Sample records for qtd ii flight

  1. Screening of Potential Landing Gear Noise Control Devices at Virginia Tech For QTD II Flight Test

    NASA Technical Reports Server (NTRS)

    Ravetta, Patricio A.; Burdisso, Ricardo A.; Ng, Wing F.; Khorrami, Mehdi R.; Stoker, Robert W.

    2007-01-01

    In support of the QTD II (Quiet Technology Demonstrator) program, aeroacoustic measurements of a 26%-scale, Boeing 777 main landing gear model were conducted in the Virginia Tech Stability Tunnel. The objective of these measurements was to perform risk mitigation studies on noise control devices for a flight test performed at Glasgow, Montana in 2005. The noise control devices were designed to target the primary main gear noise sources as observed in several previous tests. To accomplish this task, devices to reduce noise were built using stereo lithography for landing gear components such as the brakes, the forward cable harness, the shock strut, the door/strut gap and the lower truck. The most promising device was down selected from test results. In subsequent stages, the initial design of the selected lower truck fairing was improved to account for all the implementation constraints encountered in the full-scale airplane. The redesigned truck fairing was then retested to assess the impact of the modifications on the noise reduction potential. From extensive acoustic measurements obtained using a 63-element microphone phased array, acoustic source maps and integrated spectra were generated in order to estimate the noise reduction achievable with each device.

  2. Airframe Noise Results from the QTD II Flight Test Program

    NASA Technical Reports Server (NTRS)

    Elkoby, Ronen; Brusniak, Leon; Stoker, Robert W.; Khorrami, Mehdi R.; Abeysinghe, Amal; Moe, Jefferey W.

    2007-01-01

    With continued growth in air travel, sensitivity to community noise intensifies and materializes in the form of increased monitoring, regulations, and restrictions. Accordingly, realization of quieter aircraft is imperative, albeit only achievable with reduction of both engine and airframe components of total aircraft noise. Model-scale airframe noise testing has aided in this pursuit; however, the results are somewhat limited due to lack of fidelity of model hardware, particularly in simulating full-scale landing gear. Moreover, simulation of true in-flight conditions is non-trivial if not infeasible. This paper reports on an investigation of full-scale landing gear noise measured as part of the 2005 Quiet Technology Demonstrator 2 (QTD2) flight test program. Conventional Boeing 777-300ER main landing gear were tested, along with two noise reduction concepts, namely a toboggan fairing and gear alignment with the local flow, both of which were down-selected from various other noise reduction devices evaluated in model-scale testing at Virginia Tech. The full-scale toboggan fairings were designed by Goodrich Aerostructures as add-on devices allowing for complete retraction of the main gear. The baseline-conventional gear, faired gear, and aligned gear were all evaluated with the high-lift system in the retracted position and deployed at various flap settings, all at engine idle power setting. Measurements were taken with flyover community noise microphones and a large aperture acoustic phased array, yielding far-field spectra, and localized sources (beamform maps). The results were utilized to evaluate qualitatively and quantitatively the merit of each noise reduction concept. Complete similarity between model-scale and full-scale noise reduction levels was not found and requires further investigation. Far-field spectra exhibited no noise reduction for both concepts across all angles and frequencies. Phased array beamform maps show inconclusive evidence of noise

  3. IRVE-II Post-Flight Trajectory Reconstruction

    NASA Technical Reports Server (NTRS)

    O'Keefe, Stephen A.; Bose, David M.

    2010-01-01

    NASA s Inflatable Re-entry Vehicle Experiment (IRVE) II successfully demonstrated an inflatable aerodynamic decelerator after being launched aboard a sounding rocket from Wallops Flight Facility (WFF). Preliminary day of flight data compared well with pre-flight Monte Carlo analysis, and a more complete trajectory reconstruction performed with an Extended Kalman Filter (EKF) approach followed. The reconstructed trajectory and comparisons to an attitude solution provided by NASA Sounding Rocket Operations Contract (NSROC) personnel at WFF are presented. Additional comparisons are made between the reconstructed trajectory and pre and post-flight Monte Carlo trajectory predictions. Alternative observations of the trajectory are summarized which leverage flight accelerometer measurements, the pre-flight aerodynamic database, and on-board flight video. Finally, analysis of the payload separation and aeroshell deployment events are presented. The flight trajectory is reconstructed to fidelity sufficient to assess overall project objectives related to flight dynamics and overall, IRVE-II flight dynamics are in line with expectations

  4. Impact of Vehicle Flexibility on IRVE-II Flight Dynamics

    NASA Technical Reports Server (NTRS)

    Bose, David M.; Toniolo, Matthew D.; Cheatwood, F. M.; Hughes, Stephen J.; Dillman, Robert A.

    2011-01-01

    The Inflatable Re-entry Vehicle Experiment II (IRVE-II) successfully launched from Wallops Flight Facility (WFF) on August 17, 2009. The primary objectives of this flight test were to demonstrate inflation and re-entry survivability, assess the thermal and drag performance of the reentry vehicle, and to collect flight data for refining pre-flight design and analysis tools. Post-flight analysis including trajectory reconstruction outlined in O Keefe3 demonstrated that the IRVE-II Research Vehicle (RV) met mission objectives but also identified a few anomalies of interest to flight dynamics engineers. Most notable of these anomalies was high normal acceleration during the re-entry pressure pulse. Deflection of the inflatable aeroshell during the pressure pulse was evident in flight video and identified as the likely cause of the anomaly. This paper provides a summary of further post-flight analysis with particular attention to the impact of aeroshell flexibility on flight dynamics and the reconciliation of flight performance with pre-flight models. Independent methods for estimating the magnitude of the deflection of the aeroshell experienced on IRVE-II are discussed. The use of the results to refine models for pre-flight prediction of vehicle performance is then described.

  5. SHEFEX II Flight Instrumentation And Preparation Of Post Flight Analysis

    NASA Astrophysics Data System (ADS)

    Thiele, Thomas; Siebe, Frank; Gulhan, Ali

    2011-05-01

    A main disadvantage of modern TPS systems for re- entry vehicles is the expensive manufacturing and maintenance process due to the complex geometry of these blunt nose configurations. To reduce the costs and to improve the aerodynamic performance the German Aerospace Center (DLR) is following a different approach using TPS structures consisting of flat ceramic tiles. To test these new sharp edged TPS structures the SHEFEX I flight experiment was designed and successfully performed by DLR in 2005. To further improve the reliability of the sharp edged TPS design at even higher Mach numbers, a second flight experiment SHEFEX II will be performed in September 2011. In comparison to SHEFEX I the second flight experiment has a fully symmetrical shape and will reach a maximum Mach number of about 11. Furthermore the vehicle has an active steering system using four canards to control the flight attitude during re-entry, e.g. roll angle, angle of attack and sideslip. After a successful flight the evaluation of the flight data will be performed using a combination of numerical and experimental tools. The data will be used for the improvement of the present numerical analysis tools and to get a better understanding of the aerothermal behaviour of sharp TPS structures. This paper presents the flight instrumentation of the SHEFEX II TPS. In addition the concept of the post flight analysis is presented.

  6. Flight performance summary for three NASA Terrier-Malemute II sounding rockets

    NASA Technical Reports Server (NTRS)

    Patterson, R. A.

    1982-01-01

    The subject of this paper is the presentation of flight data for three Terrier-Malemute II sounding rocket vehicles. The Malemute motor was modified by adding insulation and using a propellant that produced less Al2O3 agglomerate in the chamber. This modification, designated Malemute II, reduced the sensitivity of the motor to the roll rate induced motor case burnthrough experienced on some earlier Malemute flights. Two flight tests, including a single stage Malemute II and a Terrier-Malemute II, were made by Sandia to qualify this modification. The three NASA operational flights that are the subject of this paper were made using the modified Malemute II motors.

  7. Theory of Aircraft Flight. Aerospace Education II.

    ERIC Educational Resources Information Center

    Elmer, James D.

    This revised textbook, one in the Aerospace Education II series, provides answers to many questions related to airplanes and properties of air flight. The first chapter provides a description of aerodynamic forces and deals with concepts such as acceleration, velocity, and forces of flight. The second chapter is devoted to the discussion of…

  8. Force Measurement on the GLAST Delta II Flight

    NASA Technical Reports Server (NTRS)

    Gordon, Scott; Kaufman, Daniel

    2009-01-01

    This viewgraph presentation reviews the interface force measurement at spacecraft separation of GLAST Delta II. The contents include: 1) Flight Force Measurement (FFM) Background; 2) Team Members; 3) GLAST Mission Overview; 4) Methodology Development; 5) Ground Test Validation; 6) Flight Data; 7) Coupled Loads Simulation (VCLA & Reconstruction); 8) Basedrive Simulation; 9) Findings; and 10) Summary and Conclusions.

  9. Aviation Pilot Training I & II. Flight Syllabus. Field Review Copy.

    ERIC Educational Resources Information Center

    Upchurch, Richard

    This guide for aviation pilot training I and II begins with a course description, resource information, and a course outline. The syllabus is designed to be used concurrently with the ground school program. A minimum of 29 flights are scheduled with a minimum of 40 hours total flight time. Tasks/competencies are categorized into five concept/duty…

  10. The Bess-Polar II Long Duration Flight Above Antarctica

    NASA Technical Reports Server (NTRS)

    Sasaki, Makoto; Yamamoto, Akira; Yoshimura, Koji; Makida, Yasuhiro; Matsuda, Shinya; Hasegawa, Masaya; Horikoshi, Atsushi; Tanaka, Ken-ichi; Suzuki, Junichi; Nishimura, Jun; hide

    2008-01-01

    The Balloon-borne Experiment with a Superconducting Spectrometer, BESS, has been developed to study elementary particle phenomena in the early universe through measurements of low energy antiprotons to investigate their origin and through a search for antihelium. The BESS collaboration carried out nine northern latitude flights between 1993 and 2002. BESS-Polar is an advanced program of the BESS collaboration to study these topics with much greater precision using long duration flights above Antarctica. The BESS-Polar spectrometer was successfully developed to accumulate much larger numbers of events during long duration flights around the South Pole. Approximately a factor of four reductions in the amount of material in the particle beam enables measurement of much lower energy antiprotons down to 100 MeV (at top of atmosphere). The first BESS-Polar flight (BESS-Polar I) of 8.5 days was carried out above Antarctica in December 2004. recording 900 million cosmic-ray events. The second BESS-Polar flight (BESS-Polar 11) was successfully carried out in the austral summer season of 2007-2008. Based on experience with BESS-Polar I, the spectrometer was improved in performance and achieved long term stability during the flight. A newly constructed magnet with a larger liquid He capacity and improved thermal insulation and an upgraded data storage system with larger capacity of hard disk drives (HDDs) enabled longer observation time. BESS-Polar II was launched on December 22, 2007 from Williams Field, McMurdo Station, in Antarctica. The spectrometer worked properly and observed cosmic rays for about 24.5 days at float altitude, recording 4.6 billion events on the HDDs until the limit of the magnet operation was reached on January 16, 2008. The flight was terminated and the spectrometer was safely landed on the West Antarctic ice sheet (1000 km from the South Pole) on January 21, 2008. Here, the BESS-Polar instrument is discussed, highlighting improvements made for BESS

  11. The NASA F-15 Intelligent Flight Control Systems: Generation II

    NASA Technical Reports Server (NTRS)

    Buschbacher, Mark; Bosworth, John

    2006-01-01

    The Second Generation (Gen II) control system for the F-15 Intelligent Flight Control System (IFCS) program implements direct adaptive neural networks to demonstrate robust tolerance to faults and failures. The direct adaptive tracking controller integrates learning neural networks (NNs) with a dynamic inversion control law. The term direct adaptive is used because the error between the reference model and the aircraft response is being compensated or directly adapted to minimize error without regard to knowing the cause of the error. No parameter estimation is needed for this direct adaptive control system. In the Gen II design, the feedback errors are regulated with a proportional-plus-integral (PI) compensator. This basic compensator is augmented with an online NN that changes the system gains via an error-based adaptation law to improve aircraft performance at all times, including normal flight, system failures, mispredicted behavior, or changes in behavior resulting from damage.

  12. STS-65 Commander Cabana with SAREX-II on Columbia's, OV-102's, flight deck

    NASA Technical Reports Server (NTRS)

    1994-01-01

    STS-65 Commander Robert D. Cabana is seen on the Space Shuttle Columbia's, Orbiter Vehicle (OV) 102's, aft flight deck with the Shuttle Amateur Radio Experiment II (SAREX-II) (configuration C). Cabana is equipped with the SAREX-II headset and holds a cable leading to the 2-h window antenna mounted in forward flight deck window W1 (partially blocked by the seat headrest). SAREX was established by NASA, the American Radio League/Amateur Radio Satellite Corporation and the Johnson Space Center (JSC) Amateur Radio Club to encourage public participation in the space program through a project to demonstrate the effectiveness of conducting short-wave radio transmissions between the Shuttle and ground-based radio operators at low-cost ground stations with amateur and digital techniques. As on several previous missions, SAREX was used on this flight as an educational opportunity for students around the world to learn about space firsthand by speaking directly to astronauts aboard the shuttle.

  13. SHEFEX II - Aerodynamic Re-Entry Controlled Sharp Edge Flight Experiment

    NASA Astrophysics Data System (ADS)

    Longo, J. M. A.; Turner, J.; Weihs, H.

    2009-01-01

    In this paper the basic goals and architecture of the SHEFEX II mission is presented. Also launched by a two staged sounding rocket system SHEFEX II is a consequent next step in technology test and demonstration. Considering all experience and collected flight data obtained during the SHEFEX I Mission, the test vehicle has been re-designed and extended by an active control system, which allows active aerodynamic control during the re-entry phase. Thus, ceramic based aerodynamic control elements like rudders, ailerons and flaps, mechanical actuators and an automatic electronic control unit has been implemented. Special focus is taken on improved GNC Elements. In addition, some other experiments including an actively cooled thermal protection element, advanced sensor equipment, high temperature antenna inserts etc. are part of the SHEFEX II experimental payload. A final 2 stage configuration has been selected considering Brazilian solid rocket boosters derived from the S 40 family. During the experiment phase a maximum entry velocity of Mach around 10 is expected for 50 seconds. Considering these flight conditions, the heat loads are not representative for a RLV re-entry, however, it allows to investigate the principal behaviour of such a facetted ceramic TPS, a sharp leading edge at the canards and fins and all associated gas flow effects and their structural response.

  14. POGO analysis based on N-II/H-I vehicle flight data

    NASA Astrophysics Data System (ADS)

    Mori, Hidehiko

    Three types of longitudinal oscillations Pre-MECO POGO 1, Pre-MECO POGO 2, and MECO POGO have been observed in the launches of N-II/H-I vehicles. A Nyquist plot of a mathematical POGO model is used to examine stability properties of these oscillations. Pre-MECO POGO 1 and MECO POGO are generated in the LOX feed system installed with a accumulator. Flow fluctuation due to the LOX pump vibration is the main exciting factor for the former, the fluctuation of LOX tank bottom pressure for the latter. Pre-MECO POGO 2, excited in the vicinity of open-pipe resonant frequency of fuel suction line, is affected by fuel flow fluctuation. Frequency, longitudinal structural mode shape, and generalized mass related to each POGO are determined from flight data. The POGO model with these parameters is shown to represent the whole POGO features of N-II/H-I along flight time.

  15. 3-D Reconstruction of Macular Type II Cell Innervation Patterns in Space-Flight and Control Rats

    NASA Technical Reports Server (NTRS)

    Ross, Muriel Dorothy; Montgomery, K.; Linton, S.; Cheng, R.; Tomko, David L. (Technical Monitor)

    1995-01-01

    A semiautomated method for reconstructing objects from serial thin sections has been developed in the Biocomputation Center. The method is being used to completely, for the first time, type II hair cells and their innervations. The purposes are to learn more about the fundamental circuitry of the macula on Earth and to determine whether changes in connectivities occur under space flight conditions. Data captured directly from a transmission electron microscope via a video camera are sent to a graphics workstation. There, the digitized micrographs are mosaicked into sections and contours are traced, registered and displayed by semiautomated methods. Current reconstructions are of type II cells from the medial part of rat maculas collected in-flight on the Space Life Sciences-2 mission, 4.5 hrs post-flight, and from a ground control. Results show that typical type II cells receive processes from tip to six nearby calyces or afferents. Nearly all processes are elongated and have bouton-like enlargements; some have numerous vesicles. Multiple (2 to 4) processes from a single calyx to a type II cell are common, and approximately 1/3 of the processes innervale 2 or 3 type II cells or a neighboring cluster. From 2% to 6% of the cells resemble type I cells morphologically but have demi-calyces. Thus far, increments in synaptic number in type II cells of flight rats are prominent along processes that supply two hair cells. It is clear that reconstruction methods provide insights into details of macular circuitry not obtainable by other techniques. The results demonstrate a morphological basis for interactions between adjacent receptive fields through feed back-feed forward connections, and for dynamic alterations in receptive field range and activity during preprocessing of linear acceleratory information by the maculas. The reconstruction method we have developed will find further applications in the study of the details of neuronal architecture of more complex systems, to

  16. Mini-Sniffer II in Flight

    NASA Technical Reports Server (NTRS)

    1976-01-01

    This photograph shows the second Mini-Sniffer undergoing flight testing over Rogers Dry Lake in Edwards, California. This version of the Mini-Sniffer lacked the canard of the original version and had wing tips and tail booms added. The Mini-Sniffer was a remotely controlled, propeller-driven vehicle developed at the NASA Flight Research Center (which became the Dryden Flight Research Center, Edwards, California, in 1976) as a potential platform to sample the upper atmosphere for pollution. The vehicle, flown from 1975 to 1977, was one of the earliest attempts by NASA to develop an aircraft that could sense turbulence and measure natural and human-produced atmospheric pollutants at altitudes above 80,000 feet with a variable-load propeller that was never flight-tested. Three Mini-Sniffer vehicles were built. The number 1 Mini-Sniffer vehicle had swept wings with a span of 18 feet and canards on the nose. It flew 12 flights with the gas-powered engine at low altitudes of around 2,500 feet. The number 1 vehicle was then modified into version number 2 by removing the canards and wing rudders and adding wing tips and tail booms. Twenty flights were made with this version, up to altitudes of 20,000 feet. The number 3 vehicle had a longer fuselage, was lighter in weight, and was powered by the non-air-breathing hydrazine engine designed by NASA's Johnson Space Center in Houston, Texas. This version was designed to fly a 25-pound payload to an altitude of 70,000 feet for one hour or to climb to 90,000 feet and glide back. The number 3 Mini-Sniffer made one flight to 20,000 feet and was not flown again because of a hydrazine leak problem. All three versions used a pusher propeller to free the nose area for an atmospheric-sampling payload. At various times the Mini-Sniffer has been considered for exploration in the carbon dioxide atmosphere of the planet Mars, where the gravity (38 percent of that on Earth) would reduce the horsepower needed for flight.

  17. Flight Attendant Fatigue Recommendation 2: Flight Attendant Work/Rest Patterns, Alertness, and Performance Assessment

    DTIC Science & Technology

    2010-12-01

    Recommendation II: Flight Attendant Work/Rest Patterns, Alertness, and Performance Assessment DOT/FAA/AM-10/22 Office of Aerospace Medicine Washington, DC...Recipient’s Catalog No. DOT/FAA/AM-10/22 4. Title and Subtitle 5. Report Date December 2010 6. Performing Organization Code Flight...Attendant Fatigue Recommendation II: Flight Attendant Work/Rest Patterns, Alertness, and Performance Assessment 7. Author(s) 8. Performing

  18. Relationship between QT Interval Dispersion in acute stroke and stroke prognosis: A Systematic Review

    PubMed Central

    Lederman, Yitzchok S.; Balucani, Clotilde; Lazar, Jason; Steinberg, Leah; Gugger, James; Levine, Steven R.

    2014-01-01

    Background QT dispersion (QTd) has been proposed as an indirect ECG measure of heterogeneity of ventricular repolarization. The predictive value of QTd in acute stroke remains controversial. We aimed to clarify the relationship between QTd and acute stroke and stroke prognosis. Methods A systematic review of the literature was performed using pre-specified medical subjects heading (MeSH) terms, Boolean logic and the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. Eligible studies (a) included ischemic or hemorrhagic stroke and (b) provided QTd measurements. Results Two independent reviewers identified 553 publications. Sixteen articles were included in the final analysis. There were a total of 888 stroke patients: 59% ischemic and 41% hemorrhagic. There was considerable heterogeneity in study design, stroke subtypes, ECG assessment-time, control groups and comparison groups. Nine studies reported a significant association between acute stroke and baseline QTd. Two studies reported that QTd increases are specifically related to hemorrhagic strokes, involvement of the insular cortex, right-side lesions, larger strokes, and increases in 3, 4-dihydroxyphenylethylene glycol in hemorrhagic stroke. Three studies reported QTd to be an independent predictor of stroke mortality. One study each reported increases in QTd in stroke patients who developed ventricular arrhythmias and cardiorespiratory compromise. Conclusions There are few well-designed studies and considerable variability in study design in addressing the significance of QTd in acute stroke. Available data suggest that stroke is likely to be associated with increased QTd. While some evidence suggests a possible prognostic role of QTd in stroke, larger and well-designed studies need to confirm these findings. PMID:25282188

  19. High-Lift Flight Tunnel - Phase II Report. Phase 2 Report

    NASA Technical Reports Server (NTRS)

    Lofftus, David; Lund, Thomas; Rote, Donald; Bushnell, Dennis M. (Technical Monitor)

    2000-01-01

    The High-Lift Flight Tunnel (HiLiFT) concept is a revolutionary approach to aerodynamic ground testing. This concept utilizes magnetic levitation and linear motors to propel an aerodynamic model through a tube containing a quiescent test medium. This medium (nitrogen) is cryogenic and pressurized to achieve full flight Reynolds numbers higher than any existing ground test facility world-wide for the range of 0.05 to 0.50 Mach. The results of the Phase II study provide excellent assurance that the HiLiFT concept will provide a valuable low-speed, high Reynolds number ground test facility. The design studies concluded that the HiLiFT facility is feasible to build and operate and the analytical studies revealed no insurmountable difficulties to realizing a practical high Reynolds number ground test facility. It was determined that a national HiLiFT facility, including development, would cost approximately $400M and could be operational by 2013 if fully funded. Study participants included National Aeronautics and Space Administration Langley Research Center as the Program Manager and MSE Technology Applications, Inc., (MSE) of Butte, Montana as the prime contractor and study integrator. MSE#s subcontractors included the University of Texas at Arlington for aerodynamic analyses and the Argonne National Laboratory for magnetic levitation and linear motor technology support.

  20. Supersonic Flight Dynamics Test 1 - Post-Flight Assessment of Simulation Performance

    NASA Technical Reports Server (NTRS)

    Dutta, Soumyo; Bowes, Angela L.; Striepe, Scott A.; Davis, Jody L.; Queen, Eric M.; Blood, Eric M.; Ivanov, Mark C.

    2015-01-01

    NASA's Low Density Supersonic Decelerator (LDSD) project conducted its first Supersonic Flight Dynamics Test (SFDT-1) on June 28, 2014. Program to Optimize Simulated Trajectories II (POST2) was one of the flight dynamics codes used to simulate and predict the flight performance and Monte Carlo analysis was used to characterize the potential flight conditions experienced by the test vehicle. This paper compares the simulation predictions with the reconstructed trajectory of SFDT-1. Additionally, off-nominal conditions seen during flight are modeled in post-flight simulations to find the primary contributors that reconcile the simulation with flight data. The results of these analyses are beneficial for the pre-flight simulation and targeting of the follow-on SFDT flights currently scheduled for summer 2015.

  1. Theory of Aircraft Flight. Aerospace Education II.

    ERIC Educational Resources Information Center

    Glascoff, W. G., III

    The textbook provides answers to many questions related to airplanes and properties of air flight. The first chapter provides a description of aerodynamic forces and deals with concepts such as acceleration, velocity, and forces of flight. The second chapter is devoted to the discussion of properties of the atmosphere. How different…

  2. 14 CFR 91.1095 - Initial and transition training and checking: Flight instructors (aircraft), flight instructors...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Management § 91.1095 Initial and transition training and checking: Flight instructors (aircraft), flight... instructor certificate— (i) The fundamental principles of the teaching-learning process; (ii) Teaching...

  3. Post-Flight Assessment of Low Density Supersonic Decelerator Flight Dynamics Test 2 Simulation

    NASA Technical Reports Server (NTRS)

    Dutta, Soumyo; Bowes, Angela L.; White, Joseph P.; Striepe, Scott A.; Queen, Eric M.; O'Farrel, Clara; Ivanov, Mark C.

    2016-01-01

    NASA's Low Density Supersonic Decelerator (LDSD) project conducted its second Supersonic Flight Dynamics Test (SFDT-2) on June 8, 2015. The Program to Optimize Simulated Trajectories II (POST2) was one of the flight dynamics tools used to simulate and predict the flight performance and was a major tool used in the post-flight assessment of the flight trajectory. This paper compares the simulation predictions with the reconstructed trajectory. Additionally, off-nominal conditions seen during flight are modeled in the simulation to reconcile the predictions with flight data. These analyses are beneficial to characterize the results of the flight test and to improve the simulation and targeting of the subsequent LDSD flights.

  4. Usefulness of automatic QT dispersion measurement for detecting exercise-induced myocardial ischemia.

    PubMed

    Takase, Bonpei; Masaki, Nobuyuki; Hattori, Hidemi; Ishihara, Masayuki; Kurita, Akira

    2009-06-01

    The electrocardiographic index of QT dispersion (QTd) is related to the occurrence of arrhythmia. In patients with suspected or known coronary artery disease, QTd may be affected by exercise. We investigated whether QTd that is automatically calculated by a newly developed computer system could be used as a marker of exercise-induced myocardial ischemia. The design of this study was prospective and observational. Eighty-three consecutive patients were enrolled in this study. Their QTd was measured at rest and after 3 min of exercise during exercise-stress Thallium-201 scintigraphy and compared with conventional ST-segment changes. The patients were classified into 4 groups (normal group, redistribution group, fixed defect group, redistribution with fixed defect group) based on the result of single photon emission computed tomography. As statistical analysis, one-way ANOVA with post-hoc Scheffe's method, receiver-operating characteristics (ROC) and multiple logistic regression analysis were performed. At rest, QTd was significantly greater (p<0.05) in the fixed defect group (52+/-21 ms) and the redistribution with fixed defect group (53+/-20 ms) than in the normal group (32+/-14 ms) and the redistribution group (31+/-16 ms). However, QTd tended to increase after exercise in the redistribution group, while QTd tended to decrease in the normal group, the fixed defect group, and the redistribution with fixed defect group (QTd after exercise, normal group, 28+/-17 ms, redistribution group, 35+/-19 ms, fixed defect group, 43+/-25 ms, redistribution with fixed defect group, 49+/-27 ms). Exercise significantly increased QTcd (RR interval-corrected QT dispersion) in the redistribution group. The best cut-off values of QTd and QTcd obtained from ROC curves for exercise-induced myocardial ischemia were 41.6 ms and 40.4 ms, respectively (Qtd--AUC 0.68, 95%CI 0.53- 0.83 and QTcd--AUC 0.67, 95%CI 0.55-0.80). Using these values as cut-off ones, QTd, QTcd, and conventional ST

  5. Elevation of QT dispersion after obesity drug sibutramine.

    PubMed

    Yalcin, Ahmet A; Yavuz, Bunyamin; Ertugrul, Derun T; Algul, Beyza; Yilmaz, Hamiyet; Deveci, Onur S; Kucukazman, Metin; Ata, Naim; Demirel, Gokhan; Dal, Kursat; Tutal, Emre

    2010-11-01

    QT dispersion (QTd) is an arrhythmia parameter that can be used to assess homogeneity of cardiac repolarization. An antiobesity drug sibutramine is linked with several cardiovascular adverse events, including arrhythmias. Previous studies showed that sibutramine may prolong the QT interval and may be associated with cardiac arrest. The aim of this study was to evaluate the effect of sibutramine on QTd. The study group consisted of 65 consecutive patients with obesity. All patients were to receive 15 mg of sibutramine once a day in addition to standard care for lifestyle change. Twelve-lead ECG was performed before the onset of the medication and after 16 weeks of treatment. QTd was calculated. Three individuals were withdrawn from the study because of the adverse effects of sibutramine. Sixty-two patients with obesity were recruited into the study. All patients were women (62, 100%). Body weight (106.3 ± 15.0 kg vs. 101.6 ± 16.9 kg, P < 0.001) and low-density lipoprotein cholesterol (128.4 ± 29.7 mg/dl vs. 111.6 ± 24.6 mg/dl, P < 0.001) levels were significantly decreased whereas QTd (46.1 ± 22.6 ms vs. 53.7 ± 16.7 ms, P = 0.026) was significantly increased after 16 weeks of sibutramine treatment. The increase in QTd was not correlated with the decrease in body weight. There was no correlation between QTd and any conditions such as diabetes or hypertension. This study has shown an elevation in QTd, which may lead to cardiac arrhythmias, after sibutramine treatment. Molecular mechanisms may play role in increasing QTd. Further randomized studies are needed to clarify cardiac adverse events of the sibutramine.

  6. NACA: 25 Years of Flight Research

    NASA Image and Video Library

    2018-05-10

    A narrated film documentary of flight tests at the NACA and NASA’s Flight Research Center shows the X-1, D-558-II, X-3, X-4, X-5, and X-15 in flight and on the ground. The story describes what each aircraft contributed to flight’s expansion.

  7. Online Learning Flight Control for Intelligent Flight Control Systems (IFCS)

    NASA Technical Reports Server (NTRS)

    Niewoehner, Kevin R.; Carter, John (Technical Monitor)

    2001-01-01

    The research accomplishments for the cooperative agreement 'Online Learning Flight Control for Intelligent Flight Control Systems (IFCS)' include the following: (1) previous IFC program data collection and analysis; (2) IFC program support site (configured IFC systems support network, configured Tornado/VxWorks OS development system, made Configuration and Documentation Management Systems Internet accessible); (3) Airborne Research Test Systems (ARTS) II Hardware (developed hardware requirements specification, developing environmental testing requirements, hardware design, and hardware design development); (4) ARTS II software development laboratory unit (procurement of lab style hardware, configured lab style hardware, and designed interface module equivalent to ARTS II faceplate); (5) program support documentation (developed software development plan, configuration management plan, and software verification and validation plan); (6) LWR algorithm analysis (performed timing and profiling on algorithm); (7) pre-trained neural network analysis; (8) Dynamic Cell Structures (DCS) Neural Network Analysis (performing timing and profiling on algorithm); and (9) conducted technical interchange and quarterly meetings to define IFC research goals.

  8. Testing the Gossamer Albatross II

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Gossamer Albatross II is seen here during a test flight at NASA's Dryden Flight Research Center, Edwards, California. The original Gossamer Albatross is best known for completing the first completely human powered flight across the English Channel on June 12, 1979. The Albatross II was the backup craft for the Channel flight. It was fitted with a small battery-powered electric motor and flight instruments for the NASA research program in low-speed flight. NASA completed its flight testing of the Gossamer Albatross II and began analysis of the results in April, 1980. During the six week program, 17 actual data gathering flights and 10 other flights were flown here as part of the joint NASA Langley/Dryden flight research program. The lightweight craft, carrying a miniaturized instrumentation system, was flown in three configurations; using human power, with a small electric motor, and towed with the propeller removed. Results from the program contributed to data on the unusual aerodynamic, performance, stability, and control characteristics of large, lightweight aircraft that fly at slow speeds for application to future high altitude aircraft. The Albatross' design and research data contributed to numerous later high altitude projects, including the Pathfinder.

  9. Flight Test of the F/A-18 Active Aeroelastic Wing Airplane

    NASA Technical Reports Server (NTRS)

    Voracek, David

    2007-01-01

    A viewgraph presentation of flight tests performed on the F/A active aeroelastic wing airplane is shown. The topics include: 1) F/A-18 AAW Airplane; 2) F/A-18 AAW Control Surfaces; 3) Flight Test Background; 4) Roll Control Effectiveness Regions; 5) AAW Design Test Points; 6) AAW Phase I Test Maneuvers; 7) OBES Pitch Doublets; 8) OBES Roll Doublets; 9) AAW Aileron Flexibility; 10) Phase I - Lessons Learned; 11) Control Law Development and Verification & Validation Testing; 12) AAW Phase II RFCS Envelopes; 13) AAW 1-g Phase II Flight Test; 14) Region I - Subsonic 1-g Rolls; 15) Region I - Subsonic 1-g 360 Roll; 16) Region II - Supersonic 1-g Rolls; 17) Region II - Supersonic 1-g 360 Roll; 18) Region III - Subsonic 1-g Rolls; 19) Roll Axis HOS/LOS Comparison Region II - Supersonic (open-loop); 20) Roll Axis HOS/LOS Comparison Region II - Supersonic (closed-loop); 21) AAW Phase II Elevated-g Flight Test; 22) Region I - Subsonic 4-g RPO; and 23) Phase II - Lessons Learned

  10. Flight Test of an Intelligent Flight-Control System

    NASA Technical Reports Server (NTRS)

    Davidson, Ron; Bosworth, John T.; Jacobson, Steven R.; Thomson, Michael Pl; Jorgensen, Charles C.

    2003-01-01

    The F-15 Advanced Controls Technology for Integrated Vehicles (ACTIVE) airplane (see figure) was the test bed for a flight test of an intelligent flight control system (IFCS). This IFCS utilizes a neural network to determine critical stability and control derivatives for a control law, the real-time gains of which are computed by an algorithm that solves the Riccati equation. These derivatives are also used to identify the parameters of a dynamic model of the airplane. The model is used in a model-following portion of the control law, in order to provide specific vehicle handling characteristics. The flight test of the IFCS marks the initiation of the Intelligent Flight Control System Advanced Concept Program (IFCS ACP), which is a collaboration between NASA and Boeing Phantom Works. The goals of the IFCS ACP are to (1) develop the concept of a flight-control system that uses neural-network technology to identify aircraft characteristics to provide optimal aircraft performance, (2) develop a self-training neural network to update estimates of aircraft properties in flight, and (3) demonstrate the aforementioned concepts on the F-15 ACTIVE airplane in flight. The activities of the initial IFCS ACP were divided into three Phases, each devoted to the attainment of a different objective. The objective of Phase I was to develop a pre-trained neural network to store and recall the wind-tunnel-based stability and control derivatives of the vehicle. The objective of Phase II was to develop a neural network that can learn how to adjust the stability and control derivatives to account for failures or modeling deficiencies. The objective of Phase III was to develop a flight control system that uses the neural network outputs as a basis for controlling the aircraft. The flight test of the IFCS was performed in stages. In the first stage, the Phase I version of the pre-trained neural network was flown in a passive mode. The neural network software was running using flight data

  11. The C-allele of tissue inhibitor of metalloproteinases 2 is associated with increased magnitude of QT dispersion prolongation in elderly Chinese - 4-year follow-up study.

    PubMed

    Lin, Tsung-Hsien; Chiu, Herng-Chia; Lee, Ya-Ting; Su, Ho-Ming; Juo, Suh-Hang Hank; Voon, Wen-Chol; Lai, Wen-Ter; Sheu, Sheng-Hsiung

    2007-01-01

    Matrix metalloproteinases (MMP) and tissue inhibitor of metalloproteinases (TIMP) trigger the signal cascade instigating cardiac remodeling and fibrosis, which lead to changes of repolarization variables. We investigate the influence of MMP9-1562 C/T and TIMP2-418 G/C gene polymorphisms on repolarization parameters including QT dispersion (QTd) and the peak and the end of the T wave interval (Tpe) in a prospective cohort. Of 1500 people screened, 106 elderly Chinese without organic heart disease were recruited and received electrocardiography at the baseline, second and 4th year follow-ups. The QTc (corrected QT), QTd, QTc dispersion (QTcd) and Tpe were manually calculated. Age was 72.7+/-4.1 y (range 62-81 y). QTd, QTcd and Tpe were significantly prolonged (all p <0.001 at the 2nd and 4th year). At the 4th year the magnitude of QTd prolongation but not Tpe was significantly higher in subjects carrying the TIMP2 C-allele than non C-allele carriers (p=0.033) as well as QTcd (p=0.010). This association was still significant in multivariate analyses (p=0.012 and p=0.003 for QTd and QTcd, respectively) but not in MMP9 genotype. The elderly Chinese with TIMP2 C-allele have higher magnitude of QTd and QTcd prolongation.

  12. Ultraviolet sensor as integrity monitor for enhanced flight vision system (EFVS) approaches to Cat II RVR conditions

    NASA Astrophysics Data System (ADS)

    McKinley, John B.; Pierson, Roger; Ertem, M. C.; Krone, Norris J., Jr.; Cramer, James A.

    2008-04-01

    Flight tests were conducted at Greenbrier Valley Airport (KLWB) and Easton Municipal Airport / Newnam Field (KESN) in a Cessna 402B aircraft using a head-up display (HUD) and a Norris Electro Optical Systems Corporation (NEOC) developmental ultraviolet (UV) sensor. These flights were sponsored by NEOC under a Federal Aviation Administration program, and the ultraviolet concepts, technology, system mechanization, and hardware for landing during low visibility landing conditions have been patented by NEOC. Imagery from the UV sensor, HUD guidance cues, and out-the-window videos were separately recorded at the engineering workstation for each approach. Inertial flight path data were also recorded. Various configurations of portable UV emitters were positioned along the runway edge and threshold. The UV imagery of the runway outline was displayed on the HUD along with guidance generated from the mission computer. Enhanced Flight Vision System (EFVS) approaches with the UV sensor were conducted from the initial approach fix to the ILS decision height in both VMC and IMC. Although the availability of low visibility conditions during the flight test period was limited, results from previous fog range testing concluded that UV EFVS has the performance capability to penetrate CAT II runway visual range obscuration. Furthermore, independent analysis has shown that existing runway light emit sufficient UV radiation without the need for augmentation other than lens replacement with UV transmissive quartz lenses. Consequently, UV sensors should qualify as conforming to FAA requirements for EFVS approaches. Combined with Synthetic Vision System (SVS), UV EFVS would function as both a precision landing aid, as well as an integrity monitor for the GPS and SVS database.

  13. QT interval dispersion in the patients with central serous chorioretinopathy.

    PubMed

    Dagli, Necati; Turgut, Burak; Tanyildizi, Rumeysa; Kobat, Sabiha; Kobat, Mehmet Ali; Dogdu, Orhan

    2015-01-01

    To evaluate QT dispersion (QTD) in patients with central serous chorioretinopathy (CSC). This clinical, comperative, case-control study included 30 patients with CSC at acute phase (Group 1) and 30 age- and sex-matched healthy subjects (Group 2, the control group). From all subjects, a 12-lead surface electrocardiography was obtained. The heart rate (HR), QT maximum (QTmax), QT minimum (QTmin), QT corrected (QTc), QTD and Tmean were manually measured and analyzed. Student's t-test and Pearson's method of correlation were used for statistical analysis. The patient and control groups were matched for age, smoking status (rate and duration) and gender. There were no significant differences with regard to these among the groups (P>0.05). The participants included 19 men (63.3%) and 11 women (36.7%) in Group 1, 20 men (66.7%) and 10 women (33.3%) in Group 2. QTmax, QTD and QTc were significantly higher than those of healthy controls (P<0.001 for QTmax, P=0.01 for QTD and P=0.001 for QTc). QTmin, Tmean and HR did not differ significantly between the study groups (P=0.28 for QTmin, P=0.56 for Tmean and P>0.05 for HR). No significant correlation was found between duration of the disorder and QTD values (r=0.13, P>0.05). These findings suggest that CSC may be associated with an increase in QTD and that the patients might be at risk for ventricular arrhythmia.

  14. Assembling the Gossamer Albatross II in hangar

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Gossamer Albatross II is seen here being assembled in a hangar at the Dryden Flight Research Center, Edwards, California. The original Gossamer Albatross is best known for completing the first completely human powered flight across the English Channel on June 12, 1979. The Albatross II was the backup craft for the Channel flight. The aircraft was fitted with a small battery-powered electric motor and flight instruments for the NASA research program in low-speed flight. NASA completed its flight testing of the Gossamer Albatross II and began analysis of the results in April, 1980. During the six week program, 17 actual data gathering flights and 10 other flights were flown here as part of the joint NASA Langley/Dryden flight research program. The lightweight craft, carrying a miniaturized instrumentation system, was flown in three configurations; using human power, with a small electric motor, and towed with the propeller removed. Results from the program contributed to data on the unusual aerodynamic, performance, stability, and control characteristics of large, lightweight aircraft that fly at slow speeds for application to future high altitude aircraft. The Albatross' design and research data contributed to numerous later high altitude projects, including the Pathfinder.

  15. Nocturnal insects use optic flow for flight control

    PubMed Central

    Baird, Emily; Kreiss, Eva; Wcislo, William; Warrant, Eric; Dacke, Marie

    2011-01-01

    To avoid collisions when navigating through cluttered environments, flying insects must control their flight so that their sensory systems have time to detect obstacles and avoid them. To do this, day-active insects rely primarily on the pattern of apparent motion generated on the retina during flight (optic flow). However, many flying insects are active at night, when obtaining reliable visual information for flight control presents much more of a challenge. To assess whether nocturnal flying insects also rely on optic flow cues to control flight in dim light, we recorded flights of the nocturnal neotropical sweat bee, Megalopta genalis, flying along an experimental tunnel when: (i) the visual texture on each wall generated strong horizontal (front-to-back) optic flow cues, (ii) the texture on only one wall generated these cues, and (iii) horizontal optic flow cues were removed from both walls. We find that Megalopta increase their groundspeed when horizontal motion cues in the tunnel are reduced (conditions (ii) and (iii)). However, differences in the amount of horizontal optic flow on each wall of the tunnel (condition (ii)) do not affect the centred position of the bee within the flight tunnel. To better understand the behavioural response of Megalopta, we repeated the experiments on day-active bumble-bees (Bombus terrestris). Overall, our findings demonstrate that despite the limitations imposed by dim light, Megalopta—like their day-active relatives—rely heavily on vision to control flight, but that they use visual cues in a different manner from diurnal insects. PMID:21307047

  16. Nocturnal insects use optic flow for flight control.

    PubMed

    Baird, Emily; Kreiss, Eva; Wcislo, William; Warrant, Eric; Dacke, Marie

    2011-08-23

    To avoid collisions when navigating through cluttered environments, flying insects must control their flight so that their sensory systems have time to detect obstacles and avoid them. To do this, day-active insects rely primarily on the pattern of apparent motion generated on the retina during flight (optic flow). However, many flying insects are active at night, when obtaining reliable visual information for flight control presents much more of a challenge. To assess whether nocturnal flying insects also rely on optic flow cues to control flight in dim light, we recorded flights of the nocturnal neotropical sweat bee, Megalopta genalis, flying along an experimental tunnel when: (i) the visual texture on each wall generated strong horizontal (front-to-back) optic flow cues, (ii) the texture on only one wall generated these cues, and (iii) horizontal optic flow cues were removed from both walls. We find that Megalopta increase their groundspeed when horizontal motion cues in the tunnel are reduced (conditions (ii) and (iii)). However, differences in the amount of horizontal optic flow on each wall of the tunnel (condition (ii)) do not affect the centred position of the bee within the flight tunnel. To better understand the behavioural response of Megalopta, we repeated the experiments on day-active bumble-bees (Bombus terrestris). Overall, our findings demonstrate that despite the limitations imposed by dim light, Megalopta-like their day-active relatives-rely heavily on vision to control flight, but that they use visual cues in a different manner from diurnal insects. This journal is © 2011 The Royal Society

  17. In-Flight Vibration Environment of the NASA F-15B Flight Test Fixture

    NASA Technical Reports Server (NTRS)

    Corda, Stephen; Franz, Russell J.; Blanton, James N.; Vachon, M. Jake; DeBoer, James B.

    2002-01-01

    Flight vibration data are analyzed for the NASA F-15B/Flight Test Fixture II test bed. Understanding the in-flight vibration environment benefits design and integration of experiments on the test bed. The power spectral density (PSD) of accelerometer flight data is analyzed to quantify the in-flight vibration environment from a frequency of 15 Hz to 1325 Hz. These accelerometer data are analyzed for typical flight conditions and maneuvers. The vibration data are compared to flight-qualification random vibration test standards. The PSD levels in the lateral axis generally are greater than in the longitudinal and vertical axes and decrease with increasing frequency. At frequencies less than approximately 40 Hz, the highest PSD levels occur during takeoff and landing. Peaks in the PSD data for the test fixture occur at approximately 65, 85, 105-110, 200, 500, and 1000 Hz. The pitch-pulse and 2-g turn maneuvers produce PSD peaks at 115 Hz. For cruise conditions, the PSD level of the 85-Hz peak is greatest for transonic flight at Mach 0.9. From 400 Hz to 1325 Hz, the takeoff phase has the highest random vibration levels. The flight-measured vibration levels generally are substantially lower than the random vibration test curve.

  18. QT interval dispersion in the patients with central serous chorioretinopathy

    PubMed Central

    Dagli, Necati; Turgut, Burak; Tanyildizi, Rumeysa; Kobat, Sabiha; Kobat, Mehmet Ali; Dogdu, Orhan

    2015-01-01

    AIM To evaluate QT dispersion (QTD) in patients with central serous chorioretinopathy (CSC). METHODS This clinical, comperative, case-control study included 30 patients with CSC at acute phase (Group 1) and 30 age- and sex-matched healthy subjects (Group 2, the control group). From all subjects, a 12-lead surface electrocardiography was obtained. The heart rate (HR), QT maximum (QTmax), QT minimum (QTmin), QT corrected (QTc), QTD and Tmean were manually measured and analyzed. Student's t-test and Pearson's method of correlation were used for statistical analysis. RESULTS The patient and control groups were matched for age, smoking status (rate and duration) and gender. There were no significant differences with regard to these among the groups (P>0.05). The participants included 19 men (63.3%) and 11 women (36.7%) in Group 1, 20 men (66.7%) and 10 women (33.3%) in Group 2. QTmax, QTD and QTc were significantly higher than those of healthy controls (P<0.001 for QTmax, P=0.01 for QTD and P=0.001 for QTc). QTmin, Tmean and HR did not differ significantly between the study groups (P=0.28 for QTmin, P=0.56 for Tmean and P>0.05 for HR). No significant correlation was found between duration of the disorder and QTD values (r=0.13, P>0.05). CONCLUSION These findings suggest that CSC may be associated with an increase in QTD and that the patients might be at risk for ventricular arrhythmia. PMID:25709909

  19. QT dispersion and rate-corrected QT dispersion during electroconvulsive therapy in elderly patients.

    PubMed

    Yamaguchi, Shigeki; Nagao, Masaru; Ikeda, Tomohisa; Fukagawa, Daigo; Kimura, Yoshiyuki; Kitajima, Toshimitsu; Minami, Junichi

    2011-09-01

    Electroconvulsive therapy (ECT) induces increase of QT dispersion (QTD) and the rate-corrected QTD (QTcD), which are associated with increased risk of ventricular arrhythmias and cardiovascular mortality. The effects of electrical stimulus during ECT on QTD and QTcD in elderly patients are of considerable interest. The purpose of this study was to clarify the differential effects of electrical stimulus caused by ECT on interbeat interval, QT interval, the rate-corrected QT (QTc) interval, QTD, and the QTcD under propofol anesthesia between younger and elderly patients with major depression. Twenty younger psychiatric patients (aged 30-40 years) and 20 elderly patients (aged 65-75 years) scheduled for ECT were studied under propofol anesthesia. A 12-lead electrocardiogram was monitored to measure parameters. Muscle paralysis was achieved by administering 1-mg/kg succinylcholine intravenously, and the efficacy of ECT was determined by the tourniquet technique. The mean arterial pressure in the elderly was significantly higher than that of the younger patients from immediately to 2 minutes after electrical stimulus. The interbeat interval in the elderly was significantly lower than that of the younger patients from immediately to 1 minute after electrical stimulus. There was no statistically significant difference in the QT interval between the groups. The baseline value of QTc interval was higher than the normal limits, and the QTc interval in the elderly was significantly lower than that of the younger patients from immediately to 1 minute after electrical stimulus. The baseline value of QTD was higher than the normal limits, and the QTD in the elderly was significantly higher than that of the younger patients from immediately to 7 minutes after electrical stimulus. The baseline value of QTcD was higher than the normal limits, and the QTcD in the elderly was significantly higher than that of the younger patients from immediately to 7 minutes after electrical

  20. Effect of nicorandil on QT dispersion in patients with stable angina pectoris undergoing elective angioplasty: A triple-blind, randomized, placebo-controlled study

    PubMed Central

    Suleimani, Homa Fal; Eshraghi, Ali; Daloee, Mehdi Hasanzadeh; Hoseini, Sara; Nakhaee, Nima

    2017-01-01

    Background Nicorandil leads to the relaxation of fine vascular smooth muscle, and thus causes vasodilatation of major epicardial. Also, it has anti-arrhythmic and cardio-protective effects by improving reperfusion, and ultimately leads to a reduction in microvascular damage caused by percutaneous coronary intervention (PCI). Objective The aim of this study was to determine the effect of nicorandil on QT interval dispersion (QTd) in patients with stable angina pectoris during elective angioplasty. Methods This triple-blind and randomized clinical trial was performed on patients with stable angina pectoris, candidates for elective angiography referred to Imam Reza and Ghaem hospitals in Mashhad, Iran, between January and October 2016. The patients were randomly assigned to one of two groups receiving nicorandil (60 mg as 20 mg before and 40 mg after PCI) and placebo. All the patients underwent electrocardiography 12 hours before and 12 hours after PCI. The values of maximal corrected QT interval (QTc max) and QTd in these intervals, and the levels of changes in the QTd (QTd difference before angiography and after PCI) were compared between the two groups. Data were analyzed statistically using SPSS version 18 software via Chi-square and Independent-samples t-test. Results This study was performed on 90 patients (55 males and 35 females) with a mean age of 58.6±10.8 years, on two groups of 45 people. The two groups were matched for age, body mass index, cardiovascular risk factors and baseline testing. The QTd before angiography had no statistically significant difference between the patients of both groups (control: 77.7±17.1 vs. nicorandil: 80.7±14.2 ms; p=0.371). The QTd after PCI in the nicorandil group was lower than the control group (48.1±14.2 vs. 59.2±15.6 ms; p=0.000). The decrease rate in QTd had a statistically significant difference between the two groups (control: 18.9±11.0 vs. nicorandil: 33.5±9.5 ms; p=0.000). Conclusions The results of this

  1. 14 CFR 121.424 - Pilots: Initial, transition, and upgrade flight training.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... of being performed in an airplane simulator without a visual system; and (ii) A flight check in the... flight training. 121.424 Section 121.424 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.424 Pilots: Initial, transition, and upgrade flight training. (a) Initial, transition, and upgrade...

  2. 14 CFR 121.424 - Pilots: Initial, transition, and upgrade flight training.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... of being performed in an airplane simulator without a visual system; and (ii) A flight check in the... flight training. 121.424 Section 121.424 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.424 Pilots: Initial, transition, and upgrade flight training. (a) Initial, transition, and upgrade...

  3. 14 CFR 121.424 - Pilots: Initial, transition, and upgrade flight training.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... of being performed in an airplane simulator without a visual system; and (ii) A flight check in the... flight training. 121.424 Section 121.424 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.424 Pilots: Initial, transition, and upgrade flight training. (a) Initial, transition, and upgrade...

  4. 14 CFR 121.424 - Pilots: Initial, transition, and upgrade flight training.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... of being performed in an airplane simulator without a visual system; and (ii) A flight check in the... flight training. 121.424 Section 121.424 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.424 Pilots: Initial, transition, and upgrade flight training. (a) Initial, transition, and upgrade...

  5. DAST in Flight

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The modified BQM-34 Firebee II drone with Aeroelastic Research Wing (ARW-1), a supercritical airfoil, during a 1980 research flight. The remotely-piloted vehicle, which was air launched from NASA's NB-52B mothership, participated in the Drones for Aerodynamic and Structural Testing (DAST) program which ran from 1977 to 1983. The DAST 1 aircraft (Serial #72-1557), pictured, crashed on 12 June 1980 after its right wing ripped off during a test flight near Cuddeback Dry Lake, California. The crash occurred on the modified drone's third free flight. These are the image contact sheets for each image resolution of the NASA Dryden Drones for Aerodynamic and Structural Testing (DAST) Photo Gallery. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and improve airplane efficiency. The DAST Program's drones provided an economical, fuel-conscious method for conducting in-flight experiments from a remote ground site. DAST explored the technology required to build wing structures with less than normal stiffness. This was done because stiffness requires structural weight but ensures freedom from flutter-an uncontrolled, divergent oscillation of

  6. Human factors flight trial analysis for 3D SVS: part II

    NASA Astrophysics Data System (ADS)

    Schiefele, Jens; Howland, Duncan; Maris, John; Pschierer, Christian; Wipplinger, Patrick; Meuter, Michael

    2005-05-01

    This paper describes flight trials performed in Centennial, CO using a Piper Cheyenne owned and operated by Marinvent. The goal of the flight trial was to evaluate the objective performance of pilots using conventional paper charts or a 3D SVS display. Six pilots flew thirty-six approaches to the Colorado Springs airport to accomplish this goal. As dependent variables, positional accuracy and situational awareness probe (SAP) statistics were measured while analysis was conducted by an ANOVA test. In parallel, all pilots answered subjective Cooper-Harper, NASA TLX, situation awareness rating technique (SART), Display Readability Rating, Display Flyability Rating and debriefing questionnaires. Three different settings (paper chart, electronic navigation chart, 3D SVS display) were evaluated in a totally randomized manner. This paper describes the comparison between the conventional paper chart and the 3D SVS display. The 3D SVS primary flight display provides a depiction of primary flight data as well as a 3D depiction of airports, terrain and obstacles. In addition, a 3D dynamic channel visualizing the selected approach procedure can be displayed. The result shows that pilots flying the 3D SVS display perform no worse than pilots with the conventional paper chart. Flight technical error and workload are lower, situational awareness is equivalent with conventional paper charts.

  7. Lessons Learned and Flight Results from the F15 Intelligent Flight Control System Project

    NASA Technical Reports Server (NTRS)

    Bosworth, John

    2006-01-01

    A viewgraph presentation on the lessons learned and flight results from the F15 Intelligent Flight Control System (IFCS) project is shown. The topics include: 1) F-15 IFCS Project Goals; 2) Motivation; 3) IFCS Approach; 4) NASA F-15 #837 Aircraft Description; 5) Flight Envelope; 6) Limited Authority System; 7) NN Floating Limiter; 8) Flight Experiment; 9) Adaptation Goals; 10) Handling Qualities Performance Metric; 11) Project Phases; 12) Indirect Adaptive Control Architecture; 13) Indirect Adaptive Experience and Lessons Learned; 14) Gen II Direct Adaptive Control Architecture; 15) Current Status; 16) Effect of Canard Multiplier; 17) Simulated Canard Failure Stab Open Loop; 18) Canard Multiplier Effect Closed Loop Freq. Resp.; 19) Simulated Canard Failure Stab Open Loop with Adaptation; 20) Canard Multiplier Effect Closed Loop with Adaptation; 21) Gen 2 NN Wts from Simulation; 22) Direct Adaptive Experience and Lessons Learned; and 23) Conclusions

  8. Java-based Graphical User Interface for MAVERIC-II

    NASA Technical Reports Server (NTRS)

    Seo, Suk Jai

    2005-01-01

    A computer program entitled "Marshall Aerospace Vehicle Representation in C II, (MAVERIC-II)" is a vehicle flight simulation program written primarily in the C programming language. It is written by James W. McCarter at NASA/Marshall Space Flight Center. The goal of the MAVERIC-II development effort is to provide a simulation tool that facilitates the rapid development of high-fidelity flight simulations for launch, orbital, and reentry vehicles of any user-defined configuration for all phases of flight. MAVERIC-II has been found invaluable in performing flight simulations for various Space Transportation Systems. The flexibility provided by MAVERIC-II has allowed several different launch vehicles, including the Saturn V, a Space Launch Initiative Two-Stage-to-Orbit concept and a Shuttle-derived launch vehicle, to be simulated during ascent and portions of on-orbit flight in an extremely efficient manner. It was found that MAVERIC-II provided the high fidelity vehicle and flight environment models as well as the program modularity to allow efficient integration, modification and testing of advanced guidance and control algorithms. In addition to serving as an analysis tool for techno logy development, many researchers have found MAVERIC-II to be an efficient, powerful analysis tool that evaluates guidance, navigation, and control designs, vehicle robustness, and requirements. MAVERIC-II is currently designed to execute in a UNIX environment. The input to the program is composed of three segments: 1) the vehicle models such as propulsion, aerodynamics, and guidance, navigation, and control 2) the environment models such as atmosphere and gravity, and 3) a simulation framework which is responsible for executing the vehicle and environment models and propagating the vehicle s states forward in time and handling user input/output. MAVERIC users prepare data files for the above models and run the simulation program. They can see the output on screen and/or store in

  9. Heterogeneity of ventricular repolarization in newborns with intrauterine growth restriction.

    PubMed

    Fouzas, Sotirios; Karatza, Ageliki A; Davlouros, Periklis A; Chrysis, Dionisios; Alexopoulos, Dimitrios; Mantagos, Stefanos; Dimitriou, Gabriel

    2014-12-01

    Intrauterine growth restriction (IUGR) is associated with structural and functional cardiac alterations but the electrophysiological consequences of these disturbances remain unknown. To explore the distribution of ventricular repolarization and its relation to myocardial mechanics in newborns with IUGR. STUDY DESIGN, SUBJECTS AND OUTCOME MEASUREMENTS: Conventional and tissue Doppler echocardiographic data, and electrocardiographic parameters used to describe the distribution of ventricular repolarization (dispersion of QT [QTd] and JT [JTd]), were obtained on the second (D2) and fifth (D5) postnatal day and compared between 25 IUGR newborns and 25 matched-for-gestational age controls. IUGR was associated with relative interventricular septum hypertrophy, increased left ventricular (LV) E/E' ratio and higher LV myocardial performance index (MPI). On both study days, the IUGR infants presented higher QTd and JTd compared to controls (QTd-D2: 66±20 ms vs. 36±12 ms, P<0.001; JTd-D2: 54±13 ms vs. 34±9 ms, P<0.001; QTd-D5: 61±14 ms vs. 27±12 ms, P<0.001; JTd-D5: 54±13 ms vs. 27±9 ms, P<0.001). The association between QTd and LV E/E' (D2: regression coefficient beta 0.747, R(2) 0.585; D5: beta 0.843, R(2) 0.646) and QTd and MPI (D2: beta 0.680, R(2) 0.576; D5: beta 0.698, R(2) 0.650) was also significant (P<0.001 for all analyses). Our findings suggest that IUGR is associated with electrophysiological remodeling of the neonatal heart, a process which is closely related to the underlying alterations in ventricular mechanics and might predispose to adverse electrophysiological events. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Long-term high-intensity interval training associated with lifestyle modifications improves QT dispersion parameters in metabolic syndrome patients.

    PubMed

    Drigny, J; Gremeaux, V; Guiraud, T; Gayda, M; Juneau, M; Nigam, A

    2013-07-01

    QT dispersion (QTd) is a marker of myocardial electrical instability, and is increased in metabolic syndrome (MetS). Moderate intensity continuous exercise (MICE) training was shown to improve QTd in MetS patients. To describe long-term effects of MICE and high-intensity interval exercise training (HIIT) on QTd parameters in MetS. Sixty-five MetS patients (53 ± 9 years) were assigned to either a MICE (60% of peak power output [PPO]), or a HIIT program (alternating phases of 15-30 s at 80% of PPO interspersed by passive recovery phases of equal duration), twice weekly during 9 months. Ventricular repolarization indices (QT dispersion=QTd, standard deviation of QT = sdQT, relative dispersion of QT = rdQT, QT corrected dispersion = QTcd), metabolic, anthropometric and exercise parameters were measured before and after the intervention. No adverse events were noted during exercise. QTd decreased significantly in both groups (51 vs 56 ms in MICE, P < 0.05; 34 vs 38 ms in HIIT, P < 0.05). Changes in QTd were correlated with changes in maximal heart rate (r = -0.69, P < 0.0001) and in heart rate recovery (r = -0.49, P < 0.01) in the HIIT group only. When compared to MICE, HIIT training induced a greater decrease in weight, BMI and waist circumference. Exercise capacity significantly improved by 0.82 and 1.25 METs in MICE and HIIT groups respectively (P < 0.0001). Lipid parameters also improved to the same degree in both groups. In MetS, long-term HIIT and MICE training led to comparable effects on ventricular repolarization indices, and HIIT might be associated with greater improvements in certain cardiometabolic risk factors. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  11. 14 CFR 91.1095 - Initial and transition training and checking: Flight instructors (aircraft), flight instructors...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... methods, procedures, and techniques for conducting flight instruction. (4) Proper evaluation of student... unsatisfactory training progress. (6) The approved methods, procedures, and limitations for performing the... instructor certificate— (i) The fundamental principles of the teaching-learning process; (ii) Teaching...

  12. 14 CFR 91.1095 - Initial and transition training and checking: Flight instructors (aircraft), flight instructors...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... methods, procedures, and techniques for conducting flight instruction. (4) Proper evaluation of student... unsatisfactory training progress. (6) The approved methods, procedures, and limitations for performing the... instructor certificate— (i) The fundamental principles of the teaching-learning process; (ii) Teaching...

  13. 14 CFR 91.1095 - Initial and transition training and checking: Flight instructors (aircraft), flight instructors...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... methods, procedures, and techniques for conducting flight instruction. (4) Proper evaluation of student... unsatisfactory training progress. (6) The approved methods, procedures, and limitations for performing the... instructor certificate— (i) The fundamental principles of the teaching-learning process; (ii) Teaching...

  14. 14 CFR 91.1095 - Initial and transition training and checking: Flight instructors (aircraft), flight instructors...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... methods, procedures, and techniques for conducting flight instruction. (4) Proper evaluation of student... unsatisfactory training progress. (6) The approved methods, procedures, and limitations for performing the... instructor certificate— (i) The fundamental principles of the teaching-learning process; (ii) Teaching...

  15. BASS II

    NASA Image and Video Library

    2014-02-14

    ISS038-E-047576 (14 Feb. 2014) --- NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, works with the Burning and Suppression of Solids (BASS-II) experiment in the Microgravity Science Glovebox (MSG) located in the Destiny laboratory of the International Space Station. BASS-II explores how different substances burn in microgravity with benefits for combustion on Earth and fire safety in space.

  16. BASS II

    NASA Image and Video Library

    2014-02-14

    ISS038-E-047582 (14 Feb. 2014) --- NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, works with the Burning and Suppression of Solids (BASS-II) experiment in the Microgravity Science Glovebox (MSG) located in the Destiny laboratory of the International Space Station. BASS-II explores how different substances burn in microgravity with benefits for combustion on Earth and fire safety in space.

  17. 14 CFR 121.414 - Initial and transition training and checking requirements: flight instructors (airplane), flight...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... teaching-learning process; (ii) Teaching methods and procedures; and (iii) The instructor-student... policies and procedures. (3) The appropriate methods, procedures, and techniques for conducting flight...) The corrective action in the case of unsatisfactory training progress. (6) The approved methods...

  18. 14 CFR 121.414 - Initial and transition training and checking requirements: flight instructors (airplane), flight...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... teaching-learning process; (ii) Teaching methods and procedures; and (iii) The instructor-student... policies and procedures. (3) The appropriate methods, procedures, and techniques for conducting flight...) The corrective action in the case of unsatisfactory training progress. (6) The approved methods...

  19. 14 CFR 121.414 - Initial and transition training and checking requirements: flight instructors (airplane), flight...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... teaching-learning process; (ii) Teaching methods and procedures; and (iii) The instructor-student... policies and procedures. (3) The appropriate methods, procedures, and techniques for conducting flight...) The corrective action in the case of unsatisfactory training progress. (6) The approved methods...

  20. 14 CFR 121.414 - Initial and transition training and checking requirements: flight instructors (airplane), flight...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... teaching-learning process; (ii) Teaching methods and procedures; and (iii) The instructor-student... policies and procedures. (3) The appropriate methods, procedures, and techniques for conducting flight...) The corrective action in the case of unsatisfactory training progress. (6) The approved methods...

  1. QT dispersion increases with low glomerular filtration rate in patients with coronary artery disease

    PubMed Central

    Celik, Murat; Yuksel, UygarCagdas; Gokoglan, Yalcin; Bugan, Baris; Yalcinkaya, Emre; Unal, HilmiUmut; Celik, Turgay; Iyisoy, Atila; Kilic, Selim

    2014-01-01

    Objective: We aimed to evaluate the relationship between estimated glomerular filtration rate (eGFR) and QT dispersion (QTd) in patients with coronary artery disease (CAD). Methods: Sixty patients(mean age 62.72 ± 12.48 years) included 46 male, (mean age 60.89 ± 12.70 years)and 14 female (mean age 68.71± 9.86 years) were enrolled in this study. Patients were divided into 2 groups according to their eGFR using the 6 variable MDRD equation. Group 1 consisted of patients with estimated eGFR<60 ml/min/1.73m2 and Group 2 consisted of patients witheGFR ≥ 60 ml/min/1.73m2. Results: Baseline patient characteristics were homogeneous in both groups except for age, gender and smoking.Also, the extent of CAD was similar in both groups (p > 0.05) QTd values were found higher in group 1 than those of group 2 (57.23 ± 40.65 ms vs. 31.23 ± 14.47 ms, p = 0.002). After adjustment for age, gender and smoking using one-way ANCOVA test, statistically significant difference in QTd still existedbetween the groups (p=0.038). Conclusion:QTd tends to be higher in patients with poor renal function independent of severity of angiographical CAD. QTd may be a potentially useful non-invasive test in the management of patients with poor renal function, especially those with CAD. PMID:24772124

  2. 14 CFR 121.414 - Initial and transition training and checking requirements: flight instructors (airplane), flight...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...-learning process; (ii) Teaching methods and procedures; and (iii) The instructor-student relationship. (d... procedures. (3) The appropriate methods, procedures, and techniques for conducting flight instruction. (4... corrective action in the case of unsatisfactory training progress. (6) The approved methods, procedures, and...

  3. 14 CFR 121.424 - Pilots: Initial, transition, and upgrade flight training.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... initial flight training that are capable of being performed in an airplane simulator without a visual system; and (ii) A flight check in the simulator or the airplane to the level of proficiency of a pilot... training required by § 121.423 must be performed in a Level C or higher full flight simulator unless the...

  4. An Ada Object Oriented Missile Flight Simulation

    DTIC Science & Technology

    1991-09-01

    identify by block number) This thesis uses the Ada programming language in the design and development of an air-to-air missile flight simulation with...object oriented techniques and sound software engineering principles. The simulation is designed to be more understandable, modifiable, efficient and...Department of Computer Science ii ABSTRACT This thesis uses the Ada programming language in the design and development of an air-to-air missile flight

  5. The Impact II, a Very High-Resolution Quadrupole Time-of-Flight Instrument (QTOF) for Deep Shotgun Proteomics*

    PubMed Central

    Beck, Scarlet; Michalski, Annette; Raether, Oliver; Lubeck, Markus; Kaspar, Stephanie; Goedecke, Niels; Baessmann, Carsten; Hornburg, Daniel; Meier, Florian; Paron, Igor; Kulak, Nils A.; Cox, Juergen; Mann, Matthias

    2015-01-01

    Hybrid quadrupole time-of-flight (QTOF) mass spectrometry is one of the two major principles used in proteomics. Although based on simple fundamentals, it has over the last decades greatly evolved in terms of achievable resolution, mass accuracy, and dynamic range. The Bruker impact platform of QTOF instruments takes advantage of these developments and here we develop and evaluate the impact II for shotgun proteomics applications. Adaption of our heated liquid chromatography system achieved very narrow peptide elution peaks. The impact II is equipped with a new collision cell with both axial and radial ion ejection, more than doubling ion extraction at high tandem MS frequencies. The new reflectron and detector improve resolving power compared with the previous model up to 80%, i.e. to 40,000 at m/z 1222. We analyzed the ion current from the inlet capillary and found very high transmission (>80%) up to the collision cell. Simulation and measurement indicated 60% transfer into the flight tube. We adapted MaxQuant for QTOF data, improving absolute average mass deviations to better than 1.45 ppm. More than 4800 proteins can be identified in a single run of HeLa digest in a 90 min gradient. The workflow achieved high technical reproducibility (R2 > 0.99) and accurate fold change determination in spike-in experiments in complex mixtures. Using label-free quantification we rapidly quantified haploid against diploid yeast and characterized overall proteome differences in mouse cell lines originating from different tissues. Finally, after high pH reversed-phase fractionation we identified 9515 proteins in a triplicate measurement of HeLa peptide mixture and 11,257 proteins in single measurements of cerebellum—the highest proteome coverage reported with a QTOF instrument so far. PMID:25991688

  6. Solar-powered Gossamer Penguin in flight

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Gossamer Penguin in flight above Rogers Dry Lakebed at Edwards, California, showing the solar panel perpendicular to the wing and facing the sun. Background The first flight of a solar-powered aircraft took place on November 4, 1974, when the remotely controlled Sunrise II, designed by Robert J. Boucher of AstroFlight, Inc., flew following a launch from a catapult. Following this event, AeroVironment, Inc. (founded in 1971 by the ultra-light airplane innovator--Dr. Paul MacCready) took on a more ambitious project to design a human-piloted, solar-powered aircraft. The firm initially took the human-powered Gossamer Albatross II and scaled it down to three-quarters of its previous size for solar-powered flight with a human pilot controlling it. This was more easily done because in early 1980 the Gossamer Albatross had participated in a flight research program at NASA Dryden in a program conducted jointly by the Langley and Dryden research centers. Some of the flights were conducted using a small electric motor for power. Gossamer Penguin The scaled-down aircraft was designated the Gossamer Penguin. It had a 71-foot wingspan compared with the 96-foot span of the Gossamer Albatross. Weighing only 68 pounds without a pilot, it had a low power requirement and thus was an excellent test bed for solar power. AstroFlight, Inc., of Venice, Calif., provided the power plant for the Gossamer Penguin, an Astro-40 electric motor. Robert Boucher, designer of the Sunrise II, served as a key consultant for both this aircraft and the Solar Challenger. The power source for the initial flights of the Gossamer Penguin consisted of 28 nickel-cadmium batteries, replaced for the solar-powered flights by a panel of 3,920 solar cells capable of producing 541 Watts of power. The battery-powered flights took place at Shafter Airport near Bakersfield, Calif. Dr. Paul MacCready's son Marshall, who was 13 years old and weighed roughly 80 pounds, served as the initial pilot for these flights to

  7. Flight control electronics reliability/maintenance study

    NASA Technical Reports Server (NTRS)

    Dade, W. W.; Edwards, R. H.; Katt, G. T.; Mcclellan, K. L.; Shomber, H. A.

    1977-01-01

    Collection and analysis of data are reported that concern the reliability and maintenance experience of flight control system electronics currently in use on passenger carrying jet aircraft. Two airlines B-747 airplane fleets were analyzed to assess the component reliability, system functional reliability, and achieved availability of the CAT II configuration flight control system. Also assessed were the costs generated by this system in the categories of spare equipment, schedule irregularity, and line and shop maintenance. The results indicate that although there is a marked difference in the geographic location and route pattern between the airlines studied, there is a close similarity in the reliability and the maintenance costs associated with the flight control electronics.

  8. The Route Analysis Based On Flight Plan

    NASA Astrophysics Data System (ADS)

    Feriyanto, Nur; Saleh, Chairul; Fauzi, Achmad; Rachman Dzakiyullah, Nur; Riza Iwaputra, Kahfi

    2016-02-01

    Economic development effects use of air transportation since the business process in every aspect was increased. Many people these days was prefer using airplane because it can save time and money. This situation also effects flight routes, many airlines offer new routes to deal with competition. Managing flight routes is one of the problems that must be faced in order to find the efficient and effective routes. This paper investigates the best routes based on flight performance by determining the amount of block fuel for the Jakarta-Denpasar flight route. Moreover, in this work compares a two kinds of aircraft and tracks by calculating flight distance, flight time and block fuel. The result shows Jakarta-Denpasar in the Track II has effective and efficient block fuel that can be performed by Airbus 320-200 aircraft. This study can contribute to practice in making an effective decision, especially helping executive management of company due to selecting appropriate aircraft and the track in the flight plan based on the block fuel consumption for business operation.

  9. Advanced Smart Structures Flight Experiments for Precision Spacecraft

    NASA Astrophysics Data System (ADS)

    Denoyer, Keith K.; Erwin, R. Scott; Ninneman, R. Rory

    2000-07-01

    This paper presents an overview as well as data from four smart structures flight experiments directed by the U.S. Air Force Research Laboratory's Space Vehicles Directorate in Albuquerque, New Mexico. The Middeck Active Control Experiment $¯Flight II (MACE II) is a space shuttle flight experiment designed to investigate modeling and control issues for achieving high precision pointing and vibration control of future spacecraft. The Advanced Controls Technology Experiment (ACTEX-I) is an experiment that has demonstrated active vibration suppression using smart composite structures with embedded piezoelectric sensors and actuators. The Satellite Ultraquiet Isolation Technology Experiment (SUITE) is an isolation platform that uses active piezoelectric actuators as well as damped mechanical flexures to achieve hybrid passive/active isolation. The Vibration Isolation, Suppression, and Steering Experiment (VISS) is another isolation platform that uses viscous dampers in conjunction with electromagnetic voice coil actuators to achieve isolation as well as a steering capability for an infra-red telescope.

  10. Some special sub-systems for stratospheric balloon flights in India

    NASA Astrophysics Data System (ADS)

    Damle, S. V.; Gokhale, G. S.; Kundapurkar, R. U.

    During last few years several new sub-systems for balloon were developed and are being regularly used in the balloon flights. Some of these sub-systems are i) positive monitor for magnetic ballast release using an opto-electronic device ii) one-way pressure switch to terminate flight for runaway balloon iii) in-flight payload reel down system for atmospheric science experiment. The design, usage and performance of these and other sub-systems will be presented.

  11. P-wave and QT dispersion in patients with conversion disorder.

    PubMed

    Izci, Filiz; Hocagil, Hilal; Izci, Servet; Izci, Vedat; Koc, Merve Iris; Acar, Rezzan Deniz

    2015-01-01

    The aim of this study was to investigate QT dispersion (QTd), which is the noninvasive marker of ventricular arrhythmia and sudden cardiac death, and P-wave dispersion, which is the noninvasive marker of atrial arrhythmia, in patients with conversion disorder (CD). A total of 60 patients with no known organic disease who were admitted to outpatient emergency clinic and were diagnosed with CD after psychiatric consultation were included in this study along with 60 healthy control subjects. Beck Anxiety Inventory and Beck Depression Scale were administered to patients and 12-lead electrocardiogram measurements were obtained. Pd and QTd were calculated by a single blinded cardiologist. There was no statistically significant difference in terms of age, sex, education level, socioeconomic status, weight, height, and body mass index between CD patients and controls. Beck Anxiety Inventory scores (25.2±10.8 and 3.8±3.2, respectively, P<0.001) and Beck Depression Scale scores (11.24±6.15 and 6.58±5.69, respectively, P<0.01) were significantly higher in CD patients. P-wave dispersion measurements did not show any significant differences between conversion patients and control group (46±5.7 vs 44±5.5, respectively, P=0.156). Regarding QTc and QTd, there was a statistically significant increase in all intervals in conversion patients (416±10 vs 398±12, P<0.001, and 47±4.8 vs 20±6.1, P<0.001, respectively). A similar relation to that in literature between QTd and anxiety and somatoform disorders was also observed in CD patients. QTc and QTd were significantly increased compared to the control group in patients with CD. These results suggest a possibility of increased risk of ventricular arrhythmia resulting from QTd in CD patients. Larger samples are needed to evaluate the clinical course and prognosis in terms of arrhythmia risk in CD patients.

  12. A testbed for the evaluation of computer aids for enroute flight path planning

    NASA Technical Reports Server (NTRS)

    Smith, Philip J.; Layton, Chuck; Galdes, Deb; Mccoy, C. E.

    1990-01-01

    A simulator study of the five airline flight crews engaged in various enroute planning activities has been conducted. Based on a cognitive task analysis of this data, a flight planning workstation has been developed on a Mac II controlling three color monitors. This workstation is being used to study design concepts to support the flight planning activities of dispatchers and flight crews in part-task simulators.

  13. Zodiac II: Debris Disk Science from a Balloon

    NASA Technical Reports Server (NTRS)

    Bryden, Geoffrey; Traub, Wesley; Roberts, Lewis C., Jr.; Bruno, Robin; Unwin, Stephen; Backovsky, Stan; Brugarolas, Paul; Chakrabarti, Supriya; Chen, Pin; Hillenbrand, Lynne; hide

    2011-01-01

    Zodiac II is a proposed balloon-borne science investigation of debris disks around nearby stars. Debris disks are analogs of the Asteroid Belt (mainly rocky) and Kuiper Belt (mainly icy) in our Solar System. Zodiac II will measure the size, shape, brightness, and color of a statistically significant sample of disks. These measurements will enable us to probe these fundamental questions: what do debris disks tell us about the evolution of planetary systems; how are debris disks produced; how are debris disks shaped by planets; what materials are debris disks made of; how much dust do debris disks make sa they grind down; and how long do debris disks live? In addition, Zodiac II will observe hot, young exoplanets as targets of opportunity. The Zodiac II instrument is a 1.1-m diameter SiC telescope and an imaging coronagraph on a gondola carried by a stratospheric balloon. Its data product is a set of images of each targeted debris disk in four broad visible wavelength bands. Zodiac II will address its science questions by taking high-resolution, multi-wavelength images of the debris disks around tens of nearby stars. Mid-latitude flights are considered: overnight test flights within the United States followed by half-global flights in the Southern Hemisphere. These longer flights are required to fully explore the set of known debris disks accessible only to Zodiac II. On these targets, it will be 100 times more sensitive than the Hubble Space Telescope's Advanced Camera for Surveys (HST/ACS); no existing telescope can match the Zodiac II contrast and resolution performance. A second objective of Zodiac II is to use the near-space environment to raise the Technology Readiness Level (TRL) of SiC mirrors, internal coronagraphs, deformable mirrors, and wavefront sensing and control, all potentially needed for a future space-based telescope for high-contrast exoplanet imaging.

  14. Zodiac II: Debris Disk Science from a Balloon

    NASA Technical Reports Server (NTRS)

    Bryden, Geoffrey; Traub, Wesley; Roberts, Lewis C., Jr.; Bruno, Robin; Unwin, Stephen; Backovsky, Stan; Brugarolas, Paul; Chakrabarti, Supriya; Chen, Pin; Hillenbrand, Lynne; hide

    2011-01-01

    Zodiac II is a proposed balloon-borne science investigation of debris disks around nearby stars. Debris disks are analogs of the Asteroid Belt (mainly rocky) and Kuiper Belt (mainly icy) in our Solar System. Zodiac II will measure the size, shape, brightness, and color of a statistically significant sample of disks. These measurements will enable us to probe these fundamental questions: what do debris disks tell us about the evolution of planetary systems; how are debris disks produced; how are debris disks shaped by planets; what materials are debris disks made of; how much dust do debris disks make as they grind down; and how long do debris disks live? In addition, Zodiac II will observe hot, young exoplanets as targets of opportunity. The Zodiac II instrument is a 1.1-m diameter SiC (Silicone carbide) telescope and an imaging coronagraph on a gondola carried by a stratospheric balloon. Its data product is a set of images of each targeted debris disk in four broad visible-wavelength bands. Zodiac II will address its science questions by taking high-resolution, multi-wavelength images of the debris disks around tens of nearby stars. Mid-latitude flights are considered: overnight test flights in the US followed by half-global flights in the Southern Hemisphere. These longer flights are required to fully explore the set of known debris disks accessible only to Zodiac II. On these targets, it will be 100 times more sensitive than the Hubble Space Telescope's Advanced Camera for Surveys (HST/ACS); no existing telescope can match the Zodiac II contrast and resolution performance. A second objective of Zodiac II is to use the near-space environment to raise the Technology Readiness Level (TRL) of SiC mirrors, internal coronagraphs, deformable mirrors, and wavefront sensing and control, all potentially needed for a future space-based telescope for high-contrast exoplanet imaging.

  15. Electrically Driven Thermal Management: Flight Validation, Experiment Development, Future Technologies

    NASA Technical Reports Server (NTRS)

    Didion, Jeffrey R.

    2018-01-01

    Electrically Driven Thermal Management is an active research and technology development initiative incorporating ISS technology flight demonstrations (STP-H5), development of Microgravity Science Glovebox (MSG) flight experiment, and laboratory-based investigations of electrically based thermal management techniques. The program targets integrated thermal management for future generations of RF electronics and power electronic devices. This presentation reviews four program elements: i.) results from the Electrohydrodynamic (EHD) Long Term Flight Demonstration launched in February 2017 ii.) development of the Electrically Driven Liquid Film Boiling Experiment iii.) two University based research efforts iv.) development of Oscillating Heat Pipe evaluation at Goddard Space Flight Center.

  16. Orion Abort Flight Test

    NASA Technical Reports Server (NTRS)

    Hayes, Peggy Sue

    2010-01-01

    The purpose of NASA's Constellation project is to create the new generation of spacecraft for human flight to the International Space Station in low-earth orbit, the lunar surface, as well as for use in future deep-space exploration. One portion of the Constellation program was the development of the Orion crew exploration vehicle (CEV) to be used in spaceflight. The Orion spacecraft consists of a crew module, service module, space adapter and launch abort system. The crew module was designed to hold as many as six crew members. The Orion crew exploration vehicle is similar in design to the Apollo space capsules, although larger and more massive. The Flight Test Office is the responsible flight test organization for the launch abort system on the Orion crew exploration vehicle. The Flight Test Office originally proposed six tests that would demonstrate the use of the launch abort system. These flight tests were to be performed at the White Sands Missile Range in New Mexico and were similar in nature to the Apollo Little Joe II tests performed in the 1960s. The first flight test of the launch abort system was a pad abort (PA-1), that took place on 6 May 2010 at the White Sands Missile Range in New Mexico. Primary flight test objectives were to demonstrate the capability of the launch abort system to propel the crew module a safe distance away from a launch vehicle during a pad abort, to demonstrate the stability and control characteristics of the vehicle, and to determine the performance of the motors contained within the launch abort system. The focus of the PA-1 flight test was engineering development and data acquisition, not certification. In this presentation, a high level overview of the PA-1 vehicle is given, along with an overview of the Mobile Operations Facility and information on the White Sands tracking sites for radar & optics. Several lessons learned are presented, including detailed information on the lessons learned in the development of wind

  17. Fluid Acquisition and Resupply Experiments on Space Shuttle Flights STS-53 and STS-57

    NASA Technical Reports Server (NTRS)

    Dominick, S. M.; Tegart, J. R.; Driscoll, S. L.; Sledd, J. D.; Hastings, L. J.

    2011-01-01

    The Fluid Acquisition and Resupply Experiment (FARE) program, managed by the Marshall Space Flight Center Space Propulsion Branch with Martin Marietta Civil Space and Communications as the contractor, consisted of two flights designated FARE I and FARE II. FARE I flew in December 1992 on STS-53 with a screen channel liquid acquisition device (LAD) and FARE II flew in June 1993 on STS-57 with a vane-type LAD. Thus, the FARE I and II flights represent the two basic LAD categories usually considered for in-space fluid management. Although both LAD types have been used extensively, the usefulness of the on-orbit data has been constrained by the lack of experimentation beyond predicted performance limits, including both propellant fill and expulsion. Therefore, the FARE tests were designed to obtain data that would satisfy two primary objectives: (1) Demonstrate the performance of the two types of LADs, screen channel and vane, and (2) support the anchoring of analytical models. Both flights were considered highly successful in meeting these two primary objectives.

  18. Propeller aircraft interior noise model. II - Scale-model and flight-test comparisons

    NASA Technical Reports Server (NTRS)

    Willis, C. M.; Mayes, W. H.

    1987-01-01

    A program for predicting the sound levels inside propeller driven aircraft arising from sidewall transmission of airborne exterior noise is validated through comparisons of predictions with both scale-model test results and measurements obtained in flight tests on a turboprop aircraft. The program produced unbiased predictions for the case of the scale-model tests, with a standard deviation of errors of about 4 dB. For the case of the flight tests, the predictions revealed a bias of 2.62-4.28 dB (depending upon whether or not the data for the fourth harmonic were included) and the standard deviation of the errors ranged between 2.43 and 4.12 dB. The analytical model is shown to be capable of taking changes in the flight environment into account.

  19. Crew Exploration Vehicle Launch Abort System Flight Test Overview

    NASA Technical Reports Server (NTRS)

    Williams-Hayes, Peggy S.

    2007-01-01

    The Constellation program is an organization within NASA whose mission is to create the new generation of spacecraft that will replace the Space Shuttle after its planned retirement in 2010. In the event of a catastrophic failure on the launch pad or launch vehicle during ascent, the successful use of the launch abort system will allow crew members to escape harm. The Flight Test Office is the organization within the Constellation project that will flight-test the launch abort system on the Orion crew exploration vehicle. The Flight Test Office has proposed six tests that will demonstrate the use of the launch abort system. These flight tests will be performed at the White Sands Missile Range in New Mexico and are similar in nature to the Apollo Little Joe II tests performed in the 1960s. An overview of the launch abort system flight tests for the Orion crew exploration vehicle is given. Details on the configuration of the first pad abort flight test are discussed. Sample flight trajectories for two of the six flight tests are shown.

  20. Validation of DSMC results for chemically nonequilibrium air flows against measurements of the electron number density in RAM-C II flight experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shevyrin, Alexander A.; Vashchenkov, Pavel V.; Bondar, Yevgeniy A.

    An ionized flow around the RAM C-II vehicle in the range of altitudes from 73 to 81 km is studied by the Direct Simulation Monte Carlo (DSMC) method with three models of chemical reactions. It is demonstrated that vibration favoring in reactions of dissociation of neutral molecules affects significantly the predicted values of plasma density in the shock layer, and good agreement between the results of experiments and DSMC computations can be achieved in terms of the plasma density as a function of the flight altitude.

  1. Predicting forest insect flight activity: A Bayesian network approach

    PubMed Central

    Pawson, Stephen M.; Marcot, Bruce G.; Woodberry, Owen G.

    2017-01-01

    Daily flight activity patterns of forest insects are influenced by temporal and meteorological conditions. Temperature and time of day are frequently cited as key drivers of activity; however, complex interactions between multiple contributing factors have also been proposed. Here, we report individual Bayesian network models to assess the probability of flight activity of three exotic insects, Hylurgus ligniperda, Hylastes ater, and Arhopalus ferus in a managed plantation forest context. Models were built from 7,144 individual hours of insect sampling, temperature, wind speed, relative humidity, photon flux density, and temporal data. Discretized meteorological and temporal variables were used to build naïve Bayes tree augmented networks. Calibration results suggested that the H. ater and A. ferus Bayesian network models had the best fit for low Type I and overall errors, and H. ligniperda had the best fit for low Type II errors. Maximum hourly temperature and time since sunrise had the largest influence on H. ligniperda flight activity predictions, whereas time of day and year had the greatest influence on H. ater and A. ferus activity. Type II model errors for the prediction of no flight activity is improved by increasing the model’s predictive threshold. Improvements in model performance can be made by further sampling, increasing the sensitivity of the flight intercept traps, and replicating sampling in other regions. Predicting insect flight informs an assessment of the potential phytosanitary risks of wood exports. Quantifying this risk allows mitigation treatments to be targeted to prevent the spread of invasive species via international trade pathways. PMID:28953904

  2. Investigation of gliding flight by flying fish

    NASA Astrophysics Data System (ADS)

    Park, Hyungmin; Jeon, Woo-Pyung; Choi, Haecheon

    2006-11-01

    The most successful flight capability of fish is observed in the flying fish. Furthermore, despite the difference between two medium (air and water), the flying fish is well evolved to have an excellent gliding performance as well as fast swimming capability. In this study, flying fish's morphological adaptation to gliding flight is experimentally investigated using dry-mounted darkedged-wing flying fish, Cypselurus Hiraii. Specifically, we examine the effects of the pectoral and pelvic fins on the aerodynamic performance considering (i) both pectoral and pelvic fins, (ii) pectoral fins only, and (iii) body only with both fins folded. Varying the attack angle, we measure the lift, drag and pitching moment at the free-stream velocity of 12m/s for each case. Case (i) has higher lift-to-drag ratio (i.e. longer gliding distance) and more enhanced longitudinal static stability than case (ii). However, the lift coefficient is smaller for case (i) than for case (ii), indicating that the pelvic fins are not so beneficial for wing loading. The gliding performance of flying fish is compared with those of other fliers and is found to be similar to those of insects such as the butterfly and fruitfly.

  3. Excretion of amino acids by humans during space flight

    NASA Technical Reports Server (NTRS)

    Stein, T. P.; Schluter, M. D.

    1998-01-01

    We measured the urine amino acid distribution patterns before, during and after space flight on the Space Shuttle. The urine samples were collected on two separate flights of the space shuttle. The first flight lasted 9.5 days and the second flight 15 days. Urine was collected continuously on 8 subjects for the period beginning 10 d before launch to 6 d after landing. Results: In contrast to the earlier Skylab missions where a pronounced amino aciduria was found, on shuttle the urinary amino acids showed little change with spaceflight except for a marked decrease in all of the amino acids on FD (flight day) 1 (p<0.05) and a reduction in isoleucine and valine on FD3 and FD4 (p<0.05). Conclusions: (i) Amino aciduria is not an inevitable consequence of space flight. (ii) The occurrence of amino aciduria, like muscle protein breakdown is a mission specific effect rather than part of the general human response to microgravity.

  4. Altus I aircraft in flight, retracting landing gear after takeoff

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The landing gear of the remotely piloted Altus I aircraft retracts into the fuselage after takeoff from Rogers Dry Lake adjacent to NASA's Dryden Flight Research Center, Edwards, Calif. The short series of test flights sponsored by the Naval Postgraduate School in early August, 1997, was designed to demonstrate the ability of the experimental craft to cruise at altitudes above 40,000 feet for sustained durations. On its final flight Aug. 15, the Altus I reached an altitude of 43,500 feet. The Altus I and its sister ship, the Altus II, are variants of the Predator surveillance drone built by General Atomics/Aeronautical Systems, Inc. They are designed for high-altitude, long-duration scientific sampling missions. The Altus I incorporates a single-stage turbocharger, while the Altus II, built for NASA's Environmental Research Aircraft and Sensor Technology project, sports a two-stage turbocharger to enable the craft to fly at altitudes above 55,000 feet.

  5. 14 CFR 91.189 - Category II and III operations: General operating rules.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... pilot who is controlling the aircraft has appropriate instrumentation for the type of flight control... TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Flight Rules Instrument Flight Rules § 91.189 Category II and III operations: General operating rules. (a) No...

  6. 14 CFR 91.189 - Category II and III operations: General operating rules.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... pilot who is controlling the aircraft has appropriate instrumentation for the type of flight control... TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Flight Rules Instrument Flight Rules § 91.189 Category II and III operations: General operating rules. (a) No...

  7. 14 CFR 91.189 - Category II and III operations: General operating rules.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... pilot who is controlling the aircraft has appropriate instrumentation for the type of flight control... TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Flight Rules Instrument Flight Rules § 91.189 Category II and III operations: General operating rules. (a) No...

  8. Full-Scale Flight Research Testbeds: Adaptive and Intelligent Control

    NASA Technical Reports Server (NTRS)

    Pahle, Joe W.

    2008-01-01

    This viewgraph presentation describes the adaptive and intelligent control methods used for aircraft survival. The contents include: 1) Motivation for Adaptive Control; 2) Integrated Resilient Aircraft Control Project; 3) Full-scale Flight Assets in Use for IRAC; 4) NASA NF-15B Tail Number 837; 5) Gen II Direct Adaptive Control Architecture; 6) Limited Authority System; and 7) 837 Flight Experiments. A simulated destabilization failure analysis along with experience and lessons learned are also presented.

  9. A Flight Control Approach for Small Reentry Vehicles

    NASA Technical Reports Server (NTRS)

    Bevacqoa, Tim; Adams, Tony; Zhu. J. Jim; Rao, P. Prabhakara

    2004-01-01

    Flight control of small crew return vehicles during atmospheric reentry will be an important technology in any human space flight mission undertaken in the future. The control system presented in this paper is applicable to small crew return vehicles in which reaction control system (RCS) thrusters are the only actuators available for attitude control. The control system consists of two modules: (i) the attitude controller using the trajectory linearization control (TLC) technique, and (ii) the reaction control system (RCS) control allocation module using a dynamic table-lookup technique. This paper describes the design and implementation of the TLC attitude control and the dynamic table-lookup RCS control allocation for nonimal flight along with design verification test results.

  10. DAST Being Calibrated for Flight in Hangar

    NASA Technical Reports Server (NTRS)

    1982-01-01

    DAST-2, a modified BQM-34 Firebee II drone, undergoes calibration in a hangar at the NASA Dryden Flight Research Center. After the crash of the first DAST vehicle, project personnel fitted a second Firebee II (serial # 72-1558) with the rebuilt ARW-1 (ARW-1R) wing. The DAST-2 made a captive flight aboard the B-52 on October 29, 1982, followed by a free flight on November 3, 1982. During January and February of 1983, three launch attempts from the B-52 had to be aborted due to various problems. Following this, the project changed the launch aircraft to a DC-130A. Two captive flights occurred in May 1983. The first launch attempt from the DC-130 took place on June 1, 1983. The mothership released the DAST-2, but the recovery system immediately fired without being commanded. The parachute then disconnected from the vehicle, and the DAST-2 crashed into a farm field near Harper Dry Lake. Wags called this the 'Alfalfa Field Impact Test.' These are the image contact sheets for each image resolution of the NASA Dryden Drones for Aerodynamic and Structural Testing (DAST) Photo Gallery. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and

  11. The Vehicle Control Systems Branch at the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Barret, Chris

    1990-01-01

    This paper outlines the responsibility of the Vehicle Control Systems Branch at the Marshall Space Flight Center (MSFC) to analyze, evaluate, define, design, verify, and specify requirements for advanced launch vehicles and related space projects, and to conduct research in advanced flight control concepts. Attention is given to branch responsibilities which include Shuttle-C, Shuttle-C Block II, Shuttle-Z, lunar cargo launch vehicles, Mars cargo launch vehicles, orbital maneuvering vehicle, automatic docking, tethered satellite, aeroassisted flight experiment, and solid rocket booster parachute recovery system design.

  12. Flight Validation of a Metrics Driven L(sub 1) Adaptive Control

    NASA Technical Reports Server (NTRS)

    Dobrokhodov, Vladimir; Kitsios, Ioannis; Kaminer, Isaac; Jones, Kevin D.; Xargay, Enric; Hovakimyan, Naira; Cao, Chengyu; Lizarraga, Mariano I.; Gregory, Irene M.

    2008-01-01

    The paper addresses initial steps involved in the development and flight implementation of new metrics driven L1 adaptive flight control system. The work concentrates on (i) definition of appropriate control driven metrics that account for the control surface failures; (ii) tailoring recently developed L1 adaptive controller to the design of adaptive flight control systems that explicitly address these metrics in the presence of control surface failures and dynamic changes under adverse flight conditions; (iii) development of a flight control system for implementation of the resulting algorithms onboard of small UAV; and (iv) conducting a comprehensive flight test program that demonstrates performance of the developed adaptive control algorithms in the presence of failures. As the initial milestone the paper concentrates on the adaptive flight system setup and initial efforts addressing the ability of a commercial off-the-shelf AP with and without adaptive augmentation to recover from control surface failures.

  13. Crew factors in flight operations II : psychophysiological responses to short-haul air transport operations

    DOT National Transportation Integrated Search

    1994-11-01

    This report is the second in a series on the physiological and psychological effects of flight operations on flight crews, and on the operational significance of these effects. This overview presents a comprehensive review and interpretation of the m...

  14. Origin of Marshall Space Flight Center (MSFC)

    NASA Image and Video Library

    2004-04-15

    The Marshall Space Flight Center, a NASA field installation, was established at Huntsville, Alabama, in 1960. The Center was named in honor of General George C. Marshall, the Army Chief of Staff during World War II, Secretary of State, and Nobel Prize Wirner for his world-renowned Marshall Plan.

  15. 14 CFR Appendix B to Part 29 - Airworthiness Criteria for Helicopter Instrument Flight

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... systems that operate the required flight instruments at each pilot's station— (i) Only the required flight instruments for the first pilot may be connected to that operating system; (ii) Additional instruments, systems, or equipment may not be connected to an operating system for a second pilot unless provisions are...

  16. 14 CFR Appendix B to Part 29 - Airworthiness Criteria for Helicopter Instrument Flight

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... systems that operate the required flight instruments at each pilot's station— (i) Only the required flight instruments for the first pilot may be connected to that operating system; (ii) Additional instruments, systems, or equipment may not be connected to an operating system for a second pilot unless provisions are...

  17. 14 CFR Appendix B to Part 27 - Airworthiness Criteria for Helicopter Instrument Flight

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... systems that operate the required flight instruments at each pilot's station— (i) Only the required flight instruments for the first pilot may be connected to that operating system; (ii) Additional instruments, systems, or equipment may not be connected to an operating system for a second pilot unless provisions are...

  18. 14 CFR Appendix B to Part 27 - Airworthiness Criteria for Helicopter Instrument Flight

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... systems that operate the required flight instruments at each pilot's station— (i) Only the required flight instruments for the first pilot may be connected to that operating system; (ii) Additional instruments, systems, or equipment may not be connected to an operating system for a second pilot unless provisions are...

  19. 14 CFR Appendix B to Part 29 - Airworthiness Criteria for Helicopter Instrument Flight

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... systems that operate the required flight instruments at each pilot's station— (i) Only the required flight instruments for the first pilot may be connected to that operating system; (ii) Additional instruments, systems, or equipment may not be connected to an operating system for a second pilot unless provisions are...

  20. 14 CFR Appendix B to Part 29 - Airworthiness Criteria for Helicopter Instrument Flight

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... systems that operate the required flight instruments at each pilot's station— (i) Only the required flight instruments for the first pilot may be connected to that operating system; (ii) Additional instruments, systems, or equipment may not be connected to an operating system for a second pilot unless provisions are...

  1. 14 CFR Appendix B to Part 27 - Airworthiness Criteria for Helicopter Instrument Flight

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... systems that operate the required flight instruments at each pilot's station— (i) Only the required flight instruments for the first pilot may be connected to that operating system; (ii) Additional instruments, systems, or equipment may not be connected to an operating system for a second pilot unless provisions are...

  2. 14 CFR Appendix B to Part 27 - Airworthiness Criteria for Helicopter Instrument Flight

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... systems that operate the required flight instruments at each pilot's station— (i) Only the required flight instruments for the first pilot may be connected to that operating system; (ii) Additional instruments, systems, or equipment may not be connected to an operating system for a second pilot unless provisions are...

  3. 14 CFR Appendix B to Part 27 - Airworthiness Criteria for Helicopter Instrument Flight

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... systems that operate the required flight instruments at each pilot's station— (i) Only the required flight instruments for the first pilot may be connected to that operating system; (ii) Additional instruments, systems, or equipment may not be connected to an operating system for a second pilot unless provisions are...

  4. 14 CFR 61.411 - What aeronautical experience must I have to apply for a flight instructor certificate with a...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...-engine class privileges, (1) 150 hours of flight time as a pilot, (i) 100 hours of flight time as pilot in command in powered aircraft,(ii) 50 hours of flight time in a single-engine airplane, (iii) 25 hours of cross-country flight time, (iv) 10 hours of cross-country flight time in a single-engine...

  5. 14 CFR 61.411 - What aeronautical experience must I have to apply for a flight instructor certificate with a...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...-engine class privileges, (1) 150 hours of flight time as a pilot, (i) 100 hours of flight time as pilot in command in powered aircraft,(ii) 50 hours of flight time in a single-engine airplane, (iii) 25 hours of cross-country flight time, (iv) 10 hours of cross-country flight time in a single-engine...

  6. 14 CFR 61.411 - What aeronautical experience must I have to apply for a flight instructor certificate with a...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...-engine class privileges, (1) 150 hours of flight time as a pilot, (i) 100 hours of flight time as pilot in command in powered aircraft,(ii) 50 hours of flight time in a single-engine airplane, (iii) 25 hours of cross-country flight time, (iv) 10 hours of cross-country flight time in a single-engine...

  7. Mastracchio during BASS II Setup

    NASA Image and Video Library

    2014-02-12

    ISS038-E-046381 (12 Feb. 2014) --- NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, sets up the Microgravity Science Glovebox (MSG) for the Burning and Suppression of Solids (BASS-II) experiment in the Destiny laboratory of the International Space Station. BASS-II explores how different substances burn in microgravity with benefits for combustion on Earth and fire safety in space.

  8. Hopkins during BASS II Setup

    NASA Image and Video Library

    2014-02-12

    ISS038-E-046393 (12 Feb. 2014) --- NASA astronaut Mike Hopkins, Expedition 38 flight engineer, sets up the Microgravity Science Glovebox (MSG) for the Burning and Suppression of Solids (BASS-II) experiment in the Destiny laboratory of the International Space Station. BASS-II explores how different substances burn in microgravity with benefits for combustion on Earth and fire safety in space.

  9. Mastracchio works with BASS-II

    NASA Image and Video Library

    2014-02-18

    ISS038-E-053250 (18 Feb. 2014) --- NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, works with the Burning and Suppression of Solids (BASS-II) experiment in the Microgravity Science Glovebox (MSG) located in the Destiny laboratory of the International Space Station. BASS-II explores how different substances burn in microgravity with benefits for combustion on Earth and fire safety in space.

  10. Mastracchio during BASS II Setup

    NASA Image and Video Library

    2014-02-12

    ISS038-E-046387 (12 Feb. 2014) --- NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, sets up the Microgravity Science Glovebox (MSG) for the Burning and Suppression of Solids (BASS-II) experiment in the Destiny laboratory of the International Space Station. BASS-II explores how different substances burn in microgravity with benefits for combustion on Earth and fire safety in space.

  11. Hopkins during BASS II Setup

    NASA Image and Video Library

    2014-02-12

    ISS038-E-046394 (12 Feb. 2014) --- NASA astronaut Mike Hopkins, Expedition 38 flight engineer, sets up the Microgravity Science Glovebox (MSG) for the Burning and Suppression of Solids (BASS-II) experiment in the Destiny laboratory of the International Space Station. BASS-II explores how different substances burn in microgravity with benefits for combustion on Earth and fire safety in space.

  12. Mastracchio works with BASS-II

    NASA Image and Video Library

    2014-02-18

    ISS038-E-053251 (18 Feb. 2014) --- NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, works with the Burning and Suppression of Solids (BASS-II) experiment in the Microgravity Science Glovebox (MSG) located in the Destiny laboratory of the International Space Station. BASS-II explores how different substances burn in microgravity with benefits for combustion on Earth and fire safety in space.

  13. Mastracchio during BASS II Setup

    NASA Image and Video Library

    2014-02-12

    ISS038-E-046391 (12 Feb. 2014) --- NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, sets up the Microgravity Science Glovebox (MSG) for the Burning and Suppression of Solids (BASS-II) experiment in the Destiny laboratory of the International Space Station. BASS-II explores how different substances burn in microgravity with benefits for combustion on Earth and fire safety in space.

  14. NASA Remembers Astronaut Bruce McCandless II

    NASA Image and Video Library

    2017-12-22

    Former NASA Astronaut Bruce McCandless II, best known for his iconic free-floating spacewalk on a 1984 shuttle flight, died on Dec. 21 at the age of 80. A native of Boston, McCandless II attended the U.S. Naval Academy and served as a naval aviator before joining NASA in 1966. He served in support or backup roles during the Apollo and Skylab programs, including serving as the communicator from mission control to the Apollo 11 crew during their historic 1969 moonwalk. On Feb. 7, 1984, during the Space Shuttle Challenger’s STS-41B mission, he made the first, untethered, free flight spacewalk in the Manned Maneuvering Unit. In 1990, McCandless II was part of the crew on Space Shuttle Discovery’s STS-31 mission, which deployed the Hubble Space Telescope.

  15. Increased flight surgeon role in military aeromedical evacuation.

    PubMed

    Lyons, T J; Connor, S B

    1995-10-01

    Physicians were involved in the development of aeromedical evacuation (medevac) and flight surgeons flew as crewmembers on the first U.S. military medevac flights. However, since World War II flight surgeons have not been routinely assigned to operational medevac units. The aeromedical literature addressing the role of physicians in medevac is controversial. Recent contingencies involving the U.S. Air Force (USAF) have required the augmentation of medevac units with flight surgeons. Beginning in 1992, the United States Air Forces Europe (USAFE) assigned three flight surgeons to the medevac squadron. Between 2 February 1993 and 24 March 1994 USAFE moved 241 patients on 29 missions out of the former Yugoslavia--most of these missions had a flight surgeon on the crew. Because advance medical information on the status of these patients is often nonexistent, the presence of a physician on the crew proved life-saving in some instances. In peacetime operations, there has been a recent trend in the European theater for the USAF to move more unstable patients. Dedicated medevac flight surgeons have proven to have the specific experience and training to perform effectively in the role of in-flight medical attendant. In addition, they are effective in negotiating with referring physicians about the urgency of movement, required equipment, the need for medical attendants, etc. These flight surgeons also provide medical coverage of transiting patients in the Aeromedical Staging Flight (ASF), thus providing needed continuity in the medevac system. Dedicated medevac flight surgeons fill a unique and valuable role in medevac systems. Agencies with medevac units should consider assigning flight surgeons to these units.

  16. Flight Determination of the Longitudinal Stability in Accelerated Maneuvers at Transonic Speeds for the Douglas D-558-II Research Airplane Including the Effects of an Outboard Wing Fence

    NASA Technical Reports Server (NTRS)

    Fischel, Jack; Nugent, Jack

    1953-01-01

    The results of transonic flight measurements of the longitudinal stability characteristics of the Douglas D-558-II research airplane in the original configuration and with outboard fences mounted on the wings are presented. The levels of normal-force coefficient at which the stability decreases and pitch-up starts have been determined for both airplane configurations at Mach numbers up to about 0.94.

  17. Cortisol, insulin and leptin during space flight and bed rest

    NASA Technical Reports Server (NTRS)

    Stein, T. P.; Schluter, M. D.; Leskiw, M. J.

    1999-01-01

    Most ground based models for studying muscle atrophy and bone loss show reasonable fidelity to the space flight situation. However there are some differences. Investigation of the reasons for these differences can provide useful information about humans during space flight and aid in the refinement of ground based models. This report discusses three such differences, the relationships between: (i) cortisol and the protein loss, (ii) cortisol and ACTH and (iii) leptin, insulin and food intake.

  18. Mastracchio during BASS II Setup

    NASA Image and Video Library

    2014-02-12

    ISS038-E-046385 (12 Feb. 2014) --- NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, uses a computer while setting up the Microgravity Science Glovebox (MSG) for the Burning and Suppression of Solids (BASS-II) experiment in the Destiny laboratory of the International Space Station. BASS-II explores how different substances burn in microgravity with benefits for combustion on Earth and fire safety in space.

  19. The Intelligent Flight Control Program (IFCS)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Institute for Scientific Research, Inc. (ISR) is pleased to submit this closeout report for the Research Cooperative Agreement NCC4-00128 of accomplishments for the Intelligent Flight Control System (IFCS) Project. It has been a pleasure working with NASA and NASA partners as we strive to meet the goals of this research initiative. ISR was engaged in this Research Cooperative Agreement beginning March 3, 2001 and ending March 31, 2003. During this time, a great deal has been accomplished and plans have been solidified for the continued success of this program. Our primary areas of involvement include the following: 1) ARTS II Master Test Plan; 2) ARTS II Hardware Design and Development; 3) ARTS II Software Design and Development; 4) IFCS PID/BLNN/OLNN Development; 5) Performed Preliminary and Formal Testing; 6) Documentation and Reporting.

  20. BASS-II Hardware Repair

    NASA Image and Video Library

    2014-03-27

    ISS039-E-005726 (27 March 2014) --- Expedition 39 Flight Engineer Rick Mastracchio performs inflight maintenance on an experiment called Burning and Suppression of Solids (BASS)-II. The investigation examines the burning and extinction characteristics of a wide variety of fuel samples in microgravity. The BASS-II experiment will guide strategies for materials flammability screening for use in spacecraft as well as provide valuable data on solid fuel burning behavior in microgravity. BASS-II results contribute to the combustion computational models used in the design of fire detection and suppression systems in microgravity and on Earth.

  1. Verification and Validation of Adaptive and Intelligent Systems with Flight Test Results

    NASA Technical Reports Server (NTRS)

    Burken, John J.; Larson, Richard R.

    2009-01-01

    F-15 IFCS project goals are: a) Demonstrate Control Approaches that can Efficiently Optimize Aircraft Performance in both Normal and Failure Conditions [A] & [B] failures. b) Advance Neural Network-Based Flight Control Technology for New Aerospace Systems Designs with a Pilot in the Loop. Gen II objectives include; a) Implement and Fly a Direct Adaptive Neural Network Based Flight Controller; b) Demonstrate the Ability of the System to Adapt to Simulated System Failures: 1) Suppress Transients Associated with Failure; 2) Re-Establish Sufficient Control and Handling of Vehicle for Safe Recovery. c) Provide Flight Experience for Development of Verification and Validation Processes for Flight Critical Neural Network Software.

  2. NextGen Flight Deck Data Comm : Auxiliary Synthetic Speech Phase II

    DOT National Transportation Integrated Search

    2015-07-01

    Data Comma text-based controller-pilot communication systemis expected to yield several NextGen safety and efficiency benefits. With Data Comm, communication becomes a visual task, and may potentially increase head-down time on the flight deck ...

  3. Evaluation of SAGE II and Balloon-Borne Stratospheric Aerosol Measurements

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Under funding from this proposal we evaluated measurements of stratospheric sulfate aerosols from three platforms. Two were satellite platforms providing solar extinction measurements, the Stratospheric Aerosol and Gas Experiment (SAGE) II using wavelengths from 0.386 - 1.02 microns, and the Halogen Occultation Experiment (HALOE) using wavelengths from 2.45 to 5.26 microns. The third set of measurements was from in situ sampling by balloonborne optical particle counters (OPCs). The goal was to determine the consistency among these data sets. This was accomplished through analysis of the existing measurement records, and through additional balloonborne OPC flights coinciding with new SAGE II observations over Laramie, Wyoming. All analyses used the SAGE II v 6.0 data. This project supported two balloon flights per year over Laramie dedicated to SAGE II coincidence. Because logistical factors, such as poor surface weather or unfavorable payload impact location, can make it difficult to routinely obtain close coincidences with SAGE II, we attempt to conduct nearly every Laramie flight (roughly one per month) in conjunction with a SAGE II overpass. The Laramie flight frequency has varied over the years depending on field commitments and funding sources. Current support for the Laramie measurements is from the National Science Foundation in addition to support from this NASA grant. We have also completed a variety of comparisons using aerosol measurements from SAGE II, OPCs, and HALOE. The instruments were compared for their various estimates of aerosol extinction at the SAGE II wavelengths and for aerosol surface area. Additional results, such as illustrated here, can be found in a recently accepted manuscript describing comparisons between SAGE II, HALOE, and OPCs for the period 1982 - 2000. While overall, the impression from these results is encouraging, the agreement of the measurements changes with latitude, altitude, time, and parameter. In the broadest sense

  4. The initial flight anomalies of Skylab 1

    NASA Astrophysics Data System (ADS)

    At approximately 63 seconds into the flight of Skylab 1 on May 14, 1973, an anomaly occurred which resulted in the complete loss of the meteoroid shield around the orbital workshop. This was followed by the loss of one of the two solar array systems on the workshop and a failure of the inter stage adapter to separate from the S-II stage of the Saturn V launch vehicle. The investigation reported herein identified the most probable cause of this flight anomaly to be the breakup and loss of the meteoroid shield due to aerodynamic loads that were not accounted for in its design. The breakup of the meteoroid shield, in turn, broke the tie downs that secured one of the solar array systems to the workshop. Complete loss of this solar array system occurred at 593 seconds when the exhaust plume of the S-II stage retro-rockets impacted the partially deployed solar array system. Falling debris from the meteoroid shield also damaged the S-II inter stage adapter ordnance system in such a manner as to preclude separation. Of several possible failure modes of the meteoroid shield that were identified, the most probable in this particular flight was internal pressurization of its auxiliary tunnel which acted to force the forward end of the meteoroid shield away from the shell of the workshop and into the supersonic air stream. The pressurization of the auxiliary tunnel was due to the existence of several openings in the aft region of the tunnel. Another possible failure mode was the separation of the leading edge of the meteoroid shield from the shell of the workshop (particularly in the region of the folded ordnance panel) of sufficient extent to admit ram air pressures under the shield.

  5. A Flight Dynamic Model of Aircraft Spinning

    DTIC Science & Technology

    1990-06-01

    r Zaw rate about body axes S Aircraft wing area V Flight path velocity 3 a Angle of attack Sideslip angle 6, Aileron deflection, positive when right...Tests, May/June 1983 PartI. Unpublished data report. 6. MARTIN, C.A. and SECOMB, D.A. ; RAAF BPTA Phase II Wind Tun - nel Tests: Rotary Balance Tests

  6. Assessment of simulation fidelity using measurements of piloting technique in flight. II

    NASA Technical Reports Server (NTRS)

    Ferguson, S. W.; Clement, W. F.; Hoh, R. H.; Cleveland, W. B.

    1985-01-01

    Two components of the Vertical Motion Simulator (presently being used to assess the fidelity of UH-60A simulation) are evaluated: (1) the dash/quickstop Nap-of-the-earth (NOE) piloting task, and (2) the bop-up task. Data from these two flight test experiments are presented which provide information on the effect of reduced visual field of view, variation in scene content and texture, and the affect of pure time delay in the closed-loop pilot response. In comparison with task performance results obtained in flight tests, the results from the simulation indicate that the pilot's NOE task performance in the simulator is significantly degraded.

  7. The flight planning - flight management connection

    NASA Technical Reports Server (NTRS)

    Sorensen, J. A.

    1984-01-01

    Airborne flight management systems are currently being implemented to minimize direct operating costs when flying over a fixed route between a given city pair. Inherent in the design of these systems is that the horizontal flight path and wind and temperature models be defined and input into the airborne computer before flight. The wind/temperature model and horizontal path are products of the flight planning process. Flight planning consists of generating 3-D reference trajectories through a forecast wind field subject to certain ATC and transport operator constraints. The interrelationships between flight management and flight planning are reviewed, and the steps taken during the flight planning process are summarized.

  8. In-flight gust monitoring and aeroelasticity studies

    NASA Astrophysics Data System (ADS)

    Alvarez-Salazar, Oscar Salvador

    An in-flight gust monitoring and aeroelasticity study was conducted on board NASA Dryden's F15-B/FTF-II test platform (``FTF''). A total of four flights were completed. This study is the first in a series of flight experiments being conducted jointly by NASA Dryden Flight Research Center and UCLA's Flight Systems Research Center. The first objective of the in-flight gust- monitoring portion of the study was to demonstrate for the first time anywhere the measurability of intensity variations of a collimated Helium-Neon laser beam due to atmospheric air turbulence while having both the source and target apertures mounted outside an airborne aircraft. Intensity beam variations are the result of forward scattering of the beam by variations in the air's index of refraction, which are carried across the laser beam's path by a cross flow or air (i.e., atmospheric turbulence shifting vertically in the atmosphere). A laser beam was propagated parallel to the direction of flight for 1/2 meter outside the flight test fixture and its intensity variations due to atmospheric turbulence were successfully measured by a photo- detector. When the aircraft did not fly through a field of atmospheric turbulence, the laser beam proved to be insensitive to the stream velocity's cross component to the path of the beam. The aeroelasticity portion of the study consisted of measurements of the dynamic response of a straight, 18.25 inch span, 4.00 inch chord, NACA 0006 airfoil thickness profile, one sided wing to in-flight aircraft maneuvers, landing gear buffeting, unsteady aerodynamics, atmospheric turbulence, and aircraft vibration in general. These measurements were accomplished through the use of accelerometers, strain gauges and in-flight video cameras. Data collected will be used to compute in-flight root loci for the wing as functions of the aircraft's stream velocity. The data may also be used to calibrate data collected by the gust-monitoring system flown, and help verify the

  9. Polder 2 in-flight results and parasol perspectives

    NASA Astrophysics Data System (ADS)

    Bermudo, F.; Fougnie, B.; Bret-Dibat, T.

    2017-11-01

    This paper presents a global approach of the POLDER 2 mission: from instrument design, pre-flight and inflight calibrations till the first in-flight results. The POLDER 2 sensor has been developed by the Centre National d'Etudes Spatiales, the French space agency. It is part of the payload of the ADEOS II satellite developed by JAXA and launched in December 2002. POLDER 2 collected global data from April 2003, end of ADEOS II system check out phase, till the loss of the satellite on October 2003 due to a failure of the satellite power supply system. The POLDER 2 sensor is designed to collect global and repetitive observations of the solar radiation reflected by the Earth-Atmosphere system for climate research. The sensor is a wide field-of-view (2400 Km swath), low resolution (6x7 Km² at nadir) multi-spectral imaging radiometer / polarimeter. The instrument concept is based on a telecentric optics, a rotating wheel carrying 15 spectral filters and polarizers, and a bidimensionnal CCD detector array. The multidisciplinary scientific objectives of POLDER 2 lead to severe radiometric and geometrical requirements, as well as a very accurate calibration of the sensor. These requirements are achieved through a stable instrument design, exhaustive pre-flight and original in-flight calibrations. A derived model of POLDER 2 instrument will be flown on the payload of the CNES PARASOL micro satellite, the launch of which is planned end 2004. The PARASOL mission is part of the "Aqua train" i.e. the formation flying of 3 satellites following EOS-PM, so called "Aqua".

  10. Anomaly detection of flight routes through optimal waypoint

    NASA Astrophysics Data System (ADS)

    Pusadan, M. Y.; Buliali, J. L.; Ginardi, R. V. H.

    2017-01-01

    Deciding factor of flight, one of them is the flight route. Flight route determined by coordinate (latitude and longitude). flight routed is determined by its coordinates (latitude and longitude) as defined is waypoint. anomaly occurs, if the aircraft is flying outside the specified waypoint area. In the case of flight data, anomalies occur by identifying problems of the flight route based on data ADS-B. This study has an aim of to determine the optimal waypoints of the flight route. The proposed methods: i) Agglomerative Hierarchical Clustering (AHC) in several segments based on range area coordinates (latitude and longitude) in every waypoint; ii) The coefficient cophenetics correlation (c) to determine the correlation between the members in each cluster; iii) cubic spline interpolation as a graphic representation of the has connected between the coordinates on every waypoint; and iv). Euclidean distance to measure distances between waypoints with 2 centroid result of clustering AHC. The experiment results are value of coefficient cophenetics correlation (c): 0,691≤ c ≤ 0974, five segments the generated of the range area waypoint coordinates, and the shortest and longest distance between the centroid with waypoint are 0.46 and 2.18. Thus, concluded that the shortest distance is used as the reference coordinates of optimal waypoint, and farthest distance can be indicated potentially detected anomaly.

  11. Soviet experiments aimed at investigating the influence of space flight factors on the physiology of animals and man.

    PubMed

    Parin, V V; Gazenko, O G

    1963-01-01

    Results are given of biological experiments on space ship-satellites II, III, IV and V, and of scientific investigations made during the flights of Cosmonauts Gagarin and Titov aboard space ships Vostok I and Vostok II. Physiological reactions to the action of the flight stress-factors are not of a pathological character. In the post-flight period no alterations in health conditions of either cosmonauts or animals were observed. At the same time some peculiarities which were revealed while analyzing physiological reactions and a number of biological indices require further investigations. The most important tasks remaining are to study the influence of protracted weightlessness, of the biological action of space radiation, of the action of acceleration stresses after prolonged stay under zero-gravity conditions and also to analyze the influence on the organism of the whole combination of spaceflight factors, including emotional strain. In the Soviet Union, a great number of biological experiments have been conducted with a view to elucidating the action of space flight factors on living organisms and the design of systems necessary to ensure healthy activity during flight aboard rocket space vehicles. The first flight experiments with animals were conducted by means of geophysical rockets. The next step in this direction was made by the launching of Sputnik II in 1957 and by experiments on space ship-satellites in 1960-61. The main purpose of flight and laboratory investigations was to obtain the objective scientific criteria essential for ensuring the safety of manned space flight.

  12. 14 CFR 91.109 - Flight instruction; Simulated instrument flight and certain flight tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Flight instruction; Simulated instrument flight and certain flight tests. 91.109 Section 91.109 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Flight Rules General § 91.109 Flight instruction; Simulated instrument flight and...

  13. 14 CFR 91.109 - Flight instruction; Simulated instrument flight and certain flight tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Flight instruction; Simulated instrument flight and certain flight tests. 91.109 Section 91.109 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Flight Rules General § 91.109 Flight instruction; Simulated instrument flight and...

  14. 14 CFR 91.109 - Flight instruction; Simulated instrument flight and certain flight tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight instruction; Simulated instrument flight and certain flight tests. 91.109 Section 91.109 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Flight Rules General § 91.109 Flight instruction; Simulated instrument flight and...

  15. 14 CFR 91.109 - Flight instruction; Simulated instrument flight and certain flight tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Flight instruction; Simulated instrument flight and certain flight tests. 91.109 Section 91.109 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Flight Rules General § 91.109 Flight instruction; Simulated instrument flight and...

  16. 14 CFR 91.109 - Flight instruction; Simulated instrument flight and certain flight tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Flight instruction; Simulated instrument flight and certain flight tests. 91.109 Section 91.109 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Flight Rules General § 91.109 Flight instruction; Simulated instrument flight and...

  17. LDSD POST2 Simulation and SFDT-1 Pre-Flight Launch Operations Analyses

    NASA Technical Reports Server (NTRS)

    Bowes, Angela L.; Davis, Jody L.; Dutta, Soumyo; Striepe, Scott A.; Ivanov, Mark C.; Powell, Richard W.; White, Joseph

    2015-01-01

    The Low-Density Supersonic Decelerator (LDSD) Project's first Supersonic Flight Dynamics Test (SFDT-1) occurred June 28, 2014. Program to Optimize Simulated Trajectories II (POST2) was utilized to develop trajectory simulations characterizing all SFDT-1 flight phases from drop to splashdown. These POST2 simulations were used to validate the targeting parameters developed for SFDT- 1, predict performance and understand the sensitivity of the vehicle and nominal mission designs, and to support flight test operations with trajectory performance and splashdown location predictions for vehicle recovery. This paper provides an overview of the POST2 simulations developed for LDSD and presents the POST2 simulation flight dynamics support during the SFDT-1 launch, operations, and recovery.

  18. Prevalence and risk factors for prolonged QT interval and QT dispersion in patients with type 2 diabetes.

    PubMed

    Ninkovic, Vladan M; Ninkovic, Srdjan M; Miloradovic, Vanja; Stanojevic, Dejan; Babic, Marijana; Giga, Vojislav; Dobric, Milan; Trenell, Michael I; Lalic, Nebojsa; Seferovic, Petar M; Jakovljevic, Djordje G

    2016-10-01

    Prolonged QT interval is associated with cardiac arrhythmias and sudden death. The present study determined the prevalence of prolonged QT interval and QT dispersion and defined their clinical and metabolic predictors in patients with type 2 diabetes. Cross-sectional study included 501 patients with type 2 diabetes. A standard 12-lead electrocardiogram was recorded. QT corrected for heart rate (QTc) >440 ms and QT dispersion (QTd) >80 ms were considered abnormally prolonged. QTc ≥ 500 ms was considered a high-risk QTc prolongation. Demographic, clinical and laboratory data were collected. Independent risk factors for prolonged QTc and QTd were assessed using logistic regression analysis. Prevalence of QTc > 440 ms and QTd > 80 ms were 44.1 and 3.6 %, respectively. Prevalence of high-risk QTc (≥500 ms) was 2 % only. Independent risk factors for QTc prolongation >440 ms were mean blood glucose (β = 2.192, p < 0.001), treatment with sulphonylurea (β = 5.198, p = 0.027), female gender (β = 8.844, p < 0.001), and coronary heart disease (β = 8.636, p = 0.001). Independent risk factors for QTc ≥ 500 ms were coronary heart disease (β = 4.134, p < 0.001) and mean blood glucose level (β = 1.735, p < 0.001). The independent risk factor for prolonged QTd was only coronary heart disease (β = 5.354, p < 0.001). Although the prevalence of prolonged QTc > 440 ms is significant, the prevalence of high-risk QTc (≥500 ms) and QTd > 80 ms is very low in patients with type 2 diabetes. Hyperglycaemia and coronary heart disease are strong predictors of high-risk QTc.

  19. 14 CFR 61.67 - Category II pilot authorization requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Category II pilot authorization... TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Aircraft Ratings and Pilot Authorizations § 61.67 Category II pilot authorization requirements. (a) General. A...

  20. Wavefront sensing in space: flight demonstration II of the PICTURE sounding rocket payload

    NASA Astrophysics Data System (ADS)

    Douglas, Ewan S.; Mendillo, Christopher B.; Cook, Timothy A.; Cahoy, Kerri L.; Chakrabarti, Supriya

    2018-01-01

    A NASA sounding rocket for high-contrast imaging with a visible nulling coronagraph, the Planet Imaging Concept Testbed Using a Rocket Experiment (PICTURE) payload, has made two suborbital attempts to observe the warm dust disk inferred around Epsilon Eridani. The first flight in 2011 demonstrated a 5 mas fine pointing system in space. The reduced flight data from the second launch, on November 25, 2015, presented herein, demonstrate active sensing of wavefront phase in space. Despite several anomalies in flight, postfacto reduction phase stepping interferometer data provide insight into the wavefront sensing precision and the system stability for a portion of the pupil. These measurements show the actuation of a 32 × 32-actuator microelectromechanical system deformable mirror. The wavefront sensor reached a median precision of 1.4 nm per pixel, with 95% of samples between 0.8 and 12.0 nm per pixel. The median system stability, including telescope and coronagraph wavefront errors other than tip, tilt, and piston, was 3.6 nm per pixel, with 95% of samples between 1.2 and 23.7 nm per pixel.

  1. Republic P-47G Thunderbolt and the NACA Flight Operations Crew

    NASA Image and Video Library

    1944-03-21

    The Flight Operations crew stands before a Republic P-47G Thunderbolt at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory in Cleveland, Ohio. The laboratory’s Flight Research Section was responsible for conducting a variety of research flights. During World War II most of the test flights complemented the efforts in ground-based facilities to improve engine cooling systems or study advanced fuel mixtures. The Republic P–47G was loaned to the laboratory to test NACA modifications to the Wright R–2800 engine’s cooling system at higher altitudes. The laboratory has always maintained a fleet of aircraft so different research projects were often conducted concurrently. The flight research program requires an entire section of personnel to accomplish its work. This staff generally consists of a flight operations group, which includes the section chief, pilots and administrative staff; a flight maintenance group with technicians and mechanics responsible for inspecting aircraft, performing checkouts and installing and removing flight instruments; and a flight research group that integrates the researchers’ experiments into the aircraft. The staff at the time of this March 1944 photograph included 3 pilots, 16 planning and analysis engineers, 36 mechanics and technicians, 10 instrumentation specialists, 6 secretaries and 5 computers.

  2. Memoirs of an Aeronautical Engineer: Flight Tests at Ames Research Center: 1940-1970

    NASA Technical Reports Server (NTRS)

    Anderson, Seth B.

    2002-01-01

    Seth worked over a period of several years to prepare this monograph-collecting information, drafting the text, and finding and selecting the historic photographs. He describes the beginnings of flight research as he knew it at Ames Research Center, recalls numerous World War II programs, relates his experiences with powered-lift aircraft, and concludes with his impressions of two international flight research efforts. His comprehensive collection of large-format photographs of the airplanes and people involved in the various flight activities related in the text constitutes a compelling part of his work.

  3. DAST in Flight Showing Diverging Wingtip Oscillations

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Two BQM-34 Firebee II drones were modified with supercritical airfoils, called the Aeroelastic Research Wing (ARW), for the Drones for Aerodynamic and Structural Testing (DAST) program, which ran from 1977 to 1983. In this view of DAST-1 (Serial # 72-1557), taken on June 12, 1980, severe wingtip flutter is visible. Moments later, the right wing failed catastrophically and the vehicle crashed near Cuddeback Dry Lake. Before the drone was lost, it had made two captive and two free flights. Its first free flight, on October 2, 1979, was cut short by an uplink receiver failure. The drone was caught in midair by an HH-3 helicopter. The second free flight, on March 12, 1980, was successful, ending in a midair recovery. The third free flight, made on June 12, was to expand the flutter envelope. All of these missions launched from the NASA B-52. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and improve airplane efficiency. The DAST Program's drones provided an economical, fuel-conscious method for conducting in-flight experiments from a remote ground site. DAST explored the technology required to build wing structures with less than

  4. Launch Vehicle Flight Report - Nasa Project Apollo Little Joe 2 Qualification Test Vehicle 12-50-1

    NASA Technical Reports Server (NTRS)

    1963-01-01

    The Little Joe II Qualification Test Vehicle, Model 12-50-1, was launched from Army Launch Area 3 {ALA-3) at White Sands Missile Range, New Mexico, on 28 August 1963. This was the first launch of this class of boosters. The Little Joe II Launch Vehicle was designed as a test vehicle for boosting payloads into flight. For the Apollo Program, its mission is to serve as a launch vehicle for flight testing of the Apollo spacecraft. Accomplishment of this mission requires that the vehicle be capable of boosting the Apollo payload to parameters ranging from high dynamic pressures at low altitude to very high altitude flight. The fixed-fin 12-50 version was designed to accomplish the low-altitude parameter. The 12-51 version incorporates an attitude control system to accomplish the high altitude mission. This launch was designed to demonstrate the Little Joe II capability of meeting the high dynamic pressure parameter for the Apollo Program. For this test, a boiler-plate version of the Apollo capsule, service module and escape tower were attached to the launch vehicle to simulate weight, center of gravity and aerodynamic shape of the Apollo configuration. No attempt was made to separate the payload in flight. The test was conducted in compliance with Project Apollo Flight Mission Directive for QTV-1, NASA-MSC, dated 3 June 1963, under authority of NASA Contract NAS 9-492,

  5. Occupational risk factors for endometriosis in a cohort of flight attendants

    PubMed Central

    Johnson, Candice Y; Grajewski, Barbara; Lawson, Christina C; Whelan, Elizabeth A; Bertke, Stephen J; Tseng, Chih-Yu

    2016-01-01

    Objectives This study aimed to (i) compare odds of endometriosis in a cohort of flight attendants against a comparison group of teachers and (ii) investigate occupational risk factors for endometriosis among flight attendants. Methods We included 1945 flight attendants and 236 teachers aged 18–45 years. Laparoscopically confirmed endometriosis was self-reported via telephone interview, and flight records were retrieved from airlines to obtain work schedules and assess exposures for flight attendants. We used proportional odds regression to estimate adjusted odds ratios (ORadj) and 95% confidence intervals (95% CI) for associations between exposures and endometriosis, adjusting for potential confounders. Results Flight attendants and teachers were equally likely to report endometriosis (ORadj 1.0, 95% CI 0.5–2.2). Among flight attendants, there were no clear trends between estimated cosmic radiation, circadian disruption, or ergonomic exposures and endometriosis. Greater number of flight segments (non-stop flights between two cities) per year was associated with endometriosis (ORadj 2.2, 1.1–4.2 for highest versus lowest quartile, P trend= 0.02) but block hours (taxi plus flight time) per year was not (ORadj 1.2, 95% CI 0.6–2.2 for highest versus lowest quartile, P trend=0.38). Conclusion Flight attendants were no more likely than teachers to report endometriosis. Odds of endometriosis increased with number of flight segments flown per year. This suggests that some aspect of work scheduling is associated with increased risk of endometriosis, or endometriosis symptoms might affect how flight attendants schedule their flights. PMID:26645630

  6. Development and Evaluation of Novel and Compact Hygrometer for Airborne Research (DENCHAR): In-Flight Performance During AIRTOSS-I/II Research Aircaft Campaigns

    NASA Astrophysics Data System (ADS)

    Smit, Herman G. J.; Rolf, Christian; Kraemer, Martina; Petzold, Andreas; Spelten, Nicole; Rohs, Susanne; Neis, Patrick; Maser, Rolf; Bucholz, Bernhard; Ebert, Volker; Tatrai, David; Bozoki, Zoltan; Finger, Fanny; Klingebiel, Marcus

    2014-05-01

    Water vapour is one of the most important parameters in weather prediction and climate research. Accurate and reliable airborne measurements of water vapour are a pre-requisite to study the underlying processes in the chemistry and physics of the atmosphere. Presently, no airborne water vapour sensor exists that covers the entire range of water vapour content of more than four order of magnitudes between the surface and the UT/LS region with sufficient accuracy and time resolution, not to speak of the technical requirements for quasi-routine operation. In a joint research activity of the European Facility for Airborne Research (EUFAR) programme, funded by the EC in FP7, we have addressed this deficit by the Development and Evaluation of Novel and Compact Hygrometer for Airborne Research (DENCHAR), including the sampling characteristics of different gas/ice inlets. The new instruments using innovative detecting technics based on tuneable diode laser technology combined with absorption spectroscopy (TDLAS) or photoacoustic spectroscopy (PAS): (i) SEALDH based on novel self-calibrating absorption spectroscopy; (ii) WASUL, based on photoacoustic spectroscopy; (iii) commercial WVSS-II, also a TDLAS hygrometer, but using 2f-detection technics. DENCHAR has followed an unique strategy by facilitating new instrumental developments together with conducting extensive testing, both in the laboratory and during in-flight operation. Here, we will present the evaluation of the in-flight performance of the three new hygrometer instruments, which is based on the results obtained during two dedicated research aircraft campaigns (May and September 2013) as part of the AIRTOSS (AIRcraft Towed Sensor Shuttle) experiments. Aboard the Learjet 35A research aircraft the DENCHAR instruments were operated side by side with the well established Fast In-Situ Hygrometer (FISH), which is based on Lyman (alpha) resonance fluorescence detection technics and calibrated to the reference frost point

  7. 14 CFR 121.493 - Flight time limitations: Flight engineers and flight navigators.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight time limitations: Flight engineers and flight navigators. 121.493 Section 121.493 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time...

  8. 14 CFR 121.493 - Flight time limitations: Flight engineers and flight navigators.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight time limitations: Flight engineers and flight navigators. 121.493 Section 121.493 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time...

  9. 14 CFR 121.493 - Flight time limitations: Flight engineers and flight navigators.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight time limitations: Flight engineers and flight navigators. 121.493 Section 121.493 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time...

  10. 14 CFR 121.493 - Flight time limitations: Flight engineers and flight navigators.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight time limitations: Flight engineers and flight navigators. 121.493 Section 121.493 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time...

  11. 14 CFR 121.493 - Flight time limitations: Flight engineers and flight navigators.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight time limitations: Flight engineers and flight navigators. 121.493 Section 121.493 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time...

  12. A concept of a hypersonic flight experiment of a winged vehicle

    NASA Astrophysics Data System (ADS)

    Shirouzu, Masao; Watanabe, Shigeya

    A concept of a flight experiment using a winged hypersonic research vehicle is proposed by the National Aerospace Laboratory (NAL) as one of the flight experiment series preceding to the development of HOPE (H-II Orbiting Plane). The present paper describes the purpose of the experiment, the outline of the flight, the configuration and aerodynamic characteristics of the vehicle, and items of experiment and measurement. The present experiment is to acquire experience on the development and the flight of a hypersonic winged vehicle, in contrast to the ballistic flight of the OREX (Orbital Reentry Experiment) and to collect flight data for validation of tests and simulations on the ground. The vehicle of about 1.5 tons will be launched by a two-stage version of the J-I. The vehicle will be separated at an altitude of 70-80 km at a velocity of Mach 18-20, and inserted to the reentry trajectory of HOPE. The vehicle will be decelerated by parachutes and splash into the ocean south of Japan, where it will be recovered.

  13. A comparison of two recorders for obtaining in-flight heart rate data.

    PubMed

    Dahlstrom, Nicklas; Nahlinder, Staffan

    2006-09-01

    : Measurement of mental workload has been widely used for evaluation of aircraft design, mission analysis and assessment of pilot performance during flight operations. Heart rate is the psychophysiological measure that has been most frequently used for this purpose. The risk of interference with flight safety and pilot performance, as well as the generally constrained access to flights, make it difficult for researchers to collect in-flight heart rate data. Thus, this study was carried out to investigate whether small, non-intrusive sports recorders can be used for in-flight data collection for research purposes. Data was collected from real and simulated flights with student pilots using the Polar Team System sports recorder and the Vitaport II, a clinical and research recording device. Comparison of the data shows that in-flight heart rate data from the smaller and less intrusive sports recorder have a correlation of.981 with that from the clinical recorder, thus indicating that the sports recorder is reliable and cost-effective for obtaining heart rate data for many research situations.

  14. POST II Trajectory Animation Tool Using MATLAB, V1.0

    NASA Technical Reports Server (NTRS)

    Raiszadeh, Behzad

    2005-01-01

    A trajectory animation tool has been developed for accurately depicting position and the attitude of the bodies in flight. The movies generated from This MATLAB based tool serve as an engineering analysis aid to gain further understanding into the dynamic behavior of bodies in flight. This tool has been designed to interface with the output generated from POST II simulations, and is able to animate a single as well as multiple vehicles in flight.

  15. Flight Test Series 3: Flight Test Report

    NASA Technical Reports Server (NTRS)

    Marston, Mike; Sternberg, Daniel; Valkov, Steffi

    2015-01-01

    This document is a flight test report from the Operational perspective for Flight Test Series 3, a subpart of the Unmanned Aircraft System (UAS) Integration in the National Airspace System (NAS) project. Flight Test Series 3 testing began on June 15, 2015, and concluded on August 12, 2015. Participants included NASA Ames Research Center, NASA Armstrong Flight Research Center, NASA Glenn Research Center, NASA Langley Research center, General Atomics Aeronautical Systems, Inc., and Honeywell. Key stakeholders analyzed their System Under Test (SUT) in two distinct configurations. Configuration 1, known as Pairwise Encounters, was subdivided into two parts: 1a, involving a low-speed UAS ownship and intruder(s), and 1b, involving a high-speed surrogate ownship and intruder. Configuration 2, known as Full Mission, involved a surrogate ownship, live intruder(s), and integrated virtual traffic. Table 1 is a summary of flights for each configuration, with data collection flights highlighted in green. Section 2 and 3 of this report give an in-depth description of the flight test period, aircraft involved, flight crew, and mission team. Overall, Flight Test 3 gathered excellent data for each SUT. We attribute this successful outcome in large part from the experience that was acquired from the ACAS Xu SS flight test flown in December 2014. Configuration 1 was a tremendous success, thanks to the training, member participation, integration/testing, and in-depth analysis of the flight points. Although Configuration 2 flights were cancelled after 3 data collection flights due to various problems, the lessons learned from this will help the UAS in the NAS project move forward successfully in future flight phases.

  16. Morphological Properties of Slender Ca II H Fibrils Observed by Sunrise II

    NASA Astrophysics Data System (ADS)

    Gafeira, R.; Lagg, A.; Solanki, S. K.; Jafarzadeh, S.; van Noort, M.; Barthol, P.; Blanco Rodríguez, J.; del Toro Iniesta, J. C.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; Knölker, M.; Orozco Suárez, D.; Riethmüller, T. L.; Schmidt, W.

    2017-03-01

    We use seeing-free high spatial resolution Ca II H data obtained by the Sunrise observatory to determine properties of slender fibrils in the lower solar chromosphere. In this work we use intensity images taken with the SuFI instrument in the Ca II H line during the second scientific flight of the Sunrise observatory to identify and track elongated bright structures. After identification, we analyze theses structures to extract their morphological properties. We identify 598 slender Ca II H fibrils (SCFs) with an average width of around 180 km, length between 500 and 4000 km, average lifetime of ≈400 s, and average curvature of 0.002 arcsec-1. The maximum lifetime of the SCFs within our time series of 57 minutes is ≈2000 s. We discuss similarities and differences of the SCFs with other small-scale, chromospheric structures such as spicules of type I and II, or Ca II K fibrils.

  17. Aerospace Toolbox--a flight vehicle design, analysis, simulation, and software development environment II: an in-depth overview

    NASA Astrophysics Data System (ADS)

    Christian, Paul M.

    2002-07-01

    This paper presents a demonstrated approach to significantly reduce the cost and schedule of non real-time modeling and simulation, real-time HWIL simulation, and embedded code development. The tool and the methodology presented capitalize on a paradigm that has become a standard operating procedure in the automotive industry. The tool described is known as the Aerospace Toolbox, and it is based on the MathWorks Matlab/Simulink framework, which is a COTS application. Extrapolation of automotive industry data and initial applications in the aerospace industry show that the use of the Aerospace Toolbox can make significant contributions in the quest by NASA and other government agencies to meet aggressive cost reduction goals in development programs. The part I of this paper provided a detailed description of the GUI based Aerospace Toolbox and how it is used in every step of a development program; from quick prototyping of concept developments that leverage built-in point of departure simulations through to detailed design, analysis, and testing. Some of the attributes addressed included its versatility in modeling 3 to 6 degrees of freedom, its library of flight test validated library of models (including physics, environments, hardware, and error sources), and its built-in Monte Carlo capability. Other topics that were covered in part I included flight vehicle models and algorithms, and the covariance analysis package, Navigation System Covariance Analysis Tools (NavSCAT). Part II of this series will cover a more in-depth look at the analysis and simulation capability and provide an update on the toolbox enhancements. It will also address how the Toolbox can be used as a design hub for Internet based collaborative engineering tools such as NASA's Intelligent Synthesis Environment (ISE) and Lockheed Martin's Interactive Missile Design Environment (IMD).

  18. LDSD POST2 Modeling Enhancements in Support of SFDT-2 Flight Operations

    NASA Technical Reports Server (NTRS)

    White, Joseph; Bowes, Angela L.; Dutta, Soumyo; Ivanov, Mark C.; Queen, Eric M.

    2016-01-01

    Program to Optimize Simulated Trajectories II (POST2) was utilized to develop trajectory simulations characterizing all flight phases from drop to splashdown for the Low-Density Supersonic Decelerator (LDSD) project's first and second Supersonic Flight Dynamics Tests (SFDT-1 and SFDT-2) which took place June 28, 2014 and June 8, 2015, respectively. This paper describes the modeling improvements incorporated into the LDSD POST2 simulations since SFDT-1 and presents how these modeling updates affected the predicted SFDT-2 performance and sensitivity to the mission design. The POST2 simulation flight dynamics support during the SFDT-2 launch, operations, and recovery is also provided.

  19. Command Flight Path Display. Phase I and II. Appendix F.

    DTIC Science & Technology

    1983-09-01

    AD -R145 858 COMMAND FLIGHT PATH DISPLAY PHASE I AND 11 APPENDIX F / (U) SYSTEMS ASSOCIATES INC LONG BEACH CA RESOURCE MANAGEMENT SYSTEMS DIY SEP...34- (Appendix F) .ś. SYSTEMS ASSOCIATES INC* of CALIFORNIA t. Resource Management Systems Division DTICL it~~~ll ELECTE 1 o..-- , ~SEP 2 4 1984...Availability Codos Avail and/or Dist Special "i j L i 7 7 .... Contained in this appendix are the various plots generated dur- ing data reduction. Parameters

  20. Flight of a UV spectrophotometer aboard Galileo 2, the NASA Convair 990 aircraft

    NASA Technical Reports Server (NTRS)

    Sellers, B.; Hunderwadel, J. L.; Hanser, F. A.

    1976-01-01

    An ultraviolet interference-filter spectrophotometer (UVS) fabricated for aircraft-borne use on the DOT Climatic Impact Assessment Program (CIAP) has been successfully tested in a series of flights on the NASA Convair 990, Galileo II. UV flux data and the calculated total ozone above the flight path are reported for several of the flights. Good agreement is obtained with the total ozone as deducted by integration of an ozone sonde vertical profile obtained at Wallops Island, Virginia near the time of a CV-990 underpass. Possible advantages of use of the UVS in the NASA Global Atmospheric Sampling Program are discussed.

  1. STS-56 Pilot Oswald uses SAREX on forward flight deck of Discovery, OV-103

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-56 Pilot Stephen S. Oswald, wearing headset, uses the Shuttle Amateur Radio Experiment II (SAREX-II) while sitting at the pilots station on the forward flight deck of Discovery, Orbiter Vehicle (OV) 103. Oswald smiles from behind the microphone as he talks to amateur radio operators on Earth via the SAREX equipment. SAREX cables and the interface module freefloat in front of Oswald. The antenna located in forward flight deck window W6 is visible in the background. SAREX was established by NASA, the American Radio League/Amateur Radio Satellite Corporation and the JSC Amateur Radio Club to encourage public participation in the space program through a program to demonstrate the effectiveness of conducting short-wave radio transmissions between the Shuttle and ground-based radio operators at low-cost ground stations with amateur and digital techniques. As on several previous missions, SAREX was used on this flight as an educational opportunity for students around the world to learn ab

  2. Initial Flight Test of the Production Support Flight Control Computers at NASA Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Carter, John; Stephenson, Mark

    1999-01-01

    The NASA Dryden Flight Research Center has completed the initial flight test of a modified set of F/A-18 flight control computers that gives the aircraft a research control law capability. The production support flight control computers (PSFCC) provide an increased capability for flight research in the control law, handling qualities, and flight systems areas. The PSFCC feature a research flight control processor that is "piggybacked" onto the baseline F/A-18 flight control system. This research processor allows for pilot selection of research control law operation in flight. To validate flight operation, a replication of a standard F/A-18 control law was programmed into the research processor and flight-tested over a limited envelope. This paper provides a brief description of the system, summarizes the initial flight test of the PSFCC, and describes future experiments for the PSFCC.

  3. Closeup of F-15B Flight Test Fixture (FTF) with X-33 Thermal Protection Systems (TPS)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A close up of the Flight Test Fixture II, mounted on the underside of the F-15B Aerodynamic Flight Facility aircraft. The Thermal Protection System (TPS)samples, which included metallic Inconel tiles, soft Advanced Flexible Reusable Surface Insulation tiles, and sealing materials, were attached to the forward-left side position of the test fixture. In-flight video from the aircraft's on-board video system, as well as chase aircraft photos and video footage, documented the condition of the TPS during flights. Surface pressures over the TPS was measured by thermocouples contained in instrumentation 'islands,' to document shear and shock loads.

  4. Closeup of F-15B Flight Test Fixture (FTF) with X-33 Thermal Protection Systems (TPS)

    NASA Image and Video Library

    1998-05-14

    A close up of the Flight Test Fixture II, mounted on the underside of the F-15B Aerodynamic Flight Facility aircraft. The Thermal Protection System (TPS) samples, which included metallic Inconel tiles, soft Advanced Flexible Reusable Surface Insulation tiles, and sealing materials, were attached to the forward-left side position of the test fixture. In-flight video from the aircraft's on-board video system, as well as chase aircraft photos and video footage, documented the condition of the TPS during flights. Surface pressures over the TPS was measured by thermocouples contained in instrumentation "islands," to document shear and shock loads.

  5. CDF-II and B physics

    NASA Astrophysics Data System (ADS)

    Lockyer, Nigel S.

    1998-02-01

    This paper reports on the CDF-II B physics goals and new detector systems presently being built for Run-II of the Tevatron collider in the year 2000. The B physics goals are focused towards observing and studying CP violation and B s flavor oscillations. Estimates of expected performance are reported. The new detector systems described are: the 5-layer 3-D silicon vertex detector, the intermedia silicon tracking layers, the central tracking drift chamber, muon system upgrades, and a proposed time-of-flight system.

  6. Initial SVS Integrated Technology Evaluation Flight Test Requirements and Hardware Architecture

    NASA Technical Reports Server (NTRS)

    Harrison, Stella V.; Kramer, Lynda J.; Bailey, Randall E.; Jones, Denise R.; Young, Steven D.; Harrah, Steven D.; Arthur, Jarvis J.; Parrish, Russell V.

    2003-01-01

    This document presents the flight test requirements for the Initial Synthetic Vision Systems Integrated Technology Evaluation flight Test to be flown aboard NASA Langley's ARIES aircraft and the final hardware architecture implemented to meet these requirements. Part I of this document contains the hardware, software, simulator, and flight operations requirements for this light test as they were defined in August 2002. The contents of this section are the actual requirements document that was signed for this flight test. Part II of this document contains information pertaining to the hardware architecture that was realized to meet these requirements as presented to and approved by a Critical Design Review Panel prior to installation on the B-757 Airborne Research Integrated Experiments Systems (ARIES) airplane. This information includes a description of the equipment, block diagrams of the architecture, layouts of the workstations, and pictures of the actual installations.

  7. Zodiac II: Debris Disk Imaging Potential

    NASA Technical Reports Server (NTRS)

    Traub Wesley; Bryden, Geoff; Stapelfeldt, Karl; Chen, Pin; Trauger, John

    2011-01-01

    Zodiac II is a proposed coronagraph on a balloon-borne platform, for the purpose of observing debris disks around nearby stars. Zodiac II will have a 1.2-m diameter telescope mounted in a balloon-borne gondola capable of arcsecond quality pointing, and with the capability to make long-duration (several week) flights. Zodiac II will have a coronagraph able to make images of debris disks, meaning that its scattered light speckles will be at or below an average contrast level of about 10(exp -7) in three narrow (7 percent) bands centered on the V band, and one broad (20%) one at I band. We will discuss the potential science to be done with Zodiac II.

  8. Delta II ICESat-2 Booster Transport

    NASA Image and Video Library

    2018-04-17

    At Vandenberg Air Force Base in California, on Tuesday, April 17, 2018, a United Launch Alliance (ULA) Delta II booster is transported to Space Launch Complex-2 where it will launch NASA's Ice, Cloud and land Elevation Satellite-2, or ICESat-2, satellite. This will be the last flight for the venerable Delta II rocket. ICESat-2, which is being built and tested by Orbital ATK in Gilbert, Arizona, will carry a single instrument called the Advanced Topographic Laser Altimeter System, or ATLAS. The ATLAS instrument is being built and tested at NASA’s Goddard Space Flight Center in Greenbelt Maryland. Once in orbit, the satellite is designed to measure the height of a changing Earth, one laser pulse at a time, 10,000 laser pulses a second. ICESat-2 will help scientists investigate why, and how much, Earth’s frozen and icy areas, called the cryosphere, are changing.

  9. Delta II ICESat-2 Booster Transport

    NASA Image and Video Library

    2018-04-17

    At Vandenberg Air Force Base in California, on Tuesday, April 17, 2018, a United Launch Alliance (ULA) Delta II booster arrives at Space Launch Complex-2 where it will launch NASA's Ice, Cloud and land Elevation Satellite-2, or ICESat-2, satellite. This will be the last flight for the venerable Delta II rocket. ICESat-2, which is being built and tested by Orbital ATK in Gilbert, Arizona, will carry a single instrument called the Advanced Topographic Laser Altimeter System, or ATLAS. The ATLAS instrument is being built and tested at NASA’s Goddard Space Flight Center in Greenbelt Maryland. Once in orbit, the satellite is designed to measure the height of a changing Earth, one laser pulse at a time, 10,000 laser pulses a second. ICESat-2 will help scientists investigate why, and how much, Earth’s frozen and icy areas, called the cryosphere, are changing.

  10. 14 CFR 135.111 - Second in command required in Category II operations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Second in command required in Category II... Flight Operations § 135.111 Second in command required in Category II operations. No person may operate an aircraft in a Category II operation unless there is a second in command of the aircraft. ...

  11. 14 CFR 135.111 - Second in command required in Category II operations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Second in command required in Category II... Flight Operations § 135.111 Second in command required in Category II operations. No person may operate an aircraft in a Category II operation unless there is a second in command of the aircraft. ...

  12. 14 CFR 135.111 - Second in command required in Category II operations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Second in command required in Category II... Flight Operations § 135.111 Second in command required in Category II operations. No person may operate an aircraft in a Category II operation unless there is a second in command of the aircraft. ...

  13. 14 CFR 135.111 - Second in command required in Category II operations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Second in command required in Category II... Flight Operations § 135.111 Second in command required in Category II operations. No person may operate an aircraft in a Category II operation unless there is a second in command of the aircraft. ...

  14. 14 CFR 135.111 - Second in command required in Category II operations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Second in command required in Category II... Flight Operations § 135.111 Second in command required in Category II operations. No person may operate an aircraft in a Category II operation unless there is a second in command of the aircraft. ...

  15. The SHEFEX II Thermal Protection System

    NASA Astrophysics Data System (ADS)

    Bohrk, H.; Elsaber, H.; Weihs, H.

    2011-05-01

    The SHEFEXII payload tip is ready for flight. Within a period of three years, the experiment has been designed, laid out, parts have been manufactured, mounted and instrumented for the upcoming flight in autumn 2011. The present paper gives an overview over the thermal protection system (TPS) of the SHEFEX II vehicle including the TPS-material, the overall TPS-setup, and detailed informations on the faceted ther- mal protection including the gap seal, the sharp leading edge, the transpiration-cooling experiment AKTIV, and the aerodynamic control surfaces, i.e. canards.

  16. Short-term effect of percutaneous recanalization of chronic total occlusions on QT dispersion and heart rate variability parameters

    PubMed Central

    Erdogan, Ercan; Akkaya, Mehmet; Bacaksız, Ahmet; Tasal, Abdurrahman; Sönmez, Osman; Asoglu, Emin; Kul, Seref; Sahın, Musa; Turfan, Murat; Vatankulu, Mehmet Akif; Göktekin, Omer

    2013-01-01

    Background QT dispersion (QTd), which is a measure of inhomogeneity of myocardial repolarization, increases following impaired myocardial perfusion. Its prolongation may provide a suitable substrate for life-threatening ventricular arrhythmias. We investigated the changes in QTd and heart rate variability (HRV) parameters after successful coronary artery revascularization in a patient with chronic total occlusions (CTO). Material/Methods This study included 139 successfully revascularized CTO patients (118 men, 21 women, mean age 58.3±9.6 years). QTd was measured from a 12-lead electrocardiogram and was defined as the difference between maximum and minimum QT interval. HRV analyses of all subjects were obtained. Frequency domain (LF: HF) and time domain (SDNN, pNN50, and rMSSD) parameters were analyzed. QT intervals were also corrected for heart rate using Bazett’s formula, and the corrected QT interval dispersion (QTcd) was then calculated. All measurements were made before and after percutaneous coronary intervention (PCI). Results Both QTd and QTcd showed significant improvement following successful revascularization of CTO (55.83±14.79 to 38.87±11.69; p<0.001 and 61.02±16.28 to 42.92±13.41; p<0.001). The revascularization of LAD (n=38), Cx (n=28) and RCA (n=73) resulted in decrease in HRV indices, including SDDN, rMSSD, and pNN50, but none of the variables reached statistical significance. Conclusions Successful revascularization of CTO may result in improvement in regional heterogeneity of myocardial repolarization, evidenced as decreased QTcd after the PCI. The revascularization in CTO lesions does not seem to have a significant impact on HRV. PMID:23969577

  17. DAST Mated to B-52 in Flight - Close-up from Below

    NASA Technical Reports Server (NTRS)

    1977-01-01

    This photo shows a BQM-34 Firebee II drone being carried aloft under the wing of NASA's B-52 mothership during a 1977 research flight. The Firebee/DAST research program ran from 1977 to 1983 at the NASA Dryden Flight Research Center, Edwards, California. This is the original Firebee II wing. Firebee 72-1564 made three captive flights--on November 25, 1975; May 17, 1976; and June 22, 1977--in preparation for the DAST project with modified wings. These were for checkout of the Firebee's systems and the prelaunch procedures. The first two used a DC-130A aircraft as the launch vehicle, while the third used the B-52. A single free flight using this drone occurred on July 28, 1977. The remote (ground) pilot was NASA research pilot Bill Dana. The launch and flight were successful, and the drone was caught in midair by an HH-53 helicopter. These are the image contact sheets for each image resolution of the NASA Dryden Drones for Aerodynamic and Structural Testing (DAST) Photo Gallery. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and improve airplane efficiency. The DAST Program's drones provided an economical, fuel-conscious method for

  18. A Valuable Tool in Predicting Poor Outcome due to Sepsis in Pediatric Intensive Care Unit: Tp-e/QT Ratio.

    PubMed

    Ozdemir, Rahmi; Isguder, Rana; Kucuk, Mehmet; Karadeniz, Cem; Ceylan, Gokhan; Katipoglu, Nagehan; Yilmazer, Murat Muhtar; Yozgat, Yilmaz; Mese, Timur; Agin, Hasan

    2016-10-01

    To assess the feasibility of 12-lead electrocardiographic (ECG) measures such as P wave dispersion (PWd), QT interval, QT dispersion (QTd), Tp-e interval, Tp-e/QT and Tp-e/QTc ratio in predicting poor outcome in patients diagnosed with sepsis in pediatric intensive care unit (PICU). Ninety-three patients diagnosed with sepsis, severe sepsis or septic shock and 103 age- and sex-matched healthy children were enrolled into the study. PWd, QT interval, QTd, Tp-e interval and Tp-e/QT, Tp-e/QTc ratios were obtained from a 12-lead electrocardiogram. PWd, QTd, Tp-e interval and Tp-e/QT, Tp-e/QTc ratios were significantly higher in septic patients compared with the controls. During the study period, 41 patients had died. In multivariate logistic regression analyses, only Tp-e/QT ratio was found to be an independent predictor of mortality. The ECG measurements can predict the poor outcome in patients with sepsis. The Tp-e/QT ratio may be a valuable tool in predicting mortality for patients with sepsis in the PICU. © The Author [2016]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Low speed maneuvering flight of the rose-breasted cockatoo (Eolophus roseicapillus). II. Inertial and aerodynamic reorientation.

    PubMed

    Hedrick, T L; Usherwood, J R; Biewener, A A

    2007-06-01

    The reconfigurable, flapping wings of birds allow for both inertial and aerodynamic modes of reorientation. We found evidence that both these modes play important roles in the low speed turning flight of the rose-breasted cockatoo Eolophus roseicapillus. Using three-dimensional kinematics recorded from six cockatoos making a 90 degrees turn in a flight corridor, we developed predictions of inertial and aerodynamic reorientation from estimates of wing moments of inertia and flapping arcs, and a blade-element aerodynamic model. The blade-element model successfully predicted weight support (predicted was 88+/-17% of observed, N=6) and centripetal force (predicted was 79+/-29% of observed, N=6) for the maneuvering cockatoos and provided a reasonable estimate of mechanical power. The estimated torque from the model was a significant predictor of roll acceleration (r(2)=0.55, P<0.00001), but greatly overestimated roll magnitude when applied with no roll damping. Non-dimensional roll damping coefficients of approximately -1.5, 2-6 times greater than those typical of airplane flight dynamics (approximately -0.45), were required to bring our estimates of reorientation due to aerodynamic torque back into conjunction with the measured changes in orientation. Our estimates of inertial reorientation were statistically significant predictors of the measured reorientation within wingbeats (r(2) from 0.2 to 0.37, P<0.0005). Components of both our inertial reorientation and aerodynamic torque estimates correlated, significantly, with asymmetries in the activation profile of four flight muscles: the pectoralis, supracoracoideus, biceps brachii and extensor metacarpi radialis (r(2) from 0.27 to 0.45, P<0.005). Thus, avian flight maneuvers rely on production of asymmetries throughout the flight apparatus rather than in a specific set of control or turning muscles.

  20. [The comparative characteristics of crystalline lens and limb regeneration in newts operated on before and after the completion of an orbital space flight].

    PubMed

    Tuchkova, S Ia; Brushlinskaia, N V; Grigorian, E N; Mitashov, V I

    1994-01-01

    It has been already established that a tendency towards synchronization and acceleration of the forelimb and lens regeneration is observed in Pleurodeles waltlii under the effect of space flight factors. Here we present the results obtained after 16-day space flight of two groups of newts. In animals of group I forelimbs were amputated and lenses were removed 14 and 7 days before the space flight, respectively. Intact animals of group II were operated on the day of the sputnik landing. Regenerates of the flight and corresponding control animals were fixed at the same time after the operation. For evaluation of the regeneration rate morphological criteria were used: morphological stages of regeneration were compared in the experiment and the control. For quantitative assay of the regeneration rate we determined the index of nuclei labelled with 3H-thymidine in the blastema and lens rudiment cells and used morphometry of the lens regenerates. Acceleration of forelimb and lens regeneration was observed in both groups of animals. In group II more than two-fold increase of the index of labelled nuclei was found in the blastema cells at the comparable stages of development. The size of lens regenerates in flight groups I and II exceeded reliably those in the control animals. The results obtained suggest a prolonged effect of the space flight factors on forelimb and lens regeneration. Under the conditions of space flight the lens regenerates reached more advanced stages of regeneration, as compared with the control animals operated after the space flight. These results also suggest acceleration of regeneration in lower vertebrates.

  1. 14 CFR 93.305 - Flight-free zones and flight corridors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Flight-free zones and flight corridors. 93... Vicinity of Grand Canyon National Park, AZ § 93.305 Flight-free zones and flight corridors. Except in an... Flight Rules Area within the following flight-free zones: (a) Desert View Flight-free Zone. That airspace...

  2. 14 CFR 93.305 - Flight-free zones and flight corridors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Flight-free zones and flight corridors. 93... Vicinity of Grand Canyon National Park, AZ § 93.305 Flight-free zones and flight corridors. Except in an... Flight Rules Area within the following flight-free zones: (a) Desert View Flight-free Zone. That airspace...

  3. 14 CFR 93.305 - Flight-free zones and flight corridors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight-free zones and flight corridors. 93... Vicinity of Grand Canyon National Park, AZ § 93.305 Flight-free zones and flight corridors. Except in an... Flight Rules Area within the following flight-free zones: (a) Desert View Flight-free Zone. That airspace...

  4. 14 CFR 93.305 - Flight-free zones and flight corridors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Flight-free zones and flight corridors. 93... Vicinity of Grand Canyon National Park, AZ § 93.305 Flight-free zones and flight corridors. Except in an... Flight Rules Area within the following flight-free zones: (a) Desert View Flight-free Zone. That airspace...

  5. 14 CFR 93.305 - Flight-free zones and flight corridors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Flight-free zones and flight corridors. 93... Vicinity of Grand Canyon National Park, AZ § 93.305 Flight-free zones and flight corridors. Except in an... Flight Rules Area within the following flight-free zones: (a) Desert View Flight-free Zone. That airspace...

  6. Flight Performance of the Inflatable Reentry Vehicle Experiment 3

    NASA Technical Reports Server (NTRS)

    Dillman, Robert; DiNonno, John; Bodkin, Richard; Gsell, Valerie; Miller, Nathanael; Olds, Aaron; Bruce, Walter

    2013-01-01

    The Inflatable Reentry Vehicle Experiment 3 (IRVE-3) launched July 23, 2012, from NASA Wallops Flight Facility (WFF) on a Black Brant XI suborbital sounding rocket and successfully performed its mission, demonstrating the survivability of a hypersonic inflatable aerodynamic decelerator (HIAD) in the reentry heating environment and also illustrating the effect of an offset center of gravity on the HIAD's lift-to-drag ratio. IRVE-3 was a follow-on to 2009's IRVE-II mission, which demonstrated exo-atmospheric inflation, reentry survivability - without significant heating - and the aerodynamic stability of a HIAD down to subsonic flight conditions. NASA Langley Research Center is leading the development of HIAD technology for use on future interplanetary and Earth reentry missions.

  7. Delta II ICESat-2 Booster Transport

    NASA Image and Video Library

    2018-04-17

    At NASA's Building 836, the Spacecraft Labs Telemetry Station at Vandenberg Air Force Base in California, on Tuesday, April 17, 2018, a United Launch Alliance (ULA) Delta II booster is transported to Space Launch Complex-2 where it will launch NASA's Ice, Cloud and land Elevation Satellite-2, or ICESat-2, satellite. This will be the last flight for the venerable Delta II rocket. ICESat-2, which is being built and tested by Orbital ATK in Gilbert, Arizona, will carry a single instrument called the Advanced Topographic Laser Altimeter System, or ATLAS. The ATLAS instrument is being built and tested at NASA’s Goddard Space Flight Center in Greenbelt Maryland. Once in orbit, the satellite is designed to measure the height of a changing Earth, one laser pulse at a time, 10,000 laser pulses a second. ICESat-2 will help scientists investigate why, and how much, Earth’s frozen and icy areas, called the cryosphere, are changing.

  8. The aerodynamics of flight in an insect flight-mill

    PubMed Central

    Barkan, Shay; Soroker, Victoria

    2017-01-01

    Predicting the dispersal of pest insects is important for pest management schemes. Flight-mills provide a simple way to evaluate the flight potential of insects, but there are several complications in relating tethered-flight to natural flight. We used high-speed video to evaluate the effect of flight-mill design on flight of the red palm weevil (Rynchophorous ferruginneus) in four variants of a flight-mill. Two variants had the rotating radial arm pivoted on the main shaft of the rotation axis, allowing freedom to elevate the arm as the insect applied lift force. Two other variants had the pivot point fixed, restricting the radial arm to horizontal motion. Beetles were tethered with their lateral axis horizontal or rotated by 40°, as in a banked turn. Flight-mill type did not affect flight speed or wing-beat frequency, but did affect flapping kinematics. The wingtip internal to the circular trajectory was always moved faster relative to air, suggesting that the beetles were attempting to steer in the opposite direction to the curved trajectory forced by the flight-mill. However, banked beetles had lower flapping asymmetry, generated higher lift forces and lost more of their body mass per time and distance flown during prolonged flight compared to beetles flying level. The results indicate, that flapping asymmetry and low lift can be rectified by tethering the beetle in a banked orientation, but the flight still does not correspond directly to free-flight. This should be recognized and taken into account when designing flight-mills and interoperating their data. PMID:29091924

  9. The aerodynamics of flight in an insect flight-mill.

    PubMed

    Ribak, Gal; Barkan, Shay; Soroker, Victoria

    2017-01-01

    Predicting the dispersal of pest insects is important for pest management schemes. Flight-mills provide a simple way to evaluate the flight potential of insects, but there are several complications in relating tethered-flight to natural flight. We used high-speed video to evaluate the effect of flight-mill design on flight of the red palm weevil (Rynchophorous ferruginneus) in four variants of a flight-mill. Two variants had the rotating radial arm pivoted on the main shaft of the rotation axis, allowing freedom to elevate the arm as the insect applied lift force. Two other variants had the pivot point fixed, restricting the radial arm to horizontal motion. Beetles were tethered with their lateral axis horizontal or rotated by 40°, as in a banked turn. Flight-mill type did not affect flight speed or wing-beat frequency, but did affect flapping kinematics. The wingtip internal to the circular trajectory was always moved faster relative to air, suggesting that the beetles were attempting to steer in the opposite direction to the curved trajectory forced by the flight-mill. However, banked beetles had lower flapping asymmetry, generated higher lift forces and lost more of their body mass per time and distance flown during prolonged flight compared to beetles flying level. The results indicate, that flapping asymmetry and low lift can be rectified by tethering the beetle in a banked orientation, but the flight still does not correspond directly to free-flight. This should be recognized and taken into account when designing flight-mills and interoperating their data.

  10. Miracle Flights

    MedlinePlus

    ... the perfect solution for your needs. Book A Flight Request a flight now Click on the link ... Now Make your donation today Saving Lives One Flight At A Time Miracle Flights provides children and ...

  11. The LPSP instrument on OSO 8. II - In-flight performance and preliminary results

    NASA Technical Reports Server (NTRS)

    Bonnet, R. M.; Lemaire, P.; Vial, J. C.; Artzner, G.; Gouttebroze, P.; Jouchoux, A.; Vidal-Madjar, A.; Leibacher, J. W.; Skumanich, A.

    1978-01-01

    The paper describes the in-flight performance for the first 18 months of operation of the LPSP (Laboratoire de Physique Stellaire et Planetaire) instrument incorporated in the OSO 8 launched June 1975. By means of the instrument, an absolute pointing accuracy of nearly one second was achieved in orbit during real-time operations. The instrument uses a Cassegrain telescope and a spectrometer simultaneously observing six wavelengths. In-flight performance is discussed with attention to angular resolution, spectral resolution, dispersion and grating mechanism (spectral scanner) stability, scattered light background and dark current, photometric standardization, and absolute calibration. Real-time operation and problems are considered with reference to pointing system problems, target acquisition, and L-alpha modulation. Preliminary results involving the observational program, quiet sun and chromospheric studies, quiet chromospheric oscillation and transients, sunspots and active regions, prominences, and aeronomy investigations are reported.

  12. DAST in Flight just after Structural Failure of Right Wing

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Two BQM-34 Firebee II drones were modified with supercritical airfoils, called the Aeroelastic Research Wing (ARW), for the Drones for Aerodynamic and Structural Testing (DAST) program, which ran from 1977 to 1983. This photo, taken 12 June 1980, shows the DAST-1 (Serial #72-1557) immediately after it lost its right wing after suffering severe wing flutter. The vehicle crashed near Cuddeback Dry Lake. The Firebee II was selected for the DAST program because its standard wing could be removed and replaced by a supercritical wing. The project's digital flutter suppression system was intended to allow lighter wing structures, which would translate into better fuel economy for airliners. Because the DAST vehicles were flown intentionally at speeds and altitudes that would cause flutter, the program anticipated that crashes might occur. These are the image contact sheets for each image resolution of the NASA Dryden Drones for Aerodynamic and Structural Testing (DAST) Photo Gallery. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and improve airplane efficiency. The DAST Program's drones provided an economical, fuel-conscious method for

  13. In-Flight Sleep of Flight Crew During a 7-hour Rest Break: Implications for Research and Flight Safety

    PubMed Central

    Signal, T. Leigh; Gander, Philippa H.; van den Berg, Margo J.; Graeber, R. Curtis

    2013-01-01

    Study Objectives: To assess the amount and quality of sleep that flight crew are able to obtain during flight, and identify factors that influence the sleep obtained. Design: Flight crew operating flights between Everett, WA, USA and Asia had their sleep recorded polysomnographically for 1 night in a layover hotel and during a 7-h in-flight rest opportunity on flights averaging 15.7 h. Setting: Layover hotel and in-flight crew rest facilities onboard the Boeing 777-200ER aircraft. Participants: Twenty-one male flight crew (11 Captains, mean age 48 yr and 10 First Officers, mean age 35 yr). Interventions: N/A. Measurements and Results: Sleep was recorded using actigraphy during the entire tour of duty, and polysomnographically in a layover hotel and during the flight. Mixed model analysis of covariance was used to determine the factors affecting in-flight sleep. In-flight sleep was less efficient (70% vs. 88%), with more nonrapid eye movement Stage 1/Stage 2 and more frequent awakenings per h (7.7/h vs. 4.6/h) than sleep in the layover hotel. In-flight sleep included very little slow wave sleep (median 0.5%). Less time was spent trying to sleep and less sleep was obtained when sleep opportunities occurred during the first half of the flight. Multivariate analyses suggest age is the most consistent factor affecting in-flight sleep duration and quality. Conclusions: This study confirms that even during long sleep opportunities, in-flight sleep is of poorer quality than sleep on the ground. With longer flight times, the quality and recuperative value of in-flight sleep is increasingly important for flight safety. Because the age limit for flight crew is being challenged, the consequences of age adversely affecting sleep quantity and quality need to be evaluated. Citation: Signal TL; Gander PH; van den Berg MJ; Graeber RC. In-flight sleep of flight crew during a 7-hour rest break: implications for research and flight safety. SLEEP 2013;36(1):109–115. PMID:23288977

  14. Synthetic Vision Enhanced Surface Operations and Flight Procedures Rehearsal Tool

    NASA Technical Reports Server (NTRS)

    Arthur, Jarvis J., III; Prinzel, Lawrence J., III; Williams, Steven P.; Kramer, Lynda J.

    2006-01-01

    Limited visibility has been cited as predominant causal factor for both Controlled-Flight-Into-Terrain (CFIT) and runway incursion accidents. NASA is conducting research and development of Synthetic Vision Systems (SVS) technologies which may potentially mitigate low visibility conditions as a causal factor to these accidents while replicating the operational benefits of clear day flight operations, regardless of the actual outside visibility condition. Two experimental evaluation studies were performed to determine the efficacy of two concepts: 1) head-worn display application of SVS technology to enhance transport aircraft surface operations, and 2) three-dimensional SVS electronic flight bag display concept for flight plan preview, mission rehearsal and controller-pilot data link communications interface of flight procedures. In the surface operation study, pilots evaluated two display devices and four display modes during taxi under unlimited and CAT II visibility conditions. In the mission rehearsal study, pilots flew approaches and departures in an operationally-challenged airport environment, including CFIT scenarios. Performance using the SVS concepts was compared to traditional baseline displays with paper charts only or EFB information. In general, the studies evince the significant situation awareness and enhanced operational capabilities afforded from these advanced SVS display concepts. The experimental results and conclusions from these studies are discussed along with future directions.

  15. Pre-flight sensorimotor adaptation protocols for suborbital flight.

    PubMed

    Shelhamer, Mark; Beaton, Kara

    2012-01-01

    Commercial suborbital flights, which include 3-5 minutes of 0 g between hyper-g launch and landing phases, will present suborbital passengers with a challenging sensorimotor experience. Based on the results of neurovestibular research in parabolic and orbital flight, and the anticipated wide range of fitness and experience levels of suborbital passengers, neurovestibular disturbances are likely to be problematic in this environment. Pre-flight adaptation protocols might alleviate some of these issues. Therefore, we describe a set of sensorimotor tests to evaluate passengers before suborbital flight, including assessment of the angular vestibulo-ocular reflex (VOR), ocular skew and disconjugate torsion, subjective visual vertical, and roll vection. Performance on these tests can be examined for correlations with in-flight experience, such as motion sickness, disorientation, and visual disturbances, based on questionnaires and cabin video recordings. Through an understanding of sensorimotor adaptation to parabolic and orbital flight, obtained from many previous studies, we can then suggest appropriate pre-flight adaptation procedures.

  16. In-flight sleep of flight crew during a 7-hour rest break: implications for research and flight safety.

    PubMed

    Signal, T Leigh; Gander, Philippa H; van den Berg, Margo J; Graeber, R Curtis

    2013-01-01

    To assess the amount and quality of sleep that flight crew are able to obtain during flight, and identify factors that influence the sleep obtained. Flight crew operating flights between Everett, WA, USA and Asia had their sleep recorded polysomnographically for 1 night in a layover hotel and during a 7-h in-flight rest opportunity on flights averaging 15.7 h. Layover hotel and in-flight crew rest facilities onboard the Boeing 777-200ER aircraft. Twenty-one male flight crew (11 Captains, mean age 48 yr and 10 First Officers, mean age 35 yr). N/A. Sleep was recorded using actigraphy during the entire tour of duty, and polysomnographically in a layover hotel and during the flight. Mixed model analysis of covariance was used to determine the factors affecting in-flight sleep. In-flight sleep was less efficient (70% vs. 88%), with more nonrapid eye movement Stage 1/Stage 2 and more frequent awakenings per h (7.7/h vs. 4.6/h) than sleep in the layover hotel. In-flight sleep included very little slow wave sleep (median 0.5%). Less time was spent trying to sleep and less sleep was obtained when sleep opportunities occurred during the first half of the flight. Multivariate analyses suggest age is the most consistent factor affecting in-flight sleep duration and quality. This study confirms that even during long sleep opportunities, in-flight sleep is of poorer quality than sleep on the ground. With longer flight times, the quality and recuperative value of in-flight sleep is increasingly important for flight safety. Because the age limit for flight crew is being challenged, the consequences of age adversely affecting sleep quantity and quality need to be evaluated.

  17. 14 CFR 121.511 - Flight time limitations: Flight engineers: airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight time limitations: Flight engineers... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations: Supplemental Operations § 121.511 Flight time limitations: Flight engineers: airplanes. (a) In any operation in which one...

  18. 14 CFR 121.511 - Flight time limitations: Flight engineers: airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight time limitations: Flight engineers... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations: Supplemental Operations § 121.511 Flight time limitations: Flight engineers: airplanes. (a) In any operation in which one...

  19. 14 CFR 121.511 - Flight time limitations: Flight engineers: airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight time limitations: Flight engineers... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations: Supplemental Operations § 121.511 Flight time limitations: Flight engineers: airplanes. (a) In any operation in which one...

  20. 14 CFR 121.511 - Flight time limitations: Flight engineers: airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight time limitations: Flight engineers... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations: Supplemental Operations § 121.511 Flight time limitations: Flight engineers: airplanes. (a) In any operation in which one...

  1. Method of Curved Models and Its Application to the Study of Curvilinear Flight of Airships. Part II

    NASA Technical Reports Server (NTRS)

    Gourjienko, G A

    1937-01-01

    This report compares the results obtained by the aid of curved models with the results of tests made by the method of damped oscillations, and with flight tests. Consequently we shall be able to judge which method of testing in the tunnel produces results that are in closer agreement with flight test results.

  2. STS-65 Commander Cabana with SAREX-II on Columbia's, OV-102's, flight deck

    NASA Image and Video Library

    1994-07-23

    STS065-44-014 (8-23 July 1994) --- Astronaut Robert D. Cabana, mission commander, is seen on the Space Shuttle Columbia's flight deck with the Shuttle Amateur Radio Experiment (SAREX). SAREX was established by NASA, the American Radio League/Amateur Radio Satellite Corporation and the Johnson Space Center (JSC) Amateur Radio Club to encourage public participation in the space program through a project to demonstrate the effectiveness of conducting short-wave radio transmissions between the Shuttle and ground-based radio operators at low-cost ground stations with amateur and digital techniques. As on several previous missions, SAREX was used on this flight as an educational opportunity for students around the world to learn about space firsthand by speaking directly to astronauts aboard the Shuttle.

  3. 14 CFR 142.59 - Flight simulators and flight training devices.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight simulators and flight training... TRANSPORTATION (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES TRAINING CENTERS Personnel and Flight Training Equipment Requirements § 142.59 Flight simulators and flight training devices. (a) An applicant for, or...

  4. 14 CFR 142.59 - Flight simulators and flight training devices.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight simulators and flight training... TRANSPORTATION (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES TRAINING CENTERS Personnel and Flight Training Equipment Requirements § 142.59 Flight simulators and flight training devices. (a) An applicant for, or...

  5. 14 CFR 142.59 - Flight simulators and flight training devices.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight simulators and flight training... TRANSPORTATION (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES TRAINING CENTERS Personnel and Flight Training Equipment Requirements § 142.59 Flight simulators and flight training devices. (a) An applicant for, or...

  6. 14 CFR 142.59 - Flight simulators and flight training devices.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight simulators and flight training... TRANSPORTATION (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES TRAINING CENTERS Personnel and Flight Training Equipment Requirements § 142.59 Flight simulators and flight training devices. (a) An applicant for, or...

  7. 14 CFR 142.59 - Flight simulators and flight training devices.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight simulators and flight training... TRANSPORTATION (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES TRAINING CENTERS Personnel and Flight Training Equipment Requirements § 142.59 Flight simulators and flight training devices. (a) An applicant for, or...

  8. Flight experience with flight control redundancy management

    NASA Technical Reports Server (NTRS)

    Szalai, K. J.; Larson, R. R.; Glover, R. D.

    1980-01-01

    Flight experience with both current and advanced redundancy management schemes was gained in recent flight research programs using the F-8 digital fly by wire aircraft. The flight performance of fault detection, isolation, and reconfiguration (FDIR) methods for sensors, computers, and actuators is reviewed. Results of induced failures as well as of actual random failures are discussed. Deficiencies in modeling and implementation techniques are also discussed. The paper also presents comparison off multisensor tracking in smooth air, in turbulence, during large maneuvers, and during maneuvers typical of those of large commercial transport aircraft. The results of flight tests of an advanced analytic redundancy management algorithm are compared with the performance of a contemporary algorithm in terms of time to detection, false alarms, and missed alarms. The performance of computer redundancy management in both iron bird and flight tests is also presented.

  9. Cooperative Collision Avoidance Step 1 - Technology Demonstration Flight Test Report. Revision 1

    NASA Technical Reports Server (NTRS)

    Trongale, Nicholas A.

    2006-01-01

    The National Aeronautics and Space Administration (NASA) Access 5 Project Office sponsored a cooperative collision avoidance flight demonstration program for unmanned aircraft systems (UAS). This flight test was accomplished between September 21st and September 27th 2005 from the Mojave Airport, Mojave, California. The objective of these flights was to collect data for the Access 5 Cooperative Collision Avoidance (CCA) Work Package simulation effort, i.e., to gather data under select conditions to allow validation of the CCA simulation. Subsequent simulation to be verified were: Demonstrate the ability to detect cooperative traffic and provide situational awareness to the ROA pilot; Demonstrate the ability to track the detected cooperative traffic and provide position information to the ROA pilot; Demonstrate the ability to determine collision potential with detected cooperative traffic and provide notification to the ROA pilot; Demonstrate that the CCA subsystem provides information in sufficient time for the ROA pilot to initiate an evasive maneuver to avoid collision; Demonstrate an evasive maneuver that avoids collision with the threat aircraft; and lastly, Demonstrate the ability to assess the adequacy of the maneuver and determine that the collision potential has been avoided. The Scaled Composites, LLC Proteus Optionally Piloted Vehicle (OPV) was chosen as the test platform. Proteus was manned by two on-board pilots but was also capable of being controlled from an Air Vehicle Control Station (AVCS) located on the ground. For this demonstration, Proteus was equipped with cooperative collision sensors and the required hardware and software to place the data on the downlink. Prior to the flight phase, a detailed set of flight test scenarios were developed to address the flight test objectives. Two cooperative collision avoidance sensors were utilized for detecting aircraft in the evaluation: Traffic Alert and Collision Avoidance System-II (TCAS-II) and

  10. MgII Linear Polarization Measurements Using the MSFC Solar Ultraviolet Magnetograph

    NASA Technical Reports Server (NTRS)

    West, Edward; Cirtain, Jonathan; Kobayahsi, Ken; Davis, John; Gary, Allen; Adams, Mitzi

    2011-01-01

    This paper will describe the Marshall Space Flight Center's Solar Ultraviolet Magnetograph (SUMI) sounding rocket program, with emphasis on the polarization characteristics of the VUV optics and their spectral, spatial and polarization resolution. SUMI's first flight (7/30/2010) met all of its mission success criteria and this paper will describe the data that was acquired with emphasis on the MgII linear polarization measurements.

  11. Description and Flight Test Results of the NASA F-8 Digital Fly-by-Wire Control System

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A NASA program to develop digital fly-by-wire (DFBW) technology for aircraft applications is discussed. Phase I of the program demonstrated the feasibility of using a digital fly-by-wire system for aircraft control through developing and flight testing a single channel system, which used Apollo hardware, in an F-8C airplane. The objective of Phase II of the program is to establish a technology base for designing practical DFBW systems. It will involve developing and flight testing a triplex digital fly-by-wire system using state-of-the-art airborne computers, system hardware, software, and redundancy concepts. The papers included in this report describe the Phase I system and its development and present results from the flight program. Man-rated flight software and the effects of lightning on digital flight control systems are also discussed.

  12. 14 CFR 91.179 - IFR cruising altitude or flight level.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...: (1) When operating below 18,000 feet MSL and— (i) On a magnetic course of zero degrees through 179 degrees, any odd thousand foot MSL altitude (such as 3,000, 5,000, or 7,000); or (ii) On a magnetic course... magnetic course of zero degrees through 179 degrees, any odd flight level (such as 190, 210, or 230); or...

  13. 14 CFR 91.179 - IFR cruising altitude or flight level.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...: (1) When operating below 18,000 feet MSL and— (i) On a magnetic course of zero degrees through 179 degrees, any odd thousand foot MSL altitude (such as 3,000, 5,000, or 7,000); or (ii) On a magnetic course... magnetic course of zero degrees through 179 degrees, any odd flight level (such as 190, 210, or 230); or...

  14. cFE/CFS (Core Flight Executive/Core Flight System)

    NASA Technical Reports Server (NTRS)

    Wildermann, Charles P.

    2008-01-01

    This viewgraph presentation describes in detail the requirements and goals of the Core Flight Executive (cFE) and the Core Flight System (CFS). The Core Flight Software System is a mission independent, platform-independent, Flight Software (FSW) environment integrating a reusable core flight executive (cFE). The CFS goals include: 1) Reduce time to deploy high quality flight software; 2) Reduce project schedule and cost uncertainty; 3) Directly facilitate formalized software reuse; 4) Enable collaboration across organizations; 5) Simplify sustaining engineering (AKA. FSW maintenance); 6) Scale from small instruments to System of Systems; 7) Platform for advanced concepts and prototyping; and 7) Common standards and tools across the branch and NASA wide.

  15. Flight projects overview

    NASA Technical Reports Server (NTRS)

    Levine, Jack

    1988-01-01

    Information is given in viewgraph form on the activities of the Flight Projects Division of NASA's Office of Aeronautics and Space Technology. Information is given on space research and technology strategy, current space flight experiments, the Long Duration Exposure Facility, the Orbiter Experiment Program, the Lidar In-Space Technology Experiment, the Ion Auxiliary Propulsion System, the Arcjet Flight Experiment, the Telerobotic Intelligent Interface Flight Experiment, the Cryogenic Fluid Management Flight Experiment, the Industry/University In-Space Flight Experiments, and the Aeroassist Flight Experiment.

  16. Summary of shuttle data processing and aerodynamic performance comparisons for the first 11 flights

    NASA Technical Reports Server (NTRS)

    Findlay, J. T.; Kelly, G. M.; Heck, M. L.; Mcconnell, J. G.

    1984-01-01

    NASA Space Shuttle aerodynamic and aerothermodynamic research is but one part of the most comprehensive end-to-end flight test program ever undertaken considering: the extensive pre-flight experimental data base development; the multitude of spacecraft and remote measurements taken during entry flight; the complexity of the Orbiter aerodynamic configuration; the variety of flight conditions available across the entire speed regime; and the efforts devoted to flight data reduction throughout the aerospace community. Shuttle entry flights provide a wealth of research quality data, in essence a veritable flying wind tunnel, for use by researchers to verify and improve the operational capability of the Orbiter and provide data for evaluations of experimental facilities as well as computational methods. This final report merely summarizes the major activities conducted by the AMA, Inc. under NASA Contract NAS1-16087 as part of that interesting research. Investigators desiring more detailed information can refer to the glossary of AMA publications attached herein as Appendix A. Section I provides background discussion of software and methodology development to enable Best Estimate Trajectory (BET) generation. Actual products generated are summarized in Section II as tables which completely describe the post-flight products available from the first three-year Shuttle flight history. Summary results are presented in Section III, with longitudinal performance comparisons included as Appendices for each of the flights.

  17. Diagnostic Value of Electrocardiogram in Predicting Exaggerated Blood Pressure Response to Exercise Stress Testing.

    PubMed

    Eshraghi, Ali; Ebdali, Reyhaneh Takalloo; Sajjadi, Seyed Sajed; Golnezhad, Reza

    2016-08-01

    It is believed that an exaggerated blood pressure response (EBPR) to exercise stress test is associated with a higher risk of cardiovascular events. It is also assumed that QT dispersion (QT-d), which was originally proposed to measure the spatial dispersion of ventricular recovery times, may have a relationship to cardiovascular events. The objective of this study was to examine the difference of changes in QT-d, Maxi-QT, Mini-QT, and QT-c (corrected QT interval) of the electrocardiogram in two groups of patients with exaggerated blood pressure responses (EBPR group) and normal responses (control group) to exercise testing. Also, the diagnostic value of each of these criteria in the prediction of EBPR was studied. This cross-sectional study was conducted from May 2015 to February 2016 on patients suspected of coronary artery disease (CAD) undergoing exercise testing who had been referred to Ghaem and Imam Reza hospitals in Mashhad (Iran). All patients underwent a treadmill exercise test with the 12-lead ECG, which was optically scanned and digitized for analysis of QT-d, QT max, and QT min. Patients were divided into two groups of normal and EBPR to exercise testing. QT changes of ECG were compared between the two groups, and the diagnostic accuracy of QT variables for prediction of EBPR to exercise testing was studied. A multiple linear regression analysis (MLR), Pearson Chi-qquare, independent samples t-test, and receiver operating characteristic (ROC) curve were used as statistical methods in IBM SPSS version 19. Sixty patients (55% male) with a mean age of 50.48 ± 10.89 years were studied in two groups of normal (n=30) and exaggerated blood pressure response (n=30) to exercise testing. Maximum QT and QT dispersion were statistically different in individuals' exaggerated blood pressure response to exercise stress test (p < 0.05). The logistic regression analysis revealed that none of our parameters predicted the EBPR. The ROC curve showed that 50 and 345

  18. Survey to Determine Flight Plan Data and Flight Scheduling Accuracy

    DOT National Transportation Integrated Search

    1972-01-01

    This survey determined Operational Flight Plan Data and Flight schduling accuracy vs. published schedules an/or stored flight plan data. This accuracy was determined by sampling tracer flights of varying lengths, selected terminals, and high altitude...

  19. Coherent lidar airborne wind sensor II: flight-test results at 2 and 10 νm.

    PubMed

    Targ, R; Steakley, B C; Hawley, J G; Ames, L L; Forney, P; Swanson, D; Stone, R; Otto, R G; Zarifis, V; Brockman, P; Calloway, R S; Klein, S H; Robinson, P A

    1996-12-20

    The use of airborne laser radar (lidar) to measure wind velocities and to detect turbulence in front of an aircraft in real time can significantly increase fuel efficiency, flight safety, and terminal area capacity. We describe the flight-test results for two coherent lidar airborne shear sensor (CLASS) systems and discuss their agreement with our theoretical simulations. The 10.6-μm CO(2) system (CLASS-10) is a flying brassboard; the 2.02-μm Tm:YAG solid-state system (CLASS-2) is configured in a rugged, light-weight, high-performance package. Both lidars have shown a wind measurement accuracy of better than 1 m/s.

  20. Orbiter Atlantis (STS-110) Launch With New Block II Engines

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Powered by three newly-enhanced Space Shuttle Maine Engines (SSMEs), called the Block II Maine Engines, the Space Shuttle Orbiter Atlantis lifted off from the Kennedy Space Center launch pad on April 8, 2002 for the STS-110 mission. The Block II Main Engines incorporate an improved fuel pump featuring fewer welds, a stronger integral shaft/disk, and more robust bearings, making them safer and more reliable, and potentially increasing the number of flights between major overhauls. NASA continues to increase the reliability and safety of Shuttle flights through a series of enhancements to the SSME. The engines were modified in 1988 and 1995. Developed in the 1970s and managed by the Space Shuttle Projects Office at the Marshall Space Flight Center, the SSME is the world's most sophisticated reusable rocket engine. The new turbopump made by Pratt and Whitney of West Palm Beach, Florida, was tested at NASA's Stennis Space Center in Mississippi. Boeing Rocketdyne in Canoga Park, California, manufactures the SSME. This image was extracted from engineering motion picture footage taken by a tracking camera.

  1. 14 CFR 125.297 - Approval of flight simulators and flight training devices.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., testing, and checking required by this subpart. (b) Each flight simulator and flight training device that... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Approval of flight simulators and flight... Flight Crewmember Requirements § 125.297 Approval of flight simulators and flight training devices. (a...

  2. 14 CFR 125.297 - Approval of flight simulators and flight training devices.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., testing, and checking required by this subpart. (b) Each flight simulator and flight training device that... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Approval of flight simulators and flight... Flight Crewmember Requirements § 125.297 Approval of flight simulators and flight training devices. (a...

  3. 14 CFR 125.297 - Approval of flight simulators and flight training devices.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., testing, and checking required by this subpart. (b) Each flight simulator and flight training device that... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Approval of flight simulators and flight... Flight Crewmember Requirements § 125.297 Approval of flight simulators and flight training devices. (a...

  4. 14 CFR 125.297 - Approval of flight simulators and flight training devices.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., testing, and checking required by this subpart. (b) Each flight simulator and flight training device that... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Approval of flight simulators and flight... Flight Crewmember Requirements § 125.297 Approval of flight simulators and flight training devices. (a...

  5. 14 CFR 125.297 - Approval of flight simulators and flight training devices.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., testing, and checking required by this subpart. (b) Each flight simulator and flight training device that... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Approval of flight simulators and flight... Flight Crewmember Requirements § 125.297 Approval of flight simulators and flight training devices. (a...

  6. Affective states and adaptation to parabolic flights

    NASA Astrophysics Data System (ADS)

    Collado, Aurélie; Langlet, Cécile; Tzanova, Tzvetomira; Hainaut, Jean-Philippe; Monfort, Vincent; Bolmont, Benoît

    2017-05-01

    This exploratory study investigates (i) inter-individual variations of affective states before a parabolic flight (i.e., PF) on the basis of quality of adaptation to physical demands, and (ii) intra-individual variations of affective states during a PF. Mood-states, state-anxiety and salivary cortisol were assessed in two groups with a different quality of adaptation (an Adaptive Group, i.e., AG, and a Maladaptive Group, i.e., MG) before and during a PF. Before PF, MG scored higher on mood states (Anger-Hostility, Fatigue-Inertia) than AG. During the flight, while AG seemed to present "normal" affective responses to the demanding environment (e.g., increase in salivary cortisol), MG presented increases in mood states such as Confusion-Bewilderment or Tension-Anxiety. The findings suggest that the psychological states of MG could have disturbed their ability to integrate sensory information from an unusual environment, which led to difficulties in coping with the physical demands of PF.

  7. Advanced flight computers for planetary exploration

    NASA Technical Reports Server (NTRS)

    Stephenson, R. Rhoads

    1988-01-01

    Research concerning flight computers for use on interplanetary probes is reviewed. The history of these computers from the Viking mission to the present is outlined. The differences between ground commercial computers and computers for planetary exploration are listed. The development of a computer for the Mariner Mark II comet rendezvous asteroid flyby mission is described. Various aspects of recently developed computer systems are examined, including the Max real time, embedded computer, a hypercube distributed supercomputer, a SAR data processor, a processor for the High Resolution IR Imaging Spectrometer, and a robotic vision multiresolution pyramid machine for processsing images obtained by a Mars Rover.

  8. Helicopter In-Flight Monitoring System Second Generation (HIMS II).

    DTIC Science & Technology

    1983-08-01

    acquisition cycle. B. Computer Chassis CPU (DEC LSI-II/2) -- Executes instructions contained in the memory. 32K memory (DEC MSVII-DD) --Contains program...when the operator executes command #2, 3, or 5 (display data). New cartridges can be inserted as required for truly unlimited, continuous data...is called bootstrapping. The software, which is stored on a tape cartridge, is loaded into memory by execution of a small program stored in read-only

  9. 14 CFR 121.425 - Flight engineers: Initial and transition flight training.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight engineers: Initial and transition flight training. 121.425 Section 121.425 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.425 Flight engineers: Initial and transition flight training. (a) Initial and transition flight...

  10. 14 CFR 121.425 - Flight engineers: Initial and transition flight training.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight engineers: Initial and transition flight training. 121.425 Section 121.425 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.425 Flight engineers: Initial and transition flight training. (a) Initial and transition flight...

  11. 14 CFR 121.426 - Flight navigators: Initial and transition flight training.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight navigators: Initial and transition flight training. 121.426 Section 121.426 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.426 Flight navigators: Initial and transition flight training. (a) Initial and transition flight...

  12. 14 CFR 121.426 - Flight navigators: Initial and transition flight training.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight navigators: Initial and transition flight training. 121.426 Section 121.426 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.426 Flight navigators: Initial and transition flight training. (a) Initial and transition flight...

  13. 14 CFR 121.425 - Flight engineers: Initial and transition flight training.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight engineers: Initial and transition flight training. 121.425 Section 121.425 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.425 Flight engineers: Initial and transition flight training. (a) Initial and transition flight...

  14. 14 CFR 121.426 - Flight navigators: Initial and transition flight training.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight navigators: Initial and transition flight training. 121.426 Section 121.426 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.426 Flight navigators: Initial and transition flight training. (a) Initial and transition flight...

  15. 14 CFR 121.426 - Flight navigators: Initial and transition flight training.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight navigators: Initial and transition flight training. 121.426 Section 121.426 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.426 Flight navigators: Initial and transition flight training. (a) Initial and transition flight...

  16. 14 CFR 121.425 - Flight engineers: Initial and transition flight training.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight engineers: Initial and transition flight training. 121.425 Section 121.425 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.425 Flight engineers: Initial and transition flight training. (a) Initial and transition flight...

  17. 14 CFR 121.425 - Flight engineers: Initial and transition flight training.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight engineers: Initial and transition flight training. 121.425 Section 121.425 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.425 Flight engineers: Initial and transition flight training. (a) Initial and transition flight...

  18. New insights into insect's silent flight. Part II: sound source and noise control

    NASA Astrophysics Data System (ADS)

    Xue, Qian; Geng, Biao; Zheng, Xudong; Liu, Geng; Dong, Haibo

    2016-11-01

    The flapping flight of aerial animals has excellent aerodynamic performance but meanwhile generates low noise. In this study, the unsteady flow and acoustic characteristics of the flapping wing are numerically investigated for three-dimensional (3D) models of Tibicen linnei cicada at free forward flight conditions. Single cicada wing is modelled as a membrane with prescribed motion reconstructed by Wan et al. (2015). The flow field and acoustic field around the flapping wing are solved with immersed-boundary-method based incompressible flow solver and linearized-perturbed-compressible-equations based acoustic solver. The 3D simulation allows examination of both directivity and frequency composition of the produced sound in a full space. The mechanism of sound generation of flapping wing is analyzed through correlations between acoustic signals and flow features. Along with a flexible wing model, a rigid wing model is also simulated. The results from these two cases will be compared to investigate the effects of wing flexibility on sound generation. This study is supported by NSF CBET-1313217 and AFOSR FA9550-12-1-0071.

  19. STS-56 Commander Cameron uses SAREX on OV-103's aft flight deck

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-56 Commander Kenneth Cameron, wearing headset and headband equipped with penlight flashlight, uses the Shuttle Amateur Radio Experiment II (SAREX-II) on the aft flight deck of Discovery, Orbiter Vehicle (OV) 103. Cameron, positioned just behind the pilots seat, talks to amateur radio operators on Earth via the SAREX equipment. SAREX cables and the interface module freefloat in front of the pilots seat. The SAREX scan converter (a white box) is seen just above Cameron's head attached to overhead panel O9. SAREX was established by NASA, the American Radio League/Amateur Radio Satellite Corporation and the JSC Amateur Radio Club to encourage public participation in the space program through a program to demonstrate the effectiveness of conducting short-wave radio transmissions between the Shuttle and ground-based radio operators at low-cost ground stations with amateur and digital techniques. As on several previous missions, SAREX was used on this flight as an educational opportunity

  20. Second Stage (S-II) Arrives at Marshall Space Flight Center For Testing

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The business end of a Second Stage (S-II) slowly emerges from the shipping container as workers prepare to transport the Saturn V component to the testing facility at MSFC. The Second Stage (S-II) underwent vibration and engine firing tests. The towering 363-foot Saturn V was a multi-stage, multi-engine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.

  1. 14 CFR 437.27 - Pre-flight and post-flight operations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Pre-flight and post-flight operations. 437.27 Section 437.27 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... Experimental Permit Operational Safety Documentation § 437.27 Pre-flight and post-flight operations. An...

  2. 14 CFR 437.27 - Pre-flight and post-flight operations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Pre-flight and post-flight operations. 437.27 Section 437.27 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... Experimental Permit Operational Safety Documentation § 437.27 Pre-flight and post-flight operations. An...

  3. 14 CFR 437.27 - Pre-flight and post-flight operations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Pre-flight and post-flight operations. 437.27 Section 437.27 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... Experimental Permit Operational Safety Documentation § 437.27 Pre-flight and post-flight operations. An...

  4. 14 CFR 437.27 - Pre-flight and post-flight operations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Pre-flight and post-flight operations. 437.27 Section 437.27 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... Experimental Permit Operational Safety Documentation § 437.27 Pre-flight and post-flight operations. An...

  5. 14 CFR 121.511 - Flight time limitations: Flight engineers: airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight time limitations: Flight engineers: airplanes. 121.511 Section 121.511 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.511 Flight time limitations: Flight engineers: airplanes. (a) In any operation in which one...

  6. Iced Aircraft Flight Data for Flight Simulator Validation

    NASA Technical Reports Server (NTRS)

    Ratvasky, Thomas P.; Blankenship, Kurt; Rieke, William; Brinker, David J.

    2003-01-01

    NASA is developing and validating technology to incorporate aircraft icing effects into a flight training device concept demonstrator. Flight simulation models of a DHC-6 Twin Otter were developed from wind tunnel data using a subscale, complete aircraft model with and without simulated ice, and from previously acquired flight data. The validation of the simulation models required additional aircraft response time histories of the airplane configured with simulated ice similar to the subscale model testing. Therefore, a flight test was conducted using the NASA Twin Otter Icing Research Aircraft. Over 500 maneuvers of various types were conducted in this flight test. The validation data consisted of aircraft state parameters, pilot inputs, propulsion, weight, center of gravity, and moments of inertia with the airplane configured with different amounts of simulated ice. Emphasis was made to acquire data at wing stall and tailplane stall since these events are of primary interest to model accurately in the flight training device. Analyses of several datasets are described regarding wing and tailplane stall. Key findings from these analyses are that the simulated wing ice shapes significantly reduced the C , max, while the simulated tail ice caused elevator control force anomalies and tailplane stall when flaps were deflected 30 deg or greater. This effectively reduced the safe operating margins between iced wing and iced tail stall as flap deflection and thrust were increased. This flight test demonstrated that the critical aspects to be modeled in the icing effects flight training device include: iced wing and tail stall speeds, flap and thrust effects, control forces, and control effectiveness.

  7. 14 CFR Appendix A to Part 420 - Method for Defining a Flight Corridor

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Method for Defining a Flight Corridor A Appendix A to Part 420 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... represents the launch vehicle the applicant plans to support at its launch point; (ii) Select a debris...

  8. 14 CFR Appendix A to Part 420 - Method for Defining a Flight Corridor

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Method for Defining a Flight Corridor A Appendix A to Part 420 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... represents the launch vehicle the applicant plans to support at its launch point; (ii) Select a debris...

  9. 14 CFR Appendix A to Part 420 - Method for Defining a Flight Corridor

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Method for Defining a Flight Corridor A Appendix A to Part 420 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... represents the launch vehicle the applicant plans to support at its launch point; (ii) Select a debris...

  10. Space physiology II: adaptation of the central nervous system to space flight--past, current, and future studies.

    PubMed

    Clément, Gilles; Ngo-Anh, Jennifer Thu

    2013-07-01

    Experiments performed in orbit on the central nervous system have focused on the control of posture, eye movements, spatial orientation, as well as cognitive processes, such as three-dimensional visual perception and mental representation of space. Brain activity has also been recorded during and immediately after space flight for evaluating the changes in brain structure activation during tasks involving perception, attention, memory, decision, and action. Recent ground-based studies brought evidence that the inputs from the neurovestibular system also participate in orthostatic intolerance. It is, therefore, important to revisit the flight data of neuroscience studies in the light of new models of integrative physiology. The outcomes of this exercise will increase our knowledge on the adaptation of body functions to changing gravitational environment, vestibular disorders, aging, and our approach towards more effective countermeasures during human space flight and planetary exploration.

  11. Fine-tuned echolocation and capture-flight of Myotis capaccinii when facing different-sized insect and fish prey.

    PubMed

    Aizpurua, Ostaizka; Aihartza, Joxerra; Alberdi, Antton; Baagøe, Hans J; Garin, Inazio

    2014-09-15

    Formerly thought to be a strictly insectivorous trawling bat, recent studies have shown that Myotis capaccinii also preys on fish. To determine whether differences exist in bat flight behaviour, prey handling and echolocation characteristics when catching fish and insects of different size, we conducted a field experiment focused on the last stage of prey capture. We used synchronized video and ultrasound recordings to measure several flight and dip features as well as echolocation characteristics, focusing on terminal buzz phase I, characterized by a call rate exceeding 100 Hz, and buzz phase II, characterized by a drop in the fundamental well below 20 kHz and a repetition rate exceeding 150 Hz. When capturing insects, bats used both parts of the terminal phase to the same extent, and performed short and superficial drags on the water surface. In contrast, when preying on fish, buzz I was longer and buzz II shorter, and the bats made longer and deeper dips. These variations suggest that lengthening buzz I and shortening buzz II when fishing is beneficial, probably because buzz I gives better discrimination ability and the broader sonar beam provided by buzz II is useless when no evasive flight of the prey is expected. Additionally, bats continued emitting calls beyond the theoretical signal-overlap zone, suggesting that they might obtain information even when they have surpassed that threshold, at least initially. This study shows that M. capaccinii can regulate the temporal components of its feeding buzzes and modify prey capture technique according to the target. © 2014. Published by The Company of Biologists Ltd.

  12. Celebrating a Century of Flight

    NASA Technical Reports Server (NTRS)

    OKeefe, Sean O.; Jumper, John P.; Dailey, J. R.

    2002-01-01

    Since 1915, the National Advisory Committee for Aeronautics (NACA), transformed into NASA in 1958, has performed cutting-edge research to solve the problems of flight. Using a Grumman F4F-3 Wildcat during World War II, NACA engineers at the Langley Aeronautical Laboratory (now Langley Research Center) in Hampton, Virginia, used this aircraft to investigate the cuffs on the propeller blades to determine their efficiency. While not built to the full production standard of other Grumman Wildcats, research on this aircraft, the second F4F-3, proved most successful in advancing knowledge of the aerodynamics of this engine and propeller system. A close-up of the propeller blades with Curtiss Electric Propellers' logo is shown.

  13. Flight Test Engineering

    NASA Technical Reports Server (NTRS)

    Pavlock, Kate Maureen

    2013-01-01

    Although the scope of flight test engineering efforts may vary among organizations, all point to a common theme: flight test engineering is an interdisciplinary effort to test an asset in its operational flight environment. Upfront planning where design, implementation, and test efforts are clearly aligned with the flight test objective are keys to success. This chapter provides a top level perspective of flight test engineering for the non-expert. Additional research and reading on the topic is encouraged to develop a deeper understanding of specific considerations involved in each phase of flight test engineering.

  14. 77 FR 30238 - Living History Flight Experience (LHFE)-Exemptions for Passenger Carrying Operations Conducted...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-22

    ... significant, American- manufactured large, crew-served, piston-powered, multi-engine, World War II bomber... public safety (e.g., older and slower multi-engine which airplanes allow time for appropriate corrective... air show that was piloted by two highly qualified and well-trained flight crewmembers clearly...

  15. The Road to Mach 10: A History of the X-43A Hypersonic Flight Test Program at NASA Dryden -- Origins to First Flight

    NASA Technical Reports Server (NTRS)

    Peebles, Curtis

    2006-01-01

    The NASA Dryden Flight Research Center, in partnership with the NASA Langley Research Center and industrial contractors, conducted the first flight tests of a supersonic combustion ramjet (scramjet) in 2004. This was a revolutionary airbreathing engine able to operate at speeds above Mach 5, which carries potential for both high-speed atmospheric flight and as a space launcher. For the Dryden engineers, the X-43 program was the culmination of a nearly 60-year history of flight research, going back to the early days of supersonic flight, and to rocket planes such as the X-1, D-558-II Skyrocket, and the X-15. For the propulsion community, it marked a turning point in a quest that had taken nearly as long. The scramjet engine did not arise from the work of a single individual or from a single technological breakthrough. It evolved instead from work under way on ramjets in the early 1950s, and from research programs at the National Advisory Committee for Aeronautics (NACA) Lewis Research Center, at the U.S. Army Aberdeen Proving Ground, and by the U.S. Navy. Studies developed in the course of these disparate projects raised the possibility of supersonic combustion. Many researchers had considered the notion impractical due to the difficulty of stabilizing a flame front in a supersonic airflow. NACA researchers at Lewis attempted to test the idea's feasibility by burning aluminum borohydride in a supersonic wind tunnel. Sustained burning was believed to have been observed at Mach 1.5, Mach 2, and Mach 3 for as long as two seconds.

  16. Calbindin-D28k immunoreactivity in the mice thoracic spinal cord after space flight

    NASA Astrophysics Data System (ADS)

    Porseva, Valentina V.; Shilkin, Valentin V.; Krasnov, Igor B.; Masliukov, Petr M.

    2015-10-01

    The aim of the work was to analyse changes in the location and morphological characteristics of calbindin (CB)-immunoreactive (IR) neurons of the thoracic spinal cord of C57BL/6N male mice after completion of a 30-day space flight on board the BION-M1 biosatellite (Russia, 2013). Space flight induced multidirectional changes of the number and morphological parameters of CB-positive neurons. The number of IR neurons increased in laminae I (from 10 to 17 neurons per section), II (from 42 to 67 cells per section) and IX (from two neurons per segment to two neurons per section), but CB disappeared in neurons of lamina VIII. Weightlessness did not affect the number of CB-IR neurons in laminae III-V and VII, including preganglionic sympathetic neurons. The cross-sectional area of CB-IR neurons decreased in lamina II and VII (group of partition cells) and increased in laminae III-V and IX. After a space flight, few very large neurons with long dendrites appeared in lamina IV. The results obtained give evidence about substantial changes in the calcium buffer system and imbalance of different groups of CB-IR neurons due to reduction of afferent information under microgravity.

  17. Altered Innate and Lymphocytic Immune Responses in Mouse Splenocytes Post-Flight

    NASA Technical Reports Server (NTRS)

    Hwang, ShenAn; Crucian, Brian E.; Sams, Clarence F.; Actor, Jeffrey K.

    2011-01-01

    Space flight is known to affect immune responses of astronauts and animals, decreasing lymphocytic responses to mitogenic stimuli, delayed typed hypersensitivity reactions, and T-cell activation. Despite changes in immune suppression, there are no reports of consistent adverse clinical events post flight. To further investigate the spectrum of affected immune responses, murine splenocytes were stimulated immediately post-shuttle flight (14 days on STS-135) with T-cell stimulators or toll-like receptor agonists. Comparisons were made to ground control splenocytes from age-matched mice. Cell phenotypes were assessed, as well as activation markers and associated cytokine production. The CD4+ population decreased with no concurrent decrease in CD8+ cells from shuttle mice post flight compared to ground controls. Regarding antigen presenting cell populations, the number of CD11c+ cells were slightly elevated post flight, compared to ground controls, with increased MHC Class I expression (I-A(sup b)) and no change in Class II expression (H-2K(sup b)). CD86+ populations were also significantly diminished. However, the decreased markers did not correlate with activity. Stimulation of splenocytes post flight showed significant increase in bead uptake, increased Class I expression, increased TNF-alpha and IL-6 production in response to TLR-2 (zymosan) and TLR-4 (LPS) agonists. While most activated (ConA or anti-CD3/anti-CD28) CD4+ cells showed markedly diminished responses (reduced IL-2 production), non-specific T cell responses to superantigen (SEA/SEB) increased post flight as determined by expression of early activation markers. Production of additional cytokines was also dysregulated postflight. Overall, persistent immune changes during space flight could represent unique clinical risks for exploration class missions. The consequences of pathogenic encounter remain an important concern that should be addressed.

  18. Flight-determined benefits of integrated flight-propulsion control systems

    NASA Technical Reports Server (NTRS)

    Stewart, James F.; Burcham, Frank W., Jr.; Gatlin, Donald H.

    1992-01-01

    Over the last two decades, NASA has conducted several experiments in integrated flight-propulsion control. Benefits have included improved maneuverability; increased thrust, range, and survivability; reduced fuel consumption; and reduced maintenance. This paper presents the basic concepts for control integration, examples of implementation, and benefits. The F-111E experiment integrated the engine and inlet control systems. The YF-12C incorporated an integral control system involving the inlet, autopilot, autothrottle, airdata, navigation, and stability augmentation systems. The F-15 research involved integration of the engine, flight, and inlet control systems. Further extension of the integration included real-time, onboard optimization of engine, inlet, and flight control variables; a self-repairing flight control system; and an engines-only control concept for emergency control. The F-18A aircraft incorporated thrust vectoring integrated with the flight control system to provide enhanced maneuvering at high angles of attack. The flight research programs and the resulting benefits of each program are described.

  19. In-flight simulation studies at the NASA Dryden Flight Research Facility

    NASA Technical Reports Server (NTRS)

    Shafer, Mary F.

    1992-01-01

    Since the late 1950's, the National Aeronautics and Space Administration's Dryden Flight Research Facility has found in-flight simulation to be an invaluable tool. In-flight simulation has been used to address a wide variety of flying qualities questions, including low-lift-to-drag ratio approach characteristics for vehicles like the X-15, the lifting bodies, and the Space Shuttle; the effects of time delays on controllability of aircraft with digital flight-control systems, the causes and cures of pilot-induced oscillation in a variety of aircraft, and flight-control systems for such diverse aircraft as the X-15 and the X-29. In-flight simulation has also been used to anticipate problems and to avoid them and to solve problems once they appear. Presented here is an account of the in-flight simulation at the Dryden Flight Research Facility and some discussion. An extensive bibliography is included.

  20. In-flight simulation studies at the NASA Dryden Flight Research Facility

    NASA Technical Reports Server (NTRS)

    Shafer, Mary F.

    1994-01-01

    Since the late 1950's the National Aeronautics and Space Administration's Dryden Flight Research Facility has found in-flight simulation to be an invaluable tool. In-flight simulation has been used to address a wide variety of flying qualities questions, including low lift-to-drag ratio approach characteristics for vehicles like the X-15, the lifting bodies, and the space shuttle; the effects of time delays on controllability of aircraft with digital flight control systems; the causes and cures of pilot-induced oscillation in a variety of aircraft; and flight control systems for such diverse aircraft as the X-15 and the X-29. In-flight simulation has also been used to anticipate problems, avoid them, and solve problems once they appear. This paper presents an account of the in-flight simulation at the Dryden Flight Research Facility and some discussion. An extensive bibliography is included.

  1. [Morphohistochemical study of skeletal muscles in rats after experimental flight on "Kosmos-1887"].

    PubMed

    Il'ina-Kakueva, E I

    1990-01-01

    Morphometric and histochemical methods were used to examine the soleus, gastrocnemius (medial portion), quadriceps femoris (central portion) and biceps brachii muscles of Wistar SPF rats two days after the 13-day flight on Cosmos-1887. It was found that significant atrophy developed only in the soleus muscle. The space flight did not change the percentage content of slow (type I) and fast (type II) fibers in fast twitch muscles. During two days at 1 g the slow soleus muscle developed substantial circulation disorders, which led to interstitial edema and necrotic changes. The gastrocnemius muscle showed small foci containing necrotic myofibers. Two days after recovery no glycogen aggregates were seen in myofibers, which were previously observed in other rats examined 4--8 hours after flight. An initial stage of muscle readaptation to 1 g occurred, when NAD.H2-dehydrogenase activity was decreased.

  2. Investigation of Slosh Dynamics on Flight and Ground Platforms

    NASA Astrophysics Data System (ADS)

    Vergalla, Michael; Zhou, Ran

    The slosh dynamics in cryogenic fuel tanks under microgravity is a problem that severely affects the reliability of spacecraft launching. To investigate slosh dynamics and their effects on space vehicle dynamics three levels of testing are presently in progress. Platforms include a 3-DOF ground testing table, parabolic flights, sounding rockets and finally the International Space Station. Ground tests provide an economically viable platform for investigating rotational, translational, and coupled feed-back modes due to repeatable CNC motions. The parabolic flight campaign has conducted four successful flights aboard multiple aircraft using static and tethered slosh packages. Using the PANTHER II student designed rocket, a slosh package was launched as a payload. Finally with collaboration between Florida Institute of Technology and Massachusetts Institute of Technology SPHERES project, two test sessions investigating feedback using partially and fully filled propellant tanks have been completed aboard the In-ternational Space Station. Motion data from all tests will be input to in house Dynamic Mesh Model to further establish confidence in the versatility and accuracy of the method. The results show that it is necessary to construct additional hardware for slosh studies.

  3. 14 CFR 91.1091 - Qualifications: Flight instructors (aircraft) and flight instructors (simulator).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... (aircraft) and flight instructors (simulator). 91.1091 Section 91.1091 Aeronautics and Space FEDERAL... Qualifications: Flight instructors (aircraft) and flight instructors (simulator). (a) For the purposes of this... aircraft, in a flight simulator, or in a flight training device for a particular type, class, or category...

  4. 14 CFR 91.1091 - Qualifications: Flight instructors (aircraft) and flight instructors (simulator).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... (aircraft) and flight instructors (simulator). 91.1091 Section 91.1091 Aeronautics and Space FEDERAL... Qualifications: Flight instructors (aircraft) and flight instructors (simulator). (a) For the purposes of this... aircraft, in a flight simulator, or in a flight training device for a particular type, class, or category...

  5. 14 CFR 91.1091 - Qualifications: Flight instructors (aircraft) and flight instructors (simulator).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... (aircraft) and flight instructors (simulator). 91.1091 Section 91.1091 Aeronautics and Space FEDERAL... Qualifications: Flight instructors (aircraft) and flight instructors (simulator). (a) For the purposes of this... aircraft, in a flight simulator, or in a flight training device for a particular type, class, or category...

  6. 14 CFR 91.1091 - Qualifications: Flight instructors (aircraft) and flight instructors (simulator).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... (aircraft) and flight instructors (simulator). 91.1091 Section 91.1091 Aeronautics and Space FEDERAL... Qualifications: Flight instructors (aircraft) and flight instructors (simulator). (a) For the purposes of this... aircraft, in a flight simulator, or in a flight training device for a particular type, class, or category...

  7. The Intelligent Flight Control Program (IFCS)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This is the closeout report for the Research Cooperative Agreement NCC4-00130 of accomplishments for the Intelligent Flight Control System (IFCS) Project. It has been a pleasure working with NASA and NASA partners as we strive to meet the goals of this research initiative. ISR was engaged in this Research Cooperative Agreement beginning 01 January 2003 and ending 31 January 2004. During this time ISR conducted efforts towards development of the ARTS II Computer Software Configuration Item (CSCI) version 4.0 by performing or developing the following: 1) Requirements Definition; 2) Software Design and Development; 3) Hardware In the Loop Simulation; 4) Unit Level testing; 5) Documentation.

  8. Preparation and results of a 24-hour orbital flight.

    PubMed

    Titov, G S

    1963-01-01

    The space age presents man with unprecedented opportunities for discovery and for cooperative endeavors to benefit all mankind. My flight of August 6-7, 1961 was conducted for the purpose of determining whether man can stay and work effectively and whether all systems of the spaceship can operate successfully during a period of 24 hours in space. The flight of Vostok II represents an experimental step in a logical sequence which included the first earth orbiting flight of USSR citizen Yuri A. Gagarin. Preparation for the flight included the study of theoretical and applied subjects, testing in various kinds of apparatus which provide acceleration, heat and isolation experience, brief airborne weightless flights and parachute landings, in addition to extensive training in a real spacecraft having simulators for normal and emergency contingencies of space flight. The actual flight was therefore carried out with a sense of confidence and familiarity and with continuous close radio contact with ground centers from whom my fellow cosmonauts served as spokesmen. Sequential boosters totaling 600 000 kg thrust placed the 4731 kg spaceship into a perfect orbit varying in altitude from 178-246 km in a plane 64 degrees 58' inclined to the equator. The spaceship made 17 orbits around the earth landing 25 hours, 18 minutes after take-off. The cabin had full atmospheric pressure and a comfortable habitability which could be extended for 10 days. I was able to maneuver the spaceship and perform many other control functions, make observations and take pictures of the earth and its cloud cover, eat meals and sleep all with good efficiency. I experienced mild symptoms suggestive of seasickness which were aggravated by head turning, ameliorated by sleep and entirely relieved by resumption of g-loading during descent. Altogether analyses of the physical and structural performance of the spaceship and the continuously monitored physiological responses of the pilot indicate that all

  9. Bird flight and airplane flight. [instruments to measure air currents and flight characteristics

    NASA Technical Reports Server (NTRS)

    Magnan, A.

    1980-01-01

    Research was based on a series of mechanical, electrical, and cinematographic instruments developed to measure various features of air current behavior as well as bird and airplane flight. Investigation of rising obstruction and thermal currents led to a theory of bird flight, especially of the gliding and soaring types. It was shown how a knowledge of bird flight can be applied to glider and ultimately motorized aircraft construction. The instruments and methods used in studying stress in airplanes and in comparing the lift to drag ratios of airplanes and birds are described.

  10. 14 CFR 121.426 - Flight navigators: Initial and transition flight training.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight navigators: Initial and transition flight training. 121.426 Section 121.426 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.426 Flight navigators: Initial and transition flight training. Link to an amendment published at...

  11. Orbital flight test shuttle external tank aerothermal flight evaluation, volume 1

    NASA Technical Reports Server (NTRS)

    Praharaj, Sarat C.; Engel, Carl D.; Warmbrod, John D.

    1986-01-01

    This 3-volume report discusses the evaluation of aerothermal flight measurements made on the orbital flight test Space Shuttle External Tanks (ETs). Six ETs were instrumented to measure various quantities during flight; including heat transfer, pressure, and structural temperature. The flight data was reduced and analyzed against math models established from an extensive wind tunnel data base and empirical heat-transfer relationships. This analysis has supported the validity of the current aeroheating methodology and existing data base; and, has also identified some problem areas which require methodology modifications. This is Volume 1, an Executive Summary. Volume 2 contains Appendices A (Aerothermal Comparisons) and B (Flight Derived h sub 1/h sub u vs. M sub inf. Plots), and Volume 3 contains Appendix C (Comparison of Interference Factors among OFT Flight, Prediction and 1H-97A Data), Appendix D (Freestream Stanton Number and Reynolds Number Correlation for Flight and Tunnel Data), and Appendix E (Flight-Derived h sub i/h sub u Tables).

  12. Flight Test Implementation of a Second Generation Intelligent Flight Control System

    NASA Technical Reports Server (NTRS)

    Williams-Hayes, Peggy S.

    2005-01-01

    The NASA F-15 Intelligent Flight Control System project team has developed a series of flight control concepts designed to demonstrate the benefits of a neural network-based adaptive controller. The objective of the team was to develop and flight-test control systems that use neural network technology, to optimize the performance of the aircraft under nominal conditions, and to stabilize the aircraft under failure conditions. Failure conditions include locked or failed control surfaces as well as unforeseen damage that might occur to the aircraft in flight. The Intelligent Flight Control System team is currently in the process of implementing a second generation control scheme, collectively known as Generation 2 or Gen 2, for flight testing on the NASA F-15 aircraft. This report describes the Gen 2 system as implemented by the team for flight test evaluation. Simulation results are shown which describe the experiment to be performed in flight and highlight the ways in which the Gen 2 system meets the defined objectives.

  13. Orbital flight test shuttle external tank aerothermal flight evaluation, volume 3

    NASA Technical Reports Server (NTRS)

    Praharaj, Sarat C.; Engel, Carl D.; Warmbrod, John D.

    1986-01-01

    This 3-volume report discusses the evaluation of aerothermal flight measurements made on the orbital flight test Space Shuttle External Tanks (ETs). Six ETs were instrumented to measure various quantities during flight; including heat transfer, pressure, and structural temperature. The flight data was reduced and analyzed against math models established from an extensive wind tunnel data base and empirical heat-transfer relationships. This analysis has supported the validity of the current aeroheating methodology and existing data base; and, has also identified some problem areas which require methodology modifications. Volume 1 is the Executive Summary. Volume 2 contains Appendix A (Aerothermal Comparisons), and Appendix B (Flight-Derived h sub 1/h sub u vs. M sub inf. Plots). This is Volume 3, containing Appendix C (Comparison of Interference Factors between OFT Flight, Prediction and 1H-97A Data), Appendix D (Freestream Stanton Number and Reynolds Number Correlation for Flight and Tunnel Data), and Appendix E (Flight-Derived h sub i/h sub u Tables).

  14. Orbital flight test shuttle external tank aerothermal flight evaluation, volume 2

    NASA Technical Reports Server (NTRS)

    Praharaj, Sarat C.; Engel, Carl D.; Warmbrod, John D.

    1986-01-01

    This 3-volume report discusses the evaluation of aerothermal flight measurements made on the orbital flight test Space Shuttle External Tanks (ETs). Six ETs were instrumented to measure various quantities during flight; including heat transfer, pressure, and structural temperature. The flight data was reduced and analyzed against math models established from an extensive wind tunnel data base and empirical heat-transfer relationships. This analysis has supported the validity of the current aeroheating methodology and existing data base; and, has also identified some problem areas which require methodology modifications. Volume 1 is the Executive Summary. This is volume 2, containing Appendix A (Aerothermal Comparisons), and Appendix B (Flight-Derived h sub i/h sub u vs. M sub inf. Plots). Volume 3 contains Appendix C (Comparison of Interference Factors between OFT Flight, Prediction and 1H-97A Data), Appendix D (Freestream Stanton Number and Reynolds Number Correlation for Flight and Tunnel Data), and Appendix E (Flight-Derived h sub i/h sub u Tables).

  15. Orion Exploration Flight Test Post-Flight Inspection and Analysis

    NASA Technical Reports Server (NTRS)

    Miller, J. E.; Berger, E. L.; Bohl, W. E.; Christiansen, E. L.; Davis, B. A.; Deighton, K. D.; Enriquez, P. A.; Garcia, M. A.; Hyde, J. L.; Oliveras, O. M.

    2017-01-01

    The multipurpose crew vehicle, Orion, is being designed and built for NASA to handle the rigors of crew launch, sustainment and return from scientific missions beyond Earth orbit. In this role, the Orion vehicle is meant to operate in the space environments like the naturally occurring meteoroid and the artificial orbital debris environments (MMOD) with successful atmospheric reentry at the conclusion of the flight. As a result, Orion's reentry module uses durable porous, ceramic tiles on almost thirty square meters of exposed surfaces to accomplish both of these functions. These durable, non-ablative surfaces maintain their surface profile through atmospheric reentry; thus, they preserve any surface imperfections that occur prior to atmospheric reentry. Furthermore, Orion's launch abort system includes a shroud that protects the thermal protection system while awaiting launch and during ascent. The combination of these design features and a careful pre-flight inspection to identify any manufacturing imperfections results in a high confidence that damage to the thermal protection system identified post-flight is due to the in-flight solid particle environments. These favorable design features of Orion along with the unique flight profile of the first exploration flight test of Orion (EFT-1) have yielded solid particle environment measurements that have never been obtained before this flight.

  16. Overview Of Recent Enhancements To The Bumper-II Meteoroid and Orbital Debris Risk Assessment Tool

    NASA Technical Reports Server (NTRS)

    Hyde, James L.; Christiansen, Eric L.; Lear, Dana M.; Prior, Thomas G.

    2006-01-01

    Discussion includes recent enhancements to the BUMPER-II program and input files in support of Shuttle Return to Flight. Improvements to the mesh definitions of the finite element input model will be presented. A BUMPER-II analysis process that was used to estimate statistical uncertainty is introduced.

  17. X-34 40K Fastrac II Engine Test

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This is a photo of an X-34 40K Fastrac II duration test performed at the Marshall Space Flight Center test stand 116 (TS116) in June 1997. Engine ignition is started with Tea-Gas which makes the start burn green. The X-34 program was cancelled in 2001.

  18. Theseus in Flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Theseus research aircraft in flight over Rogers Dry Lake, Edwards, California, during a 1996 research flight. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite-based global environmental change measurements. Dryden's Project Manager was John Del Frate.

  19. Greased Lightning (GL-10) Performance Flight Research: Flight Data Report

    NASA Technical Reports Server (NTRS)

    McSwain, Robert G.; Glaab, Louis J.; Theodore, Colin R.; Rhew, Ray D. (Editor); North, David D. (Editor)

    2017-01-01

    Modern aircraft design methods have produced acceptable designs for large conventional aircraft performance. With revolutionary electronic propulsion technologies fueled by the growth in the small UAS (Unmanned Aerial Systems) industry, these same prediction models are being applied to new smaller, and experimental design concepts requiring a VTOL (Vertical Take Off and Landing) capability for ODM (On Demand Mobility). A 50% sub-scale GL-10 flight model was built and tested to demonstrate the transition from hover to forward flight utilizing DEP (Distributed Electric Propulsion)[1][2]. In 2016 plans were put in place to conduct performance flight testing on the 50% sub-scale GL-10 flight model to support a NASA project called DELIVER (Design Environment for Novel Vertical Lift Vehicles). DELIVER was investigating the feasibility of including smaller and more experimental aircraft configurations into a NASA design tool called NDARC (NASA Design and Analysis of Rotorcraft)[3]. This report covers the performance flight data collected during flight testing of the GL-10 50% sub-scale flight model conducted at Beaver Dam Airpark, VA. Overall the flight test data provides great insight into how well our existing conceptual design tools predict the performance of small scale experimental DEP concepts. Low fidelity conceptual design tools estimated the (L/D)( sub max)of the GL-10 50% sub-scale flight model to be 16. Experimentally measured (L/D)( sub max) for the GL-10 50% scale flight model was 7.2. The aerodynamic performance predicted versus measured highlights the complexity of wing and nacelle interactions which is not currently accounted for in existing low fidelity tools.

  20. Flight Tasks and Metrics to Evaluate Laser Eye Protection in Flight Simulators

    DTIC Science & Technology

    2017-07-07

    AFRL-RH-FS-TR-2017-0026 Flight Tasks and Metrics to Evaluate Laser Eye Protection in Flight Simulators Thomas K. Kuyk Peter A. Smith Solangia...34Flight Tasks and Metrics to Evaluate Laser Eye Protection in Flight Simulators" (AFRL-RH-FS-TR- 2017 - 0026 SHORTER.PATRI CK.D.1023156390 Digitally...SUBTITLE Flight Tasks and Metrics to Evaluate Laser Eye Protection in Flight Simulators 5a. CONTRACT NUMBER FA8650-14-D-6519 5b. GRANT NUMBER 5c

  1. Flight Capacity of Bactrocera dorsalis (Diptera: Tephritidae) Adult Females Based on Flight Mill Studies and Flight Muscle Ultrastructure

    PubMed Central

    Chen, Peng; Yuan, Ruiling; Wang, Xiaowei; Xu, Jin

    2015-01-01

    The oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), is considered a major economic threat in many regions worldwide. To better comprehend flight capacity of B. dorsalis and its physiological basis, a computer-monitored flight mill was used to study flight capacity of B. dorsalis adult females of various ages, and the changes of its flight muscle ultrastructures were studied by transmission electron microscopy. The flight capacity (both speed and distance) changed significantly with age of B. dorsalis female adults, peaking at about 15 d; the myofibril diameter of the flight muscle of test insects at 15-d old was the longest, up to 1.56 µm, the sarcomere length at 15-d old was the shortest, averaging at 1.37 µm, volume content of mitochondria of flight muscle at 15-d old reached the peak, it was 32.64%. This study provides the important scientific data for better revealing long-distance movement mechanism of B. dorsalis. PMID:26450591

  2. Flight duration and flight muscle ultrastructure of unfed hawk moths.

    PubMed

    Wone, Bernard W M; Pathak, Jaika; Davidowitz, Goggy

    2018-06-13

    Flight muscle breakdown has been reported for many orders of insects, but the basis of this breakdown in insects with lifelong dependence on flight is less clear. Lepidopterans show such muscle changes across their lifespans, yet how this change affects the ability of these insects to complete their life cycles is not well documented. We investigated the changes in muscle function and ultrastructure of unfed aging adult hawk moths (Manduca sexta). Flight duration was examined in young, middle-aged, and advanced-aged unfed moths. After measurement of flight duration, the main flight muscle (dorsolongitudinal muscle) was collected and histologically prepared for transmission electron microscopy to compare several measurements of muscle ultrastructure among moths of different ages. Muscle function assays revealed significant positive correlations between muscle ultrastructure and flight distance that were greatest in middle-aged moths and least in young moths. In addition, changes in flight muscle ultrastructure were detected across treatment groups. The number of mitochondria in muscle cells peaked in middle-aged moths. Many wild M. sexta do not feed as adults; thus, understanding the changes in flight capacity and muscle ultrastructure in unfed moths provides a more complete understanding of the ecophysiology and resource allocation strategies of this species. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Some elementary aspects of non-linear airplane speed stability in constrained flight

    NASA Astrophysics Data System (ADS)

    Campos, L. M. B. C.; Fonseca, A. A.; Azinheira, J. R. C.

    We review the longitudinal motion of an airplane, starting a dive at an arbitrary speed, and flown on a constant glide slope; this non-linear longitudinal speed stability problem is solved analytically (Section 2), to provide groundspeed as a function of time. Three restrictions were made: (i) neglect of the short period mode; (ii) low Mach number flight, i.e. omission of drag due to compressibility; (iii) small altitude change, so that the air density could be taken as constant. The predicted stability curves were compared with flight test data (Section 6), obtained using a CASA 212 Aviocar twin-turboprop transport. The flight data records showed that lateral motion was negligible; the effects of wind were compensated for, and the possible errors were estimated. An extension was made of the stability theory from still air (Section 2), to account for the presence of winds (Section 3); the latter were assumed not to exceed 30% of the groundspeed. The comparison of the theoretical stability curves with flight test data can be automated, as can the identification of the relevant data record. The disturbance intensity can be used as a parameter (Section 5) which indicates the start and end of flight manouever. This parameter is defined (Section 4) as the relative lift change, and for longitudinal flight it can be obtained from the wind velocity, vorticity components and changes of airspeed, angle-of-attack and vertical acceleration. It similarly has applications to perturbations of a horizontal turn.

  4. Gerst during BASS-II experiment

    NASA Image and Video Library

    2014-07-30

    ISS040-E-083576 (30 July 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, performs two tests with a combustion experiment known as the Burning and Suppression of Solids (BASS-II) in the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station. The experiment seeks to provide insight on how flames burn in space compared to Earth which may provide fire safety benefits aboard future spacecraft.

  5. Gerst during BASS-II experiment

    NASA Image and Video Library

    2014-07-30

    ISS040-E-083578 (30 July 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, performs two tests with a combustion experiment known as the Burning and Suppression of Solids (BASS-II) in the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station. The experiment seeks to provide insight on how flames burn in space compared to Earth which may provide fire safety benefits aboard future spacecraft.

  6. Conceptual Design of a Hypervelocity Asteroid Intercept Vehicle (HAIV) Flight Validation Mission

    NASA Technical Reports Server (NTRS)

    Barbee, Brent W.; Wie, Bong; Steiner, Mark; Getzandanner, Kenneth

    2013-01-01

    In this paper we present a detailed overview of the MDL study results and subsequent advances in the design of GNC algorithms for accurate terminal guidance during hypervelocity NEO intercept. The MDL study produced a conceptual con guration of the two-body HAIV and its subsystems; a mission scenario and trajectory design for a notional flight validation mission to a selected candidate target NEO; GNC results regarding the ability of the HAIV to reliably intercept small (50 m) NEOs at hypervelocity (typically greater than 10 km/s); candidate launch vehicle selection; a notional operations concept and cost estimate for the flight validation mission; and a list of topics to address during the remainder of our NIAC Phase II study.

  7. 14 CFR 61.64 - Use of a flight simulator and flight training device.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Use of a flight simulator and flight... Ratings and Pilot Authorizations § 61.64 Use of a flight simulator and flight training device. (a) Use of a flight simulator or flight training device. If an applicant for a certificate or rating uses a...

  8. 14 CFR 61.64 - Use of a flight simulator and flight training device.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Use of a flight simulator and flight... Ratings and Pilot Authorizations § 61.64 Use of a flight simulator and flight training device. (a) Use of a flight simulator or flight training device. If an applicant for a certificate or rating uses a...

  9. Measurement of Cosmic-Ray Antiproton Spectrum at Solar Minimum with a Long-Duration Balloon Flight in Antarctica

    NASA Technical Reports Server (NTRS)

    Abe, K.; Fuke, H.; Haino, S.; Hams, T.; Hasegawa, M.; Horikoshi, A.; Kim, K. C.; Kusumoto, A.; Lee, M. H.; Makida, Y.; hide

    2011-01-01

    The energy spectrum of cosmic-ray antiprotons (p(raised bar)'s) collected by the BESS-Polar II instrument during a long-duration flight over Antarctica in the solar minimum period of December 2007 through January 2008. The p(raised bar) spectrum measured by BESS-Polar II shows good consistency with secondary p(raised bar) calculations. Cosmologically primary p(raised bar)'s have been searched for by comparing the observed and calculated p(raised bar) spectra. The BESSPolar II result shows no evidence of primary p(raised bar)'s originating from the evaporation of PBH.

  10. Orion Pad Abort 1 Flight Test: Simulation Predictions Versus Flight Data

    NASA Technical Reports Server (NTRS)

    Stillwater, Ryan Allanque; Merritt, Deborah S.

    2011-01-01

    The presentation covers the pre-flight simulation predictions of the Orion Pad Abort 1. The pre-flight simulation predictions are compared to the Orion Pad Abort 1 flight test data. Finally the flight test data is compared to the updated simulation predictions, which show a ove rall improvement in the accuracy of the simulation predictions.

  11. Overview of the NASA Dryden Flight Research Facility aeronautical flight projects

    NASA Technical Reports Server (NTRS)

    Meyer, Robert R., Jr.

    1992-01-01

    Several principal aerodynamics flight projects of the NASA Dryden Flight Research Facility are discussed. Key vehicle technology areas from a wide range of flight vehicles are highlighted. These areas include flight research data obtained for ground facility and computation correlation, applied research in areas not well suited to ground facilities (wind tunnels), and concept demonstration.

  12. An Overview of Flight Test Results for a Formation Flight Autopilot

    NASA Technical Reports Server (NTRS)

    Hanson, Curtis E.; Ryan, Jack; Allen, Michael J.; Jacobson, Steven R.

    2002-01-01

    The first flight test phase of the NASA Dryden Flight Research Center Autonomous Formation Flight project has successfully demonstrated precision autonomous station-keeping of an F/A-18 research airplane with a second F/A-18 airplane. Blended inertial navigation system (INS) and global positioning system (GPS) measurements have been communicated across an air-to-air telemetry link and used to compute relative-position estimates. A precision research formation autopilot onboard the trailing airplane controls lateral and vertical spacing while the leading airplane operates under production autopilot control. Four research autopilot gain sets have been designed and flight-tested, and each exceeds the project design requirement of steady-state tracking accuracy within 1 standard deviation of 10 ft. Performance also has been demonstrated using single- and multiple-axis inputs such as step commands and frequency sweeps. This report briefly describes the experimental formation flight systems employed and discusses the navigation, guidance, and control algorithms that have been flight-tested. An overview of the flight test results of the formation autopilot during steady-state tracking and maneuvering flight is presented.

  13. Reproduction in the space environment: Part II. Concerns for human reproduction

    NASA Technical Reports Server (NTRS)

    Jennings, R. T.; Santy, P. A.

    1990-01-01

    Long-duration space flight and eventual colonization of our solar system will require successful control of reproductive function and a thorough understanding of factors unique to space flight and their impact on gynecologic and obstetric parameters. Part II of this paper examines the specific environmental factors associated with space flight and the implications for human reproduction. Space environmental hazards discussed include radiation, alteration in atmospheric pressure and breathing gas partial pressures, prolonged toxicological exposure, and microgravity. The effects of countermeasures necessary to reduce cardiovascular deconditioning, calcium loss, muscle wasting, and neurovestibular problems are also considered. In addition, the impact of microgravity on male fertility and gamete quality is explored. Due to current constraints, human pregnancy is now contraindicated for space flight. However, a program to explore effective countermeasures to current constraints and develop the required health care delivery capability for extended-duration space flight is suggested. A program of Earth- and space-based research to provide further answers to reproductive questions is suggested.

  14. Future Flight Decks

    NASA Technical Reports Server (NTRS)

    Arbuckle, P. Douglas; Abbott, Kathy H.; Abbott, Terence S.; Schutte, Paul C.

    1998-01-01

    The evolution of commercial transport flight deck configurations over the past 20-30 years and expected future developments are described. Key factors in the aviation environment are identified that the authors expect will significantly affect flight deck designers. One of these is the requirement for commercial aviation accident rate reduction, which is probably required if global commercial aviation is to grow as projected. Other factors include the growing incrementalism in flight deck implementation, definition of future airspace operations, and expectations of a future pilot corps that will have grown up with computers. Future flight deck developments are extrapolated from observable factors in the aviation environment, recent research results in the area of pilot-centered flight deck systems, and by considering expected advances in technology that are being driven by other than aviation requirements. The authors hypothesize that revolutionary flight deck configuration changes will be possible with development of human-centered flight deck design methodologies that take full advantage of commercial and/or entertainment-driven technologies.

  15. CLASP2: High-Precision Spectro-Polarimetery in Mg II h & k

    NASA Technical Reports Server (NTRS)

    Ishikawa, R.; McKenzie, D.; Trujillo Bueno, J.; Auchere, F.; Rachmeler, L.; Okamoto, T. J.; Kano, R.; Song, D.; Kubo, M.; Narukage, N.; hide

    2017-01-01

    The international team is promoting the CLASP2 (Chromospheric LAyer Spectro-Polarimeter 2) sounding rocket experiment, which is the re-flight of CLASP (2015). In this second flight, we will refit the existing CLASP instrument to measure all Stokes parameters in Mg II h k lines, and aim at inferring the magnetic field information in the upper chromosphere combining the Hanle and Zeeman effects. CLASP2 project was approved by NASA in December 2016, and is now scheduled to fly in 2019.

  16. The role of situation assessment and flight experience in pilots' decisions to continue visual flight rules flight into adverse weather.

    PubMed

    Wiegmann, Douglas A; Goh, Juliana; O'Hare, David

    2002-01-01

    Visual flight rules (VFR) flight into instrument meteorological conditions (IMC) is a major safety hazard in general aviation. In this study we examined pilots' decisions to continue or divert from a VFR flight into IMC during a dynamic simulation of a cross-country flight. Pilots encountered IMC either early or later into the flight, and the amount of time and distance pilots flew into the adverse weather prior to diverting was recorded. Results revealed that pilots who encountered the deteriorating weather earlier in the flight flew longer into the weather prior to diverting and had more optimistic estimates of weather conditions than did pilots who encountered the deteriorating weather later in the flight. Both the time and distance traveled into the weather prior to diverting were negatively correlated with pilots' previous flight experience. These findings suggest that VFR flight into IMC may be attributable, at least in part, to poor situation assessment and experience rather than to motivational judgment that induces risk-taking behavior as more time and effort are invested in a flight. Actual or potential applications of this research include the design of interventions that focus on improving weather evaluation skills in addition to addressing risk-taking attitudes.

  17. Theseus in Flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Theseus prototype research aircraft shows off its unique design as it flies low over Rogers Dry Lake during a 1996 test flight from NASA's Dryden Flight Research Center, Edwards, California. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite-based global

  18. Theseus in Flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The twin pusher engines of the prototype Theseus research aircraft can be clearly seen in this photo of the aircraft during a 1996 research flight from the Dryden Flight Research Center, Edwards, California. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite

  19. Theseus in Flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The twin pusher propeller-driven engines of the Theseus research aircraft can be clearly seen in this photo, taken during a 1996 research flight at NASA's Dryden Flight Research Center, Edwards, California. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite

  20. A Simple Flight Mill for the Study of Tethered Flight in Insects.

    PubMed

    Attisano, Alfredo; Murphy, James T; Vickers, Andrew; Moore, Patricia J

    2015-12-10

    Flight in insects can be long-range migratory flights, intermediate-range dispersal flights, or short-range host-seeking flights. Previous studies have shown that flight mills are valuable tools for the experimental study of insect flight behavior, allowing researchers to examine how factors such as age, host plants, or population source can influence an insects' propensity to disperse. Flight mills allow researchers to measure components of flight such as speed and distance flown. Lack of detailed information about how to build such a device can make their construction appear to be prohibitively complex. We present a simple and relatively inexpensive flight mill for the study of tethered flight in insects. Experimental insects can be tethered with non-toxic adhesives and revolve around an axis by means of a very low friction magnetic bearing. The mill is designed for the study of flight in controlled conditions as it can be used inside an incubator or environmental chamber. The strongest points are the very simple electronic circuitry, the design that allows sixteen insects to fly simultaneously allowing the collection and analysis of a large number of samples in a short time and the potential to use the device in a very limited workspace. This design is extremely flexible, and we have adjusted the mill to accommodate different species of insects of various sizes.

  1. Motion analysis and trials of the deep sea hybrid underwater glider Petrel-II

    NASA Astrophysics Data System (ADS)

    Liu, Fang; Wang, Yan-hui; Wu, Zhi-liang; Wang, Shu-xin

    2017-03-01

    A hybrid underwater glider Petrel-II has been developed and field tested. It is equipped with an active buoyancy unit and a compact propeller unit. Its working modes have been expanded to buoyancy driven gliding and propeller driven level-flight, which can make the glider work in strong currents, as well as many other complicated ocean environments. Its maximal gliding speed reaches 1 knot and the propelling speed is up to 3 knots. In this paper, a 3D dynamic model of Petrel-II is derived using linear momentum and angular momentum equations. According to the dynamic model, the spiral motion in the underwater space is simulated for the gliding mode. Similarly the cycle motion on water surface and the depth-keeping motion underwater are simulated for the level-flight mode. These simulations are important to the performance analysis and parameter optimization for the Petrel-II underwater glider. The simulation results show a good agreement with field trials.

  2. Regulation of carbohydrate metabolism and flight performance by a hypertrehalosaemic hormone in the mosquito Anopheles gambiae

    PubMed Central

    Kaufmann, Christian; Brown, Mark R.

    2008-01-01

    The role of adipokinetic hormones (AKHs) in the regulation of carbohydrate and lipid metabolism and flight performance was evaluated for females of the African malaria mosquito, Anopheles gambiae. Injection of various dosages of synthetic Anoga-AKH-I increased carbohydrate levels in the haemolymph and reduced glycogen reserves in sugar-fed females but did not affect lipid levels. Anoga-AKH-I enhanced the flight performance of both intact and decapitated sugar-fed females, during a 4 hour flight period. Anoga-AKH-II had no effect on carbohydrate or lipid levels or flight performance, thus its function remains unknown. Targeted RNA-interference lowered Anoga-AKH receptor expression in sugar-fed females, consequently injections of Anoga-AKH-I failed to mobilize glycogen reserves. Taken together, these results show that a primary role for the neurohormone, Anoga-AKH-I, is to elevate trehalose levels in the haemolymph of female mosquitoes. PMID:18062987

  3. Aircraft Fleet on the Tarmac at the Lewis Flight Propulsion Laboratory

    NASA Image and Video Library

    1946-04-21

    This fleet of military aircraft was used in the 1940s for research at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory in Cleveland, Ohio. The NACA Lewis flight research program was established in March 1943 to augment the lab’s wartime research efforts. NACA Lewis possessed a host of wind tunnels, test stands, and other ground facilities designed to replicate flight conditions, but actual flight tests remained an integral research tool. The military loaned NACA Lewis 15 different aircraft during World War II and six others in the six months following the end of hostilities. During the war these aircraft supported three main efforts: the improved performance of reciprocating engines, better fuel additives and mixtures, and deicing systems. The wartime researchers used the types of aircraft which the studies were intended to improve. After the war the research aircraft served as test beds to investigate engines or systems that often had little to do with the research aircraft. During the war, NACA Lewis’ three pilots were supported by 16 flight engineers, 36 mechanics, and 10 instrumentation specialists. The visible aircraft, from left to right, are a Boeing B-29 Superfortress, a Martin B-26A Marauder, two Consolidated B-24 Liberators, a Cessna UC-78 Bobcat, and a Northrop P-61 Black Widow. Partially obscured are a North American P-51 Mustang, a Bell P-63 King Cobra, a North American AT-6 Texan, and a Lockheed RA-29 Hudson.

  4. John B. McKay after X-15 flight #3-27-44

    NASA Image and Video Library

    1964-03-13

    John B. McKay was one of the first pilots assigned to the X-15 flight research program at NASA's Flight Research Center, Edwards, Calif. As a civilian research pilot and aeronautical engineer, he made 30 flights in X-15s from October 28, 1960, until September 8, 1966. His peak altitude was 295,600 feet, and his highest speed was 3863 mph (Mach 5.64). McKay was with the NACA and NASA from February 8,1951 until October 5, 1971 and specialized in high-speed flight research programs. He began as an NACA intern, but assumed pilot status on July 11, 1952. In addition to the X-l5, he flew such experimental aircraft as the D-558-1, D-558-2, X-lB, and the X-lE. He has also served as a research pilot on flight programs involving the F-100, F-102, F-104, and the F-107. Born on December 8, 1922, in Portsmouth, Va., McKay graduated from Virginia Polytechnic Institute in 195O with a Bachelor of Science degree in Aeronautical Engineering. During World War II he served as a Navy pilot in the Pacific Theater, earning the Air Medal and Two Clusters, and a Presidential Unit Citation. McKay wrote several technical papers, and was a member of the American Institute of Aeronautics and Astronautics, as well as the Society of Experimental Test Pilots. He passed away on April 27, 1975.

  5. [How traumatized are the children of World War II? The relationship of age during flight and forced displacement and current posttraumatic stress symptoms].

    PubMed

    Wendt, Carolin; Freitag, Simone; Schmidt, Silke

    2012-08-01

    Traumatic events experienced in childhood can be reactivated in older age. The present study investigates the relation of age during flight and forced displacement within World War II (WWII; 2-7 years, 8-13 years, 14-20 years) and the current occurrence of posttraumatic stress disorder (PTSD). Traumatic events and current posttraumatic stress symptoms were assessed by the Harvard Trauma Questionnaire and the Impact of Event Scale-revised. Mean age of participants (N=169) was 73.76 years (SD=4.18). The eldest group reported most war-related traumatic events. In each age group a one-week-prevalence for a full PTSD of 10-11% was found. The prevalence for both full and subthreshold PTSD was higher for the age group 14-20 years (60.5%) compared to the younger age groups (33-35%). People, who experienced WWII as adolescents, show a dose-response-effect indicated by a higher prevalence for subthreshold PTSD. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Bat flight: aerodynamics, kinematics and flight morphology.

    PubMed

    Hedenström, Anders; Johansson, L Christoffer

    2015-03-01

    Bats evolved the ability of powered flight more than 50 million years ago. The modern bat is an efficient flyer and recent research on bat flight has revealed many intriguing facts. By using particle image velocimetry to visualize wake vortices, both the magnitude and time-history of aerodynamic forces can be estimated. At most speeds the downstroke generates both lift and thrust, whereas the function of the upstroke changes with forward flight speed. At hovering and slow speed bats use a leading edge vortex to enhance the lift beyond that allowed by steady aerodynamics and an inverted wing during the upstroke to further aid weight support. The bat wing and its skeleton exhibit many features and control mechanisms that are presumed to improve flight performance. Whereas bats appear aerodynamically less efficient than birds when it comes to cruising flight, they have the edge over birds when it comes to manoeuvring. There is a direct relationship between kinematics and the aerodynamic performance, but there is still a lack of knowledge about how (and if) the bat controls the movements and shape (planform and camber) of the wing. Considering the relatively few bat species whose aerodynamic tracks have been characterized, there is scope for new discoveries and a need to study species representing more extreme positions in the bat morphospace. © 2015. Published by The Company of Biologists Ltd.

  7. Selected Flight Test Results for Online Learning Neural Network-Based Flight Control System

    NASA Technical Reports Server (NTRS)

    Williams-Hayes, Peggy S.

    2004-01-01

    The NASA F-15 Intelligent Flight Control System project team developed a series of flight control concepts designed to demonstrate neural network-based adaptive controller benefits, with the objective to develop and flight-test control systems using neural network technology to optimize aircraft performance under nominal conditions and stabilize the aircraft under failure conditions. This report presents flight-test results for an adaptive controller using stability and control derivative values from an online learning neural network. A dynamic cell structure neural network is used in conjunction with a real-time parameter identification algorithm to estimate aerodynamic stability and control derivative increments to baseline aerodynamic derivatives in flight. This open-loop flight test set was performed in preparation for a future phase in which the learning neural network and parameter identification algorithm output would provide the flight controller with aerodynamic stability and control derivative updates in near real time. Two flight maneuvers are analyzed - pitch frequency sweep and automated flight-test maneuver designed to optimally excite the parameter identification algorithm in all axes. Frequency responses generated from flight data are compared to those obtained from nonlinear simulation runs. Flight data examination shows that addition of flight-identified aerodynamic derivative increments into the simulation improved aircraft pitch handling qualities.

  8. Challenger STS-17 (41-G) post-flight best estimate trajectory products: Development and summary results

    NASA Technical Reports Server (NTRS)

    Kelly, G. M.; Heck, M. L.; Mcconnell, J. G.; Waters, L. A.; Troutman, P. A.; Findlay, J. T.

    1985-01-01

    Results from the STS-17 (41-G) post-flight products are presented. Operational Instrumentation recorder gaps, coupled with the limited tracking coverage available for this high inclination entry profile, necessitated selection of an anchor epoch for reconstruction corresponding to an unusually low altitude of h approx. 297 kft. The final inertial trajectory obtained, BT17N26/UN=169750N, is discussed in Section I, i.e., relative to the problems encountered with the OI and ACIP recorded data on this Challenger flight. Atmospheric selection, again in view of the ground track displacement from the remote meteorological sites, constituted a major problem area as discussed in Section II. The LAIRS file provided by Langley was adopted, with NOAA data utilized over the lowermost approx. 7 kft. As discussed in Section II, the Extended BET, ST17BET/UN=274885C, suggests a limited upper altitude (H approx. 230 kft) for which meaningful flight extraction can be expected. This is further demonstrated, though not considered a limitation, in Section III wherein summary results from the AEROBET (NJ0333 with NJ0346 as duplicate) are presented. GTFILEs were generated only for the selected IMU (IMU2) and the Rate Gyro Assembly/Accelerometer Assembly data due to the loss of ACIP data. Appendices attached present inputs for the generation of the post-flight products (Appendix A), final residual plots (Appendix B), a two second spaced listing of the relevant parameters from the Extended BET (Appendix C), and an archival section (Appendix D) devoting input (source) and output files and/or physical reels.

  9. Tropospheric Airborne Meteorological Data and Reporting (TAMDAR) Icing Sensor Performance during the 2003/2004 Alliance Icing Research Study (AIRS II)

    NASA Technical Reports Server (NTRS)

    Murray, John J.; Nguyen, Louis A.; Daniels, Taumi; Minnis, Patrick; Schaffner, Phillip R.; Cagle, Melinda F.; Nordeen, Michele L.; Wolff, Cory A.; Anderson, Mark V.; Mulally, Daniel J.

    2005-01-01

    NASA Langley Research Center and its research partners from the University of North Dakota (UND) and the National Center for Atmospheric Research (NCAR) participated in the AIRS II campaign from November 17 to December 17, 2003. AIRS II provided the opportunity to compare TAMDAR in situ in-flight icing condition assessments with in situ data from the UND Citation II aircraft's Rosemont system. TAMDAR is designed to provide a general warning of ice accretion and to report it directly into the Meteorological Data Communications and Reporting System (MDCRS). In addition to evaluating TAMDAR with microphysical data obtained by the Citation II, this study also compares these data to the NWS operational in-flight icing Current Icing Potential (CIP) graphic product and with the NASA Advanced Satellite Aviation-weather Products (ASAP) Icing Severity product. The CIP and ASAP graphics are also examined in this study to provide a context for the Citation II's sorties in AIRS II.

  10. 14 CFR 121.412 - Qualifications: Flight instructors (airplane) and flight instructors (simulator).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... (airplane) and flight instructors (simulator). 121.412 Section 121.412 Aeronautics and Space FEDERAL... OPERATIONS Training Program § 121.412 Qualifications: Flight instructors (airplane) and flight instructors (simulator). (a) For the purposes of this section and § 121.414: (1) A flight instructor (airplane) is a...

  11. 14 CFR 121.412 - Qualifications: Flight instructors (airplane) and flight instructors (simulator).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... (airplane) and flight instructors (simulator). 121.412 Section 121.412 Aeronautics and Space FEDERAL... OPERATIONS Training Program § 121.412 Qualifications: Flight instructors (airplane) and flight instructors... section and § 121.414: (1) A flight instructor (airplane) is a person who is qualified to instruct in an...

  12. 14 CFR 121.412 - Qualifications: Flight instructors (airplane) and flight instructors (simulator).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... (airplane) and flight instructors (simulator). 121.412 Section 121.412 Aeronautics and Space FEDERAL... OPERATIONS Training Program § 121.412 Qualifications: Flight instructors (airplane) and flight instructors (simulator). (a) For the purposes of this section and § 121.414: (1) A flight instructor (airplane) is a...

  13. 14 CFR 121.412 - Qualifications: Flight instructors (airplane) and flight instructors (simulator).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... (airplane) and flight instructors (simulator). 121.412 Section 121.412 Aeronautics and Space FEDERAL... OPERATIONS Training Program § 121.412 Qualifications: Flight instructors (airplane) and flight instructors (simulator). (a) For the purposes of this section and § 121.414: (1) A flight instructor (airplane) is a...

  14. 14 CFR 121.412 - Qualifications: Flight instructors (airplane) and flight instructors (simulator).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... (airplane) and flight instructors (simulator). 121.412 Section 121.412 Aeronautics and Space FEDERAL... OPERATIONS Training Program § 121.412 Qualifications: Flight instructors (airplane) and flight instructors (simulator). (a) For the purposes of this section and § 121.414: (1) A flight instructor (airplane) is a...

  15. Selected Flight Test Results for Online Learning Neural Network-Based Flight Control System

    NASA Technical Reports Server (NTRS)

    Williams, Peggy S.

    2004-01-01

    The NASA F-15 Intelligent Flight Control System project team has developed a series of flight control concepts designed to demonstrate the benefits of a neural network-based adaptive controller. The objective of the team is to develop and flight-test control systems that use neural network technology to optimize the performance of the aircraft under nominal conditions as well as stabilize the aircraft under failure conditions. Failure conditions include locked or failed control surfaces as well as unforeseen damage that might occur to the aircraft in flight. This report presents flight-test results for an adaptive controller using stability and control derivative values from an online learning neural network. A dynamic cell structure neural network is used in conjunction with a real-time parameter identification algorithm to estimate aerodynamic stability and control derivative increments to the baseline aerodynamic derivatives in flight. This set of open-loop flight tests was performed in preparation for a future phase of flights in which the learning neural network and parameter identification algorithm output would provide the flight controller with aerodynamic stability and control derivative updates in near real time. Two flight maneuvers are analyzed a pitch frequency sweep and an automated flight-test maneuver designed to optimally excite the parameter identification algorithm in all axes. Frequency responses generated from flight data are compared to those obtained from nonlinear simulation runs. An examination of flight data shows that addition of the flight-identified aerodynamic derivative increments into the simulation improved the pitch handling qualities of the aircraft.

  16. Ariane flight testing

    NASA Astrophysics Data System (ADS)

    Vedrenne, M.

    1983-11-01

    The object of this paper is to present the way in which the flight development tests of the Ariane launch vehicle have enabled the definition to be frozen and its qualification to be demonstrated before the beginning of the operational phase. A first part is devoted to the in-flight measurement facilities, the acquisition and evaluation systems, and to the organization of the in-flight results evaluation. The following part consists of the comparison between ground predictions and flight results for the main parameters as classified by system (stages, trajectory, propulsion, flight mechanics, auto pilot and guidance). The corrective actions required are then identified and the corresponding results shown.

  17. Overview of Pre-Flight Physical Training, In-Flight Exercise Countermeasures and the Post-Flight Reconditioning Program for International Space Station Astronauts

    NASA Technical Reports Server (NTRS)

    Kerstman, Eric

    2011-01-01

    International Space Station (ISS) astronauts receive supervised physical training pre-flight, utilize exercise countermeasures in-flight, and participate in a structured reconditioning program post-flight. Despite recent advances in exercise hardware and prescribed exercise countermeasures, ISS crewmembers are still found to have variable levels of deconditioning post-flight. This presentation provides an overview of the astronaut medical certification requirements, pre-flight physical training, in-flight exercise countermeasures, and the post-flight reconditioning program. Astronauts must meet medical certification requirements on selection, annually, and prior to ISS missions. In addition, extensive physical fitness testing and standardized medical assessments are performed on long duration crewmembers pre-flight. Limited physical fitness assessments and medical examinations are performed in-flight to develop exercise countermeasure prescriptions, ensure that the crewmembers are physically capable of performing mission tasks, and monitor astronaut health. Upon mission completion, long duration astronauts must re-adapt to the 1 G environment, and be certified as fit to return to space flight training and active duty. A structured, supervised postflight reconditioning program has been developed to prevent injuries, facilitate re-adaptation to the 1 G environment, and subsequently return astronauts to training and space flight. The NASA reconditioning program is implemented by the Astronaut Strength, Conditioning, and Rehabilitation (ASCR) team and supervised by NASA flight surgeons. This program has evolved over the past 10 years of the International Space Station (ISS) program and has been successful in ensuring that long duration astronauts safely re-adapt to the 1 g environment and return to active duty. Lessons learned from this approach to managing deconditioning can be applied to terrestrial medicine and future exploration space flight missions.

  18. 14 CFR 135.338 - Qualifications: Flight instructors (aircraft) and flight instructors (simulator).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... (aircraft) and flight instructors (simulator). 135.338 Section 135.338 Aeronautics and Space FEDERAL... instructors (aircraft) and flight instructors (simulator). (a) For the purposes of this section and § 135.340... flight simulator, or in a flight training device for a particular type, class, or category aircraft. (2...

  19. 14 CFR 135.338 - Qualifications: Flight instructors (aircraft) and flight instructors (simulator).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... (aircraft) and flight instructors (simulator). 135.338 Section 135.338 Aeronautics and Space FEDERAL... instructors (aircraft) and flight instructors (simulator). (a) For the purposes of this section and § 135.340... flight simulator, or in a flight training device for a particular type, class, or category aircraft. (2...

  20. 14 CFR 135.338 - Qualifications: Flight instructors (aircraft) and flight instructors (simulator).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... (aircraft) and flight instructors (simulator). 135.338 Section 135.338 Aeronautics and Space FEDERAL... instructors (aircraft) and flight instructors (simulator). (a) For the purposes of this section and § 135.340... flight simulator, or in a flight training device for a particular type, class, or category aircraft. (2...

  1. 14 CFR 135.338 - Qualifications: Flight instructors (aircraft) and flight instructors (simulator).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... (aircraft) and flight instructors (simulator). 135.338 Section 135.338 Aeronautics and Space FEDERAL... instructors (aircraft) and flight instructors (simulator). (a) For the purposes of this section and § 135.340... flight simulator, or in a flight training device for a particular type, class, or category aircraft. (2...

  2. X-33 Flight Visualization

    NASA Technical Reports Server (NTRS)

    Laue, Jay H.

    1998-01-01

    The X-33 flight visualization effort has resulted in the integration of high-resolution terrain data with vehicle position and attitude data for planned flights of the X-33 vehicle from its launch site at Edwards AFB, California, to landings at Michael Army Air Field, Utah, and Maelstrom AFB, Montana. Video and Web Site representations of these flight visualizations were produced. In addition, a totally new module was developed to control viewpoints in real-time using a joystick input. Efforts have been initiated, and are presently being continued, for real-time flight coverage visualizations using the data streams from the X-33 vehicle flights. The flight visualizations that have resulted thus far give convincing support to the expectation that the flights of the X-33 will be exciting and significant space flight milestones... flights of this nation's one-half scale predecessor to its first single-stage-to-orbit, fully-reusable launch vehicle system.

  3. Initial flight qualification and operational maintenance of X-29A flight software

    NASA Technical Reports Server (NTRS)

    Earls, Michael R.; Sitz, Joel R.

    1989-01-01

    A discussion is presented of some significant aspects of the initial flight qualification and operational maintenance of the flight control system softward for the X-29A technology demonstrator. Flight qualification and maintenance of complex, embedded flight control system software poses unique problems. The X-29A technology demonstrator aircraft has a digital flight control system which incorporates functions generally considered too complex for analog systems. Organizational responsibilities, software assurance issues, tools, and facilities are discussed.

  4. Advanced aircraft service life monitoring method via flight-by-flight load spectra

    NASA Astrophysics Data System (ADS)

    Lee, Hongchul

    This research is an effort to understand current method and to propose an advanced method for Damage Tolerance Analysis (DTA) for the purpose of monitoring the aircraft service life. As one of tasks in the DTA, the current indirect Individual Aircraft Tracking (IAT) method for the F-16C/D Block 32 does not properly represent changes in flight usage severity affecting structural fatigue life. Therefore, an advanced aircraft service life monitoring method based on flight-by-flight load spectra is proposed and recommended for IAT program to track consumed fatigue life as an alternative to the current method which is based on the crack severity index (CSI) value. Damage Tolerance is one of aircraft design philosophies to ensure that aging aircrafts satisfy structural reliability in terms of fatigue failures throughout their service periods. IAT program, one of the most important tasks of DTA, is able to track potential structural crack growth at critical areas in the major airframe structural components of individual aircraft. The F-16C/D aircraft is equipped with a flight data recorder to monitor flight usage and provide the data to support structural load analysis. However, limited memory of flight data recorder allows user to monitor individual aircraft fatigue usage in terms of only the vertical inertia (NzW) data for calculating Crack Severity Index (CSI) value which defines the relative maneuver severity. Current IAT method for the F-16C/D Block 32 based on CSI value calculated from NzW is shown to be not accurate enough to monitor individual aircraft fatigue usage due to several problems. The proposed advanced aircraft service life monitoring method based on flight-by-flight load spectra is recommended as an improved method for the F-16C/D Block 32 aircraft. Flight-by-flight load spectra was generated from downloaded Crash Survival Flight Data Recorder (CSFDR) data by calculating loads for each time hack in selected flight data utilizing loads equations. From

  5. Propulsion system-flight control integration-flight evaluation and technology transition

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Gilyard, Glenn B.; Myers, Lawrence P.

    1990-01-01

    Integration of propulsion and flight control systems and their optimization offering significant performance improvement are assessed. In particular, research programs conducted by NASA on flight control systems and propulsion system-flight control interactions on the YF-12 and F-15 aircraft are addressed; these programs have demonstrated increased thrust, reduced fuel consumption, increased engine life, and improved aircraft performance. Focus is placed on altitude control, speed-Mach control, integrated controller design, as well as flight control systems and digital electronic engine control. A highly integrated digital electronic control program is analyzed and compared with a performance seeking control program. It is shown that the flight evaluation and demonstration of these technologies have been a key part in the transition of the concepts to production and operational use on a timely basis.

  6. Advanced Transport Operating System (ATOPS) Flight Management/Flight Controls (FM/FC) software description

    NASA Technical Reports Server (NTRS)

    Wolverton, David A.; Dickson, Richard W.; Clinedinst, Winston C.; Slominski, Christopher J.

    1993-01-01

    The flight software developed for the Flight Management/Flight Controls (FM/FC) MicroVAX computer used on the Transport Systems Research Vehicle for Advanced Transport Operating Systems (ATOPS) research is described. The FM/FC software computes navigation position estimates, guidance commands, and those commands issued to the control surfaces to direct the aircraft in flight. Various modes of flight are provided for, ranging from computer assisted manual modes to fully automatic modes including automatic landing. A high-level system overview as well as a description of each software module comprising the system is provided. Digital systems diagrams are included for each major flight control component and selected flight management functions.

  7. Post-Flight Analysis of GPSR Performance During Orion Exploration Flight Test 1

    NASA Technical Reports Server (NTRS)

    Barker, Lee; Mamich, Harvey; McGregor, John

    2016-01-01

    On 5 December 2014, the first test flight of the Orion Multi-Purpose Crew Vehicle executed a unique and challenging flight profile including an elevated re-entry velocity and steeper flight path angle to envelope lunar re-entry conditions. A new navigation system including a single frequency (L1) GPS receiver was evaluated for use as part of the redundant navigation system required for human space flight. The single frequency receiver was challenged by a highly dynamic flight environment including flight above low Earth orbit, as well as single frequency operation with ionospheric delay present. This paper presents a brief description of the GPS navigation system, an independent analysis of flight telemetry data, and evaluation of the GPSR performance, including evaluation of the ionospheric model employed to supplement the single frequency receiver. Lessons learned and potential improvements will be discussed.

  8. Identification of atypical flight patterns

    NASA Technical Reports Server (NTRS)

    Statler, Irving C. (Inventor); Ferryman, Thomas A. (Inventor); Amidan, Brett G. (Inventor); Whitney, Paul D. (Inventor); White, Amanda M. (Inventor); Willse, Alan R. (Inventor); Cooley, Scott K. (Inventor); Jay, Joseph Griffith (Inventor); Lawrence, Robert E. (Inventor); Mosbrucker, Chris (Inventor)

    2005-01-01

    Method and system for analyzing aircraft data, including multiple selected flight parameters for a selected phase of a selected flight, and for determining when the selected phase of the selected flight is atypical, when compared with corresponding data for the same phase for other similar flights. A flight signature is computed using continuous-valued and discrete-valued flight parameters for the selected flight parameters and is optionally compared with a statistical distribution of other observed flight signatures, yielding atypicality scores for the same phase for other similar flights. A cluster analysis is optionally applied to the flight signatures to define an optimal collection of clusters. A level of atypicality for a selected flight is estimated, based upon an index associated with the cluster analysis.

  9. STS-118 Ascent/Entry Flight Control Team in White Flight Control Room (WFCR) with Flight Director Steve Stitch

    NASA Image and Video Library

    2007-07-20

    JSC2007-E-41011 (20 July 2007) --- STS-118 Ascent/Entry flight control team pose for a group portrait in the space shuttle flight control room of Houston's Mission Control Center (MCC). Flight director Steve Stich (center right) and astronaut Tony Antonelli, spacecraft communicator (CAPCOM), hold the STS-118 mission logo.

  10. Effects of space flight factors on Drosophila.

    PubMed

    Dubinin, N P; Glembotsky, Y L; Vaulina, E N; Grozdova, T Y; Kamshilova, E M; Ivaschenko, N I; Kholikova, I A; Nechitailo, G S; Mashinsky, A L; Iordanishvili, E K

    1973-01-01

    Drosophila melanogaster flies of strain D-32 were exposed aboard the Soyuz 10 spaceship. An insert with a nutritional medium and insects was placed in a small on-board thermostat (Biotherm II) providing a constant temperature (24 degrees C +/- 1 degree) for Drosophila development. The frequency of dominant lethals was determined in the females. Dominant, autosomal and sex-linked recessive lethals were estimated in hatching virgin males and females; the time of hatching was rigorously fixed. Sex-linked recessive lethals were related to certain stages of gametogenesis. The 1-5 oocyte stage showed an increased sensitivity to space-flight factors as regards the frequency of both dominant and recessive lethals.

  11. Abort Flight Test Project Overview

    NASA Technical Reports Server (NTRS)

    Sitz, Joel

    2007-01-01

    A general overview of the Orion abort flight test is presented. The contents include: 1) Abort Flight Test Project Overview; 2) DFRC Exploration Mission Directorate; 3) Abort Flight Test; 4) Flight Test Configurations; 5) Flight Test Vehicle Engineering Office; 6) DFRC FTA Scope; 7) Flight Test Operations; 8) DFRC Ops Support; 9) Launch Facilities; and 10) Scope of Launch Abort Flight Test

  12. Radiobiological studies of plants orbited in Biosatellite II.

    PubMed

    Schairer, L A; Sparrow, A H; Marimuthu, K M

    1970-01-01

    The Biosatellite II Tradescantia experiment probed the effects of the space environment on spontaneous and radiation-induced mutation rates and on cytological changes in Tradescantia clone 02. Thirty two young flowering plants arranged in a plastic housing with the roots immersed in nutrient solution were exposed to gamma radiation from an on-board 85 Strontium source during the two-day orbital flight. Unirradiated plants were flown in a package in the spacecraft behind a tungsten radiation shield and identical non-flight control packages (with and without irradiation) were maintained at the launch site. After retrieval of the spacecraft near Hawaii, samples of root tip, ovary and stamen tissues were collected. These and the intact plants were flown to the Brookhaven National Laboratory for observations on the following end points: somatic mutation, cell size, loss of reproductive integrity resulting in stunted stamen hairs, pollen grain mortality, frequency of micronuclei in pollen, disturbed mitotic spindle function and chromosome aberrations. Analysis of data on somatic mutation, cell size and chromosome aberration end points showed no significant differences between flight and non-flight samples. However, pollen abortion, frequency of micronuclei in pollen and loss of reproductive integrity (stamen hair stunting) showed increases associated with weightlessness in irradiated material. Root tip and microspore cells showed effects of disturbed mitotic spindle function in orbited plants both with and without irradiation. Clearly differences exist between flight and non-flight material and the significance and possible mechanisms for these effects are being studied in continuing non-flight tests.

  13. Altus II high altitude science aircraft decending toward U.S. Navy's Pacific Missile Range Facility

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Altus II descending from a flight over Kauai, Hawaii. The Altus II was flown as a performance and propulsion testbed for future high-altitude science platform aircraft under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program at the Dryden Flight Research Center, Edwards, Calif. The rear-engined Altus II and its sister ship, the Altus I, were built by General Atomics/Aeronautical Systems, Inc., of San Diego, Calif. They are designed for high-altitude, long-duration scientific sampling missions, and are powered by turbocharged piston engines. The Altus I, built for the Naval Postgraduate School, reached over 43,500 feet with a single-stage turbocharger feeding its four-cylinder Rotax engine in 1997, while the Altus II, incorporating a two-stage turbocharger built by Thermo-Mechanical Systems, reached and sustained an altitudeof 55,000 feet for four hours in 1999. A pilot in a control station on the ground flies the craft by radio signals, using visual cues from a video camera in the nose of the Altus and information from the craft's air data system.

  14. Validation of Digital Systems in Avionics and Flight Control Applications Handbook. Volume 1.

    DTIC Science & Technology

    1983-07-01

    will also be available to Airways Facilities, Systems Research and Development Service, Air Traffic Control Service, and Flight Standards elements...2114, March 12-14, 1979. 3. Validation Methods Research for Fault-Tolerant Avionics and Control Systems-- *r Working Group Meeting II, NASA...command generation with the multiple methods becoming avail- able for closure of the outer control loop necessitates research on alternative integration

  15. Flight testing and simulation of an F-15 airplane using throttles for flight control

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Maine, Trindel; Wolf, Thomas

    1992-01-01

    Flight tests and simulation studies using the throttles of an F-15 airplane for emergency flight control have been conducted at the NASA Dryden Flight Research Facility. The airplane and the simulation are capable of extended up-and-away flight, using only throttles for flight path control. Initial simulation results showed that runway landings using manual throttles-only control were difficult, but possible with practice. Manual approaches flown in the airplane were much more difficult, indicating a significant discrepancy between flight and simulation. Analysis of flight data and development of improved simulation models that resolve the discrepancy are discussed. An augmented throttle-only control system that controls bank angle and flight path with appropriate feedback parameters has also been developed, evaluated in simulations, and is planned for flight in the F-15.

  16. Hyper-X Flight Engine Ground Testing for X-43 Flight Risk Reduction

    NASA Technical Reports Server (NTRS)

    Huebner, Lawrence D.; Rock, Kenneth E.; Ruf, Edward G.; Witte, David W.; Andrews, Earl H., Jr.

    2001-01-01

    Airframe-integrated scramjet engine testing has been completed at Mach 7 flight conditions in the NASA Langley 8-Foot High Temperature Tunnel as part of the NASA Hyper-X program. This test provided engine performance and operability data, as well as design and database verification, for the Mach 7 flight tests of the Hyper-X research vehicle (X-43), which will provide the first-ever airframe-integrated scramjet data in flight. The Hyper-X Flight Engine, a duplicate Mach 7 X-43 scramjet engine, was mounted on an airframe structure that duplicated the entire three-dimensional propulsion flowpath from the vehicle leading edge to the vehicle trailing edge. This model was also tested to verify and validate the complete flight-like engine system. This paper describes the subsystems that were subjected to flight-like conditions and presents supporting data. The results from this test help to reduce risk for the Mach 7 flights of the X-43.

  17. Mitigating and monitoring flight crew fatigue on a westward ultra-long-range flight.

    PubMed

    Signal, T Leigh; Mulrine, Hannah M; van den Berg, Margo J; Smith, Alexander A T; Gander, Philippa H; Serfontein, Wynand

    2014-12-01

    This study examined the uptake and effectiveness of fatigue mitigation guidance material including sleep recommendations for a trip with a westward ultra-long-range flight and return long-range flight. There were 52 flight crew (4-pilot crews, mean age 55 yr) who completed a sleep/duty diary and wore an actigraph prior to, during, and after the trip. Primary crew flew the takeoff and landing, while relief crew flew the aircraft during the Primary crew's breaks. At key times in flight, crewmembers rated their fatigue (Samn-Perelli fatigue scale) and sleepiness (Karolinska Sleepiness Scale) and completed a 5-min Psychomotor Vigilance Task. Napping was common prior to the outbound flight (54%) and did not affect the quantity or quality of in-flight sleep (mean 4.3 h). Primary crew obtained a similar amount on the inbound flight (mean 4.0 h), but Secondary crew had less sleep (mean 2.9 h). Subjective fatigue and sleepiness increased and performance slowed across flights. Performance was faster on the outbound than inbound flight. On both flights, Primary crew were less fatigued and sleepy than Secondary crew, particularly at top of descent and after landing. Crewmembers slept more frequently and had more sleep in the first 24 h of the layover than the last, and had shifted their main sleep to the local night by the second night. The suggested sleep mitigations were employed by the majority of crewmembers. Fatigue levels were no worse on the outbound ultra-long-range flight than on the return long-range flight.

  18. Statistical analysis of flight times for space shuttle ferry flights

    NASA Technical Reports Server (NTRS)

    Graves, M. E.; Perlmutter, M.

    1974-01-01

    Markov chain and Monte Carlo analysis techniques are applied to the simulated Space Shuttle Orbiter Ferry flights to obtain statistical distributions of flight time duration between Edwards Air Force Base and Kennedy Space Center. The two methods are compared, and are found to be in excellent agreement. The flights are subjected to certain operational and meteorological requirements, or constraints, which cause eastbound and westbound trips to yield different results. Persistence of events theory is applied to the occurrence of inclement conditions to find their effect upon the statistical flight time distribution. In a sensitivity test, some of the constraints are varied to observe the corresponding changes in the results.

  19. Green Flight Challenge

    NASA Image and Video Library

    2011-09-27

    CAFE Foundation Security Chief and Event Manager Bruno Mombrinie, left, talks with CAFE Foundation eCharging Chief Alan Soule as flight crews prepare for the miles per gallon (MPG) flight during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  20. Determination of UAV pre-flight Checklist for flight test purpose using qualitative failure analysis

    NASA Astrophysics Data System (ADS)

    Hendarko; Indriyanto, T.; Syardianto; Maulana, F. A.

    2018-05-01

    Safety aspects are of paramount importance in flight, especially in flight test phase. Before performing any flight tests of either manned or unmanned aircraft, one should include pre-flight checklists as a required safety document in the flight test plan. This paper reports on the development of a new approach for determination of pre-flight checklists for UAV flight test based on aircraft’s failure analysis. The Lapan’s LSA (Light Surveillance Aircraft) is used as a study case, assuming this aircraft has been transformed into the unmanned version. Failure analysis is performed on LSA using fault tree analysis (FTA) method. Analysis is focused on propulsion system and flight control system, which fail of these systems will lead to catastrophic events. Pre-flight checklist of the UAV is then constructed based on the basic causes obtained from failure analysis.

  1. Flight Planning

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Seagull Technology, Inc., Sunnyvale, CA, produced a computer program under a Langley Research Center Small Business Innovation Research (SBIR) grant called STAFPLAN (Seagull Technology Advanced Flight Plan) that plans optimal trajectory routes for small to medium sized airlines to minimize direct operating costs while complying with various airline operating constraints. STAFPLAN incorporates four input databases, weather, route data, aircraft performance, and flight-specific information (times, payload, crew, fuel cost) to provide the correct amount of fuel optimal cruise altitude, climb and descent points, optimal cruise speed, and flight path.

  2. STS-93 Post Flight Presentation

    NASA Technical Reports Server (NTRS)

    1999-01-01

    An overview of Flight STS-93 is presented. The primary objective of the STS-93 mission was to deploy the Advanced X-Ray Astrophysics Facility (AXAF), also known as the Chandra X-ray Observatory. The mission flew on the Columbia Shuttle, on July 22, 1999. This facility is the most sophisticated X-ray observatory ever built. Other payloads on STS-93 were: (1) the Midcourse Space Experiment (MSX), (2) Shuttle Ionospheric Modification with Pulsed Local Exhaust (SIMPLEX), (3) Southwest Ultraviolet Imaging System (SWUIS), (4) Gelation of Sols: Applied Microgravity Research (GOSAMR), Space Tissue Loss-B (STL-B), (5) Light Weight Flexible Solar Array Hinge (LFSAH), (6) Cell Culture Module (CCM), and (7) the Shuttle Amateur Radio Experiment-II (SAREX-II), (8) EarthKam, (9) Plant Growth Investigations in Microgravity (PGIM), (10) Commercial Generic Bioprocessing Apparatus (CGBA), (11) Micro-Electrical Mechanical System (MEMS), and (12) the Biological Research in Canisters (BRIC). The crew was: Eileen M. Collins, Mission Commander, the first female shuttle commander; Jeffrey S. Ashby, Pilot; Steven A. Hawley , Mission Specialist; Catherine G. Coleman, Mission Specialist; Michel Tognini (CNES), Mission Specialist. The video contains views of life aboard the space shuttle. This mission featured both a night launching and a night landing at the Kennedy Space Center.

  3. Automated flight test management system

    NASA Technical Reports Server (NTRS)

    Hewett, M. D.; Tartt, D. M.; Agarwal, A.

    1991-01-01

    The Phase 1 development of an automated flight test management system (ATMS) as a component of a rapid prototyping flight research facility for artificial intelligence (AI) based flight concepts is discussed. The ATMS provides a flight engineer with a set of tools that assist in flight test planning, monitoring, and simulation. The system is also capable of controlling an aircraft during flight test by performing closed loop guidance functions, range management, and maneuver-quality monitoring. The ATMS is being used as a prototypical system to develop a flight research facility for AI based flight systems concepts at NASA Ames Dryden.

  4. Flight Planning in the Cloud

    NASA Technical Reports Server (NTRS)

    Flores, Sarah L.; Chapman, Bruce D.; Tung, Waye W.; Zheng, Yang

    2011-01-01

    This new interface will enable Principal Investigators (PIs), as well as UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar) members to do their own flight planning and time estimation without having to request flight lines through the science coordinator. It uses an all-in-one Google Maps interface, a JPL hosted database, and PI flight requirements to design an airborne flight plan. The application will enable users to see their own flight plan being constructed interactively through a map interface, and then the flight planning software will generate all the files necessary for the flight. Afterward, the UAVSAR team can then complete the flight request, including calendaring and supplying requisite flight request files in the expected format for processing by NASA s airborne science program. Some of the main features of the interface include drawing flight lines on the map, nudging them, adding them to the current flight plan, and reordering them. The user can also search and select takeoff, landing, and intermediate airports. As the flight plan is constructed, all of its components are constantly being saved to the database, and the estimated flight times are updated. Another feature is the ability to import flight lines from previously saved flight plans. One of the main motivations was to make this Web application as simple and intuitive as possible, while also being dynamic and robust. This Web application can easily be extended to support other airborne instruments.

  5. Technology review of flight crucial flight controls

    NASA Technical Reports Server (NTRS)

    Rediess, H. A.; Buckley, E. C.

    1984-01-01

    The results of a technology survey in flight crucial flight controls conducted as a data base for planning future research and technology programs are provided. Free world countries were surveyed with primary emphasis on the United States and Western Europe because that is where the most advanced technology resides. The survey includes major contemporary systems on operational aircraft, R&D flight programs, advanced aircraft developments, and major research and technology programs. The survey was not intended to be an in-depth treatment of the technology elements, but rather a study of major trends in systems level technology. The information was collected from open literature, personal communications and a tour of several companies, government organizations and research laboratories in the United States, United Kingdom, France, and the Federal Republic of Germany.

  6. Flight Test Techniques Used to Evaluate Performance Benefits During Formation Flight

    NASA Technical Reports Server (NTRS)

    Ray, Ronald J.; Cobleigh, Brent R.; Vachon, M. Jake; SaintJohn, Clinton

    2002-01-01

    The Autonomous Formation Flight research project has been implemented at the NASA Dryden Flight Research Center to demonstrate the benefits of formation flight and develop advanced technologies to facilitate exploiting these benefits. Two F/A-18 aircraft have been modified to precisely control and monitor relative position, and to determine performance of the trailing airplane. Flight test maneuvers and analysis techniques have been developed to determine the performance advantages, including drag and fuel flow reductions and improvements in range factor. By flying the trailing airplane through a matrix of lateral, longitudinal, and vertical offset positions, a detailed map of the performance benefits has been obtained at two flight conditions. Significant performance benefits have been obtained during this flight test phase. Drag reductions of more than 20 percent and fuel flow reductions of more than 18 percent have been measured at flight conditions of Mach 0.56 and an altitude of 25,000 ft. The results show favorable agreement with published theory and generic predictions. An F/A-18 long-range cruise mission at Mach 0.8 and an altitude of 40,000 ft has been simulated in the optimum formation position and has demonstrated a 14-percent fuel reduction when compared with a controlled chase airplane of similar configuration.

  7. Flight decks and free flight: where are the system boundaries?

    PubMed

    Hollnagel, Erik

    2007-07-01

    The change from managed to free flight is expected to have large effects, over and above the intended efficiency gains. Human factor concerns have understandably focused on how free flight may affect the pilots in the cockpit. Yet it is necessary to see the change from managed to free flight as more than just an increment to the pilots' work. Despite the best intentions the transition will not be a case of a smooth, carefully planned and therefore uneventful introduction of a new technology. It is more likely to be a substantial change to an already challenging working environment, in the air as well as on the ground. The significant effects will therefore not just happen within the existing structure or distribution of work and responsibilities, but affect the structure of work itself. This paper takes a look at free flight from a cognitive systems engineering perspective and identifies two major concerns: first what effects free flight has on the boundaries of the joint cognitive systems, and second how this affects demands to control. The conclusion is that both will change considerably and that we need to understand the nature of these changes before focusing on the possible effects of free flight on pilots' performance.

  8. Development and flight test experiences with a flight-crucial digital control system

    NASA Technical Reports Server (NTRS)

    Mackall, Dale A.

    1988-01-01

    Engineers and scientists in the advanced fighter technology integration (AFTI) F-16 program investigated the integration of emerging technologies into an advanced fighter aircraft. AFTI's three major technologies included: flight-crucial digital control, decoupled aircraft flight control, and integration of avionics, flight control, and pilot displays. In addition to investigating improvements in fighter performance, researchers studied the generic problems confronting the designers of highly integrated flight-crucial digital control. An overview is provided of both the advantages and problems of integration digital control systems. Also, an examination of the specification, design, qualification, and flight test life-cycle phase is provided. An overview is given of the fault-tolerant design, multimoded decoupled flight control laws, and integrated avionics design. The approach to qualifying the software and system designs is discussed, and the effects of design choices on system qualification are highlighted.

  9. Energy metabolism during endurance flight and the post-flight recovery phase.

    PubMed

    Jenni-Eiermann, Susanne

    2017-07-01

    Migrating birds are known to fly non-stop for thousands of kilometres without food or water intake and at a high metabolic rate thereby relying on energy stores which were built up preceding a flight bout. Hence, from a physiological point of view the metabolism of a migrant has to switch between an active fasting phase during flight and a fuelling phase during stopover. To meet the energetic and water requirements of endurance flight, migratory birds have to store an optimal fuel composition and they have to be able to quickly mobilize and deliver sufficient energy to the working flight muscles. After flight, birds have to recover from a strenuous exercise and sleeplessness, but, at the same time, they have to be alert to escape from predators and to prepare the next flight bout. In this overview, metabolic adaptations of free-ranging migrants to both phases will be presented and compared with results from windtunnel studies. The questions whether migratory strategy (long distance versus short distance) and diet composition influence the metabolic pathways will be discussed.

  10. Advanced transport operating system software upgrade: Flight management/flight controls software description

    NASA Technical Reports Server (NTRS)

    Clinedinst, Winston C.; Debure, Kelly R.; Dickson, Richard W.; Heaphy, William J.; Parks, Mark A.; Slominski, Christopher J.; Wolverton, David A.

    1988-01-01

    The Flight Management/Flight Controls (FM/FC) software for the Norden 2 (PDP-11/70M) computer installed on the NASA 737 aircraft is described. The software computes the navigation position estimates, guidance commands, those commands to be issued to the control surfaces to direct the aircraft in flight based on the modes selected on the Advanced Guidance Control System (AGSC) mode panel, and the flight path selected via the Navigation Control/Display Unit (NCDU).

  11. Free Flight Ground Testing of ADEPT in Advance of the Sounding Rocket One Flight Experiment

    NASA Technical Reports Server (NTRS)

    Smith, B. P.; Dutta, S.

    2017-01-01

    The Adaptable Deployable Entry and Placement Technology (ADEPT) project will be conducting the first flight test of ADEPT, titled Sounding Rocket One (SR-1), in just two months. The need for this flight test stems from the fact that ADEPT's supersonic dynamic stability has not yet been characterized. The SR-1 flight test will provide critical data describing the flight mechanics of ADEPT in ballistic flight. These data will feed decision making on future ADEPT mission designs. This presentation will describe the SR-1 scientific data products, possible flight test outcomes, and the implications of those outcomes on future ADEPT development. In addition, this presentation will describe free-flight ground testing performed in advance of the flight test. A subsonic flight dynamics test conducted at the Vertical Spin Tunnel located at NASA Langley Research Center provided subsonic flight dynamics data at high and low altitudes for multiple center of mass (CoM) locations. A ballistic range test at the Hypervelocity Free Flight Aerodynamics Facility (HFFAF) located at NASA Ames Research Center provided supersonic flight dynamics data at low supersonic Mach numbers. Execution and outcomes of these tests will be discussed. Finally, a hypothesized trajectory estimate for the SR-1 flight will be presented.

  12. In Flight, Online

    ERIC Educational Resources Information Center

    Lucking, Robert A.; Wighting, Mervyn J.; Christmann, Edwin P.

    2005-01-01

    The concept of flight for human beings has always been closely tied to imagination. To fly like a bird requires a mind that also soars. Therefore, good teachers who want to teach the scientific principles of flight recognize that it is helpful to share stories of their search for the keys to flight. The authors share some of these with the reader,…

  13. A flight investigation of simulated data-link communications during single-pilot IFR flight. Volume 2: Flight evaluations

    NASA Technical Reports Server (NTRS)

    Parker, J. F., Jr.; Duffy, J. W.

    1982-01-01

    Key problems in single pilot instrument flight operations are in the management of flight data and the processing of cockpit information during conditions of heavy workload. A flight data console was developed to allow simulation of a digital data link to replace the current voice communications stem used in air traffic control. This is a human factors evaluation of a data link communications system to determine how such a system might reduce cockpit workload, improve flight proficiency, and be accepted by general aviation pilots. The need for a voice channel as backup to a digital link is examined. The evaluations cover both airport terminal area operations and full mission instrument flight. Results show that general aviation pilots operate well with a digital data link communications system. The findings indicate that a data link system for pilot/ATC communications, with a backup voice channel, is well accepted by general aviation pilots and is considered to be safer, more efficient, and result in less workload than the current voice system.

  14. Flight control actuation system

    NASA Technical Reports Server (NTRS)

    Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)

    2004-01-01

    A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.

  15. Flight control actuation system

    NASA Technical Reports Server (NTRS)

    Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)

    2006-01-01

    A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.

  16. Prevention of edema, flight microangiopathy and venous thrombosis in long flights with elastic stockings. A randomized trial: The LONFLIT 4 Concorde Edema-SSL Study.

    PubMed

    Belcaro, Gianni; Cesarone, Maria Rosaria; Shah, Sandeep S G; Nicolaides, Andrew N; Geroulakos, George; Ippolito, Edmondo; Winford, Michelle; Lennox, Andrew; Pellegrini, Luciano; Brandolini, Rossella; Myers, Kenneth A; Simeone, Emilio; Bavera, Peter; Dugall, Mark; Di Renzo, Andrea; Moia, Marco

    2002-01-01

    The LONFLIT1/2 studies have established that in high-risk subjects after long (> 10 hours) flights the incidence of deep venous thrombosis (DVT) is between 4% and 6%. The LONFLIT4 study has been planned to evaluate the control of edema and DVT in low-medium-risk subjects. The aim of this study was to evaluate edema and its control with specific flight stockings, in long-haul flights. In the first part of the study 400 subjects at low-medium risk for DVT were contacted; 28 were excluded for several nonmedical problems; 372 were randomized into 2 groups to evaluate prophylaxis with stockings in 7-8-hour flights; the control group had no prophylaxis. Below-knee, Scholl, Flight Socks, producing 14-17 mm Hg of pressure at the ankle, were used in the treatment group. The occurrence of DVT was evaluated with high-resolution ultrasound scanning (femoral, popliteal, and tibial veins). Edema was assessed with a composite score based on parametric and nonparametric measurements. Part II: In this part of the study 285 subjects at low-medium risk for DVT were included and randomized into 2 groups to evaluate edema prophylaxis in 11-12-hour flights; the controls had no prophylaxis while the prevention group had below-knee, Scholl, Flight Socks (comparable to part I). Part 1: DVT evaluation. Of the 184 included subjects in the stockings group and 188 in the control group, 358 (96.2%) completed the study. Dropouts were due to compliance or connection problems. Age/sex distributions were comparable in the groups. Stockings Group: of 179 subjects (mean age 49; SD 7; M:F = 101:78), none had DVT or superficial thromboses. of 179 subjects (mean age 48.4; SD 7.3; M:F = 98:81), 4 (2.2%) had a DVT. There were also 2 superficial thromboses. In total, 3.35% (6) subjects had a thrombotic event. The difference (p<0.002) is significant. Intention-to-treat analysis detects 15 failures in the control group (9 lost + 6 thromboses) out of 188 subjects (7.9%) versus 5 subjects (2.7%) in the

  17. Aerial Survey of Ames Research Center - Flight Simulation Complex' Flight simulators create an

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Aerial Survey of Ames Research Center - Flight Simulation Complex' Flight simulators create an authentic aircraft environment by generating the appropriate physical cues that provide the sensations of flight.

  18. Flight performance using a hyperstereo helmet-mounted display: post-flight debriefing questionnaire

    NASA Astrophysics Data System (ADS)

    Kalich, Melvyn E.; Rash, Clarence E.; Harding, Thomas H.; Jennings, Sion; Craig, Gregory; Stuart, Geoffrey W.

    2009-05-01

    Helmet-mounted display (HMD) designs have faced persistent head-supported mass and center of mass (CM) problems, especially HMD designs like night vision goggles (NVG) that utilize image intensification (I2) sensors mounted forward in front of the user's eyes. Relocating I2 sensors from the front to the sides of the helmet, at or below the transverse plane through the user's head CM, can resolve most of the CM problems. However, the resulting increase in the separation between the two I2 channels effectively increases the user's interpupillary distance (IPD). This HMD design is referred to as a hyperstero design and introduces the phenomenon of hyperstereopsis, a type of visual distortion where stereoscopic depth perception is exaggerated, particularly at distances under 200 feet (~60 meters). The presence of hyperstereopsis has been a concern regarding implementation of hyperstereo HMDs for rotary-wing aircraft. To address this concern, a flight study was conducted to assess the impact of hyperstereopsis on aircraft handling proficiency and pilot acceptance. Three rated aviators with differing levels of I2 and hyperstereo HMD experience conducted a series of flights that concentrated on low-level maneuvers over a two-week period. Initial and final flights were flown with a standard issue I2 device and a production hyperstereo design HMD. Interim flights were flown only with the hyperstereo HMD. Two aviators accumulated 8 hours of flight time with the hyperstereo HMD, while the third accumulated 6.9 hours. This paper presents data collected via written questionnaires completed by the aviators during the post-flight debriefings. These data are compared to questionnaire data from a previous flight investigation in which aviators in a copilot capacity, hands not on the flight controls, accumulated 8 flight hours of flight time using a hyperstereo HMD.

  19. Aurora Flight Sciences' Perseus B Remotely Piloted Aircraft in Flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A long, slender wing and a pusher propeller at the rear characterize the Perseus B remotely piloted research aircraft, seen here during a test flight in June 1998. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved into the ERAST

  20. Autonomous Flight Safety System

    NASA Technical Reports Server (NTRS)

    Ferrell, Bob; Santuro, Steve; Simpson, James; Zoerner, Roger; Bull, Barton; Lanzi, Jim

    2004-01-01

    Autonomous Flight Safety System (AFSS) is an independent flight safety system designed for small to medium sized expendable launch vehicles launching from or needing range safety protection while overlying relatively remote locations. AFSS replaces the need for a man-in-the-loop to make decisions for flight termination. AFSS could also serve as the prototype for an autonomous manned flight crew escape advisory system. AFSS utilizes onboard sensors and processors to emulate the human decision-making process using rule-based software logic and can dramatically reduce safety response time during critical launch phases. The Range Safety flight path nominal trajectory, its deviation allowances, limit zones and other flight safety rules are stored in the onboard computers. Position, velocity and attitude data obtained from onboard global positioning system (GPS) and inertial navigation system (INS) sensors are compared with these rules to determine the appropriate action to ensure that people and property are not jeopardized. The final system will be fully redundant and independent with multiple processors, sensors, and dead man switches to prevent inadvertent flight termination. AFSS is currently in Phase III which includes updated algorithms, integrated GPS/INS sensors, large scale simulation testing and initial aircraft flight testing.

  1. Flight Testing an Iced Business Jet for Flight Simulation Model Validation

    NASA Technical Reports Server (NTRS)

    Ratvasky, Thomas P.; Barnhart, Billy P.; Lee, Sam; Cooper, Jon

    2007-01-01

    A flight test of a business jet aircraft with various ice accretions was performed to obtain data to validate flight simulation models developed through wind tunnel tests. Three types of ice accretions were tested: pre-activation roughness, runback shapes that form downstream of the thermal wing ice protection system, and a wing ice protection system failure shape. The high fidelity flight simulation models of this business jet aircraft were validated using a software tool called "Overdrive." Through comparisons of flight-extracted aerodynamic forces and moments to simulation-predicted forces and moments, the simulation models were successfully validated. Only minor adjustments in the simulation database were required to obtain adequate match, signifying the process used to develop the simulation models was successful. The simulation models were implemented in the NASA Ice Contamination Effects Flight Training Device (ICEFTD) to enable company pilots to evaluate flight characteristics of the simulation models. By and large, the pilots confirmed good similarities in the flight characteristics when compared to the real airplane. However, pilots noted pitch up tendencies at stall with the flaps extended that were not representative of the airplane and identified some differences in pilot forces. The elevator hinge moment model and implementation of the control forces on the ICEFTD were identified as a driver in the pitch ups and control force issues, and will be an area for future work.

  2. Flight research and testing

    NASA Technical Reports Server (NTRS)

    Putnam, Terrill W.; Ayers, Theodore G.

    1989-01-01

    Flight research and testing form a critical link in the aeronautic research and development chain. Brilliant concepts, elegant theories, and even sophisticated ground tests of flight vehicles are not sufficient to prove beyond a doubt that an unproven aeronautical concept will actually perform as predicted. Flight research and testing provide the ultimate proof that an idea or concept performs as expected. Ever since the Wright brothers, flight research and testing were the crucible in which aeronautical concepts were advanced and proven to the point that engineers and companies are willing to stake their future to produce and design aircraft. This is still true today, as shown by the development of the experimental X-30 aerospace plane. The Dryden Flight Research Center (Ames-Dryden) continues to be involved in a number of flight research programs that require understanding and characterization of the total airplane in all the aeronautical disciplines, for example the X-29. Other programs such as the F-14 variable-sweep transition flight experiment have focused on a single concept or discipline. Ames-Dryden also continues to conduct flight and ground based experiments to improve and expand the ability to test and evaluate advanced aeronautical concepts. A review of significant aeronautical flight research programs and experiments is presented to illustrate both the progress being made and the challenges to come.

  3. Flight research and testing

    NASA Technical Reports Server (NTRS)

    Putnam, Terrill W.; Ayers, Theodore G.

    1988-01-01

    Flight research and testing form a critical link in the aeronautic R and D chain. Brilliant concepts, elegant theories, and even sophisticated ground tests of flight vehicles are not sufficient to prove beyond doubt that an unproven aeronautical concept will actually perform as predicted. Flight research and testing provide the ultimate proof that an idea or concept performs as expected. Ever since the Wright brothers, flight research and testing have been the crucible in which aeronautical concepts have advanced and been proven to the point that engineers and companies have been willing to stake their future to produce and design new aircraft. This is still true today, as shown by the development of the experimental X-30 aerospace plane. The Dryden Flight Research Center (Ames-Dryden) continues to be involved in a number of flight research programs that require understanding and characterization of the total airplane in all the aeronautical disciplines, for example the X-29. Other programs such as the F-14 variable-sweep transition flight experiment have focused on a single concept or discipline. Ames-Dryden also continues to conduct flight and ground based experiments to improve and expand the ability to test and evaluate advanced aeronautical concepts. A review of significant aeronautical flight research programs and experiments is presented to illustrate both the progress made and the challenges to come.

  4. 14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fire protection of flight controls, engine mounts, and other flight structure. 23.865 Section 23.865 Aeronautics and Space FEDERAL AVIATION...

  5. 14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fire protection of flight controls, engine mounts, and other flight structure. 23.865 Section 23.865 Aeronautics and Space FEDERAL AVIATION...

  6. 14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fire protection of flight controls, engine mounts, and other flight structure. 23.865 Section 23.865 Aeronautics and Space FEDERAL AVIATION...

  7. 14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fire protection of flight controls, engine mounts, and other flight structure. 23.865 Section 23.865 Aeronautics and Space FEDERAL AVIATION...

  8. 14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire protection of flight controls, engine mounts, and other flight structure. 23.865 Section 23.865 Aeronautics and Space FEDERAL AVIATION...

  9. Flight simulation for flight control computer S/N 0104-1 (ASTP)

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Flight control computer (FCC) 0104-I has been designated the prime unit for the SA-210 launch vehicle. The results of the final flight simulation for FCC S/N 0104-I are documented. These results verify satisfactory implementation of the design release and proper interfacing of the FCC with flight-type control sensor elements and simulated thrust vector control system.

  10. Extending a Flight Management Computer for Simulation and Flight Experiments

    NASA Technical Reports Server (NTRS)

    Madden, Michael M.; Sugden, Paul C.

    2005-01-01

    In modern transport aircraft, the flight management computer (FMC) has evolved from a flight planning aid to an important hub for pilot information and origin-to-destination optimization of flight performance. Current trends indicate increasing roles of the FMC in aviation safety, aviation security, increasing airport capacity, and improving environmental impact from aircraft. Related research conducted at the Langley Research Center (LaRC) often requires functional extension of a modern, full-featured FMC. Ideally, transport simulations would include an FMC simulation that could be tailored and extended for experiments. However, due to the complexity of a modern FMC, a large investment (millions of dollars over several years) and scarce domain knowledge are needed to create such a simulation for transport aircraft. As an intermediate alternative, the Flight Research Services Directorate (FRSD) at LaRC created a set of reusable software products to extend flight management functionality upstream of a Boeing-757 FMC, transparently simulating or sharing its operator interfaces. The paper details the design of these products and highlights their use on NASA projects.

  11. Real-time in-flight engine performance and health monitoring techniques for flight research application

    NASA Technical Reports Server (NTRS)

    Ray, Ronald J.; Hicks, John W.; Wichman, Keith D.

    1992-01-01

    Various engine related performance and health monitoring techniques developed in support of flight research are described. Techniques used during flight to enhance safety and to increase flight test productivity are summarized. A description of the NASA range facility is given along with a discussion of the flight data processing. Examples of data processed and the flight data displays are shown. A discussion of current trends and future capabilities is also included.

  12. A neural based intelligent flight control system for the NASA F-15 flight research aircraft

    NASA Technical Reports Server (NTRS)

    Urnes, James M.; Hoy, Stephen E.; Ladage, Robert N.; Stewart, James

    1993-01-01

    A flight control concept that can identify aircraft stability properties and continually optimize the aircraft flying qualities has been developed by McDonnell Aircraft Company under a contract with the NASA-Dryden Flight Research Facility. This flight concept, termed the Intelligent Flight Control System, utilizes Neural Network technology to identify the host aircraft stability and control properties during flight, and use this information to design on-line the control system feedback gains to provide continuous optimum flight response. This self-repairing capability can provide high performance flight maneuvering response throughout large flight envelopes, such as needed for the National Aerospace Plane. Moreover, achieving this response early in the vehicle's development schedule will save cost.

  13. 14 CFR 25.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Design and Construction Fire Protection § 25.865 Fire protection of flight controls, engine mounts, and other flight structure. Essential flight controls, engine mounts, and other flight structures located in... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fire protection of flight controls, engine...

  14. 14 CFR 25.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Design and Construction Fire Protection § 25.865 Fire protection of flight controls, engine mounts, and other flight structure. Essential flight controls, engine mounts, and other flight structures located in... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fire protection of flight controls, engine...

  15. 14 CFR 25.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Design and Construction Fire Protection § 25.865 Fire protection of flight controls, engine mounts, and other flight structure. Essential flight controls, engine mounts, and other flight structures located in... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire protection of flight controls, engine...

  16. 14 CFR 25.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Design and Construction Fire Protection § 25.865 Fire protection of flight controls, engine mounts, and other flight structure. Essential flight controls, engine mounts, and other flight structures located in... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fire protection of flight controls, engine...

  17. 14 CFR 25.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Design and Construction Fire Protection § 25.865 Fire protection of flight controls, engine mounts, and other flight structure. Essential flight controls, engine mounts, and other flight structures located in... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fire protection of flight controls, engine...

  18. Respiratory symptoms of flight attendants during high-altitude flight: possible relation to cabin ozone exposure.

    PubMed

    Tashkin, D P; Coulson, A H; Simmons, M S; Spivey, G H

    1983-01-01

    The smaller size and lighter weight of the Boeing 747SP aircraft, introduced into passenger service in 1976, permitted higher-altitude flight than older commercial aircraft and thus potentially greater ozone exposure for those of board. Concerned flight attendants distributed questionnaires relating to symptoms experienced on the Boeing 747SP and/or conventional 747 aircraft to Los Angeles- and New York-based flight attendants. Respondents reported symptoms by frequency and severity and by in-flight and after-flight occurrence. Based on the assessment of three health scientists as to ozone-relatedness, the frequency of "definite" and "probable" ozone-related symptoms of any severity reported by both groups of attendants was significantly associated with 747SP flights (chi-squares: P less than 0.05). After-flight symptoms significantly associated with 747SP experience, although fewer in number than in-flight symptoms, were all in the scientists' "definite" category. In 21 flight attendants who complained of moderate to severe symptoms during 747SP flights, a battery of pulmonary function tests performed approximately two weeks after their last 747SP flight failed to reveal abnormalities. The symptom questionnaire results are consistent with possible exposure of cabin attendants to toxic levels of ozone during the higher-altitude flights of the Boeing 747SP compared to conventional 747 aircraft.

  19. L(sub 1) Adaptive Flight Control System: Flight Evaluation and Technology Transition

    NASA Technical Reports Server (NTRS)

    Xargay, Enric; Hovakimyan, Naira; Dobrokhodov, Vladimir; Kaminer, Isaac; Gregory, Irene M.; Cao, Chengyu

    2010-01-01

    Certification of adaptive control technologies for both manned and unmanned aircraft represent a major challenge for current Verification and Validation techniques. A (missing) key step towards flight certification of adaptive flight control systems is the definition and development of analysis tools and methods to support Verification and Validation for nonlinear systems, similar to the procedures currently used for linear systems. In this paper, we describe and demonstrate the advantages of L(sub l) adaptive control architectures for closing some of the gaps in certification of adaptive flight control systems, which may facilitate the transition of adaptive control into military and commercial aerospace applications. As illustrative examples, we present the results of a piloted simulation evaluation on the NASA AirSTAR flight test vehicle, and results of an extensive flight test program conducted by the Naval Postgraduate School to demonstrate the advantages of L(sub l) adaptive control as a verifiable robust adaptive flight control system.

  20. Context-dependent flight speed: evidence for energetically optimal flight speed in the bat Pipistrellus kuhlii?

    PubMed

    Grodzinski, Uri; Spiegel, Orr; Korine, Carmi; Holderied, Marc W

    2009-05-01

    1. Understanding the causes and consequences of animal flight speed has long been a challenge in biology. Aerodynamic theory is used to predict the most economical flight speeds, minimizing energy expenditure either per distance (maximal range speed, Vmr) or per time (minimal power speed, Vmp). When foraging in flight, flight speed also affects prey encounter and energy intake rates. According to optimal flight speed theory, such effects may shift the energetically optimal foraging speed to above Vmp. 2. Therefore, we predicted that if energetic considerations indeed have a substantial effect on flight speed of aerial-hawking bats, they will use high speed (close to Vmr) to commute from their daily roost to the foraging sites, while a slower speed (but still above Vmp) will be preferred during foraging. To test these predictions, echolocation calls of commuting and foraging Pipistrellus kuhlii were recorded and their flight tracks were reconstructed using an acoustic flight path tracking system. 3. Confirming our qualitative prediction, commuting flight was found to be significantly faster than foraging flight (9.3 vs. 6.7 m s(-1)), even when controlling for its lower tortuosity. 4. In order to examine our quantitative prediction, we compared observed flight speeds with Vmp and Vmr values generated for the study population using two alternative aerodynamic models, based on mass and wing morphology variables measured from bats we captured while commuting. The Vmp and Vmr values generated by one of the models were much lower than our measured flight speed. According to the other model used, however, measured foraging flight was faster than Vmp and commuting flight slightly slower than Vmr, which is in agreement with the predictions of optimal flight speed theory. 5. Thus, the second aerodynamic model we used seems to be a reasonable predictor of the different flight speeds used by the bats while foraging and while commuting. This supports the hypothesis that bats fly

  1. Zero Gravity Flights as the Most Effective Embryonic Operation for Planned Commercial Spaceport

    NASA Astrophysics Data System (ADS)

    Abu Samah, Shamsul Kamar; Ridzuan Zakaria, Norul; Nasrun, Nasri; Abu, Jalaluddin; Muszaphar Shukor, Dato'Sheikh

    2013-09-01

    From the experience gained by the management team of Spaceport Malaysia, a popular service that can be provided by a planned commercial spaceport in a country without existing space travel infrastructure are zero gravity flights. Zero gravity flights range from parabolic flights using aerobatic airplane to suborbital flights using rockets, and in the near future using suborbital rocketplanes. Therefore, zero gravity flights can be operated from a certified runway or planned for operation at a future commercial spaceport. With such range of operation, zero gravity flights provide a natural link between a low cost operation of small airplane to exclusive high profile operation of suborbital rocketplane, and this attracts the attention of individuals and organizations that are planning for the establishment of a commercial spaceport. This is the approach chosen by the planners and developers of Spaceport Malaysia. A significant factor in zero gravity flight is the zero gravity time, the period where the payload onboard the airplane or rocketplane will experience zero gravity. Based on the momentum of the airplane or rocketplane, the zero gravity time may vary from few seconds to few minutes and that determines the quality of the zero gravity flight. To achieve zero gravity, the airplane or rocketplane will fly with a steady velocity for a significant time as a gravity control flight, accelerate upwards with an angle producing hypergravity and perform parabolic flight with natural momentum producing zero gravity and followed by dive that will result in another hypergravity flight. 2 zero gravity platforms being considered for operation at and by Spaceport Malaysia are F-5E Tiger II and Airbus A300, since both platforms have been successfully used by a partner of Spaceport Malaysia in performing zero gravity flights. An F-5E fighter jet owned by Royal Malaysian Air Force is being planned to be converted into a zero gravity platform to be operated at and by Spaceport

  2. Orion Pad Abort 1 Flight Test - Ground and Flight Operations

    NASA Technical Reports Server (NTRS)

    Hackenbergy, Davis L.; Hicks, Wayne

    2011-01-01

    This paper discusses the ground and flight operations aspects to the Pad Abort 1 launch. The paper details the processes used to plan all operations. The paper then discussions the difficulties of integration and testing, while detailing some of the lessons learned throughout the entire launch campaign. Flight operational aspects of the launc are covered in order to provide the listener with the full suite of operational issues encountered in preparation for the first flight test of the Orion Launch Abort System.

  3. Aerothermodynamic Reentry Flight Experiments - EXPERT

    DTIC Science & Technology

    2005-10-01

    IXV ( PRE-X – USV ) 3. IN FLIGHT RESEARCH VEHICLES e.g. - SHARP B1, B2 FLIGHTS, HYSHOT, X43, - IRDT, PAET, RAMC, FIRE - MIRKA, EXPRESS, SHEFEX ...PRE-X – USV ) 3. IN FLIGHT RESEARCH VEHICLES e.g. - SHARP B1, B2 FLIGHTS, HYSHOT, X43, - IRDT, PAET, RAMC, FIRE - MIRKA, EXPRESS, SHEFEX , SFYFE...RESEARCH VEHICLES e.g. - SHARP B1, B2 FLIGHTS, HYSHOT, X43, - IRDT, PAET, RAMC, FIRE - MIRKA, EXPRESS, SHEFEX , SFYFE - EXPERT Hypersonic Flight

  4. 14 CFR 61.4 - Qualification and approval of flight simulators and flight training devices.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... for certain flight training devices. (b) Any device used for flight training, testing, or checking... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Qualification and approval of flight simulators and flight training devices. 61.4 Section 61.4 Aeronautics and Space FEDERAL AVIATION...

  5. 14 CFR 61.4 - Qualification and approval of flight simulators and flight training devices.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... for certain flight training devices. (b) Any device used for flight training, testing, or checking... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Qualification and approval of flight simulators and flight training devices. 61.4 Section 61.4 Aeronautics and Space FEDERAL AVIATION...

  6. 14 CFR 61.4 - Qualification and approval of flight simulators and flight training devices.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... for certain flight training devices. (b) Any device used for flight training, testing, or checking... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Qualification and approval of flight simulators and flight training devices. 61.4 Section 61.4 Aeronautics and Space FEDERAL AVIATION...

  7. 14 CFR 61.4 - Qualification and approval of flight simulators and flight training devices.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... for certain flight training devices. (b) Any device used for flight training, testing, or checking... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Qualification and approval of flight simulators and flight training devices. 61.4 Section 61.4 Aeronautics and Space FEDERAL AVIATION...

  8. 14 CFR 61.4 - Qualification and approval of flight simulators and flight training devices.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... for certain flight training devices. (b) Any device used for flight training, testing, or checking... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Qualification and approval of flight simulators and flight training devices. 61.4 Section 61.4 Aeronautics and Space FEDERAL AVIATION...

  9. Thermal biology of flight in a butterfly: genotype, flight metabolism, and environmental conditions.

    PubMed

    Mattila, Anniina L K

    2015-12-01

    Knowledge of the effects of thermal conditions on animal movement and dispersal is necessary for a mechanistic understanding of the consequences of climate change and habitat fragmentation. In particular, the flight of ectothermic insects such as small butterflies is greatly influenced by ambient temperature. Here, variation in body temperature during flight is investigated in an ecological model species, the Glanville fritillary butterfly (Melitaea cinxia). Attention is paid on the effects of flight metabolism, genotypes at candidate loci, and environmental conditions. Measurements were made under a natural range of conditions using infrared thermal imaging. Heating of flight muscles by flight metabolism has been presumed to be negligible in small butterflies. However, the results demonstrate that Glanville fritillary males with high flight metabolic rate maintain elevated body temperature better during flight than males with a low rate of flight metabolism. This effect is likely to have a significant influence on the dispersal performance and fitness of butterflies and demonstrates the possible importance of intraspecific physiological variation on dispersal in other similar ectothermic insects. The results also suggest that individuals having an advantage in low ambient temperatures can be susceptible to overheating at high temperatures. Further, tolerance of high temperatures may be important for flight performance, as indicated by an association of heat-shock protein (Hsp70) genotype with flight metabolic rate and body temperature at takeoff. The dynamics of body temperature at flight and factors affecting it also differed significantly between female and male butterflies, indicating that thermal dynamics are governed by different mechanisms in the two sexes. This study contributes to knowledge about factors affecting intraspecific variation in dispersal-related thermal performance in butterflies and other insects. Such information is needed for predictive

  10. Perseus Post-flight

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Crew members check out the Perseus proof-of-concept vehicle on Rogers Dry Lake, adjacent to the Dryden Flight Research Center, Edwards, California, after a test flight in 1991. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved

  11. Miscarriage among flight attendants.

    PubMed

    Grajewski, Barbara; Whelan, Elizabeth A; Lawson, Christina C; Hein, Misty J; Waters, Martha A; Anderson, Jeri L; MacDonald, Leslie A; Mertens, Christopher J; Tseng, Chih-Yu; Cassinelli, Rick T; Luo, Lian

    2015-03-01

    Cosmic radiation and circadian disruption are potential reproductive hazards for flight attendants. Flight attendants from 3 US airlines in 3 cities were interviewed for pregnancy histories and lifestyle, medical, and occupational covariates. We assessed cosmic radiation and circadian disruption from company records of 2 million individual flights. Using Cox regression models, we compared respondents (1) by levels of flight exposures and (2) to teachers from the same cities, to evaluate whether these exposures were associated with miscarriage. Of 2654 women interviewed (2273 flight attendants and 381 teachers), 958 pregnancies among 764 women met study criteria. A hypothetical pregnant flight attendant with median first-trimester exposures flew 130 hours in 53 flight segments, crossed 34 time zones, and flew 15 hours during her home-base sleep hours (10 pm-8 am), incurring 0.13 mGy absorbed dose (0.36 mSv effective dose) of cosmic radiation. About 2% of flight attendant pregnancies were likely exposed to a solar particle event, but doses varied widely. Analyses suggested that cosmic radiation exposure of 0.1 mGy or more may be associated with increased risk of miscarriage in weeks 9-13 (odds ratio = 1.7 [95% confidence interval = 0.95-3.2]). Risk of a first-trimester miscarriage with 15 hours or more of flying during home-base sleep hours was increased (1.5 [1.1-2.2]), as was risk with high physical job demands (2.5 [1.5-4.2]). Miscarriage risk was not increased among flight attendants compared with teachers. Miscarriage was associated with flight attendant work during sleep hours and high physical job demands and may be associated with cosmic radiation exposure.

  12. Wind and Wake Sensing with UAV Formation Flight: System Development and Flight Testing

    NASA Astrophysics Data System (ADS)

    Larrabee, Trenton Jameson

    Wind turbulence including atmospheric turbulence and wake turbulence have been widely investigated; however, only recently it become possible to use Unmanned Aerial Vehicles (UAVs) as a validation tool for research in this area. Wind can be a major contributing factor of adverse weather for aircraft. More importantly, it is an even greater risk towards UAVs because of their small size and weight. Being able to estimate wind fields and gusts can potentially provide substantial benefits for both unmanned and manned aviation. Possible applications include gust suppression for improving handling qualities, a better warning system for high wind encounters, and enhanced control for small UAVs during flight. On the other hand, the existence of wind can be advantageous since it can lead to fuel savings and longer duration flights through dynamic soaring or thermal soaring. Wakes are an effect of the lift distribution across an aircraft's wing or tail. Wakes can cause substantial disturbances when multiple aircraft are moving through the same airspace. In fact, the perils from an aircraft flying through the wake of another aircraft is a leading cause of the delay between takeoff times at airports. Similar to wind, though, wakes can be useful for energy harvesting and increasing an aircraft's endurance when flying in formation which can be a great advantage to UAVs because they are often limited in flight time due to small payload capacity. Formation flight can most often be seen in manned aircraft but can be adopted for use with unmanned systems. Autonomous flight is needed for flying in the "sweet spot" of the generated wakes for energy harvesting as well as for thermal soaring during long duration flights. For the research presented here formation flight was implemented for the study of wake sensing and gust alleviation. The major contributions of this research are in the areas of a novel technique to estimate wind using an Unscented Kalman filter and experimental wake

  13. Dynamic Flight Maneuvering Using Virtual Control Surfaces Generated by Trapped Vorticity

    DTIC Science & Technology

    2010-12-01

    of a modified Dragon Eye UAV. These tests illustrated the possibility of controlled flight using open-loop flow control actuators. Future research...2 -1 0 1 2 z ( cm ) 0 1 2 3 4 5 1 2 3 4 5 Time (s)  (d eg ) Figure II-1 Step command tracking in plung: ideal reference model response...experimental results. The experimental results were obtained with the ball screws locked in position so that the wing model was only allowed to pitch

  14. STS-125 Flight Controllers on Console - (Orbit Shift 2). Flight Director: Richard LaBrode

    NASA Image and Video Library

    2009-05-12

    JSC2009-E-119382 (12 May 2009) --- Flight director Rick LaBrode monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during STS-125 flight day two activities. Flight director Chris Edelen is at right.

  15. Pilot's Desk Flight Station

    NASA Technical Reports Server (NTRS)

    Sexton, G. A.

    1984-01-01

    Aircraft flight station designs have generally evolved through the incorporation of improved or modernized controls and displays. In connection with a continuing increase in the amount of information displayed, this process has produced a complex and cluttered conglomeration of knobs, switches, and electromechanical displays. The result was often high crew workload, missed signals, and misinterpreted information. Advances in electronic technology have now, however, led to new concepts in flight station design. An American aerospace company in cooperation with NASA has utilized these concepts to develop a candidate conceptual design for a 1995 flight station. The obtained Pilot's Desk Flight Station is a unique design which resembles more an operator's console than today's cockpit. Attention is given to configuration, primary flight controllers, front panel displays, flight/navigation display, approach charts and weather display, head-up display, and voice command and response systems.

  16. X-43A Flight Controls

    NASA Technical Reports Server (NTRS)

    Baumann, Ethan

    2006-01-01

    A viewgraph presentation detailing X-43A Flight controls at NASA Dryden Flight Research Center is shown. The topics include: 1) NASA Dryden, Overview and current and recent flight test programs; 2) Unmanned Aerial Vehicle Synthetic Aperture Radar (UAVSAR) Program, Program Overview and Platform Precision Autopilot; and 3) Hyper-X Program, Program Overview, X-43A Flight Controls and Flight Results.

  17. Flight-testing of the self-repairing flight control system using the F-15 highly integrated digital electronic control flight research facility

    NASA Technical Reports Server (NTRS)

    Stewart, James F.; Shuck, Thomas L.

    1990-01-01

    Flight tests conducted with the self-repairing flight control system (SRFCS) installed on the NASA F-15 highly integrated digital electronic control aircraft are described. The development leading to the current SRFCS configuration is highlighted. Key objectives of the program are outlined: (1) to flight-evaluate a control reconfiguration strategy with three types of control surface failure; (2) to evaluate a cockpit display that will inform the pilot of the maneuvering capacity of the damage aircraft; and (3) to flight-evaluate the onboard expert system maintenance diagnostics process using representative faults set to occur only under maneuvering conditions. Preliminary flight results addressing the operation of the overall system, as well as the individual technologies, are included.

  18. F-16XL ship #1 (#849) during first flight of the Digital Flight Control System (DFCS)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    After completing its first flight with the Digital Flight Control System on December 16, 1997, the F-16XL #1 aircraft began a series of envelope expansion flights. On January 27 and 29, 1998, it successfully completed structural clearance tests, as well as most of the load testing Only flights at Mach 1.05 at 10,000 feet, Mach 1.1 at 15,000 feet, and Mach 1.2 at 20,000 feet remained. During the next flight, on February 4, an instrumentation problem cut short the planned envelope expansion tests. After the problem was corrected, the F-16XL returned to flight status, and on February 18 and 20, flight control and evaluation flights were made. Two more research flights were planned for the following week, but another problem appeared. During the ground start up, project personnel noticed that the leading edge flap moved without being commanded. The Digital Flight Control Computer was sent to the Lockheed-Martin facility at Fort Worth, where the problem was traced to a defective chip in the computer. After it was replaced, the F-16XL #1 flew a highly successful flight controls and handling qualities evaluation flight on March 26, clearing the way for the final tests. The final limited loads expansion flight occurred on March 31, and was fully successful. As a result, the on-site Lockheed-Martin loads engineer cleared the aircraft to Mach 1.8. The remaining two handling qualities and flight control evaluation flights were both made on April 3, 1998. These three flights concluded the flight test portion of the DFCS upgrade.

  19. STS-131 Flight Control Team in WFCR - Planning - Flight Director: Ginger Kerrick

    NASA Image and Video Library

    2010-04-12

    JSC2010-E-050902 (12 April 2010) --- The members of the STS-131 Planning flight control team pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Ginger Kerrick (center) is visible on the second row.

  20. Interprofessional Flight Camp.

    PubMed

    Alfes, Celeste M; Rowe, Amanda S

    2016-01-01

    The Dorothy Ebersbach Academic Center for Flight Nursing in Cleveland, OH, holds an annual flight camp designed for master's degree nursing students in the acute care nurse practitioner program, subspecializing in flight nursing at the Frances Payne Bolton School of Nursing at Case Western Reserve University. The weeklong interprofessional training is also open to any health care provider working in an acute care setting and focuses on critical care updates, trauma, and emergency care within the critical care transport environment. This year, 29 graduate nursing students enrolled in a master's degree program from Puerto Rico attended. Although the emergency department in Puerto Rico sees and cares for trauma patients, there is no formal trauma training program. Furthermore, the country only has 1 rotor wing air medical transport service located at the Puerto Rico Medical Center in San Juan. Flight faculty and graduate teaching assistants spent approximately 9 months planning for their participation in our 13th annual flight camp. Students from Puerto Rico were extremely pleased with the learning experiences at camp and expressed particular interest in having more training time within the helicopter flight simulator. Copyright © 2016 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.

  1. Foreign technology summary of flight crucial flight control systems

    NASA Technical Reports Server (NTRS)

    Rediess, H. A.

    1984-01-01

    A survey of foreign technology in flight crucial flight controls is being conducted to provide a data base for planning future research and technology programs. Only Free World countries were surveyed, and the primary emphasis was on Western Europe because that is where the most advanced technology resides. The survey includes major contemporary systems on operational aircraft, R&D flight programs, advanced aircraft developments, and major research and technology programs. The information was collected from open literature, personal communications, and a tour of several companies, government organizations, and research laboratories in the United Kingdom, France, and the Federal Republic of Germany. A summary of the survey results to date is presented.

  2. F-15B QuietSpike(TradeMark) Aeroservoelastic Flight Test Data Analysis

    NASA Technical Reports Server (NTRS)

    Kukreja, Sunil L.

    2007-01-01

    System identification or mathematical modelling is utilised in the aerospace community for the development of simulation models for robust control law design. These models are often described as linear, time-invariant processes and assumed to be uniform throughout the flight envelope. Nevertheless, it is well known that the underlying process is inherently nonlinear. The reason for utilising a linear approach has been due to the lack of a proper set of tools for the identification of nonlinear systems. Over the past several decades the controls and biomedical communities have made great advances in developing tools for the identification of nonlinear systems. These approaches are robust and readily applicable to aerospace systems. In this paper, we show the application of one such nonlinear system identification technique, structure detection, for the analysis of F-15B QuietSpike(TradeMark) aeroservoelastic flight test data. Structure detection is concerned with the selection of a subset of candidate terms that best describe the observed output. This is a necessary procedure to compute an efficient system description which may afford greater insight into the functionality of the system or a simpler controller design. Structure computation as a tool for black-box modelling may be of critical importance for the development of robust, parsimonious models for the flight-test community. Moreover, this approach may lead to efficient strategies for rapid envelope expansion which may save significant development time and costs. The objectives of this study are to demonstrate via analysis of F-15B QuietSpike(TradeMark) aeroservoelastic flight test data for several flight conditions (Mach number) that (i) linear models are inefficient for modelling aeroservoelastic data, (ii) nonlinear identification provides a parsimonious model description whilst providing a high percent fit for cross-validated data and (iii) the model structure and parameters vary as the flight condition

  3. Two Meter Flight Path - Time of Flight Positron Annihilation Induced Auger Electron Spectrometer

    NASA Astrophysics Data System (ADS)

    Mukherjee, S.; Shastry, K.; Maddox, W.; Weiss, A. H.

    2008-03-01

    Details of the design and construction of a new time of flight positron annihilation induced Auger electron (TOF-PAES) spectrometer are presented. The new spectrometer will be equipped with a 2 meter long ``TOF'' tube that can be biased at a potential different from that of the sample in order to increase or decrease the kinetic energy of the electrons traveling through the tube. The time of flight will be determined from timing signals obtained from the detection of the annihilation gamma (signaling the start of the flight) and detection of the annihilation induced Auger electron at the end of the 2 meter flight path (signaling the end of the flight). The 2 meter long flight path is a factor of two longer than used in previous TOF-PAES systems. The longer flight path can be expected to result in a fractional energy width: delta E/ E that is .5ex1 -.1em/ -.15em.25ex2 as large as the current UTA lab based TOF-PAES spectrometer.

  4. Initial Flight Tests of the NASA F-15B Propulsion Flight Test Fixture

    NASA Technical Reports Server (NTRS)

    Palumbo, Nathan; Moes, Timothy R.; Vachon, M. Jake

    2002-01-01

    Flights of the F-15B/Propulsion Flight Test Fixture (PFTF) with a Cone Drag Experiment (CDE) attached have been accomplished at NASA Dryden Flight Research Center. Mounted underneath the fuselage of an F-15B airplane, the PFTF provides volume for experiment systems and attachment points for propulsion experiments. A unique feature of the PFTF is the incorporation of a six-degree-of-freedom force balance. The force balance mounts between the PFTF and experiment and measures three forces and moments. The CDE has been attached to the force balance for envelope expansion flights. This experiment spatially and inertially simulates a large propulsion test article. This report briefly describes the F-15B airplane, the PFTF, and the force balance. A detailed description of the CDE is provided. Force-balance ground testing and stiffness modifications are described. Flight profiles and selected flight data from the envelope expansion flights are provided and discussed, including force-balance data, the internal PFTF thermal and vibration environment, a handling qualities assessment, and performance capabilities of the F-15B airplane with the PFTF installed.

  5. VIEW OF FLIGHT CREW SYSTEMS, FLIGHT KITS FACILITY, ROOM NO. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF FLIGHT CREW SYSTEMS, FLIGHT KITS FACILITY, ROOM NO. 1N12, FACING NORTH - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  6. VIEW OF FLIGHT CREW SYSTEMS, FLIGHT KITS FACILITY, ROOM NO. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF FLIGHT CREW SYSTEMS, FLIGHT KITS FACILITY, ROOM NO. 1N12, FACING SOUTH - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  7. Flapping wing flight can save aerodynamic power compared to steady flight.

    PubMed

    Pesavento, Umberto; Wang, Z Jane

    2009-09-11

    Flapping flight is more maneuverable than steady flight. It is debated whether this advantage is necessarily accompanied by a trade-off in the flight efficiency. Here we ask if any flapping motion exists that is aerodynamically more efficient than the optimal steady motion. We solve the Navier-Stokes equation governing the fluid dynamics around a 2D flapping wing, and determine the minimal aerodynamic power needed to support a specified weight. While most flapping wing motions are more costly than the optimal steady wing motion, we find that optimized flapping wing motions can save up to 27% of the aerodynamic power required by the optimal steady flight. We explain the cause of this energetic advantage.

  8. Effectively Transforming IMC Flight into VMC Flight: An SVS Case Study

    NASA Technical Reports Server (NTRS)

    Glaab, Louis J.; Hughes, Monic F.; Parrish, Russell V.; Takallu, Mohammad A.

    2006-01-01

    A flight-test experiment was conducted using the NASA LaRC Cessna 206 aircraft. Four primary flight and navigation display concepts, including baseline and Synthetic Vision System (SVS) concepts, were evaluated in the local area of Roanoke Virginia Airport, flying visual and instrument approach procedures. A total of 19 pilots, from 3 pilot groups reflecting the diverse piloting skills of the GA population, served as evaluation pilots. Multi-variable Discriminant Analysis was applied to three carefully selected and markedly different operating conditions with conventional instrumentation to provide an extension of traditional analysis methods as well as provide an assessment of the effectiveness of SVS displays to effectively transform IMC flight into VMC flight.

  9. Flight code validation simulator

    NASA Astrophysics Data System (ADS)

    Sims, Brent A.

    1996-05-01

    An End-To-End Simulation capability for software development and validation of missile flight software on the actual embedded computer has been developed utilizing a 486 PC, i860 DSP coprocessor, embedded flight computer and custom dual port memory interface hardware. This system allows real-time interrupt driven embedded flight software development and checkout. The flight software runs in a Sandia Digital Airborne Computer and reads and writes actual hardware sensor locations in which Inertial Measurement Unit data resides. The simulator provides six degree of freedom real-time dynamic simulation, accurate real-time discrete sensor data and acts on commands and discretes from the flight computer. This system was utilized in the development and validation of the successful premier flight of the Digital Miniature Attitude Reference System in January of 1995 at the White Sands Missile Range on a two stage attitude controlled sounding rocket.

  10. In-Flight System Identification

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    1998-01-01

    A method is proposed and studied whereby the system identification cycle consisting of experiment design and data analysis can be repeatedly implemented aboard a test aircraft in real time. This adaptive in-flight system identification scheme has many advantages, including increased flight test efficiency, adaptability to dynamic characteristics that are imperfectly known a priori, in-flight improvement of data quality through iterative input design, and immediate feedback of the quality of flight test results. The technique uses equation error in the frequency domain with a recursive Fourier transform for the real time data analysis, and simple design methods employing square wave input forms to design the test inputs in flight. Simulation examples are used to demonstrate that the technique produces increasingly accurate model parameter estimates resulting from sequentially designed and implemented flight test maneuvers. The method has reasonable computational requirements, and could be implemented aboard an aircraft in real time.

  11. Miscarriage Among Flight Attendants

    PubMed Central

    Grajewski, Barbara; Whelan, Elizabeth A.; Lawson, Christina C.; Hein, Misty J.; Waters, Martha A.; Anderson, Jeri L.; MacDonald, Leslie A.; Mertens, Christopher J.; Tseng, Chih-Yu; Cassinelli, Rick T.; Luo, Lian

    2015-01-01

    Background Cosmic radiation and circadian disruption are potential reproductive hazards for flight attendants. Methods Flight attendants from 3 US airlines in 3 cities were interviewed for pregnancy histories and lifestyle, medical, and occupational covariates. We assessed cosmic radiation and circadian disruption from company records of 2 million individual flights. Using Cox regression models, we compared respondents (1) by levels of flight exposures and (2) to teachers from the same cities, to evaluate whether these exposures were associated with miscarriage. Results Of 2654 women interviewed (2273 flight attendants and 381 teachers), 958 pregnancies among 764 women met study criteria. A hypothetical pregnant flight attendant with median firsttrimester exposures flew 130 hours in 53 flight segments, crossed 34 time zones, and flew 15 hours during her home-base sleep hours (10 pm–8 am), incurring 0.13 mGy absorbed dose (0.36 mSv effective dose) of cosmic radiation. About 2% of flight attendant pregnancies were likely exposed to a solar particle event, but doses varied widely. Analyses suggested that cosmic radiation exposure of 0.1 mGy or more may be associated with increased risk of miscarriage in weeks 9–13 (odds ratio = 1.7 [95% confidence interval = 0.95–3.2]). Risk of a first-trimester miscarriage with 15 hours or more of flying during home-base sleep hours was increased (1.5 [1.1–2.2]), as was risk with high physical job demands (2.5 [1.5–4.2]). Miscarriage risk was not increased among flight attendants compared with teachers. Conclusions Miscarriage was associated with flight attendant work during sleep hours and high physical job demands and may be associated with cosmic radiation exposure. PMID:25563432

  12. Flight-path estimation in passive low-altitude flight by visual cues

    NASA Technical Reports Server (NTRS)

    Grunwald, Arthur J.; Kohn, S.

    1993-01-01

    A series of experiments was conducted, in which subjects had to estimate the flight path while passively being flown in straight or in curved motion over several types of nominally flat, textured terrain. Three computer-generated terrain types were investigated: (1) a random 'pole' field, (2) a flat field consisting of random rectangular patches, and (3) a field of random parallelepipeds. Experimental parameters were the velocity-to-height (V/h) ratio, the viewing distance, and the terrain type. Furthermore, the effect of obscuring parts of the visual field was investigated. Assumptions were made about the basic visual-field information by analyzing the pattern of line-of-sight (LOS) rate vectors in the visual field. The experimental results support these assumptions and show that, for both a straight as well as a curved flight path, the estimation accuracy and estimation times improve with the V/h ratio. Error scores for the curved flight path are found to be about 3 deg in visual angle higher than for the straight flight path, and the sensitivity to the V/h ratio is found to be considerably larger. For the straight motion, the flight path could be estimated successfully from local areas in the far field. Curved flight-path estimates have to rely on the entire LOS rate pattern.

  13. Human Space Flight

    NASA Technical Reports Server (NTRS)

    Woolford, Barbara; Mount, Frances

    2004-01-01

    The first human space flight, in the early 1960s, was aimed primarily at determining whether humans could indeed survive and function in micro-gravity. Would eating and sleeping be possible? What mental and physical tasks could be performed? Subsequent programs increased the complexity of the tasks the crew performed. Table 1 summarizes the history of U.S. space flight, showing the projects, their dates, crew sizes, and mission durations. With over forty years of experience with human space flight, the emphasis now is on how to design space vehicles, habitats, and missions to produce the greatest returns to human knowledge. What are the roles of the humans in space flight in low earth orbit, on the moon, and in exploring Mars?

  14. Perseus in Flight

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Perseus proof-of-concept vehicle flies over Rogers Dry Lake at the Dryden Flight Research Center, Edwards, California, to test basic design concepts for the remotely-piloted, high-altitude vehicle. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA

  15. Identification of phase I and II metabolites of the new designer drug α-pyrrolidinohexiophenone (α-PHP) in human urine by liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS).

    PubMed

    Paul, Michael; Bleicher, Sergej; Guber, Susanne; Ippisch, Josef; Polettini, Aldo; Schultis, Wolfgang

    2015-11-01

    Pyrrolidinophenones represent one emerging class of newly encountered drugs of abuse, also known as 'new psychoactive substances', with stimulating psychoactive effects. In this work, we report on the detection of the new designer drug α-pyrrolidinohexiophenone (α-PHP) and its phase I and II metabolites in a human urine sample of a drug abuser. Determination and structural elucidation of these metabolites have been achieved by liquid chromatography electrospray ionisation quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS). By tentative identification, the exact and approximate structures of 19 phase I metabolites and nine phase II glucuronides were elucidated. Major metabolic pathways revealed the reduction of the ß-keto moieties to their corresponding alcohols, didesalkylation of the pyrrolidine ring, hydroxylation and oxidation of the aliphatic side chain leading to n-hydroxy, aldehyde and carboxylate metabolites, and oxidation of the pyrrolidine ring to its lactam followed by ring cleavage and additional hydroxylation, reduction and oxidation steps and combinations thereof. The most abundant phase II metabolites were glucuronidated ß-keto-reduced alcohols. Besides the great number of metabolites detected in this sample, α-PHP is still one of the most abundant ions together with its ß-keto-reduced alcoholic dihydro metabolite. Monitoring of these metabolites in clinical and forensic toxicology may unambiguously prove the abuse of the new designer drug α-PHP. Copyright © 2015 John Wiley & Sons, Ltd.

  16. Green Flight Challenge

    NASA Image and Video Library

    2011-09-27

    The e-Genius aircraft prepares to takeoff for the miles per gallon (MPG) flight during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  17. Green Flight Challenge

    NASA Image and Video Library

    2011-09-27

    The PhoEnix aircraft prepares to takeoff for the miles per gallon (MPG) flight during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  18. Shuttle Return-to-Flight IH-108 Aerothermal Test at CUBRC - Flow Field Calibration and CFD

    NASA Technical Reports Server (NTRS)

    Lau, Kei Y.; Holden, M. S.

    2011-01-01

    This paper discusses one specific aspect of the Shuttle Retrun-To-Flight IH-108 Aerothermal Test at Calspan-University of Buffalo Research Center (CUBRC), the test flow field calibration. It showed the versatility of the CUBRC Large Energy National Shock Tunnel (LENS) II wind tunnel for an aerothermal test with unique and demanding requirements. CFD analyses were used effectively to extend the test range at the low end of the Mach range. It demonstrated how ground test facility and CFD synergy can be utilitzed iteratively to enhance the confidence in the fedility of both tools. It addressed the lingering concerns of the aerothermal community on use of inpulse facility and CFD analysis. At the conclusion of the test program, members from the NASA Marshall (MSFC), CUBRC and USA (United Space Alliance) Consultants (The Grey Beards) were asked to independently verify the flight scaling data generated by Boeing for flight certification of the re-designed external tank (ET) components. The blind test comparison showed very good results.

  19. Polarization Calibration of the Chromospheric Lyman-Alpha SpectroPolarimeter for a 0.1% Polarization Sensitivity in the VUV Range. Part II: In-Flight Calibration

    NASA Astrophysics Data System (ADS)

    Giono, G.; Ishikawa, R.; Narukage, N.; Kano, R.; Katsukawa, Y.; Kubo, M.; Ishikawa, S.; Bando, T.; Hara, H.; Suematsu, Y.; Winebarger, A.; Kobayashi, K.; Auchère, F.; Trujillo Bueno, J.; Tsuneta, S.; Shimizu, T.; Sakao, T.; Cirtain, J.; Champey, P.; Asensio Ramos, A.; Štěpán, J.; Belluzzi, L.; Manso Sainz, R.; De Pontieu, B.; Ichimoto, K.; Carlsson, M.; Casini, R.; Goto, M.

    2017-04-01

    The Chromospheric Lyman-Alpha SpectroPolarimeter is a sounding rocket instrument designed to measure for the first time the linear polarization of the hydrogen Lyman-{α} line (121.6 nm). The instrument was successfully launched on 3 September 2015 and observations were conducted at the solar disc center and close to the limb during the five-minutes flight. In this article, the disc center observations are used to provide an in-flight calibration of the instrument spurious polarization. The derived in-flight spurious polarization is consistent with the spurious polarization levels determined during the pre-flight calibration and a statistical analysis of the polarization fluctuations from solar origin is conducted to ensure a 0.014% precision on the spurious polarization. The combination of the pre-flight and the in-flight polarization calibrations provides a complete picture of the instrument response matrix, and a proper error transfer method is used to confirm the achieved polarization accuracy. As a result, the unprecedented 0.1% polarization accuracy of the instrument in the vacuum ultraviolet is ensured by the polarization calibration.

  20. X-43A Final Flight Observations

    NASA Technical Reports Server (NTRS)

    Grindle, Laurie

    2011-01-01

    The presentation will provide an overview of the final flight of the NASA X-43A project. The project consisted of three flights, two planned for Mach 7 and one for Mach 10. The first flight, conducted on June 2, 2001, was unsuccessful and resulted in a nine-month mishap investigation. A two-year return to flight effort ensued and concluded when the second Mach 7 flight was successfully conducted on March 27, 2004. The third and final flight, which occurred on November 16, 2004, was the first Mach 10 flight demonstration of an airframe-integrated, scramjet-powered, hypersonic vehicle. As such, the final flight presented first time technical challenges in addition to final flight project closeout concerns. The goals and objectives for the third flight as well as those for the project will be presented. The configuration of the Hyper-X stack including the X-43A, Hyper-X launch vehicle, and Hyper-X research vehicle adapter wil also be presented. Mission differences, vehicle modifications and lessons learned from the first and second flights as they applied to the third flight will also be discussed. Although X-43A flight 3 was always planned to be the final flight of the X-43A project, the X-43 program had two other vehicles and corresponding flight phases in X-43C and X-43B. Those other projects never manifested under the X-43 banner and X-43A flight 3 also became the final flight of X-43 program.

  1. Performance of active vibration control technology: the ACTEX flight experiments

    NASA Astrophysics Data System (ADS)

    Nye, T. W.; Manning, R. A.; Qassim, K.

    1999-12-01

    This paper discusses the development and results of two intelligent structures space-flight experiments, each of which could affect architecture designs of future spacecraft. The first, the advanced controls technology experiment I (ACTEX I), is a variable stiffness tripod structure riding as a secondary payload on a classified spacecraft. It has been operating well past its expected life since becoming operational in 1996. Over 60 on-orbit experiments have been run on the ACTEX I flight experiment. These experiments form the basis for in-space controller design problems and for concluding lifetime/reliability data on the active control components. Transfer functions taken during the life of ACTEX I have shown consistent predictability and stability in structural behavior, including consistency with those measurements taken on the ground prior to a three year storage period and the launch event. ACTEX I can change its modal characteristics by employing its dynamic change mechanism that varies preloads in portions of its structure. Active control experiments have demonstrated maximum vibration reductions of 29 dB and 16 dB in the first two variable modes of the system, while operating over a remarkable on-orbit temperature range of -80 °C to 129 °C. The second experiment, ACTEX II, was successfully designed, ground-tested, and integrated on an experimental Department of Defense satellite prior to its loss during a launch vehicle failure in 1995. ACTEX II also had variable modal behavior by virtue of a two-axis gimbal and added challenges of structural flexibility by being a large deployable appendage. Although the loss of ACTEX II did not provide space environment experience, ground testing resulted in space qualifying the hardware and demonstrated 21 dB, 14 dB, and 8 dB reductions in amplitude of the first three primary structural modes. ACTEX II could use either active and/or passive techniques to affect vibration suppression. Both experiments trailblazed

  2. Uncertainty of in-flight thrust determination

    NASA Technical Reports Server (NTRS)

    Abernethy, Robert B.; Adams, Gary R.; Steurer, John W.; Ascough, John C.; Baer-Riedhart, Jennifer L.; Balkcom, George H.; Biesiadny, Thomas

    1986-01-01

    Methods for estimating the measurement error or uncertainty of in-flight thrust determination in aircraft employing conventional turbofan/turbojet engines are reviewed. While the term 'in-flight thrust determination' is used synonymously with 'in-flight thrust measurement', in-flight thrust is not directly measured but is determined or calculated using mathematical modeling relationships between in-flight thrust and various direct measurements of physical quantities. The in-flight thrust determination process incorporates both ground testing and flight testing. The present text is divided into the following categories: measurement uncertainty methodoogy and in-flight thrust measurent processes.

  3. Evaluation of Gust and Draft Velocities from Flights of P-61C Airplanes within Thunderstorms August 17, 1946 to August 19, 1946 at Orlando, Florida

    NASA Technical Reports Server (NTRS)

    Tolefson, H. B.

    1947-01-01

    Results obtained from gust and draft velocity measurements within thunderstorms for the period August 17, 1946 to August 19, 1946 at Orlando, Florida are presented herein. These data are summarized in tables I and II and are of the type presented in reference 1 for previous flights. Inspection of photo-observer records taken on the present flights indicated that mo ambient-air temperature data were obtained.

  4. Perseus in Flight

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Perseus proof-of-concept vehicle in flight at the Dryden Flight Research Center, Edwards, California in 1991. Perseus is one of several remotely-piloted aircraft designed for high-altitude, long-endurance scientific sampling missions being evaluated under the ERAST program. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially

  5. Force generation and wing deformation characteristics of a flapping-wing micro air vehicle 'DelFly II' in hovering flight.

    PubMed

    Percin, M; van Oudheusden, B W; de Croon, G C H E; Remes, B

    2016-05-19

    The study investigates the aerodynamic performance and the relation between wing deformation and unsteady force generation of a flapping-wing micro air vehicle in hovering flight configuration. Different experiments were performed where fluid forces were acquired with a force sensor, while the three-dimensional wing deformation was measured with a stereo-vision system. In these measurements, time-resolved power consumption and flapping-wing kinematics were also obtained under both in-air and in-vacuum conditions. Comparison of the results for different flapping frequencies reveals different wing kinematics and deformation characteristics. The high flapping frequency case produces higher forces throughout the complete flapping cycle. Moreover, a phase difference occurs in the variation of the forces, such that the low flapping frequency case precedes the high frequency case. A similar phase lag is observed in the temporal evolution of the wing deformation characteristics, suggesting that there is a direct link between the two phenomena. A considerable camber formation occurs during stroke reversals, which is mainly determined by the stiffener orientation. The wing with the thinner surface membrane displays very similar characteristics to the baseline wing, which implies the dominance of the stiffeners in terms of providing rigidity to the wing. Wing span has a significant effect on the aerodynamic efficiency such that increasing the span length by 4 cm results in a 6% enhancement in the cycle-averaged X-force to power consumption ratio compared to the standard DelFly II wings with a span length of 28 cm.

  6. Orion Exploration Flight Test Post-Flight Inspection and Analysis

    NASA Technical Reports Server (NTRS)

    Miller, J. E.; Berger, E. L.; Bohl, W. E.; Christiansen, E. L.; Davis, B. A.; Deighton, K. D.; Enriquez, P. A.; Garcia, M. A.; Hyde, J. L.; Oliveras, O. M.

    2017-01-01

    The principal mechanism for developing orbital debris environment models, is to make observations of larger pieces of debris in the range of several centimeters and greater using radar and optical techniques. For particles that are smaller than this threshold, breakup and migration models of particles to returned surfaces in lower orbit are relied upon to quantify the flux. This reliance on models to derive spatial densities of particles that are of critical importance to spacecraft make the unique nature of the EFT-1's return surface a valuable metric. To this end detailed post-flight inspections have been performed of the returned EFT-1 backshell, and the inspections identified six candidate impact sites that were not present during the pre-flight inspections. This paper describes the post-flight analysis efforts to characterize the EFT-1 mission craters. This effort included ground based testing to understand small particle impact craters in the thermal protection material, the pre- and post-flight inspection, the crater analysis using optical, X-ray computed tomography (CT) and scanning electron microscope (SEM) techniques, and numerical simulations.

  7. Optimization of Supercomputer Use on EADS II System

    NASA Technical Reports Server (NTRS)

    Ahmed, Ardsher

    1998-01-01

    The main objective of this research was to optimize supercomputer use to achieve better throughput and utilization of supercomputers and to help facilitate the movement of non-supercomputing (inappropriate for supercomputer) codes to mid-range systems for better use of Government resources at Marshall Space Flight Center (MSFC). This work involved the survey of architectures available on EADS II and monitoring customer (user) applications running on a CRAY T90 system.

  8. Rapid prototyping facility for flight research in artificial-intelligence-based flight systems concepts

    NASA Technical Reports Server (NTRS)

    Duke, E. L.; Regenie, V. A.; Deets, D. A.

    1986-01-01

    The Dryden Flight Research Facility of the NASA Ames Research Facility of the NASA Ames Research Center is developing a rapid prototyping facility for flight research in flight systems concepts that are based on artificial intelligence (AI). The facility will include real-time high-fidelity aircraft simulators, conventional and symbolic processors, and a high-performance research aircraft specially modified to accept commands from the ground-based AI computers. This facility is being developed as part of the NASA-DARPA automated wingman program. This document discusses the need for flight research and for a national flight research facility for the rapid prototyping of AI-based avionics systems and the NASA response to those needs.

  9. The relationship of certified flight instructors' emotional intelligence levels on flight student advancement

    NASA Astrophysics Data System (ADS)

    Hokeness, Mark Merrill

    Aviation researchers estimate airline companies will require nearly 500,000 pilots in the next 20 years. The role of a Certified Flight Instructor (CFI) is to move student pilots to professional pilots with training typically conducted in one-on-one student and instructor sessions. The knowledge of aviation, professionalism as a teacher, and the CFI’s interpersonal skills can directly affect the successes and advancement of a student pilot. A new and emerging assessment of people skills is known as emotional intelligence (EI). The EI of the CFI can and will affect a flight students’ learning experiences. With knowledge of emotional intelligence and its effect on flight training, student pilot dropouts from aviation may be reduced, thus helping to ensure an adequate supply of pilots. Without pilots, the growth of the commercial aviation industry will be restricted. This mixed method research study established the correlation between a CFI’s measured EI levels and the advancement of flight students. The elements contributing to a CFI’s EI level were not found to be teaching or flight-related experiences, suggesting other life factors are drawn upon by the CFI and are reflected in their emotional intelligence levels presented to flight students. Students respond positively to CFIs with higher levels of emotional intelligence. Awareness of EI skills by both the CFI and flight student contribute to flight student successes and advancement.

  10. The high-resolution time-of-flight spectrometer TOFTOF

    NASA Astrophysics Data System (ADS)

    Unruh, Tobias; Neuhaus, Jürgen; Petry, Winfried

    2007-10-01

    The TOFTOF spectrometer is a multi-disc chopper time-of-flight spectrometer for cold neutrons at the research neutron source Heinz Maier-Leibnitz (FRM II). After five reactor cycles of routine operation the characteristics of the instrument are reported in this article. The spectrometer features an excellent signal to background ratio due to its remote position in the neutron guide hall, an elaborated shielding concept and an s-shaped curved primary neutron guide which acts i.a. as a neutron velocity filter. The spectrometer is fed with neutrons from the undermoderated cold neutron source of the FRM II leading to a total neutron flux of ˜1010n/cm2/s in the continuous white beam at the sample position distributed over a continuous and particularly broad wavelength spectrum. A high energy resolution is achieved by the use of high speed chopper discs made of carbon-fiber-reinforced plastic. In the combination of intensity, resolution and signal to background ratio the spectrometer offers new scientific prospects in the fields of inelastic and quasielastic neutron scattering.

  11. Green Flight Challenge

    NASA Image and Video Library

    2011-09-27

    The e-Genius aircraft is pulled pulled out to the runway for the miles per gallon (MPG) flight during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  12. Green Flight Challenge

    NASA Image and Video Library

    2011-09-27

    The Pipistrel-USA, Taurus G4 aircraft prepares to takeoff for the miles per gallon (MPG) flight during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  13. Green Flight Challenge

    NASA Image and Video Library

    2011-09-27

    The e-Genius aircraft is pulled out to the runway for the miles per gallon (MPG) flight during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  14. Green Flight Challenge

    NASA Image and Video Library

    2011-09-27

    The Pipistrel-USA team look up at aircraft as they participate in the miles per gallon (MPG) flight during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  15. Green Flight Challenge

    NASA Image and Video Library

    2011-09-27

    Media and ground crew look at aircraft as they participate in the miles per gallon (MPG) flight during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  16. Green Flight Challenge

    NASA Image and Video Library

    2011-09-27

    The Pipistrel-USA, Taurus G4 aircraft is seen as it participates in the miles per gallon (MPG) flight during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  17. Flight crew sleep during multiple layover polar flights.

    PubMed

    Sasaki, M; Kurosaki, Y S; Spinweber, C L; Graeber, R C; Takahashi, T

    1993-07-01

    This study investigated changes in sleep after multiple transmeridian flights. The subjects were 12 B747 airline pilots operating on the following polar flight: Tokyo (TYO)-Anchorage (ANC)-London (LON)-Anchorage-Tokyo. Sleep polysomnograms were recorded on two baseline nights (B1, B2), during layovers, and, after returning to Tokyo, two recovery nights were recorded (R1, R2). In ANC (outbound), total sleep time (TST) was reduced and, sleep efficiency was low (72.0%). In London, time in bed (TIB) increased slightly, but sleep efficiency was still reduced. On return to ANC (inbound), there was considerable slow wave sleep (SWS) rebound and multiple awakenings reduced sleep efficiency to 76.8%. Sleep efficiency on R2 was significantly lower than on B1 (t-test, p < 0.05) but not different from R1. To sum up, sleep of aircrews flying multiple transmeridian flights is disrupted during layovers and this effect persists during the two recovery nights. As a result, there is a marked cumulative sleep loss during multi-legs polar route trip in comparison to single leg flights. These findings suggest that following such extensive transmeridian trips, crews should have at least three nights of recovery sleep in their home time zone before returning to duty.

  18. Flight crew sleep during multiple layover polar flights

    NASA Technical Reports Server (NTRS)

    Sasaki, Mitsuo; Kurosaki, Yuko S.; Spinweber, Cheryl L.; Graeber, R. C.; Takahashi, Toshiharu

    1993-01-01

    This study investigated changes in sleep after multiple transmeridian flights. The subjects were 12 B747 airline pilots operating on the following polar flight: Tokyo (TYO)-Anchorage (ANC)-London (LON)-Anchorage-Tokyo. Sleep polysmonograms were recorded on two baseline nights (B1, B2), during layovers, and, after returning to Tokyo, two recovery nights were recorded (R1, R2). In ANC (outbound), total sleep time was reduced and, sleep efficiency was low (72.0 percent). In London, time in bed increased slightly, but sleep efficiency was still reduced. On return to ANC (inbound), there was considerable slow wave sleep rebound and multiple awakenings reduced sleep efficiency to 76.8 percent. Sleep efficiency on R2 was significantly lower than on B1 but not different from R1. To sum up, sleep of aircrews flying multiple transmeridian flights is disrupted during layovers and this effect persists during the two recovery nights. As a result, there is a marked cumulative sleep loss during multilegs polar route trip in comparison to single leg flights. These findings suggest that following such extensive transmeridian trips, crews should have at least three nights of recovery sleep in their home time zone before returning to duty.

  19. Aerothermal Analysis of the Project Fire II Afterbody Flow

    NASA Technical Reports Server (NTRS)

    Wright, Michael J.; Loomis, Mark; Papadopoulos, Periklis; Arnold, James O. (Technical Monitor)

    2001-01-01

    Computational fluid dynamics (CFD) is used to simulate the wake flow and afterbody heating of the Project Fire II ballistic reentry to Earth at 11.4 km/sec. Laminar results are obtained over a portion of the trajectory between the initial heat pulse and peak afterbody heating. Although non-catalytic forebody convective heating results are in excellent agreement with previous computations, initial predictions of afterbody heating were about a factor of two below the experimental values. Further analysis suggests that significant catalysis may be occurring on the afterbody heat shield. Computations including finite-rate catalysis on the afterbody surface are in good agreement with the data over the early portion of the trajectory, but are conservative near the peak afterbody heating point, especially on the rear portion of the conical frustum. Further analysis of the flight data from Fire II shows that peak afterbody heating occurs before peak forebody heating, a result that contradicts computations and flight data from other entry vehicles. This result suggests that another mechanism, possibly pyrolysis, may be occurring during the later portion of the trajectory, resulting in less total heat transfer than the current predictions.

  20. 14 CFR 63.42 - Flight engineer certificate issued on basis of a foreign flight engineer license.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Flight engineer certificate issued on basis of a foreign flight engineer license. 63.42 Section 63.42 Aeronautics and Space FEDERAL AVIATION... PILOTS Flight Engineers § 63.42 Flight engineer certificate issued on basis of a foreign flight engineer...

  1. 14 CFR 63.42 - Flight engineer certificate issued on basis of a foreign flight engineer license.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Flight engineer certificate issued on basis of a foreign flight engineer license. 63.42 Section 63.42 Aeronautics and Space FEDERAL AVIATION... PILOTS Flight Engineers § 63.42 Flight engineer certificate issued on basis of a foreign flight engineer...

  2. 14 CFR 63.42 - Flight engineer certificate issued on basis of a foreign flight engineer license.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Flight engineer certificate issued on basis of a foreign flight engineer license. 63.42 Section 63.42 Aeronautics and Space FEDERAL AVIATION... PILOTS Flight Engineers § 63.42 Flight engineer certificate issued on basis of a foreign flight engineer...

  3. 14 CFR 63.42 - Flight engineer certificate issued on basis of a foreign flight engineer license.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Flight engineer certificate issued on basis of a foreign flight engineer license. 63.42 Section 63.42 Aeronautics and Space FEDERAL AVIATION... PILOTS Flight Engineers § 63.42 Flight engineer certificate issued on basis of a foreign flight engineer...

  4. 14 CFR 63.42 - Flight engineer certificate issued on basis of a foreign flight engineer license.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight engineer certificate issued on basis of a foreign flight engineer license. 63.42 Section 63.42 Aeronautics and Space FEDERAL AVIATION... PILOTS Flight Engineers § 63.42 Flight engineer certificate issued on basis of a foreign flight engineer...

  5. Measurement of the Cosmic-Ray Antiproton Spectrum at Solar Minimum with a Long-Duration Balloon Flight over Antarctica

    NASA Technical Reports Server (NTRS)

    Abe, K.; Fuke, H.; Haino, S.; Hams, T.; Hasegawa, M.; Horikoshi, A.; Kim, K. C.; Kusumoto, A.; Lee, M. H.; Makida, Y.; hide

    2012-01-01

    The energy spectrum of cosmic-ray antiprotons (p-bar's) from 0.17 to 3.5 GeV has been measured using 7886 p-bar's detected by BESS-Polar II during a long-duration flight over Antarctica near solar minimum in December 2007 and January 2008. This shows good consistency with secondary p-bar calculations. Cosmologically primary p-bar's have been investigated by comparing measured and calculated p-bar spectra. BESS-Polar II data.show no evidence of primary p-bar's from the evaporation of primordial black holes.

  6. Optical Air Flow Measurements for Flight Tests and Flight Testing Optical Air Flow Meters

    NASA Technical Reports Server (NTRS)

    Jentink, Henk W.; Bogue, Rodney K.

    2005-01-01

    Optical air flow measurements can support the testing of aircraft and can be instrumental to in-flight investigations of the atmosphere or atmospheric phenomena. Furthermore, optical air flow meters potentially contribute as avionics systems to flight safety and as air data systems. The qualification of these instruments for the flight environment is where we encounter the systems in flight testing. An overview is presented of different optical air flow measurement techniques applied in flight and what can be achieved with the techniques for flight test purposes is reviewed. All in-flight optical airflow velocity measurements use light scattering. Light is scattered on both air molecules and aerosols entrained in the air. Basic principles of making optical measurements in flight, some basic optical concepts, electronic concepts, optoelectronic interfaces, and some atmospheric processes associated with natural aerosols are reviewed. Safety aspects in applying the technique are shortly addressed. The different applications of the technique are listed and some typical examples are presented. Recently NASA acquired new data on mountain rotors, mountain induced turbulence, with the ACLAIM system. Rotor position was identified using the lidar system and the potentially hazardous air flow profile was monitored by the ACLAIM system.

  7. Budgerigar flight in a varying environment: flight at distinct speeds?

    PubMed

    Schiffner, Ingo; Srinivasan, Mandyam V

    2016-06-01

    How do flying birds respond to changing environments? The behaviour of budgerigars, Melopsittacus undulatus, was filmed as they flew through a tapered tunnel. Unlike flying insects-which vary their speed progressively and continuously by holding constant the optic flow induced by the walls-the birds showed a tendency to fly at only two distinct, fixed speeds. They switched between a high speed in the wider section of the tunnel, and a low speed in the narrower section. The transition between the two speeds was abrupt, and anticipatory. The high speed was close to the energy-efficient, outdoor cruising speed for these birds, while the low speed was approximately half this value. This is the first observation of the existence of two distinct, preferred flight speeds in birds. A dual-speed flight strategy may be beneficial for birds that fly in varying environments, with the high speed set at an energy-efficient value for flight through open spaces, and the low speed suited to safe manoeuvring in a cluttered environment. The constancy of flight speed within each regime enables the distances of obstacles and landmarks to be directly calibrated in terms of optic flow, thus facilitating simple and efficient guidance of flight through changing environments. © 2016 The Author(s).

  8. Flight Research Building at the Aircraft Engine Research Laboratory

    NASA Image and Video Library

    1942-09-21

    The Flight Research Building at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory is a 272- by 150-foot hangar with an internal height up to 90 feet. The hangar’s massive 37.5-foot-tall and 250-foot-long doors can be opened in sections to suit different size aircraft. The hangar has sheltered a diverse fleet of aircraft over the decades. These have ranged from World War II bombers to Cessna trainers and from supersonic fighter jets to a DC–9 airliner. At the time of this September 1942 photograph, however, the hangar was being used as an office building during the construction of the laboratory. In December of 1941, the Flight Research Building became the lab’s first functional building. Temporary offices were built inside the structure to house the staff while the other buildings were completed. The hangar offices were used for an entire year before being removed in early 1943. It was only then that the laboratory acquired its first aircraft, pilots and flight mechanics. The temporary one-story offices can be seen in this photograph inside the large sliding doors. Also note the vertical lift gate below the NACA logo. The gate was installed so that the tails of larger aircraft could pass into the hangar. The white Farm House that served as the Administration Building during construction can be seen in the distance to the left of the hangar.

  9. A Flight Dynamics Perspective of the Orion Pad Abort One Flight Test

    NASA Technical Reports Server (NTRS)

    Idicula, Jinu; Williams-Hayes, Peggy S.; Stillwater, Ryan; Yates, Max

    2009-01-01

    The Orion Crew Exploration Vehicle is America s next generation of human rated spacecraft. The Orion Launch Abort System will take the astronauts away from the exploration vehicle in the event of an aborted launch. The pad abort mode of the Launch Abort System will be flight-tested in 2009 from the White Sands Missile Range in New Mexico. This paper examines some of the efforts currently underway at the NASA Dryden Flight Research Center by the Controls & Dynamics group in preparation for the flight test. The concept of operation for the pad abort flight is presented along with an overview of the guidance, control and navigation systems. Preparations for the flight test, such as hardware testing and development of the real-time displays, are examined. The results from the validation and verification efforts for the aerodynamic and atmospheric models are shown along with Monte Carlo analysis results.

  10. Post-Flight Analysis of the Guidance, Navigation, and Control Performance During Orion Exploration Flight Test 1

    NASA Technical Reports Server (NTRS)

    Barth, Andrew; Mamich, Harvey; Hoelscher, Brian

    2015-01-01

    The first test flight of the Orion Multi-Purpose Crew Vehicle presented additional challenges for guidance, navigation and control as compared to a typical re-entry from the International Space Station or other Low Earth Orbit. An elevated re-entry velocity and steeper flight path angle were chosen to achieve aero-thermal flight test objectives. New IMU's, a GPS receiver, and baro altimeters were flight qualified to provide the redundant navigation needed for human space flight. The guidance and control systems must manage the vehicle lift vector in order to deliver the vehicle to a precision, coastal, water landing, while operating within aerodynamic load, reaction control system, and propellant constraints. Extensive pre-flight six degree-of-freedom analysis was performed that showed mission success for the nominal mission as well as in the presence of sensor and effector failures. Post-flight reconstruction analysis of the test flight is presented in this paper to show whether that all performance metrics were met and establish how well the pre-flight analysis predicted the in-flight performance.

  11. Navigation and flight director guidance for the NASA/FAA helicopter MLS curved approach flight test program

    NASA Technical Reports Server (NTRS)

    Phatak, A. V.; Lee, M. G.

    1985-01-01

    The navigation and flight director guidance systems implemented in the NASA/FAA helicopter microwave landing system (MLS) curved approach flight test program is described. Flight test were conducted at the U.S. Navy's Crows Landing facility, using the NASA Ames UH-lH helicopter equipped with the V/STOLAND avionics system. The purpose of these tests was to investigate the feasibility of flying complex, curved and descending approaches to a landing using MLS flight director guidance. A description of the navigation aids used, the avionics system, cockpit instrumentation and on-board navigation equipment used for the flight test is provided. Three generic reference flight paths were developed and flown during the test. They were as follows: U-Turn, S-turn and Straight-In flight profiles. These profiles and their geometries are described in detail. A 3-cue flight director was implemented on the helicopter. A description of the formulation and implementation of the flight director laws is also presented. Performance data and analysis is presented for one pilot conducting the flight director approaches.

  12. Green Flight Challenge

    NASA Image and Video Library

    2011-09-25

    Brien A. Seeley M.D., President of Comparative Aircraft Flight Efficiency (CAFE) Foundation briefs pilots and ground crew prior to competition as part of the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  13. Green Flight Challenge

    NASA Image and Video Library

    2011-09-25

    Brien A. Seeley M.D., President of Comparative Aircraft Flight Efficiency (CAFE) Foundation, right, briefs pilots and ground crew prior to competition as part of the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  14. Green Flight Challenge

    NASA Image and Video Library

    2011-09-27

    The e-Genius pilots talk with a fellow team member prior to their takeoff for the miles per gallon (MPG) flight during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  15. Green Flight Challenge

    NASA Image and Video Library

    2011-09-27

    The Embry-Riddle Aeronautical University, EcoEagle prepares to takeoff as an demonstration aircraft for the miles per gallon (MPG) flight during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  16. Green Flight Challenge

    NASA Image and Video Library

    2011-09-27

    The checkered flag is waved as the PhoEnix aircraft crosses the finish line of the miles per gallon (MPG) flight during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  17. Green Flight Challenge

    NASA Image and Video Library

    2011-09-27

    CAFE Foundation Hanger Boss Mike Fenn waves the checkered flag as aircraft pass the finish line of the miles per gallon (MPG) flight during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  18. From an automated flight-test management system to a flight-test engineer's workstation

    NASA Technical Reports Server (NTRS)

    Duke, E. L.; Brumbaugh, Randal W.; Hewett, M. D.; Tartt, D. M.

    1991-01-01

    The capabilities and evolution is described of a flight engineer's workstation (called TEST-PLAN) from an automated flight test management system. The concept and capabilities of the automated flight test management systems are explored and discussed to illustrate the value of advanced system prototyping and evolutionary software development.

  19. STS-119 Flight Control Team in WFCR - Orbit 3 - Flight Director Bryan Lunney

    NASA Image and Video Library

    2009-03-24

    JSC2009-E-061542 (24 March 2009) --- The members of the STS-119 Orbit 3 flight control team pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA?s Johnson Space Center. Flight director Bryan Lunney (center) near the front.

  20. Fight or flight? - Flight increases immune gene expression but does not help to fight an infection.

    PubMed

    Woestmann, L; Kvist, J; Saastamoinen, M

    2017-03-01

    Flight represents a key trait in most insects, being energetically extremely demanding, yet often necessary for foraging and reproduction. Additionally, dispersal via flight is especially important for species living in fragmented landscapes. Even though, based on life-history theory, a negative relationship may be expected between flight and immunity, a number of previous studies have indicated flight to induce an increased immune response. In this study, we assessed whether induced immunity (i.e. immune gene expression) in response to 15-min forced flight treatment impacts individual survival of bacterial infection in the Glanville fritillary butterfly (Melitaea cinxia). We were able to confirm previous findings of flight-induced immune gene expression, but still observed substantially stronger effects on both gene expression levels and life span due to bacterial infection compared to flight treatment. Even though gene expression levels of some immunity-related genes were elevated due to flight, these individuals did not show increased survival of bacterial infection, indicating that flight-induced immune activation does not completely protect them from the negative effects of bacterial infection. Finally, an interaction between flight and immune treatment indicated a potential trade-off: flight treatment increased immune gene expression in naïve individuals only, whereas in infected individuals no increase in immune gene expression was induced by flight. Our results suggest that the up-regulation of immune genes upon flight is based on a general stress response rather than reflecting an adaptive response to cope with potential infections during flight or in new habitats. © 2016 The Authors. Journal of Evolutionary Biology Published by John Wiley & Sons ltd on behalf of European Society for Evolutionary Biology.

  1. Aviator's Fluid Balance During Military Flight.

    PubMed

    Levkovsky, Anna; Abot-Barkan, Sivan; Chapnik, Leah; Doron, Omer; Levy, Yuval; Heled, Yuval; Gordon, Barak

    2018-02-01

    A loss of 1% or more of bodyweight due to dehydration has a negative effect on cognitive performance, which could critically affect flight safety. There is no mention in the literature concerning the amounts of military pilots' fluid loss during flight. The aim of this study was to quantify fluid loss of pilots during military flight. There were 48 aviators (mean age 23.9) from the Israeli Air Force who participated in the study, which included 104 training flights in various flight platforms. Bodyweight, urine specific gravity, and environmental heat strain were measured before and after each flight. Fluid loss was calculated as the weight differences before and after the flight. We used a univariate and one-way ANOVA to analyze the effect of different variables on the fluid loss. The mean fluid loss rate was 462 ml · h-1. The results varied among different aircraft platforms and depended on flight duration. Blackhawk pilots lost the highest amount of fluids per flight, albeit had longer flights (mean 108 min compared to 35.5 in fighter jets). Jet fighter pilots had the highest rate of fluid loss per hour of flight (up to 692 ml, extrapolated). Overall, at 11 flights (11%) aircrew completed their flight with a meaningful fluid loss. We conclude that military flights may be associated with significant amount of fluid loss among aircrew.Levkovsky A, Abot-Barkan S, Chapnik L, Doron O, Levy Y, Heled Y, Gordon B. Aviator's fluid balance during military flight. Aerosp Med Hum Perform. 2018; 89(2):9498.

  2. From an automated flight-test management system to a flight-test engineer's workstation

    NASA Technical Reports Server (NTRS)

    Duke, E. L.; Brumbaugh, R. W.; Hewett, M. D.; Tartt, D. M.

    1992-01-01

    Described here are the capabilities and evolution of a flight-test engineer's workstation (called TEST PLAN) from an automated flight-test management system. The concept and capabilities of the automated flight-test management system are explored and discussed to illustrate the value of advanced system prototyping and evolutionary software development.

  3. Apollo experience report: Development flight instrumentation. [telemetry equipment for space flight test program

    NASA Technical Reports Server (NTRS)

    Farmer, N. B.

    1974-01-01

    Development flight instrumentation was delivered for 25 Apollo vehicles as Government-furnished equipment. The problems and philosophies of an activity that was concerned with supplying telemetry equipment to a space-flight test program are discussed. Equipment delivery dates, system-design details, and flight-performance information for each mission also are included.

  4. STS-125 Flight Control Team in WFCR - Orbit 1 - Flight Director Tony Ceccacci

    NASA Image and Video Library

    2009-05-20

    JSC2009-E-120813 (20 May 2009) --- The members of the STS-125 Orbit 1 flight control team pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Tony Ceccacci holds the STS-125 mission logo.

  5. STS-131 Flight Control Team in WFCR - Orbit 2 - Flight Director Mike Sarafin

    NASA Image and Video Library

    2010-04-14

    JSC2010-E-051978 (14 April 2010) --- The members of the STS-131 Orbit 2 flight control team pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Mike Sarafin holds the STS-131 mission logo.

  6. STS-131 Flight Control Team in WFCR - Orbit 1 - Flight Director: Richard Jones

    NASA Image and Video Library

    2010-04-12

    JSC2010-E-050680 (12 April 2010) --- The members of the STS-131 Orbit 1 flight control team pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Richard Jones (second left) is on the front row.

  7. FLIGHT LINE, LOOKING TOWARD FLIGHT LINE FIRE STATION (BUILDING 2748)CENTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FLIGHT LINE, LOOKING TOWARD FLIGHT LINE FIRE STATION (BUILDING 2748)CENTER AND AIRCRAFT MAINTENANCE DOCKS (BUILDINGS 2741 AND 2766)LEFT. VIEW TO NORTH - Plattsburgh Air Force Base, U.S. Route 9, Plattsburgh, Clinton County, NY

  8. Faith based aviation: An ethnographic study of missionary flights international

    NASA Astrophysics Data System (ADS)

    Cooper, Joseph H.

    The development of faith-based missionary aviation is a post-World War II phenomenon. The war effort demonstrated the value, utility, and global reach of aviation to remote, underdeveloped areas of the world. With the beginnings of a worldwide infrastructure for aviation, Christian aviators realized aviation could increase the range and effectiveness of their efforts to reach the world for Christ (Mellis, 2006). Although individual organizations provide statistical information and data about flight operations there is a lack of external evidence and relevant research literature confirming the scope and value of these faith based aviation organizations and operations. A qualitative, ethnographic study was conducted to document the activities of one faith-based aviation organization to gain an understanding of this little known aspect of civilian aviation. The study was conducted with Missionary Flights International (MFI) of Fort Pierce, FL which has been involved in faith-based, missionary aviation since its inception in 1964. As an aviation organization "MFI strives to offer affiliated missions the kind of efficient service and professionalism expected of an airline operation" (Missionary Flights International, 2013, p.1). MFI is a lifeline for missionaries to Haiti and the Dominican Republic, fulfilling their motto of "Standing in the Gap". MFI provides twice a week service to the island of Hispaniola and the Republic of Haiti. In this in-depth study insight and understanding was gained into the purpose of MFI, their daily routines and operations, and the challenges they face in maintaining their flight services to Haiti. This study provided documentation of the value and utility of such aviation efforts and of the individuals involved in this endeavor.

  9. Hypoxia and flight performance of military instructor pilots in a flight simulator.

    PubMed

    Temme, Leonard A; Still, David L; Acromite, Michael T

    2010-07-01

    Military aircrew and other operational personnel frequently perform their duties at altitudes posing a significant hypoxia risk, often with limited access to supplemental oxygen. Despite the significant risk hypoxia poses, there are few studies relating it to primary flight performance, which is the purpose of the present study. Objective, quantitative measures of aircraft control were collected from 14 experienced, active duty instructor pilot volunteers as they breathed an air/nitrogen mix that provided an oxygen partial pressure equivalent to the atmosphere at 18,000 ft (5486.4 m) above mean sea level. The flight task required holding a constant airspeed, altitude, and heading at an airspeed significantly slower than the aircraft's minimum drag speed. The simulated aircraft's inherent instability at the target speed challenged the pilot to maintain constant control of the aircraft in order to minimize deviations from the assigned flight parameters. Each pilot's flight performance was evaluated by measuring all deviations from assigned target values. Hypoxia degraded the pilot's precision of altitude and airspeed control by 53%, a statistically significant decrease in flight performance. The effect on heading control effects was not statistically significant. There was no evidence of performance differences when breathing room air pre- and post-hypoxia. Moderate levels of hypoxia degraded the ability of military instructor pilots to perform a precision slow flight task. This is one of a small number of studies to quantify an effect of hypoxia on primary flight performance.

  10. A Perspective on Development Flight Instrumentation and Flight Test Analysis Plans for Ares I-X

    NASA Technical Reports Server (NTRS)

    Huebner, Lawrence D.; Richards, James S.; Brunty, Joseph A.; Smith, R. Marshall; Trombetta, Dominic R.

    2009-01-01

    NASA. s Constellation Program will take a significant step toward completion of the Ares I crew launch vehicle with the flight test of Ares I-X and completion of the Ares I-X post-flight evaluation. The Ares I-X flight test vehicle is an ascent development flight test that will acquire flight data early enough to impact the design and development of the Ares I. As the primary customer for flight data from the Ares I-X mission, Ares I has been the major driver in the definition of the Development Flight Instrumentation (DFI). This paper focuses on the DFI development process and the plans for post-flight evaluation of the resulting data to impact the Ares I design. Efforts for determining the DFI for Ares I-X began in the fall of 2005, and significant effort to refine and implement the Ares I-X DFI has been expended since that time. This paper will present a perspective in the development and implementation of the DFI. Emphasis will be placed on the process by which the list was established and changes were made to that list due to imposed constraints. The paper will also discuss the plans for the analysis of the DFI data following the flight and a summary of flight evaluation tasks to be performed in support of tools and models validation for design and development.

  11. Green Flight Challenge

    NASA Image and Video Library

    2011-09-27

    Pipistrel-USA Pilots Robin Reid, left, and David Morss, talk on their cell phones shortly after participating in the miles per gallon (MPG) flight in their Taurus G4 aircraft during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  12. JWST Flight Mirrors

    NASA Image and Video Library

    2011-05-25

    Project scientist Mark Clampin is reflected in the flight mirrors of the Webb Space Telescope at Marshall Space Flight Center. Portions of the Webb telescope are being built at NASA Goddard. Credit: Ball Aerospace/NASA NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook Find us on Instagram

  13. STS-125 Flight Control Team in WFCR - Orbit 3 - Flight Director Paul Dye

    NASA Image and Video Library

    2009-05-20

    JSC2009-E-120846 (20 May 2009) --- The members of the STS-125 Orbit 3 flight control team pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Paul Dye (center left) is visible on the front row.

  14. Evaluation of Flight Attendant Technical Knowledge

    NASA Technical Reports Server (NTRS)

    Dunbar, Melisa G.; Chute, Rebecca D.; Rosekind, Mark (Technical Monitor)

    1997-01-01

    Accident and incident reports have indicated that flight attendants have numerous opportunities to provide the flight-deck crew with operational information that may prevent or lessen the severity of a potential problem. Additionally, as carrier fleets transition from three person to two person flight-deck crews, the reliance upon the cabin crew for the transfer of this information may increase further. Recent research indicates that flight attendants do not feel confident in their ability to describe mechanical parts or malfunctions of the aircraft, and the lack of flight attendant technical training has been referenced in a number of recent reports. Chute and Wiener describe five factors which may produce communication barriers between cockpit and cabin crews: the historical background of aviation, the physical separation of the two crews, psychosocial issues, regulatory factors, and organizational factors. By examining these areas of division we can identify possible bridges and address the implications of deficient cockpit/cabin communication on flight safety. Flight attendant operational knowledge may provide some mitigation of these barriers. The present study explored both flight attendant technical knowledge and flight attendant and pilot expectations of flight attendant technical knowledge. To assess the technical knowledge of cabin crewmembers, 177 current flight attendants from two U.S. carriers voluntarily completed a 13-item technical quiz. To investigate expectations of flight attendant technical knowledge, 181 pilots and a second sample of 96 flight attendants, from the same two airlines, completed surveys designed to capture each group's expectations of operational knowledge required of flight attendants. Analyses revealed several discrepancies between the present level of flight attendant operational knowledge and pilots' and flight attendants' expected and desired levels of technical knowledge. Implications for training will be discussed.

  15. Radiative Viscous Shock Layer Analysis of Fire, Apollo, and PAET Flight Data

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A.; Park, Chul; Green, Michael J.

    1986-01-01

    Equilibrium, radiating viscous shock layer solutions are obtained for a number of trajectory points of the Fire II, Apollo 4, and PAET experimental flight vehicles. Convective heating rates calculated by a benchmark code agree well with two engineering correlations, except at high altitudes corresponding to low densities. Calculated radiation intensities are compared with the flight radiometer data and with inviscid flow results. Differences as great as 70% are observed between measured data and the viscous calculations. Because of boundary-layer absorption, viscous effects reduce the intensity to the wall by as much as 30% compared with inviscid intensities. Preliminary chemical and thermal nonequilibrium flow calculations along a stagnation streamline for a PAET trajectory predict an enhancement to the radiation owing to the chemical relaxation. Stagnation point solutions are also presented for future aeroassisted orbital transfer vehicle geometries with nose radii of 0.3-15 m.

  16. Radiative viscous-shock-layer analysis of Fire, Apollo, and PAET flight data

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A.; Park, C.; Green, M. J.

    1985-01-01

    Equilibrium, radiating viscous-shock-layer solutions are obtained for a number of trajectory points of the Fire II, Apollo 4, and PAET experimental flight vehicles. Convective heating rates calculated by a benchmark code agree well, except at high altitudes corresponding to low densities, with two engineering correlations. Calculated radiation intensities are compared with the flight radiometer data and with inviscid flow results. Differences as great as 70 percent are observed between measured data and the viscous calculations. Viscous effects reduce the intensity toward the wall, because of boundary-layer absorption, by as much as 30 percent, compared with inviscid intensities. Preliminary chemical and thermal nonequilibrium flow calculations along a stagnation streamline for a PAET trajectory predict enhancement of radiation owing to chemical relaxation. Stagnation point solutions are also presented for future air-assisted orbital transfer vehicle geometries with nose radii ranging from 0.3 to 15 m.

  17. Evaluation of Gust and Draft Velocities from Flights of P-61C Airplanes within Thunderstorms July 22, 1946 to July 23, 1946 at Orlando, Florida

    NASA Technical Reports Server (NTRS)

    Tolefson, H. B.

    1947-01-01

    The results obtained from measurements of gust and draft velocities within thunderstorms for the period July 22, 1946 to July 23, 1946 at Orlando, Florida, are presented herein. These data are summarized in tables I and II, respectively, and are of the type presented in reference 1 for previous flights. Inspection of photo-observer records for the flights indicated that no data on ambient air temperature variations within thunderstorms were obtained.

  18. Flight control systems development and flight test experience with the HiMAT research vehicles

    NASA Technical Reports Server (NTRS)

    Kempel, Robert W.; Earls, Michael R.

    1988-01-01

    Two highly maneuverable aircraft technology (HiMAT) remotely piloted vehicles were flown a total of 26 flights. These subscale vehicles were of advanced aerodynamic configuration with advanced technology concepts such as composite and metallic structures, digital integrated propulsion control, and ground (primary) and airborne (backup) relaxed static stability, digital fly-by-wire control systems. Extensive systems development, checkout, and flight qualification were required to conduct the flight test program. The design maneuver goal was to achieve a sustained 8-g turn at Mach 0.9 at an altitude of 25,000 feet. This goal was achieved, along with the acquisition of high-quality flight data at subsonic and supersonic Mach numbers. Control systems were modified in a variety of ways using the flight-determined aerodynamic characteristics. The HiMAT program was successfully completed with approximately 11 hours of total flight time.

  19. Technical evaluation report on the Flight Mechanics Panel Symposium on Flight Simulation

    NASA Technical Reports Server (NTRS)

    Cook, Anthony M.

    1986-01-01

    In recent years, important advances were made in technology both for ground-based and in-flight simulators. There was equally a broadening of the use of flight simulators for research, development, and training purposes. An up-to-date description of the state-of-the-art of technology and engineering was provided for both ground-based and in-flight simulators and their respective roles were placed in context within the aerospace scene.

  20. Flight tests of the 4D flight guidance display

    NASA Astrophysics Data System (ADS)

    Below, Christian; von Viebahn, Harro; Purpus, Matthias

    1997-06-01

    A perspective primary flight and a navigation display format were evaluated in a flying testbed. The flight tests comprised ILS- and standard approaches as well as low level operations utilizing the depiction of a spatial channel, and demonstrations of the inherent ground proximity warning function. In the cockpit of the VFW614, the left seat was equipped with a sidestick and a flat panel display, which showed both the 4D-display an the Navigation Display format. Airline and airforce pilots flew several missions each. Although most of the pilots criticizes that a typical flight director commanding the aircraft's attitude was missing, they could follow the channel precisely. However, some airline pilots stated a lack of vertical guidance information during the final approach. Leaving and re- entering the channel could be easily accomplished form any direction. In summary pilots' assessment of the display concept yielded an overall improvement of SA. In particular it was stated that displays are an appropriate means to avoid CFIT accidents. With the fist prototypes of 3D- graphics generators designed for avionics available the flight evaluation will continue including feasibility demonstrations of high-performance graphics for civil and military aircraft applications.

  1. Perseus in Flight

    NASA Image and Video Library

    1991-11-15

    The Perseus proof-of-concept vehicle in flight at the Dryden Flight Research Center, Edwards, California in 1991. Perseus is one of several remotely-piloted aircraft designed for high-altitude, long-endurance scientific sampling missions being evaluated under the ERAST program.

  2. Do birds sleep in flight?

    NASA Astrophysics Data System (ADS)

    Rattenborg, Niels C.

    2006-09-01

    The following review examines the evidence for sleep in flying birds. The daily need to sleep in most animals has led to the common belief that birds, such as the common swift ( Apus apus), which spend the night on the wing, sleep in flight. The electroencephalogram (EEG) recordings required to detect sleep in flight have not been performed, however, rendering the evidence for sleep in flight circumstantial. The neurophysiology of sleep and flight suggests that some types of sleep might be compatible with flight. As in mammals, birds exhibit two types of sleep, slow-wave sleep (SWS) and rapid eye-movement (REM) sleep. Whereas, SWS can occur in one or both brain hemispheres at a time, REM sleep only occurs bihemispherically. During unihemispheric SWS, the eye connected to the awake hemisphere remains open, a state that may allow birds to visually navigate during sleep in flight. Bihemispheric SWS may also be possible during flight when constant visual monitoring of the environment is unnecessary. Nevertheless, the reduction in muscle tone that usually accompanies REM sleep makes it unlikely that birds enter this state in flight. Upon landing, birds may need to recover the components of sleep that are incompatible with flight. Periods of undisturbed postflight recovery sleep may be essential for maintaining adaptive brain function during wakefulness. The recent miniaturization of EEG recording devices now makes it possible to measure brain activity in flight. Determining if and how birds sleep in flight will contribute to our understanding of a largely unexplored aspect of avian behavior and may also provide insight into the function of sleep.

  3. Fatigue-test acceleration with flight-by-flight loading and heating to simulate supersonic-transport operation

    NASA Technical Reports Server (NTRS)

    Imig, L. A.; Garrett, L. E.

    1973-01-01

    Possibilities for reducing fatigue-test time for supersonic-transport materials and structures were studied in tests with simulated flight-by-flight loading. In order to determine whether short-time tests were feasible, the results of accelerated tests (2 sec per flight) were compared with the results of real-time tests (96 min per flight). The effects of design mean stress, the stress range for ground-air-ground cycles, simulated thermal stress, the number of stress cycles in each flight, and salt corrosion were studied. The flight-by-flight stress sequences were applied to notched sheet specimens of Ti-8Al-1Mo-1V and Ti-6Al-4V titanium alloys. A linear cumulative-damage analysis accounted for large changes in stress range of the simulated flights but did not account for the differences between real-time and accelerated tests. The fatigue lives from accelerated tests were generally within a factor of two of the lives from real-time tests; thus, within the scope of the investigation, accelerated testing seems feasible.

  4. First Shuttle/747 Captive Flight

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The Space Shuttle prototype Enterprise rides smoothly atop NASA's first Shuttle Carrier Aircraft (SCA), NASA 905, during the first of the shuttle program's Approach and Landing Tests (ALT) at the Dryden Flight Research Center, Edwards, California, in 1977. During the nearly one year-long series of tests, Enterprise was taken aloft on the SCA to study the aerodynamics of the mated vehicles and, in a series of five free flights, tested the glide and landing characteristics of the orbiter prototype. In this photo, the main engine area on the aft end of Enterprise is covered with a tail cone to reduce aerodynamic drag that affects the horizontal tail of the SCA, on which tip fins have been installed to increase stability when the aircraft carries an orbiter. The Space Shuttle Approach and Landings Tests (ALT) program allowed pilots and engineers to learn how the Space Shuttle and the modified Boeing 747 Shuttle Carrier Aircraft (SCA) handled during low-speed flight and landing. The Enterprise, a prototype of the Space Shuttles, and the SCA were flown to conduct the approach and landing tests at the NASA Dryden Flight Research Center, Edwards, California, from February to October 1977. The first flight of the program consisted of the Space Shuttle Enterprise attached to the Shuttle Carrier Aircraft. These flights were to determine how well the two vehicles flew together. Five 'captive-inactive' flights were flown during this first phase in which there was no crew in the Enterprise. The next series of captive flights was flown with a flight crew of two on board the prototype Space Shuttle. Only three such flights proved necessary. This led to the free-flight test series. The free-flight phase of the ALT program allowed pilots and engineers to learn how the Space Shuttle handled in low-speed flight and landing attitudes. For these landings, the Enterprise was flown by a crew of two after it was released from the top of the SCA. The vehicle was released at altitudes

  5. 14 CFR 61.64 - Use of a flight simulator and flight training device.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... test. (e) Use of a flight simulator for the powered-lift rating. If an applicant uses a flight simulator for training or the practical test for the powered-lift category or type rating— (1) The flight simulator— (i) Must represent the category and type of powered-lift rating (if a type rating is applicable...

  6. 14 CFR 61.64 - Use of a flight simulator and flight training device.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... test. (e) Use of a flight simulator for the powered-lift rating. If an applicant uses a flight simulator for training or the practical test for the powered-lift category or type rating— (1) The flight simulator— (i) Must represent the category and type of powered-lift rating (if a type rating is applicable...

  7. STS-125 Flight Controllers on Console - (Orbit Shift 2). Flight Director: Richard LaBrode

    NASA Image and Video Library

    2009-05-12

    JSC2009-E-119390 (12 May 2009) --- Flight director Rick LaBrode monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during STS-125 flight day two activities.

  8. SHOWN WITH NURSE - ASTRONAUT EDWARD H. WHITE II - MISC. - CAPE

    NASA Image and Video Library

    1965-06-01

    S65-29657 (June 1965) --- Gemini-4 prime crew, astronauts Edward H. White II (left), and James A. McDivitt are shown with Lt. Dolores (Dee) O'Hare, US Air Force, Center Medical Office, Flight Medicine Branch, Manned Spacecraft Center (MSC). Lieutenant O'Hare has served during several spaceflights as official medical nurse for the astronaut crew members on the missions.

  9. Further Studies of Thunderstorm Conditions Affecting Flight Operations: Turbulence

    DTIC Science & Technology

    1949-03-01

    3^——- flft).^--.’""-. *I-ÄB&H*- i:S*£9: II HiEAD-Q^ AfFf ERS J" , AI;R WEA| HER: SEsmoM •HEADQUARTERS;— AIR T/SATHER SERVICE ’ Andrews...Sams gsagagj IlliilJss akSfepftirg -r-jf*’^«sSPa^=^?L^? «-^^as^«^äs*^^i^s8ä«^ fc -i^^-rr*^i^s^^^^g^^S^^S^^Sa?^^^^^g^^^^^^^a -33- . f 2£SggÖ...measured at various duriag Ohio operations, 194 ?’. " Draft Yalue JISE^S- Flight Altitude (thousands of fest) 5 48« J£BS) I gJ " 1 U I 29-JJ

  10. 14 CFR 61.187 - Flight proficiency.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight proficiency. 61.187 Section 61.187... CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Flight Instructors Other than Flight Instructors With a Sport Pilot Rating § 61.187 Flight proficiency. (a) General. A person who is applying for a...

  11. 14 CFR 61.187 - Flight proficiency.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Flight proficiency. 61.187 Section 61.187... CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Flight Instructors Other than Flight Instructors With a Sport Pilot Rating § 61.187 Flight proficiency. (a) General. A person who is applying for a...

  12. 14 CFR 61.187 - Flight proficiency.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Flight proficiency. 61.187 Section 61.187... CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Flight Instructors Other than Flight Instructors With a Sport Pilot Rating § 61.187 Flight proficiency. (a) General. A person who is applying for a...

  13. 14 CFR 61.187 - Flight proficiency.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Flight proficiency. 61.187 Section 61.187... CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Flight Instructors Other than Flight Instructors With a Sport Pilot Rating § 61.187 Flight proficiency. (a) General. A person who is applying for a...

  14. 14 CFR 61.187 - Flight proficiency.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Flight proficiency. 61.187 Section 61.187... CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Flight Instructors Other than Flight Instructors With a Sport Pilot Rating § 61.187 Flight proficiency. (a) General. A person who is applying for a...

  15. Development of flight testing techniques

    NASA Technical Reports Server (NTRS)

    Sandlin, D. R.

    1984-01-01

    A list of students involved in research on flight analysis and development is given along with abstracts of their work. The following is a listing of the titles of each work: Longitudinal stability and control derivatives obtained from flight data of a PA-30 aircraft; Aerodynamic drag reduction tests on a box shaped vehicle; A microprocessor based anti-aliasing filter for a PCM system; Flutter prediction of a wing with active aileron control; Comparison of theoretical and flight measured local flow aerodynamics for a low aspect ratio fin; In flight thrust determination on a real time basis; A comparison of computer generated lift and drag polars for a Wortmann airfoil to flight and wind tunnel results; and Deep stall flight testing of the NASA SGS 1-36.

  16. Radiation-Related Risk Analysis for Atmospheric Flight Civil Aviation Flight Personnel

    NASA Technical Reports Server (NTRS)

    DeAngelis, G.; Wilson, J. W.

    2003-01-01

    Human data on low dose rate radiation exposure and consequent effects are not readily available, and this fact generates groundtruth concerns for all risk assessment techniques for possible health effects induced by the space radiation environment, especially for long term missions like those foreseen now and in the near future. A large amount of such data may be obtained through civil aviation flight personnel cohorts, in the form of epidemiological studies on delayed health effects induced by the cosmic-ray generated atmospheric radiation environment, a high- LET low dose and low dose rate ionizing radiation with its typical neutron component, to which flight personnel are exposed all throughout their work activity. In the perspective of worldwide studies on radiation exposure of the civil aviation flight personnel, all the available results from previous studies on flight personnel radiation exposure have been examined in various ways (i.e. literature review, meta-analysis) to evaluate possible significant associations between atmospheric ionizing radiation environment and health risks, and to assess directions for future investigations. The physical characteristics of the atmospheric ionizing radiation environment make the results obtained for atmospheric flight personnel relevant for space exploration.

  17. Integrated Flight Path Planning System and Flight Control System for Unmanned Helicopters

    PubMed Central

    Jan, Shau Shiun; Lin, Yu Hsiang

    2011-01-01

    This paper focuses on the design of an integrated navigation and guidance system for unmanned helicopters. The integrated navigation system comprises two systems: the Flight Path Planning System (FPPS) and the Flight Control System (FCS). The FPPS finds the shortest flight path by the A-Star (A*) algorithm in an adaptive manner for different flight conditions, and the FPPS can add a forbidden zone to stop the unmanned helicopter from crossing over into dangerous areas. In this paper, the FPPS computation time is reduced by the multi-resolution scheme, and the flight path quality is improved by the path smoothing methods. Meanwhile, the FCS includes the fuzzy inference systems (FISs) based on the fuzzy logic. By using expert knowledge and experience to train the FIS, the controller can operate the unmanned helicopter without dynamic models. The integrated system of the FPPS and the FCS is aimed at providing navigation and guidance to the mission destination and it is implemented by coupling the flight simulation software, X-Plane, and the computing software, MATLAB. Simulations are performed and shown in real time three-dimensional animations. Finally, the integrated system is demonstrated to work successfully in controlling the unmanned helicopter to operate in various terrains of a digital elevation model (DEM). PMID:22164029

  18. Integrated flight path planning system and flight control system for unmanned helicopters.

    PubMed

    Jan, Shau Shiun; Lin, Yu Hsiang

    2011-01-01

    This paper focuses on the design of an integrated navigation and guidance system for unmanned helicopters. The integrated navigation system comprises two systems: the Flight Path Planning System (FPPS) and the Flight Control System (FCS). The FPPS finds the shortest flight path by the A-Star (A*) algorithm in an adaptive manner for different flight conditions, and the FPPS can add a forbidden zone to stop the unmanned helicopter from crossing over into dangerous areas. In this paper, the FPPS computation time is reduced by the multi-resolution scheme, and the flight path quality is improved by the path smoothing methods. Meanwhile, the FCS includes the fuzzy inference systems (FISs) based on the fuzzy logic. By using expert knowledge and experience to train the FIS, the controller can operate the unmanned helicopter without dynamic models. The integrated system of the FPPS and the FCS is aimed at providing navigation and guidance to the mission destination and it is implemented by coupling the flight simulation software, X-Plane, and the computing software, MATLAB. Simulations are performed and shown in real time three-dimensional animations. Finally, the integrated system is demonstrated to work successfully in controlling the unmanned helicopter to operate in various terrains of a digital elevation model (DEM).

  19. Flight Simulation.

    DTIC Science & Technology

    1986-09-01

    TECHNICAL EVALUATION REPORT OF THE SYMPOSIUM ON "FLIGHT SIMULATION" A. M. Cook. NASA -Ames Research Center 1. INTRODUCIL𔃻N This report evaluates the 67th...John C. Ousterberry* NASA Ames Research Center Moffett Field, California 94035, U.S.A. SUMMARY Early AGARD papers on manned flight simulation...and developffent simulators. VISUAL AND MOTION CUEING IN HELICOPTER SIMULATION Nichard S. Bray NASA Ames Research Center Moffett Field, California

  20. Eclipse takeoff and flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This 25-second clip shows the QF-106 'Delta Dart' tethered to the USAF C-141A during takeoff and in flight. NASA Dryden Flight Research Center, Edwards, California, supported a Kelly Space and Technology, Inc. (KST)/U.S. Air Force project known as Eclipse, which demonstrated a reusable tow launch vehicle concept. The purpose of the project was to demonstrate a reusable tow launch vehicle concept that had been conceived and patented by KST. Kelly Space obtained a contract with the USAF Research Laboratory for the tow launch demonstration project under the Small Business Innovation Research (SBIR) program. The USAF SBIR contract included the modifications to turn the QF-106 into the Experimental Demonstrator #1 (EXD-01), and the C141A aircraft to incorporate the tow provisions to link the two aircraft, as well as conducting flight tests. The demonstration consisted of ground and flight tests. These tests included a Combined Systems Test of both airplanes joined by a tow rope, a towed taxi test, and six towed flights. The primary goal of the project was demonstrating the tow phase of the Eclipse concept using a scaled-down tow aircraft (C-141A) and a representative aerodynamically-shaped aircraft (QF-106A) as a launch vehicle. This was successfully accomplished. On December 20, 1997, NASA research pilot Mark Stucky flew a QF-106 on the first towed flight behind an Air Force C-141 in the joint Eclipse project with KST to demonstrate the reusable tow launch vehicle concept developed by KST. Kelly hoped to use the data from the tow tests to validate a tow-to-launch procedure for reusable space launch vehicles. Stucky flew six successful tow tests between December 1997 and February 6, 1998. On February 6, 1998, the sixth and final towed flight brought the project to a successful completion. Preliminary flight results determined that the handling qualities of the QF-106 on tow were very stable; actual flight measured values of tow rope tension were well within predictions