Sample records for quadrangle oregon final

  1. Airborne gamma-ray spectrometer and magnetometer survey, Medford Quadrangle Oregon. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-04-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten (10) areas over northern California and southwestern Oregon. These include the 2/sup 0/ x 1/sup 0/ NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 1/sup 0/ x 2/sup 0/ areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Medford, Oregon, map area. Traverse lines were flown in an east-west direction at a line spacing of three miles. Tie lines were flown north-south approximately twelve miles apart. A total ofmore » 16,880.5 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 2925 line miles are in this quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States.« less

  2. Geologic Map of the Carlton Quadrangle, Yamhill County, Oregon

    USGS Publications Warehouse

    Wheeler, Karen L.; Wells, Ray E.; Minervini, Joseph M.; Block, Jessica L.

    2009-01-01

    The Carlton, Oregon, 7.5-minute quadrangle is located in northwestern Oregon, about 35 miles (57 km) southwest of Portland. It encompasses the towns of Yamhill and Carlton in the northwestern Willamette Valley and extends into the eastern flank of the Oregon Coast Range. The Carlton quadrangle is one of several dozen quadrangles being mapped by the U.S. Geological Survey (USGS) and the Oregon Department of Geology and Mineral Industries (DOGAMI) to provide a framework for earthquake- hazard assessments in the greater Portland, Oregon, metropolitan area. The focus of USGS mapping is on the structural setting of the northern Willamette Valley and its relation to the Coast Range uplift. Mapping was done in collaboration with soil scientists from the National Resource Conservation Service, and the distribution of geologic units is refined over earlier regional mapping (Schlicker and Deacon, 1967). Geologic mapping was done on 7.5-minute topographic base maps and digitized in ArcGIS to produce ArcGIS geodatabases and PDFs of the map and text. The geologic contacts are based on numerous observations and samples collected in 2002 and 2003, National Resource Conservation Service soils maps, and interpretations of 7.5-minute topography. The map was completed before new, high-resolution laser terrain mapping was flown for parts of the northern Willamette Valley in 2008.

  3. Geologic map of the Vancouver and Orchards quadrangles and parts of the Portland and Mount Tabor quadrangles, Clark County, Washington, and Multnomah County, Oregon

    USGS Publications Warehouse

    O'Connor, Jim E.; Cannon, Charles M.; Mangano, Joseph F.; Evarts, Russell C.

    2016-06-03

    IntroductionThis is a 1:24,000-scale geologic map of the Vancouver and Orchards quadrangles and parts of the Portland and Mount Tabor quadrangles in the States of Washington and Oregon. The map area is within the Portland Basin and includes most of the city of Vancouver, Washington; parts of Clark County, Washington; and a small part of northwestern Multnomah County, Oregon. The Columbia River flows through the southern part of the map area, generally forming the southern limit of mapping. Mapped Quaternary geologic units include late Pleistocene cataclysmic flood deposits, eolian deposits, and alluvium of the Columbia River and its tributaries. Older deposits include Miocene to Pleistocene alluvium from an ancestral Columbia River. Regional geologic structures are not exposed in the map area but are inferred from nearby mapping.

  4. Map showing abundance and distribution of chromium in stream-sediment samples, Medford 1 degree by 2 degrees Quadrangle, Oregon-California

    USGS Publications Warehouse

    Whittington, Charles L.; Grimes, David J.; Leinz, Reinhard W.

    1985-01-01

    The Medford quadrangle is located in mountainous southwestern Oregon adjacent to the California border and a short distance east of the Pacific coast. Various parts of this area lie in different geologic provinces. Most of the western half of the quadrangle is underlain by pre-Tertiary rocks of the Klamath Mountains province. However, the Coast Range province is represented by the Tertiary sedimentary rocks in the northwest corner. Much of the eastern half of the quadrangle lies in the Cascade Range. In Oregon, because of differences in physiographic expression and age of rocks, this province is commonly divided into the more rugged High Cascade Range on the east and the more subdued Western Cascade Range on the west. This division is approximated on the map by the contact between the Quaternary and Tertiary volcanic rocks of the High Cascade Range and the Tertiary volcanic rocks of the Western Cascade Range. The geology shown is generalized from a more detailed compilation by Smith and others (1982).

  5. Map showing abundance and distribution of silver in stream-sediment samples, Medford 1 degree by 2 degrees Quadrangle, Oregon-California

    USGS Publications Warehouse

    Whittington, Charles L.; Grimes, David J.; Leinz, Reinhard W.

    1985-01-01

    The Medford quadrangle is located in mountainous southwestern Oregon adjacent to the California border and a short distance east of the Pacific coast. Various parts of this area lie in different geologic provinces. Most of the western half of the quadrangle is underlain by pre-Tertiary rocks of the Klamath Mountains province. However, the Coast Range province is represented by the Tertiary sedimentary rocks in the northwest corner. Much of the eastern half of the quadrangle lies in the Cascade Range. In Oregon, because of differences in physiographic expression and age of rocks, this province is commonly divided into the more rugged High Cascade Range on the east and the more subdued Western Cascade Range on the west. This division is approximated on the map by the contact between the Quaternary and Tertiary volcanic rocks of the High Cascade Range and the Tertiary volcanic rocks of the Western Cascade Range. The geology shown is generalized from a more detailed compilation by Smith and others (1982).

  6. Airborne gamma-ray spectrometer and magnetometer survey: Susanville quadrangle, California. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-05-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten (10) areas over northern California and southwestern Oregon. These include the 2/sup 0/ x 1/sup 0/ NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 1/sup 0/ x 2/sup 0/ areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Susanville, California, map area. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately eighteen (18) miles apart. Amore » total of 16,880.5 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 1642.8 line miles are in this quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States.« less

  7. Geologic map of the Washougal quadrangle, Clark County, Washington, and Multnomah County, Oregon

    USGS Publications Warehouse

    Evarts, Russell C.; O'Connor, Jim E.; Tolan, Terry L.

    2013-01-01

    The Washougal 7.5’ quadrangle spans the boundary between the Portland Basin and the Columbia River Gorge, approximately 30 km east of Portland, Oregon. The map area contains the westernmost portion of the Columbia River Gorge National Scenic area as well as the rapidly growing areas surrounding the Clark County, Washington, cities of Camas and Washougal. The Columbia River transects the map area, and two major tributaries, the Washougal River in Washington and the Sandy River in Oregon, also flow through the quadrangle. The Columbia, Washougal, and Sandy Rivers have all cut deep valleys through hilly uplands, exposing Oligocene volcanic bedrock in the north part of the map area and lava flows of the Miocene Columbia River Basalt Group in the western Columbia River Gorge. Elsewhere in the map area, these older rocks are buried beneath weakly consolidated to well-consolidated Neogene and younger basin-fill sedimentary rocks and Quaternary volcanic and sedimentary deposits. The Portland Basin is part of the Coastal Lowland that separates the Cascade Range from the Oregon Coast Range. The basin has been interpreted as a pull-apart basin located in the releasing stepover between two en echelon, northwest-striking, right-lateral fault zones. These fault zones are thought to reflect regional transpression, transtension, and dextral shear within the forearc in response to oblique subduction of the Pacific plate along the Cascadia Subduction Zone. The southwestern margin of the Portland Basin is a well-defined topographic break along the base of the Tualatin Mountains, an asymmetric anticlinal ridge that is bounded on its northeast flank by the Portland Hills Fault Zone, which is probably an active structure. The nature of the corresponding northeastern margin of the basin is less clear, but a series of poorly defined and partially buried dextral extensional structures has been hypothesized from topography, microseismicity, potential-field anomalies, and reconnaissance

  8. Preliminary Geologic Map of the Mount Hood 30- by 60-minute Quadrangle, Northern Cascade Range, Oregon

    USGS Publications Warehouse

    Sherrod, David R.; Scott, William E.

    1995-01-01

    This map shows the geology of the central and eastern parts of the Cascade Range in northern Oregon. The Quaternary andesitic stratovolcano of Mount Hood dominates the northwest quarter of the quadrangle, but nearly the entire area is underlain by arc-related volcanic and volcaniclastic rocks of the Cascade Range. Most stratigraphic units were emplaced since middle Miocene time, and all are Oligocene or younger. Despite the proximity of the map area to the Portland metropolitan area, large parts remained virtually unstudied or known only from limited reconnaissance until the late 1970s. A notable exception is the area surrounding Mount Hood, where mapping and chemical analyses by Wise (1969) provided a framework for geologic interpretation. Mapping since 1975 was conducted first to understand the stratigraphy and structure of the Columbia River Basalt Group (Anderson, 1978; Vogt, 1981; J.L. Anderson, in Swanson and others, 1981; Vandiver-Powell, 1978; Burck, 1986) and later to examine the geothermal potential of Mount Hood (Priest and others, 1982). Additional mapping was completed in 1985 for a geologic map of the Cascade Range in Oregon (Sherrod and Smith, 1989). From 1987 to 1990, detailed mapping was conducted in three 15-minute quadrangles on a limited basis (D.R. Sherrod, unpublished mapping) (see fig. 1 for index to mapping). An ongoing volcanic hazards study of Mount Hood by the U.S. Geological Survey (Scott and others, 1994) has provided the catalyst for completing the geologic map of the Mount Hood 30-minute by 60-minute quadrangle. As of June 1994, only two broad areas still remain largely unmapped. One of these areas, labeled 'unmapped' on the geologic map, lies in the Salmon River valley south of Zigzag along the west margin of the quadrangle. Although strata of the Columbia River Basalt Group in the Salmon River valley were mapped in detail by Burck (1986), the overlying middle and upper(?) Miocene lava flows, volcaniclastic strata, and intrusions

  9. Airborne gamma-ray spectrometer and magnetometer survey: Chico quadrangle, California. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-05-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten (10) areas over northern California and southwestern Oregon. These include the 2/sup 0/ x 1/sup 0/ NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 1/sup 0/ x 2/sup 0/ areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Chico, California, map area. Traverse lines were flown in an east-west direction at a line spacing of three. Tie lines were flown north-south approximately twelve miles apart. A total of 16,880.5more » line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 3026.4 line miles are in the quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States.« less

  10. Geologic map and database of the Roseburg 30' x 60' quadrangle, Douglas and Coos counties, Oregon

    USGS Publications Warehouse

    Wells, Ray E.; Jayko, A.S.; Niem, A.R.; Black, G.; Wiley, T.; Baldwin, E.; Molenaar, K.M.; Wheeler, K.L.; DuRoss, C.B.; Givler, R.W.

    2001-01-01

    The Roseburg 30' x 60' Quadrangle covers the southeastern margin of the Oregon Coast Range and its tectonic boundary with Mesozoic terranes of the Klamath Mountains (see figures 1 and 2 in pamphlet, also shown on map sheet). The geologic framework of the Roseburg area was established by the pioneering work of Diller (1898), Wells and Peck, (1961) and Ewart Baldwin (1974) and his students (see figure 3 in pamphlet, also shown on map sheet). Baldwin and his students focussed on the history of the Eocene Tyee basin, where the sediments lap across the tectonic boundary with the Mesozoic terranes and record the accretion of the Coast Range basement to the continent. Others have examined the sedimentary fill of the Tyee basin in detail, recognizing the deep marine turbidite facies of the Tyee Formation (Snavely and others, 1964) and proposing several models for the Eocene evolution of the forearc basin (Heller and Ryberg, 1983; Chan and Dott, 1983; Heller and Dickinson, 1985; Molenaar, 1985; see Ryu and others, 1992 for a comprehensive summary). Along the eastern margin of the quadrangle, both the Tyee basin and the Klamath terranes are overlain by Eocene volcanic rocks of the Western Cascade arc (Walker and MacLeod, 1991). The thick Eocene sedimentary sequence of the Tyee basin has significant oil and gas potential (Armentrout and Suek, 1985; Gautier and others, 1993; Ryu and others, 1996). Although 13 deep test wells have been drilled in the Roseburg quadrangle (see figure 2 and table 1 in pamphlet, also shown on map sheet), exploration to date has been hampered by an incomplete understanding of the basin�s tectonic setting and evolution. In response, the Oregon Department of Geology and Mineral Industries (DOGAMI) initiated a five year assessment of the oil and gas potential of the Tyee basin. This map is a product of a cooperative effort by the U. S. Geological Survey, Oregon State University, and DOGAMI to systematically map the sedimentary facies and structure

  11. Geologic Map of the Piedmont Hollow Quadrangle, Oregon County, Missouri

    USGS Publications Warehouse

    Weary, David J.

    2008-01-01

    The Piedmont Hollow 7.5-min quadrangle is located in south-central Missouri within the Salem Plateau region of the Ozark Plateaus physiographic province (Fenneman, 1938; Bretz, 1965) (fig. 1). Almost all of the land in the quadrangle north of the Eleven Point River is part of the Mark Twain National Forest. Most of the land immediately adjoining the river is part of the Eleven Point National Scenic River, also administered by the U.S. Forest Service. South of the Eleven Point River, most of the land is privately owned and used primarily for grazing cattle and horses. The quadrangle has topographic relief of about 480 feet (ft), with elevations ranging from 550 ft on the Eleven Point River at the eastern edge of the quadrangle to 1,030 ft on a hilltop about a mile to the west-northwest. The most prominent physiographic feature in the quadrangle is the valley of the Eleven Point River, which traverses the quadrangle from west to northeast.

  12. Geologic map of the Camas Quadrangle, Clark County, Washington, and Multnomah County, Oregon

    USGS Publications Warehouse

    Evarts, Russell C.; O'Connor, Jim E.

    2008-01-01

    The Camas 7.5' quadrangle is in southwestern Washington and northwestern Oregon approximately 20 km east of Portland. The map area, bisected by the Columbia River, lies on the eastern margin of the Portland Basin, which is part of the Puget-Willamette Lowland that separates the Cascade Range from the Oregon Coast Range. Since late Eocene time, the Cascade Range has been the locus of an episodically active volcanic arc associated with underthrusting of oceanic lithosphere beneath the North American continent along the Cascadia Subduction Zone. Bedrock consists largely of basalt and basaltic andesite flows that erupted during late Oligocene time from one or more vents located outside the map area. These rocks crop out only north of the Columbia River: at the base of Prune Hill in Camas, where they dip southward at about 5°; and east of Lacamas Creek, where they dip to the southeast at 15 to 30°. The volcanic bedrock is unconformably overlain by Neogene sediments that accumulated as the Portland Basin subsided. In the Camas quadrangle, most of these sediments consist of basaltic hyaloclastic debris generated in the volcanic arc to the east and carried into the Portland Basin by the ancestral Columbia River. The dominant structures in the map area are northwest-striking dextral strike-slip faults that offset the Paleogene basin floor as well as the lower part of the basin fill. The Oligocene rocks at Prune Hill and to the east were uplifted in late Pliocene to early Pleistocene time within a restraining bend along one of these dextral faults. In Pleistocene time, basaltic andesite flows issued from a volcano centered on the west side of Prune Hill; another flow entered the map area from the east. These flows are part of the Boring volcanic field, which comprises several dozen late Pliocene and younger monogenetic volcanoes scattered throughout the greater Portland region. In latest Pleistocene time, the Missoula floods of glacial-outburst origin inundated the

  13. The Conterminous United States Mineral Appraisal Program; background information to accompany folio of geologic, geochemical, geophysical, and mineral resources maps of the Medford 1 degree x 2 degrees Quadrangle, Oregon and California

    USGS Publications Warehouse

    Smith, James G.; Blakely, R.J.; Johnson, M.G.; Page, N.J.; Peterson, J.A.; Singer, D.A.; Whittington, C.L.

    1986-01-01

    The Medford 1 ? by 2 ? quadrangle in southern Oregon and northern California was studied by an interdisciplinary research team to appraise its mineral resources. The appraisal is based on geological, geochemical, and geophysical field and laboratory investigations, the results of which are published as a folio of maps, figures, and tables, with accompanying discussions. This circular provides background information on the investigations and integrates the information presented in the folio. The bibliography lists selected references to the geology, geochemistry, geophysics, and mineral deposits of the Medford 1 ? by 2 ? quadrangle.

  14. Geochemical map of the North Fork John Day River Roadless Area, Grant County, Oregon

    USGS Publications Warehouse

    Evans, James G.

    1986-01-01

    The North Fork John Day River Roadless Area comprised 21,210 acres in the Umatilla and Wallowa-Whitman National Forests, Grant County, Oregon, about 30 miles northwest of Baker, Oregon. The irregularly shaped area extends for about 1 mile on both sides of a 25-mile segment of the North Fork John Day River from Big Creek on the west to North Fork John Day Campground on the east. Most of the roadless area is in the northern half of the Desolation Butte 15-minute quadrangle. The eastern end of the area is in parts of the Granite and Trout Meadows 7½-minute quadrangles.

  15. Geologic Map of the Cascade Head Area, Northwestern Oregon Coast Range (Neskiwin, Nestucca Bay, Hebo, and Dolph 7.5 minute Quadrangles)

    USGS Publications Warehouse

    Snavely, Parke D.; Niem, Alan; Wong, Florence L.; MacLeod, Norman S.; Calhoun, Tracy K.; Minasian, Diane L.; Niem, Wendy

    1996-01-01

    The geology of the Cascade Head area bridges the geology in the Tillamook Highlands to the north (Wells and others, 1994; 1995) with that of the Newport Embayment on the south (Snavely and others, 1976 a,b,c). The four 7.5-minute quadrangles (Neskowin, Nestucca Bay, Hebo, and Dolph) which comprise the Cascade Head area include significant stratigraphic, structural, and igneous data that are essential in unraveling the geology of the northern and central part of the Oregon Coast Range and of the adjacent continental shelfEarlier studies (Snavely and Vokes, 1949) were of a broad reconnaissance nature because of limited access in this rugged, densely forested part of the Siuslaw National Forest. Also, numerous thick sills of late middle Eocene diabase and middle Miocene basalt mask the Eocene stratigraphic relationships. Previous mapping was hampered by a lack of precise biostratigraphic data. However, recent advances in biostratigraphy and radiometric age dating and geochemistry have provided the necessary tools to decipher stratigraphic and structural relationships in the Eocene sedimentary and volcanic rock sequences (W.W. Rau, personal communication, 1978 to 1988; Bukry and Snavely, 1988). Many important stratigraphic and igneous relationships are displayed within the Casacde Head area: (1) turbidite sandstone of the middle Eocene Tyee Formation, which is widespread in the central and southern part of the Oregon Coast Range (Snavely and others, 1964), was not deposited in the western part of the Cascade Head, and is of limited extent north of the map area (Wells and others, 1994); (2) the late middle Eocene Yamhill Formation, which crops out along the west and east flank of the Oregon Coast Range, overlaps older strata and overlies an erosional unconformity on the lower Eocene Siletz River Volcanics (Snavely and others, 1990; 1991); (3) thick sills of late middle Eocene diabase (43 Ma) are widespread in the Cascade Head area and also form much of the eastern

  16. Geologic map of the Lacamas Creek quadrangle, Clark County, Washington

    USGS Publications Warehouse

    Evarts, R.C.

    2006-01-01

    The Lacamas Creek 7.5 minute quadrangle is in southwestern Washington, approximately 25 km northeast of Portland, Oregon, along the eastern margin of the Portland Basin, which is part of the Puget-Willamette Lowland that separates the Cascade Range from the Oregon Coast Range. Since late Eocene time, the Cascade Range has been the locus of an episodically active volcanic arc associated with underthrusting of oceanic lithosphere beneath the North American continent along the Cascadia Subduction Zone. Lava flows that erupted early in the history of the arc underlie the eastern half of the Lacamas Creek quadrangle, forming a dissected terrain, with elevations as high as 2050 ft (625 m), that slopes irregularly but steeply to the southwest. These basalt and basaltic andesite flows erupted in early Oligocene time from one or more vents located outside the map area. The flows dip gently (less than 5 degrees) west to southwest. In the western part of the map area, volcanic bedrock is unconformably overlain by middle Miocene to early Pleistocene(?) sediments that accumulated as the Portland Basin subsided. These sediments consist mostly of detritus carried into the Portland Basin by the ancestral Columbia River. Northwest-striking faults offset the Paleogene basin floor as well as the lower part of the basin fill. In middle Pleistocene time, basalt and basaltic andesite erupted from three small volcanoes in the southern half of the map area. These vents are in the northern part of the Boring volcanic field, which comprises several dozen late Pliocene and younger monogenetic volcanoes scattered throughout the greater Portland region. In latest Pleistocene time, the Missoula floods of glacial-outburst origin inundated the Portland Basin. The floods deposited poorly sorted gravels in the southwestern part of the Lacamas Creek quadrangle that grade northward into finer grained sediments. This map is a contribution to a program designed to improve geologic knowledge of the

  17. Geologic Map of the Saint Helens Quadrangle, Columbia County, Oregon, and Clark and Cowlitz Counties, Washington

    USGS Publications Warehouse

    Evarts, Russell C.

    2004-01-01

    The Saint Helens 7.5' quadrangle is situated in the Puget-Willamette Lowland approximately 35 km north Portland, Oregon. The lowland, which extends from Puget Sound into west-central Oregon, is a complex structural and topographic trough that lies between the Coast Range and the Cascade Range. Since late Eocene time, Cascade Range has been the locus of a discontinuously active volcanic arc associated with underthrusting of oceanic lithosphere beneath the North American continent along the Cascadia Subduction Zone. The Coast Range occupies the forearc position within the Cascadia arc-trench system and consists of a complex assemblage of Eocene to Miocene volcanic and marine sedimentary rocks. The Saint Helens quadrangle lies in the northern part of the Portland Basin, a roughly 2000-km2 topographic and structural depression. It is the northernmost of several sediment-filled structural basins that collectively constitute the Willamette Valley segment of the Puget-Willamette Lowland (Beeson and others, 1989; Swanson and others, 1993; Yeats and others, 1996). The rhomboidal basin is approximately 70 km long and 30 km wide, with its long dimension oriented northwest. The Columbia River flows west and north through the Portland Basin at an elevation near sea level and exits through a confined bedrock valley less than 2.5 km wide about 16 km north of Saint Helens. The flanks of the basin consist of Eocene through Miocene volcanic and sedimentary rocks that rise to elevations exceeding 2000 ft (610 m). Seismic-reflection profiles (L.M. Liberty, written commun., 2003) and lithologic logs of water wells (Swanson and others, 1993; Mabey and Madin, 1995) indicate that as much as 550 m of late Miocene and younger sediments have accumulated in the deepest part of the basin near Vancouver. Most of this basin-fill material was carried in from the east by the Columbia River but contributions from streams draining the adjacent highlands are locally important. The Portland Basin has

  18. Navy Career Education Diffusion Project: State of Oregon. Final Report.

    ERIC Educational Resources Information Center

    McDermott, Michael M.

    The final report describes a project to research, develop, and field test Navy occupational information for inclusion into the Oregon Career Information System (CIS), a computer-assisted career education program. Five sections include: (1) introductory information; (2) a discussion of the preparation of Navy occupational information and reviewing…

  19. Geologic map of the Yacolt quadrangle, Clark County, Washington

    USGS Publications Warehouse

    Evarts, R.C.

    2006-01-01

    The Yacolt 7.5' quadrangle is situated in the foothills of the western Cascade Range of southwestern Washington approximately 35 km northeast of Portland, Oregon. Since late Eocene time, the Cascade Range has been the locus of an active volcanic arc associated with underthrusting of oceanic lithosphere beneath the North American continent along the Cascadia Subduction Zone. Volcanic and shallow-level intrusive rocks emplaced early in the history of the arc underlie most of the Yacolt quadrangle, forming a dissected and partly glaciated terrain with elevations between 250 and 2180 ft (75 and 665 m). The bedrock surface slopes irregularly but steeply to the southwest, forming the eastern margin of the Portland Basin, and weakly consolidated Miocene and younger basin-fill sediments lap up against the bedrock terrain in the southern part of the map area. A deep canyon, carved by the East Fork Lewis River that flows westward out of the Cascade Range, separates Yacolt and Bells Mountains, the two highest points in the quadrangle. Just west of the quadrangle, the river departs from its narrow bedrock channel and enters a wide alluvial floodplain. Bedrock of the Yacolt quadrangle consists of near-horizontal strata of Oligocene volcanic and volcaniclastic rocks that comprise early products of the Cascade volcanic arc. Basalt and basaltic andesite flows predominate. Most were emplaced on the flanks of a large mafic shield volcano and are interfingered with crudely bedded sections of volcanic breccia of probable lahar origin and a variety of well bedded epiclastic sedimentary rocks. At Yacolt Mountain, the volcanogenic rocks are intruded by a body of Miocene quartz diorite that is compositionally distinct from any volcanic rocks in the map area. The town of Yacolt sits in a north-northwest-trending valley apparently formed within a major fault zone. Several times during the Pleistocene, mountain glaciers moved down the Lewis River valley and spread southward into the map area

  20. Latex and microsilica modified concrete bridge deck overlays in Oregon : final report.

    DOT National Transportation Integrated Search

    1997-05-01

    The final report presents information collected by ODOT personnel from bridge deck overlays constructed in Oregon between 1989 and 1995. Decks were placed on a variety of existing bridge types prepared using hydrodemolition, milling, and diamond grin...

  1. Northeast Oregon Hatchery Project, Final Siting Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, Montgomery

    1995-03-01

    This report presents the results of site analysis for the Bonneville Power Administration Northeast Oregon Hatchery Project. The purpose of this project is to provide engineering services for the siting and conceptual design of hatchery facilities for the Bonneville Power Administration. The hatchery project consists of artificial production facilities for salmon and steelhead to enhance production in three adjacent tributaries to the Columbia River in northeast Oregon: the Grande Ronde, Walla Walla, and Imnaha River drainage basins. Facilities identified in the master plan include adult capture and holding facilities; spawning incubation, and early rearing facilities; full-term rearing facilities; and directmore » release or acclimation facilities. The evaluation includes consideration of a main production facility for one or more of the basins or several smaller satellite production facilities to be located within major subbasins. The historic and current distribution of spring and fall chinook salmon and steelhead was summarized for the Columbia River tributaries. Current and future production and release objectives were reviewed. Among the three tributaries, forty seven sites were evaluated and compared to facility requirements for water and space. Site screening was conducted to identify the sites with the most potential for facility development. Alternative sites were selected for conceptual design of each facility type. A proposed program for adult holding facilities, final rearing/acclimation, and direct release facilities was developed.« less

  2. The Oregon Applied Academics Project: Final Report

    ERIC Educational Resources Information Center

    Pearson, Donna; Richardson, George B.; Sawyer, Jennifer M.

    2013-01-01

    This report contains the findings of the Oregon Applied Academics research and development project which spanned three academic years from 2010 through 2013. The overall purpose of the project was to develop and implement a technical math course that would meet graduation requirements and improve student performance. The State of Oregon has been…

  3. Geologic map and database of the Salem East and Turner 7.5-minute quadrangles, Marion County, Oregon: a digital database

    USGS Publications Warehouse

    Tolan, Terry L.; Beeson, Marvin H.; Digital Database by DuRoss, Christopher B.

    2000-01-01

    The Salem East and Turner 7.5-minute quadrangles are situated in the center of the Willamette Valley near the western margin of the Columbia River Basalt Group (CRBG) distribution. The terrain within the area is of low to moderate relief, ranging from about 150 to almost 1,100-ft elevation. Mill Creek flows northward from the Stayton basin (Turner quadrangle) to the northern Willamette Valley (Salem East quadrangle) through a low that dissects the Columbia River basalt that forms the Salem Hills on the west and the Waldo Hills to the east. Approximately eight flows of CRBG form a thickness of up to 700� in these two quadrangles. The Ginkgo intracanyon flow that extends from east to west through the south half of the Turner quadrangle is exposed in the hills along the southeast part of the quadrangle. Previous geologic mapping by Thayer (1939) and Bela (1981) while providing the general geologic framework did not subdivide the CRBG which limited their ability to delineate structural elements. Reconnaissance mapping of the CRBG units in the Willamette Valley indicated that these stratigraphic units could serve as a series of unique reference horizons for identifying post-Miocene folding and faulting (Beeson and others, 1985,1989; Beeson and Tolan, 1990). Crenna, et al. (1994) compiled previous mapping in the Willamette Valley in a study of the tectonics of the Salem area. The major emphasis of this study was to identify and map CRBG units within the Salem East and Turner Quadrangles and to utilize this detailed CRBG stratigraphy to identify and characterize structural features. Water well logs were used to provide better subsurface stratigraphic control. Three other quadrangles (Scotts Mills, Silverton, and Stayton NE) in the Willamette Valley have been mapped in this way (Tolan and Beeson, 1999). This area was a lowland area of weathered and eroded marine sedimentary when the Columbia River basalts encroached on this area approximately 15-16 m.y. ago. An

  4. Aerial radiometric and magnetic reconnaissance survey of a portion of Texas: Beaumont and Palestine quadrangles, final report. Volume 1 and Volume 2A, Beaumont quadrangle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-12-01

    Instrumentation and methods described were used for a Department of Energy (DOE) sponsored, high-sensitivity, aerial gamma-ray spectrometer and magnetometer survey of a portion of Beaumont and all of Palestine (Texas), NTMS, 1:250,000-scale quadrangles. The objective of the work was to define areas showing surface indications of a generally higher uranium content where detailed exploration for uranium would most likely be successful. A DC-3 aircraft equipped with a high-sensitivity gamma-ray spectrometer and ancillary geophysical and electronic equipment ws employed for each quadrangle. The system was calibrated using the DOE calibration facilities at Grand Junction, Colorado, and Lake Mead, Arizona. Gamma-ray spectrometricmore » data were processed to correct for variations in atmospheric, flight, and instrument conditions and were statistically evaluated to remove the effects of surface geologic variations. The resulting first-priority uranium anomalies (showing simultaneously valid eU, eU/eTh, and eU/K anomalies) were interpreted to evaluate their origin and significance. Results of the interpretation in the form of a preferred-anomaly map, along with significance-factor profile maps, stacked profiles, histograms, and descriptions of the geology and known uranium occurrences are presented in Volume 2 of this final report.« less

  5. Aerial radiometric and magnetic reconnaissance survey of a portion of Texas: Beaumont and Palestine quadrangles, final report. Volume 1 and Volume 2B, Palestine quadrangle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-12-01

    Instrumentation and methods described were used for a Department of Energy (DOE) sponsored, high-sensitivity, aerial gamma-ray spectrometer and magnetometer survey of a portion of Beaumont and all of Palestine (Texas), NTMS, 1:250,000-scale quadrangles. The objective of the work was to define areas showing surface indications of a generally higher uranium content where detailed exploration for uranium would most likely be successful. A DC-3 aircraft equipped with a high-sensitivity gamma-ray spectrometer and ancillary geophysical and electronic equipment was employed for each quadrangle. The system was calibrated using the DOE calibration facilities at Grand Junction, Colorado, and Lake Mead, Arizona. Gamma-ray spectrometricmore » data were processed to correct for variations in atmospheric, flight, and instrument conditions and were statistically evaluated to remove the effects of surface geologic variations. The resulting first-priority uranium anomalies (showing simultaneously valid eU, eU/eTh, and eU/K anomalies) were interpreted to evaluate their origin and significance. Results of the interpretation in the form of a preferred-anomaly map, along with significance-factor profile maps, stacked profiles, histograms, and descriptions of the geology and known uranium occurrences are presented in Volume 2 of this final report.« less

  6. Geology of the Huntsville quadrangle, Alabama

    USGS Publications Warehouse

    Sanford, T.H.; Malmberg, G.T.; West, L.R.

    1961-01-01

    The 7 1/2-minute Huntsville quadrangle is in south-central Madison County, Ala., and includes part of the city of Hunstville. The south, north, east, and west boundaries of the quadrangle are about 3 miles north of the Tennessee River, 15 1/2 miles south of the Tennessee line, 8 miles west of the Jackson County line, and 9 miles east of the Limestone County line. The bedrock geology of the Huntsville quadrangle was mapped by the U.S. Geological Survey in cooperation with the city of Hunstville and the Geological Survey of Alabama as part of a detailed study of the geology and ground-water resources of Madison County, with special reference to the Huntsville area. G. T. Malmberg began the geologic mapping of the county in July 1953, and completed it in April 1954. T. H. Sanford, Jr., assisted Malmberg in the final phases of the county mapping, which included measuring geologic sections with hand level and steel tape. In November 1958 Sanford, assisted by L. R. West, checked contacts and elevations in the Hunstville quadrangle; made revisions in the contact lines; and wrote the text for this report. The fieldwork for this report was completed in April 1959.

  7. Map showing abundance and distribution of copper in oxide residues of stream-sediment samples, Medford 1 degree by 2 degrees Quadrangle, Oregon-California

    USGS Publications Warehouse

    Whittington, Charles L.; Grimes, David J.; Leinz, Reinhard W.

    1985-01-01

    Stream-sediment sampling in the Medford 1o x 2o quadrangle was undertaken to provide to aid in assessment of the mineral resource potential of the quadrangle. This map presents data on the abundance and distribution of copper in the oxide residues (oxalic-acid leachates) of stream sediments and in the minus-0.18-mm sieve fraction of selected stream sediments collected in the quadrangle

  8. Map showing abundance and distribution of arsenic in oxide residues of stream-sediment samples, Medford 1 degree by 2 degrees Quadrangle, Oregon-California

    USGS Publications Warehouse

    Whittington, Charles L.; Leinz, Reinhard W.; Grimes, David J.

    1985-01-01

    Stream-sediment sampling in the Medford 1o x 2o quadrangle was undertaken to provide to aid in assessment of the mineral resource potential of the quadrangle. This map presents data on the abundance and distribution of copper in the oxide residues (oxalic-acid leachates) of stream sediments and in the minus-0.18-mm sieve fraction of selected stream sediments collected in the quadrangle

  9. Oregon Pre-Engineering Learning Outcomes Study: Final Report

    ERIC Educational Resources Information Center

    Conley, David T.; Langan, Holly; Veach, Darya; Farkas, Virginia

    2007-01-01

    The Oregon Pre-engineering Learning Outcomes Project was conducted by the Educational Policy Improvement Center (EPIC) with grant funding from the Engineering and Technology Industry Council (ETIC). The study sought to improve student preparation and success in pre-engineering programs through the development of the Oregon Pre-engineering Learning…

  10. Airborne gamma-ray spectrometer and magnetometer survey: Weed quadrangle, California. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-05-01

    Volume II contains the flight path, radiometric multi-parameter stacked profiles, magnetic and ancillary parameter stacked profiles, histograms, and anomaly maps for the Weed Quadrangle in California.

  11. Geologic map of the Reyes Peak quadrangle, Ventura County, California

    USGS Publications Warehouse

    Minor, Scott A.

    2004-01-01

    New 1:24,000-scale geologic mapping in the Cuyama 30' x 60' quadrangle, in support of the USGS Southern California Areal Mapping Project (SCAMP), is contributing to a more complete understanding of the stratigraphy, structure, and tectonic evolution of the complex junction area between the NW-trending Coast Ranges and EW-trending western Transverse Ranges. The 1:24,000-scale geologic map of the Reyes Peak quadrangle, located in the eastern part of the Cuyama map area, is the final of six contiguous 7 ?' quadrangle geologic maps compiled for a more detailed portrayal and reevaluation of geologic structures and rock units shown on previous maps of the region (Carman, 1964; Dibblee, 1972; Vedder and others, 1973). SCAMP digital geologic maps of the five other contiguous quadrangles have recently been published (Minor, 1999; Kellogg, 1999, 2003; Stone and Cossette, 2000; Kellogg and Miggins, 2002). This digital compilation presents a new geologic map database for the Reyes Peak 7?' quadrangle, which is located in southern California about 75 km northwest of Los Angeles. The map database is at 1:24,000-scale resolution.

  12. Reconnaissance geologic map of the Dubakella Mountain 15 quadrangle, Trinity, Shasta, and Tehama Counties, California

    USGS Publications Warehouse

    Irwin, William P.; Yule, J. Douglas; Court, Bradford L.; Snoke, Arthur W.; Stern, Laura A.; Copeland, William B.

    2011-01-01

    The Dubakella Mountain 15' quadrangle is located just south of the Hayfork quadrangle and just east of the Pickett Peak quadrangle. It spans a sequence of four northwest-trending tectonostratigraphic terranes of the Klamath Mountains geologic province that includes, from east to west, the Eastern Hayfork, Western Hayfork, Rattlesnake Creek, and Western Jurassic terranes, as well as, in the southwest corner of the quadrangle, part of a fifth terrane, the Pickett Peak terrane of the Coast Ranges geologic province. The Eastern Hayfork terrane is a broken formation and melange of volcanic and sedimentary rocks that include blocks of limestone and chert. The limestone contains late Permian microfossils of Tethyan faunal affinity. The chert contains radiolarians of Mesozoic age, mostly Triassic, but none clearly Jurassic. The Western Hayfork terrane is an andesitic volcanic arc that consists mainly of agglomerate, tuff, argillite, and chert, and includes the Wildwood pluton. That pluton is related to the Middle Jurassic (about 170 Ma) Ironside Mountain batholith that is widely exposed farther north beyond the Dubakella Mountain quadrangle. The Rattlesnake Creek terrane is a highly disrupted ophiolitic melange of probable Late Triassic or Early Jurassic age. Although mainly ophiolitic, the melange includes blocks of plutonic rocks (about 200 Ma) of uncertain genetic relation. Some scattered areas of well-bedded mildly slaty detrital rocks of the melange appear similar to Galice Formation (unit Jg) and may be inliers of the nearby Western Jurassic terrane. The Western Jurassic terrane consists mainly of slaty to phyllitic argillite, graywacke, and stretched-pebble conglomerate and is correlative with the Late Jurassic Galice Formation of southwestern Oregon. The Pickett Peak terrane, the most westerly of the succession of terranes of the Dubakella Mountain quadrangle, is mostly fine-grained schist that includes the blueschist facies mineral lawsonite and is of Early

  13. Reconnaissance geologic map of the Dixonville 7.5' quadrangle, Oregon

    USGS Publications Warehouse

    Jayko, Angela S.; Wells, Ray E.; Digital Database by Givler, R. W.; Fenton, J.S.; Sinor, M.

    2001-01-01

    The Dixonville 7.5 minute quadrangle is situated near the edge of two major geologic and tectonic provinces the northernmost Klamath Mountains and the southeastern part of the Oregon Coast Ranges (Figure 1). Rocks of the Klamath Mountains province that lie within the study area include ultramafic, mafic, intermediate and siliceous igneous types (Diller, 1898, Ramp, 1972, Ryberg, 1984). Similar rock associations that lie to the southwest yield Late Jurassic and earliest Cretaceous radiometric ages (Dott, 1965, Saleeby, et al., 1982, Hotz, 1971, Harper and Wright, 1984). These rocks, which are part of the Western Klamath terrane (Western Jurassic belt of (Irwin, 1964), are considered to have formed within an extensive volcanic arc and rifted arc complex (Harper and Wright, 1984) that lay along western North America during the Late Jurassic (Garcia, 1979, Garcia, 1982, Saleeby, et al., 1982, Ryberg, 1984). Imbricate thrust faulting and collapse of the arc during the Nevadan orogeny, which ranged in age between about 150 to 145 Ma in the Klamath region (Coleman, 1972, Saleeby, et al., 1982, Harper and Wright, 1984) was syntectonic with, or closely followed by deposition of the volcano-lithic clastic rocks of the Myrtle Group. The Myrtle Group consists of Upper Jurassic and Lower to middle Cretaceous turbidity and mass flow deposits considered to be either arc basin and/or post-orogenic flysh basins that were syntectonic with the waning phases of arc collapse (Imlay et al., 1959, Ryberg, 1984, Garcia, 1982, Roure.and Blanchet, 1983). The intermediate and mafic igneous rocks of the Rogue arc and the pre-Nevadan sedimentary cover (the Galice Formation, (Garcia, 1979) are intruded by siliceous and intermediate plutonic rocks principally of quartz diorite and granodiorite composition (Dott, 1965, Saleeby, et al., 1982, Garcia, 1982, Harper and Wright, 1984). The plutonic rocks are locally tectonized into amphibolite, gneiss, banded gneiss and augen gneiss. Similar

  14. Crumb rubber modified asphalt concrete in Oregon : final report.

    DOT National Transportation Integrated Search

    2002-03-01

    Since 1993, the Oregon Department of Transportation (ODOT) has been monitoring performance of seventeen rubber modified : asphalt and asphalt concrete sections constructed on Oregon highways. The study originated in response to the Intermodal Surface...

  15. Geology of the Anlauf and Drain Quadrangles, Douglas and Lane Counties, Oregon

    USGS Publications Warehouse

    Hoover, Linn

    1963-01-01

    The Anlauf and Drain quadrangles, Oregon, lie about 20 miles south of the city of Eugene, in Douglas and Lane Counties. They constitute an area of about 435 square miles that includes parts of both the Cascade Range and Coast Range physiographic provinces. A sequence of lower Tertiary sedimentary and volcanic rocks with a maximum thickness of about 20,000 feet is exposed in the area. The oldest part of this sequence is the Umpqua formation of early Eocene age consisting of a lower member of vesicular and amygdaloidal olivine basalt flows, a middle member of water-laid vitric and lapilli crystal tuff, and an upper member of interbedded fissile siltstone and basaltic sandstone which contains a 300-foot tongue of massive to thick-bedded basaltic sandstone near its top. These rocks are predominantly of marine origin, although the general absence of pillow structures which are common in basaltic lavas of equivalent age elsewhere in the Coast Ranges suggests that some of the flows were poured out subaerially. The overlying tuff member, however, contains Foraminifera and in places has a lime content slightly in excess of 10 percent. Mollusca and Foraminifera indicate that the Umpqua formation is of early Eocene age and is a correlative of the Capay formation of California. The Tyee formation of middle Eocene age overlies the Umpqua formation and consists of more than 5,000 feet of rhythmically deposited sandstone and siltstone in beds 2 to 30 feet thick. The basal part of each bed consists of medium- to coarse-grained sandstone that grades upward into fine-grained sand- stone and siltstone. The principal constituents of the sandstone are quartz, partly a1tered feldspar, mica, clay, and fragments of basalt, fine-grained argillaceous rocks, and mica schist. Other detrital minerals include epidote, garnet, blue-green hornblende, tourmaline, and zoisite. The depositional environment of the Tyee formation is poorly known, although the rhythmic-graded bedding suggests turbidity

  16. Geologic Map of the Wilderness and Handy Quadrangles, Oregon, Carter, and Ripley Counties, Missouri

    USGS Publications Warehouse

    Harrison, Richard W.; McDowell, Robert C.

    2003-01-01

    The bedrock exposed in the Wilderness and Handy Quadrangles, Missouri, comprises Early Ordovician aged dolomite, sandstone, and chert. The sedimentary rocks are nearly flat-lying except where they are adjacent to faults. The carbonate rocks are karstified and the area contains numerous sinkholes, springs, caves, and losing-streams. This map is one of several being produced under the U.S. Geological Survey National Cooperative Geologic Mapping Program to provide geologic data applicable to land-use problems in the Ozarks of south-central Missouri. Ongoing and potential industrial and agricultural development in the Ozarks region has presented issues of ground-water quality in karst areas. These quadrangles contain significant areas of the Mark Twain National Forest, including part of the Eleven Point National Scenic Riverway and the Irish Wilderness Roadless Area. A National Park in this region (Ozark National Scenic Riverways, Missouri ) is concerned about the effects of activities in areas outside of their stewardship on the water resources that define the heart of this Park. This task applies geologic mapping and karst investigations to address issues surrounding competing land use in south-central Missouri. For more information see: http://geology.er.usgs.gov/eespteam/Karst/index.html

  17. Aerial gamma ray and magnetic survey: Powder River II Project, Gillette Quadrangle, Wyoming. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-04-01

    The Gillette quadrangle in northeastern Wyoming and western South Dakota contains approximately equal portions of the Powder River Basin and the Black Hills Uplift. In these two structures, a relatively thick sequence of Paleozoic and Mesozoic strata represent nearly continuous deposition over the Precambrian basement complex. The Powder River Basin also contains a thick sequence of early Tertiary rocks which cover about 50% of the surface. A stratigraphic sequence from Upper Cretaceous to Precambrian is exposed in the Black Hills Uplift to the east. Magnetic data apparently illustrate the relative depth to the Precambrian crystalline rocks, but only weakly definemore » the boundary between the Powder River Basin and the Black Hills Uplift. The positions of some small isolated Tertiary intrusive bodies in the Black Hills Uplift are relatively well expressed. The Gillette quadrangle has been productive in terms of uranium mining, but its current status is uncertain. The producing uranium deposits occur within the Lower Cretaceous Inyan Kara Group and the Jurassic Morrison Formation in the Black Hills Uplift. Other prospects occur within the Tertiary Wasatch and Fort Union Formations in the Pumpkin Buttes - Turnercrest district, where it extends into the quadrangle from the Newcastle quadrangle to the south. These four formations, all predominantly nonmarine, contain all known uranium deposits in the Gillette quadrangle. A total of 108 groups of sample responses in the uranium window constitute anomalies as defined in Volume I. The anomalies are most frequently found in the Inyan Kara-Morrison, Wasatch and Fort Union Formations. Many anomalies occur over known mines or prospects. Others may result from unmapped uranium mines or areas where material other than uranium is mined. The remainder may relate to natural geologic features.« less

  18. Airborne gamma-ray spectrometer and magnetometer survey: Durango Quadrangle (Colorado). Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-07-01

    Results from the airborne gamma-ray spectrometer and magnetometer survey of Durango Quadrangle in Colorado are presented in the form of radiometric multiple-parameter stacked profiles, histograms, flight path map, and magnetic and ancillary stacked profile data.

  19. Aerial gamma ray and magnetic survey: Nebraska/Texas survey, Texarkana Quadrangle of Texas, Oklahoma, Arkansas, and Louisiana. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Texarkana quadrangle of eastern Texas and portions of three adjacent states lies within the northern Gulf Coastal Province. The area contains portions of the Ouachita Tectonic Belt and the East Texas-Athens Embayment. The Mexia-Talco Fault Zone strikes roughly east-west through the center of the quadrangle. North of the fault zone Cretaceous platform deposits dominate, whereas Eocene neritic sediments cover most of the area south of the zone. Examination of available literature shows no known uranium deposits (or occurrences) within the quadrangle. One hundred fifty-nine groups of uranium samples were defined as anomalies and discussed briefly in this report. Nonemore » were considered significant, and most appeared to be of cultural origin. Magnetic data in the quadrangle are dominantly low frequency/low amplitude wavelengths, which suggests that sources may be extremely deep.« less

  20. 77 FR 62442 - Safety Zone; Oregon City Bridge Grand Opening Fireworks Display; Willamette River, Oregon City, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-15

    ... 1625-AA00 Safety Zone; Oregon City Bridge Grand Opening Fireworks Display; Willamette River, Oregon City, OR AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a safety zone on the Willamette River between the Oregon City Bridge and the Interstate 205 Bridge...

  1. Aerial gamma ray and magnetic survey: Powder River II Project, Newcastle Quadrangle, Wyoming. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-04-01

    Thick Phanerozoic sediments (greater than 17,000 ft) fill the northwest trending Powder River Basin which is the dominant tectonic structure in the Newcastle quadrangle. Lower Tertiary sediments comprise more than 85% of exposed units at the surface of the Basin. A small portion of the Black Hills Uplift occupies the eastern edge of the quadrangle. Residual magnetics clearly reflect the great depth to crystalline Precambrian basement in the Basin. The Basin/Uplift boundary is not readily observed in the magnetic data. Economic uranium deposits of roll-type configuration are present in the southwest within the Monument Hill-Box Creek District in fluvial sandstonesmore » of the Paleocene Fort Union Formation. Numerous small claims and prospects are found in the Pumpkin Buttes-Turnercrest District in the northwest. Interpretation of the radiometric data resulted in 86 statistical uranium anomalies listed for this quadrangle. Most anomalies are in the eastern-central portion of the map within Tertiary Fort Union and Wasatch Formations. However, several lie in the known uranium districts in the southwest and northwest.« less

  2. Comprehensive plan amendment impacts on interchanges in Oregon : final report.

    DOT National Transportation Integrated Search

    2005-09-01

    This report examines the effects of amendments to local comprehensive plans on interchange performance on the Oregon highway system. Plan amendments over a 15-year period in Oregon, resulting in changes to industrial or commercial land use, were revi...

  3. Geological mapping of the Kuiper quadrangle (H06) of Mercury

    NASA Astrophysics Data System (ADS)

    Giacomini, Lorenza; Massironi, Matteo; Galluzzi, Valentina

    2017-04-01

    Kuiper quadrangle (H06) is located at the equatorial zone of Mercury and encompasses the area between longitudes 288°E - 360°E and latitudes 22.5°N - 22.5°S. The quadrangle was previously mapped for its most part by De Hon et al. (1981) that, using Mariner10 data, produced a final 1:5M scale map of the area. In this work we present the preliminary results of a more detailed geological map (1:3M scale) of the Kuiper quadrangle that we compiled using the higher resolution of MESSENGER data. The main basemap used for the mapping is the MDIS (Mercury Dual Imaging System) 166 m/pixel BDR (map-projected Basemap reduced Data Record) mosaic. Additional datasets were also taken into account, such as DLR stereo-DEM of the region (Preusker et al., 2016), global mosaics with high-incidence illumination from the east and west (Chabot et al., 2016) and MDIS global color mosaic (Denevi et al., 2016). The preliminary geological map shows that the western part of the quadrangle is characterized by a prevalence of crater materials (i.e. crater floor, crater ejecta) which were distinguished into three classes on the basis of their degradation degree (Galluzzi et al., 2016). Different plain units were also identified and classified as: (i) intercrater plains, represented by densely cratered terrains, (ii) intermediate plains, which are terrains with a moderate density of superposed craters, and (iii) smooth plains, which are poorly cratered volcanic deposits emplaced mainly on the larger crater floors. Finally, several structures were mapped all over the quadrangle. Most of these features are represented by thrusts, some of which appear to form systematic alignments. In particular, two main thrust systems have been identified: i) the "Thakur" system, a 1500 km-long system including several scarps with a NNE-SSW orientation, located at the edge between the Kuiper and Beethoven (H07) quadrangles; ii) the "Santa Maria" system, located at the centre of the quadrangle. It is a 1700 km

  4. 27 CFR 9.178 - Columbia Gorge.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Quadrangle, Washington—Oregon, 1994; (6) Brown Creek Quadrangle, Oregon, 1994; (7) Ketchum Reservoir... straight south on the R12E-R13E line, crossing onto the Brown Creek map, to its intersection with the T1N-T1S Base Line at the southeast corner of section 36 (Brown Creek Quadrangle); (19) Continues 6.1 miles...

  5. Geologic Map of the Weaverville 15' Quadrangle, Trinity County, California

    USGS Publications Warehouse

    Irwin, William P.

    2009-01-01

    The Weaverville 15' quadrangle spans parts of five generally north-northwest-trending accreted terranes. From east to west, these are the Eastern Klamath, Central Metamorphic, North Fork, Eastern Hayfork, and Western Hayfork terranes. The Eastern Klamath terrane was thrust westward over the Central Metamorphic terrane during early Paleozoic (Devonian?) time and, in Early Cretaceous time (approx. 136 Ma), was intruded along its length by the massive Shasta Bally batholith. Remnants of overlap assemblages of the Early Cretaceous (Hauterivian) Great Valley sequence and the Tertiary Weaverville Formation cover nearly 10 percent of the quadrangle. The base of the Eastern Klamath terrane in the Weaverville quadrangle is a peridotite-gabbro complex that probably is correlative to the Trinity ophiolite (Ordovician), which is widely exposed farther north beyond the quadrangle. In the northeast part of the Weaverville quadrangle, the peridotite-gabbro complex is overlain by the Devonian Copley Greenstone and the Mississippian Bragdon Formation. Where these formations were intruded by the Shasta Bally batholith, they formed an aureole of gneissic and other metamorphic rocks around the batholith. Westward thrusting of the Eastern Klamath terrane over an adjacent body of mafic volcanic and overlying quartzose sedimentary rocks during Devonian time formed the Salmon Hornblende Schist and the Abrams Mica Schist of the Central Metamorphic terrane. Substantial beds of limestone in the quartzose sedimentary unit, generally found near the underlying volcanic rock, are too metamorphosed for fossils to have survived. Rb-Sr analysis of the Abrams Mica Schist indicates a metamorphic age of approx. 380 Ma. West of Weavervillle, the Oregon Mountain outlier of the Eastern Klamath terrane consists mainly of Bragdon Formation(?) and is largely separated from the underlying Central Metamorphic terrane by serpentinized peridotite that may be a remnant of the Trinity ophiolite. The North Fork

  6. Geologic map of the Wildcat Lake 7.5' quadrangle: Kitsap and Mason counties, Washington

    USGS Publications Warehouse

    Haeussler, Peter J.; Clark, Kenneth P.

    2000-01-01

    The Wildcat Lake quadrangle lies in the forearc of the Cascadia subduction zone, about 20-km east of the Cascadia accretionary complex exposed in the Olympic Mountains (Tabor and Cady, 1978),and about 100-km west of the axis of the Cascades volcanic arc. The quadrangle lies near the middle of the Puget Lowland, which typically has elevations less than 600 feet (183 m), but on Gold Mountain, in the center of the quadrangle, the elevation rises to 1761 feet (537 m). This anomalously high topography also provides a glimpse of the deeper crust beneath the Lowland. Exposed on Green and Gold Mountains are rocks related to the Coast Range basalt terrane. This terrane consists of Eocene submarine and subaerial tholeiitic basalt of the Crescent Formation, which probably accreted to the continental margin in Eocene time (Snavely and others, 1968). The Coast Range basalt terrane may have originated as an oceanic plateau or by oblique marginal rifting (Babcock and others, 1992), but its subsequent emplacement history is complex (Wells and others, 1984). In southern Oregon, onlapping strata constrain the suturing to have occured by 50 Ma; but on southern Vancouver Island where the terrane-bounding Leech River fault is exposed, Brandon and Vance (1992) concluded suturing to North America occurred in the broad interval between 42 and 24 Ma. After emplacement of the Coast Range basalt terrane, the Cascadia accretionary complex,exposed in the Olympic Mountains west of the quadrangle,developed by frontal accretion and underplating (e.g., Clowes and others, 1987). The Seattle basin, part of which lies to the north of Green Mountain, also began to develop in late Eocene time due to forced flexural subsidence along the Seattle fault zone (Johnson and others, 1994). Domal uplift of the accretionary complex beneath the Olympic Mountains occurred after approximately 18 million years ago (Brandon and others, 1998). Ice-sheet glaciation during Quaternary time reshaped the topography of the

  7. Oregon's acts, cross-jurisdictional collaboration and improved transportation planning : final report : appendices.

    DOT National Transportation Integrated Search

    2009-01-01

    This appendix summarizes interviews completed as part of an Oregon Department of : Transportation (ODOT) research study titled, Oregons ACTs, Cross-Jurisdictional : Collaboration and Improved Transportation Planning. The research was conduct...

  8. Reconnaissance Geologic Map of the Hayfork 15' Quadrangle, Trinity County, California

    USGS Publications Warehouse

    Irwin, William P.

    2010-01-01

    The Hayfork 15' quadrangle is located just west of the Weaverville 15' quadrangle in the southern part of the Klamath Mountains geologic province of northern California. It spans parts of six generally north-northwest-trending tectonostratigraphic terranes that are, from east to west, the Eastern Klamath, Central Metamorphic, North Fork, Eastern Hayfork, Western Hayfork, and Rattlesnake Creek terranes. Remnants of a once-widespread postaccretionary overlap assemblage, the Cretaceous Great Valley sequence, crop out at three localities in the southern part of the Hayfork quadrangle. The Tertiary fluvial and lacustrine Weaverville Formation occupies a large, shallow, east-northeast-trending graben in the south half of the quadrangle. The small area of Eastern Klamath terrane is part of the Oregon Mountain outlier, which is more widely exposed to the east in the Weaverville 15' quadrangle. It was originally mapped as a thrust plate of Bragdon(?) Formation, but it is now thought by some to be part of an outlier of Yreka terrane that has been dislocated 60 km southward by the La Grange Fault. The Central Metamorphic terrane, which forms the footwall of the La Grange Fault, was formed by the eastward subduction of oceanic crustal basalt (the Salmon Hornblende Schist) and its overlying siliceous sediments with interbedded limestone (the Abrams Mica Schist) beneath the Eastern Klamath terrane. Rb-Sr analysis of the Abrams Mica Schist indicates a Middle Devonian metamorphic age of approximately 380 Ma, which probably represents the age of subduction. The North Fork terrane, which is faulted against the western boundary of the Central Metamorphic terrane, consists of the Permian(?) North Fork ophiolite and overlying broken formation and melange of Permian to Early Jurassic (Pliensbachian) marine metasedimentary and metavolcanic rocks. The ophiolite, which crops out along the western border of the terrane, is thrust westward over the Eastern Hayfork terrane. The Eastern

  9. Preliminary Geologic Map of the Buxton 7.5' Quadrangle, Washington County, Oregon

    USGS Publications Warehouse

    Dinterman, Philip A.; Duvall, Alison R.

    2009-01-01

    This map, compiled from previously published and unpublished data, and new mapping by the authors, represents the general distribution of bedrock and surficial deposits of the Buxton 7.5-minute quadrangle. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The scale of the source maps limits the spatial resolution (scale) of the database to 1:24,000 or smaller. This plot file and accompanying database depict the distribution of geologic materials and structures at a regional (1:24,000) scale. The report is intended to provide geologic information for the regional study of materials properties, earthquake shaking, landslide potential, mineral hazards, seismic velocity, and earthquake faults. In addition, the report contains new information and interpretations about the regional geologic history and framework. However, the regional scale of this report does not provide sufficient detail for site development purposes.

  10. Ore Deposits of the Jerome and Bradshaw Mountains Quadrangles, Arizona

    USGS Publications Warehouse

    Lindgren, Waldemar; Heikes, V.C.

    1926-01-01

    In the summer of 1922, at the request of the Director of the United States Geological Survey, I undertook an examination of the ore deposits in the Jerome and Bradshaw Mountains quadrangles, Ariz. (See fig. 1.) The object of this work was not a detailed investigation of each deposit but rather a coordination and classification of the occurrences and an attempt to ascertain their origin and economic importance. Almost all the deposits occur in pre-Cambrian rocks or in rocks that are not readily differentiated from the pre-Cambrian. In the northern part of the Jerome quadrangle there are large areas of almost horizontal Paleozoic beds, and in both quadrangles there are also large areas of lava flows of Tertiary age. Finally there are wide spaces occupied by Tertiary tuff and limestone, or by Tertiary and Quaternary wash filling the valleys between the mountain ranges. But all these rocks except the pre-Cambrian are practically barren of ore deposits, and the problem therefore narrowed itself to an examination of the pre-Cambrian areas. This task was greatly facilitated by the careful work of Jaggar and Palache, set forth in the Bradshaw Mountains folio,l in which the southern quadrangle of the two under present consideration is mapped geologically and described, and which also includes a comprehensive though brief discussion of the mineral deposits. There is no published geologic map of the Jerome quadrangle, but I had the opportunity through the courtesy of Dr. G. M. Butler, Director of the Arizona Bureau of Mines, to use a manuscript map of this area prepared for the State by Mr. L. E. Reber, jr., and Mr. Olaf Jenkins.

  11. Effectiveness of Oregon's teen licensing program : final report.

    DOT National Transportation Integrated Search

    2008-06-01

    Significant changes in Oregons teen licensing laws went into effect on March 1, 2000. The new laws expanded the provisional driving license program which had been in effect since October 1989 and established a graduated driver licensing (GDL) prog...

  12. Aerial radiometric and magnetic reconnaissance survey of portions of Kentucky, Virginia, and West Virginia: Jenkins Quadrangle. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The results of a high-sensitivity, aerial, gamma-ray spectrometer and magnetometer survey of the Jenkins Quadrangle, Kentucky, Virginia, West Virginia, are presented. Instrumentation and methods are described in Volume 1 of this final report. This work was done as part of the US Department of Energy National Uranium Resource Evaluation (NURE) Program. Statistical and geological analysis of the radiometric data revealed 52 anomalies worthy of field checking as possible prospects. Twelve anomalies coincide with cultural features that may be major contributors to their anomalous values. Eight anomalies may be due to late dissipation of low-level inversion conditions and low topographic location.more » Pennsylvanian and Mississippian sandstone and shales have the greatest concentration of anomalies.« less

  13. NURE aerial gamma-ray and magnetic reconnaissance survey of portions of New Mexico, Arizona and Texas. Volume II. New Mexico-Fort Sumner NI 13-5 quadrangle. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-09-01

    The results of a high-sensitivity, aerial gamma-ray spectrometer and magnetometer survey of the Fort Sumner, two degree quadrangle, New Mexico, are presented. Instrumentation and methods are described in Volume I of this final report. The work was done by Carson Helicopters Inc., and Carson Helicopters was assisted in the interpretation by International Exploration, Inc. The work was performed for the US Department of Energy - National Uranium Resource Evaluation (NURE) Program. A total of 139 statistically significant eU anomalies were identified in this quadrangle. Of this number 31 were considered to be of sufficient intensity to warrant field investigations. Manymore » of these anomalies appear to be wholly, or in part, associated with various Quarternary surficial deposits, Permian sediments (specifically the Fourmile Draw Member of the San Andreas Formation), and the area around Rough Mountain.« less

  14. Geologic map of the Skull Creek Quadrangle, Moffat County Colorado

    USGS Publications Warehouse

    Van Loenen, R. E.; Selner, Gary; Bryant, W.A.

    1999-01-01

    The Skull Creek quadrangle is in northwestern Colorado a few miles north of Rangely. The prominent structural feature of the Skull Creek quadrangle is the Skull Creek monocline. Pennsylvanian rocks are exposed along the axis of the monocline while hogbacks along its southern flank expose rocks that are from Permian to Upper Cretaceous in age. The Wolf Creek monocline and the Wolf Creek thrust fault, which dissects the monocline, are salient structural features in the northern part of the quadrangle. Little or no mineral potential exists within the quadrangle. A geologic map of the Lazy Y Point quadrangle, which is adjacent to the Skull Creek quadrangle on the west, is also available (Geologic Investigations Series I-2646). This companian map shows similar geologic features, including the western half of the Skull Creek monocline. The geology of this quadrangle was mapped because of its proximity to Dinosaur National Monument. It is adjacent to quadrangles previously mapped to display the geology of this very scenic and popular National Monument. The Skull Creek quadrangle includes parts of the Skull Creek Wilderness Study Area, which was assessed for its mineral resource potential.

  15. Maps showing abundance and distribution of mercury in rock samples, Medford 1 degree by 2 degrees Quadrangle, Oregon-California

    USGS Publications Warehouse

    Whittington, Charles L.; Grimes, David J.; Leinz, Reinhard W.

    1985-01-01

    This map presents data on the abundance and distribution of mercury in 3,146 rock samples from the Medford quadrangle. Most of the rock samples were collected incidental to geologic, geochemical, and mineral resources studies in the period from 1974 to 1980, but about 6 percent date from earlier investigations (Wells, 1940; 1956; Wells and others 1949). 

  16. Topographic Map of Quadrangle 3368 and Part of Quadrangle 3370, Ghazni (515), Gardez (516), and Jaji-Maydan (517) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  17. Aerial gamma ray and magnetic survey: Nebraska/Texas survey, Tyler quadrangle of Texas and Louisiana. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Tyler quadrangle of eastern Texas and westernmost Louisiana lies within the northern Gulf Coastal Province. The area contains portions of the East Texas-Athens Embayment, and the Sabine Uplift which strikes NW through the NW corner of the area. Eocene neritic sediments are dominant, though Cretaceous platform deposits are exposed in the extreme NW corner. Available literature shows no known uranium deposits (or occurrences) within the quadrangle. One hundred thirty-six groups of uranium samples were defined as anomalous and discussed briefly in this report. None are considered significant. Most appear to be of cultural origin. Magnetic data in the quadranglemore » are dominantly low frequency/low amplitude wavelengths, which suggests that sources may be extremely deep.« less

  18. Topographic Map of Quadrangle 3568, Polekhomri (503) and Charikar (504) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  19. Topographic Map of Quadrangle 3464, Shahrak (411) and Kasi (412) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  20. Topographic Map of Quadrangle 3366, Gizab (513) and Nawer (514) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  1. Topographic Map of Quadrangle 3164, Lashkargah (605) and Kandahar (606) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  2. Topographic Map of Quadrangle 3162, Chakhansur (603) and Kotalak (604) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  3. Topographic Map of Quadrangle 3266, Ourzgan (519) and Moqur (520) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  4. An update of Quaternary faults of central and eastern Oregon

    USGS Publications Warehouse

    Weldon, Ray J.; Fletcher, D.K.; Weldon, E.M.; Scharer, K.M.; McCrory, P.A.

    2002-01-01

    This is the online version of a CD-ROM publication. We have updated the eastern portion of our previous active fault map of Oregon (Pezzopane, Nakata, and Weldon, 1992) as a contribution to the larger USGS effort to produce digital maps of active faults in the Pacific Northwest region. The 1992 fault map has seen wide distribution and has been reproduced in essentially all subsequent compilations of active faults of Oregon. The new map provides a substantial update of known active or suspected active faults east of the Cascades. Improvements in the new map include (1) many newly recognized active faults, (2) a linked ArcInfo map and reference database, (3) more precise locations for previously recognized faults on shaded relief quadrangles generated from USGS 30-m digital elevations models (DEM), (4) more uniform coverage resulting in more consistent grouping of the ages of active faults, and (5) a new category of 'possibly' active faults that share characteristics with known active faults, but have not been studied adequately to assess their activity. The distribution of active faults has not changed substantially from the original Pezzopane, Nakata and Weldon map. Most faults occur in the south-central Basin and Range tectonic province that is located in the backarc portion of the Cascadia subduction margin. These faults occur in zones consisting of numerous short faults with similar rates, ages, and styles of movement. Many active faults strongly correlate with the most active volcanic centers of Oregon, including Newberry Craters and Crater Lake.

  5. Geologic map of the Richland 1:100,000 quadrangle, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reidel, S.P.; Fecht, K.R.

    1993-09-01

    This map of the Richland 1:100,000-scale quadrangle, Washington, shows the geology of one of fifteen complete or partial 1:100,000-scale quadrangles that cover the southeast quadrant of Washington. Geologic maps of these quadrangles have been compiled by geologists with the Washington Division of Geology and Earth Resources (DGER) and Washington State University and are the principal data sources for a 1:250,000-scale geologic map of the southeast quadrant of Washington, which is in preparation. Eleven of these quadrangles are being released as DGER open-file reports. The map of the Wenatchee quadrangle has been published by the US Geological Survey, and the Mosesmore » Lake, Ritzville quadrangles have already been released.« less

  6. Geology of the Mackay 30-minute quadrangle, Idaho

    USGS Publications Warehouse

    Nelson, Willis H.; Ross, Clyde Polhemus

    1969-01-01

    The Jefferson Dolomite, Grand View Dolomite, and Three Forks Limestone, all of Devonian age, are the oldest rocks exposed in the quadrangle. Rocks that range from Mississippian to Permian in age are widespread; they are represented by the White Knob Limestone in the eastern part of the quadrangle and the Copper Basin Formation in the western part. The Copper Basin Formation, which is composed of non-carbonate detrital rocks, is interlayered with the White Knob Limestone near the middle of the quadrangle. This interlayering is herein interpreted to be the result of depositional interbedding, but it could be in part due to juxtaposition by faulting. The Challis Volcanics, of Tertiary age, cover much of the quadrangle, and except for a conspicuous basal conglomerate, lack distinctive subdivisions similar to those in neighboring areas. Alluvial deposits which may be in part as old as Pliocene are scattered through the quadrangle. Glaciation affected all higher parts of the quadrangle, and locally glacial deposits of at least three ages can be distinguished The latest two of these are probably of late Wisconsin Bull Lake and Pinedale ages. Basalt flows of probable Recent age extend into the southernmost part of the quadrangle and originate in part from vents there. Intrusive rocks, including plutons and related dikes of Tertiary age, are scattered throughout the quadrangle. They range from granite to quartz diorite in composition. The intrusive rocks seem to be related to the Challis Volcanics. The rocks of the quadrangle were strongly deformed and eroded prior to the deposition of the Challis Volcanics. No thrust faults have been recognized although such faults are plentiful in the adjacent region. Deformation has continued until recent times. All or parts of five mining districts are included in the quadrangle, and the total production probably exceeded $10,000,000. Mining has been quiet since World War II but activity has been renewed at times in the past and

  7. Oregon Green Light CVO evaluation : final report : executive summary

    DOT National Transportation Integrated Search

    2001-04-01

    This report summarizes the findings of all of the Detailed Test Plans conducted for the evaluation of the Oregon Green Light Commercial Vehicle Operations (CVO) project. This project was responsible for the installation of 21 systems containing weigh...

  8. 78 FR 20073 - Adequacy of Oregon's Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-03

    ...] Adequacy of Oregon's Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection Agency... Oregon's approved Municipal Solid Waste Landfill Program. On March 22, 2004, EPA issued final regulations... Oregon's Municipal Solid Waste Landfill permit program to allow for Research, Development, and...

  9. Geologic map of the Lazy Y Point Quadrangle, Moffat County Colorado

    USGS Publications Warehouse

    Van Loenen, R. E.; Selner, G.I.; Bryant, W.A.

    1999-01-01

    The Lazy Y Point quadrangle is in northwestern Colorado a few miles north of Rangely. The prominent structural feature of the Lazy Y Point quadrangle is the Skull Creek monocline. Pennsylvanian rocks are exposed along the axis of the monocline while hogbacks along its southern flank expose rocks that are from Permian to Upper Cretaceous in age. The Wolf Creek monocline and the Wolf Creek thrust fault, which dissects the monocline, are salient structural features in the northern part of the quadrangle. Little or no mineral potential exists within the quadrangle. A geologic map of the Skull Creek quadrangle, which is adjacent to the Lazy Y Point quadrangle on the east, is also available (Geologic Investigations Series I-2647). This companian map shows similar geologic features, including the eastern half of the Skull Creek monocline. The geology of this quadrangle was mapped because of its proximity to Dinosaur National Monument. It is adjacent to quadrangles previously mapped to display the geology of this very scenic and popular National Monument. The Lazy Y Point quadrangle includes parts of the Willow and Skull Creek Wilderness Study Areas, which were assessed for their mineral resource potential.

  10. Topographic Map of Quadrangle 3564, Chahriaq (Joand) (405) and Gurziwan (406) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  11. Topographic Map of Quadrangle 3364, Pasa-Band (417) and Kejran (418) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  12. Topographic Map of Quadrangle 3462, Herat (409) and Chesht-Sharif (410) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  13. Topographic Map of Quadrangle 3362, Shin-Dand (415) and Tulak (416) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  14. Topographic Map of Quadrangle 3670, Jam-Kashem (223) and Zebak (224) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  15. Topographic Map of Quadrangle 3466, Lal-Sarjangal (507) and Bamyan (508) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  16. Topographic Map of Quadrangle 3166, Jaldak (701) and Maruf-Nawa (702) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  17. Geologic map of the Ganiki Planitia quadrangle (V-14), Venus

    USGS Publications Warehouse

    Grosfils, Eric B.; Long, Sylvan M.; Venechuk, Elizabeth M.; Hurwitz, Debra M.; Richards, Joseph W.; Drury, Dorothy E.; Hardin, Johanna

    2011-01-01

    Vinmara Planitia), a geologic map of the region may yield insight into a wide array of important problems in Venusian geology. The current mapping effort and analysis complements previous efforts to characterize aspects of the region’s geology, for example stratigraphy near parabolic halo crater sites, volcanic plains emplacement, wrinkle ridges, volcanic feature distribution, volcano deformation, coronae characteristics, lithospheric flexure, and various features along a 30±7.58° N. geotraverse. Our current research focuses on addressing four specific questions. Has the dominant style of volcanic expression within the quadrangle varied in a systematic fashion over time? Does the tectonic deformation within the quadrangle record significant regional patterns that vary spatially or temporally, and if so what are the scales, orientations and sources of the stress fields driving this deformation? If mantle upwelling and downwelling have played a significant role in the formation of Atla Regio and Atalanta Planitia as has been proposed, does the geology of Ganiki Planitia record evidence of northwest-directed lateral mantle flow connecting the two sites? Finally, can integration of the tectonic and volcanic histories preserved within the quadrangle help constrain competing resurfacing models for Venus?

  18. A geogrid reinforced soil wall for landslide correction on the Oregon coast : final report.

    DOT National Transportation Integrated Search

    1985-06-01

    In June and July 1983, the Oregon State Highway Division constructed a geogrid-retained soil wall to stabilize a landslide on the Oregon coast. The project was an FHWA Experimental Features Project. The experimental aspects of the project were to ass...

  19. A pavement management research program for Oregon highways : final report.

    DOT National Transportation Integrated Search

    1989-12-01

    An extensive program was developed to measure pavement deflection skid resistance, and rideability throughout Oregon. The data from those "objective" measures were then evaluated for correlations with observed pavement distress and traffic factors. :...

  20. Geologic map of the Fremont quadrangle, Shannon, Carter, and Oregon Counties, Missouri

    USGS Publications Warehouse

    Orndorff, Randall C.

    2003-01-01

    The bedrock exposed in the Fremont Quadrangle, Missouri, comprises Early Ordovician aged dolomite, sandstone, and chert. The sedimentary rocks are nearly flat-lying except where they are adjacent to faults. The carbonate rocks are karstified and the area contains numerous sinkholes, springs, caves, and losing-streams. This map is one of several being produced under the U.S. Geological Survey National Cooperative Geologic Mapping Program to provide geologic data applicable to land-use problems in the Ozarks of south-central Missouri. Ongoing and potential industrial and agricultural development in the Ozarks region has presented issues of ground-water quality in karst areas. National Park in this region (Ozark National Scenic Riverways, Missouri) is concerned about the effects of activities in areas outside of their stewardship on the water resources that define the heart of this Park. This task applies geologic mapping and karst investigations to address issues surrounding competing land use in south-central Missouri. This task keeps geologists from the USGS associated with the park and allows the Parks to utilize USGS expertise and aid the NPS on how to effectively use geologic maps for Park management. For more information see: http://geology.er.usgs.gov/eespteam/Karst/index.html

  1. Geologic map of the Low Wassie Quadrangle, Oregon and Shannon counties, Missouri

    USGS Publications Warehouse

    Weems, Robert E.

    2002-01-01

    The bedrock exposed in the Low Wassie Quadrangle, Missouri, comprises Late Cambrian and Early Ordovician aged dolomite, sandstone, and chert. The sedimentary rocks are nearly flat-lying except where they are adjacent to faults. The carbonates are karstified and the area contains numerous sinkholes, springs, caves, and losing-streams. This map is one of several being produced under the U.S. Geological Survey National Cooperative Geologic Mapping Program to provide geologic data applicable to land-use problems in the Ozarks of south-central Missouri. Ongoing and potential industrial and agricultural development in the Ozarks region has presented issues of ground-water quality in karst areas. A National Park in this region (Ozark National Scenic Riverways, Missouri ) is concerned about the effects of activities in areas outside of their stewardship on the water resources that define the heart of this Park. This task applies geologic mapping and karst investigations to address issues surrounding competing land use in south-central Missouri. This task keeps geologists from the USGS associated with the park and allows the Parks to utilize USGS expertise and aid the NPS on how to effectively use geologic maps for Park management. For more information see: http://geology.er.usgs.gov/eespteam/Karst/index.html.

  2. Airborne gamma-ray spectrometer and magnetometer survey: Weed quadrangle, California. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-05-01

    Twelve anamolous areas attributable to gamma radiation in the uranium spectral window, and twenty-three in the thorium channel, have been recognized and delineated on the Weed quadrangle. The majority of the uranium anomalies are located in the southwestern part of the map sheet. Most of these are correlated with the pre-Cretaceous metamorphic rock system and the Mesozoic granitic rocks intrusive into it. Of the twenty-three anomalous areas of increased gamma radiation in the thorium spectral window, most are located in the northeast and the east center in a north-south trending belt. However, this apparent alignment is probably fortuitous as themore » individual anomalies are correlated with several different rock formations. Three are correlated with upper Cretaceous marine sediments, six with Ordovician marine sediments, two with Mesozoic granitic intrusives, and two with Silurian marine sediments. In the northwestern part of the quadrangle, four thorium radiation anomalies are delineated over exposures of upper Jurassic marine rocks. Anomaly 6, in the southwest, warrants attention as it suggests strong radiation in the uranium channel with little or no thorium radiation. The uranium/thorium and uranium/potassium ratio anomalies are also strong, supporting the likelihood of uranium enrichment. The feature is located on line 540, fiducials 7700 to 7720. Anomaly 7, on line 540, fiducials 8390 to 8420, shows similar characteristics although a minor thorium excursion is present. Anomaly 10, on line 3010 fiducials 9820 to 9840, is also characterized by a strong uranium radiation spike, with minor thorium radiation. The uranium/thorium and uranium/potassium ratio anomalies are well defined and relatively intense.« less

  3. NURE aerial gamma-ray and magnetic reconnaissance survey of portions of New Mexico, Arizona and Texas. Volume II. Texas-New Mexico-El Paso NH 13-1 Quadrangle. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-09-01

    The results of a high-sensitivity, aerial gamma-ray spectrometer and magnetometer survey of the El Paso, two degree quadrangle, New Mexico, are presented. Instrumentation and methods are described in Volume I of this final report. The work was done by Carson Helicopters Inc., and Carson Helicopters was assisted in the interpretation by International Exploration, Inc. The work was performed for the US Department of Energy - National Uranium Resource Evaluation (NURE) program. A total of 72 statistically significant eU anomalies were identified in this quadrangle. Of this number 20 were considered to be of sufficient intensity to warrant field investigations, however,more » many of these anomalies appear to be wholly, or in part, associated with various unconsolidated Quaternary deposits. Only three of the 20 can, with certainty be identified with bedrock; one with a Quaternary flow, one with Cambrian sandstone and one with a Precambrian granite.« less

  4. Cross sections showing stratigraphic and depositional lithofacies of upper Cambrian rocks and the relation of lithofacies to potential for Mississippi Valley-type mineralization in the Harrison 1° x 2° quadrangle, Missouri and Arkansas (folio of the Harrison 1 degree by 2 degrees quadrangle, Missouri and Arkansas)

    USGS Publications Warehouse

    Hayes, Timothy S.; Palmer, James R.; Pratt, Walden P.; Krizanich, Gary; Whitfield, John W.; Seeger, Cheryl M.

    1997-01-01

    These cross sections are the fifth publication in a folio of maps of the Harrison 1° x 2° quadrangle, Missouri and Arkansas, prepared under the Conterminous United States Mineral Assessment Program (CUSMAP). Previously published maps in this folio relate to the geochemistry of the subsurface carbonate rocks (Erickson and others, 1989), the geophysics of the basement terranes (McCafferty and others, 1989), the sedimentary rocks and mineralization of the Caulfield district (Hayes and others, 1992), the mineral resource potential of the quadrangle (Pratt and others, 1993), and the bedrock geology of the quadrangle (Middendorf and others, 1994 and in press). A final set of maps showing locations of known Mississippi Valley-type deposits and occurrences relative to Late Cambrian shaly lithofacies and other shales in the Harrison and adjoining quadrangle is in preparation (Palmer and Hayes, in press).

  5. The evaluation of pavement patching materials in Oregon : final report.

    DOT National Transportation Integrated Search

    1980-11-01

    This report describes the installation and evaluation of trial pavement patching materials in Oregon. The patches were placed in Portland cement concrete and bituminous concrete pavements and evaluated for periods ranging from four to twelve months. ...

  6. Topographic Map of Quadrangle 3468, Chak Wardak Syahgerd (509) and Kabul (510) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  7. Topographic Map of Quadrangle 3264, Nawzad-Musa-Qala (423) and Dehrawat (424) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  8. Evaluation of rubber-asphalt chip seals in Oregon : final report.

    DOT National Transportation Integrated Search

    1982-09-01

    The Oregon State Highway Division, in cooperation with the Federal Highway Administration, participated in a demonstration project on the evaluation of rubber-asphalt chip seals. The trial projects were placed in Maintenance District 11, in the vicin...

  9. Maximizing investments in work zone safety in Oregon : final report.

    DOT National Transportation Integrated Search

    2011-05-01

    Due to the federal stimulus program and the 2009 Jobs and Transportation Act, the Oregon Department of Transportation (ODOT) anticipates that a large increase in highway construction will occur. There is the expectation that, since transportation saf...

  10. Geologic map of the Hecate Chasma quadrangle (V-28), Venus

    USGS Publications Warehouse

    Stofan, Ellen R.; Guest, John E.; Brian, Antony W.

    2012-01-01

    The overall topography of V–28 consists of plains located slightly below mean planetary radius (MPR, 6051.84). The lowest regions are found in the rift trough (3.3 m below MPR), and the highest along the rift rim (4.3 km above MPR). The regions that are the roughest at Magellan radar wavelengths in the quadrangle occur along Hecate Chasma (root mean square [rms] slopes >10°), with most regions being relatively smooth (roughnesses comparable to the average Venus surface value of 2.84°). Emissivity values in the quadrangle are typical of most venusian plains regions, with a range in values for the quadrangle of 0.68–0.91. The highest emissivity values in the quadrangle lie at the highest elevations in the quadrangle (corona rims and interiors).

  11. Geologic Mapping of the Marius Quadrangle, the Moon

    NASA Technical Reports Server (NTRS)

    Gregg, Tracy K. P.; Yingst, Aileen

    2008-01-01

    The authors seek to construct a 1:2,500,000-scale map of Lunar Quadrangle 10 (LQ10 or the Marius Quadrangle) to address outstanding questions about the Moon's volcanologic history and the role of impact basins in lunar geologic evolution. The selected quadrangle contains Aristarchus plateau and the Marius hills, Reiner Gamma, and Hevelius crater. By generating a geologic map of this region, we can constrain the temporal (and possibly genetic) relations between these features, revealing more information about the Moon's chemical and thermal evolution. Although many of these individual sites have been investigated using Lunar Orbiter, Clementine, Lunar Prospector and Galileo data, no single investigation has yet attempted to constrain the stratigraphic and geologic relationships between these features. Furthermore, we will be able to compare our unit boundaries on the eastern boundary of the proposed map area with those already mapped in the Copernicus Quadrangle. Geologic mapping of the Marius Quadrangle would provide insight to the following questions: the origin, evolution, and distribution of mare volcanism; the timing and effects of the major basin-forming impacts on lunar crustal stratigraphy; and, the Moon's important resources, where they are concentrated, and how they can be accessed.

  12. Geologic map of the Lada Terra quadrangle (V-56), Venus

    USGS Publications Warehouse

    Kumar, P. Senthil; Head, James W.

    2013-01-01

    This publication provides a geological map of Lada Terra quadrangle (V–56), a portion of the southern hemisphere of Venus that extends from lat 50° S. to 70° S. and from long 0° E. to 60° E. V–56 is bordered by Kaiwan Fluctus (V–44) and Agnesi (V–45) quadrangles in the north and by Mylitta Fluctus (V–61), Fredegonde (V–57), and Hurston (V–62) quadrangles in the west, east, and south, respectively. The geological map of V–56 quadrangle reveals evidence for tectonic, volcanic, and impact processes in Lada Terra in the form of tesserae, regional extensional belts, coronae, and volcanic plains. In addition, the map also shows relative age relations such as overlapping or cross-cutting relations between the mapped geologic units. The geology observed within this quadrangle addresses (1) how coronae evolved in association with regional extensional belts and (2) how tesserae, regional plains, and impact craters, which are also significant geological units observed in Lada Terra quadrangle, were formed.

  13. Motor carrier concerns about transportation problems in Oregon : final report.

    DOT National Transportation Integrated Search

    2004-03-01

    This report summarizes an analysis of data from a statewide survey of freight motor carrier firms, conducted by the Oregon Department of Transportation (ODOT) in the summer of 2001, to identify freight industry concerns about problems they encounter ...

  14. Geologic Map of the Tower Peak Quadrangle, Central Sierra Nevada, California

    USGS Publications Warehouse

    Wahrhaftig, Clyde

    2000-01-01

    Introduction The Tower Peak quadrangle, which includes northernmost Yosemite National Park, is located astride the glaciated crest of the central Sierra Nevada and covers an exceptionally well-exposed part of the Sierra Nevada batholith. Granitic plutonic rocks of the batholith dominate the geology of the Tower Peak quadrangle, and at least 18 separate pre-Tertiary intrusive events have been identified. Pre-Cretaceous metamorphic rocks crop out in the quadrangle in isolated roof pendants and septa. Tertiary volcanic rocks cover granitic rocks in the northern part of the quadrangle, but are not considered in this brief summary. Potassium-argon (K-Ar) age determinations for plutonic rocks in the quadrangle range from 83 to 96 million years (Ma), including one of 86 Ma for the granodiorite of Lake Harriet (Robinson and Kistler, 1986). However, a rubidium-strontium whole-rock isochron age of 129 Ma has been obtained for the Lake Harriet pluton (Robinson and Kistler, 1986), which field evidence indicates is the oldest plutonic body within the quadrangle. This suggests that some of the K-Ar ages record an episode of resetting during later thermal events and are too young. The evidence indicates that all the plutonic rocks are of Cretaceous age, with the youngest being the Cathedral Peak Granodiorite at about 83 Ma. The pre-Tertiary rocks of the Tower Peak quadrangle fall into two groups: (1) an L-shaped area of older plutonic and metamorphic rocks, 3 to 10 km wide, that extends diagonally both northeast and southeast from near the center of the quadrangle; and (2) a younger group of large, probably composite intrusions that cover large areas in adjacent quadrangles and extend into the Tower Peak quadrangle from the east, north, and southwest.

  15. Geologic Map of the Woodland Quadrangle, Clark and Cowlitz Counties, Washington

    USGS Publications Warehouse

    Evarts, Russell C.

    2004-01-01

    The Woodland 7.5' quadrangle is situated in the Puget-Willamette Lowland approximately 50 km north of Portland, Oregon (fig. 1). The lowland, which extends from Puget Sound into west-central Oregon, is a complex structural and topographic trough that lies between the Coast Range and the Cascade Range. Since late Eocene time, the Cascade Range has been the locus of an active volcanic arc associated with underthrusting of oceanic lithosphere beneath the North American continent along the Cascadia Subduction Zone. The Coast Range occupies the forearc position within the Cascadia arc-trench system and consists of a complex assemblage of Eocene to Miocene volcanic and marine sedimentary rocks. The Woodland quadrangle lies at the northern edge of the Portland Basin, a roughly 2000-km2 topographic and structural depression that is the northernmost of several sediment-filled structural basins, which collectively constitute the Willamette Valley segment of the Puget-Willamette Lowland (Beeson and others, 1989; Swanson and others, 1993; Yeats and others, 1996). The Portland Basin is approximately 70 km long and 30 km wide; its long dimension is oriented northwest. Its northern boundary coincides, in part, with the lower Lewis River, which flows westward through the center of the quadrangle. The Lewis drains a large area in the southern Washington Cascade Range, including the southern flank of Mount St. Helens approximately 25 km upstream from the quadrangle, and joins the Columbia River about 6 km south of Woodland (fig. 1). Northwest of Woodland, the Columbia River exits the broad floodplain of the Portland Basin and flows northward through a relatively narrow bedrock valley at an elevation near sea level. The flanks of the Portland Basin consist of Eocene through Miocene volcanic and sedimentary rocks that rise to elevations exceeding 2000 ft (610 m). Seismic-reflection profiles (L.M. Liberty, written commun., 2003) and lithologic logs of water wells (Swanson and others

  16. Geologic map of the Alley Spring quadrangle, Shannon County, Missouri

    USGS Publications Warehouse

    Weary, David J.; Orndorff, Randall C.

    2012-01-01

    The Alley Spring 7.5-minute quadrangle is located in south-central Missouri within the Salem Plateau region of the Ozark Plateaus physiographic province. About 1,990 feet (ft) of flat-lying to gently dipping Lower Paleozoic sedimentary rocks, mostly dolomite, chert, sandstone, and orthoquartzite, overlie Mesoproterozoic volcanic rocks. A small exposure of the volcanic rocks exists near the eastern edge of the quadrangle. Unconsolidated residuum, colluvium, terrace deposits, and alluvium overlie the sedimentary rocks. Karst features, such as sinkholes, caves, and springs, have formed in the carbonate rocks. Many streams are spring fed. Alley Spring, the largest karst spring in the quadrangle, has an average discharge of 81 million gallons per day. The topography is a dissected karst plain with elevation ranging from 630 ft where the Jacks Fork River exits the quadrangle to more than 1,140 ft at numerous places in the northern half of the quadrangle. The most prominent physiographic feature is the valley of the Jacks Fork River. Most of the land in the quadrangle is privately owned and used primarily for grazing cattle and horses and growing timber. A large minority of the land within the quadrangle is publicly owned, either by the Missouri State Forests or by the Ozark National Scenic Riverways of the National Park Service. Geologic mapping for this investigation was conducted in 2003 and 2004.

  17. Geologic map of the Priest Rapids 1:100,000 quadrangle, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reidel, S.P.; Fecht, K.R.

    1993-09-01

    This map of the Priest Rapids 1:100,000-scale quadrangle, Washington, shows the geology of one of fifteen complete or partial 1:100,000-scale quadrangles that cover the southeast quadrant of Washington. Geologic maps of these quadrangles have been compiled by geologists with the Washington Division of Geology and Earth Resources (DGER) and Washington State University and are the principal data sources for a 1:250,000scale geologic map of the southeast quadrant of Washington, which is in preparation. Eleven of those quadrangles are being released as DGER open-file reports (listed below). The map of the Wenatchee quadrangle has been published by the US Geological Surveymore » (Tabor and others, 1982), and the Moses Lake (Gulick, 1990a), Ritzville (Gulick, 1990b), and Rosalia (Waggoner, 1990) quadrangles have already been released. The geology of the Priest Rapids quadrangle has not previously been compiled at 1:100,000 scale. Furthermore, this is the first 1:100,000 or smaller scale geologic map of the area to incorporate both bedrock and surficial geology. This map was compiled in 1992, using published and unpublished geologic maps as sources of data.« less

  18. Airborne gamma-ray spectrometer and magnetometer survey, Copalis Beach quadrangle (Washington). Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-01-01

    No uranium anomalies meet the minimum statistical requirements as defined. There is no Uranium Anomaly Interpretation Map for the Copalis Beach quadrangle. Potassium (%K), equivalent Uranium (ppM eU), equivalent Thorium (ppM eT), eU/eT, eU/K, eT/K, and magnetic pseudo-contour maps are presented in Appendix E. Stacked Profiles showing geologic strip maps along each flight-line, together with sensor data, and ancillary data are presented in Appendix F. All maps and profiles were prepared on a scale of 1:250,000, but have been reduced to 1:500,000 for presentation.

  19. Analysis of the Connect Oregon program through two project selection cycles : final report, August 2009.

    DOT National Transportation Integrated Search

    2009-08-01

    The Oregon Legislature passed a law establishing the Multimodal Transportation Fund in 2005. The fund was part of what : became known as the ConnectOregon program, with the purpose of making public and private investments in aviation, : marine, rail,...

  20. Topographic Map of Quadrangle 3570, Tagab-E-Munjan (505) and Asmar-Kamdesh (506) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  1. Topographic Map of Quadrangle 3262, Farah (421) and Hokumat-E-Pur-Chaman (422) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  2. Topographic Map of Quadrangle 3566, Sang-Charak (501) and Sayghan-O-Kamard (502) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  3. Geologic map of the Bernalillo NW quadrangle, Sandoval County, New Mexico

    USGS Publications Warehouse

    Koning, Daniel J.; Personius, Stephen F.

    2002-01-01

    The Bernalillo NW quadrangle is located in the northern part of the Albuquerque basin, which is the largest basin or graben within the Rio Grande rift. The quadrangle is underlain by poorly consolidated sedimentary rocks of the Santa Fe Group. These rocks are best exposed in the southwestern part of the quadrangle in the Rincones de Zia, a badland topography cut by northward-flowing tributary arroyos of the Jemez River. The Jemez River flows through the northern half of the quadrangle; extensive fluvial and eolian deposits cover bedrock units along the river. The structural fabric of the quadrangle is dominated by dozens of generally north striking, east and west-dipping normal faults and minor folds associated with the Neogene Rio Grande rift.

  4. Geological Map of the Fredegonade (V-57) Quadrangle, Venus: Status Report

    NASA Technical Reports Server (NTRS)

    Ivanov, M. A.; Head, J. W.

    2010-01-01

    The Fredegonde quadrangle (V-57; 50-75degS, 60-120degE, Fig. 1) corresponds to the northeastern edge of Lada Terra and covers a broad area of the topographic province of midlands (0-2 km above MPR [1,2]). This province is most abundant on Venus and displays a wide variety of units and structures [3-11]. The sequence of events that formed the characteristic features of the midlands is crucially important in understanding of the timing and modes of evolution of this topographic province. Topographically, the Fredegonde quadrangle is within a transition zone between the elevated portion of Lada Terra to the west (Quetzalpetlatl-Boala Coronae rise, approx.3.5 km) and the lowland of Aino Planitia to the north and northeast (approx.-0.5 km). This transition is one of the key features of the V-57 quadrangle. In this respect the quadrangle resembles the region of V-4 quadrangle [12] that shows transition between the midlands and the lowlands of Atalanta Planitia. One of the main goals of our mapping within the V-57 quadrangle is comparison of this region with the other transitional topographic zones such as quadrangles V-4 and V-3 [13]. The most prominent features in the V-57 quadrangle are linear deformational zones of grooves and large coronae. The zones characterize the central and NW portions of the map area and represent broad (up to 100s of km wide) ridges that are 100s of m high. Morphologically and topographically, these zones are almost identical to the groove belt/corona complexes at the western edge of Atalanta Planitia [12]. Within the Fredegonde area, however, the zones are oriented at high angles to the general trend of elongated Aino Planitia, whereas within the V-4 quadrangle they are parallel to the edge of Atalanta Planitia. Relatively small (100s of km across, 100s of m deep) equidimensional basins occur between the corona-groove-chains in the area of V-57 quadrangle. These basins are similar to those that populate the area of the V-3 quadrangle [13

  5. Spectral risk measures: the risk quadrangle and optimal approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kouri, Drew P.

    We develop a general risk quadrangle that gives rise to a large class of spectral risk measures. The statistic of this new risk quadrangle is the average value-at-risk at a specific confidence level. As such, this risk quadrangle generates a continuum of error measures that can be used for superquantile regression. For risk-averse optimization, we introduce an optimal approximation of spectral risk measures using quadrature. Lastly, we prove the consistency of this approximation and demonstrate our results through numerical examples.

  6. Spectral risk measures: the risk quadrangle and optimal approximation

    DOE PAGES

    Kouri, Drew P.

    2018-05-24

    We develop a general risk quadrangle that gives rise to a large class of spectral risk measures. The statistic of this new risk quadrangle is the average value-at-risk at a specific confidence level. As such, this risk quadrangle generates a continuum of error measures that can be used for superquantile regression. For risk-averse optimization, we introduce an optimal approximation of spectral risk measures using quadrature. Lastly, we prove the consistency of this approximation and demonstrate our results through numerical examples.

  7. Lidar-revised geologic map of the Uncas 7.5' quadrangle, Clallam and Jefferson Counties, Washington

    USGS Publications Warehouse

    Tabor, Rowland W.; Haeussler, Peter J.; Haugerud, Ralph A.; Wells, Ray E.

    2011-01-01

    uplifted and tilted eastward the Coast Range basalt basement and overlying marginal basin strata, which comprise most of the rocks of the Uncas quadrangle. The Eocene submarine and subaerial tholeiitic basalt of the Crescent Formation on the Olympic Peninsula is thought to be the exposed mafic basement of the Coast Range, which was considered by Snavely and others (1968) to be an oceanic terrane accreted to the margin in Eocene time. In this interpretation, the Coast Range basalt terrane may have originated as an oceanic plateau or by oblique marginal rifting, but its subsequent emplacement history was complex (Wells and others, 1984). Babcock and others (1992) and Haeussler and others (2003) favor the interpretation that the basalts were the product of an oceanic spreading center interacting with the continental margin. Regardless of their origin, onlapping strata in southern Oregon indicate that the Coast Range basalts were attached to North America by 50 Ma; but on southern Vancouver Island, where the terrane-bounding Leech River Fault is exposed, Brandon and Vance (1992) concluded that suturing to North America occurred in the broad interval between 42 and 24 Ma. After emplacement of the Coast Range basalt terrane, the Cascadia accretionary wedge developed by frontal accretion and underplating (Tabor and Cady, 1978b; Clowes and others, 1987). Domal uplift of the part of the accretionary complex beneath the Olympic Mountains occurred after ~18 Ma (Brandon and others, 1998). Continental and alpine glaciation during Quaternary time reshaped the uplifted rocks of the Olympic Mountains.

  8. Geology of the Shakespeare quadrangle (H03), Mercury

    NASA Astrophysics Data System (ADS)

    Guzzetta, L.; Galluzzi, V.; Ferranti, L.; Palumbo, P.

    2017-09-01

    A 1:3M geological map of the H03 Shakespeare quadrangle of Mercury has been compiled through photointerpretation of the remotely sensed images of the NASA MESSENGER mission. This quadrangle is characterized by the occurrence of three main types of plains materials and four basin materials, pertaining to the Caloris basin, the largest impact crater on Mercury's surface. The geologic boundaries have been redefined compared to the previous 1:5M map of the quadrangle and the craters have been classified privileging their stratigraphic order rather than morphological appearance. The abundant tectonic landforms have been interpreted and mapped as thrusts or wrinkle ridges.

  9. Surficial geologic map of the Dillingham quadrangle, southwestern Alaska

    USGS Publications Warehouse

    Wilson, Frederic H.

    2018-05-14

    The geologic map of the Dillingham quadrangle in southwestern Alaska shows surficial unconsolidated deposits, many of which are alluvial or glacial in nature. The map area, part of Alaska that was largely not glaciated during the late Wisconsin glaciation, has a long history reflecting local and more distant glaciations. Late Wisconsin glacial deposits have limited extent in the eastern part of the quadrangle, but are quite extensive in the western part of the quadrangle. This map and accompanying digital files are the result of the interpretation of black and white aerial photographs from the 1950s as well as more modern imagery. Limited new field mapping in the area was conducted as part of a bedrock mapping project in the northeastern part of the quadrangle; however, extensive aerial photographic interpretation represents the bulk of the mapping effort.

  10. Geology of the V28 Quadrangle: Hecate Chasma, Venus

    NASA Technical Reports Server (NTRS)

    Stofan, E. R.; Guest, J. E.; Brian, A. W.

    2000-01-01

    The Hecate Chasma Quadrangle (V28), mapped at 1:5,000,000 scale, extends from 0-25 N and 240-270 Longitude. The quadrangle has thirteen impact craters, several large volcanoes, many coronae, three chasmata, and northern Hinemoa Planitia.

  11. Geology of the De Queen and Caddo Gap quadrangles, Arkansas

    USGS Publications Warehouse

    Miser, Hugh D.; Purdue, Albert Homer

    1929-01-01

    The field study of the geology of the De Queen and Caddo Gap quadrangles extended over a period of many years, and although the scientific and economic results from the study are here set forth fully for the first time in a single report, a number of publications have been issued that have presented some of the more important results.The field work was begun in 1907 and continued intermittently until 1925. The work in 1907 was done under a cooperative agreement between the United States Geological Survey and the Arkansas Geological Survey and involved primarily an investigation of the slate deposits of west-central Arkansas but also the mapping of the rocks in the mountainous part of the Caddo Gap quadrangle. In that year A. H. Purdue, State geologist of Arkansas, had charge of the work and was assisted by R. D. Mesler and H. D. Miser. All the subsequent work in the Caddo Gap quadrangle, as well as all in the De Queen quadrangle, was done by the United States Geological Survey. The work since 1907 is briefly outlined below. In 1908 Mr. Purdue, assisted by Mr. Miser, completed the mapping of the rocks of the Caddo Gap quadrangle with the aid of valuable suggestions from C. W. Hayes, chief geologist, J. A. Taff, and E. O. Ulrich, who visited the field for several days. In 1910 Mr. Purdue, assisted by Mr. Miser, reviewed a part of the previous work in the Caddo Gap quadrangle and mapped the rocks in most of the mountainous portion of the De Queen quadrangle. In 1911 these geologists did additional work in both the De Queen and Caddo Gap quadrangles, and in 1912 Mr. Miser, assisted by Mr. Mesler, completed the mapping of the rocks in the De Queen quadrangle and then reviewed some of the earlier work in the Caddo Gap quadrangle. In 1913 Arthur Keith, and Messrs. Purdue and Miser spent several days in a field conference in the Caddo Gap quadrangle. During the conference the first identifiable fossils in the Blaylock sandstone, of Silurian age, were discovered. In 1914 Mr

  12. FACILITY 847, SOUTHWEST SIDE (COURTYARD SIDE), QUADRANGLE J, VIEW FACING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY 847, SOUTHWEST SIDE (COURTYARD SIDE), QUADRANGLE J, VIEW FACING NORTHEAST. - Schofield Barracks Military Reservation, Quadrangles I & J Barracks Type, Between Wright-Smith & Capron Avenues near Williston Avenue, Wahiawa, Honolulu County, HI

  13. Geology of the Harper Quadrangle, Liberia

    USGS Publications Warehouse

    Brock, M.R.; Chidester, A.H.; Baker, M.G.W.

    1974-01-01

    As part of a program undertaken cooperatively by the Liberian Geological Survey (LGS) and the U. S. Geological Survey (USGS), under the sponsorship of the Government of Liberia and the Agency for International Development, U. S. Department of State, Liberia was mapped by geologic and geophysical methods during the period 1965 to 1972. The resulting geologic and geophysical maps are published in ten folios, each covering one quadrangle (see index map). The first systematic mapping in the Harper quadrangle was by Baker, S. P. Srivastava, and W. E. Stewart (LGS) at a scale of 1:500,000 in the vicinity of Harper in the southeastern, and of Karloke in the northeastern part of the quadrangle in 1960-61. Brock and Chidester carried out systematic mapping of the quadrangle at a scale of 1:250,000 in the period September 1971-May 1972; the geologic map was compiled from field data gathered by project geologists and private companies as indicated in the source diagram, photogeologic maps, interpretation of airborne magnetic and radiometric surveys, field mapping, and ground-based radiometric surveys in which hand-held scintillators were used. R. W. Bromery, C. S. Wotorson, and J. C. Behrendt contributed to the interpretation of geophysical data. Total-intensity aeromagnetic and total-count gamma radiation maps (Behrendt and Wotorson, in press a, b), and unpublished data derived from those maps, including the near-surface and the regional magnetic components and aeromagnetic/radiometric correlations, were used in the interpretation.

  14. Geology of the Anderson Mesa quadrangle, Colorado

    USGS Publications Warehouse

    Cater, Fred W.; Withington, C.F.

    1953-01-01

    The Anderson Mesa quadrangle is one of the eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of the southwestern Colorado. The geology of these quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteenth quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quarternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by high-angle faults, and northwest-tending folds. Conspicuous among the folds are large anticlines having cores of intrusive slat and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as the "Uravan Mineral Belt". Individual deposits range in size from irregular masses containing many thousands of tons. The ore consists of largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary structures in sandstones of favorable composition.

  15. Geology of the Hamm Canyon quadrangle, Colorado

    USGS Publications Warehouse

    Cater, Fred W.

    1953-01-01

    The Hamm Canyon quadrangle is on eof eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of these quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by high-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as the "Uravan Mineral Belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing many thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary structures in sandstones of favorable composition.

  16. Geology of the Davis Mesa quadrangle, Colorado

    USGS Publications Warehouse

    Cater, Fred W.; Bryner, Leonid

    1953-01-01

    The Davis Mesa quadrangle is one of eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of these quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by hih-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as "Uruvan Mineral Belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing many thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary structures in sandstones of favorable composition.

  17. Geology of the Gypsum Gap quadrangle, Colorado

    USGS Publications Warehouse

    Cater, Fred W.

    1953-01-01

    The Gypsum Gap quadrangle is one eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of these quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comparative study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by high-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through a arcuate zone known as the "Uravan Mineral Belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing many thousands of tons. The core consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary structures in sandstones of favorable composition.

  18. Areal geology of the Little Cone quadrangle, Colorado

    USGS Publications Warehouse

    Bush, A.L.; Marsh, O.T.; Taylor, R.B.

    1960-01-01

    The Little Cone quadrangle includes an area of about 59 square miles in eastern San Miguel County in southwestern Colorado. The quadrangle contains features characteristic of both the Colorado Plateaus physiographic province and the San Juan Mountains, and it has been affected by geologic events and processes of two different geologic environments. The continental sedimentary rocks of the Cutler formation of Permian age are the oldest rocks exposed in the quadrangle. Deposition of the Cutler was followed by a long period of erosion and peneplanation. There is no marked angular discordance between the Cutler and the overlying Dolores formation in the Little Cone quadrangle, but there is in areas some tens of miles east and west of the quadrangle where some crustal warping took place. The continental sedimentary rocks of the Dolores formation of Late Triassic age are red beds that are similar in gross lithology to those of the Cutler. The Dolores formation is subdivided into five general units that persist throughout the quadrangle and for some tens of miles to the north, south, and east. A second long period of erosion followed deposition of the Dolores. The Entrada sandstone of Late Jurassic age overlies the Dolores formation, and is in turn overlain by the Wanakah formation, also of Late Jurassic age. The Wanakah consists of the Pony Express limestone member at the base, the Bilk Creek sandstone'member near the center, and a "marl" member at the top. The Morrison formation, which overlies the Wanakah, consists of the Salt Wash sandstone member in the lower part and the Brushy Basin shale member in the upper part. A period of erosion, probably of relatively short duration, followed deposition of the Brushy Basin member. The Burro Canyon formation of Early Cretaceous age occurs as discontinuous bodies that fill channels cut in the top of the Morrison formation. Deposition of the Burro Canyon formation was followed by another period of erosion, which in turn ended

  19. Geologic Map of the Nulato Quadrangle, West-Central Alaska

    USGS Publications Warehouse

    Patton, W.W.; Moll-Stalcup, E. J.

    2000-01-01

    Introduction The Nulato quadrangle encompasses approximately 17,000 km2 (6,500 mi2) of west-central Alaska within the Yukon River drainage basin. The quadrangle straddles two major geologic features-the Yukon-Koyukuk sedimentary basin, a huge triangle-shaped Cretaceous depression that stretches across western Alaska from the Brooks Range to the Yukon delta; and the Ruby geanticline,a broad uplift of pre-Cretaceous rocks that borders the Yukon-Koyukuk basin on the southeast. The Kaltag Fault crosses the quadrangle diagonally from northeast to southwest and dextrally offsets all major geologic features as much as 130 km.

  20. FACILITY 846, TOILET AND SHOWER WINGS, QUADRANGLE J, OBLIQUE VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY 846, TOILET AND SHOWER WINGS, QUADRANGLE J, OBLIQUE VIEW FACING WEST. - Schofield Barracks Military Reservation, Quadrangles I & J Barracks Type, Between Wright-Smith & Capron Avenues near Williston Avenue, Wahiawa, Honolulu County, HI

  1. Geologic map of the Mead quadrangle (V-21), Venus

    USGS Publications Warehouse

    Campbell, Bruce A.; Clark, David A.

    2006-01-01

    The Magellan spacecraft orbited Venus from August 10, 1990, until it plunged into the Venusian atmosphere on October 12, 1994. Magellan Mission objectives included (1) improving the knowledge of the geological processes, surface properties, and geologic history of Venus by analysis of surface radar characteristics, topography, and morphology and (2) improving the knowledge of the geophysics of Venus by analysis of Venusian gravity. The Mead quadrangle (V-21) of Venus is bounded by lat 0 deg and 25 deg N., long 30 deg and 60 deg E. This quadrangle is one of 62 covering Venus at 1:5,000,000 scale. Named for the largest crater on Venus, the quadrangle is dominated by effusive volcanic deposits associated with five major coronae in eastern Eistla Regio (Didilia, Pavlova, Calakomana, Isong, and Ninmah), corona-like tectonic features, and Disani Corona. The southern extremity of Bell Regio, marked by lava flows from Nyx Mons, north of the map area, forms the north-central part of the quadrangle. The shield volcanoes Kali, Dzalarhons, and Ptesanwi Montes lie south and southwest of the large corona-related flow field. Lava flows from sources east of Mead crater flood low-lying areas along the east edge of the quadrangle.

  2. Hydrogeochemical and stream sediment reconnaissance basic data report for Kingman NTMS Quadrangle, Arizona, California, and Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qualheim, B.J.

    This report presents the results of the geochemical reconnaissance sampling in the Kingman 1 x 2 quadrangle of the National Topographical Map Series (NTMS). Wet and dry sediment samples were collected throughout the 18,770-km arid to semiarid area and water samples at available streams, springs, and wells. Neutron activation analysis of uranium and trace elements and other measurements made in the field and laboratory are presented in tabular hardcopy and microfiche format. The report includes five full-size overlays for use with the Kingman NTMS 1 : 250,000 quadrangle. Water sampling sites, water sample uranium concentrations, water-sample conductivity, sediment sampling sites,more » and sediment-sample total uranium and thorium concentrations are shown on the separate overlays. General geological and structural descriptions of the area are included and known uranium occurrences on this quadrangle are delineated. Results of the reconnaissance are briefly discussed and related to rock types in the final section of the report. The results are suggestive of uranium mineralization in only two areas: the Cerbat Mountains and near some of the western intrusives.« less

  3. FACILITY 846, NORTHWEST END AND SOUTHWEST SIDE, QUADRANGLE J, OBLIQUE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY 846, NORTHWEST END AND SOUTHWEST SIDE, QUADRANGLE J, OBLIQUE VIEW FACING EAST. - Schofield Barracks Military Reservation, Quadrangles I & J Barracks Type, Between Wright-Smith & Capron Avenues near Williston Avenue, Wahiawa, Honolulu County, HI

  4. FACILITY 847, DETAIL OF A CENTRAL STAIRWAY FROM COURTYARD, QUADRANGLE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY 847, DETAIL OF A CENTRAL STAIRWAY FROM COURTYARD, QUADRANGLE J, VIEW FACING NORTHEAST. - Schofield Barracks Military Reservation, Quadrangles I & J Barracks Type, Between Wright-Smith & Capron Avenues near Williston Avenue, Wahiawa, Honolulu County, HI

  5. FACILITY 847, NORTHWEST END AND NORTHEAST SIDE, QUADRANGLE J, OBLIQUE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY 847, NORTHWEST END AND NORTHEAST SIDE, QUADRANGLE J, OBLIQUE VIEW FACING SOUTH-SOUTH-SOUTHEAST. - Schofield Barracks Military Reservation, Quadrangles I & J Barracks Type, Between Wright-Smith & Capron Avenues near Williston Avenue, Wahiawa, Honolulu County, HI

  6. NURE aerial gamma-ray and magnetic reconnaissance survey of portions of New Mexico, Arizona and Texas. Volume II. New Mexico-Roswell NI 13-8 quadrangle. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The results of a high-sensitivity, aerial gamma-ray spectrometer and magnetometer survey of the Roswell two degree quadrangle, New Mexico are presented. Instrumentation and methods are described in Volume I of this final report. The work was done by Carson Helicopters, Inc., and Carson Helicopters was assisted in the interpretation by International Exploration, Inc. The work was performed for the US Department of Energy - National Uranium Resource Evaluation (NURE) program. Analysis of this radiometric data yielded 238 statistically significant eU anomalies. Of this number, seventy-four were considered to be sufficient strength to warrant further investigation.

  7. Geology of the Naturita NW quadrangle, Colorado

    USGS Publications Warehouse

    Cater, Fred W.; Vogel, J.D.

    1953-01-01

    The Naturita NW quadrangle is one of eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of these quadrangles were mapped by the U.S. Geological Survey on behalf of the U.S. Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by high-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as the "Uravan Mineral Belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing many thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear ro be related to certain sedimentary structures in sandstones of favorable composition.

  8. Geologic map of the Calamity Mesa quadrangle, Colorado

    USGS Publications Warehouse

    Cater, Fred W.

    1955-01-01

    The series of Geologic Quadrangle Maps of the United States continues the series of quadrangle maps begun with the folios of the Geologic Atlas of the United States, which were published from 1894 to 1945. The present series consists of geologic maps, supplemented where possible by structure sections, columnar sections, and other graphic means of presenting geologic data, and accompanied by a brief explanatory text to make the maps useful for general scientific and economic purposes. Full description and interpretation of the geology of the areas shown on these maps are reserved for publication in other channels, such as the Bulletins and Professional Papers of the Geological Survey. Separate maps of the same areas, covering bedrock, surficial, engineering, and other phases of geology, may be published in the geologic quadrangle map series. 

  9. Aerial radiometric and magnetic reconnaissance survey of Baltimore, Washington, and Richmond Quadrangles: Washington Quadrangle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-09-01

    The results of a high-sensitivity aerial gamma-ray spectrometer and magnetometer survey of the Washington Quadrangle, Maryland and Virginia, are presentd. Instrumentation and methods are described in Volume 1 of this final report. Statistical and geological analysis of the radiometric data revealed six uranium anomalies worthy of field checking as possible prospects. Four (1, 2, 7, and 8) are located over sediments that may have long-range future potential for low-grade sedimentary uranium deposits. In particular, anomalies 1 and 8 are related to a unit (Triassic New Oxford Formation) known to contain uranium occurrences in Pennsylvania. One anomaly (3) may be associatedmore » with vein-type mineralization in augen gneiss, and one (12) may be caused by vein-type or hydrothermal uranium associated with a north-south striking fault at the boundary between the Appalachian Highlands and the Coastal Plain physiographic provinces.« less

  10. Geologic Mapping of Isabella Quadrangle (V-50) and Helen Planitia, Venus

    NASA Technical Reports Server (NTRS)

    Bleamaster, Leslie F., III

    2008-01-01

    (25-50 S, 180-210 E) is host to numerous coronae and small volcanic centers (paterae and shield fields), focused (Aditi and Sirona Dorsa) and distributed (penetrative north-south trending wrinkle ridges) contractional deformation, and radial and linear extensional structures, all of which contribute materials to and/or deform the expansive surrounding plains (Nsomeka and Wawalag Planitiae). Regional plains, which are a northern extension of regional plains mapped in the Barrymore Quadrangle V-59 [1], dominate the V-50 quadrangle. Previous mapping divided the regional plains into two members: regional plains, members a and b [2]. A re-evaluation of these members has determined that a continuous and consistent unit contact does not exist; however, the majority of this radar unit or surficial unit will still be displayed on the final map as a stipple pattern as it is a prevalent feature of the quadrangle. With minimal tessera or highland material, much of the quadrangle s oldest materials are plains units (the regional plains). Much of these plains are covered with small shield edifices that exhibit a variety of material contributions (or flows). In the northwest, several flows emerge and flow to the southeast from Diana-Dali Chasmata. Local corona- and mons-fed flows superpose the regional plains; however, earlier stages of volcano-tectonic centers marked by arcuate and radial structural elements, including terrain so heavily deformed that it takes on a new appearance, may have developed prior to or concurrently with the region plains. Northtrending deformation belts disrupt the central portion of the map area and wrinkle ridges parallel these larger belts. Isabella crater, in the northeastern quadrant, is highly asymmetric and displays two prominent ejecta blanket morphologies, which generally correlate with distance from the impact structure suggesting that ejecta block size or ejecta blanket thickness may be the cause. The crater floor is very dark and shows no

  11. Compositional variations on Mercury: Results from the Victoria quadrangle

    NASA Astrophysics Data System (ADS)

    Zambon, Francesca; Carli, Cristian; Galluzzi, Valentina; Capaccioni, Fabrizio; Giacomini, Lorenza; Massironi, Matteo; Palumbo, Pasquale; Cremonese, Gabriele

    2017-04-01

    Mercury was recently explored by the MESSENGER mission that orbited around the planet from March 2011 until April 2015 allowing a complete coverage of its surface. The Mercury Dual Imaging System (MDIS), mapped the Hermean surface at different spatial resolutions, due to variable altitude of the spacecraft from the surface. MDIS consists of two instruments: a Narrow Angle Camera (NAC) centered at 747nm, which acquired high-resolution images for the geological analysis, and the Wide Angle Camera (WAC), provided with 11 filters dedicated to the compositional analysis, operating in a range of wavelengths between 395 and 1040 nm. Mercury's surface has been divided into 15 quadrangles for mapping purposes. Here, we analyze the results obtained by the color composite mosaic of the quadrangle Victoria (H02) located at longitudes 270 ° - 360 ° E, and latitudes 22.5 ° N - 65 ° N. We produced a color mosaic, by using the images relative to the filters with the best spatial coverage. To obtain the 8-color mosaic of the Victoria quadrangle, we calibrated and georefenced the WAC raw images. Afterwards, we applied the Hapke photometric correction by using the parameters derived by Domingue et al. (2015). We projected and coregistered the data, and finally, we produced the mosaic. To analyze the compositional variations of the Victoria quadrangle, we consider different techniques of analysis, such as specific RGB color combinations and band ratios, which emphasize the different compositional characteristics of the surface. Furthermore, the use of clustering and classification methods allows for recognizing various terrain units, in terms of reflectance and spectral characteristics. In the H02 quadrangle, we observed a dichotomy in the RGB mosaic (R: second principal component (PC2), G: first principal component (PC1), B: 430/1000 nm; see Denevi et al. 2009) between the northern region of the quadrangle, dominated by smooth plains, and the southern part, characterized by

  12. Maps showing metallic mineral resources of the Bendeleben and Solomon quadrangles, western Alaska

    USGS Publications Warehouse

    Gamble, Bruce M.; Till, Alison B.

    1993-01-01

    This report summarizes the potential for metallic mineral resources in the Bendeleben and Solomon quadrangles, central Seward Peninsul, Alaska (fig. 1), and was prepared as part of the AMRAP (Alaska Mineral Resources Appraisal Program) studies for these quadrangles, which were begun in 1981.  Geologic mapping during this study (TILL and others, 1986) included the southern part of the Kotzebue quadrangle.  However, stream-sediment and panned-concentrate samples were not collected in that area, and the mineral resources of the southern part of the Kotzebue quadrangle are not assessed in this report.

  13. Topographic Map of Quadrangles 3062 and 2962, Charburjak (609), Khanneshin (610), Gawdezereh (615), and Galachah (616) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  14. Geologic map of the Sappho Patera Quadrangle (V-20), Venus

    USGS Publications Warehouse

    McGill, George E.

    2000-01-01

    The Sappho Patera quadrangle (V–20) of Venus is bounded by 0° and 30° East longitude, 0° and 25° North latitude. It is one of 62 quadrangles covering the entire planet at a scale of 1:5,000,000. The quadrangle derives its name from Sappho Patera, a large rimmed depression (diameter about 225 km) lying on top of a shield-shaped mountain named Irnini Mons. Sappho, a noted Greek poet born about 612 B.C., spent most of her life on the island of Lesbos. All of her works were burned in 1073 by order of ecclesiastical authorities in Rome and Constantinople. What little survives was discovered in 1897 as parts of papier mâché coffins in the Fayum (Durant, 1939). The Sappho Patera quadrangle includes the central portion of Eistla Regio, an elongated, moderately elevated (relief ~1 km) region extending for about 7,500 km west-northwestward from the west end of Aphrodite Terra. It is generally interpreted to be the surface manifestation of one or more mantle plumes (Phillips and Malin, 1983; Stofan and Saunders, 1990; Kiefer and Hager, 1991; Senske and others, 1992; Grimm and Phillips, 1992; Solomon and others, 1992). Eistla Regio is dominated by several large volcanic features. All or parts of four of these occur within the Sappho Patera quadrangle: the eastern flank of Gula Mons, Irnini Mons, Anala Mons, and Kali Mons. The quadrangle also includes eight named coronae: Nehalennia, Sunrta, Libera, Belet-Ili, Gaia, Asomama, Rabzhima, and Changko. A major rift extends from Gula Mons in the northwestern corner of the quadrangle to Libera Corona near the east border. East of Irnini and Anala Montes this rift is named Guor Linea; west of the montes it is named Virtus Linea. In addition to these major features, the Sappho Patera quadrangle includes numerous smaller volcanic flows and constructs, several unnamed coronae and corona-like features, a complex array of faults, fractures, and wrinkle ridges, and extensive plains that are continuous with the regional plains that

  15. Geology of the Gateway quadrangle, Mesa county Colorado

    USGS Publications Warehouse

    Cater, Fred W.

    1953-01-01

    The Gateway quadrangle is one of eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of these quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by hih-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as "Uruvan Mineral Belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing many thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary structures in sandstones of favorable composition.

  16. Geology of the Horse Range Mesa quadrangle, Colorado

    USGS Publications Warehouse

    Cater, Fred W.; Bush, A.L.; Bell, Henry; Withington, C.F.

    1953-01-01

    The Horse Range Mesa quadrangle is one of eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of the quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by high-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as the "Uravan Mineral Belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing many thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary strictures in sandstones of favorable composition.

  17. Geology of the Uravan quadrangle, Montrose county, Colorado

    USGS Publications Warehouse

    Cater, Fred W.; Butler, A.P.; McKay, E.J.; Boardman, Robert L.

    1954-01-01

    The Uravan quadrangle is one of eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of the southwestern Colorado. The geology of these quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by high-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as the "Uravan Mineral Belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing many thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to the related to certain sedimentary structures in sandstones of favorable composition.

  18. Reconnaissance geologic map of the Hyampom 15' quadrangle, Trinity County, California

    USGS Publications Warehouse

    Irwin, William P.

    2010-01-01

    The Hyampom 15' quadrangle lies west of the Hayfork 15' quadrangle in the southern part of the Klamath Mountains geologic province of northern California. It spans parts of four generally northwest-trending tectono- stratigraphic terranes of the Klamath Mountains, the Eastern Hayfork, Western Hayfork, Rattlesnake Creek, and Western Jurassic terranes, as well as, in the southwest corner of the quadrangle, a small part of the Pickett Peak terrane of the Coast Range province. Remnants of the Cretaceous Great Valley overlap sequence that once covered much of the pre-Cretaceous bedrock of the quadrangle are now found only as a few small patches in the northeast corner of the quadrangle. Fluvial and lacustrine deposits of the mid-Tertiary Weaverville Formation crop out in the vicinity of the village of Hyampom. The Eastern Hayfork terrane is a broken formation and m-lange of volcanic and sedimentary rocks that include blocks of chert and limestone. The chert has not been sampled; however, chert from the same terrane in the Hayfork quadrangle contains radiolarians of Permian and Triassic ages, but none clearly of Jurassic age. Limestone at two localities contains late Paleozoic foraminifers. Some of the limestone from the Eastern Klamath terrane in the Hayfork quadrangle contains faunas of Tethyan affinity. The Western Hayfork terrane is part of an andesitic volcanic arc that was accreted to the western edge of the Eastern Hayfork terrane. It consists mainly of metavolcaniclastic andesitic agglomerate and tuff, as well as argillite and chert, and it includes the dioritic Ironside Mountain batholith that intruded during Middle Jurassic time (about 170 Ma). This intrusive body provides the principal constraint on the age of the terrane. The Rattlesnake Creek terrane is a melange consisting mostly of highly dismembered ophiolite. It includes slabs of serpentinized ultramafic rock, basaltic volcanic rocks, radiolarian chert of Triassic and Jurassic ages, limestone containing

  19. Predicting scour in weak rock of the Oregon Coast Range : final report

    DOT National Transportation Integrated Search

    1999-10-01

    Recent experience in the Coast Range Province of Oregon demonstrates that weak sedimentary bedrock in stream channels can be vulnerable to scour. The presence of erodible rock adjacent to bridge foundations and abutments necessitates monitoring of th...

  20. Geologic map of the Snoqualmie Pass 30 x 60 minute quadrangle, Washington

    USGS Publications Warehouse

    Tabor, R.W.; Frizzell, V.A.; Booth, D.B.; Waitt, R.B.

    2000-01-01

    The Snoqualmie Pass quadrangle lies at the north edge of a Tertiary volcanic and sedimentary cover, where the regional structural uplift to the north elevated the older rocks to erosional levels. Much of the quadrangle is underlain by folded Eocene volcanic rocks and fluvial deposts of an extensional event, and these rocks are overlain by Cascade arc volcanic rocks: mildly deformed Oligocene-Miocene rocks and undeformed younger volcanic rocks. Melanges of Paleozoic and Mesozoic rocks are exposed in structural highs in the northern part of the quadrangle. The quadrangle is traversed north to south by the Straight Creek Fault, and the probably partially coincident Darringon-Devils Mountain Fault. A rich Quaternary stratigraphy reveals events of the Frazer glaciation.

  1. Reconnaissance geology of the Jabal Dalfa Quadrangle, sheet 21/43 C, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Greene, Robert C.

    1983-01-01

    The Jabal Dalfa quadrangle (sheet 21/43 C) is part of the Najd province in west-central Saudi Arabia. The quadrangle is mostly a plain, tilted gently northeastward, but local inselbergs and two areas of dissected uplands rise as much as 200 m above the plain. Wadi Bishah and Wadi Ranyah terminate in the quadrangle. The quadrangle is underlain by Precambrian metavolcanic, metasedimentary, and plutonic rocks. The gneiss outcrops in the northeast and east-central parts of the quadrangle are apparently the oldest rocks. After they were emplaced, a wide variety of metavolcanic and metasedimentary rocks were deposited at Jabal Dalfa and Umm Shat, and in the northeast part of the quadrangle as the Arfan formation. Subsequently, granite gneiss was emplaced in the west part of the quadrangle and intruded by gabbro. Metabasalt and meta-andesite were extruded in a wide north-trending belt through the middle of the quadrangle and at Jabal Silli. Intrusion of small bodies of granitic rocks and Najd faulting conclude the Precambrian history of the area. Surficial deposits include sand and gravel covering the plains, alluvial fans, and voluminous dune sands. In the southeast part of the quadrangle, the layered rocks strike north and dip steeply. They are oriented parallel to the Nabitah fault zone. In the northeast and east-central parts of the quadrangle, layered rocks and gneiss are sheared into slices by the southernmost faults of the major Najd fault zone. Bedding and foliation in these slices strike northwest, parallel to the faults. Gneiss in the west part of the quadrangle also strikes northwest, and dips steeply to vertically; layered rocks underlying Jabal Silli strike northeast. Layered metamorphic rocks in the Jabal Dalfa quadrangle are mostly in the greenschist facies. Projection of data from other quadrangles suggests that the oldest gneiss is about 780 Ma old and the Arfan formation, Umm Shat, and Jabal Dalfa layered rocks are about 775 to 745 Ma old. The gneiss of

  2. Geologic map of the Bobs Flat Quadrangle, Eureka County, Nevada

    USGS Publications Warehouse

    Peters, Stephen G.

    2003-01-01

    Map Scale: 1:24,000 Map Type: colored geologic map A 1:24,000-scale, full-color geologic map of the Bobs Flat Quadrangle in Eureka County with one cross section and descriptions of 28 geologic units. Accompanying text describes the geologic history and structural geology of the quadrangle.

  3. Geologic Map of the Cedargrove Quadrangle, Dent and Shannon Counties, Missouri

    USGS Publications Warehouse

    Weary, David J.

    2008-01-01

    The Cedargrove 7.5-minute quadrangle is located in south-central Missouri within the Salem Plateau region of the Ozark Plateaus physiographic province. Most of the land in the quadrangle is privately owned and used primarily for grazing cattle and horses and growing timber. The map area has topographic relief of about 565 feet (ft), with elevations ranging from about 760 ft at Akers Ferry on the central-southern edge of the map to about 1,325 ft near the town of Jadwin in the north-central part of the map area. The most prominent physiographic features in the quadrangle are the valleys of the Current River and Big Creek in the southwestern part of the map area, and the valley of Gladden Creek, which transects the eastern part of the quadrangle from north to south.

  4. Geologic map of the Scotts Mills, Silverton, and Stayton Northeast 7.5 minute quadrangles, Northwest Oregon: a digital database

    USGS Publications Warehouse

    Tolan, Terry; Beeson, Marvin; Wheeler, Karen L.

    1999-01-01

    The Scotts Mills, Silverton, and Stayton NE 7.5 minute quadrangles are situated along the eastern margin of the Willamette Valley and adjacent lower foothills (Waldo and Silverton Hills) of the Cascade Range (Fig. 1). The terrain within this area is of low to moderate relief, ranging from 100 to more than 1000 ft above sea level. This area is largely rural, with most of the valley floor and low-relief foothills under cultivation. In the last decade, the rural areas outside the boundaries of established towns have experienced significant growth in new homes built and the expansion of housing subdivisions. This growth has placed an increased demand on existing geologic resources (e.g., groundwater, sand and gravel, crushed stone) and the need to better understand potential geologic hazards within this region. Previous geologic mapping by Piper (1942), Peck and others (1964), Newton (1969), Hampton (1972), Miller and Orr (1984), Orr and Miller (1984), and Miller and Orr (1986, 1988) established and refined the general stratigraphic framework of this region. This mapping identified few faults or folds; earlier investigators were hindered by the lack of reliably identifiable marker horizons within the stratigraphic section. Werner (1991), using available seismic profile lines and well data in the Willamette Valley to locate the top of the Columbia River Basalt Group, was able to identify and map faults within the subsurface. Reconnaissance mapping of the Columbia River Basalt Group (CRBG) units in this region in the early 1980’s indicated that these stratigraphic units could serve as a series of unique reference horizons for identifying post-Miocene folding and faulting (Beeson and others, 1985, 1989; Beeson and Tolan, 1990). The major emphasis of this investigation was to identify and map CRBG units within the Scotts Mills, Silverton, and Stayton NE quadrangles and to utilize this detailed CRBG stratigraphy to identify and characterize structural features.

  5. Mineralogical and spectral analysis of Vesta's Gegania and Lucaria quadrangles and comparative analysis of their key features

    NASA Astrophysics Data System (ADS)

    Longobardo, Andrea; Palomba, Ernesto; De Sanctis, Maria Cristina; Zinzi, Angelo; Scully, Jennifer E. C.; Capaccioni, Fabrizio; Tosi, Federico; Zambon, Francesca; Ammannito, Eleonora; Combe, Jean-Philippe; Raymond, Carol A.; Russell, Cristopher T.

    2015-10-01

    behavior of geomorphic grooves. Finally, ridges are characterized by a bluer color and, in some cases, shorter band centers than their surroundings, suggesting that they are composed of fresher materials. We also performed a comparative analysis between the three tholi of Vesta, i.e. Lucaria (which gives the name to its quadrangle), Aricia (in the Marcia quadrangle) and Brumalia (Numisia quadrangle). Whereas Brumalia tholus is a young magmatic intrusion, the absence of diogenites, the low albedo, and the orientation of Aricia and Lucaria tholi suggest that they are older features, which are covered by dark materials and therefore experienced a different geological history than Brumalia.

  6. Topographic Map of Quadrangles 3560 and 3562, Sir-Band (402), Khawja-Jir (403), and Bala-Murghab (404) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  7. NURE aerial gamma-ray and magnetic reconnaissance survey of portions of New Mexico, Arizona and Texas. Volume II. Arizona-Holbrook NI 12-5 Quadrangle. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-09-01

    The results of a high-sensitivity, aerial gamma-ray spectrometer and magnetometer survey of the Holbrook two degree quadrangle, Arizona are presented. Instrumentation and methods are described in Volume 1 of this final report. The work was done by Carson Helicopters, Inc., and Carson Helicopters was assisted in the interpretation by International Exploration, Inc. The work was performed for the US Department of Energy - National Uranium Resource Evaluation (NURE) program. Analysis of this radiometric data yielded 260 statistically significant eU anomalies. Of this number, forty-four were considered to be of sufficient strength to warrant further investigation. These preferred anomalies are separatedmore » into groups having some geologic aspect in common.« less

  8. Preliminary grid data and maps for an aeromagnetic survey of the Taylor mountains quadrangle and a portion of the Bethel quadrangle, Alaska

    USGS Publications Warehouse

    Saltus, R.W.; Milicevic, B.

    2004-01-01

    A preliminary data grid and maps are presented for an aeromagnetic survey of the Taylor Mountains and a portion of the Bethel quadrangles, Alaska. The aeromagnetic survey was flown by McPhar Geosurveys Ltd. for the U.S. Geological Survey (USGS). A flight-line spacing of 1,600 meters (1 mile) and nominal flight height of 305 meters (1,000 feet) above topography (draped) was used for the survey. The preliminary data grid has a grid cell size of 350 meters (1150 feet). Final data processing and quality control have not been applied to these data. The purpose of this preliminary data release is to allow prompt public access to these data, which are of interest for active mineral exploration in the region. A more complete data release and description will be published later once the final data processing is complete.

  9. Geologic map of the Nelson quadrangle, Lewis and Clark County, Montana

    USGS Publications Warehouse

    Reynolds, Mitchell W.; Hays, William H.

    2003-01-01

    The geologic map of the Nelson quadrangle, scale 1:24,000, was prepared as part of the Montana Investigations Project to provide new information on the stratigraphy, structure, and geologic history of an area in the geologically complex southern part of the Montana disturbed belt. In the Nelson area, rocks ranging in age from Middle Proterozoic through Cretaceous are exposed on three major thrust plates in which rocks have been telescoped eastward. Rocks within the thrust plates are folded and broken by thrust faults of smaller displacement than the major bounding thrust faults. Middle and Late Tertiary sedimentary and volcaniclastic rocks unconformably overlie the pre-Tertiary rocks. A major normal fault displaces rocks of the western half of the quadrangle down on the west with respect to strata of the eastern part. Alluvial and terrace gravels and local landslide deposits are present in valley bottoms and on canyon walls in the deeply dissected terrain. Different stratigraphic successions are exposed at different structural levels across the quadrangle. In the northeastern part, strata of the Middle Cambrian Flathead Sandstone, Wolsey Shale, and Meagher Limestone, the Middle and Upper Cambrian Pilgrim Formation and Park Shale undivided, the Devonian Maywood, Jefferson, and lower part of the Three Forks Formation, and Lower and Upper Mississippian rocks assigned to the upper part of the Three Forks Formation and the overlying Lodgepole and Mission Canyon Limestones are complexly folded and faulted. These deformed strata are overlain structurally in the east-central part of the quadrangle by a succession of strata including the Middle Proterozoic Greyson Formation and the Paleozoic succession from the Flathead Sandstone upward through the Lodgepole Limestone. In the east-central area, the Flathead Sandstone rests unconformably on the middle part of the Greyson Formation. The north edge, northwest quarter, and south half of the quadrangle are underlain by a

  10. Geologic Map of the Stafford Quadrangle, Stafford County, Virginia

    USGS Publications Warehouse

    Mixon, Robert B.; Pavlides, Louis; Horton, J. Wright; Powars, David S.; Schindler, J. Stephen

    2005-01-01

    Introduction The Stafford 7.5-minute quadrangle, comprising approximately 55 square miles (142.5 square kilometers) of northeastern Virginia, is about 40 miles (mi) south of Washington, D.C. The region's main north-south transportation corridor, which connects Washington, D.C., and Richmond, Va., consists of Interstate 95, U.S. Highway 1, and the heavily used CSX and Amtrak railroads. Although the northern and eastern parts of the Stafford quadrangle have undergone extensive suburban development, the remainder of the area is still dominantly rural in character. The town of Stafford is the county seat. The Stafford 7.5-minute quadrangle is located in the Fredericksburg 30'x60' quadrangle, where information on the regional stratigraphy and structure is available from Mixon and others' (2000) geologic map and multichapter explanatory text. In addition to straddling the 'Fall Zone' boundary between the Appalachian Piedmont and the Atlantic Coastal Plain provinces, this quadrangle contains the best preserved and best studied segment of the Stafford fault system, an important example of late Cenozoic faulting in eastern North America (Mixon and Newell, 1977). This 1:24,000-scale geologic map provides a detailed framework for interpreting and integrating topical studies of that fault system. Our geologic map integrates more than two decades of intermittent geologic mapping and related investigations by the authors in this part of the Virginia Coastal Plain. Earlier mapping in the Piedmont by Pavlides (1995) has been revised by additional detailed mapping in selected areas, particularly near Abel Lake and Smith Lake, and by field evaluation of selected contact relations.

  11. Geologic Map of the Greenaway Quadrangle (V-24), Venus

    USGS Publications Warehouse

    Lang, Nicholas P.; Hansen, Vicki L.

    2010-01-01

    The Greenaway quadrangle (V-24; lat 0 degrees -25 degrees N., long 120 degrees -150 degrees E.), Venus, derives its name from the impact crater Greenaway, centered at lat 22.9 degrees N., long 145.1 degrees E., in the northeastern part of the quadrangle. Greenaway was a well-noted writer and illustrator of children`s books in Britain during the nineteenth century. In Greenaway`s honor, the Library Association of Great Britain presents the annual Kate Greenaway Medal to an illustrator living and publishing in Britain who has produced the most distinguished children`s book illustrations for that year. The Greenaway quadrangle occupies an 8,400,000 km2 equatorial swath of lowlands and highlands. The map area is bounded by the crustal plateau, Thetis Regio, to the south and Gegute Tessera to the west. The rest of the quadrangle consists of part of Llorona Planitia, which is part of the vast lowlands that cover about 80 percent of Venus` surface. The southern map area marks the north edge of Aphrodite Terra, including Thetis Regio, that includes the highest topography in the quadrangle with elevations reaching >1 km above the Mean Planetary Radius (MPR; 6,051.84 km). Northern Aphrodite Terra abruptly slopes north to Llorona Planitia. A broad northeast-trending topographic arch pocked with coronae separates two northeast-trending elongate basins, Llorona Planitia on the east, that form depositional centers for shield and coronae-sourced materials; both basins drop to elevations of <-1 km. In addition to these major features, the map area hosts thousands of small volcanic constructs (shields); seven coronae; ribbon-tessera terrain; suites of faults, fractures, and wrinkle ridges; 23 impact craters; and one craterless splotch. Our goal for mapping the geology of the Greenaway quadrangle was to determine the geologic history for this region, which in turn provides insights into volcanic and tectonic processes that shaped the Venusian surface. Map relations illustrate that

  12. Geologic map of the Montauk quadrangle, Dent, Texas, and Shannon Counties, Missouri

    USGS Publications Warehouse

    Weary, David J.

    2015-04-30

    The Montauk 7.5-minute quadrangle is located in south-central Missouri within the Salem Plateau region of the Ozark Plateaus physiographic province. About 2,000 feet (ft) of flat-lying to gently dipping lower Paleozoic sedimentary rocks, mostly dolomite, chert, sandstone, and orthoquartzite, overlie Mesoproterozoic igneous basement rocks. Unconsolidated residuum, colluvium, terrace deposits, and alluvium overlie the sedimentary rocks. Numerous karst features, such as caves, springs, and sinkholes, have formed in the carbonate rocks. Many streams are spring fed. The topography is a dissected karst plain with elevations ranging from approximately 830 ft where the Current River exits the middle-eastern edge of the quadrangle to about 1,320 ft in sec. 16, T. 31 N., R. 7 W., in the southwestern part of the quadrangle. The most prominent physiographic features within the quadrangle are the deeply incised valleys of the Current River and its major tributaries located in the center of the map area. The Montauk quadrangle is named for Montauk Springs, a cluster of several springs that resurge in sec. 22, T. 32 N., R. 7 W. These springs supply clean, cold water for the Montauk Fish Hatchery, and the addition of their flow to that of Pigeon Creek produces the headwaters of the Current River, the centerpiece of the Ozark National Scenic Riverways park. Most of the land in the quadrangle is privately owned and used primarily for grazing cattle and horses and growing timber. A smaller portion of the land within the quadrangle is publicly owned by either Montauk State Park or the Ozark National Scenic Riverways (National Park Service). Geologic mapping for this investigation was conducted in 2007 and 2009.

  13. Mercury: Beethoven Quadrangle, H-7

    NASA Image and Video Library

    2000-04-01

    This image, from NASA Mariner 10 spacecraft which launched in 1974, is of the H-7 Beethoven Quadrangle, and lies in Mercury Equatorial Mercator. NASA Mariner 10 spacecraft imaged the region during its initial flyby of the planet.

  14. Analysis of design attributes and crashes on the Oregon highway system : final report.

    DOT National Transportation Integrated Search

    2001-08-01

    This report has investigated the statistical relationship between crash activity and roadway design attributes on the Oregon state : highway system. Crash models were estimated from highway segments distinguished by functional classification (freeway...

  15. Topographic Map of Quadrangles 3764 and 3664, Jalajin (117), Kham-Ab (118), Char Shangho (123), and Sheberghan (124) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  16. Topographic Map of Quadrangles 3168 and 3268, Yahya-Wona (703), Wersek (704), Khayr-Kot (521), and Urgon (522) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  17. Geology of the Pine Mountain quadrangle, Mesa county, Colorado

    USGS Publications Warehouse

    Cater, Fred W.

    1953-01-01

    The Pine Mountain quadrangle is one of eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of these quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from Paleozoic to Quaternary. Over mush of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by high-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confines to the Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as the "Uravan Mineral Belt". Individual deposits range in sizer from irregular masses containing only a few ton of ore to large, tabular masses containing many thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary structures in sandstones of favorable composition.

  18. Geology of the Calamity Mesa quadrangle, Mesa county, Colorado

    USGS Publications Warehouse

    Cater, Fred W.; Stager, Harold K.

    1953-01-01

    The Calamity Mesa quadrangle is one of eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of these quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks the range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by high-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as the "Uravan Mineral Belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large tabular masses containing many thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary structures in sandstones of favorable composition.

  19. The systematic geologic mapping program and a quadrangle-by-quadrangle analysis of time-stratigraphic relations within oil shale-bearing rocks of the Piceance Basin, western Colorado

    USGS Publications Warehouse

    Johnson, Ronald C.

    2012-01-01

    During the 1960s, 1970s, and 1980s, the U.S. Geological Survey mapped the entire area underlain by oil shale of the Eocene Green River Formation in the Piceance Basin of western Colorado. The Piceance Basin contains the largest known oil shale deposit in the world, with an estimated 1.53 trillion barrels of oil in place and as much as 400,000 barrels of oil per acre. This report places the sixty-nine 7½-minute geologic quadrangle maps and one 15-minute quadrangle map published during this period into a comprehensive time-stratigraphic framework based on the alternating rich and lean oil shale zones. The quadrangles are placed in their respective regional positions on one large stratigraphic chart so that tracking the various stratigraphic unit names that have been applied can be followed between adjacent quadrangles. Members of the Green River Formation were defined prior to the detailed mapping, and many inconsistencies and correlation problems had to be addressed as mapping progressed. As a result, some of the geologic units that were defined prior to mapping were modified or discarded. The extensive body of geologic data provided by the detailed quadrangle maps contributes to a better understanding of the distribution and characteristics of the oil shale-bearing rocks across the Piceance Basin.

  20. Geologic quadrangle maps of the United States: geology of the Casa Diablo Mountain quadrangle, California

    USGS Publications Warehouse

    Rinehart, C. Dean; Ross, Donald Clarence

    1957-01-01

    The Casa Diablo Mountain quadrangle was mapped in the summers of 1952 and 1953 by the U.S. Geological Survey in cooperation with the California State Division of Mines as part of a study of potential tungsten-bearing areas.

  1. Geologic map of the Fraser 7.5-minute quadrangle, Grand County, Colorado

    USGS Publications Warehouse

    Shroba, Ralph R.; Bryant, Bruce; Kellogg, Karl S.; Theobald, Paul K.; Brandt, Theodore R.

    2010-01-01

    The geologic map of the Fraser quadrangle, Grand County, Colo., portrays the geology along the western boundary of the Front Range and the eastern part of the Fraser basin near the towns of Fraser and Winter Park. The oldest rocks in the quadrangle include gneiss, schist, and plutonic rocks of Paleoproterozoic age that are intruded by younger plutonic rocks of Mesoproterozoic age. These basement rocks are exposed along the southern, eastern, and northern margins of the quadrangle. Fluvial claystone, mudstone, and sandstone of the Upper Jurassic Morrison Formation, and fluvial sandstone and conglomeratic sandstone of the Lower Cretaceous Dakota Group, overlie Proterozoic rocks in a small area near the southwest corner of the quadrangle. Oligocene rhyolite tuff is preserved in deep paleovalleys cut into Proterozoic rocks near the southeast corner of the quadrangle. Generally, weakly consolidated siltstone and minor unconsolidated sediments of the upper Oligocene to upper Miocene Troublesome Formation are preserved in the post-Laramide Fraser basin. Massive bedding and abundant silt suggest that loess or loess-rich alluvium is a major component of the siltstone in the Troublesome Formation. A small unnamed fault about one kilometer northeast of the town of Winter Park has the youngest known displacement in the quadrangle, displacing beds of the Troublesome Formation. Surficial deposits of Pleistocene and Holocene age are widespread in the Fraser quadrangle, particularly in major valleys and on slopes underlain by the Troublesome Formation. Deposits include glacial outwash and alluvium of non-glacial origin; mass-movement deposits transported by creep, debris flow, landsliding, and rockfall; pediment deposits; tills deposited during the Pinedale and Bull Lake glaciations; and sparse diamictons that may be pre-Bull Lake till or debris-flow deposits. Some of the oldest surficial deposits may be as old as Pliocene.

  2. 1976 Oregon timber harvest.

    Treesearch

    J.D. Jr. Lloyd

    1978-01-01

    The 1976 Oregon timber harvest of 8.15 billion board feet ended a 3-year decline. The cut was 783 million board feet (10.6 percent) above the 1975 harvest. The western Oregon harvest rose 812 million board feet (15 percent) while eastern Oregon declined 29 million board feet (15 percent). The proportion of total harvest which comes from eastern Oregon has gradually...

  3. Geologic map of the Pinedale quadrangle, McKinley County, New Mexico

    USGS Publications Warehouse

    Robertson, Jacques F.

    2005-01-01

    The 1:24,000-scale geologic map of the Pinedale 7.5' quadrangle lies in the western part of the Grants uranium mineral belt, which was mapped and studied under a cooperative agreement between the USGS and the U.S. Department of Energy. A spectacular panoramic view of the southern half of the Pinedale quadrangle is obtained looking northward from Interstate Highway 40, particularly from the New Mexico State travelers' rest stop near the Shell Oil Company's Ciniza Refinery, 28.5 kilometers (17.8 miles) east of Gallup. A west-trending escarpment, 200 meters high, of massive red sandstone, rises above a broad valley, its continuity broken only by a few deep and picturesque canyons in the western half of the quadrangle. The escarpment is formed by the eolian Entrada Sandstone of Late Jurassic age. The Entrada unconformably overlies the Chinle Formation of Late Triassic age, which occupies the valley below. The Chinle Formation consists of cherty mottled limestone and mudstone of the Owl Rock Member and underlying, poorly consolidated, red to purple fluvial siltstone, mudstone, and sandstone beds of the Petrified Forest Member. The pinyon- and juniper-covered bench that tops the escarpment is underlain by the Todilto Limestone. A quarry operation, located just north of the Indian community of Iyanbito in the southwestern part of the quadrangle, produces crushed limestone aggregate for highway construction and railroad ballast. Beyond the escarpment to the north and rising prominently above it, is the northwest-trending Fallen Timber Ridge. Near the west side of the quadrangle lie the peaks of Midget Mesa, and Mesa Butte, the latter of which has the highest altitude in the area at 2,635 meters (8,030 feet) above sea level. The prominences are capped by buff-colored resistant beds of the Dakota Sandstone of Late Cretaceous age, containing some interbedded coal. These beds unconformably overlie the uranium-bearing Morrison Formation, which consists of red, green, and gray

  4. Interpretive geologic bedrock map of the Tanana B-1 Quadrangle, Central Alaska

    USGS Publications Warehouse

    Reifenstuh, Rocky R.; Dover, James H.; Newberry, Rainer J.; Calutice, Karen H.; Liss, Shirley A.; Blodgett, Robert B.; Budtzen, Thomas K.; Weber, Florence R.

    1997-01-01

    This report provides detailed (1:63,360-scale) mapping of the Tanana B-1 Quadrangle (250 square miles; equivalent to four 7.5 minute quadrangles). The area is part of the Manley Hot Springs-Tofty mining districts and adjacent to the Rampart mining district to the north of the Tanana A-1 and A-2 Quadrangles. This report includes detailed bedrock, structural, stratigraphic, and geochronologic data. Based on the resulting geologic maps, field investigations, and laboratory materials analyses, the project has also generated derivative maps of geologic construction materials and geologic hazards.

  5. Preliminary geologic map of the Winchester 7.5' quadrangle, Riverside County, California

    USGS Publications Warehouse

    Morton, Douglas M.

    2003-01-01

    The Winchester quadrangle is located in the northern part of the Peninsular Ranges Province within the central part of the Perris block, a relatively stable, rectangular in plan view, area located between the Elsinore and San Jacinto fault zones (see location map). The quadrangle is underlain by Cretaceous and older basement rocks. Cretaceous plutonic rocks are part of the composite Peninsular Ranges batholith, which indicates wide variety of granitic rocks, ranging from granite to gabbro. Parts of three major plutonic complexes are within the quadrangle, the Lakeview Mountains pluton, the Domenigoni Valley pluton and the Paloma Valley ring complex. In the northern part of the quadrangle is the southern part of the Lakeview Mountains pluton, a large composite body, most of which lies in the quadrangle to the north. In the center part of the quadrangle is the eastern part of the Domenigoni Valley pluton, which consists of massive biotite-hornblende granodiorite and tonalite; some tonalite in the southern part of the pluton has a relatively pronounced foliation produced by oriented biotite and hornblende. Common to abundant equant-shaped, mafic inclusions occur through out the pluton except in the outermost part where inclusions are absent. The pluton was passively emplaced by piecemeal stoping of a variety of older rocks and the eastern contact is well exposed in the quadrangle. Associated with the Domenigoni Valley pluton is a swarm of latite dikes; the majority of these dikes occur in the Winchester quadrangle, but they extend into the Romoland quadrangle to the west. The latite dikes intrude both the pluton and adjacent metamorphic rocks, most are foliated, and most have a well developed lineation defined by oriented biotite and/or hornblende crystals. Dikes intruding the pluton were emplaced in northwest striking joints; and dikes intruding the metamorphic rocks were emplaced along foliation planes. In the eastern part of the quadrangle a Cretaceous age suture

  6. Geologic map and digital database of the Apache Canyon 7.5' quadrangle, Ventura and Kern counties, California

    USGS Publications Warehouse

    Stone, Paul; Cossette, P.M.

    2000-01-01

    The Apache Canyon 7.5-minute quadrangle is located in southwestern California about 55 km northeast of Santa Barbara and 65 km southwest of Bakersfield. This report presents the results of a geologic mapping investigation of the Apache Canyon quadrangle that was carried out in 1997-1999 as part of the U.S. Geological Survey's Southern California Areal Mapping Project. This quadrangle was chosen for study because it is in an area of complex, incompletely understood Cenozoic stratigraphy and structure of potential importance for regional tectonic interpretations, particularly those involving the San Andreas fault located just northwest of the quadrangle and the Big Pine fault about 10 km to the south. In addition, the quadrangle is notable for its well-exposed sequences of folded Neogene nonmarine strata including the Caliente Formation of Miocene age from which previous workers have collected and described several biostratigraphically significant land-mammal fossil assemblages. During the present study, these strata were mapped in detail throughout the quadrangle to provide an improved framework for possible future paleontologic investigations. The Apache Canyon quadrangle is in the eastern part of the Cuyama 30-minute by 60-minute quadrangle and is largely part of an erosionally dissected terrain known as the Cuyama badlands at the east end of Cuyama Valley. Most of the Apache Canyon quadrangle consists of public lands in the Los Padres National Forest.

  7. Geologic Map of the Sulphur Mountain Quadrangle, Park County, Colorado

    USGS Publications Warehouse

    Bohannon, Robert G.; Ruleman, Chester A.

    2009-01-01

    The main structural element in the Sulphur Mountain quadrangle is the Elkhorn thrust. This northwest-trending fault is the southernmost structure that bounds the west side of the Late Cretaceous and early Tertiary Front Range basement-rock uplift. The Elkhorn thrust and the Williams Range thrust that occurs in the Dillon area north of the quadrangle bound the west flank of the Williams Range and the Front Range uplift in the South Park area. Kellogg (2004) described widespread, intense fracturing, landsliding, and deep-rooted scarps in the crystalline rocks that comprise the upper plate of the Williams Range thrust. The latter thrust is also demonstrably a low-angle structure upon which the fractured bedrock of the upper plate was translated west above Cretaceous shales. Westward thrusting along the border of the Front Range uplift is probably best developed in that area. By contrast, the Elkhorn in the Sulphur Mountain quadrangle is poorly exposed and occurs in an area of relatively low relief. The thrust also apparently ends in the central part of the quadrangle, dying out into a broad area of open, upright folds with northwest axes in the Sulphur Mountain area.

  8. Reconnaissance geology of the Al Mukhul Quadrangle, sheet 26/42 B, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Du Bray, E.A.

    1984-01-01

    Mineral potential in the quadrangle is low. At a very small prospect pit in the north-central part of the quadrangle, massive, milky quartz veins cutting weakly metamorphosed volcanogenic sedimentary rocks are stained blue and green by copper minerals. A previously reported mine site in the southern part of the quadrangle was not relocated.

  9. Preliminary geologic map of the Townsend 30' x 60' quadrangle, Montana

    USGS Publications Warehouse

    Reynolds, Mitchell W.; Brandt, Theodore R.

    2006-01-01

    The geologic map of the Townsend quadrangle, scale 1:100,000, was made as part of the Montana Investigations Project to provide new information on the stratigraphy, structure, and geologic history of this geologically complex area in west-central Montana. The quadrangle encompasses about 4,200 square km (1,640 square mi).

  10. Aerial gamma ray and magnetic survey: Nebraska/Texas Project, the Tyler, Texarkana, and Waco quadrangles of Texas, Oklahoma, Arkansas, and Louisiana. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    During the months of September and October, 1979, EG and G geoMetrics collected 8866 line miles of high sensitivity airborne radiometric and magnetic data. Data were gathered primarily within the state of Texas, in three 1 x 2 degree NTMS quadrangles. This project is part of the Department of Energy's National Uranium Resource Evaluation Program. All radiometric and magnetic data were fully corrected and interpreted by geoMetrics and are presented as four Volumes (one Volume I and three Volume II's). The quadrangles are dominated by Cretaceous and Tertiary marine sediments. The cretaceous rocks are largely shallow marine sediments of biogenicmore » origin, whereas the Tertiary sequence represents transgressing shelf and slope deposits. No uranium deposits are known in this area (Schnabel, 1955).« less

  11. 1972 Oregon timber harvest.

    Treesearch

    J.D. Jr. Lloyd

    1973-01-01

    The 1972 Oregon timber harvest of 9.6 billion board feet was 602 million board feet (6.7 percent) above the 1971 harvest. Western Oregon's harvest rose 8 percent and eastern Oregon's harvest rose 2 percent.

  12. Topographic Map of Quadrangles 3666 and 3766, Balkh (219), Mazar-I-Sharif (220), Qarqin (213), and Hazara Toghai (214) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  13. Topographic Map of Quadrangles 3770 and 3870, Maymayk (211), Jamarj-I-Bala (212), Faydz-Abad (217), and Parkhaw (218) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  14. Topographic Map of Quadrangles 3260 and 3160, Dasht-E-Chahe-Mazar (419), Anardara (420), Asparan (601), and Kang (602) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  15. Airborne gamma-ray spectrometer and magnetometer survey: Durango Quadrangle (Colorado). Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-08-01

    Between September 26 and November 9, 1978, Aero Service Division Western Geophysical Company of America conducted a high sensitivity airborne gamma-ray spectrometer and magnetometer survey over the 2/sup 0/ x 1/sup 0/ NTMS quadrangle of Durango, Colorado. The survey area is bounded by the 106/sup 0/W and 108/sup 0/W meridians and the 37/sup 0/N and 38/sup 0/N parallels. The area contains rocks of the Colorado Plateau suite in the southwestern part. The remainder of the area, with the exception of the eastern margin, is underlain by intrusive and extrusive igneous rocks and volcano-clastic sediments of Tertiary age. The eastern marginmore » of the map is formed by the Quaternary alluvium of the San Juan Valley. The major river in the area is the Rio Grande, which drains the San Juan mountains to the east of the continental divide. The southwestern part of the San Juan mountains is drained by the San Juan river, a tributary of the Colorado River.« less

  16. Low-cost piezoelectric weigh-in-motion systems in Oregon : 1988-1993 : final report.

    DOT National Transportation Integrated Search

    1994-12-01

    In 1988, The Oregon Department of Transportation installed low-cost piezoelectric weigh-in-motion cables at three locations and in ten lanes on Interstate 5 and 205. This report documents the installation of the systems, problems, and results from 19...

  17. Geology of the Lake Mary quadrangle, Iron County, Michigan

    USGS Publications Warehouse

    Bayley, Richard W.

    1959-01-01

    The Lake Mary quadrangle is in eastern Iron County, in the west part of the Upper Peninsula of Michigan. The quadrangle is underlain by Lower and Middle Precambrian rocks, formerly designated Archean and Algonkian rocks, and is extensively covered by Pleistocene glacial deposits. A few Upper Precambrian (Keweenawan) diabase dikes and two remnants of sandstone and dolomite of early Paleozoic age are also found in the area. The major structural feature is the Holmes Lake anticline, the axis of which strikes northwest through the northeast part of the quadrangle. Most of the quadrangle, therefore, is underlain by rock of the west limb of the anticline. To the northwest along the fold axis, the Holmes Lake anticline is separated from the Amasa oval by a saddle of transverse folds in the vicinity of Michigamme Mountain in the Kiernan quadrangle. The Lower Precambrian rocks are represented by the Dickinson group and by porphyritic red granite whose relation to the Dickinson group is uncertain, but which may be older. The rocks of the Dickinson group are chiefly green to black metavolcanic schist and red felsite, some of the latter metarhyolite. The dark schist is commonly magnetic. The Dickinson group underlies the core area of the Holmes Lake anticline, which is flanked by steeply dipping Middle Precambrian formations of the Animikie series. A major unconformity separates the Lower Precambrian rocks from the overlying Middle Precambrian rocks. In ascending order the formations of the Middle Precambrian are the Randville dolomite, the Hemlock formation, which includes the Mansfield iron-bearing slate member, and the Michigamme slate. An unconformity occurs between the Hemlock formation and Michigamme slate. The post-Hemlock unconformity is thought to be represented in the Lake Mary quadrangle by the absence of iron-formation of the Amasa formation, which is known to lie between the Hemlock and the Michigamme to the northwest of the Lake Mary quadrangle in the Crystal

  18. Geologic Map of the Aino Planitia (V46) Quadrangle, Venus 1:5,000,000

    USGS Publications Warehouse

    Stofan, Ellen R.; Guest, John E.

    2003-01-01

    The Aino Planitia quadrangle (V-46) extends from 25?-50? S. latitude, 60?-90? E. longitude. The quadrangle was mapped at 1:5,000,000 scale as part of the NASA Planetary Geologic Mapping Program. Aino Planitia is a lowland region in the southern hemisphere of Venus and is southwest of Thetis Regio in western Aphrodite Terra. It is dominated by low-lying plains units that are characterized by northeast-trending wrinkle ridges and numerous small volcanic edifices, including shields, domes, and cones. The quadrangle contains a major volcano, Kunapipi Mons, and portions of Juno Chasma. A northern extension of the Lada Terra highland is in the southwestern portion of the map. Eight coronae are mapped in the quadrangle, the largest of which is the 500-km-diameter Copia Corona. The region is dominated by plains that are interpreted to be of volcanic origin. Most of the plains units are composites of flow units of differing ages. The overall topography of V-46 consists of low-lying plains slightly below Mean Planetary Radius (MPR, 6051.84 km). The summit of Kunapipi Mons is the highest point in the quadrangle, at about 2.2 km above MPR; the lowest points in rifts and troughs are at about 1.7 km below MPR. The regions that are the roughest at Magellan radar wavelengths in the quadrangle occur along the rim of Copia Corona, with most regions being relatively smooth (roughness comparable to the average Venus surface. Emissivity values in the quadrangle vary from 0.82-0.90.

  19. Geologic map of the Glen Canyon Dam 30’ x 60’ quadrangle, Coconino County, northern Arizona

    USGS Publications Warehouse

    Billingsley, George H.; Priest, Susan S.

    2013-01-01

    The Glen Canyon Dam 30’ x 60’ quadrangle is characterized by nearly flat lying to gently dipping Paleozoic and Mesozoic sedimentary strata that overlie tilted Proterozoic strata or metasedimentary and igneous rocks similar to those exposed at the bottom of Grand Canyon southwest of the quadrangle. Mississippian to Permian rocks are exposed in the walls of Marble Canyon; Permian strata and minor outcrops of Triassic strata form the surface bedrock of House Rock Valley and Marble Plateau, southwestern quarter of the quadrangle. The Paleozoic strata exposed in Marble Canyon and Grand Canyon south of the map are likely present in the subsurface of the entire quadrangle but with unknown facies and thickness changes. The Mesozoic sedimentary rocks exposed along the Vermilion and Echo Cliffs once covered the entire quadrangle, but Cenozoic erosion has removed most of these rocks from House Rock Valley and Marble Plateau areas. Mesozoic strata remain over much of the northern and eastern portions of the quadrangle where resistant Jurassic sandstone units form prominent cliffs, escarpments, mesas, buttes, and much of the surface bedrock of the Paria, Kaibito, and Rainbow Plateaus. Jurassic rocks in the northeastern part of quadrangle are cut by a sub-Cretaceous regional unconformity that bevels the Entrada Sandstone and Morrison Formation from Cummings Mesa southward to White Mesa near Kaibito. Quaternary deposits, mainly eolian, mantle much of the Paria, Kaibito, and Rainbow Plateaus in the northern and northeastern portion of the quadrangle. Alluvial deposits are widely distributed over parts of House Rock Valley and Marble Plateau in the southwest quarter of the quadrangle. The east-dipping strata of the Echo Cliffs Monocline forms a general north-south structural boundary through the central part of the quadrangle, separating Marble and Paria Plateaus west of the monocline from the Kaibito Plateau east of the monocline. The Echo Cliffs Monocline continues north of

  20. Red blotch in Oregon

    USDA-ARS?s Scientific Manuscript database

    During 2016 we found three potential virus vector insects in Oregon vineyards. Spissistilus festinus was found in Southern Oregon and was recorded in all production regions throughout Oregon during the last 100 years (data from OSU insect collection). We additionally found the treehopper species (Me...

  1. 75 FR 918 - Oregon: Final Authorization of State Hazardous Waste Management Program Revision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-07

    ... Authorization of State Hazardous Waste Management Program Revision AGENCY: Environmental Protection Agency (EPA... hazardous waste management program under the Resource Conservation and Recovery Act, as amended (RCRA). On... has decided that the revisions to the Oregon hazardous waste management program satisfy all of the...

  2. Geologic map and digital database of the Cougar Buttes 7.5' quadrangle, San Bernardino County, California

    USGS Publications Warehouse

    Powell, R.E.; Matti, J.C.; Cossette, P.M.

    2000-01-01

    The Southern California Areal Mapping Project (SCAMP) of Geologic Division has undertaken regional geologic mapping investigations in the Lucerne Valley area co-sponsored by the Mojave Water Agency and the San Bernardino National Forest. These investigations span the Lucerne Valley basin from the San Bernardino Mountains front northward to the basin axis on the Mojave Desert floor, and from the Rabbit Lake basin east to the Old Woman Springs area. Quadrangles mapped include the Cougar Buttes 7.5' quadrangle, the Lucerne Valley 7.5' quadrangle (Matti and others, in preparation b), the Fawnskin 7.5' quadrangle (Miller and others, 1998), and the Big Bear City 7.5' quadrangle (Matti and others, in preparation a). The Cougar Buttes quadrangle has been mapped previously at scales of 1:62,500 (Dibblee, 1964) and 1:24,000 (Shreve, 1958, 1968; Sadler, 1982a). In line with the goals of the National Cooperative Geologic Mapping Program (NCGMP), our mapping of the Cougar Buttes quadrangle has been directed toward generating a multipurpose digital geologic map database. Guided by the mapping of previous investigators, we have focused on improving our understanding and representation of late Pliocene and Quaternary deposits. In cooperation with the Water Resources Division of the U.S. Geological Survey, we have used our mapping in the Cougar Buttes and Lucerne Valley quadrangles together with well log data to construct cross-sections of the Lucerne Valley basin (R.E. Powell, unpublished data, 1996-1998) and to develop a hydrogeologic framework for the basin. Currently, our mapping in these two quadrangles also is being used as a base for studying soils on various Quaternary landscape surfaces on the San Bernardino piedmont (Eppes and others, 1998). In the Cougar Buttes quadrangle, we have endeavored to represent the surficial geology in a way that provides a base suitable for ecosystem assessment, an effort that has entailed differentiating surficial veneers on piedmont and

  3. Topographic Map of Quadrangles 3060 and 2960, Qala-I-Fath (608), Malek-Sayh-Koh (613), and Gozar-E-Sah (614) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  4. Geologic map of the Santa Ana Pueblo quadrangle, Sandoval County, New Mexico

    USGS Publications Warehouse

    Personius, Stephen F.

    2002-01-01

    The Santa Ana Pueblo quadrangle is located in the northern part of the Albuquerque basin, which is the largest basin or graben within the Rio Grande rift. The quadrangle is underlain by poorly consolidated sedimentary rocks of the Santa Fe Group and is dominated by Santa Ana Mesa, a volcanic tableland underlain by basalt flows of the San Felipe volcanic field. The San Felipe volcanic field is the largest area of basaltic lavas exposed in the Albuquerque basin. The structural fabric of the quadrangle is dominated by dozens of generally north striking, east- and west-dipping normal faults associated with the Neogene Rio Grande rift.

  5. 1973 Oregon timber harvest.

    Treesearch

    J.D. Jr. Lloyd

    1974-01-01

    The 1973 Oregon timber harvest of 9.36 billion board feet was 265 million board feet (2.8 percent) below the 1972 harvest. The greater portion of the decrease occurred in eastern Oregon where timber harvest dropped 9.4 percent compared with 0.9 percent in western Oregon.

  6. 21 CFR 808.87 - Oregon.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Oregon. 808.87 Section 808.87 Food and Drugs FOOD... and Local Exemptions § 808.87 Oregon. (a) The following Oregon medical device requriements are... them from preemption under section 521(b) of the act: Oregon Revised Statutes, section 694.036 on the...

  7. 21 CFR 808.87 - Oregon.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Oregon. 808.87 Section 808.87 Food and Drugs FOOD... and Local Exemptions § 808.87 Oregon. (a) The following Oregon medical device requriements are... them from preemption under section 521(b) of the act: Oregon Revised Statutes, section 694.036 on the...

  8. 21 CFR 808.87 - Oregon.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Oregon. 808.87 Section 808.87 Food and Drugs FOOD... and Local Exemptions § 808.87 Oregon. (a) The following Oregon medical device requriements are... them from preemption under section 521(b) of the act: Oregon Revised Statutes, section 694.036 on the...

  9. 21 CFR 808.87 - Oregon.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Oregon. 808.87 Section 808.87 Food and Drugs FOOD... and Local Exemptions § 808.87 Oregon. (a) The following Oregon medical device requriements are... them from preemption under section 521(b) of the act: Oregon Revised Statutes, section 694.036 on the...

  10. 21 CFR 808.87 - Oregon.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Oregon. 808.87 Section 808.87 Food and Drugs FOOD... and Local Exemptions § 808.87 Oregon. (a) The following Oregon medical device requriements are... them from preemption under section 521(b) of the act: Oregon Revised Statutes, section 694.036 on the...

  11. Preliminary Geologic Map of the Hemet 7.5' Quadrangle, Riverside County, California

    USGS Publications Warehouse

    Morton, Douglas M.; Matti, Jon C.

    2005-01-01

    The Hemet 7.5' quadrangle is located near the eastern edge of the Perris block of the Peninsular Ranges batholith. The northeastern corner of the quadrangle extends across the San Jacinto Fault Zone onto the edge of the San Jacinto Mountains block. The Perris block is a relatively stable area located between the Elsinore Fault Zone on the west and the San Jacinto Fault Zone on the east. Both of the fault zones are active; the San Jacinto being the seismically most active in southern California. The fault zone is obscured by very young alluvial deposits. The concealed location of the San Jacinto Fault Zone shown on this quadrangle is after Sharp, 1967. The geology of the quadrangle is dominated by Cretaceous tonalite formerly included in the Coahuila Valley pluton of Sharp (1967). The northern part of Sharp's Coahuila Valley pluton is separated out as the Hemet pluton. Tonalite of the Hemet pluton is more heterogeneous than the tonalite of the Coahuila Valley pluton and has a different sturctural pattern. The Coahuila Valley pluton consists of relatively homogeneous hornblende-biotite tonalite, commonly with readily visible large euhedral honey-colored sphene crystals. Only the tip of the adjacent Tucalota Valley pluton, another large tonalite pluton, extends into the quadrangle. Tonalite of the Tucalota Valley pluton is very similar to the tonalite of the Coahuila Valley pluton except it generally lacks readily visible sphene. In the western part of the quadrangle a variety of amphibolite grade metasedimentary rocks are informally referred to as the rocks of Menifee Valley; named for exposures around Menifee Valley west of the Hemet quadrangle. In the southwestern corner of the quadrangle a mixture of schist and gneiss marks a suture that separated low metamorphic grade metasedimentary rocks to the west from high metamorphic grade rocks to the east. The age of these rocks is interpreted to be Triassic and the age of the suturing is about 100 Ma, essentially the

  12. Mapping Vesta Equatorial Quadrangle V-8EDL: Various Craters and Giant Grooves

    NASA Astrophysics Data System (ADS)

    Le Corre, L.; Nathues, A.; Reddy, V.; Buczkowski, D.; Denevi, B. W.; Gaffey, M.; Williams, D. A.; Garry, W. B.; Yingst, R.; Jaumann, R.; Pieters, C. M.; Russell, C. T.; Raymond, C. A.

    2011-12-01

    NASA's Dawn spacecraft arrived at the asteroid 4Vesta on July 15, 2011, and is now collecting imaging, spectroscopic, and elemental abundance data during its one-year orbital mission. As part of the geological analysis of the surface, a series of 15 quadrangle maps are being produced based on Framing Camera images (FC: spatial resolution: ~65 m/pixel) along with Visible & Infrared Spectrometer data (VIR: spatial resolution: ~180 m/pixel) obtained during the High-Altitude Mapping Orbit (HAMO). This poster presentation concentrates on our geologic analysis and mapping of quadrangle V-8EDL located between -22 and 22 degrees latitude and 144 and 216 degrees East longitude. This quadrangle is dominated by old craters (without any ejecta visible in the clear and color bands), but one small recent crater can be seen with bright ejecta blanket and rays. The latter has some small, dark units outside and inside the crater rim that could be indicative of impact melt. This quadrangle also contains a set of giant linear grooves running almost parallel to the equator that might have formed subsequent to a big impact. We will use FC mosaics with clear images and false color composites as well as VIR spectroscopy data in order to constrain the geology and identify the nature of each unit present in this quadrangle.

  13. Evaluation of latex polymers to resist stripping in asphalt pavements in Oregon : final report.

    DOT National Transportation Integrated Search

    2005-03-01

    This study assessed the effectiveness of latex polymer anti-stripping treatment by inspecting and evaluating the : condition of pavements constructed in Oregon from 1997-2001. Ten hot mix asphalt concrete paving projects : were identified throughout ...

  14. Oregon aviation plan

    DOT National Transportation Integrated Search

    2000-02-01

    The 1992 Oregon Transportation Plan created policies and investment strategies for Oregon's multimodal transportation system. The statewide plan called for a transportation system marked by modal balance, efficiency, accessibility, environmental resp...

  15. 1971 Oregon timber harvest.

    Treesearch

    Brian R. Wall

    1972-01-01

    The 1971 Oregon timber harvest of 9.03 billion board feet was the highest since 1969 when 9.15 billion board feet was harvested. The 1971 total harvest was 13.1 percent above the 1970 figure. Western Oregon's harvest rose 11-5 percent, and eastern Oregon's harvest rose 18.6 percent.

  16. Single-edition quadrangle maps

    USGS Publications Warehouse

    ,

    1998-01-01

    In August 1993, the U.S. Geological Survey's (USGS) National Mapping Division and the U.S. Department of Agriculture's Forest Service signed an Interagency Agreement to begin a single-edition joint mapping program. This agreement established the coordination for producing and maintaining single-edition primary series topographic maps for quadrangles containing National Forest System lands. The joint mapping program saves money by eliminating duplication of effort by the agencies and results in a more frequent revision cycle for quadrangles containing national forests. Maps are revised on the basis of jointly developed standards and contain normal features mapped by the USGS, as well as additional features required for efficient management of National Forest System lands. Single-edition maps look slightly different but meet the content, accuracy, and quality criteria of other USGS products. The Forest Service is responsible for the land management of more than 191 million acres of land throughout the continental United States, Alaska, and Puerto Rico, including 155 national forests and 20 national grasslands. These areas make up the National Forest System lands and comprise more than 10,600 of the 56,000 primary series 7.5-minute quadrangle maps (15-minute in Alaska) covering the United States. The Forest Service has assumed responsibility for maintaining these maps, and the USGS remains responsible for printing and distributing them. Before the agreement, both agencies published similar maps of the same areas. The maps were used for different purposes, but had comparable types of features that were revised at different times. Now, the two products have been combined into one so that the revision cycle is stabilized and only one agency revises the maps, thus increasing the number of current maps available for National Forest System lands. This agreement has improved service to the public by requiring that the agencies share the same maps and that the maps meet a

  17. Geology of the Lachesis Tessera Quadrangle (V-18), Venus

    NASA Technical Reports Server (NTRS)

    McGowan, Eileen M.; McGill, George G.

    2010-01-01

    The Lachesis Tessera Quadrangle (V-18) lies between 25deg and 50deg north, 300deg and 330deg east. Most of the quadrangle consists of "regional plains" (1) of Sedna and Guinevere Planitiae. A first draft of the geology has been completed, and the tentative number of mapped units by terrain type is: tesserae - 2; plains - 4; ridge belts - 1; fracture belts - 1 (plus embayed fragments of possible additional belts); coronae - 5; central volcanoes - 2; shield flows - 2; paterae - 1; impact craters - 13; undifferentiated flows - 1; bright materials - 1.

  18. Historic trail map of the La Junta 1 degree x 2 degree quadrangle, southeastern Colorado and western Kansas

    USGS Publications Warehouse

    Scott, Glenn R.; Louden, Richard H.; Brunstein, F. Craig; Quesenberry, Carol A.

    2008-01-01

    This historic trail map of the La Junta quadrangle contains all or part of eight Colorado and Kansas counties. Many of the historic trails in the La Junta quadrangle were used by Indians long before the white man reached the area. The earliest recorded use of the trails by white men in the quadrangle was in the 1820s when traders brought goods from St. Louis for barter with the Indians and for commerce with the Mexican settlements in New Mexico. The map and accompanying pamphlet include an introduction and the method of preparation used by the authors. The pamphlet includes a description of the early explorers along the Arkansas River and on the Santa Fe Trail, as well as roads established or proposed under General Assembly session law, Colorado Territorial corporations and charters, 1859-1876, and freighting companies. Stage companies that probably operated in the La Junta quadrangle also are described. The authors include a section on railroads in the quadrangle and north of the quadrangle along the Arkansas River. Military and civilian camps, forts, and bases are reported. Moreover, fossils and plants in the quadrangle are described. Indian tribes - Early Man or paleo-Indians, Archaic Indians, prehistoric and historic Indians, and historic Indian tribes in the quadrangle - are reported. Authors include place names within and along freight routes leading to the La Junta quadrangle. A full description of the contents along with three figures can be found in the Introduction.

  19. Topographic Map of Quadrangle 3470 and the Northern Edge of 3370, Jalal-Abad (511), Chaghasaray (512), and Northernmost Jaji-Maydan (517) Quadrangles, Afg

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  20. Map showing scenic features and recreation facilities of the Salina quadrangle, Utah

    USGS Publications Warehouse

    Williams, Paul L.; Covington, Harry R.

    1973-01-01

    This map is intended as a guide for those who enjoy outdoor recreation in magnificent scenic settings.The Salina quadrangle lies in the heart of the Colorado Plateau, a sparsely populated land of unique and outstanding scenic beauty. The eastern half of the quadrangle is a great desert, partly blanketed by sand dunes, but  mostly an area of badlands multicolored cliffs and benches of virtually barren rock, and deeply incised canyons. In the west half of the quadrangle, rugged tree-covered foothills flank high forested plateaus rimmed by cliffs. On these High Plateaus, dense coniferous forest is interspersed with wide grassy parks, grazed in summer by sheep and cattle. Valleys between the plateaus contain irrigated crop lands.

  1. OR State Profile. Oregon: Oregon State Assessment System (OSAS)

    ERIC Educational Resources Information Center

    Center on Education Policy, 2010

    2010-01-01

    This paper provides information about Oregon State Assessment System. Its purpose is to assess proficiency in the Essential Skills for the purpose of earning a regular or modified high school diploma. Oregon Assessment of Knowledge and Skills is also used for federal accountability purposes under No Child Left Behind. [For the main report,…

  2. Oregon Works: Assessing the Worker Training and Work Organization Practices of Oregon Employers.

    ERIC Educational Resources Information Center

    Oregon State Economic Development Dept., Salem.

    In 1992, questionnaires regarding the training and work organization practices were mailed to a random sample of 4,000 Oregon employers, and focus groups were held with 100 Oregon managers/employers. The main findings from the completed questionnaires (43% response rate) were as follows: most Oregon employers do not plan for training or treat it…

  3. Geologic map of the Strawberry Butte 7.5’ quadrangle, Meagher County, Montana

    USGS Publications Warehouse

    Reynolds, Mitchell W.; Brandt, Theodore R.

    2017-06-19

    The 7.5′ Strawberry Butte quadrangle in Meagher County, Montana near the southwest margin of the Little Belt Mountains, encompasses two sharply different geologic terranes.  The northern three-quarters of the quadrangle are underlain mainly by Paleoproterozoic granite gneiss, across which Middle Cambrian sedimentary rocks rest unconformably.  An ancestral valley of probable late Eocene age, eroded northwest across the granite gneiss terrane, is filled with Oligocene basalt and overlying Miocene and Oligocene sandstone, siltstone, tuffaceous siltstone, and conglomerate.  The southern quarter of the quadrangle is underlain principally by deformed Mesoproterozoic sedimentary rocks of the Newland Formation, which are intruded by Eocene biotite hornblende dacite dikes.  In this southern terrane, Tertiary strata are exposed only in a limited area near the southeast margin of the quadrangle.  The distinct terranes are juxtaposed along the Volcano Valley fault zone—a zone of recurrent crustal movement beginning possibly in Mesoproterozoic time and certainly established from Neoproterozoic–Early Cambrian to late Tertiary time.  Movement along the fault zone has included normal faulting, the southern terrane faulted down relative to the northern terrane, some reverse faulting as the southern terrane later moved up against the northern terrane, and lateral movement during which the southern terrane likely moved west relative to the northern terrane.  Near the eastern margin of the quadrangle, the Newland Formation is locally the host of stratabound sulfide mineralization adjacent to the fault zone; west along the fault zone across the remainder of the quadrangle are significant areas and bands of hematite and iron-silicate mineral concentrations related to apparent alteration of iron sulfides.  The map defines the distribution of a variety of surficial deposits, including the distribution of hematite-rich colluvium and iron-silicate boulders.  The southeast

  4. Comparison of Oregon state highway division Table-1 and Table-2 asphalt : final report.

    DOT National Transportation Integrated Search

    1991-12-01

    The objective of this study was to compare the effect of using the Oregon State Highway Division (OSHD) modified Table-1 asphalts and the OSHD modified Table-2 asphalts in asphalt concrete; the primary factors for comparison were reflective and therm...

  5. RHODE ISLAND DIGITAL ORTHOPHOTO QUADRANGLE MOSAIC

    EPA Science Inventory

    Orthophotos combine the image characteristics of a photograph with the geometric qualities of a map. The primary digital orthophotoquad (DOQ) is a 1-meter ground resolution, quarter-quadrangle (3.75-minutes of latitude by 3.75-minutes of longitude) image cast on the Universal Tra...

  6. Geological Map of the Fredegonde (V-57) Quadrangle, Venus

    NASA Technical Reports Server (NTRS)

    Ivanov, M. A.; Head, J. W.

    2009-01-01

    The area of V-57, the Fredegonde quadrangle (50-75degS, 60-120degE, Fig.1), is located within the eastern portion of Lada Terra within the topographic province of midlands (0-2 km above MPR [1,2]). Midlands form the most abundant portion of the surface of Venus and are characterized by diverse sets of units and structures [3-11]. The area of the Fredegonde quadrangle is in contact with the elevated portion of Lada Terra to the W and with the lowland of Aino Planitia to the NE. The transitions of the mid-lands to the lowlands and highlands are, thus, one of the main themes of the geology within the V-57 quadrangle. The character of the transitions and distribution and sequence of units/structures in the midlands are crucially important in understanding the time and modes of formation of this topographic province. The most prominent features in the map area are linear deformational zones consisting of swarms of grooves and graben and large coronae. The zones characterize the central and NW portions of the map area and represent regionally important, broad (up to 100s km wide) ridges that are 100s m high. Relatively small (100s km across, 100s m deep) equidimensional basins occur between the corona-groove-chains in the west and border the central chain from the east. Here we describe units that make up the surface within the V-57 quadrangle and present a summary of our geological map that shows the areal distribution of the major groups of units.

  7. Dike rocks of the Apishapa Quadrangle, Colorado

    USGS Publications Warehouse

    Cross, Whitman

    1915-01-01

    The Apishapa quadrangle, the geographic relations of which are shown by Plate IV, is situated on the plains south of Arkansas River, in Colorado, about 24 miles east of the mountain front. The geology of the Pueblo, Walsenburg, Spanish Peaks, and Elmoro quadrangles, adjoining it on the northwest, west, southwest, and south, respectively, has been described in folios of the Geologic Atlas. G. K. Gilbert, assisted by F. P. Gulliver and G. W. Stose, took up the survey of the Apishapa area in 1894. The Apishapa folio was completed by Stose and was issued in 1913. The rocks to be described in this paper were collected by Gilbert and his assistants, the present writer never having visited the area. The following description of the occurrence of the has been kindly furnished by Mr. Stose.

  8. Geologic Map of the Meskhent Tessera Quadrangle (V-3), Venus

    USGS Publications Warehouse

    Ivanov, Mikhail A.; Head, James W.

    2008-01-01

    The Magellan spacecraft orbited Venus from August 10, 1990, until it plunged into the Venusian atmosphere on October 12, 1994. Magellan Mission objectives included (1) improving the knowledge of the geological processes, surface properties, and geologic history of Venus by analysis of surface radar characteristics, topography, and morphology and (2) improving the knowledge of the geophysics of Venus by analysis of Venusian gravity. The Meskhent Tessera quadrangle is in the northern hemisphere of Venus and extends from lat 50 degrees to 75 degrees N. and from long 60 degrees to 120 degrees E. In regional context, the Meskhent Tessera quadrangle is surrounded by extensive tessera regions to the west (Fortuna and Laima Tesserae) and to the south (Tellus Tessera) and by a large basinlike lowland (Atalanta Planitia) on the east. The northern third of the quadrangle covers the easternmost portion of the large topographic province of Ishtar Terra (northwestern map area) and the more localized upland of Tethus Regio (northeastern map area).

  9. Topographic Map of Quadrangle 3768 and 3668, Imam-Saheb (215), Rustaq (216), Baghlan (221), and Taloqan (222) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the

  10. Hydrologic overlay maps of the Cape Canaveral Quadrangle, Florida

    USGS Publications Warehouse

    Frazee, James M.; Laughlin, Charles P.

    1979-01-01

    Brevard County is an area of some 1,300 square miles located on the east coast of central Florida.  The Cape Canaveral quadrangle, in central Brevard, includes part of the Merritt Island National Wildlife Refuge, John F. Kennedy Space Center (NASA), and Cape Canaveral Air Force Station.  The eastern part of the quadrangle is occupied by the Atlantic Ocean and the western part by estuarine waters of the Banana River.  Topography is characterized by numerous elongate sand dumes, with altitudes up to 10 feet or greater, which roughly parallel the estuary and ocean.

  11. Geologic map of the Orchard 7.5' quadrangle, Morgan County, Colorado

    USGS Publications Warehouse

    Berry, Margaret E.; Slate, Janet L.; Hanson, Paul R.; Brandt, Theodore R.

    2015-01-01

    The Orchard 7.5' quadrangle is located along the South Platte River corridor on the semi-arid plains of eastern Colorado, and contains surficial deposits that record alluvial, eolian, and hillslope processes that have operated through environmental changes from the Pleistocene to the present. The South Platte River, originating high in the Colorado Front Range, has played a major role in shaping the geology of the quadrangle, which is situated downstream of where the last of the major headwater tributaries (St. Vrain, Big Thompson, and Cache la Poudre) join the river. Recurrent glaciation (and deglaciation) of basin headwaters affected river discharge and sediment supply far downstream, influencing alluvium deposition and terrace formation in the Orchard quadrangle. Kiowa and Bijou Creeks, unglaciated tributaries originating east of the Front Range also have played a major role by periodically delivering large volumes of sediment to the river during flood events, which may have temporarily dammed the river. Eolian sand deposits of the Greeley (north of river) and Fort Morgan (south of river) dune fields cover much of the quadrangle and record past episodes of sand mobilization during times of drought. With the onset of irrigation during historic times, the South Platte River has changed from a broad, shallow, and sandy braided river with highly seasonal discharge to a much narrower, deeper river with braided-meandering transition morphology and more uniform discharge. Along this reach, the river has incised into Upper Cretaceous Pierre Shale, which, although buried by alluvial deposits in Orchard quadrangle, is locally exposed downstream along the South Platte River bluff near the Bijou Creek confluence, in some of the larger draws, and along Wildcat Creek.

  12. Oregon Schools for the 21st Century: Oregon Report Card 1993-94. An Annual Report to the State Legislature on Oregon's Public Schools.

    ERIC Educational Resources Information Center

    Oregon State Dept. of Education, Salem.

    The Oregon Report Card is an annual portrait of the state's public schools. The first five sections describe statewide progress toward implementing Oregon's Educational Act for the 21st Century, some of the state's exemplary school-improvement programs, and the clear relationship between Oregon's program and national education goals. The remaining…

  13. Digital geologic map of the Coeur d'Alene 1:100,000 quadrangle, Idaho and Montana

    USGS Publications Warehouse

    digital compilation by Munts, Steven R.

    2000-01-01

    Between 1961 and 1969, Alan Griggs and others conducted fieldwork to prepare a geologic map of the Spokane 1:250,000 map (Griggs, 1973). Their field observations were posted on paper copies of 15-minute quadrangle maps. In 1999, the USGS contracted with the Idaho Geological Survey to prepare a digital version of the Coeur d’Alene 1:100,000 quadrangle. To facilitate this work, the USGS obtained the field maps prepared by Griggs and others from the USGS Field Records Library in Denver, Colorado. The Idaho Geological Survey (IGS) digitized these maps and used them in their mapping program. The mapping focused on field checks to resolve problems in poorly known areas and in areas of disagreement between adjoining maps. The IGS is currently in the process of preparing a final digital spatial database for the Coeur d’Alene 1:100,000 quadrangle. However, there was immediate need for a digital version of the geologic map of the Coeur d’Alene 1:100,000 quadrangle and the data from the field sheets along with several other sources were assembled to produce this interim product. This interim product is the digital geologic map of the Coeur d’Alene 1:100,000 quadrangle, Idaho and Montana. It was compiled from the preliminary digital files prepared by the Idaho Geological, and supplemented by data from Griggs (1973) and from digital databases by Bookstrom and others (1999) and Derkey and others (1996). The resulting digital geologic map (GIS) database can be queried in many ways to produce a variety of geologic maps. Digital base map data files (topography, roads, towns, rivers and lakes, etc.) are not included: they may be obtained from a variety of commercial and government sources. This database is not meant to be used or displayed at any scale larger than 1:100,000 (e.g., 1:62,500 or 1:24,000). The digital geologic map graphics (of00-135_map.pdf) that are provided are representations of the digital database. The map area is located in north Idaho. This open

  14. Geologic map of the Beacon Rock quadrangle, Skamania County, Washington

    USGS Publications Warehouse

    Evarts, Russell C.; Fleck, Robert J.

    2017-06-06

    The Beacon Rock 7.5′ quadrangle is located approximately 50 km east of Portland, Oregon, on the north side of the Columbia River Gorge, a scenic canyon carved through the axis of the Cascade Range by the Columbia River. Although approximately 75,000 people live within the gorge, much of the region remains little developed and is encompassed by the 292,500-acre Columbia River Gorge National Scenic Area, managed by a consortium of government agencies “to pro­tect and provide for the enhancement of the scenic, cultural, recreational and natural resources of the Gorge and to protect and support the economy of the Columbia River Gorge area.” As the only low-elevation corridor through the Cascade Range, the gorge is a critical regional transportation and utilities corridor (Wang and Chaker, 2004). Major state and national highways and rail lines run along both shores of the Columbia River, which also provides important water access to ports in the agricultural interior of the Pacific Northwest. Transmission lines carry power from hydroelectric facilities in the gorge and farther east to the growing urban areas of western Oregon and Washington, and natural-gas pipelines transect the corridor (Wang and Chaker, 2004). These lifelines are highly vulnerable to disruption by earthquakes, landslides, and floods. A major purpose of the work described here is to identify and map geologic hazards, such as faults and landslide-prone areas, to provide more accurate assessments of the risks associated with these features.The steep canyon walls of the map area reveal exten­sive outcrops of Miocene flood-basalt flows of the Columbia River Basalt Group capped by fluvial deposits of the ances­tral Columbia River, Pliocene lavas erupted from the axis of the Cascade arc to the east, and volcanic rocks erupted from numerous local vents. The Columbia River Basalt Group unconformably rests on a sequence of late Oligocene and early Miocene rocks of the ancestral Cascade volcanic arc

  15. Geology of the Egnar quadrangle, Dolores and San Miguel counties, Colorado

    USGS Publications Warehouse

    Cater, Fred W.; Bush, A.L.; Bell, Henry

    1954-01-01

    The Egnar quadrangle is one of eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of these quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by hih-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as "Uruvan Mineral Belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing many thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary structures in sandstones of favorable composition.

  16. Geology of Bull Canyon quadrangle, Montrose and San Miguel counties, Colorado

    USGS Publications Warehouse

    Cater, Fred W.

    1953-01-01

    The Bull Canyon quadrangle is one of eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of these quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite depots. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by high-angle faults and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as the "Uravan Mineral Belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing many thousands of tones. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary structures in sandstones of favorable composition.

  17. Geologic Map of the Utukok River Quadrangle, Alaska

    USGS Publications Warehouse

    Mull, Charles G.; Houseknecht, David W.; Pessel, G.H.; Garrity, Christopher P.

    2006-01-01

    This map is a product of the USGS Digital Geologic Maps of Northern Alaska project, which captures in digital format quadrangles across the entire width of northern Alaska. Sources include geologic maps previously published in hardcopy format and recent updates and revisions based on field mapping by the Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys and Division of Oil and Gas, and the U.S. Geological Survey. Individual quadrangles are digitized at either 1:125,000 or 1:250,000 depending on the resolution of source maps. The project objective is to produce a set of digital geologic maps with uniform stratigraphic nomenclature and structural annotation, and publish those maps electronically.

  18. 1974 Oregon timber harvest.

    Treesearch

    J.D. Jr. Lloyd

    1976-01-01

    The 1974 Oregon timber harvest of 8.36 billion board feet was 9.2 percent, or 0.84 billion board feet, below the 1973 harvest. (The data for 1973 were adjusted to reflect the change in reporting of harvest on Bureau of Land Management lands; see footnote 3 of table.) While the harvest in western Oregon decreased 14.7 percent, eastern Oregon cut increased 11.5 percent...

  19. 1968 Oregon timber harvest.

    Treesearch

    Brian R. Wall

    1969-01-01

    Oregon's 1968 timber harvest of 9.74 billion board feet was the largest since 1952, when a record 9.80 billion board feet was produced. Public agencies' harvests increased 25.0 percent in western Oregon and 4.1 percent in eastern Oregon for a total increase of 19.1 percent, 864.9 million board feet above the public harvest in 1967. National Forests had the...

  20. 1967 Oregon timber harvest.

    Treesearch

    Brian R. Wall

    1968-01-01

    Oregon's timber harvest was 8.4 billion board feet in 1967, 6.3 percent below the 1966 harvest. The total private harvest declined 7 percent in 1967 with a 153-million-board-foot (4.3-percent) decrease in western Oregon and a 138-million-board-foot (22.7-percent) drop in eastern Oregon. Forest industries had the greatest decline in production of all owners; their...

  1. 1975 Oregon timber harvest.

    Treesearch

    J.D. Jr. Lloyd

    1976-01-01

    The 1975 Oregon timber harvest declined to its lowest level since 1961 with a harvest of 7.37 billion board feet, 991 million board feet (11.9 percent) below the 1974 harvest. The harvest was down in both western Oregon (823 million board feet, 13.2 percent) and eastern Oregon (168 million board feet, 7.7 percent). For the first time since 1961, the harvest on private...

  2. An Annual Report to the Legislature on Oregon Public Schools. Oregon Statewide Report Card. 2014-2015

    ERIC Educational Resources Information Center

    Oregon Department of Education, 2015

    2015-01-01

    The Oregon Statewide Report Card is an annual publication required by law (ORS 329.115), which reports on the state of public schools and their progress towards the goals of the Oregon Educational Act for the 21st Century. The purpose of the Oregon Report Card is to monitor trends among school districts and Oregon's progress toward achieving the…

  3. Digital geologic map of McAlester-Texarkana quadrangles, southeastern Oklahoma

    USGS Publications Warehouse

    Cederstrand, J.R.

    1997-01-01

    This data set consists of digital data and accompanying documentation of the surficial geology of the 1:250,000-scale McAlester and Texarkana quadrangles, Oklahoma. The original data are from the Geologic Map, sheet 1 of 4, included in Oklahoma Geological Survey publication, Reconnaissance of the water resources of the McAlester and Texarkana quadrangles, southeastern Oklahoma, Hydrologic Atlas 9, Marcher and Bergman, 1983. The geology was compiled by M.V. Marcher and D.L. Bergman, 1971, and revised by R.O. Fay, 1978.

  4. Map showing springs in the Salina quadrangle, Utah

    USGS Publications Warehouse

    Covington, Harry R.

    1972-01-01

    A spring is “a place where, without the agency of man, water flows from a rock or soil upon the land or into a body of surface water” (Meinzer, 1923, p. 48).About 450 springs are located on this map. Locations and names are from the U.S. Forest Service maps (1963, 1964) and from topographic maps of the U.S. Geological Survey, both published and in preparation. There is considerable variation in geological occurrence of the springs and in quantity and chemical quality of the water that issues from them. Springs in the Salina quadrangle are more abundant where annual precipitation is 16 inches or more, although there are many springs in arid parts of the quadrangle as well.In the Salina quadrangle, springs are used most commonly for watering livestock. They are used also for irrigation and for domestic and municipal water supply. Several communities in Rabbit Valley, Grass Valley, and Sevier Valley depend on springs for all or part of their water supply.Quantity and quality of water are shown for those few springs for which data are available (Mundorff, 1971). Caution must be used in drinking from springs, especially in arid areas; the water commonly tastes bad and may cause illness.

  5. Topographic Map of Quadrangles 3460 and 3360, Kol-I-Namaksar (407), Ghuryan (408), Kawir-I-Naizar (413), and Kohe-Mahmudo-Esmailjan (414) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  6. Geology of the Bopolu Quadrangle, Liberia

    USGS Publications Warehouse

    Wallace, Roberts Manning

    1974-01-01

    As part of a program undertaken cooperatively by the Liberian Geological Survey (LGS) and the U. S. Geological Survey (USGS), under the sponsorship of the Government of Liberia and the Agency for International Development, U. S. Department of State, Liberia was mapped by geologic and geophysical methods during the period 1965 to 1972. The resulting:geologic and geophysical maps are published in ten folios, each covering one quadrangle (see index map). The Bopolu quadrangle was systematically mapped by the author in late 1970. Field data provided by private companies and other members of the LGS-USGS project were used in map compilation, and are hereby acknowledged. Limited gravity data (Behrendt and Wotorson, in press ), and total-intensity aeromagnetic and total-count gamma radiation surveys (Behrendt and Wotorson, 1974, a and b) were also used in compilation, as were other unpublished geophysical data (near-surface, regional magnetic component, and geologic correlations based on aeromagnetic and radiometric characteristics) furnished by Behrendt and Wotorson.

  7. Home | Oregon State University Extension Service

    Science.gov Websites

    "How To" Communities OSU Open Campus Oregon's Agricultural Progress Magazine Emerging Issues Oregon's Agricultural Progress cover image Oregon's Agricultural Progress, the research magazine for the Oregon State University Agricultural Experiment Station. Read current OAP issue » Bridges logo image

  8. Reconnaissance geology of the Wadi Wassat quadrangle, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Overstreet, William C.; Rossman, D.L.

    1970-01-01

    The Wadi Wassat quadrangle covers an area of 2926 sq km in the southwestern part of the Kingdom of Saudi Arabia. The west half of the quadrangle is underlain by crystalline rocks of the Arabian Shield, but in the eastern half of the quadrangle the Precambrian rocks are covered by Permian or older sandstone which is succeeded farther east by aeolian sands of Ar Rub' al Khali. The Shield consists of a sequence of unmetamorphosed to metamorphosed interlayered volcanic and sedimentary rocks intruded by igneous rocks ranging in composition from gabbro to syenite and in age from Precambrian to Cambrian(?). The volcanic rocks range in composition from andesite to rhyolite and in texture from agglomerate to thick, massive flows and lithic tuff. They are interlayered with conglomerate, fine-grained graywacke sandstone, calcareous graywacke, siltstone, tuffaceous laminated shale, pyritiferous sediment, carbonaceous shale, limestone, and dolomite. Most clastic debris is derived from andesite. In places the rocks are polymetamorphosed; elsewhere they are unmetamorphosed. The rocks on which this volcano-sedimentary eugeosynclinal sequence was deposited are not exposed in the area of the quadrangle. Reglonal dynamothermal metamorphism was .the dominant process affecting the volcanic-sedimentary rocks in the western part of the quadrangle. In the eastern part of the Precambrian area the chief metamorphic effect results from contact action along the walls of intrusive plutons. The oldest igneous rock to intrude the volcanic-sedimentary sequence, after the dikes and sills of the sequence itself, is granite gneiss and gneissic granodiorite. The gneiss is sparsely present in the quadrangle, but northwest of the quadrangle it forms an immense batholith which is one of the major geologic features of southwestern Arabia. However, the most common intrusive rocks of the quadrangle are a magnetic differentiation sequence that ranges in composition from gabbro and diorite to granite

  9. 1969 Oregon timber harvest.

    Treesearch

    Brian R. Wall

    1970-01-01

    The 1969 Oregon timber harvest of 9.15 billion board feet was 6.1 percent below the 1968 16-year peak of 9.74 billion board feet. In western Oregon, the 1969 harvest was down 9.1 percent with public production and private production off 10.8 and 7.2 percent, respectively. By contrast, log harvest in eastern Oregon rose 5 percent, with private production up 13.2 percent...

  10. Predation by Oregon spotted frogs (Rana pretiosa) on Western toads (Bufo boreas) in Oregon, USA

    USGS Publications Warehouse

    Pearl, Christopher A.; Hayes, M.P.

    2002-01-01

    Toads of the genus Bufo co-occur with true frogs (family Ranidae) throughout their North American ranges. Yet, Bufo are rarely reported as prey for ranid frogs, perhaps due to dermal toxins that afford them protection from some predators. We report field observations from four different localities demonstrating that Oregon spotted frogs (Rana pretiosa) readily consume juvenile western toads (Bufo boreas) at breeding sites in Oregon. Unpalatability thought to deter predators of selected taxa and feeding mode may not protect juvenile stages of western toads from adult Oregon spotted frogs. Activity of juvenile western toads can elicit ambush behavior by Oregon spotted frog adults. Our review of published literature suggests that regular consumption of toadlets sets Oregon spotted frogs apart from most North American ranid frogs. Importance of the trophic context of juvenile western toads as a seasonally important resource to Oregon spotted frogs needs critical investigation.

  11. Geologic map of the Masters 7.5' quadrangle, Weld and Morgan Counties, Colorado

    USGS Publications Warehouse

    Berry, Margaret E.; Slate, Janet L.; Paces, James B.; Hanson, Paul R.; Brandt, Theodore R.

    2015-09-28

    The Masters 7.5' quadrangle is located along the South Platte River corridor on the semiarid plains of eastern Colorado and contains surficial deposits that record alluvial, eolian, and hillslope processes that have operated in concert with environmental changes from Pleistocene to present time. The South Platte River, originating high in the Colorado Front Range, has played a major role in shaping the surficial geology of the quadrangle, which is situated downstream of where the last of the major headwater tributaries (St. Vrain, Big Thompson, and Cache la Poudre) join the river. Recurrent glaciation (and deglaciation) of basin headwaters affected river discharge and sediment supply far downstream, influencing deposition of alluvium and terrace formation in the Masters quadrangle. Kiowa and Bijou Creeks, unglaciated tributaries originating in the Colorado Piedmont east of the Front Range and joining the South Platte River just downstream of the Masters quadrangle, also have played a major role by periodically delivering large volumes of sediment to the river during flood events, which may have temporarily dammed the river. Eolian sand deposits of the Greeley (north of river) and Fort Morgan (south of river) dune fields cover much of the quadrangle and record past episodes of sand mobilization during times of prolonged drought. With the onset of irrigation and damming during historical times, the South Platte River has changed from a broad, shallow sandy braided river with highly seasonal discharge to a much narrower, deeper river with braided-meandering transition morphology and more uniform discharge. Along the reach of river in the Masters quadrangle, the river has incised into Upper Cretaceous Pierre Shale, which, although buried by alluvial deposits here, is locally exposed downstream along the South Platte River bluff near the Bijou Creek confluence, in some of the larger draws, and along Wildcat Creek.

  12. Aerial gamma ray and magnetic survey, Mississippi and Florida airborne survey: Baton Rouge quadrangle, Louisiana and Mississippi. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-10-01

    The Baton Rouge quadrangle covers 8250 square miles in the Mississippi River delta area. The area overlies thick sections of the Gulf of Mexico Basin. Surficial exposures are dominated by Recent and Pleistocene sediment. A search of available literature revealed no known uranium deposits. A total of 87 uranium anomalies were detected and are discussed briefly in this report. None were considered significant and all appear to relate to cultural features. Magnetic data appears to be in agreement with existing structural interpretations of the area.

  13. Geologic Mapping of the Guinevere Planitia Quadrangle of Venus

    NASA Technical Reports Server (NTRS)

    Crown, David A.; Stofan, Ellen R.; Bleamaster, Leslie F., III

    2008-01-01

    The Guinevere Planitia quadrangle of Venus (0-25degN, 300-330deg) covers a lowland region east of Beta Regio and west of Eistla Regio, including parts of Guinevere and Undine Planitiae. The V-30 quadrangle is dominated by low-lying plains interpreted to be of volcanic origin and exhibiting numerous wrinkle ridges. Using Pioneer Venus, Goldstone, and Arecibo data, previous investigators have described radar bright, dark, and mottled plains units in the Guinevere Planitia region, as well as arcuate fracture zones and lineament belt segments that define the Beta-Eistla deformation zone [1-5]. Magellan SAR images show that volcanic landforms compose the majority of the surface units in V-30 [6-7]. The quadrangle contains parts of four major volcanoes: Atanua (9degN, 307deg), Rhpisunt (3degN, 302deg), Tuli (13degN, 314deg), and Var (3degN, 316deg) Montes, and three coronae: Hulda (12degN, 308deg), Madderakka (9degN, 316deg), and Poloznitsa (1degN, 303deg). Seymour crater, located at 18degN, 327deg, is associated with extensive crater outflow deposits.

  14. Geology and mineral resources of the Mud Springs Ranch Quadrangle, Sweetwater County, Wyoming

    USGS Publications Warehouse

    Roehler, Henry W.

    1979-01-01

    The Mud Springs Ranch quadrangle occupies an area of 56 mF (square miles) on the southeast flank of the Rock Springs uplift in southwestern Wyoming. The climate is arid and windy. The landscape is mostly poorly vegetated and consists of north-trending ridges and valleys that are dissected by dry drainages. Sedimentary rocks exposed in the quadrangle are 5,400 ft (feet) thick and are mostly gray sandstone, siltstone, and shale, gray and brown carbonaceous shale, and thin beds of coal. They compose the Blair, Rock Springs, Ericson, Almond, and Lewis Formations of Cretaceous age and the Fort Union Formation of Paleocene age. The structure is mostly homoclinal, having southeast dips of 5?-12? in the northern part of the quadrangle, but minor plunging folds and one small fault are present in the southern part of the quadrangle. Three coal beds in the Fort Union Formation and 15 coal beds in the Almond Formation exceed 2.5 ft in thickness, are under less than 3,000 ft of overburden, and are potentially minable. Geographic stratigraphic, and resource data are present for each bed of minable coal. The total minable coal resources are estimated to be about 283 million short tons. Nine coal and rock samples from outcrops were analyzed to determine their quality and chemical composition. Four dry oil and gas test wells have been drilled within the quadrangle area, but structurally controlled stratigraphic-trap prospects remain untested.

  15. Oregon Project for Services to Children and Youth with Deaf-Blindness. Final Performance Report.

    ERIC Educational Resources Information Center

    Otos, Maurine

    This report describes activities and accomplishments of the Oregon Project for Services to Children and Youth with Deaf-Blindness, a 3-year federally supported project to ensure effective educational services for this population and provide support for families and service providers. The project focused on: (1) identifying additional children with…

  16. Geologic map of the Hiller Mountain Quadrangle, Clark County, Nevada, and Mohave County, Arizona

    USGS Publications Warehouse

    Howard, Keith A.; Hook, Simon; Phelps, Geoffrey A.; Block, Debra L.

    2003-01-01

    Map Scale: 1:24,000 Map Type: colored geologic map The Hiller Mountains Quadrangle straddles Virgin Canyon in the eastern part of Lake Mead. Proterozoic gneisses and granitoid rocks underlie much of the quadrangle. They are overlain by upper Miocene basin-filling deposits of arkosic conglomerate, basalt, and the overlying Hualapai Limestone. Inception of the Colorado River followed deposition of the Hualapai Limestone and caused incision of the older rocks. Fluvial gravel deposits indicate various courses of the early river across passes through highlands of the Gold Butte-Hiller Mountains-White Hills structural block. Faults and tilted rocks in the quadrangle record tectonic extension that climaxed in middle Miocene time.

  17. Geologic Map of the Poverty Bay 7.5' quadrangle, King and Pierce counties, Washington

    USGS Publications Warehouse

    Booth, Derek B.; Waldron, H.H.; Troost, K.G.

    2004-01-01

    The Poverty Bay quadrangle lies near the center of the region?s intensively developing urban core. Less than 20 km north lies the city of Seattle; downtown Tacoma lies just southwest of the quadrangle. The map area expresses much of the tremendous range of Quaternary environments and deposits found throughout the central Puget Lowland. Much of the ground surface is mantled by a rolling surface of glacial till deposited during the last occupation of the Puget Lowland by a great continental ice sheet about 14,000 years ago. A complex sequence of older unconsolidated sediments extends far below sea level across most of the quadrangle, with no bedrock exposures at all.

  18. 40 CFR 81.425 - Oregon.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Oregon. 81.425 Section 81.425... Visibility Is an Important Value § 81.425 Oregon. Area name Acreage Public Law establishing Federal land... Hells Canyon Wilderness, 192,700 acres overall, of which 108,900 acres are in Oregon, and 83,800 acres...

  19. 40 CFR 81.425 - Oregon.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Oregon. 81.425 Section 81.425... Visibility Is an Important Value § 81.425 Oregon. Area name Acreage Public Law establishing Federal land... Hells Canyon Wilderness, 192,700 acres overall, of which 108,900 acres are in Oregon, and 83,800 acres...

  20. 40 CFR 81.425 - Oregon.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Oregon. 81.425 Section 81.425... Visibility Is an Important Value § 81.425 Oregon. Area name Acreage Public Law establishing Federal land... Hells Canyon Wilderness, 192,700 acres overall, of which 108,900 acres are in Oregon, and 83,800 acres...

  1. 40 CFR 81.425 - Oregon.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Oregon. 81.425 Section 81.425... Visibility Is an Important Value § 81.425 Oregon. Area name Acreage Public Law establishing Federal land... Hells Canyon Wilderness, 192,700 acres overall, of which 108,900 acres are in Oregon, and 83,800 acres...

  2. 40 CFR 81.425 - Oregon.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Oregon. 81.425 Section 81.425... Visibility Is an Important Value § 81.425 Oregon. Area name Acreage Public Law establishing Federal land... Hells Canyon Wilderness, 192,700 acres overall, of which 108,900 acres are in Oregon, and 83,800 acres...

  3. Geologic Map of the Atlin Quadrangle, Southeastern Alaska

    USGS Publications Warehouse

    Brew, David A.; Himmelberg, Glen R.; Ford, Arthur B.

    2009-01-01

    This map presents the results of U.S. Geological Survey (USGS) geologic bedrock mapping studies in the mostly glacier covered Atlin 1:250,000-scale quadrangle, northern southeastern Alaska. These studies are part of a long-term systematic effort by the USGS to provide bedrock geologic and mineral-resource information for all of southeastern Alaska, covering all of the Tongass National Forest (including Wilderness Areas) and Glacier Bay National Park and Preserve. Some contributions to this effort are those concerned with southwesternmost part of the region, the Craig and Dixon Entrance quadrangles (Brew, 1994; 1996) and with the Wrangell-Petersburg area (Brew, 1997a-m; Brew and Grybeck, 1997; Brew and Koch, 1997). As shown on the index map (fig. 1), the study area is almost entirely in the northern Coast Mountains adjacent to British Columbia, Canada. No previous geologic map has been published for the area, although Brew and Ford (1985) included a small part of it in a preliminary compilation of the adjoining Juneau quadrangle; and Brew and others (1991a) showed the geology at 1:500,000 scale. Areas mapped nearby in British Columbia and the United States are also shown on figure 1. All of the map area is in the Coast Mountains Complex as defined by Brew and others (1995a). A comprehensive bibliography is available for this and adjacent areas (Brew, 1997n).

  4. Geologic map of the Skykomish River 30- by 60-minute quadrangle, Washington

    USGS Publications Warehouse

    Tabor, R.W.; Frizzell, D.A.; Booth, D.B.; Waitt, R.B.; Whetten, J.T.; Zartman, R.E.

    1993-01-01

    From the eastern-most edges of suburban Seattle, the Skykomish River quadrangle stretches east across the low rolling hills and broad river valleys of the Puget Lowland, across the forested foothills of the North Cascades, and across high meadowlands to the bare rock peaks of the Cascade crest. The Straight Creek Fault, a major Pacific Northwest structure which almost bisects the quadrangle, mostly separates unmetamorphosed and low-grade metamorphic Paleozoic and Mesozoic oceanic rocks on the west from medium- to high-grade metamorphic rocks on the east. Within the quadrangle the lower grade rocks are mostly Mesozoic melange units. To the east, the higher-grade terrane is mostly the Chiwaukum Schist and related gneisses of the Nason terrane and invading mid-Cretaceous stitching plutons. The Early Cretaceous Easton Metamorphic Suite crops out on both sides of the Straight Creek fault and records it's dextral displacement. On the south margin of the quadrangle, the fault separates the lower Eocene Swauk Formation on the east from the upper Eocene and Oligocene(?) Naches Formation and, farther north, it's correlative Barlow Pass Volcanics the west. Stratigraphically equivalent rocks ot the Puget Group crop out farther to the west. Rocks of the Cascade magmatic arc are mostly represented by Miocene and Oligocene plutons, including the Grotto, Snoqualmie, and Index batholiths. Alpine river valleys in the quadrangle record multiple advances and retreats of alpine glaciers. Multiple advances of the Cordilleran ice sheet, originating in the mountains of British Columbia, Canada, have left an even more complex sequence of outwash and till along the western mountain front, up these same alpine river valleys, and over the Puget Lowland.

  5. Geologic map of the Jasper Quadrangle, Newton and Boone counties, Arkansas

    USGS Publications Warehouse

    Hudson, M.R.; Murray, K.E.; Pezzutti, Deborah

    2001-01-01

    This digital geologic map compilation presents new polygon (i.e., geologic map unit contacts), line (i.e., fault, fold axis, and structure contour), and point (i.e., structural attitude, contact elevations) vector data for the Jasper 7 1/2' quadrangle in northern Arkansas. The map database, which is at 1:24,000-scale resolution, provides geologic coverage of an area of current hydrogeologic, tectonic, and stratigraphic interest. The Jasper quadrangle is located in northern Newton and southern Boone Counties about 20 km south of the town of Harrison. The map area is underlain by sedimentary rocks of Ordovician, Mississippian, and Pennsylvanian age that were mildly deformed by a series of normal and strike-slip faults and folds. The area is representative of the stratigraphic and structural setting of the southern Ozark Dome. The Jasper quadrangle map provides new geologic information for better understanding groundwater flow paths in and adjacent to the Buffalo River watershed.

  6. Geologic map of the Hasty Quadrangle, Boone and Newton Counties, Arkansas

    USGS Publications Warehouse

    Hudson, Mark R.; Murray, Kyle E.

    2004-01-01

    This digital geologic map compilation presents new polygon (for example, geologic map unit contacts), line (for example, fault, fold axis, and structure contour), and point (for example, structural attitude, contact elevations) vector data for the Hasty 7.5-minute quadrangle in northern Arkansas. The map database, which is at 1:24,000-scale resolution, provides geologic coverage of an area of current hydrogeologic, tectonic, and stratigraphic interest. The Hasty quadrangle is located in northern Newton and southern Boone Counties about 20 km south of the town of Harrison. The map area is underlain by sedimentary rocks of Ordovician, Mississippian, and Pennsylvanian age that were mildly deformed by a series of normal and strike-slip faults and folds. The area is representative of the stratigraphic and structural setting of the southern Ozark Dome. The Hasty quadrangle map provides new geologic information for better understanding groundwater flow paths in and adjacent to the Buffalo River watershed.

  7. Mercury: Photomosaic of the Michelangelo Quadrangle H-12

    NASA Image and Video Library

    2000-01-26

    This image, from NASA Mariner 10 spacecraft which launched in 1974, is of the Michelangelo Quadrangle, which lies in Mercury southern polar region. The Mercurian surface is heavily marred by numerous impact craters.

  8. Geologic map of the Chewelah 30' x 60' Quadrangle, Washington and Idaho

    USGS Publications Warehouse

    Miller, F.K.

    2001-01-01

    1:100,000 map. Geologic contacts across boundaries of the eight constituent quadrangles required minor adjustments, but none significant at the final 1:100,000 scale. The geologic map was compiled on a base-stable cronoflex copy of the Chewelah 30' X 60' topographic base and then scribed. The scribe guide was used to make a 0.007 mil-thick blackline clear-film, which was scanned at 1200 DPI by Optronics Specialty Company, Northridge, California. This image was converted to vector and polygon GIS layers and minimally attributed by Optronics Specialty Company. Minor hand-digitized additions were made at the USGS. Lines, points, and polygons were subsequently edited at the USGS by using standard ARC/INFO commands. Digitizing and editing artifacts significant enough to display at a scale of 1:100,000 were corrected. Within the database, geologic contacts are represented as lines (arcs), geologic units as polygons, and site-specific data as points. Polygon, arc, and point attribute tables (.pat, .aat, and .pat, respectively) uniquely identify each geologic datum.

  9. Geologic Map of the Eaton Reservoir Quadrangle, Larimer County, Colorado and Albany County, Wyoming

    USGS Publications Warehouse

    Workman, Jeremiah B.

    2008-01-01

    New geologic mapping of the Eaton Reservoir 7.5' quadrangle defines geologic relationships in the northern Front Range along the Colorado/Wyoming border approximately 35 km south of Laramie, Wyo. Previous mapping within the quadrangle was limited to regional reconnaissance mapping (Tweto, 1979; Camp, 1979; Burch, 1983) and some minor site-specific studies (Carlson and Marsh, 1986; W. Braddock, unpub. mapping, 1982). Braddock and others (1989) mapped the Diamond Peak 7.5' quadrangle to the east, Burch (1983) mapped rocks of the Rawah batholith to the south, W. Braddock (unpub. mapping, 1981) mapped the Sand Creek Pass 7.5' quadrangle to the west, and Ver Ploeg and Boyd (2000) mapped the Laramie 30' x 60' quadrangle to the north. Field work was completed during 2005 and 2006 and the mapping was compiled at a scale of 1:24,000. Minimal petrographic work and isotope dating was done in connection with the present mapping, but detailed petrographic and isotope studies were carried out on correlative map units in surrounding areas as part of a related regional study of the northern Front Range. Classification of Proterozoic rocks is primarily based upon field observation of bulk mineral composition, macroscopic textural features, and field relationships that allow for correlation with rocks studied in greater detail outside of the map area.

  10. Timber resource statistics for Oregon.

    Treesearch

    Sally Campbell; Paul Dunham; David Azuma

    2004-01-01

    This report is a summary of timber resource statistics for all ownerships in Oregon. Data were collected as part of several statewide multiresource inventories, including those conducted by the Pacific Northwest Region (Region 6) on National Forest System lands in Oregon, by the Bureau of Land Management (BLM) on BLM lands in western Oregon, and by the Pacific...

  11. Preliminary Geologic Map of the White Sulphur Springs 30' x 60' Quadrangle, Montana

    USGS Publications Warehouse

    Reynolds, Mitchell W.; Brandt, Theodore R.

    2006-01-01

    The geologic map of the White Sulphur Springs quadrangle, scale 1:100,000, was made as part of the Montana Investigations Project to provide new information on the stratigraphy, structure, and geologic history of the geologically complex area in west-central Montana. The quadrangle encompasses about 4,235 km2 (1,635 mi2), across part of the Smith River basin, the west end of the Little Belt Mountains, the Castle Mountains, and the upper parts of the basins of the North Forks of the Smith and Musselshell Rivers and the Judith River. Geologically the quadrangle extends across the eastern part of the Helena structural salient in the Rocky Mountain thrust belt, a segment of the Lewis and Clark tectonic zone, west end of the ancestral central Montana uplift, and the southwest edge of the Judith basin. Rocks and sediments in the White Sulphur Springs quadrangle are assigned to 88 map units on the basis of rock or sediment type and age. The oldest rock exposed is Neoarchean diorite that is infolded with Paleoproterozoic metamorphic rocks including gneiss, diorite, granite, amphibolite, schist, and mixed metamorphic rock types. A thick succession of the Mesoproterozoic Belt Supergroup unconformably overlies the metamorphic rocks and, in turn, is overlain unconformably by Phanerozoic sedimentary and volcanic rocks. Across most of the quadrangle, the pre-Tertiary stratigraphic succession is intruded by Eocene dikes, sills, and plutons. The central part of the Little Belt Mountains is generally underlain by laccoliths and sheet-like bodies of quartz monzonite or dacite. Oligocene andesitic basalt flows in the western and southern part of the quadrangle document both the configuration of the late Eocene erosional surfaces and the extent of extensional faulting younger than early Oligocene in the area. Pliocene, Miocene, and Oligocene strata, mapped as 11 units, consist generally of interbedded sand, gravel, and tuffaceous sedimentary rock. Quaternary and Quaternary

  12. Geologic map of the Storm King Mountain quadrangle, Garfield County, Colorado

    USGS Publications Warehouse

    Bryant, Bruce; Shroba, Ralph R.; Harding, Anne E.; Murray, Kyle E.

    2002-01-01

    New 1:24,000-scale geologic mapping in the Storm King Mountain 7.5' quadrangle, in support of the USGS Western Colorado I-70 Corridor Cooperative Geologic Mapping Project, provides new data on the structure on the south margin of the White River uplift and the Grand Hogback and on the nature, history, and distribution of surficial geologic units. Rocks ranging from Holocene to Proterozoic in age are shown on the map. The Canyon Creek Conglomerate, a unit presently known to only occur in this quadrangle, is interpreted to have been deposited in a very steep sided local basin formed by dissolution of Pennsylvanian evaporite late in Tertiary time. At the top of the Late Cretaceous Williams Fork Formation is a unit of sandstone, siltstone, and claystone from which Late Cretaceous palynomorphs were obtained in one locality. This interval has been mapped previously as Ohio Creek Conglomerate, but it does not fit the current interpretation of the origin of the Ohio Creek. Rocks previously mapped as Frontier Sandstone and Mowry Shale are here mapped as the lower member of the Mancos Shale and contain beds equivalent to the Juana Lopez Member of the Mancos Shale in northwestern New Mexico. The Pennsylvanian Eagle Valley Formation in this quadrangle grades into Eagle Valley Evaporite as mapped by Kirkham and others (1997) in the Glenwood Springs area. The Storm King Mountain quadrangle spans the south margin of the White River uplift and crosses the Grand Hogback monocline into the Piceance basin. Nearly flat lying Mississippian through Cambrian sedimentary rocks capping the White River uplift are bent into gentle south dips and broken by faults at the edge of the uplift. South of these faults the beds dip moderately to steeply to the south and are locally overturned. These dips are interrupted by a structural terrace on which are superposed numerous gentle minor folds and faults. This terrace has an east-west extent similar to that of the Canyon Creek Conglomerate to the

  13. Oregon Cascades Play Fairway Analysis: Raster Datasets and Models

    DOE Data Explorer

    Adam Brandt

    2015-11-15

    This submission includes maps of the spatial distribution of basaltic, and felsic rocks in the Oregon Cascades. It also includes a final Play Fairway Analysis (PFA) model, with the heat and permeability composite risk segments (CRS) supplied separately. Metadata for each raster dataset can be found within the zip files, in the TIF images

  14. Aerial gamma ray and magnetic survey: Powder River R and D Project. Portions of the: Forsyth, Hardin, Montana Quadrangles; Sheridan, Arminto, Wyoming Quadrangles. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-05-01

    Thick Phaneorozoic sediments (greater than 17,000 feet) fill the northwest-trending Powder River Basin, which is the dominant tectonic structure in the study area. Lower Tertiary sediments comprise over 90% of the exposed units at the surface of the Basin. Small portions of the Bighorn Uplift, Casper Arch, and Porcupine Dome occupy the western edge of the study area. Numerous small claims and prospects are found in the Pumpkin Buttes - Turnercrest District at the south end of the study area (northeastern Arminto quadrangle). No economic deposits of uranium are known to exist in the area, according to available literature. Interpretationmore » of the radiometric data resulted in 62 statistical uranium anomalies listed for this area. Most anomalies are found in the southern half of the study area within the Tertiary Fort Union and Wasatch Formations. Some are found in Cretaceous sediments in the adjoining uplifts to the west of the Basin.« less

  15. Geologic Map of the Point Lay Quadrangle, Alaska

    USGS Publications Warehouse

    Mull, Charles G.; Houseknecht, David W.; Pessel, G.H.; Garrity, Christopher P.

    2008-01-01

    This map is a product of the USGS Digital Geologic Maps of Northern Alaska project, which captures in digital format quadrangles across the entire width of northern Alaska. Sources include geologic maps previously published in hardcopy format and recent updates and revisions based on field mapping by the Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys and Division of Oil and Gas, and the U.S. Geological Survey. Individual quadrangles are digitized at either 1:125,000 or 1:250,000 depending on the resolution of source maps. The project objective is to produce a set of digital geologic maps with uniform stratigraphic nomenclature and structural annotation, and publish those maps electronically. The paper version of this map is available for purchase from the USGS Store.

  16. Geologic Map of the Ikpikpuk River Quadrangle, Alaska

    USGS Publications Warehouse

    Mull, Charles G.; Houseknecht, David W.; Pessel, G.H.; Garrity, Christopher P.

    2005-01-01

    This map is a product of the USGS Digital Geologic Maps of Northern Alaska project, which captures in digital format quadrangles across the entire width of northern Alaska. Sources include geologic maps previously published in hardcopy format and recent updates and revisions based on field mapping by the Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys and Division of Oil and Gas, and the U.S. Geological Survey. Individual quadrangles are digitized at either 1:125,000 or 1:250,000 depending on the resolution of source maps. The project objective is to produce a set of digital geologic maps with uniform stratigraphic nomenclature and structural annotation, and publish those maps electronically. The paper version of this map is available for purchase from the USGS Store.

  17. Geologic Map of the Lookout Ridge Quadrangle, Alaska

    USGS Publications Warehouse

    Mull, Charles G.; Houseknecht, David W.; Pessel, G.H.; Garrity, Christopher P.

    2006-01-01

    This map is a product of the USGS Digital Geologic Maps of Northern Alaska project, which captures in digital format quadrangles across the entire width of northern Alaska. Sources include geologic maps previously published in hardcopy format and recent updates and revisions based on field mapping by the Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys and Division of Oil and Gas, and the U.S. Geological Survey. Individual quadrangles are digitized at either 1:125,000 or 1:250,000 depending on the resolution of source maps. The project objective is to produce a set of digital geologic maps with uniform stratigraphic nomenclature and structural annotation, and publish those maps electronically. The paper version of this map is available for purchase from the USGS Store.

  18. Geologic Map of the Denver West 30' x 60' Quadrangle, North-Central Colorado

    USGS Publications Warehouse

    Kellogg, Karl S.; Shroba, Ralph R.; Bryant, Bruce; Premo, Wayne R.

    2008-01-01

    The Denver West quadrangle extends east-west across the entire axis of the Front Range, one of numerous uplifts in the Rocky Mountain region in which Precambrian rocks are exposed. The history of the basement rocks in the Denver West quadrangle is as old as 1,790 Ma. Along the east side of the range, a sequence of sedimentary rocks as old as Pennsylvanian, but dominated by Cretaceous-age rocks, overlies these ancient basement rocks and was upturned and locally faulted during Laramide (Late Cretaceous to early Tertiary) uplift of the range. The increasingly coarser grained sediments up section in rocks of latest Cretaceous to early Tertiary age record in remarkable detail this Laramide period of mountain building. On the west side of the range, a major Laramide fault (Williams Range thrust) places Precambrian rocks over Cretaceous sedimentary rocks. The geologic history of the quadrangle, therefore, can be divided into four major periods: (1) Proterozoic history, (2) Pennsylvanian to pre-Laramide, Late Cretaceous history, (3) Late Cretaceous to early Tertiary Laramide mountain building, and (4) post-Laramide history. In particular, the Quaternary history of the Denver West quadrangle is described in detail, based largely on extensive new mapping.

  19. Geologic map of the Western Grove quadrangle, northwestern Arkansas

    USGS Publications Warehouse

    Hudson, Mark R.; Turner, Kenzie J.; Repetski, John E.

    2006-01-01

    This map summarizes the geology of the Western Grove 7.5-minute quadrangle in northern Arkansas that is located on the southern flank of the Ozark dome, a late Paleozoic regional uplift. The exposed bedrock of this map area comprises approximately 1,000 ft of Ordovician and Mississippian carbonate and clastic sedimentary rocks that have been mildly folded and broken by faults. A segment of the Buffalo River loops through the southern part of the quadrangle, and the river and adjacent lands form part of Buffalo National River, a park administered by the U.S. National Park Service. This geologic map provides information to better understand the natural resources of the Buffalo River watershed, particularly its karst hydrogeologic framework.

  20. Geologic map of the White Hall quadrangle, Frederick County, Virginia, and Berkeley County, West Virginia

    USGS Publications Warehouse

    Doctor, Daniel H.; Orndorff, Randall C.; Parker, Ronald A.; Weary, David J.; Repetski, John E.

    2010-01-01

    The White Hall 7.5-minute quadrangle is located within the Valley and Ridge province of northern Virginia and the eastern panhandle of West Virginia. The quadrangle is one of several being mapped to investigate the geologic framework and groundwater resources of Frederick County, Va., as well as other areas in the northern Shenandoah Valley of Virginia and West Virginia. All exposed bedrock outcrops are clastic and carbonate strata of Paleozoic age ranging from Middle Cambrian to Late Devonian. Surficial materials include unconsolidated alluvium, colluvium, and terrace deposits of Quaternary age, and local paleo-terrace deposits possibly of Tertiary age. The quadrangle lies across the northeast plunge of the Great North Mountain anticlinorium and includes several other regional folds. The North Mountain fault zone cuts through the eastern part of the quadrangle; it is a series of thrust faults generally oriented northeast-southwest that separate the Silurian and Devonian clastic rocks from the Cambrian and Ordovician carbonate rocks and shales. Karst development in the quadrangle occurs in all of the carbonate rocks. Springs occur mainly near or on faults. Sinkholes occur within all of the carbonate rock units, especially where the rocks have undergone locally intensified deformation through folding, faulting, or some combination.

  1. Geologic map of the Sand Creek Pass quadrangle, Larimer County, Colorado, and Albany County, Wyoming

    USGS Publications Warehouse

    Workman, Jeremiah B.; Braddock, William A.

    2010-01-01

    New geologic mapping within the Sand Creek Pass 7.5 minute quadrangle defines geologic relationships within the northern Front Range of Colorado along the Wyoming border approximately 35 km south of Laramie, Wyo. Previous mapping within the quadrangle was limited to regional reconnaissance mapping; Eaton Reservoir 7.5 minute quadrangle to the east (2008), granite of the Rawah batholith to the south (1983), Laramie River valley to the west (1979), and the Laramie 30' x 60' quadrangle to the north (2007). Fieldwork was completed during 1981 and 1982 and during 2007 and 2008. Mapping was compiled at 1:24,000-scale. Minimal petrographic work was done and no isotope work was done in the quadrangle area, but detailed petrographic and isotope studies were performed on correlative map units in surrounding areas as part of a related regional study of the northern Front Range. Stratigraphy of Proterozoic rocks is primarily based upon field observation of bulk mineral composition, macroscopic textural features, and field relationships that allow for correlation with rocks studied in greater detail outside of the map area. Stratigraphy of Phanerozoic rocks is primarily based upon correlation with similar rocks to the north in the Laramie Basin of Wyoming and to the east in the Front Range of Colorado.

  2. Mercury: Photomosaic of the Tolstoj Quadrangle H-8

    NASA Image and Video Library

    1996-09-23

    This computer generated mosaic from NASA Mariner 10 is of Mercury Tolstoj Quadrangle, named for the ancient Tolstoj crater located in the lower center of the image. http://photojournal.jpl.nasa.gov/catalog/PIA00068

  3. Map showing distribution of gold in stream-sediment samples, Richfield 1 degree by 2 degrees Quadrangle, Utah

    USGS Publications Warehouse

    Miller, W.R.; Motooka, J.M.; McHugh, J.B.

    1990-01-01

    This map of the Richfield 1° x 2° quadrangle, Utah, shows the regional distribution of gold in the less-than-0.180-mm (minus-80-mesh) fraction of stream sediments. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the Selected References of this report. The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess the mineral

  4. Map showing distribution of thorium in stream-sediment samples, Richfield 1 degree by 2 degrees Quadrangle, Utah

    USGS Publications Warehouse

    Miller, William R.; Motooka, Jerry M.; McHugh, John B.

    1990-01-01

    This map of the Richfield 1° x 2° quadrangle, Utah, shows the regional distribution of thorium in the less-than-0.180-mm (minus-80-mesh) fraction of stream-sediments. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the references (this publication). The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess the mineral

  5. Map showing distribution of zinc in stream-sediment samples, Richfield 1 degree by 2 degrees Quadrangle, Utah

    USGS Publications Warehouse

    Miller, William R.; Motooka, Jerry M.; McHugh, John B.

    1990-01-01

    This map of the Richfield 1° x 2° quadrangle, Utah, shows the regional distribution of zinc in the less-than-0.180-mm (minus-80-mesh) fraction of stream-sediments. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the references (this publication). The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess the mineral

  6. Map showing distribution of copper in stream-sediment samples, Richfield 1 degree by 2 degrees Quadrangle, Utah

    USGS Publications Warehouse

    Miller, William R.; Motooka, Jerry M.; McHugh, John B.

    1990-01-01

    This map of the Richfield 1° x 2° quadrangle shows the regional distribution of copper in the less-than-0.180-mm (minus-80-mesh) fraction of stream sediments. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the references (this publication). The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess the mineral

  7. Map showing distribution of barium in stream-sediment samples, Richfield 1 degree by 2 degrees Quadrangle, Utah

    USGS Publications Warehouse

    Miller, William R.; Motooka, Jerry M.; McHugh, John B.

    1990-01-01

    This map of the Richfield 1° x 2° quadrangle shows the regional distribution of barium in the less-than-0.180-mm (minus-80-mesh) fraction of stream sediments. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the references (this publication). The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess the mineral

  8. Map showing distribution of lead in stream-sediment samples, Richfield 1 degree by 2 degrees Quadrangle, Utah

    USGS Publications Warehouse

    Miller, William R.; Motooka, Jerry M.; McHugh, John B.

    1990-01-01

    This map of the Richfield 1° x 2° quadrangle, Utah, shows the regional distribution of lead in the less-than-0.180-mm (minus-80-mesh) fraction of stream sediments. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the references (this publication). The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess the mineral

  9. Map showing distribution of molybdenum in stream-sediment samples, Richfield 1 degree by 2 degrees Quadrangle, Utah

    USGS Publications Warehouse

    Miller, William R.; Motooka, Jerry M.; McHugh, John B.

    1990-01-01

    This map of the Richfield 1° x 2° quadrangle, Utah, shows the regional distribution of molybdenum in the less-than-0.180-mm (minus-80-mesh) fraction of stream-sediments. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the references (this publication). The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess the mineral

  10. Map showing distribution of silver in stream-sediment samples, Richfield 1 degree by 2 degrees Quadrangle, Utah

    USGS Publications Warehouse

    Miller, William R.; Motooka, Jerry M.; McHugh, John B.

    1990-01-01

    This map of the Richfield 1° x 2° quadrangle, Utah, shows the regional distribution of silver in the less-than-0.180-mm (minus-80-mesh) fraction of stream-sediments. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the references (this publication). The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess the mineral

  11. Map showing distribution of tin in stream-sediment samples, Richfield 1 degree by 2 degrees Quadrangle, Utah

    USGS Publications Warehouse

    Miller, William R.; Motooka, Jerry M.; McHugh, John B.

    1990-01-01

    This map of the Richfield 1° x 2° quadrangle, Utah, shows the regional distribution of tin in the less-than-0.180-mm (minus-80-mesh) fraction of stream-sediments. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the references (this publication). The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess the mineral

  12. Map showing distribution of uranium in stream-sediment samples, Richfield 1 degree by 2 degrees Quadrangle, Utah

    USGS Publications Warehouse

    Miller, William R.; Motooka, Jerry M.; McHugh, John B.

    1990-01-01

    This map of the Richfield 1° x 2° quadrangle, Utah, shows the regional distribution of uranium in the less-than-0.180-mm (minus-80-mesh) fraction of stream-sediments. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the references (this publication). The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess the mineral

  13. Mercury: Photomosaic of the Kuiper Quadrangle H-6

    NASA Image and Video Library

    2000-01-19

    The Kuiper Quadrangle was named in memory of Dr. Gerard Kuiper, an imaging team member, and well-known astronomer, of NASA Mariner 10 Venus/Mercury. The Kuiper crater is seen left of center in this image.

  14. Aerial gamma ray and magnetic survey: Nebraska/Texas survey, Waco quadrangle of Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-02-01

    The Waco quadrangle of eastern Texas lies within the northern Gulf Coastal Province. The area contains portions of the Ouachita Tectonic Belt, and the East Texas-Athens Embayment. The Mexia-Talco Fault Zone strikes NNW through the center of the area. West of the fault zone, Eocene neritic sediments are dominant, whereas Cretaceous platform deposits cover most of the area west of the zone. Examination of available literature shows no known uranium deposits (or occurrences) within the quadrangle. One hundred forty-four groups of uranium samples were defined as anomalous and discussed briefly in this report. None are considered significant. Most appear tomore » be of cultural origin. Magnetic data in the quadrangle are dominantly low frequency/low amplitude wavelengths, which suggest that sources may be extremely deep.« less

  15. Preliminary Geologic Map of the Lake Mead 30' X 60' Quadrangle, Clark County, Nevada, and Mohave County, Arizona

    USGS Publications Warehouse

    Beard, L.S.; Anderson, R.E.; Block, D.L.; Bohannon, R.G.; Brady, R.J.; Castor, S.B.; Duebendorfer, E.M.; Faulds, J.E.; Felger, T.J.; Howard, K.A.; Kuntz, M.A.; Williams, V.S.

    2007-01-01

    Introduction The geologic map of the Lake Mead 30' x 60' quadrangle was completed for the U.S. Geological Survey's Las Vegas Urban Corridor Project and the National Parks Project, National Cooperative Geologic Mapping Program. Lake Mead, which occupies the northern part of the Lake Mead National Recreation Area (LAME), mostly lies within the Lake Mead quadrangle and provides recreation for about nine million visitors annually. The lake was formed by damming of the Colorado River by Hoover Dam in 1939. The recreation area and surrounding Bureau of Land Management lands face increasing public pressure from rapid urban growth in the Las Vegas area to the west. This report provides baseline earth science information that can be used in future studies of hazards, groundwater resources, mineral and aggregate resources, and of soils and vegetation distribution. The preliminary report presents a geologic map and GIS database of the Lake Mead quadrangle and a description and correlation of map units. The final report will include cross-sections and interpretive text. The geology was compiled from many sources, both published and unpublished, including significant new mapping that was conducted specifically for this compilation. Geochronologic data from published sources, as well as preliminary unpublished 40Ar/39Ar ages that were obtained for this report, have been used to refine the ages of formal Tertiary stratigraphic units and define new informal Tertiary sedimentary and volcanic units.

  16. Geologic map of the Sauk River 30- by 60-minute quadrangle, Washington

    USGS Publications Warehouse

    Tabor, R.W.; Booth, D.B.; Vance, J.A.; Ford, A.B.

    2002-01-01

    Summary -- The north-south-trending regionally significant Straight Creek Fault roughly bisects the Sauk River quadrangle and defines the fundamental geologic framework of it. Within the quadrangle, the Fault mostly separates low-grade metamorphic rocks on the west from medium- to high-grade metamorphic rocks of the Cascade metamorphic core. On the west, the Helena-Haystack melange and roughly coincident Darrington-Devils Mountain Fault Zone separate the western and eastern melange belts to the southwest from the Easton Metamorphic Suite, the Bell Pass melange, and rocks of the Chilliwack Group, to the northeast. The tectonic melanges have mostly Mesozoic marine components whereas the Chilliwack is mostly composed of Late Paleozoic arc rocks. Unconformably overlying the melanges and associated rocks are Eocene volcanic and sedimentary rocks, mostly infaulted along the Darrington-Devils Mountain Fault Zone. These younger rocks and a few small Eocene granitic plutons represent an extensional tectonic episode. East of the Straight Creek Fault, medium to high-grade regional metamorphic rocks of the Nason, Chelan Mountains, and Swakane terranes have been intruded by deep seated, Late Cretaceous granodioritic to tonalitic plutons, mostly now orthogneisses. Unmetamorphosed mostly tonalitic intrusions on both sides of the Straight Creek fault range from 35 to 4 million years old and represent the roots of volcanoes of the Cascade Magmatic Arc. Arc volcanic rocks are sparsely preserved east of the Straight Creek fault, but dormant Glacier Peak volcano on the eastern margin of the quadrangle is the youngest member of the Arc. Deposits of the Canadian Ice Sheet are well represented on the west side of the quadrangle, whereas alpine glacial deposits are common to the east. Roughly 5000 years ago lahars from Glacier Peak flowed westward filling major valleys across the quadrangle.

  17. Geologic map of the Monrovia Quadrangle, Liberia

    USGS Publications Warehouse

    Thorman, Charles H.

    1974-01-01

    As part of a program undertaken cooperatively by the Liberian Geological Survey and the U. S. Geological Survey, under the sponsorship of the Government of Liberia and the Agency for International Development, U. S. Department of State, Liberia was mapped by geologic and geophysical methods during the period 1965 to 1972.- The resulting geologic and geophysical maps are published in ten folios, each covering one quadrangle (see index map). The Monrovia quadrangle was systematically mapped by the author from June 1971 to July 1972. Field data provided by private companies and other members of the LGS-USGS project were used in map compilation, and are hereby acknowledged. Interpretation of gravity data (Behrendt and Wotorson, 1974, c), and total-intensity aeromagnetic and total count gamma radiation surveys (Behrendt and Wotorson, 1974, a, and b) were also used in the compilation, as were other unpublished geophysical data furnished by Behrendt and Wotorson (near-surface, regional magnetic component, and geologic correlations based on aeromagnetic and radiometric characteristics).

  18. 30 CFR 937.700 - Oregon Federal program.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Oregon Federal program. 937.700 Section 937.700... PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON § 937.700 Oregon Federal program. (a) This part contains all rules that are applicable to surface coal mining operations in Oregon...

  19. 30 CFR 937.700 - Oregon Federal program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Oregon Federal program. 937.700 Section 937.700... PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON § 937.700 Oregon Federal program. (a) This part contains all rules that are applicable to surface coal mining operations in Oregon...

  20. 30 CFR 937.700 - Oregon Federal program.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Oregon Federal program. 937.700 Section 937.700... PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON § 937.700 Oregon Federal program. (a) This part contains all rules that are applicable to surface coal mining operations in Oregon...

  1. Conodont and Radiolarian Data from the De Long Mountains Quadrangle and Adjacent Areas, Northern Alaska

    USGS Publications Warehouse

    Dumoulin, Julie A.; Harris, Anita G.; Blome, Charles D.; Young, Lorne E.

    2006-01-01

    INTRODUCTION This report presents biostratigraphic data from 289 collections at 189 localities in the De Long Mountains, Misheguk Mountain, and Noatak quadrangles (fig. 1); most of these data have never been previously published. The collections were made during studies of the Red Dog massive sulfide deposit in 1998?2004 and in support of regional mapping projects in 1979, 1981, 1983, and 1997?98. The collections?mostly conodonts and some radiolarians?tightly constrain the age of many stratigraphic units of Devonian through Triassic age exposed within the study area, and provide additional data on the depositional environments and thermal history of these rocks. The data are presented in a series of tables, organized by fossil type, stratigraphic unit, and location. Tables 1?12 contain conodont data, mostly from the De Long Mountains quadrangle. All of these collections were initially examined, or were reevaluated, from 1997 through 2004, and complete faunal lists are given for all samples. Table 13 lists ages and conodont color alteration indices (CAIs) of 27 collections from 24 localities in the Noatak quadrangle; updated faunal lists were not prepared for these samples. Radiolarian data?all from the De Long Mountains quadrangle?are given in table 14; these collections were analyzed between 1998 and 2003. Collection localities are shown in four maps (sheets 1, 2). Map 1 (sheet 1) shows all outcrop samples from the De Long Mountains and western Misheguk Mountain quadrangle (locs. 1-121). Maps 2?4 (sheets 1, 2) show all drill hole sample localities; samples come from the Su-Lik deposit and in and around the Anarraaq deposit (map 2, locs. 122?135), in and adjacent to the Red Dog deposits (Paalaaq, Aqqaluk, Main, and Qanaiyaq) (map 3, locs. 136?158), and from drill holes along the Port Road in the Noatak quadrangle (map 4, locs. 159?160). Map 4 (sheet 2) also shows all outcrop samples from the Noatak quadrangle (locs. 161?189). The text summarizes the lithofacies

  2. Maps showing coal resources in the Crumpler Quadrangle, Mercer, McDowell, and Wyoming counties, West Virginia

    USGS Publications Warehouse

    Stricker, Gary D.

    1980-01-01

    Coal Geology The Crumpler quadrangle lies in the Appalachian Plateaus province, with the coal bearing Pocahontas and New River Formations of Pennsylvanian age having a gentle dip toward the northwest. Coal bed maps were prepared (figures 1-7) and resources were estimated (table 1) for seven of the many coal beds in the Crumpler quadrangle (Stricker, 1980, lists the names of the various coal beds in the quadrangle) following methods established by U.S. Bureau of Mines and U.S. Geological Survey, 1976. All of these coal beds crop out at the surface in the quadrangle, have a maximum thickness thickness of over-burden of less than 300 meters, and have been mined at the surface, or under-ground, or both. Resource estimates were not calculated for other coal beds in the Pocahontas and New River Formations, either because of insufficient data of because of the beds are too thin. Figure 8 is a generalized stratigraphic column of the coal-bearing sequence in the Crumpler quadrangle showing thickness and relative positions of the various coal beds. The Crumpler quadrangle originally contained about 498 million metric tons of coal. Approximately 326 million metric tons have been mined, or lost in mining, leaving remaining resources of 172 million metric tons. Analyses of the mined coal beds in the Crumpler and adjacent quadrangle show the coal is medium - to low volatile bituminous (most are low volatile bituminous), containing 14-27 percent volatile matter (with an arithmetic mean of 18 percent), 2.1-22.4 percent ash (with an arithmetic mean of 7 percent), and 0.5-1.8 percent total sulfur (with an arithmetic mean of 0.8 percent). Heating values range from 6,380 to 8,610 Kcal/kg on an as-received basis. Trace element and major and minor oxide composition, of both whole coal and laboratory ash, for 59 samples within or near the quadrangle were obtained from USCHEM (Geochemical Data File or National Coal Resources Data System), (Kozey and others, 1980.) Neither elements of

  3. Geologic map of the Bateman Spring Quadrangle, Lander County, Nevada

    USGS Publications Warehouse

    Ramelli, Alan R.; Wrucke, Chester T.; House, P. Kyle

    2017-01-01

    This 1:24,000-scale geologic map of the Bateman Spring 7.5-minute quadrangle in Lander County, Nevada contains descriptions of 24 geologic units and one cross section. Accompanying text includes full unit descriptions and references. This quadrangle includes lower Paleozoic siliciclastic sedimentary rocks of the Roberts Mountain allochthon, Miocene intrusive dikes, alluvial deposits of the northern Shoshone Range piedmont, and riverine deposits of the Reese and Humboldt rivers.Significant findings include: refined age estimates for the Ordovician-Cambrian Valmy Formation and Devonian Slaven Chert, based on new fossil information; and detailed mapping of late Quaternary fault traces along the Shoshone Range fault system.

  4. Publications - Quadrangle Search | Alaska Division of Geological &

    Science.gov Websites

    Publication Sales. Access bibliography for: Quadrangle name will appear as your mouse scrolls across Alaska Long Mountains Misheguk Mountain Howard Pass Killik River Chandler Lake Philip Smith Mountains Arctic Table Mountain Noatak Baird Mountains Ambler River Survey Pass Wiseman Chandalar Christian Coleen

  5. Reconnaissance geology of the Al Ba'ayith quadrangle, sheet 26/41 D, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Williams, P.L.; Simonds, F.W.; Turner, J.D.

    1985-01-01

    Gold-bearing quartz veins occur associated with small plutons of the Idah suite in the southeastern part of the quadrangle, and have been mined in the past. Ironstones, near Murran in the center of the quadrangle contain trace amounts of silver and gold.

  6. Chapter 6. Impacts of Climate Change on Oregon's Coasts and Estuaries in "Oregon Climate Change Assessment Report"

    EPA Science Inventory

    In 2007 the Oregon legislature created a new Oregon Climate Change Research Institute (OCCRI), which is based at Oregon State University (OSU). As part of its charter, OCCRI is mandated to produce a biennial report for the state legislature synthesizing climate change impacts a...

  7. Geologic map of the Leadville North 7.5’ quadrangle, Eagle and Lake Counties, Colorado

    USGS Publications Warehouse

    Ruleman, Chester A.; Brandt, Theodore R.; Caffee, Marc W.; Goehring, Brent M.

    2018-04-24

    The Leadville North 7.5’ quadrangle lies at the northern end of the Upper Arkansas Valley, where the Continental Divide at Tennessee Pass creates a low drainage divide between the Colorado and Arkansas River watersheds. In the eastern half of the quadrangle, the Paleozoic sedimentary section dips generally 20–30 degrees east. At Tennessee Pass and Missouri Hill, the core of the Sawatch anticlinorium is mapped as displaying a tight hanging-wall syncline and foot-wall anticline within the basement-cored structure. High-angle, west-dipping, Neogene normal faults cut the eastern margin of the broad, Sawatch anticlinorium. Minor displacements along high-angle, east- and west-dipping Laramide reverse faults occurred in the core of the north-plunging anticlinorium along the western and eastern flanks of Missouri Hill. Within the western half of the quadrangle, Meso- and Paleoproterozoic metamorphic and igneous rocks are uplifted along the generally east-dipping, high-angle Sawatch fault system and are overlain by at least three generations of glacial deposits in the western part of the quadrangle. 10Be and 26Al cosmogenic nuclide ages of the youngest glacial deposits indicate a last glacial maximum age of about 21–22 kilo-annum and complete deglaciation by about 14 kilo-annum, supported by chronologic studies in adjacent drainages. No late Pleistocene tectonic activity is apparent within the quadrangle.

  8. Preliminary Geological Map of the Fortuna Tessera (V-2) Quadrangle, Venus

    NASA Technical Reports Server (NTRS)

    Ivanov, M. A.; Head, J. W.

    2009-01-01

    The Fortuna Tessera quadrangle (50-75 N, 0-60 E) is a large region of tessera [1] that includes the major portion of Fortuna and Laima Tesserae [2]. Near the western edge of the map area, Fortuna Tessera is in contact with the highest moun-tain belt on Venus, Maxwell Montes. Deformational belts of Sigrun-Manto Fossae (extensional structures) and Au ra Dorsa (contractional structures) separate the tessera regions. Highly deformed terrains correspond to elevated regions and mildly deformed units are with low-lying areas. The sets of features within the V-2 quadrangle permit us to address the following important questions: (1) the timing and processes of crustal thickening/thinning, (2) the nature and origin of tesserae and deformation belts and their relation to crustal thickening processes, (3) the existence or absence of major evolutionary trends of volcanism and tectonics. The key feature in all of these problems is the regional sequence of events. Here we present description of units that occur in the V-2 quadrangle, their regional correlation chart (Fig. 1), and preliminary geological map of the region (Fig. 2).

  9. Geology of the Joe Davis Hill quadrangle, Dolores and San Miguel counties, Colorado

    USGS Publications Warehouse

    Cater, Fred W.; Bell, Henry

    1953-01-01

    The Joe Davis Hill quadrangle is one of eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of these quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by hih-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as the "Uravan Mineral Belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing many thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary structures in sandstones of favorable composition.

  10. Geologic map of the Ponca quadrangle, Newton, Boone, and Carroll Counties, Arkansas

    USGS Publications Warehouse

    Hudson, Mark R.; Murray, Kyle E.

    2003-01-01

    This digital geologic map compilation presents new polygon (i.e., geologic map unit contacts), line (i.e., fault, fold axis, and structure contour), and point (i.e., structural attitude, contact elevations) vector data for the Ponca 7 1/2' quadrangle in northern Arkansas. The map database, which is at 1:24,000-scale resolution, provides geologic coverage of an area of current hydrogeologic, tectonic, and stratigraphic interest. The Ponca quadrangle is located in Newton, Boone, and Carroll Counties about 20 km southwest of the town of Harrison. The map area is underlain by sedimentary rocks of Ordovician, Mississippian, and Pennsylvanian age that were mildly deformed by a series of normal and strike-slip faults and folds. The area is representative of the stratigraphic and structural setting of the southern Ozark Dome. The Ponca quadrangle map provides new geologic information for better understanding groundwater flow paths and development of karst features in and adjacent to the Buffalo River watershed.

  11. Seaside, Oregon, Tsunami Vulnerability Assessment Pilot Study

    NASA Astrophysics Data System (ADS)

    Dunbar, P. K.; Dominey-Howes, D.; Varner, J.

    2006-12-01

    The results of a pilot study to assess the risk from tsunamis for the Seaside-Gearhart, Oregon region will be presented. To determine the risk from tsunamis, it is first necessary to establish the hazard or probability that a tsunami of a particular magnitude will occur within a certain period of time. Tsunami inundation maps that provide 100-year and 500-year probabilistic tsunami wave height contours for the Seaside-Gearhart, Oregon, region were developed as part of an interagency Tsunami Pilot Study(1). These maps provided the probability of the tsunami hazard. The next step in determining risk is to determine the vulnerability or degree of loss resulting from the occurrence of tsunamis due to exposure and fragility. The tsunami vulnerability assessment methodology used in this study was developed by M. Papathoma and others(2). This model incorporates multiple factors (e.g. parameters related to the natural and built environments and socio-demographics) that contribute to tsunami vulnerability. Data provided with FEMA's HAZUS loss estimation software and Clatsop County, Oregon, tax assessment data were used as input to the model. The results, presented within a geographic information system, reveal the percentage of buildings in need of reinforcement and the population density in different inundation depth zones. These results can be used for tsunami mitigation, local planning, and for determining post-tsunami disaster response by emergency services. (1)Tsunami Pilot Study Working Group, Seaside, Oregon Tsunami Pilot Study--Modernization of FEMA Flood Hazard Maps, Joint NOAA/USGS/FEMA Special Report, U.S. National Oceanic and Atmospheric Administration, U.S. Geological Survey, U.S. Federal Emergency Management Agency, 2006, Final Draft. (2)Papathoma, M., D. Dominey-Howes, D.,Y. Zong, D. Smith, Assessing Tsunami Vulnerability, an example from Herakleio, Crete, Natural Hazards and Earth System Sciences, Vol. 3, 2003, p. 377-389.

  12. Reconnaissance geologic map of the Wadi Khulab Quadrangle, sheet 16/43 A, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Blank, Horace Richard; Gettings, Mark E.

    1985-01-01

    From west to east, the physiography of the mapped area consists of a portion of the Tiharmat Asir, or coastal plain, extending from the Jizan quadrangle to the west (Blank and Gettings, 1984), a northwest-trending hill range close to the western border of the quadrangle; a pediplain; and the foothills of the Red Sea escarpment. The top of the escarpment is about 50 km east of the mapped area, in the Yemen Arab Republic. Within Saudi Arabia, the highest elevation in the quadrangle about 77 m above sea level, is found at Tirf in the western range of hills.

  13. Database for the geologic map of the Bend 30- x 60-minute quadrangle, central Oregon

    USGS Publications Warehouse

    Koch, Richard D.; Ramsey, David W.; Sherrod, David R.; Taylor, Edward M.; Ferns, Mark L.; Scott, William E.; Conrey, Richard M.; Smith, Gary A.

    2010-01-01

    The Bend 30- x 60-minute quadrangle has been the locus of volcanism, faulting, and sedimentation for the past 35 million years. It encompasses parts of the Cascade Range and Blue Mountain geomorphic provinces, stretching from snowclad Quaternary stratovolcanoes on the west to bare rocky hills and sparsely forested juniper plains on the east. The Deschutes River and its large tributaries, the Metolius and Crooked Rivers, drain the area. Topographic relief ranges from 3,157 m (10,358 ft) at the top of South Sister to 590 m (1,940 ft) at the floor of the Deschutes and Crooked Rivers where they exit the area at the north-central edge of the map area. The map encompasses a part of rapidly growing Deschutes County. The city of Bend, which has over 70,000 people living in its urban growth boundary, lies at the south-central edge of the map. Redmond, Sisters, and a few smaller villages lie scattered along the major transportation routes of U.S. Highways 97 and 20. This geologic map depicts the geologic setting as a basis for structural and stratigraphic analysis of the Deschutes basin, a major hydrologic discharge area on the east flank of the Cascade Range. The map also provides a framework for studying potentially active faults of the Sisters fault zone, which trends northwest across the map area from Bend to beyond Sisters. This digital release contains all of the information used to produce the geologic map published as U.S. Geological Survey Geologic Investigations Series I-2683 (Sherrod and others, 2004). The main component of this digital release is a geologic map database prepared using ArcInfo GIS. This release also contains files to view or print the geologic map and accompanying descriptive pamphlet from I-2683.

  14. Creating Open Textbooks: A Unique Partnership between Oregon State University Libraries and Press and Open Oregon State

    ERIC Educational Resources Information Center

    Chadwell, Faye A.; Fisher, Dianna M.

    2016-01-01

    This article presents Oregon State University's experience launching an innovative Open Textbook initiative in spring 2014. The partners, Open Oregon State and the Oregon State University Libraries and Press, aimed to reduce the cost of course materials for students while ensuring the content created was peer-reviewed and employed multimedia…

  15. Geologic map of the Mount Sherman 7.5' quadrangle, Lake and Park Counties, Colorado

    USGS Publications Warehouse

    Bohannon, Robert G.; Ruleman, Chester A.

    2013-01-01

    The Mount Sherman 7.5- minute quadrangle is located along the crest of the Mosquito Range in between Leadville and Fairplay, Colorado. There are eleven 13,000-foot peaks and one fourteener, Mount Sherman, within the quadrangle. General elevations range from 10,400–14,036 feet (3,200–4,278 meters). The western half of the quadrangle primarily consists of Proterozoic granitic rocks reverse faulted over Paleozoic sedimentary rocks during the Laramide orogeny of late Cretaceous and Paleocene time. Coeval to this contractional event, sills and laccoliths of the White porphyry group (which probably includes rocks equivalent to the Pando Porphyry) were emplaced in the surrounding country rocks. Igneous activity continued into the Late Eocene with the emplacement of the Sacramento Porphyry (about 43.9 Ma) and the Gray porphyry group (about 36.7 Ma), and as young as 29 Ma to the north within the Climax quadrangle. With the inception of the Rio Grande rift within the region, the Paleozoic sedimentary rocks and Late Cretaceous to early Oligocene igneous rocks were extensionally faulted and tilted to the east. This resulted in the present 20–30 degree dip-slope of these rocks on top of Proterozoic basement rocks within the eastern half of the quadrangle. This extensional regime has continued well into the Pliocene. Within the southwestern quadrant, suspicious lineaments, alignment of springs, and continuous, measureable escarpments provide reasonable evidence for Quaternary tectonic activity along the western flank of the range. Pleistocene glaciers have dramatically sculpted the region, providing exceptional exposure of the region’s bedrock and structure.

  16. National Uranium Resource Evaluation: Aztec quadrangle, New Mexico and Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, M.W.

    1982-09-01

    Areas and formations within the Aztec 1/sup 0/ x 2/sup 0/ Quadrangle, New Mexico and Colorado considered favorable for uranium endowment of specified minimum grade and tonnage include, in decreasing order of favorability: (1) the Early Cretaceous Burro Canyon Formation in the southeastern part of the Chama Basin; (2) the Tertiary Ojo Alamo Sandstone in the east-central part of the San Juan Basin; and (3) the Jurassic Westwater Canyon and Brushy Basin Members of the Morrison Formation in the southwestern part of the quadrangle. Favorability of the Burro Canyon is based on the presence of favorable host-rock facies, carbonaceous materialmore » and pyrite to act as a reductant for uranium, and the presence of mineralized ground in the subsurface of the Chama Basin. The Ojo Alamo Sandstone is considered favorable because of favorable host-rock facies, the presence of carbonaceous material and pyrite to act as a reductant for uranium, and the presence of a relatively large subsurface area in which low-grade mineralization has been encountered in exploration activity. The Morrison Formation, located within the San Juan Basin adjacent to the northern edge of the Grants mineral belt, is considered favorable because of mineralization in several drill holes at depths near 1500 m (5000 ft) and because of favorable facies relationships extending into the Aztec Quadrangle from the Grants mineral belt which lies in the adjacent Albuquerque and Gallup Quadrangles. Formations considered unfavorable for uranium deposits of specified tonnage and grade include the remainder of sedimentary and igneous formations ranging from Precambrian to Quaternary in age. Included under the unfavorable category are the Cutler Formation of Permian age, and Dakota Sandstone of Late Cretaceous age, and the Nacimiento and San Jose Formations of Tertiary age.« less

  17. 27 CFR 9.229 - Elkton Oregon.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Elkton Oregon. 9.229... Elkton Oregon. (a) Name. The name of the viticultural area described in this section is “Elkton Oregon... of part 4 of this chapter, “Elkton Oregon” and “Elkton OR” are terms of viticultural significance. (b...

  18. 27 CFR 9.229 - Elkton Oregon.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Elkton Oregon. 9.229... Elkton Oregon. (a) Name. The name of the viticultural area described in this section is “Elkton Oregon... of part 4 of this chapter, “Elkton Oregon” and “Elkton OR” are terms of viticultural significance. (b...

  19. Topographic Map of Quadrangles 3772, 3774, 3672, and 3674, Gaz-Khan (313), Sarhad (314), Kol-I-Chaqmaqtin (315), Khandud (319), Deh-Ghulaman (320), and Erftah (321) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  20. Experimental use of flexible guideposts in Oregon : PPM 20-6.3, Category 2 Project : final report.

    DOT National Transportation Integrated Search

    1974-06-25

    During the early months of 1971 the Oregon State Highway Division requested and received FHWA approval to install flexible guideposts in locations where sight post losses from collisions would be expected to be high. The request was to install the fl...

  1. Reconnaissance geology of the Thaniyah Quadrangle, sheet 20/42 C, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Greene, Robert C.

    1983-01-01

    The Thaniyah quadrangle, sheet 20/42 C, is located in the transition zone between the Hijaz Mountains and the Najd Plateau of southwestern Saudi Arabia between lat 20?00' and 20?30' N., long 42?00' to 42?30' E. The quadrangle is underlain by Precambrian metavolcanic, metasedimentary, plutonic, and dike rocks. Metavolcanic rocks consist of metamorphosed basalt and andesite with minor dacite and rhyolite and underlie three discontinuous northwest-trending belts. Metasedimentary rocks are confined to small areas underlain by quartzite, metasandstone, marble, and calc-silicate rock. Plutonic rocks include an extensive unit of tonalite and quartz diorite and a smaller unit of diorite and quartz diorite, which occupy much of the central part of the quadrangle. A small body of diorite and gabbro and a two-part zone of tonalite gneiss are also present. All of these plutonic rocks are assigned to the An Nimas batholith. Younger plutonic rocks include extensive graphic granite and rhyolite in the northeastern part of the quadrangle and several smaller bodies of granitic rocks and of gabbro. The metavolcanic rocks commonly have strong foliation with northwest strike and steep to vertical dip. Diorite and quartz diorite are sheared and brecciated and apparently syntectonic. Tonalite and quartz diorite are both foliate and nonfoliate and were intruded in episodes both preceding and following shearing. The granitic rocks and gabbro are post-tectonic. Trends of faults and dikes are mostly related to the Najd faulting episode. Radiometric ages, mostly from adjacent quadrangles, suggest that the An Nimas batholith is 835 to 800 Ma, gabbro and granite, except the graphic granite and rhyolite unit, are about 640 to 615 Ma, and the graphic granite and rhyolite 575 to 565 Ma old. Metavolcanic rocks similar to those hosting copper and gold mineralization in the Wadi Shuwas mining district adjacent to the southwestern part of the quadrangle are abundant. An ancient copper mine was

  2. Biological science in Oregon

    USGS Publications Warehouse

    Thorsteinson, Lyman

    2005-01-01

    Fishing is an important part of Oregon's culture. The Western Fisheries Research Center (WFRC) has been conducting research in Oregon for many years to provide information that can be used by managers to help keep fish and other parts of the ecosystem healthy. Below are examples of some of WFRC's studies.

  3. Geologic map of the Valley Mountain 15’ quadrangle, San Bernardino and Riverside Counties, California

    USGS Publications Warehouse

    Howard, Keith A.; Bacheller, John; Fitzgibbon, Todd T.; Powell, Robert E.; Allen, Charlotte M.

    2013-01-01

    The Valley Mountain 15’ quadrangle straddles the Pinto Mountain Fault, which bounds the eastern Transverse Ranges in the south against the Mojave Desert province in the north. The Pinto Mountains, part of the eastern Transverse Ranges in the south part of the quadrangle expose a series of Paleoproterozoic gneisses and granite and the Proterozoic quartzite of Pinto Mountain. Early Triassic quartz monzonite intruded the gneisses and was ductiley deformed prior to voluminous Jurassic intrusion of diorite, granodiorite, quartz monzonite, and granite plutons. The Jurassic rocks include part of the Bullion Mountains Intrusive Suite, which crops out prominently at Valley Mountain and in the Bullion Mountains, as well as in the Pinto Mountains. Jurassic plutons in the southwest part of the quadrangle are deeply denuded from midcrustal emplacement levels in contrast to supracrustal Jurassic limestone and volcanic rocks exposed in the northeast. Dikes inferred to be part of the Jurassic Independence Dike Swarm intrude the Jurassic plutons and Proterozoic rocks. Late Cretaceous intrusion of the Cadiz Valley Batholith in the northeast caused contact metamorphism of adjacent Jurassic plutonic rocks. The Tertiary period saw emplacement of basanitoid basalt at about 23 Ma and deposition of Miocene and (or) Pliocene ridge-capping gravels. An undated east-dipping low-angle normal fault zone in the Pinto Mountains drops hanging-wall rocks eastward and may account for part of the contrast in uplift history across the quadrangle. The eastern Transverse Ranges are commonly interpreted as severely rotated clockwise tectonically in the Neogene relative to the Mojave Desert, but similar orientations of Jurassic dike swarms suggest that any differential rotation between the two provinces is small in this quadrangle. The late Cenozoic Pinto Mountain Fault and other strike-slip faults cut Quaternary deposits in the quadrangle, with two northwest-striking faults cutting Holocene deposits

  4. Geologic map of the Lower Valley quadrangle, Caribou County, Idaho

    USGS Publications Warehouse

    Oberlindacher, H. Peter; Hovland, R. David; Miller, Susan T.; Evans, James G.; Miller, Robert J.

    2018-04-05

    The Lower Valley 7.5-minute quadrangle, located in the core of the Southeast Idaho Phosphate Resource Area, includes Mississippian to Triassic marine sedimentary rocks, Pliocene to Pleistocene basalt, and Tertiary to Holocene surficial deposits. The Mississippian to Triassic marine sedimentary sequence was deposited on a shallow shelf between an emergent craton to the east and the Antler orogenic belt to the west. The Meade Peak Phosphatic Shale Member of the Permian Phosphoria Formation hosts high-grade deposits of phosphate that were the subject of geologic studies through much of the 20th century. Open-pit mining of the phosphate has been underway within and near the Lower Valley quadrangle for several decades.

  5. Geological Mapping of the Lada Terra (V-56) Quadrangle, Venus

    NASA Technical Reports Server (NTRS)

    Kumar, P. Senthil; Head, James W., III

    2009-01-01

    Geological mapping of the V-56 quadrangle (Fig. 1) reveals various tectonic and volcanic features and processes in Lada Terra that consist of tesserae, regional extensional belts, coronae, volcanic plains and impact craters. This study aims to map the spatial distribution of different material units, deformational features or lineament patterns and impact crater materials. In addition, we also establish the relative age relationships (e.g., overlapping or cross-cutting relationship) between them, in order to reconstruct the geologic history. Basically, this quadrangle addresses how coronae evolved in association with regional extensional belts, in addition to evolution of tesserae, regional plains and impact craters, which are also significant geological units of Lada Terra.

  6. Teenage Suicide in Oregon 1983-1985.

    ERIC Educational Resources Information Center

    Oregon State Dept. of Human Resources, Portland.

    During the 3-year period from 1983 through 1985, 80 Oregon teenagers intentionally took their own lives, making suicide second only to accidents as the leading cause of death among Oregon teenagers. Data on suicides committed by individuals between the ages of 10 and 19 were retrieved from death certificates on file with the Oregon Health Division…

  7. Isostatic Gravity Map of the Battle Mountain 30 x 60 Minute Quadrangle, North Central Nevada

    USGS Publications Warehouse

    Ponce, D.A.; Morin, R.L.

    2000-01-01

    Introduction Gravity investigations of the Battle Mountain 30 x 60 minute quadrangle were begun as part of an interagency effort by the U.S. Geological Survey (USGS) and the Bureau of Land Management to help characterize the geology, mineral resources, hydrology, and ecology of the Humboldt River Basin in north-central Nevada. The Battle Mountain quadrangle is located between 40?30' and 41?N. lat. and 116? and 117?W. long. This isostatic gravity map of the Battle Mountain quadrangle was prepared from data from about 1,180 gravity stations. Most of these data are publicly available on a CD-ROM of gravity data of Nevada (Ponce, 1997) and in a published report (Jewel and others, 1997). Data from about 780 gravity stations were collected by the U.S. Geological Survey since 1996; data from about 245 of these are unpublished (USGS, unpub. data, 1998). Data collected from the 400 gravity stations prior to 1996 are a subset of a gravity data compilation of the Winnemucca 1:250,000-scale quadrangle described in great detail by Wagini (1985) and Sikora (1991). This detailed information includes gravity meters used, dates of collection, sources, descriptions of base stations, plots of data, and a list of principal facts. A digital version of the entire data set for the Battle Mountain quadrangle is available on the World Wide Web at: http://wrgis.wr.usgs.gov/docs/gump/gump.html

  8. 1970 Oregon timber harvest.

    Treesearch

    Brian R. Wall

    1971-01-01

    The 1970 Oregon timber harvest of 7.98 billion board feet was the lowest recorded since the recession year of 1961 when 7.41 billion board feet of timber was produced. The 1970 log production figure was 12.8 percent below the 1969 harvest, the second consecutive year of declining production in Oregon.

  9. National Uranium Resource Evaluation: Lewistown Quadrangle, Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Culver, J.C.

    1982-09-01

    Uranium resources in the Lewistown Quadrangle, Montana, were evaluated to a depth of 1500 m (5000 ft). All existing geologic data were considered, including geologic surveys, literature, theses, radiometric surveys, oil- and water-well logs. Additional data were generated during the course of two field seasons, including the collection of more than 350 water, rock, crude oil and panned concentrate samples for analyses, sedimentary facies maps, structural geology and isopach maps, and field examination of reported areas of anomalous radioactivity. Three environments with potential for the occurrence of a minimum of 100 t of 0.01% U/sub 3/O/sub 8/ were delineated. Themore » most favorable environment is located in the southeastern portion of the quadrangle; here, Tertiary felsic dikes intrude four potential sandstone host rocks in the Kootenai Formation and the Colorado Shale. Structural-chemical traps for allogenic uranium are provided by the juxtaposition of oil-bearing domes. A second potential environment is located in the Eagle Sandstone in the northwestern and western portions of the quadrangle; here, anomalous water samples were obtained downtip from oxidized outcrops that are structurally related to Tertiary intrusive rocks of the Bearpaw and Highwood Mountains. Lignitic lenses and carbonaceous sandstones deposited in a near-shore lagoonal and deltaic environment provide potential reductants for hexavalent uranium in this environment. A third environment, in the Judith River Formation, was selected as favorable on the basis of water-well and gamma-ray log anomalies and their structural relationship with the Bearpaw Mountains. Organic materials are present in the Judith River Formation as potential reductants. They were deposited in a near-shore fluvial and lagoonal system similar to the depositional environment of the Jackson Group of the Texas Gulf Coast.« less

  10. Geology of the Windsor quadrangle, Massachusetts

    USGS Publications Warehouse

    Norton, Stephen A.

    1967-01-01

    The Windsor quadrangle lies on the boundary between the eugeosynclinal and miogeosynclinal rocks of the Appalachian geosyncline on the western flank of the metamorphic high in western New England. Precambrian rocks crop out in a north-trending belt in the central part of the quadrangle. They have been classified into 2 formations. The Stamford Granite Gneiss crops out in the eastern half of the Precambrian terrane. It is a microcline-quartz-biotite augen gneiss. Stratified Precambrian rocks (the Hinsdale Gneiss) crop out entirely the west of the Stamford Granite Gneiss. They are predominantly highly metamorphosed felsic gneisses and .quartzites with minor calc-silicate rock, amphibolite, and graphitic gneiss. Eugeosynclinal rocks (the Hoosac Formation and the Rowe Schist), .ranging in age from Lower Cambrian to Lower Ordovician, crop out in a north-trending belt east of the Precambrian terrane. They are composed predominantly of albite schist and muscovite-chlorite schist with minor garnet schist, quartz-muscovite-calcite schist, felsic granulite and gneiss, quartzite, greenschist, and carbonaceous phyllite and schist. West of the Precambrian rocks, the Hoosac Formation is overlain by a miogeosynclinal sequence (the Dalton Formation, Cheshire Quartzite, Kitchen Brook Dolomite, Clarendon Springs Dolomite, Shelburne Marble, and the Bascom Formation) ranging in age from Lower Cambrian to Lower Ordovician. These rocks are unconformably overlain by the Berkshire Schist of Middle Ordovician age that is composed of carbonaceous schist, phyllite, and quartzite. The relationships in the zone of transition between the miogeosynclinal and eugeosynclinal rocks are unknown because the rocks of this zone are no longer present. The contact between the eugeosynclinal Hoosac Formation and the Dalton Format ion is conformable and deposition. The dominant structure is a large recumbent, northwest-facing anticline (the Hoosac nappe) with a Precambrian co re. The miogeosynclinal rocks

  11. National Uranium Resource Evaluation: Durango Quadrangle, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Theis, N.J.; Madson, M.E.; Rosenlund, G.C.

    1981-06-01

    The Durango Quadrangle (2/sup 0/), Colorado, was evaluated using National Uranium Resource Evaluation criteria to determine environments favorable for uranium deposits. General reconnaissance, geologic and radiometric investigations, was augmented by detailed surface examination and radiometric and geochemical studies in selected areas. Eight areas favorable for uranium deposits were delineated. Favorable geologic environments include roscoelite-type vanadium-uranium deposits in the Placerville and Barlow Creek-Hermosa Creek districts, sandstone uranium deposits along Hermosa Creek, and vein uranium deposits in the Precambrian rocks of the Needle Mountains area and in the Paleozoic rocks of the Tuckerville and Piedra River Canyon areas. The major portions ofmore » the San Juan volcanic field, the San Juan Basin, and the San Luis Basin within the quadrangle were judged unfavorable. Due to lack of information, the roscoelite belt below 1000 ft (300 m), the Eolus Granite below 0.5 mi (0.8 km), and the Lake City caldera are unevaluated. The Precambrian Y melasyenite of Ute Creek and the Animas Formation within the Southern Ute Indian Reservation are unevaluated due to lack of access.« less

  12. Forests of western Oregon: an overview.

    Treesearch

    Sally Campbell; Dave Azuma; Dale. Weyermann

    2002-01-01

    This publication provides highlights of forest inventories and surveys from 1993 to 2000. It presents both traditional and nontraditional information about western Oregon’s forests.The amount of forest land in western Oregon has changed little since the earliest inventory in 1930. About 80 percent of western Oregon is forested. Fifty tree species were tallied in forest...

  13. Preliminary geologic map of the Murrieta 7.5' quadrangle, Riverside County, California

    USGS Publications Warehouse

    Kennedy, Michael P.; Morton, Douglas M.

    2003-01-01

    The Murrieta quadrangle is located in the northern part of the Peninsular Ranges Province and includes parts of two structural blocks, or structural subdivisions of the province. The quadrangle is diagonally crossed by the active Elsinore fault zone, a major fault zone of the San Andreas fault system, and separates the Santa Ana Mountains block to the west from the Perris block to the east. Both blocks are relatively stable internally and within the quadrangle are characterized by the presence of widespread erosional surfaces of low relief. The Santa Ana Mountains block, in the Murrieta quadrangle, is underlain by undifferentiated, thick-layered, granular, impure quartzite and well-layered, fissile, phyllitic metamorphic rock of low metamorphic grade. Both quartzite and phyllitic rocks are Mesozoic. Unconformably overlying the metamorphic rocks are remnants of basalt flows having relatively unmodified flow surfaces. The age of the basalt is about 7-8Ma. Large shallow depressions on the surface of the larger basalt remnants form vernal ponds that contain an endemic flora. Beneath the basalt the upper part of the metamorphic rocks is deeply weathered. The weathering appears to be the same as the regional Paleocene saprolitic weathering in southern California. West of the quadrangle a variable thickness sedimentary rock, physically resembling Paleogene rocks, occurs between the basalt and metamorphic rock. Where not protected by the basalt, the weathered rock has been removed by erosion. The dominant feature on the Perris block in the Murrieta quadrangle is the south half of the Paloma Valley ring complex, part of the composite Peninsular Ranges batholith. The complex is elliptical in plan view and consists of an older ring-dike with two subsidiary short-arced dikes that were emplaced into gabbro by magmatic stoping. Small to large stoped blocks of gabbro are common within the ring-dikes. A younger ring-set of hundreds of thin pegmatite dikes occur largely within the

  14. Geologic map of the Dillon quadrangle, Summit and Grand Counties, Colorado

    USGS Publications Warehouse

    Kellogg, Karl S.

    2002-01-01

    New 1:24,000-scale geologic mapping along the Interstate-70 urban corridor in western Colorado, in support of the USGS Central Region State/USGS Cooperative Geologic Mapping Project, is contributing to a more complete understanding of the stratigraphy, structure, tectonic evolution, and hazard potential of this rapidly developing region. The 1:24,000-scale Dillon quadrangle is near the headwaters of the Blue River and straddles features of the Blue River graben (Kellogg, 1999), part of the northernmost reaches of the Rio Grande rift, a major late Oligocene to recent zone of extension that extends from Colorado to Mexico. The Williams Range thrust fault, the western structural margin of the Colorado Front Range, cuts through the center of the quadrangle, although is mostly covered by surficial deposits. The oldest rocks in the quadrangle underlie the Williams Fork Mountains and the ridge immediately east of South Fork Middle Fork River, and include biotite-sillimanite schist and gneiss, amphibolite, and migmatite that are intruded by granite inferred to be part of the 1,667-1,750 Ma Routt Plutonic Suite (Tweto, 1987). The oldest exposed sedimentary unit is the Upper Jurassic Morrison Formation, but Pennsylvanian Maroon Formation, a sequence of red sandstone, conglomerate, and interbedded shale, underlies the southern part of the quadrangle. The thickest sequence of sedimentary rocks is Cretaceous in age and includes at least 500 m of the Upper Cretaceous Pierre Shale. Surficial deposits include (1) an old, deeply dissected landslide deposit, possibly as old as Pliocene, on the west flank of the Williams Fork Mountains, (2) deeply weathered, very coarse gravel deposits underlying a mesa in the southwest part of the quadrangle (the Mesa Cortina subdivision. The gravels are gold bearing and were mined by hydraulic methods in the 1800s), (3) moderately to deeply weathered, widespread, bouldery material that is a combination of till of the Bull Lake glaciation, debris

  15. Geologic map of the Dillon quadrangle, Summit and Grand Counties, Colorado

    USGS Publications Warehouse

    Kellogg, Karl S.

    1997-01-01

    New 1:24,000-scale geologic mapping along the Interstate-70 urban corridor in western Colorado, in support of the USGS Central Region State/USGS Cooperative Geologic Mapping Project, is contributing to a more complete understanding of the stratigraphy, structure, tectonic evolution, and hazard potential of this rapidly developing region. The 1:24,000-scale Dillon quadrangle is near the headwaters of the Blue River and straddles features of the Blue River graben (Kellogg, 1999), part of the northernmost reaches of the Rio Grande rift, a major late Oligocene to recent zone of extension that extends from Colorado to Mexico. The Williams Range thrust fault, the western structural margin of the Colorado Front Range, cuts through the center of the quadrangle, although is mostly covered by surficial deposits. The oldest rocks in the quadrangle underlie the Williams Fork Mountains and the ridge immediately east of South Fork Middle Fork River, and include biotite-sillimanite schist and gneiss, amphibolite, and migmatite that are intruded by granite inferred to be part of the 1,667-1,750 Ma Routt Plutonic Suite (Tweto, 1987). The oldest exposed sedimentary unit is the Upper Jurassic Morrison Formation, but Pennsylvanian Maroon Formation, a sequence of red sandstone, conglomerate, and interbedded shale, underlies the southern part of the quadrangle. The thickest sequence of sedimentary rocks is Cretaceous in age and includes at least 500 m of the Upper Cretaceous Pierre Shale. Surficial deposits include (1) an old, deeply dissected landslide deposit, possibly as old as Pliocene, on the west flank of the Williams Fork Mountains, (2) deeply weathered, very coarse gravel deposits underlying a mesa in the southwest part of the quadrangle (the Mesa Cortina subdivision. The gravels are gold bearing and were mined by hydraulic methods in the 1800s), (3) moderately to deeply weathered, widespread, bouldery material that is a combination of till of the Bull Lake glaciation, debris

  16. New geologic mapping of the northwestern Willamette Valley, Oregon, and its American Viticultural Areas (AVAs)—A foundation for understanding their terroir

    USGS Publications Warehouse

    Wells, Ray E.; Haugerud, Ralph A.; Niem, Alan; Niem, Wendy; Ma, Lina; Madin, Ian; Evarts, Russell C.

    2018-04-10

    A geologic map of the greater Portland, Oregon, metropolitan area is planned that will document the region’s complex geology (currently in review: “Geologic map of the greater Portland metropolitan area and surrounding region, Oregon and Washington,” by Wells, R.E., Haugerud, R.A., Niem, A., Niem, W., Ma, L., Evarts, R., Madin, I., and others). The map, which is planned to be published as a U.S. Geological Survey Scientific Investigations Map, will consist of 51 7.5′ quadrangles covering more than 2,500 square miles, and it will represent more than 100 person-years of geologic mapping and studies. The region was mapped at the relatively detailed scale of 1:24,000 to improve understanding of its geology and its earthquake hazards. More than 100 geologic map units will record the 50-million-year history of volcanism, sedimentation, folding, and faulting above the Cascadia Subduction Zone. The geology contributes to the varied terroir of four American Viticultural Areas (AVAs) in the northwestern Willamette Valley: the Yamhill-Carlton, Dundee Hills, Chehalem Mountains, and Ribbon Ridge AVAs. Terroir is defined as the environmental conditions, especially climate and soils, that influence the quality and character of a region’s crops—in this case, grapes for wine.On this new poster (“New geologic mapping of the northwestern Willamette Valley, Oregon, and its American Viticultural Areas (AVAs)—A foundation for understanding their terroir”), we present the geologic map at a reduced scale (about 1:175,000) to show the general distribution of geologic map units, and we highlight, discuss, and illustrate six major geologic events that helped shape the region and form its terrior. We also discuss the geologic elements that contribute to the character of each of the four AVAs in the northwestern Willamette Valley.

  17. Map showing distribution of bismuth and cadmium in stream-sediment samples, Richfield 1 degree by 2 degrees Quadrangle, Utah

    USGS Publications Warehouse

    Miller, William R.; Motooka, Jerry M.; McHugh, John B.

    1990-01-01

    This map of the Richfield 1° x 2° quadrangle shows the regional distribution of bismuth and cadimum in the less-than-0.180-mm (minus-80-mesh) fraction of stream sediments. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the references (this publication). The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess the mineral

  18. 77 FR 23791 - Oregon Disaster #OR-00042

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-20

    ... SMALL BUSINESS ADMINISTRATION [Disaster Declaration 13060 and 13061] Oregon Disaster OR-00042... Administrative declaration of a disaster for the State of OREGON dated 04/02/2012. Incident: Severe Winter Storm... the disaster: Primary Counties: Marion. Contiguous Counties: Oregon: Clackamas, Jefferson, Linn, Polk...

  19. Photogeologic maps of the Iris SE and Doyleville SW quadrangles, Saguache County, Colorado

    USGS Publications Warehouse

    McQueen, Kathleen

    1957-01-01

    The Iris SE and Doyleville SW quadrangles, Saguache County, Colorado include part ot the Cochetopa mining district. Photogeologic maps of these quadrangles show the distribution of sedimentary rocks of Jurassic and Cretaceous age; precambrian granite, schist, and gneiss; and igneous rocks of Tertiary age. Sedimentary rocks lie on an essentially flat erosion surface on Precambrian rocks. Folds appear to be absent but faults present an extremely complex structural terrane. Uraniferous deposits occur at fault intersections in Precambriam and Mesozoic rocks.

  20. Geologic map of the Rusalka Planitia Quadrangle (V-25), Venus

    USGS Publications Warehouse

    Young, Duncan A.; Hansen, Vicki L.

    2003-01-01

    The Rusalka Planitia quadrangle (herein referred to as V-25) occupies an 8.1 million square kilometer swath of lowlands nestled within the eastern highlands of Aphrodite Terra on Venus. The region (25?-0? N., 150?-180? E.) is framed by the crustal plateau Thetis Regio to the southwest, the coronae of the Diana-Dali chasmata complex to the south, and volcanic rise Atla Regio to the west. Regions to the north, and the quadrangle itself, are part of the vast lowlands, which cover four-fifths of the surface of Venus. The often-unspectacular lowlands of Venus are typically lumped together as ridged or regional plains. However, detailed mapping reveals the mode of resurfacing in V-25's lowlands: a mix of corona-related flow fields and local edifice clusters within planitia superimposed on a background of less clearly interpretable extended flow fields, large volcanoes, probable corona fragments, and edifice-flow complexes. The history detailed within the Rusalka Planitia quadrangle is that of the extended evolution of long-wavelength topographic basins in the presence of episodes of extensive corona-related volcanism, pervasive low-intensity small-scale eruptions, and an early phase of regional circumferential shortening centered on central Aphrodite Terra. Structural reactivation both obscures and illuminates the tectonic development of the region. The data are consistent with progressive lithospheric thickening, although the critical lack of an independent temporal marker on Venus severely hampers our ability to test this claim and correlate between localities. Two broad circular basins dominate V-25 geology: northern Rusalka Planitia lies in the southern half of the quadrangle, whereas the smaller Llorona Planitia sits along the northwestern corner of V-25. Similar large topographic basins occur throughout the lowlands of Venus, and gravity data suggest that some basins may represent dynamic topography over mantle downwellings. Both planitiae include coronae and

  1. Geologic map of the Wenatchee 1:100,000 Quadrangle, central Washington

    USGS Publications Warehouse

    Tabor, R.W.; Waitt, R.B.; Frizzell, V.A.; Swanson, D.A.; Byerly, G.R.; Bentley, R.D.

    1982-01-01

    The rocks and deposits within the Wenatchee quadrangle can be grouped into six generalized units: (1) Precambrian(?) Swakane Biotite Gneiss in the northeastern part of the quadrangle and the probable Jurassic low-grade metamorphic suite, mostly composed of the Easton Schist, in the southwestern part; (2) the Mesozoic Ingalls Tectonic Complex; (3) the Mesozoic Mount Stuart batholith; (4) lower and middle Tertiary nonmarine sedimentary and volcanic rocks; (5) Miocene basalt flows and interbedded epiclastic rocks constituting part of the Columbia River Basalt Group and interbedded silicic volcaniclastic rocks of the Ellensburg Formation; and (6) Pliocene to Holocene alluvium, glacial, flood, and mass-wastage deposits.

  2. Geologic map of the Morena Reservoir 7.5-minute quadrangle, San Diego County, California

    USGS Publications Warehouse

    Todd, Victoria R.

    2016-06-01

    IntroductionMapping in the Morena Reservoir 7.5-minute quadrangle began in 1980, when the Hauser Wilderness Area, which straddles the Morena Reservoir and Barrett Lake quadrangles, was mapped for the U.S. Forest Service. Mapping was completed in 1993–1994. The Morena Reservoir quadrangle contains part of a regional-scale Late Jurassic(?) to Early Cretaceous tectonic suture that coincides with the western limit of Jurassic metagranites in this part of the Peninsular Ranges batholith (PRB). This suture, and a nearly coincident map unit consisting of metamorphosed Cretaceous and Jurassic back-arc basinal volcanic and sedimentary rocks (unit KJvs), mark the boundary between western, predominantly metavolcanic rocks, and eastern, mainly metasedimentary, rocks. The suture is intruded and truncated by the western margin of middle to Late Cretaceous Granite Mountain and La Posta plutons of the eastern zone of the batholith.

  3. Geology and ore deposits of the Casto quadrangle, Idaho

    USGS Publications Warehouse

    Ross, Clyde P.

    1934-01-01

    The study of the Casto quadrangle was undertaken as the first item in a project to obtain more thorough knowledge of the general geology of southcentral Idaho on which to base study of the ore deposits of t he region. The quadrangle conta ins fragmentary exposures of Algonkian and Paleozoic sedimentary rocks, extensive deposits of old volcanic strata, presumably Permian, not heretofore recognized in this part of Idaho, and a thick succession of Oligocene(?) lava and pyroclastic rocks. The Idaho batholith and its satellites extend into the quadrangle, and in addition there a re large masses of Tertiary granitic rock, not previously distinguished in Idaho, and many Tertiary dikes, some of which are genetically associated with contact-metamorphic deposits. The area contains injection gneiss of complex origin, largely related to the Idaho batholith but in part resulting from injection by ~he Tertiary granitic rocks under relatively light load. Orogenic movement took place in Algonkian, Paleozoic, and Tertiary time. There is a summit peneplain or par tial peneplain of Tertiary, perhaps Pliocene age, and the erosional history since its elevation has been complex. The ore deposits include lodes and placers. The lodes are related to both the Idaho batholith and the Tert iary intrusive rocks and have yielded gold and copper ore of a total value of about 1,000,000. Placers, largely formed in an interglacial inter val, have yielded about an equal amount. There has been some prospecting but almost no production since 1916.

  4. Geologic Map of the Shakespeare Quadrangle (H03), Mercury

    NASA Astrophysics Data System (ADS)

    Guzzetta, L.; Galluzzi, V.; Ferranti, L.; Palumbo, P.

    2018-05-01

    A 1:3M geological map of the H03 Shakespeare quadrangle of Mercury has been compiled through photointerpretation of the MESSENGER images. The most prominent geomorphological feature is the Caloris basin, the largest impact crater on Mercury.

  5. Geology of the Jewel Cave SW Quadrangle, Custer County, South Dakota

    USGS Publications Warehouse

    Braddock, William A.

    1963-01-01

    The Jewel Cave SW quadrangle is in the southwestern part of the Black Hills in Custer County, S. Dak., about midway between Edgemont, S. Dak., and Newcastle, Wyo. All the rocks that crop out within the quadrangle are of sedimentary origin and range in age from Pennsylvanian to Early Cretaceous. The Minnesota Formation of Pennsylvania and Permian age, which is about 1,000 feet thick, was studied in outcrop and from two diamond-drill cores. In the subsurface the upper part of the formation consists of gray sandstone, very fine grained dolomite, and anhydrite. The anhydrite has been leached from the formation near the outcrop, perhaps in the early part of the Cenozoic Era, and the resulting subsidence has produced collapse breccias in the Minnelusa and milder deformation in the overlying units. In the collapse breccias the rocks have been oxidized and are red, whereas in the subsurface they are gray. The anhydrite cement of the subsurface sandstone has been replaced by calcite, and the dolomite beds have been partially converted to limestone. The Opeche Formation of Permian age consists of 75 to 115 feet of red siltstone and shale and two thin gypsum beds. The Minnekahta Limestone of Permian age is about 40 feet thick. The Spearfish Formation of Permian and Triassic age is about 550 feet thick and consists of red siltstone red sandstone, dolomite, and gypsum. The dolomite and gypsum beds are restricted to the lower half of the formation. In the northeast corner of the quadrangle the gypsum beds have been dissolved by ground water. The Sundance Formation of Late Jurassic age is divided into five members that have a total thickness of about 360 feet. The Morrison Formation of Late Jurassic age ranges in thickness from 60 to 120 feet. It consists of blocky weathering noncarbonaceous mudstone and subordinate beds of limestone and sandstone. The Inyan Kara Group of Early Cretaceous age has been subdivided into the Lakota Formation and the Fall River Formation. The Lakota

  6. Surficial geologic map of the southwest Memphis Quadrangle, Shelby County, Tennessee, and Crittenden County, Arkansas

    USGS Publications Warehouse

    Moore, David W.; Diehl, Sharon F.

    2004-01-01

    This map is one of seven 1:24,000-scale (7.5-minute) quadrangle maps of the surficial geology of the Memphis, Tennessee, area--part of a series of urban hazard maps. Wind-deposited silt and clayey silt (loess) is the predominant surficial deposit in this quadrangle. The loess was deposited as dust during the last major continental glaciation of the region and it covers the upland to depths of 4.5-16 m. River alluvium (unit Qal), which is chiefly a sandy and gravelly sand deposit about 30 m thick, underlies the Mississippi River floodplain. This unit supports extensive artificial fill and infrastructure used for shipping storage and petroleum processing and storage. Based on paleoliquefaction structures (sand boils) documented in Mississippi River alluvium elsewhere, this unit probably has the potential to liquefy during strong earthquake shaking. No paleoliquefaction structures were observed within the Southwest Memphis quadrangle. Another deposit in the quadrangle is silty alluvium of the Nonconnah Creek floodplain, and is 1-10 m thick. Sparse, unconsolidated pebbly sand deposits are 0.5-3 m thick and make up point bars and channel deposits of Nonconnah Creek.

  7. 30 CFR 937.700 - Oregon Federal program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON § 937.700 Oregon Federal program. (a) This part contains all rules that are applicable to surface coal mining operations in Oregon...

  8. Population structure of Phytophthora ramorum in Oregon

    Treesearch

    Simone Prospero; Jennifer Britt; Niklaus Grünwald; Everett Hansen

    2008-01-01

    Phytophthora ramorum is infecting plants in Oregon forests and nurseries. In this study, we analyzed the population structure of the P. ramorum in Oregon from 2001 to 2004 using microsatellites. The P. ramorum population in Oregon is characterized by low genetic diversity, significant genetic differences between...

  9. Geologic map of the Stephens City quadrangle, Clark, Frederick, and Warren Counties, Virginia

    USGS Publications Warehouse

    Weary, D.J.; Orndorff, R.C.; Aleman-Gonzalez, W.

    2006-01-01

    The Stephens City 1:24,000-scale quadrangle is one of several quadrangles in Frederick County, Virginia being mapped by geologists from the U.S. Geological Survey in Reston, VA with funding from the National Cooperative Geologic Mapping Program. This work is part of a project being lead by the U.S. Geological Survey Water Resources Discipline, Virginia District, to investigate the geologic framework and groundwater resources of Frederick County as well as other areas in the northern Shenandoah Valley of Virginia and West Virginia.

  10. Geologic map of the Tuba City 30' x 60' quadrangle, Coconino County, northern Arizona

    USGS Publications Warehouse

    Billingsley, George H.; Stoffer, Philip W.; Priest, Susan S.

    2012-01-01

    The Tuba City 30’ x 60’ quadrangle encompasses approximately 5,018 km² (1,920 mi²) within Coconino County, northern Arizona. It is characterized by nearly flat lying to gently dipping sequences of Paleozoic and Mesozoic strata that overly tilted Precambrian strata or metasedimentary and igneous rocks that are exposed at the bottom of Grand Canyon. The Paleozoic rock sequences from Cambrian to Permian age are exposed in the walls of Grand Canyon, Marble Canyon, and Little Colorado River Gorge. Mesozoic sedimentary rocks are exposed in the eastern half of the quadrangle where resistant sandstone units form cliffs, escarpments, mesas, and local plateaus. A few Miocene volcanic dikes intrude Mesozoic rocks southwest, northwest, and northeast of Tuba City, and Pleistocene volcanic rocks representing the northernmost extent of the San Francisco Volcanic Field are present at the south-central edge of the quadrangle. Quaternary deposits mantle much of the Mesozoic rocks in the eastern half of the quadrangle and are sparsely scattered in the western half. Principal folds are the north-south-trending, east-dipping Echo Cliffs Monocline and the East Kaibab Monocline. The East Kaibab Monocline elevates the Kaibab, Walhalla, and Coconino Plateaus and parts of Grand Canyon. Grand Canyon erosion has exposed the Butte Fault beneath the east Kaibab Monocline, providing a window into the structural complexity of monoclines in this part of the Colorado Plateau. Rocks of Permian and Triassic age form the surface bedrock of Marble Plateau and House Rock Valley between the East Kaibab and Echo Cliffs Monoclines. The Echo Cliffs Monocline forms a structural boundary between the Marble Plateau to the west and the Kaibito and Moenkopi Plateaus to the east. Jurassic rocks of the Kaibito and Moenkopi Plateaus are largely mantled by extensive eolian sand deposits. A small part of the northeast-dipping Red Lake Monocline is present in the northeast corner of the quadrangle. A broad and

  11. Colour mapping of the Shakespeare (H-03) quadrangle of Mercury

    NASA Astrophysics Data System (ADS)

    Bott, N.; Doressoundiram, A.; Perna, D.; Zambon, F.; Carli, C.; Capaccioni, F.

    2017-09-01

    We will present a colour mapping of the Shakespeare (H-03) quadrangle of Mercury, as well as the spectral analysis and a preliminary correlation between the spectral properties and the geological units.

  12. Geology of the Lachesis Tessera Quadrangle (V-18), Venus

    NASA Technical Reports Server (NTRS)

    McGill, George E.

    2008-01-01

    The Lachesis Tessera Quadrangle (V-18) lies between 25deg and 50deg north, 300deg and 330deg east. Most of the quadrangle consists of "regional plains" (1) of Sedna and Guinevere Planitiae. A first draft of the geology has been completed, and the tentative number of mapped units by terrain type is: Tesserae - 2; plains - 4; ridge belts - 1; fracture belts - 1 (plus embayed fragments of possible additional belts); coronae - 3; central volcanoes - 1; shield flows - 2; paterae - 1; impact craters - 1; undifferentiated flows - 1; bright materials - 1. By far the areally most extensive materials are regional plains. These are mapped as two units, based on radar backscatter ("radar brightness"). The brighter unit appears to be younger than the darker unit. This inference is based on the common presence within the lighter unit of circular or nearly circular inliers of material with radar backscatter characteristic of the darker unit. The circular inliers are most likely low shield volcanoes, which are commonly present on the darker unit, that were only partially covered by the brighter unit. Clear cut examples of wrinkle ridges and fractures superposed on the darker unit but truncated by the brighter unit have not been found to date. These relationships indicate that the brighter unit is superposed on the darker unit, but that the difference in age between them is very small. Because they are so widespread, the regional plains are a convenient relative age time "marker." The number of impact craters superposed on these plains is too small to measure age differences (2), and thus we cannot estimate how much time elapsed between the emplacement of the darker and brighter regional plains units. More local plains units are defined by significantly lower radar backscatter or by a texture that is mottled at scores to hundreds of kilometers scale. A plains-like unit with a homogenous, bright diffuse backscatter is present as scattered exposures in the eastern part of the

  13. Topographic Map of Quadrangles 2964, 2966, 3064, and 3066, Shah-Esmail (617), Reg-Alaqadari (618), Samandkhan-Karez (713), Laki-Bander (611), Jahangir-Naweran (612), and Sreh-Chena (707) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  14. Public health assessment for McCormick and Baxter Creosoting Company (Portland), Portland, Multnomah County, Oregon, Region 10. Cerclis No. ORD009020603. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-06-13

    The McCormick and Baxter Creosoting site is located on the Willamette River in Portland, Oregon. ATSDR considers the site to have been a public health hazard for former plant workers because of past ingestion exposure to arsenic, creosote, pentachlorophenol, polychlorinated dibenzodioxins, and dibenzofurans at levels of public health concern. The site also poses an ongoing and future public health hazard because people might encounter hazardous chemicals along the shoreline on or near the site at levels that can damage the skin, as was reported to have happened to two boys. Finally, dioxin levels would pose a public health hazard ifmore » people subsist on crayfish and suckers contaminated with polychlorinated dibenzodioxins and dibenzofurans.« less

  15. 77 FR 33303 - Tart Cherries Grown in the States of Michigan, New York, Pennsylvania, Oregon, Utah, Washington...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-06

    ... DEPARTMENT OF AGRICULTURE Agricultural Marketing Service 7 CFR Part 930 [Doc. No. AO-370-A9; 11..., Oregon, Utah, Washington, and Wisconsin; Order Amending Marketing Order No. 930 AGENCY: Agricultural Marketing Service, USDA. ACTION: Final rule. SUMMARY: This final rule amends Marketing Order No. 930 (order...

  16. Geologic map of the Mound Spring quadrangle, Nye and Clark Counties, Nevada, and Inyo County, California

    USGS Publications Warehouse

    Lundstrom, Scott C.; Mahan, Shannon; Blakely, Richard J.; Paces, James B.; Young, Owen D.; Workman, Jeremiah B.; Dixon, Gary L.

    2003-01-01

    The Mound Spring quadrangle, the southwestern-most 7.5' quadrangle of the area of the Las Vegas 1:100,000-scale quadrangle, is entirely within the Pahrump Valley, spanning the Nevada/California State line. New geologic mapping of the predominantly Quaternary materials is combined with new studies of gravity and geochronology in this quadrangle. Eleven predominantly fine-grained units are delineated, including playa sediment, dune sand, and deposits associated with several cycles of past groundwater discharge and distal fan sedimentation. These units are intercalated with 5 predominantly coarse-grained alluvial-fan and wash gravel units mainly derived from the Spring Mountains. The gravel units are distinguished on the basis of soil development and associated surficial characteristics. Thermoluminescence and U-series geochronology constrain most of the units to the Holocene and late and middle Pleistocene. Deposits of late Pleistocene groundwater discharge in the northeast part of the quadrangle are associated with a down-to-the-southwest fault zone that is expressed by surface fault scarps and a steep gravity gradient. The gravity field also defines a northwest-trending uplift along the State line, in which the oldest sediments are poorly exposed. About 2 km to the northeast a prominent southwest-facing erosional escarpment is formed by resistant beds in middle Pleistocene fine-grained sediments that dip northeast away from the uplift. These sediments include cycles of groundwater discharge that were probably caused by upwelling of southwesterly groundwater flow that encountered the horst.

  17. 76 FR 16444 - Meeting: Southeast Oregon Resource Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-23

    ...] Meeting: Southeast Oregon Resource Advisory Council AGENCY: Bureau of Land Management, Interior. ACTION... Committee Act, the U.S. Department of the Interior, Bureau of Land Management (BLM) Southeast Oregon... South G Street, Lakeview, Oregon 97630. FOR FURTHER INFORMATION CONTACT: Mark Wilkening, 100 Oregon...

  18. Map showing late Cenozoic faults in the Walker Lake 1 degree by 2 degrees Quadrangle, Nevada-California

    USGS Publications Warehouse

    Dohrenwend, J.C.

    1982-01-01

    The Walker Lake 1o x 2o quadrangle lies athwart the transitional boundary between the Sierra Nevade and Basin and Range physiographic provinces. Six distinct topographic domains are identified with the quadrangle (fig. 1). Theses domains are clearly defined by contrasting orientations, densities, and styles of lake Neogene faulting as follows:

  19. The University Quadrangle of the University of Pennsylvania: A Successful Experiment in the Revitalization of Residential Living.

    ERIC Educational Resources Information Center

    Wertz, Richard D.

    This speech describes the residence hall program at the University Quadrangle at the University of Pennsylvania. Most of the structures comprising the quadrangle are one-half to three quarters of a century old, hence, they had become increasingly unpopular as a choice of campus residences. However, without major renovation, and with only minor…

  20. Geology and ore deposits of the Philipsburg quadrangle, Montana

    USGS Publications Warehouse

    Emmons, William Harvey; Calkins, Frank Cathcart

    1913-01-01

    Philipsburg lies about midway between the eastern and western limits of the Rocky Mountain system, if the term be used in the broad sense prevailing in the United States. In the general latitude of Montana the system as defined by American usage is bounded on the west by the Columbia River basalt plain and on the east by the Great Plains. The western limit is fairly definite, but on the east there is no very definite line between the plains and mountains; the mountains are fairly continuous west and north of the Philipsburg quadrangle, but to the east and southeast mountains alternate with broad stretches of semiarid lowland. The quadrangle therefore overlaps the line between two physiographic provinces, one characterized by isolated mountain groups, of which the Flint Creek Range is the most westerly, and the other by more continuous elevations, of which the Sapphire Mountains are an example.

  1. 40 CFR 81.338 - Oregon.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Oregon. 81.338 Section 81.338... AREAS FOR AIR QUALITY PLANNING PURPOSES Section 107 Attainment Status Designations § 81.338 Oregon. Oregon—1971 Sulfur Dioxide NAAQS (Primary and Secondary) Designated area Does not meet primary standards...

  2. Oregon Pupil Transportation Manual, 1989.

    ERIC Educational Resources Information Center

    Oregon State Dept. of Education, Salem.

    This manual provides school bus drivers and school officials with pertinent material relating to safe and efficent school transportation. Chapter I presents the laws governing pupil transportation. Oregon motor vehicle laws are identified by an ORS (Oregon Revised Statute) number, and pupil transportation regulations are identified by an OAR…

  3. North exterior elevation of Pope Quadrangle. Note the bas relief ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    North exterior elevation of Pope Quadrangle. Note the bas relief sculpture over the doorway, which includes the school motto, Aspirando et Perseverando. - Avon Old Farms School, 500 Avon Old Farms Road, Avon, Hartford County, CT

  4. South side, entire, looking north across the quadrangle from the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    South side, entire, looking north across the quadrangle from the courtyard between the library and the life sciences building. - San Bernardino Valley College, Auditorium, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  5. Geologic map of the Chelan 30-minute by 60-minute quadrangle, Washington

    USGS Publications Warehouse

    Tabor, R.W.; Frizzell, V.A.; Whetten, J.T.; Waitt, R.B.; Swanson, D.A.; Byerly, G.R.; Booth, D.B.; Hetherington, M.J.; Zartman, R.E.

    1987-01-01

    Summary -- The Chelan quadrangle hosts a wide variety of rocks and deposits and display a long geologic history ranging from possible Precambrian to Recent. Two major structures, the Leavenworth and Entiat faults divide cross the quadrangle from southeast to northwest and bound the Chiwaukum 'graben', a structural low preserving Tertiary sedimentary rocks between blocks of older, metamorphic and igneous rocks. Pre-Tertiary metamorphic rocks in the quadrangle are subdivided into five major tectonostratigraphic terranes: (1) the Ingalls terrane, equivalent to the Jurassic Ingalls Tectonic Complex of probable mantle and deep oceanic rocks origin, (2) the Nason terrane, composed of the Chiwaukum Schist and related gneiss, (3) the Swakane terrane, made up entirely of the Swakane Biotite Gneiss, a metamorphosed, possibly Precambrian, sedimentary and/or volcanic rock, (4) the Mad River terrane composed mostly of the rocks of the Napeequa River area (Napeequa Schist), a unit of oceanic protolith now considered part of the Chelan Mountains terrane (the Mad River terrane has been abandoned, 2001), and (5) the Chelan Mountains terrane, dominated by the Chelan Complex of Hopson and Mattinson (1971) which is composed of migmatite and gneissic to tonalite of deep-seated igneous and metamorphic origin.During an episode of Late Cretaceous regional metamorphism, all the terranes were intruded by deepseated tonalite to granodiorite plutons, including the Mount Stuart batholith, Ten Peak and Dirty Face plutons, and the Entiat pluton and massive granitoid rocks of the Chelan Complex. The Duncan Hill pluton intruded rocks of the Chelan Mountains terrane in the Middle Eocene. At about the same time fluvial arkosic sediment of the Chumstick Formation was deposited in a depression. The outpouring of basalt lavas to the southeast of the quadrangle during the Miocene built up the Columbia River Basalt Group. These now slightly warped lavas lapped onto the uplifted older rocks. Deformation

  6. Geologic map of the Callville Bay Quadrangle, Clark County, Nevada, and Mohave County, Arizona

    USGS Publications Warehouse

    Anderson, R. Ernest

    2003-01-01

    Report: 139 Map Scale: 1:24,000 Map Type: colored geologic map A 1:24,000-scale, full-color geologic map and four cross sections of the Callville Bay 7-minute quadrangle in Clark County, Nevada and Mohave County, Arizona. An accompanying text describes 21 stratigraphic units of Paleozoic and Mesozoic sedimentary rocks and 40 units of Cenozoic sedimentary, volcanic, and intrusive rocks. It also discusses the structural setting, framework, and history of the quadrangle and presents a model for its tectonic development.

  7. Geological map and digital database of the San Rafael Mtn. 7.5-minute quadrangle, Santa Barbara County, California

    USGS Publications Warehouse

    Vedder, John G.; Stanley, Richard G.; Graham, S.E.; Valin, Z.C.

    2001-01-01

    Geologic mapping of the San Rafael Primitive Area (now the San Rafael Wilderness) by Gower and others (1966) and Vedder and others (1967) did not include all of the San Rafael Mtn. quadrangle, and the part that was mapped was done in reconnaissance fashion. To help resolve some of the structural and stratigraphic ambiguities of the earlier mapping and to complete the mapping of the quadrangle, additional field work was done during short intervals in 1980 and 1981 and from 1996 to 1998. Contacts within the belt of Franciscan rocks at the southwestern corner of the quadrangle were generalized from the detailed map by Wahl (1998). Because extensive areas were inaccessible owing to impenetrable chaparral, observations from several helicopter overflights (1965, 1980, 1981) and interpretations from aerial photographs were used as compilation aids. Consequently, some of the depicted contacts and faults are highly inferential, particularly within the Upper Cretaceous rocks throughout the middle part of the quadrangle.

  8. Renewing Oregon's Economy: Growing Jobs and Industries through Innovation. A Report from the Oregon Council for Knowledge and Economic Development.

    ERIC Educational Resources Information Center

    2003

    The Oregon Council for Knowledge and Economic Development (OCKED), a collaborative effort among Oregon's higher education institutions, economic development department, and the private sector, is charged with developing strategies to enhance Oregon's economic competitiveness in a knowledge-based, global economy. This report describes the council's…

  9. A Survey of Light Pollution in the Rogue Valley, Southwest Oregon, by St. Mary's School, Medford, Oregon

    NASA Astrophysics Data System (ADS)

    Bensel, Holly; Dorrell, Genna; Feng, James; Hicks, Sean; Mars Liu, Jason; Liu, Steven; Moczygemba, Mitchell; Sheng, Jason; Sternenburg, Leah; Than, Emi; Timmons, Emry; Wen, Jerry; Yaeger, Bella; You, Ruiyang

    2016-01-01

    The Rogue Valley in Southwest Oregon was known for its beautiful dark skies, but due to population growth the dark skies are vanishing. A light pollution chart using Defense Meteorological Satellite Program (DMSP) data was published in 2006, but did not show the spatial variation in detail. In the spring of 2014, the 9th grade physics students, astronomy students, and members of the Astronomy Club from St. Mary's School conducted the first detailed night sky survey. The purpose of the survey is to create a baseline of the variations in light pollution in the Rogue Valley.The project continued into 2015, incorporating suggestions made at the 2014 AAS Conference to improve the study by including more light meter data and community outreach. Students used light meters, Loss of the Night app, and the Dark Sky meter app. Students researched light pollution and its effects on the environment, measured night sky brightness in the Rogue Valley, and completed a light audit in an area of their choice. They created a presentation for a final physics grade. The basis for this project, along with procedures can be found on the GaN, Globe at Night, (www.globeatnight.org) website. The light audit and research portion were developed from the Dark Sky Rangers section of the website (www.globeatnight.org/dsr/).The 2014 survey and public outreach increased awareness of light pollution in the Rogue Valley and around the state of Oregon. Examples include a local senior project to change lighting at a baseball stadium and a 4-H club in Northeast Oregon starting a GaN survey in their area. GaN shows growth in the amount of data collected in Oregon from 8 data points in 2006 to 193 in 2014. The Rogue Valley magnitude data from the spring of 2015 indicates a drop from an average magnitude of 4 to an average magnitude of 2. This is due to hazy skies from smoke drifting into the valley from a Siberian wildfire. Data collection during the summer and fall was hampered due to smoke from local

  10. Map showing geologic terranes of the Hailey 1 degree x 2 degrees quadrangle and the western part of the Idaho Falls 1 degree x 2 degrees quadrangle, south-central Idaho

    USGS Publications Warehouse

    Worl, R.G.; Johnson, K.M.

    1995-01-01

    The paper version of Map Showing Geologic Terranes of the Hailey 1x2 Quadrangle and the western part of the Idaho Falls 1x2 Quadrangle, south-central Idaho was compiled by Ron Worl and Kate Johnson in 1995. The plate was compiled on a 1:250,000 scale topographic base map. TechniGraphic System, Inc. of Fort Collins Colorado digitized this map under contract for N.Shock. G.Green edited and prepared the digital version for publication as a geographic information system database. The digital geologic map database can be queried in many ways to produce a variety of geologic maps.

  11. Defining the medical home: the Oregon experience.

    PubMed

    Stenger, Robert J; Smith, Jeanene; McMullan, J Bart; Rodriguez, Glenn S; Dorr, David A; Minniti, Mary; Jaffe, Arthur; Pollack, David; Anderson, Mitchell; Kilo, Charles M; Saultz, John W

    2012-01-01

    The patient-centered medical home (PCMH) is emerging as a key strategy to improve health outcomes, reduce total costs, and strengthen primary care, but a myriad of operational measures of the PCMH have emerged. In 2009, the state of Oregon convened a public, legislatively mandated committee charged with developing PCMH measures. We report on the process of, outcomes of, and lessons learned by this committee. The Oregon PCMH advisory committee was appointed by the director of the Oregon Department of Human Services and held 7 public meetings between October 2009 and February 2010. The committee engaged a diverse group of Oregon stakeholders, including a variety of practicing primary care physicians. The committee developed a PCMH measurement framework, including 6 core attributes, 15 standards, and 27 individual measures. Key successes of the committee's work were to describe PCMH core attributes and functions in patient-centered language and to achieve consensus among a diverse group of stakeholders. Oregon's PCMH advisory committee engaged local stakeholders in a process that resulted in a shared PCMH measurement framework and addressed stakeholders' concerns. The state of Oregon now has implemented a PCMH program using the framework developed by the PCMH advisory committee. The Oregon experience demonstrates that a brief public process can be successful in producing meaningful consensus on PCMH roles and functions and advancing PCMH policy.

  12. 40 CFR 81.338 - Oregon.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Oregon. 81.338 Section 81.338... AREAS FOR AIR QUALITY PLANNING PURPOSES Section 107 Attainment Status Designations § 81.338 Oregon. Oregon—SO2 Designated area Does not meet primary standards Does not meet secondary standards Cannot be...

  13. 40 CFR 81.338 - Oregon.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Oregon. 81.338 Section 81.338... AREAS FOR AIR QUALITY PLANNING PURPOSES Section 107 Attainment Status Designations § 81.338 Oregon. Oregon—SO2 Designated area Does not meet primary standards Does not meet secondary standards Cannot be...

  14. Vegetation recovery after fire in the Klamath-Siskiyou region, southern Oregon

    USGS Publications Warehouse

    Hibbs, David; Jacobs, Ruth

    2011-01-01

    In July 2002, lightning strikes started five forest fires that merged into one massive wildfire in the Klamath-Siskiyou Ecoregion of southern Oregon. Aided by drought, severe weather conditions, dry fuels, and steep topography, the fire grew to more than 200,000 hectares of mostly public forest land. Known as the Biscuit Fire, it was Oregon's largest forest fire in more than 130 years and one of the largest wildfires on record in the United States. Discussions centered around why such a massive fire was happening, how large would it become, who was keeping communities and homes safe, and what would be the final economic and ecological outcome. Weeks later when the fire was out, conversations turned to other questions, including what, if anything, should happen for forest recovery.

  15. The Alaskan mineral resource assessment program; background information to accompany folio of geologic and mineral resource maps of the Ambler River Quadrangle, Alaska

    USGS Publications Warehouse

    Mayfield, Charles F.; Tailleur, I.L.; Albert, N.R.; Ellersieck, Inyo; Grybeck, Donald; Hackett, S.W.

    1983-01-01

    The Ambler River quadrangle, consisting of 14,290 km2 (5,520 mi2) in northwest Alaska, was investigated by an interdisciplinary research team for the purpose of assessing the mineral resource potential of the quadrangle. This report provides background information for a folio of maps on the geology, reconnaissance geochemistry, aeromagnetics, Landsat imagery, and mineral resource evaluation of the quadrangle. A summary of the geologic history, radiometric dates, and fossil localities and a comprehensive bibliography are also included. The quadrangle contains jade reserves, now being mined, and potentially significant resources of copper, zinc, lead, and silver.

  16. 75 FR 13252 - Oregon Coast Provincial Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ... DEPARTMENT OF AGRICULTURE Forest Service Oregon Coast Provincial Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Oregon Coast Province Advisory Committee will meet... Schools, BLM Update, Budget, Timber Sale Plan, Oregon Dunes Designated Routes, Rural Job Creation, 30-mile...

  17. Map showing distribution of silver in the nonmagnetic fraction of heavy-mineral concentrates, Richfield 1 degree by 2 degrees Quadrangle, Utah

    USGS Publications Warehouse

    Miller, William R.; Motooka, Jerry M.; McHugh, John B.

    1990-01-01

    This map of the Richfield 1° x 2° quadrangle, Utah, shows the regional distribution of silver in the nonmagnetic fraction of heavy-mineral concentrates of drainage-sediment samples. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the references (this publication). The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess

  18. Geologic map of the Jam Up Cave and Pine Crest quadrangles, Shannon, Texas, and Howell Counties, Missouri

    USGS Publications Warehouse

    Weary, David J.; Orndorff, Randall C.; Repetski, John E.

    2013-01-01

    The Jam Up Cave and Pine Crest 7.5-minute quadrangles are located in south-central Missouri within the Salem Plateau region of the Ozark Plateaus physiographic province. About 2,400 to 3,100 feet (ft) of flat-lying to gently dipping Lower Paleozoic sedimentary rocks, mostly dolomite, chert, sandstone, and orthoquartzite, overlie Mesoproterozoic igneous basement rocks. Unconsolidated residuum, colluvium, terrace deposits, and alluvium overlie the sedimentary rocks. Numerous karst features, such as sinkholes, caves, and springs, have formed in the carbonate rocks. Many streams are spring fed. The topography is a dissected karst plain with elevations ranging from about 690 ft where the Jacks Fork River exits the northeastern corner of the Jam Up Cave quadrangle to about 1,350 ft in upland areas along the north-central edge and southwestern corner of the Pine Crest quadrangle. The most prominent physiographic feature is the valley of the Jacks Fork River. This reach of the upper Jacks Fork, with its clean, swiftly-flowing water confined by low cliffs and bluffs, provides one of the most beautiful canoe float trips in the nation. Most of the land in the quadrangles is privately owned and used primarily for grazing cattle and horses and growing timber. A large minority of the land within the quadrangles is publicly owned by the Ozark National Scenic Riverways of the National Park Service. Geologic mapping for this investigation was conducted in 2005 and 2006.

  19. Aerial gamma ray and magnetic survey: Mississippi and Florida airborne survey, Russellville quadrangle, Arkansas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-09-01

    The Russellville quadrangle in north central Arkansas overlies thick Paleozoic sediments of the Arkoma Basin. These Paleozoics dominate surface exposure except where covered by Quaternary alluvial materials. Examination of available literature shows no known uranium deposits (or occurrences) within the quadrangle. Eighty-eight groups of uranium samples were defined as anomalies and are discussed briefly. None were considered significant, and most appeared to be of cultural origin. Magnetic data show character that suggest structural and/or lithologic complexity, but imply relatively deep-seated sources.

  20. The population structure and recent colonization history of Oregon threespine stickleback determined using RAD-seq

    PubMed Central

    Catchen, Julian; Bassham, Susan; Wilson, Taylor; Currey, Mark; O’Brien, Conor; Yeates, Quick; Cresko, William A.

    2013-01-01

    Understanding how genetic variation is partitioned across genomes within and among populations is a fundamental problem in ecological and evolutionary genetics. To address this problem we are studied the threespine stickleback fish, which has repeatedly undergone parallel phenotypic and genetic differentiation when oceanic fish have invaded freshwater habitats. While significant evolutionary genetic research has been performed using stickleback from geographic regions that have been de-glaciated in the last 20,000 years, less research has focused on freshwater populations that predate the last glacial maximum. We performed RAD-seq based population genomic analyses on stickleback from across Oregon, which was not glaciated during the last maximum. We sampled stickleback from coastal, Willamette Basin, and central Oregon sites, analyzed their genetic diversity using RAD-seq, performed STRUCTURE analyses, reconstructed their phylogeographic history, and tested the hypothesis of recent stickleback introduction into central Oregon, where incidence of this species was only recently documented. Our results showed a clear phylogeographic break between coastal and inland populations, with oceanic populations exhibiting the lowest levels of divergence from one another. Willamette Basin and central Oregon populations formed a clade of closely related populations, a finding consistent with a recent introduction of stickleback into central Oregon. Finally, genome wide analysis of genetic diversity (π) and correlations of alleles within individuals in subpopulations (FIS) supported a role for introgressive hybridization in coastal populations and a recent expansion in central Oregon. Our results exhibit the power of next generation sequencing genomic approaches such as RAD-seq to identify both historical population structure and recent colonization history. PMID:23718143

  1. Asbestos occurrence in the Eagle C-4 quadrangle, Alaska

    USGS Publications Warehouse

    Foster, Helen Laura

    1969-01-01

    An asbestos occurrence was discovered in a remote part of the Eagle quadrangle, Alaska, in the summer of 1968 during geologic reconnaissance in connection with the U.S. Geological Survey's Heavy Metals program. The exposed part of the deposit consists of large joint blocks of serpentine which are cut by closely spaced subparallel veins. Most of the veins are about ? inch thick, and they consist of cross-fiber chrysotile asbestos. The asbestos appears to be of commercial quality, but the total quantity is unknown. The asbestos occurs in a serpentinized ultramafic mass which appears to intrude metamorphic rocks. Many other serpentinized ultramafic masses are known in the Eagle quadrangle, but this is the first one in which considerable asbestos has been found. The deposit is of importance because it shows that geologic conditions are locally favorable for the formation of asbestos in the Yukon-Tanana Upland, and hope of finding commercial asbestos deposits thus seems possible.

  2. Lyme Disease in Oregon

    PubMed Central

    Doggett, J. Stone; Kohlhepp, Sue; Gresbrink, Robert; Metz, Paul; Gleaves, Curt; Gilbert, David

    2008-01-01

    The incidence of Lyme disease in Oregon is calculated from cases reported to the Oregon State Health Division. We reviewed the exposure history of reported cases of Lyme disease and performed field surveys for infected Ixodes pacificus ticks. The incidence of Lyme disease correlated with the distribution of infected I. pacificus ticks. PMID:18448697

  3. Equality, explicitness, severity, and rigidity: the Oregon plan evaluated from a Scandinavian perspective.

    PubMed

    Hansson, L F; Norheim, O F; Ruyter, K W

    1994-08-01

    This article is an attempt to evaluate the Oregon plan from the perspective of a Scandinavian national health care system. The Nordic welfare states are marked by a strong emphasis on equality. As an example of an egalitarian system we present the Norwegian health care model in part one. In part two, the arguments in favor of a one tier system in Norway are presented and compared to Oregon's two tier system. Although we argue, in part three, that a comparison of the degree of explicitness in the prioritization process shows that Norway has much to learn from Oregon, we do believe that the Norwegian system has some attractive elements that may function as an important corrective. In part four we present the Norwegian Guidelines for priority-setting and discuss the weight assigned to the severity of disease criterion. It is argued that the exclusion of information about the severity of disease partly explains the counterintuitive ranking of treatment-condition pairs in Oregon's initial method based on the principle of health maximization. A normative analysis of the conflicting norms of efficiency and equality of results is called for. The final part of the paper is devoted to the problem of rigidity. Henry J. Aaron has argued that the Oregon system is insensitive to inter-individual variations within each diagnosis-treatment pair. This objection is a severe one, since the system might end up treating patients unfairly on the individual level. To overcome this problem, we suggest a selection rule that should be more capable of dealing with the problem of rigidity.

  4. Geologic map of the Tetilla Peak Quadrangle, Santa Fe and Sandoval counties, New Mexico

    USGS Publications Warehouse

    Sawyer, D.A.; Shroba, R.R.; Minor, S.A.; Thompson, R.A.

    2002-01-01

    This digital geologic map summarizes all available geologic information for the Tetilla Peak quadrangle located immediately southwest of Santa Fe, New Mexico. The geologic map consists of new polygon (geologic map units) and line (contact, fault, fold axis, dike, flow contact, hachure) data, as well as point data (locations for structural measurements, geochemical and geochronologic data, geophysical soundings, and water wells). The map database has been generated at 1:24,000 scale, and provides significant new geologic information for an area of the southern Cerros del Rio volcanic field, which sits astride the boundary of the Espanola and Santo Domingo basins of the Rio Grande rift. The quadrangle includes the west part of the village of La Cienega along its eastern border and includes the southeasternmost part of the Cochiti Pueblo reservation along its northwest side. The central part of the quadrangle consists of Santa Fe National Forest and Bureau of Land Management lands, and parts of several Spanish-era land grants. Interstate 25 cuts through the southern half of the quadrangle between Santa Fe and Santo Domingo Pueblo. Canada de Santa Fe, a major river tributary to the Rio Grande, cuts through the quadrangle, but there is no dirt or paved road along the canyon bottom. A small abandoned uranium mine (the La Bajada mine) is found in the bottom of the Canada de Santa Fe about 3 km east of the La Bajada fault zone; it has been partially reclaimed. The surface geology of the Tetilla Peak quadrangle consists predominantly of a thin (1-2 m generally, locally as thick as 10? m) layer of windblown surficial deposits that has been reworked colluvially. Locally, landslide, fluvial, and pediment deposits are also important. These colluvial deposits mantle the principal bedrocks units, which are (from most to least common): (1) basalts, basanites, andesite, and trachyte of the Pliocene (2.7-2.2 Ma) Cerros del Rio volcanic field; (2) unconsolidated deposits of the Santa

  5. Birds of Oregon: A general reference

    USGS Publications Warehouse

    Marshall, David B.; Hunter, Matthew G.; Contreras, Alan

    2003-01-01

    Birds of Oregon is the first complete reference work on Oregon's birds to be published since Gabrielson and Jewett's landmark book in 1940. This comprehensive volume includes individual accounts of the approximately 500 species now known to occur in Oregon (about 150 more than in 1940), including detailed accounts of the 353 species that regularly occur and briefer accounts of another 133 species that are considered vagrants. A separate chapter covers extirpated and questionable species as well as those which have been introduced but have not become established.

  6. Forest statistics for northwest Oregon.

    Treesearch

    Melvin E. Metcalf; John W. Hazard

    1964-01-01

    This publication summarizes the results of the latest reinventory of 10 counties in northwest Oregon: Clackamas, Clatsop, Columbia, Hood River, Marion, Multnomah, Polk, Tillamook, Washington, and Yamhill. This block of counties is one of 10 such blocks set up in the States of Oregon and Washington by the Forest Survey to facilitate orderly reinventories of the timber...

  7. 40 CFR 282.87 - Oregon State-Administered Program.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Oregon State-Administered Program. 282... (CONTINUED) APPROVED UNDERGROUND STORAGE TANK PROGRAMS Approved State Programs § 282.87 Oregon State-Administered Program. (a) The State of Oregon is approved to administer and enforce an underground storage tank...

  8. 40 CFR 282.87 - Oregon State-Administered Program.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Oregon State-Administered Program. 282... (CONTINUED) APPROVED UNDERGROUND STORAGE TANK PROGRAMS Approved State Programs § 282.87 Oregon State-Administered Program. (a) The State of Oregon is approved to administer and enforce an underground storage tank...

  9. 40 CFR 282.87 - Oregon State-Administered Program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Oregon State-Administered Program. 282... (CONTINUED) APPROVED UNDERGROUND STORAGE TANK PROGRAMS Approved State Programs § 282.87 Oregon State-Administered Program. (a) The State of Oregon is approved to administer and enforce an underground storage tank...

  10. Oregon Cascades Play Fairway Analysis: Maps

    DOE Data Explorer

    Trimble, John

    2015-12-15

    The maps in this submission include: heat flow, alkalinity, Cl, Mg, SiO2, Quaternary volcanic rocks, faults, and land ownership. All of the Oregon Cascade region. The work was done by John Trimble, in 2015, at Oregon State University.

  11. Geological Mapping of the Debussy Quadrangle (H-14) Preliminary Results

    NASA Astrophysics Data System (ADS)

    Pegg, D. L.; Rothery, D. A.; Balme, M. R.; Conway, S. J.

    2018-05-01

    We present the current status of geological mapping of the Debussy quadrangle. Mapping underway as part of a program to map the entire planet at a scale of 1:3M using MESSENGER data in preparation for the BepiColombo mission.

  12. National Uranium Resource Evaluation: Palestine Quadrangle, Texas and Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGowen, M.; Basciano, J.; Fose, F.G. Jr.

    1982-09-01

    The uranium resource potential of the Palestine Quadrangle, Texas and Louisiana, was evaluated to a depth of 1500 m (5000 ft) using criteria established for the National Uranium Resource Evaluation program. Data derived from geochemical analyses of surface samples (substrate, soil, and stream sediment) in conjunction with hydrochemical data from water wells were used to evaluate geologic environments as being favorable or unfavorable for the occurrence of uranium deposits. Two favorable environments have been identified in the Palestine Quadrangle: potential deposits of modified Texas roll-type in fluvial channels and associated facies within the Yegua Formation, and potential occurrences along mineralizationmore » fronts associated with the Elkhart Graben and Mount Enterprise fault system. Unfavorable environments include: Cretaceous shales and limestones, Tertiary fine-grained marine sequences, Tertiary sandstone units that exhibit favorable host-rock characteristics but fail to show significant syngenetic or epigenetic mineralization, and Quaternary sands and gravels. Unevaluated units include the Woodbine Group (Upper Cretaceous), Jackson Group (Tertiary), and Catahoula Formation (Tertiary). The subsurface interval of the Jackson Group and Catahoula Formation contains depositional facies that may represent favorable environments; however, the evaluation of these units is inconclusive because of the general lack of shallow subsurface control and core material. The Woodbine Group, restricted to the subsurface except for a small exposure over Palestine Dome, occurs above 1500 m (5000 ft) in the northwest quarter of the quadrangle. The unit exhibits favorable host-rock characteristics, but the paucity of gamma logs and cores, as well as the lack of hydrogeochemical and stream-sediment reconnaissance data, makes evaluation of the unit difficult.« less

  13. A Survey of Light Pollution in the Rogue Valley, Southwest Oregon, By St. Mary’s School, Medford, Oregon

    NASA Astrophysics Data System (ADS)

    Bensel, Holly; Arianna Ashby, Colin Cai, Thomas Cox, Genna Dorrell, Gabe FitzPatrick, Meaghan FitzPatrick, Jason Mars Liu, Mitchell Moczygemba, Kieran Rooney, Emry Timmons,; Ray You, students, (St. Mary's. School)

    2015-01-01

    Rural areas in Oregon, including the Rogue Valley, are renowned for beautiful dark skies. Electric light came to Medford, Oregon, the largest town in the Rogue Valley, in 1894. During the past 100 years the Rogue Valley grew from 2,500 individuals in 1895 to a population of 76,462 and a metropolitan area population of 208,545, in 2012. The increased population density resulted in increased light pollution. A light pollution chart using DMSP, Defense Meteorological Satellite Program, data was published in 2006, but did not show the spatial variation in detail. In the spring of 2014, the 9th grade physics students, astronomy students, and members of the Astronomy Club from St. Mary's School conducted the first detailed night sky survey. The purpose of the survey is to create a baseline of the variations in light pollution in the Rogue Valley.The project started with a talk by Steve Bosbach, former Texas IDA coordinator, on the topic of light pollution and how it affects our lives and the environment. Groups of students were given the tasks of measuring the night sky brightness in the Rogue Valley, doing a light audit in an area of their choice, and researching what light pollution is and its effects on the environment. From this they created a presentation for a final physics grade. The basis for this project, along with procedures can be found on the Globe at Night (www.globeatnight.org) website. The light audit and research portion were developed from the Dark Sky Rangers section (www.globeatnight.org/dsr/) of the website. In the fall of 2014, astronomy students and club members extended this study to the town of Ashland and the Sothern Oregon University campus, areas of the valley not surveyed in the Spring.This survey will increase awareness of light pollution in the Rogue Valley, as well as educate developers and city planners on the impact that light pollution has on the environment in Southern Oregon. It will help determine areas of concern and areas of dark

  14. Mineral resource assessment of the Iron River 1 degree x 2 degrees Quadrangle, Michigan and Wisconsin

    USGS Publications Warehouse

    Cannon, William F.

    1983-01-01

    The Iron River 1? x 2? quadrangle contains identified resources of copper and iron. Copper-rich shale beds in the north part of the quadrangle contain 12.2 billion pounds (5.5 billion kilograms) of copper in well-studied deposits including 9.2 billion pounds (4.2 billion kilograms) that are economically minable by 1980 standards. At least several billion pounds of copper probably exist in other parts of the same shale beds, but not enough data are available to measure the amount. A small amount, about 250 million pounds (113 million kilograms), of native copper is known to remain in one abandoned mine, and additional but unknown amounts remain in other abandoned mines. About 13.25 billion tons (12.02 billion metric tons) of banded iron-formation averaging roughly 30 percent iron are known within 500 feet (152.4 meters) of the surface in the Gogebic, Marquette, and Iron River-Crystal Falls districts. A small percentage of that might someday be minable as taconite, but none is now believed to be economic. Some higher grade iron concentrations exist in the same iron-formations. Such material was the basis of former mining of iron in the region, but a poor market for such ore and depletion of many deposits have led to the decline of iron mining in the quadrangle. Iron mines of the quadrangle were not being worked in 1980. Many parts of the quadrangle contain belts of favorable host rocks for mineral deposits. Although deposits are not known in these belts, undiscovered deposits of copper, zinc, lead, silver, uranium, phosphate, nickel, chromium, platinum, gold, and diamonds could exist.

  15. Geologic map of the Ennis 30' x 60' quadrangle, Madison and Gallatin Counties, Montana

    USGS Publications Warehouse

    Kellogg, Karl S.; Williams, Van S.

    1998-01-01

    The Ennis 1:100,000 quadrangle lies within both the Laramide (Late Cretaceous to early Tertiary) foreland province of southwestern Montana and the northeastern margin of the middle to late Tertiary Basin and Range province. The oldest rocks in the quadrangle are Archean high-grade gneiss, and granitic to ultramafic intrusive rocks that are as old as about 3.0 Ga. The gneiss includes a supracrustal assemblage of quartz-feldspar gneiss, amphibolite, quartzite, and biotite schist and gneiss. The basement rocks are overlain by a platform sequence of sedimentary rocks as old as Cambrian Flathead Quartzite and as young as Upper Cretaceous Livingston Group sandstones, shales, and volcanic rocks. The Archean crystalline rocks crop out in the cores of large basement uplifts, most notably the 'Madison-Gravelly arch' that includes parts of the present Tobacco Root Mountains and the Gravelly, Madison, and Gallatin Ranges. These basement uplifts or blocks were thrust westward during the Laramide orogeny over rocks as young as Upper Cretaceous. The thrusts are now exposed in the quadrangle along the western flanks of the Gravelly and Madison Ranges (the Greenhorn thrust and the Hilgard fault system, respectively). Simultaneous with the west-directed thrusting, northwest-striking, northeast-side-up reverse faults formed a parallel set across southwestern Montana; the largest of these is the Spanish Peaks fault, which cuts prominently across the Ennis quadrangle. Beginning in late Eocene time, extensive volcanism of the Absorka Volcanic Supergroup covered large parts of the area; large remnants of the volcanic field remain in the eastern part of the quadrangle. The volcanism was concurrent with, and followed by, middle Tertiary extension. During this time, the axial zone of the 'Madison-Gravelly arch,' a large Laramide uplift, collapsed, forming the Madison Valley, structurally a complex down-to-the-east half graben. Basin deposits as thick as 4,500 m filled the graben

  16. Geologic map of the Hogback Mountain quadrangle, Lewis and Clark and Meagher Counties, Montana

    USGS Publications Warehouse

    Reynolds, Mitchell W.

    2003-01-01

    The geologic map of the Hogback Mountain quadrangle, scale 1:24,000, was made as part of the Montana Investigations Project to provide new information on the stratigraphy, structure, and geologic history of an area in the geologically complex southern part of the Montana disturbed belt. In the Hogback Mountain area, rocks ranging in age from Middle Proterozoic through Cretaceous are strongly folded within and under thrust plates of equivalent rocks. Continental rocks of successive thrust plates have been telescoped eastward over a buttress of the stable continent. Erosional remnants of Oligocene andesitic basalt lie on highest surfaces eroded across the strongly deformed older rocks; younger erosion has dissected the terrain deeply, producing Late Tertiary and Quaternary deposits of alluvium, colluvium, and local landslide debris in the valleys and canyons. Different stratigraphic successions are exposed at different structural levels across the quadrangle. In the northeastern part of the quadrangle at the lowest structural level, rocks of the Upper Mississippian Big Snowy Group, including the Kibbey Formation and the undivided Otter and Heath Formations, the overlying Pennsylvanian Amsden and undivided Quadrant and Phosphoria Formations, the Ellis Group, and the Kootenai Formation, are folded and broken by thrust faults. The next higher structural level, the Avalanche Butte thrust plate, exposes strongly folded and, in places, attenuated strata of Cambrian (Flathead Sandstone, Wolsey Shale, Meagher Limestone, and undivided Pilgrim Formation and Park Shale), Devonian (Maywood Formation, Jefferson Formation, and most of the Three Forks Formation), and Mississippian (uppermost part of the Three Forks Formation and Lodgepole and Mission Canyon Limestones) ages. The overlying Hogback Mountain thrust plate contains strongly folded rocks ranging in age from the Middle Proterozoic Greyson Formation to the Upper and Lower Mississippian Mission Canyon Limestone and

  17. National Uranium Resource Evaluation: Marfa Quadrangle, Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henry, C D; Duex, T W; Wilbert, W P

    1982-09-01

    The uranium favorability of the Marfa 1/sup 0/ by 2/sup 0/ Quadrangle, Texas, was evaluated in accordance with criteria established for the National Uranium Resource Evaluation. Surface and subsurface studies, to a 1500 m (5000 ft) depth, and chemical, petrologic, hydrogeochemical, and airborne radiometric data were employed. The entire quadrangle is in the Basin and Range Province and is characterized by Tertiary silicic volcanic rocks overlying mainly Cretaceous carbonate rocks and sandstones. Strand-plain sandstones of the Upper Cretaceous San Carlos Formation and El Picacho Formation possess many favorable characteristics and are tentatively judged as favorable for sandstone-type deposits. The Tertiarymore » Buckshot Ignimbrite contains uranium mineralization at the Mammoth Mine. This deposit may be an example of the hydroauthigenic class; alternatively, it may have formed by reduction of uranium-bearing ground water produced during diagenesis of tuffaceous sediments of the Vieja Group. Although the presence of the deposit indicates favorability, the uncertainty in the process that formed the mineralization makes delineation of a favorable environment or area difficult. The Allen intrusions are favorable for authigenic deposits. Basin fill in several bolsons possesses characteristics that suggest favorability but which are classified as unevaluated because of insufficient data. All Precambrian, Paleozoic, other Mesozoic, and other Cenozoic environments are unfavorable.« less

  18. Surficial geology of Hannibal Quadrangle, Oswego County, New York

    USGS Publications Warehouse

    Miller, Todd S.

    1981-01-01

    The location and extent of 10 kinds of surficial deposits in part of Hannibal quadrangle, Oswego County, N.Y., are mapped on a 7.5-minute U.S. Geological Survey topographic map. The map was compiled to indicate the lithology and potential for ground-water development at any specific location. (USGS)

  19. THE JAMES MADISON WOOD QUADRANGLE, STEPHENS COLLEGE, COLUMBIA, MISSOURI.

    ERIC Educational Resources Information Center

    MCBRIDE, WILMA

    THE JAMES MADISON WOOD QUADRANGLE AT STEPHENS COLLEGE IS A COMPLEX OF BUILDINGS DESIGNED TO MAKE POSSIBLE A FLEXIBLE EDUCATIONAL ENVIRONMENT. A LIBRARY HOUSES A GREAT VARIETY OF AUDIO-VISUAL RESOURCES AND BOOKS. A COMMUNICATION CENTER INCORPORATES TELEVISION AND RADIO FACILITIES, A FILM PRODUCTION STUDIO, AND AUDIO-VISUAL FACILITIES. THE LEARNING…

  20. Forest statistics for southwest Oregon.

    Treesearch

    John W. Hazard; Melvin E. Metcalf

    1964-01-01

    This publication summarizes the results of the latest reinventory of five counties in southwest Oregon: Coos, Curry, Douglas, Jackson, and Josephine. This block of five counties is one of 10 such blocks set up in the States of Oregon and Washington by the Forest Survey to facilitate orderly reinventories of the timber resources. Each block will be reinventoried at 10-...

  1. Geological Evolution of the Ganiki Planitia Quadrangle (V14) on Venus

    NASA Technical Reports Server (NTRS)

    Grosfils, E. B.; Drury, D. E.; Hurwitz, D. M.; Kastl, B.; Long, s. M.; Richards, J. W.; Venechuk, E. M.

    2005-01-01

    The Ganiki Planitia quadrangle (25-50degN, 180-210degE) is located north of Atla Regio, south of Vinmara Planitia, and southeast of Atalanta Planitia. The region contains a diverse array of volcanic-, tectonic- and impact-derived features, and the objectives for the ongoing mapping effort are fivefold: 1) explore the formation and evolution of radiating dike swarms within the region, 2) use the diverse array of volcanic deposits to further test the neutral buoyancy hypothesis proposed to explain the origin of reservoir-derived features, 3&4) unravel the volcanic and tectonic evolution in this area, and 5) explore the implications of 1-4 for resurfacing mechanisms. Here we summarize our onging analysis of the material unit stratigraphy in the quadrangle, data central to meeting the aforementioned objectives successfully.

  2. Geologic map of the Hart Peak Quadrangle, California and Nevada: a digital database

    USGS Publications Warehouse

    Nielson, Jane E.; Turner, Ryan D.; Bedford, David R.

    1999-01-01

    The Hart Peak 1:24,000-scale quadrangle is located about 12 km southwest of Searchlight, Nevada, comprehending the eastern part of the Castle Peaks, California, and most of the Castle Mountains and the northwestern part of the Piute Range, in California and Nevada. The Castle Peaks area constitutes the northeasternmost part of the northeast-trending New York Mountains. The Castle Mountains straddle the California-Nevada State line between the Castle Peaks and north-trending Piute Range. The southern part of the Piute Range, near Civil War-era Fort Piute, adjoins Homer Mountain mapped by Spencer and Turner (1985). Adjacent and nearby 1:24,000-scale quadrangles include Castle Peaks, East of Grotto Hills, Homer Mountain, and Signal Hill, Calif.; also Tenmile Well and West of Juniper Mine, Calif. and Nev. The oldest rocks in the Hart Peak quadrangle are Early Proterozoic gneiss and foliated granite that crop out in the northern part of the quadrangle on the eastern flank of the Castle Peaks and in the central Castle Mountains (Wooden and Miller, 1990). Paleozoic rocks are uncommon and Mesozoic granitic rocks are not found in the map area. The older rocks are overlain nonconformably by several km of Miocene volcanic deposits, which accumulated in local basins. Local dikes and domes are sources of most Miocene eruptive units; younger Miocene intrusions cut all the older rocks. Upper Miocene to Quaternary gravel deposits interfinger with the uppermost volcanic flows; the contact between volcanic rocks and the gravel deposits is unconformable locally. Canyons and intermontane valleys contain dissected Quaternary alluvialfan deposits that are mantled by active drainage and alluvial fan detritus.

  3. 77 FR 27479 - Filing of Plats of Survey: Oregon/Washington

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-10

    ...] Filing of Plats of Survey: Oregon/Washington AGENCY: Bureau of Land Management, Interior. ACTION: Notice... officially filed in the Bureau of Land Management Oregon/ Washington State Office, Portland, Oregon, 30 days from the date of this publication. Willamette Meridian Oregon T. 15 S., R. 2 W., accepted April 20...

  4. Mineral resource assessment of the Dillon 1 degree x 2 degrees Quadrangle, Idaho and Montana

    USGS Publications Warehouse

    Pearson, Robert Carl; Trautwein, C.M.; Ruppel, E.T.; Hanna, W.F.; Rowan, L.C.; Loen, J.S.; Berger, B.R.

    1992-01-01

    The Dillon 1°x2° quadrangle in southwestern Montana and east-central Idaho was investigated as part of the U.S. Geological Survey's Conterminous United States Mineral Assessment Program (CUSMAP) to determine its mineral resource potential. An interdisciplinary study was made of geology, geochemistry, geophysics (gravity and aeromagnetics), remote sensing, and mineral deposits. The results of those studies, as well as mineral resource assessment of numerous mineraldeposit types, are published separately as a folio of maps. This report summarizes the studies, provides background information on them, and presents a selected bibliography relevant to the geology and mineral resources of the quadrangle. The quadrangle contains large resources of gold and substantial resources of talc and chlorite, all of which were being mined in the 1980's and early 1990's. Submarginal resources of molybdenum, copper, tungsten, and iron range from moderately large to large. Other commodities that may be present in significant amounts are chromite, lead, zinc, silver, barite, zeolite minerals, and various nonmetallic metamorphic minerals.

  5. Preliminary Image Map of the 2007 Santiago Fire Perimeter, Orange Quadrangle, Orange County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  6. Preliminary Image Map of the 2007 Ranch Fire Perimeter, Fillmore Quadrangle, Ventura County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  7. Preliminary Image Map of the 2007 Ranch Fire Perimeter, Piru Quadrangle, Ventura County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  8. Preliminary Image Map of the 2007 Santiago Fire Perimeter, Tustin Quadrangle, Orange County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  9. 76 FR 27848 - Pears Grown in Oregon and Washington; Amendment To Allow Additional Exemptions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-13

    ... DEPARTMENT OF AGRICULTURE Agricultural Marketing Service 7 CFR Part 927 [Doc. No. AMS-FV-10-0072...: Agricultural Marketing Service, USDA. ACTION: Adoption of interim rule as final. SUMMARY: The Department of... marketing order for Oregon-Washington pears that provides for the sale of fresh pears directly to consumers...

  10. Geologic map of the Gbanka Quadrangle, Liberia

    USGS Publications Warehouse

    Force, E.R.; Dunbar, J.D.N.

    1974-01-01

    As part of a program undertaken cooperatively by the Liberian Geological Survey (LGS) and the U. S. Geological Survey (USGS), under the sponsorship of the Government of Liberia and the Agency for International Development, U. S. Department of State, Liberia was mapped by geologic and geophysical methods during the period 1965 to 1972. The resulting geologic and geophysical maps are published in ten folios, each covering one quadrangle (see index map). 

  11. Reconnaissance geology of the Jabal Bitran quadrangle, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Kahr, Viktor P.; Overstreet, W.C.; Whitlow, J.W.; Ankary, A.O.

    1972-01-01

    The Jabal Bitten quadrangle covers an area of 2833 sq km in the eastern part of the Precambrian Shield in Saudi Arabia. The rocks in the quadrangle are divided geographically alone arcuate north-trending lines into an eastern area of granite intruded by a swarm of dikes of rhyolite and andesite, and a western area of dominantly pelitic chlorite-sericite schist, separated by the narrow central complex of the Idsas Range. This complex is composed of pyroclastic rocks, lava, conglomerate, marble, and plutonic mafic rocks that have been intricately modified by episodes of metamorphism, igneous intrusion, and faulting. The Idsas Range contains ancient gold and copper mines, and deposits of magnetite, copper, asbestos, and chromite. The rocks in the Jabal Bitten quadrangle are here interpreted to consist of three major sedimentary and volcanic groups, the lowermost of which was deposited unconformably on hornblende-biotite granite gneiss, and all of which are intruded by granite dikes and plutons. From oldest to youngest the layered rocks are called Halaban Group, Bi'r Khountina Group, and Murdama Group, A biotite-hornblende granite is older than uppermost Bi'r Khountina, and peralkalic granite is younger than Murdama. The layered rocks of these groups are generally metamorphosed to the greenschist facies. The metamorphic grade rises abruptly at the Idsas Range to the albite-epidote-amphibolite facies and lower subfacies of the amphibolite facies in parts of the Halaban Group; some skarn east of the range may be in the upper part of the amphibolite facies. Characteristically, the Halaban Group has the highest grade and the greatest range in metamorphic grade, and the Murdama Group has the lowest but most uniformly developed metamorphic grade. The metamorphism of the rocks was caused by three successive pulses of regional dynamothermal metamorphism plus contact metamorphism around the younger bodies of plutonic igneous rocks. Four major structural elements of the

  12. The Alaskan Mineral Resource Assessment Program; background information to accompany folio of geologic and mineral resource maps of the Circle quadrangle, Alaska

    USGS Publications Warehouse

    Foster, Helen Laura; Menzie, W.D.; Cady, J.W.; Simpson, S.L.; Aleinikoff, J.N.; Wilson, Frederic H.; Tripp, R.B.

    1987-01-01

    The geology, geochemistry, geophysics, and Landsat imagery of the Circle quadrangle were investigated by an interdisciplinary research team for the purpose of assessing the mineral potential of the area. The quadrangle covers approximately 15,765 km2 in east-central Alaska; most of it is included in the mountainous Yukon-Tanana Upland physiographic division, but the northernmost part is in the low-lying Yukon Flats section. The Circle mining district, in the east-central part of the quadrangle, has been a major producing area of placer gold since its discovery in 1893. For descriptive purposes, the Circle quadrangle is divided into three areas: the northwest Circle quadrangle, the area north of the Tintina fault zone, and the area south of the Tintina fault zone. The Tintina fault zone extends northwesterly through the northern part of the quadrangle. The northwest Circle quadrangle contains mostly folded and faulted, slightly metamorphosed sedimentary rocks that are intruded by Tertiary granitic plutons. In the northern part of the area north of the Tintina fault zone (Little Crazy Mountains and northern east Crazy Mountains), the rocks consist primarily of the gabbro and basalt of the Circle Volcanics and minor associated chert, graywacke, and limestone. Elsewhere in this area (south of the Circle Volcanics and in the western Crazy Mountains), the rocks are mostly slightly metamorphosed Paleozoic sedimentary rocks that have been folded and faulted. Rocks in the largest part of the quadrangle, the area south of the Tintina fault zone, consist largely of pelitic rocks that are regionally metamorphosed to greenschist and amphibolite facies. Felsic plutons, mostly Tertiary in age, occur throughout the area. The metamorphic rocks are separated from sedimentary rocks on the northwest by thrust faulting. The aeromagnetic and gravity data show clear differences between the areas north and south of the Tintina fault zone. The metamorphic terrane to the south has low

  13. Geologic map of the Lockwood Valley Quadrangle, Ventura County, California

    USGS Publications Warehouse

    Kellogg, Karl S.

    2001-01-01

    The Lockwood Valley quadrangle is located in the western Transverse Ranges of California, about 10 km southwest of Frazier Park. It includes the western flank of Frazier Mountain, southern Lockwood Valley, and a region of the Los Padres National Forest near northern Piru Creek. The oldest rocks are mostly biotite augen gneiss, in the hanging wall of the Frazier Mountain thrust and in a large body south of the thrust. A U-Pb zircon age for the gneiss is 1690+5 Ma (W. Premo, unpublished data). Two Cretaceous intrusive rocks are named the quartz monzonite of Sheep Creek and the coarse-grained granodiorite of Lockwood Peak. A U-Pb zircon age on the latter is 76.05+0.22 Ma (W. Premo, unpublished data). The northeastern edge of a large Eocene marine basin, comprising the sandstones, shales, and conglomerates of the Juncal Formation, occupies the southwestern 25 percent of the quadrangle. Miocene fluvial rocks, including coarse boulder conglomerates, sandstones, and shale, of the Caliente Formation crop out mostly in the northwestern part of the quadrangle. Commercially exploitable Lockwood Clay unconformably overlies the Caliente, which, in turn, is overlain by the mostly fluvial Pliocene Quatal Formation. Two major south-directed thrusts, the Frazier Mountain thrust and the South Frazier Mountain thrust, place crystalline rocks over Miocene and Pliocene sedimentary rocks. The South Frazier Mountain thrust is transected by the newly recognized, north-directed Lockwood Peak reverse fault. In addition, the newly recognized south-directed Yellowjacket thrust displaces rocks of the Pliocene Quatal Formation.

  14. Geology of the Cooper Ridge NE Quadrangle, Sweetwater County, Wyoming

    USGS Publications Warehouse

    Roehler, Henry W.

    1979-01-01

    The Cooper Ridge NE 7?-minute quadrangle is 18 miles southeast of Rock Springs, Wyo., on the east flank of the Rock Springs uplift. Upper Cretaceous rocks composing the Rock Springs Formation, Ericson Sandstone, Almond Formation, Lewis Shale, Fox Hills Sandstone, and Lance Formation, Paleocene rocks composing the Fort Union Formation, and Eocene rocks composing the Wasatch Formation are exposed and dip 5?-8? southeast. Outcrops are unfaulted and generally homoclinal, but a minor cross-trending fold, the Jackknife Spring anticline, plunges southeastward and interrupts the northeast strike of beds. Older rocks in the subsurface are faulted and folded, especially near the Brady oil and gas field. Coal beds are present in the Almond, Lance, and Fort Union Formations. Coal resources are estimated to be more than 762 million short tons in 16 beds more than 2.5 feet thick, under less than 3,000 ft of overburden. Nearly 166 million tons are under less than 200 ft of overburden and are recoverable by strip mining. Unknown quantities of oil and gas are present in the Cretaceous Rock Springs, Blair, and Dakota Formations, Jurassic sandstone (Entrada Sandstone of drillers), Jurassic(?) and Triassic(?) Nugget Sandstone, Permian Park City Formation, and Pennsylvanian and Permian Weber Sandstone at the Brady field, part of which is in the southeast corner of the quadrangle, and in the Dakota Sandstone at the Prenalta Corp. Bluewater 33-32 well near the northern edge of the quadrangle. Other minerals include uranium in the Almond Formation and titanium in the Rock Springs Formation.

  15. 77 FR 10555 - Filing of Plats of Survey: Oregon/Washington

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-22

    ...] Filing of Plats of Survey: Oregon/Washington AGENCY: Bureau of Land Management, Interior. ACTION: Notice... Bureau of Land Management Oregon/Washington State Office, Portland, Oregon, 30 days from the date of this publication. Willamette Meridian Oregon T. 25 S., R. 1 W., accepted February 1, 2012 T. 16 S., R. 7 W...

  16. 75 FR 4103 - Filing of Plats of Survey: Oregon/Washington

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-26

    ...] Filing of Plats of Survey: Oregon/Washington AGENCY: Bureau of Land Management, Interior. ACTION: Notice... Bureau of Land Management Oregon/Washington State Office, Portland, Oregon, 30 days from the date of this publication. Willamette Meridian Oregon T. 39 S., R. 1 W., accepted December 18, 2009 T. 27 S., R. 2 W...

  17. 76 FR 3157 - Filing of Plats of Survey: Oregon/Washington

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-19

    ...] Filing of Plats of Survey: Oregon/Washington AGENCY: Bureau of Land Management, Interior. ACTION: Notice... Bureau of Land Management Oregon/Washington State Office, Portland, Oregon, 30 days from the date of this publication. Willamette Meridian Oregon T. 21 S., R. 27 E., accepted December 3, 2010 T. 27 S., R. 11 W...

  18. 75 FR 28647 - Filing of Plats of Survey: Oregon/Washington

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-21

    ...] Filing of Plats of Survey: Oregon/Washington AGENCY: Bureau of Land Management, Interior. ACTION: Notice... Bureau of Land Management Oregon/Washington State Office, Portland, Oregon, 30 days from the date of this publication. Willamette Meridian Oregon T. 7 S., R. 9 W., accepted April 12, 2010 T. 39 S., R. 2 E., accepted...

  19. 77 FR 57111 - Filing of Plats of Survey: Oregon/Washington

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-17

    ...] Filing of Plats of Survey: Oregon/Washington AGENCY: Bureau of Land Management, Interior. ACTION: Notice... Bureau of Land Management Oregon/Washington State Office, Portland, Oregon, 30 days from the date of this publication. Willamette Meridian Oregon T. 5 S., 14 E., accepted August 21, 2012 T. 26 S., R. 2 W., accepted...

  20. 76 FR 78020 - Filing of Plats of Survey: Oregon/Washington

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-15

    ...] Filing of Plats of Survey: Oregon/Washington AGENCY: Bureau of Land Management, Interior. ACTION: Notice... Bureau of Land Management Oregon/Washington State Office, Portland, Oregon, 30 days from the date of this publication. Willamette Meridian Oregon T. 23 S., R. 5 W., accepted November 16, 2011. T. 31 S., R. 9 W...

  1. 76 FR 26314 - Filing of Plats of Survey: Oregon/Washington

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-06

    ...] Filing of Plats of Survey: Oregon/Washington AGENCY: Bureau of Land Management, Interior. ACTION: Notice... Bureau of Land Management Oregon/Washington State Office, Portland, Oregon, 30 days from the date of this publication. Willamette Meridian Oregon T. 30 S., R. 11 W., accepted March 24, 2011 T. 28 S., R. 3 W...

  2. 78 FR 44964 - Filing of Plats of Survey: Oregon/Washington

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-25

    ...: HAG13-0251] Filing of Plats of Survey: Oregon/Washington AGENCY: Bureau of Land Management, Interior... officially filed in the Bureau of Land Management, Oregon State Office, Portland, Oregon, 30 days from the date of this publication. Willamette Meridian Oregon T. 40 S., R. 12 E., accepted June 28, 2013 T. 19 S...

  3. 75 FR 12563 - Filing of Plats of Survey: Oregon/Washington

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-16

    ...] Filing of Plats of Survey: Oregon/Washington AGENCY: Bureau of Land Management, Interior. ACTION: Notice... Bureau of Land Management Oregon/Washington State Office, Portland, Oregon, 30 days from the date of this publication. Willamette Meridian Oregon T. 3 S., R. 41 E., accepted January 15, 2010 T. 30 S., R. 11 W...

  4. 77 FR 47435 - Filing of Plats of Survey: Oregon/Washington

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-08

    ...] Filing of Plats of Survey: Oregon/Washington AGENCY: Bureau of Land Management, Interior. ACTION: Notice... Bureau of Land Management Oregon/Washington State Office, Portland, Oregon, 30 days from the date of this publication. Willamette Meridian Oregon T. 9 S., 19 E., accepted July 23, 2012 T. 18 S., R. 1 W., accepted...

  5. 75 FR 49944 - Filing of Plats of Survey: Oregon/Washington

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-16

    ...] Filing of Plats of Survey: Oregon/Washington AGENCY: Bureau of Land Management, Interior. ACTION: Notice... Bureau of Land Management Oregon/Washington State Office, Portland, Oregon, 30 days from the date of this publication. Willamette Meridian Oregon T. 41 S., R. 4 W., accepted June 29, 2010 T. 39 S., R. 1 W., accepted...

  6. 76 FR 12752 - Filing of Plats of Survey: Oregon/Washington

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-08

    ...] Filing of Plats of Survey: Oregon/Washington AGENCY: Bureau of Land Management, Interior. ACTION: Notice... Bureau of Land Management Oregon/Washington State Office, Portland, Oregon, 30 days from the date of this publication. Willamette Meridian Oregon T. 23 S., R. 8 W., accepted January 25, 2011 T. 22 S., R. 7 W...

  7. 76 FR 17669 - Filing of Plats of Survey: Oregon/Washington

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-30

    ...] Filing of Plats of Survey: Oregon/Washington AGENCY: Bureau of Land Management, Interior. ACTION: Notice... Bureau of Land Management Oregon/Washington State Office, Portland, Oregon, 30 days from the date of this publication. Willamette Meridian Oregon T. 20 S., R. 4 W., accepted March 1, 2011. T. 19 S., R. 1 E., accepted...

  8. 78 FR 5488 - Filing of Plats of Survey: Oregon/Washington

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-25

    ...: HAG13-0093] Filing of Plats of Survey: Oregon/Washington AGENCY: Bureau of Land Management, Interior... officially filed in the Bureau of Land Management, Oregon State Office, Portland, Oregon, 30 days from the date of this publication. Willamette Meridian Oregon T. 17 S., R. 17 E., accepted January 7, 2013 T. 20...

  9. Long Term Deck Deterioration : final report.

    DOT National Transportation Integrated Search

    1990-09-01

    In May of 1981 the Oregon State Highway Division was asked by the Federal Highway Administration to participate in a long term deck deterioration study. The study, an extension of an earlier study was finalized in 1979, was to run through 1990. Revie...

  10. 75 FR 41881 - Filing of Plats of Survey: Oregon/Washington

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-19

    ...] Filing of Plats of Survey: Oregon/Washington AGENCY: Bureau of Land Management, Interior. ACTION: Notice... Bureau of Land Management Oregon/Washington State Office, Portland, Oregon, 30 days from the date of this publication. Willamette Meridian Oregon T. 3 S., R. 6 W., accepted May 7, 2010 T 2 S., R. 6 W., accepted May 7...

  11. New Lepidoptera records for the Blue Mountains of eastern Oregon.

    Treesearch

    David G. Grimble; Roy C. Beckwith; Paul C. Hammond

    1993-01-01

    Black-light trap collections in mixed-coniferous forests in eastern Oregon resulted in the identification of one Arctiidae, six Noctuidae, and one Geometridae species not previously known to occur in Oregon. The ranges of 18 other species of Noctuidae, known previously in Oregon from only the Cascade and Coast Ranges, were extended to northeastern Oregon.

  12. Investigation of the Bailey Method for the design and analysis of dense-graded HMAC using Oregon aggregates : final report.

    DOT National Transportation Integrated Search

    2006-09-01

    Historically Oregon has specified gradations for dense-graded hot mix asphalt concrete (HMAC) using a combination of broadband limits and recommended ideal gradations. The recent adoption of SuperPave and Stone Matrix Asphalt (SMA) technolog...

  13. 75 FR 54386 - Southeast Oregon Resource Advisory Council; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-07

    ...] Southeast Oregon Resource Advisory Council; Meeting AGENCY: Bureau of Land Management, Interior. ACTION: Southeast Oregon Resource Advisory Council. SUMMARY: Pursuant to the Federal Land Policy and Management Act... (BLM) Southeast Oregon Resource Advisory Council (SEORAC) will meet as indicated below: DATES: The...

  14. 75 FR 39703 - Meeting; Southeast Oregon Resource Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-12

    ...] Meeting; Southeast Oregon Resource Advisory Council AGENCY: Bureau of Land Management, Interior. ACTION: Southeast Oregon Resource Advisory Council. SUMMARY: Pursuant to the Federal Land Policy and Management Act... (BLM) Southeast Oregon Resource Advisory Council (SEORAC) will meet as indicated below: DATES: The...

  15. Reconnaissance geology of the Jabal Hashahish Quadrangle, sheet 17/41 B, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Hadley, D.G.

    1982-01-01

    The Jabal Hashahish quadrangle (sheet 17/41 B) lies between lat 17?30' and 18?00' N. and long 41?30' and 42?00' E. and encompasses an area of 2,950 km2, of which only about 600 km2 is land; the remainder is covered by the Red Sea. The geologic formations exposed in the quadrangle include Precambrian layered and intrusive rocks, Tertiary gabbro dikes, Quaternary basaltic lavas and pyroclastic rocks, and Quaternary surficial deposits. The Precambrian rocks include layered sedimentary and volcanic rocks that have been assigned to the Baish, Bahah, and Ablah groups. These rocks have been folded, metamorphosed, and invaded by intrusions. They are cut by Miocene gabbro dikes that were intruded during the initial stages of the opening of the Red Sea rift. The Quaternary rocks also include basalt that was extruded during a continuation of that opening, after the uplift that formed the escarpment that parallels the eastern shore of the Red Sea, but before the Holocene erosional cycle. Coastal, pediment, and alluvial, and eolian deposits of various kinds are also of Quaternary age. The economic potential of the quadrangle lies essentially in the agricultural value of its flood-plain deposits, though these are not so widely used as those in Wadi Hali and Wadi Yiba, which are located in the Manjamah quadrangle. The coral reefs possibly could provide raw materials for use in a cement industry, if any such industry were ever required in this area.

  16. Bedrock geologic map of the Montpelier and Barre West quadrangles, Washington and Orange Counties, Vermont

    USGS Publications Warehouse

    Walsh, Gregory J.; Kim, Jonathan; Gale, Marjorie H.; King, Sarah M.

    2010-01-01

    The bedrock geology of the Montpelier and Barre West quadrangles consists of Silurian and Devonian metasedimentary rocks of the Connecticut Valley-Gaspe synclinorium (CVGS) and metasedimentary, metavolcanic, and metaintrusive rocks of the Cambrian and Ordovician Moretown and Cram Hill Formations. Devonian granite dikes occur throughout the two quadrangles but are more abundant in the Silurian and Devonian rocks. The pre-Silurian rocks are separated from the rocks of the CVGS by the informally named 'Richardson Memorial Contact,' historically interpreted as either an unconformity or a fault. The results of this report represent mapping by G.J. Walsh, Jonathan Kim, and M.H. Gale from 2002 to 2005. S.M. King assisted Kim and Gale from 2002 to 2003. A.M. Satkoski (Indiana University) assisted Walsh, and L.R. Pascale (University of Vermont) and C.M. Orsi (Middlebury College) assisted Kim and Gale as summer interns in 2003. This study was designed to map the bedrock geology in the area. This map supersedes a preliminary map of the Montpelier quadrangle (Kim, Gale, and others, 2003). A companion study in the Barre West quadrangle (Walsh and Satkoski, 2005) determined the levels of naturally occurring radioactivity in the bedrock from surface measurements at outcrops during the course of 1:24,000-scale geologic mapping to identify which rock types were potential sources of radionuclides. Results of that study indicate that the carbonaceous phyllites in the CVGS have the highest levels of natural radioactivity.

  17. Geologic map of the Murray Quadrangle, Newton County, Arkansas

    USGS Publications Warehouse

    Hudson, Mark R.; Turner, Kenzie J.

    2016-07-06

    This map summarizes the geology of the Murray quadrangle in the Ozark Plateaus region of northern Arkansas. Geologically, the area is on the southern flank of the Ozark dome, an uplift that has the oldest rocks exposed at its center, in Missouri. Physiographically, the Murray quadrangle is within the Boston Mountains, a high plateau region underlain by Pennsylvanian sandstones and shales. Valleys of the Buffalo River and Little Buffalo River and their tributaries expose an approximately 1,600-ft-thick (488-meter-thick) sequence of Ordovician, Mississippian, and Pennsylvanian carbonate and clastic sedimentary rocks that have been mildly deformed by a series of faults and folds. The Buffalo National River, a park that encompasses the Buffalo River and adjacent land that is administered by the National Park Service is present at the northwestern edge of the quadrangle.Mapping for this study was carried out by field inspection of numerous sites and was compiled as a 1:24,000 geographic information system (GIS) database. Locations and elevation of sites were determined with the aid of a global positioning satellite receiver and a hand-held barometric altimeter that was frequently recalibrated at points of known elevation. Hill-shade relief and slope maps derived from a U.S. Geological Survey 10-meter digital elevation model as well as orthophotographs were used to help trace ledge-forming units between field traverses within the Upper Mississippian and Pennsylvanian part of the stratigraphic sequence. Strike and dip of beds were typically measured along stream drainages or at well-exposed ledges. Structure contours, constructed on the top of the Boone Formation and the base of a prominent sandstone unit within the Bloyd Formation, were drawn based on the elevations of field sites on these contacts well as other limiting information for their minimum elevations above hilltops or their maximum elevations below valley bottoms.

  18. False-Color-Image Map of Quadrangle 3164, Lashkargah (605) and Kandahar (606) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  19. False-Color-Image Map of Quadrangle 3366, Gizab (513) and Nawer (514) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  20. False-Color-Image Map of Quadrangle 3568, Polekhomri (503) and Charikar (504) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  1. False-Color-Image Map of Quadrangle 3162, Chakhansur (603) and Kotalak (604) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  2. False-Color-Image Map of Quadrangle 3464, Shahrak (411) and Kasi (412) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  3. False-Color-Image Map of Quadrangle 3266, Ourzgan (519) and Moqur (520) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  4. Natural-Color-Image Map of Quadrangle 3568, Polekhomri (503) and Charikar (504) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  5. Natural-Color-Image Map of Quadrangle 3266, Ourzgan (519) and Moqur (520) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  6. Natural-Color-Image Map of Quadrangle 3164, Lashkargah (605) and Kandahar (606) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  7. Natural-Color-Image Map of Quadrangle 3464, Shahrak (411) and Kasi (412) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  8. Natural-Color-Image Map of Quadrangle 3162, Chakhansur (603) and Kotalak (604) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  9. Natural-Color-Image Map of Quadrangle 3366, Gizab (513) and Nawer (514) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  10. 33 CFR 117.887 - Oregon Slough (North Portland Harbor).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Oregon Slough (North Portland Harbor). 117.887 Section 117.887 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Oregon § 117.887 Oregon Slough...

  11. 33 CFR 117.887 - Oregon Slough (North Portland Harbor).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Oregon Slough (North Portland Harbor). 117.887 Section 117.887 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Oregon § 117.887 Oregon Slough...

  12. 33 CFR 117.887 - Oregon Slough (North Portland Harbor).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Oregon Slough (North Portland Harbor). 117.887 Section 117.887 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Oregon § 117.887 Oregon Slough...

  13. 33 CFR 117.887 - Oregon Slough (North Portland Harbor).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Oregon Slough (North Portland Harbor). 117.887 Section 117.887 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Oregon § 117.887 Oregon Slough...

  14. 33 CFR 117.887 - Oregon Slough (North Portland Harbor).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Oregon Slough (North Portland Harbor). 117.887 Section 117.887 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Oregon § 117.887 Oregon Slough...

  15. 76 FR 21299 - Oregon: Tentative Approval of State Underground Storage Tank Program: Public Hearing Cancellation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-15

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 281 [EPA-R10-UST-2011-0097; FRL-9296-1] Oregon: Tentative Approval of State Underground Storage Tank Program: Public Hearing Cancellation AGENCY... application for final approval of its Underground Storage Tank (UST) Program under Subtitle I of the Resource...

  16. Map showing distribution of cadmium and antimony in the nonmagnetic fraction of heavy-mineral concentrates, Richfield 1 degree by 2 degrees Quadrangle, Utah

    USGS Publications Warehouse

    Miller, William R.; Motooka, Jerry M.; McHugh, John B.

    1990-01-01

    This map of the Richfield 1° x 2° quadrangle, Utah, shows the regional distribution of cadmium and antimony in the nonmagnetic fraction of drainage-sediment samples. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the references (this publication). The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess the mineral

  17. Endangered Plants in Oregon and Washington.

    ERIC Educational Resources Information Center

    Love, Rhoda M.

    1985-01-01

    Presents a partial list of the 132 Oregon and Washington plants which have been proposed for federal protection under the Endangered Species Act. Suggestions for student/citizen involvement in preserving these species and a description of a videotape about rare/endangered species of the Willamette Valley (Oregon) are included. (DH)

  18. "Fiberoptic variable message signs" : Ladd Canyon - Drinking Fountain Grade Section , Old Oregon Trail Highway (Interstate 84) : final report.

    DOT National Transportation Integrated Search

    1995-02-01

    The SYLVIA fiberoptic variable message signs (VMS) were installed on the Old Oregon Trail Highway (I-84) at milepost 263.4 near La Grande and at milepost 286.7 near North Powder. The purpose of the signs is to warn motorists of fog, winter blizzard c...

  19. Preliminary Geological Map of the Ac-H-8 Nawish Quadrangle of Ceres: An Integrated Mapping Study Using Dawn Spacecraft Data

    NASA Astrophysics Data System (ADS)

    Frigeri, A.; De Sanctis, M. C.; Carrorro, F. G.; Ammannito, E.; Williams, D. A.; Mest, S. C.; Buczkowski, D.; Preusker, F.; Jaumann, R.; Roatsch, T.; Scully, J. E. C.; Raymond, C. A.; Russell, C. T.

    2015-12-01

    Herein we present the geologic mapping of the Ac-H-8 Nawish Quadrangle of dwarf planet Ceres, produced on the basis of the Dawn spacecraft data. The Ac-H-08 Nawish quadrangle is located between -22°S and 22°N and between 144°E and 216°E. At the north-east border, a polygonal, 75km-wide crater named Nawish gives the name to the whole quadrangle. An unamed, partially degraded, 100km-diameter crater is evident in the lower central sector of the quadrangle. Bright materials have been mapped and are associated with craters. For example, bright materials occur in the central peak region of Nawish crater and in the ejecta of an unnamed crater, which is located in the nearby quadrangle Ac-H-09. The topography of the area obtained from stereo-processing of imagery shows an highland in the middle of the quadrangle. Topography is lower in the northern and southern borders, with a altitude span of about 9500 meters. At the time of this writing geologic mapping was performed on Framing Camera (FC) mosaics from the Approach (1.3 km/px) and Survey (415 m/px) orbits, including grayscale and color images and digital terrain models derived from stereo images. In Fall 2015 images from the High Altitude Mapping Orbit (140 m/px) will be used to refine the mapping, followed by Low Altitude Mapping Orbit (35 m/px) images in January 2016. Support of the Dawn Instrument, Operations, and Science Teams is acknowledged. This work is supported by grants from NASA, and from the German and Italian Space Agencies.

  20. Maps showing industrial mineral resources of the Joplin 1 degree by 2 degrees Quadrangle, Kansas and Missouri

    USGS Publications Warehouse

    Grisafe, David A.; Rueff, Ardel W.

    1991-01-01

    This map is part of a folio of maps of the Joplin 1° X 2° quadrangle, Kansas and Missouri prepared under the Conterminuous United States Mineral Assessment Program (CUSMAP). Other publications in this folio to date include U.S. Geological Survey Miscellaneous Field Studies Map MF-2125-A (Erickson and others, 1990). Additional maps showing various geologic aspects of the Joplin quadrangle will be published as U.S. Geological Survey Miscellaneous Field Studies Maps bearing this same serial number with different letter suffixes (MF-2125-C, -D, and so on). The industrial mineral resources of the Joplin 1° X 2° quadrangle are crushed stone, dimension stone, clay and shale, construction sand and gravel (including chat, or chert-rich tailings from metal mines), and asphaltic sandstone. At present only crushed stone, clay and shale, and construction sand and gravel are of economic importance; the remainder are considered hypothetical resources. The value of industrial mineral production during 1987, the most recent year of complete data as supplied by the U.S. Bureau of Mines, was nearly $25,600,000. In terms of finished products such as cement and brick, the value is several times that amount. Figure 1 shows the annual value of industrial mineral production within the quadrangle from 1960 through 1987.

  1. Geologic map of the Puye Quadrangle, Los Alamos, Rio Arriba, Sandoval, and Santa Fe Counties, New Mexico

    USGS Publications Warehouse

    Dethier, David P.

    2003-01-01

    The Puye quadrangle covers an area on the eastern flank of the Jemez Mountains, north of Los Alamos and west of Espanola, New Mexico. Most of the quadrangle consists of a dissected plateau that was formed on the resistant caprock of the Bandelier Tuff, which was erupted from the Valles caldera approximately 1 to 2 million years ago. Within the canyons of the east-flowing streams that eroded this volcanic tableland, Miocene and Pliocene fluvial deposits of the Puye Formation and Santa Fe Group are exposed beneath the Bandelier Tuff. These older units preserve sand and gravel that were deposited by streams and debris flows flowing from source areas located mostly north and northeast of the Puye quadrangle. The landscape of the southeastern part of the quadrangle is dominated by the valley of the modern Rio Grande, and by remnants of piedmont-slope and river-terrace deposits that formed during various stages of incision of the Rio Grande drainage on the landscape. Landslide deposits are common along the steep canyon walls where broad tracts of the massive caprock units have slumped toward the canyons on zones of weakness in underlying strata, particularly on silt/clay-rich lacustrine beds within the Puye Formation.

  2. Geologic Map of the Round Spring Quadrangle, Shannon County, Missouri

    USGS Publications Warehouse

    Orndorff, Randall C.; Weary, David J.

    2009-01-01

    The Round Spring 7.5-minute quadrangle is located in Shannon County, south-central Missouri on the Salem Plateau of the Ozark Plateaus physiographic province. As much as 1,350 feet (ft) of flat-lying to gently dipping Upper Cambrian and Lower Ordovician rocks, mostly dolomite, overlie Mesoproterozoic volcanic rocks. The bedrock is overlain by unconsolidated residuum, colluvium, terrace deposits, and alluvium. Karst features, such as small sinkholes and caves, have formed in the carbonate rocks, and many streams are spring fed. The topography is a dissected karst plain with elevation ranging from 650 ft along the Current River on the eastern edge of the quadrangle to almost 1,200 ft at various places on the ridge tops. The area is mostly forested but contains some farmlands and includes sections of the Ozark National Scenic Riverways of the National Park Service along the Current River. Geologic mapping for this investigation began in the spring of 2001 and was completed in the spring of 2002.

  3. Phytophthora species in forest streams in Oregon and Alaska.

    PubMed

    Reeser, Paul W; Sutton, Wendy; Hansen, Everett M; Remigi, Philippe; Adams, Gerry C

    2011-01-01

    Eighteen Phytophthora species and one species of Halophytophthora were identified in 113 forest streams in Alaska, western Oregon and southwestern Oregon that were sampled by baiting or filtration of stream water with isolation on selective media. Species were identified by morphology and DNA characterization with single strand conformational polymorphism, COX spacer sequence and ITS sequence. ITS Clade 6 species were most abundant overall, but only four species, P. gonapodyides (37% of all isolates), P. taxon Salixsoil, P. taxon Oaksoil and P. pseudosyringae, were found in all three regions. The species assemblages were similar in the two Oregon regions, but P. taxon Pgchlamydo was absent in Alaska and one new species present in Alaska was absent in Oregon streams. The number of Phytophthora propagules in Oregon streams varied by season and in SW Oregon, where sampling continued year round, P. taxon Salixsoil, P. nemorosa and P. siskiyouensis were recovered only in some seasons.

  4. Oregon School Bond Manual. Seventh Edition.

    ERIC Educational Resources Information Center

    Oregon State Dept. of Education, Salem.

    To help school districts comply with Oregon's school bond laws, this manual provides guidelines for school district attorneys and personnel in the issuance and sale of school district bonds. The manual deals with the three primary types of Oregon school district borrowings: (1) general obligation bonds; (2) tax and revenue anticipation notes; and…

  5. Helium concentrations in soil gas of the Ely and Delta 1 degree x 2 degrees quadrangles. Basin and Range Province

    USGS Publications Warehouse

    Reimer, G.M.; Bowles, C.G.

    1983-01-01

    A reconnaissance soil-gas helium survey was made of the Ely, Nevada and Delta, Utah 1? x 2? quadrangles in the Basin and Range Province. Helium concentrations in 510 samples ranged from -147 to 441 ppb He with respect to ambient air. The median helium value for the study area was 36 ppb. Concentrations of more than 100 ppb He, and less than -20 ppb He, occur more commonly in the Ely Quadrangle and are especially numerous in the western one-half of this quadrangle. The data are presented both in figures and tables, and some of the geologic factors that may affect the helium distribution are discussed.

  6. Geologic Map of the Goleta Quadrangle, Santa Barbara County, California

    USGS Publications Warehouse

    Minor, Scott A.; Kellogg, Karl S.; Stanley, Richard G.; Brandt, Theodore R.

    2007-01-01

    This map depicts the distribution of bedrock units and surficial deposits and associated deformation underlying those parts of the Santa Barbara coastal plain and adjacent southern flank of the Santa Ynez Mountains within the Goleta 7 ?? quadrangle at a compilation scale of 1:24,000 (one inch on the map = 2,000 feet on the ground) and with a horizontal positional accuracy of at least 20 m. The Goleta map overlaps an earlier preliminary geologic map of the central part of the coastal plain (Minor and others, 2002) that provided coverage within the coastal, central parts of the Goleta and contiguous Santa Barbara quadrangles. In addition to new mapping in the northern part of the Goleta quadrangle, geologic mapping in other parts of the map area has been revised from the preliminary map compilation based on new structural interpretations supplemented by new biostratigraphic data. All surficial and bedrock map units are described in detail in the accompanying map pamphlet. Abundant biostratigraphic and biochronologic data based on microfossil identifications are presented in expanded unit descriptions of the marine Neogene Monterey and Sisquoc Formations. Site-specific fault-kinematic observations (including slip-sense determinations) are embedded in the digital map database. The Goleta quadrangle is located in the western Transverse Ranges physiographic province along an east-west-trending segment of the southern California coastline about 100 km (62 mi) northwest of Los Angeles. The Santa Barbara coastal plain surface, which spans the central part of the quadrangle, includes several mesas and hills that are geomorphic expressions of underlying, potentially active folds and partly buried oblique and reverse faults of the Santa Barbara fold and fault belt (SBFFB). Strong earthquakes have occurred offshore within 10 km of the Santa Barbara coastal plain in 1925 (6.3 magnitude), 1941 (5.5 magnitude) and 1978 (5.1 magnitude). These and numerous smaller seismic events

  7. Oregon's mobility needs : social service provider survey

    DOT National Transportation Integrated Search

    1999-06-01

    In 1998, the Oregon Department of Transportation undertook the Social Services Provider Survey as part of an investigation of the transportation needs of mobility impaired individuals in Oregon. This survey was designed to gain information about the ...

  8. Geological Mapping of the Lada Terra (V-56) Quadrangle, Venus: A Progress Report

    NASA Technical Reports Server (NTRS)

    Kumar, P. Senthil; Head, James W., III

    2008-01-01

    Geological mapping of the V-56 quadrangle (Fig. 1) reveals various tectonic and volcanic features and processes in Lada Terra that consist of tesserae, regional extensional belts, coronae, volcanic plains and impact craters. This study aims to map the spatial distribution of different material units, deformational features or lineament patterns and impact crater materials. In addition, we also establish the relative age relationships (e.g., overlapping or cross-cutting relationships) between them, in order to reconstruct the geologic history. Basically, this quadrangle addresses how coronae evolved in association with regional extensional belts, in addition to evolution of tesserae, regional plains and impact craters, which are also significant geological units of Lada Terra.

  9. 3. Historic American Buildings Survey, Courtesy of Oregon Historical Society, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Historic American Buildings Survey, Courtesy of Oregon Historical Society, Photo from 'West Shore' VILLIARD HALL, 1886, DEADY HALL, 1876. - University of Oregon, Deady Hall, University of Oregon Campus, Eugene, Lane County, OR

  10. Why the Oregon CCO experiment could founder.

    PubMed

    Stecker, Eric C

    2014-08-01

    The most recent Oregon Medicaid experiment is the boldest attempt yet to limit health care spending. Oregon's approach using a Medicaid waiver from the Centers for Medicare and Medicaid Services utilizes global payments with two-sided risk at two levels - coordinated care organizations (CCOs) and the state. Equally important, the Oregon experiment mandates coverage of medical, behavioral, and dental health care using flexible coverage, with the locus of delivery innovation focused at the individual CCO level and with financial consequences for quality-of-care metrics. But insightful design alone is insufficient to overcome the vexing challenge of cost containment on a two- to five-year time horizon; well-tuned execution is also necessary. There are a number of reasons that the Oregon CCO model faces an uphill struggle in implementing the envisioned design. Copyright © 2014 by Duke University Press.

  11. False-Color-Image Map of Quadrangle 3368 and Part of Quadrangle 3370, Ghazni (515), Gardez (516), and Part of Jaji-Maydan (517) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  12. Natural-Color-Image Map of Quadrangle 3368 and Part of Quadrangle 3370, Ghazni (515), Gardez (516), and Part of Jaji-Maydan (517) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  13. Surficial geology of Panther Lake Quadrangle, Oswego County, New York

    USGS Publications Warehouse

    Miller, Todd S.

    1981-01-01

    The location and extent of eight kinds of surficial deposits in Panther Lake quadrangle, Oswego County, N.Y., are mapped on a 7.5-minute U.S. Geological Survey topographic map. The map was compiled to indicate the lithology and potential for groundwater development at any specific location. (USGS)

  14. Oregon School Bond Manual. Sixth Edition.

    ERIC Educational Resources Information Center

    Oregon State Dept. of Education, Salem. Office of School District Services.

    Given that purchasers of Oregon school bonds rely on recommendations of accredited bond attorneys, this document is designed to assist school districts in complying with state statutes regulating the issuance of school bond issues in order that attorney opinions may be favorable. Six initial steps toward a bond sale and Oregon laws regarding bonds…

  15. Epidemiology of Phytophthora ramorum in Oregon

    Treesearch

    E.M. Hansen; A. Kanaskie; E.M. Goheen; N. Osterbauer; W. Sutton

    2006-01-01

    We are studying how P. ramorum survives and spreads in Oregon tanoak forests. The Oregon outbreak is similar to the epidemic in redwood-tanoak forests of California, with several important differences, however. The disease is confined to scattered stands within a 12 m2 area, and it is subject to an ongoing eradication effort....

  16. 77 FR 14041 - Southeast Oregon Resource Advisory Council; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-08

    ...; HAG 12-0102] Southeast Oregon Resource Advisory Council; Meeting AGENCY: Bureau of Land Management... Land Management, the Southeast Oregon Resource Advisory Council (RAC) will meet as indicated below: DATES: The Southeast Oregon RAC will hold a public meeting Monday, April 2, 2012, from 12 p.m. to 4:30 p...

  17. Mercury: Photomosaic of the Shakespeare Quadrangle (Northern Half) H-3

    NASA Technical Reports Server (NTRS)

    1974-01-01

    This computer generated photomosaic from Mariner 10 is of the northern half of Mercury's Shakespeare Quadrangle, named for the ancient Shakespeare crater located on the lower edge to the left of center. This portion of the quadrangle covers the geographic region from 45 to 70 degrees north latitude and from 90 to 180 degrees longitude. The photomosaic was produced using computer techniques and software developed in the Image Processing Laboratory of NASA's Jet Propulsion Laboratory. The pictures have been high-pass filtered and contrast enhanced to accentuate surface detail, and geometrically transformed into a Lambert conformal projection.

    The illuminated surface observed by Mariner 10 as it first approached Mercury is dominated by craters and basins. In marked contrast to this view, the surface photographed after the flyby exhibited features totally different, including large basins and extensive relatively smooth areas with few craters. The most striking feature in this region of the planet is a huge circular basin, 1300 kilometers in diameter, that was undoubtedly produced from a tremendous impact comparable to the event that formed the Imbrium basin on the Moon. This prominent Mercurian structure in the Shakespeare and Tolstoj quadrangles (lower left corner of this image), named Caloris Planitia, is filled with material forming a smooth surface or plain that appears similar in many respects to the lunar maria.

    The above material was taken from the following publication... Davies, M. E., S. E. Dwornik, D. E. Gault, and R. G. Strom, Atlas of Mercury, NASA SP-423 (1978).

    The Mariner 10 mission was managed by the Jet Propulsion Laboratory for NASA's Office of Space Science.

  18. Modern shelf ice, equatorial Aeolis Quadrangle, Mars

    NASA Technical Reports Server (NTRS)

    Brakenridge, G. R.

    1993-01-01

    As part of a detailed study of the geological and geomorphological evolution of Aeolis Quadrangle, I have encountered evidence suggesting that near surface ice exists at low latitudes and was formed by partial or complete freezing of an inland sea. The area of interest is centered at approximately -2 deg, 196 deg. As seen in a suite of Viking Orbiter frames obtained at a range of approximately 600 km, the plains surface at this location is very lightly cratered or uncratered, and it is thus of late Amazonian age. Extant topographic data indicate that the Amazonian plains at this location occupy a trough whose surface lies at least 1000 m below the Mars datum. A reasonable hypothesis is that quite recent surface water releases, perhaps associated with final evolution of large 'outflow chasms' to the south, but possibly from other source areas, filled this trough, that ice floes formed almost immediately, and that either grounded ice or an ice-covered sea still persists. A reasonable hypothesis is that quite recent surface water releases, perhaps associated with final evolution of large 'outflow chasms' to the south, but possibly from other source areas, filled this trough, that ice floes formed almost immediately, and that either grounded ice or an ice-covered sea still persists. In either case, the thin (a few meters at most) high albedo, low thermal inertia cover of aeolian materials was instrumental in allowing ice preservation, and at least the lower portions of this dust cover may be cemented by water ice. Detailed mapping using Viking stereopairs and quantitative comparisons to terrestrial shelf ice geometries are underway.

  19. Preliminary Image Map of the 2007 Rice Fire Perimeter, Bonsall Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  20. Preliminary Image Map of the 2007 Harris Fire Perimeter, Tecate Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  1. Preliminary Image Map of the 2007 Witch Fire Perimeter, Escondido Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  2. Preliminary Image Map of the 2007 Witch Fire Perimeter, Ramona Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  3. Preliminary Image Map of the 2007 Santiago Fire Perimeter, Lake Forest Quadrangle, Orange County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  4. Preliminary Image Map of the 2007 Cajon Fire Perimeter, Devore Quadrangle, San Bernardino County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  5. Preliminary Image Map of the 2007 Harris Fire Perimeter, Dulzura Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  6. Preliminary Image Map of the 2007 Harris Fire Perimeter, Potrero Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  7. Preliminary Image Map of the 2007 Witch Fire Perimeter, Poway Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  8. Preliminary Image Map of the 2007 Poomacha Fire Perimeter, Pala Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  9. Statistical Evaluation of Airport Pavement Condition Survey Data for Washington, Oregon, and Idaho

    DTIC Science & Technology

    1988-01-01

    21...COUNTY SQUIRE AIRPARK, OREGON 12 70 22...FLORENCE MUNICIPAL AP, OREGON 3 95 23...HERMISTON MUNICIPAL AP, OREGON 11 87 24...HOOD RIVER AP, OREGON...12 87 33...OROFINO MUNICIPAL AP, IDAHO 17 81 34...PRIEST RIVER MUNICIPAL AP, IDAHO 11 86 *NUgU**MmUU~tNUINNNNNNNffWUU0W NUU EU*UI** **-28 -28- TABLE 3...3 88 8...BAKER MUNICIPAL AP, OREGON 3 90 9...BEND MUNICIPAL AP, OREGON 9 89 10..CRESWELL MUNICIPAL AP, OREGON 1 98 11..HOOD RIVER AP, OREGON 1 96 12

  10. Geologic Map of the Estes Park 30' x 60' Quadrangle, North-Central Colorado

    USGS Publications Warehouse

    Cole, James C.; Braddock, William A.

    2009-01-01

    The rocks and landforms of the Estes Park 30 x 60 minute quadrangle display an exceptionally complete record of geologic history in the northern Front Range of Colorado. The Proterozoic basement rocks exposed in the core of the range preserve evidence of Paleoproterozoic marine sedimentation, volcanism, and regional soft-sediment deformation, followed by regional folding and gradational metamorphism. The metasedimentary rocks of the Estes Park quadrangle are distinct within northern Colorado for preserving the complete metamorphic zonation from low-grade chlorite-muscovite phyllites, through middle greenschist-grade rocks with sequential aluminous porphyroblasts, to partially melted gneisses that contain high-grade cordierite and garnet in the non-melted residues. Regional and textural evidence shows that the widespread metamorphism was essentially concurrent with intrusion of the Boulder Creek Granodiorite and related magmas and with the peak of deformation in the partially melted high-grade rocks. The metamorphic thermal pulse arrived later following the peak of deformation in the physically higher, cooler, low-grade terrane. Mesoproterozoic time was marked by intrusion of biotite granite in the Longs Peak-St Vrain batholith, a complex, irregular body that occupies nearly half of the core of the Front Range in this quadrangle. The magma was dry and viscous as it invaded the metamorphic rocks and caused wholesale plastic folding of the wall rock structure. Steep metamorphic foliation that resulted from the Paleoproterozoic deformations was bowed upward and re-oriented into flat-lying attitudes as the crystal-rich magma rose buoyantly and spread out in the middle crust. Magma invaded the schists and gneisses along weak foliation planes and produced a characteristic sill-upon-sill intrusive fabric, particularly in the higher parts of the batholith. Broad, open arches and swales that are defined by the flow-aligned feldspar foliation of the granite, as well as by

  11. Geologic map of the Vashon 7.5' quadrangle and selected areas, King County, Washington

    USGS Publications Warehouse

    Booth, Derek B.; Troost, Kathy Goetz; Tabor, Rowland W.

    2015-01-01

    This map, the Vashon quadrangle and selected adjacent areas, encompasses most of Vashon Island, Maury Island, and Three Tree Point in the south-central Puget Sound. One small area in the Vashon quadrangle on the east side of Puget Sound is excluded from this map but included on the adjacent Seattle quadrangle (Booth and others, 2005). The map displays a wide variety of surficial geologic deposits, which reflect many geologic environments and processes. Multiple ice-sheet glaciations and intervening nonglacial intervals have constructed a complexly layered sequence of deposits that underlie both islands to a depth of more than 300 m below sea level. These deposits not only record glacial and nonglacial history but also control the flow and availability of ground water, determine the susceptibility of the slopes to landslides, and provide economic reserves of sand and gravel. The islands are surrounded by channels of Puget Sound, some as deep as the islands are high (>600 ft (~200 m)). The shorelines provide many kilometers of well-exposed coastal outcrops that reveal abundant lithologic and stratigraphic details not ordinarily displayed in the heavily vegetated Puget Lowland.

  12. Geologic Mapping of the Av-11 Pinaria Quadrangle of Asteroid 4 Vesta

    NASA Astrophysics Data System (ADS)

    Hoogenboom, T.; Schenk, P.; White, O. L.; Williams, D.; Heisinger, H.; Garry, W. B.; Yingst, R. A.; Buczkowski, D. L.; McCord, T. B.; Jaumann, R.; Pieters, C. M.; Gaskell, R. W.; Neukum, G.; Schmedemann, N.; Marchi, S.; Nathues, A.; Lecorre, L.; Roatsch, T.; Preusker, F.; de Sanctis, M. C.; Fillacchione, G.; Raymond, C. A.; Russell, C. T.

    2012-03-01

    Dawn entered orbit of the asteroid 4 Vesta in 7/2011, to characterize its geology, elemental and mineralogical composition, topography, shape, and internal structure. This abstract describes the results from mapping quadrangle Av-11.

  13. Oregon University System Fact Book 2013

    ERIC Educational Resources Information Center

    Oregon University System, 2014

    2014-01-01

    This compendium of narrative and statistical information is an overview of the Oregon University System (OUS) and is the last Fact Book published under the auspices of the Oregon University System. The introduction includes a mission statement, a listing of OUS campuses and centers, a roster of the members of the State Board of Higher Education,…

  14. Timber resource statistics for central Oregon.

    Treesearch

    John M. Berger

    1968-01-01

    This publication summarizes the results of the third inventory of the timber resources of nine counties in central Oregon: Crook, Deschutes, Gilliam, Jefferson, Klamath, Lake, Sherman, Wasco, and Wheeler. This block of nine counties is one of 10 such blocks set up in the States of Oregon and Washington by the Forest Survey to facilitate orderly reinventories of the...

  15. Mineralogical Mapping of the Av-5 Floronia Quadrangle of Asteroid 4 Vesta

    NASA Astrophysics Data System (ADS)

    Combe, J.-Ph.; Fulchinioni, M.; McCord, T. B.; Ammannito, E.; De Sanctis, M. C.; Nathues, A.; Capaccioni, F.; Frigeri, A.; Jaumann, R.; Le Corre, L.; Palomba, E.; Preusker, F.; Reddy, V.; Stephan, K.; Tosi, F.; Zambon, F.; Raymond, C. A.; Russell, C. T.

    2012-04-01

    Asteroid 4 Vesta is currently under investigation by NASA's Dawn orbiter. The Dawn Science Team is conducting mineralogical mapping of Vesta's surface in the form of 15 quadrangle maps, and here we report results from the mapping of Floronia quadrangle Av-5. The maps are based on the data acquired by the Visible and Infrared Mapping Spectrometer (VIR-MS) and the Framing Camera (FC) (De Sanctis et al., this meeting). This abstract is focused on the analysis of band ratios, as well as the depth and position of the 2-µm absorption band of pyroxenes, but additional information will be presented. Absorption band depth is sensitive to abundance, texture and multiple scattering effects. Absorption band position is controlled by composition, shorter wavelength positions indicate less Calcium (and more Magnesium) in pyroxenes. The inferred composition is compared with that of Howardite, Eucite and Diogenite meteorites (HEDs). Diogenites are Mg-rich with large orthopyroxene crystals suggesting formation in depth; Eucrites are Ca-poor pyroxene, with smaller crystals. Av-5 Floronia Quadrangle is located between ~20-66˚N and 270˚-360˚E. It covers a portion of the heavily-cratered northern hemisphere of Vesta, and part of it is in permanent night, until August 2012. Long shadows make the visualization of albedo variations difficult, because of limited effectiveness of photometric corrections. Most of the variations of the band depth at 2 µm are partly affected by illumination geometry in this area. Only regional tendencies are meaningful at this time of the analysis. The 2-µm absorption band depth seems to be deeper towards the south of the quadrangle, in particular to the south of Floronia crater. It is not possible to interpret the value of the band depth in the floor the craters because of the absence of direct sunlight. However, the illuminated rims seem to have a deeper 2-µm absorption band, as does the ejecta from an unnamed crater located further south, within

  16. 76 FR 19118 - Oregon; Major Disaster and Related Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-06

    .... FEMA-1964-DR; Docket ID FEMA-2011-0001] Oregon; Major Disaster and Related Determinations AGENCY... declaration of a major disaster for the State of Oregon (FEMA-1964-DR), dated March 25, 2011, and related... have determined that the damage in certain areas of the State of Oregon resulting from a tsunami wave...

  17. 77 FR 16047 - Oregon; Major Disaster and Related Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-19

    .... FEMA-4055-DR; Docket ID FEMA-2012-0002] Oregon; Major Disaster and Related Determinations AGENCY... declaration of a major disaster for the State of Oregon (FEMA-4055-DR), dated March 2, 2012, and related... determined that the damage in certain areas of the State of Oregon resulting from a severe winter storm...

  18. 40 CFR 81.220 - Eastern Oregon Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Eastern Oregon Intrastate Air Quality... Quality Control Regions § 81.220 Eastern Oregon Intrastate Air Quality Control Region. The Eastern Oregon... outermost boundaries of the area so delimited): In the State of Oregon: Baker County, Gilliam County, Grant...

  19. 40 CFR 81.219 - Central Oregon Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Central Oregon Intrastate Air Quality... Quality Control Regions § 81.219 Central Oregon Intrastate Air Quality Control Region. The Central Oregon... outermost boundaries of the area so delimited): In the State of Oregon: Crook County, Deschutes County, Hood...

  20. 40 CFR 81.220 - Eastern Oregon Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Eastern Oregon Intrastate Air Quality... Quality Control Regions § 81.220 Eastern Oregon Intrastate Air Quality Control Region. The Eastern Oregon... outermost boundaries of the area so delimited): In the State of Oregon: Baker County, Gilliam County, Grant...

  1. 40 CFR 81.219 - Central Oregon Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Central Oregon Intrastate Air Quality... Quality Control Regions § 81.219 Central Oregon Intrastate Air Quality Control Region. The Central Oregon... outermost boundaries of the area so delimited): In the State of Oregon: Crook County, Deschutes County, Hood...

  2. 40 CFR 81.220 - Eastern Oregon Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Eastern Oregon Intrastate Air Quality... Quality Control Regions § 81.220 Eastern Oregon Intrastate Air Quality Control Region. The Eastern Oregon... outermost boundaries of the area so delimited): In the State of Oregon: Baker County, Gilliam County, Grant...

  3. 40 CFR 81.220 - Eastern Oregon Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Eastern Oregon Intrastate Air Quality... Quality Control Regions § 81.220 Eastern Oregon Intrastate Air Quality Control Region. The Eastern Oregon... outermost boundaries of the area so delimited): In the State of Oregon: Baker County, Gilliam County, Grant...

  4. 40 CFR 81.219 - Central Oregon Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Central Oregon Intrastate Air Quality... Quality Control Regions § 81.219 Central Oregon Intrastate Air Quality Control Region. The Central Oregon... outermost boundaries of the area so delimited): In the State of Oregon: Crook County, Deschutes County, Hood...

  5. 40 CFR 81.220 - Eastern Oregon Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Eastern Oregon Intrastate Air Quality... Quality Control Regions § 81.220 Eastern Oregon Intrastate Air Quality Control Region. The Eastern Oregon... outermost boundaries of the area so delimited): In the State of Oregon: Baker County, Gilliam County, Grant...

  6. 40 CFR 81.219 - Central Oregon Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Central Oregon Intrastate Air Quality... Quality Control Regions § 81.219 Central Oregon Intrastate Air Quality Control Region. The Central Oregon... outermost boundaries of the area so delimited): In the State of Oregon: Crook County, Deschutes County, Hood...

  7. 40 CFR 81.219 - Central Oregon Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Central Oregon Intrastate Air Quality... Quality Control Regions § 81.219 Central Oregon Intrastate Air Quality Control Region. The Central Oregon... outermost boundaries of the area so delimited): In the State of Oregon: Crook County, Deschutes County, Hood...

  8. Geology and Refractory Clay Deposits of the Haldeman and Wrigley Quadrangles, Kentucky

    USGS Publications Warehouse

    Patterson, Sam H.; Hosterman, John W.; Huddle, John Warfield

    1962-01-01

    The Haldeman and Wrigley 7th-minute quadrangles are near the western edge of the eastern Kentucky coal field and cover an area of approximately 117 square miles in parts of Carter, Rowan, Elliott, and Morgan Counties, Ky. The rocks exposed in the two quadrangles are of Early and Late Mississippian and Early and Middle Pennsylvanian age. The Mississippian rocks are composed of the thick Brodhead formation, which consists of siltstone and shale, and eleven thin marine limestone and shale formations, having an aggregate thickness of about 150 feet. The Lee and Breathitt formations, of Pennsylvanian age, consist of sandstone, siltstone, and shale; they also contain thin beds of coal and several beds of underclay, including the economically important Olive Hill clay bed of Crider, 1913. Pennsylvanian rocks include beds of both continental and marine origin. The eleven thin Mississippian formations and the upper-most part of the thick Brodhead formation are truncated by a prominent unconformity on which rocks of Pennsylvanian age rest. The rocks occupy a region of gentle dips between the Cincinnati arch and the Appalachian Mountains. Refractory clay deposits are in the Olive Hill clay bed, which occurs in the lower part of the Lee formation. The Olive Hill clay bed is discontinuous and consists of a series of irregularly shaped lenses. The bed is approximately two-thirds semifiint clay and one-third flint clay, and it contains minor amounts of plastic clay. Some of the flint clay is nearly pure kaolinite, but the semi flint and plastic clay consists of mixtures of kaolinite, illite, and mixed-layer clay minerals. The structure of the kaolinite ranges from highly crystalline to very poorly crystalline 'fireclay' type. The degree of crystallinity of the kaolinite and the hardness of the clay vary inversely with the amount of illite and mixed-layer clay minerals present. The nearly pure kaolinite is believed to have formed by the removal of alkalies and some silica fram

  9. 25. FOLSOM, CALIFORNIA, 15 MINUTE QUADRANGLE. 1941. Scale 1:62,500. United ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. FOLSOM, CALIFORNIA, 15 MINUTE QUADRANGLE. 1941. Scale 1:62,500. United States Geological Survey. - Natomas Ditch System, Rhoades' Branch Ditch, Approximately 7 miles between Nesmith Court and White Rock Road, Folsom, Sacramento County, CA

  10. Preliminary Geological Map of the Ac-H-5 Fejokoo Quadrangle of Ceres: An Integrated Mapping Study Using Dawn Spacecraft Data

    NASA Astrophysics Data System (ADS)

    Hughson, K.; Russell, C.; Williams, D. A.; Buczkowski, D.; Mest, S. C.; Scully, J. E. C.; Hiesinger, H.; Platz, T.; Ruesch, O.; Schenk, P.; Frigeri, A.; Jaumann, R.; Roatsch, T.; Preusker, F.; Nathues, A.; Hoffmann, M.; Schäfer, M.; Park, R. S.; Marchi, S.; De Sanctis, M. C.; Raymond, C. A.

    2015-12-01

    In order to enable methodical geologic mapping of the surface of Ceres the Dawn Science Team divided its surface into fifteen quadrangles. A preliminary map of the Fejokoo quadrangle is presented here. This region, located between 21˚-66˚N and 270-0˚E, hosts four primary features: (1) the centrally located, 90 km diameter, distinctly hexagonal impact crater Fejokoo; (2) a small unnamed crater midway up the eastern boundary of the quadrangle which contains and is surrounded by bright material; (3) an unnamed degraded crater NW of Fejokoo that contains lobate material deposits on both sides of the crater's S rim; and (4) a heavily cratered unit in the NW portion of the quadrangle. Key objectives for the ongoing mapping of this quadrangle are to assess the types of processes that may be responsible for the creation of the hexagonal Fejokoo crater, identifying the source and nature of the bright material on the eastern boundary, establishing possible mechanisms for the emplacement of lobate material deposits in Fejokoo and the unnamed crater to its NW, and establishing a detailed geological history of the quadrangle. The Fejokoo region is not associated with any major albedo feature identified by the Hubble Space Telescope (Li et al., 2006). At the time of this writing geologic mapping was performed using Framing Camera (FC) mosaics from the Approach (1.3 km/px) and Survey (415 m/px) orbits, including grayscale and color images and digital terrain models derived from stereo images. Future images from the High Altitude Mapping Orbit (140 m/px) and Low Altitude Mapping Orbit (35 m/px) will be used to refine the maps. Support of the Dawn Instrument, Operations, and Science Teams is acknowledged. This work is supported by grants from NASA, and from the German and Italian Space Agencies.

  11. Geologic map of the Lakshmi Planum quadrangle (V-7), Venus

    USGS Publications Warehouse

    Ivanov, Mikhail A.; Head, James W.

    2010-01-01

    The Lakshmi Planum quadrangle is in the northern hemisphere of Venus and extends from lat 50 degrees to 75 degrees N., and from long 300 degrees to 360 degrees E. The elevated volcanic plateau of Lakshmi Planum, which represents a very specific and unique class of highlands on Venus, dominates the northern half of the quadrangle. The surface of the planum stands 3-4 km above mean planetary radius and the plateau is surrounded by the highest Venusian mountain ranges, 7-10 km high. Before the Magellan mission, the geology of the Lakshmi Planum quadrangle was known on the basis of topographic data acquired by the Pioneer-Venus and Venera-15/16 altimeter and radar images received by the Arecibo telescope and Venera-15/16 spacecraft. These data showed unique topographic and morphologic structures of the mountain belts, which have no counterparts elsewhere on Venus, and the interior volcanic plateau with two large and low volcanic centers and large blocks of tessera-like terrain. From the outside, Lakshmi Planum is outlined by a zone of complexly deformed terrains that occur on the regional outer slope of Lakshmi. Vast low-lying plains surround this zone. After acquisition of the Venera-15/16 data, two classes of hypotheses were formulated to explain the unique structure of Lakshmi Planum and its surrounding. The first proposed that the western portion of Ishtar Terra, dominated by Lakshmi Planum, was a site of large-scale upwelling while the alternative hypothesis considered this region as a site of large-scale downwelling and underthrusting. Early Magellan results showed important details of the general geology of this area displayed in the Venera-15/16 images. Swarms of extensional structures and massifs of tesserae populate the southern slope of Lakshmi. The zone of fractures and grabens form a giant arc thousands of kilometers long and hundreds of kilometers wide around the southern flank of Lakshmi Planum. From the north, the deformational zones consist mostly of

  12. 33 CFR 110.228 - Columbia River, Oregon and Washington.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Columbia River, Oregon and... SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.228 Columbia River, Oregon and Washington... Astoria, Oregon, at latitude 46°12′00.79″ N, longitude 123°49′55.40″ W; thence continuing easterly to...

  13. 33 CFR 110.228 - Columbia River, Oregon and Washington.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Columbia River, Oregon and... SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.228 Columbia River, Oregon and Washington... Astoria, Oregon, at latitude 46°12′00.79″ N, longitude 123°49′55.40″ W; thence continuing easterly to...

  14. 33 CFR 110.228 - Columbia River, Oregon and Washington.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Columbia River, Oregon and... SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.228 Columbia River, Oregon and Washington... Astoria, Oregon, at latitude 46°12′00.79″ N, longitude 123°49′55.40″ W; thence continuing easterly to...

  15. 33 CFR 110.228 - Columbia River, Oregon and Washington.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Columbia River, Oregon and... SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.228 Columbia River, Oregon and Washington... Astoria, Oregon, at latitude 46°12′00.79″ N, longitude 123°49′55.40″ W; thence continuing easterly to...

  16. 33 CFR 110.228 - Columbia River, Oregon and Washington.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Columbia River, Oregon and... SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.228 Columbia River, Oregon and Washington... Astoria, Oregon, at latitude 46°12′00.79″ N, longitude 123°49′55.40″ W; thence continuing easterly to...

  17. False-Color-Image Map of Quadrangle 3362, Shin-Dand (415) and Tulak (416) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  18. False-Color-Image Map of Quadrangle 3670, Jarm-Keshem (223) and Zebak (224) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  19. False-Color-Image Map of Quadrangle 3166, Jaldak (701) and Maruf-Nawa (702) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  20. False-Color-Image Map of Quadrangle 3564, Chahriaq (Joand) (405) and Gurziwan (406) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.