based agent simulation model, followed by a global sensitivity analysis and a genetic algorithm-based calibration. The proposed modeling approach was tested through a case study of the removal of naphthalene from marine oily wastewater using UV irradiation. The removal of naphthalene was described by an agent-based simulation model using 8 types of agents and 11 reactions. Each reaction was governed by a probability parameter to determine its occurrence. The modeling results showed that the root mean square errors between modeled and observed removal rates were 8.73 and 11.03% for calibration and validation runs, respectively. Reaction competition was analyzed by comparing agent-based reaction probabilities, while agents' heterogeneity was visualized by plotting their real-time spatial distribution, showing a strong potential for reactor design and process optimization. Copyright © 2017 Elsevier Ltd. All rights reserved.
Resource management and scheduling policy based on grid for AIoT
NASA Astrophysics Data System (ADS)
Zou, Yiqin; Quan, Li
2017-07-01
This paper has a research on resource management and scheduling policy based on grid technology for Agricultural Internet of Things (AIoT). Facing the situation of a variety of complex and heterogeneous agricultural resources in AIoT, it is difficult to represent them in a unified way. But from an abstract perspective, there are some common models which can express their characteristics and features. Based on this, we proposed a high-level model called Agricultural Resource Hierarchy Model (ARHM), which can be used for modeling various resources. It introduces the agricultural resource modeling method based on this model. Compared with traditional application-oriented three-layer model, ARHM can hide the differences of different applications and make all applications have a unified interface layer and be implemented without distinction. Furthermore, it proposes a Web Service Resource Framework (WSRF)-based resource management method and the encapsulation structure for it. Finally, it focuses on the discussion of multi-agent-based AG resource scheduler, which is a collaborative service provider pattern in multiple agricultural production domains.
The effects of geometric uncertainties on computational modelling of knee biomechanics
NASA Astrophysics Data System (ADS)
Meng, Qingen; Fisher, John; Wilcox, Ruth
2017-08-01
The geometry of the articular components of the knee is an important factor in predicting joint mechanics in computational models. There are a number of uncertainties in the definition of the geometry of cartilage and meniscus, and evaluating the effects of these uncertainties is fundamental to understanding the level of reliability of the models. In this study, the sensitivity of knee mechanics to geometric uncertainties was investigated by comparing polynomial-based and image-based knee models and varying the size of meniscus. The results suggested that the geometric uncertainties in cartilage and meniscus resulting from the resolution of MRI and the accuracy of segmentation caused considerable effects on the predicted knee mechanics. Moreover, even if the mathematical geometric descriptors can be very close to the imaged-based articular surfaces, the detailed contact pressure distribution produced by the mathematical geometric descriptors was not the same as that of the image-based model. However, the trends predicted by the models based on mathematical geometric descriptors were similar to those of the imaged-based models.
Modeling method of time sequence model based grey system theory and application proceedings
NASA Astrophysics Data System (ADS)
Wei, Xuexia; Luo, Yaling; Zhang, Shiqiang
2015-12-01
This article gives a modeling method of grey system GM(1,1) model based on reusing information and the grey system theory. This method not only extremely enhances the fitting and predicting accuracy of GM(1,1) model, but also maintains the conventional routes' merit of simple computation. By this way, we have given one syphilis trend forecast method based on reusing information and the grey system GM(1,1) model.
Pharmacokinetic modeling in aquatic animals. 1. Models and concepts
Barron, M.G.; Stehly, Guy R.; Hayton, W.L.
1990-01-01
While clinical and toxicological applications of pharmacokinetics have continued to evolve both conceptually and experimentally, pharmacokinetics modeling in aquatic animals has not progressed accordingly. In this paper we present methods and concepts of pharmacokinetic modeling in aquatic animals using multicompartmental, clearance-based, non-compartmental and physiologically-based pharmacokinetic models. These models should be considered as alternatives to traditional approaches, which assume that the animal acts as a single homogeneous compartment based on apparent monoexponential elimination.
Agent based reasoning for the non-linear stochastic models of long-range memory
NASA Astrophysics Data System (ADS)
Kononovicius, A.; Gontis, V.
2012-02-01
We extend Kirman's model by introducing variable event time scale. The proposed flexible time scale is equivalent to the variable trading activity observed in financial markets. Stochastic version of the extended Kirman's agent based model is compared to the non-linear stochastic models of long-range memory in financial markets. The agent based model providing matching macroscopic description serves as a microscopic reasoning of the earlier proposed stochastic model exhibiting power law statistics.
ERIC Educational Resources Information Center
Mun, Eun Young; von Eye, Alexander; Bates, Marsha E.; Vaschillo, Evgeny G.
2008-01-01
Model-based cluster analysis is a new clustering procedure to investigate population heterogeneity utilizing finite mixture multivariate normal densities. It is an inferentially based, statistically principled procedure that allows comparison of nonnested models using the Bayesian information criterion to compare multiple models and identify the…
The Agent-based Approach: A New Direction for Computational Models of Development.
ERIC Educational Resources Information Center
Schlesinger, Matthew; Parisi, Domenico
2001-01-01
Introduces the concepts of online and offline sampling and highlights the role of online sampling in agent-based models of learning and development. Compares the strengths of each approach for modeling particular developmental phenomena and research questions. Describes a recent agent-based model of infant causal perception. Discusses limitations…
Testing the Model-Observer Similarity Hypothesis with Text-Based Worked Examples
ERIC Educational Resources Information Center
Hoogerheide, Vincent; Loyens, Sofie M. M.; Jadi, Fedora; Vrins, Anna; van Gog, Tamara
2017-01-01
Example-based learning is a very effective and efficient instructional strategy for novices. It can be implemented using text-based worked examples that provide a written demonstration of how to perform a task, or (video) modelling examples in which an instructor (the "model") provides a demonstration. The model-observer similarity (MOS)…
Exact Hybrid Particle/Population Simulation of Rule-Based Models of Biochemical Systems
Stover, Lori J.; Nair, Niketh S.; Faeder, James R.
2014-01-01
Detailed modeling and simulation of biochemical systems is complicated by the problem of combinatorial complexity, an explosion in the number of species and reactions due to myriad protein-protein interactions and post-translational modifications. Rule-based modeling overcomes this problem by representing molecules as structured objects and encoding their interactions as pattern-based rules. This greatly simplifies the process of model specification, avoiding the tedious and error prone task of manually enumerating all species and reactions that can potentially exist in a system. From a simulation perspective, rule-based models can be expanded algorithmically into fully-enumerated reaction networks and simulated using a variety of network-based simulation methods, such as ordinary differential equations or Gillespie's algorithm, provided that the network is not exceedingly large. Alternatively, rule-based models can be simulated directly using particle-based kinetic Monte Carlo methods. This “network-free” approach produces exact stochastic trajectories with a computational cost that is independent of network size. However, memory and run time costs increase with the number of particles, limiting the size of system that can be feasibly simulated. Here, we present a hybrid particle/population simulation method that combines the best attributes of both the network-based and network-free approaches. The method takes as input a rule-based model and a user-specified subset of species to treat as population variables rather than as particles. The model is then transformed by a process of “partial network expansion” into a dynamically equivalent form that can be simulated using a population-adapted network-free simulator. The transformation method has been implemented within the open-source rule-based modeling platform BioNetGen, and resulting hybrid models can be simulated using the particle-based simulator NFsim. Performance tests show that significant memory savings can be achieved using the new approach and a monetary cost analysis provides a practical measure of its utility. PMID:24699269
Exact hybrid particle/population simulation of rule-based models of biochemical systems.
Hogg, Justin S; Harris, Leonard A; Stover, Lori J; Nair, Niketh S; Faeder, James R
2014-04-01
Detailed modeling and simulation of biochemical systems is complicated by the problem of combinatorial complexity, an explosion in the number of species and reactions due to myriad protein-protein interactions and post-translational modifications. Rule-based modeling overcomes this problem by representing molecules as structured objects and encoding their interactions as pattern-based rules. This greatly simplifies the process of model specification, avoiding the tedious and error prone task of manually enumerating all species and reactions that can potentially exist in a system. From a simulation perspective, rule-based models can be expanded algorithmically into fully-enumerated reaction networks and simulated using a variety of network-based simulation methods, such as ordinary differential equations or Gillespie's algorithm, provided that the network is not exceedingly large. Alternatively, rule-based models can be simulated directly using particle-based kinetic Monte Carlo methods. This "network-free" approach produces exact stochastic trajectories with a computational cost that is independent of network size. However, memory and run time costs increase with the number of particles, limiting the size of system that can be feasibly simulated. Here, we present a hybrid particle/population simulation method that combines the best attributes of both the network-based and network-free approaches. The method takes as input a rule-based model and a user-specified subset of species to treat as population variables rather than as particles. The model is then transformed by a process of "partial network expansion" into a dynamically equivalent form that can be simulated using a population-adapted network-free simulator. The transformation method has been implemented within the open-source rule-based modeling platform BioNetGen, and resulting hybrid models can be simulated using the particle-based simulator NFsim. Performance tests show that significant memory savings can be achieved using the new approach and a monetary cost analysis provides a practical measure of its utility.
FacetModeller: Software for manual creation, manipulation and analysis of 3D surface-based models
NASA Astrophysics Data System (ADS)
Lelièvre, Peter G.; Carter-McAuslan, Angela E.; Dunham, Michael W.; Jones, Drew J.; Nalepa, Mariella; Squires, Chelsea L.; Tycholiz, Cassandra J.; Vallée, Marc A.; Farquharson, Colin G.
2018-01-01
The creation of 3D models is commonplace in many disciplines. Models are often built from a collection of tessellated surfaces. To apply numerical methods to such models it is often necessary to generate a mesh of space-filling elements that conforms to the model surfaces. While there are meshing algorithms that can do so, they place restrictive requirements on the surface-based models that are rarely met by existing 3D model building software. Hence, we have developed a Java application named FacetModeller, designed for efficient manual creation, modification and analysis of 3D surface-based models destined for use in numerical modelling.
Precision assessment of model-based RSA for a total knee prosthesis in a biplanar set-up.
Trozzi, C; Kaptein, B L; Garling, E H; Shelyakova, T; Russo, A; Bragonzoni, L; Martelli, S
2008-10-01
Model-based Roentgen Stereophotogrammetric Analysis (RSA) was recently developed for the measurement of prosthesis micromotion. Its main advantage is that markers do not need to be attached to the implants as traditional marker-based RSA requires. Model-based RSA has only been tested in uniplanar radiographic set-ups. A biplanar set-up would theoretically facilitate the pose estimation algorithm, since radiographic projections would show more different shape features of the implants than in uniplanar images. We tested the precision of model-based RSA and compared it with that of the traditional marker-based method in a biplanar set-up. Micromotions of both tibial and femoral components were measured with both the techniques from double examinations of patients participating in a clinical study. The results showed that in the biplanar set-up model-based RSA presents a homogeneous distribution of precision for all the translation directions, but an inhomogeneous error for rotations, especially internal-external rotation presented higher errors than rotations about the transverse and sagittal axes. Model-based RSA was less precise than the marker-based method, although the differences were not significant for the translations and rotations of the tibial component, with the exception of the internal-external rotations. For both prosthesis components the precisions of model-based RSA were below 0.2 mm for all the translations, and below 0.3 degrees for rotations about transverse and sagittal axes. These values are still acceptable for clinical studies aimed at evaluating total knee prosthesis micromotion. In a biplanar set-up model-based RSA is a valid alternative to traditional marker-based RSA where marking of the prosthesis is an enormous disadvantage.
NASA Astrophysics Data System (ADS)
Li, Mingming; Li, Lin; Li, Qiang; Zou, Zongshu
2018-05-01
A filter-based Euler-Lagrange multiphase flow model is used to study the mixing behavior in a combined blowing steelmaking converter. The Euler-based volume of fluid approach is employed to simulate the top blowing, while the Lagrange-based discrete phase model that embeds the local volume change of rising bubbles for the bottom blowing. A filter-based turbulence method based on the local meshing resolution is proposed aiming to improve the modeling of turbulent eddy viscosities. The model validity is verified through comparison with physical experiments in terms of mixing curves and mixing times. The effects of the bottom gas flow rate on bath flow and mixing behavior are investigated and the inherent reasons for the mixing result are clarified in terms of the characteristics of bottom-blowing plumes, the interaction between plumes and top-blowing jets, and the change of bath flow structure.
Base stock system for patient vs impatient customers with varying demand distribution
NASA Astrophysics Data System (ADS)
Fathima, Dowlath; Uduman, P. Sheik
2013-09-01
An optimal Base-Stock inventory policy for Patient and Impatient Customers using finite-horizon models is examined. The Base stock system for Patient and Impatient customers is a different type of inventory policy. In case of the model I, Base stock for Patient customer case is evaluated using the Truncated Exponential Distribution. The model II involves the study of Base-stock inventory policies for Impatient customer. A study on these systems reveals that the Customers wait until the arrival of the next order or the customers leaves the system which leads to lost sale. In both the models demand during the period [0, t] is taken to be a random variable. In this paper, Truncated Exponential Distribution satisfies the Base stock policy for the patient customer as a continuous model. So far the Base stock for Impatient Customers leaded to a discrete case but, in this paper we have modeled this condition into a continuous case. We justify this approach mathematically and also numerically.
Using Model Replication to Improve the Reliability of Agent-Based Models
NASA Astrophysics Data System (ADS)
Zhong, Wei; Kim, Yushim
The basic presupposition of model replication activities for a computational model such as an agent-based model (ABM) is that, as a robust and reliable tool, it must be replicable in other computing settings. This assumption has recently gained attention in the community of artificial society and simulation due to the challenges of model verification and validation. Illustrating the replication of an ABM representing fraudulent behavior in a public service delivery system originally developed in the Java-based MASON toolkit for NetLogo by a different author, this paper exemplifies how model replication exercises provide unique opportunities for model verification and validation process. At the same time, it helps accumulate best practices and patterns of model replication and contributes to the agenda of developing a standard methodological protocol for agent-based social simulation.
Trainer, Asa; Hedberg, Thomas; Feeney, Allison Barnard; Fischer, Kevin; Rosche, Phil
2017-01-01
Advances in information technology triggered a digital revolution that holds promise of reduced costs, improved productivity, and higher quality. To ride this wave of innovation, manufacturing enterprises are changing how product definitions are communicated – from paper to models. To achieve industry's vision of the Model-Based Enterprise (MBE), the MBE strategy must include model-based data interoperability from design to manufacturing and quality in the supply chain. The Model-Based Definition (MBD) is created by the original equipment manufacturer (OEM) using Computer-Aided Design (CAD) tools. This information is then shared with the supplier so that they can manufacture and inspect the physical parts. Today, suppliers predominantly use Computer-Aided Manufacturing (CAM) and Coordinate Measuring Machine (CMM) models for these tasks. Traditionally, the OEM has provided design data to the supplier in the form of two-dimensional (2D) drawings, but may also include a three-dimensional (3D)-shape-geometry model, often in a standards-based format such as ISO 10303-203:2011 (STEP AP203). The supplier then creates the respective CAM and CMM models and machine programs to produce and inspect the parts. In the MBE vision for model-based data exchange, the CAD model must include product-and-manufacturing information (PMI) in addition to the shape geometry. Today's CAD tools can generate models with embedded PMI. And, with the emergence of STEP AP242, a standards-based model with embedded PMI can now be shared downstream. The on-going research detailed in this paper seeks to investigate three concepts. First, that the ability to utilize a STEP AP242 model with embedded PMI for CAD-to-CAM and CAD-to-CMM data exchange is possible and valuable to the overall goal of a more efficient process. Second, the research identifies gaps in tools, standards, and processes that inhibit industry's ability to cost-effectively achieve model-based-data interoperability in the pursuit of the MBE vision. Finally, it also seeks to explore the interaction between CAD and CMM processes and determine if the concept of feedback from CAM and CMM back to CAD is feasible. The main goal of our study is to test the hypothesis that model-based-data interoperability from CAD-to-CAM and CAD-to-CMM is feasible through standards-based integration. This paper presents several barriers to model-based-data interoperability. Overall, the project team demonstrated the exchange of product definition data between CAD, CAM, and CMM systems using standards-based methods. While gaps in standards coverage were identified, the gaps should not stop industry's progress toward MBE. The results of our study provide evidence in support of an open-standards method to model-based-data interoperability, which would provide maximum value and impact to industry. PMID:28691120
A Method for Generating Reduced Order Linear Models of Supersonic Inlets
NASA Technical Reports Server (NTRS)
Chicatelli, Amy; Hartley, Tom T.
1997-01-01
For the modeling of high speed propulsion systems, there are at least two major categories of models. One is based on computational fluid dynamics (CFD), and the other is based on design and analysis of control systems. CFD is accurate and gives a complete view of the internal flow field, but it typically has many states and runs much slower dm real-time. Models based on control design typically run near real-time but do not always capture the fundamental dynamics. To provide improved control models, methods are needed that are based on CFD techniques but yield models that are small enough for control analysis and design.
Brief introductory guide to agent-based modeling and an illustration from urban health research.
Auchincloss, Amy H; Garcia, Leandro Martin Totaro
2015-11-01
There is growing interest among urban health researchers in addressing complex problems using conceptual and computation models from the field of complex systems. Agent-based modeling (ABM) is one computational modeling tool that has received a lot of interest. However, many researchers remain unfamiliar with developing and carrying out an ABM, hindering the understanding and application of it. This paper first presents a brief introductory guide to carrying out a simple agent-based model. Then, the method is illustrated by discussing a previously developed agent-based model, which explored inequalities in diet in the context of urban residential segregation.
Brief introductory guide to agent-based modeling and an illustration from urban health research
Auchincloss, Amy H.; Garcia, Leandro Martin Totaro
2017-01-01
There is growing interest among urban health researchers in addressing complex problems using conceptual and computation models from the field of complex systems. Agent-based modeling (ABM) is one computational modeling tool that has received a lot of interest. However, many researchers remain unfamiliar with developing and carrying out an ABM, hindering the understanding and application of it. This paper first presents a brief introductory guide to carrying out a simple agent-based model. Then, the method is illustrated by discussing a previously developed agent-based model, which explored inequalities in diet in the context of urban residential segregation. PMID:26648364
Arranging ISO 13606 archetypes into a knowledge base.
Kopanitsa, Georgy
2014-01-01
To enable the efficient reuse of standard based medical data we propose to develop a higher level information model that will complement the archetype model of ISO 13606. This model will make use of the relationships that are specified in UML to connect medical archetypes into a knowledge base within a repository. UML connectors were analyzed for their ability to be applied in the implementation of a higher level model that will establish relationships between archetypes. An information model was developed using XML Schema notation. The model allows linking different archetypes of one repository into a knowledge base. Presently it supports several relationships and will be advanced in future.
Applying the cell-based coagulation model in the management of critical bleeding.
Ho, K M; Pavey, W
2017-03-01
The cell-based coagulation model was proposed 15 years ago, yet has not been applied commonly in the management of critical bleeding. Nevertheless, this alternative model may better explain the physiological basis of current coagulation management during critical bleeding. In this article we describe the limitations of the traditional coagulation protein cascade and standard coagulation tests, and explain the potential advantages of applying the cell-based model in current coagulation management strategies. The cell-based coagulation model builds on the traditional coagulation model and explains many recent clinical observations and research findings related to critical bleeding unexplained by the traditional model, including the encouraging results of using empirical 1:1:1 fresh frozen plasma:platelets:red blood cells transfusion strategy, and the use of viscoelastic and platelet function tests in patients with critical bleeding. From a practical perspective, applying the cell-based coagulation model also explains why new direct oral anticoagulants are effective systemic anticoagulants even without affecting activated partial thromboplastin time or the International Normalized Ratio in a dose-related fashion. The cell-based coagulation model represents the most cohesive scientific framework on which we can understand and manage coagulation during critical bleeding.
NASA Astrophysics Data System (ADS)
Gu, Xiaoyu; Yu, Yang; Li, Jianchun; Li, Yancheng
2017-10-01
Magnetorheological elastomer (MRE) base isolations have attracted considerable attention over the last two decades thanks to its self-adaptability and high-authority controllability in semi-active control realm. Due to the inherent nonlinearity and hysteresis of the devices, it is challenging to obtain a reasonably complicated mathematical model to describe the inverse dynamics of MRE base isolators and hence to realise control synthesis of the MRE base isolation system. Two aims have been achieved in this paper: i) development of an inverse model for MRE base isolator based on optimal general regression neural network (GRNN); ii) numerical and experimental validation of a real-time semi-active controlled MRE base isolation system utilising LQR controller and GRNN inverse model. The superiority of GRNN inverse model lays in fewer input variables requirement, faster training process and prompt calculation response, which makes it suitable for online training and real-time control. The control system is integrated with a three-storey shear building model and control performance of the MRE base isolation system is compared with bare building, passive-on isolation system and passive-off isolation system. Testing results show that the proposed GRNN inverse model is able to reproduce desired control force accurately and the MRE base isolation system can effectively suppress the structural responses when compared to the passive isolation system.
Data Clustering and Evolving Fuzzy Decision Tree for Data Base Classification Problems
NASA Astrophysics Data System (ADS)
Chang, Pei-Chann; Fan, Chin-Yuan; Wang, Yen-Wen
Data base classification suffers from two well known difficulties, i.e., the high dimensionality and non-stationary variations within the large historic data. This paper presents a hybrid classification model by integrating a case based reasoning technique, a Fuzzy Decision Tree (FDT), and Genetic Algorithms (GA) to construct a decision-making system for data classification in various data base applications. The model is major based on the idea that the historic data base can be transformed into a smaller case-base together with a group of fuzzy decision rules. As a result, the model can be more accurately respond to the current data under classifying from the inductions by these smaller cases based fuzzy decision trees. Hit rate is applied as a performance measure and the effectiveness of our proposed model is demonstrated by experimentally compared with other approaches on different data base classification applications. The average hit rate of our proposed model is the highest among others.
FlyBase portals to human disease research using Drosophila models
Millburn, Gillian H.; Crosby, Madeline A.; Gramates, L. Sian; Tweedie, Susan
2016-01-01
ABSTRACT The use of Drosophila melanogaster as a model for studying human disease is well established, reflected by the steady increase in both the number and proportion of fly papers describing human disease models in recent years. In this article, we highlight recent efforts to improve the availability and accessibility of the disease model information in FlyBase (http://flybase.org), the model organism database for Drosophila. FlyBase has recently introduced Human Disease Model Reports, each of which presents background information on a specific disease, a tabulation of related disease subtypes, and summaries of experimental data and results using fruit flies. Integrated presentations of relevant data and reagents described in other sections of FlyBase are incorporated into these reports, which are specifically designed to be accessible to non-fly researchers in order to promote collaboration across model organism communities working in translational science. Another key component of disease model information in FlyBase is that data are collected in a consistent format – using the evolving Disease Ontology (an open-source standardized ontology for human-disease-associated biomedical data) – to allow robust and intuitive searches. To facilitate this, FlyBase has developed a dedicated tool for querying and navigating relevant data, which include mutations that model a disease and any associated interacting modifiers. In this article, we describe how data related to fly models of human disease are presented in individual Gene Reports and in the Human Disease Model Reports. Finally, we discuss search strategies and new query tools that are available to access the disease model data in FlyBase. PMID:26935103
Cellular-based modeling of oscillatory dynamics in brain networks.
Skinner, Frances K
2012-08-01
Oscillatory, population activities have long been known to occur in our brains during different behavioral states. We know that many different cell types exist and that they contribute in distinct ways to the generation of these activities. I review recent papers that involve cellular-based models of brain networks, most of which include theta, gamma and sharp wave-ripple activities. To help organize the modeling work, I present it from a perspective of three different types of cellular-based modeling: 'Generic', 'Biophysical' and 'Linking'. Cellular-based modeling is taken to encompass the four features of experiment, model development, theory/analyses, and model usage/computation. The three modeling types are shown to include these features and interactions in different ways. Copyright © 2012 Elsevier Ltd. All rights reserved.
An Exact Model-Based Method for Near-Field Sources Localization with Bistatic MIMO System.
Singh, Parth Raj; Wang, Yide; Chargé, Pascal
2017-03-30
In this paper, we propose an exact model-based method for near-field sources localization with a bistatic multiple input, multiple output (MIMO) radar system, and compare it with an approximated model-based method. The aim of this paper is to propose an efficient way to use the exact model of the received signals of near-field sources in order to eliminate the systematic error introduced by the use of approximated model in most existing near-field sources localization techniques. The proposed method uses parallel factor (PARAFAC) decomposition to deal with the exact model. Thanks to the exact model, the proposed method has better precision and resolution than the compared approximated model-based method. The simulation results show the performance of the proposed method.
The objective of current work is to develop a new cancer dose-response assessment for chloroform using a physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) model. The PBPK/PD model is based on a mode of action in which the cytolethality of chloroform occurs when the ...
Argumentation in Science Education: A Model-Based Framework
ERIC Educational Resources Information Center
Bottcher, Florian; Meisert, Anke
2011-01-01
The goal of this article is threefold: First, the theoretical background for a model-based framework of argumentation to describe and evaluate argumentative processes in science education is presented. Based on the general model-based perspective in cognitive science and the philosophy of science, it is proposed to understand arguments as reasons…
Sun, Xiaodan; Hartzell, Stephen; Rezaeian, Sanaz
2015-01-01
Three broadband simulation methods are used to generate synthetic ground motions for the 2011 Mineral, Virginia, earthquake and compare with observed motions. The methods include a physics‐based model by Hartzell et al. (1999, 2005), a stochastic source‐based model by Boore (2009), and a stochastic site‐based model by Rezaeian and Der Kiureghian (2010, 2012). The ground‐motion dataset consists of 40 stations within 600 km of the epicenter. Several metrics are used to validate the simulations: (1) overall bias of response spectra and Fourier spectra (from 0.1 to 10 Hz); (2) spatial distribution of residuals for GMRotI50 peak ground acceleration (PGA), peak ground velocity, and pseudospectral acceleration (PSA) at various periods; (3) comparison with ground‐motion prediction equations (GMPEs) for the eastern United States. Our results show that (1) the physics‐based model provides satisfactory overall bias from 0.1 to 10 Hz and produces more realistic synthetic waveforms; (2) the stochastic site‐based model also yields more realistic synthetic waveforms and performs superiorly for frequencies greater than about 1 Hz; (3) the stochastic source‐based model has larger bias at lower frequencies (<0.5 Hz) and cannot reproduce the varying frequency content in the time domain. The spatial distribution of GMRotI50 residuals shows that there is no obvious pattern with distance in the simulation bias, but there is some azimuthal variability. The comparison between synthetics and GMPEs shows similar fall‐off with distance for all three models, comparable PGA and PSA amplitudes for the physics‐based and stochastic site‐based models, and systematic lower amplitudes for the stochastic source‐based model at lower frequencies (<0.5 Hz).
An object-oriented description method of EPMM process
NASA Astrophysics Data System (ADS)
Jiang, Zuo; Yang, Fan
2017-06-01
In order to use the object-oriented mature tools and language in software process model, make the software process model more accord with the industrial standard, it’s necessary to study the object-oriented modelling of software process. Based on the formal process definition in EPMM, considering the characteristics that Petri net is mainly formal modelling tool and combining the Petri net modelling with the object-oriented modelling idea, this paper provides this implementation method to convert EPMM based on Petri net into object models based on object-oriented description.
Preliminary Cost Model for Space Telescopes
NASA Technical Reports Server (NTRS)
Stahl, H. Philip; Prince, F. Andrew; Smart, Christian; Stephens, Kyle; Henrichs, Todd
2009-01-01
Parametric cost models are routinely used to plan missions, compare concepts and justify technology investments. However, great care is required. Some space telescope cost models, such as those based only on mass, lack sufficient detail to support such analysis and may lead to inaccurate conclusions. Similarly, using ground based telescope models which include the dome cost will also lead to inaccurate conclusions. This paper reviews current and historical models. Then, based on data from 22 different NASA space telescopes, this paper tests those models and presents preliminary analysis of single and multi-variable space telescope cost models.
Research on Turbofan Engine Model above Idle State Based on NARX Modeling Approach
NASA Astrophysics Data System (ADS)
Yu, Bing; Shu, Wenjun
2017-03-01
The nonlinear model for turbofan engine above idle state based on NARX is studied. Above all, the data sets for the JT9D engine from existing model are obtained via simulation. Then, a nonlinear modeling scheme based on NARX is proposed and several models with different parameters are built according to the former data sets. Finally, the simulations have been taken to verify the precise and dynamic performance the models, the results show that the NARX model can well reflect the dynamics characteristic of the turbofan engine with high accuracy.
A new approach towards image based virtual 3D city modeling by using close range photogrammetry
NASA Astrophysics Data System (ADS)
Singh, S. P.; Jain, K.; Mandla, V. R.
2014-05-01
3D city model is a digital representation of the Earth's surface and it's related objects such as building, tree, vegetation, and some manmade feature belonging to urban area. The demand of 3D city modeling is increasing day to day for various engineering and non-engineering applications. Generally three main image based approaches are using for virtual 3D city models generation. In first approach, researchers used Sketch based modeling, second method is Procedural grammar based modeling and third approach is Close range photogrammetry based modeling. Literature study shows that till date, there is no complete solution available to create complete 3D city model by using images. These image based methods also have limitations This paper gives a new approach towards image based virtual 3D city modeling by using close range photogrammetry. This approach is divided into three sections. First, data acquisition process, second is 3D data processing, and third is data combination process. In data acquisition process, a multi-camera setup developed and used for video recording of an area. Image frames created from video data. Minimum required and suitable video image frame selected for 3D processing. In second section, based on close range photogrammetric principles and computer vision techniques, 3D model of area created. In third section, this 3D model exported to adding and merging of other pieces of large area. Scaling and alignment of 3D model was done. After applying the texturing and rendering on this model, a final photo-realistic textured 3D model created. This 3D model transferred into walk-through model or in movie form. Most of the processing steps are automatic. So this method is cost effective and less laborious. Accuracy of this model is good. For this research work, study area is the campus of department of civil engineering, Indian Institute of Technology, Roorkee. This campus acts as a prototype for city. Aerial photography is restricted in many country and high resolution satellite images are costly. In this study, proposed method is based on only simple video recording of area. Thus this proposed method is suitable for 3D city modeling. Photo-realistic, scalable, geo-referenced virtual 3D city model is useful for various kinds of applications such as for planning in navigation, tourism, disasters management, transportations, municipality, urban and environmental managements, real-estate industry. Thus this study will provide a good roadmap for geomatics community to create photo-realistic virtual 3D city model by using close range photogrammetry.
Louis R. Iverson; Frank R. Thompson; Stephen Matthews; Matthew Peters; Anantha Prasad; William D. Dijak; Jacob Fraser; Wen J. Wang; Brice Hanberry; Hong He; Maria Janowiak; Patricia Butler; Leslie Brandt; Chris Swanston
2016-01-01
Context. Species distribution models (SDM) establish statistical relationships between the current distribution of species and key attributes whereas process-based models simulate ecosystem and tree species dynamics based on representations of physical and biological processes. TreeAtlas, which uses DISTRIB SDM, and Linkages and LANDIS PRO, process...
Defeaturing CAD models using a geometry-based size field and facet-based reduction operators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quadros, William Roshan; Owen, Steven James
2010-04-01
We propose a method to automatically defeature a CAD model by detecting irrelevant features using a geometry-based size field and a method to remove the irrelevant features via facet-based operations on a discrete representation. A discrete B-Rep model is first created by obtaining a faceted representation of the CAD entities. The candidate facet entities are then marked for reduction by using a geometry-based size field. This is accomplished by estimating local mesh sizes based on geometric criteria. If the field value at a facet entity goes below a user specified threshold value then it is identified as an irrelevant featuremore » and is marked for reduction. The reduction of marked facet entities is primarily performed using an edge collapse operator. Care is taken to retain a valid geometry and topology of the discrete model throughout the procedure. The original model is not altered as the defeaturing is performed on a separate discrete model. Associativity between the entities of the discrete model and that of original CAD model is maintained in order to decode the attributes and boundary conditions applied on the original CAD entities onto the mesh via the entities of the discrete model. Example models are presented to illustrate the effectiveness of the proposed approach.« less
Nevers, Meredith; Byappanahalli, Muruleedhara; Phanikumar, Mantha S.; Whitman, Richard L.
2016-01-01
Mathematical models have been widely applied to surface waters to estimate rates of settling, resuspension, flow, dispersion, and advection in order to calculate movement of particles that influence water quality. Of particular interest are the movement, survival, and persistence of microbial pathogens or their surrogates, which may contaminate recreational water, drinking water, or shellfish. Most models devoted to microbial water quality have been focused on fecal indicator organisms (FIO), which act as a surrogate for pathogens and viruses. Process-based modeling and statistical modeling have been used to track contamination events to source and to predict future events. The use of these two types of models require different levels of expertise and input; process-based models rely on theoretical physical constructs to explain present conditions and biological distribution while data-based, statistical models use extant paired data to do the same. The selection of the appropriate model and interpretation of results is critical to proper use of these tools in microbial source tracking. Integration of the modeling approaches could provide insight for tracking and predicting contamination events in real time. A review of modeling efforts reveals that process-based modeling has great promise for microbial source tracking efforts; further, combining the understanding of physical processes influencing FIO contamination developed with process-based models and molecular characterization of the population by gene-based (i.e., biological) or chemical markers may be an effective approach for locating sources and remediating contamination in order to protect human health better.
Drug Distribution. Part 1. Models to Predict Membrane Partitioning.
Nagar, Swati; Korzekwa, Ken
2017-03-01
Tissue partitioning is an important component of drug distribution and half-life. Protein binding and lipid partitioning together determine drug distribution. Two structure-based models to predict partitioning into microsomal membranes are presented. An orientation-based model was developed using a membrane template and atom-based relative free energy functions to select drug conformations and orientations for neutral and basic drugs. The resulting model predicts the correct membrane positions for nine compounds tested, and predicts the membrane partitioning for n = 67 drugs with an average fold-error of 2.4. Next, a more facile descriptor-based model was developed for acids, neutrals and bases. This model considers the partitioning of neutral and ionized species at equilibrium, and can predict membrane partitioning with an average fold-error of 2.0 (n = 92 drugs). Together these models suggest that drug orientation is important for membrane partitioning and that membrane partitioning can be well predicted from physicochemical properties.
An efficient current-based logic cell model for crosstalk delay analysis
NASA Astrophysics Data System (ADS)
Nazarian, Shahin; Das, Debasish
2013-04-01
Logic cell modelling is an important component in the analysis and design of CMOS integrated circuits, mostly due to nonlinear behaviour of CMOS cells with respect to the voltage signal at their input and output pins. A current-based model for CMOS logic cells is presented, which can be used for effective crosstalk noise and delta delay analysis in CMOS VLSI circuits. Existing current source models are expensive and need a new set of Spice-based characterisation, which is not compatible with typical EDA tools. In this article we present Imodel, a simple nonlinear logic cell model that can be derived from the typical cell libraries such as NLDM, with accuracy much higher than NLDM-based cell delay models. In fact, our experiments show an average error of 3% compared to Spice. This level of accuracy comes with a maximum runtime penalty of 19% compared to NLDM-based cell delay models on medium-sized industrial designs.
Model-Based Development of Automotive Electronic Climate Control Software
NASA Astrophysics Data System (ADS)
Kakade, Rupesh; Murugesan, Mohan; Perugu, Bhupal; Nair, Mohanan
With increasing complexity of software in today's products, writing and maintaining thousands of lines of code is a tedious task. Instead, an alternative methodology must be employed. Model-based development is one candidate that offers several benefits and allows engineers to focus on the domain of their expertise than writing huge codes. In this paper, we discuss the application of model-based development to the electronic climate control software of vehicles. The back-to-back testing approach is presented that ensures flawless and smooth transition from legacy designs to the model-based development. Simulink report generator to create design documents from the models is presented along with its usage to run the simulation model and capture the results into the test report. Test automation using model-based development tool that support the use of unique set of test cases for several testing levels and the test procedure that is independent of software and hardware platform is also presented.
Gupta, Nidhi; Christiansen, Caroline Stordal; Hanisch, Christiana; Bay, Hans; Burr, Hermann; Holtermann, Andreas
2017-01-01
Objectives To investigate the differences between a questionnaire-based and accelerometer-based sitting time, and develop a model for improving the accuracy of questionnaire-based sitting time for predicting accelerometer-based sitting time. Methods 183 workers in a cross-sectional study reported sitting time per day using a single question during the measurement period, and wore 2 Actigraph GT3X+ accelerometers on the thigh and trunk for 1–4 working days to determine their actual sitting time per day using the validated Acti4 software. Least squares regression models were fitted with questionnaire-based siting time and other self-reported predictors to predict accelerometer-based sitting time. Results Questionnaire-based and accelerometer-based average sitting times were ≈272 and ≈476 min/day, respectively. A low Pearson correlation (r=0.32), high mean bias (204.1 min) and wide limits of agreement (549.8 to −139.7 min) between questionnaire-based and accelerometer-based sitting time were found. The prediction model based on questionnaire-based sitting explained 10% of the variance in accelerometer-based sitting time. Inclusion of 9 self-reported predictors in the model increased the explained variance to 41%, with 10% optimism using a resampling bootstrap validation. Based on a split validation analysis, the developed prediction model on ≈75% of the workers (n=132) reduced the mean and the SD of the difference between questionnaire-based and accelerometer-based sitting time by 64% and 42%, respectively, in the remaining 25% of the workers. Conclusions This study indicates that questionnaire-based sitting time has low validity and that a prediction model can be one solution to materially improve the precision of questionnaire-based sitting time. PMID:28093433
Recommending Education Materials for Diabetic Questions Using Information Retrieval Approaches
Wang, Yanshan; Shen, Feichen; Liu, Sijia; Rastegar-Mojarad, Majid; Wang, Liwei
2017-01-01
Background Self-management is crucial to diabetes care and providing expert-vetted content for answering patients’ questions is crucial in facilitating patient self-management. Objective The aim is to investigate the use of information retrieval techniques in recommending patient education materials for diabetic questions of patients. Methods We compared two retrieval algorithms, one based on Latent Dirichlet Allocation topic modeling (topic modeling-based model) and one based on semantic group (semantic group-based model), with the baseline retrieval models, vector space model (VSM), in recommending diabetic patient education materials to diabetic questions posted on the TuDiabetes forum. The evaluation was based on a gold standard dataset consisting of 50 randomly selected diabetic questions where the relevancy of diabetic education materials to the questions was manually assigned by two experts. The performance was assessed using precision of top-ranked documents. Results We retrieved 7510 diabetic questions on the forum and 144 diabetic patient educational materials from the patient education database at Mayo Clinic. The mapping rate of words in each corpus mapped to the Unified Medical Language System (UMLS) was significantly different (P<.001). The topic modeling-based model outperformed the other retrieval algorithms. For example, for the top-retrieved document, the precision of the topic modeling-based, semantic group-based, and VSM models was 67.0%, 62.8%, and 54.3%, respectively. Conclusions This study demonstrated that topic modeling can mitigate the vocabulary difference and it achieved the best performance in recommending education materials for answering patients’ questions. One direction for future work is to assess the generalizability of our findings and to extend our study to other disease areas, other patient education material resources, and online forums. PMID:29038097
An OpenACC-Based Unified Programming Model for Multi-accelerator Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jungwon; Lee, Seyong; Vetter, Jeffrey S
2015-01-01
This paper proposes a novel SPMD programming model of OpenACC. Our model integrates the different granularities of parallelism from vector-level parallelism to node-level parallelism into a single, unified model based on OpenACC. It allows programmers to write programs for multiple accelerators using a uniform programming model whether they are in shared or distributed memory systems. We implement a prototype of our model and evaluate its performance with a GPU-based supercomputer using three benchmark applications.
Pezzulo, Giovanni; Rigoli, Francesco; Chersi, Fabian
2013-01-01
Instrumental behavior depends on both goal-directed and habitual mechanisms of choice. Normative views cast these mechanisms in terms of model-free and model-based methods of reinforcement learning, respectively. An influential proposal hypothesizes that model-free and model-based mechanisms coexist and compete in the brain according to their relative uncertainty. In this paper we propose a novel view in which a single Mixed Instrumental Controller produces both goal-directed and habitual behavior by flexibly balancing and combining model-based and model-free computations. The Mixed Instrumental Controller performs a cost-benefits analysis to decide whether to chose an action immediately based on the available “cached” value of actions (linked to model-free mechanisms) or to improve value estimation by mentally simulating the expected outcome values (linked to model-based mechanisms). Since mental simulation entails cognitive effort and increases the reward delay, it is activated only when the associated “Value of Information” exceeds its costs. The model proposes a method to compute the Value of Information, based on the uncertainty of action values and on the distance of alternative cached action values. Overall, the model by default chooses on the basis of lighter model-free estimates, and integrates them with costly model-based predictions only when useful. Mental simulation uses a sampling method to produce reward expectancies, which are used to update the cached value of one or more actions; in turn, this updated value is used for the choice. The key predictions of the model are tested in different settings of a double T-maze scenario. Results are discussed in relation with neurobiological evidence on the hippocampus – ventral striatum circuit in rodents, which has been linked to goal-directed spatial navigation. PMID:23459512
Pezzulo, Giovanni; Rigoli, Francesco; Chersi, Fabian
2013-01-01
Instrumental behavior depends on both goal-directed and habitual mechanisms of choice. Normative views cast these mechanisms in terms of model-free and model-based methods of reinforcement learning, respectively. An influential proposal hypothesizes that model-free and model-based mechanisms coexist and compete in the brain according to their relative uncertainty. In this paper we propose a novel view in which a single Mixed Instrumental Controller produces both goal-directed and habitual behavior by flexibly balancing and combining model-based and model-free computations. The Mixed Instrumental Controller performs a cost-benefits analysis to decide whether to chose an action immediately based on the available "cached" value of actions (linked to model-free mechanisms) or to improve value estimation by mentally simulating the expected outcome values (linked to model-based mechanisms). Since mental simulation entails cognitive effort and increases the reward delay, it is activated only when the associated "Value of Information" exceeds its costs. The model proposes a method to compute the Value of Information, based on the uncertainty of action values and on the distance of alternative cached action values. Overall, the model by default chooses on the basis of lighter model-free estimates, and integrates them with costly model-based predictions only when useful. Mental simulation uses a sampling method to produce reward expectancies, which are used to update the cached value of one or more actions; in turn, this updated value is used for the choice. The key predictions of the model are tested in different settings of a double T-maze scenario. Results are discussed in relation with neurobiological evidence on the hippocampus - ventral striatum circuit in rodents, which has been linked to goal-directed spatial navigation.
Long-Boyle, Janel R; Savic, Rada; Yan, Shirley; Bartelink, Imke; Musick, Lisa; French, Deborah; Law, Jason; Horn, Biljana; Cowan, Morton J; Dvorak, Christopher C
2015-04-01
Population pharmacokinetic (PK) studies of busulfan in children have shown that individualized model-based algorithms provide improved targeted busulfan therapy when compared with conventional dose guidelines. The adoption of population PK models into routine clinical practice has been hampered by the tendency of pharmacologists to develop complex models too impractical for clinicians to use. The authors aimed to develop a population PK model for busulfan in children that can reliably achieve therapeutic exposure (concentration at steady state) and implement a simple model-based tool for the initial dosing of busulfan in children undergoing hematopoietic cell transplantation. Model development was conducted using retrospective data available in 90 pediatric and young adult patients who had undergone hematopoietic cell transplantation with busulfan conditioning. Busulfan drug levels and potential covariates influencing drug exposure were analyzed using the nonlinear mixed effects modeling software, NONMEM. The final population PK model was implemented into a clinician-friendly Microsoft Excel-based tool and used to recommend initial doses of busulfan in a group of 21 pediatric patients prospectively dosed based on the population PK model. Modeling of busulfan time-concentration data indicates that busulfan clearance displays nonlinearity in children, decreasing up to approximately 20% between the concentrations of 250-2000 ng/mL. Important patient-specific covariates found to significantly impact busulfan clearance were actual body weight and age. The percentage of individuals achieving a therapeutic concentration at steady state was significantly higher in subjects receiving initial doses based on the population PK model (81%) than in historical controls dosed on conventional guidelines (52%) (P = 0.02). When compared with the conventional dosing guidelines, the model-based algorithm demonstrates significant improvement for providing targeted busulfan therapy in children and young adults.
Promoting Model-based Definition to Establish a Complete Product Definition
Ruemler, Shawn P.; Zimmerman, Kyle E.; Hartman, Nathan W.; Hedberg, Thomas; Feeny, Allison Barnard
2016-01-01
The manufacturing industry is evolving and starting to use 3D models as the central knowledge artifact for product data and product definition, or what is known as Model-based Definition (MBD). The Model-based Enterprise (MBE) uses MBD as a way to transition away from using traditional paper-based drawings and documentation. As MBD grows in popularity, it is imperative to understand what information is needed in the transition from drawings to models so that models represent all the relevant information needed for processes to continue efficiently. Finding this information can help define what data is common amongst different models in different stages of the lifecycle, which could help establish a Common Information Model. The Common Information Model is a source that contains common information from domain specific elements amongst different aspects of the lifecycle. To help establish this Common Information Model, information about how models are used in industry within different workflows needs to be understood. To retrieve this information, a survey mechanism was administered to industry professionals from various sectors. Based on the results of the survey a Common Information Model could not be established. However, the results gave great insight that will help in further investigation of the Common Information Model. PMID:28070155
NASA Technical Reports Server (NTRS)
Sinha, Neeraj; Brinckman, Kevin; Jansen, Bernard; Seiner, John
2011-01-01
A method was developed of obtaining propulsive base flow data in both hot and cold jet environments, at Mach numbers and altitude of relevance to NASA launcher designs. The base flow data was used to perform computational fluid dynamics (CFD) turbulence model assessments of base flow predictive capabilities in order to provide increased confidence in base thermal and pressure load predictions obtained from computational modeling efforts. Predictive CFD analyses were used in the design of the experiments, available propulsive models were used to reduce program costs and increase success, and a wind tunnel facility was used. The data obtained allowed assessment of CFD/turbulence models in a complex flow environment, working within a building-block procedure to validation, where cold, non-reacting test data was first used for validation, followed by more complex reacting base flow validation.
Model-Based Prognostics of Hybrid Systems
NASA Technical Reports Server (NTRS)
Daigle, Matthew; Roychoudhury, Indranil; Bregon, Anibal
2015-01-01
Model-based prognostics has become a popular approach to solving the prognostics problem. However, almost all work has focused on prognostics of systems with continuous dynamics. In this paper, we extend the model-based prognostics framework to hybrid systems models that combine both continuous and discrete dynamics. In general, most systems are hybrid in nature, including those that combine physical processes with software. We generalize the model-based prognostics formulation to hybrid systems, and describe the challenges involved. We present a general approach for modeling hybrid systems, and overview methods for solving estimation and prediction in hybrid systems. As a case study, we consider the problem of conflict (i.e., loss of separation) prediction in the National Airspace System, in which the aircraft models are hybrid dynamical systems.
CDMBE: A Case Description Model Based on Evidence
Zhu, Jianlin; Yang, Xiaoping; Zhou, Jing
2015-01-01
By combining the advantages of argument map and Bayesian network, a case description model based on evidence (CDMBE), which is suitable to continental law system, is proposed to describe the criminal cases. The logic of the model adopts the credibility logical reason and gets evidence-based reasoning quantitatively based on evidences. In order to consist with practical inference rules, five types of relationship and a set of rules are defined to calculate the credibility of assumptions based on the credibility and supportability of the related evidences. Experiments show that the model can get users' ideas into a figure and the results calculated from CDMBE are in line with those from Bayesian model. PMID:26421006
Chen, Jing
2017-04-01
This study calculates and compares the lifetime lung cancer risks associated with indoor radon exposure based on well-known risk models in the literature; two risk models are from joint studies among miners and the other three models were developed from pooling studies on residential radon exposure from China, Europe and North America respectively. The aim of this article is to make clear that the various models are mathematical descriptions of epidemiologically observed real risks in different environmental settings. The risk from exposure to indoor radon is real and it is normal that variations could exist among different risk models even when they were applied to the same dataset. The results show that lifetime risk estimates vary significantly between the various risk models considered here: the model based on the European residential data provides the lowest risk estimates, while models based on the European miners and Chinese residential pooling with complete dosimetry give the highest values. The lifetime risk estimates based on the EPA/BEIR-VI model lie within this range and agree reasonably well with the averages of risk estimates from the five risk models considered in this study. © Crown copyright 2016.
Teaching EFL Writing: An Approach Based on the Learner's Context Model
ERIC Educational Resources Information Center
Lin, Zheng
2017-01-01
This study aims to examine qualitatively a new approach to teaching English as a foreign language (EFL) writing based on the learner's context model. It investigates the context model-based approach in class and identifies key characteristics of the approach delivered through a four-phase teaching and learning cycle. The model collects research…
Cycles of Exploration, Reflection, and Consolidation in Model-Based Learning of Genetics
ERIC Educational Resources Information Center
Kim, Beaumie; Pathak, Suneeta A.; Jacobson, Michael J.; Zhang, Baohui; Gobert, Janice D.
2015-01-01
Model-based reasoning has been introduced as an authentic way of learning science, and many researchers have developed technological tools for learning with models. This paper describes how a model-based tool, "BioLogica"™, was used to facilitate genetics learning in secondary 3-level biology in Singapore. The research team co-designed…
Character and Local Wisdom-Based Instructional Model of Bahasa Indonesia in Vocational High Schools
ERIC Educational Resources Information Center
Anggraini, Purwati; Kusniarti, Tuti
2017-01-01
This research aimed at establishing a character and local wisdom-based instructional model of Bahasa Indonesia. The learning model based on local wisdom literature is very important to prepared, because this model can enrich the knowledge and develop the character of students. Meanwhile, the textbook can broaden the student teachers about the…
A physiologically-based pharmacokinetic (PBPK) model for a mixture of N-methyl carbamate pesticides was developed based on single chemical models. The model was used to compare urinary metabolite concentrations to levels from National Health and Nutrition Examination Survey (NHA...
NASA Astrophysics Data System (ADS)
Zhou, Cong; Chase, J. Geoffrey; Rodgers, Geoffrey W.; Xu, Chao
2017-02-01
The model-free hysteresis loop analysis (HLA) method for structural health monitoring (SHM) has significant advantages over the traditional model-based SHM methods that require a suitable baseline model to represent the actual system response. This paper provides a unique validation against both an experimental reinforced concrete (RC) building and a calibrated numerical model to delineate the capability of the model-free HLA method and the adaptive least mean squares (LMS) model-based method in detecting, localizing and quantifying damage that may not be visible, observable in overall structural response. Results clearly show the model-free HLA method is capable of adapting to changes in how structures transfer load or demand across structural elements over time and multiple events of different size. However, the adaptive LMS model-based method presented an image of greater spread of lesser damage over time and story when the baseline model is not well defined. Finally, the two algorithms are tested over a simpler hysteretic behaviour typical steel structure to quantify the impact of model mismatch between the baseline model used for identification and the actual response. The overall results highlight the need for model-based methods to have an appropriate model that can capture the observed response, in order to yield accurate results, even in small events where the structure remains linear.
Stability of model-based event-triggered control systems: a separation property
NASA Astrophysics Data System (ADS)
Hao, Fei; Yu, Hao
2017-04-01
To save resource of communication, this paper investigates the model-based event-triggered control systems. Two main problems are considered in this paper. One is, for given plant and model, to design event conditions to guarantee the stability of the systems. The other is to consider the effect of the model matrices on the stability. The results show that the closed-loop systems can be asymptotically stabilised with any model matrices in compact sets if the parameters in the event conditions are within the designed ranges. Then, a separation property of model-based event-triggered control is proposed. Namely, the design of the controller gain and the event condition can be separated from the selection of the model matrices. Based on this property, an adaption mechanism is introduced to the model-based event-triggered control systems, which can further improve the sampling performance. Finally, a numerical example is given to show the efficiency and feasibility of the developed results.
Liu, Yun-Feng; Fan, Ying-Ying; Dong, Hui-Yue; Zhang, Jian-Xing
2017-12-01
The method used in biomechanical modeling for finite element method (FEM) analysis needs to deliver accurate results. There are currently two solutions used in FEM modeling for biomedical model of human bone from computerized tomography (CT) images: one is based on a triangular mesh and the other is based on the parametric surface model and is more popular in practice. The outline and modeling procedures for the two solutions are compared and analyzed. Using a mandibular bone as an example, several key modeling steps are then discussed in detail, and the FEM calculation was conducted. Numerical calculation results based on the models derived from the two methods, including stress, strain, and displacement, are compared and evaluated in relation to accuracy and validity. Moreover, a comprehensive comparison of the two solutions is listed. The parametric surface based method is more helpful when using powerful design tools in computer-aided design (CAD) software, but the triangular mesh based method is more robust and efficient.
NASA Technical Reports Server (NTRS)
Duda, David P.; Minnis, Patrick
2009-01-01
Previous studies have shown that probabilistic forecasting may be a useful method for predicting persistent contrail formation. A probabilistic forecast to accurately predict contrail formation over the contiguous United States (CONUS) is created by using meteorological data based on hourly meteorological analyses from the Advanced Regional Prediction System (ARPS) and from the Rapid Update Cycle (RUC) as well as GOES water vapor channel measurements, combined with surface and satellite observations of contrails. Two groups of logistic models were created. The first group of models (SURFACE models) is based on surface-based contrail observations supplemented with satellite observations of contrail occurrence. The second group of models (OUTBREAK models) is derived from a selected subgroup of satellite-based observations of widespread persistent contrails. The mean accuracies for both the SURFACE and OUTBREAK models typically exceeded 75 percent when based on the RUC or ARPS analysis data, but decreased when the logistic models were derived from ARPS forecast data.
NASA Astrophysics Data System (ADS)
Chen, Y.; Li, J.; Xu, H.
2015-10-01
Physically based distributed hydrological models discrete the terrain of the whole catchment into a number of grid cells at fine resolution, and assimilate different terrain data and precipitation to different cells, and are regarded to have the potential to improve the catchment hydrological processes simulation and prediction capability. In the early stage, physically based distributed hydrological models are assumed to derive model parameters from the terrain properties directly, so there is no need to calibrate model parameters, but unfortunately, the uncertanties associated with this model parameter deriving is very high, which impacted their application in flood forecasting, so parameter optimization may also be necessary. There are two main purposes for this study, the first is to propose a parameter optimization method for physically based distributed hydrological models in catchment flood forecasting by using PSO algorithm and to test its competence and to improve its performances, the second is to explore the possibility of improving physically based distributed hydrological models capability in cathcment flood forecasting by parameter optimization. In this paper, based on the scalar concept, a general framework for parameter optimization of the PBDHMs for catchment flood forecasting is first proposed that could be used for all PBDHMs. Then, with Liuxihe model as the study model, which is a physically based distributed hydrological model proposed for catchment flood forecasting, the improverd Particle Swarm Optimization (PSO) algorithm is developed for the parameter optimization of Liuxihe model in catchment flood forecasting, the improvements include to adopt the linear decreasing inertia weight strategy to change the inertia weight, and the arccosine function strategy to adjust the acceleration coefficients. This method has been tested in two catchments in southern China with different sizes, and the results show that the improved PSO algorithm could be used for Liuxihe model parameter optimization effectively, and could improve the model capability largely in catchment flood forecasting, thus proven that parameter optimization is necessary to improve the flood forecasting capability of physically based distributed hydrological model. It also has been found that the appropriate particle number and the maximum evolution number of PSO algorithm used for Liuxihe model catchment flood forcasting is 20 and 30, respectively.
Constitutive Models for Design of Sustainable Concrete Structures
NASA Astrophysics Data System (ADS)
Brozovsky, J.; Cajka, R.; Koktan, J.
2018-04-01
The paper deals with numerical models of reinforced concrete which are expected to be useful to enhance design of sustainable reinforced concrete structures. That is, the models which can deliver higher precision of results than the linear elastic models but which are still feasible for engineering practice. Such models can be based on an elastic-plastic material. The paper discusses properties of such models. A material model based of the Chen criteria and the Ohtani hardening model for concrete was selected for further development. There is also given a comparison of behaviour of such model with behaviour of a more complex smeared crack model which is based on principles of fracture mechanics.
Comparison of the landslide susceptibility models in Taipei Water Source Domain, Taiwan
NASA Astrophysics Data System (ADS)
WU, C. Y.; Yeh, Y. C.; Chou, T. H.
2017-12-01
Taipei Water Source Domain, locating at the southeast of Taipei Metropolis, is the main source of water resource in this region. Recently, the downstream turbidity often soared significantly during the typhoon period because of the upstream landslides. The landslide susceptibilities should be analysed to assess the influence zones caused by different rainfall events, and to ensure the abilities of this domain to serve enough and quality water resource. Generally, the landslide susceptibility models can be established based on either a long-term landslide inventory or a specified landslide event. Sometimes, there is no long-term landslide inventory in some areas. Thus, the event-based landslide susceptibility models are established widely. However, the inventory-based and event-based landslide susceptibility models may result in dissimilar susceptibility maps in the same area. So the purposes of this study were to compare the landslide susceptibility maps derived from the inventory-based and event-based models, and to interpret how to select a representative event to be included in the susceptibility model. The landslide inventory from Typhoon Tim in July, 1994 and Typhoon Soudelor in August, 2015 was collected, and used to establish the inventory-based landslide susceptibility model. The landslides caused by Typhoon Nari and rainfall data were used to establish the event-based model. The results indicated the high susceptibility slope-units were located at middle upstream Nan-Shih Stream basin.
Work domain constraints for modelling surgical performance.
Morineau, Thierry; Riffaud, Laurent; Morandi, Xavier; Villain, Jonathan; Jannin, Pierre
2015-10-01
Three main approaches can be identified for modelling surgical performance: a competency-based approach, a task-based approach, both largely explored in the literature, and a less known work domain-based approach. The work domain-based approach first describes the work domain properties that constrain the agent's actions and shape the performance. This paper presents a work domain-based approach for modelling performance during cervical spine surgery, based on the idea that anatomical structures delineate the surgical performance. This model was evaluated through an analysis of junior and senior surgeons' actions. Twenty-four cervical spine surgeries performed by two junior and two senior surgeons were recorded in real time by an expert surgeon. According to a work domain-based model describing an optimal progression through anatomical structures, the degree of adjustment of each surgical procedure to a statistical polynomial function was assessed. Each surgical procedure showed a significant suitability with the model and regression coefficient values around 0.9. However, the surgeries performed by senior surgeons fitted this model significantly better than those performed by junior surgeons. Analysis of the relative frequencies of actions on anatomical structures showed that some specific anatomical structures discriminate senior from junior performances. The work domain-based modelling approach can provide an overall statistical indicator of surgical performance, but in particular, it can highlight specific points of interest among anatomical structures that the surgeons dwelled on according to their level of expertise.
NASA Astrophysics Data System (ADS)
Caldararu, Silvia; Purves, Drew W.; Smith, Matthew J.
2017-04-01
Improving international food security under a changing climate and increasing human population will be greatly aided by improving our ability to modify, understand and predict crop growth. What we predominantly have at our disposal are either process-based models of crop physiology or statistical analyses of yield datasets, both of which suffer from various sources of error. In this paper, we present a generic process-based crop model (PeakN-crop v1.0) which we parametrise using a Bayesian model-fitting algorithm to three different sources: data-space-based vegetation indices, eddy covariance productivity measurements and regional crop yields. We show that the model parametrised without data, based on prior knowledge of the parameters, can largely capture the observed behaviour but the data-constrained model greatly improves both the model fit and reduces prediction uncertainty. We investigate the extent to which each dataset contributes to the model performance and show that while all data improve on the prior model fit, the satellite-based data and crop yield estimates are particularly important for reducing model error and uncertainty. Despite these improvements, we conclude that there are still significant knowledge gaps, in terms of available data for model parametrisation, but our study can help indicate the necessary data collection to improve our predictions of crop yields and crop responses to environmental changes.
Linhart, S. Mike; Nania, Jon F.; Christiansen, Daniel E.; Hutchinson, Kasey J.; Sanders, Curtis L.; Archfield, Stacey A.
2013-01-01
A variety of individuals from water resource managers to recreational users need streamflow information for planning and decisionmaking at locations where there are no streamgages. To address this problem, two statistically based methods, the Flow Duration Curve Transfer method and the Flow Anywhere method, were developed for statewide application and the two physically based models, the Precipitation Runoff Modeling-System and the Soil and Water Assessment Tool, were only developed for application for the Cedar River Basin. Observed and estimated streamflows for the two methods and models were compared for goodness of fit at 13 streamgages modeled in the Cedar River Basin by using the Nash-Sutcliffe and the percent-bias efficiency values. Based on median and mean Nash-Sutcliffe values for the 13 streamgages the Precipitation Runoff Modeling-System and Soil and Water Assessment Tool models appear to have performed similarly and better than Flow Duration Curve Transfer and Flow Anywhere methods. Based on median and mean percent bias values, the Soil and Water Assessment Tool model appears to have generally overestimated daily mean streamflows, whereas the Precipitation Runoff Modeling-System model and statistical methods appear to have underestimated daily mean streamflows. The Flow Duration Curve Transfer method produced the lowest median and mean percent bias values and appears to perform better than the other models.
Extending rule-based methods to model molecular geometry and 3D model resolution.
Hoard, Brittany; Jacobson, Bruna; Manavi, Kasra; Tapia, Lydia
2016-08-01
Computational modeling is an important tool for the study of complex biochemical processes associated with cell signaling networks. However, it is challenging to simulate processes that involve hundreds of large molecules due to the high computational cost of such simulations. Rule-based modeling is a method that can be used to simulate these processes with reasonably low computational cost, but traditional rule-based modeling approaches do not include details of molecular geometry. The incorporation of geometry into biochemical models can more accurately capture details of these processes, and may lead to insights into how geometry affects the products that form. Furthermore, geometric rule-based modeling can be used to complement other computational methods that explicitly represent molecular geometry in order to quantify binding site accessibility and steric effects. We propose a novel implementation of rule-based modeling that encodes details of molecular geometry into the rules and binding rates. We demonstrate how rules are constructed according to the molecular curvature. We then perform a study of antigen-antibody aggregation using our proposed method. We simulate the binding of antibody complexes to binding regions of the shrimp allergen Pen a 1 using a previously developed 3D rigid-body Monte Carlo simulation, and we analyze the aggregate sizes. Then, using our novel approach, we optimize a rule-based model according to the geometry of the Pen a 1 molecule and the data from the Monte Carlo simulation. We use the distances between the binding regions of Pen a 1 to optimize the rules and binding rates. We perform this procedure for multiple conformations of Pen a 1 and analyze the impact of conformation and resolution on the optimal rule-based model. We find that the optimized rule-based models provide information about the average steric hindrance between binding regions and the probability that antibodies will bind to these regions. These optimized models quantify the variation in aggregate size that results from differences in molecular geometry and from model resolution.
Morin, Xavier; Thuiller, Wilfried
2009-05-01
Obtaining reliable predictions of species range shifts under climate change is a crucial challenge for ecologists and stakeholders. At the continental scale, niche-based models have been widely used in the last 10 years to predict the potential impacts of climate change on species distributions all over the world, although these models do not include any mechanistic relationships. In contrast, species-specific, process-based predictions remain scarce at the continental scale. This is regrettable because to secure relevant and accurate predictions it is always desirable to compare predictions derived from different kinds of models applied independently to the same set of species and using the same raw data. Here we compare predictions of range shifts under climate change scenarios for 2100 derived from niche-based models with those of a process-based model for 15 North American boreal and temperate tree species. A general pattern emerged from our comparisons: niche-based models tend to predict a stronger level of extinction and a greater proportion of colonization than the process-based model. This result likely arises because niche-based models do not take phenotypic plasticity and local adaptation into account. Nevertheless, as the two kinds of models rely on different assumptions, their complementarity is revealed by common findings. Both modeling approaches highlight a major potential limitation on species tracking their climatic niche because of migration constraints and identify similar zones where species extirpation is likely. Such convergent predictions from models built on very different principles provide a useful way to offset uncertainties at the continental scale. This study shows that the use in concert of both approaches with their own caveats and advantages is crucial to obtain more robust results and that comparisons among models are needed in the near future to gain accuracy regarding predictions of range shifts under climate change.
Cheaib, Alissar; Badeau, Vincent; Boe, Julien; Chuine, Isabelle; Delire, Christine; Dufrêne, Eric; François, Christophe; Gritti, Emmanuel S; Legay, Myriam; Pagé, Christian; Thuiller, Wilfried; Viovy, Nicolas; Leadley, Paul
2012-06-01
Model-based projections of shifts in tree species range due to climate change are becoming an important decision support tool for forest management. However, poorly evaluated sources of uncertainty require more scrutiny before relying heavily on models for decision-making. We evaluated uncertainty arising from differences in model formulations of tree response to climate change based on a rigorous intercomparison of projections of tree distributions in France. We compared eight models ranging from niche-based to process-based models. On average, models project large range contractions of temperate tree species in lowlands due to climate change. There was substantial disagreement between models for temperate broadleaf deciduous tree species, but differences in the capacity of models to account for rising CO(2) impacts explained much of the disagreement. There was good quantitative agreement among models concerning the range contractions for Scots pine. For the dominant Mediterranean tree species, Holm oak, all models foresee substantial range expansion. © 2012 Blackwell Publishing Ltd/CNRS.
Using concept maps to describe undergraduate students’ mental model in microbiology course
NASA Astrophysics Data System (ADS)
Hamdiyati, Y.; Sudargo, F.; Redjeki, S.; Fitriani, A.
2018-05-01
The purpose of this research was to describe students’ mental model in a mental model based-microbiology course using concept map as assessment tool. Respondents were 5th semester of undergraduate students of Biology Education of Universitas Pendidikan Indonesia. The mental modelling instrument used was concept maps. Data were taken on Bacteria sub subject. A concept map rubric was subsequently developed with a maximum score of 4. Quantitative data was converted into a qualitative one to determine mental model level, namely: emergent = score 1, transitional = score 2, close to extended = score 3, and extended = score 4. The results showed that mental model level on bacteria sub subject before the implementation of mental model based-microbiology course was at the transitional level. After implementation of mental model based-microbiology course, mental model was at transitional level, close to extended, and extended. This indicated an increase in the level of students’ mental model after the implementation of mental model based-microbiology course using concept map as assessment tool.
Biologically-based pharmacokinetic models are being increasingly used in the risk assessment of environmental chemicals. These models are based on biological, mathematical, statistical and engineering principles. Their potential uses in risk assessment include extrapolation betwe...
High-Throughput Physiologically Based Toxicokinetic Models for ToxCast Chemicals
Physiologically based toxicokinetic (PBTK) models aid in predicting exposure doses needed to create tissue concentrations equivalent to those identified as bioactive by ToxCast. We have implemented four empirical and physiologically-based toxicokinetic (TK) models within a new R ...
NASA Astrophysics Data System (ADS)
Schmitz, Oliver; Beelen, Rob M. J.; de Bakker, Merijn P.; Karssenberg, Derek
2015-04-01
Constructing spatio-temporal numerical models to support risk assessment, such as assessing the exposure of humans to air pollution, often requires the integration of field-based and agent-based modelling approaches. Continuous environmental variables such as air pollution are best represented using the field-based approach which considers phenomena as continuous fields having attribute values at all locations. When calculating human exposure to such pollutants it is, however, preferable to consider the population as a set of individuals each with a particular activity pattern. This would allow to account for the spatio-temporal variation in a pollutant along the space-time paths travelled by individuals, determined, for example, by home and work locations, road network, and travel times. Modelling this activity pattern requires an agent-based or individual based modelling approach. In general, field- and agent-based models are constructed with the help of separate software tools, while both approaches should play together in an interacting way and preferably should be combined into one modelling framework, which would allow for efficient and effective implementation of models by domain specialists. To overcome this lack in integrated modelling frameworks, we aim at the development of concepts and software for an integrated field-based and agent-based modelling framework. Concepts merging field- and agent-based modelling were implemented by extending PCRaster (http://www.pcraster.eu), a field-based modelling library implemented in C++, with components for 1) representation of discrete, mobile, agents, 2) spatial networks and algorithms by integrating the NetworkX library (http://networkx.github.io), allowing therefore to calculate e.g. shortest routes or total transport costs between locations, and 3) functions for field-network interactions, allowing to assign field-based attribute values to networks (i.e. as edge weights), such as aggregated or averaged concentration values. We demonstrate the approach by using six land use regression (LUR) models developed in the ESCAPE (European Study of Cohorts for Air Pollution Effects) project. These models calculate several air pollutants (e.g. NO2, NOx, PM2.5) for the entire Netherlands at a high (5 m) resolution. Using these air pollution maps, we compare exposure of individuals calculated at their x, y location of their home, their work place, and aggregated over the close surroundings of these locations. In addition, total exposure is accumulated over daily activity patterns, summing exposure at home, at the work place, and while travelling between home and workplace, by routing individuals over the Dutch road network, using the shortest route. Finally, we illustrate how routes can be calculated with the minimum total exposure (instead of shortest distance).
Friedman, Karen A; Balwan, Sandy; Cacace, Frank; Katona, Kyle; Sunday, Suzanne; Chaudhry, Saima
2014-01-01
As graduate medical education (GME) moves into the Next Accreditation System (NAS), programs must take a critical look at their current models of evaluation and assess how well they align with reporting outcomes. Our objective was to assess the impact on house staff evaluation scores when transitioning from a Dreyfus-based model of evaluation to a Milestone-based model of evaluation. Milestones are a key component of the NAS. We analyzed all end of rotation evaluations of house staff completed by faculty for academic years 2010-2011 (pre-Dreyfus model) and 2011-2012 (post-Milestone model) in one large university-based internal medicine residency training program. Main measures included change in PGY-level average score; slope, range, and separation of average scores across all six Accreditation Council for Graduate Medical Education (ACGME) competencies. Transitioning from a Dreyfus-based model to a Milestone-based model resulted in a larger separation in the scores between our three post-graduate year classes, a steeper progression of scores in the PGY-1 class, a wider use of the 5-point scale on our global end of rotation evaluation form, and a downward shift in the PGY-1 scores and an upward shift in the PGY-3 scores. For faculty trained in both models of assessment, the Milestone-based model had greater discriminatory ability as evidenced by the larger separation in the scores for all the classes, in particular the PGY-1 class.
An accurate nonlinear stochastic model for MEMS-based inertial sensor error with wavelet networks
NASA Astrophysics Data System (ADS)
El-Diasty, Mohammed; El-Rabbany, Ahmed; Pagiatakis, Spiros
2007-12-01
The integration of Global Positioning System (GPS) with Inertial Navigation System (INS) has been widely used in many applications for positioning and orientation purposes. Traditionally, random walk (RW), Gauss-Markov (GM), and autoregressive (AR) processes have been used to develop the stochastic model in classical Kalman filters. The main disadvantage of classical Kalman filter is the potentially unstable linearization of the nonlinear dynamic system. Consequently, a nonlinear stochastic model is not optimal in derivative-based filters due to the expected linearization error. With a derivativeless-based filter such as the unscented Kalman filter or the divided difference filter, the filtering process of a complicated highly nonlinear dynamic system is possible without linearization error. This paper develops a novel nonlinear stochastic model for inertial sensor error using a wavelet network (WN). A wavelet network is a highly nonlinear model, which has recently been introduced as a powerful tool for modelling and prediction. Static and kinematic data sets are collected using a MEMS-based IMU (DQI-100) to develop the stochastic model in the static mode and then implement it in the kinematic mode. The derivativeless-based filtering method using GM, AR, and the proposed WN-based processes are used to validate the new model. It is shown that the first-order WN-based nonlinear stochastic model gives superior positioning results to the first-order GM and AR models with an overall improvement of 30% when 30 and 60 seconds GPS outages are introduced.
NASA Astrophysics Data System (ADS)
Kagan, David
2013-05-01
Few plays in baseball are as consistently close and exciting as the stolen base. While there are several studies of sprinting,2-4 the art of base stealing is much more nuanced. This article describes the motion of the base-stealing runner using a very basic kinematic model. The model will be compared to some data from a Major League game. The predictions of the model show consistency with the skills needed for effective base stealing.
Apostolopoulos, Yorghos; Lemke, Michael K; Barry, Adam E; Lich, Kristen Hassmiller
2018-02-01
Given the complexity of factors contributing to alcohol misuse, appropriate epistemologies and methodologies are needed to understand and intervene meaningfully. We aimed to (1) provide an overview of computational modeling methodologies, with an emphasis on system dynamics modeling; (2) explain how community-based system dynamics modeling can forge new directions in alcohol prevention research; and (3) present a primer on how to build alcohol misuse simulation models using system dynamics modeling, with an emphasis on stakeholder involvement, data sources and model validation. Throughout, we use alcohol misuse among college students in the United States as a heuristic example for demonstrating these methodologies. System dynamics modeling employs a top-down aggregate approach to understanding dynamically complex problems. Its three foundational properties-stocks, flows and feedbacks-capture non-linearity, time-delayed effects and other system characteristics. As a methodological choice, system dynamics modeling is amenable to participatory approaches; in particular, community-based system dynamics modeling has been used to build impactful models for addressing dynamically complex problems. The process of community-based system dynamics modeling consists of numerous stages: (1) creating model boundary charts, behavior-over-time-graphs and preliminary system dynamics models using group model-building techniques; (2) model formulation; (3) model calibration; (4) model testing and validation; and (5) model simulation using learning-laboratory techniques. Community-based system dynamics modeling can provide powerful tools for policy and intervention decisions that can result ultimately in sustainable changes in research and action in alcohol misuse prevention. © 2017 Society for the Study of Addiction.
Mathematical modeling and characteristic analysis for over-under turbine based combined cycle engine
NASA Astrophysics Data System (ADS)
Ma, Jingxue; Chang, Juntao; Ma, Jicheng; Bao, Wen; Yu, Daren
2018-07-01
The turbine based combined cycle engine has become the most promising hypersonic airbreathing propulsion system for its superiority of ground self-starting, wide flight envelop and reusability. The simulation model of the turbine based combined cycle engine plays an important role in the research of performance analysis and control system design. In this paper, a turbine based combined cycle engine mathematical model is built on the Simulink platform, including a dual-channel air intake system, a turbojet engine and a ramjet. It should be noted that the model of the air intake system is built based on computational fluid dynamics calculation, which provides valuable raw data for modeling of the turbine based combined cycle engine. The aerodynamic characteristics of turbine based combined cycle engine in turbojet mode, ramjet mode and mode transition process are studied by the mathematical model, and the influence of dominant variables on performance and safety of the turbine based combined cycle engine is analyzed. According to the stability requirement of thrust output and the safety in the working process of turbine based combined cycle engine, a control law is proposed that could guarantee the steady output of thrust by controlling the control variables of the turbine based combined cycle engine in the whole working process.
ERIC Educational Resources Information Center
Wu, Jiun-Yu; Kwok, Oi-man
2012-01-01
Both ad-hoc robust sandwich standard error estimators (design-based approach) and multilevel analysis (model-based approach) are commonly used for analyzing complex survey data with nonindependent observations. Although these 2 approaches perform equally well on analyzing complex survey data with equal between- and within-level model structures…
ERIC Educational Resources Information Center
Murphy, Gregory J.
2012-01-01
This quantitative study explores the 2010 recommendation of the Educational Funding Advisory Board to consider the Evidence-Based Adequacy model of school funding in Illinois. This school funding model identifies and costs research based practices necessary in a prototypical school and sets funding levels based upon those practices. This study…
ERIC Educational Resources Information Center
Moallem, Mahnaz
2001-01-01
Provides an overview of the process of designing and developing a Web-based course using instructional design principles and models, including constructivist and objectivist theories. Explains the process of implementing an instructional design model in designing a Web-based undergraduate course and evaluates the model based on course evaluations.…
The Effect of Modeling Based Science Education on Critical Thinking
ERIC Educational Resources Information Center
Bati, Kaan; Kaptan, Fitnat
2015-01-01
In this study to what degree the modeling based science education can influence the development of the critical thinking skills of the students was investigated. The research was based on pre-test-post-test quasi-experimental design with control group. The Modeling Based Science Education Program which was prepared with the purpose of exploring…
ERIC Educational Resources Information Center
Konert, Johannes; Gutjahr, Michael; Göbel, Stefan; Steinmetz, Ralf
2014-01-01
For adaptation and personalization of game play sophisticated player models and learner models are used in game-based learning environments. Thus, the game flow can be optimized to increase efficiency and effectiveness of gaming and learning in parallel. In the field of gaming still the Bartle model is commonly used due to its simplicity and good…
ERIC Educational Resources Information Center
Thompson, Kate; Reimann, Peter
2010-01-01
A classification system that was developed for the use of agent-based models was applied to strategies used by school-aged students to interrogate an agent-based model and a system dynamics model. These were compared, and relationships between learning outcomes and the strategies used were also analysed. It was found that the classification system…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Chen; Gupta, Vipul; Huang, Shenyan
The goal of this project is to model long-term creep performance for nickel-base superalloy weldments in high temperature power generation systems. The project uses physics-based modeling methodologies and algorithms for predicting alloy properties in heterogeneous material structures. The modeling methodology will be demonstrated on a gas turbine combustor liner weldment of Haynes 282 precipitate-strengthened nickel-base superalloy. The major developments are: (1) microstructure-property relationships under creep conditions and microstructure characterization (2) modeling inhomogeneous microstructure in superalloy weld (3) modeling mesoscale plastic deformation in superalloy weld and (4) a constitutive creep model that accounts for weld and base metal microstructure and theirmore » long term evolution. The developed modeling technology is aimed to provide a more efficient and accurate assessment of a material’s long-term performance compared with current testing and extrapolation methods. This modeling technology will also accelerate development and qualification of new materials in advanced power generation systems. This document is a final technical report for the project, covering efforts conducted from October 2014 to December 2016.« less
Copula based prediction models: an application to an aortic regurgitation study
Kumar, Pranesh; Shoukri, Mohamed M
2007-01-01
Background: An important issue in prediction modeling of multivariate data is the measure of dependence structure. The use of Pearson's correlation as a dependence measure has several pitfalls and hence application of regression prediction models based on this correlation may not be an appropriate methodology. As an alternative, a copula based methodology for prediction modeling and an algorithm to simulate data are proposed. Methods: The method consists of introducing copulas as an alternative to the correlation coefficient commonly used as a measure of dependence. An algorithm based on the marginal distributions of random variables is applied to construct the Archimedean copulas. Monte Carlo simulations are carried out to replicate datasets, estimate prediction model parameters and validate them using Lin's concordance measure. Results: We have carried out a correlation-based regression analysis on data from 20 patients aged 17–82 years on pre-operative and post-operative ejection fractions after surgery and estimated the prediction model: Post-operative ejection fraction = - 0.0658 + 0.8403 (Pre-operative ejection fraction); p = 0.0008; 95% confidence interval of the slope coefficient (0.3998, 1.2808). From the exploratory data analysis, it is noted that both the pre-operative and post-operative ejection fractions measurements have slight departures from symmetry and are skewed to the left. It is also noted that the measurements tend to be widely spread and have shorter tails compared to normal distribution. Therefore predictions made from the correlation-based model corresponding to the pre-operative ejection fraction measurements in the lower range may not be accurate. Further it is found that the best approximated marginal distributions of pre-operative and post-operative ejection fractions (using q-q plots) are gamma distributions. The copula based prediction model is estimated as: Post -operative ejection fraction = - 0.0933 + 0.8907 × (Pre-operative ejection fraction); p = 0.00008 ; 95% confidence interval for slope coefficient (0.4810, 1.3003). For both models differences in the predicted post-operative ejection fractions in the lower range of pre-operative ejection measurements are considerably different and prediction errors due to copula model are smaller. To validate the copula methodology we have re-sampled with replacement fifty independent bootstrap samples and have estimated concordance statistics 0.7722 (p = 0.0224) for the copula model and 0.7237 (p = 0.0604) for the correlation model. The predicted and observed measurements are concordant for both models. The estimates of accuracy components are 0.9233 and 0.8654 for copula and correlation models respectively. Conclusion: Copula-based prediction modeling is demonstrated to be an appropriate alternative to the conventional correlation-based prediction modeling since the correlation-based prediction models are not appropriate to model the dependence in populations with asymmetrical tails. Proposed copula-based prediction model has been validated using the independent bootstrap samples. PMID:17573974
Mathematical models of behavior of individual animals.
Tsibulsky, Vladimir L; Norman, Andrew B
2007-01-01
This review is focused on mathematical modeling of behaviors of a whole organism with special emphasis on models with a clearly scientific approach to the problem that helps to understand the mechanisms underlying behavior. The aim is to provide an overview of old and contemporary mathematical models without complex mathematical details. Only deterministic and stochastic, but not statistical models are reviewed. All mathematical models of behavior can be divided into two main classes. First, models that are based on the principle of teleological determinism assume that subjects choose the behavior that will lead them to a better payoff in the future. Examples are game theories and operant behavior models both of which are based on the matching law. The second class of models are based on the principle of causal determinism, which assume that subjects do not choose from a set of possibilities but rather are compelled to perform a predetermined behavior in response to specific stimuli. Examples are perception and discrimination models, drug effects models and individual-based population models. A brief overview of the utility of each mathematical model is provided for each section.
Surrogate Based Uni/Multi-Objective Optimization and Distribution Estimation Methods
NASA Astrophysics Data System (ADS)
Gong, W.; Duan, Q.; Huo, X.
2017-12-01
Parameter calibration has been demonstrated as an effective way to improve the performance of dynamic models, such as hydrological models, land surface models, weather and climate models etc. Traditional optimization algorithms usually cost a huge number of model evaluations, making dynamic model calibration very difficult, or even computationally prohibitive. With the help of a serious of recently developed adaptive surrogate-modelling based optimization methods: uni-objective optimization method ASMO, multi-objective optimization method MO-ASMO, and probability distribution estimation method ASMO-PODE, the number of model evaluations can be significantly reduced to several hundreds, making it possible to calibrate very expensive dynamic models, such as regional high resolution land surface models, weather forecast models such as WRF, and intermediate complexity earth system models such as LOVECLIM. This presentation provides a brief introduction to the common framework of adaptive surrogate-based optimization algorithms of ASMO, MO-ASMO and ASMO-PODE, a case study of Common Land Model (CoLM) calibration in Heihe river basin in Northwest China, and an outlook of the potential applications of the surrogate-based optimization methods.
Arranging ISO 13606 archetypes into a knowledge base using UML connectors.
Kopanitsa, Georgy
2014-01-01
To enable the efficient reuse of standard based medical data we propose to develop a higher-level information model that will complement the archetype model of ISO 13606. This model will make use of the relationships that are specified in UML to connect medical archetypes into a knowledge base within a repository. UML connectors were analysed for their ability to be applied in the implementation of a higher-level model that will establish relationships between archetypes. An information model was developed using XML Schema notation. The model allows linking different archetypes of one repository into a knowledge base. Presently it supports several relationships and will be advanced in future.
Pattern-oriented modeling of agent-based complex systems: Lessons from ecology
Grimm, Volker; Revilla, Eloy; Berger, Uta; Jeltsch, Florian; Mooij, Wolf M.; Railsback, Steven F.; Thulke, Hans-Hermann; Weiner, Jacob; Wiegand, Thorsten; DeAngelis, Donald L.
2005-01-01
Agent-based complex systems are dynamic networks of many interacting agents; examples include ecosystems, financial markets, and cities. The search for general principles underlying the internal organization of such systems often uses bottom-up simulation models such as cellular automata and agent-based models. No general framework for designing, testing, and analyzing bottom-up models has yet been established, but recent advances in ecological modeling have come together in a general strategy we call pattern-oriented modeling. This strategy provides a unifying framework for decoding the internal organization of agent-based complex systems and may lead toward unifying algorithmic theories of the relation between adaptive behavior and system complexity.
Pattern-Oriented Modeling of Agent-Based Complex Systems: Lessons from Ecology
NASA Astrophysics Data System (ADS)
Grimm, Volker; Revilla, Eloy; Berger, Uta; Jeltsch, Florian; Mooij, Wolf M.; Railsback, Steven F.; Thulke, Hans-Hermann; Weiner, Jacob; Wiegand, Thorsten; DeAngelis, Donald L.
2005-11-01
Agent-based complex systems are dynamic networks of many interacting agents; examples include ecosystems, financial markets, and cities. The search for general principles underlying the internal organization of such systems often uses bottom-up simulation models such as cellular automata and agent-based models. No general framework for designing, testing, and analyzing bottom-up models has yet been established, but recent advances in ecological modeling have come together in a general strategy we call pattern-oriented modeling. This strategy provides a unifying framework for decoding the internal organization of agent-based complex systems and may lead toward unifying algorithmic theories of the relation between adaptive behavior and system complexity.
Evolvable social agents for bacterial systems modeling.
Paton, Ray; Gregory, Richard; Vlachos, Costas; Saunders, Jon; Wu, Henry
2004-09-01
We present two approaches to the individual-based modeling (IbM) of bacterial ecologies and evolution using computational tools. The IbM approach is introduced, and its important complementary role to biosystems modeling is discussed. A fine-grained model of bacterial evolution is then presented that is based on networks of interactivity between computational objects representing genes and proteins. This is followed by a coarser grained agent-based model, which is designed to explore the evolvability of adaptive behavioral strategies in artificial bacteria represented by learning classifier systems. The structure and implementation of the two proposed individual-based bacterial models are discussed, and some results from simulation experiments are presented, illustrating their adaptive properties.
Coffey, Sara; Vanderlip, Erik; Sarvet, Barry
2017-01-01
There is a consistent need for more child and adolescent psychiatrists. Despite increased recruitment of child and adolescent psychiatry trainees, traditional models of care will likely not be able to meet the need of youth with mental illness. Integrated care models focusing on population-based, team-based, measurement-based, and evidenced-based care have been effective in addressing accessibility and quality of care. These integrated models have specific needs regarding health information technology (HIT). HIT has been used in a variety of different ways in several integrated care models. HIT can aid in implementation of these models but is not without its challenges. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Wang, Ten-See
1993-01-01
The objective of this study is to benchmark a four-engine clustered nozzle base flowfield with a computational fluid dynamics (CFD) model. The CFD model is a pressure based, viscous flow formulation. An adaptive upwind scheme is employed for the spatial discretization. The upwind scheme is based on second and fourth order central differencing with adaptive artificial dissipation. Qualitative base flow features such as the reverse jet, wall jet, recompression shock, and plume-plume impingement have been captured. The computed quantitative flow properties such as the radial base pressure distribution, model centerline Mach number and static pressure variation, and base pressure characteristic curve agreed reasonably well with those of the measurement. Parametric study on the effect of grid resolution, turbulence model, inlet boundary condition and difference scheme on convective terms has been performed. The results showed that grid resolution and turbulence model are two primary factors that influence the accuracy of the base flowfield prediction.
Park, Gwansik; Forman, Jason; Kim, Taewung; Panzer, Matthew B; Crandall, Jeff R
2018-02-28
The goal of this study was to explore a framework for developing injury risk functions (IRFs) in a bottom-up approach based on responses of parametrically variable finite element (FE) models representing exemplar populations. First, a parametric femur modeling tool was developed and validated using a subject-specific (SS)-FE modeling approach. Second, principal component analysis and regression were used to identify parametric geometric descriptors of the human femur and the distribution of those factors for 3 target occupant sizes (5th, 50th, and 95th percentile males). Third, distributions of material parameters of cortical bone were obtained from the literature for 3 target occupant ages (25, 50, and 75 years) using regression analysis. A Monte Carlo method was then implemented to generate populations of FE models of the femur for target occupants, using a parametric femur modeling tool. Simulations were conducted with each of these models under 3-point dynamic bending. Finally, model-based IRFs were developed using logistic regression analysis, based on the moment at fracture observed in the FE simulation. In total, 100 femur FE models incorporating the variation in the population of interest were generated, and 500,000 moments at fracture were observed (applying 5,000 ultimate strains for each synthesized 100 femur FE models) for each target occupant characteristics. Using the proposed framework on this study, the model-based IRFs for 3 target male occupant sizes (5th, 50th, and 95th percentiles) and ages (25, 50, and 75 years) were developed. The model-based IRF was located in the 95% confidence interval of the test-based IRF for the range of 15 to 70% injury risks. The 95% confidence interval of the developed IRF was almost in line with the mean curve due to a large number of data points. The framework proposed in this study would be beneficial for developing the IRFs in a bottom-up manner, whose range of variabilities is informed by the population-based FE model responses. Specifically, this method mitigates the uncertainties in applying empirical scaling and may improve IRF fidelity when a limited number of experimental specimens are available.
Creating "Intelligent" Ensemble Averages Using a Process-Based Framework
NASA Astrophysics Data System (ADS)
Baker, Noel; Taylor, Patrick
2014-05-01
The CMIP5 archive contains future climate projections from over 50 models provided by dozens of modeling centers from around the world. Individual model projections, however, are subject to biases created by structural model uncertainties. As a result, ensemble averaging of multiple models is used to add value to individual model projections and construct a consensus projection. Previous reports for the IPCC establish climate change projections based on an equal-weighted average of all model projections. However, individual models reproduce certain climate processes better than other models. Should models be weighted based on performance? Unequal ensemble averages have previously been constructed using a variety of mean state metrics. What metrics are most relevant for constraining future climate projections? This project develops a framework for systematically testing metrics in models to identify optimal metrics for unequal weighting multi-model ensembles. The intention is to produce improved ("intelligent") unequal-weight ensemble averages. A unique aspect of this project is the construction and testing of climate process-based model evaluation metrics. A climate process-based metric is defined as a metric based on the relationship between two physically related climate variables—e.g., outgoing longwave radiation and surface temperature. Several climate process metrics are constructed using high-quality Earth radiation budget data from NASA's Clouds and Earth's Radiant Energy System (CERES) instrument in combination with surface temperature data sets. It is found that regional values of tested quantities can vary significantly when comparing the equal-weighted ensemble average and an ensemble weighted using the process-based metric. Additionally, this study investigates the dependence of the metric weighting scheme on the climate state using a combination of model simulations including a non-forced preindustrial control experiment, historical simulations, and several radiative forcing Representative Concentration Pathway (RCP) scenarios. Ultimately, the goal of the framework is to advise better methods for ensemble averaging models and create better climate predictions.
A performance model for GPUs with caches
Dao, Thanh Tuan; Kim, Jungwon; Seo, Sangmin; ...
2014-06-24
To exploit the abundant computational power of the world's fastest supercomputers, an even workload distribution to the typically heterogeneous compute devices is necessary. While relatively accurate performance models exist for conventional CPUs, accurate performance estimation models for modern GPUs do not exist. This paper presents two accurate models for modern GPUs: a sampling-based linear model, and a model based on machine-learning (ML) techniques which improves the accuracy of the linear model and is applicable to modern GPUs with and without caches. We first construct the sampling-based linear model to predict the runtime of an arbitrary OpenCL kernel. Based on anmore » analysis of NVIDIA GPUs' scheduling policies we determine the earliest sampling points that allow an accurate estimation. The linear model cannot capture well the significant effects that memory coalescing or caching as implemented in modern GPUs have on performance. We therefore propose a model based on ML techniques that takes several compiler-generated statistics about the kernel as well as the GPU's hardware performance counters as additional inputs to obtain a more accurate runtime performance estimation for modern GPUs. We demonstrate the effectiveness and broad applicability of the model by applying it to three different NVIDIA GPU architectures and one AMD GPU architecture. On an extensive set of OpenCL benchmarks, on average, the proposed model estimates the runtime performance with less than 7 percent error for a second-generation GTX 280 with no on-chip caches and less than 5 percent for the Fermi-based GTX 580 with hardware caches. On the Kepler-based GTX 680, the linear model has an error of less than 10 percent. On an AMD GPU architecture, Radeon HD 6970, the model estimates with 8 percent of error rates. As a result, the proposed technique outperforms existing models by a factor of 5 to 6 in terms of accuracy.« less
NASA Astrophysics Data System (ADS)
Huang, Wei; Zhang, Xingnan; Li, Chenming; Wang, Jianying
Management of group decision-making is an important issue in water source management development. In order to overcome the defects in lacking of effective communication and cooperation in the existing decision-making models, this paper proposes a multi-layer dynamic model for coordination in water resource allocation and scheduling based group decision making. By introducing the scheme-recognized cooperative satisfaction index and scheme-adjusted rationality index, the proposed model can solve the problem of poor convergence of multi-round decision-making process in water resource allocation and scheduling. Furthermore, the problem about coordination of limited resources-based group decision-making process can be solved based on the effectiveness of distance-based group of conflict resolution. The simulation results show that the proposed model has better convergence than the existing models.
Modeling and experimental study of resistive switching in vertically aligned carbon nanotubes
NASA Astrophysics Data System (ADS)
Ageev, O. A.; Blinov, Yu F.; Ilina, M. V.; Ilin, O. I.; Smirnov, V. A.
2016-08-01
Model of the resistive switching in vertically aligned carbon nanotube (VA CNT) taking into account the processes of deformation, polarization and piezoelectric charge accumulation have been developed. Origin of hysteresis in VA CNT-based structure is described. Based on modeling results the VACNTs-based structure has been created. The ration resistance of high-resistance to low-resistance states of the VACNTs-based structure amounts 48. The correlation the modeling results with experimental studies is shown. The results can be used in the development nanoelectronics devices based on VA CNTs, including the nonvolatile resistive random-access memory.
Internet-based system for simulation-based medical planning for cardiovascular disease.
Steele, Brooke N; Draney, Mary T; Ku, Joy P; Taylor, Charles A
2003-06-01
Current practice in vascular surgery utilizes only diagnostic and empirical data to plan treatments, which does not enable quantitative a priori prediction of the outcomes of interventions. We have previously described simulation-based medical planning methods to model blood flow in arteries and plan medical treatments based on physiologic models. An important consideration for the design of these patient-specific modeling systems is the accessibility to physicians with modest computational resources. We describe a simulation-based medical planning environment developed for the World Wide Web (WWW) using the Virtual Reality Modeling Language (VRML) and the Java programming language.
Schryver, Jack; Nutaro, James; Shankar, Mallikarjun
2015-10-30
An agent-based simulation model hierarchy emulating disease states and behaviors critical to progression of diabetes type 2 was designed and implemented in the DEVS framework. The models are translations of basic elements of an established system dynamics model of diabetes. In this model hierarchy, which mimics diabetes progression over an aggregated U.S. population, was dis-aggregated and reconstructed bottom-up at the individual (agent) level. Four levels of model complexity were defined in order to systematically evaluate which parameters are needed to mimic outputs of the system dynamics model. Moreover, the four estimated models attempted to replicate stock counts representing disease statesmore » in the system dynamics model, while estimating impacts of an elderliness factor, obesity factor and health-related behavioral parameters. Health-related behavior was modeled as a simple realization of the Theory of Planned Behavior, a joint function of individual attitude and diffusion of social norms that spread over each agent s social network. Although the most complex agent-based simulation model contained 31 adjustable parameters, all models were considerably less complex than the system dynamics model which required numerous time series inputs to make its predictions. In all three elaborations of the baseline model provided significantly improved fits to the output of the system dynamics model. The performances of the baseline agent-based model and its extensions illustrate a promising approach to translate complex system dynamics models into agent-based model alternatives that are both conceptually simpler and capable of capturing main effects of complex local agent-agent interactions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schryver, Jack; Nutaro, James; Shankar, Mallikarjun
An agent-based simulation model hierarchy emulating disease states and behaviors critical to progression of diabetes type 2 was designed and implemented in the DEVS framework. The models are translations of basic elements of an established system dynamics model of diabetes. In this model hierarchy, which mimics diabetes progression over an aggregated U.S. population, was dis-aggregated and reconstructed bottom-up at the individual (agent) level. Four levels of model complexity were defined in order to systematically evaluate which parameters are needed to mimic outputs of the system dynamics model. Moreover, the four estimated models attempted to replicate stock counts representing disease statesmore » in the system dynamics model, while estimating impacts of an elderliness factor, obesity factor and health-related behavioral parameters. Health-related behavior was modeled as a simple realization of the Theory of Planned Behavior, a joint function of individual attitude and diffusion of social norms that spread over each agent s social network. Although the most complex agent-based simulation model contained 31 adjustable parameters, all models were considerably less complex than the system dynamics model which required numerous time series inputs to make its predictions. In all three elaborations of the baseline model provided significantly improved fits to the output of the system dynamics model. The performances of the baseline agent-based model and its extensions illustrate a promising approach to translate complex system dynamics models into agent-based model alternatives that are both conceptually simpler and capable of capturing main effects of complex local agent-agent interactions.« less
Assessment of Energy Efficient and Model Based Control
2017-06-15
ARL-TR-8042 ● JUNE 2017 US Army Research Laboratory Assessment of Energy -Efficient and Model- Based Control by Craig Lennon...originator. ARL-TR-8042 ● JUNE 2017 US Army Research Laboratory Assessment of Energy -Efficient and Model- Based Control by Craig...
The HackensackUMC Value-Based Care Model: Building Essentials for Value-Based Purchasing.
Douglas, Claudia; Aroh, Dianne; Colella, Joan; Quadri, Mohammed
2016-01-01
The Affordable Care Act, 2010, and the subsequent shift from a quantity-focus to a value-centric reimbursement model led our organization to create the HackensackUMC Value-Based Care Model to improve our process capability and performance to meet and sustain the triple aims of value-based purchasing: higher quality, lower cost, and consumer perception. This article describes the basics of our model and illustrates how we used it to reduce the costs of our patient sitter program.
FlyBase portals to human disease research using Drosophila models.
Millburn, Gillian H; Crosby, Madeline A; Gramates, L Sian; Tweedie, Susan
2016-03-01
The use of Drosophila melanogaster as a model for studying human disease is well established, reflected by the steady increase in both the number and proportion of fly papers describing human disease models in recent years. In this article, we highlight recent efforts to improve the availability and accessibility of the disease model information in FlyBase (http://flybase.org), the model organism database for Drosophila. FlyBase has recently introduced Human Disease Model Reports, each of which presents background information on a specific disease, a tabulation of related disease subtypes, and summaries of experimental data and results using fruit flies. Integrated presentations of relevant data and reagents described in other sections of FlyBase are incorporated into these reports, which are specifically designed to be accessible to non-fly researchers in order to promote collaboration across model organism communities working in translational science. Another key component of disease model information in FlyBase is that data are collected in a consistent format --- using the evolving Disease Ontology (an open-source standardized ontology for human-disease-associated biomedical data) - to allow robust and intuitive searches. To facilitate this, FlyBase has developed a dedicated tool for querying and navigating relevant data, which include mutations that model a disease and any associated interacting modifiers. In this article, we describe how data related to fly models of human disease are presented in individual Gene Reports and in the Human Disease Model Reports. Finally, we discuss search strategies and new query tools that are available to access the disease model data in FlyBase. © 2016. Published by The Company of Biologists Ltd.
Model-Based Economic Evaluation of Treatments for Depression: A Systematic Literature Review.
Kolovos, Spyros; Bosmans, Judith E; Riper, Heleen; Chevreul, Karine; Coupé, Veerle M H; van Tulder, Maurits W
2017-09-01
An increasing number of model-based studies that evaluate the cost effectiveness of treatments for depression are being published. These studies have different characteristics and use different simulation methods. We aimed to systematically review model-based studies evaluating the cost effectiveness of treatments for depression and examine which modelling technique is most appropriate for simulating the natural course of depression. The literature search was conducted in the databases PubMed, EMBASE and PsycInfo between 1 January 2002 and 1 October 2016. Studies were eligible if they used a health economic model with quality-adjusted life-years or disability-adjusted life-years as an outcome measure. Data related to various methodological characteristics were extracted from the included studies. The available modelling techniques were evaluated based on 11 predefined criteria. This methodological review included 41 model-based studies, of which 21 used decision trees (DTs), 15 used cohort-based state-transition Markov models (CMMs), two used individual-based state-transition models (ISMs), and three used discrete-event simulation (DES) models. Just over half of the studies (54%) evaluated antidepressants compared with a control condition. The data sources, time horizons, cycle lengths, perspectives adopted and number of health states/events all varied widely between the included studies. DTs scored positively in four of the 11 criteria, CMMs in five, ISMs in six, and DES models in seven. There were substantial methodological differences between the studies. Since the individual history of each patient is important for the prognosis of depression, DES and ISM simulation methods may be more appropriate than the others for a pragmatic representation of the course of depression. However, direct comparisons between the available modelling techniques are necessary to yield firm conclusions.
Wagner, Maximilian E H; Gellrich, Nils-Claudius; Friese, Karl-Ingo; Becker, Matthias; Wolter, Franz-Erich; Lichtenstein, Juergen T; Stoetzer, Marcus; Rana, Majeed; Essig, Harald
2016-01-01
Objective determination of the orbital volume is important in the diagnostic process and in evaluating the efficacy of medical and/or surgical treatment of orbital diseases. Tools designed to measure orbital volume with computed tomography (CT) often cannot be used with cone beam CT (CBCT) because of inferior tissue representation, although CBCT has the benefit of greater availability and lower patient radiation exposure. Therefore, a model-based segmentation technique is presented as a new method for measuring orbital volume and compared to alternative techniques. Both eyes from thirty subjects with no known orbital pathology who had undergone CBCT as a part of routine care were evaluated (n = 60 eyes). Orbital volume was measured with manual, atlas-based, and model-based segmentation methods. Volume measurements, volume determination time, and usability were compared between the three methods. Differences in means were tested for statistical significance using two-tailed Student's t tests. Neither atlas-based (26.63 ± 3.15 mm(3)) nor model-based (26.87 ± 2.99 mm(3)) measurements were significantly different from manual volume measurements (26.65 ± 4.0 mm(3)). However, the time required to determine orbital volume was significantly longer for manual measurements (10.24 ± 1.21 min) than for atlas-based (6.96 ± 2.62 min, p < 0.001) or model-based (5.73 ± 1.12 min, p < 0.001) measurements. All three orbital volume measurement methods examined can accurately measure orbital volume, although atlas-based and model-based methods seem to be more user-friendly and less time-consuming. The new model-based technique achieves fully automated segmentation results, whereas all atlas-based segmentations at least required manipulations to the anterior closing. Additionally, model-based segmentation can provide reliable orbital volume measurements when CT image quality is poor.
ERIC Educational Resources Information Center
Güyer, Tolga; Aydogdu, Seyhmus
2016-01-01
This study suggests a classification model and an e-learning system based on this model for all instructional theories, approaches, models, strategies, methods, and technics being used in the process of instructional design that constitutes a direct or indirect resource for educational technology based on the theory of intuitionistic fuzzy sets…
The Application of FIA-based Data to Wildlife Habitat Modeling: A Comparative Study
Thomas C., Jr. Edwards; Gretchen G. Moisen; Tracey S. Frescino; Randall J. Schultz
2005-01-01
We evaluated the capability of two types of models, one based on spatially explicit variables derived from FIA data and one using so-called traditional habitat evaluation methods, for predicting the presence of cavity-nesting bird habitat in Fishlake National Forest, Utah. Both models performed equally well, in measures of predictive accuracy, with the FIA-based model...
Continuum Fatigue Damage Modeling for Use in Life Extending Control
NASA Technical Reports Server (NTRS)
Lorenzo, Carl F.
1994-01-01
This paper develops a simplified continuum (continuous wrp to time, stress, etc.) fatigue damage model for use in Life Extending Controls (LEC) studies. The work is based on zero mean stress local strain cyclic damage modeling. New nonlinear explicit equation forms of cyclic damage in terms of stress amplitude are derived to facilitate the continuum modeling. Stress based continuum models are derived. Extension to plastic strain-strain rate models are also presented. Application of these models to LEC applications is considered. Progress toward a nonzero mean stress based continuum model is presented. Also, new nonlinear explicit equation forms in terms of stress amplitude are also derived for this case.
Vehicle-specific emissions modeling based upon on-road measurements.
Frey, H Christopher; Zhang, Kaishan; Rouphail, Nagui M
2010-05-01
Vehicle-specific microscale fuel use and emissions rate models are developed based upon real-world hot-stabilized tailpipe measurements made using a portable emissions measurement system. Consecutive averaging periods of one to three multiples of the response time are used to compare two semiempirical physically based modeling schemes. One scheme is based on internally observable variables (IOVs), such as engine speed and manifold absolute pressure, while the other is based on externally observable variables (EOVs), such as speed, acceleration, and road grade. For NO, HC, and CO emission rates, the average R(2) ranged from 0.41 to 0.66 for the former and from 0.17 to 0.30 for the latter. The EOV models have R(2) for CO(2) of 0.43 to 0.79 versus 0.99 for the IOV models. The models are sensitive to episodic events in driving cycles such as high acceleration. Intervehicle and fleet average modeling approaches are compared; the former account for microscale variations that might be useful for some types of assessments. EOV-based models have practical value for traffic management or simulation applications since IOVs usually are not available or not used for emission estimation.
The effects of geometric uncertainties on computational modelling of knee biomechanics
Fisher, John; Wilcox, Ruth
2017-01-01
The geometry of the articular components of the knee is an important factor in predicting joint mechanics in computational models. There are a number of uncertainties in the definition of the geometry of cartilage and meniscus, and evaluating the effects of these uncertainties is fundamental to understanding the level of reliability of the models. In this study, the sensitivity of knee mechanics to geometric uncertainties was investigated by comparing polynomial-based and image-based knee models and varying the size of meniscus. The results suggested that the geometric uncertainties in cartilage and meniscus resulting from the resolution of MRI and the accuracy of segmentation caused considerable effects on the predicted knee mechanics. Moreover, even if the mathematical geometric descriptors can be very close to the imaged-based articular surfaces, the detailed contact pressure distribution produced by the mathematical geometric descriptors was not the same as that of the image-based model. However, the trends predicted by the models based on mathematical geometric descriptors were similar to those of the imaged-based models. PMID:28879008
A Copula-Based Conditional Probabilistic Forecast Model for Wind Power Ramps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodge, Brian S; Krishnan, Venkat K; Zhang, Jie
Efficient management of wind ramping characteristics can significantly reduce wind integration costs for balancing authorities. By considering the stochastic dependence of wind power ramp (WPR) features, this paper develops a conditional probabilistic wind power ramp forecast (cp-WPRF) model based on Copula theory. The WPRs dataset is constructed by extracting ramps from a large dataset of historical wind power. Each WPR feature (e.g., rate, magnitude, duration, and start-time) is separately forecasted by considering the coupling effects among different ramp features. To accurately model the marginal distributions with a copula, a Gaussian mixture model (GMM) is adopted to characterize the WPR uncertaintymore » and features. The Canonical Maximum Likelihood (CML) method is used to estimate parameters of the multivariable copula. The optimal copula model is chosen based on the Bayesian information criterion (BIC) from each copula family. Finally, the best conditions based cp-WPRF model is determined by predictive interval (PI) based evaluation metrics. Numerical simulations on publicly available wind power data show that the developed copula-based cp-WPRF model can predict WPRs with a high level of reliability and sharpness.« less
NASA Astrophysics Data System (ADS)
Fasni, Nurli; Fatimah, Siti; Yulanda, Syerli
2017-05-01
This research aims to achieve some purposes such as: to know whether mathematical problem solving ability of students who have learned mathematics using Multiple Intelligences based teaching model is higher than the student who have learned mathematics using cooperative learning; to know the improvement of the mathematical problem solving ability of the student who have learned mathematics using Multiple Intelligences based teaching model., to know the improvement of the mathematical problem solving ability of the student who have learned mathematics using cooperative learning; to know the attitude of the students to Multiple Intelligences based teaching model. The method employed here is quasi-experiment which is controlled by pre-test and post-test. The population of this research is all of VII grade in SMP Negeri 14 Bandung even-term 2013/2014, later on two classes of it were taken for the samples of this research. A class was taught using Multiple Intelligences based teaching model and the other one was taught using cooperative learning. The data of this research were gotten from the test in mathematical problem solving, scale questionnaire of the student attitudes, and observation. The results show the mathematical problem solving of the students who have learned mathematics using Multiple Intelligences based teaching model learning is higher than the student who have learned mathematics using cooperative learning, the mathematical problem solving ability of the student who have learned mathematics using cooperative learning and Multiple Intelligences based teaching model are in intermediate level, and the students showed the positive attitude in learning mathematics using Multiple Intelligences based teaching model. As for the recommendation for next author, Multiple Intelligences based teaching model can be tested on other subject and other ability.