Sample records for quadratic nodal method

  1. Super-nodal methods for space-time kinetics

    NASA Astrophysics Data System (ADS)

    Mertyurek, Ugur

    The purpose of this research has been to develop an advanced Super-Nodal method to reduce the run time of 3-D core neutronics models, such as in the NESTLE reactor core simulator and FORMOSA nuclear fuel management optimization codes. Computational performance of the neutronics model is increased by reducing the number of spatial nodes used in the core modeling. However, as the number of spatial nodes decreases, the error in the solution increases. The Super-Nodal method reduces the error associated with the use of coarse nodes in the analyses by providing a new set of cross sections and ADFs (Assembly Discontinuity Factors) for the new nodalization. These so called homogenization parameters are obtained by employing consistent collapsing technique. During this research a new type of singularity, namely "fundamental mode singularity", is addressed in the ANM (Analytical Nodal Method) solution. The "Coordinate Shifting" approach is developed as a method to address this singularity. Also, the "Buckling Shifting" approach is developed as an alternative and more accurate method to address the zero buckling singularity, which is a more common and well known singularity problem in the ANM solution. In the course of addressing the treatment of these singularities, an effort was made to provide better and more robust results from the Super-Nodal method by developing several new methods for determining the transverse leakage and collapsed diffusion coefficient, which generally are the two main approximations in the ANM methodology. Unfortunately, the proposed new transverse leakage and diffusion coefficient approximations failed to provide a consistent improvement to the current methodology. However, improvement in the Super-Nodal solution is achieved by updating the homogenization parameters at several time points during a transient. The update is achieved by employing a refinement technique similar to pin-power reconstruction. A simple error analysis based on the relative

  2. Type-I and type-II topological nodal superconductors with s -wave interaction

    NASA Astrophysics Data System (ADS)

    Huang, Beibing; Yang, Xiaosen; Xu, Ning; Gong, Ming

    2018-01-01

    Topological nodal superconductors with protected gapless points in momentum space are generally realized based on unconventional pairings. In this work we propose a minimal model to realize these topological nodal phases with only s -wave interaction. In our model the linear and quadratic spin-orbit couplings along the two orthogonal directions introduce anisotropic effective unconventional pairings in momentum space. This model may support different nodal superconducting phases characterized by either an integer winding number in BDI class or a Z2 index in D class at the particle-hole invariant axes. In the vicinity of the nodal points the effective Hamiltonian can be described by either type-I or type-II Dirac equations, and the Lifshitz transition from type-I nodal phases to type-II nodal phases can be driven by external in-plane magnetic fields. We show that these nodal phases are robust against weak impurities, which only slightly renormalizes the momentum-independent parameters in the impurity-averaged Hamiltonian, thus these phases are possible to be realized in experiments with real semi-Dirac materials. The smoking-gun evidences to verify these phases based on scanning tunneling spectroscopy method are also briefly discussed.

  3. Nodal weighting factor method for ex-core fast neutron fluence evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiang, R. T.

    The nodal weighting factor method is developed for evaluating ex-core fast neutron flux in a nuclear reactor by utilizing adjoint neutron flux, a fictitious unit detector cross section for neutron energy above 1 or 0.1 MeV, the unit fission source, and relative assembly nodal powers. The method determines each nodal weighting factor for ex-core neutron fast flux evaluation by solving the steady-state adjoint neutron transport equation with a fictitious unit detector cross section for neutron energy above 1 or 0.1 MeV as the adjoint source, by integrating the unit fission source with a typical fission spectrum to the solved adjointmore » flux over all energies, all angles and given nodal volume, and by dividing it with the sum of all nodal weighting factors, which is a normalization factor. Then, the fast neutron flux can be obtained by summing the various relative nodal powers times the corresponding nodal weighting factors of the adjacent significantly contributed peripheral assembly nodes and times a proper fast neutron attenuation coefficient over an operating period. A generic set of nodal weighting factors can be used to evaluate neutron fluence at the same location for similar core design and fuel cycles, but the set of nodal weighting factors needs to be re-calibrated for a transition-fuel-cycle. This newly developed nodal weighting factor method should be a useful and simplified tool for evaluating fast neutron fluence at selected locations of interest in ex-core components of contemporary nuclear power reactors. (authors)« less

  4. Evaluation of the use of nodal methods for MTR neutronic analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reitsma, F.; Mueller, E.Z.

    1997-08-01

    Although modern nodal methods are used extensively in the nuclear power industry, their use for research reactor analysis has been very limited. The suitability of nodal methods for material testing reactor analysis is investigated with the emphasis on the modelling of the core region (fuel assemblies). The nodal approach`s performance is compared with that of the traditional finite-difference fine mesh approach. The advantages of using nodal methods coupled with integrated cross section generation systems are highlighted, especially with respect to data preparation, simplicity of use and the possibility of performing a great variety of reactor calculations subject to strict timemore » limitations such as are required for the RERTR program.« less

  5. Adaptive Nodal Transport Methods for Reactor Transient Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas Downar; E. Lewis

    2005-08-31

    Develop methods for adaptively treating the angular, spatial, and time dependence of the neutron flux in reactor transient analysis. These methods were demonstrated in the DOE transport nodal code VARIANT and the US NRC spatial kinetics code, PARCS.

  6. Factorization method of quadratic template

    NASA Astrophysics Data System (ADS)

    Kotyrba, Martin

    2017-07-01

    Multiplication of two numbers is a one-way function in mathematics. Any attempt to distribute the outcome to its roots is called factorization. There are many methods such as Fermat's factorization, Dixońs method or quadratic sieve and GNFS, which use sophisticated techniques fast factorization. All the above methods use the same basic formula differing only in its use. This article discusses a newly designed factorization method. Effective implementation of this method in programs is not important, it only represents and clearly defines its properties.

  7. Nodal gap detection through polar angle-resolved density of states measurements in uniaxial superconductors

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Yasumasa; Nomoto, Takuya; Ikeda, Hiroaki; Machida, Kazushige

    2016-12-01

    We propose a spectroscopic method to identify the nodal gap structure in unconventional superconductors. This method is best suited for locating the horizontal line node and for pinpointing the isolated point nodes by measuring polar angle (θ ) resolved zero-energy density of states N (θ ) . This is measured by specific heat or thermal conductivity at low temperatures under a magnetic field. We examine a variety of uniaxially symmetric nodal structures, including point and/or line nodes with linear and quadratic dispersions, by solving the Eilenberger equation in vortex states. It is found that (a) the maxima of N (θ ) continuously shift from the antinodal to the nodal direction (θn) as a field increases accompanying the oscillation pattern reversal at low and high fields. Furthermore, (b) local minima emerge next to θn on both sides, except for the case of the linear point node. These features are robust and detectable experimentally. Experimental results of N (θ ) performed on several superconductors, UPd2Al3,URu2Si2,CuxBi2Se3 , and UPt3, are examined and commented on in light of the present theory.

  8. Optical conductivity of three and two dimensional topological nodal-line semimetals

    NASA Astrophysics Data System (ADS)

    Barati, Shahin; Abedinpour, Saeed H.

    2017-10-01

    The peculiar shape of the Fermi surface of topological nodal-line semimetals at low carrier concentrations results in their unusual optical and transport properties. We analytically investigate the linear optical responses of three- and two-dimensional nodal-line semimetals using the Kubo formula. The optical conductivity of a three-dimensional nodal-line semimetal is anisotropic. Along the axial direction (i.e., the direction perpendicular to the nodal-ring plane), the Drude weight has a linear dependence on the chemical potential at both low and high carrier dopings. For the radial direction (i.e., the direction parallel to the nodal-ring plane), this dependence changes from linear into quadratic in the transition from low into high carrier concentration. The interband contribution into optical conductivity is also anisotropic. In particular, at large frequencies, it saturates to a constant value for the axial direction and linearly increases with frequency along the radial direction. In two-dimensional nodal-line semimetals, no interband optical transition could be induced and the only contribution to the optical conductivity arises from the intraband excitations. The corresponding Drude weight is independent of the carrier density at low carrier concentrations and linearly increases with chemical potential at high carrier doping.

  9. Advanced nodal neutron diffusion method with space-dependent cross sections: ILLICO-VX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajic, H.L.; Ougouag, A.M.

    1987-01-01

    Advanced transverse integrated nodal methods for neutron diffusion developed since the 1970s require that node- or assembly-homogenized cross sections be known. The underlying structural heterogeneity can be accurately accounted for in homogenization procedures by the use of heterogeneity or discontinuity factors. Other (milder) types of heterogeneity, burnup-induced or due to thermal-hydraulic feedback, can be resolved by explicitly accounting for the spatial variations of material properties. This can be done during the nodal computations via nonlinear iterations. The new method has been implemented in the code ILLICO-VX (ILLICO variable cross-section method). Numerous numerical tests were performed. As expected, the convergence ratemore » of ILLICO-VX is lower than that of ILLICO, requiring approx. 30% more outer iterations per k/sub eff/ computation. The methodology has also been implemented as the NOMAD-VX option of the NOMAD, multicycle, multigroup, two- and three-dimensional nodal diffusion depletion code. The burnup-induced heterogeneities (space dependence of cross sections) are calculated during the burnup steps.« less

  10. DQM: Decentralized Quadratically Approximated Alternating Direction Method of Multipliers

    NASA Astrophysics Data System (ADS)

    Mokhtari, Aryan; Shi, Wei; Ling, Qing; Ribeiro, Alejandro

    2016-10-01

    This paper considers decentralized consensus optimization problems where nodes of a network have access to different summands of a global objective function. Nodes cooperate to minimize the global objective by exchanging information with neighbors only. A decentralized version of the alternating directions method of multipliers (DADMM) is a common method for solving this category of problems. DADMM exhibits linear convergence rate to the optimal objective but its implementation requires solving a convex optimization problem at each iteration. This can be computationally costly and may result in large overall convergence times. The decentralized quadratically approximated ADMM algorithm (DQM), which minimizes a quadratic approximation of the objective function that DADMM minimizes at each iteration, is proposed here. The consequent reduction in computational time is shown to have minimal effect on convergence properties. Convergence still proceeds at a linear rate with a guaranteed constant that is asymptotically equivalent to the DADMM linear convergence rate constant. Numerical results demonstrate advantages of DQM relative to DADMM and other alternatives in a logistic regression problem.

  11. Study of flow over object problems by a nodal discontinuous Galerkin-lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Wu, Jie; Shen, Meng; Liu, Chen

    2018-04-01

    The flow over object problems are studied by a nodal discontinuous Galerkin-lattice Boltzmann method (NDG-LBM) in this work. Different from the standard lattice Boltzmann method, the current method applies the nodal discontinuous Galerkin method into the streaming process in LBM to solve the resultant pure convection equation, in which the spatial discretization is completed on unstructured grids and the low-storage explicit Runge-Kutta scheme is used for time marching. The present method then overcomes the disadvantage of standard LBM for depending on the uniform meshes. Moreover, the collision process in the LBM is completed by using the multiple-relaxation-time scheme. After the validation of the NDG-LBM by simulating the lid-driven cavity flow, the simulations of flows over a fixed circular cylinder, a stationary airfoil and rotating-stationary cylinders are performed. Good agreement of present results with previous results is achieved, which indicates that the current NDG-LBM is accurate and effective for flow over object problems.

  12. Estimating factors influencing the detection probability of semiaquatic freshwater snails using quadrat survey methods

    USGS Publications Warehouse

    Roesler, Elizabeth L.; Grabowski, Timothy B.

    2018-01-01

    Developing effective monitoring methods for elusive, rare, or patchily distributed species requires extra considerations, such as imperfect detection. Although detection is frequently modeled, the opportunity to assess it empirically is rare, particularly for imperiled species. We used Pecos assiminea (Assiminea pecos), an endangered semiaquatic snail, as a case study to test detection and accuracy issues surrounding quadrat searches. Quadrats (9 × 20 cm; n = 12) were placed in suitable Pecos assiminea habitat and randomly assigned a treatment, defined as the number of empty snail shells (0, 3, 6, or 9). Ten observers rotated through each quadrat, conducting 5-min visual searches for shells. The probability of detecting a shell when present was 67.4 ± 3.0%, but it decreased with the increasing litter depth and fewer number of shells present. The mean (± SE) observer accuracy was 25.5 ± 4.3%. Accuracy was positively correlated to the number of shells in the quadrat and negatively correlated to the number of times a quadrat was searched. The results indicate quadrat surveys likely underrepresent true abundance, but accurately determine the presence or absence. Understanding detection and accuracy of elusive, rare, or imperiled species improves density estimates and aids in monitoring and conservation efforts.

  13. Quadratic String Method for Locating Instantons in Tunneling Splitting Calculations.

    PubMed

    Cvitaš, Marko T

    2018-03-13

    The ring-polymer instanton (RPI) method is an efficient technique for calculating approximate tunneling splittings in high-dimensional molecular systems. In the RPI method, tunneling splitting is evaluated from the properties of the minimum action path (MAP) connecting the symmetric wells, whereby the extensive sampling of the full potential energy surface of the exact quantum-dynamics methods is avoided. Nevertheless, the search for the MAP is usually the most time-consuming step in the standard numerical procedures. Recently, nudged elastic band (NEB) and string methods, originaly developed for locating minimum energy paths (MEPs), were adapted for the purpose of MAP finding with great efficiency gains [ J. Chem. Theory Comput. 2016 , 12 , 787 ]. In this work, we develop a new quadratic string method for locating instantons. The Euclidean action is minimized by propagating the initial guess (a path connecting two wells) over the quadratic potential energy surface approximated by means of updated Hessians. This allows the algorithm to take many minimization steps between the potential/gradient calls with further reductions in the computational effort, exploiting the smoothness of potential energy surface. The approach is general, as it uses Cartesian coordinates, and widely applicable, with computational effort of finding the instanton usually lower than that of determining the MEP. It can be combined with expensive potential energy surfaces or on-the-fly electronic-structure methods to explore a wide variety of molecular systems.

  14. Nodal Green’s Function Method Singular Source Term and Burnable Poison Treatment in Hexagonal Geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A.A. Bingham; R.M. Ferrer; A.M. ougouag

    2009-09-01

    An accurate and computationally efficient two or three-dimensional neutron diffusion model will be necessary for the development, safety parameters computation, and fuel cycle analysis of a prismatic Very High Temperature Reactor (VHTR) design under Next Generation Nuclear Plant Project (NGNP). For this purpose, an analytical nodal Green’s function solution for the transverse integrated neutron diffusion equation is developed in two and three-dimensional hexagonal geometry. This scheme is incorporated into HEXPEDITE, a code first developed by Fitzpatrick and Ougouag. HEXPEDITE neglects non-physical discontinuity terms that arise in the transverse leakage due to the transverse integration procedure application to hexagonal geometry andmore » cannot account for the effects of burnable poisons across nodal boundaries. The test code being developed for this document accounts for these terms by maintaining an inventory of neutrons by using the nodal balance equation as a constraint of the neutron flux equation. The method developed in this report is intended to restore neutron conservation and increase the accuracy of the code by adding these terms to the transverse integrated flux solution and applying the nodal Green’s function solution to the resulting equation to derive a semi-analytical solution.« less

  15. Application’s Method of Quadratic Programming for Optimization of Portfolio Selection

    NASA Astrophysics Data System (ADS)

    Kawamoto, Shigeru; Takamoto, Masanori; Kobayashi, Yasuhiro

    Investors or fund-managers face with optimization of portfolio selection, which means that determine the kind and the quantity of investment among several brands. We have developed a method to obtain optimal stock’s portfolio more rapidly from twice to three times than conventional method with efficient universal optimization. The method is characterized by quadratic matrix of utility function and constrained matrices divided into several sub-matrices by focusing on structure of these matrices.

  16. An efficient inverse radiotherapy planning method for VMAT using quadratic programming optimization.

    PubMed

    Hoegele, W; Loeschel, R; Merkle, N; Zygmanski, P

    2012-01-01

    The purpose of this study is to investigate the feasibility of an inverse planning optimization approach for the Volumetric Modulated Arc Therapy (VMAT) based on quadratic programming and the projection method. The performance of this method is evaluated against a reference commercial planning system (eclipse(TM) for rapidarc(TM)) for clinically relevant cases. The inverse problem is posed in terms of a linear combination of basis functions representing arclet dose contributions and their respective linear coefficients as degrees of freedom. MLC motion is decomposed into basic motion patterns in an intuitive manner leading to a system of equations with a relatively small number of equations and unknowns. These equations are solved using quadratic programming under certain limiting physical conditions for the solution, such as the avoidance of negative dose during optimization and Monitor Unit reduction. The modeling by the projection method assures a unique treatment plan with beneficial properties, such as the explicit relation between organ weightings and the final dose distribution. Clinical cases studied include prostate and spine treatments. The optimized plans are evaluated by comparing isodose lines, DVH profiles for target and normal organs, and Monitor Units to those obtained by the clinical treatment planning system eclipse(TM). The resulting dose distributions for a prostate (with rectum and bladder as organs at risk), and for a spine case (with kidneys, liver, lung and heart as organs at risk) are presented. Overall, the results indicate that similar plan qualities for quadratic programming (QP) and rapidarc(TM) could be achieved at significantly more efficient computational and planning effort using QP. Additionally, results for the quasimodo phantom [Bohsung et al., "IMRT treatment planning: A comparative inter-system and inter-centre planning exercise of the estro quasimodo group," Radiother. Oncol. 76(3), 354-361 (2005)] are presented as an example

  17. Experimental discovery of nodal chains

    NASA Astrophysics Data System (ADS)

    Yan, Qinghui; Liu, Rongjuan; Yan, Zhongbo; Liu, Boyuan; Chen, Hongsheng; Wang, Zhong; Lu, Ling

    2018-05-01

    Three-dimensional Weyl and Dirac nodal points1 have attracted widespread interest across multiple disciplines and in many platforms but allow for few structural variations. In contrast, nodal lines2-4 can have numerous topological configurations in momentum space, forming nodal rings5-9, nodal chains10-15, nodal links16-20 and nodal knots21,22. However, nodal lines are much less explored because of the lack of an ideal experimental realization23-25. For example, in condensed-matter systems, nodal lines are often fragile to spin-orbit coupling, located away from the Fermi level, coexist with energy-degenerate trivial bands or have a degeneracy line that disperses strongly in energy. Here, overcoming all these difficulties, we theoretically predict and experimentally observe nodal chains in a metallic-mesh photonic crystal having frequency-isolated linear band-touching rings chained across the entire Brillouin zone. These nodal chains are protected by mirror symmetry and have a frequency variation of less than 1%. We use angle-resolved transmission measurements to probe the projected bulk dispersion and perform Fourier-transformed field scans to map out the dispersion of the drumhead surface state. Our results establish an ideal nodal-line material for further study of topological line degeneracies with non-trivial connectivity and consequent wave dynamics that are richer than those in Weyl and Dirac materials.

  18. Spinless hourglass nodal-line semimetals

    NASA Astrophysics Data System (ADS)

    Takahashi, Ryo; Hirayama, Motoaki; Murakami, Shuichi

    2017-10-01

    Nodal-line semimetals, one of the topological semimetals, have degeneracy along nodal lines where the band gap is closed. In many cases, the nodal lines appear accidentally, and in such cases it is impossible to determine whether the nodal lines appear or not, only from the crystal symmetry and the electron filling. In this paper, for spinless systems, we show that in specific space groups at 4 N +2 fillings (8 N +4 fillings including the spin degree of freedom), presence of the nodal lines is required regardless of the details of the systems. Here, the spinless systems refer to crystals where the spin-orbit coupling is negligible and the spin degree of freedom can be omitted because of the SU(2) spin degeneracy. In this case the shape of the band structure around these nodal lines is like an hourglass, and we call this a spinless hourglass nodal-line semimetal. We construct a model Hamiltonian as an example and we show that it is always in the spinless hourglass nodal-line semimetal phase even when the model parameters are changed without changing the symmetries of the system. We also establish a list of all the centrosymmetric space groups, under which spinless systems always have hourglass nodal lines, and illustrate where the nodal lines are located. We propose that Al3FeSi2 , whose space-group symmetry is Pbcn (No. 60), is one of the nodal-line semimetals arising from this mechanism.

  19. A time-domain decomposition iterative method for the solution of distributed linear quadratic optimal control problems

    NASA Astrophysics Data System (ADS)

    Heinkenschloss, Matthias

    2005-01-01

    We study a class of time-domain decomposition-based methods for the numerical solution of large-scale linear quadratic optimal control problems. Our methods are based on a multiple shooting reformulation of the linear quadratic optimal control problem as a discrete-time optimal control (DTOC) problem. The optimality conditions for this DTOC problem lead to a linear block tridiagonal system. The diagonal blocks are invertible and are related to the original linear quadratic optimal control problem restricted to smaller time-subintervals. This motivates the application of block Gauss-Seidel (GS)-type methods for the solution of the block tridiagonal systems. Numerical experiments show that the spectral radii of the block GS iteration matrices are larger than one for typical applications, but that the eigenvalues of the iteration matrices decay to zero fast. Hence, while the GS method is not expected to convergence for typical applications, it can be effective as a preconditioner for Krylov-subspace methods. This is confirmed by our numerical tests.A byproduct of this research is the insight that certain instantaneous control techniques can be viewed as the application of one step of the forward block GS method applied to the DTOC optimality system.

  20. Nodal Analysis Optimization Based on the Use of Virtual Current Sources: A Powerful New Pedagogical Method

    ERIC Educational Resources Information Center

    Chatzarakis, G. E.

    2009-01-01

    This paper presents a new pedagogical method for nodal analysis optimization based on the use of virtual current sources, applicable to any linear electric circuit (LEC), regardless of its complexity. The proposed method leads to straightforward solutions, mostly arrived at by inspection. Furthermore, the method is easily adapted to computer…

  1. A Comparison of Methods for Estimating Quadratic Effects in Nonlinear Structural Equation Models

    ERIC Educational Resources Information Center

    Harring, Jeffrey R.; Weiss, Brandi A.; Hsu, Jui-Chen

    2012-01-01

    Two Monte Carlo simulations were performed to compare methods for estimating and testing hypotheses of quadratic effects in latent variable regression models. The methods considered in the current study were (a) a 2-stage moderated regression approach using latent variable scores, (b) an unconstrained product indicator approach, (c) a latent…

  2. Half-quadratic variational regularization methods for speckle-suppression and edge-enhancement in SAR complex image

    NASA Astrophysics Data System (ADS)

    Zhao, Xia; Wang, Guang-xin

    2008-12-01

    Synthetic aperture radar (SAR) is an active remote sensing sensor. It is a coherent imaging system, the speckle is its inherent default, which affects badly the interpretation and recognition of the SAR targets. Conventional methods of removing the speckle is studied usually in real SAR image, which reduce the edges of the images at the same time as depressing the speckle. Morever, Conventional methods lost the information about images phase. Removing the speckle and enhancing the target and edge simultaneously are still a puzzle. To suppress the spckle and enhance the targets and the edges simultaneously, a half-quadratic variational regularization method in complex SAR image is presented, which is based on the prior knowledge of the targets and the edge. Due to the non-quadratic and non- convex quality and the complexity of the cost function, a half-quadratic variational regularization variation is used to construct a new cost function,which is solved by alternate optimization. In the proposed scheme, the construction of the model, the solution of the model and the selection of the model peremeters are studied carefully. In the end, we validate the method using the real SAR data.Theoretic analysis and the experimental results illustrate the the feasibility of the proposed method. Further more, the proposed method can preserve the information about images phase.

  3. A tutorial on the LQG/LTR method. [Linear Quadratic Gaussian/Loop Transfer Recovery

    NASA Technical Reports Server (NTRS)

    Athans, M.

    1986-01-01

    In this paper the so-called Linear-Quadratic-Gaussian method with Loop-Transfer-Recovery is surveyed. The objective is to provide a pragmatic exposition, with special emphasis on the step-by-step characteristics for designing multivariable feedback control systems.

  4. Seven Wonders of the Ancient and Modern Quadratic World.

    ERIC Educational Resources Information Center

    Taylor, Sharon E.; Mittag, Kathleen Cage

    2001-01-01

    Presents four methods for solving a quadratic equation using graphing calculator technology: (1) graphing with the CALC feature; (2) quadratic formula program; (3) table; and (4) solver. Includes a worksheet for a lab activity on factoring quadratic equations. (KHR)

  5. Risk of Nodal Metastasis in Major Salivary Gland Adenoid Cystic Carcinoma.

    PubMed

    Megwalu, Uchechukwu C; Sirjani, Davud

    2017-04-01

    Objective To determine the risk of nodal metastasis, examine risk factors for nodal metastasis, and evaluate the impact of nodal metastasis on survival in patients with major salivary gland adenoid cystic carcinoma. Study Design Retrospective cohort study from a large population- based cancer database. Methods Data were extracted from the SEER 18 database (Surveillance, Epidemiology, and End Results) of the National Cancer Institute. The study cohort included 720 patients diagnosed with major salivary gland adenoid cystic carcinoma between 1988 and 2013. Results The overall rate of lymph node metastasis was 17%. T3 disease (odds ratio, 4.74) and T4 disease (odds ratio, 9.24) were associated with increased risk of nodal metastasis. Age, sex, and site were not associated with nodal metastasis. Nodal metastasis was associated with worse overall survival (hazard ratio, 2.56) and disease-specific survival (hazard ratio, 3.27), after adjusting for T stage, presence of distant metastasis, site, surgical resection, radiotherapy, neck dissection, age, sex, race, marital status, and year of diagnosis. Conclusion Major salivary gland adenoid cystic carcinoma carries significant risk of nodal metastasis. Advanced T stage is associated with increased risk of nodal metastasis. Nodal metastasis is associated with worse survival.

  6. Nodal surface semimetals: Theory and material realization

    NASA Astrophysics Data System (ADS)

    Wu, Weikang; Liu, Ying; Li, Si; Zhong, Chengyong; Yu, Zhi-Ming; Sheng, Xian-Lei; Zhao, Y. X.; Yang, Shengyuan A.

    2018-03-01

    We theoretically study the three-dimensional topological semimetals with nodal surfaces protected by crystalline symmetries. Different from the well-known nodal-point and nodal-line semimetals, in these materials, the conduction and valence bands cross on closed nodal surfaces in the Brillouin zone. We propose different classes of nodal surfaces, both in the absence and in the presence of spin-orbit coupling (SOC). In the absence of SOC, a class of nodal surfaces can be protected by space-time inversion symmetry and sublattice symmetry and characterized by a Z2 index, while another class of nodal surfaces are guaranteed by a combination of nonsymmorphic twofold screw-rotational symmetry and time-reversal symmetry. We show that the inclusion of SOC will destroy the former class of nodal surfaces but may preserve the latter provided that the inversion symmetry is broken. We further generalize the result to magnetically ordered systems and show that protected nodal surfaces can also exist in magnetic materials without and with SOC, given that certain magnetic group symmetry requirements are satisfied. Several concrete nodal-surface material examples are predicted via the first-principles calculations. The possibility of multi-nodal-surface materials is discussed.

  7. Quadratic Optimisation with One Quadratic Equality Constraint

    DTIC Science & Technology

    2010-06-01

    This report presents a theoretical framework for minimising a quadratic objective function subject to a quadratic equality constraint. The first part of the report gives a detailed algorithm which computes the global minimiser without calling special nonlinear optimisation solvers. The second part of the report shows how the developed theory can be applied to solve the time of arrival geolocation problem.

  8. The stability of quadratic-reciprocal functional equation

    NASA Astrophysics Data System (ADS)

    Song, Aimin; Song, Minwei

    2018-04-01

    A new quadratic-reciprocal functional equation f ((k +1 )x +k y )+f ((k +1 )x -k y )=2/f (x )f (y )[(k+1 ) 2f (y )+k2f (x )] [(k+1)2f (y )-k2f (x )] 2 is introduced. The Hyers-Ulam stability for the quadratic-reciprocal functional equations is proved in Banach spaces using the direct method and the fixed point method, respectively.

  9. Self-Replicating Quadratics

    ERIC Educational Resources Information Center

    Withers, Christopher S.; Nadarajah, Saralees

    2012-01-01

    We show that there are exactly four quadratic polynomials, Q(x) = x [superscript 2] + ax + b, such that (x[superscript 2] + ax + b) (x[superscript 2] - ax + b) = (x[superscript 4] + ax[superscript 2] + b). For n = 1, 2, ..., these quadratic polynomials can be written as the product of N = 2[superscript n] quadratic polynomials in x[superscript…

  10. On the time-weighted quadratic sum of linear discrete systems

    NASA Technical Reports Server (NTRS)

    Jury, E. I.; Gutman, S.

    1975-01-01

    A method is proposed for obtaining the time-weighted quadratic sum for linear discrete systems. The formula of the weighted quadratic sum is obtained from matrix z-transform formulation. In addition, it is shown that this quadratic sum can be derived in a recursive form for several useful weighted functions. The discussion presented parallels that of MacFarlane (1963) for weighted quadratic integral for linear continuous systems.

  11. PSQP: Puzzle Solving by Quadratic Programming.

    PubMed

    Andalo, Fernanda A; Taubin, Gabriel; Goldenstein, Siome

    2017-02-01

    In this article we present the first effective method based on global optimization for the reconstruction of image puzzles comprising rectangle pieces-Puzzle Solving by Quadratic Programming (PSQP). The proposed novel mathematical formulation reduces the problem to the maximization of a constrained quadratic function, which is solved via a gradient ascent approach. The proposed method is deterministic and can deal with arbitrary identical rectangular pieces. We provide experimental results showing its effectiveness when compared to state-of-the-art approaches. Although the method was developed to solve image puzzles, we also show how to apply it to the reconstruction of simulated strip-shredded documents, broadening its applicability.

  12. Geometrical and Graphical Solutions of Quadratic Equations.

    ERIC Educational Resources Information Center

    Hornsby, E. John, Jr.

    1990-01-01

    Presented are several geometrical and graphical methods of solving quadratic equations. Discussed are Greek origins, Carlyle's method, von Staudt's method, fixed graph methods and imaginary solutions. (CW)

  13. Quadratic Damping

    ERIC Educational Resources Information Center

    Fay, Temple H.

    2012-01-01

    Quadratic friction involves a discontinuous damping term in equations of motion in order that the frictional force always opposes the direction of the motion. Perhaps for this reason this topic is usually omitted from beginning texts in differential equations and physics. However, quadratic damping is more realistic than viscous damping in many…

  14. Robust doubly charged nodal lines and nodal surfaces in centrosymmetric systems

    NASA Astrophysics Data System (ADS)

    Bzdušek, Tomáš; Sigrist, Manfred

    2017-10-01

    Weyl points in three spatial dimensions are characterized by a Z -valued charge—the Chern number—which makes them stable against a wide range of perturbations. A set of Weyl points can mutually annihilate only if their net charge vanishes, a property we refer to as robustness. While nodal loops are usually not robust in this sense, it has recently been shown using homotopy arguments that in the centrosymmetric extension of the AI symmetry class they nevertheless develop a Z2 charge analogous to the Chern number. Nodal loops carrying a nontrivial value of this Z2 charge are robust, i.e., they can be gapped out only by a pairwise annihilation and not on their own. As this is an additional charge independent of the Berry π -phase flowing along the band degeneracy, such nodal loops are, in fact, doubly charged. In this manuscript, we generalize the homotopy discussion to the centrosymmetric extensions of all Atland-Zirnbauer classes. We develop a tailored mathematical framework dubbed the AZ +I classification and show that in three spatial dimensions such robust and multiply charged nodes appear in four of such centrosymmetric extensions, namely, AZ +I classes CI and AI lead to doubly charged nodal lines, while D and BDI support doubly charged nodal surfaces. We remark that no further crystalline symmetries apart from the spatial inversion are necessary for their stability. We provide a description of the corresponding topological charges, and develop simple tight-binding models of various semimetallic and superconducting phases that exhibit these nodes. We also indicate how the concept of robust and multiply charged nodes generalizes to other spatial dimensions.

  15. Quadratic soliton self-reflection at a quadratically nonlinear interface

    NASA Astrophysics Data System (ADS)

    Jankovic, Ladislav; Kim, Hongki; Stegeman, George; Carrasco, Silvia; Torner, Lluis; Katz, Mordechai

    2003-11-01

    The reflection of bulk quadratic solutions incident onto a quadratically nonlinear interface in periodically poled potassium titanyl phosphate was observed. The interface consisted of the boundary between two quasi-phase-matched regions displaced from each other by a half-period. At high intensities and small angles of incidence the soliton is reflected.

  16. Hopf-link topological nodal-loop semimetals

    NASA Astrophysics Data System (ADS)

    Zhou, Yao; Xiong, Feng; Wan, Xiangang; An, Jin

    2018-04-01

    We construct a generic two-band model which can describe topological semimetals with multiple closed nodal loops. All the existing multi-nodal-loop semimetals, including the nodal-net, nodal-chain, and Hopf-link states, can be examined within the same framework. Based on a two-nodal-loop model, the corresponding drumhead surface states for these topologically different bulk states are studied and compared with each other. The connection of our model with Hopf insulators is also discussed. Furthermore, to identify experimentally these topologically different semimetal states, especially to distinguish the Hopf-link from unlinked ones, we also investigate their Landau levels. It is found that the Hopf-link state can be characterized by the existence of a quadruply degenerate zero-energy Landau band, regardless of the direction of the magnetic field.

  17. Nodal-chain metals.

    PubMed

    Bzdušek, Tomáš; Wu, QuanSheng; Rüegg, Andreas; Sigrist, Manfred; Soluyanov, Alexey A

    2016-10-06

    The band theory of solids is arguably the most successful theory of condensed-matter physics, providing a description of the electronic energy levels in various materials. Electronic wavefunctions obtained from the band theory enable a topological characterization of metals for which the electronic spectrum may host robust, topologically protected, fermionic quasiparticles. Many of these quasiparticles are analogues of the elementary particles of the Standard Model, but others do not have a counterpart in relativistic high-energy theories. A complete list of possible quasiparticles in solids is lacking, even in the non-interacting case. Here we describe the possible existence of a hitherto unrecognized type of fermionic excitation in metals. This excitation forms a nodal chain-a chain of connected loops in momentum space-along which conduction and valence bands touch. We prove that the nodal chain is topologically distinct from previously reported excitations. We discuss the symmetry requirements for the appearance of this excitation and predict that it is realized in an existing material, iridium tetrafluoride (IrF 4 ), as well as in other compounds of this class of materials. Using IrF 4 as an example, we provide a discussion of the topological surface states associated with the nodal chain. We argue that the presence of the nodal-chain fermions will result in anomalous magnetotransport properties, distinct from those of materials exhibiting previously known excitations.

  18. The accuracy of preoperative axillary nodal staging in primary breast cancer by ultrasound is modified by nodal metastatic load and tumor biology

    PubMed Central

    Dihge, Looket; Grabau, Dorthe A.; Rasmussen, Rogvi W.; Bendahl, Pär-Ola; Rydén, Lisa

    2016-01-01

    Abstract Background The outcome of axillary ultrasound (AUS) with fine-needle aspiration biopsy (FNAB) in the diagnostic work-up of primary breast cancer has an impact on therapy decisions. We hypothesize that the accuracy of AUS is modified by nodal metastatic burden and clinico-pathological characteristics. Material and methods The performance of AUS and AUS-guided FNAB for predicting nodal metastases was assessed in a prospective breast cancer cohort subjected for surgery during 2009–2012. Predictors of accuracy were included in multivariate analysis. Results AUS had a sensitivity of 23% and a specificity of 95%, while AUS-guided FNAB obtained 73% and 100%, respectively. AUS-FNAB exclusively detected macro-metastases (median four metastases) and identified patients with more extensive nodal metastatic burden in comparison with sentinel node biopsy. The accuracy of AUS was affected by metastatic size (OR 1.11), obesity (OR 2.46), histological grade (OR 4.43), and HER2-status (OR 3.66); metastatic size and histological grade were significant in the multivariate analysis. Conclusions The clinical utility of AUS in low-risk breast cancer deserves further evaluation as the accuracy decreased with a low nodal metastatic burden. The diagnostic performance is modified by tumor and clinical characteristics. Patients with nodal disease detected by AUS-FNAB represent a group for whom neoadjuvant therapy should be considered. PMID:27050668

  19. Quantum oscillations in nodal line systems

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Moessner, Roderich; Lim, Lih-King

    2018-04-01

    We study signatures of magnetic quantum oscillations in three-dimensional nodal line semimetals at zero temperature. The extended nature of the degenerate bands can result in a Fermi surface geometry with topological genus one, as well as a Fermi surface of electron and hole pockets encapsulating the nodal line. Moreover, the underlying two-band model to describe a nodal line is not unique, in that there are two classes of Hamiltonian with distinct band topology giving rise to the same Fermi-surface geometry. After identifying the extremal cyclotron orbits in various magnetic field directions, we study their concomitant Landau levels and resulting quantum oscillation signatures. By Landau-fan-diagram analyses, we extract the nontrivial π Berry phase signature for extremal orbits linking the nodal line.

  20. Computational methods for optimal linear-quadratic compensators for infinite dimensional discrete-time systems

    NASA Technical Reports Server (NTRS)

    Gibson, J. S.; Rosen, I. G.

    1986-01-01

    An abstract approximation theory and computational methods are developed for the determination of optimal linear-quadratic feedback control, observers and compensators for infinite dimensional discrete-time systems. Particular attention is paid to systems whose open-loop dynamics are described by semigroups of operators on Hilbert spaces. The approach taken is based on the finite dimensional approximation of the infinite dimensional operator Riccati equations which characterize the optimal feedback control and observer gains. Theoretical convergence results are presented and discussed. Numerical results for an example involving a heat equation with boundary control are presented and used to demonstrate the feasibility of the method.

  1. A contemporary view of atrioventricular nodal physiology.

    PubMed

    Markowitz, Steven M; Lerman, Bruce B

    2018-06-16

    In delaying transmission of the cardiac impulse from the atria to the ventricles, the atrioventricular (AV) node serves a critical function in augmenting ventricular filling during diastole and limiting the ventricular response during atrial tachyarrhythmias. The complex structure of the nodal region, however, also provides the substrate for reentrant rhythms. Recent discoveries have elucidated the cellular basis and anatomical determinants of slow conduction in the node. Based on analysis of gap junction proteins, distinct structural components of the AV node have been defined, including the compact node, right and left inferior nodal extensions, the lower nodal bundle, and transitional tissue. Emerging evidence supports the role of the inferior nodal extensions in mediating slow pathway conduction. The most common form of reentry involving the node, slow-fast AV nodal reentrant tachycardia (AVNRT), utilizes the inferior nodal extensions for anterograde slow pathway conduction; the structures responsible for retrograde fast pathway activation in the superior septum are less well defined and likely heterogeneous. Atypical forms of AVNRT arise from circuits that activate at least one of the inferior extensions in the retrograde direction.

  2. Mapping of nodal disease in locally advanced prostate cancer: Rethinking the clinical target volume for pelvic nodal irradiation based on vascular rather than bony anatomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shih, Helen A.; Harisinghani, Mukesh; Zietman, Anthony L.

    2005-11-15

    Purpose: Toxicity from pelvic irradiation could be reduced if fields were limited to likely areas of nodal involvement rather than using the standard 'four-field box.' We employed a novel magnetic resonance lymphangiographic technique to highlight the likely sites of occult nodal metastasis from prostate cancer. Methods and Materials: Eighteen prostate cancer patients with pathologically confirmed node-positive disease had a total of 69 pathologic nodes identifiable by lymphotropic nanoparticle-enhanced MRI and semiquantitative nodal analysis. Fourteen of these nodes were in the para-aortic region, and 55 were in the pelvis. The position of each of these malignant nodes was mapped to amore » common template based on its relation to skeletal or vascular anatomy. Results: Relative to skeletal anatomy, nodes covered a diffuse volume from the mid lumbar spine to the superior pubic ramus and along the sacrum and pelvic side walls. In contrast, the nodal metastases mapped much more tightly relative to the large pelvic vessels. A proposed pelvic clinical target volume to encompass the region at greatest risk of containing occult nodal metastases would include a 2.0-cm radial expansion volume around the distal common iliac and proximal external and internal iliac vessels that would encompass 94.5% of the pelvic nodes at risk as defined by our node-positive prostate cancer patient cohort. Conclusions: Nodal metastases from prostate cancer are largely localized along the major pelvic vasculature. Defining nodal radiation treatment portals based on vascular rather than bony anatomy may allow for a significant decrease in normal pelvic tissue irradiation and its associated toxicities.« less

  3. Quadrat Data for Fermilab Prairie Plant Survey

    Science.gov Websites

    Quadrat Data 2012 Quadrat Data 2013 Quadrat Data None taken by volunteers in 2014 due to weather problems . 2015 Quadrat Data 2016 Quadrat Data None taken by volunteers in 2017 due to weather and other problems

  4. Linear quadratic optimization for positive LTI system

    NASA Astrophysics Data System (ADS)

    Muhafzan, Yenti, Syafrida Wirma; Zulakmal

    2017-05-01

    Nowaday the linear quadratic optimization subject to positive linear time invariant (LTI) system constitute an interesting study considering it can become a mathematical model of variety of real problem whose variables have to nonnegative and trajectories generated by these variables must be nonnegative. In this paper we propose a method to generate an optimal control of linear quadratic optimization subject to positive linear time invariant (LTI) system. A sufficient condition that guarantee the existence of such optimal control is discussed.

  5. Long-time stability effects of quadrature and artificial viscosity on nodal discontinuous Galerkin methods for gas dynamics

    NASA Astrophysics Data System (ADS)

    Durant, Bradford; Hackl, Jason; Balachandar, Sivaramakrishnan

    2017-11-01

    Nodal discontinuous Galerkin schemes present an attractive approach to robust high-order solution of the equations of fluid mechanics, but remain accompanied by subtle challenges in their consistent stabilization. The effect of quadrature choices (full mass matrix vs spectral elements), over-integration to manage aliasing errors, and explicit artificial viscosity on the numerical solution of a steady homentropic vortex are assessed over a wide range of resolutions and polynomial orders using quadrilateral elements. In both stagnant and advected vortices in periodic and non-periodic domains the need arises for explicit stabilization beyond the numerical surface fluxes of discontinuous Galerkin spectral elements. Artificial viscosity via the entropy viscosity method is assessed as a stabilizing mechanism. It is shown that the regularity of the artificial viscosity field is essential to its use for long-time stabilization of small-scale features in nodal discontinuous Galerkin solutions of the Euler equations of gas dynamics. Supported by the Department of Energy Predictive Science Academic Alliance Program Contract DE-NA0002378.

  6. Tangent Lines without Derivatives for Quadratic and Cubic Equations

    ERIC Educational Resources Information Center

    Carroll, William J.

    2009-01-01

    In the quadratic equation, y = ax[superscript 2] + bx + c, the equation y = bx + c is identified as the equation of the line tangent to the parabola at its y-intercept. This is extended to give a convenient method of graphing tangent lines at any point on the graph of a quadratic or a cubic equation. (Contains 5 figures.)

  7. Face Centered Cubic SnSe as a Z2 Trivial Dirac Nodal Line Material

    NASA Astrophysics Data System (ADS)

    Tateishi, Ikuma; Matsuura, Hiroyasu

    2018-07-01

    The presence of a Dirac nodal line in a time-reversal and inversion symmetric system is dictated by the Z2 index when spin-orbit interaction is absent. In a first principles calculation, we show that a Dirac nodal line can emerge in Z2 trivial material by calculating the band structure of SnSe in a face centered cubic lattice as an example. We qualitatively show that it becomes a topological crystalline insulator when spin-orbit interaction is taken into account. We clarify the origin of the Dirac nodal line by obtaining irreducible representations corresponding to bands and explain the triviality of the Z2 index. We construct an effective model representing the Dirac nodal line using the k · p method, and discuss the Berry phase and a surface state expected from the Dirac nodal line.

  8. Tumor microvessel density–associated mast cells in canine nodal lymphoma

    PubMed Central

    Mann, Elizabeth; Whittington, Lisa

    2014-01-01

    Objective: Mast cells are associated in angiogenesis in various human and animal neoplasms. However, association of mast cells with tumor microvessel density in canine lymphoma was not previously documented. The objective of the study is to determine if mast cells are increased in canine nodal lymphomas and to evaluate their correlation with tumor microvessel density and grading of lymphomas. Methods: Nodal lymphomas from 33 dogs were studied and compared with nonneoplastic lymph nodes from 6 dogs as control. Mast cell count was made on Toluidine blue stained sections. Immunohistochemistry using antibody against Factor VIII was employed to visualize and determine microvessel density. Results: The mast cell count in lymphoma (2.95 ± 2.4) was significantly higher (p < 0.05) than that in the control (0.83 ± 0.3) and was positively correlated with tumor microvessel density (r = 0.44, p = 0.009). Significant difference was not observed in mast cell count and tumor microvessel density among different gradings of lymphomas. Conclusions: Mast cells are associated with tumor microvessel density in canine nodal lymphoma with no significant difference among gradings of lymphomas. Mast cells may play an important role in development of canine nodal lymphomas. Further detailed investigation on the role of mast cells as important part of tumor microenvironment in canine nodal lymphomas is recommended. PMID:26770752

  9. Iterative method for in situ measurement of lens aberrations in lithographic tools using CTC-based quadratic aberration model.

    PubMed

    Liu, Shiyuan; Xu, Shuang; Wu, Xiaofei; Liu, Wei

    2012-06-18

    This paper proposes an iterative method for in situ lens aberration measurement in lithographic tools based on a quadratic aberration model (QAM) that is a natural extension of the linear model formed by taking into account interactions among individual Zernike coefficients. By introducing a generalized operator named cross triple correlation (CTC), the quadratic model can be calculated very quickly and accurately with the help of fast Fourier transform (FFT). The Zernike coefficients up to the 37th order or even higher are determined by solving an inverse problem through an iterative procedure from several through-focus aerial images of a specially designed mask pattern. The simulation work has validated the theoretical derivation and confirms that such a method is simple to implement and yields a superior quality of wavefront estimate, particularly for the case when the aberrations are relatively large. It is fully expected that this method will provide a useful practical means for the in-line monitoring of the imaging quality of lithographic tools.

  10. Determining the Optimal Solution for Quadratically Constrained Quadratic Programming (QCQP) on Energy-Saving Generation Dispatch Problem

    NASA Astrophysics Data System (ADS)

    Lesmana, E.; Chaerani, D.; Khansa, H. N.

    2018-03-01

    Energy-Saving Generation Dispatch (ESGD) is a scheme made by Chinese Government in attempt to minimize CO2 emission produced by power plant. This scheme is made related to global warming which is primarily caused by too much CO2 in earth’s atmosphere, and while the need of electricity is something absolute, the power plants producing it are mostly thermal-power plant which produced many CO2. Many approach to fulfill this scheme has been made, one of them came through Minimum Cost Flow in which resulted in a Quadratically Constrained Quadratic Programming (QCQP) form. In this paper, ESGD problem with Minimum Cost Flow in QCQP form will be solved using Lagrange’s Multiplier Method

  11. Nodal signalling and asymmetry of the nervous system

    PubMed Central

    Signore, Iskra A.; Palma, Karina

    2016-01-01

    The role of Nodal signalling in nervous system asymmetry is still poorly understood. Here, we review and discuss how asymmetric Nodal signalling controls the ontogeny of nervous system asymmetry using a comparative developmental perspective. A detailed analysis of asymmetry in ascidians and fishes reveals a critical context-dependency of Nodal function and emphasizes that bilaterally paired and midline-unpaired structures/organs behave as different entities. We propose a conceptual framework to dissect the developmental function of Nodal as asymmetry inducer and laterality modulator in the nervous system, which can be used to study other types of body and visceral organ asymmetries. Using insights from developmental biology, we also present novel evolutionary hypotheses on how Nodal led the evolution of directional asymmetry in the brain, with a particular focus on the epithalamus. We intend this paper to provide a synthesis on how Nodal signalling controls left–right asymmetry of the nervous system. This article is part of the themed issue ‘Provocative questions in left–right asymmetry’. PMID:27821531

  12. Maternal nodal and zebrafish embryogenesis.

    PubMed

    Bennett, James T; Stickney, Heather L; Choi, Wen-Yee; Ciruna, Brian; Talbot, William S; Schier, Alexander F

    2007-11-08

    In fish and amphibians, the dorsal axis is specified by the asymmetric localization of maternally provided components of the Wnt signalling pathway. Gore et al. suggest that the Nodal signal Squint (Sqt) is required as a maternally provided dorsal determinant in zebrafish. Here we test their proposal and show that the maternal activities of sqt and the related Nodal gene cyclops (cyc) are not required for dorsoventral patterning.

  13. Occult nodal metastasis in solid carcinomata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moloy, P.J.; Nicolson, G.L.

    1987-01-01

    This book contains 23 selections. Some of the titles are: Rationale for radiotherapy in subclinical nodal disease; rationale of chemotherapy for nodal disease: The stabilization of topoisomerase II-DNA complexes as a mechanism of antineoplastic drug action; magnetic resonance imaging of malignant cervical adenopathy; and local and regional immune function in cancer patients.

  14. Homotopy approach to optimal, linear quadratic, fixed architecture compensation

    NASA Technical Reports Server (NTRS)

    Mercadal, Mathieu

    1991-01-01

    Optimal linear quadratic Gaussian compensators with constrained architecture are a sensible way to generate good multivariable feedback systems meeting strict implementation requirements. The optimality conditions obtained from the constrained linear quadratic Gaussian are a set of highly coupled matrix equations that cannot be solved algebraically except when the compensator is centralized and full order. An alternative to the use of general parameter optimization methods for solving the problem is to use homotopy. The benefit of the method is that it uses the solution to a simplified problem as a starting point and the final solution is then obtained by solving a simple differential equation. This paper investigates the convergence properties and the limitation of such an approach and sheds some light on the nature and the number of solutions of the constrained linear quadratic Gaussian problem. It also demonstrates the usefulness of homotopy on an example of an optimal decentralized compensator.

  15. Transport and optics at the node in a nodal loop semimetal

    NASA Astrophysics Data System (ADS)

    Mukherjee, S. P.; Carbotte, J. P.

    2017-06-01

    We use a Kubo formalism to calculate both AC conductivity and DC transport properties of a dirty nodal loop semimetal. The optical conductivity as a function of photon energy Ω exhibits an extended flat background σBG as in graphene provided the scattering rate Γ is small as compared to the radius of the nodal ring b (in energy units). Modifications to the constant background arise for Ω ≤Γ and the minimum DC conductivity σDC, which is approached as Ω2/Γ2 as Ω →0 , is found to be proportional to √{Γ/2+b2 }vF with vF the Fermi velocity. For b =0 we recover the known three-dimensional point node Dirac result σDC˜Γ/vF while for b >Γ , σDC becomes independent of Γ (universal) and the ratio σ/DCσBG=8/π2 where all reference to material parameters has dropped out. As b is reduced and becomes of the order Γ , the flat background is lost as the optical response evolves towards that of a three-dimensional point node Dirac semimetal which is linear in Ω for the clean limit. For finite Γ there are modifications from linearity in the photon region Ω ≤Γ . When the chemical potential μ (temperature T ) is nonzero the DC conductivity increases as μ2/Γ2 (T2/Γ2 ) for μ/Γ (T/Γ )≤1 . Such laws apply as well for thermal conductivity and thermopower with coefficients of the quadratic law only slightly modified from their value in the three-dimensional point node Dirac case. However in the μ =T =0 limit both have the same proportionality factor of √{Γ2+b2 } as does σDC. Consequently the Lorentz number is largely unmodified. For larger values of μ >Γ away from the nodal region the conductivity shows a Drude-like contribution about Ω ≊0 which is followed by a dip in the Pauli blocked region Ω ≤2 μ after which it increases to merge with the flat background (two-dimensional graphene like) for μ b .

  16. Geometrical Solutions of Some Quadratic Equations with Non-Real Roots

    ERIC Educational Resources Information Center

    Pathak, H. K.; Grewal, A. S.

    2002-01-01

    This note gives geometrical/graphical methods of finding solutions of the quadratic equation ax[squared] + bx + c = 0, a [not equal to] 0, with non-real roots. Three different cases which give rise to non-real roots of the quadratic equation have been discussed. In case I a geometrical construction and its proof for finding the solutions of the…

  17. Nodal signalling determines biradial asymmetry in Hydra.

    PubMed

    Watanabe, Hiroshi; Schmidt, Heiko A; Kuhn, Anne; Höger, Stefanie K; Kocagöz, Yigit; Laumann-Lipp, Nico; Ozbek, Suat; Holstein, Thomas W

    2014-11-06

    In bilaterians, three orthogonal body axes define the animal form, with distinct anterior-posterior, dorsal-ventral and left-right asymmetries. The key signalling factors are Wnt family proteins for the anterior-posterior axis, Bmp family proteins for the dorsal-ventral axis and Nodal for the left-right axis. Cnidarians, the sister group to bilaterians, are characterized by one oral-aboral body axis, which exhibits a distinct biradiality of unknown molecular nature. Here we analysed the biradial growth pattern in the radially symmetrical cnidarian polyp Hydra, and we report evidence of Nodal in a pre-bilaterian clade. We identified a Nodal-related gene (Ndr) in Hydra magnipapillata, and this gene is essential for setting up an axial asymmetry along the main body axis. This asymmetry defines a lateral signalling centre, inducing a new body axis of a budding polyp orthogonal to the mother polyp's axis. Ndr is expressed exclusively in the lateral bud anlage and induces Pitx, which encodes an evolutionarily conserved transcription factor that functions downstream of Nodal. Reminiscent of its function in vertebrates, Nodal acts downstream of β-Catenin signalling. Our data support an evolutionary scenario in which a 'core-signalling cassette' consisting of β-Catenin, Nodal and Pitx pre-dated the cnidarian-bilaterian split. We presume that this cassette was co-opted for various modes of axial patterning: for example, for lateral branching in cnidarians and left-right patterning in bilaterians.

  18. Regional Nodal Irradiation in Early-Stage Breast Cancer.

    PubMed

    Whelan, Timothy J; Olivotto, Ivo A; Parulekar, Wendy R; Ackerman, Ida; Chua, Boon H; Nabid, Abdenour; Vallis, Katherine A; White, Julia R; Rousseau, Pierre; Fortin, Andre; Pierce, Lori J; Manchul, Lee; Chafe, Susan; Nolan, Maureen C; Craighead, Peter; Bowen, Julie; McCready, David R; Pritchard, Kathleen I; Gelmon, Karen; Murray, Yvonne; Chapman, Judy-Anne W; Chen, Bingshu E; Levine, Mark N

    2015-07-23

    Most women with breast cancer who undergo breast-conserving surgery receive whole-breast irradiation. We examined whether the addition of regional nodal irradiation to whole-breast irradiation improved outcomes. We randomly assigned women with node-positive or high-risk node-negative breast cancer who were treated with breast-conserving surgery and adjuvant systemic therapy to undergo either whole-breast irradiation plus regional nodal irradiation (including internal mammary, supraclavicular, and axillary lymph nodes) (nodal-irradiation group) or whole-breast irradiation alone (control group). The primary outcome was overall survival. Secondary outcomes were disease-free survival, isolated locoregional disease-free survival, and distant disease-free survival. Between March 2000 and February 2007, a total of 1832 women were assigned to the nodal-irradiation group or the control group (916 women in each group). The median follow-up was 9.5 years. At the 10-year follow-up, there was no significant between-group difference in survival, with a rate of 82.8% in the nodal-irradiation group and 81.8% in the control group (hazard ratio, 0.91; 95% confidence interval [CI], 0.72 to 1.13; P=0.38). The rates of disease-free survival were 82.0% in the nodal-irradiation group and 77.0% in the control group (hazard ratio, 0.76; 95% CI, 0.61 to 0.94; P=0.01). Patients in the nodal-irradiation group had higher rates of grade 2 or greater acute pneumonitis (1.2% vs. 0.2%, P=0.01) and lymphedema (8.4% vs. 4.5%, P=0.001). Among women with node-positive or high-risk node-negative breast cancer, the addition of regional nodal irradiation to whole-breast irradiation did not improve overall survival but reduced the rate of breast-cancer recurrence. (Funded by the Canadian Cancer Society Research Institute and others; MA.20 ClinicalTrials.gov number, NCT00005957.).

  19. Quadratic spline subroutine package

    USGS Publications Warehouse

    Rasmussen, Lowell A.

    1982-01-01

    A continuous piecewise quadratic function with continuous first derivative is devised for approximating a single-valued, but unknown, function represented by a set of discrete points. The quadratic is proposed as a treatment intermediate between using the angular (but reliable, easily constructed and manipulated) piecewise linear function and using the smoother (but occasionally erratic) cubic spline. Neither iteration nor the solution of a system of simultaneous equations is necessary to determining the coefficients. Several properties of the quadratic function are given. A set of five short FORTRAN subroutines is provided for generating the coefficients (QSC), finding function value and derivatives (QSY), integrating (QSI), finding extrema (QSE), and computing arc length and the curvature-squared integral (QSK). (USGS)

  20. Smoothing optimization of supporting quadratic surfaces with Zernike polynomials

    NASA Astrophysics Data System (ADS)

    Zhang, Hang; Lu, Jiandong; Liu, Rui; Ma, Peifu

    2018-03-01

    A new optimization method to get a smooth freeform optical surface from an initial surface generated by the supporting quadratic method (SQM) is proposed. To smooth the initial surface, a 9-vertex system from the neighbor quadratic surface and the Zernike polynomials are employed to establish a linear equation system. A local optimized surface to the 9-vertex system can be build by solving the equations. Finally, a continuous smooth optimization surface is constructed by stitching the above algorithm on the whole initial surface. The spot corresponding to the optimized surface is no longer discrete pixels but a continuous distribution.

  1. Segregated nodal domains of two-dimensional multispecies Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Chang, Shu-Ming; Lin, Chang-Shou; Lin, Tai-Chia; Lin, Wen-Wei

    2004-09-01

    In this paper, we study the distribution of m segregated nodal domains of the m-mixture of Bose-Einstein condensates under positive and large repulsive scattering lengths. It is shown that components of positive bound states may repel each other and form segregated nodal domains as the repulsive scattering lengths go to infinity. Efficient numerical schemes are created to confirm our theoretical results and discover a new phenomenon called verticillate multiplying, i.e., the generation of multiple verticillate structures. In addition, our proposed Gauss-Seidel-type iteration method is very effective in that it converges linearly in 10-20 steps.

  2. Reactivation of Embryonic Nodal Signaling is Associated with Tumor Progression and Promotes the Growth of Prostate Cancer Cells

    PubMed Central

    Lawrence, Mitchell G.; Margaryan, Naira V.; Loessner, Daniela; Collins, Angus; Kerr, Kris M.; Turner, Megan; Seftor, Elisabeth A.; Stephens, Carson R.; Lai, John; BioResource, APC; Postovit, Lynne-Marie; Clements, Judith A.; Hendrix, Mary J.C.

    2011-01-01

    Background Nodal is a member of the Transforming Growth Factor β (TGFβ) superfamily that directs embryonic patterning and promotes the plasticity and tumorigenicity of tumor cells, but its role in the prostate is unknown. The goal of this study was to characterize the expression and function of Nodal in prostate cancer and determine whether, like other TGFβ ligands, it modulates androgen receptor (AR) activity. Methods Nodal expression was investigated using immunohistochemistry of tissue microarrays and Western blots of prostate cell lines. The functional role of Nodal was examined using Matrigel and soft agar growth assays. Cross-talk between Nodal and AR signaling was assessed with luciferase reporter assays and expression of endogenous androgen regulated genes. Results Significantly increased Nodal expression was observed in cancer compared with benign prostate specimens. Nodal was only expressed by DU145 and PC3 cells. All cell lines expressed Nodal’s co-receptor, Cripto-1, but lacked Lefty, a critical negative regulator of Nodal signaling. Recombinant human Nodal triggered downstream Smad2 phosphorylation in DU145 and LNCaP cells, and stable transfection of pre-pro-Nodal enhanced the growth of LNCaP cells in Matrigel and soft agar. Finally, Nodal attenuated AR signaling, reducing the activity of a PSA promoter construct in luciferase assays and down-regulating the endogenous expression of androgen regulated genes. Conclusions An aberrant Nodal signaling pathway is re-expressed and functionally active in prostate cancer cells. PMID:21656830

  3. Response of millet and sorghum to a varying water supply around the primary and nodal roots

    PubMed Central

    Rostamza, M.; Richards, R. A.; Watt, M.

    2013-01-01

    Background and Aims Cereals have two root systems. The primary system originates from the embryo when the seed germinates and can support the plant until it produces grain. The nodal system can emerge from stem nodes throughout the plant's life; its value for yield is unclear and depends on the environment. The aim of this study was to test the role of nodal roots of sorghum and millet in plant growth in response to variation in soil moisture. Sorghum and millet were chosen as both are adapted to dry conditions. Methods Sorghum and millet were grown in a split-pot system that allowed the primary and nodal roots to be watered separately. Key Results When primary and nodal roots were watered (12 % soil water content; SWC), millet nodal roots were seven times longer than those of sorghum and six times longer than millet plants in dry treatments, mainly from an 8-fold increase in branch root length. When soil was allowed to dry in both compartments, millet nodal roots responded and grew 20 % longer branch roots than in the well-watered control. Sorghum nodal roots were unchanged. When only primary roots received water, nodal roots of both species emerged and elongated into extremely dry soil (0·6–1·5 % SWC), possibly with phloem-delivered water from the primary roots in the moist inner pot. Nodal roots were thick, short, branchless and vertical, indicating a tropism that was more pronounced in millet. Total nodal root length increased in both species when the dry soil was covered with plastic, suggesting that stubble retention or leaf mulching could facilitate nodal roots reaching deeper moist layers in dry climates. Greater nodal root length in millet than in sorghum was associated with increased shoot biomass, water uptake and water use efficiency (shoot mass per water). Millet had a more plastic response than sorghum to moisture around the nodal roots due to (1) faster growth and progression through ontogeny for earlier nodal root branch length and (2

  4. Topological transport in Dirac nodal-line semimetals

    NASA Astrophysics Data System (ADS)

    Rui, W. B.; Zhao, Y. X.; Schnyder, Andreas P.

    2018-04-01

    Topological nodal-line semimetals are characterized by one-dimensional Dirac nodal rings that are protected by the combined symmetry of inversion P and time-reversal T . The stability of these Dirac rings is guaranteed by a quantized ±π Berry phase and their low-energy physics is described by a one-parameter family of (2+1)-dimensional quantum field theories exhibiting the parity anomaly. Here we study the Berry-phase supported topological transport of P T -invariant nodal-line semimetals. We find that small inversion breaking allows for an electric-field-induced anomalous transverse current, whose universal component originates from the parity anomaly. Due to this Hall-like current, carriers at opposite sides of the Dirac nodal ring flow to opposite surfaces when an electric field is applied. To detect the topological currents, we propose a dumbbell device, which uses surface states to filter charges based on their momenta. Suggestions for experiments and device applications are discussed.

  5. Chiral topological insulating phases from three-dimensional nodal loop semimetals

    NASA Astrophysics Data System (ADS)

    Li, Linhu; Yin, Chuanhao; Chen, Shu; Araujo, Miguel

    We begin with a minimal model of three-dimensional nodal loop semimetals, and study the effect of anticommuting gap terms. The resulting topological insulating phases are protected by a chiral symmetry, and can be characterized by a winding number defined along the nodal loop. We illustrate the geometric relation between the nodal loop and the gap terms, which has a correspondence to the nodal loop winding number. We further investigate a lattice model and study its edge states under open boundary condition. The edge states hold Dirac cones with the same number as the summation of the winding numbers of each nodal loop in the first Brillouin zone.

  6. Topological Nodal-Net Semimetal in a Graphene Network Structure

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Tao; Nie, Simin; Weng, Hongming; Kawazoe, Yoshiyuki; Chen, Changfeng

    2018-01-01

    Topological semimetals are characterized by the nodal points in their electronic structure near the Fermi level, either discrete or forming a continuous line or ring, which are responsible for exotic properties related to the topology of bulk bands. Here we identify by ab initio calculations a distinct topological semimetal that exhibits nodal nets comprising multiple interconnected nodal lines in bulk and have two coupled drumheadlike flat bands around the Fermi level on its surface. This nodal net semimetal state is proposed to be realized in a graphene network structure that can be constructed by inserting a benzene ring into each C- C bond in the bct-C4 lattice or by a crystalline modification of the (5,5) carbon nanotube. These results expand the realm of nodal manifolds in topological semimetals, offering a new platform for exploring novel physics in these fascinating materials.

  7. A Unified Approach to Teaching Quadratic and Cubic Equations.

    ERIC Educational Resources Information Center

    Ward, A. J. B.

    2003-01-01

    Presents a simple method for teaching the algebraic solution of cubic equations via completion of the cube. Shows that this method is readily accepted by students already familiar with completion of the square as a method for quadratic equations. (Author/KHR)

  8. Structural insights into the interaction of a monoclonal antibody and Nodal peptides by STD-NMR spectroscopy.

    PubMed

    Calvanese, Luisa; Focà, Annalia; Sandomenico, Annamaria; Focà, Giuseppina; Caporale, Andrea; Doti, Nunzianna; Iaccarino, Emanuela; Leonardi, Antonio; D'Auria, Gabriella; Ruvo, Menotti; Falcigno, Lucia

    2017-12-15

    Nodal is a growth factor expressed during early embryonic development, but reactivated in several advanced-stage cancers. Targeting of Nodal signaling, which occurs via the binding to Cripto-1 co-receptor, results in inhibition of cell aggressiveness and reduced tumor growth. The Nodal binding region to Cripto-1 was identified and targeted with a high affinity monoclonal antibody (3D1). By STD-NMR technique, we investigated the interaction of Nodal fragments with 3D1 with the aim to elucidate at atomic level the interaction surface. Data indicate with high accuracy the antibody-antigen contact atoms and confirm the information previously obtained by immune-enzymatic methods. Main residues contacted by 3D1 are P46, V47, E49 and E50, which belong to the Nodal loop involved in the interaction with the co-receptor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Nodal portraits of quantum billiards: Domains, lines, and statistics

    NASA Astrophysics Data System (ADS)

    Jain, Sudhir Ranjan; Samajdar, Rhine

    2017-10-01

    This is a comprehensive review of the nodal domains and lines of quantum billiards, emphasizing a quantitative comparison of theoretical findings to experiments. The nodal statistics are shown to distinguish not only between regular and chaotic classical dynamics but also between different geometric shapes of the billiard system itself. How a random superposition of plane waves can model chaotic eigenfunctions is discussed and the connections of the complex morphology of the nodal lines thereof to percolation theory and Schramm-Loewner evolution are highlighted. Various approaches to counting the nodal domains—using trace formulas, graph theory, and difference equations—are also illustrated with examples. The nodal patterns addressed pertain to waves on vibrating plates and membranes, acoustic and electromagnetic modes, wave functions of a "particle in a box" as well as to percolating clusters, and domains in ferromagnets, thus underlining the diversity and far-reaching implications of the problem.

  10. The Factorability of Quadratics: Motivation for More Techniques

    ERIC Educational Resources Information Center

    Bosse, Michael J.; Nandakumar, N. R.

    2005-01-01

    Typically, secondary and college algebra students attempt to utilize either completing the square or the quadratic formula as techniques to solve a quadratic equation only after frustration with factoring has arisen. While both completing the square and the quadratic formula are techniques which can determine solutions for all quadratic equations,…

  11. A study of the radiative transfer equation using a spherical harmonics-nodal collocation method

    NASA Astrophysics Data System (ADS)

    Capilla, M. T.; Talavera, C. F.; Ginestar, D.; Verdú, G.

    2017-03-01

    Optical tomography has found many medical applications that need to know how the photons interact with the different tissues. The majority of the photon transport simulations are done using the diffusion approximation, but this approximation has a limited validity when optical properties of the different tissues present large gradients, when structures near the photons source are studied or when anisotropic scattering has to be taken into account. As an alternative to the diffusion model, the PL equations for the radiative transfer problem are studied. These equations are discretized in a rectangular mesh using a nodal collocation method. The performance of this model is studied by solving different 1D and 2D benchmark problems of light propagation in tissue having media with isotropic and anisotropic scattering.

  12. 47 CFR 101.503 - Digital Electronic Message Service Nodal Stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Digital Electronic Message Service Nodal... AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message Service § 101.503 Digital Electronic Message Service Nodal Stations. 10.6 GHz DEMS Nodal Stations may be...

  13. A penalty-based nodal discontinuous Galerkin method for spontaneous rupture dynamics

    NASA Astrophysics Data System (ADS)

    Ye, R.; De Hoop, M. V.; Kumar, K.

    2017-12-01

    Numerical simulation of the dynamic rupture processes with slip is critical to understand the earthquake source process and the generation of ground motions. However, it can be challenging due to the nonlinear friction laws interacting with seismicity, coupled with the discontinuous boundary conditions across the rupture plane. In practice, the inhomogeneities in topography, fault geometry, elastic parameters and permiability add extra complexity. We develop a nodal discontinuous Galerkin method to simulate seismic wave phenomenon with slipping boundary conditions, including the fluid-solid boundaries and ruptures. By introducing a novel penalty flux, we avoid solving Riemann problems on interfaces, which makes our method capable for general anisotropic and poro-elastic materials. Based on unstructured tetrahedral meshes in 3D, the code can capture various geometries in geological model, and use polynomial expansion to achieve high-order accuracy. We consider the rate and state friction law, in the spontaneous rupture dynamics, as part of a nonlinear transmitting boundary condition, which is weakly enforced across the fault surface as numerical flux. An iterative coupling scheme is developed based on implicit time stepping, containing a constrained optimization process that accounts for the nonlinear part. To validate the method, we proof the convergence of the coupled system with error estimates. We test our algorithm on a well-established numerical example (TPV102) of the SCEC/USGS Spontaneous Rupture Code Verification Project, and benchmark with the simulation of PyLith and SPECFEM3D with agreeable results.

  14. Students' Understanding of Quadratic Equations

    ERIC Educational Resources Information Center

    López, Jonathan; Robles, Izraim; Martínez-Planell, Rafael

    2016-01-01

    Action-Process-Object-Schema theory (APOS) was applied to study student understanding of quadratic equations in one variable. This required proposing a detailed conjecture (called a genetic decomposition) of mental constructions students may do to understand quadratic equations. The genetic decomposition which was proposed can contribute to help…

  15. Nodal domains of a non-separable problem—the right-angled isosceles triangle

    NASA Astrophysics Data System (ADS)

    Aronovitch, Amit; Band, Ram; Fajman, David; Gnutzmann, Sven

    2012-03-01

    We study the nodal set of eigenfunctions of the Laplace operator on the right-angled isosceles triangle. A local analysis of the nodal pattern provides an algorithm for computing the number νn of nodal domains for any eigenfunction. In addition, an exact recursive formula for the number of nodal domains is found to reproduce all existing data. Eventually, we use the recursion formula to analyse a large sequence of nodal counts statistically. Our analysis shows that the distribution of nodal counts for this triangular shape has a much richer structure than the known cases of regular separable shapes or completely irregular shapes. Furthermore, we demonstrate that the nodal count sequence contains information about the periodic orbits of the corresponding classical ray dynamics.

  16. A New Navigation Satellite Clock Bias Prediction Method Based on Modified Clock-bias Quadratic Polynomial Model

    NASA Astrophysics Data System (ADS)

    Wang, Y. P.; Lu, Z. P.; Sun, D. S.; Wang, N.

    2016-01-01

    In order to better express the characteristics of satellite clock bias (SCB) and improve SCB prediction precision, this paper proposed a new SCB prediction model which can take physical characteristics of space-borne atomic clock, the cyclic variation, and random part of SCB into consideration. First, the new model employs a quadratic polynomial model with periodic items to fit and extract the trend term and cyclic term of SCB; then based on the characteristics of fitting residuals, a time series ARIMA ~(Auto-Regressive Integrated Moving Average) model is used to model the residuals; eventually, the results from the two models are combined to obtain final SCB prediction values. At last, this paper uses precise SCB data from IGS (International GNSS Service) to conduct prediction tests, and the results show that the proposed model is effective and has better prediction performance compared with the quadratic polynomial model, grey model, and ARIMA model. In addition, the new method can also overcome the insufficiency of the ARIMA model in model recognition and order determination.

  17. Quadratic RK shooting solution for a environmental parameter prediction boundary value problem

    NASA Astrophysics Data System (ADS)

    Famelis, Ioannis Th.; Tsitouras, Ch.

    2014-10-01

    Using tools of Information Geometry, the minimum distance between two elements of a statistical manifold is defined by the corresponding geodesic, e.g. the minimum length curve that connects them. Such a curve, where the probability distribution functions in the case of our meteorological data are two parameter Weibull distributions, satisfies a 2nd order Boundary Value (BV) system. We study the numerical treatment of the resulting special quadratic form system using Shooting method. We compare the solutions of the problem when we employ a classical Singly Diagonally Implicit Runge Kutta (SDIRK) 4(3) pair of methods and a quadratic SDIRK 5(3) pair . Both pairs have the same computational costs whereas the second one attains higher order as it is specially constructed for quadratic problems.

  18. A decentralized linear quadratic control design method for flexible structures

    NASA Technical Reports Server (NTRS)

    Su, Tzu-Jeng; Craig, Roy R., Jr.

    1990-01-01

    A decentralized suboptimal linear quadratic control design procedure which combines substructural synthesis, model reduction, decentralized control design, subcontroller synthesis, and controller reduction is proposed for the design of reduced-order controllers for flexible structures. The procedure starts with a definition of the continuum structure to be controlled. An evaluation model of finite dimension is obtained by the finite element method. Then, the finite element model is decomposed into several substructures by using a natural decomposition called substructuring decomposition. Each substructure, at this point, still has too large a dimension and must be reduced to a size that is Riccati-solvable. Model reduction of each substructure can be performed by using any existing model reduction method, e.g., modal truncation, balanced reduction, Krylov model reduction, or mixed-mode method. Then, based on the reduced substructure model, a subcontroller is designed by an LQ optimal control method for each substructure independently. After all subcontrollers are designed, a controller synthesis method called substructural controller synthesis is employed to synthesize all subcontrollers into a global controller. The assembling scheme used is the same as that employed for the structure matrices. Finally, a controller reduction scheme, called the equivalent impulse response energy controller (EIREC) reduction algorithm, is used to reduce the global controller to a reasonable size for implementation. The EIREC reduced controller preserves the impulse response energy of the full-order controller and has the property of matching low-frequency moments and low-frequency power moments. An advantage of the substructural controller synthesis method is that it relieves the computational burden associated with dimensionality. Besides that, the SCS design scheme is also a highly adaptable controller synthesis method for structures with varying configuration, or varying mass

  19. Nodal network generator for CAVE3

    NASA Technical Reports Server (NTRS)

    Palmieri, J. V.; Rathjen, K. A.

    1982-01-01

    A new extension of CAVE3 code was developed that automates the creation of a finite difference math model in digital form ready for input to the CAVE3 code. The new software, Nodal Network Generator, is broken into two segments. One segment generates the model geometry using a Tektronix Tablet Digitizer and the other generates the actual finite difference model and allows for graphic verification using Tektronix 4014 Graphic Scope. Use of the Nodal Network Generator is described.

  20. Observation of a nodal chain with Dirac surface states in Ti B2

    NASA Astrophysics Data System (ADS)

    Yi, C.-J.; Lv, B. Q.; Wu, Q. S.; Fu, B.-B.; Gao, X.; Yang, M.; Peng, X.-L.; Li, M.; Huang, Y.-B.; Richard, P.; Shi, M.; Li, G.; Yazyev, Oleg V.; Shi, Y.-G.; Qian, T.; Ding, H.

    2018-05-01

    Topological nodal-line semimetals (TNLSMs) are characterized by symmetry-protected band crossings extending along one-dimensional lines in momentum space. The nodal lines exhibit a variety of possible configurations, such as nodal ring, nodal link, nodal chain, and nodal knot. Here, using angle-resolved photoemission spectroscopy, we observe nodal rings on the orthogonal kz=0 and kx=0 planes of the Brillouin zone in Ti B2 . The nodal rings connect with each other on the intersecting line Γ-K of the orthogonal planes forming a remarkable nodal-chain structure. Furthermore, we observe surface states (SSs) on the (001) cleaved surface, which are consistent with the calculated SSs considering the contribution from both Ti and B terminations. The calculated SSs have novel Dirac-cone-like band structures, which are distinct from the usual drumhead SSs with a single flatband proposed in other TNLSMs.

  1. Exact solutions to quadratic gravity

    NASA Astrophysics Data System (ADS)

    Pravda, V.; Pravdová, A.; Podolský, J.; Švarc, R.

    2017-04-01

    Since all Einstein spacetimes are vacuum solutions to quadratic gravity in four dimensions, in this paper we study various aspects of non-Einstein vacuum solutions to this theory. Most such known solutions are of traceless Ricci and Petrov type N with a constant Ricci scalar. Thus we assume the Ricci scalar to be constant which leads to a substantial simplification of the field equations. We prove that a vacuum solution to quadratic gravity with traceless Ricci tensor of type N and aligned Weyl tensor of any Petrov type is necessarily a Kundt spacetime. This will considerably simplify the search for new non-Einstein solutions. Similarly, a vacuum solution to quadratic gravity with traceless Ricci type III and aligned Weyl tensor of Petrov type II or more special is again necessarily a Kundt spacetime. Then we study the general role of conformal transformations in constructing vacuum solutions to quadratic gravity. We find that such solutions can be obtained by solving one nonlinear partial differential equation for a conformal factor on any Einstein spacetime or, more generally, on any background with vanishing Bach tensor. In particular, we show that all geometries conformal to Kundt are either Kundt or Robinson-Trautman, and we provide some explicit Kundt and Robinson-Trautman solutions to quadratic gravity by solving the above mentioned equation on certain Kundt backgrounds.

  2. Nodal lines and nodal loops in nonsymmorphic odd-parity superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Micklitz, T.; Norman, M. R.

    2017-01-01

    We discuss the nodal structure of odd-parity superconductors in the presence of nonsymmorphic crystal symmetries, both with and without spin-orbit coupling, and with and without time-reversal symmetry. We comment on the relation of our work to previous work in the literature, and also the implications for unconventional superconductors such as UPt3.

  3. Large radius of curvature measurement based on virtual quadratic Newton rings phase-shifting moiré-fringes measurement method in a nonnull interferometer.

    PubMed

    Yang, Zhongming; Wang, Kailiang; Cheng, Jinlong; Gao, Zhishan; Yuan, Qun

    2016-06-10

    We have proposed a virtual quadratic Newton rings phase-shifting moiré-fringes measurement method in a nonnull interferometer to measure the large radius of curvature for a spherical surface. In a quadratic polar coordinate system, linear carrier testing Newton rings interferogram and virtual Newton rings interferogram form the moiré fringes. It is possible to retrieve the wavefront difference data between the testing and standard spherical surface from the moiré fringes after low-pass filtering. Based on the wavefront difference data, we deduced a precise formula to calculate the radius of curvature in the quadratic polar coordinate system. We calculated the retrace error in the nonnull interferometer using the multi-configuration model of the nonnull interferometric system in ZEMAX. Our experimental results indicate that the measurement accuracy is better than 0.18% for a spherical mirror with a radius of curvature of 41,400 mm.

  4. Incidental Prophylactic Nodal Irradiation and Patterns of Nodal Relapse in Inoperable Early Stage NSCLC Patients Treated With SBRT: A Case-Matched Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lao, Louis; Department of Radiation Oncology, Auckland City Hospital, Auckland; Hope, Andrew J.

    2014-09-01

    Purpose: Reported rates of non-small cell lung cancer (NSCLC) nodal failure following stereotactic body radiation therapy (SBRT) are lower than those reported in the surgical series when matched for stage. We hypothesized that this effect was due to incidental prophylactic nodal irradiation. Methods and Materials: A prospectively collected group of medically inoperable early stage NSCLC patients from 2004 to 2010 was used to identify cases with nodal relapses. Controls were matched to cases, 2:1, controlling for tumor volume (ie, same or greater) and tumor location (ie, same lobe). Reference (normalized to equivalent dose for 2-Gy fractions [EQD2]) point doses atmore » the ipsilateral hilum and carina, demographic data, and clinical outcomes were extracted from the medical records. Univariate conditional logistical regression analyses were performed with variables of interest. Results: Cases and controls were well matched except for size. The controls, as expected, had larger gross tumor volumes (P=.02). The mean ipsilateral hilar doses were 9.6 Gy and 22.4 Gy for cases and controls, respectively (P=.014). The mean carinal doses were 7.0 Gy and 9.2 Gy, respectively (P=.13). Mediastinal nodal relapses, with and without ipsilateral hilar relapse, were associated with mean ipsilateral hilar doses of 3.6 Gy and 19.8 Gy, respectively (P=.01). The conditional density plot appears to demonstrate an inverse dose-effect relationship between ipsilateral hilar normalized total dose and risk of ipsilateral hilar relapse. Conclusions: Incidental hilar dose greater than 20 Gy is significantly associated with fewer ipsilateral hilar relapses in inoperable early stage NSCLC patients treated with SBRT.« less

  5. Recovering tubewise power from three-dimensional nodal kinetics calculation during material relocation in an HWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalimullah; Morris, E.E.; Yang, W.S.

    1994-12-31

    To analyze severe accidents in some special-purpose heavy-water reactors made of assemblies consisting of a number of coaxial tubes of aluminum-clad U-Al fuel and aluminum-clad neutron-capturing material, a mechanistic model, MARTINS, for tube beatup, melting, and molten material relocation has been developed and integrated with the DIF3D nodal hexagonal-z reactor kinetics and other phenomenological modules. The DIF3D kinetics homogenizes all materials located and computes the total power produced in an axial segment of a fuel assembly. This paper presents an approximate method, used in MARTINS, to calculate the distribution of this total nodal power into the intact fuel and capturingmore » material tubes and the meat-cladding mixtures relocating during tube disruption. The method accounts for the change in intraassembly radial power profile due to assembly geometry change with the progress of segment-by-segment disruption of different tubes. Earlier methods to recover pinwise power from nodal calculation for liquid-metal-cooled reactors and light water reactors (X-Y and hexagonal unit cells) are not practical for a disrupting assembly having material relocation. Figure 1 shows the assembly`s end view, divided into rings for modeling and analysis. A ring is a coolant subchannel plus the outer surrounding tube. The present method for distributing the nodal power consists of two parts: (a) calculation of the relative values of ring-by-ring power per unit uranium mass and power per unit mass of neutron-capturing material in a given assembly segment, and (b) normalization of these relative values such that the total power of all rings (intact tubes and U-Al-Cp meat-cladding mixtures, where Cp implies the neutron-capturing material) equals the DIF3D-calculated nodal power for the assembly axial segment.« less

  6. Orthogonality preserving infinite dimensional quadratic stochastic operators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akın, Hasan; Mukhamedov, Farrukh

    In the present paper, we consider a notion of orthogonal preserving nonlinear operators. We introduce π-Volterra quadratic operators finite and infinite dimensional settings. It is proved that any orthogonal preserving quadratic operator on finite dimensional simplex is π-Volterra quadratic operator. In infinite dimensional setting, we describe all π-Volterra operators in terms orthogonal preserving operators.

  7. Nodal Diffusion Burnable Poison Treatment for Prismatic Reactor Cores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. M. Ougouag; R. M. Ferrer

    2010-10-01

    The prismatic block version of the High Temperature Reactor (HTR) considered as a candidate Very High Temperature Reactor (VHTR)design may use burnable poison pins in locations at some corners of the fuel blocks (i.e., assembly equivalent structures). The presence of any highly absorbing materials, such as these burnable poisons, within fuel blocks for hexagonal geometry, graphite-moderated High Temperature Reactors (HTRs) causes a local inter-block flux depression that most nodal diffusion-based method have failed to properly model or otherwise represent. The location of these burnable poisons near vertices results in an asymmetry in the morphology of the assemblies (or blocks). Hencemore » the resulting inadequacy of traditional homogenization methods, as these “spread” the actually local effect of the burnable poisons throughout the assembly. Furthermore, the actual effect of the burnable poison is primarily local with influence in its immediate vicinity, which happens to include a small region within the same assembly as well as similar regions in the adjacent assemblies. Traditional homogenization methods miss this artifact entirely. This paper presents a novel method for treating the local effect of the burnable poison explicitly in the context of a modern nodal method.« less

  8. Tip-tilt disturbance model identification based on non-linear least squares fitting for Linear Quadratic Gaussian control

    NASA Astrophysics Data System (ADS)

    Yang, Kangjian; Yang, Ping; Wang, Shuai; Dong, Lizhi; Xu, Bing

    2018-05-01

    We propose a method to identify tip-tilt disturbance model for Linear Quadratic Gaussian control. This identification method based on Levenberg-Marquardt method conducts with a little prior information and no auxiliary system and it is convenient to identify the tip-tilt disturbance model on-line for real-time control. This identification method makes it easy that Linear Quadratic Gaussian control runs efficiently in different adaptive optics systems for vibration mitigation. The validity of the Linear Quadratic Gaussian control associated with this tip-tilt disturbance model identification method is verified by experimental data, which is conducted in replay mode by simulation.

  9. Nodal Lymphangiogenesis and Metastasis

    PubMed Central

    Hirakawa, Satoshi; Detmar, Michael; Kerjaschki, Dontscho; Nagamatsu, Shogo; Matsuo, Keitaro; Tanemura, Atsushi; Kamata, Nobuyuki; Higashikawa, Koichiro; Okazaki, Hidenori; Kameda, Kenji; Nishida-Fukuda, Hisayo; Mori, Hideki; Hanakawa, Yasushi; Sayama, Koji; Shirakata, Yuji; Tohyama, Mikiko; Tokumaru, Sho; Katayama, Ichiro; Hashimoto, Koji

    2009-01-01

    Nodal lymphangiogenesis promotes distant lymph node (LN) metastasis in experimental cancer models. However, the role of nodal lymphangiogenesis in distant metastasis and in the overall survival of cancer patients remains unknown. Therefore, we investigated mechanisms that might facilitate regional and distant LN metastasis in extramammary Paget’s disease (EMPD). We retrospectively analyzed the impact of tumor-induced lymphatic vessel activation on the survival of 116 patients, the largest cohort with EMPD studied to date. Nodal lymphangiogenesis was significantly increased in metastatic, compared with tumor-free, LNs (P = 0.022). Increased lymphatic invasion within regional LNs was significantly associated with distant metastasis in LN (P = 0.047) and organs (P = 0.003). Thus, invasion within regional LNs is a powerful indicator of systemic tumor spread and reduced patient survival in EMPD (P = 0.0004). Lymphatic vessels associated with tumors expressed stromal cell-derived factor-1 (SDF-1), whereas CXCR4 was expressed on invasive Paget cells undergoing epithelial-mesenchymal transition (EMT)-like process. A431 cells overexpressing Snail expressed increased levels of CXCR4 in the presence of transforming growth factor-β1. Haptotactic migration assays confirmed that Snail-induced EMT-like process promotes tumor cell motility via the CXCR4-SDF-1 axis. Sinusoidal lymphatic endothelial cells and macrophages expressed SDF-1 in subcapsular sinuses of lymph nodes before Paget cell arrival. Our findings reveal that EMT-related features likely promote lymphatic metastasis of EMPD by activating the CXCR4-SDF-1 axis. PMID:19815713

  10. Quadratic Finite Element Method for 1D Deterministic Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolar, Jr., D R; Ferguson, J M

    2004-01-06

    In the discrete ordinates, or SN, numerical solution of the transport equation, both the spatial ({und r}) and angular ({und {Omega}}) dependences on the angular flux {psi}{und r},{und {Omega}}are modeled discretely. While significant effort has been devoted toward improving the spatial discretization of the angular flux, we focus on improving the angular discretization of {psi}{und r},{und {Omega}}. Specifically, we employ a Petrov-Galerkin quadratic finite element approximation for the differencing of the angular variable ({mu}) in developing the one-dimensional (1D) spherical geometry S{sub N} equations. We develop an algorithm that shows faster convergence with angular resolution than conventional S{sub N} algorithms.

  11. Computing the Partial Fraction Decomposition of Rational Functions with Irreducible Quadratic Factors in the Denominators

    ERIC Educational Resources Information Center

    Man, Yiu-Kwong

    2012-01-01

    In this note, a new method for computing the partial fraction decomposition of rational functions with irreducible quadratic factors in the denominators is presented. This method involves polynomial divisions and substitutions only, without having to solve for the complex roots of the irreducible quadratic polynomial or to solve a system of linear…

  12. A Nodal-independent and tissue-intrinsic mechanism controls heart-looping chirality

    NASA Astrophysics Data System (ADS)

    Noël, Emily S.; Verhoeven, Manon; Lagendijk, Anne Karine; Tessadori, Federico; Smith, Kelly; Choorapoikayil, Suma; den Hertog, Jeroen; Bakkers, Jeroen

    2013-11-01

    Breaking left-right symmetry in bilateria is a major event during embryo development that is required for asymmetric organ position, directional organ looping and lateralized organ function in the adult. Asymmetric expression of Nodal-related genes is hypothesized to be the driving force behind regulation of organ laterality. Here we identify a Nodal-independent mechanism that drives asymmetric heart looping in zebrafish embryos. In a unique mutant defective for the Nodal-related southpaw gene, preferential dextral looping in the heart is maintained, whereas gut and brain asymmetries are randomized. As genetic and pharmacological inhibition of Nodal signalling does not abolish heart asymmetry, a yet undiscovered mechanism controls heart chirality. This mechanism is tissue intrinsic, as explanted hearts maintain ex vivo retain chiral looping behaviour and require actin polymerization and myosin II activity. We find that Nodal signalling regulates actin gene expression, supporting a model in which Nodal signalling amplifies this tissue-intrinsic mechanism of heart looping.

  13. Rules for Phase Shifts of Quantum Oscillations in Topological Nodal-Line Semimetals

    NASA Astrophysics Data System (ADS)

    Li, Cequn; Wang, C. M.; Wan, Bo; Wan, Xiangang; Lu, Hai-Zhou; Xie, X. C.

    2018-04-01

    Nodal-line semimetals are topological semimetals in which band touchings form nodal lines or rings. Around a loop that encloses a nodal line, an electron can accumulate a nontrivial π Berry phase, so the phase shift in the Shubnikov-de Haas (SdH) oscillation may give a transport signature for the nodal-line semimetals. However, different experiments have reported contradictory phase shifts, in particular, in the WHM nodal-line semimetals (W =Zr /Hf , H =Si /Ge , M =S /Se /Te ). For a generic model of nodal-line semimetals, we present a systematic calculation for the SdH oscillation of resistivity under a magnetic field normal to the nodal-line plane. From the analytical result of the resistivity, we extract general rules to determine the phase shifts for arbitrary cases and apply them to ZrSiS and Cu3 PdN systems. Depending on the magnetic field directions, carrier types, and cross sections of the Fermi surface, the phase shift shows rich results, quite different from those for normal electrons and Weyl fermions. Our results may help explore transport signatures of topological nodal-line semimetals and can be generalized to other topological phases of matter.

  14. Nodal aberration theory for wild-filed asymmetric optical systems

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Cheng, Xuemin; Hao, Qun

    2016-10-01

    Nodal Aberration Theory (NAT) was used to calculate the zero field position in Full Field Display (FFD) for the given aberration term. Aiming at wide-filed non-rotational symmetric decentered optical systems, we have presented the nodal geography behavior of the family of third-order and fifth-order aberrations. Meanwhile, we have calculated the wavefront aberration expressions when one optical element in the system is tilted, which was not at the entrance pupil. By using a three-piece-cellphone lens example in optical design software CodeV, the nodal geography is testified under several situations; and the wavefront aberrations are calculated when the optical element is tilted. The properties of the nodal aberrations are analyzed by using Fringe Zernike coefficients, which are directly related with the wavefront aberration terms and usually obtained by real ray trace and wavefront surface fitting.

  15. Electromagnetic tracking system with reduced distortion using quadratic excitation.

    PubMed

    Bien, Tomasz; Li, Mengfei; Salah, Zein; Rose, Georg

    2014-03-01

    Electromagnetic tracking systems, frequently used in minimally invasive surgery, are affected by conductive distorters. The influence of conductive distorters on electromagnetic tracking system accuracy can be reduced through magnetic field modifications. This approach was developed and tested. The voltage induced directly by the emitting coil in the sensing coil without additional influence by the conductive distorter depends on the first derivative of the voltage on the emitting coil. The voltage which is induced indirectly by the emitting coil across the conductive distorter in the sensing coil, however, depends on the second derivative of the voltage on the emitting coil. The electromagnetic tracking system takes advantage of this difference by supplying the emitting coil with a quadratic excitation voltage. The method is adaptive relative to the amount of distortion cause by the conductive distorters. This approach is evaluated with an experimental setup of the electromagnetic tracking system. In vitro testing showed that the maximal error decreased from 10.9 to 3.8 mm when the quadratic voltage was used to excite the emitting coil instead of the sinusoidal voltage. Furthermore, the root mean square error in the proximity of the aluminum disk used as a conductive distorter was reduced from 3.5 to 1.6 mm when the electromagnetic tracking system used the quadratic instead of sinusoidal excitation. Electromagnetic tracking with quadratic excitation is immune to the effects of a conductive distorter, especially compared with sinusoidal excitation of the emitting coil. Quadratic excitation of electromagnetic tracking for computer-assisted surgery is promising for clinical applications.

  16. Sequential design of discrete linear quadratic regulators via optimal root-locus techniques

    NASA Technical Reports Server (NTRS)

    Shieh, Leang S.; Yates, Robert E.; Ganesan, Sekar

    1989-01-01

    A sequential method employing classical root-locus techniques has been developed in order to determine the quadratic weighting matrices and discrete linear quadratic regulators of multivariable control systems. At each recursive step, an intermediate unity rank state-weighting matrix that contains some invariant eigenvectors of that open-loop matrix is assigned, and an intermediate characteristic equation of the closed-loop system containing the invariant eigenvalues is created.

  17. Tuning a fuzzy controller using quadratic response surfaces

    NASA Technical Reports Server (NTRS)

    Schott, Brian; Whalen, Thomas

    1992-01-01

    Response surface methodology, an alternative method to traditional tuning of a fuzzy controller, is described. An example based on a simulated inverted pendulum 'plant' shows that with (only) 15 trial runs, the controller can be calibrated using a quadratic form to approximate the response surface.

  18. A Conjugate Gradient Algorithm with Function Value Information and N-Step Quadratic Convergence for Unconstrained Optimization

    PubMed Central

    Li, Xiangrong; Zhao, Xupei; Duan, Xiabin; Wang, Xiaoliang

    2015-01-01

    It is generally acknowledged that the conjugate gradient (CG) method achieves global convergence—with at most a linear convergence rate—because CG formulas are generated by linear approximations of the objective functions. The quadratically convergent results are very limited. We introduce a new PRP method in which the restart strategy is also used. Moreover, the method we developed includes not only n-step quadratic convergence but also both the function value information and gradient value information. In this paper, we will show that the new PRP method (with either the Armijo line search or the Wolfe line search) is both linearly and quadratically convergent. The numerical experiments demonstrate that the new PRP algorithm is competitive with the normal CG method. PMID:26381742

  19. A Conjugate Gradient Algorithm with Function Value Information and N-Step Quadratic Convergence for Unconstrained Optimization.

    PubMed

    Li, Xiangrong; Zhao, Xupei; Duan, Xiabin; Wang, Xiaoliang

    2015-01-01

    It is generally acknowledged that the conjugate gradient (CG) method achieves global convergence--with at most a linear convergence rate--because CG formulas are generated by linear approximations of the objective functions. The quadratically convergent results are very limited. We introduce a new PRP method in which the restart strategy is also used. Moreover, the method we developed includes not only n-step quadratic convergence but also both the function value information and gradient value information. In this paper, we will show that the new PRP method (with either the Armijo line search or the Wolfe line search) is both linearly and quadratically convergent. The numerical experiments demonstrate that the new PRP algorithm is competitive with the normal CG method.

  20. Patterns of failure after the reduced volume approach for elective nodal irradiation in nasopharyngeal carcinoma

    PubMed Central

    Seol, Ki Ho

    2016-01-01

    Purpose To evaluate the patterns of nodal failure after radiotherapy (RT) with the reduced volume approach for elective neck nodal irradiation (ENI) in nasopharyngeal carcinoma (NPC). Materials and Methods Fifty-six NPC patients who underwent definitive chemoradiotherapy with the reduced volume approach for ENI were reviewed. The ENI included retropharyngeal and level II lymph nodes, and only encompassed the echelon inferior to the involved level to eliminate the entire neck irradiation. Patients received either moderate hypofractionated intensity-modulated RT for a total of 72.6 Gy (49.5 Gy to elective nodal areas) or a conventional fractionated three-dimensional conformal RT for a total of 68.4–72 Gy (39.6–45 Gy to elective nodal areas). Patterns of failure, locoregional control, and survival were analyzed. Results The median follow-up was 38 months (range, 3 to 80 months). The out-of-field nodal failure when omitting ENI was none. Three patients developed neck recurrences (one in-field recurrence in the 72.6 Gy irradiated nodal area and two in the elective irradiated region of 39.6 Gy). Overall disease failure at any site developed in 11 patients (19.6%). Among these, there were six local failures (10.7%), three regional failures (5.4%), and five distant metastases (8.9%). The 3-year locoregional control rate was 87.1%, and the distant failure-free rate was 90.4%; disease-free survival and overall survival at 3 years was 80% and 86.8%, respectively. Conclusion No patient developed nodal failure in the omitted ENI site. Our investigation has demonstrated that the reduced volume approach for ENI appears to be a safe treatment approach in NPC. PMID:27104162

  1. Robust Weak Chimeras in Oscillator Networks with Delayed Linear and Quadratic Interactions

    NASA Astrophysics Data System (ADS)

    Bick, Christian; Sebek, Michael; Kiss, István Z.

    2017-10-01

    We present an approach to generate chimera dynamics (localized frequency synchrony) in oscillator networks with two populations of (at least) two elements using a general method based on a delayed interaction with linear and quadratic terms. The coupling design yields robust chimeras through a phase-model-based design of the delay and the ratio of linear and quadratic components of the interactions. We demonstrate the method in the Brusselator model and experiments with electrochemical oscillators. The technique opens the way to directly bridge chimera dynamics in phase models and real-world oscillator networks.

  2. Design of reinforced areas of concrete column using quadratic polynomials

    NASA Astrophysics Data System (ADS)

    Arif Gunadi, Tjiang; Parung, Herman; Rachman Djamaluddin, Abd; Arwin Amiruddin, A.

    2017-11-01

    Designing of reinforced concrete columns mostly carried out by a simple planning method which uses column interaction diagram. However, the application of this method is limited because it valids only for certain compressive strenght of the concrete and yield strength of the reinforcement. Thus, a more applicable method is still in need. Another method is the use of quadratic polynomials as a basis for the approach in designing reinforced concrete columns, where the ratio of neutral lines to the effective height of a cross section (ξ) if associated with ξ in the same cross-section with different reinforcement ratios is assumed to form a quadratic polynomial. This is identical to the basic principle used in the Simpson rule for numerical integral using quadratic polynomials and had a sufficiently accurate level of accuracy. The basis of this approach to be used both the normal force equilibrium and the moment equilibrium. The abscissa of the intersection of the two curves is the ratio that had been mentioned, since it fulfill both of the equilibrium. The application of this method is relatively more complicated than the existing method but provided with tables and graphs (N vs ξN ) and (M vs ξM ) so that its used could be simplified. The uniqueness of these tables are only distinguished based on the compresssive strength of the concrete, so in application it could be combined with various yield strenght of the reinforcement available in the market. This method could be solved by using programming languages such as Fortran.

  3. Orbital nodal surfaces: Topological challenges for density functionals

    NASA Astrophysics Data System (ADS)

    Aschebrock, Thilo; Armiento, Rickard; Kümmel, Stephan

    2017-06-01

    Nodal surfaces of orbitals, in particular of the highest occupied one, play a special role in Kohn-Sham density-functional theory. The exact Kohn-Sham exchange potential, for example, shows a protruding ridge along such nodal surfaces, leading to the counterintuitive feature of a potential that goes to different asymptotic limits in different directions. We show here that nodal surfaces can heavily affect the potential of semilocal density-functional approximations. For the functional derivatives of the Armiento-Kümmel (AK13) [Phys. Rev. Lett. 111, 036402 (2013), 10.1103/PhysRevLett.111.036402] and Becke88 [Phys. Rev. A 38, 3098 (1988), 10.1103/PhysRevA.38.3098] energy functionals, i.e., the corresponding semilocal exchange potentials, as well as the Becke-Johnson [J. Chem. Phys. 124, 221101 (2006), 10.1063/1.2213970] and van Leeuwen-Baerends (LB94) [Phys. Rev. A 49, 2421 (1994), 10.1103/PhysRevA.49.2421] model potentials, we explicitly demonstrate exponential divergences in the vicinity of nodal surfaces. We further point out that many other semilocal potentials have similar features. Such divergences pose a challenge for the convergence of numerical solutions of the Kohn-Sham equations. We prove that for exchange functionals of the generalized gradient approximation (GGA) form, enforcing correct asymptotic behavior of the potential or energy density necessarily leads to irregular behavior on or near orbital nodal surfaces. We formulate constraints on the GGA exchange enhancement factor for avoiding such divergences.

  4. Counting nodal domains on surfaces of revolution

    NASA Astrophysics Data System (ADS)

    Karageorge, Panos D.; Smilansky, Uzy

    2008-05-01

    We consider eigenfunctions of the Laplace-Beltrami operator on special surfaces of revolution. For this separable system, the nodal domains of the (real) eigenfunctions form a checkerboard pattern, and their number νn is proportional to the product of the angular and the 'surface' quantum numbers. Arranging the wavefunctions by increasing values of the Laplace-Beltrami spectrum, we obtain the nodal sequence, whose statistical properties we study. In particular, we investigate the distribution of the normalized counts \\frac{\

  5. An Unexpected Influence on a Quadratic

    ERIC Educational Resources Information Center

    Davis, Jon D.

    2013-01-01

    Using technology to explore the coefficients of a quadratic equation can lead to an unexpected result. This article describes an investigation that involves sliders and dynamically linked representations. It guides students to notice the effect that the parameter "a" has on the graphical representation of a quadratic function in the form…

  6. Classification of reflection-symmetry-protected topological semimetals and nodal superconductors

    NASA Astrophysics Data System (ADS)

    Chiu, Ching-Kai; Schnyder, Andreas P.

    2014-11-01

    While the topological classification of insulators, semimetals, and superconductors in terms of nonspatial symmetries is well understood, less is known about topological states protected by crystalline symmetries, such as mirror reflections and rotations. In this work, we systematically classify topological semimetals and nodal superconductors that are protected, not only by nonspatial (i.e., global) symmetries, but also by a crystal reflection symmetry. We find that the classification crucially depends on (i) the codimension of the Fermi surface (nodal line or point) of the semimetal (superconductor), (ii) whether the mirror symmetry commutes or anticommutes with the nonspatial symmetries, and (iii) how the Fermi surfaces (nodal lines or points) transform under the mirror reflection and nonspatial symmetries. The classification is derived by examining all possible symmetry-allowed mass terms that can be added to the Bloch or Bogoliubov-de Gennes Hamiltonian in a given symmetry class and by explicitly deriving topological invariants. We discuss several examples of reflection-symmetry-protected topological semimetals and nodal superconductors, including topological crystalline semimetals with mirror Z2 numbers and topological crystalline nodal superconductors with mirror winding numbers.

  7. Cerberus-Nodal-Lefty-Pitx signaling cascade controls left-right asymmetry in amphioxus.

    PubMed

    Li, Guang; Liu, Xian; Xing, Chaofan; Zhang, Huayang; Shimeld, Sebastian M; Wang, Yiquan

    2017-04-04

    Many bilaterally symmetrical animals develop genetically programmed left-right asymmetries. In vertebrates, this process is under the control of Nodal signaling, which is restricted to the left side by Nodal antagonists Cerberus and Lefty. Amphioxus, the earliest diverging chordate lineage, has profound left-right asymmetry as a larva. We show that Cerberus , Nodal , Lefty , and their target transcription factor Pitx are sequentially activated in amphioxus embryos. We then address their function by transcription activator-like effector nucleases (TALEN)-based knockout and heat-shock promoter (HSP)-driven overexpression. Knockout of Cerberus leads to ectopic right-sided expression of Nodal , Lefty , and Pitx , whereas overexpression of Cerberus represses their left-sided expression. Overexpression of Nodal in turn represses Cerberus and activates Lefty and Pitx ectopically on the right side. We also show Lefty represses Nodal , whereas Pitx activates Nodal These data combine in a model in which Cerberus determines whether the left-sided gene expression cassette is activated or repressed. These regulatory steps are essential for normal left-right asymmetry to develop, as when they are disrupted embryos may instead form two phenotypic left sides or two phenotypic right sides. Our study shows the regulatory cassette controlling left-right asymmetry was in place in the ancestor of amphioxus and vertebrates. This includes the Nodal inhibitors Cerberus and Lefty, both of which operate in feedback loops with Nodal and combine to establish asymmetric Pitx expression. Cerberus and Lefty are missing from most invertebrate lineages, marking this mechanism as an innovation in the lineage leading to modern chordates.

  8. The algebraic decoding of the (41, 21, 9) quadratic residue code

    NASA Technical Reports Server (NTRS)

    Reed, Irving S.; Truong, T. K.; Chen, Xuemin; Yin, Xiaowei

    1992-01-01

    A new algebraic approach for decoding the quadratic residue (QR) codes, in particular the (41, 21, 9) QR code is presented. The key ideas behind this decoding technique are a systematic application of the Sylvester resultant method to the Newton identities associated with the code syndromes to find the error-locator polynomial, and next a method for determining error locations by solving certain quadratic, cubic and quartic equations over GF(2 exp m) in a new way which uses Zech's logarithms for the arithmetic. The algorithms developed here are suitable for implementation in a programmable microprocessor or special-purpose VLSI chip. It is expected that the algebraic methods developed here can apply generally to other codes such as the BCH and Reed-Solomon codes.

  9. Hybrid nodal loop metal: Unconventional magnetoresponse and material realization

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoming; Yu, Zhi-Ming; Lu, Yunhao; Sheng, Xian-Lei; Yang, Hui Ying; Yang, Shengyuan A.

    2018-03-01

    A nodal loop is formed by a band crossing along a one-dimensional closed manifold, with each point on the loop a linear nodal point in the transverse dimensions, and can be classified as type I or type II depending on the band dispersion. Here, we propose a class of nodal loops composed of both type-I and type-II points, which are hence termed as hybrid nodal loops. Based on first-principles calculations, we predict the realization of such loops in the existing electride material Ca2As . For a hybrid loop, the Fermi surface consists of coexisting electron and hole pockets that touch at isolated points for an extended range of Fermi energies, without the need for fine-tuning. This leads to unconventional magnetic responses, including the zero-field magnetic breakdown and the momentum-space Klein tunneling observable in the magnetic quantum oscillations, as well as the peculiar anisotropy in the cyclotron resonance.

  10. Finding Optimal Gains In Linear-Quadratic Control Problems

    NASA Technical Reports Server (NTRS)

    Milman, Mark H.; Scheid, Robert E., Jr.

    1990-01-01

    Analytical method based on Volterra factorization leads to new approximations for optimal control gains in finite-time linear-quadratic control problem of system having infinite number of dimensions. Circumvents need to analyze and solve Riccati equations and provides more transparent connection between dynamics of system and optimal gain.

  11. Nodal Topological Phases in s-wave Superfluid of Ultracold Fermionic Gases

    NASA Astrophysics Data System (ADS)

    Huang, Bei-Bing; Yang, Xiao-Sen

    2018-02-01

    The gapless Weyl superfluid has been widely studied in the three-dimensional ultracold fermionic superfluid. In contrast to Weyl superfluid, there exists another kind of gapless superfluid with topologically protected nodal lines, which can be regarded as the superfluid counterpart of nodal line semimetal in the condensed matter physics, just as Weyl superfluid with Weyl semimetal. In this paper we study the ground states of the cold fermionic gases in cubic optical lattices with one-dimensional spin-orbit coupling and transverse Zeeman field and map out the topological phase diagram of the system. We demonstrate that in addition to a fully gapped topologically trivial phase, some different nodal line superfluid phases appear when the Zeeman field is adjusted. The presence of topologically stable nodal lines implies the dispersionless zero-energy flat band in a finite region of the surface Brillouin zone. Experimentally these nodal line superfluid states can be detected via the momentum-resolved radio-frequency spectroscopy. The nodal line topological superfluid provide fertile grounds for exploring exotic quantum matters in the context of ultracold atoms. Supported by National Natural Science Foundation of China under Grant Nos. 11547047 and 11504143

  12. Topological Phase Transitions in Line-nodal Superconductors

    NASA Astrophysics Data System (ADS)

    Cho, Gil Young; Han, Sangeun; Moon, Eun-Gook

    Fathoming interplay between symmetry and topology of many-electron wave-functions deepens our understanding in quantum nature of many particle systems. Topology often protects zero-energy excitation, and in a certain class, symmetry is intrinsically tied to the topological protection. Namely, unless symmetry is broken, topological nature is intact. We study one specific case of such class, symmetry-protected line-nodal superconductors in three spatial dimensions (3d). Mismatch between phase spaces of order parameter fluctuation and line-nodal fermion excitation induces an exotic universality class in a drastic contrast to one of the conventional ϕ4 theory in 3d. Hyper-scaling violation and relativistic dynamic scaling with unusually large quantum critical region are main characteristics, and their implication in experiments is discussed. For example, continuous phase transition out of line-nodal superconductors has a linear phase boundary in a temperature-tuning parameter phase-diagram. This work was supported by the Brain Korea 21 PLUS Project of Korea Government and KAIST start-up funding.

  13. Targeting nodal in conjunction with dacarbazine induces synergistic anticancer effects in metastatic melanoma.

    PubMed

    Hardy, Katharine M; Strizzi, Luigi; Margaryan, Naira V; Gupta, Kanika; Murphy, George F; Scolyer, Richard A; Hendrix, Mary J C

    2015-04-01

    Metastatic melanoma is a highly aggressive skin cancer with a poor prognosis. Despite a complete response in fewer than 5% of patients, the chemotherapeutic agent dacarbazine (DTIC) remains the reference drug after almost 40 years. More recently, FDA-approved drugs have shown promise but patient outcome remains modest, predominantly due to drug resistance. As such, combinatorial targeting has received increased attention, and will advance with the identification of new molecular targets. One attractive target for improving melanoma therapy is the growth factor Nodal, whose normal expression is largely restricted to embryonic development, but is reactivated in metastatic melanoma. In this study, we sought to determine how Nodal-positive human melanoma cells respond to DTIC treatment and to ascertain whether targeting Nodal in combination with DTIC would be more effective than monotherapy. A single treatment with DTIC inhibited cell growth but did not induce apoptosis. Rather than reducing Nodal expression, DTIC increased the size of the Nodal-positive subpopulation, an observation coincident with increased cellular invasion. Importantly, clinical tissue specimens from patients with melanomas refractory to DTIC therapy stained positive for Nodal expression, both in pre- and post-DTIC tumors, underscoring the value of targeting Nodal. In vitro, anti-Nodal antibodies alone had some adverse effects on proliferation and apoptosis, but combining DTIC treatment with anti-Nodal antibodies decreased cell growth and increased apoptosis synergistically, at concentrations incapable of producing meaningful effects as monotherapy. Targeting Nodal in combination with DTIC therapy holds promise for the treatment of metastatic melanoma. ©2015 American Association for Cancer Research.

  14. THE EFFECTIVENESS OF QUADRATS FOR MEASURING VASCULAR PLANT DIVERSITY

    EPA Science Inventory

    Quadrats are widely used for measuring characteristics of vascular plant communities. It is well recognized that quadrat size affects measurements of frequency and cover. The ability of quadrats of varying sizes to adequately measure diversity has not been established. An exha...

  15. Quadratic canonical transformation theory and higher order density matrices.

    PubMed

    Neuscamman, Eric; Yanai, Takeshi; Chan, Garnet Kin-Lic

    2009-03-28

    Canonical transformation (CT) theory provides a rigorously size-extensive description of dynamic correlation in multireference systems, with an accuracy superior to and cost scaling lower than complete active space second order perturbation theory. Here we expand our previous theory by investigating (i) a commutator approximation that is applied at quadratic, as opposed to linear, order in the effective Hamiltonian, and (ii) incorporation of the three-body reduced density matrix in the operator and density matrix decompositions. The quadratic commutator approximation improves CT's accuracy when used with a single-determinant reference, repairing the previous formal disadvantage of the single-reference linear CT theory relative to singles and doubles coupled cluster theory. Calculations on the BH and HF binding curves confirm this improvement. In multireference systems, the three-body reduced density matrix increases the overall accuracy of the CT theory. Tests on the H(2)O and N(2) binding curves yield results highly competitive with expensive state-of-the-art multireference methods, such as the multireference Davidson-corrected configuration interaction (MRCI+Q), averaged coupled pair functional, and averaged quadratic coupled cluster theories.

  16. Quadratic Zeeman effect for hydrogen: A method for rigorous bound-state error estimates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fonte, G.; Falsaperla, P.; Schiffrer, G.

    1990-06-01

    We present a variational method, based on direct minimization of energy, for the calculation of eigenvalues and eigenfunctions of a hydrogen atom in a strong uniform magnetic field in the framework of the nonrelativistic theory (quadratic Zeeman effect). Using semiparabolic coordinates and a harmonic-oscillator basis, we show that it is possible to give rigorous error estimates for both eigenvalues and eigenfunctions by applying some results of Kato (Proc. Phys. Soc. Jpn. 4, 334 (1949)). The method can be applied in this simple form only to the lowest level of given angular momentum and parity, but it is also possible tomore » apply it to any excited state by using the standard Rayleigh-Ritz diagonalization method. However, due to the particular basis, the method is expected to be more effective, the weaker the field and the smaller the excitation energy, while the results of Kato we have employed lead to good estimates only when the level spacing is not too small. We present a numerical application to the {ital m}{sup {ital p}}=0{sup +} ground state and the lowest {ital m}{sup {ital p}}=1{sup {minus}} excited state, giving results that are among the most accurate in the literature for magnetic fields up to about 10{sup 10} G.« less

  17. Implications of inaccurate clinical nodal staging in pancreatic adenocarcinoma.

    PubMed

    Swords, Douglas S; Firpo, Matthew A; Johnson, Kirsten M; Boucher, Kenneth M; Scaife, Courtney L; Mulvihill, Sean J

    2017-07-01

    Many patients with stage I-II pancreatic adenocarcinoma do not undergo resection. We hypothesized that (1) clinical staging underestimates nodal involvement, causing stage IIB to have a greater percent of resected patients and (2) this stage-shift causes discrepancies in observed survival. The Surveillance, Epidemiology, and End Results (SEER) research database was used to evaluate cause-specific survival in patients with pancreatic adenocarcinoma from 2004-2012. Survival was compared using the log-rank test. Single-center data on 105 patients who underwent resection of pancreatic adenocarcinoma without neoadjuvant treatment were used to compare clinical and pathologic nodal staging. In SEER data, medium-term survival in stage IIB was superior to IB and IIA, with median cause-specific survival of 14, 9, and 11 months, respectively (P < .001). Seventy-two percent of stage IIB patients underwent resection vs 28% in IB and 36% in IIA (P < .001). In our institutional data, 12.4% of patients had clinical evidence of nodal involvement vs 69.5% by pathologic staging (P < .001). Among clinical stage IA-IIA patients, 71.6% had nodal involvement by pathologic staging. Both SEER and institutional data support substantial underestimation of nodal involvement by clinical staging. This finding has implications in decisions regarding neoadjuvant therapy and analysis of outcomes in the absence of pathologic staging. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Piece-wise quadratic approximations of arbitrary error functions for fast and robust machine learning.

    PubMed

    Gorban, A N; Mirkes, E M; Zinovyev, A

    2016-12-01

    Most of machine learning approaches have stemmed from the application of minimizing the mean squared distance principle, based on the computationally efficient quadratic optimization methods. However, when faced with high-dimensional and noisy data, the quadratic error functionals demonstrated many weaknesses including high sensitivity to contaminating factors and dimensionality curse. Therefore, a lot of recent applications in machine learning exploited properties of non-quadratic error functionals based on L 1 norm or even sub-linear potentials corresponding to quasinorms L p (0quadratic error potentials of subquadratic growth (PQSQ potentials). We develop a new and universal framework to minimize arbitrary sub-quadratic error potentials using an algorithm with guaranteed fast convergence to the local or global error minimum. The theory of PQSQ potentials is based on the notion of the cone of minorant functions, and represents a natural approximation formalism based on the application of min-plus algebra. The approach can be applied in most of existing machine learning methods, including methods of data approximation and regularized and sparse regression, leading to the improvement in the computational cost/accuracy trade-off. We demonstrate that on synthetic and real-life datasets PQSQ-based machine learning methods achieve orders of magnitude faster computational performance than the corresponding state-of-the-art methods, having similar or better approximation accuracy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Analytical approximations for the oscillators with anti-symmetric quadratic nonlinearity

    NASA Astrophysics Data System (ADS)

    Alal Hosen, Md.; Chowdhury, M. S. H.; Yeakub Ali, Mohammad; Faris Ismail, Ahmad

    2017-12-01

    A second-order ordinary differential equation involving anti-symmetric quadratic nonlinearity changes sign. The behaviour of the oscillators with an anti-symmetric quadratic nonlinearity is assumed to oscillate different in the positive and negative directions. In this reason, Harmonic Balance Method (HBM) cannot be directly applied. The main purpose of the present paper is to propose an analytical approximation technique based on the HBM for obtaining approximate angular frequencies and the corresponding periodic solutions of the oscillators with anti-symmetric quadratic nonlinearity. After applying HBM, a set of complicated nonlinear algebraic equations is found. Analytical approach is not always fruitful for solving such kinds of nonlinear algebraic equations. In this article, two small parameters are found, for which the power series solution produces desired results. Moreover, the amplitude-frequency relationship has also been determined in a novel analytical way. The presented technique gives excellent results as compared with the corresponding numerical results and is better than the existing ones.

  20. Development of Quadratic Programming Algorithm Based on Interior Point Method with Estimation Mechanism of Active Constraints

    NASA Astrophysics Data System (ADS)

    Hashimoto, Hiroyuki; Takaguchi, Yusuke; Nakamura, Shizuka

    Instability of calculation process and increase of calculation time caused by increasing size of continuous optimization problem remain the major issues to be solved to apply the technique to practical industrial systems. This paper proposes an enhanced quadratic programming algorithm based on interior point method mainly for improvement of calculation stability. The proposed method has dynamic estimation mechanism of active constraints on variables, which fixes the variables getting closer to the upper/lower limit on them and afterwards releases the fixed ones as needed during the optimization process. It is considered as algorithm-level integration of the solution strategy of active-set method into the interior point method framework. We describe some numerical results on commonly-used bench-mark problems called “CUTEr” to show the effectiveness of the proposed method. Furthermore, the test results on large-sized ELD problem (Economic Load Dispatching problems in electric power supply scheduling) are also described as a practical industrial application.

  1. Role of Ultrasonography of Regional Nodal Basins in Staging Triple-Negative Breast Cancer and Implications For Local-Regional Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaitelman, Simona F., E-mail: sfshaitelman@mdanderson.org; Tereffe, Welela; Dogan, Basak E.

    2015-09-01

    Purpose: We sought to determine the rate at which regional nodal ultrasonography would increase the nodal disease stage in patients with triple-negative breast cancer (TNBC) beyond the clinical stage determined by physical examination and mammography alone, and significantly affect the treatments delivered to these patients. Methods and Materials: We retrospectively reviewed the charts of women with stages I to III TNBC who underwent physical examination, mammography, breast and regional nodal ultrasonography with needle biopsy of abnormal nodes, and definitive local-regional treatment at our institution between 2004 and 2011. The stages of these patients' disease with and without ultrasonography of the regionalmore » nodal basins were compared using the Pearson χ{sup 2} test. Definitive treatments of patients whose nodal disease was upstaged on the basis of ultrasonographic findings were compared to those of patients whose disease stage remained the same. Results: A total of 572 women met the study requirements. In 111 (19.4%) of these patients, regional nodal ultrasonography with needle biopsy resulted in an increase in disease stage from the original stage by physical examination and mammography alone. Significantly higher percentages of patients whose nodal disease was upstaged by ultrasonographic findings compared to that in patients whose disease was not upstaged underwent neoadjuvant systemic therapy (91.9% and 51.2%, respectively; P<.0001), axillary lymph node dissection (99.1% and 34.5%, respectively; P<.0001), and radiation to the regional nodal basins (88.2% and 29.1%, respectively; P<.0001). Conclusions: Regional nodal ultrasonography in TNBC frequently changes the initial clinical stage and plays an important role in treatment planning.« less

  2. Winding numbers of nodal points in Fe-based superconductors

    NASA Astrophysics Data System (ADS)

    Chichinadze, Dmitry V.; Chubukov, Andrey V.

    2018-03-01

    We analyze the nodal points in multiorbital Fe-based superconductors from a topological perspective. We consider the s+- gap structure with accidental nodes, and the d -wave gap with nodes along the symmetry directions. In both cases, the nodal points can be moved by varying an external parameter, e.g., a degree of interpocket pairing. Eventually, the nodes merge and annihilate via a Lifshitz-type transition. We discuss the Lifshitz transition in Fe-based superconductors from a topological point of view. We show, both analytically and numerically, that the merging nodal points have winding numbers of opposite sign. This is consistent with the general reasoning that the total winding number is a conserved quantity in the Lifshitz transition.

  3. Quadratic semiparametric Von Mises calculus

    PubMed Central

    Robins, James; Li, Lingling; Tchetgen, Eric

    2009-01-01

    We discuss a new method of estimation of parameters in semiparametric and nonparametric models. The method is based on U-statistics constructed from quadratic influence functions. The latter extend ordinary linear influence functions of the parameter of interest as defined in semiparametric theory, and represent second order derivatives of this parameter. For parameters for which the matching cannot be perfect the method leads to a bias-variance trade-off, and results in estimators that converge at a slower than n–1/2-rate. In a number of examples the resulting rate can be shown to be optimal. We are particularly interested in estimating parameters in models with a nuisance parameter of high dimension or low regularity, where the parameter of interest cannot be estimated at n–1/2-rate. PMID:23087487

  4. Hyperspectral and multispectral data fusion based on linear-quadratic nonnegative matrix factorization

    NASA Astrophysics Data System (ADS)

    Benhalouche, Fatima Zohra; Karoui, Moussa Sofiane; Deville, Yannick; Ouamri, Abdelaziz

    2017-04-01

    This paper proposes three multisharpening approaches to enhance the spatial resolution of urban hyperspectral remote sensing images. These approaches, related to linear-quadratic spectral unmixing techniques, use a linear-quadratic nonnegative matrix factorization (NMF) multiplicative algorithm. These methods begin by unmixing the observable high-spectral/low-spatial resolution hyperspectral and high-spatial/low-spectral resolution multispectral images. The obtained high-spectral/high-spatial resolution features are then recombined, according to the linear-quadratic mixing model, to obtain an unobservable multisharpened high-spectral/high-spatial resolution hyperspectral image. In the first designed approach, hyperspectral and multispectral variables are independently optimized, once they have been coherently initialized. These variables are alternately updated in the second designed approach. In the third approach, the considered hyperspectral and multispectral variables are jointly updated. Experiments, using synthetic and real data, are conducted to assess the efficiency, in spatial and spectral domains, of the designed approaches and of linear NMF-based approaches from the literature. Experimental results show that the designed methods globally yield very satisfactory spectral and spatial fidelities for the multisharpened hyperspectral data. They also prove that these methods significantly outperform the used literature approaches.

  5. Quadratic correlation filters for optical correlators

    NASA Astrophysics Data System (ADS)

    Mahalanobis, Abhijit; Muise, Robert R.; Vijaya Kumar, Bhagavatula V. K.

    2003-08-01

    Linear correlation filters have been implemented in optical correlators and successfully used for a variety of applications. The output of an optical correlator is usually sensed using a square law device (such as a CCD array) which forces the output to be the squared magnitude of the desired correlation. It is however not a traditional practice to factor the effect of the square-law detector in the design of the linear correlation filters. In fact, the input-output relationship of an optical correlator is more accurately modeled as a quadratic operation than a linear operation. Quadratic correlation filters (QCFs) operate directly on the image data without the need for feature extraction or segmentation. In this sense, the QCFs retain the main advantages of conventional linear correlation filters while offering significant improvements in other respects. Not only is more processing required to detect peaks in the outputs of multiple linear filters, but choosing a winner among them is an error prone task. In contrast, all channels in a QCF work together to optimize the same performance metric and produce a combined output that leads to considerable simplification of the post-processing. In this paper, we propose a novel approach to the design of quadratic correlation based on the Fukunaga Koontz transform. Although quadratic filters are known to be optimum when the data is Gaussian, it is expected that they will perform as well as or better than linear filters in general. Preliminary performance results are provided that show that quadratic correlation filters perform better than their linear counterparts.

  6. Pathology of nodal marginal zone lymphomas.

    PubMed

    Pileri, Stefano; Ponzoni, Maurilio

    Nodal marginal zone B cell lymphomas (NMZLs) are a rare group of lymphoid disorders part of the spectrum of marginal zone B-cell lymphomas, which encompass splenic marginal one B-cell lymphoma (SMZL) and extra nodal marginal zone of B-cell lymphoma (EMZL), often of MALT-type. Two clinicopathological forms of NMZL are recognized: adult-type and pediatric-type, respectively. NMZLs show overlapping features with other types of MZ, but distinctive features as well. In this review, we will focus on the salient distinguishing features of NMZL mostly under morphological/immunophenotypical/molecular perspectives in views of the recent acquisitions and forthcoming updated 2016 WHO classification of lymphoid malignancies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. A quantitative description of normal AV nodal conduction curve in man.

    PubMed

    Teague, S; Collins, S; Wu, D; Denes, P; Rosen, K; Arzbaecher, R

    1976-01-01

    The AV nodal conduction curve generated by the atrial extrastimulus technique has been described only qualitatively in man, making clinical comparison of known normal curves with those of suspected AV nodal dysfunction difficult. Also, the effects of physiological and pharmacological interventions have not been quantifiable. In 50 patients with normal AV conduction as defined by normal AH (less than 130 ms), normal AV nodal effective and functional refractory periods (less than 380 and less than 500 ms), and absence of demonstrable dual AV nodal pathways, we found that conduction curves (at sinus rhythm or longest paced cycle length) can be described by an exponential equation of the form delta = Ae-Bx. In this equation, delta is the increase in AV nodal conduction time of an extrastimulus compared to that of a regular beat and x is extrastimulus interval. The natural logarithm of this equation is linear in the semilogarithmic plane, thus permitting the constants A and B to be easily determined by a least-squares regression analysis with a hand calculator.

  8. Linear quadratic regulators with eigenvalue placement in a specified region

    NASA Technical Reports Server (NTRS)

    Shieh, Leang S.; Dib, Hani M.; Ganesan, Sekar

    1988-01-01

    A linear optimal quadratic regulator is developed for optimally placing the closed-loop poles of multivariable continuous-time systems within the common region of an open sector, bounded by lines inclined at + or - pi/2k (k = 2 or 3) from the negative real axis with a sector angle of pi/2 or less, and the left-hand side of a line parallel to the imaginary axis in the complex s-plane. The design method is mainly based on the solution of a linear matrix Liapunov equation, and the resultant closed-loop system with its eigenvalues in the desired region is optimal with respect to a quadratic performance index.

  9. Assessment of Ultrasound Features Predicting Axillary Nodal Metastasis in Breast Cancer: The Impact of Cortical Thickness

    PubMed Central

    Stachs, A.; Thi, A. Tra-Ha; Dieterich, M.; Stubert, J.; Hartmann, S.; Glass, Ä.; Reimer, T.; Gerber, B.

    2015-01-01

    Purpose: To evaluate the accuracy of axillary ultrasound (AUS) in detecting nodal metastasis in patients with early-stage breast cancer and to identify AUS features with high predictive power. Materials and Methods: Prospective single-center preliminary study in 105 patients with a primary diagnosis of breast cancer and clinically negative axilla. AUS was performed using a 12 MHz linear-array transducer before ultrasound-guided needle biopsy. Nodal characteristics (shape, longitudinal-transverse [LT] axis ratio, margins, cortical thickness, hyperechoic hilum) were correlated with histopathological nodal status after SLNB or axillary lymph node dissection (ALND). Results: Nodal metastases were present in 42/105 patients (40.0%). Univariate analyses showed that absence of hyperechoic hilum, round shape, LT axis ratio<2, sharp margins and cortical thickness>3 mm were associated with lymph node metastasis. Multivariate logistic regression analysis revealed cortical thickness > 3 mm as an independent predictive parameter for nodal involvement. Sensitivity, specificity, positive predictive value, negative predictive value and accuracy were 66.7, 74.6, 63.6, 77.0% and 71.4% respectively when cortical thickness > 3 mm was applied as the criterion for AUS positivity. Axillary tumor volume was low in patients with pT1/2 tumors and negative AUS, since only 3.2% of patients had > 2 metastatic lymph nodes. Conclusion: Cortical thickness>3 mm is a reliable predictor of nodal metastatic involvement. Negative AUS does not exclude lymph node metastases, but extensive axillary tumor volume is rare. PMID:27689144

  10. Targeting Nodal in Conjunction with Dacarbazine Induces Synergistic Anti-cancer Effects in Metastatic Melanoma

    PubMed Central

    Hardy, Katharine M.; Strizzi, Luigi; Margaryan, Naira V.; Gupta, Kanika; Murphy, George F.; Scolyer, Richard A.; Hendrix, Mary J.C.

    2015-01-01

    Metastatic melanoma is a highly aggressive skin cancer with a poor prognosis. Despite a complete response in fewer than 5% of patients, the chemotherapeutic agent Dacarbazine (DTIC) remains the reference drug after almost 40 years. More recently FDA approved drugs have shown promise but patient outcome remains modest, predominantly due to drug resistance. As such, combinatorial targeting has received increased attention, and will advance with the identification of new molecular targets. One attractive target for improving melanoma therapy is the growth factor Nodal, whose normal expression is largely restricted to embryonic development, but is reactivated in metastatic melanoma. In this study, we sought to determine how Nodal-positive human melanoma cells respond to DTIC treatment and to ascertain if targeting Nodal in combination with DTIC would be more effective than monotherapy. A single treatment with DTIC inhibited cell growth but did not induce apoptosis. Rather than reducing Nodal expression, DTIC increased the size of the Nodal-positive subpopulation, an observation coincident with increased cellular invasion. Importantly, clinical tissue specimens from patients with melanomas refractory to DTIC therapy stained positive for Nodal expression, both in pre- and post-DTIC tumors, underscoring the value of targeting Nodal. In vitro, anti-Nodal antibodies alone had some adverse effects on proliferation and apoptosis, but combining DTIC treatment with anti-Nodal antibodies decreased cell growth and increased apoptosis synergistically, at concentrations incapable of producing meaningful effects as monotherapy. Implications Targeting Nodal in combination with DTIC therapy holds promise for the treatment of metastatic melanoma. PMID:25767211

  11. Cilia are required for asymmetric nodal induction in the sea urchin embryo.

    PubMed

    Tisler, Matthias; Wetzel, Franziska; Mantino, Sabrina; Kremnyov, Stanislav; Thumberger, Thomas; Schweickert, Axel; Blum, Martin; Vick, Philipp

    2016-08-23

    Left-right (LR) organ asymmetries are a common feature of metazoan animals. In many cases, laterality is established by a conserved asymmetric Nodal signaling cascade during embryogenesis. In most vertebrates, asymmetric nodal induction results from a cilia-driven leftward fluid flow at the left-right organizer (LRO), a ciliated epithelium present during gastrula/neurula stages. Conservation of LRO and flow beyond the vertebrates has not been reported yet. Here we study sea urchin embryos, which use nodal to establish larval LR asymmetry as well. Cilia were found in the archenteron of embryos undergoing gastrulation. Expression of foxj1 and dnah9 suggested that archenteron cilia were motile. Cilia were polarized to the posterior pole of cells, a prerequisite of directed flow. High-speed videography revealed rotating cilia in the archenteron slightly before asymmetric nodal induction. Removal of cilia through brief high salt treatments resulted in aberrant patterns of nodal expression. Our data demonstrate that cilia - like in vertebrates - are required for asymmetric nodal induction in sea urchin embryos. Based on these results we argue that the anterior archenteron represents a bona fide LRO and propose that cilia-based symmetry breakage is a synapomorphy of the deuterostomes.

  12. Toddler signaling regulates mesodermal cell migration downstream of Nodal signaling

    PubMed Central

    Norris, Megan L; Pauli, Andrea; Gagnon, James A; Lord, Nathan D; Rogers, Katherine W; Mosimann, Christian; Zon, Leonard I

    2017-01-01

    Toddler/Apela/Elabela is a conserved secreted peptide that regulates mesendoderm development during zebrafish gastrulation. Two non-exclusive models have been proposed to explain Toddler function. The ‘specification model’ postulates that Toddler signaling enhances Nodal signaling to properly specify endoderm, whereas the ‘migration model’ posits that Toddler signaling regulates mesendodermal cell migration downstream of Nodal signaling. Here, we test key predictions of both models. We find that in toddler mutants Nodal signaling is initially normal and increasing endoderm specification does not rescue mesendodermal cell migration. Mesodermal cell migration defects in toddler mutants result from a decrease in animal pole-directed migration and are independent of endoderm. Conversely, endodermal cell migration defects are dependent on a Cxcr4a-regulated tether of the endoderm to mesoderm. These results suggest that Toddler signaling regulates mesodermal cell migration downstream of Nodal signaling and indirectly affects endodermal cell migration via Cxcr4a-signaling. PMID:29117894

  13. Nodal patterning without Lefty inhibitory feedback is functional but fragile

    PubMed Central

    Gagnon, James A; Pauli, Andrea; Zimmerman, Steven; Aksel, Deniz C; Reyon, Deepak; Tsai, Shengdar Q; Joung, J Keith

    2017-01-01

    Developmental signaling pathways often activate their own inhibitors. Such inhibitory feedback has been suggested to restrict the spatial and temporal extent of signaling or mitigate signaling fluctuations, but these models are difficult to rigorously test. Here, we determine whether the ability of the mesendoderm inducer Nodal to activate its inhibitor Lefty is required for development. We find that zebrafish lefty mutants exhibit excess Nodal signaling and increased specification of mesendoderm, resulting in embryonic lethality. Strikingly, development can be fully restored without feedback: Lethal patterning defects in lefty mutants can be rescued by ectopic expression of lefty far from its normal expression domain or by spatially and temporally uniform exposure to a Nodal inhibitor drug. While drug-treated mutants are less tolerant of mild perturbations to Nodal signaling levels than wild type embryos, they can develop into healthy adults. These results indicate that patterning without inhibitory feedback is functional but fragile. PMID:29215332

  14. Occult Nodal Disease Prevalence and Distribution in Recurrent Laryngeal Cancer Requiring Salvage Laryngectomy.

    PubMed

    Birkeland, Andrew C; Rosko, Andrew J; Issa, Mohamad R; Shuman, Andrew G; Prince, Mark E; Wolf, Gregory T; Bradford, Carol R; McHugh, Jonathan B; Brenner, J Chad; Spector, Matthew E

    2016-03-01

    The indications for neck dissection concurrent with salvage laryngectomy in the clinically N0 setting remain unclear. Our goals were to determine the prevalence of occult nodal disease, analyze nodal disease distribution patterns, and identify predictors of occult nodal disease in a salvage laryngectomy cohort. Case series with planned data collection. Tertiary academic center. Patients with persistent or recurrent laryngeal squamous cell carcinoma (LSCC) after radiation/chemoradiation failure undergoing salvage laryngectomy with neck dissection. We analyzed a single-institution retrospective case series of patients between 1997 and 2014 and identified those who had clinically N0 (cN0) necks (n = 203). Clinical and pathologic data, including nodal prevalence and distribution, were collected and statistical analyses performed. Overall, cN0 necks had histologically positive occult nodes in 17% (n = 35) of cases. Univariate predictors of occult nodal positivity included recurrent T4 stage (34% T4 vs 12% non-T4; P = .0003) and supraglottic subsite (28% supraglottic vs 10% nonsupraglottic; P = .0006). Histologically positive nodes associated with supraglottic primaries were most frequently positive in ipsilateral levels II and III (17% and 16%). Positive nodes for glottic LSCC were most frequently positive in the ipsilateral and contralateral paratracheal nodes (11% and 9%). Histologically positive occult nodes are identified in 17% of cN0 patients undergoing salvage laryngectomy with neck dissection. Occult nodal disease varies in frequency and distribution based on tumor subsite. Predictors of high (>20%) occult nodal positivity include T4 tumors and supraglottic subsite. In glottic LSCC, the most frequent sites of occult nodal disease are the paratracheal nodal basins. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2016.

  15. SU-E-J-179: Prediction of Pelvic Nodal Coverage Using Mutual Information Between Cone-Beam and Planning CTs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jani, S; Kishan, A; O'Connell, D

    2014-06-01

    Purpose: To investigate if pelvic nodal coverage for prostate patients undergoing intensity modulated radiotherapy (IMRT) can be predicted using mutual image information computed between planning and cone-beam CTs (CBCTs). Methods: Four patients with high-risk prostate adenocarcinoma were treated with IMRT on a Varian TrueBeam. Plans were designed such that 95% of the nodal planning target volume (PTV) received the prescription dose of 45 Gy (N=1) or 50.4 Gy (N=3). Weekly CBCTs (N=25) were acquired and the nodal clinical target volumes and organs at risk were contoured by a physician. The percent nodal volume receiving prescription dose was recorded as amore » ground truth. Using the recorded shifts performed by the radiation therapists at the time of image acquisition, CBCTs were aligned with the planning kVCT. Mutual image information (MI) was calculated between the CBCT and the aligned planning CT within the contour of the nodal PTV. Due to variable CBCT fields-of-view, CBCT images covering less than 90% of the nodal volume were excluded from the analysis, resulting in the removal of eight CBCTs. Results: A correlation coefficient of 0.40 was observed between the MI metric and the percent of the nodal target volume receiving the prescription dose. One patient's CBCTs had clear outliers from the rest of the patients. Upon further investigation, we discovered image artifacts that were present only in that patient's images. When those four images were excluded, the correlation improved to 0.81. Conclusion: This pilot study shows the potential of predicting pelvic nodal dosimetry by computing the mutual image information between planning CTs and patient setup CBCTs. Importantly, this technique does not involve manual or automatic contouring of the CBCT images. Additional patients and more robust exclusion criteria will help validate our findings.« less

  16. 47 CFR 101.503 - Digital Electronic Message Service Nodal Stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... DEMS Nodal Station licenses should specify the maximum number of 10.6 GHz DEMS User Stations to be served by that nodal station. Any increase in that number must be applied for pursuant to § 1.913 of this... Stations. 101.503 Section 101.503 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY...

  17. 47 CFR 101.503 - Digital Electronic Message Service Nodal Stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... DEMS Nodal Station licenses should specify the maximum number of 10.6 GHz DEMS User Stations to be served by that nodal station. Any increase in that number must be applied for pursuant to § 1.913 of this... Stations. 101.503 Section 101.503 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY...

  18. 47 CFR 101.503 - Digital Electronic Message Service Nodal Stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... DEMS Nodal Station licenses should specify the maximum number of 10.6 GHz DEMS User Stations to be served by that nodal station. Any increase in that number must be applied for pursuant to § 1.913 of this... Stations. 101.503 Section 101.503 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY...

  19. 47 CFR 101.503 - Digital Electronic Message Service Nodal Stations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... DEMS Nodal Station licenses should specify the maximum number of 10.6 GHz DEMS User Stations to be served by that nodal station. Any increase in that number must be applied for pursuant to § 1.913 of this... Stations. 101.503 Section 101.503 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY...

  20. Elsevier Trophoblast Research Award lecture: The multifaceted role of Nodal signaling during mammalian reproduction.

    PubMed

    Park, C B; Dufort, D

    2011-03-01

    Nodal, a secreted signaling protein in the transforming growth factor-beta (TGF-β) superfamily, has established roles in vertebrate development. However, components of the Nodal signaling pathway are also expressed at the maternal-fetal interface and have been implicated in many processes of mammalian reproduction. Emerging evidence indicates that Nodal and its extracellular inhibitor Lefty are expressed in the uterus and complex interactions between the two proteins mediate menstruation, decidualization and embryo implantation. Furthermore, several studies have shown that Nodal from both fetal and maternal sources may regulate trophoblast cell fate and facilitate placentation as both embryonic and uterine-specific Nodal knockout mouse strains exhibit disrupted placenta morphology. Here we review the established and prospective roles of Nodal signaling in facilitating successful pregnancy, including recent evidence supporting a potential link to parturition and preterm birth. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. The application of quadratic optimal cooperative control synthesis to a CH-47 helicopter

    NASA Technical Reports Server (NTRS)

    Townsend, Barbara K.

    1987-01-01

    A control-system design method, quadratic optimal cooperative control synthesis (CCS), is applied to the design of a stability and control augmentation system (SCAS). The CCS design method is different from other design methods in that it does not require detailed a priori design criteria, but instead relies on an explicit optimal pilot-model to create desired performance. The design method, which was developed previously for fixed-wing aircraft, is simplified and modified for application to a Boeing CH-47 helicopter. Two SCAS designs are developed using the CCS design methodology. The resulting CCS designs are then compared with designs obtained using classical/frequency-domain methods and linear quadratic regulator (LQR) theory in a piloted fixed-base simulation. Results indicate that the CCS method, with slight modifications, can be used to produce controller designs which compare favorably with the frequency-domain approach.

  2. An Algebraic Approach for Solving Quadratic Inequalities

    ERIC Educational Resources Information Center

    Mahmood, Munir; Al-Mirbati, Rudaina

    2017-01-01

    In recent years most text books utilise either the sign chart or graphing functions in order to solve a quadratic inequality of the form ax[superscript 2] + bx + c < 0 This article demonstrates an algebraic approach to solve the above inequality. To solve a quadratic inequality in the form of ax[superscript 2] + bx + c < 0 or in the…

  3. Response of millet and sorghum to a varying water supply around the primary and nodal roots.

    PubMed

    Rostamza, M; Richards, R A; Watt, M

    2013-07-01

    Cereals have two root systems. The primary system originates from the embryo when the seed germinates and can support the plant until it produces grain. The nodal system can emerge from stem nodes throughout the plant's life; its value for yield is unclear and depends on the environment. The aim of this study was to test the role of nodal roots of sorghum and millet in plant growth in response to variation in soil moisture. Sorghum and millet were chosen as both are adapted to dry conditions. Sorghum and millet were grown in a split-pot system that allowed the primary and nodal roots to be watered separately. When primary and nodal roots were watered (12 % soil water content; SWC), millet nodal roots were seven times longer than those of sorghum and six times longer than millet plants in dry treatments, mainly from an 8-fold increase in branch root length. When soil was allowed to dry in both compartments, millet nodal roots responded and grew 20 % longer branch roots than in the well-watered control. Sorghum nodal roots were unchanged. When only primary roots received water, nodal roots of both species emerged and elongated into extremely dry soil (0.6-1.5 % SWC), possibly with phloem-delivered water from the primary roots in the moist inner pot. Nodal roots were thick, short, branchless and vertical, indicating a tropism that was more pronounced in millet. Total nodal root length increased in both species when the dry soil was covered with plastic, suggesting that stubble retention or leaf mulching could facilitate nodal roots reaching deeper moist layers in dry climates. Greater nodal root length in millet than in sorghum was associated with increased shoot biomass, water uptake and water use efficiency (shoot mass per water). Millet had a more plastic response than sorghum to moisture around the nodal roots due to (1) faster growth and progression through ontogeny for earlier nodal root branch length and (2) partitioning to nodal root length from primary roots

  4. Comparison of Modal to Nodal Approaches for Wavefront Correction,

    DTIC Science & Technology

    1986-02-01

    the influence function of the wavefront corrector. (Implicit here is the assumption that the influence function is the same for every node, which is...To implement a nodal correction, the wavefront to be corrected is -. .. decomposed using a basis which is determined by the nodal (actuator) influence ... function of the wavefront corrector. This decomposition results in a set of coefficients which correspond to the drive signal required at the

  5. On the Nodal Lines of Eisenstein Series on Schottky Surfaces

    NASA Astrophysics Data System (ADS)

    Jakobson, Dmitry; Naud, Frédéric

    2017-04-01

    On convex co-compact hyperbolic surfaces {X=Γ backslash H2}, we investigate the behavior of nodal curves of real valued Eisenstein series {F_λ(z,ξ)}, where {λ} is the spectral parameter, {ξ} the direction at infinity. Eisenstein series are (non-{L^2}) eigenfunctions of the Laplacian {Δ_X} satisfying {Δ_X F_λ=(1/4+λ^2)F_λ}. As {λ} goes to infinity (the high energy limit), we show that, for generic {ξ}, the number of intersections of nodal lines with any compact segment of geodesic grows like {λ}, up to multiplicative constants. Applications to the number of nodal domains inside the convex core of the surface are then derived.

  6. The application of quadratic optimal cooperative control synthesis to a CH-47 helicopter

    NASA Technical Reports Server (NTRS)

    Townsend, Barbara K.

    1986-01-01

    A control-system design method, Quadratic Optimal Cooperative Control Synthesis (CCS), is applied to the design of a Stability and Control Augmentation Systems (SCAS). The CCS design method is different from other design methods in that it does not require detailed a priori design criteria, but instead relies on an explicit optimal pilot-model to create desired performance. The design model, which was developed previously for fixed-wing aircraft, is simplified and modified for application to a Boeing Vertol CH-47 helicopter. Two SCAS designs are developed using the CCS design methodology. The resulting CCS designs are then compared with designs obtained using classical/frequency-domain methods and Linear Quadratic Regulator (LQR) theory in a piloted fixed-base simulation. Results indicate that the CCS method, with slight modifications, can be used to produce controller designs which compare favorably with the frequency-domain approach.

  7. Linear quadratic regulators with eigenvalue placement in a horizontal strip

    NASA Technical Reports Server (NTRS)

    Shieh, Leang S.; Dib, Hani M.; Ganesan, Sekar

    1987-01-01

    A method for optimally shifting the imaginary parts of the open-loop poles of a multivariable control system to the desirable closed-loop locations is presented. The optimal solution with respect to a quadratic performance index is obtained by solving a linear matrix Liapunov equation.

  8. Topological nodal-line fermions in spin-orbit metal PbTaSe2

    DOE PAGES

    Bian, Guang; Chang, Tay-Rong; Sankar, Raman; ...

    2016-02-02

    Here we discuss how topological semimetals can support one-dimensional Fermi lines or zero-dimensional Weyl points in momentum space, where the valence and conduction bands touch. While the degeneracy points in Weyl semimetals are robust against any perturbation that preserves translational symmetry, nodal lines require protection by additional crystalline symmetries such as mirror reflection. Here we report, based on a systematic theoretical study and a detailed experimental characterization, the existence of topological nodal-line states in the non-centrosymmetric compound PbTaSe 2 with strong spin-orbit coupling. Remarkably, the spin-orbit nodal lines in PbTaSe 2 are not only protected by the reflection symmetry butmore » also characterized by an integer topological invariant. Our detailed angle-resolved photoemission measurements, first-principles simulations and theoretical topological analysis illustrate the physical mechanism underlying the formation of the topological nodal-line states and associated surface states for the first time, thus paving the way towards exploring the exotic properties of the topological nodal-line fermions in condensed matter systems.« less

  9. Topological nodal-line fermions in spin-orbit metal PbTaSe2

    PubMed Central

    Bian, Guang; Chang, Tay-Rong; Sankar, Raman; Xu, Su-Yang; Zheng, Hao; Neupert, Titus; Chiu, Ching-Kai; Huang, Shin-Ming; Chang, Guoqing; Belopolski, Ilya; Sanchez, Daniel S.; Neupane, Madhab; Alidoust, Nasser; Liu, Chang; Wang, BaoKai; Lee, Chi-Cheng; Jeng, Horng-Tay; Zhang, Chenglong; Yuan, Zhujun; Jia, Shuang; Bansil, Arun; Chou, Fangcheng; Lin, Hsin; Hasan, M. Zahid

    2016-01-01

    Topological semimetals can support one-dimensional Fermi lines or zero-dimensional Weyl points in momentum space, where the valence and conduction bands touch. While the degeneracy points in Weyl semimetals are robust against any perturbation that preserves translational symmetry, nodal lines require protection by additional crystalline symmetries such as mirror reflection. Here we report, based on a systematic theoretical study and a detailed experimental characterization, the existence of topological nodal-line states in the non-centrosymmetric compound PbTaSe2 with strong spin-orbit coupling. Remarkably, the spin-orbit nodal lines in PbTaSe2 are not only protected by the reflection symmetry but also characterized by an integer topological invariant. Our detailed angle-resolved photoemission measurements, first-principles simulations and theoretical topological analysis illustrate the physical mechanism underlying the formation of the topological nodal-line states and associated surface states for the first time, thus paving the way towards exploring the exotic properties of the topological nodal-line fermions in condensed matter systems. PMID:26829889

  10. TGF-β promotes glioma cell growth via activating Nodal expression through Smad and ERK1/2 pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Jing; Liu, Su-zhi; Lin, Yan

    Highlights: •TGF-β promoted Nodal expression in glioma cells. •TGF-β promoted Nodal expression via activating Smad and ERK1/2 pathways. •TGF-β promotes glioma cell growth via activating Nodal expression. -- Abstract: While there were certain studies focusing on the mechanism of TGF-β promoting the growth of glioma cells, the present work revealed another novel mechanism that TGF-β may promote glioma cell growth via enhancing Nodal expression. Our results showed that Nodal expression was significantly upregulated in glioma cells when TGF-β was added, whereas the TGF-β-induced Nodal expression was evidently inhibited by transfection Smad2 or Smad3 siRNAs, and the suppression was especially significantmore » when the Smad3 was downregulated. Another, the attenuation of TGF-β-induced Nodal expression was observed with blockade of the ERK1/2 pathway also. Further detection of the proliferation, apoptosis, and invasion of glioma cells indicated that Nodal overexpression promoted the proliferation and invasion of tumor cells and inhibited their apoptosis, resembling the effect of TGF-β addition. Downregulation of Nodal expression via transfection Nodal-specific siRNA in the presence of TGF-β weakened the promoting effect of the latter on glioma cells growth, and transfecting Nodal siRNA alone in the absence of exogenous TGF-β more profoundly inhibited the growth of glioma cells. These results demonstrated that while both TGF-β and Nodal promoted glioma cells growth, the former might exert such effect by enhancing Nodal expression, which may form a new target for glioma therapy.« less

  11. Initial system design method for non-rotationally symmetric systems based on Gaussian brackets and Nodal aberration theory.

    PubMed

    Zhong, Yi; Gross, Herbert

    2017-05-01

    Freeform surfaces play important roles in improving the imaging performance of off-axis optical systems. However, for some systems with high requirements in specifications, the structure of the freeform surfaces could be very complicated and the number of freeform surfaces could be large. That brings challenges in fabrication and increases the cost. Therefore, to achieve a good initial system with minimum aberrations and reasonable structure before implementing freeform surfaces is essential for optical designers. The already existing initial system design methods are limited to certain types of systems. A universal tool or method to achieve a good initial system efficiently is very important. In this paper, based on the Nodal aberration theory and the system design method using Gaussian Brackets, the initial system design method is extended from rotationally symmetric systems to general non-rotationally symmetric systems. The design steps are introduced and on this basis, two off-axis three-mirror systems are pre-designed using spherical shape surfaces. The primary aberrations are minimized using the nonlinear least-squares solver. This work provides insight and guidance for initial system design of off-axis mirror systems.

  12. Off-diagonal Jacobian support for Nodal BCs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, John W.; Andrs, David; Gaston, Derek R.

    In this brief note, we describe the implementation of o-diagonal Jacobian computations for nodal boundary conditions in the Multiphysics Object Oriented Simulation Environment (MOOSE) [1] framework. There are presently a number of applications [2{5] based on the MOOSE framework that solve complicated physical systems of partial dierential equations whose boundary conditions are often highly nonlinear. Accurately computing the on- and o-diagonal Jacobian and preconditioner entries associated to these constraints is crucial for enabling ecient numerical solvers in these applications. Two key ingredients are required for properly specifying the Jacobian contributions of nonlinear nodal boundary conditions in MOOSE and nite elementmore » codes in general: 1. The ability to zero out entire Jacobian matrix rows after \

  13. Graphical Solution of the Monic Quadratic Equation with Complex Coefficients

    ERIC Educational Resources Information Center

    Laine, A. D.

    2015-01-01

    There are many geometrical approaches to the solution of the quadratic equation with real coefficients. In this article it is shown that the monic quadratic equation with complex coefficients can also be solved graphically, by the intersection of two hyperbolas; one hyperbola being derived from the real part of the quadratic equation and one from…

  14. Barrier tunneling of the loop-nodal semimetal in the hyperhoneycomb lattice

    NASA Astrophysics Data System (ADS)

    Guan, Ji-Huan; Zhang, Yan-Yang; Lu, Wei-Er; Xia, Yang; Li, Shu-Shen

    2018-05-01

    We theoretically investigate the barrier tunneling in the 3D model of the hyperhoneycomb lattice, which is a nodal-line semimetal with a Dirac loop at zero energy. In the presence of a rectangular potential, the scattering amplitudes for different injecting states around the nodal loop are calculated, by using analytical treatments of the effective model, as well as numerical simulations of the tight binding model. In the low energy regime, states with remarkable transmissions are only concentrated in a small range around the loop plane. When the momentum of the injecting electron is coplanar with the nodal loop, nearly perfect transmissions can occur for a large range of injecting azimuthal angles if the potential is not high. For higher potential energies, the transmission shows a resonant oscillation with the potential, but still with peaks being perfect transmissions that do not decay with the potential width. These strikingly robust transports of the loop-nodal semimetal can be approximately explained by a momentum dependent Dirac Hamiltonian.

  15. Atlas-Based Segmentation Improves Consistency and Decreases Time Required for Contouring Postoperative Endometrial Cancer Nodal Volumes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Amy V.; Department of Radiation Oncology, St. Luke's-Roosevelt Hospital, New York, NY; Wortham, Angela

    2011-03-01

    Purpose: Accurate target delineation of the nodal volumes is essential for three-dimensional conformal and intensity-modulated radiotherapy planning for endometrial cancer adjuvant therapy. We hypothesized that atlas-based segmentation ('autocontouring') would lead to time savings and more consistent contours among physicians. Methods and Materials: A reference anatomy atlas was constructed using the data from 15 postoperative endometrial cancer patients by contouring the pelvic nodal clinical target volume on the simulation computed tomography scan according to the Radiation Therapy Oncology Group 0418 trial using commercially available software. On the simulation computed tomography scans from 10 additional endometrial cancer patients, the nodal clinical targetmore » volume autocontours were generated. Three radiation oncologists corrected the autocontours and delineated the manual nodal contours under timed conditions while unaware of the other contours. The time difference was determined, and the overlap of the contours was calculated using Dice's coefficient. Results: For all physicians, manual contouring of the pelvic nodal target volumes and editing the autocontours required a mean {+-} standard deviation of 32 {+-} 9 vs. 23 {+-} 7 minutes, respectively (p = .000001), a 26% time savings. For each physician, the time required to delineate the manual contours vs. correcting the autocontours was 30 {+-} 3 vs. 21 {+-} 5 min (p = .003), 39 {+-} 12 vs. 30 {+-} 5 min (p = .055), and 29 {+-} 5 vs. 20 {+-} 5 min (p = .0002). The mean overlap increased from manual contouring (0.77) to correcting the autocontours (0.79; p = .038). Conclusion: The results of our study have shown that autocontouring leads to increased consistency and time savings when contouring the nodal target volumes for adjuvant treatment of endometrial cancer, although the autocontours still required careful editing to ensure that the lymph nodes at risk of recurrence are properly included in the

  16. Quantum anomalies in nodal line semimetals

    NASA Astrophysics Data System (ADS)

    Burkov, A. A.

    2018-04-01

    Topological semimetals are a new class of condensed matter systems with nontrivial electronic structure topology. Their unusual observable properties may often be understood in terms of quantum anomalies. In particular, Weyl and Dirac semimetals, which have point band-touching nodes, are characterized by the chiral anomaly, which leads to the Fermi arc surface states, anomalous Hall effect, negative longitudinal magnetoresistance, and planar Hall effect. In this paper, we explore analogous phenomena in nodal line semimetals. We demonstrate that such semimetals realize a three-dimensional analog of the parity anomaly, which is a known property of two-dimensional Dirac semimetals arising, for example, on the surface of a three-dimensional topological insulator. We relate one of the characteristic properties of nodal line semimetals, namely, the drumhead surface states, to this anomaly, and derive the field theory, which encodes the corresponding anomalous response.

  17. Three-dimensional graphdiyne as a topological nodal-line semimetal

    NASA Astrophysics Data System (ADS)

    Nomura, Takafumi; Habe, Tetsuro; Sakamoto, Ryota; Koshino, Mikito

    2018-05-01

    We study the electronic band structure of three-dimensional ABC-stacked (rhombohedral) graphdiyne, which is a new planar carbon allotrope recently fabricated. Using first-principles calculation, we show that the system is a nodal-line semimetal, in which the conduction band and valence band cross at a closed ring in the momentum space. We derive the minimum tight-binding model and the low-energy effective Hamiltonian in a 4 ×4 matrix form. The nodal line is protected by a nontrivial winding number, and it ensures the existence of the topological surface state in a finite-thickness slab. The Fermi surface of the doped system exhibits a peculiar, self-intersecting hourglass structure, which is quite different from the torus or pipe shape in the previously proposed nodal semimetals. Despite its simple configuration, three-dimensional graphdiyne offers unique electronic properties distinct from any other carbon allotropes.

  18. Directional passability and quadratic steering logic for pyramid-type single gimbal control moment gyros

    NASA Astrophysics Data System (ADS)

    Yamada, Katsuhiko; Jikuya, Ichiro

    2014-09-01

    Singularity analysis and the steering logic of pyramid-type single gimbal control moment gyros are studied. First, a new concept of directional passability in a specified direction is introduced to investigate the structure of an elliptic singular surface. The differences between passability and directional passability are discussed in detail and are visualized for 0H, 2H, and 4H singular surfaces. Second, quadratic steering logic (QSL), a new steering logic for passing the singular surface, is investigated. The algorithm is based on the quadratic constrained quadratic optimization problem and is reduced to the Newton method by using Gröbner bases. The proposed steering logic is demonstrated through numerical simulations for both constant torque maneuvering examples and attitude control examples.

  19. Frequency-independent approach to calculate physical optics radiations with the quadratic concave phase variations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yu Mao, E-mail: yumaowu@fudan.edu.cn; Teng, Si Jia, E-mail: sjteng12@fudan.edu.cn

    In this work, we develop the numerical steepest descent path (NSDP) method to calculate the physical optics (PO) radiations with the quadratic concave phase variations. With the surface integral equation method, the physical optics (PO) scattered fields are formulated and further reduced to the surface integrals. The high frequency physical critical points contributions, including the stationary phase points, the boundary resonance points and the vertex points are comprehensively studied via the proposed NSDP method. The key contributions of this work are twofold. One is that together with the PO integrals taking the quadratic parabolic and hyperbolic phase terms, this workmore » makes the NSDP theory be complete for treating the PO integrals with quadratic phase variations. Another is that, in order to illustrate the transition effect of the high frequency physical critical points, in this work, we consider and further extend the NSDP method to calculate the PO integrals with the coalescence of the high frequency critical points. Numerical results for the highly oscillatory PO integral with the coalescence of the critical points are given to verify the efficiency of the proposed NSDP method. The NSDP method could achieve the frequency independent computational workload and error controllable accuracy in all the numerical experiments, especially for the case of the coalescence of the high frequency critical points.« less

  20. Long period nodal motion of sun synchronous orbits

    NASA Technical Reports Server (NTRS)

    Duck, K. I.

    1975-01-01

    An approximative model is formulated for assessing these perturbations that significantly affect long term modal motion of sun synchronous orbits. Computer simulations with several independent computer programs consider zonal and tesseral gravitational harmonics, third body gravitational disturbances induced by the sun and the moon, and atmospheric drag. A pendulum model consisting of evenzonal harmonics through order 4 and solar gravity dominated nodal motion approximation. This pendulum motion results from solar gravity inducing an inclination oscillation which couples into the nodal precession induced by the earth's oblateness. The pendulum model correlated well with simulations observed flight data.

  1. Accuracy of quadrat sampling in studying forest reproduction on cut-over areas

    Treesearch

    I. T. Haig

    1929-01-01

    The quadrat method, first introduced into ecological studies by Pound and Clements in i898, has been adopted by both foresters and ecologists as one of the most accurate means of studying the occurrence, distribution, and development of vegetation (Clements, '05; Weaver, '18). This method is unquestionably more precise than the descriptive method which it...

  2. Test spaces and characterizations of quadratic spaces

    NASA Astrophysics Data System (ADS)

    Dvurečenskij, Anatolij

    1996-10-01

    We show that a test space consisting of nonzero vectors of a quadratic space E and of the set all maximal orthogonal systems in E is algebraic iff E is Dacey or, equivalently, iff E is orthomodular. In addition, we present another orthomodularity criteria of quadratic spaces, and using the result of Solèr, we show that they can imply that E is a real, complex, or quaternionic Hilbert space.

  3. Topological nodal superconducting phases and topological phase transition in the hyperhoneycomb lattice

    NASA Astrophysics Data System (ADS)

    Bouhon, Adrien; Schmidt, Johann; Black-Schaffer, Annica M.

    2018-03-01

    We establish the topology of the spin-singlet superconducting states in the bare hyperhoneycomb lattice, and we derive analytically the full phase diagram using only symmetry and topology in combination with simple energy arguments. The phase diagram is dominated by two states preserving time-reversal symmetry. We find a line-nodal state dominating at low doping levels that is topologically nontrivial and exhibits surface Majorana flatbands, which we show perfectly match the bulk-boundary correspondence using the Berry phase approach. At higher doping levels, we find a fully gapped state with trivial topology. By analytically calculating the topological invariant of the nodal lines, we derive the critical point between the line-nodal and fully gapped states as a function of both pairing parameters and doping. We find that the line-nodal state is favored not only at lower doping levels but also if symmetry-allowed deformations of the lattice are present. Adding simple energy arguments, we establish that a fully gapped state with broken time-reversal symmetry likely appears covering the actual phase transition. We find this fully gapped state to be topologically trivial, while we find an additional point-nodal state at very low doing levels that also break time-reversal symmetry and has nontrivial topology with associated Fermi surface arcs. We eventually address the robustness of the phase diagram to generalized models also including adiabatic spin-orbit coupling, and we show how all but the point-nodal state are reasonably stable.

  4. Geometric quadratic stochastic operator on countable infinite set

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganikhodjaev, Nasir; Hamzah, Nur Zatul Akmar

    2015-02-03

    In this paper we construct the family of Geometric quadratic stochastic operators defined on the countable sample space of nonnegative integers and investigate their trajectory behavior. Such operators can be reinterpreted in terms of of evolutionary operator of free population. We show that Geometric quadratic stochastic operators are regular transformations.

  5. Unilateral dampening of Bmp activity by nodal generates cardiac left-right asymmetry.

    PubMed

    Veerkamp, Justus; Rudolph, Franziska; Cseresnyes, Zoltan; Priller, Florian; Otten, Cécile; Renz, Marc; Schaefer, Liliana; Abdelilah-Seyfried, Salim

    2013-03-25

    Signaling by Nodal and Bmp is essential for cardiac laterality. How activities of these pathways translate into left-right asymmetric organ morphogenesis is largely unknown. We show that, in zebrafish, Nodal locally reduces Bmp activity on the left side of the cardiac field. This effect is mediated by the extracellular matrix enzyme Hyaluronan synthase 2, expression of which is induced by Nodal. Unilateral reduction of Bmp signaling results in lower expression of nonmuscle myosin II and higher cell motility on the left, driving asymmetric displacement of the entire cardiac field. In silico modeling shows that left-right differences in cell motility are sufficient to induce a robust, directional migration of cardiac tissue. Thus, the mechanism underlying the formation of cardiac left-right asymmetry involves Nodal modulating an antimotogenic Bmp activity. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Rigorous Numerical Study of Low-Period Windows for the Quadratic Map

    NASA Astrophysics Data System (ADS)

    Galias, Zbigniew

    An efficient method to find all low-period windows for the quadratic map is proposed. The method is used to obtain very accurate rigorous bounds of positions of all periodic windows with periods p ≤ 32. The contribution of period-doubling windows on the total width of periodic windows is discussed. Properties of periodic windows are studied numerically.

  7. Quadratic Programming for Allocating Control Effort

    NASA Technical Reports Server (NTRS)

    Singh, Gurkirpal

    2005-01-01

    A computer program calculates an optimal allocation of control effort in a system that includes redundant control actuators. The program implements an iterative (but otherwise single-stage) algorithm of the quadratic-programming type. In general, in the quadratic-programming problem, one seeks the values of a set of variables that minimize a quadratic cost function, subject to a set of linear equality and inequality constraints. In this program, the cost function combines control effort (typically quantified in terms of energy or fuel consumed) and control residuals (differences between commanded and sensed values of variables to be controlled). In comparison with prior control-allocation software, this program offers approximately equal accuracy but much greater computational efficiency. In addition, this program offers flexibility, robustness to actuation failures, and a capability for selective enforcement of control requirements. The computational efficiency of this program makes it suitable for such complex, real-time applications as controlling redundant aircraft actuators or redundant spacecraft thrusters. The program is written in the C language for execution in a UNIX operating system.

  8. Conic Sampling: An Efficient Method for Solving Linear and Quadratic Programming by Randomly Linking Constraints within the Interior

    PubMed Central

    Serang, Oliver

    2012-01-01

    Linear programming (LP) problems are commonly used in analysis and resource allocation, frequently surfacing as approximations to more difficult problems. Existing approaches to LP have been dominated by a small group of methods, and randomized algorithms have not enjoyed popularity in practice. This paper introduces a novel randomized method of solving LP problems by moving along the facets and within the interior of the polytope along rays randomly sampled from the polyhedral cones defined by the bounding constraints. This conic sampling method is then applied to randomly sampled LPs, and its runtime performance is shown to compare favorably to the simplex and primal affine-scaling algorithms, especially on polytopes with certain characteristics. The conic sampling method is then adapted and applied to solve a certain quadratic program, which compute a projection onto a polytope; the proposed method is shown to outperform the proprietary software Mathematica on large, sparse QP problems constructed from mass spectometry-based proteomics. PMID:22952741

  9. Mixing of ultrasonic Lamb waves in thin plates with quadratic nonlinearity.

    PubMed

    Li, Feilong; Zhao, Youxuan; Cao, Peng; Hu, Ning

    2018-07-01

    This paper investigates the propagation of Lamb waves in thin plates with quadratic nonlinearity by one-way mixing method using numerical simulations. It is shown that an A 0 -mode wave can be generated by a pair of S 0 and A 0 mode waves only when mixing condition is satisfied, and mixing wave signals are capable of locating the damage zone. Additionally, it is manifested that the acoustic nonlinear parameter increases linearly with quadratic nonlinearity but monotonously with the size of mixing zone. Furthermore, because of frequency deviation, the waveform of the mixing wave changes significantly from a regular diamond shape to toneburst trains. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Symmorphic Intersecting Nodal Rings in Semiconducting Layers

    NASA Astrophysics Data System (ADS)

    Gong, Cheng; Xie, Yuee; Chen, Yuanping; Kim, Heung-Sik; Vanderbilt, David

    2018-03-01

    The unique properties of topological semimetals have strongly driven efforts to seek for new topological phases and related materials. Here, we identify a critical condition for the existence of intersecting nodal rings (INRs) in symmorphic crystals, and further classify all possible kinds of INRs which can be obtained in the layered semiconductors with Amm2 and Cmmm space group symmetries. Several honeycomb structures are suggested to be topological INR semimetals, including layered and "hidden" layered structures. Transitions between the three types of INRs, named as α , β , and γ type, can be driven by external strains in these structures. The resulting surface states and Landau-level structures, more complicated than those resulting from a simple nodal loop, are also discussed.

  11. Analysis of nodal coverage utilizing image guided radiation therapy for primary gynecologic tumor volumes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, Faisal; Loma Linda University Medical Center, Department of Radiation Oncology, Loma Linda, CA; Sarkar, Vikren

    Purpose: To evaluate radiation dose delivered to pelvic lymph nodes, if daily Image Guided Radiation Therapy (IGRT) was implemented with treatment shifts based on the primary site (primary clinical target volume [CTV]). Our secondary goal was to compare dosimetric coverage with patient outcomes. Materials and methods: A total of 10 female patients with gynecologic malignancies were evaluated retrospectively after completion of definitive intensity-modulated radiation therapy (IMRT) to their pelvic lymph nodes and primary tumor site. IGRT consisted of daily kilovoltage computed tomography (CT)-on-rails imaging fused with initial planning scans for position verification. The initial plan was created using Varian's Eclipsemore » treatment planning software. Patients were treated with a median radiation dose of 45 Gy (range: 37.5 to 50 Gy) to the primary volume and 45 Gy (range: 45 to 64.8 Gy) to nodal structures. One IGRT scan per week was randomly selected from each patient's treatment course and re-planned on the Eclipse treatment planning station. CTVs were recreated by fusion on the IGRT image series, and the patient's treatment plan was applied to the new image set to calculate delivered dose. We evaluated the minimum, maximum, and 95% dose coverage for primary and nodal structures. Reconstructed primary tumor volumes were recreated within 4.7% of initial planning volume (0.9% to 8.6%), and reconstructed nodal volumes were recreated to within 2.9% of initial planning volume (0.01% to 5.5%). Results: Dosimetric parameters averaged less than 10% (range: 1% to 9%) of the original planned dose (45 Gy) for primary and nodal volumes on all patients (n = 10). For all patients, ≥99.3% of the primary tumor volume received ≥ 95% the prescribed dose (V95%) and the average minimum dose was 96.1% of the prescribed dose. In evaluating nodal CTV coverage, ≥ 99.8% of the volume received ≥ 95% the prescribed dose and the average minimum dose was 93%. In evaluating

  12. A predictive index of axillary nodal involvement in operable breast cancer.

    PubMed Central

    De Laurentiis, M.; Gallo, C.; De Placido, S.; Perrone, F.; Pettinato, G.; Petrella, G.; Carlomagno, C.; Panico, L.; Delrio, P.; Bianco, A. R.

    1996-01-01

    We investigated the association between pathological characteristics of primary breast cancer and degree of axillary nodal involvement and obtained a predictive index of the latter from the former. In 2076 cases, 17 histological features, including primary tumour and local invasion variables, were recorded. The whole sample was randomly split in a training (75% of cases) and a test sample. Simple and multiple correspondence analysis were used to select the variables to enter in a multinomial logit model to build an index predictive of the degree of nodal involvement. The response variable was axillary nodal status coded in four classes (N0, N1-3, N4-9, N > or = 10). The predictive index was then evaluated by testing goodness-of-fit and classification accuracy. Covariates significantly associated with nodal status were tumour size (P < 0.0001), tumour type (P < 0.0001), type of border (P = 0.048), multicentricity (P = 0.003), invasion of lymphatic and blood vessels (P < 0.0001) and nipple invasion (P = 0.006). Goodness-of-fit was validated by high concordance between observed and expected number of cases in each decile of predicted probability in both training and test samples. Classification accuracy analysis showed that true node-positive cases were well recognised (84.5%), but there was no clear distinction among the classes of node-positive cases. However, 10 year survival analysis showed a superimposible prognostic behaviour between predicted and observed nodal classes. Moreover, misclassified node-negative patients (i.e. those who are predicted positive) showed an outcome closer to patients with 1-3 metastatic nodes than to node-negative ones. In conclusion, the index cannot completely substitute for axillary node information, but it is a predictor of prognosis as accurate as nodal involvement and identifies a subgroup of node-negative patients with unfavourable prognosis. PMID:8630286

  13. Some Paradoxical Results for the Quadratically Weighted Kappa

    ERIC Educational Resources Information Center

    Warrens, Matthijs J.

    2012-01-01

    The quadratically weighted kappa is the most commonly used weighted kappa statistic for summarizing interrater agreement on an ordinal scale. The paper presents several properties of the quadratically weighted kappa that are paradoxical. For agreement tables with an odd number of categories "n" it is shown that if one of the raters uses the same…

  14. Hidden supersymmetry and quadratic deformations of the space-time conformal superalgebra

    NASA Astrophysics Data System (ADS)

    Yates, L. A.; Jarvis, P. D.

    2018-04-01

    We analyze the structure of the family of quadratic superalgebras, introduced in Jarvis et al (2011 J. Phys. A: Math. Theor. 44 235205), for the quadratic deformations of N  =  1 space-time conformal supersymmetry. We characterize in particular the ‘zero-step’ modules for this case. In such modules, the odd generators vanish identically, and the quadratic superalgebra is realized on a single irreducible representation of the even subalgebra (which is a Lie algebra). In the case under study, the quadratic deformations of N  =  1 space-time conformal supersymmetry, it is shown that each massless positive energy unitary irreducible representation (in the standard classification of Mack), forms such a zero-step module, for an appropriate parameter choice amongst the quadratic family (with vanishing central charge). For these massless particle multiplets therefore, quadratic supersymmetry is unbroken, in that the supersymmetry generators annihilate all physical states (including the vacuum state), while at the same time, superpartners do not exist.

  15. Quadratic Frequency Modulation Signals Parameter Estimation Based on Two-Dimensional Product Modified Parameterized Chirp Rate-Quadratic Chirp Rate Distribution.

    PubMed

    Qu, Zhiyu; Qu, Fuxin; Hou, Changbo; Jing, Fulong

    2018-05-19

    In an inverse synthetic aperture radar (ISAR) imaging system for targets with complex motion, the azimuth echo signals of the target are always modeled as multicomponent quadratic frequency modulation (QFM) signals. The chirp rate (CR) and quadratic chirp rate (QCR) estimation of QFM signals is very important to solve the ISAR image defocus problem. For multicomponent QFM (multi-QFM) signals, the conventional QR and QCR estimation algorithms suffer from the cross-term and poor anti-noise ability. This paper proposes a novel estimation algorithm called a two-dimensional product modified parameterized chirp rate-quadratic chirp rate distribution (2D-PMPCRD) for QFM signals parameter estimation. The 2D-PMPCRD employs a multi-scale parametric symmetric self-correlation function and modified nonuniform fast Fourier transform-Fast Fourier transform to transform the signals into the chirp rate-quadratic chirp rate (CR-QCR) domains. It can greatly suppress the cross-terms while strengthening the auto-terms by multiplying different CR-QCR domains with different scale factors. Compared with high order ambiguity function-integrated cubic phase function and modified Lv's distribution, the simulation results verify that the 2D-PMPCRD acquires higher anti-noise performance and obtains better cross-terms suppression performance for multi-QFM signals with reasonable computation cost.

  16. The reduced space Sequential Quadratic Programming (SQP) method for calculating the worst resonance response of nonlinear systems

    NASA Astrophysics Data System (ADS)

    Liao, Haitao; Wu, Wenwang; Fang, Daining

    2018-07-01

    A coupled approach combining the reduced space Sequential Quadratic Programming (SQP) method with the harmonic balance condensation technique for finding the worst resonance response is developed. The nonlinear equality constraints of the optimization problem are imposed on the condensed harmonic balance equations. Making use of the null space decomposition technique, the original optimization formulation in the full space is mathematically simplified, and solved in the reduced space by means of the reduced SQP method. The transformation matrix that maps the full space to the null space of the constrained optimization problem is constructed via the coordinate basis scheme. The removal of the nonlinear equality constraints is accomplished, resulting in a simple optimization problem subject to bound constraints. Moreover, second order correction technique is introduced to overcome Maratos effect. The combination application of the reduced SQP method and condensation technique permits a large reduction of the computational cost. Finally, the effectiveness and applicability of the proposed methodology is demonstrated by two numerical examples.

  17. A Quadratic Spring Equation

    ERIC Educational Resources Information Center

    Fay, Temple H.

    2010-01-01

    Through numerical investigations, we study examples of the forced quadratic spring equation [image omitted]. By performing trial-and-error numerical experiments, we demonstrate the existence of stability boundaries in the phase plane indicating initial conditions yielding bounded solutions, investigate the resonance boundary in the [omega]…

  18. Brady's Geothermal Field Nodal Seismometers Metadata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lesley Parker

    Metadata for the nodal seismometer array deployed at the POROTOMO's Natural Laboratory in Brady Hot Spring, Nevada during the March 2016 testing. Metadata includes location and timing for each instrument as well as file lists of data to be uploaded in a separate submission.

  19. On orthogonality preserving quadratic stochastic operators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukhamedov, Farrukh; Taha, Muhammad Hafizuddin Mohd

    2015-05-15

    A quadratic stochastic operator (in short QSO) is usually used to present the time evolution of differing species in biology. Some quadratic stochastic operators have been studied by Lotka and Volterra. In the present paper, we first give a simple characterization of Volterra QSO in terms of absolutely continuity of discrete measures. Further, we introduce a notion of orthogonal preserving QSO, and describe such kind of operators defined on two dimensional simplex. It turns out that orthogonal preserving QSOs are permutations of Volterra QSO. The associativity of genetic algebras generated by orthogonal preserving QSO is studied too.

  20. Amplification and protein overexpression of cyclin D1: Predictor of occult nodal metastasis in early oral cancer.

    PubMed

    Noorlag, Rob; Boeve, Koos; Witjes, Max J H; Koole, Ronald; Peeters, Ton L M; Schuuring, Ed; Willems, Stefan M; van Es, Robert J J

    2017-02-01

    Accurate nodal staging is pivotal for treatment planning in early (stage I-II) oral cancer. Unfortunately, current imaging modalities lack sensitivity to detect occult nodal metastases. Chromosomal region 11q13, including genes CCND1, Fas-associated death domain (FADD), and CTTN, is often amplified in oral cancer with nodal metastases. However, evidence in predicting occult nodal metastases is limited. In 158 patients with early tongue and floor of mouth (FOM) squamous cell carcinomas, both CCND1 amplification and cyclin D1, FADD, and cortactin protein expression were correlated with occult nodal metastases. CCND1 amplification and cyclin D1 expression correlated with occult nodal metastases. Cyclin D1 expression was validated in an independent multicenter cohort, confirming the correlation with occult nodal metastases in early FOM cancers. Cyclin D1 is a predictive biomarker for occult nodal metastases in early FOM cancers. Prospective research on biopsy material should confirm these results before implementing its use in routine clinical practice. © 2016 Wiley Periodicals, Inc. Head Neck 39: 326-333, 2017. © 2016 Wiley Periodicals, Inc.

  1. Persistence of RSV promotes proliferation and epithelial-mesenchymal transition of bronchial epithelial cells through Nodal signaling.

    PubMed

    Xiang, Zhao; Liang, Zhang; Yanfeng, Huang; Leitao, Kang

    2017-10-01

    Nodal may play an important role in the development of cancers. The present study was designed to determine the effects of Nodal induced by respiratory syncytial virus (RSV) infection on the occurrence and development of lung cancer and the underlying mechanisms. After verification of RSV infection by observation of cytopathic effect and indirect immunofluorescence, real-time PCR, Western blot and methylation assays were used to verify the influence of RSV on Nodal expression. Then, a Nodal overexpressed vector was constructed and the effects of Nodal on the proliferation and apoptosis of bronchial epithelial cells (BECs) and epithelial-mesenchymal transition (EMT) were assayed by flow cytometry and Western blot, respectively. Moreover, Lefty and pSmad2/3 were assayed by Western blot and Cyclin D1, CDK4, c-myc and Bcl-2 induced by Nodal overepression or RSV infection were also assayed by real-time PCR. The results showed that Nodal over expression and demethylation of the promoter were observed in BECs after RSV infection. Activation of Nodal promoted proliferation, colony formation and EMT and inhibited apoptosis of BECs. Nodal also promoted malignant change by promoting expression of cyclin D1 and related-dependent kinase and inhibiting apoptosis. Besides, RSV infection inhibited Lefty expression and promoted the activation of pSmad2/3. RSV also promoted Cyclin D1, CDK4, c-myc and Bcl-2 expression through the activation of pSmad2/3. Our data showed that persistence of RSV promoted the proliferation, epithelial-mesenchymal transition and expression of oncogenes through Nodal signaling, which may be associated with the occurrence and development of lung cancers.

  2. Brady's Geothermal Field - Map of DAS, Nodal, Vibroseis and Reftek Station Deployment

    DOE Data Explorer

    Kurt Feigl

    2016-10-15

    Map of DAS, nodal, vibroseis and Reftek stations during March 2016 deployment. The plot on the left has nodal stations labeled; the plot on the right has vibroseis observations labeled. Stations are shown in map-view using Brady's rotated X-Y coordinates with side plots denoting elevation with respect to the WGS84 ellipsoid. Blue circles denote vibroseis data, x symbols denote DAS (cyan for horizontal and magenta for vertical), black asterisks denote Reftek data, and red plus signs denote nodal data. This map can be found on UW-Madison's askja server at /PoroTomo/DATA/MAPS/Deployment_Stations.pdf

  3. Recognizing nodal marginal zone lymphoma: recent advances and pitfalls. A systematic review

    PubMed Central

    van den Brand, Michiel; van Krieken, J. Han J.M.

    2013-01-01

    The diagnosis of nodal marginal zone lymphoma is one of the remaining problem areas in hematopathology. Because no established positive markers exist for this lymphoma, it is frequently a diagnosis of exclusion, making distinction from other low-grade B-cell lymphomas difficult or even impossible. This systematic review summarizes and discusses the current knowledge on nodal marginal zone lymphoma, including clinical features, epidemiology and etiology, histology, and cytogenetic and molecular features. In particular, recent advances in diagnostics and pathogenesis are discussed. New immunohistochemical markers have become available that could be used as positive markers for nodal marginal zone lymphoma. These markers could be used to ensure more homogeneous study groups in future research. Also, recent gene expression studies and studies describing specific gene mutations have provided clues to the pathogenesis of nodal marginal zone lymphoma, suggesting deregulation of the nuclear factor kappa B pathway. Nevertheless, nodal marginal zone lymphoma remains an enigmatic entity, requiring further study to define its pathogenesis to allow an accurate diagnosis and tailored treatment. However, recent data indicate that it is not related to splenic or extranodal lymphoma, and that it is also not related to lymphoplasmacytic lymphoma. Thus, even though the diagnosis is not always easy, it is clearly a separate entity. PMID:23813646

  4. Constrained multiple indicator kriging using sequential quadratic programming

    NASA Astrophysics Data System (ADS)

    Soltani-Mohammadi, Saeed; Erhan Tercan, A.

    2012-11-01

    Multiple indicator kriging (MIK) is a nonparametric method used to estimate conditional cumulative distribution functions (CCDF). Indicator estimates produced by MIK may not satisfy the order relations of a valid CCDF which is ordered and bounded between 0 and 1. In this paper a new method has been presented that guarantees the order relations of the cumulative distribution functions estimated by multiple indicator kriging. The method is based on minimizing the sum of kriging variances for each cutoff under unbiasedness and order relations constraints and solving constrained indicator kriging system by sequential quadratic programming. A computer code is written in the Matlab environment to implement the developed algorithm and the method is applied to the thickness data.

  5. Activin- and Nodal-related factors control antero-posterior patterning of the zebrafish embryo.

    PubMed

    Thisse, B; Wright, C V; Thisse, C

    2000-01-27

    Definition of cell fates along the dorso-ventral axis depends on an antagonistic relationship between ventralizing transforming growth factor-beta superfamily members, the bone morphogenetic proteins and factors secreted from the dorsal organizer, such as Noggin and Chordin. The extracellular binding of the last group to the bone morphogenetic proteins prevents them from activating their receptors, and the relative ventralizer:antagonist ratio is thought to specify different dorso-ventral cell fates. Here, by taking advantage of a non-genetic interference method using a specific competitive inhibitor, the Lefty-related gene product Antivin, we provide evidence that cell fate along the antero-posterior axis of the zebrafish embryo is controlled by the morphogenetic activity of another transforming growth factor-beta superfamily subgroup--the Activin and Nodal-related factors. Increasing antivin doses progressively deleted posterior fates within the ectoderm, eventually resulting in the removal of all fates except forebrain and eyes. In contrast, overexpression of activin or nodal-related factors converted ectoderm that was fated to be forebrain into more posterior ectodermal or mesendodermal fates. We propose that modulation of intercellular signalling by Antivin/Activin and Nodal-related factors provides a mechanism for the graded establishment of cell fates along the antero-posterior axis of the zebrafish embryo.

  6. Dressing method and quadratic bundles related to symmetric spaces. Vanishing boundary conditions

    NASA Astrophysics Data System (ADS)

    Valchev, T. I.

    2016-02-01

    We consider quadratic bundles related to Hermitian symmetric spaces of the type SU(m + n)/S(U(m) × U(n)). The simplest representative of the corresponding integrable hierarchy is given by a multi-component Kaup-Newell derivative nonlinear Schrödinger equation which serves as a motivational example for our general considerations. We extensively discuss how one can apply Zakharov-Shabat's dressing procedure to derive reflectionless potentials obeying zero boundary conditions. Those could be used for one to construct fast decaying solutions to any nonlinear equation belonging to the same hierarchy. One can distinguish between generic soliton type solutions and rational solutions.

  7. Nodal aberration theory applied to freeform surfaces

    NASA Astrophysics Data System (ADS)

    Fuerschbach, Kyle; Rolland, Jannick P.; Thompson, Kevin P.

    2014-12-01

    When new three-dimensional packages are developed for imaging optical systems, the rotational symmetry of the optical system is often broken, changing its imaging behavior and making the optical performance worse. A method to restore the performance is to use freeform optical surfaces that compensate directly the aberrations introduced from tilting and decentering the optical surfaces. In order to effectively optimize the shape of a freeform surface to restore optical functionality, it is helpful to understand the aberration effect the surface may induce. Using nodal aberration theory the aberration fields induced by a freeform surface in an optical system are explored. These theoretical predications are experimentally validated with the design and implementation of an aberration generating telescope.

  8. The Mystical "Quadratic Formula."

    ERIC Educational Resources Information Center

    March, Robert H.

    1993-01-01

    Uses projectile motion to explain the two roots found when using the quadratic formula. An example is provided for finding the time of flight for a projectile which has a negative root implying a negative time of flight. This negative time of flight also has a useful physical meaning. (MVL)

  9. RW Per - Nodal motion changes its amplitude by 1.4 mag

    NASA Technical Reports Server (NTRS)

    Schaefer, Bradley E.; Fried, Robert E.

    1991-01-01

    RW Per was found to have large secular changes in its eclipse amplitude. In blue light, for example, the amplitude was 3.2 mag in the early 1900s, 2.2 mag in the late 1960s, and 1.75 mag in 1990. Throughout this time, the brightness at maximum was constant in all colors. It is shown that the only possible explanation is nodal motion, where the inclination varies with a period of roughly 100,000 yr. The nodal motion is caused by a third star, for which the light curve, the colors, and the O - C curve already provide evidence. Thus, RW Per is only the fourth known star with large changes of eclipse amplitude and is only the second example of nodal motion.

  10. Visualising the Roots of Quadratic Equations with Complex Coefficients

    ERIC Educational Resources Information Center

    Bardell, Nicholas S.

    2014-01-01

    This paper is a natural extension of the root visualisation techniques first presented by Bardell (2012) for quadratic equations with real coefficients. Consideration is now given to the familiar quadratic equation "y = ax[superscript 2] + bx + c" in which the coefficients "a," "b," "c" are generally…

  11. Scaling Laws for the Multidimensional Burgers Equation with Quadratic External Potential

    NASA Astrophysics Data System (ADS)

    Leonenko, N. N.; Ruiz-Medina, M. D.

    2006-07-01

    The reordering of the multidimensional exponential quadratic operator in coordinate-momentum space (see X. Wang, C.H. Oh and L.C. Kwek (1998). J. Phys. A.: Math. Gen. 31:4329-4336) is applied to derive an explicit formulation of the solution to the multidimensional heat equation with quadratic external potential and random initial conditions. The solution to the multidimensional Burgers equation with quadratic external potential under Gaussian strongly dependent scenarios is also obtained via the Hopf-Cole transformation. The limiting distributions of scaling solutions to the multidimensional heat and Burgers equations with quadratic external potential are then obtained under such scenarios.

  12. Building Students' Understanding of Quadratic Equation Concept Using Naïve Geometry

    ERIC Educational Resources Information Center

    Fachrudin, Achmad Dhany; Putri, Ratu Ilma Indra; Darmawijoyo

    2014-01-01

    The purpose of this research is to know how Naïve Geometry method can support students' understanding about the concept of solving quadratic equations. In this article we will discuss one activities of the four activities we developed. This activity focused on how students linking the Naïve Geometry method with the solving of the quadratic…

  13. Linear Matrix Inequality Method for a Quadratic Performance Index Minimization Problem with a class of Bilinear Matrix Inequality Conditions

    NASA Astrophysics Data System (ADS)

    Tanemura, M.; Chida, Y.

    2016-09-01

    There are a lot of design problems of control system which are expressed as a performance index minimization under BMI conditions. However, a minimization problem expressed as LMIs can be easily solved because of the convex property of LMIs. Therefore, many researchers have been studying transforming a variety of control design problems into convex minimization problems expressed as LMIs. This paper proposes an LMI method for a quadratic performance index minimization problem with a class of BMI conditions. The minimization problem treated in this paper includes design problems of state-feedback gain for switched system and so on. The effectiveness of the proposed method is verified through a state-feedback gain design for switched systems and a numerical simulation using the designed feedback gains.

  14. The Linear Quadratic Gaussian Multistage Game with Nonclassical Information Pattern Using a Direct Solution Method

    NASA Astrophysics Data System (ADS)

    Clemens, Joshua William

    Game theory has application across multiple fields, spanning from economic strategy to optimal control of an aircraft and missile on an intercept trajectory. The idea of game theory is fascinating in that we can actually mathematically model real-world scenarios and determine optimal decision making. It may not always be easy to mathematically model certain real-world scenarios, nonetheless, game theory gives us an appreciation for the complexity involved in decision making. This complexity is especially apparent when the players involved have access to different information upon which to base their decision making (a nonclassical information pattern). Here we will focus on the class of adversarial two-player games (sometimes referred to as pursuit-evasion games) with nonclassical information pattern. We present a two-sided (simultaneous) optimization solution method for the two-player linear quadratic Gaussian (LQG) multistage game. This direct solution method allows for further interpretation of each player's decision making (strategy) as compared to previously used formal solution methods. In addition to the optimal control strategies, we present a saddle point proof and we derive an expression for the optimal performance index value. We provide some numerical results in order to further interpret the optimal control strategies and to highlight real-world application of this game-theoretic optimal solution.

  15. Geometric Approaches to Quadratic Equations from Other Times and Places.

    ERIC Educational Resources Information Center

    Allaire, Patricia R.; Bradley, Robert E.

    2001-01-01

    Focuses on geometric solutions of quadratic problems. Presents a collection of geometric techniques from ancient Babylonia, classical Greece, medieval Arabia, and early modern Europe to enhance the quadratic equation portion of an algebra course. (KHR)

  16. The role of elective-nodal irradiation for esthesioneuroblastoma patients with clinically negative neck

    PubMed Central

    Jiang, Wen; Mohamed, Abdallah Sherif; Fuller, Clifton David; Kim, Betty Y.S.; Tang, Chad; Gunn, G. Brandon; Hanna, Ehab Y.; Frank, Steven J.; Su, Shirley Y.; Diaz, Eduardo; Kupferman, Michael E.; Beadle, Beth M.; Morrison, William H.; Skinner, Heath; Lai, Stephen Y.; El-Naggar, Adel K.; DeMonte, Franco; Rosenthal, David I.; Garden, Adam S.; Phan, Jack

    2017-01-01

    Purpose Although adjuvant radiation to the tumor bed has been reported to improve the clinic outcomes of esthesioneuroblastoma (ENB) patients, the role of elective neck irradiation (ENI) in clinically node negative (N0) patients remains controversial. Here, we evaluated the effects of ENI on neck nodal relapse risk in ENB patients treated with radiotherapy as a component of multi-modality treatment. Methods and Materials Seventy-one N0 ENB patients irradiated at XXXXXXXXX between 1970 and 2013 were identified. ENI was performed on 22 of these patients (31%). Survival analysis was performed with focus on comparative outcomes of those patients who did and did not receive ENI. Results The median follow up time for our cohort is 80.8 months (range 6 – 350 month). Among N0 patients, 13 (18.3%) developed neck nodal relapses, with a median time to progression of 62.5 months. None of these 13 patients received prophylactic neck irradiation. ENI was associated with significantly improved regional nodal control at 5-year (regional control rate of 100% for ENI vs 82%, p < 0.001), but not overall survival or disease-free survival. Eleven patients without ENI developed isolated neck recurrences. All had further treatment for their neck disease, including neck dissection (n=10), radiation (n=10), or chemotherapy (n=5). Six of these 11 patients (54.5%) demonstrated no evidence of further recurrence with a median follow up of 55.5 month. Conclusion ENI significantly reduces the risk of cervical nodal recurrence in ENB patients with clinically N0 neck but this did not translate to a survival benefit. Multimodality treatment for isolated neck recurrence provides a reasonable salvage rate. The greatest benefit for ENI appeared to be among younger patients who presented with Kadish C disease. Further studies are needed to confirm these findings. PMID:26979544

  17. Linear state feedback, quadratic weights, and closed loop eigenstructures. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Thompson, P. M.

    1979-01-01

    Results are given on the relationships between closed loop eigenstructures, state feedback gain matrices of the linear state feedback problem, and quadratic weights of the linear quadratic regulator. Equations are derived for the angles of general multivariable root loci and linear quadratic optimal root loci, including angles of departure and approach. The generalized eigenvalue problem is used for the first time to compute angles of approach. Equations are also derived to find the sensitivity of closed loop eigenvalues and the directional derivatives of closed loop eigenvectors (with respect to a scalar multiplying the feedback gain matrix or the quadratic control weight). An equivalence class of quadratic weights that produce the same asymptotic eigenstructure is defined, sufficient conditions to be in it are given, a canonical element is defined, and an algorithm to find it is given. The behavior of the optimal root locus in the nonasymptotic region is shown to be different for quadratic weights with the same asymptotic properties.

  18. Analysis of Students' Error in Learning of Quadratic Equations

    ERIC Educational Resources Information Center

    Zakaria, Effandi; Ibrahim; Maat, Siti Mistima

    2010-01-01

    The purpose of the study was to determine the students' error in learning quadratic equation. The samples were 30 form three students from a secondary school in Jambi, Indonesia. Diagnostic test was used as the instrument of this study that included three components: factorization, completing the square and quadratic formula. Diagnostic interview…

  19. Stochastic resonance in a fractional oscillator driven by multiplicative quadratic noise

    NASA Astrophysics Data System (ADS)

    Ren, Ruibin; Luo, Maokang; Deng, Ke

    2017-02-01

    Stochastic resonance of a fractional oscillator subject to an external periodic field as well as to multiplicative and additive noise is investigated. The fluctuations of the eigenfrequency are modeled as the quadratic function of the trichotomous noise. Applying the moment equation method and Shapiro-Loginov formula, we obtain the exact expression of the complex susceptibility and related stability criteria. Theoretical analysis and numerical simulations indicate that the spectral amplification (SPA) depends non-monotonicly both on the external driving frequency and the parameters of the quadratic noise. In addition, the investigations into fractional stochastic systems have suggested that both the noise parameters and the memory effect can induce the phenomenon of stochastic multi-resonance (SMR), which is previously reported and believed to be absent in the case of the multiplicative noise with only a linear term.

  20. The orphan receptor ALK7 and the Activin receptor ALK4 mediate signaling by Nodal proteins during vertebrate development.

    PubMed

    Reissmann, E; Jörnvall, H; Blokzijl, A; Andersson, O; Chang, C; Minchiotti, G; Persico, M G; Ibáñez, C F; Brivanlou, A H

    2001-08-01

    Nodal proteins have crucial roles in mesendoderm formation and left-right patterning during vertebrate development. The molecular mechanisms of signal transduction by Nodal and related ligands, however, are not fully understood. In this paper, we present biochemical and functional evidence that the orphan type I serine/threonine kinase receptor ALK7 acts as a receptor for mouse Nodal and Xenopus Nodal-related 1 (Xnr1). Receptor reconstitution experiments indicate that ALK7 collaborates with ActRIIB to confer responsiveness to Xnr1 and Nodal. Both receptors can independently bind Xnr1. In addition, Cripto, an extracellular protein genetically implicated in Nodal signaling, can independently interact with both Xnr1 and ALK7, and its expression greatly enhances the ability of ALK7 and ActRIIB to respond to Nodal ligands. The Activin receptor ALK4 is also able to mediate Nodal signaling but only in the presence of Cripto, with which it can also interact directly. A constitutively activated form of ALK7 mimics the mesendoderm-inducing activity of Xnr1 in Xenopus embryos, whereas a dominant-negative ALK7 specifically blocks the activities of Nodal and Xnr1 but has little effect on other related ligands. In contrast, a dominant-negative ALK4 blocks all mesoderm-inducing ligands tested, including Nodal, Xnr1, Xnr2, Xnr4, and Activin. In agreement with a role in Nodal signaling, ALK7 mRNA is localized to the ectodermal and organizer regions of Xenopus gastrula embryos and is expressed during early stages of mouse embryonic development. Therefore, our results indicate that both ALK4 and ALK7 can mediate signal transduction by Nodal proteins, although ALK7 appears to be a receptor more specifically dedicated to Nodal signaling.

  1. The orphan receptor ALK7 and the Activin receptor ALK4 mediate signaling by Nodal proteins during vertebrate development

    PubMed Central

    Reissmann, Eva; Jörnvall, Henrik; Blokzijl, Andries; Andersson, Olov; Chang, Chenbei; Minchiotti, Gabriella; Persico, M. Graziella; Ibáñez, Carlos F.; Brivanlou, Ali H.

    2001-01-01

    Nodal proteins have crucial roles in mesendoderm formation and left–right patterning during vertebrate development. The molecular mechanisms of signal transduction by Nodal and related ligands, however, are not fully understood. In this paper, we present biochemical and functional evidence that the orphan type I serine/threonine kinase receptor ALK7 acts as a receptor for mouse Nodal and Xenopus Nodal-related 1 (Xnr1). Receptor reconstitution experiments indicate that ALK7 collaborates with ActRIIB to confer responsiveness to Xnr1 and Nodal. Both receptors can independently bind Xnr1. In addition, Cripto, an extracellular protein genetically implicated in Nodal signaling, can independently interact with both Xnr1 and ALK7, and its expression greatly enhances the ability of ALK7 and ActRIIB to respond to Nodal ligands. The Activin receptor ALK4 is also able to mediate Nodal signaling but only in the presence of Cripto, with which it can also interact directly. A constitutively activated form of ALK7 mimics the mesendoderm-inducing activity of Xnr1 in Xenopus embryos, whereas a dominant-negative ALK7 specifically blocks the activities of Nodal and Xnr1 but has little effect on other related ligands. In contrast, a dominant-negative ALK4 blocks all mesoderm-inducing ligands tested, including Nodal, Xnr1, Xnr2, Xnr4, and Activin. In agreement with a role in Nodal signaling, ALK7 mRNA is localized to the ectodermal and organizer regions of Xenopus gastrula embryos and is expressed during early stages of mouse embryonic development. Therefore, our results indicate that both ALK4 and ALK7 can mediate signal transduction by Nodal proteins, although ALK7 appears to be a receptor more specifically dedicated to Nodal signaling. PMID:11485994

  2. Fourier-Accelerated Nodal Solvers (FANS) for homogenization problems

    NASA Astrophysics Data System (ADS)

    Leuschner, Matthias; Fritzen, Felix

    2017-11-01

    Fourier-based homogenization schemes are useful to analyze heterogeneous microstructures represented by 2D or 3D image data. These iterative schemes involve discrete periodic convolutions with global ansatz functions (mostly fundamental solutions). The convolutions are efficiently computed using the fast Fourier transform. FANS operates on nodal variables on regular grids and converges to finite element solutions. Compared to established Fourier-based methods, the number of convolutions is reduced by FANS. Additionally, fast iterations are possible by assembling the stiffness matrix. Due to the related memory requirement, the method is best suited for medium-sized problems. A comparative study involving established Fourier-based homogenization schemes is conducted for a thermal benchmark problem with a closed-form solution. Detailed technical and algorithmic descriptions are given for all methods considered in the comparison. Furthermore, many numerical examples focusing on convergence properties for both thermal and mechanical problems, including also plasticity, are presented.

  3. Role of Nodal-PITX2C signaling pathway in glucose-induced cardiomyocyte hypertrophy.

    PubMed

    Su, Dongmei; Jing, Sun; Guan, Lina; Li, Qian; Zhang, Huiling; Gao, Xiaobo; Ma, Xu

    2014-06-01

    Pathological cardiac hypertrophy is a major cause of morbidity and mortality in cardiovascular disease. Recent studies have shown that cardiomyocytes, in response to high glucose (HG) stimuli, undergo hypertrophic growth. While much work still needs to be done to elucidate this important mechanism of hypertrophy, previous works have showed that some pathways or genes play important roles in hypertrophy. In this study, we showed that sublethal concentrations of glucose (25 mmol/L) could induce cardiomyocyte hypertrophy with an increase in the cellular surface area and the upregulation of the atrial natriuretic peptide (ANP) gene, a hypertrophic marker. High glucose (HG) treatments resulted in the upregulation of the Nodal gene, which is under-expressed in cardiomyocytes. We also determined that the knockdown of the Nodal gene resisted HG-induced cardiomyocyte hypertrophy. The overexpression of Nodal was able to induce hypertrophy in cardiomyocytes, which was associated with the upregulation of the PITX2C gene. We also showed that increases in the PITX2C expression, in response to Nodal, were mediated by the Smad4 signaling pathway. This study is highly relevant to the understanding of the effects of the Nodal-PITX2C pathway on HG-induced cardiomyocyte hypertrophy, as well as the related molecular mechanisms.

  4. New core-reflector boundary conditions for transient nodal reactor calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, E.K.; Kim, C.H.; Joo, H.K.

    1995-09-01

    New core-reflector boundary conditions designed for the exclusion of the reflector region in transient nodal reactor calculations are formulated. Spatially flat frequency approximations for the temporal neutron behavior and two types of transverse leakage approximations in the reflector region are introduced to solve the transverse-integrated time-dependent one-dimensional diffusion equation and then to obtain relationships between net current and flux at the core-reflector interfaces. To examine the effectiveness of new core-reflector boundary conditions in transient nodal reactor computations, nodal expansion method (NEM) computations with and without explicit representation of the reflector are performed for Laboratorium fuer Reaktorregelung und Anlagen (LRA) boilingmore » water reactor (BWR) and Nuclear Energy Agency Committee on Reactor Physics (NEACRP) pressurized water reactor (PWR) rod ejection kinetics benchmark problems. Good agreement between two NEM computations is demonstrated in all the important transient parameters of two benchmark problems. A significant amount of CPU time saving is also demonstrated with the boundary condition model with transverse leakage (BCMTL) approximations in the reflector region. In the three-dimensional LRA BWR, the BCMTL and the explicit reflector model computations differ by {approximately}4% in transient peak power density while the BCMTL results in >40% of CPU time saving by excluding both the axial and the radial reflector regions from explicit computational nodes. In the NEACRP PWR problem, which includes six different transient cases, the largest difference is 24.4% in the transient maximum power in the one-node-per-assembly B1 transient results. This difference in the transient maximum power of the B1 case is shown to reduce to 11.7% in the four-node-per-assembly computations. As for the computing time, BCMTL is shown to reduce the CPU time >20% in all six transient cases of the NEACRP PWR.« less

  5. An iterative method for tri-level quadratic fractional programming problems using fuzzy goal programming approach

    NASA Astrophysics Data System (ADS)

    Kassa, Semu Mitiku; Tsegay, Teklay Hailay

    2017-08-01

    Tri-level optimization problems are optimization problems with three nested hierarchical structures, where in most cases conflicting objectives are set at each level of hierarchy. Such problems are common in management, engineering designs and in decision making situations in general, and are known to be strongly NP-hard. Existing solution methods lack universality in solving these types of problems. In this paper, we investigate a tri-level programming problem with quadratic fractional objective functions at each of the three levels. A solution algorithm has been proposed by applying fuzzy goal programming approach and by reformulating the fractional constraints to equivalent but non-fractional non-linear constraints. Based on the transformed formulation, an iterative procedure is developed that can yield a satisfactory solution to the tri-level problem. The numerical results on various illustrative examples demonstrated that the proposed algorithm is very much promising and it can also be used to solve larger-sized as well as n-level problems of similar structure.

  6. Self-accelerating parabolic beams in quadratic nonlinear media

    NASA Astrophysics Data System (ADS)

    Dolev, Ido; Libster, Ana; Arie, Ady

    2012-09-01

    We present experimental observation of self-accelerating parabolic beams in quadratic nonlinear media. We show that the intensity peaks of the first and second harmonics are asynchronous with respect to one another in the two transverse coordinates. In addition, the two coupled harmonics have the same acceleration within and after the nonlinear medium. We also study the evolution of second harmonic accelerating beams inside the quadratic media and their correlation with theoretical beams.

  7. Binary Inspiral in Quadratic Gravity

    NASA Astrophysics Data System (ADS)

    Yagi, Kent

    2015-01-01

    Quadratic gravity is a general class of quantum-gravity-inspired theories, where the Einstein-Hilbert action is extended through the addition of all terms quadratic in the curvature tensor coupled to a scalar field. In this article, we focus on the scalar Gauss- Bonnet (sGB) theory and consider the black hole binary inspiral in this theory. By applying the post-Newtonian (PN) formalism, we found that there is a scalar dipole radiation which leads to -1PN correction in the energy flux relative to gravitational radiation in general relativity. From the orbital decay rate of a low-mass X-ray binary A0600-20, we obtain the bound that is six orders of magnitude stronger than the current solar system bound. Furthermore, we show that the excess in the orbital decay rate of XTE J1118+480 can be explained by the scalar radiation in sGB theory.

  8. Sketching the General Quadratic Equation Using Dynamic Geometry Software

    ERIC Educational Resources Information Center

    Stols, G. H.

    2005-01-01

    This paper explores a geometrical way to sketch graphs of the general quadratic in two variables with Geometer's Sketchpad. To do this, a geometric procedure as described by De Temple is used, bearing in mind that this general quadratic equation (1) represents all the possible conics (conics sections), and the fact that five points (no three of…

  9. A linear quadratic regulator approach to the stabilization of uncertain linear systems

    NASA Technical Reports Server (NTRS)

    Shieh, L. S.; Sunkel, J. W.; Wang, Y. J.

    1990-01-01

    This paper presents a linear quadratic regulator approach to the stabilization of uncertain linear systems. The uncertain systems under consideration are described by state equations with the presence of time-varying unknown-but-bounded uncertainty matrices. The method is based on linear quadratic regulator (LQR) theory and Liapunov stability theory. The robust stabilizing control law for a given uncertain system can be easily constructed from the symmetric positive-definite solution of the associated augmented Riccati equation. The proposed approach can be applied to matched and/or mismatched systems with uncertainty matrices in which only their matrix norms are bounded by some prescribed values and/or their entries are bounded by some prescribed constraint sets. Several numerical examples are presented to illustrate the results.

  10. Symmetric quadratic Hamiltonians with pseudo-Hermitian matrix representation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernández, Francisco M., E-mail: fernande@quimica.unlp.edu.ar

    2016-06-15

    We prove that any symmetric Hamiltonian that is a quadratic function of the coordinates and momenta has a pseudo-Hermitian adjoint or regular matrix representation. The eigenvalues of the latter matrix are the natural frequencies of the Hamiltonian operator. When all the eigenvalues of the matrix are real, then the spectrum of the symmetric Hamiltonian is real and the operator is Hermitian. As illustrative examples we choose the quadratic Hamiltonians that model a pair of coupled resonators with balanced gain and loss, the electromagnetic self-force on an oscillating charged particle and an active LRC circuit. -- Highlights: •Symmetric quadratic operators aremore » useful models for many physical applications. •Any such operator exhibits a pseudo-Hermitian matrix representation. •Its eigenvalues are the natural frequencies of the Hamiltonian operator. •The eigenvalues may be real or complex and describe a phase transition.« less

  11. A nodal signaling pathway regulates the laterality of neuroanatomical asymmetries in the zebrafish forebrain.

    PubMed

    Concha, M L; Burdine, R D; Russell, C; Schier, A F; Wilson, S W

    2000-11-01

    Animals show behavioral asymmetries that are mediated by differences between the left and right sides of the brain. We report that the laterality of asymmetric development of the diencephalic habenular nuclei and the photoreceptive pineal complex is regulated by the Nodal signaling pathway and by midline tissue. Analysis of zebrafish embryos with compromised Nodal signaling reveals an early role for this pathway in the repression of asymmetrically expressed genes in the diencephalon. Later signaling mediated by the EGF-CFC protein One-eyed pinhead and the forkhead transcription factor Schmalspur is required to overcome this repression. When expression of Nodal pathway genes is either absent or symmetrical, neuroanatomical asymmetries are still established but are randomized. This indicates that Nodal signaling is not required for asymmetric development per se but is essential to determine the laterality of the asymmetry.

  12. Method for optimizing channelized quadratic observers for binary classification of large-dimensional image datasets

    PubMed Central

    Kupinski, M. K.; Clarkson, E.

    2015-01-01

    We present a new method for computing optimized channels for channelized quadratic observers (CQO) that is feasible for high-dimensional image data. The method for calculating channels is applicable in general and optimal for Gaussian distributed image data. Gradient-based algorithms for determining the channels are presented for five different information-based figures of merit (FOMs). Analytic solutions for the optimum channels for each of the five FOMs are derived for the case of equal mean data for both classes. The optimum channels for three of the FOMs under the equal mean condition are shown to be the same. This result is critical since some of the FOMs are much easier to compute. Implementing the CQO requires a set of channels and the first- and second-order statistics of channelized image data from both classes. The dimensionality reduction from M measurements to L channels is a critical advantage of CQO since estimating image statistics from channelized data requires smaller sample sizes and inverting a smaller covariance matrix is easier. In a simulation study we compare the performance of ideal and Hotelling observers to CQO. The optimal CQO channels are calculated using both eigenanalysis and a new gradient-based algorithm for maximizing Jeffrey's divergence (J). Optimal channel selection without eigenanalysis makes the J-CQO on large-dimensional image data feasible. PMID:26366764

  13. An approach to model reactor core nodalization for deterministic safety analysis

    NASA Astrophysics Data System (ADS)

    Salim, Mohd Faiz; Samsudin, Mohd Rafie; Mamat @ Ibrahim, Mohd Rizal; Roslan, Ridha; Sadri, Abd Aziz; Farid, Mohd Fairus Abd

    2016-01-01

    Adopting good nodalization strategy is essential to produce an accurate and high quality input model for Deterministic Safety Analysis (DSA) using System Thermal-Hydraulic (SYS-TH) computer code. The purpose of such analysis is to demonstrate the compliance against regulatory requirements and to verify the behavior of the reactor during normal and accident conditions as it was originally designed. Numerous studies in the past have been devoted to the development of the nodalization strategy for small research reactor (e.g. 250kW) up to the bigger research reactor (e.g. 30MW). As such, this paper aims to discuss the state-of-arts thermal hydraulics channel to be employed in the nodalization for RTP-TRIGA Research Reactor specifically for the reactor core. At present, the required thermal-hydraulic parameters for reactor core, such as core geometrical data (length, coolant flow area, hydraulic diameters, and axial power profile) and material properties (including the UZrH1.6, stainless steel clad, graphite reflector) have been collected, analyzed and consolidated in the Reference Database of RTP using standardized methodology, mainly derived from the available technical documentations. Based on the available information in the database, assumptions made on the nodalization approach and calculations performed will be discussed and presented. The development and identification of the thermal hydraulics channel for the reactor core will be implemented during the SYS-TH calculation using RELAP5-3D® computer code. This activity presented in this paper is part of the development of overall nodalization description for RTP-TRIGA Research Reactor under the IAEA Norwegian Extra-Budgetary Programme (NOKEBP) mentoring project on Expertise Development through the Analysis of Reactor Thermal-Hydraulics for Malaysia, denoted as EARTH-M.

  14. An approach to model reactor core nodalization for deterministic safety analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salim, Mohd Faiz, E-mail: mohdfaizs@tnb.com.my; Samsudin, Mohd Rafie, E-mail: rafies@tnb.com.my; Mamat Ibrahim, Mohd Rizal, E-mail: m-rizal@nuclearmalaysia.gov.my

    Adopting good nodalization strategy is essential to produce an accurate and high quality input model for Deterministic Safety Analysis (DSA) using System Thermal-Hydraulic (SYS-TH) computer code. The purpose of such analysis is to demonstrate the compliance against regulatory requirements and to verify the behavior of the reactor during normal and accident conditions as it was originally designed. Numerous studies in the past have been devoted to the development of the nodalization strategy for small research reactor (e.g. 250kW) up to the bigger research reactor (e.g. 30MW). As such, this paper aims to discuss the state-of-arts thermal hydraulics channel to bemore » employed in the nodalization for RTP-TRIGA Research Reactor specifically for the reactor core. At present, the required thermal-hydraulic parameters for reactor core, such as core geometrical data (length, coolant flow area, hydraulic diameters, and axial power profile) and material properties (including the UZrH{sub 1.6}, stainless steel clad, graphite reflector) have been collected, analyzed and consolidated in the Reference Database of RTP using standardized methodology, mainly derived from the available technical documentations. Based on the available information in the database, assumptions made on the nodalization approach and calculations performed will be discussed and presented. The development and identification of the thermal hydraulics channel for the reactor core will be implemented during the SYS-TH calculation using RELAP5-3D{sup ®} computer code. This activity presented in this paper is part of the development of overall nodalization description for RTP-TRIGA Research Reactor under the IAEA Norwegian Extra-Budgetary Programme (NOKEBP) mentoring project on Expertise Development through the Analysis of Reactor Thermal-Hydraulics for Malaysia, denoted as EARTH-M.« less

  15. Learning quadratic receptive fields from neural responses to natural stimuli.

    PubMed

    Rajan, Kanaka; Marre, Olivier; Tkačik, Gašper

    2013-07-01

    Models of neural responses to stimuli with complex spatiotemporal correlation structure often assume that neurons are selective for only a small number of linear projections of a potentially high-dimensional input. In this review, we explore recent modeling approaches where the neural response depends on the quadratic form of the input rather than on its linear projection, that is, the neuron is sensitive to the local covariance structure of the signal preceding the spike. To infer this quadratic dependence in the presence of arbitrary (e.g., naturalistic) stimulus distribution, we review several inference methods, focusing in particular on two information theory-based approaches (maximization of stimulus energy and of noise entropy) and two likelihood-based approaches (Bayesian spike-triggered covariance and extensions of generalized linear models). We analyze the formal relationship between the likelihood-based and information-based approaches to demonstrate how they lead to consistent inference. We demonstrate the practical feasibility of these procedures by using model neurons responding to a flickering variance stimulus.

  16. Analysis of nodal aberration properties in off-axis freeform system design.

    PubMed

    Shi, Haodong; Jiang, Huilin; Zhang, Xin; Wang, Chao; Liu, Tao

    2016-08-20

    Freeform surfaces have the advantage of balancing off-axis aberration. In this paper, based on the framework of nodal aberration theory (NAT) applied to the coaxial system, the third-order astigmatism and coma wave aberration expressions of an off-axis system with Zernike polynomial surfaces are derived. The relationship between the off-axis and surface shape acting on the nodal distributions is revealed. The nodal aberration properties of the off-axis freeform system are analyzed and validated by using full-field displays (FFDs). It has been demonstrated that adding Zernike terms, up to nine, to the off-axis system modifies the nodal locations, but the field dependence of the third-order aberration does not change. On this basis, an off-axis two-mirror freeform system with 500 mm effective focal length (EFL) and 300 mm entrance pupil diameter (EPD) working in long-wave infrared is designed. The field constant aberrations induced by surface tilting are corrected by selecting specific Zernike terms. The design results show that the nodes of third-order astigmatism and coma move back into the field of view (FOV). The modulation transfer function (MTF) curves are above 0.4 at 20 line pairs per millimeter (lp/mm) which meets the infrared reconnaissance requirement. This work provides essential insight and guidance for aberration correction in off-axis freeform system design.

  17. Online Quadrat Study - Site Index

    Science.gov Websites

    Study Project - Prairie Advocates Project ) Background Information - Data Collection and Entry - Data Data Entry Data Summaries and Graphs Quadrat Study Poster for your classroom. Directions for Looking at by Prairie Study Prairie Experts For Non-Fermilab Prairie researchers: Complete step-by-step

  18. Identify Secretory Protein of Malaria Parasite with Modified Quadratic Discriminant Algorithm and Amino Acid Composition.

    PubMed

    Feng, Yong-E

    2016-06-01

    Malaria parasite secretes various proteins in infected red blood cell for its growth and survival. Thus identification of these secretory proteins is important for developing vaccine or drug against malaria. In this study, the modified method of quadratic discriminant analysis is presented for predicting the secretory proteins. Firstly, 20 amino acids are divided into five types according to the physical and chemical characteristics of amino acids. Then, we used five types of amino acids compositions as inputs of the modified quadratic discriminant algorithm. Finally, the best prediction performance is obtained by using 20 amino acid compositions, the sensitivity of 96 %, the specificity of 92 % with 0.88 of Mathew's correlation coefficient in fivefold cross-validation test. The results are also compared with those of existing prediction methods. The compared results shown our method are prominent in the prediction of secretory proteins.

  19. Patterns of failure after the reduced volume approach for elective nodal irradiation in nasopharyngeal carcinoma.

    PubMed

    Seol, Ki Ho; Lee, Jeong Eun

    2016-03-01

    To evaluate the patterns of nodal failure after radiotherapy (RT) with the reduced volume approach for elective neck nodal irradiation (ENI) in nasopharyngeal carcinoma (NPC). Fifty-six NPC patients who underwent definitive chemoradiotherapy with the reduced volume approach for ENI were reviewed. The ENI included retropharyngeal and level II lymph nodes, and only encompassed the echelon inferior to the involved level to eliminate the entire neck irradiation. Patients received either moderate hypofractionated intensity-modulated RT for a total of 72.6 Gy (49.5 Gy to elective nodal areas) or a conventional fractionated three-dimensional conformal RT for a total of 68.4-72 Gy (39.6-45 Gy to elective nodal areas). Patterns of failure, locoregional control, and survival were analyzed. The median follow-up was 38 months (range, 3 to 80 months). The out-of-field nodal failure when omitting ENI was none. Three patients developed neck recurrences (one in-field recurrence in the 72.6 Gy irradiated nodal area and two in the elective irradiated region of 39.6 Gy). Overall disease failure at any site developed in 11 patients (19.6%). Among these, there were six local failures (10.7%), three regional failures (5.4%), and five distant metastases (8.9%). The 3-year locoregional control rate was 87.1%, and the distant failure-free rate was 90.4%; disease-free survival and overall survival at 3 years was 80% and 86.8%, respectively. No patient developed nodal failure in the omitted ENI site. Our investigation has demonstrated that the reduced volume approach for ENI appears to be a safe treatment approach in NPC.

  20. The Existence of Periodic Orbits and Invariant Tori for Some 3-Dimensional Quadratic Systems

    PubMed Central

    Jiang, Yanan; Han, Maoan; Xiao, Dongmei

    2014-01-01

    We use the normal form theory, averaging method, and integral manifold theorem to study the existence of limit cycles in Lotka-Volterra systems and the existence of invariant tori in quadratic systems in ℝ3. PMID:24982980

  1. The distance between breast cancer and the skin is associated with axillary nodal metastasis.

    PubMed

    Eom, Yong Hwa; Kim, Eun Jin; Chae, Byung Joo; Song, Byung Joo; Jung, Sang Seol

    2015-06-01

    More superficially located tumors may be more likely than deeper tumors to metastasize to the axillary nodes via the lymphatics. The aim of this study was to determine whether breast cancer distance from the skin affects axillary node metastasis, ipsilateral breast cancer recurrence, or recurrence-free survival. A total of 1,005 consecutive patients with breast cancer who underwent surgery between January 2003 and December 2009 were selected. The distance of the tumor from the skin was measured from the skin to the most anterior hypoechoic leading edge of the lesion. In total, 603 (68%) patients had no axillary nodal metastasis, and 288 (32%) had axillary nodal metastasis. A breast cancer distance from the skin <3 mm induced more axillary nodal metastasis (P = 0.039). However, no significant correlation was observed between breast cancer distance from the skin <3 mm and ipsilateral breast cancer recurrence (P = 0.788) or recurrence-free survival (P = 0.353). Breast cancers located closer to the skin had a higher incidence of axillary nodal metastasis. Therefore, tumor distance from the skin should be considered when evaluating a patient with breast cancer and considering the risk of nodal metastasis. © 2015 Wiley Periodicals, Inc.

  2. Quadratic elongation: A quantitative measure of distortion in coordination polyhedra

    USGS Publications Warehouse

    Robinson, Kelly F.; Gibbs, G.V.; Ribbe, P.H.

    1971-01-01

    Quadratic elongation and the variance of bond angles are linearly correlated for distorted octahedral and tetrahedral coordination complexes, both of which show variations in bond length and bond angle. The quadratic elonga tion is dimensionless, giving a quantitative measure of polyhedral distortion which is independent of the effective size of the polyhedron.

  3. Interplay between short-range correlated disorder and Coulomb interaction in nodal-line semimetals

    NASA Astrophysics Data System (ADS)

    Wang, Yuxuan; Nandkishore, Rahul M.

    2017-09-01

    In nodal-line semimetals, Coulomb interactions and short-range correlated disorder are both marginal perturbations to the clean noninteracting Hamiltonian. We analyze their interplay using a weak-coupling renormalization group approach. In the clean case, the Coulomb interaction has been found to be marginally irrelevant, leading to Fermi liquid behavior. We extend the analysis to incorporate the effects of disorder. The nodal line structure gives rise to kinematical constraints similar to that for a two-dimensional Fermi surface, which plays a crucial role in the one-loop renormalization of the disorder couplings. For a twofold degenerate nodal loop (Weyl loop), we show that disorder flows to strong coupling along a unique fixed trajectory in the space of symmetry inequivalent disorder couplings. Along this fixed trajectory, all symmetry inequivalent disorder strengths become equal. For a fourfold degenerate nodal loop (Dirac loop), disorder also flows to strong coupling, however, the strengths of symmetry inequivalent disorder couplings remain different. We show that feedback from disorder reverses the sign of the beta function for the Coulomb interaction, causing the Coulomb interaction to flow to strong coupling as well. However, the Coulomb interaction flows to strong coupling asymptotically more slowly than disorder. Extrapolating our results to strong coupling, we conjecture that at low energies nodal line semimetals should be described by a noninteracting nonlinear sigma model. We discuss the relation of our results with possible many-body localization at zero temperatures in such materials.

  4. Bivariate quadratic method in quantifying the differential capacitance and energy capacity of supercapacitors under high current operation

    NASA Astrophysics Data System (ADS)

    Goh, Chin-Teng; Cruden, Andrew

    2014-11-01

    Capacitance and resistance are the fundamental electrical parameters used to evaluate the electrical characteristics of a supercapacitor, namely the dynamic voltage response, energy capacity, state of charge and health condition. In the British Standards EN62391 and EN62576, the constant capacitance method can be further improved with a differential capacitance that more accurately describes the dynamic voltage response of supercapacitors. This paper presents a novel bivariate quadratic based method to model the dynamic voltage response of supercapacitors under high current charge-discharge cycling, and to enable the derivation of the differential capacitance and energy capacity directly from terminal measurements, i.e. voltage and current, rather than from multiple pulsed-current or excitation signal tests across different bias levels. The estimation results the author achieves are in close agreement with experimental measurements, within a relative error of 0.2%, at various high current levels (25-200 A), more accurate than the constant capacitance method (4-7%). The archival value of this paper is the introduction of an improved quantification method for the electrical characteristics of supercapacitors, and the disclosure of the distinct properties of supercapacitors: the nonlinear capacitance-voltage characteristic, capacitance variation between charging and discharging, and distribution of energy capacity across the operating voltage window.

  5. Constructing a polynomial whose nodal set is the three-twist knot 52

    NASA Astrophysics Data System (ADS)

    Dennis, Mark R.; Bode, Benjamin

    2017-06-01

    We describe a procedure that creates an explicit complex-valued polynomial function of three-dimensional space, whose nodal lines are the three-twist knot 52. The construction generalizes a similar approach for lemniscate knots: a braid representation is engineered from finite Fourier series and then considered as the nodal set of a certain complex polynomial which depends on an additional parameter. For sufficiently small values of this parameter, the nodal lines form the three-twist knot. Further mathematical properties of this map are explored, including the relationship of the phase critical points with the Morse-Novikov number, which is nonzero as this knot is not fibred. We also find analogous functions for other simple knots and links. The particular function we find, and the general procedure, should be useful for designing knotted fields of particular knot types in various physical systems.

  6. Development of a phenotyping platform for high throughput screening of nodal root angle in sorghum.

    PubMed

    Joshi, Dinesh C; Singh, Vijaya; Hunt, Colleen; Mace, Emma; van Oosterom, Erik; Sulman, Richard; Jordan, David; Hammer, Graeme

    2017-01-01

    In sorghum, the growth angle of nodal roots is a major component of root system architecture. It strongly influences the spatial distribution of roots of mature plants in the soil profile, which can impact drought adaptation. However, selection for nodal root angle in sorghum breeding programs has been restricted by the absence of a suitable high throughput phenotyping platform. The aim of this study was to develop a phenotyping platform for the rapid, non-destructive and digital measurement of nodal root angle of sorghum at the seedling stage. The phenotyping platform comprises of 500 soil filled root chambers (50 × 45 × 0.3 cm in size), made of transparent perspex sheets that were placed in metal tubs and covered with polycarbonate sheets. Around 3 weeks after sowing, once the first flush of nodal roots was visible, roots were imaged in situ using an imaging box that included two digital cameras that were remotely controlled by two android tablets. Free software ( openGelPhoto.tcl ) allowed precise measurement of nodal root angle from the digital images. The reliability and efficiency of the platform was evaluated by screening a large nested association mapping population of sorghum and a set of hybrids in six independent experimental runs that included up to 500 plants each. The platform revealed extensive genetic variation and high heritability (repeatability) for nodal root angle. High genetic correlations and consistent ranking of genotypes across experimental runs confirmed the reproducibility of the platform. This low cost, high throughput root phenotyping platform requires no sophisticated equipment, is adaptable to most glasshouse environments and is well suited to dissect the genetic control of nodal root angle of sorghum. The platform is suitable for use in sorghum breeding programs aiming to improve drought adaptation through root system architecture manipulation.

  7. Effects of Classroom Instruction on Students' Understanding of Quadratic Equations

    ERIC Educational Resources Information Center

    Vaiyavutjamai, Pongchawee; Clements, M. A.

    2006-01-01

    Two hundred and thirty-one students in six Grade 9 classes in two government secondary schools located near Chiang Mai, Thailand, attempted to solve the same 18 quadratic equations before and after participating in 11 lessons on quadratic equations. Data from the students' written responses to the equations, together with data in the form of…

  8. Influence of FDG-PET on primary nodal target volume definition for head and neck carcinomas.

    PubMed

    van Egmond, Sylvia L; Piscaer, Vera; Janssen, Luuk M; Stegeman, Inge; Hobbelink, Monique G; Grolman, Wilko; Terhaard, Chris H

    The role of 2-[ 18 F]-fluoro-2-deoxy-D-glucose (FDG)-positron emission tomography (PET)/computed tomography (CT) in routine diagnostic staging remains controversial. In case of discordance between FDG-PET and CT, a compromise has to be made between the risk of false positive FDG-PET and the risk of delaying appropriate salvage intervention. Second, with intensity modulated radiation therapy (IMRT), smaller radiation fields allow tissue sparing, but could also lead to more marginal failures. We retrospectively studied 283 patients with head and neck carcinoma scheduled for radiotherapy between 2002 and 2010. We analyzed the influence of FDG-PET/CT versus CT alone on defining nodal target volume definition and evaluated its long-term clinical results. Second, the location of nodal recurrences was related to the radiation regional dose distribution. In 92 patients, CT and FDG-PET, performed in mold, showed discordant results. In 33%, nodal staging was altered by FDG-PET. In 24%, FDG-PET also led to an alteration in nodal treatment, including a nodal upstage of 18% and downstage of 6%. In eight of these 92 patients, a regional recurrence occurred. Only two patients had a recurrence in the discordant node on FDG-PET and CT and both received a boost (high dose radiation). These results support the complementary value of FDG-PET/CT compared to CT alone in defining nodal target volume definition for radiotherapy of head and neck cancer.

  9. Analyzing Quadratic Unconstrained Binary Optimization Problems Via Multicommodity Flows

    PubMed Central

    Wang, Di; Kleinberg, Robert D.

    2009-01-01

    Quadratic Unconstrained Binary Optimization (QUBO) problems concern the minimization of quadratic polynomials in n {0, 1}-valued variables. These problems are NP-complete, but prior work has identified a sequence of polynomial-time computable lower bounds on the minimum value, denoted by C2, C3, C4,…. It is known that C2 can be computed by solving a maximum-flow problem, whereas the only previously known algorithms for computing Ck (k > 2) require solving a linear program. In this paper we prove that C3 can be computed by solving a maximum multicommodity flow problem in a graph constructed from the quadratic function. In addition to providing a lower bound on the minimum value of the quadratic function on {0, 1}n, this multicommodity flow problem also provides some information about the coordinates of the point where this minimum is achieved. By looking at the edges that are never saturated in any maximum multicommodity flow, we can identify relational persistencies: pairs of variables that must have the same or different values in any minimizing assignment. We furthermore show that all of these persistencies can be detected by solving single-commodity flow problems in the same network. PMID:20161596

  10. Analyzing Quadratic Unconstrained Binary Optimization Problems Via Multicommodity Flows.

    PubMed

    Wang, Di; Kleinberg, Robert D

    2009-11-28

    Quadratic Unconstrained Binary Optimization (QUBO) problems concern the minimization of quadratic polynomials in n {0, 1}-valued variables. These problems are NP-complete, but prior work has identified a sequence of polynomial-time computable lower bounds on the minimum value, denoted by C(2), C(3), C(4),…. It is known that C(2) can be computed by solving a maximum-flow problem, whereas the only previously known algorithms for computing C(k) (k > 2) require solving a linear program. In this paper we prove that C(3) can be computed by solving a maximum multicommodity flow problem in a graph constructed from the quadratic function. In addition to providing a lower bound on the minimum value of the quadratic function on {0, 1}(n), this multicommodity flow problem also provides some information about the coordinates of the point where this minimum is achieved. By looking at the edges that are never saturated in any maximum multicommodity flow, we can identify relational persistencies: pairs of variables that must have the same or different values in any minimizing assignment. We furthermore show that all of these persistencies can be detected by solving single-commodity flow problems in the same network.

  11. The generalized quadratic knapsack problem. A neuronal network approach.

    PubMed

    Talaván, Pedro M; Yáñez, Javier

    2006-05-01

    The solution of an optimization problem through the continuous Hopfield network (CHN) is based on some energy or Lyapunov function, which decreases as the system evolves until a local minimum value is attained. A new energy function is proposed in this paper so that any 0-1 linear constrains programming with quadratic objective function can be solved. This problem, denoted as the generalized quadratic knapsack problem (GQKP), includes as particular cases well-known problems such as the traveling salesman problem (TSP) and the quadratic assignment problem (QAP). This new energy function generalizes those proposed by other authors. Through this energy function, any GQKP can be solved with an appropriate parameter setting procedure, which is detailed in this paper. As a particular case, and in order to test this generalized energy function, some computational experiments solving the traveling salesman problem are also included.

  12. Anomalous contagion and renormalization in networks with nodal mobility

    NASA Astrophysics Data System (ADS)

    Manrique, Pedro D.; Qi, Hong; Zheng, Minzhang; Xu, Chen; Hui, Pak Ming; Johnson, Neil F.

    2016-07-01

    A common occurrence in everyday human activity is where people join, leave and possibly rejoin clusters of other individuals —whether this be online (e.g. social media communities) or in real space (e.g. popular meeting places such as cafes). In the steady state, the resulting interaction network would appear static over time if the identities of the nodes are ignored. Here we show that even in this static steady-state limit, a non-zero nodal mobility leads to a diverse set of outbreak profiles that is dramatically different from known forms, and yet matches well with recent real-world social outbreaks. We show how this complication of nodal mobility can be renormalized away for a particular class of networks.

  13. Brief note on Ashtekar-Magnon-Das conserved quantities in quadratic curvature theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pang Yi

    2011-04-15

    In this note, we correct a mistake in the mass formula in [N. Okuyama and J. i. Koga, Phys. Rev. D 71, 084009 (2005).] which generalizes the Ashtekar-Magnon-Das method to incorporate extended gravities with quadratic curvature terms. The corrected mass formula confirms that the black hole masses for recently discovered critical gravities vanish.

  14. Exploring Quadratic Functions with Logger "Pro"

    ERIC Educational Resources Information Center

    Pope, Derek

    2018-01-01

    The author shares the lesson that he used to introduce the quadratic unit to students in an extended second-year algebra class, demonstrate why it was appropriate for his struggling learners, and discuss possible future modifications to this lesson.

  15. Maternal Gdf3 is an obligatory cofactor in Nodal signaling for embryonic axis formation in zebrafish

    PubMed Central

    Bisgrove, Brent W; Su, Yi-Chu

    2017-01-01

    Zebrafish Gdf3 (Dvr1) is a member of the TGFβ superfamily of cell signaling ligands that includes Xenopus Vg1 and mammalian Gdf1/3. Surprisingly, engineered homozygous mutants in zebrafish have no apparent phenotype. Elimination of Gdf3 in oocytes of maternal-zygotic mutants results in embryonic lethality that can be fully rescued with gdf3 RNA, demonstrating that Gdf3 is required only early in development, beyond which mutants are viable and fertile. Gdf3 mutants are refractory to Nodal ligands and Nodal repressor Lefty1. Signaling driven by TGFβ ligand Activin and constitutively active receptors Alk4 and Alk2 remain intact in gdf3 mutants, indicating that Gdf3 functions at the same pathway step as Nodal. Targeting gdf3 and ndr2 RNA to specific lineages indicates that exogenous gdf3 is able to fully rescue mutants only when co-expressed with endogenous Nodal. Together, these findings demonstrate that Gdf3 is an essential cofactor of Nodal signaling during establishment of the embryonic axis. PMID:29140249

  16. Nodal failure index approach to groundwater remediation design

    USGS Publications Warehouse

    Lee, J.; Reeves, H.W.; Dowding, C.H.

    2008-01-01

    Computer simulations often are used to design and to optimize groundwater remediation systems. We present a new computationally efficient approach that calculates the reliability of remedial design at every location in a model domain with a single simulation. The estimated reliability and other model information are used to select a best remedial option for given site conditions, conceptual model, and available data. To evaluate design performance, we introduce the nodal failure index (NFI) to determine the number of nodal locations at which the probability of success is below the design requirement. The strength of the NFI approach is that selected areas of interest can be specified for analysis and the best remedial design determined for this target region. An example application of the NFI approach using a hypothetical model shows how the spatial distribution of reliability can be used for a decision support system in groundwater remediation design. ?? 2008 ASCE.

  17. Sensitive SERS detection of lead ions via DNAzyme based quadratic signal amplification.

    PubMed

    Tian, Aihua; Liu, Yu; Gao, Jian

    2017-08-15

    Highly sensitive detection of Pb 2+ is very necessary for water quality control, clinical toxicology, and industrial monitoring. In this work, a simple and novel DNAzyme-based SERS quadratic amplification method is developed for the detection of Pb 2+ . This strategy possesses some remarkable features compared to the conventional DNAzyme-based SERS methods, which are as follows: (i) Coupled DNAzyme-activated hybridization chain reaction (HCR) with bio barcodes; a quadratic amplification method is designed using the unique catalytic selectivity of DNAzyme. The SERS signal is significantly amplified. This method is rapid with a detection time of 2h. (ii) The problem of high background induced by excess bio barcodes is circumvented by using magnetic beads (MBs) as the carrier of signal-output products, and this sensing system is simple in design and can easily be carried out by simple mixing and incubation. Given the unique and attractive characteristics, a simple and universal strategy is designed to accomplish sensitive detection of Pb 2+ . The detection limit of Pb 2+ via SERS detection is 70 fM, with the linear range from 1.0×10 -13 M to 1.0×10 -7 M. The method can be further extended to the quantitative detection of a variety of targets by replacing the lead-responsive DNAzyme with other functional DNA. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Pressure-induced organic topological nodal-line semimetal in the three-dimensional molecular crystal Pd (dddt) 2

    NASA Astrophysics Data System (ADS)

    Liu, Zhao; Wang, Haidi; Wang, Z. F.; Yang, Jinlong; Liu, Feng

    2018-04-01

    The nodal-line semimetal represents a class of topological materials characterized with highest band degeneracy. It is usually found in inorganic materials of high crystal symmetry or a minimum symmetry of inversion aided with accidental band degeneracy [Phys. Rev. Lett. 118, 176402 (2017), 10.1103/PhysRevLett.118.176402]. Based on first-principles band structure, Wannier charge center, and topological surface state calculations, here we predict a pressure-induced topological nodal-line semimetal in the absence of spin-orbit coupling (SOC) in the synthesized single-component 3D molecular crystal Pd (dddt) 2 . We show a Γ -centered single nodal line undulating within a narrow energy window across the Fermi level. This intriguing nodal line is generated by pressure-induced accidental band degeneracy, without protection from any crystal symmetry. When SOC is included, the fourfold degenerated nodal line is gapped and Pd (dddt) 2 becomes a strong 3D topological metal with an Z2 index of (1;000). However, the tiny SOC gap makes it still possible to detect the nodal-line properties experimentally. Our findings afford an attractive route for designing and realizing topological states in 3D molecular crystals, as they are weakly bonded through van der Waals forces with a low crystal symmetry so that their electronic structures can be easily tuned by pressure.

  19. Radiotherapy for esthesioneuroblastoma: is elective nodal irradiation warranted in the multimodality treatment approach?

    PubMed

    Noh, O Kyu; Lee, Sang-wook; Yoon, Sang Min; Kim, Sung Bae; Kim, Sang Yoon; Kim, Chang Jin; Jo, Kyung Ja; Choi, Eun Kyung; Song, Si Yeol; Kim, Jong Hoon; Ahn, Seung Do

    2011-02-01

    The role of elective nodal irradiation (ENI) in radiotherapy for esthesioneuroblastoma (ENB) has not been clearly defined. We analyzed treatment outcomes of patients with ENB and the frequency of cervical nodal failure in the absence of ENI. Between August 1996 and December 2007, we consulted with 19 patients with ENB regarding radiotherapy. Initial treatment consisted of surgery alone in 2 patients; surgery and postoperative radiotherapy in 4; surgery and adjuvant chemotherapy in 1; surgery, postoperative radiotherapy, and chemotherapy in 3; and chemotherapy followed by radiotherapy or concurrent chemoradiotherapy in 5. Five patients did not receive planned radiotherapy because of disease progression. Including 2 patients who received salvage radiotherapy, 14 patients were treated with radiotherapy. Elective nodal irradiation was performed in 4 patients with high-risk factors, including 3 with cervical lymph node metastasis at presentation. Fourteen patients were analyzable, with a median follow-up of 27 months (range, 7-64 months). The overall 3-year survival rate was 73.4%. Local failure occurred in 3 patients (21.4%), regional cervical failure in 3 (21.4%), and distant failure in 2 (14.3%). No cervical nodal failure occurred in patients treated with combined systemic chemotherapy regardless of ENI. Three cervical failures occurred in the 4 patients treated with ENI or neck dissection (75%), none of whom received systemic chemotherapy. ENI during radiotherapy for ENB seems to play a limited role in preventing cervical nodal failure. Omitting ENI may be an option if patients are treated with a combination of radiotherapy and chemotherapy. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Risk of isolated nodal failure for non-small cell lung cancer (NSCLC) treated with the elective nodal irradiation (ENI) using 3D-conformal radiotherapy (3D-CRT) techniques--a retrospective analysis.

    PubMed

    Kepka, Lucyna; Bujko, Krzysztof; Zolciak-Siwinska, Agnieszka

    2008-01-01

    To estimate retrospectively the rate of isolated nodal failures (INF) in NSCLC patients treated with the elective nodal irradiation (ENI) using 3D-conformal radiotherapy (3D-CRT). One hundred and eighty-five patients with I-IIIB stage treated with 3D-CRT in consecutive clinical trials differing in an extent of the ENI were analyzed. According to the extent of the ENI, two groups were distinguished: extended (n = 124) and limited (n = 61) ENI. INF was defined as regional nodal failure occurring without local progression. Cumulative Incidence of INF (CIINF) was evaluated by univariate and multivariate analysis with regard to prognostic factors. With a median follow up of 30 months, the two-year actuarial overall survival was 35%. The two-year CIINF rate was 12%. There were 16 (9%) INF, eight (6%) for extended and eight (13%) for limited ENI. In the univariate analysis bulky mediastinal disease (BMD), left side, higher N stage, and partial response to RT had a significant negative impact on the CIINF. BMD was the only independent predictor of the risk of incidence of the INF (p = 0.001). INF is more likely to occur in case of more advanced nodal status.

  1. Nodal Clearance Rate and Long-Term Efficacy of Individualized Sentinel Node–Based Pelvic Intensity Modulated Radiation Therapy for High-Risk Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Müller, Arndt-Christian, E-mail: arndt-christian.mueller@med.uni-tuebingen.de; Eckert, Franziska; Paulsen, Frank

    2016-02-01

    Purpose: To assess the efficacy of individual sentinel node (SN)-guided pelvic intensity modulated radiation therapy (IMRT) by determining nodal clearance rate [(n expected nodal involvement − n observed regional recurrences)/n expected nodal involvement] in comparison with surgically staged patients. Methods and Materials: Data on 475 high-risk prostate cancer patients were examined. Sixty-one consecutive patients received pelvic SN-based IMRT (5 × 1.8 Gy/wk to 50.4 Gy [pelvic nodes + individual SN] and an integrated boost with 5 × 2.0 Gy/wk to 70.0 Gy to prostate + [base of] seminal vesicles) and neo-/adjuvant long-term androgen deprivation therapy; 414 patients after SN–pelvic lymph node dissection were used to calculate the expected nodal involvement rate for the radiation therapymore » sample. Biochemical control and overall survival were estimated for the SN-IMRT patients using the Kaplan-Meier method. The expected frequency of nodal involvement in the radiation therapy group was estimated by imputing frequencies of node-positive patients in the surgical sample to the pattern of Gleason, prostate-specific antigen, and T category in the radiation therapy sample. Results: After a median follow-up of 61 months, 5-year OS after SN-guided IMRT reached 84.4%. Biochemical control according to the Phoenix definition was 73.8%. The nodal clearance rate of SN-IMRT reached 94%. Retrospective follow-up evaluation is the main limitation. Conclusions: Radiation treatment of pelvic nodes individualized by inclusion of SNs is an effective regional treatment modality in high-risk prostate cancer patients. The pattern of relapse indicates that the SN-based target volume concept correctly covers individual pelvic nodes. Thus, this SN-based approach justifies further evaluation, including current dose-escalation strategies to the prostate in a larger prospective series.« less

  2. Quadratic spatial soliton interactions

    NASA Astrophysics Data System (ADS)

    Jankovic, Ladislav

    Quadratic spatial soliton interactions were investigated in this Dissertation. The first part deals with characterizing the principal features of multi-soliton generation and soliton self-reflection. The second deals with two beam processes leading to soliton interactions and collisions. These subjects were investigated both theoretically and experimentally. The experiments were performed by using potassium niobate (KNBO 3) and periodically poled potassium titanyl phosphate (KTP) crystals. These particular crystals were desirable for these experiments because of their large nonlinear coefficients and, more importantly, because the experiments could be performed under non-critical-phase-matching (NCPM) conditions. The single soliton generation measurements, performed on KNBO3 by launching the fundamental component only, showed a broad angular acceptance bandwidth which was important for the soliton collisions performed later. Furthermore, at high input intensities multi-soliton generation was observed for the first time. The influence on the multi-soliton patterns generated of the input intensity and beam symmetry was investigated. The combined experimental and theoretical efforts indicated that spatial and temporal noise on the input laser beam induced multi-soliton patterns. Another research direction pursued was intensity dependent soliton routing by using of a specially engineered quadratically nonlinear interface within a periodically poled KTP sample. This was the first time demonstration of the self-reflection phenomenon in a system with a quadratic nonlinearity. The feature investigated is believed to have a great potential for soliton routing and manipulation by engineered structures. A detailed investigation was conducted on two soliton interaction and collision processes. Birth of an additional soliton resulting from a two soliton collision was observed and characterized for the special case of a non-planar geometry. A small amount of spiraling, up to 30

  3. Observation of nodal line in non-symmorphic topological semimetal InBi

    DOE PAGES

    Ekahana, Sandy Adhitia; Wu, Shu-Chun; Jiang, Juan; ...

    2017-05-30

    Topological nodal semimetal (TNS), characterized by its touching conduction and valence bands, is a newly discovered state of quantum matter which exhibits various exotic physical phenomena. Recently, a new type of TNS called topological nodal line semimetal (TNLS) is predicted where its conduction and valence band form a degenerate one-dimension line which is further protected by its crystal symmetry. In this work, we systematically investigated the bulk and surface electronic structure of the non-symmorphic, TNLS in InBi (which is also a type II Dirac semimetal) with strong spin–orbit coupling by using angle resolved photoemission spectroscopy. By tracking the crossing points of the bulk bands at the Brillouin zone boundary, we discovered the nodal-line feature along themore » $${{k}}_{{z}}$$ direction, in agreement with the ab initio calculations and confirmed it to be a new compound in the TNLS family. Our discovery provides a new material platform for the study of these exotic topological quantum phases and paves the way for possible future applications.« less

  4. Intensity-Modulated Radiation Therapy for the Treatment of Squamous Cell Anal Cancer With Para-aortic Nodal Involvement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodges, Joseph C.; Das, Prajnan, E-mail: PrajDas@mdanderson.or; Eng, Cathy

    2009-11-01

    Purpose: To determine the rates of toxicity, locoregional control, distant control, and survival in anal cancer patients with para-aortic nodal involvement, treated with intensity-modulated radiotherapy (IMRT) and concurrent chemotherapy at a single institution. Methods and Materials: Between 2001 and 2007, 6 patients with squamous cell anal cancer and para-aortic nodal involvement were treated with IMRT and concurrent infusional 5-fluorouracil and cisplatin. The primary tumor was treated with a median dose of 57.5 Gy (range, 54-60 Gy), involved para-aortic, pelvic, and inguinal lymph nodes were treated with a median dose of 55 Gy (range, 50.5-55 Gy), and noninvolved nodal regions weremore » treated with a median dose of 45 Gy (range, 43.5-45 Gy). Results: After a median follow-up of 25 months, none of the patients had a recurrence at the primary tumor, pelvic/inguinal nodes, or para-aortic nodes, whereas 2 patients developed distant metastases to the liver. Four of the 6 patients are alive. The 3-year actuarial locoregional control, distant control, and overall survival rates were 100%, 56%, and 63%, respectively. Four of the 6 patients developed Grade 3 acute gastrointestinal toxicity during chemoradiation. Conclusions: Intensity-modulated radiotherapy and concurrent chemotherapy could potentially serve as definitive therapy in anal cancer patients with para-aortic nodal involvement. Adjuvant chemotherapy may be indicated in these patients, as demonstrated by the distant failure rates. These patients need to be followed carefully because of the potential for treatment-related toxicities.« less

  5. Encapsulation of nodal cuttings and shoot tips for storage and exchange of cassava germplasm.

    PubMed

    Danso, K E; Ford-Lloyd, B V

    2003-04-01

    We report the encapsulation of in vitro-derived nodal cuttings or shoot tips of cassava in 3% calcium alginate for storage and germplasm exchange purposes. Shoot regrowth was not significantly affected by the concentration of sucrose in the alginate matrix while root formation was. In contrast, increasing the sucrose concentration in the calcium chloride polymerisation medium significantly reduced regrowth from encapsulated nodal cuttings of accession TME 60444. Supplementing the alginate matrix with increased concentrations of 6-benzylaminopurine and alpha-naphthaleneacetic acid enhanced complete plant regrowth within 2 weeks. Furthermore, plant regrowth by encapsulated nodal cuttings and shoot tips was significantly affected by the duration of the storage period as shoot recovery decreased from almost 100% to 73.3% for encapsulated nodal cuttings and 94.4% to 60% for shoot tips after 28 days of storage. The high frequency of plant regrowth from alginate-coated micropropagules coupled with high viability percentage after 28 days of storage is highly encouraging for the exchange of cassava genetic resources. Such encapsulated micropropagules could be used as an alternative to synthetic seeds derived from somatic embryos.

  6. s-Ordered Exponential of Quadratic Forms Gained via IWSOP Technique

    NASA Astrophysics Data System (ADS)

    Bazrafkan, M. R.; Shähandeh, F.; Nahvifard, E.

    2012-11-01

    Using the generalized bar{s}-ordered Wigner operator, in which bar{s} is a vector over the field of complex numbers, the technique of integration within an s-ordered product of operators (IWSOP) has been extended to multimode case. We derive the bar{s}-ordered form of the widely applicable multimode exponential of quadratic form exp\\{sum_{i,j = 1}n ai^{dag}\\varLambda_{ij}{aj}\\} , each mode being in some particular order s i , applying this method.

  7. Finite Element Simulation of Articular Contact Mechanics with Quadratic Tetrahedral Elements

    PubMed Central

    Maas, Steve A.; Ellis, Benjamin J.; Rawlins, David S.; Weiss, Jeffrey A.

    2016-01-01

    Although it is easier to generate finite element discretizations with tetrahedral elements, trilinear hexahedral (HEX8) elements are more often used in simulations of articular contact mechanics. This is due to numerical shortcomings of linear tetrahedral (TET4) elements, limited availability of quadratic tetrahedron elements in combination with effective contact algorithms, and the perceived increased computational expense of quadratic finite elements. In this study we implemented both ten-node (TET10) and fifteen-node (TET15) quadratic tetrahedral elements in FEBio (www.febio.org) and compared their accuracy, robustness in terms of convergence behavior and computational cost for simulations relevant to articular contact mechanics. Suitable volume integration and surface integration rules were determined by comparing the results of several benchmark contact problems. The results demonstrated that the surface integration rule used to evaluate the contact integrals for quadratic elements affected both convergence behavior and accuracy of predicted stresses. The computational expense and robustness of both quadratic tetrahedral formulations compared favorably to the HEX8 models. Of note, the TET15 element demonstrated superior convergence behavior and lower computational cost than both the TET10 and HEX8 elements for meshes with similar numbers of degrees of freedom in the contact problems that we examined. Finally, the excellent accuracy and relative efficiency of these quadratic tetrahedral elements was illustrated by comparing their predictions with those for a HEX8 mesh for simulation of articular contact in a fully validated model of the hip. These results demonstrate that TET10 and TET15 elements provide viable alternatives to HEX8 elements for simulation of articular contact mechanics. PMID:26900037

  8. Finite element simulation of articular contact mechanics with quadratic tetrahedral elements.

    PubMed

    Maas, Steve A; Ellis, Benjamin J; Rawlins, David S; Weiss, Jeffrey A

    2016-03-21

    Although it is easier to generate finite element discretizations with tetrahedral elements, trilinear hexahedral (HEX8) elements are more often used in simulations of articular contact mechanics. This is due to numerical shortcomings of linear tetrahedral (TET4) elements, limited availability of quadratic tetrahedron elements in combination with effective contact algorithms, and the perceived increased computational expense of quadratic finite elements. In this study we implemented both ten-node (TET10) and fifteen-node (TET15) quadratic tetrahedral elements in FEBio (www.febio.org) and compared their accuracy, robustness in terms of convergence behavior and computational cost for simulations relevant to articular contact mechanics. Suitable volume integration and surface integration rules were determined by comparing the results of several benchmark contact problems. The results demonstrated that the surface integration rule used to evaluate the contact integrals for quadratic elements affected both convergence behavior and accuracy of predicted stresses. The computational expense and robustness of both quadratic tetrahedral formulations compared favorably to the HEX8 models. Of note, the TET15 element demonstrated superior convergence behavior and lower computational cost than both the TET10 and HEX8 elements for meshes with similar numbers of degrees of freedom in the contact problems that we examined. Finally, the excellent accuracy and relative efficiency of these quadratic tetrahedral elements was illustrated by comparing their predictions with those for a HEX8 mesh for simulation of articular contact in a fully validated model of the hip. These results demonstrate that TET10 and TET15 elements provide viable alternatives to HEX8 elements for simulation of articular contact mechanics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. On Volterra quadratic stochastic operators with continual state space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganikhodjaev, Nasir; Hamzah, Nur Zatul Akmar

    2015-05-15

    Let (X,F) be a measurable space, and S(X,F) be the set of all probability measures on (X,F) where X is a state space and F is σ - algebraon X. We consider a nonlinear transformation (quadratic stochastic operator) defined by (Vλ)(A) = ∫{sub X}∫{sub X}P(x,y,A)dλ(x)dλ(y), where P(x, y, A) is regarded as a function of two variables x and y with fixed A ∈ F . A quadratic stochastic operator V is called a regular, if for any initial measure the strong limit lim{sub n→∞} V{sup n }(λ) is exists. In this paper, we construct a family of quadratic stochastic operators defined on themore » segment X = [0,1] with Borel σ - algebra F on X , prove their regularity and show that the limit measure is a Dirac measure.« less

  10. Schur Stability Regions for Complex Quadratic Polynomials

    ERIC Educational Resources Information Center

    Cheng, Sui Sun; Huang, Shao Yuan

    2010-01-01

    Given a quadratic polynomial with complex coefficients, necessary and sufficient conditions are found in terms of the coefficients such that all its roots have absolute values less than 1. (Contains 3 figures.)

  11. Linear quadratic Gaussian control of a deformable mirror adaptive optics system with time-delayed measurements

    NASA Astrophysics Data System (ADS)

    Paschall, Randall N.; Anderson, David J.

    1993-11-01

    A linear quadratic Gaussian method is proposed for a deformable mirror adaptive optics system control. Estimates of system states describing the distortion are generated by a Kalman filter based on Hartmann wave front measurements of the wave front gradient.

  12. Nodal liquids in extended t-J models and dynamical supersymmetry

    NASA Astrophysics Data System (ADS)

    Mavromatos, Nick E.; Sarkar, Sarben

    2000-08-01

    In the context of extended t-J models, with intersite Coulomb interactions of the form -V∑ninj, with ni denoting the electron number operator at site i, nodal liquids are discussed. We use the spin-charge separation ansatz as applied to the nodes of a d-wave superconducting gap. Such a situation may be of relevance to the physics of high-temperature superconductivity. We point out the possibility of existence of certain points in the parameter space of the model characterized by dynamical supersymmetries between the spinon and holon degrees of freedom, which are quite different from the symmetries in conventional supersymmetric t-J models. Such symmetries pertain to the continuum effective-field theory of the nodal liquid, and one's hope is that the ancestor lattice model may differ from the continuum theory only by renormalization-group irrelevant operators in the infrared. We give plausible arguments that nodal liquids at such supersymmetric points are characterized by superconductivity of Kosterlitz-Thouless type. The fact that quantum fluctuations around such points can be studied in a controlled way, probably makes such systems of special importance for an eventual nonperturbative understanding of the complex phase diagram of the associated high-temperature superconducting materials.

  13. Gain scheduled linear quadratic control for quadcopter

    NASA Astrophysics Data System (ADS)

    Okasha, M.; Shah, J.; Fauzi, W.; Hanouf, Z.

    2017-12-01

    This study exploits the dynamics and control of quadcopters using Linear Quadratic Regulator (LQR) control approach. The quadcopter’s mathematical model is derived using the Newton-Euler method. It is a highly manoeuvrable, nonlinear, coupled with six degrees of freedom (DOF) model, which includes aerodynamics and detailed gyroscopic moments that are often ignored in many literatures. The linearized model is obtained and characterized by the heading angle (i.e. yaw angle) of the quadcopter. The adopted control approach utilizes LQR method to track several reference trajectories including circle and helix curves with significant variation in the yaw angle. The controller is modified to overcome difficulties related to the continuous changes in the operating points and eliminate chattering and discontinuity that is observed in the control input signal. Numerical non-linear simulations are performed using MATLAB and Simulink to illustrate to accuracy and effectiveness of the proposed controller.

  14. Quadratically Convergent Method for Simultaneously Approaching the Roots of Polynomial Solutions of a Class of Differential Equations

    NASA Astrophysics Data System (ADS)

    Recchioni, Maria Cristina

    2001-12-01

    This paper investigates the application of the method introduced by L. Pasquini (1989) for simultaneously approaching the zeros of polynomial solutions to a class of second-order linear homogeneous ordinary differential equations with polynomial coefficients to a particular case in which these polynomial solutions have zeros symmetrically arranged with respect to the origin. The method is based on a family of nonlinear equations which is associated with a given class of differential equations. The roots of the nonlinear equations are related to the roots of the polynomial solutions of differential equations considered. Newton's method is applied to find the roots of these nonlinear equations. In (Pasquini, 1994) the nonsingularity of the roots of these nonlinear equations is studied. In this paper, following the lines in (Pasquini, 1994), the nonsingularity of the roots of these nonlinear equations is studied. More favourable results than the ones in (Pasquini, 1994) are proven in the particular case of polynomial solutions with symmetrical zeros. The method is applied to approximate the roots of Hermite-Sobolev type polynomials and Freud polynomials. A lower bound for the smallest positive root of Hermite-Sobolev type polynomials is given via the nonlinear equation. The quadratic convergence of the method is proven. A comparison with a classical method that uses the Jacobi matrices is carried out. We show that the algorithm derived by the proposed method is sometimes preferable to the classical QR type algorithms for computing the eigenvalues of the Jacobi matrices even if these matrices are real and symmetric.

  15. Linear and quadratic static response functions and structure functions in Yukawa liquids.

    PubMed

    Magyar, Péter; Donkó, Zoltán; Kalman, Gabor J; Golden, Kenneth I

    2014-08-01

    We compute linear and quadratic static density response functions of three-dimensional Yukawa liquids by applying an external perturbation potential in molecular dynamics simulations. The response functions are also obtained from the equilibrium fluctuations (static structure factors) in the system via the fluctuation-dissipation theorems. The good agreement of the quadratic response functions, obtained in the two different ways, confirms the quadratic fluctuation-dissipation theorem. We also find that the three-point structure function may be factorizable into two-point structure functions, leading to a cluster representation of the equilibrium triplet correlation function.

  16. Pelvic Nodal Dosing With Registration to the Prostate: Implications for High-Risk Prostate Cancer Patients Receiving Stereotactic Body Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kishan, Amar U., E-mail: aukishan@mednet.ucla.edu; Lamb, James M.; Jani, Shyam S.

    2015-03-15

    Purpose: To determine whether image guidance with rigid registration (RR) to intraprostatic markers (IPMs) yields acceptable coverage of the pelvic lymph nodes in the context of a stereotactic body radiation therapy (SBRT) regimen. Methods and Materials: Four to seven kilovoltage cone-beam CTs (CBCTs) from 12 patients with high-risk prostate cancer were analyzed, allowing approximation of an SBRT regimen. The nodal clinical target volume (CTV{sub N}) and bladder were contoured on all kilovoltage CBCTs. The V{sub 100} CTV{sub N}, expressed as a ratio to the same parameter on the initial plan, and the magnitude of translational shift between RR to themore » IPMs versus RR to the pelvic bones, were computed. The ability of a multimodality bladder filling protocol to minimize bladder height variation was assessed in a separate cohort of 4 patients. Results: Sixty-five CBCTs were assessed. The average V{sub 100} CTV{sub N} was 92.6%, but for a subset of 3 patients the average was 80.0%, compared with 97.8% for the others (P<.0001). The average overall and superior–inferior axis magnitudes of the bony-to-fiducial translations were significantly larger in the subgroup with suboptimal nodal coverage (8.1 vs 3.9 mm and 5.8 vs 2.4 mm, respectively; P<.0001). Relative bladder height changes were also significantly larger in the subgroup with suboptimal nodal coverage (42.9% vs 18.5%; P<.05). Use of a multimodality bladder-filling protocol minimized bladder height variation (P<.001). Conclusion: A majority of patients had acceptable nodal coverage after RR to IPMs, even when approximating SBRT. However, a subset of patients had suboptimal nodal coverage. These patients had large bony-to-fiducial translations and large variations in bladder height. Nodal coverage should be excellent if the superior–inferior axis bony-to-fiducial translation and the relative bladder height change (both easily measured on CBCT) are kept to a minimum. Implementation of a strict bladder

  17. Topological and trivial magnetic oscillations in nodal loop semimetals

    NASA Astrophysics Data System (ADS)

    Oroszlány, László; Dóra, Balázs; Cserti, József; Cortijo, Alberto

    2018-05-01

    Nodal loop semimetals are close descendants of Weyl semimetals and possess a topologically dressed band structure. We argue by combining the conventional theory of magnetic oscillation with topological arguments that nodal loop semimetals host coexisting topological and trivial magnetic oscillations. These originate from mapping the topological properties of the extremal Fermi surface cross sections onto the physics of two dimensional semi-Dirac systems, stemming from merging two massless Dirac cones. By tuning the chemical potential and the direction of magnetic field, a sharp transition is identified from purely trivial oscillations, arising from the Landau levels of a normal two dimensional (2D) electron gas, to a phase where oscillations of topological and trivial origin coexist, originating from 2D massless Dirac and semi-Dirac points, respectively. These could in principle be directly identified in current experiments.

  18. Rapid enhancement of nodal quasiparticle mass with heavily underdoping in Bi2212

    NASA Astrophysics Data System (ADS)

    Anzai, Hiroaki; Arita, Masashi; Namatame, Hirofumi; Taniguchi, Masaki; Ishikado, Motoyuki; Fujita, Kazuhiro; Ishida, Shigeyuki; Uchida, Shin-ichi; Ino, Akihiro

    2018-05-01

    We report substantial advance of our low-energy angle-resolved photoemission study of nodal quasiparticles in Bi2Sr2CaCu2O8+δ. The new data cover the samples from underdoped down to heavily underdoped levels. We also present the nodal Fermi velocities that determined by using an excitation-photon energy of hν = 7.0 eV over a wide doping range. The consistency between the results with hν = 8.1 and 7.0 eV allows us to rule out the effect of photoemission matrix elements. In comparison with the data previously reported, the nodal effective mass increases by a factor of ∼ 1.5 in going from optimally doped to heavily underdoped levels. We find a rapid enhancement of the nodal quasiparticle mass at low doping levels near the superconductor-to-insulator transition. The effective coupling spectrum, λ (ω) , is extracted directly from the energy derivatives of the quasiparticle dispersion and scattering rate, as a causal function of the mass enhancement factor. A steplike increase in Reλ (ω) around ∼ 65 meV is demonstrated clearly by the Kramers-Kronig transform of Imλ (ω) . To extract the low-energy renormalization effect, we calculated a simple model for the electron-boson interaction. This model reveals that the contribution of the renormalization at | ω | ≤ 15 meV to the quasiparticle mass is larger than that around 65 meV in underdoped samples.

  19. Geometrical Solutions of Quadratic Equations.

    ERIC Educational Resources Information Center

    Grewal, A. S.; Godloza, L.

    1999-01-01

    Demonstrates that the equation of a circle (x-h)2 + (y-k)2 = r2 with center (h; k) and radius r reduces to a quadratic equation x2-2xh + (h2 + k2 -r2) = O at the intersection with the x-axis. Illustrates how to determine the center of a circle as well as a point on a circle. (Author/ASK)

  20. Patterns of nodal relapse after surgery and postoperative radiation therapy for carcinomas of the major and minor salivary glands: What is the role of elective neck irradiation?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Allen M.; Garcia, Joaquin; Lee, Nancy Y.

    2007-03-15

    Purpose: To evaluate the incidence of nodal relapses from carcinomas of the salivary glands among patients with clinically negative necks in an attempt to determine the potential utility of elective neck irradiation (ENI). Methods and Materials: Between 1960 and 2004, 251 patients with clinically N0 carcinomas of the salivary glands were treated with surgery and postoperative radiation therapy. None of the patients had undergone previous neck dissection. Histology was: adenoid cystic (84 patients), mucoepidermoid (60 patients), adenocarcinoma (58 patients), acinic cell (21 patients), undifferentiated (11 patients), carcinoma ex pleomorphic adenoma (7 patients), squamous cell (7 patients), and salivary duct carcinomamore » (3 patients); 131 patients (52%) had ENI. Median follow-up was 62 months (range, 3-267 months). Results: The 5- and 10-year actuarial estimates of nodal relapse were 11% and 13%, respectively. The 10-year actuarial rates of nodal failure were 7%, 5%, 12%, and 16%, for patients with T1, T2, T3, and T4 disease, respectively (p = 0.11). The use of ENI reduced the 10-year nodal failure rate from 26% to 0% (p = 0.0001). The highest crude rates of nodal relapse among those treated without ENI were found in patients with squamous cell carcinoma (67%), undifferentiated carcinoma (50%), adenocarcinoma (34%), and mucoepidermoid carcinoma (29%). There were no nodal failures observed among patients with adenoid cystic or acinic cell histology. Conclusion: ENI effectively prevents nodal relapses and should be used for select patients at high risk for regional failure.« less

  1. Long-term dynamic modeling of tethered spacecraft using nodal position finite element method and symplectic integration

    NASA Astrophysics Data System (ADS)

    Li, G. Q.; Zhu, Z. H.

    2015-12-01

    Dynamic modeling of tethered spacecraft with the consideration of elasticity of tether is prone to the numerical instability and error accumulation over long-term numerical integration. This paper addresses the challenges by proposing a globally stable numerical approach with the nodal position finite element method (NPFEM) and the implicit, symplectic, 2-stage and 4th order Gaussian-Legendre Runge-Kutta time integration. The NPFEM eliminates the numerical error accumulation by using the position instead of displacement of tether as the state variable, while the symplectic integration enforces the energy and momentum conservation of the discretized finite element model to ensure the global stability of numerical solution. The effectiveness and robustness of the proposed approach is assessed by an elastic pendulum problem, whose dynamic response resembles that of tethered spacecraft, in comparison with the commonly used time integrators such as the classical 4th order Runge-Kutta schemes and other families of non-symplectic Runge-Kutta schemes. Numerical results show that the proposed approach is accurate and the energy of the corresponding numerical model is conservative over the long-term numerical integration. Finally, the proposed approach is applied to the dynamic modeling of deorbiting process of tethered spacecraft over a long period.

  2. Brady's Geothermal Field Nodal Seismometer Earthquake Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurt Feigl

    90-second records of data from 238 three-component nodal seismometer deployed at Bradys geothermal field. The time window catches an earthquake arrival. Earthquake data from USGS online catalog: Magnitude: 4.3 ml +/- 0.4 Location: 38.479 deg N 118.366 deg W +/- 0.7 km Depth: 9.9 km +/- 0.7 Date and Time: 2016-03-21 07:37:10.535 UTC

  3. Isospectral discrete and quantum graphs with the same flip counts and nodal counts

    NASA Astrophysics Data System (ADS)

    Juul, Jonas S.; Joyner, Christopher H.

    2018-06-01

    The existence of non-isomorphic graphs which share the same Laplace spectrum (to be referred to as isospectral graphs) leads naturally to the following question: what additional information is required in order to resolve isospectral graphs? It was suggested by Band, Shapira and Smilansky that this might be achieved by either counting the number of nodal domains or the number of times the eigenfunctions change sign (the so-called flip count) (Band et al 2006 J. Phys. A: Math. Gen. 39 13999–4014 Band and Smilansky 2007 Eur. Phys. J. Spec. Top. 145 171–9). Recent examples of (discrete) isospectral graphs with the same flip count and nodal count have been constructed by Ammann by utilising Godsil–McKay switching (Ammann private communication). Here, we provide a simple alternative mechanism that produces systematic examples of both discrete and quantum isospectral graphs with the same flip and nodal counts.

  4. The non-avian theropod quadrate I: standardized terminology with an overview of the anatomy and function

    PubMed Central

    Araújo, Ricardo; Mateus, Octávio

    2015-01-01

    The quadrate of reptiles and most other tetrapods plays an important morphofunctional role by allowing the articulation of the mandible with the cranium. In Theropoda, the morphology of the quadrate is particularly complex and varies importantly among different clades of non-avian theropods, therefore conferring a strong taxonomic potential. Inconsistencies in the notation and terminology used in discussions of the theropod quadrate anatomy have been noticed, including at least one instance when no less than eight different terms were given to the same structure. A standardized list of terms and notations for each quadrate anatomical entity is proposed here, with the goal of facilitating future descriptions of this important cranial bone. In addition, an overview of the literature on quadrate function and pneumaticity in non-avian theropods is presented, along with a discussion of the inferences that could be made from this research. Specifically, the quadrate of the large majority of non-avian theropods is akinetic but the diagonally oriented intercondylar sulcus of the mandibular articulation allowed both rami of the mandible to move laterally when opening the mouth in many of theropods. Pneumaticity of the quadrate is also present in most averostran clades and the pneumatic chamber—invaded by the quadrate diverticulum of the mandibular arch pneumatic system—was connected to one or several pneumatic foramina on the medial, lateral, posterior, anterior or ventral sides of the quadrate. PMID:26401455

  5. Mapping the absolute magnetic field and evaluating the quadratic Zeeman-effect-induced systematic error in an atom interferometer gravimeter

    NASA Astrophysics Data System (ADS)

    Hu, Qing-Qing; Freier, Christian; Leykauf, Bastian; Schkolnik, Vladimir; Yang, Jun; Krutzik, Markus; Peters, Achim

    2017-09-01

    Precisely evaluating the systematic error induced by the quadratic Zeeman effect is important for developing atom interferometer gravimeters aiming at an accuracy in the μ Gal regime (1 μ Gal =10-8m /s2 ≈10-9g ). This paper reports on the experimental investigation of Raman spectroscopy-based magnetic field measurements and the evaluation of the systematic error in the gravimetric atom interferometer (GAIN) due to quadratic Zeeman effect. We discuss Raman duration and frequency step-size-dependent magnetic field measurement uncertainty, present vector light shift and tensor light shift induced magnetic field measurement offset, and map the absolute magnetic field inside the interferometer chamber of GAIN with an uncertainty of 0.72 nT and a spatial resolution of 12.8 mm. We evaluate the quadratic Zeeman-effect-induced gravity measurement error in GAIN as 2.04 μ Gal . The methods shown in this paper are important for precisely mapping the absolute magnetic field in vacuum and reducing the quadratic Zeeman-effect-induced systematic error in Raman transition-based precision measurements, such as atomic interferometer gravimeters.

  6. The Impact of the Size of Nodal Metastases on Recurrence Risk in Breast Cancer Patients With 1-3 Positive Axillary Nodes After Mastectomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, Eleanor E.R., E-mail: Eleanor.harris@moffitt.org; Freilich, Jessica; Lin, Hui-Yi

    Purpose: Use of postmastectomy radiation therapy (PMRT) in breast cancer patients with 1-3 positive nodes is controversial. The objective of this study was to determine whether the size of nodal metastases in this subset could predict who would benefit from PMRT. Methods and Materials: We analyzed 250 breast cancer patients with 1-3 positive nodes after mastectomy treated with contemporary surgery and systemic therapy at our institution. Of these patients, 204 did not receive PMRT and 46 did receive PMRT. Local and regional recurrence risks were stratified by the size of the largest nodal metastasis measured as less than or equalmore » to 5 mm or greater than 5 mm. Results: The median follow-up was 65.6 months. In the whole group, regional recurrences occurred in 2% of patients in whom the largest nodal metastasis measured 5 mm or less vs 6% for those with metastases measuring greater than 5 mm. For non-irradiated patients only, regional recurrence rates were 2% and 9%, respectively. Those with a maximal nodal size greater than 5 mm had a significantly higher cumulative incidence of regional recurrence (P=.013). The 5-year cumulative incidence of a regional recurrence in the non-irradiated group was 2.7% (95% confidence interval [CI], 0.7%-7.2%) for maximal metastasis size of 5 mm or less, 6.9% (95% CI, 1.7%-17.3%) for metastasis size greater than 5 mm, and 16% (95% CI, 3.4%-36.8%) for metastasis size greater than 10 mm. The impact of the maximal nodal size on regional recurrences became insignificant in the multivariable model. Conclusions: In patients with 1-3 positive lymph nodes undergoing mastectomy without radiation, nodal metastasis greater than 5 mm was associated with regional recurrence after mastectomy, but its effect was modified by other factors (such as tumor stage). The size of the largest nodal metastasis may be useful to identify high-risk patients who may benefit from radiation therapy after mastectomy.« less

  7. A Wavelet Bicoherence-Based Quadratic Nonlinearity Feature for Translational Axis Condition Monitoring

    PubMed Central

    Li, Yong; Wang, Xiufeng; Lin, Jing; Shi, Shengyu

    2014-01-01

    The translational axis is one of the most important subsystems in modern machine tools, as its degradation may result in the loss of the product qualification and lower the control precision. Condition-based maintenance (CBM) has been considered as one of the advanced maintenance schemes to achieve effective, reliable and cost-effective operation of machine systems, however, current vibration-based maintenance schemes cannot be employed directly in the translational axis system, due to its complex structure and the inefficiency of commonly used condition monitoring features. In this paper, a wavelet bicoherence-based quadratic nonlinearity feature is proposed for translational axis condition monitoring by using the torque signature of the drive servomotor. Firstly, the quadratic nonlinearity of the servomotor torque signature is discussed, and then, a biphase randomization wavelet bicoherence is introduced for its quadratic nonlinear detection. On this basis, a quadratic nonlinearity feature is proposed for condition monitoring of the translational axis. The properties of the proposed quadratic nonlinearity feature are investigated by simulations. Subsequently, this feature is applied to the real-world servomotor torque data collected from the X-axis on a high precision vertical machining centre. All the results show that the performance of the proposed feature is much better than that of original condition monitoring features. PMID:24473281

  8. A Variational Nodal Approach to 2D/1D Pin Resolved Neutron Transport for Pressurized Water Reactors

    DOE PAGES

    Zhang, Tengfei; Lewis, E. E.; Smith, M. A.; ...

    2017-04-18

    A two-dimensional/one-dimensional (2D/1D) variational nodal approach is presented for pressurized water reactor core calculations without fuel-moderator homogenization. A 2D/1D approximation to the within-group neutron transport equation is derived and converted to an even-parity form. The corresponding nodal functional is presented and discretized to obtain response matrix equations. Within the nodes, finite elements in the x-y plane and orthogonal functions in z are used to approximate the spatial flux distribution. On the radial interfaces, orthogonal polynomials are employed; on the axial interfaces, piecewise constants corresponding to the finite elements eliminate the interface homogenization that has been a challenge for method ofmore » characteristics (MOC)-based 2D/1D approximations. The angular discretization utilizes an even-parity integral method within the nodes, and low-order spherical harmonics (P N) on the axial interfaces. The x-y surfaces are treated with high-order P N combined with quasi-reflected interface conditions. Furthermore, the method is applied to the C5G7 benchmark problems and compared to Monte Carlo reference calculations.« less

  9. A Variational Nodal Approach to 2D/1D Pin Resolved Neutron Transport for Pressurized Water Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Tengfei; Lewis, E. E.; Smith, M. A.

    A two-dimensional/one-dimensional (2D/1D) variational nodal approach is presented for pressurized water reactor core calculations without fuel-moderator homogenization. A 2D/1D approximation to the within-group neutron transport equation is derived and converted to an even-parity form. The corresponding nodal functional is presented and discretized to obtain response matrix equations. Within the nodes, finite elements in the x-y plane and orthogonal functions in z are used to approximate the spatial flux distribution. On the radial interfaces, orthogonal polynomials are employed; on the axial interfaces, piecewise constants corresponding to the finite elements eliminate the interface homogenization that has been a challenge for method ofmore » characteristics (MOC)-based 2D/1D approximations. The angular discretization utilizes an even-parity integral method within the nodes, and low-order spherical harmonics (P N) on the axial interfaces. The x-y surfaces are treated with high-order P N combined with quasi-reflected interface conditions. Furthermore, the method is applied to the C5G7 benchmark problems and compared to Monte Carlo reference calculations.« less

  10. Differences between quadratic equations and functions: Indonesian pre-service secondary mathematics teachers’ views

    NASA Astrophysics Data System (ADS)

    Aziz, T. A.; Pramudiani, P.; Purnomo, Y. W.

    2018-01-01

    Difference between quadratic equation and quadratic function as perceived by Indonesian pre-service secondary mathematics teachers (N = 55) who enrolled at one private university in Jakarta City was investigated. Analysis of participants’ written responses and interviews were conducted consecutively. Participants’ written responses highlighted differences between quadratic equation and function by referring to their general terms, main characteristics, processes, and geometrical aspects. However, they showed several obstacles in describing the differences such as inappropriate constraints and improper interpretations. Implications of the study are discussed.

  11. A nodal domain theorem for integrable billiards in two dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samajdar, Rhine; Jain, Sudhir R., E-mail: srjain@barc.gov.in

    Eigenfunctions of integrable planar billiards are studied — in particular, the number of nodal domains, ν of the eigenfunctions with Dirichlet boundary conditions are considered. The billiards for which the time-independent Schrödinger equation (Helmholtz equation) is separable admit trivial expressions for the number of domains. Here, we discover that for all separable and non-separable integrable billiards, ν satisfies certain difference equations. This has been possible because the eigenfunctions can be classified in families labelled by the same value of mmodkn, given a particular k, for a set of quantum numbers, m,n. Further, we observe that the patterns in a familymore » are similar and the algebraic representation of the geometrical nodal patterns is found. Instances of this representation are explained in detail to understand the beauty of the patterns. This paper therefore presents a mathematical connection between integrable systems and difference equations. - Highlights: • We find that the number of nodal domains of eigenfunctions of integrable, planar billiards satisfy a class of difference equations. • The eigenfunctions labelled by quantum numbers (m,n) can be classified in terms of mmodkn. • A theorem is presented, realising algebraic representations of geometrical patterns exhibited by the domains. • This work presents a connection between integrable systems and difference equations.« less

  12. A reduced successive quadratic programming strategy for errors-in-variables estimation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tjoa, I.-B.; Biegler, L. T.; Carnegie-Mellon Univ.

    Parameter estimation problems in process engineering represent a special class of nonlinear optimization problems, because the maximum likelihood structure of the objective function can be exploited. Within this class, the errors in variables method (EVM) is particularly interesting. Here we seek a weighted least-squares fit to the measurements with an underdetermined process model. Thus, both the number of variables and degrees of freedom available for optimization increase linearly with the number of data sets. Large optimization problems of this type can be particularly challenging and expensive to solve because, for general-purpose nonlinear programming (NLP) algorithms, the computational effort increases atmore » least quadratically with problem size. In this study we develop a tailored NLP strategy for EVM problems. The method is based on a reduced Hessian approach to successive quadratic programming (SQP), but with the decomposition performed separately for each data set. This leads to the elimination of all variables but the model parameters, which are determined by a QP coordination step. In this way the computational effort remains linear in the number of data sets. Moreover, unlike previous approaches to the EVM problem, global and superlinear properties of the SQP algorithm apply naturally. Also, the method directly incorporates inequality constraints on the model parameters (although not on the fitted variables). This approach is demonstrated on five example problems with up to 102 degrees of freedom. Compared to general-purpose NLP algorithms, large improvements in computational performance are observed.« less

  13. Indications for Pelvic Nodal Treatment in Prostate Cancer Should Change. Validation of the Roach Formula in a Large Extended Nodal Dissection Series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdollah, Firas; Cozzarini, Cesare; Suardi, Nazareno

    2012-06-01

    Purpose: Previous studies have criticized the predicting ability of the Roach formula in assessing the risk of lymph node invasion (LNI) in contemporary patients with prostate cancer (PCa) due to a significant overestimation of LNI rates. However, all those studies included patients treated with limited pelvic lymph node dissection (PLND), which is associated with high rates of false negative findings. We hypothesized that the Roach formula is still an accurate tool for LNI predictions if an extended PLND (ePLND) is performed. Methods and Materials: We included 3,115 consecutive patients treated with radical prostatectomy and ePLND between 2000 and 2010 atmore » a single tertiary referral center. Extended PLND consisted of removal of obturator, external iliac, and hypogastric lymph nodes. We externally validated the Roach formula by using the area under the receiver operating characteristics curve and calibration plot method. Moreover, we tested the performance characteristics of different formula-generated cutoff values ranging from 1% to 20%. Results: The accuracy of the Roach formula was 80.3%. The calibration showed only a minor underestimation of the LNI risk in high-risk patients (6.7%). According to the Roach formula, the use of 15% cut off would have allowed 74.2% (2,311/3,115) of patients to avoid nodal irradiation, while up to 32.7% (111/336) of all patients with LNI would have been missed. When the cut off was lowered to 6%, nodal treatment would have been spared in 1,541 (49.5%) patients while missing 41 LNI patients. The sensitivity, specificity, and negative predictive values associated with the 6% cut off were 87.9%, 54%, and 97.3%, respectively. Conclusions: The Roach formula is still accurate and does not overestimate the rate of LNI in contemporary prostate cancer patients if they are treated with ePLND. However, the recommended cut off of 15% would miss approximately one-third of patients with LNI. Based on our results, the cut off should be

  14. Quadratic time dependent Hamiltonians and separation of variables

    NASA Astrophysics Data System (ADS)

    Anzaldo-Meneses, A.

    2017-06-01

    Time dependent quantum problems defined by quadratic Hamiltonians are solved using canonical transformations. The Green's function is obtained and a comparison with the classical Hamilton-Jacobi method leads to important geometrical insights like exterior differential systems, Monge cones and time dependent Gaussian metrics. The Wei-Norman approach is applied using unitary transformations defined in terms of generators of the associated Lie groups, here the semi-direct product of the Heisenberg group and the symplectic group. A new explicit relation for the unitary transformations is given in terms of a finite product of elementary transformations. The sequential application of adequate sets of unitary transformations leads naturally to a new separation of variables method for time dependent Hamiltonians, which is shown to be related to the Inönü-Wigner contraction of Lie groups. The new method allows also a better understanding of interacting particles or coupled modes and opens an alternative way to analyze topological phases in driven systems.

  15. Time evolution of a Gaussian class of quasi-distribution functions under quadratic Hamiltonian.

    PubMed

    Ginzburg, D; Mann, A

    2014-03-10

    A Lie algebraic method for propagation of the Wigner quasi-distribution function (QDF) under quadratic Hamiltonian was presented by Zoubi and Ben-Aryeh. We show that the same method can be used in order to propagate a rather general class of QDFs, which we call the "Gaussian class." This class contains as special cases the well-known Wigner, Husimi, Glauber, and Kirkwood-Rihaczek QDFs. We present some examples of the calculation of the time evolution of those functions.

  16. On the correct representation of bending and axial deformation in the absolute nodal coordinate formulation with an elastic line approach

    NASA Astrophysics Data System (ADS)

    Gerstmayr, Johannes; Irschik, Hans

    2008-12-01

    In finite element methods that are based on position and slope coordinates, a representation of axial and bending deformation by means of an elastic line approach has become popular. Such beam and plate formulations based on the so-called absolute nodal coordinate formulation have not yet been verified sufficiently enough with respect to analytical results or classical nonlinear rod theories. Examining the existing planar absolute nodal coordinate element, which uses a curvature proportional bending strain expression, it turns out that the deformation does not fully agree with the solution of the geometrically exact theory and, even more serious, the normal force is incorrect. A correction based on the classical ideas of the extensible elastica and geometrically exact theories is applied and a consistent strain energy and bending moment relations are derived. The strain energy of the solid finite element formulation of the absolute nodal coordinate beam is based on the St. Venant-Kirchhoff material: therefore, the strain energy is derived for the latter case and compared to classical nonlinear rod theories. The error in the original absolute nodal coordinate formulation is documented by numerical examples. The numerical example of a large deformation cantilever beam shows that the normal force is incorrect when using the previous approach, while a perfect agreement between the absolute nodal coordinate formulation and the extensible elastica can be gained when applying the proposed modifications. The numerical examples show a very good agreement of reference analytical and numerical solutions with the solutions of the proposed beam formulation for the case of large deformation pre-curved static and dynamic problems, including buckling and eigenvalue analysis. The resulting beam formulation does not employ rotational degrees of freedom and therefore has advantages compared to classical beam elements regarding energy-momentum conservation.

  17. Legendre-tau approximation for functional differential equations. II - The linear quadratic optimal control problem

    NASA Technical Reports Server (NTRS)

    Ito, Kazufumi; Teglas, Russell

    1987-01-01

    The numerical scheme based on the Legendre-tau approximation is proposed to approximate the feedback solution to the linear quadratic optimal control problem for hereditary differential systems. The convergence property is established using Trotter ideas. The method yields very good approximations at low orders and provides an approximation technique for computing closed-loop eigenvalues of the feedback system. A comparison with existing methods (based on averaging and spline approximations) is made.

  18. Preoperative predictors of occult nodal disease in cT1N0 oral cavity squamous cell carcinoma: Review of 2623 cases.

    PubMed

    Zhan, Kevin Y; Morgan, Patrick F; Neskey, David M; Kim, Joanne J; Huang, Andrew T; Garrett-Mayer, Elizabeth; Day, Terry A

    2018-05-14

    Nodal disease predicts survival in oral cavity squamous cell carcinoma (SCC). Currently, no large studies on predictors of occult nodal disease in cT1N0 oral cavity SCC exist. The National Cancer Database (NCDB) review for cT1N0 oral cavity SCC with surgical resection and elective neck dissection (END). The number of patients found with occult nodal disease was 2623 (15.1%). In multivariable regression, female sex and tumor differentiation predict occult nodal disease. Occult nodal disease incidence was 5.9% in well-differentiated tumors, 17.4% in moderately differentiated tumors, and 28.5% in poorly differentiated tumor (P < .001). Women with oral tongue tumors had higher occult nodal disease (19.1%) than men (12%; P = .001). Adjusted odds ratios (aORs) for occult nodal disease in women were: aOR 1.26; 95% confidence interval (CI) 1.01-1.59; P = .045; moderately differentiated aOR 3.52; 95% CI 2.47-5.01; P < .001; and poorly differentiated aOR 6.25; 95% CI 4.17-9.38; P < .001. Sex and tumor differentiation significantly predict occult nodal disease. END is recommended for all moderately and poorly differentiated cT1N0 oral cavity SCC, regardless of the depth of invasion. One can consider not performing END in well-differentiated tumors. © 2018 Wiley Periodicals, Inc.

  19. The Comparison Study of Quadratic Infinite Beam Program on Optimization Instensity Modulated Radiation Therapy Treatment Planning (IMRTP) between Threshold and Exponential Scatter Method with CERR® In The Case of Lung Cancer

    NASA Astrophysics Data System (ADS)

    Hardiyanti, Y.; Haekal, M.; Waris, A.; Haryanto, F.

    2016-08-01

    This research compares the quadratic optimization program on Intensity Modulated Radiation Therapy Treatment Planning (IMRTP) with the Computational Environment for Radiotherapy Research (CERR) software. We assumed that the number of beams used for the treatment planner was about 9 and 13 beams. The case used the energy of 6 MV with Source Skin Distance (SSD) of 100 cm from target volume. Dose calculation used Quadratic Infinite beam (QIB) from CERR. CERR was used in the comparison study between Gauss Primary threshold method and Gauss Primary exponential method. In the case of lung cancer, the threshold variation of 0.01, and 0.004 was used. The output of the dose was distributed using an analysis in the form of DVH from CERR. The maximum dose distributions obtained were on the target volume (PTV) Planning Target Volume, (CTV) Clinical Target Volume, (GTV) Gross Tumor Volume, liver, and skin. It was obtained that if the dose calculation method used exponential and the number of beam 9. When the dose calculation method used the threshold and the number of beam 13, the maximum dose distributions obtained were on the target volume PTV, GTV, heart, and skin.

  20. Cryopreservation of in vitro grown nodal segments of Rauvolfia serpentina by PVS2 vitrification.

    PubMed

    Ray, Avik; Bhattacharya, Sabita

    2008-01-01

    This paper describes the cryopreservation by PVS2 vitrification of Rauvolfia serpentina (L.) Benth ex kurz, an important tropical medicinal plant. The effects of type and size of explants, sucrose preculture (duration and concentration) and vitrification treatment were tested. Preliminary experiments with PVS1, 2 and 3 produced shoot growth only for PVS2. When optimizing the PVS2 vitrification of nodal segments, those of 0.31 - 0.39 cm in size were better than other nodal sizes and or apices. Sucrose preculture had a positive role in survival and subsequent regrowth of the cryopreserved explants. Seven days on 0.5 M sucrose solution significantly improved the viability of nodal segments. PVS2 incubation for 45 minutes combined with a 7-day preculture gave the optimum result of 66 percent. Plantlets derived after cryopreservation resumed growth and regenerated normally.

  1. Prognostic impact of the level of nodal involvement: retrospective analysis of patients with advanced oral squamous cell carcinoma.

    PubMed

    Murakami, R; Nakayama, H; Semba, A; Hiraki, A; Nagata, M; Kawahara, K; Shiraishi, S; Hirai, T; Uozumi, H; Yamashita, Y

    2017-01-01

    We retrospectively evaluated the prognostic impact of the level of nodal involvement in patients with advanced oral squamous cell carcinoma (SCC). Between 2005 and 2010, 105 patients with clinical stage III or IV oral SCC had chemoradiotherapy preoperatively. Clinical (cN) and pathological nodal (pN) involvement was primarily at levels Ib and II. We defined nodal involvement at levels Ia and III-V as anterior and inferior extensions, respectively, and recorded such findings as extensive. With respect to pretreatment variables (age, clinical stage, clinical findings of the primary tumour, and nodal findings), univariate analysis showed that extensive cN was the only significant factor for overall survival (hazard ratio [HR], 3.27; 95% CI 1.50 to 7.13; p=0.001). Univariate analysis showed that all pN findings, including the nodal classification (invaded nodes, multiple, and contralateral) and extensive involvement were significant, and multivariate analysis confirmed that extensive pN (HR 4.71; 95% CI 1.85 to 11.97; p=0.001) and multiple pN (HR 2.59; 95% CI 1.10 to 6.09; p=0.029) were independent predictors of overall survival. Assessment based on the level of invaded neck nodes may be a better predictor of survival than the current nodal classification. Copyright © 2016 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  2. Photon-phonon parametric oscillation induced by quadratic coupling in an optomechanical resonator

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Ji, Fengzhou; Zhang, Xu; Zhang, Weiping

    2017-07-01

    A direct photon-phonon parametric effect of quadratic coupling on the mean-field dynamics of an optomechanical resonator in the large-scale-movement regime is found and investigated. Under a weak pumping power, the mechanical resonator damps to a steady state with a nonlinear static response sensitively modified by the quadratic coupling. When the driving power increases beyond the static energy balance, the steady states lose their stabilities via Hopf bifurcations, and the resonator produces stable self-sustained oscillation (limit-circle behavior) of discrete energies with step-like amplitudes due to the parametric effect of quadratic coupling, which can be understood roughly by the power balance between gain and loss on the resonator. A further increase in the pumping power can induce a chaotic dynamic of the resonator via a typical routine of period-doubling bifurcation, but which can be stabilized by the parametric effect through an inversion-bifurcation process back to the limit-circle states. The bifurcation-to-inverse-bifurcation transitions are numerically verified by the maximal Lyapunov exponents of the dynamics, which indicate an efficient way of suppressing the chaotic behavior of the optomechanical resonator by quadratic coupling. Furthermore, the parametric effect of quadratic coupling on the dynamic transitions of an optomechanical resonator can be conveniently detected or traced by the output power spectrum of the cavity field.

  3. Curious Consequences of a Miscopied Quadratic

    ERIC Educational Resources Information Center

    Poet, Jeffrey L.; Vestal, Donald L., Jr.

    2005-01-01

    The starting point of this article is a search for pairs of quadratic polynomials x[superscript 2] + bx plus or minus c with the property that they both factor over the integers. The search leads quickly to some number theory in the form of primitive Pythagorean triples, and this paper develops the connection between these two topics.

  4. Plasticity in nodal root elongation through the hardpan triggered by rewatering during soil moisture fluctuation stress in rice.

    PubMed

    Suralta, Roel Rodriguez; Niones, Jonathan Manito; Kano-Nakata, Mana; Thi Tran, Thiem; Mitsuya, Shiro; Yamauchi, Akira

    2018-03-12

    Rainfed lowland (RFL) rice fields have hardpans and experience soil moisture fluctuations (SMF) stress, which influence root system development. Here, we clarify the expression and timing of the plasticity in nodal root elongation through the hardpan under SMF and its contribution to shoot growth using a shallow-rooting IR64 and its deep-rooting introgression line, YTH304. Under SMF, soil moisture content had negative relationship with soil penetration resistance, regardless of hardpan bulk densities. YTH304 had greater root system below the hardpan than IR64 in hardpan with 1.50 but not in 1.70 g cm -3 bulk density (BD). YTH304 had greater plasticity in nodal root elongation through the hardpan than IR64 under SMF, which was clearly expressed during rewatering. YTH304 also had greater soil water uptake below the hardpan during drought and greater shoot growth than IR64. The results imply that deep root system development during SMF was due to the plasticity in nodal root elongation through the hardpan expressed during rewatering rather than during drought periods. This is against the long standing belief that active root elongation through the hardpan happens during drought. This also implies a need to revisit current root screening methods to identify rice lines with good hardpan penetration ability.

  5. Characterization of Lifshitz transitions in topological nodal line semimetals

    NASA Astrophysics Data System (ADS)

    Jiang, Hui; Li, Linhu; Gong, Jiangbin; Chen, Shu

    2018-04-01

    We introduce a two-band model of three-dimensional nodal line semimetals (NLSMs), the Fermi surface of which at half-filling may form various one-dimensional configurations of different topology. We study the symmetries and "drumhead" surface states of the model, and find that the transitions between different configurations, namely, the Lifshitz transitions, can be identified solely by the number of gap-closing points on some high-symmetry planes in the Brillouin zone. A global phase diagram of this model is also obtained accordingly. We then investigate the effect of some extra terms analogous to a two-dimensional Rashba-type spin-orbit coupling. The introduced extra terms open a gap for the NLSMs and can be useful in engineering different topological insulating phases. We demonstrate that the behavior of surface Dirac cones in the resulting insulating system has a clear correspondence with the different configurations of the original nodal lines in the absence of the gap terms.

  6. Cervical nodal metastases in squamous cell carcinoma of the head and neck: what to expect.

    PubMed

    Mukherji, S K; Armao, D; Joshi, V M

    2001-11-01

    The treatment and management of malignancies of the head and neck is directly altered by the presence of metastatic cervical adenopathy. The treatment of nodal metastases in squamous cell carcinoma of the head and neck (HNSCCA) is determined by the lymphatic drainage of the upper aerodigestive tract. The lymphatic drainage is site-specific and occurs in a predictable manner. The purpose of this text is to provide an overview of the normal routes of lymphatic drainage in the head and neck and correlate this with the current nodal classification system. The specific aims of this manuscript are to 1) illustrate the expected lymphatic drainage patterns of HNSCCA arising in the different subsites (nasopharynx, oropharynx, oral cavity, larynx, and hypopharynx) and 2) review the expected frequency of metastases within nodal groups for HNSCCA that arise in these locations. An understanding of the topographical distribution and incidence of cervical lymph node metastases plays an integral role in the physical examination and radiological evaluation of patients with HNSCCA. For the neuroradiologist, this information may increases the ability to identify those nodal groups at risk for metastatic involvement. Copyright 2001 John Wiley & Sons, Inc. Head Neck 23: 995-1005, 2001.

  7. Theory of nodal s ±-wave pairing symmetry in the Pu-based 115 superconductor family

    DOE PAGES

    Das, Tanmoy; Zhu, Jian -Xin; Graf, Matthias J.

    2015-02-27

    The spin-fluctuation mechanism of superconductivity usually results in the presence of gapless or nodal quasiparticle states in the excitation spectrum. Nodal quasiparticle states are well established in copper-oxide, and heavy-fermion superconductors, but not in iron-based superconductors. Here, we study the pairing symmetry and mechanism of a new class of plutonium-based high-T c superconductors and predict the presence of a nodal s⁺⁻ wave pairing symmetry in this family. Starting from a density-functional theory (DFT) based electronic structure calculation we predict several three-dimensional (3D) Fermi surfaces in this 115 superconductor family. We identify the dominant Fermi surface “hot-spots” in the inter-band scatteringmore » channel, which are aligned along the wavevector Q = (π, π, π), where degeneracy could induce sign-reversal of the pairing symmetry. Our calculation demonstrates that the s⁺⁻ wave pairing strength is stronger than the previously thought d-wave pairing; and more importantly, this pairing state allows for the existence of nodal quasiparticles. Finally, we predict the shape of the momentum- and energy-dependent magnetic resonance spectrum for the identification of this pairing symmetry.« less

  8. Excited-state absorption in tetrapyridyl porphyrins: comparing real-time and quadratic-response time-dependent density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowman, David N.; Asher, Jason C.; Fischer, Sean A.

    2017-01-01

    Threemeso-substituted tetrapyridyl porphyrins (free base, Ni(ii), and Cu(ii)) were investigated for their optical limiting (OL) capabilities using real-time (RT-), linear-response (LR-), and quadratic-response (QR-) time-dependent density functional theory (TDDFT) methods.

  9. Using Linear and Quadratic Functions to Teach Number Patterns in Secondary School

    ERIC Educational Resources Information Center

    Kenan, Kok Xiao-Feng

    2017-01-01

    This paper outlines an approach to definitively find the general term in a number pattern, of either a linear or quadratic form, by using the general equation of a linear or quadratic function. This approach is governed by four principles: (1) identifying the position of the term (input) and the term itself (output); (2) recognising that each…

  10. Fast Spatial Resolution Analysis of Quadratic Penalized Least-Squares Image Reconstruction With Separate Real and Imaginary Roughness Penalty: Application to fMRI.

    PubMed

    Olafsson, Valur T; Noll, Douglas C; Fessler, Jeffrey A

    2018-02-01

    Penalized least-squares iterative image reconstruction algorithms used for spatial resolution-limited imaging, such as functional magnetic resonance imaging (fMRI), commonly use a quadratic roughness penalty to regularize the reconstructed images. When used for complex-valued images, the conventional roughness penalty regularizes the real and imaginary parts equally. However, these imaging methods sometimes benefit from separate penalties for each part. The spatial smoothness from the roughness penalty on the reconstructed image is dictated by the regularization parameter(s). One method to set the parameter to a desired smoothness level is to evaluate the full width at half maximum of the reconstruction method's local impulse response. Previous work has shown that when using the conventional quadratic roughness penalty, one can approximate the local impulse response using an FFT-based calculation. However, that acceleration method cannot be applied directly for separate real and imaginary regularization. This paper proposes a fast and stable calculation for this case that also uses FFT-based calculations to approximate the local impulse responses of the real and imaginary parts. This approach is demonstrated with a quadratic image reconstruction of fMRI data that uses separate roughness penalties for the real and imaginary parts.

  11. Delineation of Internal Mammary Nodal Target Volumes in Breast Cancer Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jethwa, Krishan R.; Kahila, Mohamed M.; Hunt, Katie N.

    Purpose: The optimal clinical target volume for internal mammary (IM) node irradiation is uncertain in an era of increasingly conformal volume-based treatment planning for breast cancer. We mapped the location of gross internal mammary lymph node (IMN) metastases to identify areas at highest risk of harboring occult disease. Methods and Materials: Patients with axial imaging of IMN disease were identified from a breast cancer registry. The IMN location was transferred onto the corresponding anatomic position on representative axial computed tomography images of a patient in the treatment position and compared with consensus group guidelines of IMN target delineation. Results: Themore » IMN location in 67 patients with 130 IMN metastases was mapped. The location was in the first 3 intercostal spaces in 102 of 130 nodal metastases (78%), whereas 18 of 130 IMNs (14%) were located caudal to the third intercostal space and 10 of 130 IMNs (8%) were located cranial to the first intercostal space. Of the 102 nodal metastases within the first 3 intercostal spaces, 54 (53%) were located within the Radiation Therapy Oncology Group consensus volume. Relative to the IM vessels, 19 nodal metastases (19%) were located medially with a mean distance of 2.2 mm (SD, 2.9 mm) whereas 29 (28%) were located laterally with a mean distance of 3.6 mm (SD, 2.5 mm). Ninety percent of lymph nodes within the first 3 intercostal spaces would have been encompassed within a 4-mm medial and lateral expansion on the IM vessels. Conclusions: In women with indications for elective IMN irradiation, a 4-mm medial and lateral expansion on the IM vessels may be appropriate. In women with known IMN involvement, cranial extension to the confluence of the IM vein with the brachiocephalic vein with or without caudal extension to the fourth or fifth interspace may be considered provided that normal tissue constraints are met.« less

  12. Human papillomavirus reduces the prognostic value of nodal involvement in tonsillar squamous cell carcinomas.

    PubMed

    Straetmans, Jos M J A A; Olthof, Nadine; Mooren, Jeroen J; de Jong, Jos; Speel, Ernst-Jan M; Kremer, Bernd

    2009-10-01

    Assessment of the prognostic value of nodal status in relation to human papillomavirus (HPV) status and the various treatment modalities in tonsillar squamous cell carcinomas (TSCC). Retrospective 5-year survival analysis. A 5-year follow-up of disease-free, disease-specific, and overall survival in a group of 81 patients with TSCC was conducted. The nodal status and integration of HPV-DNA in the genome (detected with fluorescence in situ hybridization) as prognostic indicators were examined while correcting for other clinical parameters (smoking habits, alcohol consumption, treatment modality, differentiation, TNM classification). Of TSCCs, 41% were positive for HPV type 16. In these TSCCs, the primary tumor was significantly smaller when compared to HVP-negative TSCCs (P = .04), whereas the percentage of cases with cervical metastases was identical. In the total population, it was not nodal involvement, but rather HPV manifestation, which was related to patient prognosis. Within the treatment modalities (surgery combined with radiotherapy and radiotherapy alone), neither nodal status nor HPV were prognostic indicators. Since a substantial percentage of TSCCs are HPV-positive and metastasizes to cervical lymph nodes in less advanced primary tumors, the N status is an unreliable prognostic indicator in TSCCs. HPV is only prognostically relevant in the total tumor population, but loses its value within patient groups receiving a single treatment modality. The value of HPV for prognosis of patients with TSCC requires further study.

  13. Exponential Thurston maps and limits of quadratic differentials

    NASA Astrophysics Data System (ADS)

    Hubbard, John; Schleicher, Dierk; Shishikura, Mitsuhiro

    2009-01-01

    We give a topological characterization of postsingularly finite topological exponential maps, i.e., universal covers g\\colon{C}to{C}setminus\\{0\\} such that 0 has a finite orbit. Such a map either is Thurston equivalent to a unique holomorphic exponential map λ e^z or it has a topological obstruction called a degenerate Levy cycle. This is the first analog of Thurston's topological characterization theorem of rational maps, as published by Douady and Hubbard, for the case of infinite degree. One main tool is a theorem about the distribution of mass of an integrable quadratic differential with a given number of poles, providing an almost compact space of models for the entire mass of quadratic differentials. This theorem is given for arbitrary Riemann surfaces of finite type in a uniform way.

  14. Quadratic Electro-optic Effect in a Novel Nano-optical Polymer (iodine-doped polyisoprene)

    NASA Astrophysics Data System (ADS)

    Swamy, Rajendra; Titus, Jitto; Thakur, Mrinal

    2004-03-01

    In this report, exceptionally large quadratic electro-optic effect in a novel nano-optical polymer will be discussed. The material involved is cis-1,4-polyisoprene or natural rubber which is a nonconjugated conductive polymer[1,2].Upon doping with an acceptor such as iodine, an electron is transferred from its isolated double bond to the dopant leading to a charge-transfer complex. The positive charge (hole) thus created is localized around the double-bond site, within a nanometer dimension - thus, forming a nano-optical material. The quadratic electro-optic measurement on the doped polyisoprene film was made using field-induced birefringence method. The measured Kerr coefficient is about sixty six times that of nitrobenzene at 632 nm. Significant electroabsorption was also observed in this material at 632 nm. 1. M. Thakur, J. Macromol. Sci. - PAC, 2001, A38(12), 1337. 2. M. Thakur, S. Khatavkar and E.J. Parish, J. Macromol. Sci. - PAC, 2003, A40 (12), 1397.

  15. Legendre-tau approximation for functional differential equations. Part 2: The linear quadratic optimal control problem

    NASA Technical Reports Server (NTRS)

    Ito, K.; Teglas, R.

    1984-01-01

    The numerical scheme based on the Legendre-tau approximation is proposed to approximate the feedback solution to the linear quadratic optimal control problem for hereditary differential systems. The convergence property is established using Trotter ideas. The method yields very good approximations at low orders and provides an approximation technique for computing closed-loop eigenvalues of the feedback system. A comparison with existing methods (based on averaging and spline approximations) is made.

  16. Securing Digital Audio using Complex Quadratic Map

    NASA Astrophysics Data System (ADS)

    Suryadi, MT; Satria Gunawan, Tjandra; Satria, Yudi

    2018-03-01

    In This digital era, exchanging data are common and easy to do, therefore it is vulnerable to be attacked and manipulated from unauthorized parties. One data type that is vulnerable to attack is digital audio. So, we need data securing method that is not vulnerable and fast. One of the methods that match all of those criteria is securing the data using chaos function. Chaos function that is used in this research is complex quadratic map (CQM). There are some parameter value that causing the key stream that is generated by CQM function to pass all 15 NIST test, this means that the key stream that is generated using this CQM is proven to be random. In addition, samples of encrypted digital sound when tested using goodness of fit test are proven to be uniform, so securing digital audio using this method is not vulnerable to frequency analysis attack. The key space is very huge about 8.1×l031 possible keys and the key sensitivity is very small about 10-10, therefore this method is also not vulnerable against brute-force attack. And finally, the processing speed for both encryption and decryption process on average about 450 times faster that its digital audio duration.

  17. Tumour thickness as a predictor of nodal metastases in oral cancer: comparison between tongue and floor of mouth subsites.

    PubMed

    Balasubramanian, Deepak; Ebrahimi, Ardalan; Gupta, Ruta; Gao, Kan; Elliott, Michael; Palme, Carsten E; Clark, Jonathan R

    2014-12-01

    To identify whether tumour thickness as a predictor of nodal metastases in oral squamous cell carcinoma differs between tongue and floor of mouth (FOM) subsites. Retrospective review of 343 patients treated between 1987 and 2012. The neck was considered positive in the presence of pathologically proven nodal metastases on neck dissection or during follow-up. There were 222 oral tongue and 121 FOM tumours. In patients with FOM tumours 2.1-4mm thick, the rate of nodal metastases was 41.7%. In contrast, for tongue cancers of a similar thickness the rate was only 11.2%. This increased to 38.5% in patients with tongue cancers that were 4.1-6mm thick. Comparing these two subsites, FOM cancers cross the critical 20% threshold of probability for nodal metastases between 1 and 2mm whereas tongue cancers cross the 20% threshold just under 4mm thickness. On logistic regression adjusting for relevant covariates, there was a significant difference in the propensity for nodal metastases based on tumour thickness according to subsite (p=0.028). Thin FOM tumours (2.1-4mm) have a high rate of nodal metastases. Elective neck dissection is appropriate in FOM tumours ⩾2mm thick and in tongue tumours ⩾4mm thick. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Quadratic dissipation effect on the moonpool resonance

    NASA Astrophysics Data System (ADS)

    Liu, Heng-xu; Chen, Hai-long; Zhang, Liang; Zhang, Wan-chao; Liu, Ming

    2017-12-01

    This paper adopted a semi-analytical method based on eigenfunction matching to solve the problem of sharp resonance of cylindrical structures with a moonpool that has a restricted entrance. To eliminate the sharp resonance and to measure the viscous effect, a quadratic dissipation is introduced by assuming an additional dissipative disk at the moonpool entrance. The fluid domain is divided into five cylindrical subdomains, and the velocity potential in each subdomain is obtained by meeting the Laplace equation as well as the boundary conditions. The free-surface elevation at the center of the moonpool, along with the pressure and velocity at the restricted entrance for first-order wave are evaluated. By choosing appropriate dissipation coefficients, the free-surface elevation calculated at the center of the moonpool is in coincidence with the measurements in model tests both at the peak period and amplitude at resonance. It is shown that the sharp resonance in the potential flow theory can be eliminated and the viscous effect can be estimated with a simple method in some provided hydrodynamic models.

  19. Rainfall induced landslide susceptibility mapping using weight-of-evidence, linear and quadratic discriminant and logistic model tree method

    NASA Astrophysics Data System (ADS)

    Hong, H.; Zhu, A. X.

    2017-12-01

    Climate change is a common phenomenon and it is very serious all over the world. The intensification of rainfall extremes with climate change is of key importance to society and then it may induce a large impact through landslides. This paper presents GIS-based new ensemble data mining techniques that weight-of-evidence, logistic model tree, linear and quadratic discriminant for landslide spatial modelling. This research was applied in Anfu County, which is a landslide-prone area in Jiangxi Province, China. According to a literature review and research the study area, we select the landslide influencing factor and their maps were digitized in a GIS environment. These landslide influencing factors are the altitude, plan curvature, profile curvature, slope degree, slope aspect, topographic wetness index (TWI), Stream Power Index (SPI), Topographic Wetness Index (SPI), distance to faults, distance to rivers, distance to roads, soil, lithology, normalized difference vegetation index and land use. According to historical information of individual landslide events, interpretation of the aerial photographs, and field surveys supported by the government of Jiangxi Meteorological Bureau of China, 367 landslides were identified in the study area. The landslide locations were divided into two subsets, namely, training and validating (70/30), based on a random selection scheme. In this research, Pearson's correlation was used for the evaluation of the relationship between the landslides and influencing factors. In the next step, three data mining techniques combined with the weight-of-evidence, logistic model tree, linear and quadratic discriminant, were used for the landslide spatial modelling and its zonation. Finally, the landslide susceptibility maps produced by the mentioned models were evaluated by the ROC curve. The results showed that the area under the curve (AUC) of all of the models was > 0.80. At the same time, the highest AUC value was for the linear and quadratic

  20. Disappearance of nodal gap across the insulator-superconductor transition in a copper-oxide superconductor.

    PubMed

    Peng, Yingying; Meng, Jianqiao; Mou, Daixiang; He, Junfeng; Zhao, Lin; Wu, Yue; Liu, Guodong; Dong, Xiaoli; He, Shaolong; Zhang, Jun; Wang, Xiaoyang; Peng, Qinjun; Wang, Zhimin; Zhang, Shenjin; Yang, Feng; Chen, Chuangtian; Xu, Zuyan; Lee, T K; Zhou, X J

    2013-01-01

    The parent compound of the copper-oxide high-temperature superconductors is a Mott insulator. Superconductivity is realized by doping an appropriate amount of charge carriers. How a Mott insulator transforms into a superconductor is crucial in understanding the unusual physical properties of high-temperature superconductors and the superconductivity mechanism. Here we report high-resolution angle-resolved photoemission measurement on heavily underdoped Bi₂Sr₂-xLaxCuO(₆+δ) system. The electronic structure of the lightly doped samples exhibit a number of characteristics: existence of an energy gap along the nodal direction, d-wave-like anisotropic energy gap along the underlying Fermi surface, and coexistence of a coherence peak and a broad hump in the photoemission spectra. Our results reveal a clear insulator-superconductor transition at a critical doping level of ~0.10 where the nodal energy gap approaches zero, the three-dimensional antiferromagnetic order disappears, and superconductivity starts to emerge. These observations clearly signal a close connection between the nodal gap, antiferromagnetism and superconductivity.

  1. Disrupted Nodal and Hub Organization Account for Brain Network Abnormalities in Parkinson's Disease.

    PubMed

    Koshimori, Yuko; Cho, Sang-Soo; Criaud, Marion; Christopher, Leigh; Jacobs, Mark; Ghadery, Christine; Coakeley, Sarah; Harris, Madeleine; Mizrahi, Romina; Hamani, Clement; Lang, Anthony E; Houle, Sylvain; Strafella, Antonio P

    2016-01-01

    The recent application of graph theory to brain networks promises to shed light on complex diseases such as Parkinson's disease (PD). This study aimed to investigate functional changes in sensorimotor and cognitive networks in Parkinsonian patients, with a focus on inter- and intra-connectivity organization in the disease-associated nodal and hub regions using the graph theoretical analyses. Resting-state functional MRI data of a total of 65 participants, including 23 healthy controls (HCs) and 42 patients, were investigated in 120 nodes for local efficiency, betweenness centrality, and degree. Hub regions were identified in the HC and patient groups. We found nodal and hub changes in patients compared with HCs, including the right pre-supplementary motor area (SMA), left anterior insula, bilateral mid-insula, bilateral dorsolateral prefrontal cortex (DLPFC), and right caudate nucleus. In general, nodal regions within the sensorimotor network (i.e., right pre-SMA and right mid-insula) displayed weakened connectivity, with the former node associated with more severe bradykinesia, and impaired integration with default mode network regions. The left mid-insula also lost its hub properties in patients. Within the executive networks, the left anterior insular cortex lost its hub properties in patients, while a new hub region was identified in the right caudate nucleus, paralleled by an increased level of inter- and intra-connectivity in the bilateral DLPFC possibly representing compensatory mechanisms. These findings highlight the diffuse changes in nodal organization and regional hub disruption accounting for the distributed abnormalities across brain networks and the clinical manifestations of PD.

  2. Exact solutions for an oscillator with anti-symmetric quadratic nonlinearity

    NASA Astrophysics Data System (ADS)

    Beléndez, A.; Martínez, F. J.; Beléndez, T.; Pascual, C.; Alvarez, M. L.; Gimeno, E.; Arribas, E.

    2018-04-01

    Closed-form exact solutions for an oscillator with anti-symmetric quadratic nonlinearity are derived from the first integral of the nonlinear differential equation governing the behaviour of this oscillator. The mathematical model is an ordinary second order differential equation in which the sign of the quadratic nonlinear term changes. Two parameters characterize this oscillator: the coefficient of the linear term and the coefficient of the quadratic term. Not only the common case in which both coefficients are positive but also all possible combinations of positive and negative signs of these coefficients which provide periodic motions are considered, giving rise to four different cases. Three different periods and solutions are obtained, since the same result is valid in two of these cases. An interesting feature is that oscillatory motions whose equilibrium points are not at x = 0 are also considered. The periods are given in terms of an incomplete or complete elliptic integral of the first kind, and the exact solutions are expressed as functions including Jacobi elliptic cosine or sine functions.

  3. Extended Decentralized Linear-Quadratic-Gaussian Control

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell

    2000-01-01

    A straightforward extension of a solution to the decentralized linear-Quadratic-Gaussian problem is proposed that allows its use for commonly encountered classes of problems that are currently solved with the extended Kalman filter. This extension allows the system to be partitioned in such a way as to exclude the nonlinearities from the essential algebraic relationships that allow the estimation and control to be optimally decentralized.

  4. A class of finite-time dual neural networks for solving quadratic programming problems and its k-winners-take-all application.

    PubMed

    Li, Shuai; Li, Yangming; Wang, Zheng

    2013-03-01

    This paper presents a class of recurrent neural networks to solve quadratic programming problems. Different from most existing recurrent neural networks for solving quadratic programming problems, the proposed neural network model converges in finite time and the activation function is not required to be a hard-limiting function for finite convergence time. The stability, finite-time convergence property and the optimality of the proposed neural network for solving the original quadratic programming problem are proven in theory. Extensive simulations are performed to evaluate the performance of the neural network with different parameters. In addition, the proposed neural network is applied to solving the k-winner-take-all (k-WTA) problem. Both theoretical analysis and numerical simulations validate the effectiveness of our method for solving the k-WTA problem. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Quadratic grating apodized photon sieves for simultaneous multiplane microscopy

    NASA Astrophysics Data System (ADS)

    Cheng, Yiguang; Zhu, Jiangping; He, Yu; Tang, Yan; Hu, Song; Zhao, Lixin

    2017-10-01

    We present a new type of imaging device, named quadratic grating apodized photon sieve (QGPS), used as the objective for simultaneous multiplane imaging in X-rays. The proposed QGPS is structured based on the combination of two concepts: photon sieves and quadratic gratings. Its design principles are also expounded in detail. Analysis of imaging properties of QGPS in terms of point-spread function shows that QGPS can image multiple layers within an object field onto a single image plane. Simulated and experimental results in visible light both demonstrate the feasibility of QGPS for simultaneous multiplane imaging, which is extremely promising to detect dynamic specimens by X-ray microscopy in the physical and life sciences.

  6. Investigating Students' Mathematical Difficulties with Quadratic Equations

    ERIC Educational Resources Information Center

    O'Connor, Bronwyn Reid; Norton, Stephen

    2016-01-01

    This paper examines the factors that hinder students' success in working with and understanding the mathematics of quadratic equations using a case study analysis of student error patterns. Twenty-five Year 11 students were administered a written test to examine their understanding of concepts and procedures associated with this topic. The…

  7. One-Dimensional Fokker-Planck Equation with Quadratically Nonlinear Quasilocal Drift

    NASA Astrophysics Data System (ADS)

    Shapovalov, A. V.

    2018-04-01

    The Fokker-Planck equation in one-dimensional spacetime with quadratically nonlinear nonlocal drift in the quasilocal approximation is reduced with the help of scaling of the coordinates and time to a partial differential equation with a third derivative in the spatial variable. Determining equations for the symmetries of the reduced equation are derived and the Lie symmetries are found. A group invariant solution having the form of a traveling wave is found. Within the framework of Adomian's iterative method, the first iterations of an approximate solution of the Cauchy problem are obtained. Two illustrative examples of exact solutions are found.

  8. Retrospective Analysis of Outcome Differences in Preoperative Concurrent Chemoradiation With or Without Elective Nodal Irradiation for Esophageal Squamous Cell Carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, Feng-Ming; Cancer Research Center, National Taiwan University College of Medicine, Taipei, Taiwan; Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan

    2011-11-15

    Purpose: To evaluate the efficacy and patterns of failure of elective nodal irradiation (ENI) in patients with esophageal squamous cell carcinoma (SCC) undergoing preoperative concurrent chemoradiation (CCRT) followed by radical surgery. Methods and Materials: We retrospectively studied 118 patients with AJCC Stage II to III esophageal SCC undergoing preoperative CCRT (median, 36 Gy), followed by radical esophagectomy. Of them, 73 patients (62%) had ENI and 45 patients (38%) had no ENI. Patients with ENI received radiotherapy to either supraclavicular (n = 54) or celiac (n = 19) lymphatics. Fifty-six patients (57%) received chemotherapy with paclitaxel plus cisplatin. The 3-year progression-freemore » survival, overall survival, and patterns of failure were analyzed. Distant nodal recurrence was classified into M1a and M1b regions. A separate analysis using matched cases was conducted. Results: The median follow-up was 38 months. There were no differences in pathological complete response rate (p = 0.12), perioperative mortality rate (p = 0.48), or delayed Grade 3 or greater cardiopulmonary toxicities (p = 0.44), between the groups. More patients in the non-ENI group had M1a failure than in the ENI group, with 3-year rates of 11% and 3%, respectively (p = 0.05). However, the 3-year isolated distant nodal (M1a + M1b) failure rates were not different (ENI, 10%; non-ENI, 14%; p = 0.29). In multivariate analysis, pathological nodal status was the only independent prognostic factor associated with overall survival (hazard ratio = 1.78, p = 0.045). The 3-year overall survival and progression-free survival were 45% and 45%, respectively, in the ENI group, and 52% and 43%, respectively, in the non-ENI group (p = 0.31 and 0.89, respectively). Matched cases analysis did not show a statistical difference in outcomes between the groups. Conclusions: ENI reduced the M1a failure rate but was not associated with improved outcomes in patients undergoing preoperative CCRT for

  9. Modification of atrioventricular nodal electrophysiology by selective radiofrequency delivery on the anterior or posterior approaches.

    PubMed

    Chorro, F J; Sanchis, J; Such, L; Artal, L; Llavador, J J; Llavador, E; Monmeneu, J V; López-Merino, V

    1997-05-01

    An analysis was made in 14 isolated and perfused rabbit hearts of the electrophysiological effects of selective radiofrequency (RF) delivery in the anterior (group I, n = 7) or posterior zone (group II, n = 7) of the Koch triangle, with the aim of modifying atrioventricular nodal (AVN) conduction without suppressing 1:1 transmission. After opening the right atrium, RF was delivered (0.5 W) with a 1-mm diameter unipolar electrode positioned in the selected zone until a prolongation of no less than 15% was obtained in the Wenckebach cycle length (WCL). Before and after (30 min) RF, anterograde and retrograde AVN refractoriness and conduction were evaluated, stimulating from the crista terminalis (CT), the interatrial septum (IAS), and from the RV epicardium. After RF, the following percentage increments were observed in group I: AH(CT) = 36% +/- 9%, AH(IAS) = 38% +/- 11%, WCL(CT) = 28% +/- 8%, WCL(IAS) = 22% +/- 6%, functional refractory period (FRP) of the AVN(CT) = 13% +/- 11%, FRP-AVN(IAS) = 13% +/- 8%, retrograde WCL = 20% +/- 19%, and retrograde FRPVA = 13% +/- 16%. The increments observed in group II and the significances of the differences with respect to group I were: AH(CT) = 11% +/- 14% (P < 0.01), AH(IAS) = 19% +/- 32% (NS), WCL(CT) = 42% +/- 14% (P < 0.05), WCL(IAS) = 42% +/- 16% (P < 0.01), FRP-AVN(CT) = 28% +/- 28% (NS), FRP-AVN(LAS) = 21% +/- 19% (NS), retrograde WCL = 35% +/- 24% (NS), and retrograde FRP = 16% +/- 13% (NS). In both groups, the AH interval variations were not correlated with those of the rest of the parameters analyzed. Truncated nodal function curves suggestive of a dual AV nodal pathway were obtained in three experiments, though in only one of them was this observed under basal conditions. In the other two experiments, with dual AV nodal physiology only after RF (one from each group), AV nodal reentrant tachycardias were triggered with atrial extrastimulus at coupling intervals equal to or shorter than at those that cause a sudden

  10. Quadratic forms involving Green's and Robin functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubinin, Vladimir N

    2009-10-31

    General inequalities for quadratic forms with coefficients depending on the values of Green's and Robin functions are obtained. These inequalities cover also the reduced moduli of strips and half-strips. Some applications of the results obtained to extremal partitioning problems and related questions of geometric function theory are discussed. Bibliography: 29 titles.

  11. Electrodynamics of the nodal metal state in weakly doped high- Tc cuprates

    NASA Astrophysics Data System (ADS)

    Lee, Y. S.; Segawa, Kouji; Li, Z. Q.; Padilla, W. J.; Dumm, M.; Dordevic, S. V.; Homes, C. C.; Ando, Yoichi; Basov, D. N.

    2005-08-01

    We report on the detailed analysis of the infrared (IR) conductivity of two prototypical high- Tc systems YBa2Cu3Oy and La2-xSrxCuO4 throughout the complex phase diagram of these compounds. Our focus in this work is to thoroughly document the electromagnetic response of the nodal metal state which is initiated with only a few holes doped in parent antiferromagnetic systems and extends up to the pseudogap boundary in the phase diagram. The key signature of the nodal metal is the two-component conductivity: the Drude mode at low energies followed by a resonance in mid-IR. The Drude component can be attributed to the response of coherent quasiparticles residing on the Fermi arcs detected in photoemission experiments. The microscopic origin of the mid-IR band is yet to be understood. A combination of transport and IR data uncovers fingerprints of the Fermi liquid behavior in the response of the nodal metal. The comprehensive nature of the data sets presented in this work allows us to critically re-evaluate common approaches to the interpretation of the optical data. Specifically we re-examine the role of magnetic excitations in generating electronic self-energy effects through the analysis of the IR data in a high magnetic field.

  12. An Interesting Case of Retropharyngeal Lymph Nodal Metastases in a Case of Iodine-Refractory Thyroid Cancer.

    PubMed

    Harisankar, Chidambaram Natrajan Balasubramanian; Vijayabhaskar, Ramakrishnan

    2018-01-01

    Metastases to cervical lymph node are fairly common in differentiated thyroid cancer. In iodine-refractory disease, the disease may persist in the thyroid bed, cervical lymph nodes, lungs, or the bones commonly. Retropharyngeal lymph nodal involvement in thyroid cancer is unusual and may even be the presenting complaint. We represent a case of iodine-refractory thyroid cancer with retropharyngeal lymph nodal involvement in addition to lung metastases.

  13. Fluorodeoxyglucose positron emission tomography–computed tomography in evaluation of pelvic and para-aortic nodal involvement in early stage and operable cervical cancer: Comparison with surgicopathological findings

    PubMed Central

    Bansal, Vandana; Damania, Kaizad; Sharma, Anshu Rajnish

    2011-01-01

    Introduction: Nodal metastases in cervical cancer have prognostic implications. Imaging is used as an adjunct to clinical staging for evaluation of nodal metastases. Fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) has an advantage of superior resolution of its CT component and detecting nodal disease based on increased glycolytic activity rather than node size. But there are limited studies describing its limitations in early stage cervical cancers. Objective: We have done meta-analysis with an objective to evaluate the efficacy of FDG PET/CT and its current clinical role in early stage and operable cervical cancer. Materials and Methods: Studies in which FDG PET/CT was performed before surgery in patients with early stage cervical cancers were included for analysis. PET findings were confirmed with histopathological diagnosis rather than clinical follow-up. FDG PET/CT showed lower sensitivity and clinically unacceptable negative predictive value in detecting nodal metastases in early stage cervical cancer and therefore, can not replace surgicopathological staging. False negative results in presence of microscopic disease and sub-centimeter diseased nodes are still the area of concern for metabolic imaging. However, these studies are single institutional and performed in a small group of patients. There is enough available evidence of clinical utility of FDG PET/CT in locally advanced cervical cancer. But these results can not be extrapolated for early stage disease. Conclusion: The current data suggest that FDG PET/CT is suboptimal in nodal staging in early stage cervical cancer. PMID:23559711

  14. [Clinical application of positron-emission tomography for the identification of cervical nodal metastases of head and neck cancer compared with CT or MRI and clinical palpation].

    PubMed

    Chen, Zhong-Wei; Zhu, Li-Jun; Hou, Qing-Yi; Wang, Qi-Peng; Jiang, Sui; Feng, Hang

    2008-12-01

    To evaluate the value of positron-emission tomography (PET) for the identification of cervical nodal metastases of head and neck cancer compared with CT/MRI and clinical palpation. Forty patients of head and neck cancer underwent PET and CT/MRI examination 2 weeks before surgery. PET, CT/MRI and clinical palpation were interpreted separately to assess regional lymph node status. Histopathologic analysis was used as the gold standard for assessment of the lymph node involvement. Differences in sensitivity, specificity and accuracy among the imaging modalities and clinical palpation were analyzed. The sensitivity of PET for the identification of nodal metastases was 14.3% higher than that of CT/MRI (P = 0.648) and 14.3% higher than that of clinical palpation (P = 0.648), whereas the specificity of PET was 15.4% higher than that of CT/MRI (P = 0.188) and 7.7% higher than that of clinical palpation (P = 0.482). The accuracy of 18F-FDG PET, CT/MRI, and clinical palpation for the identification of cervical nodal metastases was 85.0%, 70.0% and 75.0% respectively. The sensitivity, specificity and accuracy of PET for the detection of cervical nodal metastases was higher than that of CT/MRI and clinical palpation. Although the results did not show a statistically significant difference, PET can still serve as a supplementary method for the identification of nodal metastases of head and neck cancer.

  15. Solving the transport equation with quadratic finite elements: Theory and applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferguson, J.M.

    1997-12-31

    At the 4th Joint Conference on Computational Mathematics, the author presented a paper introducing a new quadratic finite element scheme (QFEM) for solving the transport equation. In the ensuing year the author has obtained considerable experience in the application of this method, including solution of eigenvalue problems, transmission problems, and solution of the adjoint form of the equation as well as the usual forward solution. He will present detailed results, and will also discuss other refinements of his transport codes, particularly for 3-dimensional problems on rectilinear and non-rectilinear grids.

  16. Two highly-related regulatory subunits of PP2A exert opposite effects on TGF-β/Activin/Nodal signalling

    PubMed Central

    Batut, Julie; Schmierer, Bernhard; Cao, Jing; Raftery, Laurel A.; Hill, Caroline S.; Howell, Michael

    2016-01-01

    Summary We identify Bα (PPP2R2A) and Bδ (PPP2R2D), two highly-related members of the B family of regulatory subunits of the protein phosphatase PP2A, as important modulators of TGF-β/Activin/Nodal signalling, which affect the pathway in opposite ways. Knockdown of Bα in Xenopus embryos or mammalian tissue culture cells suppresses TGF-β/Activin/Nodal-dependent responses, whereas knockdown of Bδ enhances these responses. Moreover, in Drosophila, overexpression of Smad2 rescues a severe wing phenotype caused by overexpression of the single Drosophila PP2A B subunit, Twins. We show that in vertebrates Bα enhances TGF-β/Activin/Nodal signalling by stabilising the basal levels of type I receptor, whereas Bδ negatively modulates these pathways by restricting receptor activity. Thus, these highly-related members of the same subfamily of PP2A regulatory subunits differentially regulate TGF-β/Activin/Nodal signalling to elicit opposing biological outcomes. PMID:18697906

  17. Concurrent topology optimization for minimization of total mass considering load-carrying capabilities and thermal insulation simultaneously

    NASA Astrophysics Data System (ADS)

    Long, Kai; Wang, Xuan; Gu, Xianguang

    2017-09-01

    The present work introduces a novel concurrent optimization formulation to meet the requirements of lightweight design and various constraints simultaneously. Nodal displacement of macrostructure and effective thermal conductivity of microstructure are regarded as the constraint functions, which means taking into account both the load-carrying capabilities and the thermal insulation properties. The effective properties of porous material derived from numerical homogenization are used for macrostructural analysis. Meanwhile, displacement vectors of macrostructures from original and adjoint load cases are used for sensitivity analysis of the microstructure. Design variables in the form of reciprocal functions of relative densities are introduced and used for linearization of the constraint function. The objective function of total mass is approximately expressed by the second order Taylor series expansion. Then, the proposed concurrent optimization problem is solved using a sequential quadratic programming algorithm, by splitting into a series of sub-problems in the form of the quadratic program. Finally, several numerical examples are presented to validate the effectiveness of the proposed optimization method. The various effects including initial designs, prescribed limits of nodal displacement, and effective thermal conductivity on optimized designs are also investigated. An amount of optimized macrostructures and their corresponding microstructures are achieved.

  18. An empirical analysis of the quantitative effect of data when fitting quadratic and cubic polynomials

    NASA Technical Reports Server (NTRS)

    Canavos, G. C.

    1974-01-01

    A study is made of the extent to which the size of the sample affects the accuracy of a quadratic or a cubic polynomial approximation of an experimentally observed quantity, and the trend with regard to improvement in the accuracy of the approximation as a function of sample size is established. The task is made possible through a simulated analysis carried out by the Monte Carlo method in which data are simulated by using several transcendental or algebraic functions as models. Contaminated data of varying amounts are fitted to either quadratic or cubic polynomials, and the behavior of the mean-squared error of the residual variance is determined as a function of sample size. Results indicate that the effect of the size of the sample is significant only for relatively small sizes and diminishes drastically for moderate and large amounts of experimental data.

  19. Neural network for solving convex quadratic bilevel programming problems.

    PubMed

    He, Xing; Li, Chuandong; Huang, Tingwen; Li, Chaojie

    2014-03-01

    In this paper, using the idea of successive approximation, we propose a neural network to solve convex quadratic bilevel programming problems (CQBPPs), which is modeled by a nonautonomous differential inclusion. Different from the existing neural network for CQBPP, the model has the least number of state variables and simple structure. Based on the theory of nonsmooth analysis, differential inclusions and Lyapunov-like method, the limit equilibrium points sequence of the proposed neural networks can approximately converge to an optimal solution of CQBPP under certain conditions. Finally, simulation results on two numerical examples and the portfolio selection problem show the effectiveness and performance of the proposed neural network. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Decompositions of injection patterns for nodal flow allocation in renewable electricity networks

    NASA Astrophysics Data System (ADS)

    Schäfer, Mirko; Tranberg, Bo; Hempel, Sabrina; Schramm, Stefan; Greiner, Martin

    2017-08-01

    The large-scale integration of fluctuating renewable power generation represents a challenge to the technical and economical design of a sustainable future electricity system. In this context, the increasing significance of long-range power transmission calls for innovative methods to understand the emerging complex flow patterns and to integrate price signals about the respective infrastructure needs into the energy market design. We introduce a decomposition method of injection patterns. Contrary to standard flow tracing approaches, it provides nodal allocations of link flows and costs in electricity networks by decomposing the network injection pattern into market-inspired elementary import/export building blocks. We apply the new approach to a simplified data-driven model of a European electricity grid with a high share of renewable wind and solar power generation.

  1. Dirac Magnon Nodal Loops in Quasi-2D Quantum Magnets.

    PubMed

    Owerre, S A

    2017-07-31

    In this report, we propose a new concept of one-dimensional (1D) closed lines of Dirac magnon nodes in two-dimensional (2D) momentum space of quasi-2D quantum magnetic systems. They are termed "2D Dirac magnon nodal-line loops". We utilize the bilayer honeycomb ferromagnets with intralayer coupling J and interlayer coupling J L , which is realizable in the honeycomb chromium compounds CrX 3 (X ≡ Br, Cl, and I). However, our results can also exist in other layered quasi-2D quantum magnetic systems. Here, we show that the magnon bands of the bilayer honeycomb ferromagnets overlap for J L  ≠ 0 and form 1D closed lines of Dirac magnon nodes in 2D momentum space. The 2D Dirac magnon nodal-line loops are topologically protected by inversion and time-reversal symmetry. Furthermore, we show that they are robust against weak Dzyaloshinskii-Moriya interaction Δ DM  < J L and possess chiral magnon edge modes.

  2. Security analysis of quadratic phase based cryptography

    NASA Astrophysics Data System (ADS)

    Muniraj, Inbarasan; Guo, Changliang; Malallah, Ra'ed; Healy, John J.; Sheridan, John T.

    2016-09-01

    The linear canonical transform (LCT) is essential in modeling a coherent light field propagation through first-order optical systems. Recently, a generic optical system, known as a Quadratic Phase Encoding System (QPES), for encrypting a two-dimensional (2D) image has been reported. It has been reported together with two phase keys the individual LCT parameters serve as keys of the cryptosystem. However, it is important that such the encryption systems also satisfies some dynamic security properties. Therefore, in this work, we examine some cryptographic evaluation methods, such as Avalanche Criterion and Bit Independence, which indicates the degree of security of the cryptographic algorithms on QPES. We compare our simulation results with the conventional Fourier and the Fresnel transform based DRPE systems. The results show that the LCT based DRPE has an excellent avalanche and bit independence characteristics than that of using the conventional Fourier and Fresnel based encryption systems.

  3. Theoretical and experimental evidence for a nodal energy gap in MgB2

    NASA Astrophysics Data System (ADS)

    Agassi, Y. Dan; Oates, Daniel E.

    2017-11-01

    We present a phenomenological model that strongly suggests that the smaller of the two energy gaps in MgB2, the so-called π gap, contains nodal lines with a six-fold symmetry (i-wave). The model also indicates that the larger gap, the so-called σ gap, is conventional s-wave. The model is an extension of the BCS gap equation that accounts for the elastic anisotropy in MgB2 and the Coulomb repulsion. It is based on a phononic pairing mechanism and assumes no coupling between the two energy gaps in MgB2 at zero temperature. All of the parameters of the model, such as sound velocities and masses, are independently determined material constants. The results agree with a previous ad-hoc hypothesis that the π energy gap has six nodal lines. That hypothesis was motivated by low-temperature measurements of the surface impedance and intermodulation distortion in high-quality thin films. We briefly review experimental evidence in the literature that is relevant to the energy-gap symmetry. We find that the evidence from the literature for s-wave is inconclusive. Our finding is that the π gap has six nodal lines.

  4. Quadratic electroabsorption studies of molecular motion in dye-doped polymers

    NASA Astrophysics Data System (ADS)

    Poga, Constantina; Kuzyk, Mark G.; Dirk, Carl W.

    1993-02-01

    This paper reports on quadratic electroabsorption studies of thin-film solid solutions of squarylium dye molecules in poly(methylmethacrylate) polymer with the aim of understanding the role of electronic and reorientational mechanisms in the third-order nonlinear-optical susceptibility. We present a generalized theory of the quadratic electrooptic response that includes both electronic mechanisms and molecular reorientation and show that the ratio of two independent third-order susceptibility tensor components, namely (chi) (3)3333/(chi) (3)1133, determines the relative contribution of each mechanism. Based on these theoretical results, we have designed and built an experiment that determines this ratio as a function of temperature and wavelength. Results show that at room temperature and near the first electronic transition wavelength, the response is dominated by the electronic mechanism, and that the reorientational contribution dominates when the sample is heated above its glass transition temperature. Furthermore, results show that, off-resonance, the sign of the imaginary part of the third-order susceptibility is positive. Quadratic electroabsorption is thus shown to be a versatile tool for measuring the imaginary part of the third-order nonlinear-optical susceptibility which yields information about the interaction of polymer and dopant molecule.

  5. Integration of the Quadratic Function and Generalization

    ERIC Educational Resources Information Center

    Mitsuma, Kunio

    2011-01-01

    We will first recall useful formulas in integration that simplify the calculation of certain definite integrals with the quadratic function. A main formula relies only on the coefficients of the function. We will then explore a geometric proof of one of these formulas. Finally, we will extend the formulas to more general cases. (Contains 3…

  6. Kernels, Degrees of Freedom, and Power Properties of Quadratic Distance Goodness-of-Fit Tests

    PubMed Central

    Lindsay, Bruce G.; Markatou, Marianthi; Ray, Surajit

    2014-01-01

    In this article, we study the power properties of quadratic-distance-based goodness-of-fit tests. First, we introduce the concept of a root kernel and discuss the considerations that enter the selection of this kernel. We derive an easy to use normal approximation to the power of quadratic distance goodness-of-fit tests and base the construction of a noncentrality index, an analogue of the traditional noncentrality parameter, on it. This leads to a method akin to the Neyman-Pearson lemma for constructing optimal kernels for specific alternatives. We then introduce a midpower analysis as a device for choosing optimal degrees of freedom for a family of alternatives of interest. Finally, we introduce a new diffusion kernel, called the Pearson-normal kernel, and study the extent to which the normal approximation to the power of tests based on this kernel is valid. Supplementary materials for this article are available online. PMID:24764609

  7. Left Septal Slow Pathway Ablation for Atrioventricular Nodal Reentrant Tachycardia.

    PubMed

    Katritsis, Demosthenes G; John, Roy M; Latchamsetty, Rakesh; Muthalaly, Rahul G; Zografos, Theodoros; Katritsis, George D; Stevenson, William G; Efimov, Igor R; Morady, Fred

    2018-03-01

    Immunohistochemistry studies suggest that the anatomic substrate of the slow pathway in atrioventricular nodal reentrant tachycardia (AVNRT) is the left inferior nodal extension. We hypothesized that slow pathway ablation from the left septum is an effective alternative to right-sided ablation. We analyzed our databases of AVNRT in search of cases that had used slow pathway ablation from the left septum because of failure of right septal ablation, and then prospectively subjected consenting patients to a left septal-only procedure. Of 1342 patients subjected to right septal slow pathway ablation for AVNRT, 15 patients, 11 with typical and 4 with atypical AVNRT, had a left septal approach after unsuccessful right-sided ablation (R+L group). Eleven patients were subjected to a left septal-only approach for slow pathway ablation without a previous right septal attempt (L group). Fluoroscopy times in the R+L and L groups were 30.5 (21.0-44.0) and 20.0 (17.0-25.0) minutes, respectively ( P =0.061), and radiofrequency current delivery times were 11.3 (5.0-19.1) and 10.0 (7.0-12.0) minutes, respectively ( P =0.897). There was no need for additional ablation lesions at other anatomic sites in either group, and no cases of atrioventricular block were encountered. Recurrence rates of the arrhythmia for the R+L and L groups were 6.7% and 0%, respectively, in the 3 months after ablation ( P =1.000). Left septal ablation at the anatomic site of the left inferior nodal extension is an alternative for ablation of both typical and atypical AVNRT when ablation at the right posterior septum is ineffective. © 2018 American Heart Association, Inc.

  8. Intensity-Modulated Proton Therapy for Elective Nodal Irradiation and Involved-Field Radiation in the Definitive Treatment of Locally Advanced Non-Small Cell Lung Cancer: A Dosimetric Study

    PubMed Central

    Kesarwala, Aparna H.; Ko, Christine J.; Ning, Holly; Xanthopoulos, Eric; Haglund, Karl E.; O’Meara, William P.; Simone, Charles B.; Rengan, Ramesh

    2015-01-01

    Background Photon involved-field radiation therapy (IFRT), the standard for locally advanced non-small cell lung cancer (LA-NSCLC), results in favorable outcomes without increased isolated nodal failures, perhaps from scattered dose to elective nodal stations. Given the high conformality of intensity-modulated proton therapy (IMPT), proton IFRT could increase nodal failures. We investigated the feasibility of IMPT for elective nodal irradiation (ENI) in LA-NSCLC. Materials and Methods IMPT IFRT plans were generated to the same total dose of 66.6–72 Gy received by 20 LA-NSCLC patients treated with photon IFRT. IMPT ENI plans were generated to 46 CGE to elective nodal (EN) planning treatment volumes (PTV) plus 24 CGE to involved field (IF)-PTVs. Results Proton IFRT and ENI both improved D95 involved field (IF)-PTV coverage by 4% (p<0.01) compared to photon IFRT. All evaluated dosimetric parameters improved significantly with both proton plans. Lung V20 and mean lung dose decreased 18% (p<0.01) and 36% (p<0.01), respectively, with proton IFRT and 11% (p=0.03) and 26% (p<0.01) with ENI. Mean esophagus dose decreased 16% with IFRT and 12% with ENI; heart V25 decreased 63% with both (all p<0.01). Conclusions This study demonstrates the feasibility of IMPT for LA-NSCLC ENI. Potential decreased toxicity indicates IMPT could allow ENI while maintaining a favorable therapeutic ratio compared to photon IFRT. PMID:25604729

  9. Nodal signalling in Xenopus: the role of Xnr5 in left/right asymmetry and heart development.

    PubMed

    Tadjuidje, Emmanuel; Kofron, Matthew; Mir, Adnan; Wylie, Christopher; Heasman, Janet; Cha, Sang-Wook

    2016-08-01

    Nodal class TGF-β signalling molecules play essential roles in establishing the vertebrate body plan. In all vertebrates, nodal family members have specific waves of expression required for tissue specification and axis formation. In Xenopus laevis, six nodal genes are expressed before gastrulation, raising the question of whether they have specific roles or act redundantly with each other. Here, we examine the role of Xnr5. We find it acts at the late blastula stage as a mesoderm inducer and repressor of ectodermal gene expression, a role it shares with Vg1. However, unlike Vg1, Xnr5 depletion reduces the expression of the nodal family member xnr1 at the gastrula stage. It is also required for left/right laterality by controlling the expression of the laterality genes xnr1, antivin (lefty) and pitx2 at the tailbud stage. In Xnr5-depleted embryos, the heart field is established normally, but symmetrical reduction in Xnr5 levels causes a severely stunted midline heart, first evidenced by a reduction in cardiac troponin mRNA levels, while left-sided reduction leads to randomization of the left/right axis. This work identifies Xnr5 as the earliest step in the signalling pathway establishing normal heart laterality in Xenopus. © 2016 The Authors.

  10. GDF3 is a BMP inhibitor that can activate Nodal signaling only at very high doses

    PubMed Central

    Levine, Ariel J.; Levine, Zachary J.; Brivanlou, Ali H.

    2013-01-01

    Within the TGF-β superfamily, there are approximately forty ligands divided into two major branches: the TGF-β/Activin/Nodal ligands and the BMP/GDF ligands. We studied the ligand GDF3 and found that it inhibits signaling by its co-family members, the BMPs; however, GDF3 has been described by others to have Nodal-like activity. Here, we show that GDF3 can activate Nodal signaling, but only at very high doses and only upon mRNA over-expression. In contrast, GDF3 inhibits BMP signaling upon over-expression of GDF3 mRNA, as recombinant protein, and regardless of its dose. We therefore further characterized the mechanism through which GDF3 protein acts as a specific BMP inhibitor and found that the BMP inhibitory activity of GDF3 resides redundantly in the unprocessed, predominant form and in the mature form of the protein. These results confirm and extend the activity that we described for GDF3 and illuminate the experimental basis for the different observations of others. We suggest that GDF3 is either a bi-functional TGF-β ligand, or, more likely, that it is a BMP inhibitor that can artificially activate Nodal signaling under non-physiological conditions. PMID:18823971

  11. Quantum superintegrable system with a novel chain structure of quadratic algebras

    NASA Astrophysics Data System (ADS)

    Liao, Yidong; Marquette, Ian; Zhang, Yao-Zhong

    2018-06-01

    We analyse the n-dimensional superintegrable Kepler–Coulomb system with non-central terms. We find a novel underlying chain structure of quadratic algebras formed by the integrals of motion. We identify the elements for each sub-structure and obtain the algebra relations satisfied by them and the corresponding Casimir operators. These quadratic sub-algebras are realized in terms of a chain of deformed oscillators with factorized structure functions. We construct the finite-dimensional unitary representations of the deformed oscillators, and give an algebraic derivation of the energy spectrum of the superintegrable system.

  12. The role of nodal and internodal responses in gravitropism and autotropism in Galium aparine L

    NASA Technical Reports Server (NTRS)

    Heathcote, D. G.; Brown, A. H. (Principal Investigator)

    1987-01-01

    This time course and location of gravitropically induced curvatures in stems of goosegrass (Gallium aparine L.), a member of the Rubiaceae, have been investigated. In the early stages of the response (0-5 h), curvature develops throughout the growing region, and is followed by an autotropic straightening which affects the internodes only, leading to the production of essentially straight internodes some 15 h after the onset of gravistimulation. Curvatures developing in the nodal regions, however, continue to increase over this period, and are not subject to reversal by autotropism. The nodal curvatures are not entirely dependent on the presence of any other part of the plant, since marked curvatures can be induced in isolated nodal segments. This pattern of response leads ultimately to correction of the growth direction of the plant by means of curvature responses confined exclusively to the nodes, despite the initial participation of both nodes and internodes in the gravitropic reaction.

  13. Quadratic Blind Linear Unmixing: A Graphical User Interface for Tissue Characterization

    PubMed Central

    Gutierrez-Navarro, O.; Campos-Delgado, D.U.; Arce-Santana, E. R.; Jo, Javier A.

    2016-01-01

    Spectral unmixing is the process of breaking down data from a sample into its basic components and their abundances. Previous work has been focused on blind unmixing of multi-spectral fluorescence lifetime imaging microscopy (m-FLIM) datasets under a linear mixture model and quadratic approximations. This method provides a fast linear decomposition and can work without a limitation in the maximum number of components or end-members. Hence this work presents an interactive software which implements our blind end-member and abundance extraction (BEAE) and quadratic blind linear unmixing (QBLU) algorithms in Matlab. The options and capabilities of our proposed software are described in detail. When the number of components is known, our software can estimate the constitutive end-members and their abundances. When no prior knowledge is available, the software can provide a completely blind solution to estimate the number of components, the end-members and their abundances. The characterization of three case studies validates the performance of the new software: ex-vivo human coronary arteries, human breast cancer cell samples, and in-vivo hamster oral mucosa. The software is freely available in a hosted webpage by one of the developing institutions, and allows the user a quick, easy-to-use and efficient tool for multi/hyper-spectral data decomposition. PMID:26589467

  14. An Improved Correction for Range Restricted Correlations Under Extreme, Monotonic Quadratic Nonlinearity and Heteroscedasticity.

    PubMed

    Culpepper, Steven Andrew

    2016-06-01

    Standardized tests are frequently used for selection decisions, and the validation of test scores remains an important area of research. This paper builds upon prior literature about the effect of nonlinearity and heteroscedasticity on the accuracy of standard formulas for correcting correlations in restricted samples. Existing formulas for direct range restriction require three assumptions: (1) the criterion variable is missing at random; (2) a linear relationship between independent and dependent variables; and (3) constant error variance or homoscedasticity. The results in this paper demonstrate that the standard approach for correcting restricted correlations is severely biased in cases of extreme monotone quadratic nonlinearity and heteroscedasticity. This paper offers at least three significant contributions to the existing literature. First, a method from the econometrics literature is adapted to provide more accurate estimates of unrestricted correlations. Second, derivations establish bounds on the degree of bias attributed to quadratic functions under the assumption of a monotonic relationship between test scores and criterion measurements. New results are presented on the bias associated with using the standard range restriction correction formula, and the results show that the standard correction formula yields estimates of unrestricted correlations that deviate by as much as 0.2 for high to moderate selectivity. Third, Monte Carlo simulation results demonstrate that the new procedure for correcting restricted correlations provides more accurate estimates in the presence of quadratic and heteroscedastic test score and criterion relationships.

  15. Disrupted Nodal and Hub Organization Account for Brain Network Abnormalities in Parkinson’s Disease

    PubMed Central

    Koshimori, Yuko; Cho, Sang-Soo; Criaud, Marion; Christopher, Leigh; Jacobs, Mark; Ghadery, Christine; Coakeley, Sarah; Harris, Madeleine; Mizrahi, Romina; Hamani, Clement; Lang, Anthony E.; Houle, Sylvain; Strafella, Antonio P.

    2016-01-01

    The recent application of graph theory to brain networks promises to shed light on complex diseases such as Parkinson’s disease (PD). This study aimed to investigate functional changes in sensorimotor and cognitive networks in Parkinsonian patients, with a focus on inter- and intra-connectivity organization in the disease-associated nodal and hub regions using the graph theoretical analyses. Resting-state functional MRI data of a total of 65 participants, including 23 healthy controls (HCs) and 42 patients, were investigated in 120 nodes for local efficiency, betweenness centrality, and degree. Hub regions were identified in the HC and patient groups. We found nodal and hub changes in patients compared with HCs, including the right pre-supplementary motor area (SMA), left anterior insula, bilateral mid-insula, bilateral dorsolateral prefrontal cortex (DLPFC), and right caudate nucleus. In general, nodal regions within the sensorimotor network (i.e., right pre-SMA and right mid-insula) displayed weakened connectivity, with the former node associated with more severe bradykinesia, and impaired integration with default mode network regions. The left mid-insula also lost its hub properties in patients. Within the executive networks, the left anterior insular cortex lost its hub properties in patients, while a new hub region was identified in the right caudate nucleus, paralleled by an increased level of inter- and intra-connectivity in the bilateral DLPFC possibly representing compensatory mechanisms. These findings highlight the diffuse changes in nodal organization and regional hub disruption accounting for the distributed abnormalities across brain networks and the clinical manifestations of PD. PMID:27891090

  16. Bcl-2 and BLIMP-1 expression predict worse prognosis in gastric diffuse large B cell lymphoma (DLCBL) while other markers for nodal DLBCL are not useful.

    PubMed

    Martin-Arruti, Maialen; Vaquero, Manuel; Díaz de Otazu, Ramón; Zabalza, Iñaki; Ballesteros, Javier; Roncador, Giovanna; García-Orad, Africa

    2012-04-01

    Previous studies have identified clinicopathological and immunohistochemical differences among diffuse large B cell lymphomas (DLBCL) as a function of disease location. Nevertheless, there is a continuing tendency to generalize the prognostic value of various identified markers without taking into account tumour site. Accordingly, we analysed the prognostic value of several of the immunohistochemical markers that have been proposed for nodal DLBCL in a group of patients with gastric DLBCL. Using histochemical methods, CD10, Bcl-6, Gcet1, MUM-1, Bcl-2 and BLIMP-1 expression was investigated in 43 cases of gastric DBLCL. As in nodal DLBCLs, expression of BLIMP-1, and of Bcl-2 in non-germinal centre B cell-like (non-GCB) patients, was associated with a worse prognosis. However, unlike nodal DBLCL, there was no significant association of prognosis with expression of CD10, Bcl-6, Gcet1 or MUM-1, or with categorization according to Hans or Muris algorithms. Although most markers of prognosis in nodal DLBCL are not useful indicators for gastric DLBCL, Bcl-2 or BLIMP-1 expression does correlate with worse prognosis. These data support the notion that clinicopathological features in DLBCL vary according to the disease location. © 2012 Blackwell Publishing Ltd.

  17. Omitting elective nodal irradiation during thoracic irradiation in limited-stage small cell lung cancer--evidence from a phase II trial.

    PubMed

    Colaco, Rovel; Sheikh, Hamid; Lorigan, Paul; Blackhall, Fiona; Hulse, Paul; Califano, Raffaele; Ashcroft, Linda; Taylor, Paul; Thatcher, Nicholas; Faivre-Finn, Corinne

    2012-04-01

    Omitting elective nodal irradiation (ENI) in limited-stage disease small cell lung cancer (LD-SCLC) is expected to result in smaller radiation fields. We report on data from a randomised phase II trial that omitted ENI in patients receiving concurrent chemo-radiotherapy for LD-SCLC. 38 patients with LD-SCLC were randomised to receive once-daily (66 Gy in 33 fractions) or twice-daily (45 Gy in 30 fractions) radiotherapy (RT). 3D-conformal RT was given concurrently with cisplatin and etoposide starting with the second cycle of a total of four cycles. The gross tumour volume was defined as primary tumour with involved lymph nodes (nodes ≥1 cm in short axis) identifiable with CT imaging. ENI was not used. Six recurrence patterns were identified: recurrence within planning target volume (PTV) only, recurrence within PTV+regional nodal recurrence and/or distant recurrence, isolated nodal recurrence outside PTV, nodal recurrence outside PTV+distant recurrence, distant metastases only and no recurrence. At median follow-up 16.9 months, 31/38 patients were evaluable and 14/31 patients had relapsed. There were no isolated nodal recurrences. Eight patients relapsed with intra-thoracic disease: 2 within PTV only, 4 within PTV and distantly and 2 with nodal recurrence outside PTV plus distant metastases. Rates of grade 3+ acute oesophagitis and pneumonitis in the 31 evaluable patients were 23 and 3% respectively. In our study of LD-SCLC, omitting ENI based on CT imaging was not associated with a high risk of isolated nodal recurrence, although further prospective studies are needed to confirm this. Routine ENI omission will be further evaluated prospectively in the ongoing phase III CONVERT trial (NCT00433563). Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  18. Closed-loop stability of linear quadratic optimal systems in the presence of modeling errors

    NASA Technical Reports Server (NTRS)

    Toda, M.; Patel, R.; Sridhar, B.

    1976-01-01

    The well-known stabilizing property of linear quadratic state feedback design is utilized to evaluate the robustness of a linear quadratic feedback design in the presence of modeling errors. Two general conditions are obtained for allowable modeling errors such that the resulting closed-loop system remains stable. One of these conditions is applied to obtain two more particular conditions which are readily applicable to practical situations where a designer has information on the bounds of modeling errors. Relations are established between the allowable parameter uncertainty and the weighting matrices of the quadratic performance index, thereby enabling the designer to select appropriate weighting matrices to attain a robust feedback design.

  19. One-loop Parke-Taylor factors for quadratic propagators from massless scattering equations

    NASA Astrophysics Data System (ADS)

    Gomez, Humberto; Lopez-Arcos, Cristhiam; Talavera, Pedro

    2017-10-01

    In this paper we reconsider the Cachazo-He-Yuan construction (CHY) of the so called scattering amplitudes at one-loop, in order to obtain quadratic propagators. In theories with colour ordering the key ingredient is the redefinition of the Parke-Taylor factors. After classifying all the possible one-loop CHY-integrands we conjecture a new one-loop amplitude for the massless Bi-adjoint Φ3 theory. The prescription directly reproduces the quadratic propagators of the traditional Feynman approach.

  20. Characterization of a Quadratic Function in Rn

    ERIC Educational Resources Information Center

    Xu, Conway

    2010-01-01

    It is proved that a scalar-valued function "f"(x) defined in "n"-dimensional space must be quadratic, if the intersection of tangent planes at x[subscript 1] and x[subscript 2] always contains the midpoint of the line joining x[subscript 1] and x[subscript 2]. This is the converse of a result of Stenlund proved in this JOURNAL in 2001.

  1. Emotion suppression moderates the quadratic association between RSA and executive function.

    PubMed

    Spangler, Derek P; Bell, Martha Ann; Deater-Deckard, Kirby

    2015-09-01

    There is uncertainty about whether respiratory sinus arrhythmia (RSA), a cardiac marker of adaptive emotion regulation, is involved in relatively low or high executive function performance. In the present study, we investigated (a) whether RSA during rest and tasks predict both relatively low and high executive function within a larger quadratic association among the two variables, and (b) the extent to which this quadratic trend was moderated by individual differences in emotion regulation. To achieve these aims, a sample of ethnically and socioeconomically diverse women self-reported reappraisal and emotion suppression. They next experienced a 2-min resting period during which electrocardiogram (ECG) was continually assessed. In the next phase, the women completed an array of executive function and nonexecutive cognitive tasks while ECG was measured throughout. As anticipated, resting RSA showed a quadratic association with executive function that was strongest for high suppression. These results suggest that relatively high resting RSA may predict poor executive function ability when emotion regulation consumes executive control resources needed for ongoing cognitive performance. © 2015 Society for Psychophysiological Research.

  2. Emotion suppression moderates the quadratic association between RSA and executive function

    PubMed Central

    Spangler, Derek P.; Bell, Martha Ann; Deater-Deckard, Kirby

    2016-01-01

    There is uncertainty about whether respiratory sinus arrhythmia (RSA), a cardiac marker of adaptive emotion regulation, is involved in relatively low or high executive function performance. In the present study, we investigated: (1) whether RSA during rest and tasks predict both relatively low and high executive function within a larger quadratic association among the two variables, and (2) the extent to which this quadratic trend was moderated by individual differences in emotion regulation. To achieve these aims, a sample of ethnically and socioeconomically diverse women self-reported reappraisal and emotion suppression. They next experienced a two-minute resting period during which ECG was continually assessed. In the next phase, the women completed an array of executive function and non-executive cognitive tasks while ECG was measured throughout. As anticipated, resting RSA showed a quadratic association with executive function that was strongest for high suppression. These results suggest that relatively high resting RSA may predict poor executive function ability when emotion regulation consumes executive control resources needed for ongoing cognitive performance. PMID:26018941

  3. Robust linear quadratic designs with respect to parameter uncertainty

    NASA Technical Reports Server (NTRS)

    Douglas, Joel; Athans, Michael

    1992-01-01

    The authors derive a linear quadratic regulator (LQR) which is robust to parametric uncertainty by using the overbounding method of I. R. Petersen and C. V. Hollot (1986). The resulting controller is determined from the solution of a single modified Riccati equation. It is shown that, when applied to a structural system, the controller gains add robustness by minimizing the potential energy of uncertain stiffness elements, and minimizing the rate of dissipation of energy through uncertain damping elements. A worst-case disturbance in the direction of the uncertainty is also considered. It is proved that performance robustness has been increased with the robust LQR when compared to a mismatched LQR design where the controller is designed on the nominal system, but applied to the actual uncertain system.

  4. Atlas of the thoracic lymph nodal delineation and recommendations for lymph nodal CTV of esophageal squamous cell cancer in radiation therapy from China.

    PubMed

    Huang, Wei; Huang, Yong; Sun, Jujie; Liu, Xibin; Zhang, Jian; Zhou, Tao; Zhang, Baijiang; Li, Baosheng

    2015-07-01

    To construct an anatomical atlas of thoracic lymph node regions of esophageal cancer (EC) based on definitions from The Japan Esophageal Society (JES) and generate a consensus to delineate the nodal clinical target volume (CTVn) for elective nodal radiation (ENI) of esophageal squamous cell carcinoma (ESCC). An interdisciplinary group including two dedicated radiation oncologists, an experienced radiologist, a pathologist and two thoracic surgeons were gathered to generate a three-dimensional radiological description for the mediastinal lymph node regions of EC on axial CT scans. Then the radiological boundaries of lymph node regions were validated by a relatively large number of physicians in multiple institutions. An atlas of detailed anatomic boundaries of lymph node station No. 105-114 was defined on axial CT, along with illustrations. From the previous work, the study provided a guide of CTVn contouring for ENI of thoracic ESCC from a single center. It is feasible to use such an atlas of thoracic lymph node stations for radiotherapy planning. A phase III study based on the atlas is ongoing in China to measure quantitatively the ENI received by patients with ESCC. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. [Does nodal irradiation (clavicular and internal mammary chains) increase the toxicity of adjuvant breast radiotherapy?].

    PubMed

    Riou, O; Bourgier, C; Fenoglietto, P; Azria, D

    2015-06-01

    Treatment volume is a major risk factor of radiation-induced toxicity. As nodal irradiation increases treatment volume, radiation toxicity should be greater. Nevertheless, scientific randomised data do not support this fact. However, a radiation-induced toxicity is possible outside tangential fields in the nodal volumes not related to breast-only treatment. Treatment should not be adapted only to the disease but personalized to the individual risk of toxicity for each patient. Copyright © 2015 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  6. Quadratic constrained mixed discrete optimization with an adiabatic quantum optimizer

    NASA Astrophysics Data System (ADS)

    Chandra, Rishabh; Jacobson, N. Tobias; Moussa, Jonathan E.; Frankel, Steven H.; Kais, Sabre

    2014-07-01

    We extend the family of problems that may be implemented on an adiabatic quantum optimizer (AQO). When a quadratic optimization problem has at least one set of discrete controls and the constraints are linear, we call this a quadratic constrained mixed discrete optimization (QCMDO) problem. QCMDO problems are NP-hard, and no efficient classical algorithm for their solution is known. Included in the class of QCMDO problems are combinatorial optimization problems constrained by a linear partial differential equation (PDE) or system of linear PDEs. An essential complication commonly encountered in solving this type of problem is that the linear constraint may introduce many intermediate continuous variables into the optimization while the computational cost grows exponentially with problem size. We resolve this difficulty by developing a constructive mapping from QCMDO to quadratic unconstrained binary optimization (QUBO) such that the size of the QUBO problem depends only on the number of discrete control variables. With a suitable embedding, taking into account the physical constraints of the realizable coupling graph, the resulting QUBO problem can be implemented on an existing AQO. The mapping itself is efficient, scaling cubically with the number of continuous variables in the general case and linearly in the PDE case if an efficient preconditioner is available.

  7. Linear state feedback, quadratic weights, and closed loop eigenstructures. M.S. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Thompson, P. M.

    1980-01-01

    Equations are derived for the angles of general multivariable root loci and linear quadratic optimal root loci, including angles of departure and approach. The generalized eigenvalue problem is used to compute angles of approach. Equations are also derived to find the sensitivity of closed loop eigenvalue and the directional derivatives of closed loop eigenvectors. An equivalence class of quadratic weights that produce the same asymptotic eigenstructure is defined, a canonical element is defined, and an algorithm to find it is given. The behavior of the optimal root locus in the nonasymptotic region is shown to be different for quadratic weights with the same asymptotic properties. An algorithm is presented that can be used to select a feedback gain matrix for the linear state feedback problem which produces a specified asymptotic eigenstructure. Another algorithm is given to compute the asymptotic eigenstructure properties inherent in a given set of quadratic weights. Finally, it is shown that optimal root loci for nongeneric problems can be approximated by generic ones in the nonasymptotic region.

  8. Quadratic stabilisability of multi-agent systems under switching topologies

    NASA Astrophysics Data System (ADS)

    Guan, Yongqiang; Ji, Zhijian; Zhang, Lin; Wang, Long

    2014-12-01

    This paper addresses the stabilisability of multi-agent systems (MASs) under switching topologies. Necessary and/or sufficient conditions are presented in terms of graph topology. These conditions explicitly reveal how the intrinsic dynamics of the agents, the communication topology and the external control input affect stabilisability jointly. With the appropriate selection of some agents to which the external inputs are applied and the suitable design of neighbour-interaction rules via a switching topology, an MAS is proved to be stabilisable even if so is not for each of uncertain subsystem. In addition, a method is proposed to constructively design a switching rule for MASs with norm-bounded time-varying uncertainties. The switching rules designed via this method do not rely on uncertainties, and the switched MAS is quadratically stabilisable via decentralised external self-feedback for all uncertainties. With respect to applications of the stabilisability results, the formation control and the cooperative tracking control are addressed. Numerical simulations are presented to demonstrate the effectiveness of the proposed results.

  9. Elastic Model Transitions Using Quadratic Inequality Constrained Least Squares

    NASA Technical Reports Server (NTRS)

    Orr, Jeb S.

    2012-01-01

    A technique is presented for initializing multiple discrete finite element model (FEM) mode sets for certain types of flight dynamics formulations that rely on superposition of orthogonal modes for modeling the elastic response. Such approaches are commonly used for modeling launch vehicle dynamics, and challenges arise due to the rapidly time-varying nature of the rigid-body and elastic characteristics. By way of an energy argument, a quadratic inequality constrained least squares (LSQI) algorithm is employed to e ect a smooth transition from one set of FEM eigenvectors to another with no requirement that the models be of similar dimension or that the eigenvectors be correlated in any particular way. The physically unrealistic and controversial method of eigenvector interpolation is completely avoided, and the discrete solution approximates that of the continuously varying system. The real-time computational burden is shown to be negligible due to convenient features of the solution method. Simulation results are presented, and applications to staging and other discontinuous mass changes are discussed

  10. Unravelling Student Challenges with Quadratics: A Cognitive Approach

    ERIC Educational Resources Information Center

    Kotsopoulos, Donna

    2007-01-01

    The author's secondary school mathematics students have often reported to her that quadratic relations are one of the most conceptually challenging aspects of the high school curriculum. From her own classroom experiences there seemed to be several aspects to the students' challenges. Many students, even in their early secondary education, have…

  11. An optimal consumption and investment problem with quadratic utility and negative wealth constraints.

    PubMed

    Roh, Kum-Hwan; Kim, Ji Yeoun; Shin, Yong Hyun

    2017-01-01

    In this paper, we investigate the optimal consumption and portfolio selection problem with negative wealth constraints for an economic agent who has a quadratic utility function of consumption and receives a constant labor income. Due to the property of the quadratic utility function, we separate our problem into two cases and derive the closed-form solutions for each case. We also illustrate some numerical implications of the optimal consumption and portfolio.

  12. Global stability and quadratic Hamiltonian structure in Lotka-Volterra and quasi-polynomial systems

    NASA Astrophysics Data System (ADS)

    Szederkényi, Gábor; Hangos, Katalin M.

    2004-04-01

    We show that the global stability of quasi-polynomial (QP) and Lotka-Volterra (LV) systems with the well-known logarithmic Lyapunov function is equivalent to the existence of a local generalized dissipative Hamiltonian description of the LV system with a diagonal quadratic form as a Hamiltonian function. The Hamiltonian function can be calculated and the quadratic dissipativity neighborhood of the origin can be estimated by solving linear matrix inequalities.

  13. Communications circuit including a linear quadratic estimator

    DOEpatents

    Ferguson, Dennis D.

    2015-07-07

    A circuit includes a linear quadratic estimator (LQE) configured to receive a plurality of measurements a signal. The LQE is configured to weight the measurements based on their respective uncertainties to produce weighted averages. The circuit further includes a controller coupled to the LQE and configured to selectively adjust at least one data link parameter associated with a communication channel in response to receiving the weighted averages.

  14. A sequential quadratic programming algorithm using an incomplete solution of the subproblem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, W.; Prieto, F.J.

    1993-05-01

    We analyze sequential quadratic programming (SQP) methods to solve nonlinear constrained optimization problems that are more flexible in their definition than standard SQP methods. The type of flexibility introduced is motivated by the necessity to deviate from the standard approach when solving large problems. Specifically we no longer require a minimizer of the QP subproblem to be determined or particular Lagrange multiplier estimates to be used. Our main focus is on an SQP algorithm that uses a particular augmented Lagrangian merit function. New results are derived for this algorithm under weaker conditions than previously assumed; in particular, it is notmore » assumed that the iterates lie on a compact set.« less

  15. Topological surface states in nodal superconductors.

    PubMed

    Schnyder, Andreas P; Brydon, Philip M R

    2015-06-24

    Topological superconductors have become a subject of intense research due to their potential use for technical applications in device fabrication and quantum information. Besides fully gapped superconductors, unconventional superconductors with point or line nodes in their order parameter can also exhibit nontrivial topological characteristics. This article reviews recent progress in the theoretical understanding of nodal topological superconductors, with a focus on Weyl and noncentrosymmetric superconductors and their protected surface states. Using selected examples, we review the bulk topological properties of these systems, study different types of topological surface states, and examine their unusual properties. Furthermore, we survey some candidate materials for topological superconductivity and discuss different experimental signatures of topological surface states.

  16. An entropy stable nodal discontinuous Galerkin method for the two dimensional shallow water equations on unstructured curvilinear meshes with discontinuous bathymetry

    NASA Astrophysics Data System (ADS)

    Wintermeyer, Niklas; Winters, Andrew R.; Gassner, Gregor J.; Kopriva, David A.

    2017-07-01

    We design an arbitrary high-order accurate nodal discontinuous Galerkin spectral element approximation for the non-linear two dimensional shallow water equations with non-constant, possibly discontinuous, bathymetry on unstructured, possibly curved, quadrilateral meshes. The scheme is derived from an equivalent flux differencing formulation of the split form of the equations. We prove that this discretization exactly preserves the local mass and momentum. Furthermore, combined with a special numerical interface flux function, the method exactly preserves the mathematical entropy, which is the total energy for the shallow water equations. By adding a specific form of interface dissipation to the baseline entropy conserving scheme we create a provably entropy stable scheme. That is, the numerical scheme discretely satisfies the second law of thermodynamics. Finally, with a particular discretization of the bathymetry source term we prove that the numerical approximation is well-balanced. We provide numerical examples that verify the theoretical findings and furthermore provide an application of the scheme for a partial break of a curved dam test problem.

  17. Quadratic Polynomial Regression using Serial Observation Processing:Implementation within DART

    NASA Astrophysics Data System (ADS)

    Hodyss, D.; Anderson, J. L.; Collins, N.; Campbell, W. F.; Reinecke, P. A.

    2017-12-01

    Many Ensemble-Based Kalman ltering (EBKF) algorithms process the observations serially. Serial observation processing views the data assimilation process as an iterative sequence of scalar update equations. What is useful about this data assimilation algorithm is that it has very low memory requirements and does not need complex methods to perform the typical high-dimensional inverse calculation of many other algorithms. Recently, the push has been towards the prediction, and therefore the assimilation of observations, for regions and phenomena for which high-resolution is required and/or highly nonlinear physical processes are operating. For these situations, a basic hypothesis is that the use of the EBKF is sub-optimal and performance gains could be achieved by accounting for aspects of the non-Gaussianty. To this end, we develop here a new component of the Data Assimilation Research Testbed [DART] to allow for a wide-variety of users to test this hypothesis. This new version of DART allows one to run several variants of the EBKF as well as several variants of the quadratic polynomial lter using the same forecast model and observations. Dierences between the results of the two systems will then highlight the degree of non-Gaussianity in the system being examined. We will illustrate in this work the differences between the performance of linear versus quadratic polynomial regression in a hierarchy of models from Lorenz-63 to a simple general circulation model.

  18. Reconstruction of quadratic curves in 3D using two or more perspective views: simulation studies

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjeev; Sukavanam, N.; Balasubramanian, R.

    2006-01-01

    The shapes of many natural and man-made objects have planar and curvilinear surfaces. The images of such curves usually do not have sufficient distinctive features to apply conventional feature-based reconstruction algorithms. In this paper, we describe a method of reconstruction of a quadratic curve in 3-D space as an intersection of two cones containing the respective projected curve images. The correspondence between this pair of projections of the curve is assumed to be established in this work. Using least-square curve fitting, the parameters of a curve in 2-D space are found. From this we are reconstructing the 3-D quadratic curve. Relevant mathematical formulations and analytical solutions for obtaining the equation of reconstructed curve are given. The result of the described reconstruction methodology are studied by simulation studies. This reconstruction methodology is applicable to LBW decision in cricket, path of the missile, Robotic Vision, path lanning etc.

  19. Nodal endoplasmic reticulum, a specialized form of endoplasmic reticulum found in gravity-sensing root tip columella cells

    NASA Technical Reports Server (NTRS)

    Zheng, H. Q.; Staehelin, L. A.

    2001-01-01

    The endoplasmic reticulum (ER) of columella root cap cells has been postulated to play a role in gravity sensing. We have re-examined the ultrastructure of columella cells in tobacco (Nicotiana tabacum) root tips preserved by high-pressure freezing/freeze-substitution techniques to gain more precise information about the organization of the ER in such cells. The most notable findings are: the identification of a specialized form of ER, termed "nodal ER," which is found exclusively in columella cells; the demonstration that the bulk of the ER is organized in the form of a tubular network that is confined to a peripheral layer under the plasma membrane; and the discovery that this ER-rich peripheral region excludes Golgi stacks, vacuoles, and amyloplasts but not mitochondria. Nodal ER domains consist of an approximately 100-nm-diameter central rod composed of oblong subunits to which usually seven sheets of rough ER are attached along their margins. These domains form patches at the interface between the peripheral ER network and the ER-free central region of the cells, and they occupy defined positions within central and flanking columella cells. Over one-half of the nodal ER domains are located along the outer tangential walls of the flanking cells. Cytochalasin D and latrunculin A cause an increase in size and a decrease in numbers of nodal ER domains. We postulate that the nodal ER membranes locally modulate the gravisensing signals produced by the sedimenting amyloplasts, and that the confinement of all ER membranes to the cell periphery serves to enhance the sedimentability of the amyloplasts in the central region of columella cells.

  20. Patterns of practice of regional nodal irradiation in breast cancer: results of the European Organization for Research and Treatment of Cancer (EORTC) NOdal Radiotherapy (NORA) survey.

    PubMed

    Belkacemi, Y; Kaidar-Person, O; Poortmans, P; Ozsahin, M; Valli, M-C; Russell, N; Kunkler, I; Hermans, J; Kuten, A; van Tienhoven, G; Westenberg, H

    2015-03-01

    Predicting outcome of breast cancer (BC) patients based on sentinel lymph node (SLN) status without axillary lymph node dissection (ALND) is an area of uncertainty. It influences the decision-making for regional nodal irradiation (RNI). The aim of the NORA (NOdal RAdiotherapy) survey was to examine the patterns of RNI. A web-questionnaire, including several clinical scenarios, was distributed to 88 EORTC-affiliated centers. Responses were received between July 2013 and January 2014. A total of 84 responses were analyzed. While three-dimensional (3D) radiotherapy (RT) planning is carried out in 81 (96%) centers, nodal areas are delineated in only 51 (61%) centers. Only 14 (17%) centers routinely link internal mammary chain (IMC) and supraclavicular node (SCN) RT indications. In patients undergoing total mastectomy (TM) with ALND, SCN-RT is recommend by 5 (6%), 53 (63%) and 51 (61%) centers for patients with pN0(i+), pN(mi) and pN1, respectively. Extra-capsular extension (ECE) is the main factor influencing decision-making RNI after breast conserving surgery (BCS) and TM. After primary systemic therapy (PST), 49 (58%) centers take into account nodal fibrotic changes in ypN0 patients for RNI indications. In ypN0 patients with inner/central tumors, 23 (27%) centers indicate SCN-RT and IMC-RT. In ypN1 patients, SCN-RT is delivered by less than half of the centers in patients with ypN(i+) and ypN(mi). Twenty-one (25%) of the centers recommend ALN-RT in patients with ypN(mi) or 1-2N+ after ALND. Seventy-five (90%) centers state that age is not considered a limiting factor for RNI. The NORA survey is unique in evaluating the impact of SLNB/ALND status on adjuvant RNI decision-making and volumes after BCS/TM with or without PST. ALN-RT is often indicated in pN1 patients, particularly in the case of ECE. Besides the ongoing NSABP-B51/RTOG and ALLIANCE trials, NORA could help to design future specific RNI trials in the SLNB era without ALND in patients receiving or not PST.

  1. The value of nodal information in predicting lung cancer relapse using 4DPET/4DCT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Heyse, E-mail: heyse.li@mail.utoronto.ca; Becker, Nathan; Raman, Srinivas

    2015-08-15

    Purpose: There is evidence that computed tomography (CT) and positron emission tomography (PET) imaging metrics are prognostic and predictive in nonsmall cell lung cancer (NSCLC) treatment outcomes. However, few studies have explored the use of standardized uptake value (SUV)-based image features of nodal regions as predictive features. The authors investigated and compared the use of tumor and node image features extracted from the radiotherapy target volumes to predict relapse in a cohort of NSCLC patients undergoing chemoradiation treatment. Methods: A prospective cohort of 25 patients with locally advanced NSCLC underwent 4DPET/4DCT imaging for radiation planning. Thirty-seven image features were derivedmore » from the CT-defined volumes and SUVs of the PET image from both the tumor and nodal target regions. The machine learning methods of logistic regression and repeated stratified five-fold cross-validation (CV) were used to predict local and overall relapses in 2 yr. The authors used well-known feature selection methods (Spearman’s rank correlation, recursive feature elimination) within each fold of CV. Classifiers were ranked on their Matthew’s correlation coefficient (MCC) after CV. Area under the curve, sensitivity, and specificity values are also presented. Results: For predicting local relapse, the best classifier found had a mean MCC of 0.07 and was composed of eight tumor features. For predicting overall relapse, the best classifier found had a mean MCC of 0.29 and was composed of a single feature: the volume greater than 0.5 times the maximum SUV (N). Conclusions: The best classifier for predicting local relapse had only tumor features. In contrast, the best classifier for predicting overall relapse included a node feature. Overall, the methods showed that nodes add value in predicting overall relapse but not local relapse.« less

  2. Observation of topological nodal fermion semimetal phase in ZrSiS

    DOE PAGES

    Neupane, Madhab; Belopolski, Ilya; Hosen, M. Mofazzel; ...

    2016-05-11

    We present that unveiling new topological phases of matter is one of the current objectives in condensed matter physics. Recent experimental discoveries of Dirac and Weyl semimetals prompt the search for other exotic phases of matter. Here we present a systematic angle-resolved photoemission spectroscopy study of ZrSiS, a prime topological nodal semimetal candidate. Our wider Brillouin zone (BZ) mapping shows multiple Fermi surface pockets such as the diamond-shaped Fermi surface, elliptical-shaped Fermi surface, and a small electron pocket encircling at the zone center (Γ) point, the M point, and the X point of the BZ, respectively. We experimentally establish themore » spinless nodal fermion semimetal phase in ZrSiS, which is supported by our first-principles calculations. Our findings evidence that the ZrSiS-type of material family is a new platform on which to explore exotic states of quantum matter; these materials are expected to provide an avenue for engineering two-dimensional topological insulator systems.« less

  3. Low photon count based digital holography for quadratic phase cryptography.

    PubMed

    Muniraj, Inbarasan; Guo, Changliang; Malallah, Ra'ed; Ryle, James P; Healy, John J; Lee, Byung-Geun; Sheridan, John T

    2017-07-15

    Recently, the vulnerability of the linear canonical transform-based double random phase encryption system to attack has been demonstrated. To alleviate this, we present for the first time, to the best of our knowledge, a method for securing a two-dimensional scene using a quadratic phase encoding system operating in the photon-counted imaging (PCI) regime. Position-phase-shifting digital holography is applied to record the photon-limited encrypted complex samples. The reconstruction of the complex wavefront involves four sparse (undersampled) dataset intensity measurements (interferograms) at two different positions. Computer simulations validate that the photon-limited sparse-encrypted data has adequate information to authenticate the original data set. Finally, security analysis, employing iterative phase retrieval attacks, has been performed.

  4. Finding the Best Quadratic Approximation of a Function

    ERIC Educational Resources Information Center

    Yang, Yajun; Gordon, Sheldon P.

    2011-01-01

    This article examines the question of finding the best quadratic function to approximate a given function on an interval. The prototypical function considered is f(x) = e[superscript x]. Two approaches are considered, one based on Taylor polynomial approximations at various points in the interval under consideration, the other based on the fact…

  5. Fast parallel DNA-based algorithms for molecular computation: quadratic congruence and factoring integers.

    PubMed

    Chang, Weng-Long

    2012-03-01

    Assume that n is a positive integer. If there is an integer such that M (2) ≡ C (mod n), i.e., the congruence has a solution, then C is said to be a quadratic congruence (mod n). If the congruence does not have a solution, then C is said to be a quadratic noncongruence (mod n). The task of solving the problem is central to many important applications, the most obvious being cryptography. In this article, we describe a DNA-based algorithm for solving quadratic congruence and factoring integers. In additional to this novel contribution, we also show the utility of our encoding scheme, and of the algorithm's submodules. We demonstrate how a variety of arithmetic, shifted and comparative operations, namely bitwise and full addition, subtraction, left shifter and comparison perhaps are performed using strands of DNA.

  6. Dark-bright quadratic solitons with a focusing effective Kerr nonlinearity

    NASA Astrophysics Data System (ADS)

    Chen, Manna; Ping, Xiaorou; Liang, Guo; Guo, Qi; Lu, Daquan; Hu, Wei

    2018-01-01

    Dark solitons are traditionally considered to exist in defocusing Kerr nonlinearity media. We investigate dark quadratic solitons with a focusing effective Kerr nonlinearity and a sine-oscillatory nonlocal response. A nonlinear refractive index with a focusing sine-oscillatory response leads to a defocusing effect with a strong degree of nonlocality, which causes the formation of dark solitons. By analyzing the modulational instability, we determine the parameter domain for dark quadratic solitons with a stable background and numerically obtain dark-bright soliton solutions in the form of pairs, which avoid radiative phenomena. Based on a numerical simulation, we find that all dark-bright soliton pairs are unstable after a relatively long propagation distance, and their stabilities are affected by the soliton interval and the degree of nonlocality.

  7. Quadratic blind linear unmixing: A graphical user interface for tissue characterization.

    PubMed

    Gutierrez-Navarro, O; Campos-Delgado, D U; Arce-Santana, E R; Jo, Javier A

    2016-02-01

    Spectral unmixing is the process of breaking down data from a sample into its basic components and their abundances. Previous work has been focused on blind unmixing of multi-spectral fluorescence lifetime imaging microscopy (m-FLIM) datasets under a linear mixture model and quadratic approximations. This method provides a fast linear decomposition and can work without a limitation in the maximum number of components or end-members. Hence this work presents an interactive software which implements our blind end-member and abundance extraction (BEAE) and quadratic blind linear unmixing (QBLU) algorithms in Matlab. The options and capabilities of our proposed software are described in detail. When the number of components is known, our software can estimate the constitutive end-members and their abundances. When no prior knowledge is available, the software can provide a completely blind solution to estimate the number of components, the end-members and their abundances. The characterization of three case studies validates the performance of the new software: ex-vivo human coronary arteries, human breast cancer cell samples, and in-vivo hamster oral mucosa. The software is freely available in a hosted webpage by one of the developing institutions, and allows the user a quick, easy-to-use and efficient tool for multi/hyper-spectral data decomposition. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. NODAL in the Uterus Is Necessary for Proper Placental Development and Maintenance of Pregnancy1

    PubMed Central

    Park, Craig B.; DeMayo, Francesco J.; Lydon, John P.; Dufort, Daniel

    2012-01-01

    Preterm birth is the single leading cause of perinatal mortality in developed countries, affecting approximately 12% of pregnancies and accounting for 75% of neonatal loss in the United States. Despite the prevalence and severity of premature delivery, the causes and mechanisms that underlie spontaneous and idiopathic preterm birth remain unknown. Our inability to elucidate these fundamental causes has been attributed to a poor understanding of the signaling pathways associated with the premature induction of parturition and a lack of suitable animal models available for preterm birth research. In this study, we describe the generation and analysis of a novel conditional knockout of the transforming growth factor beta (TGFB) superfamily member, Nodal, from the maternal reproductive tract of mice. Strikingly, uterine Nodal knockout females exhibited a severe malformation of the maternal decidua basalis during placentation, leading to significant intrauterine growth restriction, and ultimately preterm birth and fetal loss on Day 17.5 of gestation. Using several approaches, we characterized aberrant placental development and demonstrated that reduced proliferation combined with increased apoptosis resulted in a diminished decidua basalis and compromised maternal-fetal interface. Last, we evaluated various components of the established parturition cascade and determined that preterm birth derived from the maternal Nodal knockout occurs prior to PTGS2 (COX-2) upregulation at the placental interface. Taken together, the results presented in this study highlight an in vivo role for maternal NODAL during placentation, present an interesting link between disrupted decidua basalis formation and premature parturition, and describe a potentially valuable model toward elucidating the complex processes that underlie preterm birth. PMID:22378764

  9. Nonadiabatic effects in ultracold molecules via anomalous linear and quadratic Zeeman shifts.

    PubMed

    McGuyer, B H; Osborn, C B; McDonald, M; Reinaudi, G; Skomorowski, W; Moszynski, R; Zelevinsky, T

    2013-12-13

    Anomalously large linear and quadratic Zeeman shifts are measured for weakly bound ultracold 88Sr2 molecules near the intercombination-line asymptote. Nonadiabatic Coriolis coupling and the nature of long-range molecular potentials explain how this effect arises and scales roughly cubically with the size of the molecule. The linear shifts yield nonadiabatic mixing angles of the molecular states. The quadratic shifts are sensitive to nearby opposite f-parity states and exhibit fourth-order corrections, providing a stringent test of a state-of-the-art ab initio model.

  10. Confidence set inference with a prior quadratic bound

    NASA Technical Reports Server (NTRS)

    Backus, George E.

    1989-01-01

    In the uniqueness part of a geophysical inverse problem, the observer wants to predict all likely values of P unknown numerical properties z=(z sub 1,...,z sub p) of the earth from measurement of D other numerical properties y (sup 0) = (y (sub 1) (sup 0), ..., y (sub D (sup 0)), using full or partial knowledge of the statistical distribution of the random errors in y (sup 0). The data space Y containing y(sup 0) is D-dimensional, so when the model space X is infinite-dimensional the linear uniqueness problem usually is insoluble without prior information about the correct earth model x. If that information is a quadratic bound on x, Bayesian inference (BI) and stochastic inversion (SI) inject spurious structure into x, implied by neither the data nor the quadratic bound. Confidence set inference (CSI) provides an alternative inversion technique free of this objection. Confidence set inference is illustrated in the problem of estimating the geomagnetic field B at the core-mantle boundary (CMB) from components of B measured on or above the earth's surface.

  11. Linear quadratic stochastic control of atomic hydrogen masers.

    PubMed

    Koppang, P; Leland, R

    1999-01-01

    Data are given showing the results of using the linear quadratic Gaussian (LQG) technique to steer remote hydrogen masers to Coordinated Universal Time (UTC) as given by the United States Naval Observatory (USNO) via two-way satellite time transfer and the Global Positioning System (GPS). Data also are shown from the results of steering a hydrogen maser to the real-time USNO mean. A general overview of the theory behind the LQG technique also is given. The LQG control is a technique that uses Kalman filtering to estimate time and frequency errors used as input into a control calculation. A discrete frequency steer is calculated by minimizing a quadratic cost function that is dependent on both the time and frequency errors and the control effort. Different penalties, chosen by the designer, are assessed by the controller as the time and frequency errors and control effort vary from zero. With this feature, controllers can be designed to force the time and frequency differences between two standards to zero, either more or less aggressively depending on the application.

  12. Differential role of Sloan–Kettering Institute (Ski) protein in Nodal and transforming growth factor-beta (TGF-β)-induced Smad signaling in prostate cancer cells

    PubMed Central

    Khan, Shafiq A.

    2012-01-01

    Transforming growth factor-beta (TGF-β) signaling pathways contain both tumor suppressor and tumor promoting activities. We have demonstrated that Nodal, another member of the TGF-β superfamily, and its receptors are expressed in prostate cancer cells. Nodal and TGF-β exerted similar biological effects on prostate cells; both inhibited proliferation in WPE, RWPE1 and DU145 cells, whereas neither had any effect on the proliferation of LNCaP or PC3 cells. Interestingly, Nodal and TGF-β induced migration in PC3 cells, but not in DU145 cells. TGF-β induced predominantly phosphorylation of Smad3, whereas Nodal induced phosphorylation of only Smad2. We also determined the expression and differential role of Ski, a corepressor of Smad2/3, in Nodal and TGF-β signaling in prostate cancer cells. Similar levels of Ski mRNA were found in several established prostate cell lines; however, high levels of Ski protein were only detected in prostate cancer cells and prostate cancer tissue samples. Exogenous Nodal and TGF-β had no effects on Ski mRNA levels. On the other hand, TGF-β induced a rapid degradation of Ski protein mediated by the proteasomal pathway, whereas Nodal had no effect on Ski protein. Reduced Ski levels correlated with increased basal and TGF-β-induced Smad2/3 phosphorylation. Knockdown of endogenous Ski reduced proliferation in DU145 cells and enhanced migration of PC3 cells. We conclude that high levels of Ski expression in prostate cancer cells may be responsible for repression of TGF-β and Smad3 signaling, but Ski protein levels do not influence Nodal and Smad2 signaling. PMID:22843506

  13. Simultaneous structural and control optimization via linear quadratic regulator eigenstructure assignment

    NASA Technical Reports Server (NTRS)

    Becus, G. A.; Lui, C. Y.; Venkayya, V. B.; Tischler, V. A.

    1987-01-01

    A method for simultaneous structural and control design of large flexible space structures (LFSS) to reduce vibration generated by disturbances is presented. Desired natural frequencies and damping ratios for the closed loop system are achieved by using a combination of linear quadratic regulator (LQR) synthesis and numerical optimization techniques. The state and control weighing matrices (Q and R) are expressed in terms of structural parameters such as mass and stiffness. The design parameters are selected by numerical optimization so as to minimize the weight of the structure and to achieve the desired closed-loop eigenvalues. An illustrative example of the design of a two bar truss is presented.

  14. Solution of quadratic matrix equations for free vibration analysis of structures.

    NASA Technical Reports Server (NTRS)

    Gupta, K. K.

    1973-01-01

    An efficient digital computer procedure and the related numerical algorithm are presented herein for the solution of quadratic matrix equations associated with free vibration analysis of structures. Such a procedure enables accurate and economical analysis of natural frequencies and associated modes of discretized structures. The numerically stable algorithm is based on the Sturm sequence method, which fully exploits the banded form of associated stiffness and mass matrices. The related computer program written in FORTRAN V for the JPL UNIVAC 1108 computer proves to be substantially more accurate and economical than other existing procedures of such analysis. Numerical examples are presented for two structures - a cantilever beam and a semicircular arch.

  15. Three-dimensional conformal radiation for esophageal squamous cell carcinoma with involved-field irradiation may deliver considerable doses of incidental nodal irradiation

    PubMed Central

    2012-01-01

    Background To quantify the incidental irradiation dose to esophageal lymph node stations when irradiating T1-4N0M0 thoracic esophageal squamous cell carcinoma (ESCC) patients with a dose of 60 Gy/30f. Methods Thirty-nine patients with medically inoperable T1–4N0M0 thoracic ESCC were treated with three-dimensional conformal radiation (3DCRT) with involved-field radiation (IFI). The conformal clinical target volume (CTV) was re-created using a 3-cm margin in the proximal and distal direction beyond the barium esophagogram, endoscopic examination and CT scan defined the gross tumor volume (GTV) and a 0.5-cm margin in the lateral and anteroposterior directions of the CT scan-defined GTV. The PTV encompassed 1-cm proximal and distal margins and 0.5-cm radial margin based on the CTV. Nodal regions were delineated using the Japanese Society for Esophageal Diseases (JSED) guidelines and an EORTC-ROG expert opinion. The equivalent uniform dose (EUD) and other dosimetric parameters were calculated for each nodal station. Nodal regions with a metastasis rate greater than 5% were considered a high-risk lymph node subgroup. Results Under a 60 Gy dosage, the median Dmean and EUD was greater than 40 Gy in most high-risk nodal regions except for regions of 104, 106tb-R in upper-thoracic ESCC and 101, 104-R, 105, 106rec-L, 2, 3&7 in middle-thoracic ESCC and 107, 3&7 in lower-thoracic ESCC. In the regions with an EUD less than 40Gy, most incidental irradiation doses were significantly associated with esophageal tumor length and location. Conclusions Lymph node stations near ESCC receive considerable incidental irradiation doses with involved-field irradiation that may contribute to the elimination of subclinical lesions. PMID:23186308

  16. Brady's Geothermal Field Nodal Seismometer Active Source Data Sample

    DOE Data Explorer

    Kurt Feigl

    2016-03-25

    This data is in sac format and includes recordings of two active source events from 238 three-component nodal seismometers deployed at Bradys Hot Springs geothermal field as part of the PoroTomo project. The source was a viberoseis truck operating in P-wave vibrational mode and generating a swept-frequency signal. The files are 33 seconds long starting 4 seconds before each sweep was initiated. There is some overlap in the file times.

  17. PITX2 and NODAL expression during axis formation in the early rabbit embryo.

    PubMed

    Plöger, Ruben; Viebahn, Christoph

    2018-04-26

    Attaining molecular and morphological axial polarity during gastrulation is a fundamental early requirement for normal development of the embryo. In mammals, the first morphological sign of the anterior-posterior axis appears anteriorly in the form of the anterior marginal crescent (or anterior visceral endoderm) while in the avian the first such sign is the Koller's sickle at the posterior pole of the embryonic disc. Despite this inverse mode of axis formation many genes and molecular pathways involved in various steps of this process seem to be evolutionary conserved amongst amniotes, the nodal gene being a well-known example with its functional involvement prior and during gastrulation. The pitx2 gene, however, is a new candidate described in the chick as an early marker for anterior-posterior polarity and as regulator of axis formation including twinning. To find out whether pitx2 has retained its inductive and early marker function during the evolution of mammals, this study analyzes pitx2 and nodal expression at parallel stages during formation of the anterior-posterior polarity in the early rabbit embryo using whole-mount in situ hybridization and serial light-microscopical sections. At a late pre-gastrulation stage a localized reduction of nodal expression presages the position of the anterior pole of the embryonic disc and thus serves as the earliest molecular marker of anterior-posterior polarity known so far. pitx2 is expressed in a polarized manner in the anterior marginal crescent and in the posterior half of the embryonic disc during further development only while nodal expression in the anterior segment of the posterior pitx2 expression domain helps to define the so-called anterior streak domain (ASD), a novel progenitor region of the anterior half of the primitive streak. The expression patterns of both genes thus serve as signs of a conserved involvement in early axis formation in amniotes and, possibly, in twinning in mammals as well. Copyright

  18. The role of elective nodal irradiation for esthesioneuroblastoma patients with clinically negative neck.

    PubMed

    Jiang, Wen; Mohamed, Abdallah S R; Fuller, Clifton David; Kim, Betty Y S; Tang, Chad; Gunn, G Brandon; Hanna, Ehab Y; Frank, Steven J; Su, Shirley Y; Diaz, Eduardo; Kupferman, Michael E; Beadle, Beth M; Morrison, William H; Skinner, Heath; Lai, Stephen Y; El-Naggar, Adel K; DeMonte, Franco; Rosenthal, David I; Garden, Adam S; Phan, Jack

    2016-01-01

    Although adjuvant radiation to the tumor bed has been reported to improve the clinic outcomes of esthesioneuroblastoma (ENB) patients, the role of elective neck irradiation (ENI) in clinically node-negative (N0) patients remains controversial. Here, we evaluated the effects of ENI on neck nodal relapse risk in ENB patients treated with radiation therapy as a component of multimodality treatment. Seventy-one N0 ENB patients irradiated at the University of Texas MD Anderson Cancer Center between 1970 and 2013 were identified. ENI was performed on 22 of these patients (31%). Survival analysis was performed with focus on comparative outcomes of those patients who did and did not receive ENI. The median follow-up time for our cohort is 80.8 months (range, 6-350 months). Among N0 patients, 13 (18.3%) developed neck nodal relapses, with a median time to progression of 62.5 months. None of these 13 patients received prophylactic neck irradiation. ENI was associated with significantly improved regional nodal control at 5 years (regional control rate of 100% for ENI vs 82%, P < .001), but not overall survival or disease-free survival. Eleven patients without ENI developed isolated neck recurrences. All had further treatment for their neck disease, including neck dissection (n = 10), radiation (n = 10), or chemotherapy (n = 5). Six of these 11 patients (54.5%) demonstrated no evidence of further recurrence with a median follow-up of 55.5 months. ENI significantly reduces the risk of cervical nodal recurrence in ENB patients with clinically N0 neck, but this did not translate to a survival benefit. Multimodality treatment for isolated neck recurrence provides a reasonable salvage rate. The greatest benefit for ENI appeared to be among younger patients who presented with Kadish C disease. Further studies are needed to confirm these findings. Copyright © 2016 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  19. Asynchronous collision integrators: Explicit treatment of unilateral contact with friction and nodal restraints

    PubMed Central

    Wolff, Sebastian; Bucher, Christian

    2013-01-01

    This article presents asynchronous collision integrators and a simple asynchronous method treating nodal restraints. Asynchronous discretizations allow individual time step sizes for each spatial region, improving the efficiency of explicit time stepping for finite element meshes with heterogeneous element sizes. The article first introduces asynchronous variational integration being expressed by drift and kick operators. Linear nodal restraint conditions are solved by a simple projection of the forces that is shown to be equivalent to RATTLE. Unilateral contact is solved by an asynchronous variant of decomposition contact response. Therein, velocities are modified avoiding penetrations. Although decomposition contact response is solving a large system of linear equations (being critical for the numerical efficiency of explicit time stepping schemes) and is needing special treatment regarding overconstraint and linear dependency of the contact constraints (for example from double-sided node-to-surface contact or self-contact), the asynchronous strategy handles these situations efficiently and robust. Only a single constraint involving a very small number of degrees of freedom is considered at once leading to a very efficient solution. The treatment of friction is exemplified for the Coulomb model. Special care needs the contact of nodes that are subject to restraints. Together with the aforementioned projection for restraints, a novel efficient solution scheme can be presented. The collision integrator does not influence the critical time step. Hence, the time step can be chosen independently from the underlying time-stepping scheme. The time step may be fixed or time-adaptive. New demands on global collision detection are discussed exemplified by position codes and node-to-segment integration. Numerical examples illustrate convergence and efficiency of the new contact algorithm. Copyright © 2013 The Authors. International Journal for Numerical Methods in

  20. Scanning Tunneling Microscopy Study on Dirac Nodal-line Semimetal ZrSiS

    NASA Astrophysics Data System (ADS)

    Su, Chih-Chuan; Guan, Syu-You; Wang, Tzu-Cheng; Sankar, Raman; Guo, Guang-Yu; Chou, Fangcheng; Chang, Chia-Seng; Chuang, Tien-Ming

    The discovery of 3D Dirac nodal-line protected by non-symmophic symmetry in ZrSiS family has been reported by angle resolved photoemission spectroscopy (ARPES) and quantum oscillation measurements. ZrSiS also exhibits a butterfly shaped titanic angular magnetoresistance and strong Zeeman splitting in quantum oscillation. These observations with its layered crystal structure make the ZrSiS family an interesting candidate to understand the novel properties of the nodal-line semimetals. Here, we study the electronic structures of the single crystal ZrSiS by using spectroscopic-imaging scanning tunneling microscope at T= 4.2K. Our quasiparticle scattering interference imaging reveals the characteristic wave vectors with linear dispersion from Dirac line nodes in the bulk and its surface states. Our results are in excellent agreement with the first principle calculation, and also in consistent with ARPES and quantum oscillation measurements.

  1. The effect of viscosity on steady transonic flow with a nodal solution topology

    NASA Technical Reports Server (NTRS)

    Owocki, Stanley P.; Zank, Gary P.

    1991-01-01

    The effect of viscosity on a steady, transonic flow for which the inviscid limit has a nodal solution topology near the critical point is investigated. For the accelerating case, viscous solutions tend to repel each other, so that a very delicate choice of initial conditions is required to prevent them from diverging. Only the two critical solutions extend to arbitrarily large distances into both the subsonic and supersonic flows. For the decelerating case, the solutions tend to attract, and so an entire two-parameter family of solutions now extends over large distances. The general effect of viscosity on the solution degeneracy of a nodal topology is thus to reduce or limit it for the accelerating case and to enhance it for the decelerating case. The astrophysical implications of these findings are addressed.

  2. Chirped self-similar waves for quadratic-cubic nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Pal, Ritu; Loomba, Shally; Kumar, C. N.

    2017-12-01

    We have constructed analytical self-similar wave solutions for quadratic-cubic Nonlinear Schrödinger equation (QC-NLSE) by means of similarity transformation method. Then, we have investigated the role of chirping on these self-similar waves as they propagate through the tapered graded index waveguide. We have revealed that the chirping leads to interesting features and allows us to control the propagation of self-similar waves. This has been demonstrated for two cases (i) periodically distributed system and (ii) constant choice of system parameters. We expect our results to be useful in designing high performance optical devices.

  3. Inverse Scattering Problem For The Schrödinger Equation With An Additional Quadratic Potential On The Entire Axis

    NASA Astrophysics Data System (ADS)

    Guseinov, I. M.; Khanmamedov, A. Kh.; Mamedova, A. F.

    2018-04-01

    We consider the Schrödinger equation with an additional quadratic potential on the entire axis and use the transformation operator method to study the direct and inverse problems of the scattering theory. We obtain the main integral equations of the inverse problem and prove that the basic equations are uniquely solvable.

  4. A numerical algorithm for optimal feedback gains in high dimensional linear quadratic regulator problems

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Ito, K.

    1991-01-01

    A hybrid method for computing the feedback gains in linear quadratic regulator problem is proposed. The method, which combines use of a Chandrasekhar type system with an iteration of the Newton-Kleinman form with variable acceleration parameter Smith schemes, is formulated to efficiently compute directly the feedback gains rather than solutions of an associated Riccati equation. The hybrid method is particularly appropriate when used with large dimensional systems such as those arising in approximating infinite-dimensional (distributed parameter) control systems (e.g., those governed by delay-differential and partial differential equations). Computational advantages of the proposed algorithm over the standard eigenvector (Potter, Laub-Schur) based techniques are discussed, and numerical evidence of the efficacy of these ideas is presented.

  5. Amyloid precursor protein at node of Ranvier modulates nodal formation

    PubMed Central

    Xu, De-En; Zhang, Wen-Min; Yang, Zara Zhuyun; Zhu, Hong-Mei; Yan, Ke; Li, Shao; Bagnard, Dominique; Dawe, Gavin S; Ma, Quan-Hong; Xiao, Zhi-Cheng

    2014-01-01

    Amyloid precursor protein (APP), commonly associated with Alzheimer disease, is upregulated and distributes evenly along the injured axons, and therefore, also known as a marker of demyelinating axonal injury and axonal degeneration. However, the physiological distribution and function of APP along myelinated axons was unknown. We report that APP aggregates at nodes of Ranvier (NOR) in the myelinated central nervous system (CNS) axons but not in the peripheral nervous system (PNS). At CNS NORs, APP expression co-localizes with tenascin-R and is flanked by juxtaparanodal potassium channel expression demonstrating that APP localized to NOR. In APP-knockout (KO) mice, nodal length is significantly increased, while sodium channels are still clustered at NORs. Moreover, APP KO and APP-overexpressing transgenic (APP TG) mice exhibited a decreased and an increased thickness of myelin in spinal cords, respectively, although the changes are limited in comparison to their littermate WT mice. The thickness of myelin in APP KO sciatic nerve also increased in comparison to that in WT mice. Our observations indicate that APP acts as a novel component at CNS NORs, modulating nodal formation and has minor effects in promoting myelination. PMID:25482638

  6. Solving the Integral of Quadratic Forms of Covariance Matrices for Applications in Polarimetric Radar Imagery

    NASA Astrophysics Data System (ADS)

    Marino, Armando; Hajnsek, Irena

    2015-04-01

    In this work, the solution of quadratic forms with special application to polarimetric and interferometric covariance matrices is investigated. An analytical solution for the integral of a single quadratic form is derived. Additionally, the integral of the Pol-InSAR coherence (expressed as combination of quadratic forms) is investigated. An approximation for such integral is proposed and defined as Trace coherence. Such approximation is tested on real data to verify that the error is acceptable. The trace coherence can be used for tackle problems related to change detection. Moreover, the use of the Trace coherence in model inversion (as for the RVoG three stage inversion) will be investigated in the future.

  7. Motion deficit in nodal interphalangeal joint osteoarthritis by digital goniometer in housewives.

    PubMed

    Ventura-Ríos, L; Hayes-Salinas, M; Ferrusquia-Toriz, D; Cariño-Escobar, R I; Cruz-Arenas, E; Gutiérrez-Martínez, J; González-Ramírez, L; Hernández-Díaz, C

    2018-06-01

    Range of motion (ROM) measured objectively in nodal hand osteoarthritis (NHOA) is missing. Evaluation of collateral ligaments by ultrasound (US) is unknown in NHOA also. To compare ROM in interphalangeal joints in housewives with nodal OA, with a control group by a digital system using angle to voltage (Multielgon). The second objective was to assess correlation between collateral radial and ulnar ligaments thickness and ROM. For this cross-sectional observational study, we assessed 60 hands with symptomatic NHOA and 30 hands of healthy housewives matched for age. We obtained clinical and demographic characteristics (a complete standardized physical examination of hand joints, DASH questionnaire, pain surveys, gross grasp hand goniometer, and ROM measurements by Multielgon. Presence of synovitis, power Doppler signal, osteophytes, and collateral ligaments thickness was evaluated by US. We used descriptive statistics, Spearman correlation, X 2 test, t test and odds ratio. Significant less gross grasp and ROM in the right hand were observed in NHOA (p = 0.01 for both). Presence of OA, painful joints, disease duration, and score DASH were significant correlated with reduced ROM (OR 4.12, 4.12, 1.04 and 1.09, respectively). Reduced ROM was statistical significant in thumb MCP and IP joints, second and third DIP in dominant hand. There was no association between collateral radial and ulnar ligaments and reduced ROM. Synovitis and osteophytes were more prevalent in OA group. Multielgon demonstrated the pattern of reduced ROM in nodal OA of housewives particularly in MCP and IP thumb joints, second and third distal interphalangeal joints.

  8. Three-dimensional conformal radiation therapy for esophageal squamous cell carcinoma: is elective nodal irradiation necessary?

    PubMed

    Zhao, Kuai-le; Ma, Jin-bo; Liu, Guang; Wu, Kai-liang; Shi, Xue-hui; Jiang, Guo-liang

    2010-02-01

    To evaluate the local control, survival, and toxicity associated with three-dimensional conformal radiotherapy (3D-CRT) for squamous cell carcinoma (SCC) of the esophagus, to determine the appropriate target volumes, and to determine whether elective nodal irradiation is necessary in these patients. A prospective study of 3D-CRT was undertaken in patients with esophageal SCC without distant metastases. Patients received 68.4 Gy in 41 fractions over 44 days using late-course accelerated hyperfractionated 3D-CRT. Only the primary tumor and positive lymph nodes were irradiated. Isolated out-of-field regional nodal recurrence was defined as a recurrence in an initially uninvolved regional lymph node. All 53 patients who made up the study population tolerated the irradiation well. No acute or late Grade 4 or 5 toxicity was observed. The median survival time was 30 months (95% confidence interval, 17.7-41.8). The overall survival rate at 1, 2, and 3 years was 77%, 56%, and 41%, respectively. The local control rate at 1, 2, and 3 years was 83%, 74%, and 62%, respectively. Thirty-nine of the 53 patients (74%) showed treatment failure. Seventeen of the 39 (44%) developed an in-field recurrence, 18 (46%) distant metastasis with or without regional failure, and 3 (8%) an isolated out-of-field nodal recurrence only. One patient died of disease in an unknown location. In patients treated with 3D-CRT for esophageal SCC, the omission of elective nodal irradiation was not associated with a significant amount of failure in lymph node regions not included in the planning target volume. Local failure and distant metastases remained the predominant problems. Copyright 2010 Elsevier Inc. All rights reserved.

  9. F18 FDG positron emission tomography revelation of primary testicular lymphoma with concurrent multiple extra nodal involvement

    PubMed Central

    Vamsy, Mohana; Dattatreya, PS; Parakh, Megha; Dayal, Monal; Rao, VVS Prabhakar

    2013-01-01

    Primary testicular lymphoma (PTL) a relatively rare disease of non-Hodgkin's lymphomas occurring with a lesser incidence of 1-2% has a propensity to occur at later ages above 50 years. PTL spreads to extra nodal sites due to deficiency of extra cellular adhesion molecules. We present detection of multiple sites of extra nodal involvement of PTL by F-18 positron emission tomography/computed tomography study aiding early detection of the dissemination thus aiding in staging and management. PMID:24019676

  10. Design of linear quadratic regulators with eigenvalue placement in a specified region

    NASA Technical Reports Server (NTRS)

    Shieh, Leang-San; Zhen, Liu; Coleman, Norman P.

    1990-01-01

    Two linear quadratic regulators are developed for placing the closed-loop poles of linear multivariable continuous-time systems within the common region of an open sector, bounded by lines inclined at +/- pi/2k (for a specified integer k not less than 1) from the negative real axis, and the left-hand side of a line parallel to the imaginary axis in the complex s-plane, and simultaneously minimizing a quadratic performance index. The design procedure mainly involves the solution of either Liapunov equations or Riccati equations. The general expression for finding the lower bound of a constant gain gamma is also developed.

  11. A Web-based nomogram predicting para-aortic nodal metastasis in incompletely staged patients with endometrial cancer: a Korean Multicenter Study.

    PubMed

    Kang, Sokbom; Lee, Jong-Min; Lee, Jae-Kwan; Kim, Jae-Weon; Cho, Chi-Heum; Kim, Seok-Mo; Park, Sang-Yoon; Park, Chan-Yong; Kim, Ki-Tae

    2014-03-01

    The purpose of this study is to develop a Web-based nomogram for predicting the individualized risk of para-aortic nodal metastasis in incompletely staged patients with endometrial cancer. From 8 institutions, the medical records of 397 patients who underwent pelvic and para-aortic lymphadenectomy as a surgical staging procedure were retrospectively reviewed. A multivariate logistic regression model was created and internally validated by rigorous bootstrap resampling methods. Finally, the model was transformed into a user-friendly Web-based nomogram (http://http://www.kgog.org/nomogram/empa001.html). The rate of para-aortic nodal metastasis was 14.4% (57/397 patients). Using a stepwise variable selection, 4 variables including deep myometrial invasion, non-endometrioid subtype, lymphovascular space invasion, and log-transformed CA-125 levels were finally adopted. After 1000 repetitions of bootstrapping, all of these 4 variables retained a significant association with para-aortic nodal metastasis in the multivariate analysis-deep myometrial invasion (P = 0.001), non-endometrioid histologic subtype (P = 0.034), lymphovascular space invasion (P = 0.003), and log-transformed serum CA-125 levels (P = 0.004). The model showed good discrimination (C statistics = 0.87; 95% confidence interval, 0.82-0.92) and accurate calibration (Hosmer-Lemeshow P = 0.74). This nomogram showed good performance in predicting para-aortic metastasis in patients with endometrial cancer. The tool may be useful in determining the extent of lymphadenectomy after incomplete surgery.

  12. An amphioxus nodal gene (AmphiNodal) with early symmetrical expression in the organizer and mesoderm and later asymmetrical expression associated with left-right axis formation

    NASA Technical Reports Server (NTRS)

    Yu, Jr-Kai; Holland, Linda Z.; Holland, Nicholas D.

    2002-01-01

    The full-length sequence and zygotic expression of an amphioxus nodal gene are described. Expression is first detected in the early gastrula just within the dorsal lip of the blastopore in a region of hypoblast that is probably comparable with the vertebrate Spemann's organizer. In the late gastrula and early neurula, expression remains bilaterally symmetrical, limited to paraxial mesoderm and immediately overlying regions of the neural plate. Later in the neurula stage, all neural expression disappears, and mesodermal expression disappears from the right side. All along the left side of the neurula, mesodermal expression spreads into the left side of the gut endoderm. Soon thereafter, all expression is down-regulated except near the anterior and posterior ends of the animal, where transcripts are still found in the mesoderm and endoderm on the left side. At this time, expression also begins in the ectoderm on the left side of the head, in the region where the mouth later forms. These results suggest that amphioxus and vertebrate nodal genes play evolutionarily conserved roles in establishing Spemann's organizer, patterning the mesoderm rostrocaudally and setting up the asymmetrical left-right axis of the body.

  13. Nodal enhances the activity of FoxO3a and its synergistic interaction with Smads to regulate cyclin G2 transcription in ovarian cancer cells.

    PubMed

    Fu, G; Peng, C

    2011-09-15

    Nodal, a member of the transforming growth factor-β superfamily, has been recently shown to suppress cell proliferation and to stimulate the expression of cyclin G2 (CCNG2) in human epithelial ovarian cancer cells. However, the precise mechanisms underlying these events are not fully understood. In this study, we investigated the transcriptional regulation of CCNG2 by the Nodal signaling pathway. In ovarian cancer cells, overexpression of Nodal or its receptors, activin receptor-like kinase 7 (ALK7) or ALK4, resulted in an increase in the CCNG2 promoter activity. Several putative Forkhead box class O (FoxO)3a-binding sites are present in the human CCNG2 promoter and overexpression of FoxO3a enhanced the CCNG2 promoter activity. The functional FoxO3a-binding element (FBE) was mapped to a proximal region located between -398 and -380 bp (FBE1) through deletion and mutation analyses, as well as chromatin immunoprecipitation (IP) assay. Interestingly, mutation of the FBE1 not only abolished the effect of FoxO3a, but also blocked Nodal-induced CCNG2 transcription. Nodal stimulated FoxO3a mRNA and protein expression through the canonical Smad pathway and suppressed FoxO3a inactivation by inhibiting AKT activity. Silencing of FoxO3a using small interfering RNA significantly reduced the effect of Nodal on the CCNG2 promoter activity. On the other hand, overexpression of Smad2 and Smad3 enhanced the FoxO3a-induced CCNG2 promoter activity whereas knockdown of Smad4 blocked the activity of FoxO3a. Furthermore, IP assays revealed that FoxO3a formed complexes with Smad proteins and that Nodal enhanced the binding of FoxO3a to the CCNG2 promoter. Finally, silencing of FoxO3a reversed the inhibitory effect of Nodal on cell proliferation. Taken together, these findings demonstrated that Nodal signaling promotes CCNG2 transcription by upregulating FoxO3a expression, inhibiting FoxO3a phosphorylation and enhancing its synergistic interaction with Smads. These results also suggest

  14. In vitro clonal propagation of Achyranthes aspera L. and Achyranthes bidentata Blume using nodal explants.

    PubMed

    Gnanaraj, Wesely Edward; Antonisamy, Johnson Marimuthu; R B, Mohanamathi; Subramanian, Kavitha Marappampalyam

    2012-01-01

    plants were established in the field. The results have shown that use of nodal buds is an alternative reproducible and dependable method for clonal propagation of A. aspera and A. bidentata. The high rate of direct shoot-root multiplication and their high rate of post-hardening survival indicate that this protocol can be easily adopted for commercial large scale cultivation.

  15. Analysis of Quadratic Diophantine Equations with Fibonacci Number Solutions

    ERIC Educational Resources Information Center

    Leyendekkers, J. V.; Shannon, A. G.

    2004-01-01

    An analysis is made of the role of Fibonacci numbers in some quadratic Diophantine equations. A general solution is obtained for finding factors in sums of Fibonacci numbers. Interpretation of the results is facilitated by the use of a modular ring which also permits extension of the analysis.

  16. MO-FG-CAMPUS-TeP2-01: A Graph Form ADMM Algorithm for Constrained Quadratic Radiation Treatment Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, X; Belcher, AH; Wiersma, R

    Purpose: In radiation therapy optimization the constraints can be either hard constraints which must be satisfied or soft constraints which are included but do not need to be satisfied exactly. Currently the voxel dose constraints are viewed as soft constraints and included as a part of the objective function and approximated as an unconstrained problem. However in some treatment planning cases the constraints should be specified as hard constraints and solved by constrained optimization. The goal of this work is to present a computation efficiency graph form alternating direction method of multipliers (ADMM) algorithm for constrained quadratic treatment planning optimizationmore » and compare it with several commonly used algorithms/toolbox. Method: ADMM can be viewed as an attempt to blend the benefits of dual decomposition and augmented Lagrangian methods for constrained optimization. Various proximal operators were first constructed as applicable to quadratic IMRT constrained optimization and the problem was formulated in a graph form of ADMM. A pre-iteration operation for the projection of a point to a graph was also proposed to further accelerate the computation. Result: The graph form ADMM algorithm was tested by the Common Optimization for Radiation Therapy (CORT) dataset including TG119, prostate, liver, and head & neck cases. Both unconstrained and constrained optimization problems were formulated for comparison purposes. All optimizations were solved by LBFGS, IPOPT, Matlab built-in toolbox, CVX (implementing SeDuMi) and Mosek solvers. For unconstrained optimization, it was found that LBFGS performs the best, and it was 3–5 times faster than graph form ADMM. However, for constrained optimization, graph form ADMM was 8 – 100 times faster than the other solvers. Conclusion: A graph form ADMM can be applied to constrained quadratic IMRT optimization. It is more computationally efficient than several other commercial and noncommercial optimizers and it

  17. Association of Nodal Metastasis and Mortality With Vermilion vs Cutaneous Lip Location in Cutaneous Squamous Cell Carcinoma of the Lip.

    PubMed

    Wang, David M; Kraft, Stefan; Rohani, Pooyan; Murphy, George F; Besaw, Robert J; Karia, Pritesh S; Morgan, Frederick C; Schmults, Chrysalyne D

    2018-06-01

    Although the lip is considered a high-risk location in cutaneous squamous cell carcinoma (cSCC), it has not been established whether this risk stems from vermilion or cutaneous locations or both. To compare differences in risks of recurrence, metastasis, and death from cSCCs on the vermilion vs cutaneous lip. Retrospective cohort study of 303 patients with 310 primary cSCCs of the lip (138 cutaneous, 172 vermilion) diagnosed between 2000 and 2015 at 2 academic tertiary care centers in Boston, Massachusetts. Development of local recurrence, nodal metastasis, distant metastasis, disease-specific death, and all-cause death. Of the 303 study participants with 310 SCCs of the lip, 153 (50.5%) were men, and 150 (49.5%) were women; median age at diagnosis, 68 years (range, 27-93 years). Outcomes were as follows for vermilion vs cutaneous locations: local recurrence, 6.4% (11 of 172) vs 2.9% (4 of 138); nodal metastasis, 7.6% (13 of 172) vs 1.5% (2 of 138); distant metastasis, 0.6% (1 of 172) vs 0.7% (1 of 138); disease-specific death, 3.5% (6 of 172) vs 2.9% (4 of 138); and all-cause death, 26.7% (46 of 172) vs 29.0% (40 of 138). The difference was statistically significant for nodal metastasis (P = .01). In multivariable analysis, nodal metastasis was associated with vermilion lip location (subhazard ratio, 5.0; 95% CI, 1.1-23.8) and invasion beyond fat (fascia or beyond for vermilion lip) (subhazard ratio, 4.4; 95% CI, 1.3-14.9). The risk of nodal metastasis is 5-fold greater for cSCCs on the vermilion lip compared with those on the cutaneous lip. Squamous cell carcinomas of the cutaneous lip have a nodal metastasis risk similar to cSCCs in general (1.5%). Thus, vermilion involvement appears responsible for the increased risk associated with cSCC of lip. Vermilion involvement may merit radiologic nodal staging and inclusion in future tumor staging, since it was independently associated with higher-risk cSCC of the lip region.

  18. Left-right asymmetry in the level of active Nodal protein produced in the node is translated into left-right asymmetry in the lateral plate of mouse embryos.

    PubMed

    Kawasumi, Aiko; Nakamura, Tetsuya; Iwai, Naomi; Yashiro, Kenta; Saijoh, Yukio; Belo, Jose Antonio; Shiratori, Hidetaka; Hamada, Hiroshi

    2011-05-15

    Left-right (L-R) asymmetry in the mouse embryo is generated in the node and is dependent on cilia-driven fluid flow, but how the initial asymmetry is transmitted from the node to the lateral plate has remained unknown. We have now identified a transcriptional enhancer (ANE) in the human LEFTY1 gene that exhibits marked L>R asymmetric activity in perinodal cells of the mouse embryo. Dissection of ANE revealed that it is activated in the perinodal cells on the left side by Nodal signaling, suggesting that Nodal activity in the node is asymmetric at a time when Nodal expression is symmetric. Phosphorylated Smad2/3 (pSmad2) indeed manifested an L-R asymmetric distribution at the node, being detected in perinodal cells preferentially on the left side. This asymmetry in pSmad2 distribution was found to be generated not by unidirectional transport of Nodal but rather as a result of LNodal antagonist Cerl2. For various mutant embryos examined, the asymmetry in pSmad2 distribution among the perinodal cells closely matched that in lateral plate mesoderm (LPM). However, autocrine-paracrine Nodal signaling in perinodal cells is dispensable for L-R patterning of LPM, given that its inhibition by expression of dominant negative forms of Smad3 or ALK4 was still associated with normal (left-sided) Nodal expression in LPM. Our results suggest that LPM is the direct target of Nodal secreted by the perinodal cells, and that an L>R distribution of active Nodal in the node is translated into the asymmetry in LPM. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Local hyperspectral data multisharpening based on linear/linear-quadratic nonnegative matrix factorization by integrating lidar data

    NASA Astrophysics Data System (ADS)

    Benhalouche, Fatima Zohra; Karoui, Moussa Sofiane; Deville, Yannick; Ouamri, Abdelaziz

    2015-10-01

    In this paper, a new Spectral-Unmixing-based approach, using Nonnegative Matrix Factorization (NMF), is proposed to locally multi-sharpen hyperspectral data by integrating a Digital Surface Model (DSM) obtained from LIDAR data. In this new approach, the nature of the local mixing model is detected by using the local variance of the object elevations. The hyper/multispectral images are explored using small zones. In each zone, the variance of the object elevations is calculated from the DSM data in this zone. This variance is compared to a threshold value and the adequate linear/linearquadratic spectral unmixing technique is used in the considered zone to independently unmix hyperspectral and multispectral data, using an adequate linear/linear-quadratic NMF-based approach. The obtained spectral and spatial information thus respectively extracted from the hyper/multispectral images are then recombined in the considered zone, according to the selected mixing model. Experiments based on synthetic hyper/multispectral data are carried out to evaluate the performance of the proposed multi-sharpening approach and literature linear/linear-quadratic approaches used on the whole hyper/multispectral data. In these experiments, real DSM data are used to generate synthetic data containing linear and linear-quadratic mixed pixel zones. The DSM data are also used for locally detecting the nature of the mixing model in the proposed approach. Globally, the proposed approach yields good spatial and spectral fidelities for the multi-sharpened data and significantly outperforms the used literature methods.

  20. Dynamics of a new family of iterative processes for quadratic polynomials

    NASA Astrophysics Data System (ADS)

    Gutiérrez, J. M.; Hernández, M. A.; Romero, N.

    2010-03-01

    In this work we show the presence of the well-known Catalan numbers in the study of the convergence and the dynamical behavior of a family of iterative methods for solving nonlinear equations. In fact, we introduce a family of methods, depending on a parameter . These methods reach the order of convergence m+2 when they are applied to quadratic polynomials with different roots. Newton's and Chebyshev's methods appear as particular choices of the family appear for m=0 and m=1, respectively. We make both analytical and graphical studies of these methods, which give rise to rational functions defined in the extended complex plane. Firstly, we prove that the coefficients of the aforementioned family of iterative processes can be written in terms of the Catalan numbers. Secondly, we make an incursion into its dynamical behavior. In fact, we show that the rational maps related to these methods can be written in terms of the entries of the Catalan triangle. Next we analyze its general convergence, by including some computer plots showing the intricate structure of the Universal Julia sets associated with the methods.

  1. Coexistence of tunable Weyl points and topological nodal lines in ternary transition-metal telluride TaIrT e4

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaoqing; Liu, Qihang; Wu, QuanSheng; Nummy, Tom; Li, Haoxiang; Griffith, Justin; Parham, Stephen; Waugh, Justin; Emmanouilidou, Eve; Shen, Bing; Yazyev, Oleg V.; Ni, Ni; Dessau, Daniel

    2018-06-01

    We report a combined theoretical and experimental study on TaIrT e4 , a potential candidate for a minimal model of type-II Weyl semimetals. Unexpectedly, an intriguing node structure with 12 Weyl points and a pair of nodal lines protected by mirror symmetry was found by first-principles calculations. Some signatures of the complex electronic structure, such as topologically nontrivial band crossings and topologically trivial Fermi arcs, are cross-validated by angle-resolved photoemission spectroscopy. Through external strain, the number of Weyl points can be reduced to a theoretical minimum of four, and the appearance of the nodal lines can be switched between different mirror planes in momentum space. The coexistence of switchable Weyl points and nodal lines establishes transition-metal chalcogenides as a unique test ground for topological state characterization and engineering.

  2. Potential clinical value of PET/CT in predicting occult nodal metastasis in T1-T2N0M0 lung cancer patients staged by PET/CT

    PubMed Central

    Zhou, Xiang; Chen, Ruohua; Huang, Gang; Liu, Jianjun

    2017-01-01

    We assessed the clinical value of 2-fluoro-2-deoxyglucose (18F-FDG) PET/CT imaging for predicting occult nodal metastasis in non-small cell lung cancer (NSCLC) patients. This retrospective study included 54 patients with T1-2N0M0 NSCLC who had undergone 18F-FDG PET/CT before surgery. Occult nodal metastasis was detected in 25.9% (14/54) of the patients. Immunohistochemical analysis revealed that increased glucose transporter 1 expression was associated with occult nodal metastasis, but hexokinase 2 expression was not. Compared to the negative nodal metastasis group, the positive nodal metastasis group was associated with increased maximum standardized uptake value (SUVmax) and tumor size. Multivariate analysis indicated that SUVmax and tumor size were associated with nodal metastasis. Nodal metastasis could be predicted with a sensitivity of 92.9% and a specificity of 55.0% when the SUVmax cutoff was 4.35. When patients were divided into low-risk (tumor size ≤ 2.5 cm and SUVmax ≤ 4.35), moderate-risk (tumor size ≤ 2.5 cm and SUVmax > 4.35 or tumor size > 2.5 cm and SUVmax ≤ 4.35) and high-risk (tumor size > 2.5 cm and SUVmax > 4.35) groups, the lymph node metastasis rates were 4.3%, 22.7%, and 88.9%, respectively. These results indicate that the combination of SUVmax and tumor size has potential clinical value for predicting occult nodal metastasis in NSCLC patients. PMID:29137276

  3. A point-value enhanced finite volume method based on approximate delta functions

    NASA Astrophysics Data System (ADS)

    Xuan, Li-Jun; Majdalani, Joseph

    2018-02-01

    We revisit the concept of an approximate delta function (ADF), introduced by Huynh (2011) [1], in the form of a finite-order polynomial that holds identical integral properties to the Dirac delta function when used in conjunction with a finite-order polynomial integrand over a finite domain. We show that the use of generic ADF polynomials can be effective at recovering and generalizing several high-order methods, including Taylor-based and nodal-based Discontinuous Galerkin methods, as well as the Correction Procedure via Reconstruction. Based on the ADF concept, we then proceed to formulate a Point-value enhanced Finite Volume (PFV) method, which stores and updates the cell-averaged values inside each element as well as the unknown quantities and, if needed, their derivatives on nodal points. The sharing of nodal information with surrounding elements saves the number of degrees of freedom compared to other compact methods at the same order. To ensure conservation, cell-averaged values are updated using an identical approach to that adopted in the finite volume method. Here, the updating of nodal values and their derivatives is achieved through an ADF concept that leverages all of the elements within the domain of integration that share the same nodal point. The resulting scheme is shown to be very stable at successively increasing orders. Both accuracy and stability of the PFV method are verified using a Fourier analysis and through applications to the linear wave and nonlinear Burgers' equations in one-dimensional space.

  4. From nodal-ring topological superfluids to spiral Majorana modes in cold atomic systems

    NASA Astrophysics Data System (ADS)

    He, Wen-Yu; Xu, Dong-Hui; Zhou, Benjamin T.; Zhou, Qi; Law, K. T.

    2018-04-01

    In this work, we consider a three-dimensional (3D) cubic optical lattice composed of coupled 1D wires with 1D spin-orbit coupling. When the s -wave pairing is induced through Feshbach resonance, the system becomes a topological superfluid with ring nodes, which are the ring nodal degeneracies in the bulk, and supports a large number of surface Majorana zero-energy modes. The large number of surface Majorana modes remain at zero energy even in the presence of disorder due to the protection from a chiral symmetry. When the chiral symmetry is broken, the system becomes a Weyl topological superfluid with Majorana arcs. With 3D spin-orbit coupling, the Weyl superfluid becomes a gapless phase with spiral Majorana modes on the surface. A spatial-resolved radio-frequency spectroscopy is suggested to detect this nodal-ring topological superfluid phase.

  5. Hyers-Ulam stability of a generalized Apollonius type quadratic mapping

    NASA Astrophysics Data System (ADS)

    Park, Chun-Gil; Rassias, Themistocles M.

    2006-10-01

    Let X,Y be linear spaces. It is shown that if a mapping satisfies the following functional equation: then the mapping is quadratic. We moreover prove the Hyers-Ulam stability of the functional equation (0.1) in Banach spaces.

  6. Quadratic Expressions by Means of "Summing All the Matchsticks"

    ERIC Educational Resources Information Center

    Gierdien, M. Faaiz

    2012-01-01

    This note presents demonstrations of quadratic expressions that come about when particular problems are posed with respect to matchsticks that form regular triangles, squares, pentagons and so on. Usually when such "matchstick" problems are used as ways to foster algebraic thinking, the expressions for the number of matchstick quantities are…

  7. Sequential Quadratic Programming Algorithms for Optimization

    DTIC Science & Technology

    1989-08-01

    quadratic program- ma ng (SQ(2l ) aIiatain.seenis to be relgarded aIs tie( buest choice for the solution of smiall. dlense problema (see S tour L)toS...For the step along d, note that a < nOing + 3 szH + i3.ninA A a K f~Iz,;nd and from Id1 _< ,,, we must have that for some /3 , np , 11P11 < dn"p. 5.2...Nevertheless, many of these problems are considered hard to solve. Moreover, for some of these problems the assumptions made in Chapter 2 to establish the

  8. A three-dimensional definition of nodal spaces on the basis of CT images showing enlarged nodes for pelvic radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Portaluri, Maurizio; Bambace, Santa; Perez, Celeste

    2005-11-15

    Purpose: To demonstrate that margins of each pelvic chain may be derived by verifying the bony and soft tissue structures around abnormal nodes on computed tomography (CT) slices. Methods and Materials: Twenty consecutive patients (16 males, 4 females; mean age, 66 years; range, 43-80 years) with radiologic diagnosis of nodal involvement by histologically proved cervix carcinoma (two), rectum carcinoma (three), prostate carcinoma (four), lymphoma (five), penis carcinoma (one), corpus uteri carcinoma (one), bladder carcinoma (two), cutis tumor (one), and soft-tissue sarcoma (one) were retrospectively reviewed. One hundred CT scans showing 85 enlarged pelvic nodes were reviewed by two radiation oncologistsmore » (M.P., S.B.), and two radiologists (C.P., G.A.). Results: The more proximal structures to each enlarged node or group of nodes were thus recorded in a clockwise direction. Conclusion: According to their frequency and visibility, craniocaudal, anterior, lateral, posterior and medial margins of common iliac, external and internal iliac nodal chains, obturator and pudendal nodes, and deep and superficial inguinal nodes were derived from CT observations.« less

  9. From cluster structures to nuclear molecules: The role of nodal structure of the single-particle wave functions

    NASA Astrophysics Data System (ADS)

    Afanasjev, A. V.; Abusara, H.

    2018-02-01

    The nodal structure of the density distributions of the single-particle states occupied in rod-shaped, hyper- and megadeformed structures of nonrotating and rotating N ˜Z nuclei has been investigated in detail. The single-particle states with the Nilsson quantum numbers of the [N N 0 ]1 /2 (with N from 0 to 5) and [N ,N -1 ,1 ]Ω (with N from 1 to 3 and Ω =1 /2 , 3/2) types are considered. These states are building blocks of extremely deformed shapes in the nuclei with mass numbers A ≤50 . Because of (near) axial symmetry and large elongation of such structures, the wave functions of the single-particle states occupied are dominated by a single basis state in cylindrical basis. This basis state defines the nodal structure of the single-particle density distribution. The nodal structure of the single-particle density distributions allows us to understand in a relatively simple way the necessary conditions for α clusterization and the suppression of the α clusterization with the increase of mass number. It also explains in a natural way the coexistence of ellipsoidal mean-field-type structures and nuclear molecules at similar excitation energies and the features of particle-hole excitations connecting these two types of the structures. Our analysis of the nodal structure of the single-particle density distributions does not support the existence of quantum liquid phase for the deformations and nuclei under study.

  10. Identification of nodal tissue in the living heart using rapid scanning fiber-optics confocal microscopy and extracellular fluorophores.

    PubMed

    Huang, Chao; Kaza, Aditya K; Hitchcock, Robert W; Sachse, Frank B

    2013-09-01

    Risks associated with pediatric reconstructive heart surgery include injury of the sinoatrial node (SAN) and atrioventricular node (AVN), requiring cardiac rhythm management using implantable pacemakers. These injuries are the result of difficulties in identifying nodal tissues intraoperatively. Here we describe an approach based on confocal microscopy and extracellular fluorophores to quantify tissue microstructure and identify nodal tissue. Using conventional 3-dimensional confocal microscopy we investigated the microstructural arrangement of SAN, AVN, and atrial working myocardium (AWM) in fixed rat heart. AWM exhibited a regular striated arrangement of the extracellular space. In contrast, SAN and AVN had an irregular, reticulated arrangement. AWM, SAN, and AVN tissues were beneath a thin surface layer of tissue that did not obstruct confocal microscopic imaging. Subsequently, we imaged tissues in living rat hearts with real-time fiber-optics confocal microscopy. Fiber-optics confocal microscopy images resembled images acquired with conventional confocal microscopy. We investigated spatial regularity of tissue microstructure from Fourier analysis and second-order image moments. Fourier analysis of fiber-optics confocal microscopy images showed that the spatial regularity of AWM was greater than that of nodal tissues (37.5 ± 5.0% versus 24.3 ± 3.9% for SAN and 23.8 ± 3.7% for AVN; P<0.05). Similar differences of spatial regularities were revealed from second-order image moments (50.0 ± 7.3% for AWM versus 29.3 ± 6.7% for SAN and 27.3 ± 5.5% for AVN; P<0.05). The study demonstrates feasibility of identifying nodal tissue in living heart using extracellular fluorophores and fiber-optics confocal microscopy. Application of the approach in pediatric reconstructive heart surgery may reduce risks of injuring nodal tissues.

  11. Two healing lengths in a two-band GL-model with quadratic terms: Numerical results

    NASA Astrophysics Data System (ADS)

    Macias-Medri, A. E.; Rodríguez-Núñez, J. J.

    2018-05-01

    A two-band and quartic interaction order Ginzburg-Landau model in the presence of a single vortex is studied in this work. Interactions of second (quadratic, with coupling parameter γ) and fourth (quartic, with coupling parameter γ˜) order between the two superconducting order parameters (fi with i = 1,2) are incorporated in a functional. Terms beyond quadratic gradient contributions are neglected in the corresponding minimized free energy. The solution of the system of coupled equations is solved by numerical methods to obtain the fi-profiles, where our starting point was the calculation of the superconducting critical temperature Tc. With this at hand, we evaluate fi and the magnetic field along the z-axis, B0, as function of γ, γ˜, the radial distance r/λ1(0) and the temperature T, for T ≈ Tc. The self-consistent equations allow us to compute λ (penetration depth) and the healing lengths of fi (Lhi with i = 1,2) as functions of T, γ and γ˜. At the end, relevant discussions about type-1.5 superconductivity in the compounds we have studied are presented.

  12. IFSM fractal image compression with entropy and sparsity constraints: A sequential quadratic programming approach

    NASA Astrophysics Data System (ADS)

    Kunze, Herb; La Torre, Davide; Lin, Jianyi

    2017-01-01

    We consider the inverse problem associated with IFSM: Given a target function f , find an IFSM, such that its fixed point f ¯ is sufficiently close to f in the Lp distance. Forte and Vrscay [1] showed how to reduce this problem to a quadratic optimization model. In this paper, we extend the collage-based method developed by Kunze, La Torre and Vrscay ([2][3][4]), by proposing the minimization of the 1-norm instead of the 0-norm. In fact, optimization problems involving the 0-norm are combinatorial in nature, and hence in general NP-hard. To overcome these difficulties, we introduce the 1-norm and propose a Sequential Quadratic Programming algorithm to solve the corresponding inverse problem. As in Kunze, La Torre and Vrscay [3] in our formulation, the minimization of collage error is treated as a multi-criteria problem that includes three different and conflicting criteria i.e., collage error, entropy and sparsity. This multi-criteria program is solved by means of a scalarization technique which reduces the model to a single-criterion program by combining all objective functions with different trade-off weights. The results of some numerical computations are presented.

  13. Optomechanically induced opacity and amplification in a quadratically coupled optomechanical system

    NASA Astrophysics Data System (ADS)

    Si, Liu-Gang; Xiong, Hao; Zubairy, M. Suhail; Wu, Ying

    2017-03-01

    We analyze theoretically the features of the output field of a quadratically coupled optomechanical system, which is driven by a strong coupling field and a weak signal field, and in which the membrane (treated as a mechanical resonator) is excited by a weak coherent driving field with two-phonon resonance. We show that the system exhibits complex quantum coherent and interference effects resulting in transmission of the signal field from opacity to remarkable amplification. We also find that the total phase of the applied fields can significantly adjust the signal field's transmission spectrum. The study of the propagation of the signal field in such a quadratically coupled optomechanical system proves that the proposed device can operate as an optical transistor.

  14. Contractions and deformations of quasiclassical Lie algebras preserving a nondegenerate quadratic Casimir operator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campoamor-Stursberg, R., E-mail: rutwig@mat.ucm.e

    2008-05-15

    By means of contractions of Lie algebras, we obtain new classes of indecomposable quasiclassical Lie algebras that satisfy the Yang-Baxter equations in its reformulation in terms of triple products. These algebras are shown to arise naturally from noncompact real simple algebras with nonsimple complexification, where we impose that a nondegenerate quadratic Casimir operator is preserved by the limiting process. We further consider the converse problem and obtain sufficient conditions on integrable cocycles of quasiclassical Lie algebras in order to preserve nondegenerate quadratic Casimir operators by the associated linear deformations.

  15. Radiofrequency ablation versus cryoablation for atrioventricular nodal re-entrant tachycardia in children: a value comparison.

    PubMed

    Oster, Matthew E; Yang, Zhou; Stewart-Huey, Kay; Glanville, Michelle; Porter, Arlene; Campbell, Robert; Webb, Brad; Strieper, Margaret

    2017-03-01

    It is unclear whether cryoablation or radiofrequency ablation offers better value for treating atrioventricular nodal re-entrant tachycardia in children. We aimed to compare the value of these procedures for treating atrioventricular nodal re-entrant tachycardia in children, with value being outcomes relative to costs. We performed a retrospective cohort study of all atrioventricular nodal re-entrant tachycardia ablations for children (age⩽18 years) from July, 2009 to June, 2011 at our institution. Costs included fixed costs, miscellaneous hospital costs, and labour costs, and key outcomes were acute and long-term success (6 months) of the ablations. We conducted T-tests and regression analyses to investigate the associations between the ablation procedure type and the cost and success of the ablations. Of 96 unique cases performed by three paediatric electrophysiologists, 48 were cryoablation only, 42 radiofrequency ablation only, and six were a combination. Acute success was 100% for the cryoablation only and radiofrequency ablation only cases and 83% for the combination cases. There were no notable adverse events. The average total cost was $9636 for cryoablation cases, $9708 for radiofrequency ablation cases, and $10,967 for combination cases (p=0.51 for cryoablation only versus radiofrequency ablation only). The long-term success rate was 79.1% for cryoablation only, 92.8% for radiofrequency ablation only, and 66.7% for the combination (p=0.01 for cryoablation only versus radiofrequency ablation only), but long-term success varied notably by provider. Cryoablation and radiofrequency ablation offer similar value in the short term for the treatment of atrioventricular nodal re-entrant tachycardia in children. Differences in long-term success may vary substantially by physician, and thus may lead to differences in long-term value.

  16. Immunocompromised patients with metastatic cutaneous nodal squamous cell carcinoma of the head and neck: Poor outcome unrelated to the index lesion.

    PubMed

    Lam, Johnson K S; Sundaresan, Puma; Gebski, Val; Veness, Michael J

    2018-05-01

    Immunocompromised patients with metastatic cutaneous nodal head and neck squamous cell carcinoma (HNSCC) have worse outcomes compared to the immunocompetent. The purpose of this study was to investigate the characteristics of the primary cutaneous squamous cell carcinoma (SCC), nodal pathology, and outcome between these 2 groups. Analysis of a prospective database was performed. A 2:1 pooled analysis selected 46 immunocompetent patients matched with 23 immunocompromised patients. Overall survival (OS) and relapse-free survival (RFS) were calculated using the Kaplan-Meier method. No significant difference was found in the primary tumor characteristics between the 2 groups. In the immunocompromised group, RFS (hazard ratio [HR] 2.70; P = .01) and OS (HR 2.32; P = .04) were significantly worse. Extracapsular spread was present in 100% of the immunocompromised patients. No significant difference was identified in the primary cutaneous SCC between the immunocompetent and immunocompromised patients. Immunosuppression predicted worse outcome. © 2018 Wiley Periodicals, Inc.

  17. Can axial-based nodal size criteria be used in other imaging planes to accurately determine "enlarged" head and neck lymph nodes?

    PubMed

    Bartlett, Eric S; Walters, Thomas D; Yu, Eugene

    2013-01-01

    Objective. We evaluate if axial-based lymph node size criteria can be applied to coronal and sagittal planes. Methods. Fifty pretreatment computed tomographic (CT) neck exams were evaluated in patients with head and neck squamous cell carcinoma (SCCa) and neck lymphadenopathy. Axial-based size criteria were applied to all 3 imaging planes, measured, and classified as "enlarged" if equal to or exceeding size criteria. Results. 222 lymph nodes were "enlarged" in one imaging plane; however, 53.2% (118/222) of these were "enlarged" in all 3 planes. Classification concordance between axial versus coronal/sagittal planes was poor (kappa = -0.09 and -0.07, resp., P < 0.05). The McNemar test showed systematic misclassification when comparing axial versus coronal (P < 0.001) and axial versus sagittal (P < 0.001) planes. Conclusion. Classification of "enlarged" lymph nodes differs between axial versus coronal/sagittal imaging planes when axial-based nodal size criteria are applied independently to all three imaging planes, and exclusively used without other morphologic nodal data.

  18. Robotic salvage lymph node dissection for nodal-only recurrences after radical prostatectomy: Perioperative and early oncological outcomes.

    PubMed

    Linxweiler, Johannes; Saar, Matthias; Al-Kailani, Zaid; Janssen, Martin; Ezziddin, Samer; Stöckle, Michael; Siemer, Stefan; Ohlmann, Carsten-Henning

    2018-06-01

    Salvage lymph node dissection (sLND) - performed open or minimally-invasive - is a treatment modality that can be offered to patients with nodal recurrence after radical prostatectomy (RP), especially in times where modern imaging methods like choline- or PSMA-PET/CT are available. Yet, there are only very limited data on the safety and oncological effectiveness of robotic sLND. We retrospectively identified patients who underwent robotic sLND at our institution between 2013 and 2017 for nodal recurrence after RP, which had been diagnosed either by 18 F-choline- or 68 Ga-PSMA-PET/CT. We analyzed perioperative data and early oncological outcomes with a focus on the comparison of patients with preoperative choline- vs. those with preoperative PSMA-PET/CT. We identified 36 patients who underwent robotic sLND at a median time of 45.3 months [range 3.1;228.6] after RP, with nodal recurrences detected in 25 patients by PSMA- and in 11 by choline-PET/CT. Median preoperative PSA, operation time and blood loss were 1.98 ng/ml [range 0.09;35.15], 129.5 min [range 65;202] and 50 ml [range 0;400], respectively. No high-grade complications occurred. A median number of 6.5 [range 1;25] lymph nodes were removed with a median of 1 [range 0;9] tumor-occupied node. None of the patients received any adjuvant treatment. Median postoperative PSA-change was -57% [range -100; +58] in the PSMA- and +10% [range -91; +95] in the choline-group (p = 0.015). 44% of patients in the PSMA- and 18% of patients in the choline-group experienced complete biochemical response (cBCR; PSA <0.2 ng/ml). Median time from sLND to the initiation of further therapy was 12 months [range 2;21.5] in the PSMA-group and 4.7 months [range 2.2;18.9] in the choline-group (p = 0.001). This is the hitherto largest series on robotic sLND for nodal recurrence after RP. Robotic sLND is a feasible therapeutic option with low morbidity, which can at least delay the initiation of further therapy - in some

  19. Convexity Conditions and the Legendre-Fenchel Transform for the Product of Finitely Many Positive Definite Quadratic Forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao Yunbin, E-mail: zhaoyy@maths.bham.ac.u

    2010-12-15

    While the product of finitely many convex functions has been investigated in the field of global optimization, some fundamental issues such as the convexity condition and the Legendre-Fenchel transform for the product function remain unresolved. Focusing on quadratic forms, this paper is aimed at addressing the question: When is the product of finitely many positive definite quadratic forms convex, and what is the Legendre-Fenchel transform for it? First, we show that the convexity of the product is determined intrinsically by the condition number of so-called 'scaled matrices' associated with quadratic forms involved. The main result claims that if the conditionmore » number of these scaled matrices are bounded above by an explicit constant (which depends only on the number of quadratic forms involved), then the product function is convex. Second, we prove that the Legendre-Fenchel transform for the product of positive definite quadratic forms can be expressed, and the computation of the transform amounts to finding the solution to a system of equations (or equally, finding a Brouwer's fixed point of a mapping) with a special structure. Thus, a broader question than the open 'Question 11' in Hiriart-Urruty (SIAM Rev. 49, 225-273, 2007) is addressed in this paper.« less

  20. Quadratic Electro-optic Effect in a Novel Nonconjugated Conductive Polymer, iodine-doped Polynorbornene

    NASA Astrophysics Data System (ADS)

    Narayanan, Ananthakrishnan; Thakur, Mrinal

    2009-03-01

    Quadratic electro-optic effect in a novel nonconjugated conductive polymer, iodine-doped polynorbornene has been measured using field-induced birefringence at 633 nm. The electrical conductivity^1 of polynorbornene increases by twelve orders of magnitude to about 0.01 S/cm upon doping with iodine. The electro-optic measurement has been made in a film doped at the medium doping-level. The electro-optic modulation signal was recorded using a lock-in amplifier for various applied ac voltages (4 kHz) and the quadratic dependence of the modulation on the applied voltage was observed. A modulation of about 0.01% was observed for an applied electric field of 3 V/micron for a 100 nm thick film The Kerr coefficient as determined is about 1.77x10-11m/V^2. This exceptionally large quadratic electro-optic effect has been attributed to the confinement of this charge-transfer system within a sub-nanometer dimension. 1. A. Narayanan, A. Palthi and M. Thakur, J. Macromol. Sci. -- PAC, accepted.

  1. Identification of lesion and nodal resistance in pea (Pisum sativum L.) to Sclerotinia sclerotiorum using genome-wide association studies and RNA-Seq

    USDA-ARS?s Scientific Manuscript database

    Nodal resistance in plants is a phenomenon where a fungal infection is prevented from passing through a node and the infection is limited to an internode region. Nodal resistance has been observed in some pathosystems such as the pea (Pisum sativum L.)-white mold (WM) (Sclerotinia sclerotiorum (Lib....

  2. Linear-Quadratic-Gaussian Regulator Developed for a Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin B.

    2002-01-01

    Linear-Quadratic-Gaussian (LQG) control is a modern state-space technique for designing optimal dynamic regulators. It enables us to trade off regulation performance and control effort, and to take into account process and measurement noise. The Structural Mechanics and Dynamics Branch at the NASA Glenn Research Center has developed an LQG control for a fault-tolerant magnetic bearing suspension rig to optimize system performance and to reduce the sensor and processing noise. The LQG regulator consists of an optimal state-feedback gain and a Kalman state estimator. The first design step is to seek a state-feedback law that minimizes the cost function of regulation performance, which is measured by a quadratic performance criterion with user-specified weighting matrices, and to define the tradeoff between regulation performance and control effort. The next design step is to derive a state estimator using a Kalman filter because the optimal state feedback cannot be implemented without full state measurement. Since the Kalman filter is an optimal estimator when dealing with Gaussian white noise, it minimizes the asymptotic covariance of the estimation error.

  3. An institutional approach to support the conduct and use of health policy and systems research: The Nodal Institute in the Eastern Mediterranean Region.

    PubMed

    El-Jardali, Fadi; Saleh, Shadi; Khodor, Rawya; Abu Al Rub, Raeda; Arfa, Chokri; Ben Romdhane, Habiba; Hamadeh, Randah R

    2015-10-01

    The use of health policy and systems research (HPSR) to support decision making in health systems is limited in the Eastern Mediterranean Region (EMR). This is partly due to the lack of effective initiatives to strengthen regional HPSR capacities and promote its use in decision making. This paper offers a structured reflection on the establishment and core functioning of a HPSR Nodal Institute for the EMR with specific focus on the approach used to support the conduct and use of HPSR. It seeks to gain better understanding of the activities conducted by the Nodal Institute, the methods by which the Nodal Institute implemented these activities, and the outcomes of these activities. A multi-faceted approach was implemented by the Nodal Institute in collaboration with regional academic/research institutions, Sub-Nodes. The overall approach was a phased one that included the selection of Sub-Nodes, mapping of academic/research institutions in the EMR, stakeholders' meetings, and HPSR capacity building workshops, and culminated with a regional meeting. The mapping of academic/research institutions in the EMR resulted in the identification of 50 institutions, of which only 32 were engaged in HPSR. These institutions have the highest HPSR involvement in information/evidence (84%) and the lowest in human resources for health (34%). Their main HPSR focus areas included quality of healthcare services, patient safety, management of non-communicable diseases, and human resources for health. Regional HPSR challenges among these institutions were identified. The validation and ranking questionnaires resulted in the identification of country-specific HPSR priorities according to stakeholders in three countries. From these results, cross-cutting HPSR priorities among the countries related to primary healthcare, non-communicable diseases, human resources for health, as well as cross-cutting HPSR priorities among stakeholders and according to stakeholders of the countries, were

  4. Revealing Ozgur's Thoughts of a Quadratic Function with a Clinical Interview: Concepts and Their Underlying Reasons

    ERIC Educational Resources Information Center

    Ozaltun Celik, Aytug; Bukova Guzel, Esra

    2017-01-01

    The quadratic function is an important concept for calculus but the students at high school have many difficulties related to this concept. It is important that the teaching of the quadratic function is realized considering the students' thinking. In this context, the aim of this study conducted through a qualitative case study is to reveal the…

  5. Symmetry-breaking instability of quadratic soliton bound states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delque, Michaeel; Departement d'Optique P.M. Duffieux, Institut FEMTO-ST, Universite de Franche-Comte, CNRS UMR 6174, F-25030 Besancon; Fanjoux, Gil

    We study both numerically and experimentally two-dimensional soliton bound states in quadratic media and demonstrate their symmetry-breaking instability. The experiment is performed in a potassium titanyl phosphate crystal in a type-II configuration. The bound state is generated by the copropagation of the antisymmetric fundamental beam locked in phase with the symmetrical second harmonic one. Experimental results are in good agreement with numerical simulations of the nonlinear wave equations.

  6. Computation of p -units in ray class fields of real quadratic number fields

    NASA Astrophysics Data System (ADS)

    Chapdelaine, Hugo

    2009-12-01

    Let K be a real quadratic field, let p be a prime number which is inert in K and let K_p be the completion of K at p . As part of a Ph.D. thesis, we constructed a certain p -adic invariant uin K_p^{times} , and conjectured that u is, in fact, a p -unit in a suitable narrow ray class field of K . In this paper we give numerical evidence in support of that conjecture. Our method of computation is similar to the one developed by Dasgupta and relies on partial modular symbols attached to Eisenstein series.

  7. Differential membranous E-cadherin expression, cell proliferation and O-GlcNAcylation between primary and metastatic nodal lesion in colorectal cancer.

    PubMed

    Jang, Tae Jung

    2016-02-01

    O-GlcNAcylation is an O-linked β-N-acetylglucosamine (O-GlcNAc) moiety linked to the side chain hydroxyl of a serine or threonine residue. The E-cadherin/β-catenin system, an integral component of epithelial to mesenchymal transition (EMT)/mesenchymal to epithelial transition (MET), is affected through O-GlcNAcylation. The current study examined the status of EMT/MET in both the tumor center and invasive front of the primary colorectal carcinoma (CRC) and metastatic nodal lesions, which were compared to O-GlcNAcylation expression levels in those areas. In addition, the cliniopathological significance of O-GlcNAcylation was studied Immunohistochemical staining for E-cadherin, β-catenin, Snail, O-GlcNAc and Ki67 was performed in 40 primary CRC tissues, 40 nonneoplastic colons, and 17 nodal metastatic lesions. Western blot was also conducted in primary CRC tissue Membranous E-cadherin expression was lowest in the invasive front, but showed greater increases in metastatic nodal lesions. Moreover, its expression level was negatively correlated with that of nuclear β-catenin and Snail. The Ki67 labeling index (LI) was lowest in the invasive front, and increased in metastatic nodal lesions. Primary CRC showed higher expression of O-GlcNAcylation and O-GlcNAc-transferase (OGT) than nonneoplastic colons. O-GlcNAcylation expression decreased in metastatic nodal lesions compared to the invasive front and tumor center, and was inversely correlated with Ki67 LI. However, O-GlcNAcylation expression was only slightly changed between tumor center and invasive front. In addition, there was no correlation between its expression and the level of nuclear β-catenin, membranous E-cadherin and Snail. No significant relationship was observed between O-GlcNAcylation level and cliniopathological parameters. Differential membranous E-cadherin expression, cell proliferation and O-GlcNAcylation in metastatic nodal lesion compared to primary CRC may play role in establishing its lesions

  8. Nodal Stage of Surgically Resected Non-Small Cell Lung Cancer and Its Effect on Recurrence Patterns and Overall Survival

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varlotto, John M., E-mail: john.varlotto@umassmemorial.org; Yao, Aaron N.; DeCamp, Malcolm M.

    Purpose: Current National Comprehensive Cancer Network guidelines recommend postoperative radiation therapy (PORT) for patients with resected non-small cell lung cancer (NSCLC) with N2 involvement. We investigated the relationship between nodal stage and local-regional recurrence (LR), distant recurrence (DR) and overall survival (OS) for patients having an R0 resection. Methods and Materials: A multi-institutional database of consecutive patients undergoing R0 resection for stage I-IIIA NSCLC from 1995 to 2008 was used. Patients receiving any radiation therapy before relapse were excluded. A total of 1241, 202, and 125 patients were identified with N0, N1, and N2 involvement, respectively; 161 patients received chemotherapy.more » Cumulative incidence rates were calculated for LR and DR as first sites of failure, and Kaplan-Meier estimates were made for OS. Competing risk analysis and proportional hazards models were used to examine LR, DR, and OS. Independent variables included age, sex, surgical procedure, extent of lymph node sampling, histology, lymphatic or vascular invasion, tumor size, tumor grade, chemotherapy, nodal stage, and visceral pleural invasion. Results: The median follow-up time was 28.7 months. Patients with N1 or N2 nodal stage had rates of LR similar to those of patients with N0 disease, but were at significantly increased risk for both DR (N1, hazard ratio [HR] = 1.84, 95% confidence interval [CI]: 1.30-2.59; P=.001; N2, HR = 2.32, 95% CI: 1.55-3.48; P<.001) and death (N1, HR = 1.46, 95% CI: 1.18-1.81; P<.001; N2, HR = 2.33, 95% CI: 1.78-3.04; P<.001). LR was associated with squamous histology, visceral pleural involvement, tumor size, age, wedge resection, and segmentectomy. The most frequent site of LR was the mediastinum. Conclusions: Our investigation demonstrated that nodal stage is directly associated with DR and OS but not with LR. Thus, even some patients with, N0-N1 disease are at relatively high risk of local recurrence

  9. Thermal response test data of five quadratic cross section precast pile heat exchangers.

    PubMed

    Alberdi-Pagola, Maria

    2018-06-01

    This data article comprises records from five Thermal Response Tests (TRT) of quadratic cross section pile heat exchangers. Pile heat exchangers, typically referred to as energy piles, consist of traditional foundation piles with embedded heat exchanger pipes. The data presented in this article are related to the research article entitled "Comparing heat flow models for interpretation of precast quadratic pile heat exchanger thermal response tests" (Alberdi-Pagola et al., 2018) [1]. The TRT data consists of measured inlet and outlet temperatures, fluid flow and injected heat rate recorded every 10 min. The field dataset is made available to enable model verification studies.

  10. Self-repeating properties of four-petal Gaussian vortex beams in quadratic index medium

    NASA Astrophysics Data System (ADS)

    Zou, Defeng; Li, Xiaohui; Chai, Tong; Zheng, Hairong

    2018-05-01

    In this paper, we investigate the propagation properties of four-petal Gaussian vortex (FPGV) beams propagating through the quadratic index medium, obtaining the analytical expression of FPGV beams. The effects of beam order n, topological charge m and beam waist ω0 are investigated. Results show that quadratic index medium support periodic distributions of FPGV beams. A hollow optical wall or an optical central principal maximum surrounded by symmetrical sidelobes will occur at the center of a period. At length, they will evolve into four petals structure, exactly same as the intensity distributions at source plane.

  11. Computing an upper bound on contact stress with surrogate duality

    NASA Astrophysics Data System (ADS)

    Xuan, Zhaocheng; Papadopoulos, Panayiotis

    2016-07-01

    We present a method for computing an upper bound on the contact stress of elastic bodies. The continuum model of elastic bodies with contact is first modeled as a constrained optimization problem by using finite elements. An explicit formulation of the total contact force, a fraction function with the numerator as a linear function and the denominator as a quadratic convex function, is derived with only the normalized nodal contact forces as the constrained variables in a standard simplex. Then two bounds are obtained for the sum of the nodal contact forces. The first is an explicit formulation of matrices of the finite element model, derived by maximizing the fraction function under the constraint that the sum of the normalized nodal contact forces is one. The second bound is solved by first maximizing the fraction function subject to the standard simplex and then using Dinkelbach's algorithm for fractional programming to find the maximum—since the fraction function is pseudo concave in a neighborhood of the solution. These two bounds are solved with the problem dimensions being only the number of contact nodes or node pairs, which are much smaller than the dimension for the original problem, namely, the number of degrees of freedom. Next, a scheme for constructing an upper bound on the contact stress is proposed that uses the bounds on the sum of the nodal contact forces obtained on a fine finite element mesh and the nodal contact forces obtained on a coarse finite element mesh, which are problems that can be solved at a lower computational cost. Finally, the proposed method is verified through some examples concerning both frictionless and frictional contact to demonstrate the method's feasibility, efficiency, and robustness.

  12. Nodal-line dynamics via exact polynomial solutions for coherent waves traversing aberrated imaging systems.

    PubMed

    Paganin, David M; Beltran, Mario A; Petersen, Timothy C

    2018-03-01

    We obtain exact polynomial solutions for two-dimensional coherent complex scalar fields propagating through arbitrary aberrated shift-invariant linear imaging systems. These solutions are used to model nodal-line dynamics of coherent fields output by such systems.

  13. Using Simple Quadratic Equations to Estimate Equilibrium Concentrations of an Acid

    ERIC Educational Resources Information Center

    Brilleslyper, Michael A.

    2004-01-01

    Application of quadratic equations to standard problem in chemistry like finding equilibrium concentrations of ions in an acid solution is explained. This clearly shows that pure mathematical analysis has meaningful applications in other areas as well.

  14. Entanglement in a model for Hawking radiation: An application of quadratic algebras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bambah, Bindu A., E-mail: bbsp@uohyd.ernet.in; Mukku, C., E-mail: mukku@iiit.ac.in; Shreecharan, T., E-mail: shreecharan@gmail.com

    2013-03-15

    Quadratic polynomially deformed su(1,1) and su(2) algebras are utilized in model Hamiltonians to show how the gravitational system consisting of a black hole, infalling radiation and outgoing (Hawking) radiation can be solved exactly. The models allow us to study the long-time behaviour of the black hole and its outgoing modes. In particular, we calculate the bipartite entanglement entropies of subsystems consisting of (a) infalling plus outgoing modes and (b) black hole modes plus the infalling modes, using the Janus-faced nature of the model. The long-time behaviour also gives us glimpses of modifications in the character of Hawking radiation. Finally, wemore » study the phenomenon of superradiance in our model in analogy with atomic Dicke superradiance. - Highlights: Black-Right-Pointing-Pointer We examine a toy model for Hawking radiation with quantized black hole modes. Black-Right-Pointing-Pointer We use quadratic polynomially deformed su(1,1) algebras to study its entanglement properties. Black-Right-Pointing-Pointer We study the 'Dicke Superradiance' in black hole radiation using quadratically deformed su(2) algebras. Black-Right-Pointing-Pointer We study the modification of the thermal character of Hawking radiation due to quantized black hole modes.« less

  15. QUADRATIC SERENDIPITY FINITE ELEMENTS ON POLYGONS USING GENERALIZED BARYCENTRIC COORDINATES.

    PubMed

    Rand, Alexander; Gillette, Andrew; Bajaj, Chandrajit

    2014-01-01

    We introduce a finite element construction for use on the class of convex, planar polygons and show it obtains a quadratic error convergence estimate. On a convex n -gon, our construction produces 2 n basis functions, associated in a Lagrange-like fashion to each vertex and each edge midpoint, by transforming and combining a set of n ( n + 1)/2 basis functions known to obtain quadratic convergence. The technique broadens the scope of the so-called 'serendipity' elements, previously studied only for quadrilateral and regular hexahedral meshes, by employing the theory of generalized barycentric coordinates. Uniform a priori error estimates are established over the class of convex quadrilaterals with bounded aspect ratio as well as over the class of convex planar polygons satisfying additional shape regularity conditions to exclude large interior angles and short edges. Numerical evidence is provided on a trapezoidal quadrilateral mesh, previously not amenable to serendipity constructions, and applications to adaptive meshing are discussed.

  16. QUADRATIC SERENDIPITY FINITE ELEMENTS ON POLYGONS USING GENERALIZED BARYCENTRIC COORDINATES

    PubMed Central

    RAND, ALEXANDER; GILLETTE, ANDREW; BAJAJ, CHANDRAJIT

    2013-01-01

    We introduce a finite element construction for use on the class of convex, planar polygons and show it obtains a quadratic error convergence estimate. On a convex n-gon, our construction produces 2n basis functions, associated in a Lagrange-like fashion to each vertex and each edge midpoint, by transforming and combining a set of n(n + 1)/2 basis functions known to obtain quadratic convergence. The technique broadens the scope of the so-called ‘serendipity’ elements, previously studied only for quadrilateral and regular hexahedral meshes, by employing the theory of generalized barycentric coordinates. Uniform a priori error estimates are established over the class of convex quadrilaterals with bounded aspect ratio as well as over the class of convex planar polygons satisfying additional shape regularity conditions to exclude large interior angles and short edges. Numerical evidence is provided on a trapezoidal quadrilateral mesh, previously not amenable to serendipity constructions, and applications to adaptive meshing are discussed. PMID:25301974

  17. Clinical Usefulness of [(18)F]Fluoro-2-Deoxy-D-Glucose Uptake in 178 Head-and-Neck Cancer Patients With Nodal Metastasis Treated With Definitive Chemoradiotherapy: Consideration of Its Prognostic Value and Ability to Provide Guidance for Optimal Selection of Patients for Planned Neck Dissection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inokuchi, Haruo, E-mail: h.inokuchi@scchr.j; Kodaira, Takeshi; Tachibana, Hiroyuki

    2011-03-01

    Purpose: To evaluate the clinical effectiveness of pretreatment [(18)F]fluoro-2-deoxy-D-glucose-positron emission tomography for head-and-neck squamous cell carcinoma patients with nodal metastasis treated with chemoradiotherapy. Methods and Materials: Between March 2002 and December 2006, 178 patients with head-and-neck squamous cell carcinoma and nodal metastasis underwent fluoro-2-deoxy-D-glucose positron emission tomography before chemoradiotherapy. Fluoro-2-deoxy-D-glucose uptake by both the primary lesion and the neck node was measured using the standard uptake value (SUV). The overall survival, disease-free survival, local control, nodal progression-free survival, and distant metastasis-free survival rates were calculated, and several prognostic factors were evaluated. Results: The patients with a nodal SUV {>=}6.00 hadmore » a significantly lower 3-year disease-free survival rate than those with a lower SUV (44% vs. 69%, p = .004). On multivariate analysis, a high SUV of nodal disease also proved to be a significantly unfavorable factor for disease-free survival (p = .04, 95% confidence interval [CI], 1.02-3.23), nodal progression-free survival (p = .05; 95% CI, 1.00-4.15), and distant metastasis-free survival (p = .016; 95% CI, 1.25-8.92). Among the patients with a greater nodal SUV ({>=}6.00), those treated with planned neck dissection had better nodal progression-free survival than those in the observation group (p = .04, hazard ratio, 2.36; 95% CI, 1.00-5.85). Conclusion: Among head-and-neck squamous cell carcinoma patients treated with chemoradiotherapy, the pretreatment SUV of nodal disease was one of the strongest prognostic factors and also provided important information for the selection of patients suitable for planned neck dissection.« less

  18. Constitutional rho-kinase regulates atrioventricular nodal conduction and ventricular repolarization of the canine heart.

    PubMed

    Sugiyama, Atsushi; Takahara, Akira; Yatomi, Yutaka; Satoh, Yoshioki; Nakamura, Yuji; Hashimoto, Keitaro

    2003-06-01

    Given the limited information, physiological roles of Rho-kinase in the cardiac conduction system and ventricular repolarization process were assessed in comparison with those in the coronary vascular tone. A specific Rho-kinase inhibitor Y-27632 was administered to the nutrient coronary artery of the canine isolated, blood-perfused atrioventricular node preparation under the monitoring of the ventricular monophasic action potentials. Administration of Y-27632 moderately suppressed the atrioventricular nodal conduction, slightly but significantly accelerated the repolarization process, and potently increased the coronary blood flow, whereas it hardly affected the intraventricular conduction. The estimated concentrations of Y-27632 causing the currently observed effects were enough to inhibit Rho-kinase. These results suggest that constitutional Rho-kinase functions to moderately facilitate the atrioventricular nodal conduction, slightly delay ventricular repolarization process, and significantly increase the coronary vascular tone.

  19. An Alternative Method to the Classical Partial Fraction Decomposition

    ERIC Educational Resources Information Center

    Cherif, Chokri

    2007-01-01

    PreCalculus students can use the Completing the Square Method to solve quadratic equations without the need to memorize the quadratic formula since this method naturally leads them to that formula. Calculus students, when studying integration, use various standard methods to compute integrals depending on the type of function to be integrated.…

  20. The Maternal Maverick/GDF15-like TGF-β Ligand Panda Directs Dorsal-Ventral Axis Formation by Restricting Nodal Expression in the Sea Urchin Embryo.

    PubMed

    Haillot, Emmanuel; Molina, Maria Dolores; Lapraz, François; Lepage, Thierry

    2015-01-01

    Specification of the dorsal-ventral axis in the highly regulative sea urchin embryo critically relies on the zygotic expression of nodal, but whether maternal factors provide the initial spatial cue to orient this axis is not known. Although redox gradients have been proposed to entrain the dorsal-ventral axis by acting upstream of nodal, manipulating the activity of redox gradients only has modest consequences, suggesting that other factors are responsible for orienting nodal expression and defining the dorsal-ventral axis. Here we uncover the function of Panda, a maternally provided transforming growth factor beta (TGF-β) ligand that requires the activin receptor-like kinases (Alk) Alk3/6 and Alk1/2 receptors to break the radial symmetry of the embryo and orient the dorsal-ventral axis by restricting nodal expression. We found that the double inhibition of the bone morphogenetic protein (BMP) type I receptors Alk3/6 and Alk1/2 causes a phenotype dramatically more severe than the BMP2/4 loss-of-function phenotype, leading to extreme ventralization of the embryo through massive ectopic expression of nodal, suggesting that an unidentified signal acting through BMP type I receptors cooperates with BMP2/4 to restrict nodal expression. We identified this ligand as the product of maternal Panda mRNA. Double inactivation of panda and bmp2/4 led to extreme ventralization, mimicking the phenotype caused by inactivation of the two BMP receptors. Inhibition of maternal panda mRNA translation disrupted the early spatial restriction of nodal, leading to persistent massive ectopic expression of nodal on the dorsal side despite the presence of Lefty. Phylogenetic analysis indicates that Panda is not a prototypical BMP ligand but a member of a subfamily of TGF-β distantly related to Inhibins, Lefty, and TGF-β that includes Maverick from Drosophila and GDF15 from vertebrates. Indeed, overexpression of Panda does not appear to directly or strongly activate phosphoSmad1

  1. The Maternal Maverick/GDF15-like TGF-β Ligand Panda Directs Dorsal-Ventral Axis Formation by Restricting Nodal Expression in the Sea Urchin Embryo

    PubMed Central

    Haillot, Emmanuel; Molina, Maria Dolores; Lapraz, François; Lepage, Thierry

    2015-01-01

    Specification of the dorsal-ventral axis in the highly regulative sea urchin embryo critically relies on the zygotic expression of nodal, but whether maternal factors provide the initial spatial cue to orient this axis is not known. Although redox gradients have been proposed to entrain the dorsal-ventral axis by acting upstream of nodal, manipulating the activity of redox gradients only has modest consequences, suggesting that other factors are responsible for orienting nodal expression and defining the dorsal-ventral axis. Here we uncover the function of Panda, a maternally provided transforming growth factor beta (TGF-β) ligand that requires the activin receptor-like kinases (Alk) Alk3/6 and Alk1/2 receptors to break the radial symmetry of the embryo and orient the dorsal-ventral axis by restricting nodal expression. We found that the double inhibition of the bone morphogenetic protein (BMP) type I receptors Alk3/6 and Alk1/2 causes a phenotype dramatically more severe than the BMP2/4 loss-of-function phenotype, leading to extreme ventralization of the embryo through massive ectopic expression of nodal, suggesting that an unidentified signal acting through BMP type I receptors cooperates with BMP2/4 to restrict nodal expression. We identified this ligand as the product of maternal Panda mRNA. Double inactivation of panda and bmp2/4 led to extreme ventralization, mimicking the phenotype caused by inactivation of the two BMP receptors. Inhibition of maternal panda mRNA translation disrupted the early spatial restriction of nodal, leading to persistent massive ectopic expression of nodal on the dorsal side despite the presence of Lefty. Phylogenetic analysis indicates that Panda is not a prototypical BMP ligand but a member of a subfamily of TGF-β distantly related to Inhibins, Lefty, and TGF-β that includes Maverick from Drosophila and GDF15 from vertebrates. Indeed, overexpression of Panda does not appear to directly or strongly activate phosphoSmad1

  2. Concomitant Wolff-Parkinson-White and Atrioventricular Nodal Reentrant Tachycardia: Which Pathway to Ablate?

    PubMed

    Sarsam, Sinan; Sidiqi, Ibrahim; Shah, Dipak; Zughaib, Marcel

    2015-12-11

    Atrioventricular nodal reentrant tachycardia (AVNRT) is the most common form of supraventricular tachycardia. In contrast, Wolff-Parkinson-White (WPW) pattern consists of an accessory pathway, which may result in the development of ventricular arrhythmias. Frequent tachycardia caused by AVNRT and accessory pathways may play a role in left ventricular systolic dysfunction. A 54-year-old man presented with palpitations and acute decompensated congestive heart failure. His baseline EKG showed Wolff-Parkinson-White (WPW) pattern. While hospitalized, he had an episode of atrioventricular nodal reentrant tachycardia (AVNRT). He underwent radiofrequency catheter ablation for AVNRT, and his accessory pathway was also ablated even though its conduction was found to be weak. He was clinically doing well on follow-up visit, with resolution of his heart failure symptoms and normalization of left ventricular function on echocardiography. This case raises the question whether the accessory pathway plays a role in the development of systolic dysfunction, and if there is any role for ablation in patients with asymptomatic WPW pattern.

  3. Quadratic band touching points and flat bands in two-dimensional topological Floquet systems

    NASA Astrophysics Data System (ADS)

    Du, Liang; Zhou, Xiaoting; Fiete, Gregory A.

    2017-01-01

    In this paper we theoretically study, using Floquet-Bloch theory, the influence of circularly and linearly polarized light on two-dimensional band structures with Dirac and quadratic band touching points, and flat bands, taking the nearest neighbor hopping model on the kagome lattice as an example. We find circularly polarized light can invert the ordering of this three-band model, while leaving the flat band dispersionless. We find a small gap is also opened at the quadratic band touching point by two-photon and higher order processes. By contrast, linearly polarized light splits the quadratic band touching point (into two Dirac points) by an amount that depends only on the amplitude and polarization direction of the light, independent of the frequency, and generally renders dispersion to the flat band. The splitting is perpendicular to the direction of the polarization of the light. We derive an effective low-energy theory that captures these key results. Finally, we compute the frequency dependence of the optical conductivity for this three-band model and analyze the various interband contributions of the Floquet modes. Our results suggest strategies for optically controlling band structure and interaction strength in real systems.

  4. Effectiveness of Implemented Interventions on Pathologic Nodal Staging of Non-Small Cell Lung Cancer.

    PubMed

    Ray, Meredith A; Faris, Nicholas R; Smeltzer, Matthew P; Fehnel, Carrie; Houston-Harris, Cheryl; Levy, Paul; Wiggins, Lynn; Sachdev, Vishal; Robbins, Todd; Spencer, David; Osarogiagbon, Raymond U

    2018-03-10

    Accurate pathologic nodal staging improves early-stage non-small-cell lung cancer survival. In an ongoing implementation study, we measured the impact of a surgical lymph node specimen collection kit and a more thorough pathologic gross dissection method, on attainment of guideline-recommended pathologic nodal staging quality. We prospectively collected data on curative-intent non-small cell lung cancer resections from 2009-2016 from 11 hospitals in 4 contiguous Dartmouth Hospital Referral Regions. We categorized patients into 4 groups based on exposure to the two interventions in our staggered implementation study design. We used Chi-squared tests to examine the differences in demographic and disease characteristics and surgical quality criteria across implementation groups. Of 2,469 patients, 1,615 (65%) received neither intervention; 167 (7%) received only the pathology intervention; 264 (11%) received only the surgery intervention; 423 (17%) had both. Rates of non-examination of lymph nodes reduced sequentially in the order of no intervention, novel dissection, kit, and combined interventions, including non-examination of: any lymph nodes, hilar/intrapulmonary and mediastinal nodes (p<0.001 for all comparisons). The rates of attainment of National Comprehensive Cancer Network, Commission on Cancer, American Joint Committee on Cancer, and American College of Surgeons Oncology Group guidelines increased significantly in the same sequential order (p<0.001 for all comparisons). The combined effect of two interventions to improve pathologic lymph node examination has a greater effect on attainment of a range of surgical quality criteria than either intervention alone. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  5. [Definition of nodal volumes in breast cancer treatment and segmentation guidelines].

    PubMed

    Kirova, Y M; Castro Pena, P; Dendale, R; Campana, F; Bollet, M A; Fournier-Bidoz, N; Fourquet, A

    2009-06-01

    To assist in the determination of breast and nodal volumes in the setting of radiotherapy for breast cancer and establish segmentation guidelines. Materials and methods. Contrast metarial enhanced CT examinations were obtained in the treatment position in 25 patients to clearly define the target volumes. The clinical target volume (CTV) including the breast, internal mammary nodes, supraclavicular and subclavicular regions and axxilary region were segmented along with the brachial plexus and interpectoral nodes. The following critical organs were also segmented: heart, lungs, contralateral breast, thyroid, esophagus and humeral head. A correlation between clinical and imaging findings and meeting between radiation oncologists and breast specialists resulted in a better definition of irradiation volumes for breast and nodes with establishement of segmentation guidelines and creation of an anatomical atlas. A practical approach, based on anatomical criteria, is proposed to assist in the segmentation of breast and node volumes in the setting of breast cancer treatment along with a definition of irradiation volumes.

  6. Integration of nodal and BMP signals in the heart requires FoxH1 to create left-right differences in cell migration rates that direct cardiac asymmetry.

    PubMed

    Lenhart, Kari F; Holtzman, Nathalia G; Williams, Jessica R; Burdine, Rebecca D

    2013-01-01

    Failure to properly establish the left-right (L/R) axis is a major cause of congenital heart defects in humans, but how L/R patterning of the embryo leads to asymmetric cardiac morphogenesis is still unclear. We find that asymmetric Nodal signaling on the left and Bmp signaling act in parallel to establish zebrafish cardiac laterality by modulating cell migration velocities across the L/R axis. Moreover, we demonstrate that Nodal plays the crucial role in generating asymmetry in the heart and that Bmp signaling via Bmp4 is dispensable in the presence of asymmetric Nodal signaling. In addition, we identify a previously unappreciated role for the Nodal-transcription factor FoxH1 in mediating cell responsiveness to Bmp, further linking the control of these two pathways in the heart. The interplay between these TGFβ pathways is complex, with Nodal signaling potentially acting to limit the response to Bmp pathway activation and the dosage of Bmp signals being critical to limit migration rates. These findings have implications for understanding the complex genetic interactions that lead to congenital heart disease in humans.

  7. Nuclear movement regulated by non-Smad Nodal signaling via JNK is associated with Smad signaling during zebrafish endoderm specification.

    PubMed

    Hozumi, Shunya; Aoki, Shun; Kikuchi, Yutaka

    2017-11-01

    Asymmetric nuclear positioning is observed during animal development, but its regulation and significance in cell differentiation remain poorly understood. Using zebrafish blastulae, we provide evidence that nuclear movement towards the yolk syncytial layer, which comprises extraembryonic tissue, occurs in the first cells fated to differentiate into the endoderm. Nodal signaling is essential for nuclear movement, whereas nuclear envelope proteins are involved in movement through microtubule formation. Positioning of the microtubule-organizing center, which is proposed to be crucial for nuclear movement, is regulated by Nodal signaling and nuclear envelope proteins. The non-Smad JNK signaling pathway, which is downstream of Nodal signaling, regulates nuclear movement independently of the Smad pathway, and this nuclear movement is associated with Smad signal transduction toward the nucleus. Our study provides insight into the function of nuclear movement in Smad signaling toward the nucleus, and could be applied to the control of TGFβ signaling. © 2017. Published by The Company of Biologists Ltd.

  8. Linear-Quadratic Control of a MEMS Micromirror using Kalman Filtering

    DTIC Science & Technology

    2011-12-01

    LINEAR-QUADRATIC CONTROL OF A MEMS MICROMIRROR USING KALMAN FILTERING THESIS Jamie P...A MEMS MICROMIRROR USING KALMAN FILTERING THESIS Presented to the Faculty Department of Electrical Engineering Graduate School of...actuated micromirrors fabricated by PolyMUMPs. Successful application of these techniques enables demonstration of smooth, stable deflections of 50% and

  9. An efficient in vitro regeneration protocol for a natural dye yielding plant, Strobilanthes flaccidifolious Nees., from nodal explants.

    PubMed

    Deb, Chitta Ranjan; Arenmongla, T

    2012-11-01

    Adventitious shoot buds formation from axillary buds of nodal segments of S. flaccidifolious was achieved on MS medium containing sucrose (3%, w/v), and a-naphthalene acetic acid (NAA; 3 microM) and benzyl adenine (3 microM) in combination. The nodal segments were primed on 'Growtak Sieve' for 48 h on MS medium containing sucrose (2%), polyvinyl pyrollidone (200 mgL(-1)) as antioxidant. About 80% of primed nodal segments responded positively and formed approximately 12 adventitious shoot buds per explants from explants collected during October-November months of every year. The shoot buds converted into plantlets on MS medium containing sucrose (3%) and kinetin (3 microM) where approximately 7 micro shoots developed per subculture after 8 weeks of culture. The regenerated micro shoots induced average 14 roots/plant on medium containing NAA (3 microM). The regenerates were hardened for 6-7 weeks on medium with 1/2MS salt solution and sucrose (2%) under normal laboratory condition before transferring to potting mix. About 70% transplants survived after two months of transfer.

  10. Serum decoy receptor 3 level: a predictive marker for nodal metastasis and survival among oral cavity cancer patients.

    PubMed

    Tu, Hsi-Feng; Liu, Chung-Ji; Liu, Shyun-Yeu; Chen, Yu-Ping; Yu, En-Hao; Lin, Shu-Chun; Chang, Kuo-Wei

    2011-03-01

    Validating markers for prediction of nodal metastasis could be beneficial in treatment of oral cavity cancer. Decoy receptor 3 (DcR3), locus on 20q13, functions as a death decoy inhibiting apoptosis mediated by the tumor necrosis factor receptor (TNFR) family. This study analyzed the serum level of DcR3 in relationship to the clinical parameters of oral cavity cancer patients together with detection of DcR3 genomic copy number in primary and recurrent tumors. Elevated serum DcR3 was associated with nodal metastasis and worse prognosis. Gain of DcR3 copy number was detected in 17% of primary tumor tissue but not found in healthy areca chewers. Tissue from recurrent tumors showed more frequent DcR3 copy number alteration (48%) than the paired primary tumor tissue. Serum DcR3 level is a predictor for the nodal metastasis and survival among oral cavity cancer patients and the DcR3 copy number alteration could underlie oral carcinogenesis progression. Copyright © 2010 Wiley Periodicals, Inc.

  11. Elective nodal irradiation (ENI) vs. involved field radiotherapy (IFRT) for locally advanced non-small cell lung cancer (NSCLC): A comparative analysis of toxicities and clinical outcomes.

    PubMed

    Fernandes, Annemarie T; Shen, Jason; Finlay, Jarod; Mitra, Nandita; Evans, Tracey; Stevenson, James; Langer, Corey; Lin, Lilie; Hahn, Stephen; Glatstein, Eli; Rengan, Ramesh

    2010-05-01

    Elective nodal irradiation (ENI) and involved field radiotherapy (IFRT) are definitive radiotherapeutic approaches used to treat patients with locally advanced non-small cell lung cancer (NSCLC). ENI delivers prophylactic radiation to clinically uninvolved lymph nodes, while IFRT only targets identifiable gross nodal disease. Because clinically uninvolved nodal stations may harbor microscopic disease, IFRT raises concerns for increased nodal failures. This retrospective cohort analysis evaluates failure rates and treatment-related toxicities in patients treated at a single institution with ENI and IFRT. We assessed all patients with stage III locally advanced or stage IV oligometastatic NSCLC treated with definitive radiotherapy from 2003 to 2008. Each physician consistently treated with either ENI or IFRT, based on their treatment philosophy. Of the 108 consecutive patients assessed (60 ENI vs. 48 IFRT), 10 patients had stage IV disease and 95 patients received chemotherapy. The median follow-up time for survivors was 18.9 months. On multivariable logistic regression analysis, patients treated with IFRT demonstrated a significantly lower risk of high grade esophagitis (Odds ratio: 0.31, p = 0.036). The differences in 2-year local control (39.2% vs. 59.6%), elective nodal control (84.3% vs. 84.3%), distant control (47.7% vs. 52.7%) and overall survival (40.1% vs. 43.7%) rates were not statistically significant between ENI vs. IFRT. Nodal failure rates in clinically uninvolved nodal stations were not increased with IFRT when compared to ENI. IFRT also resulted in significantly decreased esophageal toxicity, suggesting that IFRT may allow for integration of concurrent systemic chemotherapy in a greater proportion of patients. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  12. Nodal Gap” induced by the incommensurate diagonal spin density modulation in underdoped high- T c superconductors

    DOE PAGES

    Zhou, Tao; Gao, Yi; Zhu, Jian -Xin

    2015-03-07

    Recenmore » tly it was revealed that the whole Fermi surface is fully gapped for several families of underdoped cuprates. The existence of the finite energy gap along the d -wave nodal lines (nodal gap) contrasts the common understanding of the d -wave pairing symmetry, which challenges the present theories for the high- T c superconductors. Here we propose that the incommensurate diagonal spin-density-wave order can account for the above experimental observation. The Fermi surface and the local density of states are also studied. Our results are in good agreement with many important experiments in high- T c superconductors.« less

  13. Elegant Ince-Gaussian beams in a quadratic-index medium

    NASA Astrophysics Data System (ADS)

    Bai, Zhi-Yong; Deng, Dong-Mei; Guo, Qi

    2011-09-01

    Elegant Ince—Gaussian beams, which are the exact solutions of the paraxial wave equation in a quadratic-index medium, are derived in elliptical coordinates. These kinds of beams are the alternative form of standard Ince—Gaussian beams and they display better symmetry between the Ince-polynomials and the Gaussian function in mathematics. The transverse intensity distribution and the phase of the elegant Ince—Gaussian beams are discussed.

  14. A Factorization Approach to the Linear Regulator Quadratic Cost Problem

    NASA Technical Reports Server (NTRS)

    Milman, M. H.

    1985-01-01

    A factorization approach to the linear regulator quadratic cost problem is developed. This approach makes some new connections between optimal control, factorization, Riccati equations and certain Wiener-Hopf operator equations. Applications of the theory to systems describable by evolution equations in Hilbert space and differential delay equations in Euclidean space are presented.

  15. A quadratic regression modelling on paddy production in the area of Perlis

    NASA Astrophysics Data System (ADS)

    Goh, Aizat Hanis Annas; Ali, Zalila; Nor, Norlida Mohd; Baharum, Adam; Ahmad, Wan Muhamad Amir W.

    2017-08-01

    Polynomial regression models are useful in situations in which the relationship between a response variable and predictor variables is curvilinear. Polynomial regression fits the nonlinear relationship into a least squares linear regression model by decomposing the predictor variables into a kth order polynomial. The polynomial order determines the number of inflexions on the curvilinear fitted line. A second order polynomial forms a quadratic expression (parabolic curve) with either a single maximum or minimum, a third order polynomial forms a cubic expression with both a relative maximum and a minimum. This study used paddy data in the area of Perlis to model paddy production based on paddy cultivation characteristics and environmental characteristics. The results indicated that a quadratic regression model best fits the data and paddy production is affected by urea fertilizer application and the interaction between amount of average rainfall and percentage of area defected by pest and disease. Urea fertilizer application has a quadratic effect in the model which indicated that if the number of days of urea fertilizer application increased, paddy production is expected to decrease until it achieved a minimum value and paddy production is expected to increase at higher number of days of urea application. The decrease in paddy production with an increased in rainfall is greater, the higher the percentage of area defected by pest and disease.

  16. A new VLSI complex integer multiplier which uses a quadratic-polynomial residue system with Fermat numbers

    NASA Technical Reports Server (NTRS)

    Truong, T. K.; Hsu, I. S.; Chang, J. J.; Shyu, H. C.; Reed, I. S.

    1986-01-01

    A quadratic-polynomial Fermat residue number system (QFNS) has been used to compute complex integer multiplications. The advantage of such a QFNS is that a complex integer multiplication requires only two integer multiplications. In this article, a new type Fermat number multiplier is developed which eliminates the initialization condition of the previous method. It is shown that the new complex multiplier can be implemented on a single VLSI chip. Such a chip is designed and fabricated in CMOS-pw technology.

  17. A new VLSI complex integer multiplier which uses a quadratic-polynomial residue system with Fermat numbers

    NASA Technical Reports Server (NTRS)

    Shyu, H. C.; Reed, I. S.; Truong, T. K.; Hsu, I. S.; Chang, J. J.

    1987-01-01

    A quadratic-polynomial Fermat residue number system (QFNS) has been used to compute complex integer multiplications. The advantage of such a QFNS is that a complex integer multiplication requires only two integer multiplications. In this article, a new type Fermat number multiplier is developed which eliminates the initialization condition of the previous method. It is shown that the new complex multiplier can be implemented on a single VLSI chip. Such a chip is designed and fabricated in CMOS-Pw technology.

  18. A linear quadratic tracker for Control Moment Gyro based attitude control of the Space Station

    NASA Technical Reports Server (NTRS)

    Kaidy, J. T.

    1986-01-01

    The paper discusses a design for an attitude control system for the Space Station which produces fast response, with minimal overshoot and cross-coupling with the use of Control Moment Gyros (CMG). The rigid body equations of motion are linearized and discretized and a Linear Quadratic Regulator (LQR) design and analysis study is performed. The resulting design is then modified such that integral and differential terms are added to the state equations to enhance response characteristics. Methods for reduction of computation time through channelization are discussed as well as the reduction of initial torque requirements.

  19. Constraints on both the quadratic and quartic symmetry energy coefficients by 2β --decay energies

    NASA Astrophysics Data System (ADS)

    Wan, Niu; Xu, Chang; Ren, Zhongzhou; Liu, Jie

    2018-05-01

    In this Rapid Communication, the 2 β- -decay energies Q (2 β-) given in the atomic mass evaluation are used to extract not only the quadratic volume symmetry energy coefficient csymv, but also the quartic one csym,4 v. Based on the modified Bethe-Weizsäcker nuclear mass formula of the liquid-drop model, the decay energy Q (2 β-) is found to be closely related to both the quadratic and quartic symmetry energy coefficients csymv and csym,4 v. There are totally 449 data of decay energies Q (2 β-) used in the present analysis where the candidate nuclei are carefully chosen by fulfilling the following criteria: (1) large neutron-proton number difference N -Z , (2) large isospin asymmetry I , and (3) limited shell effect. The values of csymv and csym,4 v are extracted to be 29.345 and 3.634 MeV, respectively. Moreover, the quadratic surface-volume symmetry energy coefficient ratio is determined to be κ =csyms/csymv=1.356 .

  20. Scattering on a rectangular potential barrier in nodal-line Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Khokhlov, D. A.; Rakhmanov, A. L.; Rozhkov, A. V.

    2018-06-01

    We investigate single-particle ballistic scattering on a rectangular barrier in the nodal-line Weyl semimetals. Since the system under study has a crystallographic anisotropy, the scattering properties are dependent on mutual orientation of the crystalline axis and the barrier. To account for the anisotropy, we examine two different barrier orientations. It is demonstrated that, for certain angles of incidence, the incoming particle passes through the barrier with probability of unity. This is a manifestation of the Klein tunneling, a familiar phenomenon in the context of graphene and semimetals with Weyl points. However, the Klein tunneling in the Weyl-ring systems is observed when the angle of incidence differs from 90∘, unlike the cases of graphene and Weyl-point semimetals. The reflectionless transmission also occurs for the so-called "magic angles." The values of the magic angles are determined by geometrical resonances between the barrier width and the de Broglie length of the scattered particle. In addition, we show that under certain conditions the wave function of the transmitted and reflected particles may be a superposition of two plane waves with unequal momenta. Such a feature is a consequence of the nontrivial structure of the isoenergy surfaces of the nodal-line semimetals. Conductance of the barrier is briefly discussed.

  1. Performance of a recoverable tug for planetary missions including use of perigee propulsion and corrections for nodal regression

    NASA Technical Reports Server (NTRS)

    Borsody, J.

    1976-01-01

    Mathematical equations are derived by using the Maximum Principle to obtain the maximum payload capability of a reusable tug for planetary missions. The mathematical formulation includes correction for nodal precession of the space shuttle orbit. The tug performs this nodal correction in returning to this precessed orbit. The sample case analyzed represents an inner planet mission as defined by the declination (fixed) and right ascension of the outgoing asymptote and the mission energy. Payload capability is derived for a typical cryogenic tug and the sample case with and without perigee propulsion. Optimal trajectory profiles and some important orbital elements are also discussed.

  2. On the Viability of Using Autonomous Three-Component Nodal Geophones to Calculate Teleseismic Ps Receiver Functions with an Application to the Old Faithful Hydrothermal System and the Cascadia Subduction Zone

    NASA Astrophysics Data System (ADS)

    Ward, K. M.; Lin, F. C.

    2017-12-01

    Recent advances in seismic data-acquisition technology paired with an increasing interest from the academic passive source seismological community have opened up new scientific targets and imaging possibilities, often referred to as Large-N experiments (large number of instruments). The success of these and other deployments has motivated individual researchers, as well as the larger seismological community, to invest in the next generation of nodal geophones. Although the new instruments have battery life and bandwidth limitations compared to broadband instruments, the relatively low deployment and procurement cost of these new nodal geophones provides an additional novel tool for researchers. Here, we explore the viability of using autonomous three-component nodal geophones to calculate teleseismic Ps receiver functions by comparison of co-located broadband stations and highlight some potential advantages with a dense nodal array deployed around the Upper Geyser basin in Yellowstone National Park. Two key findings from this example include (1) very dense nodal arrays can be used to image small-scale features in the shallow crust that typical broadband station spacing would alias, and (2) nodal arrays with a larger footprint could be used to image deeper features with greater or equal detail as typical broadband deployments but at a reduced deployment cost. The success of the previous example has motivated a larger 2-D line across the Cascadia subduction zone. In the summer of 2017, we deployed 174 nodal geophones with an average site spacing of 750 m. Synthetic tests with dense station spacing ( 1 km) reveal subtler features of the system that is consistent with our preliminary receiver function results from our Cascadia deployment. With the increasing availability of nodal geophones to individual researchers and the successful demonstration that nodal geophones are a viable instrument for receiver function studies, numerous scientific targets can be investigated

  3. Topological insulating phases from two-dimensional nodal loop semimetals

    NASA Astrophysics Data System (ADS)

    Li, Linhu; Araújo, Miguel A. N.

    2016-10-01

    Starting from a minimal model for a two-dimensional nodal loop semimetal, we study the effect of chiral mass gap terms. The resulting Dirac loop anomalous Hall insulator's Chern number is the phase-winding number of the mass gap terms on the loop. We provide simple lattice models, analyze the topological phases, and generalize a previous index characterizing topological transitions. The responses of the Dirac loop anomalous Hall and quantum spin Hall insulators to a magnetic field's vector potential are also studied both in weak- and strong-field regimes, as well as the edge states in a ribbon geometry.

  4. Mechanism of polyuria and natriuresis in atrioventricular nodal tachycardia.

    PubMed Central

    Canepa-Anson, R; Williams, M; Marshall, J; Mitsuoka, T; Lightman, S; Sutton, R

    1984-01-01

    A woman with tachycardia associated with polyuria was investigated. Electrophysiological analysis showed that the tachycardia was an atrioventricular nodal re-entrant tachycardia. Programmed stimulation was then used to provoke and sustain the tachycardia for 40 minutes. Polyuria, with an appreciable increase in free water clearance, was observed. This was associated with reduction in plasma and urinary arginine vasopressin concentrations. Appreciable natriuresis also developed. These results support the hypothesis that the polyuria with increased free water clearance and the natriuresis occurring during sustained tachycardia in man are due to inhibition of secretion of vasopressin and the release of natriuretic factor. PMID:6434116

  5. QUADrATiC: scalable gene expression connectivity mapping for repurposing FDA-approved therapeutics.

    PubMed

    O'Reilly, Paul G; Wen, Qing; Bankhead, Peter; Dunne, Philip D; McArt, Darragh G; McPherson, Suzanne; Hamilton, Peter W; Mills, Ken I; Zhang, Shu-Dong

    2016-05-04

    Gene expression connectivity mapping has proven to be a powerful and flexible tool for research. Its application has been shown in a broad range of research topics, most commonly as a means of identifying potential small molecule compounds, which may be further investigated as candidates for repurposing to treat diseases. The public release of voluminous data from the Library of Integrated Cellular Signatures (LINCS) programme further enhanced the utilities and potentials of gene expression connectivity mapping in biomedicine. We describe QUADrATiC ( http://go.qub.ac.uk/QUADrATiC ), a user-friendly tool for the exploration of gene expression connectivity on the subset of the LINCS data set corresponding to FDA-approved small molecule compounds. It enables the identification of compounds for repurposing therapeutic potentials. The software is designed to cope with the increased volume of data over existing tools, by taking advantage of multicore computing architectures to provide a scalable solution, which may be installed and operated on a range of computers, from laptops to servers. This scalability is provided by the use of the modern concurrent programming paradigm provided by the Akka framework. The QUADrATiC Graphical User Interface (GUI) has been developed using advanced Javascript frameworks, providing novel visualization capabilities for further analysis of connections. There is also a web services interface, allowing integration with other programs or scripts. QUADrATiC has been shown to provide an improvement over existing connectivity map software, in terms of scope (based on the LINCS data set), applicability (using FDA-approved compounds), usability and speed. It offers potential to biological researchers to analyze transcriptional data and generate potential therapeutics for focussed study in the lab. QUADrATiC represents a step change in the process of investigating gene expression connectivity and provides more biologically-relevant results than

  6. Design of Linear Quadratic Regulators and Kalman Filters

    NASA Technical Reports Server (NTRS)

    Lehtinen, B.; Geyser, L.

    1986-01-01

    AESOP solves problems associated with design of controls and state estimators for linear time-invariant systems. Systems considered are modeled in state-variable form by set of linear differential and algebraic equations with constant coefficients. Two key problems solved by AESOP are linear quadratic regulator (LQR) design problem and steady-state Kalman filter design problem. AESOP is interactive. User solves design problems and analyzes solutions in single interactive session. Both numerical and graphical information available to user during the session.

  7. Field-antifield and BFV formalisms for quadratic systems with open gauge algebras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nirov, K.S.; Razumov, A.V.

    1992-09-20

    In this paper the Lagrangian field-antifield (BV) and Hamiltonian (BFV) BRST formalisms for the general quadratic systems with open gauge algebra are considered. The equivalence between the Lagrangian and Hamiltonian formalisms is proven.

  8. Numerical solution of quadratic matrix equations for free vibration analysis of structures

    NASA Technical Reports Server (NTRS)

    Gupta, K. K.

    1975-01-01

    This paper is concerned with the efficient and accurate solution of the eigenvalue problem represented by quadratic matrix equations. Such matrix forms are obtained in connection with the free vibration analysis of structures, discretized by finite 'dynamic' elements, resulting in frequency-dependent stiffness and inertia matrices. The paper presents a new numerical solution procedure of the quadratic matrix equations, based on a combined Sturm sequence and inverse iteration technique enabling economical and accurate determination of a few required eigenvalues and associated vectors. An alternative procedure based on a simultaneous iteration procedure is also described when only the first few modes are the usual requirement. The employment of finite dynamic elements in conjunction with the presently developed eigenvalue routines results in a most significant economy in the dynamic analysis of structures.

  9. First report of soybean pest, Euschistus quadrator (Hempitera: pentatomidae) in Mississippi

    USDA-ARS?s Scientific Manuscript database

    Here we report on the first state and county record of Euschistus quadrator Ralston (Hemiptera: Pentatomidae) in Washington County, Mississippi. The species has been documented from Honduras to Virginia primarily on soybeans, cotton, various row crops, fruit, and non-crop hosts. The local impact...

  10. Method and apparatus for routing data in an inter-nodal communications lattice of a massively parallel computer system by dynamically adjusting local routing strategies

    DOEpatents

    Archer, Charles Jens; Musselman, Roy Glenn; Peters, Amanda; Pinnow, Kurt Walter; Swartz, Brent Allen; Wallenfelt, Brian Paul

    2010-03-16

    A massively parallel computer system contains an inter-nodal communications network of node-to-node links. Each node implements a respective routing strategy for routing data through the network, the routing strategies not necessarily being the same in every node. The routing strategies implemented in the nodes are dynamically adjusted during application execution to shift network workload as required. Preferably, adjustment of routing policies in selective nodes is performed at synchronization points. The network may be dynamically monitored, and routing strategies adjusted according to detected network conditions.

  11. Importance of the cutoff value in the quadratic adaptive integrate-and-fire model.

    PubMed

    Touboul, Jonathan

    2009-08-01

    The quadratic adaptive integrate-and-fire model (Izhikevich, 2003 , 2007 ) is able to reproduce various firing patterns of cortical neurons and is widely used in large-scale simulations of neural networks. This model describes the dynamics of the membrane potential by a differential equation that is quadratic in the voltage, coupled to a second equation for adaptation. Integration is stopped during the rise phase of a spike at a voltage cutoff value V(c) or when it blows up. Subsequently the membrane potential is reset, and the adaptation variable is increased by a fixed amount. We show in this note that in the absence of a cutoff value, not only the voltage but also the adaptation variable diverges in finite time during spike generation in the quadratic model. The divergence of the adaptation variable makes the system very sensitive to the cutoff: changing V(c) can dramatically alter the spike patterns. Furthermore, from a computational viewpoint, the divergence of the adaptation variable implies that the time steps for numerical simulation need to be small and adaptive. However, divergence of the adaptation variable does not occur for the quartic model (Touboul, 2008 ) and the adaptive exponential integrate-and-fire model (Brette & Gerstner, 2005 ). Hence, these models are robust to changes in the cutoff value.

  12. Quadratic band touching points and flat bands in two-dimensional topological Floquet systems

    NASA Astrophysics Data System (ADS)

    Du, Liang; Zhou, Xiaoting; Fiete, Gregory; The CenterComplex Quantum Systems Team

    In this work we theoretically study, using Floquet-Bloch theory, the influence of circularly and linearly polarized light on two-dimensional band structures with Dirac and quadratic band touching points, and flat bands, taking the nearest neighbor hopping model on the kagome lattice as an example. We find circularly polarized light can invert the ordering of this three band model, while leaving the flat-band dispersionless. We find a small gap is also opened at the quadratic band touching point by 2-photon and higher order processes. By contrast, linearly polarized light splits the quadratic band touching point (into two Dirac points) by an amount that depends only on the amplitude and polarization direction of the light, independent of the frequency, and generally renders dispersion to the flat band. The splitting is perpendicular to the direction of the polarization of the light. We derive an effective low-energy theory that captures these key results. Finally, we compute the frequency dependence of the optical conductivity for this 3-band model and analyze the various interband contributions of the Floquet modes. Our results suggest strategies for optically controlling band structure and interaction strength in real systems. We gratefully acknowledge funding from ARO Grant W911NF-14-1-0579 and NSF DMR-1507621.

  13. The General-Use Nodal Network Solver (GUNNS) Modeling Package for Space Vehicle Flow System Simulation

    NASA Technical Reports Server (NTRS)

    Harvey, Jason; Moore, Michael

    2013-01-01

    The General-Use Nodal Network Solver (GUNNS) is a modeling software package that combines nodal analysis and the hydraulic-electric analogy to simulate fluid, electrical, and thermal flow systems. GUNNS is developed by L-3 Communications under the TS21 (Training Systems for the 21st Century) project for NASA Johnson Space Center (JSC), primarily for use in space vehicle training simulators at JSC. It has sufficient compactness and fidelity to model the fluid, electrical, and thermal aspects of space vehicles in real-time simulations running on commodity workstations, for vehicle crew and flight controller training. It has a reusable and flexible component and system design, and a Graphical User Interface (GUI), providing capability for rapid GUI-based simulator development, ease of maintenance, and associated cost savings. GUNNS is optimized for NASA's Trick simulation environment, but can be run independently of Trick.

  14. Confidence set interference with a prior quadratic bound. [in geophysics

    NASA Technical Reports Server (NTRS)

    Backus, George E.

    1989-01-01

    Neyman's (1937) theory of confidence sets is developed as a replacement for Bayesian interference (BI) and stochastic inversion (SI) when the prior information is a hard quadratic bound. It is recommended that BI and SI be replaced by confidence set interference (CSI) only in certain circumstances. The geomagnetic problem is used to illustrate the general theory of CSI.

  15. The significance of the quadratic Doppler effect for space travel and astrophysics

    NASA Astrophysics Data System (ADS)

    Boehm, M.

    1985-09-01

    It is shown that a distinct frame of reference exists for light for which the Kennedy-Thorndike experiment provides unequivocal evidence. This leads to the postulate of a rotating instead of an expanding universe. It is shown that the cosmic red shift can be understood as the result of a Coriolis acceleration of the light propagating between two arbitrary points of different gravitational potential. Methods for determining the angular velocity of the rotating universe are given, and it is discussed whether the speed of light and the gravitational constant are universal constants or whether they are functions of distance from the center of the universe. Suggestions are made for further experimental studies and for practical application of the quadratic Doppler effect.

  16. Universal heat conduction in Ce 1-xYb xCoIn 5: Evidence for robust nodal d-wave superconducting gap

    DOE PAGES

    Xu, Y.; Petrovic, C.; Dong, J. K.; ...

    2016-02-01

    In the heavy-fermion superconductor Ce 1-xYb xCoIn 5, Yb doping was reported to cause a possible change from nodal d-wave superconductivity to a fully gapped d-wave molecular superfluid of composite pairs near x ≈ 0.07 (nominal value x nom = 0.2). Here we present systematic thermal conductivity measurements on Ce 1-xYb xCoIn 5 (x = 0.013, 0.084, and 0.163) single crystals. The observed finite residual linear term κ 0/T is insensitive to Yb doping, verifying the universal heat conduction of the nodal d-wave superconducting gap in Ce 1-xYb xCoIn 5. Similar universal heat conduction is also observed in the CeCo(Inmore » 1–yCd y) 5 system. Furthermore, these results reveal a robust nodal d-wave gap in CeCoIn 5 upon Yb or Cd doping.« less

  17. Cooperative Solutions in Multi-Person Quadratic Decision Problems: Finite-Horizon and State-Feedback Cost-Cumulant Control Paradigm

    DTIC Science & Technology

    2007-01-01

    CONTRACT NUMBER Problems: Finite -Horizon and State-Feedback Cost-Cumulant Control Paradigm (PREPRINT) 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...cooperative cost-cumulant control regime for the class of multi-person single-objective decision problems characterized by quadratic random costs and... finite -horizon integral quadratic cost associated with a linear stochastic system . Since this problem formation is parameterized by the number of cost

  18. Automatic bone outer contour extraction from B-modes ultrasound images based on local phase symmetry and quadratic polynomial fitting

    NASA Astrophysics Data System (ADS)

    Karlita, Tita; Yuniarno, Eko Mulyanto; Purnama, I. Ketut Eddy; Purnomo, Mauridhi Hery

    2017-06-01

    Analyzing ultrasound (US) images to get the shapes and structures of particular anatomical regions is an interesting field of study since US imaging is a non-invasive method to capture internal structures of a human body. However, bone segmentation of US images is still challenging because it is strongly influenced by speckle noises and it has poor image quality. This paper proposes a combination of local phase symmetry and quadratic polynomial fitting methods to extract bone outer contour (BOC) from two dimensional (2D) B-modes US image as initial steps of three-dimensional (3D) bone surface reconstruction. By using local phase symmetry, the bone is initially extracted from US images. BOC is then extracted by scanning one pixel on the bone boundary in each column of the US images using first phase features searching method. Quadratic polynomial fitting is utilized to refine and estimate the pixel location that fails to be detected during the extraction process. Hole filling method is then applied by utilize the polynomial coefficients to fill the gaps with new pixel. The proposed method is able to estimate the new pixel position and ensures smoothness and continuity of the contour path. Evaluations are done using cow and goat bones by comparing the resulted BOCs with the contours produced by manual segmentation and contours produced by canny edge detection. The evaluation shows that our proposed methods produces an excellent result with average MSE before and after hole filling at the value of 0.65.

  19. Surface and 3D Quantum Hall Effects from Engineering of Exceptional Points in Nodal-Line Semimetals

    NASA Astrophysics Data System (ADS)

    Molina, Rafael A.; González, José

    2018-04-01

    We show that, under a strong magnetic field, a 3D nodal-line semimetal is driven into a topological insulating phase in which the electronic transport takes place at the surface of the material. When the magnetic field is perpendicular to the nodal ring, the surface states of the semimetal are transmuted into Landau states which correspond to exceptional points, i.e., branch points in the spectrum of a non-Hermitian Hamiltonian which arise upon the extension to complex values of the momentum. The complex structure of the spectrum then allows us to express the number of zero-energy flat bands in terms of a new topological invariant counting the number of exceptional points. When the magnetic field is parallel to the nodal ring, we find that the bulk states are built from the pairing of surfacelike evanescent waves, giving rise to a 3D quantum Hall effect with a flat level of Landau states residing in parallel 2D slices of the 3D material. The Hall conductance is quantized in either case in units of e2/h , leading in the 3D Hall effect to a number of channels growing linearly with the section of the surface and opening the possibility to observe a macroscopic chiral current at the surface of the material.

  20. Electrochemical reduction of carbon fluorine bond in 4-fluorobenzonitrile Mechanistic analysis employing Marcus Hush quadratic activation-driving force relation

    NASA Astrophysics Data System (ADS)

    Muthukrishnan, A.; Sangaranarayanan, M. V.

    2007-10-01

    The reduction of carbon-fluorine bond in 4-fluorobenzonitrile in acetonitrile as the solvent, is analyzed using convolution potential sweep voltammetry and the dependence of the transfer coefficient on potential is investigated within the framework of Marcus-Hush quadratic activation-driving force theory. The validity of stepwise mechanism is inferred from solvent reorganization energy estimates as well as bond length calculations using B3LYP/6-31g(d) method. A novel method of estimating the standard reduction potential of the 4-fluorobenzonitrile in acetonitrile is proposed.

  1. Discrete-time Markovian-jump linear quadratic optimal control

    NASA Technical Reports Server (NTRS)

    Chizeck, H. J.; Willsky, A. S.; Castanon, D.

    1986-01-01

    This paper is concerned with the optimal control of discrete-time linear systems that possess randomly jumping parameters described by finite-state Markov processes. For problems having quadratic costs and perfect observations, the optimal control laws and expected costs-to-go can be precomputed from a set of coupled Riccati-like matrix difference equations. Necessary and sufficient conditions are derived for the existence of optimal constant control laws which stabilize the controlled system as the time horizon becomes infinite, with finite optimal expected cost.

  2. The Likely Sites of Nodal Metastasis Differs According to the Tumor Extent in Distal Bile Duct Cancer.

    PubMed

    Kato, Yuichiro; Takahashi, Shinichiro; Gotohda, Naoto; Konishi, Masaru

    2016-09-01

    In the revised Japanese and Worldwide TNM classification of distal bile duct cancer, the lymph node status is defined as N0 or N1 without reference to the tumor location or extent, according to the presence/absence of metastasis to the regional lymph nodes. Data of 94 patients with distal bile duct cancer who had undergone pancreaticoduodenectomy were reviewed retrospectively. In formalin-fixed specimens, we measured the longitudinal lengths from the papilla to the lower and upper margins of the tumor, in order to investigate the correlation of the tumor extent with the likely sites of nodal metastasis. The frequencies of metastasis to the posterior pancreaticoduodenal nodes (7.1 %) and superior mesenteric artery nodes (0.0 %) were significantly lower in the cases in which the length from the papilla to the lower margin of the tumor was ≥30 mm. The frequencies of nodal metastasis to the common hepatic artery nodes (0.0 %) and hepatoduodenal ligament nodes (6.7 %) were significantly lower in the cases in which the length from the papilla to the upper margin was <40 mm. The likely sites of nodal metastasis differ according to the extent of the tumor in cases of bile duct cancer.

  3. Can Axial-Based Nodal Size Criteria Be Used in Other Imaging Planes to Accurately Determine “Enlarged” Head and Neck Lymph Nodes?

    PubMed Central

    Bartlett, Eric S.; Walters, Thomas D.; Yu, Eugene

    2013-01-01

    Objective. We evaluate if axial-based lymph node size criteria can be applied to coronal and sagittal planes. Methods. Fifty pretreatment computed tomographic (CT) neck exams were evaluated in patients with head and neck squamous cell carcinoma (SCCa) and neck lymphadenopathy. Axial-based size criteria were applied to all 3 imaging planes, measured, and classified as “enlarged” if equal to or exceeding size criteria. Results. 222 lymph nodes were “enlarged” in one imaging plane; however, 53.2% (118/222) of these were “enlarged” in all 3 planes. Classification concordance between axial versus coronal/sagittal planes was poor (kappa = −0.09 and −0.07, resp., P < 0.05). The McNemar test showed systematic misclassification when comparing axial versus coronal (P < 0.001) and axial versus sagittal (P < 0.001) planes. Conclusion. Classification of “enlarged” lymph nodes differs between axial versus coronal/sagittal imaging planes when axial-based nodal size criteria are applied independently to all three imaging planes, and exclusively used without other morphologic nodal data. PMID:23984099

  4. [Parahisian atrial tachycardia or atrioventricular nodal reentrant tachycardia with tendon of Todaro breakthrough?].

    PubMed

    Orczykowski, Michał; Jaworska-Wilczyńska, Maria; Urbanek, Piotr; Bodalski, Robert; Derejko, Paweł; Gajek, Jacek; Hryniewiecki, Tomasz; Szumowski, Lukasz; Walczak, Franciszek

    2010-08-01

    We present a case of a 61 year-old woman with tachycardia originating close to the His bundle where radiofrequency (RF) ablation may bear potential risk of atrioventricular (AV) block. In this case report we discuss the possibility of a AV nodal reciprocating tachycardia with tendon of Todaro breakthrough. Patient was safely and effectively treated with RF catheter ablation.

  5. Prophylactic Level VII Nodal Dissection as a Prognostic Factor in Papillary Thyroid Carcinoma: a Pilot Study of 27 Patients.

    PubMed

    Fayek, Ihab Samy

    2015-01-01

    Prognostic value of prophylactic level VII nodal dissection in papillary thyroid carcinoma has been highlighted. A total of 27 patients with papillary thyroid carcinoma with N0 neck underwent total thyroidectomy with level VI and VII nodal dissection through same collar neck incision. Multicentricity, bilaterality, extrathyroidal extension, level VI and VII lymph nodes were studied as separate and independent prognostic factors for DFS at 24 months. 21 females and 6 males with a mean age of 34.6 years old, tumor size was 5-24 mm. (mean 12.4 mm.), multicentricity in 11 patients 2-4 foci (mean 2.7), bilaterality in 8 patients and extrathyroidal extension in 8 patients. Dissected level VI LNs 2-8 (mean 5 LNs) and level VII LNs 1-4 (mean 1.9). Metastatic level VI LNs 0-3 (mean 1) and level VII LNs 0-2 (mean 0.5). Follow-up from 6-51 months (mean 25.6) with 7 patients showed recurrence (3 local and 4 distant). Cumulative DFS at 24 months was 87.8% and was significantly affected in relation to bilaterality (p-value<0.001), extrathyroidal extension (p-value<0.001), level VI positive ((p-value<0.001) and level VII positive ((p-value<0.001) LNs. No recurrences were detected during the follow-up period in the absence of level VI and level VII nodal involvement. Level VII prophylactic nodal dissection is an important and integral prognostic factor in papillary thyroid carcinoma. A larger multicenter study is crucial to reach a satisfactory conclusion about the necessity and safety of this approach.

  6. Design of Linear-Quadratic-Regulator for a CSTR process

    NASA Astrophysics Data System (ADS)

    Meghna, P. R.; Saranya, V.; Jaganatha Pandian, B.

    2017-11-01

    This paper aims at creating a Linear Quadratic Regulator (LQR) for a Continuous Stirred Tank Reactor (CSTR). A CSTR is a common process used in chemical industries. It is a highly non-linear system. Therefore, in order to create the gain feedback controller, the model is linearized. The controller is designed for the linearized model and the concentration and volume of the liquid in the reactor are kept at a constant value as required.

  7. Steering of Frequency Standards by the Use of Linear Quadratic Gaussian Control Theory

    NASA Technical Reports Server (NTRS)

    Koppang, Paul; Leland, Robert

    1996-01-01

    Linear quadratic Gaussian control is a technique that uses Kalman filtering to estimate a state vector used for input into a control calculation. A control correction is calculated by minimizing a quadratic cost function that is dependent on both the state vector and the control amount. Different penalties, chosen by the designer, are assessed by the controller as the state vector and control amount vary from given optimal values. With this feature controllers can be designed to force the phase and frequency differences between two standards to zero either more or less aggressively depending on the application. Data will be used to show how using different parameters in the cost function analysis affects the steering and the stability of the frequency standards.

  8. Dynamic analysis of the tether transportation system using absolute nodal coordinate formulation

    NASA Astrophysics Data System (ADS)

    Sun, Xin; Xu, Ming; Zhong, Rui

    2017-10-01

    Long space tethers are becoming a rising concern as an alternate way for transportation in space. It benefits from fuel economizing. This paper focuses on the dynamics of the tether transportation system, which consists of two end satellites connected by a flexible tether, and a movable vehicle driven by the actuator carried by itself. The Absolute Nodal Coordinate Formulation is applied to the establishment of the equation of motion, so that the influence caused by the distributed mass and elasticity of the tether is introduced. Moreover, an approximated method for accelerating the calculation of the generalized gravitational forces on the tether is proposed by substituting the volume integral every step into summation of finite terms. Afterwards, dynamic evolutions of such a system in different configurations are illustrated using numerical simulations. The deflection of the tether and the trajectory of the crawler during the transportation is investigated. Finally, the effect on the orbit of the system due to the crawler is revealed.

  9. Visualising the Complex Roots of Quadratic Equations with Real Coefficients

    ERIC Educational Resources Information Center

    Bardell, Nicholas S.

    2012-01-01

    The roots of the general quadratic equation y = ax[superscript 2] + bx + c (real a, b, c) are known to occur in the following sets: (i) real and distinct; (ii) real and coincident; and (iii) a complex conjugate pair. Case (iii), which provides the focus for this investigation, can only occur when the values of the real coefficients a, b, and c are…

  10. Vagal activity is quadratically related to prosocial traits, prosocial emotions, and observer perceptions of prosociality.

    PubMed

    Kogan, Aleksandr; Oveis, Christopher; Carr, Evan W; Gruber, June; Mauss, Iris B; Shallcross, Amanda; Impett, Emily A; van der Lowe, Ilmo; Hui, Bryant; Cheng, Cecilia; Keltner, Dacher

    2014-12-01

    In the present article, we introduce the quadratic vagal activity-prosociality hypothesis, a theoretical framework for understanding the vagus nerve's involvement in prosociality. We argue that vagus nerve activity supports prosocial behavior by regulating physiological systems that enable emotional expression, empathy for others' mental and emotional states, the regulation of one's own distress, and the experience of positive emotions. However, we contend that extremely high levels of vagal activity can be detrimental to prosociality. We present 3 studies providing support for our model, finding consistent evidence of a quadratic relationship between respiratory sinus arrhythmia--the degree to which the vagus nerve modulates the heart rate--and prosociality. Individual differences in vagal activity were quadratically related to prosocial traits (Study 1), prosocial emotions (Study 2), and outside ratings of prosociality by complete strangers (Study 3). Thus, too much or too little vagal activity appears to be detrimental to prosociality. The present article provides the 1st theoretical and empirical account of the nonlinear relationship between vagal activity and prosociality.

  11. Quadratic integrand double-hybrid made spin-component-scaled

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brémond, Éric, E-mail: eric.bremond@iit.it; Savarese, Marika; Sancho-García, Juan C.

    2016-03-28

    We propose two analytical expressions aiming to rationalize the spin-component-scaled (SCS) and spin-opposite-scaled (SOS) schemes for double-hybrid exchange-correlation density-functionals. Their performances are extensively tested within the framework of the nonempirical quadratic integrand double-hybrid (QIDH) model on energetic properties included into the very large GMTKN30 benchmark database, and on structural properties of semirigid medium-sized organic compounds. The SOS variant is revealed as a less computationally demanding alternative to reach the accuracy of the original QIDH model without losing any theoretical background.

  12. A comparative analysis of clinical outcomes and disposable costs of different catheter ablation methods for the treatment of atrioventricular nodal reentrant tachycardia

    PubMed Central

    Berman, Adam E; Rivner, Harold; Chalkley, Robin; Heboyan, Vahé

    2017-01-01

    Background Catheter ablation of atrioventricular nodal reentrant tachycardia (AVNRT) is a commonly performed electrophysiology (EP) procedure. Few data exist comparing conventional (CONV) versus novel ablation strategies from both clinical and direct cost perspectives. We sought to investigate the disposable costs and clinical outcomes associated with three different ablation methodologies used in the ablation of AVNRT. Methods We performed a retrospective review of AVNRT ablations performed at Augusta University Medical Center from 2006 to 2014. A total of 183 patients were identified. Three different ablation techniques were compared: CONV manual radiofrequency (RF) (n=60), remote magnetic navigation (RMN)-guided RF (n=67), and cryoablation (CRYO) (n=56). Results Baseline demographics did not differ between the three groups except for a higher prevalence of cardiomyopathy in the RMN group (p<0.01). The clinical end point of interest was recurrent AVNRT following the index ablation procedure. A significantly higher number of recurrent AVNRT cases occurred in the CRYO group as compared to CONV and RMN (p=0.003; OR =7.75) groups. Cost-benefit analysis showed both CONV and RMN to be dominant compared to CRYO. Cost-minimization analysis demonstrated the least expensive ablation method to be CONV (mean disposable catheter cost = CONV US$2340; CRYO US$3515; RMN US$5190). Despite comparable clinical outcomes, the incremental cost of RMN over CONV averaged US$3094 per procedure. Conclusion AVNRT ablation using either CONV or RMN techniques is equally effective and associated with lower AVNRT recurrence rates than CRYO. CONV ablation carries significant disposable cost savings as compared to RMN, despite similar efficacy. PMID:29138585

  13. Quadratic electromechanical strain in silicon investigated by scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Yu, Junxi; Esfahani, Ehsan Nasr; Zhu, Qingfeng; Shan, Dongliang; Jia, Tingting; Xie, Shuhong; Li, Jiangyu

    2018-04-01

    Piezoresponse force microscopy (PFM) is a powerful tool widely used to characterize piezoelectricity and ferroelectricity at the nanoscale. However, it is necessary to distinguish microscopic mechanisms between piezoelectricity and non-piezoelectric contributions measured by PFM. In this work, we systematically investigate the first and second harmonic apparent piezoresponses of a silicon wafer in both vertical and lateral modes, and we show that it exhibits an apparent electromechanical response that is quadratic to the applied electric field, possibly arising from ionic electrochemical dipoles induced by the charged probe. As a result, the electromechanical response measured is dominated by the second harmonic response in the vertical mode, and its polarity can be switched by the DC voltage with the evolving coercive field and maximum amplitude, in sharp contrast to typical ferroelectric materials we used as control. The ionic activity in silicon is also confirmed by the scanning thermo-ionic microscopy measurement, and the work points toward a set of methods to distinguish true piezoelectricity from the apparent ones.

  14. Nodal variations and long-term changes in the main tides on the coasts of China

    NASA Astrophysics Data System (ADS)

    Feng, Xiangbo; Tsimplis, Michael N.; Woodworth, Philip L.

    2015-02-01

    The long-term changes in the main tidal constituents (O1, K1, M2, N2, and S2) along the coasts of China and in adjacent seas are investigated based on 17 tide-gauge records covering the period 1954-2012. The observed 18.61 year nodal modulations of the diurnal constituents O1 and K1 are in agreement with the equilibrium tidal theory, except in the South China Sea. The observed modulations of the M2 and N2 amplitudes are smaller than theoretically predicted at the northern stations and larger at the southern stations. The discrepancies between the theoretically predicted nodal variations and the observations are discussed. The 8.85 year perigean cycle is identifiable in the N2 parameters at most stations, except those in the South China Sea. The radiational component of S2 contributes on average 16% of the observed S2 except in the Gulf of Tonkin, on the south coast, where it accounts for up to 65%. We confirmed the existence of nodal modulation in S2, which is stronger on the north coast. The semidiurnal tidal parameters show significant secular trends in the Bohai and Yellow Seas, on the north coast, and in the Taiwan Strait. The largest increase is found for M2 for which the amplitude increases by 4-7 mm/yr in the Yellow Sea. The potential causes for the linear trends in tidal constants are discussed. This article was corrected on 13 MAR 2015. See the end of the full text for details.

  15. Interactive application of quadratic expansion of chi-square statistic to nonlinear curve fitting

    NASA Technical Reports Server (NTRS)

    Badavi, F. F.; Everhart, Joel L.

    1987-01-01

    This report contains a detailed theoretical description of an all-purpose, interactive curve-fitting routine that is based on P. R. Bevington's description of the quadratic expansion of the Chi-Square statistic. The method is implemented in the associated interactive, graphics-based computer program. Taylor's expansion of Chi-Square is first introduced, and justifications for retaining only the first term are presented. From the expansion, a set of n simultaneous linear equations is derived, then solved by matrix algebra. A brief description of the code is presented along with a limited number of changes that are required to customize the program of a particular task. To evaluate the performance of the method and the goodness of nonlinear curve fitting, two typical engineering problems are examined and the graphical and tabular output of each is discussed. A complete listing of the entire package is included as an appendix.

  16. Retrospective analysis of outcome differences in preoperative concurrent chemoradiation with or without elective nodal irradiation for esophageal squamous cell carcinoma.

    PubMed

    Hsu, Feng-Ming; Lee, Jang-Ming; Huang, Pei-Ming; Lin, Chia-Chi; Hsu, Chih-Hung; Tsai, Yu-Chieh; Lee, Yung-Chie; Chia-Hsien Cheng, Jason

    2011-11-15

    To evaluate the efficacy and patterns of failure of elective nodal irradiation (ENI) in patients with esophageal squamous cell carcinoma (SCC) undergoing preoperative concurrent chemoradiation (CCRT) followed by radical surgery. We retrospectively studied 118 patients with AJCC Stage II to III esophageal SCC undergoing preoperative CCRT (median, 36 Gy), followed by radical esophagectomy. Of them, 73 patients (62%) had ENI and 45 patients (38%) had no ENI. Patients with ENI received radiotherapy to either supraclavicular (n = 54) or celiac (n = 19) lymphatics. Fifty-six patients (57%) received chemotherapy with paclitaxel plus cisplatin. The 3-year progression-free survival, overall survival, and patterns of failure were analyzed. Distant nodal recurrence was classified into M1a and M1b regions. A separate analysis using matched cases was conducted. The median follow-up was 38 months. There were no differences in pathological complete response rate (p = 0.12), perioperative mortality rate (p = 0.48), or delayed Grade 3 or greater cardiopulmonary toxicities (p = 0.44), between the groups. More patients in the non-ENI group had M1a failure than in the ENI group, with 3-year rates of 11% and 3%, respectively (p = 0.05). However, the 3-year isolated distant nodal (M1a + M1b) failure rates were not different (ENI, 10%; non-ENI, 14%; p = 0.29). In multivariate analysis, pathological nodal status was the only independent prognostic factor associated with overall survival (hazard ratio = 1.78, p = 0.045). The 3-year overall survival and progression-free survival were 45% and 45%, respectively, in the ENI group, and 52% and 43%, respectively, in the non-ENI group (p = 0.31 and 0.89, respectively). Matched cases analysis did not show a statistical difference in outcomes between the groups. ENI reduced the M1a failure rate but was not associated with improved outcomes in patients undergoing preoperative CCRT for esophageal SCC. Pathological nodal metastasis predicted poor

  17. Involved field radiotherapy (IFRT) versus elective nodal irradiation (ENI) for locally advanced non-small cell lung cancer: a meta-analysis of incidence of elective nodal failure (ENF).

    PubMed

    Li, Ruijian; Yu, Liang; Lin, Sixiang; Wang, Lina; Dong, Xin; Yu, Lingxia; Li, Weiyi; Li, Baosheng

    2016-09-21

    The use of involved field radiotherapy (IFRT) has generated concern about the increasing incidence of elective nodal failure (ENF) in contrast to elective nodal irradiation (ENI). This meta-analysis aimed to provide more reliable and up-to-date evidence on the incidence of ENF between IFRT and ENI. We searched three databases for eligible studies where locally advanced non-small cell lung cancer (NSCLC) patients received IFRT or ENI. Outcome of interest was the incidence of ENF. The fixed-effects model was used to pool outcomes across the studies. There were 3 RCTs and 3 cohort studies included with low risk of bias. There was no significant difference in incidence of ENF between IFRT and ENI either among RCTs (RR = 1.38, 95 % CI: 0.59-3.25, p = 0.46) or among cohort studies (RR = 0.99, 95 % CI: 0.46-2.10, p = 0.97). There was also no significant difference in incidence of ENF between IFRT and ENI when RCTs and cohort studies were combined (RR = 1.15, 95 % CI: 0.65-2.01, p = 0.64). I 2 of test for heterogeneity was 0 %. This meta-analysis provides more reliable and stable evidence that there is no significant difference in incidence of ENF between IFRT and ENI.

  18. An analysis of spectral envelope-reduction via quadratic assignment problems

    NASA Technical Reports Server (NTRS)

    George, Alan; Pothen, Alex

    1994-01-01

    A new spectral algorithm for reordering a sparse symmetric matrix to reduce its envelope size was described. The ordering is computed by associating a Laplacian matrix with the given matrix and then sorting the components of a specified eigenvector of the Laplacian. In this paper, we provide an analysis of the spectral envelope reduction algorithm. We described related 1- and 2-sum problems; the former is related to the envelope size, while the latter is related to an upper bound on the work involved in an envelope Cholesky factorization scheme. We formulate the latter two problems as quadratic assignment problems, and then study the 2-sum problem in more detail. We obtain lower bounds on the 2-sum by considering a projected quadratic assignment problem, and then show that finding a permutation matrix closest to an orthogonal matrix attaining one of the lower bounds justifies the spectral envelope reduction algorithm. The lower bound on the 2-sum is seen to be tight for reasonably 'uniform' finite element meshes. We also obtain asymptotically tight lower bounds for the envelope size for certain classes of meshes.

  19. Observers for a class of systems with nonlinearities satisfying an incremental quadratic inequality

    NASA Technical Reports Server (NTRS)

    Acikmese, Ahmet Behcet; Martin, Corless

    2004-01-01

    We consider the problem of state estimation from nonlinear time-varying system whose nonlinearities satisfy an incremental quadratic inequality. Observers are presented which guarantee that the state estimation error exponentially converges to zero.

  20. Pseudodynamic systems approach based on a quadratic approximation of update equations for diffuse optical tomography.

    PubMed

    Biswas, Samir Kumar; Kanhirodan, Rajan; Vasu, Ram Mohan; Roy, Debasish

    2011-08-01

    We explore a pseudodynamic form of the quadratic parameter update equation for diffuse optical tomographic reconstruction from noisy data. A few explicit and implicit strategies for obtaining the parameter updates via a semianalytical integration of the pseudodynamic equations are proposed. Despite the ill-posedness of the inverse problem associated with diffuse optical tomography, adoption of the quadratic update scheme combined with the pseudotime integration appears not only to yield higher convergence, but also a muted sensitivity to the regularization parameters, which include the pseudotime step size for integration. These observations are validated through reconstructions with both numerically generated and experimentally acquired data.